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You find the world is a very puzzling
place and if you are willing to be
puzzled, you can learn. [...] Learning
comes from asking ”Why do things
work like that, not some other way?”

Is the man who is tall happy?
An Animated Conversation with Noam Chomsky

Documentary by Michel Gondry
NOAM CHOMSKY
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Quiero agradecer especialmente a Diego por todas las horas escuchando
mis pajas mentales, hablando de las tuyas y sobre todo por el apoyo en
cualquier situacı́on; a Elena (y Marc seu) por —entre muchas más cosas

ix



i
i

“thesis” — 2014/9/8 — 10:58 — page x — #10 i
i

i
i

i
i

— Granada y por dejarme dormir en su sofá tantas veces; a Marc y Marı́a,
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pena empezar a fumar tan tarde... Ahora que me voy, lo puedo dejar!
Gracias a los Anomalocaris por este año en la liga de basket, especial-
mente a Diego, Ignasi y Javi. Me la pasé muy bien. Ojalá volvamos a
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des autres sont respectés. Merci Anne et Michel pour tout le soutien que

x



i
i

“thesis” — 2014/9/8 — 10:58 — page xi — #11 i
i

i
i

i
i
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Abstract

From Darwin’s Origin of the Species to the recent wealth in genomic data,
many biologists have focused their research on understanding how natural
selection has shaped the variability among and within species. Although
theoretical and empirical advances have been remarkable, most biological
mechanisms underlying the molecular basis of human adaptation remain
to be elucidated. The selectionist view of adaptation accounted for the
bias towards independent gene evolution. Most published studies aiming
at detecting positive selection using either polymorphism or divergence
data have been performed using a gene-candidate or a genome-wide scan
approach, as described in the two first articles presented here. However,
gene evolution is largely influenced by the biological context in which
the encoded protein performs its intrinsic function(s). The phenotype, not
the genotype, is at the interface with natural selection. Thus, in order
to understand gene evolution, and particularly when considering adaptive
selection, it is crucial to reduce the gap between genotype and pheno-
type. Genes and proteins do not act in isolation, but rather interact one
with others in order to perform a given biological function. Therefore,
when studying natural selection at molecular level one promising frame-
work is to consider gene networks, as described in the two last articles of
the present thesis. Analyses of gene networks describing the Insulin/TOR
transduction signalling cascade and the whole protein-protein physical in-
teraction map hold very striking results. Namely, genes acting at the core
of both networks, thus having either more effect on a given phenotype or
more pleiotropic effects within the organism, are more likely to be tar-
geted by recent positive selection, as inferred using polymorphism data.
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Resumen

Desde el “Origen de las Especies” de Darwin a la reciente revolución
genómica, muchos biólogos han centrado su investigación en la compren-
sión de cómo la selección natural ha dado forma a la variabilidad entre y
dentro de las especies. Aunque, los avances teóricos y empı́ricos han sido
notables, la mayorı́a de los mecanismos biológicos que subyacen a las ba-
ses moleculares de la adaptación biológica aún no están suficientemente
esclarecidos. La visión seleccionista de adaptación marcó el sesgo de los
estudios evolutivos hacia el análisis de genes individuales. La mayorı́a
de estudios publicados destinados a la detección de la selección positiva
utilizando datos de polimorfismo o de divergencia se han realizado uti-
lizando un gen candidato o un enfoque de exploración genómica, como
se describe en los dos primeros artı́culos presentados en la presente tesis.
Sin embargo, la evolución de genes está muy condicionada por el con-
texto biológico en el que cada gen realiza su función intrı́nseca, siendo
el fenotipo, y no el genotipo, su materia primaria. Por lo tanto, a fin de
comprender la evolución de genes, y en particular cuando se considera la
evolución adaptativa, es crucial reducir la brecha entre el genotipo y el
fenotipo. Los genes y las proteı́nas no actúan de manera aislada, sino que
interactúan entre sı́ con el fin de realizar una función biológica determi-
nada. Por lo tanto, un marco prometedor al estudiar la selección natural
a nivel molecular seria considerar las redes de genes, como se describe
en los dos últimos artı́culos de la presente tesis. Los análisis de los da-
tos de polimorfismo genético, tanto de los genes que componen la vı́a de
la insulina, cómo de los todos los genes descritos en los mapas fı́sicos
de interacción proteı́na-proteı́na tienen resultados muy sorprendentes: los
genes que actúan en el núcleo de ambas redes, teniendo ası́ más efec-
to sobre un determinado fenotipo o más efectos pleótropicos dentro del
organismo, tienen más probabilidades de ser el blanco de la selección po-
sitiva reciente.
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Resum

Des del ”Origen de les Espècies”de Darwin fins a la recent revolució
genòmica, molts biòlegs han centrat la seva investigació a la compren-
sió de com la selecció natural ha donat forma a la variabilitat existent
entre i dins de les espècies. Tot i que els avenços teòrics i experimentals
han estat notables, la majoria dels mecanismes biològics subjacents a les
bases moleculars de la adaptació biològica no estan prou aclarits.
Els estudis evolutius per entendre l’adaptació estan esbiaixats cap a la
comprensió de l’acció de gens individuals. La majoria d’estudis publicats
destinats a la detecció de la selecció positiva (adaptativa) utilitzant dades
de polimorfisme o de divergència, s’han realitzat utilitzant o bé gens can-
didats o bé un enfocament d’escaneig de tot el genoma, tal com es descriu
en els dos primers articles presentats en aquesta tesi.
No obstant això, l’evolució de gens està molt condicionat pel context bi-
ològic en el qual la proteı̈na codificada per cada gen realitza la seva pròpia
funció. El fenotip, no el genotip, és a la interfı́cie directa amb la selecció
natural. Per tant, per tal per entendre l’evolució dels gens, i en particu-
lar quan es considera la selecció adaptativa, és crucial reduir la separació
entre el genotip i el fenotip. Els gens i les proteı̈nes no actuen de manera
aı̈llada, sinó que interactuen uns amb altres per tal de realitzar una funció
biològica determinada. Per tant, per l’estudi de la selecció natural a nivell
molecular, un marc prometedor és considerar les xarxes de gens, tal com
es descriu en els dos últims articles de la present tesi.
Les anàlisis de la xarxa de gens que descriuen la cascada de transducció
de senyals de la insulina/TOR i del conjunt total del mapa d’interaccions
fı́siques proteı̈na-proteı̈na en humans tenen resultats molt sorprenents. De
fet, els gens que actuen en el nucli de totes dues xarxes (i que per tant te-
nen més impacte en un determinat fenotip i més efectes pleiotròpics dins
de l’organisme), tenen més probabilitats de ser la diana de la selecció
positiva recent que no pas els gens amb menys interaccions.
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PREFACE

Most achievements in science are to a
certain degree group efforts.

Speech at the Nobel Banquet in
Stockholm, December 10, 1960

WILLARD LIBBY

In 1859, with his masterpiece The Origin of the Species Charles R. Dar-
win laid the cornerstone of evolutionary biology. Nevertheless, it is not
until the 1920s that the field properly began with the visionary work from
few theoreticians. Indeed, at that time and in the following decades,
Ronald R. Fisher, Sewall Wright and J. B. S Haldane developed the mod-
ern evolutionary synthesis through the formulation of the mathematical
background for population genetics. Since then, this field has been long
lasting. The insights from population genetics into evolutionary biology
are extraordinary. To broaden the understanding on the main evolutive
forces at play, cross-talks between theoretical development and empir-
ical observations have proved to be essential. During almost one cen-
tury of population genetics and evolutionary biology, lively discussions
have been frequently rekindled thanks to many empirical and theoretical
breakthroughs. In the last few years, evolutionary biology and popula-
tion genetics have been living a very exciting moment. Indeed, with the
advent of high-throughput technologies to produce large amount of data
with increasing confidence, the so-called “-omics” era could begin. Great
amount of data from genomics, interactomics, metabolomics, transcrip-
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tomics, epigenomics, etc., are now available. Such wealth in data may
seem overwhelming and much effort is still required to process and fully
understand it. Although this is challenging, biology is now moving from a
traditionally reductionist view and we are more and more able to consider
many layers of complexity to answer many interesting biological issues
and interrogate and/or improve the models traditionally used. Particularly,
evolutionary biology is now on the path to leave behind the gene-centric
view which led the field for many years, as more information on the gene
function and context can be included to attempt to bridge the gap between
genotype and phenotype.

Considering the biological pathways in which genes participate is one
of the emerging frameworks for evolutionary biology studies. Very few
studies on how natural selection acts within gene networks have been
published to date. Specifically, the impact of positive selection across
gene networks has been overlooked. The present thesis introduces the
first study of the relationship between gene adaptive evolution and the
position occupied by the protein it encodes in a given functional pathway.
Then, it focuses on a study at much larger scale which demonstrates how
challenging it is to fully understand the molecular mechanisms driving
adaptive evolution.

The kind of analyses presented in this thesis deeply rely on an accurate
representation of the interactions among proteins. However, although
technical and technological efforts have been made to produce such an
amount of data, it remains a relatively significant number of errors. When
studying small-scale networks, such as those representing specific biolog-
ical pathways, the errors can be addressed retrieving information from the
literature. Therefore, earlier efforts by many researchers makes possible
technical and technological progresses to improve each day the accuracy
of the produced data. A special thought also goes to all the persons who
manually curate the databases by retrieving information from decades of
efforts in biochemistry and molecular biology. The modest contribution
to the field of evolutionary biology presented in this thesis would not have
been possible without all this people.
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Chapter 1

BACKGROUND

Nothing in biology makes sense except
in the light of evolution.

THEODOSIUS DOBZHANSKY

Darwin would have loved DNA.

LINDELL BROMHAM

1.1 The rise of Homo Sapiens and its history.

Modern human lineage (Homo Sapiens) diverged from its closer living
relative, the chimpanzee, about six million years ago (6 MYA). During all
those years, many different ancient hominin lineages appeared and dis-
appeared, some of them being ancestors of modern humans [1]. Modern
humans emerged some 200 thousand years ago (200 KYA) somewhere
in Africa. The oldest fossil that has been classified as being the remain
of a modern human was found in Ethiopia and dates to about 195 KYA
[2]. The relationship and boundaries among the hominin lineages remain
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Figure 1.1: A map of prehistoric diaspora of modern humans. From [5].

much debated and are currently revisited thanks to the Next-Generation
Sequencing (NGS) technology (for a review see [1]). Indeed, recent stud-
ies appointed to some gene flow between some past modern human popu-
lations and our extinct relatives Neandertals and Denisovans (for a review
see [3]). Although it is still unclear what are the specific morphologi-
cal features that make modern humans different from the other lineages,
some consensus have been reached: the globular shape of the skull and
the face with its particular degree of retraction are modern human specific
[4]. The fact that modern human fossils dated before 45 KYA have never
been found out of Africa suggest that Homo sapiens migrated to Eura-
sia and beyond much after its first appearance in Africa. Although the
routes followed while migrating out-of-Africa remain debated, we now
acknowledge that modern humans reached the Americas from Siberia ˜
15-20 KYA, Oceania from East Asia ˜ 50 KYA and the Pacific islands
from nearby continental lands ˜ 5 KYA (Figure 1.1). Archaeological and
genetic data are consistent enough to accept this view of modern human
diaspora across the globe [3]. Around ˜ 10 KYA occurred the Mesolithic-
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Neolithic transition during which agricultural life-style appeared indepen-
dently in several regions across the globe. This dramatic change from no-
madic hunter-gatherer communities to more sedentary agriculturist ones
allowed a dramatic expansions of human populations and cultural and
social revolution with extensive technological improvements. Much ef-
fort have been put into building demographic models to explain both the
human expansion over different time-scales, and genetic data have made
possible to test them. By looking at genetic diversity and reconstructing
genetic phylogenies, we can infer the root (i.e. the common ancestor) of
our lineages and thus, trace back our origin. Maternal or paternal specific
markers, namely markers located on mitochondrial DNA (mtDNA) and
Y-chromosome were the most used because besides being sex-specific,
and thus having a simple mode of inheritance, are also non-recombinant,
facilitating the analyses. The out-of-Africa hypothesis have been con-
firmed because the human genetic diversity decrease with distance from
Africa and populations out-of-Africa also present unique variants thought
to be gained after their migration.
The recent wealth in genetic diversity data and the unprecedented power
of computational modeling approaches allowed an increase power to infer
the history of the human populations. Those demographic models include
several past demographic events which are responsible for the observed
variation patterns and genetic diversity in the current human population
across the globe. We can distinguish among two families. The first kind
of models considers that the human expansion occurred through several
founding events, where an initial population increases in size and, in turn,
a subset of individuals found a subsequent population and so on and so
forth [6–9]. The second class of models assumes a single out-of-Africa
event to Europe and Asia with subsequent population bottlenecks and ex-
pansions. They also include migration among populations that can vary
across time. Most of these models only consider three populations rep-
resenting African, European and Asian continents and, therefore, are ob-
viously quite simplistic. However, they describe sufficiently past human
demography for many purposes in genetic studies focusing on populations
from these three continents. The most used model of this kind has been so
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Figure 1.2: A model describing the modern human expansion with one single
out-of-Africa events. From [10].

far the one calibrating on HapMap III genotype data (www.hapmap.org)
using COSI coalescent simulator [10] and shown in Figure 1.2. Recently
other models with more complex demographic histories or more popula-
tions have been implemented (e.g. in [11, 12]) as described in Section
1.5.3.

1.2 Human genetic variation.

1.2.1 Types of genetic variation.

Although the genetic differences among two individuals has consequences
on the phenotypic variability, the genetic contribution to phenotypes has
not been fully established and it is one of the main challenges in the
21st century. Even though the phenotypic variability among individu-
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als seems important, any randomly pair of individuals in the world have
on average only 0.1% sequence difference. This means that two human
genomes share 99.9% of their variants. Recent available sequencing of
human DNA provided a detailled description of the variants segregat-
ing in the genome of healthy individuals. Among the variants, there are
substitutions and insertions/deletions, and they can be divided into three
categories (Figure 1.3) according to their corresponding number of base
pairs (bps): (1) structural variants (SVs) encompassing from few kilo-
bases (> 10Kb) to few megabase, including large deletions and inser-
tions, inversions, macrosatellites and Copy Number Variants (CNVs); (2)
SVs encompassing few hundreds of base pairs such as medium sized in-
sertions and deletions and minisatellites (repeats of 10-100 bps); and (3)
variants of few bps such as small insertions and deletions, microsatel-
lites (repeats of 2-6 bps) and single base pair substitutions, called Single
Nucleotide Variants (SNVs) or traditionally Single Nucleotide Polymor-
phism (SNPs).
In the present thesis, most analyses have been performed using SNVs
which are the most common and the most studied type of variation in the
human genome. Single nucleotide polymorphisms are divided into two
kinds. The transitions substitute either a pyrimidine to another pyrimi-
dine (C to T or T to C) or a purine to another purine (A to G or G to
A) while the transversions substitute a purine for a pyrimidine, or vice-
versa. It has been observed 2-fold enrichment of segregating transitions
as compared to transversions. The potential explanation would be that
one purine (or pyrimidine) can be altered to the other purine (or pyrimi-
dine), while it is impossible to chemically alter a purine to a pyrimidine
(and vice versa). Another explanation could be that enzymes involved in
DNA replication and correction are not able to correct transitions as well
as transversions. The mutation rate can be estimated through comparative
genomics (phylogenetic estimation), analysis of the frequency of new dis-
ease loci in human populations (direct estimation) or using biochemical
knowledge of the DNA replication process (biochemical method). De-
pending on the studies, the mutation rate differ but has been estimated to
be of the order of 10-8 per base per generation [9, 13, 14]. The mutation
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rate varies across the genome. For example, the CpG dinucleotide is a
mutation hotspot, with a mutation rate ˜ 10-fold higher than other base
pairs and with a strong tendency to mutate to TpG or CpA because of the
higher rate for transition than for transversion.
Beyond the genotypes, one can study the haplotypic variability. Haplo-
types are the combinations of alleles that are inherited together because
they are carried by the same chunk of the chromosome which has not been
cut by any recombination event during meosis. Two loci are in linkage
disequilibrium (LD) if there is a specific combination of their alleles that
are observed on the same haplotype more often than expected at random.
Knowing the haplotypes provide valuable information about ancestry and
inheritance to perform evolutionary studies. Estimating haplotypes exper-
imentally appears to be harsh, time-consuming and quite expensive. As
a consequence, many computational algorithms have been implemented
to infer the haplotypes from genotypes. Those algorithms are mainly
Markov Chain Monte Carlo (MCMC) methods within a Bayesian frame-
work [15]. Mutation at genotypic level is obviously responsible for cre-
ating new haplotypes. However, recombination is the main force driving
haplotypic diversity. Recombination rates are not uniformly distributed
along the genome: there are recombination hotspots. Therefore, allelic
combinations are shaped in a haplotype-block manner. Recombination
hotspots are differently distributed in the genome according to the popula-
tion, hence, recombination events are responsible for haplotypic diversity
among populations [16]. Finally, gene conversion (non reciprocal transfer
of genetic variants from one chromosome to the other), where one allele
does not change whereas the other one converts to the same state as the
unchanged allele, is also responsible for haplotypic variability.

1.2.2 Available polymorphism data.

The first draft of the human genome was released in 2001 thanks to two in-
dependent sequencing efforts [17, 18]. This draft, as well as the following
ones, does not consist in the sequence of the human genome. Indeed, it
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Figure 1.3: Types of genetic variation. Different genetic variations segregating
in a genome and classified according to their size in base pairs.

has been retrieved from a mosaic of many different genomes from differ-
ent individual sequences. During the assembly of the first human genome,
around 4 Millions SNVs were discovered. Those SNVs, represents single
nucleotide differences among the individuals used for the assembly.
Since then, several project provided public access to genotype data from
samples in worldwide populations. The work described in the present
thesis has been mostly performed on three main databases. A brief de-
scription of each as well as their own strengths and drawbacks is then
required.

Human Genome Diversity Panel.
The Human Genome Diversity Project (HGDP), led by Luca Cavalli-

Sforza and Allan Wilson, began in 1991. This project aimed at collecting,
analyzing and making available a broad set of human samples all around
the globe . In 2002, a panel (called HGDP with now the P standing for
Panel instead of Project) made available 1,064 cell lines from individuals
from 51 populations representing the seven main geographic areas (Sub-
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Saharan Africa, Middle-East and North Africa, Europe, Central-South
Asia, East Asia, Oceania and America) [19]. In 2008, Li et al. geno-
typed 1,043 of those individuals distributed across 51 populations, on the
Illumina HumanHap650K Beadchips. This array include 650 thousands
markers chosen to maximize tagging of additional common SNPs that are
in LD with the genotyped SNPs. Those markers were described to tag in
European, Asian and African samples more than 90%, 88% and 67% of
SNPs with Minor Allele Frequency (MAF) above 5%, respectively. The
main drawback of this data results from the type of markers included. In-
deed, Li et al. (2008) [9] reported a bias towards highest heterozygosity
in Europe, with heterozygosity level being lower in Middle-East, Central-
South Asia and three hunter-gatherers groups in Africa and followed by
East Asia. This bias, known as ascertainment bias, is the systemic dis-
torsion of the allele frequency spectrum due to a a priori discovery of
the polymorphism segregating in a reduced sample. Thus, when geno-
typing individuals from other populations, especially isolated by distance
from the ascertainment sample, one most certainly does not catch all the
genetic variation (more on ascertainment bias in 1.5.1).

International HapMap Project.
In 2003 started the International HapMap Project. This project aimed

at developping a variant map of the human genome to describe the com-
mon patterns of genetic variation. During the Phase I and II, ˜ 3.1 Mil-
lion SNPs have been genotyped in 270 individuals from three different
populations [20]. The samples were retrieved in a Yoruba (YRI) popula-
tion in Nigeria, an European ancestry population in Utah, USA (CEU), a
Han Chinese population in Beijing and Japanese from Tokyo (CHB+JPT).
There were different technologies used to discover new SNPs and type
them in the three samples. In these two phases the ascertainment scheme
is therefore difficult to assess since it depends on the genotyping tech-
nology. For the Phase III of the project, the number of sampled popu-
lations has been increased up to 14. However, this phase does not pro-
vide as much variants as in the first two phases. Indeed, the samples were
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genotyped only on Affymetrix Genome-Wide Human SNP Array 6.0 with
however an easier ascertainment scheme to assess. This chip also includes
tag-SNPs, i.e. SNPs that catch the variation in the surrounding regions be-
cause they are in LD with ungenotyped variants. As for HGDP, Hapmap
data mostly captures common variation since it provides the genotypes
for SNPs segregating with a MAF > 5%. Moreover, HapMap project
released accurate genetic map (giving information on the past recombi-
nation events across the genome) and a wealth of information about the
patterns of LD in human populations.

1000 Genomes Project.
Following the HapMap project, the 1000 Genomes Project provided more
insight into the human variation [21]. Making profit of the emergence of
NGS technologies, the 1000 Genomes project aims to provide a catalog of
human genomic variation by sequencing ˜ 2,500 individuals in 27 popu-
lations. Now, with the Phase I release, already over 1000 individuals have
been sequenced and ˜ 41 Millions SNVs have been discovered using both
whole-genome sequencing at low coverage (2-6 X) and limited targeted
exon sequencing at higher coverage (50-100 X). They describe 98% vari-
ants (both SNVs and indels) segregating with a MAF > 1% in a given
population. They also implemented in silico genome-wide phasing and
imputation, meaning that the haplotypes are provided and ungenotyped
SNVs have been inferred. The data also describes detectable Copy Num-
ber Variants (CNVs). So far, this is the most detailed catalog of human
variation available. However, one must note that the coverage used for
sequencing strongly affect the power to detect rare variants, thereby, the
allele frequency spectrum observed for exonic regions will be different
than for the rest of the genome.
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1.3 What determines genetic diversity levels within
species?

One main goal in studying species evolution is to determine which are the
forces producing and maintaining genetic diversity in natural populations.
Such knowledge contributed to the development of the neutral theory of
molecular evolution which has mostly been attributed to the work of Mo-
too Kimura [22] in the 50s and 60s. The neutral theory of molecular evo-
lution may in turn be used as the null hypothesis for many evolutionary
analyses in order to assess whether a population have evolved under nat-
ural selection accounting for some specific molecular patterns observed
throughout the genome [23–25]. The Hardy-Weinberg principle [26, 27]
which describes the conditions a sexual population has to meet to be at
equilibrium gives straight forward insights into the evolutionary forces in
action. The so-called Hardy-Weinberg equilibrium states that allele fre-
quency will remain equal across generations if the following criteria are
fulfilled (1) diploidy and individuals can only reproduce through sexual
mating; (2) generations are non overlapping; (3) allele frequencies are
equal in both sexes; (4) there is no mutation; (5) the population is pan-
mixic (individuals mate randomly); (6) there is no migration from or to
another population; (7) the size of the population is infinitely large, and
(8) natural selection is not active.
Since we are interested in human evolution, diploidy and sexual mating
are met in any cases. It is complicated to infer the influence of the absence
overlapping generations, but we will consider this criteria as granted. The
allele frequency equality among sex is not guaranteed, especially for sex-
ual chromosomes and, for this reason, many genetic studies focus either
on sexual or autosomal chromosomes separately. Mutation is a rare pro-
cess: it has been estimated that the average single nucleotide substitution
is in the order of 10-8 per base per generation [9, 13, 14]. However, those
rare changes accumulate across generations and are the raw material for
evolution to occur. Therefore, mutation can not be discarded when study-
ing evolution but it is often assume that this mechanism does not account

12



i
i

“thesis” — 2014/9/8 — 10:58 — page 13 — #43 i
i

i
i

i
i

for observed genetic differences among genomic regions, and thereby its
rate is considered to be uniform across the genome although it is not (e.g.
see [28]). Panmixia condition relies on the absence of any mating restric-
tions among the individuals so that they can mate randomly. Specific envi-
ronmental, behavioural, hereditary or social interactions may account for
population structure and, thus, prevent random mating. Moreover, the ab-
sence of migration from one population to the studied one guarantees no
new allele supply in the gene pool. Finally, violation of the last two con-
ditions regarding population size and absence of natural selection are the
most studied by evolutionary biologists. If a population has an infinitely
large size, the random sampling of the alleles from one generation’s gene
pool to be passed to the next one is unbiased: the alleles present at one
generation are a representative sample of the alleles at the previous one.
The main contribution of the neutral theory of molecular evolution was
to describe how, in finite populations, this random allele sampling from
one generation to the next one leads to a significant fluctuation in allele
frequencies across generations, a phenomena well-known as genetic drift
and discussed in 1.3.2. On the other hand, if one allele is evolving under
natural selection, that is its odds to segregate through generations is lower
or higher than for the other alleles, its frequency will decrease or increase.
We will discuss the different modes of natural selection in 1.3.1.

1.3.1 Natural selection in action.

This preservation of favorable
variations and the rejection of injurious
variations, I call Natural Selection.

On the origin of species by means of
Natural Selection, or the preservation

of favoured races in the struggle for life
CHARLES R. DARWIN

As stated in the quotation above, (Darwinian) natural selection targets
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a heritable trait that provides greater or lower chances for an organism
to reproduce, and/or to survive, in a given environment. This evolution-
ary process is therefore directional: while an allele responsible for any
advantageous trait will be selected for and, thus, increase in frequency in
the population, an allele encoding a prejudicial phenotype will be selected
against and purged from the population. This concept, introduced in 1858
simultaneously by Charles R. Darwin and Alfred R. Wallace [29, 30], has
been at the core of the study of evolution and biological research. How-
ever, since then there has been passionate debate concerning its relative
importance among other evolutionary processes, the prevalence of adap-
tive traits and how they are originated in natural populations. For natural
selection to be effective, Darwin suggested that a population must present
three features. First, as mentioned in the title of the book presenting his
theory, individuals within a population must “struggle for life”, meaning
that more individuals are born than the number that can actually survive
in the population. Second, individuals should vary in their ability to re-
produce (or survive until reproductive age), so that only the fittest ones
would be more likely to have offspring, and thus, to transmit their charac-
teristics to the next generation. A concept that the liberal theorist, Albert
Spencer, interpreted as the ”survival of the fittest”. Although this expres-
sion was then used by Charles Darwin himself in latter versions of The
Origin of the Species, it does not accurately describe the process of nat-
ural selection which acts on reproductive differences among individuals.
Third, the variation in reproductive success must be heritable. Darwin
could demonstrate the existence in natural population of the two first re-
quirements. However, he was unfortunately unaware of Gregor Mendel’s
work on the law of inheritance and could not provide any suitable model
of inheritance. Alternatively, he suggested a blending inheritance model
in which the offspring is a fusion of its parent’s characters. This model
was not suitable for his theory because such blending inheritance would
remove quickly any variability in the population, avoiding natural selec-
tion to act. The absence of a suitable model of inheritance prejudiced
the natural selection theory and brought controversy in the field. We had
to wait until the 20th century, for Mendel’s work to be broadly known.
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Figure 1.4: The different modes of natural selection. From [31].

Along with the Hardy-Weinberg principle, Mendel’s law of inheritance
could finally provided the missing link in Darwin’s theory: variability
can be maintained in the population when random mating occurs in a
sufficiently large population. On the other hand, when mating is not ran-
dom anymore and the fitness of the individuals is not the same, natural
selection occurs leading to a reduction in variability, just as predicted by
Darwin.

Consequently, at the dawn of the 20th century, natural selection began
to be fully accepted by biologists and several theorists gave birth to the
modern synthesis of evolutionary theory, also referred as neo-Darwinism.
Notably, John D. S. Haldane, Ronald A. Fisher and Sewall Wright began
impressive theoretical work considered as the founding principles of pop-
ulation genetics. In their extensive work, they demonstrated how natural
selection on a phenotype induced by a single or multiple loci could result
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in rapid changes in loci frequency within a population, leading in turn to
the phenotype evolution [32–35]. In this setting background paradigm,
phenotype is placed as the target of natural selection. This theoretical
background led to the selectionist view in which natural selection is con-
sidered by far the main mechanism of evolutive changes in a population.
Natural selection is a generic name which accounts for four different evo-
lutionary processes: sexual, purifying, positive and balancing selection.
Sexual selection is a mode in which random mating does not occur due
to the choice of the reproductive partners based on some specific pheno-
types. The three other modes are related to the odds of an individual to
survive until reproduction and to reproduce. Therefore, sexual selection
is not to be considered together with the three others: the reason why an
allele encoding the phenotype targeted by the different modes of selec-
tion is selected for or against differs. The following will focuses on the
description of natural selection where environment represents the main
selective force, and, sexual selection will not be considered.

1. Purifying selection (Figure 1.4a.), also referred as negative selec-
tion or stabilizing selection, is the evolutionary process by which
deleterious mutations are removed from the population’s genetic
pool. It ensures that organisms remain well-fitted to their envi-
ronment and prevents from the spread of any damaging mutations
across generations. It is considered as the most effective type of
selection because mutations with a functional consequence seem to
be more likely to decrease than to increase the fitness. Thus, purify-
ing selection is believed to be widespread in functionally important
genes or regulatory elements.

2. Positive selection (Figure 1.4b.), also referred as Darwinian selec-
tion or adaptive selection has been considered one of the most im-
portant driving forces for phenotypic variability among species or
populations. The concept is straightforward: any beneficial muta-
tion will increase in frequency in the population, thus allowing the
adaptation of individuals to new environments.

3. Balancing selection (Figure 1.4c.) sustains the segregation of dif-
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ferent alleles in a population. In opposition to positive and negative
selection, this mode of selection avoids alleles to reach fixation, and
thereby, favors genetic diversity. Alleles under balancing selection
cannot be strictly classified as deleterious or beneficial to the envi-
ronment since it would depend on other factors. Indeed, four main
processes can lead to an excess of polymorphisms. First the over-
dominance, i.e. when the heterozygote genotype is the fittest. Sec-
ond, frequency-dependent selection, i.e. when an allele becomes
deleterious or beneficial depending on its frequency in the popula-
tion. Third, fluctuating selection, i.e. when selection coefficients
vary over time and/or space. Fourth, pleiotropy when the selective
variant affects multiple traits with different effects.

1.3.2 The neutral theory: the role of genetic drift in evo-
lution.

This neutral theory claims that the
overwhelming majority of evolutionary
changes at the molecular level are not
caused by selection acting on
advantageous mutants, but by random
fixation of selectively neutral or very
nearly neutral mutants through the
cumulative effect of sampling drift (due
to finite population number) under
continued input of new mutations.

The neutral theory of molecular
evolution: A review of recent evidence

MOTOO KIMURA

Since its introduction at the beginning of the 20th century, the modern
synthesis of evolutionary theory and its selectionist view was each time
more popular until the 1970s. However, it was based on pioneer work
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Figure 1.5: Genetic drift in a finite population. Different coloured circles rep-
resent different alleles. Lines represent the transmission of an allele from one
generation to next one. Genetic drift drives increases and decreases in allele
frequencies by random sampling of the parental alleles to the offsprings.

from Wright, Fisher and Haldane who also considered an other source
of variability within and among populations: a stochastic selectively neu-
tral process in opposition to the deterministic evolution through natural
selection. One of the strongest assumption in Hardy Weinberg principle
is certainly the infinite population size, particularly for humans. Indeed,
as briefly described in 1.1, modern human expansion has likely occurred
through several founding events and the human populations suffered sev-
eral bottleneck. The effective population size, Ne [36], a measure of the
constant size for an idealized population that represents the past history
of the population of interest, it is relatively small in humans. Indeed, it
has been estimated that Ne is ˜ 10,000, a quite striking number if com-
pared to the more than 7 billions individuals peopling the world nowa-
days. Introduced by Sewall Wright in 1931, the effective population size
represents the harmonic mean of population sizes among generations, and
thus, allows to describe the amount of genetic drift a population has suf-
fered. As stressed before, genetic drift, is the allele frequency fluctuation
across generations due to random sampling of the gametes from one gen-
eration to engender the next one (Figure 1.5). The Wright-Fisher model
[33, 36] was the first proposed to explain the diffusion of allele within a
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Figure 1.6: Simulated allele frequency trajectories under genetic drift. The fate
of the change is random.From http://pandasthumb.org

population due to genetic drift. In this famous discrete time model, they
proposed a simple equation to describe the probability to observe an al-
lele at frequency pn at generation n when segregating at frequency pn−1 at
the previous generation. This model is rather simplistic since it relies on
assumptions found in the Hardy-Weinberg principle (diploidy, absence of
selection and mutation, no overlapping generations, panmixia) and the ab-
sence of recombination among variants. However, it remains extensively
used to estimate the rate of evolution of a population through genetic drift.
The equation for diallelic variants they proposed is the following:

P (pn =
k

2N
| pn−1) =

(
2N

k

)
pkn−1(1− pn−1)2N−k

⇔ (2N)!

k!(2N − k)!
pkn−1(1− pn−1)2N−k,

(1.1)

where, N is the actual size of the population and k the number of copies
of the allele observed at generation n. When comparing the observed p
to the one expected under this model across many variants, one straight-
forward outcome is the amount of genetic drift due to the differences be-
tween N and Ne.
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Figure 1.7: Sequence divergence among different site classes. Less changes are
observed at non-synonymous sites than at site with no or little effect on protein
function. From [37].

However, until the 1960s. The predominant view in evolutionary biol-
ogy was that natural selection is playing the dominant role in explaining
the observed gene pool. According to this view, the differences between
species were assumed to occur mostly from advantageous mutations that
had been fixed by positive selection (Section 1.3.1). On the other hand,
the observed relatively important amount of polymorphism within popu-
lations, was explained by the action of balancing selection (Section 1.3.1)
or by a transient change towards fixation of the advantageous alleles.
Hence, neutral (non adaptive) processes were overlooked because of their
assumed little contribution. Based on the recent view of large amounts
of polymorphism, Kimura challenged the selectionist theory in the late
1960s. Indeed, Kimura observed that genetic variability was more fre-
quent than expected and, proposed his now recognized neutral theory of
molecular evolution [23]. The main claim in his theory was that most ge-
netic variants observed in a population are neutral, i.e. has no phenotypic
effect for the individuals carrying them. Thus, the observed amount of di-
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versity is mainly the results of the interplay of genetic drift and mutation
(Figure 1.6).
One strength of Kimura’s theory was not to be exclusively neutralist. In-
deed, Kimura also acknowledged that most new mutations are deleterious
if occurring in functionally important regions and, thereby, are quickly re-
moved from the population by purifying selection (Section 1.3.1). There-
fore, such mutations do not contribute, or contribute little, to the diver-
gence among different species sequence and to polymorphisms within
species. Moreover, in this theory, the role positive selection is not re-
jected, but rather Kimura stated that it was rare. He also anticipated the
controversy he would generate in the field and provided strong predictions
to be tested with the actual data. The most famous and used one would be
that, under the neutral theory of molecular evolution, more changes during
divergence between species sequences are expected in functionally less
important regions. When Kimura proposed his neutral theory in 1968,
only a few protein sequences were available. We had to wait until the
wealth larger amount of DNA sequence data in the 1980s to validate such
prediction. In 1991, Kimura then published a review [38] in which he
reported observations supporting his theory: (1) amino acid substitutions
with similar biochemical properties are more often observed than radical
changes, because of their lower effect on protein function; (2) there are
more synonymous substitutions (causing no change in amino acids) than
non-synonymous ones; (3) the evolutive rate at non coding regions (e.g.
introns) is higher than for coding ones; (4) non-coding sequences, such
as introns, evolve at a high rate similar to that of synonymous sites, and
(5) pseudogenes evolve at high rate somewhat similar to the rate observed
for third-codon positions, also known as codon wobble positions (Figure
1.7). While these observations are consistent with the neutral theory, they
contradict the selectionist one: if most substitutions were adaptive, we
would observe more substitutions in regions with important function than
in regions where changes have little or no effect on phenotype, such as
pseudogenes, non-coding sequences and synonymous sites.
All together, Kimura’s theory of neutral molecular theory ”only” recon-
sider the dominance of the evolutionary forces in action: the effective
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population size does matter. In order to conclude the action of selection
at a given locus, one must reject the null hypothesis which states that the
molecular patterns observed around this locus are the result of genetic
drift. A new theoretical background to detect the action of alternative
evolutionary processes disrupting neutral evolution was born! [23–25]

1.4 Statistical approaches to identifying signals
of positive selection.

As introduced in Section 1.3.1, positive selection at the genomic level is
the process through which an allele that determine an advantageous trait
will increase rapidly in frequency, potentially until it reaches fixation. The
allele frequency trajectory in the population through the action of positive
selection depends on two main factors: the strength of the selective pres-
sure and the number of generations since it started. The strength of pos-
itive selection is measured by the selection coefficient, s, defined as the
increased percentage of offspring that the individual carrying the advanta-
geous genotype at each generation, compared to individuals with alterna-
tive genotypes. A higher selection coefficient involves the advantageous
allele to increase quicker in frequency, and thereby, to reach fixation in a
shorter time. On the other hand, the speed of the increase tends to decline
with the frequency of the advantageous allele in the population: the selec-
tion coefficient relates the relative advantage of individuals carrying the
advantageous genotype compared to all the others. As a consequence, the
allele frequency trajectory is non-linear but rather depends on the number
of generations since the allele began to increase in frequency through the
action of positive selection.
The allele frequency shift comes with some typical molecular footprints
used to detect selective events in the genome. Usually, we distinguish
between two method families according to the kind of data analysed.
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1. Using divergence data, i.e. sequences from different species, one
can identify substitutions in the genome that are different across the
species due to a past selective events that contributed to the species
divergences.

2. Using polymorphism data, i.e. sequence or genotype data from
different populations within a same species, one can explore the
nucleotidic and haplotypic diversity within and among populations.

The different molecular patterns left by a selective event are not main-
tained forever in the genome, and those footprints allow to infer how many
generations have past since the selective events occurred. (Figure 1.8).

1.4.1 Using divergence data.

Estimating molecular evolutionary rates.
Using divergence data, the calculation of the ratio dN/dS (referred to

as ω) is the most commonly used method for determining the nature of
the selective forces acting on a protein-coding gene. For that purpose
using the orthologous sequences for several species, dN is the rate of nu-
cleotide substitutions that have occurred per nonsynonymous site in the
sequence while dS is the rate of substitutions per synonymous site. Based
on the assumption that synonymous substitutions are largely neutral, in
opposition to non-synonymous ones (see Section 1.3.2), the ratio of sub-
stitution rates between these two site classes is then taken as an indicator
of the strength of non-neutral selective forces acting on the gene dur-
ing the species evolution since their divergence. When dN/dS = 1, the
gene is said to have evolved neutrally, while dN/dS < 1 is seen as the
footprint of purifying selection constraining the gene evolution because
non-synonymous substitutions have been removed from the population at
a greater rate than synonymous substitutions. On the other hand, dN/dS
> 1 would imply that positive selection has occurred, with more fixed
non-synonymous substitutions than expected under neutral evolution (as
inferred by the rate of synonymous substitution).
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Figure 1.8: Time scales for the signature of selection. The signatures of selec-
tion persist over different time-scales. From [39].

Different methods have been implemented to estimate the dN/dS . The
early ones, such as the one by Nei and Gojobori (1986) [40], rely on a
basic counting. Although rather simple, they illustrate well the spirit of
the methods. At each codon, the numbers of synonymous and nonsyn-
onymous sites are calculated. For each position, i, in a codon, the fraction
fi of observed synonymous changes is computed; the numbers of synony-
mous (s) and nonsynonymous sites (n) are then obtained by s =

∑3
i=1 fi

and n = 3 − s. The total number of synonymous (S) and nonsynony-
mous (N ) sites in a sequence are the sum of s and n, respectively, across
the whole sequence, i.e. the whole set of codons. The number of syn-
onymous (sd) and nonsynonymous changes (nd) per codon between two
sequences are then counted. At this step, multiple mutational paths be-
tween two codons are considered equally likely, thus, the resulting counts
is computed as the average between all possible paths. The sum of these
counts give the total number of synonymous (Sd) and nonsynonymous
(Nd) changes across the sequence. ps = Sd/S and pn = Nd/N are used
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as an estimation of the proportions of synonymous (pS) and nonsynony-
mous (pN ) differences,respectively. Finally, the rate of synonymous sub-
stitutions (dS) and nonsynonymous substitutions (dN ) can be computed
following the formula 1.2 [41]:

d = −3

4
loge

(
1− 4

3
p

)
(1.2)

where p is either pS or pN . More recent methods also include more pa-
rameters to account for differences among different types of substitu-
tions. For example, transversion changes do not occur as frequently as
transition (transition/tranversion rate bias) and there are different chem-
ical property differences among amino acids. The number of sequences
analyzed has increased a lot since 1986, and therefore several statistical
approaches have been suggested to estimate more efficiently dN and dS ,
such as Markov-process model [42] and Bayesian approach [43].

Tests of adaptive selection.
A gene can be overall constrained in its evolution while some specific

codons being evolving under positive selection. As a consequence, such
approach requires a very strong trend of positive selection to produce a
value greater than one. Therefore, several tests for positive selection at
specific codon sites, instead of working at the gene-level, using diver-
gence data have been suggested. They can be divided into two main fam-
ilies of tests: the individual site (IS) and the pooled site (PS) tests. The
first IS method was proposed in 1999 [44] and relies on the construction
of a phylogenetic tree in order to count the total number of synonymous
and nonsynonymous substitutions across all branches of the tree. A signal
of positive selection at a given codon would then be a significantly greater
number of nonsynonymous than the number of synonymous substitutions.
Improvements came from both likelihood and Bayesian-based implemen-
tation of this framework [45–47]. On the other hand, the PS methods rely
on nested models in order to perform likelihood-ratio tests between the
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null model where all sequence alignments are assumed to present either
a dN/dS < 1 or dN/dS = 1 (i.e. sites are either evolving neutrally or
under purifying selection, respectively) and the alternative model where
another site class is considered (namely some sites are fit by the model to
have evolve under positive selection, that is with a dN/dS > 1) [48, 49].
For example, one of the most used test compares models M7a and M8.
The M7a model estimates the likelihood of the sequence alignment to fit
seven site classes, one with dN/dS = 1 and six with dN/dS < 1, with a
β distribution to model the dN/dS values for the sites. Next, the same
data is fitted to the M8 model which considers one more site class allow-
ing dN/dS > 1. Finally, a likelihood ratio between the best likelihoods
under each model allows to test whether adding putative positive selec-
tion to the model explain better the data [48, 49]. Further methods using
a Bayesian framework can also be used to test a posteriori which are the
specific codons that have been targeted by positive selection [48–50].
As mentionned before, the main advantage of these codon-specific tests
over the simple calculation of dN/dS at gene level, is that they take into
account that individual sites to evolve at different rates. Nevertheless,
these methods remain generally little sensitive to detect positive selection
[51]. A particular concern is that they require sustained strong events of
positive selection while those may be rare during evolution and the com-
mon case seems to be brief episodes of selection. Consequently, in order
to detect such episodic adaptive events, several methods have been devel-
oped in which evolutionary rates can vary not only between codons but
also between phylogenetic branches [52–54]. These methods are more
sensitive to detect positive selection [54, 55].

1.4.2 Using polymorphism data.

In 1974, Maynard Smith and Haigh [56] proposed a model to explain the
molecular mechanisms at play when positive selection acts on a variant.
In this model, now referred as the hard sweep model, they described the
phenomena of genetic hitchhiking which results from positive selection
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Figure 1.9: Molecular patterns in genomic region suffering selective sweep.
Before the selective sweep in a neutrally evolving region, an adaptive mutation
(green circle) arises on one chromosome. During the selective sweep the fre-
quency of the adaptive allele and its linked variants rapidly increase in frequency.
After the sweep, adaptive and linked alleles are fixed, variability is lost. During
the recovery phase, new mutations begin to appear in different chromosomic
backgrounds by recombination and mutation.

driving a quick increase in frequency of an initially rare and beneficial
allele up to (or close to) fixation. This selective sweep occurs so quickly
that recombination is not efficient to cut the haplotype where the selected
variant arose, and thus, all the variants carried by this haplotype also in-
crease in frequency (Figure 1.9). Therefore, under the hard sweep model,
ones expect a decreased in genetic diversity in the surrounding genomic
region. The size of the region affected by such a sweep is proportional to
the ratio of the strength of selection to the rate of recombination [56–58].
Thus, the reduction in levels of diversity within the genome is determined
by the distribution of selection coefficients and the number of selective
events in unlinked genomic regions. A selective sweep drives a quicker
shift in allele frequency than what is expected under genetic drift, but re-
combination may occur, and thus, neutral alleles further away from the se-
lected site may not be driven all of the way to fixation, resulting in a tem-
porary excess of high-frequency derived alleles at intermediate distance
away from the selected site after the selective event [59–61]. Once the
sweep is over, the genomic region enters a recovery phase during which it
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regains neutral diversity levels through new mutations. Therefore, sweep
leaves a strong skew towards low frequency alleles, a pattern that per-
sists for many generations [60–62]. The rate of sweeps can be important
enough that hitchhiking dominates genetic drift, especially in large popu-
lations, as the source of stochasticity for neutral alleles [56, 57, 63]: the
genetic draft [63].
Maynard Smith and Haigh gave the theoretical background to most of
the tests implemented so far to detect signatures of selection at molecu-
lar level using polymorphsim data. Many of those tests have been ran on
1000 Genomes data, the latest publicly available polymorphism data in
worldwide populations (see Section 1.2.2 for a description of the data) by
Pybus et al. (2014) [64] (see Chapter IV) and rely on three main features
expected to be present in a genomic region surrounding a selected allele:
an important linkage disequilibrium, a skewed Site Frequency Spectrum
(SFS) and an excessive genetic differentiation among populations. The
list of methods classified by methods is given in Table 1.1.

Tests based on long haplotypes.
Positive selection creates high levels of LD in the region surrounding the
selected variant: for a similar shift in allele frequency, less recombina-
tion events takes place when there is selective sweep than pure genetic
drift since the shift in allele frequency is much quicker in the former
case. The Long Range Haplotype (LRH) test is commonly used to de-
tect such signal [65]. However, this test does not take into account the
recombination rate heterogeneity across the genome. To overpass this
limitation, other tests have been implemented and are based on the the Ex-
tended Haplotype Homozygosity (EHH) decay which measures the decay
of the haplotype homozygosity observed when moving away from the se-
lected variant because hitchhiking of neutral allele is weaker (see Figure
1.10 for a schematic representation of EHH decay calculation). First, the
Cross-Population Extended Haplotype Homozygosity (XPEHH) com-
pares the EHH decay observed in a population of interest to a reference
one [39]. Second the integrated Haplotype Score (iHS) compares within
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Figure 1.10: Extended Haplotype Homozygosity decay. Moving away from the
variant of interest, the haplotypes bifucarte and the haplotype carrying the core
markers are less and less frequent. Thickness of the blue lines represent the
frequency of the haplotype (haplotype counts in red). The haplotype homozy-
gosities when considering different number of variants are given at the bottom.

the same population the EHH decay observed for the derived and ances-
tral alleles. Those comparisons correct automatically for recombination
rate heterogeneity across the genome. Only recent selective sweeps ( ˜ <
30 KYA) can be characterized by the presence of long haplotype blocks:
elder sweeps are however not identifiable with this footprint since recom-
bination would have time to shuffle the haplotype blocks.

Tests based on Site Frequency Spectrum.
The Site Frequency Spectrum (SFS) is the representation of the number

of alleles observed in a sample belonging to different frequency classes
for a given set of polymorphic sites. As mentioned before, genetic hitch-
hiking will drive neutral alleles located on the haplotype carrying the se-
lected allele to high frequency, leading to a reduced diversity, an excess of
rare alleles, an excess of derived alleles at high frequency and a scarcity
of alleles at intermediate frequency compared to what is expected in a
neutrally evolving region (Figure 1.11). The excess of rare alleles can
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be formally tested by the famous Tajima’s D [66] and persists for a long
time (up to ˜ 250 KYA) during the recovery phase. Moreover, if ancestral
state of the variants is available, one can also test for the expected excess
of high frequency derived allele (Figure 1.11), with tests such as Fay and
Wu’s H [59]. This specific excess vanishes more rapidly as recombination
relieves neutral variants to evolve under pure genetic drift. This patterns
can be detected it up to ˜ 80 KYA after the sweep occured.

Tests based on genetic differentiation.
When a population faces a new environment, positive selection may act

on mutations that help the individual to better adapt to this new envi-
ronment. Therefore, to detect the alleles responsible of local adaptation,
i.e. that has not occured in all the populations, one approach is to study
genetic differentiation among populations. Traditionally the most used
statistics is the fixation index, FST , first introduced by Wright and de-
clined into different versions. Using Cockerham and Weir’s formula, FST
can be viewed as the the proportion of genetic diversity due to allele fre-
quency differences among populations:

FST =
σ2
a

σ2
w + σ2

b + σ2
a

(1.3)

where σ2
w, σ2

a and σ2
b are the intra-individual, inter-population and within

population inter-individual variances, respectively.
FST ranges from 0 to 1, with 0 when there is no differentiation (complete
panmixia) and 1 indicating complete differentiation of the populations.
Although, high FST can putatively be attributed to the action of posi-
tive selection in one population, this approach is often criticised because
of its sensitivity to population structure, demographic history, ascertain-
ment bias and minor allele frequency (for a review see [82]). The ∆DAF
score (the differences of derived allele frequency between one population
and a reference) is another genetic differentiation index which suffers the
same limitation. However, the use of the derived allele state allows to
identify the population where positive selection occurred. Further meth-
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Figure 1.11: Site Frequency Spectrum (SFS) under different evolutionary mod-
els. The Unfolded SFS represents the number of derived alleles observed within
different frequency classes. A region that have evolved under positive selection
presents an excess of rare variant and of derived alleles at high frequency is ex-
pected (sweep in red). During the recovery phase, the former pattern will remain
due to new mutations arising in the region while the later is lost more rapidly.
Based on coalescent simulations of 100Kb regions (from Pybus et al. 2014) with
no selection (3000 neutral replicates in blue) and with a recent selective sweep
in an European population driving an advantageous up to fixation (300 selec-
tive sweep replicates in red) using COSI with demographic model calibrated by
Schaffner et al. (2005) [10].
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ods using genetic differentiation pattern have been developed. For ex-
ample, the Cross-Population Composite Likelihood Ratio test (XPCLR)
implemented by Chen et al. (2010) [79] relies on a null model of ge-
netic drift and an alternative one with selective sweep and makes profit of
the genomic context around the selected allele to detect genomic regions
with long chunks being differentiated among populations due to hitchhik-
ing, making this method more robust to demography than individual SNP
based methods, such as FST and ∆DAF .

1.5 Practical challenges in detecting positive se-
lection using polymorphism data.

The work presented in this thesis mostly focuses on the impact of positive
selection in the human genome at the intraspecific level, and, as a con-
sequence, the analyses have mostly been performed using polymorphism
data. Therefore, it seems interesting to describe some challenges poten-
tially met when detecting positive selection using polymorphism data and
approaches to overcome them. First, looking for the different genomic
footprints left by positive selection can result difficult in the genotype
data used (1.5.1). Second, those footprints may also result from other
mechanisms (1.5.2 and 1.5.3) and are specific to the hard sweep model
while other modes of adaptation leave much subtle signals at molecular
level (1.5.5).
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Table 1.1: Statistics implemented by Pybus et al. (2014) [64] and available in
as UCSC tracks in the 1000 Genomes Selection Browser 1.0 at http://hsb.
upf.edu/.

Method family Method Reference
Site Frequency Spectrum Tajima′s D [66]

CLR [67]
Fay and Wu′s H [59]
Fu and Li′s D∗ [68]
Fu and Li′s F ∗ [68]
R2 [69]

Long haplotypes XPEHH modified from [70]
∆iHH modified from [71]
iHS modified from [71]
EHH average modified from [65]
EHH max modified from [65]
Wall′s B [72]
Wall′s Q [73]
Fu′s F [74]
DH [75]
Za [76]
ZnS [77]
ZZ [76]

Population Differentiation FST [78]
XPCLR [79]
∆DAF [80]

Descriptive statistics Segregating Sites
Singletons
π (Nucleotide diversity) [81]
DAF (Derived Allele Frequency)
MAF (Minor Allele Frequency)
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1.5.1 Distortions due to ascertainment bias.

As mentioned in Section 1.2.2, most genotype data used to study popula-
tion diversity present relatively important ascertainment bias. The ascer-
tainment bias is an intrinsic feature of genotyping technologies which are
still extensively used because they are simpler, cheaper and much faster
than sequencing approaches. The ascertainment bias results from the a
priori selection of the SNPs to be genotyped. Therefore, the genotype
information in the population of interest will not be produced for all the
segregating sites but only for the ones present in the so-called discovery
sample which generally has reduced size. Hence, the ascertained SNPs
are likely to segregate in the population at intermediate or high frequen-
cies (Figure 1.12) since the probability to identify a SNP is a function of
its frequency, and as a consequence, common SNPs are easier to detect
than rare ones.

Furthermore, ascertainment bias can also be caused by a selection of
SNP in a discovery sample that does not represent the studied population
in term of genetic variability. For example, many arrays used SNPs dis-
covered in European samples but then are used to genotype populations
worldwide in which SNPs on the array are not polymorphic. Moreover,
populations do not share all the variation: there are private SNPs segre-
gating, i.e. SNPs not shared with other populations [85]. Usually, the
SNPs for new designed arrays are selected from public database such as
HapMap (www.hapmap.org) which in turn present an ascertainment bias
of their own.
Usually, SNPs are selected to be genotyped in a population of interest with
some of the following criteria: (1) having a MAF above a given thresh-
old, usually relatively high in discovery samples representing either one or
several populations of interest; (2) select one SNP every a given number
of base pairs; (3) select many SNPs in targeted regions. The criteria used
affect the ascertainment bias, and it is difficult to asses a posteriori its
extent when using genotyping array designed by others. However, recent
efforts have been made to design genotyping array with reduced ascer-
tainment bias. For example, Illumina made available the Omni Family of
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Figure 1.12: Ascertainment Bias in HapMap populations. New SNPs were dis-
covered by Wall et al. [84] through sequencing of 40 intergenic regions in 90
individuals from 6 different ethnic groups. The figure shows the number of SNPs
in the HapMap data (green) compared with the number of SNPs that were dis-
covered by resequencing and that were not present in the HapMap data (orange),
categorized by derived allele frequency. It can be seen that the HapMap data have
greater SNP ascertainment bias for African than for European or Asian popula-
tions. In particular, African populations have many low-frequency alleles that
are not well represented. From [83].
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Microarrays which include up to five million markers per sample and ex-
tensive coverage of new variants identified by the 1000 Genomes Project,
i.e. SNPs discovered through NGS in samples from worldwide popula-
tions. Moreover Patterson et al. designed the Affymetrix Human Origins
array with clearly documented ascertainment specifically for population
genetics study [86].
The ascertainment bias has a direct effect on many statistics to detect pos-
itive selection using polymorphism data [87]. First, and the most straight-
forward, SFS-based statistics are distorted by the artefactual excess of
common variants in genotyping arrays. Second, the tests based on ge-
netic differentiation, such as the FST index, rely on a measure of genetic
variance within and among the populations. Hence, if the SNPs geno-
typed within different populations present different ascertainment bias,
the distribution of the index of genetic differentiation will be distorted. In
the first decade of this century, much effort have been made to implement
other methods less sensitive to the ascertainment bias with the develop-
ment of haplotype-based statistics [39, 71]. However, such methods rely
on an accurate estimate of LD patterns within a genomic region for the
population of interest in order to infer whether there is a particularly EHH
[88]. If the genotyping array only contains common variants and partic-
ularly chosen to tag the variability from another population, the observed
LD patterns in the studied population are unlikely to be representative of
the real ones. For example, for HGDP data (Section 1.2.2), in African
populations for which the genotyped SNPs tag only 67% of SNPs with
Minor Allele Frequency (MAF) above 5%, the power to detect positive
selection is lower than for European where 90% of such SNPs are tagged.
On the other hand, it has been proved that haplotype diversity is more
representative than individual SNP heterozygosity in the HGDP data [16],
suggesting that the ascertainment schemes affect more individual variants
than haplotypes.
Nowadays, more and more studies obtain genotype information through
NGS which does not suffer any ascertainment bias. However, the SFS
is highly dependent on the coverage (the read depth) used for sequenc-
ing. Indeed, the power to detect rare variants increase with coverage [21].
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Figure 1.13: Background Selection (BGS) and molecular diversity. Deleteri-
ous mutations (shown in red) are eliminated from the population together with
neutral mutations on the same haplotype through BGS. This mechanism leads to
reduced diversity. Initial neutral diversity is identical in all cases (A–C). Com-
parison of cases (A) and (B) shows that different BGS episodes will contribute
to populations’ genetic differentiation. Comparison of cases (B) and (C) shows
that recombination reduces the effect of BGS, maintaining diversity, and reduc-
ing linkage disequilibrium (LD) as well as population differentiation (compare
final states in [A] and [C]). From [89].

Moreover, the genotype information may also depend on the sequencing
centre and technology and the SNP calling algorithm used. Therefore, for
population genetics study, one may be cautious when merging data from
different datasets and on the coverage across the genome.

1.5.2 The confounding factor of background selection.

Background selection (BGS) is a process by which neutral variation are
removed from the population if they are linked to deleterious ones [90].
Therefore, BGS reduces levels of polymorphism in regions with many
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functional elements and low recombinations (Figure 1.13). The lower
level of polymorphisms in extended region is often attributed to the action
of positive selection because it is a molecular pattern expected under the
hard sweep model. It is consequently important to correct for BGS, and
one straightforward approach when analyzing protein-coding regions is to
look for lower levels of neutral variation near functional substitutions, i.e.
at functional sites where a mutation was fixed in a set of species, which
is the clearest genomic evidence for positive selection while not being
expected under BGS. However, this approach is biased towards protein-
coding regions and would just detect events of positive selection acting on
mutations with a priori known function. An alternative to this approach,
would be to correct for several genomic variables that correlate with BGS,
such as levels of recombination rate and functional constraint. Measuring
functional constraint is not straightforward but one can use the density of
coding sequences (CDS), density of conserved coding sequences (CCDS)
and conserved non-coding sequences, as well as the density of untrans-
lated regions (UTRs). Moreover, Enard et al. recently found that GC
content have a strong influence on levels of neutral diversity [91]. Al-
though BGS has been seen as mimicking positive selection a molecular
level since the article by Charlesworth et al. in 1993 [90], it has been
proved that tests based on LD (namely XPEHH [39] and iHS [71]) are
insensitive to BGS [91, 92], and therefore, their extreme deviations may
directly be attributed to recent hard sweeps.

1.5.3 Demography can mimic positive selection.

As described in Section 1.3, many mechanisms can affect the genetic di-
versity in population or species, among which several demographic pro-
cesses can lead to molecular patterns expected under a positive selection
scenario (Table 1.2).
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Migration and structure.
The neutral model assumes that any cross-gender individual pair has the

same probability to reproduce in the population. However, there may be
population subdivision due to geographic distance, social, linguistic or
economical barriers (e.g. in India with the caste system). Those barri-
ers to random mating are likely not to be absolute, and a number of mi-
grants can move between subpopulations at each generation. When there
is a population subdivision one is not aware of, and thus panmixia is im-
properly assumed, the genetic variability is higher than expected with an
excess of variants at intermediate frequency. On the other hand, if there
are migration from an external population to the studied population, an
higher variability with an excess of rare variants is expected.

Population expansion.
During population expansion, a new generation has a greater number of

individuals than the previous one. Well-described population expansion
events occurred after the Neolithic transition. One possible explanation is
that the agriculturist way of life may have provided a more reliable mode
of subsistence and allowed settlements to increase in size. A population
with expansion will show an excess of singletons and mutations at low
frequency compared to a population with constant size due recent mu-
tations which have not increased in frequency through genetic drift and
remain almost individual specific [93]. This also implies a lower genetic
variability than expected for the population size.

Population bottleneck.
A bottleneck is the phenomena through which population size decreases
all the sudden, followed by a recovery or even an increase of the orig-
inal population size in a few generations. One striking example is the
Black Death plague faced by Asian and European populations in the 14th

century. Plague is thought to be responsible responsible several large epi-
demics with death rates of up to 30–50% of the European population and
lingering thereafter in Europe for several centuries [94]. Many alleles
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from the original population, mostly at low frequency, will disappear dur-
ing the decreasing size phase, thus reducing the genetic variability. Dur-
ing the recovery phase, as for population expansion, an excess of rare
variant will arise.

Founder effect.
A founder effect when a small subpopulation leaves its former habitat to

establish a new one. This can be seen as a particular case of bottleneck.
It is likely how modern humans colonized geographic areas out-of-Africa
[95]. One more recent example would be colonization of Quebec, Canada
around 400 years ago by about 8,500 French settlers. Such event allows
variants to rapidly reach fixation through pure genetic drift, a phenomena
called gene surfing [96], which mimics genetic hitchhiking.

1.5.4 Has a region of interest evolved under positive se-
lection?

One major challenge while assessing whether a region of interest has
evolved under the action of positive selection is certainly to circumvent
the confounding factors of both past demographic processes and of the as-
certainment bias of the data. For that purpose, one can compute the statis-
tic from some method designed to detect footprints of positive selection
(see Section 1.4.2) and estimate its significance by comparison to a ref-
erence distribution. This reference distribution must reflect the expected
score under selectively neutral evolution with the data used. Indeed, val-
ues of statistics are relative to the studied population and to the kind of
data analyzed, rather than absolute. There are two main approaches to
obtain such reference distribution: the outlier approach and the use of
simulations.
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Table 1.2: Some different demographic processes which can leave molecular patterns expected under positive
selection.

Process Description Molecular pattern
Migration Individuals move from one population

to other(s)
Increased genetic variability within
each population. Lower genetic differ-
entiation among populations

Isolation One population is isolated from the
others and drifts on its own

Increased genetic differentiation
among populations

Population structure The studied population is actually
structured into several ones

Higher variability than expected

Population expansion The population increases rapidly in
size

Increased number of rare variants and
decreased variability

Population bottleneck The population decreases rapidly in
size and retrieves its original size after
several generations

Increased number of rare variants and
derived alleles at high frequency and
decreased variability

Founder effect A new population is founded by a
small number of individuals from a
larger population. The new population
then increases in size

Gene surfing: mutations that occur on
the frontier of a growing population
are more likely to expand and get fixed
since only a few individuals are found-
ing the population.
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Using simulations accounting for demography.
Since the development of coalescence theory [97–99] (described below)

and the recent wealth in computational capacity, simulations became a
powerful approach in population genetics. It is now possible to gener-
ate large independent data sets fitting the real data for several features
accurately assessed through simulations of genetic data that mimic pop-
ulation demographics and evolution. Those data sets are, in turn, used
to assess the statistical significance of empirical data. Particularly, one
can simulate sets of genetic data under a neutral model and appropriate
demographic parameters to infer what the empirical data would look like
without the action of positive selection, and then a significance threshold
at a given false positive rate (FPR) can be estimated using the distribution
of the simulated neutral data. In this case, any putative bias from empiri-
cal data are eliminated. Furthermore, if one is interested in evaluating the
reliability of the estimated threshold, simulations incorporating selective
events to the neutral model can be ran in order to infer the power of the
approach.

The simulation software that have been implemented so far can be di-
vided into the ones relying on coalescent theory and the ones based on
forward simulation. Coalescent simulation is the first widely approach
that has been used to simulate genetic data at the sequence level and,
as the name suggest, is based on coalescent theory first introduced by
John Kingman in 1982 [98]. It relies on a backward model describing the
characteristics of the joining of lineages back in time to the most recent
common ancestor (MRCA) as showed in Figure 1.14. It represents the
theoretical background for most of neutral genetic models, as well as the
estimation of many population genetic parameters. If a population has an
effective size of Ne, the probability that two lineages, i.e. gene copies,
are derived from the same parent in the previous generation, i.e. coalesce,
is 1/2Ne. The coalescence time of the lineages sampled for the study
in previous generation follows a geometric distribution with mean 2Ne.
Therefore, if there are p lineages at a given generation, the probability
that two coalesce at the previous generation, thus reducing the number
of copies to p − 1 is p(p − 1)/4Ne, and the expectation time that any

42



i
i

“thesis” — 2014/9/8 — 10:58 — page 43 — #73 i
i

i
i

i
i

Figure 1.14: Coalescence. a. The complete genealogy for a population of ten
haploid individuals is shown. In coalescence theory, diploid individuals are con-
sidered as two independent haploid ones. Here a sample size of three haploid
individuals is considered, and their ancestries back to a single common ances-
tor are shown with the black lines. b. The subgenealogy for the three sampled
haploid individuals. Coalescence needs to keep track of the times between coa-
lescence events and the topology. From [100].
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pair of lineages coalesces is 4Ne/p(p − 1). From those simple equa-
tions, the main conclusions of coalescence theory are : (1) while the rate
of coalescence (p(p − 1)/4Ne) increases with the sample size (p), it de-
creases with the effective population size (Ne); (2) time to coalescence
increases when the process moves towards the MRCA; and (3) the proba-
bility of the MRCA of the samples being the same as of the population is
(p−1)/(p+ 1), and thus, even small sample sizes have a high probability
of including the MRCA. The coalescence theory provides computational
efficiency and several coalescence simulation software have been imple-
mented, such as FastCoal [101], CoaSim [102], SelSim [103], cosi [10],
ms [104] and msms [12].
For many of the underlying coalescent models, parameters have been cal-
ibrated to fit empirical data in order to retrieve the past demographic his-
tory of human populations. For example, Schaffner et al. used HapMapIII
data to infer the demographic history of three populations (see Figure 1.2)
through the calibration of their model to make the simulated data match
empirical data for pairwise FST values, LD decay (how LD for pairwise
SNPs decreases with physical distance in the genome) and SFS [10]. Fur-
ther implementations used more complex empirical data features, such as
the joint SFS across populations [105]. Those programs allow to simulate
genomic regions spanning few megabases in hundreds of samples with-
out important computational costs in term of time and resource. This is
particularly useful to compute large simulated distribution of the statis-
tics of interest and, thereby, estimate the statistical significance for the
studied genomic region. However, coalescent simulations present several
limitations. The most important one is limited accuracy in simulating the
number recombination and gene conversion events, as well as the level
of recombination patterns that is possible to include in the model. As
a consequence, when a realistic recombination map is incorporated into
the model one, only few megabases can be simulated with an increased
computational cost. Otherwise, with a simplistic recombination map, the
simulated genomic regions can be longer but the model is likely not to
be accurate. Another traditional issue with coalescent simulations is the
incorporation of selective events. Although efforts have been made to cir-
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cumvent this limitation, e.g. see [12, 103, 106], usually it is at the cost of
over-simplifying other aspects of the model, such as recombination map,
population changes, sample size and length of the simulated genomic re-
gions.
To circumvent the limitation faced by coalescent simulations, the forward
simulation approach has been explored as an alternative. Genomic data is
simulated forward in time from an ancestral status, allowing much more
flexibility to the model. Then, complex recombination patterns and other
genomic features (gene content, background selection) can be considered,
for example see SFS CODE [107]. The demographic processes included
in the model can also present a much higher layer of complexity (see
[108, 109]). However, such approach requires the simulation of the whole
population and, therefore, is very computationally expensive, preventing
its use for generating large data sets. If one is interested in obtaining a
neutral model for human demography, Excoffier and colleagues imple-
mented a coalescent model, fastsimcoal2, which allows a high level of
demographic complexity, with serial founder effects, range expansions
and admixture among populations [11]. This model overpasses forward
simulation models such as dadi which is the reference in the field [11].
As mentioned above, the models are calibrated to make the simulated data
fitting the empirical data. Therefore, when the empirical data contains as-
certainment bias, it is important to either correct for it [110] or to take into
account in the estimation procedure [111, 112]. However, it is not an easy
task and the calibrated model can inaccurately reflect past demography
(but see [11]). In addition, most models also rely on a priori assumptions
on demographic events and therefore accurate models are available for a
reduced numbers of well-studied populations.

Outlier approach.
As mentioned before, constructing a neutral model using simulation is

computational expensive and the model does likely not incorporate all the
layers of demographic and genomic complexity. One may prefer to use
the outlier approach: an empirical distribution of the statistics to detect
positive selection is built from a large number of loci across the genome.
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Figure 1.15: Outlier Approach. A typical study design based on outlier ap-
proach. From many sampled loci for which a statistic designed to detect positive
selection have been calculated (1) are used to build an empirical distribution (2).
Then, for the position of some loci of interest within the distribution is observed
to infer the empirical significance (3). From [113].
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The loci located in the extreme tail(s) of the distribution, i.e. outliers, are
then considered as possible targets of positive selection (Figure 1.15). The
assumption behind this framework is that demography affects stochasti-
cally the whole genome in the same overall way, while positive selection,
a deterministic process, affects only a few loci, and thereby, does not dis-
tort the distribution. Moreover, such approach allows to correct for ascer-
tainment bias, as well as the confounding effect of background selection
if the reference loci are accurately sampled. However, the genome can be
seen as a mosaic of several chunks, each with its own history. Although,
if the population definition is accurate, the chunk demographies may be
very similar, some specific genomic regions may have extreme molecular
patterns that mimic positive selection and would be inaccurately identi-
fied as having under positive selection, i.e. there would be false positives
[114]. This seems to be particularly the case when positive selection tar-
gets recessive rather than co-dominant allele, when it acts on a standing
variant rather than on a newly arose mutation (more on standing variants
below) and when a population bottleneck occurred [115]. Another diffi-
culty of the outlier approach is the arbitrary threshold used to consider a
scores as significance. Indeed, setting such threshold requires to define a
priori which is the proportion of the genome expected to be under positive
selection. For example, if the 5% more extreme scores are considered as
being under putative positive selection, the underlying assumption is that
5% of the genome is expected to be so. However, there is no accurate
estimate of such proportion and it remains the main question assessed
by people studying positive selection. Finally, the outlier approach only
identifies the most extreme case of positive selection, and many of the
selected alleles with a relatively low selective coefficient are likely to be
false negatives.

Combination of different tests.
Assessing statistical significance for a given score through either sim-

ulations or the outlier approach is a required step to contrast whether a
genomic region has been evolving under positive selection. However, it
is very delicate to make sure that a significant score is not actually a false
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positive and, when using only a single method it always remains a sub-
stantial doubt when concluding that a locus of interest has been targeted
by positive selection. To reduce the risk of false positive, it is wise to
use different methods developed to detect the impact of positive selection
at molecular level. Particularly, one may use methods based on differ-
ent kinds of molecular footprints left by a selective sweep (SFS, LD and
genetic differentiation). This way, the false discovery rate is likely to be
reduced: the false positives from individual methods are unlikely to over-
lap, since each method are sensitive to different demographic processes.
Zeng et al. implemented two compound tests, DH [116] and DHEW
[117], which combine different SFS-based methods: Fay and Wu’s H
[59] and Tajima’s D [66] for the formerDH [116], and adding the Ewens-
Watterson test [118] for the latter. Focusing on DH , the underlying idea
is that Fay and Wu’s H and Tajima’s D are sensitive to population bottle-
neck and expansion, respectively [116], but each is insensitive to the other
demographic process. Thus, combining the two tests is robust to both de-
mographic processes. The idea is very simple, using neutral simulation,
one set a join threshold of significance for both tests for a given FPR. Af-
terwards, if a region of interest is significant for both tests, it is identified
at being targeted by positive (Figure 1.16). However the original method
relies on neutral simulations with rather simplistic demography using ms
[104]. One can use the framework suggested by Zeng et al. under an out-
lier approach as in Luisi et al. (2014) (see Chapter 6) by computing Fay
and Wu’s H and Tajima’s D in a large number of genomic regions to make
the reference distribution and estimate the join threshold of significance.

A more simplistic manner is to use any combination test, i.e. a test that
combine individual test P-values, such as the Fisher combination’s test:

ZF = −2
K∑
i=1

log(Pi) (1.4)

where Pi is the P-value associated to the score of the ith test.
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Figure 1.16: The DH test. A neutral distribution is computed for both Tajima’s
D and Fay and Wu’s H, here from coalescence simulations (left panel). A join
threshold is obtained at a given False Positive Rate and represented by the bottom
left square. Any region located within this square is considered as having evolved
under positive selection. On the right panel, simulations with selective events are
used to infer the sensitivity. From [117].

Following this idea, Grossman et al. implemented a Composite Multi-
ple Score (CMS) [106] which multiplies P-values of five individual tests
based on long haplotypes (XPEHH , ∆iHH and iHS) and genetic dif-
ferentiation (FST and ∆DAF ) [106, 119]. The main improvement from
rather simplistic combination score is that they computed P-values from
simulations using the demographic model calibrated by Schaffner et al.
[10] under a neutral scenario and with selective event. Then, the CMS is
obtained as following:

CMS =
K∏
i=1

P (si|selected)× π
P (si|selected)× π + P (si|unselected)× (1− π)

(1.5)

where si is the score of the ith method, the P-values are obtained from
reference distribution from simulations under either neutral (unselected)
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or selective (selected) scenarios and π is the uniform prior probability of
selection.
The combination tests and CMS can not use any kind of tests since they
rely on the assumption of the independence among tests. Moreover, they
attribute to each test the same contribution to the combined score. In Py-
bus et al. (submitted; see Chapter IV), an alternative framework, Boost-
ing, to incorporate the information from different methods. Based on
Boosting functions [120], this framework allows to detect and classify se-
lective events. Boosting is a Support Vector Machine (SVM) [121] which
is trained on simulated data to estimate the best regression function of
scores from different individual methods to distinguish between two sce-
nario. Making profit of a neutral model with demography [10] to which a
selective sweep scenario can be incorporated (as in [106]), thousands of
genomic regions have been simulated under a selectively neutral scenario
and 45 selective ones (Figure 1 in Chapter IV). Then, two boosting func-
tions have been trained to distinguish among those scenarios, namely, (1)
evolution under either pure genetic drift or with partial selective sweep
(where the selected mutation reaches a final allele frequency -FAF- of
0.2 and 0.4); (2) evolution with incomplete selective sweep (FAF = 0.6
or 0.8); and (3) evolution with complete sweep. Two further boosting
functions have been also built to further classified regions evolving under
complete and incomplete sweep as recent or ancient sweep (as defined in
Figure 1 in Chapter IV). Those functions are included in a classification
tree as shown in Figure 5 in Chapter IV. Such framework allow to com-
bine different tests, although relatively correlated, but more interestingly,
to classify the mode of positive selection for for the detected selective
events. A look at the standardized coefficients for each coefficient give
valuable insight on the methods that contribute the most to distinguish
between two given scenarios, and thus, on their performance to detect
a given selective event (Figure 6 in Chapter IV). Moreover, the boosting
coefficients are quite similar for the three populations considered (namely
YRI, CEU and CHB), and thus seems quite robust to demography.

On one hand there are clear evidences of morphological and physiolog-
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ical adaptations in modern human populations, such as pigmentation for
solar radiation, body size for thermal condition, blood flow and oxygen
delivery for high altitude. On the other hand, there are few examples
of fixed, or almost fixed, genetic differences among populations and/or
validated cases of adaptive mutations (see Section 1.6 for an overview).
This striking inconsistency between the number of known phenotypic and
genotypic adaptive examples, may be explained by the reduced vision of
the action of positive selection that have been followed until recently. In-
deed, until now, most studies of natural selection relied on the hard sweep
model (see Section 1.4.2) since they make use of methods designed to
detect molecular patterns expected to remain in the genome after such
a sweep. In order to have a complete vision of adaptation and the ge-
nomic processes allowing it, it is also important to consider other modes
of positive selection. Those alternative events of positive selection do not
leave the same molecular footprints as expected after a hard sweep, and
theoretical development is still required. Particularly, the two following
alternative mode of positive selection have been recently studied after be-
ing overlooked for many decades [122].

Soft sweep.
Recently, works at both empirical [123–127] and theoretical [128–132]

point to the importance of soft sweeps which can occur through two dif-
ferent modes of adaptation:

1. Selection on standing variants which, in opposition to a hard
sweep, does not rely on the appearance of an advantageous mu-
tation to arise in the population, but rather targets a variant already
segregating at relatively important frequency when a change of en-
vironment occurs. (Figure 1.17).

2. Selection on recurrent mutations where, the derived allele which
is advantageous arise in the population several time independently,
as a result of recurrent mutation or gene flow from another popula-
tion. All copy of the derived allele increase in frequency until the
allele reaches fixation. If, all copies of the derived allele have a
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similar selective coefficient (because the genetic background does
not have affect it through, for example, intragenic epistatis), none
would fix during the selective event (Figure 1.18).

In both cases different copies of the selected allele may belong to differ-
ent haplotypes: in the former case because it was already segregating on
different haplotypes before the selective event, while in the latter, because
it arise on different haplotypes. Anyway, in both cases tests based on long
haplotypes are not suited to detect such mode of adaptation. However, if
the selective pressure is population specific, and thus the selective event
occurred in a given population, methods based on genetic differentiation
may be able to detect it. In addition, other haplotype patterns, beyond the
EHH, are informative (see below).

1.5.5 Selection not only by hard sweep.

Polygenic adaptation.
Recent genome-wide association studies (GWASs) comfort the view of

classic quantitative genetics that many phenotypes are encoded by sev-
eral dozens, hundreds or even thousand, rather than an unique one [133].
This drastically contrasts with the reduced vision of positive selection
acting on a single advantageous mutation to drive phenotypic adaptation.
Therefore, more focus on polygenic adaptation is required. Such mode of
adaptation would drive simultaneously a limited shift in allele frequency
at several variants located in different genomic regions and with small
effect on fitness (Figure 1.19). Such shift are extremely difficult to distin-
guish from pure genetic drift.

Recent methodological advances in detecting alternative sweep sce-
narios.
As appearing in Figures 1.19, 1.18 and 1.17, the molecular patterns ex-

pected to be left by soft sweeps and polygenic adaptation are not as evi-
dent as the ones left by hard sweeps. Therefore, there is still an evident
scarcity in methods designed to detect such selective events at the genetic
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Figure 1.17: Selection on standing variant. The variant is already segregating
in the population and becomes advantageous and increases in frequency until it
reaches fixation, or almost fixation.From [134].

Figure 1.18: Selection on recurrent mutation. Considering the schema of
Wright-Fisher model. Circles represent individuals, the different patterns in-
dicate independent ancestral haplotypes. The beneficial allele B (dark gray indi-
viduals) substitutes the ancestral b allele (white). The B allele arises three times
by independent mutation; individuals then change their color from white to gray
but keep their haplotype pattern. The zoom into a single time step shows how re-
production and mutation are separated. Directly after fixation (time 0), we take a
sample of size three (K, L, M) that contains descendants from the first (L, M) and
the second (K) mutational origins of B. The right panel shows DNA fragments
of the sampled individuals. The vertical ticks represent neutral polymorphisms.
Individuals L and M share a recent ancestor and are identical in this region of the
genome. Individual K carries a different ancestral haplotype. From [131].
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Figure 1.19: Polygenic adaptation. Before the selective event, advantageous
alleles located in different genomic regions may already segregate in the popu-
lation at different frequencies (upper panel). During the selective event they all
increase slightly in frequency. The shifts in allele frequency would depend on
the variant effect on fitness (lower panel). From [122].

level. However, ongoing methodological development is in progress.
First, some already existing methods can be used to detect soft sweeps.
Indeed, as mentioned above, if the selective pressure is population spe-
cific a locus-based statistics of genetic differentiation, e.g. FST [78], may
be powerful provided the variant is segregating at low frequency in the
reference populations. Furthermore, iHS [71] shows good sensitivity
when positive selection acts on a standing variant that was still segre-
gating at low frequency before the selective event [135]. Two other meth-
ods relying on specific haplotypic patterns have been recently developed
[135, 136]. First, nSL [135] is based on the comparison between EHH for
derived and ancestral alleles, as for iHS, but also takes into account the
length of the segment of haplotype homozygosity between a pair of hap-
lotypes. Besides showing greater power than iHS for scenarios where the
advantageous allele was already presents in the population at frequency
> 3%, it does not need any genetic map and it is robust to recombina-
tion rate and mutation rate. Second, the H12 and H2/H1 statistics [136]
also rely on homozygosity of multiple haplotypes. H12 use the combined
frequency of the first and second most frequent haplotypes observed in a
genomic region as following:

H12 = (p1 + p2)
2 +

∑
i>2

pi
2 (1.6)
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where pi is the frequency of the ith most common haplotype in the sam-
ple.
The H12 has power to detect hard sweeps and - not so- soft sweeps, i.e.
when the starting frequency is below 0.1%. In order to distinguish be-
tween those two scenario Garud et al. further developped the H2/H1
statistics [136]:

H2/H1 =

∑
i>2 pi

2∑
i=1 pi

2
(1.7)

where pi is the frequency of the ith most common haplotype in the sam-
ple.
H1 and H2 are expected to be higher and lower under hard sweep than
under soft sweep scenario, respectively. Therefore H2/H1 increases with
the softness of the sweep, i.e. the number of haplotypes on which the
advantageous mutation is segregating previous to the selective event.
Those two recent methods demonstrate that accurate theoretical imple-
mentation allows to detect soft sweeps although the molecular patterns
are more difficult to recognize. Further effort is required to increase the
power to detect even softer sweeps. However, the reduced shift in al-
lele frequency expected under polygenic adaptation leave very weak foot-
prints in the genome. Hence, although it could be argued that increasing
the sample size would increase the power, implementing methods using
only genetic information seems a loosing battle. For this reason, the few
methods proposed until now, include other kind of information. First, the
BayENV [137, 138] method uses environmental variables. Indeed, it
is based on the correlation between allele frequency and an environmen-
tal variable observed at many populations. It provides a Bayes Factor
for each studied locus which is the ratio between two Bayesian posterior
probabilities:

1. Under the null (neutral) model, the correlation we observe in allele
frequencies between different populations is just explained by de-
mographic factors (basically genetic drift, migration and population
size changes)

2. Under the model where a specific environmental variable has been
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a selective pressure in one(s) population(s) and then may have im-
balanced the allele frequency spectrum across the populations.

Therefore, this method is detecting variants that shifted similarly in allele
frequency in populations facing the same environmental pressure com-
pared to their neighbouring populations (Figure 1.20). Such parallel se-
lection, recently theoretically analysed by Ralph and Coop [139], is more
likely to occur on rather ancient variants that are shared among world-
wide populations. Note that the signal is driven by the consistency of
the shift in allele frequency across populations rather than by its am-
plitude. Such method corrects for population structure and therefore is
less sensitive to demography than a simple correlation analysis. Indeed,
the genetic differentiation among populations is directly related to their
geographic distance (Figure 1.21) due to the isolation by distance phe-
nomena. However, retrieving environmental variables from many popu-
lations may be challenging, especially because it relies on representative
geo-localization. Another approach was suggested by Mendizabal et al.
[141] in order to include phenotypic information rather than the selective
pressure. More precisely, the authors have analysed the covariance be-
tween allele frequencies and height measurement to detect genetic vari-
ants allowing Pygmy adaptation to the rainforest climate through reduced
size for thermo regulation purposes (the Bergmann’s rule) as shown in
Figure 1.22. Such approach would requires extensive phenotypical mea-
surements but the authors implemented a permutation procedure allowing
to only use the average and variance of the phenotype of interest from lit-
erature. This method can be describe as a method to detect advantageous
variants only if one acknowledges that the phenotype under study arose
from an adaptive process.
H. Allen Orr also suggested a sign test [142], to test whether the observed
number of plus (or minus) alleles at Quantitative Trait Loci (QTLs) is
different in two groups of individuals with different phenotype, instead
of being similar as expected under pure genetic drift. The Orr’s sign test
has recently been used for expression QTLs (eQTLs). Even if each eQTL
has low effect on phenotype, the accumulation of alleles increasing (or
decreasing) the phenotype points to polygenic adaptation. Similarly, an
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Figure 1.20: Example of SNP detected by BayENV . Populations are ordered
by main geographical region and shown on the x-axis. The y-axis represents
the allele frequency by points for in each individual population or bars for the
average. Populations sharing one given mode of subsistence are shown in red.
From [140].

Figure 1.21: There is no strong differentiation between close populations. The
mean and the max FST between population pairs are shown on the x-axis and
y-axis respectively. Fra: France; Yor: Yoruba; Han: Han Chinese. From [122].
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alternative is to use a set of SNPs associated with a given phenotype, e.g.
height in European populations [143], and show a systematic allele fre-
quency differences between populations with different phenotypic values
that better fits a model of adaptive evolution than genetic drift. Finally,
Berg and Coop [144] have implemented a test using the mean additive
genetic value, QX , estimated from the additive effect size of loci associ-
ated to a given phenotype (GWAS loci). The test is an extension of the
BayENV method and contrasts whether the genetic value (instead of the
allele frequency) covariates with a given environmental variable. They
further developed a generalization of the QST/FST comparison [145].
The QST/FST test of neutrality contrasts whether there is an excess of
quantitative trait differentiation (as measure by the QST index) compared
to the genetic differentiation among populations (as measured in a large
set of loci by the FST index), to identity traits that have evolved adaptively.
In their implementation Berg and Coop use the estimated QX instead of
QST .
The theoretical development to identify variants with small effect on fit-
ness but at the basis of phenotypical adaptation through polygenic adap-
tation is progressing. However, most of the methods rely on GWAS loci,
and as a consequence, are still limited. Indeed, first they assume that the
associated loci act in a strictly additive manner, putting aside the putative
dominance or epistatis among them. Second, GWAS loci are unlikely to
be the causal ones, but rather tag them; therefore, since the LD patterns
are variable among population, the GWAS loci may not be a good proxy
of the causal one in all the studied populations. Third, the genetic values
are relatively accurate when calculated in a population where the associ-
ation studies were performed, but the GWAS loci may not be portable to
any genetic background, i.e. in any populations.

1.5.6 From putative advantageous mutation to the in-
creased fitness.

Most studies set as a goal the identification of the advantageous mutation.
This goal can be reach if, at least, the four following steps are completed
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Figure 1.22: Covariance of genotype and phenotype. Covariance of allele fre-
quency and height for a given SNP. From [141].

(Figure 1.23).
1. Identify candidate adaptive loci. The main issue is to disentangle

whether a statistic for detecting positive selection is extreme at a
loci because of the impact of positive selection or alternative pro-
cesses aforementioned.

2. Identify the underlying functional variant. For that purpose, one
must get rid of the strong LD within a genomic region which has
faced hitchhiking in order to pinpoint the variant targeted by posi-
tive selection.

3. Quantify the phenotypic consequences of the candidate adap-
tive allele by performing experimentsin vivo with model organism
(mouse, zebrafish, etc...), in vitro using call cultures, or genotype-
phenotype association studies. An alternative is to use the wealth
of functional public database to retrieve such information from the
literature.
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4. Clarify the relationship between phenotype and reproductive
fitness in the population and environment where the allele has in-
creased in frequency. This is a complicated task because one must
infer what was the relevant environment which acted as a selec-
tive pressure on the ancestors of the actual studied population, and
whether the phenotypic change encoded by the functional variant is
fitter than the ancestral one.

There are very few studies which presented conclusive results for the four
steps together (see Section 1.6). Particularly, the fourth step appeals to
story-telling and it is for now impossible to formally test such relation-
ship in humans. Therefore, it is important not to dismiss the possibility
that a locus has been adaptive when facing the inability to determine the
past selective pressures and to demonstrate that the phenotypic change in-
duced an increase in fitness in the past populations.
In the future, the recent wealth in omics data will most probably allow
to —partially— bridge the gap between genotype and phenotype when
studying adaptive evolution. Indeed, thanks to NGS data, functional data
has been produced in the past few years in epigenomics, metabolomics,
transcriptomics and interactomics, among others. For example, the Ency-
clopedia of DNA Elements (ENCODE) project has identified functional
elements in across the genome, being in coding or non-coding regions
[147]. In order to identify the underlying functional variant, one may
use this emerging functional data, for example through an integrative ge-
nomics approach, along with results from population genetics of positive
selection (Figure 1.23).
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Figure 1.23: An integrative approach. Upper Panel: the overlap among various
approach is informative to understand the molecular basis of phenotypic adap-
tation; from [146]. Lower Panel: use of functional data within an integrative
genomics approach. One may use several types of data to identify functionally
relevant regions of the genome. By focusing on the variants putatively selected,
with documented function and associated to a given phenotype, it may be possi-
ble to build lists of candidate regions that have adaptively evolved; from [134].
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Table 1.3: Examples of positively selected genes supported by functional evidence. Caution: an unique article is
cited while for many genes, several studies were required to conclude both on the impact of positive selection and
on the function of the putative selective allele.

Gene Selected function(s) Adapted population Approach Reference
ABCC11 ear wax secretion Asian Genome-wide scan [157]
CASP12 sepsis resistance worldwide Gene-candidate [151]
CCR5 bubonic plague or smallpox resistance European Gene-candidate [158]
CD5 pathogen recognition East Asian Gene-candidate [152]
DARC malaria resistance African Gene-candidate [123]
EDAR hair/teeth/sweat gland development Asian Genome-wide scan [70]
EGLN1 response to hypoxia Tibetan and Sherpa Genome-wide scan [159, 160]
EPAS1 response to hypoxia Tibetan and Sherpa Genome-wide scan [160, 161]
G6PD malaria resistance African Gene-candidate [148]
HBB malaria resistance African Gene-candidate [149]
HERC2 eye pigmentation European Gene-candidate [162]
LCT lactase persistence European and African Gene-candidate [124, 150]
SLC24A5 skin pigmentation European Gene-candidate [163]
SLC45A2 skin pigmentation European Genome-wide scan [70]
TLR5 bacterial flagellin African Genome-wide scan [119]
TNFSF5 malaria resistance African Gene-candidate [65]
ZIP4 Zinc uptake West Africa Gene-candidate [164]
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1.6 Current knowledge on positive selection in
the human genome.

The previous section (1.5) makes emphasis on the practical challenges
to (1) detect positive selection in the genome, (2) confirm which are
the adaptive loci, and (3) to link the genotype to the phenotype. Al-
though, such challenges are numerous and have avoided to reach a com-
plete knowledge of the past human adaptation, there have been several
striking successes since the advent of the genomic area one decade ago
(Table 1.3). Studies of the impact of positive selection can be divided into
the ones focusing on candidate genes and the genome-wide scans.

1.6.1 Candidate gene studies of positive selection.

Candidate gene studies focussing on a gene are driven by an a priori hy-
pothesis on the implication of a gene in a putatively adaptive phenotype.
Before the recent wealth in genomic data, they used to be the most pe-
formed analyses of positive selection. They allowed to understand the
impact of positive selection on specific genomic regions, to identify can-
didate adaptive loci and provided informative insights into the molecular
basis of phenotypic adaptation across human populations. For example,
several genes have been identified to have been targeted by positive selec-
tion with supporting functional evidence for the candidate adaptive locus
and a link to a phenotype change conferring a fitness increase (Table 1.3):
G6PD, DARC, TNFS5, HBB which provide malaria resistance in Africa
[65, 123, 148, 149]; LCT proffering lactose resistance in population with
herder ancestors in Europe [150] or Africa [124] ; CASP12 increasing re-
sistance to sepsis [151]; and CD5 allowing better pathogen recognition
[152].
Although the aforementioned successes in detecting variants that have
been selected for, the candidate-gene approach suffers from the three fol-
lowing main drawback.

1. An a priori hypothesis is required about which genes have been
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under positive selection, as well as a knowledge of the relationship
between genotype and phenotype. Candidate-gene approach aims
to pinpoint the functional variant, but the goal is rarely reached.
Furthermore, when the function of the adaptive allele is established,
it is difficult to stress how it confers a selective advantage to its
carriers.

2. When there is prior insights on the genes that could have been in-
volved in phenotypic adaptation, the adaptive variant can be located
far away from the region spanning the gene, rather being within
the coding or flanking region. In that case, if there is no previous
knowledge on the gene regulatory regions, it would be impossible
to detect the adaptive locus within a gene-candidate framework.

3. There is, in general, no sufficient biological knowledge on the molec-
ular basis of adaptative phenotype (or even of diseases) across the
genome to make good a priori hypothesis of the underlying molec-
ular bases of traits. Thus, candidate-gene approach is reduced to the
study of annotated genes encoding relatively simple phenotypes.

For those reasons, with the recent wealth of polymorphism data, an alter-
native approach have been also used: the genome-wide scan approach.

1.6.2 Genome-wide scans for positive selection.

During the last decade, impressive technological progresses have been
made to obtain genomic data from high-throughput genotyping arrays to
NGS, leading to a bulk of genotype data to perform population genetics
analyses. Now, large catalogs of genetic variability in worldwide human
populations are publicly available (see Section 1.2.2) allowing to study
the impact of natural selection on our genome. For that reason, a large
number of genome-wide scans of positive selection in different popula-
tions has been published in the last years (reviewed in [113, 133, 134]).
Such top-down approach, with no a priori hypothesis on the adaptive phe-
notype, allowed to overcome the limitations of candidate-gene studies.
The first genome-wide scan for positive selection in human populations
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was performed by Akey et al. in 2002 [153] and was followed by more
than 20 other ones. Since 2002, the number of individuals and markers
available increased consequently (see Section 1.2.2), and theoretical de-
velopment allowed the implementation of several new methods for both
hard sweep and alternative modes of positive selection (see Sections 1.4.2
and 1.5.5). The multiplication of the data and statistical methods to detect
positive selection, obviously engendered a multiplication of the genomic
regions that have putatively evolved in at least a population. Already in
2009, more than 5,000 regions in the genome spanning a total of 400Mb
and encompassing more than 4,000 protein-coding genes were reported
in a review of 21 genome-wide scans published at that time [113]. Those
21 scans used methods designed to detect the molecular patterns left by
a hard sweep. They also relied on the outlier approach and, therefore,
established a priori an expected proportion of the genome under positive
selection in the studied populations, likely leading to an important false
positive rate. Indeed, in his review [113], Joshua Akey looked at the over-
lap of the genomic regions reported by 10 studies using the same data, but
different statistics. Strikingly, only 14.1%, 5.3% and 2.5% of the overall
regions were reported in two, three or four studies, respectively (Figure
1.24). Besides the FPR issue, it is clear that those genome-wide scans can
also miss some real event of selection as suggested by the fact both G6PD
and DARC have never been reported by such studies.
Although the overlap among individual scans is low, more than 700 re-
gions have been identified encompassing previous candidate adaptive loci
and new well-supported ones (Table 1.3). Moreover, it appears that most
signals of putative positive selection are not shared among populations
from different geographic regions (for example see [71, 154]). This is ex-
pected when considering that the scans mostly relied on the hard sweep
model, and therefore detected advantageous mutation that appears in the
population just before being selected for. Indeed, geographically distant
population present different genetic background and have to adapt to very
heterogeneous environmental conditions.
Genome-wide scans allow to build maps of putative signals of positive
selection and will still give great insights on how natural selection has
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shaped the human genome. They will also keep on helping the discov-
ery of functional elements. However, it remains challenging to extract
the relevant information in the bulk of signals of positive selection from
genome-wide scans in order to understand how human population really
evolved and what is at the molecular basis of phenotypic adaptation. In-
deed, although the genome-wide approach circumvents some limitation
of the gene-candidate, it presents its own ones.

1. Large scale studies do not allow to extensively control for many
layers of complexity. Indeed, in opposition to gene-candidate ap-
proach, performing a genome-wide scan it is extremely difficult to
build an accurate model including both demographic and genomic
processes to describe the evolution of a specific genomic region or
to investigate in depth the molecular mechanisms affecting the ge-
netic variability. Therefore, most scans rely on outlier approach,
and as mentioned before, only detect the most extreme cases of
positive selection as well as suffering a likely important FPR [115].
As already mentionned, one solution to reduce the FPR, is to rely
on different scans performed with different methods and/or on dif-
ferent populations.

2. Regions reported by genome-wide scans are usually large, spanning
hundreds of kilobases and containing several contiguous genes and
regulatory regions. On the other hand, sometimes signals can be
located in intergenic regions where no function has been reported
yet. Therefore, it is often difficult to follow-up the signals to iden-
tify the selected variant and the phenotype putatively increasing the
fitness.

3. For most genes, it requires a quite important amount of specula-
tive discussion (story-telling) to state which could be the adaptive
phenotype.

For those reasons, most genome-wide scans focus on a very reduced sig-
nals of putative selection based on biological information for a follow-up
analysis. This practice is often referred as cherry picking. Hence, most
of the signals already reported remain to be explained. The recent scan
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performed by Grossman et al. [119] set up new standards to overcome
the aforementioned limitations and represents an important step toward
the identification of putative adaptive variants as well as the underlying
phenotypes increasing the fitness. This study rely on several progresses:
(1) they used the CMS which allows to pinpoint more accurately the se-
lected variant ([106]; see Section 1.5.4); (2) they performed their analysis
on the 1,000 Genomes Project Pilot 1 data [155]; and (3) they analysed the
putative phenotypic implications of the selective variants by interrogating
the ENCODE database [147] as well as the GWAS catalog [156].

1.6.3 Insights from published studies of positive selec-
tion in humans.

All the studies aforementioned allowed the identification of putative adap-
tive loci, but also provide interesting insights on more general questions
on the nature of the genomic regions that have been preferentially tar-
geted by positive selection in human populations. Thus, they allow to
understand what are the phenotypic differences among populations and
species that are induced from adaptation to new environments and which
were the underlying biological functions at play.

Functional categories for the selected protein-coding gene.

A functional enrichment analysis is almost always performed after a genome-
wide scan for positive selection. Such analysis basically tests whether the
set of variants located within the regions with a signal of positive selec-
tion is enriched in a given biological process or functional pathway. In
other words, it contrasts whether there are more of those variants belong-
ing to a given functional class or pathway than expected by chance from
the background list of loci included in the study. To perform a functional
enrichment analysis, one may use one of the following databases.

1. Geno Ontology [165] groups genes according the the features of
the gene product. There are three main domains: (1) cellular com-
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Figure 1.24: A map of signals of positive selection from 10 genome-wide scans.
Genomic regions reported in at least one genome-wide scan for positive selec-
tion. The histogram shows the number of regions overlap among those scans.
From [113].
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ponent, i.e. the parts of the cell or its extracellular environment
where the gene product is active; (2) molecular function, i.e. the
elemental activities of the gene product at the molecular level (e.g.
binding, catalysis, etc...); and (3) biological process, i.e. operations
and sets of molecular events with a defined beginning and end and
pertinent to the functioning of integrated living units.

2. PANTHER (Protein Analysis Through Evolutionary Relationships)
[166] relies on annotation fron Gene Ontology among others and
classifies proteins (and the encoding genes) according to either: (1)
family, i.e. groups of evolutionarily related proteins; and subfamily
(related proteins that also have the same function); (2) molecular
function of the protein by itself or with directly interacting proteins
at a biochemical level; (3) biological process, i.e. the function of the
protein in the context of a larger network of proteins that interact to
accomplish a process at the level of the cell or organism, e.g. mito-
sis; or (4) pathway which also explicitly specifies the relationships
between the interacting molecules.

3. KEGG (Kyoto Encyclopedia of Genes and Genomes) [167] is a
collection of manually curated databases dealing with genomes, bi-
ological pathways, diseases, drugs, and chemical substances.

4. Reactome Pathway Database [168] contains curated functional
pathway annotations that cover a diverse set of topics in molecular
and cellular biology.

Genome-wide scans of positive selection using polymorphism data in hu-
man populations pointed to different categories enriched for gene that
have evolved under a selective scenario: skin pigmentation, immunity,
hair density and sweat gland, etc. [114]. Scans based on comparative ge-
nomics have revealed categories such as immunity and pathogen defence
or sensory perception [169, 170].
However, functional enrichment analyses using such databases are biased
toward protein-coding gene. In addition, they assume that all the genes
are independent and that there is no interaction among them and do not at-
tribute any weight according to the gene importance within a pathway or
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a functional category. Although functional enrichment analysis has shed
light on important functions and pathways being preferentially targeted
by positive selection, it does not provide a formal test for selection acting
on a function. The current approach commonly used for large genome-
wide analysis of positive selection is to detect signals at individual genes
or regions. However, selected loci are just at the molecular basis of pos-
itive selection acting at phenotypic level. Thus, single mutations rarely
act in isolation to improve a function or to contribute to the acquisition
of new ones. To overcome those limitations, Serra et al. created a new
method called the Gene Set Selection Analysis (GSSA) to detect signif-
icant differences in scores of natural selection over functionally related
genes [171]. The method was applied genome-wide to coding regions of
five mammals. But it still has never been used to interrogate non-coding
elements or for polymorphism data.

Complex adaptive traits.
The studies listed above describe the first intents to move from individual
genes to the biological modules they belong to. These studies start from
individual genes or loci to then integrate the information on functional
modules. The idea behind is that, except for Mendelian traits, many loci
will be involved in phenotypic adaptation. This implies that polygenic
adaptation is likely to be the main adaptive force acting on the human
genome. First, Daub et al. used a gene-set enrichment test based on the
of FST statistics (SUMSTAT ) to functional pathways or gene sets en-
riched in differentiated loci among populations [172]. They found that
most of the pathways enriched in such loci are more or less directly in-
volved in the immune response. This result confirms the general idea
that response to pathogens have been a major selective pressure for hu-
man populations (for two reviews see [31, 173]). They also observed ev-
idences for epistatic interactions between members of the same pathway.
A genome-wide scan although detected several signals of selection for
genes involved in the hypoxia-inducible factor 1 (HIF1) pathway which
is involved in physiological response to hypoxic conditions [159].
In order to move towards such mode of adaptation, several studies used
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Figure 1.25: Mean genetic value QX for several phenotypes. The red arrow
shows the QX value compared to a reference distribution built from genome-
wide resampling of well-matched SNPs. Heigh, Pigmentation, Body Mass Index
are good candidate for adaptive phenotype or for being closely related to any
adaptive henoype, while Type 2 Diabetes, Chron’s Disease and Ulcerative Colitis
are not. From [144].
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methods better suited to study small shift in allele frequency [140, 174,
175] (see Section 1.5.5). Looking at covariation of diet, subsistence or
ecoregion, Hancock et al. found that pathways involved in starch and su-
crose metabolism are enriched in signals of polygenic adaptation to a diet
rich in roots and tubers, as well as an over-representation of signals asso-
ciated to polar climate in genes involved in energy metabolism pathways
[140]. Applying the same method with other environmental variables,
they also described an enrichment of signals in gene sets related to UV
radiation, infection and immunity. On the other hand , Fumagalli et al.,
using a similar method, showed that local adaptation has been driven by
the diversity of the local pathogenic environment while climate played a
relatively minor role [174].
Berg and Coop, using the mean additive genetic value (QX , described
in Section 1.5.5) described several complex traits likely or not to have
evolved through the action of polygenic adaptation [144] as showed in
Figure 1.25.

The importance of regulatory elements.
Although the method proposed by Berg and Coop [144] is limited be-

cause of relying on GWAS loci and the problem of portability among
populations, it is representative of a major shift in the field. Indeed, it
is more and more recognized that focusing only on protein-coding ele-
ments is not enough to understand adaptive evolution in humans. Indeed,
although protein-coding sequence are very well annotated, they only rep-
resent around 1.2% of the human genome. Furthermore, the important
similarity between humans and chimpanzees in their protein-coding gene
sequences can not explain the observed phenotypic differences. In 1975,
King and Wilson [176] suggested that differences in gene regulation may
largely account for those phenotypic differences among species but also
populations. Since 1975, the relative contribution of variants located
within protein-coding genes and regulatory regions has been debated.
One evidence from the functionality of non protein-coding regions is the
amount of conservation among species across the genome. Indeed, 5% of
the genome has been estimated to have been largely conserved since the
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MRCA of mouse and human through the action of purifying selection.
Hence, this conserved proportion of the genome is likely to be somehow
functional [177]. Since this proportion is higher than the proportion of
protein-coding sequences in the genome, a large fraction of the elements
with relevant biological function is non-coding.
Until recently, very few evidence has been provided on the adaptive role
of non-coding elements because of technical limitations. On one hand,
the annotation outside the genes had been lacking, therefore, it is diffi-
cult to distinguish any functional evidence to any putatively adaptive lo-
cus. On the other hand, comparative genomics studies, which rely on the
comparison of the rate of substitution on functional versus non functional
elements struggle to find any equivalent to the non-synonymous and syn-
onymous changes classification. However in the recent years, a group of
evidences pointed to the role of regulatory elements in adaptive evolu-
tion. Using as reference putatively neutral elements the variants located
in ancestral repeats and pseudogenes, Haygood et al. found an impor-
tant amount of promoter regions with signatures of positive selection in
the human and chimpanzee lineages [179]. Strikingly, they found an en-
richment of signals of selection in promoters related to nervous-system
functions. Recent population genetics studies also point to the same di-
rection. First, Kadaravalli e al. using a genome-wide set of eQTLs to
interrogate for positive selection using iHS [71], found that SNPs show-
ing signals of selection are more likely than random SNPs to be associated
with gene expression levels in cis [180]. Second, with a similar study de-
sign but taking advantage of the recent wealth in eQTL databases and the
recently published ENCODE project [147], as well as using BayENV
scores for polygenic adaptation ( [137, 138]; see Section 1.5.5), Fraser
provided the first genome-scale support for the hypothesis that changes
in gene expression have driven human adaptation [178] shown in Figure
1.26. Third, Enard et al. observed a greater correlation of the observed
signatures of positive selection (as inferred by iHS [71], XPEHH [70]
and CLR [67] and correcting for background selection) with the presence
of regulatory sequences from ENCODE [147] than with the amino acid
substitutions (Figure 1.27) [91].
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Figure 1.26: Gene expression drives local adaptation in humans. The esti-
mated number of putative local adaptations associated with each of nine cli-
mate/geographic variables that are explicable by either a nonsynonymous SNP
(green), Gene expression-associated SNPs (eSNP; red), cis-regulatory elements
SNP (CRE; blue), or combined eSNP/CRE SNP (purple). Error bars indicate
the standard deviations when randomly sampling negative control SNPs. From
[178].

1.7 The network framework.

1.7.1 Interest of biological networks to understand nat-
ural selection.

Under the selectionist view, the community began to address the subtle
evolutionary mechanisms contributing to the diversity observed in natural
populations. A consequent switch occurred through the work of Richard
Dawkins and synthesized in his book “The selfish gene” [181] which put
the gene at the centre of evolution. In this theory, instead of following the
traditional view, inherited from Darwin’s work, in which organism as a
whole was the target of selection, Dawkins stressed that genes themselves
were directly targeted. Indeed, he assumed that the own propagation of
those “selfish” genes matters more than the success of other genes segre-
gating in the same organism. The organism as a whole was pushed into a
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Figure 1.27: Most human recent positive selection occurs in regulatory se-
quences. The filled circles and squares show the correlation coefficients of the
absolute values of iHS with the density of regulatory and coding sequence den-
sity, respectively, controlling for recombination and average pairwise diversity
(covariate of BGS). The open circles and squares show partial correlations. From
[91].

position of secondary importance: its function is merely a “survival ma-
chine” for the genes to segregate [181]. Under this view, the biological
role of altruism could be explained: alleles promoting altruist behaviour
may allow their own survival by helping their fellows to survive, being
in the same host organism or in a close related one. Moreover, this the-
ory struck a chord in the genetics community, since it could also justify
why some genes extensively replicate even to the detriment of the organ-
ism. Although Dawkins’ view of natural selection remains wide-spread,
it presents different caveats, most formulated by Stephen J. Gould and
Ernst Mayr. Especially, genes are not directly exposed to the environ-
ment, and only the phenotype not the genotype interfaces with natural
selection: the survival of the organism only depends on the viable pheno-
type resulting from the genes function. The selection at the genome level
is only a consequence on the selective pressures endorsed by the pheno-
type. Moreover, most of the phenotypes result from the joined action of
several genes: the phenotypic effect of one gene deeply depends on the
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genetic background in which it segregates. This mechanism, called epis-
tasis between mutations within and among genes. Inter-genes epistasis,
which can be viewed as complex interactions, can not be assessed by the
gene-centric view proposed by Dawkins. Epistasis is said to be positive
(or synergetic) when a combination of mutations has more effect on the
fitness than the additive effect of individual mutations. On the other hand,
negative (or antagonistic) epistasis occurs when interacting mutations in-
duce a lower fitness effect than expected by adding the individual effect
of each mutation. Finally, sign epistasis describes the inversion in fit-
ness effect of a mutation when in the presence of another mutation. The
phenotype is encoded through the effects of several genes in a non-linear
way, and it is the prime target of natural selection. Hence, one expects
to observed (1) that the interacting partners of a protein would affect the
evolution of the gene encoding it; and (2) evolutionary patterns within the
biological systems.
There is now a body of evidences showing the prevalence of epistastis
emerging from biological systems [182, 183]. Particularly, Dobzhansky-
Muller incompatibilities, also known as compensatory mutations have
been describe to be a relevant mechanism driving protein evolution [184].
This phenomena is an extreme case of sign epistasis, when two delete-
rious mutations are beneficial when segregating together (reciprocal sign
epistasis). Moreover, genes encoding interacting proteins tend to exhibit
correlated evolutionary histories (for review, see [185]). Indeed, such
genes tend to duplicate almost simultaneously [186, 187] and to evolve at
relatively similar rates [188–193]. Such co-evolution of genes may result
from the co-evolutionary dynamics of the proteins they encode, for exam-
ple when the deleterious effect of mutations in a protein is compensated
by other mutations in interacting proteins. Other factors might also drive
such coevolution : similar expression levels and/or function of interacting
proteins [194, 195]. All together, it is now accepted that interacting part-
ners of a protein affect the evolution of the gene encoding it.
Therefore, the consideration of biological systems in which proteins in-
teract to accomplish a given function may be informative to understand
gene evolution, and one would expect some evolutionary patterns within
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those systems. Indeed, the interacting genes have uneven importance on
the function of the biological system, and since natural selection acts on
this function, its impact on genes is expected to differ from gene to gene.
A straightforward way to study an interacting system of proteins is to rep-
resent it through a network. The present thesis focuses on this network
framework, and before reviewing the studies trying to relate the action of
natural selection -either positive or purifying- on genes to their position
and role in the functional networks, a brief description of the methodol-
ogy adopted is required.

1.7.2 Biological pathways and their representation as net-
works.

It is an essential characteristic of
experimentation that it is carried out
with limited resources, and an essential
part of the subject of experimental
design to ascertain how these should be
best applied; or, in particular, to which
causes of disturbance care should be
given, and which ought to be
deliberately ignored.

The Design of Experiments
SIR RONALD A. FISHER

Three main types of biological networks.
The biological networks are key systems that describe the basic mecha-

nisms that govern life and functioning of the cell. Genes and their prod-
ucts, i.e. proteins, interact in several ways. The global function of the
cell, or even the organism, is led by all the different interactions occur-
ring simultaneously. However, each interaction type is driven by different
mechanisms and, thus, operate under different constraints. Treating those
different types of interactions separately may be an useful simplification.
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Indeed, the present knowledge of molecular biology is too limited to allow
an ideal integration of all the active elements in the cell into a single bio-
logical system, and trying to describe all the complexity of all the cellular
interactions is not feasible yet. One would prefer to focus on a specific
aspect of the interactions in order to study its own properties.
Therefore, biological networks can be divided into three main families
according to the type of interactions at stake:

1. Gene regulatory networks govern the expression levels of mes-
senger RNA (mRNA) and proteins in the cell. They are composed
of several DNA sequences which interact with each other -and with
other molecules- indirectly in the cell. The main elements of those
networks are the transcription factors (TFs), which turn on or down
the transcription of other genes by binding to their promoter region
at the start (in 3’) or at the end (in 5’) region. In multicellular organ-
isms, different cells perform different functions with the same ge-
nomic information thanks to the control of the genes that are turned
on and expressed. Gene regulatory networks are the main drivers
of such control of the cell function.

2. Signal transduction networks are activated when an extracellu-
lar signaling molecule binds a specific receptor located either on
the cell surface or inside the cell. The activation of the recep-
tor, in turn triggers a chain of biochemical events inside the cell,
creating a response to the signal and, thus performing a given bi-
ological function. Signal transduction networks are mainly com-
posed by physical protein-protein interactions (PPIs) : phosphory-
lation which activates the function of the protein by transferring a
phosphate group to a protein, dephosphorylation, proteins binding
through their binding sites to be functional together, sometimes ag-
gregating as protein complex. The proteins involved in those trans-
duction cascades can be active inside or outside the cell, and can be
classified according to their function as defined by their domains.

3. Metabolic networks represent a series of chemical reactions, cat-
alyzed by enzymes, to transform an initial molecule to form another
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product. During the metabolic reaction chain are produced metabo-
lites, which are the product of a given reaction and the substrate of
the following one. Enzymes are the active elements of metabolic
networks and are linked by the metabolites shared between the re-
action they catalyse.

.

Topological representation of biological networks.
Graph theory provides useful tools to describe the structure of the bio-

logical networks. A network is made of nodes (active elements) related
one with the others by edges (interactions). Table 1.4 shows the nature of
the nodes and edges depending on the three kind of biological networks.

Table 1.4: Elements and their interactions within the different types of biolog-
ical networks. A simplistic overview of the active elements (nodes) and their
interactions (edges) composing three different types of biological networks

Nodes Edges
Metabolic Network Enzymes Shared Metabolites
Signal tranduction Pathways Proteins Physical Interactions
Gene Regulatory Network Transcription Factors Regulatory Relationships

Graphs theory allows to compute several descriptive statistics represent-
ing the topology of a given network, in order to discriminate the elements
composing it. Particularly, there are a body of measures to describe the
centrality of each element. The three most widely use are :

1. Degree centrality (or connectivity) is the number of edges of a
node. Within a biological network, it is the number of interactions
a given protein participate to.

2. Betweenness centrality is the number of shortest paths that pass
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through a node [196]:

cB(v) =
∑
s,t∈N

σ(s, t|v)

σ(s, t)
(1.8)

, where v is the node of interest, s and t are two other nodes in the
network N, σ(s, t) is the total number of shortest paths between
s and t (minimal sequences of nodes that connect s and t), and
σ(s, t|v) is the total number of shortest paths between s and t that
pass through v. Nodes acting as information bridges will be as-
signed a high betweenness centrality measure.

3. Closeness centrality is the reciprocal of the sum of the shortest
path distances between a node and all the other nodes in the network
[196]:

cC(v) =
n− 1∑n

u=1 d(v, u)
(1.9)

where n is the number of nodes in the network and d(v, u) is the
shortest path distance between nodes v and u. Notably, high values
of closeness should indicate that all other nodes are in proximity to
node v. In contrast, low values of closeness should indicate that all
other nodes are distant from node v.

An important assumption.
When studying evolution of genes involved in a biological network, one

obvious assumption is the fact that network topology is fixed. While it
is conceivable to think that network structure might affect and constrain
the possibilities of evolution of individual genes having a role in the net-
work, in turn, the evolution of individual genes changes the network itself
by adding and removing nodes and edges as a consequence of their own
evolution. However, even if the influence presumably goes in both direc-
tions, the rate of link dynamics (gain and loss of edges) is estimated to be
much slower than the rate of protein sequence evolution [197]. This keeps
down the magnitude of the effect of the assumption of fixed topology and
makes it of practical use to study the influence of network structure on
genes’ evolution.
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Two different biological scales for evolutionary network analsyses.
The studies of the patterns of molecular evolution within biological net-

works can be divided into two lines of investigation distinguished by the
biological scale considered (Figure 1.28):

1. Small-scale network which represents a particular biochemical sys-
tem of interest in order to gain insight into its specific evolutionary
histories. This approach focus on the coordinate effect among genes
performing a given biological function. In that case, succesive
functions are determined on the basis of well established molecular
knowledge on the process. Then, one studies the impact of natural
selection on the gene evolution integrating information on the play-
ers at succesive steps interacting together across a given biological
network describing such small and well annotated pathways. Al-
though, such small-scale approach is interesting in the sense that it
focuses on a specific biological function, which is, again, the prime
target of natural selection, it considers that the biological system is
totally isolated from the others in the organism.

2. Large-scale network which considers the complete set of interac-
tions of a kind comprised by the organism, in order to detect univer-
sal patterns of evolution. Such scale allows to incorporate the infor-
mation on cross-talks among pathways and gene pleitropy (when
a gene influences multiple, seemingly unrelated biological func-
tions). Taking the pleotropic effect of a gene is of significant im-
portance when considering gene evolution, as predicted by Ronald
Fisher [33] in its geometric model of adaptation (Figure 1.29). Nev-
ertheless, using such large-scale networks present its own draw-
backs: the information on the interactions may be incomplete and
contain a relatively important amount of errors since it is mainly
generated from high-throughput analyses. The large-scale networks
can also be divided according to the type of interactions considered:
the metabolome describes all the metabolic interactions among en-
zymes, the interactome is the whole Physical Protein-protein Inter-
action map (PPI) and the whole regulatory network. In any case,
the retrieved network is fully dependent on how the full set of data
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was obtained, and thus, is technology dependent.
Moreover, Khurana et al. integrates the diverse modes of gene interac-
tions to create a unified biological network called MULTINET [200].
Despite the extreme differences in scope when using different network
scales, the network representation use the same descriptive measures men-
tioned above.

1.8 Evolutionary patterns within biological net-
works.

The evolution of biological networks is two-fold. First, the addition, re-
moval and/or change of elements and their connections account for vari-
ation of network structure across time. Second, the elements are them-
selves evolving entities. If the network structure evolves at slow pace, it
can be freeze to interrogate what is its impact on the evolutionary history
of its elements. Does network structure constrain the evolution (purifying
selection) of specific elements; does it incite innovations to arise (positive
selection) at particular positions within the network?
Below, an overview of the studies that have investigated how biological
network topology and structure may drive natural selection. The results
of those studies will be described according to the scale of the biological
networks (either small or large scale; see Section 1.7.2), the mode of nat-
ural selection studied (either purifying or positive) and the approach used
to detect it (using either polymorphism or divergence data).

1.8.1 Evolutionary analysis of small-scale networks.

Inter-specific analysis of small-scale networks.
The anthocyanin biosynthetic pathway was the first biological network

studied within the scope considered in this thesis. The authors used di-
vergence data from three plant species to infer the evolutionary rate of
the 6 genes involved in this metabolic pathway [201]. In the following
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Figure 1.28: Cross-talks among different pathways. A gene’s position in a net-
work influences its effects on a target phenotype and on other traits. Circular
node sizes are proportional to the gene’s effect on the selected phenotype; the
intensity of red colouration is proportional to effects on other traits (where no
colour indicates no effect on other traits). Square nodes have no effect on the tar-
get phenotype owing to the directionality of the network, but they may influence
other phenotypes. Small black circles indicate the directions of the interactions
in the network; modes of interaction are not specified. From [198].
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Figure 1.29: Fisher’s geometric model of adaptation. In its geometric model
of adaptation [33], Fisher showed that the probability, Pa(x), that a mutation
with a phenotypic effect r, is favourable is 1 − Φ(x), where Φ(x) represents
the cumulative distribution function of a standard normal random variable, and
x = r ×

√
n
2z , where n is the number of traits -or biological functions- the

mutation participates to and z is the distance to the optimum. From [199].

years, other metabolic [202–206] and signaling pathways [207–212] have
been analysed using divergence data. All of them are composed of a small
number of genes functionally related, with the the role of each within the
system well established. Such knowledge retrieved from biochemical re-
search allows to construct accurately the network structure.
In many of these studies, it has been observed that upstream genes in the
pathway tend to be more constrained in their evolution -through the ac-
tion of purifying selection- than downstream genes [201, 203, 205, 207,
213, 214]. A possible reason for this pattern would be that upstream
genes are more constraint in their evolution because they are likely to
have more pleitropic effect than those downstream. Indeed, since they are
more likely to be above some branching points in the pathway, they are
involved in the synthesis of more products than downstream genes [201].
Nevertheless, this gradient of decreasing purifying selection along a path-
way has not always been found. First, Yang et al. did not identify any sig-
nificant evidence for such relationship in the gibberilin metabolic biosyn-
thetic pathway [204]. Second, the opposite trend has been reported for
the insulin/TOR transduction signaling pathway in Drosophila [208] and
vertebrates [209], as well as in the N-glycosylation pathway in primates
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[206]. Ramsay et al. introduced another measure which weights the posi-
tion of a genes in relation to pathway branch points. This measure, called
the “Pathway Pleiotropy Index”, counts groups of enzymes between path-
way branch points and enzymes between two consecutive branch points
are given the same position [205]. In the plant terpenoid biosynthesis
pathway, composed of 40 genes, this measures positively correlates with
evolutionary rates, as estimated comparing angiosperms sequences of five
plant species, better than simple pathway position. This result points the
significant effect of pleitropy on evolutionary rates [205]. Two other stud-
ies suggest that branch points in metabolic pathways play a relevant role
and are critical to evolution: branch points are under stronger purifying
selection [204] and more likely to be targeted by positive selection[202].
The impact on metabolic flux of branching points may account for these
results [215, 216].
Other studies used centrality measure to assess the importance of a gene
within a biological network [210–212], all describing that central genes
in the network are more constrained in their evolution, as inferred from
divergence data, than genes acting at the periphery.

Intra-specific analysis of small-scale networks.
Until the last three years, very few was known on the relationship be-

tween the impact of natural selection on a gene, as inferred using poly-
morphism data, and the position it occupies in a biological network. Two
early studies indicate that genes that act at metabolic pathway branch
points are targets of positive selection [217, 218]. An analysis of six genes
in the Arabidopsis floral developmental pathway suggests that four down-
stream TF genes have evolved neutrally, while the two earliest-acting
genes included in the study present a significant reduction in silent site
nucleotide variation consistent with a recent selective sweep [219]. Nev-
ertheless, they did not consider the biological network as a whole, but
rather focus on a group of genes with relevant function within it.
Moreover, a study of polymorphism data for the D. melanogaster species
confirmed the gradient of the levels of purifying selection along the in-
sulin/TOR transduction signaling pathway found using divergence data
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from either Drosophila [208] or vertebrate [209] species. Indeed, at intra-
specific level, the downstream genes being the most constrained in the
pathway [220]. Finally, Casals et al. constructed the innate immunity
interaction network to infer the action of both positive and purifying se-
lection using polymorphism data [221]. Although this network does not
represent a biological pathway performing a specific function within the
cell, it is informative on the relationship between gene centrality and the
impact of natural selection. Indeed, they also found that at intra-specific
level, selective constraint is greater for gene acting at the core of the net-
work while adaptation (balancing and positive selection) mostly occurred
at particular positions at the network edges. When the article presented
in this thesis in Chapter 5 was published, the study by Casals et al. [221]
seems to be the only one on the distribution of adaptive selection across
an network of interacting genes using polymorphism data. Since, several
articles have been published and are discussed in Chapter 7.

1.8.2 Evolutionary analysis of large-scale networks.

Protein interaction network.
Since the development of the yeast two-hybrid technique, high through-

put determinations of physical interactions among proteins allowed to re-
trieve an important amount of information on the whole map of Physical
Protein-protein Interactions (PPIs) occurring in a given organism, also
referred to as Interactome, or Protein Interaction Network (PIN). It has
been observed that the PIN is organized following a scale-free model
[222, 223]: the connectivity (or degree) follows a power-law distribution.
Thus, the probability, P (k), of a gene to be involved in k interactions is
proportional to k−γ , where γ is the degree exponent which determines
important features of the network. The lower γ, the more important the
role of the hubs, i.e. the highly connected elements in the network. The
discovery of this PINs feature for many organism, brought to attention the
role and importance of node connectivity. Does the topology itself confer
some properties to the system? What are its functional implications in
case of the PPI networks? Since the scale-free organization has emerged
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independently in many biological networks, it suggests that such topol-
ogy is able to arise from a self-organizing process through the influence
or as the result of selective mechanisms. Several studies have studied the
biological characteristics of the hubs in order to better understand the pu-
tative function(s) of these highly connected elements. Genes encoding
proteins acting as hubs in the PIN may have some special features, such
as being indispensable for the cell to correctly carry its functions. In other
word, if a gene encoding such proteins is removed from the system, could
the organism survive? To answer this question the relation between con-
nectivity and other gene features related to fitness have been addressed.

1. Connectivity and Indispensability. To estimate the indispens-
ability of a gene, one way is to knock-out it in a model organ-
ism and observe whether the gene deletion is lethal. Such exper-
iments in yeast revealed that that highly connected proteins are
three times more likely to be indispensable than less-connected
ones [224, 225]. Thus, gene indispensability is due to the position
within the PIN occupied by the protein it encodes, most likely be-
cause when hub proteins are removed the network would be quickly
disrupted while it would tolerate the absence of a protein with few
interactions.

2. Connectivity and evolutive constraint. The patterns described
above suggest an obvious expectation: since the removal of highly
connected proteins is lethal, any impairing mutation appearing in
the underlying gene must be purged by purifying selection. Sev-
eral studies testing this hypothesis have been published during the
last decade. First, Fraser et al. reported a negative correlation be-
tween connectivity and evolutionary rate using divergence data of
S.cerevisiae species [188]. Hence, proteins interacting with many
others evolve more slowly than less connected ones. Two different
explanations can arise from such observations: highly connected
protein may (1) have a greater effect on fitness (see the mutational
robustness hypothesis introduced by Jeong et al. [224]); (2) be
more pleitropic since they have a larger proportion of their struc-
ture involved in their different functions and thus may be under an
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overall higher constraint. Performing a partial correlation analysis,
the authors concluded the second choice is more likely : central
proteins have a higher proportion of the protein structure involved
in its functions. The correlation between evolutionary rates and
connectivity is not fully accepted. Indeed, although some alterna-
tive studies point to the same direction [225], it has not been fully
validated by other studies using different data to describe the PIN
as well as other methodology to estimate the rate of gene evolu-
tion [226, 227]. The difficulties to confirm such tendency brought
light on the accuracy of the networks’ reconstruction associated
with the technology used [228]. Furthermore, Bloom and Adami
used different PINs from different data sets and estimate for each
the relationship between connectivity [227]. They deduced that the
correlation between connectivity and evolutionary rates might just
be a by-product of highly connected genes being highly expressed
[227, 229]. Indeed, high protein expression level induces a con-
straint of the substitution rate in protein sequences [230]. A lesson
from this debate would be the importance of considering other ge-
nomic determinants that influence the gene evolution, before con-
cluding on a putative relationship between the rate of evolution and
gene centrality. For instance, a study of different PINs in yeast
yields inconsistent conclusions, even when correcting for the con-
founding factor of expression level [231]. All together, although the
negative correlation between evolutionary rate and gene connectiv-
ity seems to be widely accepted, the evidences remain controver-
sial.

3. Evolutionary rate and other centrality measures. Beyond con-
nectivity, betweenness and closeness centrality (see Section 1.7.2),
other measures have been used to interrogate the putative relation-
ship between gene centrality and three different eukaryotic PINs
[232]. The authors reported that dN negatively correlate with be-
tweenness while dN/dS correlate with centrality, independently of
the measure used. Although closeness and betweenness are largely
correlated to degree (connectivity), they are informative measure to
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take into account the global network context by considering pro-
teins beyond the directly interacting partners. Proteins with higher
centrality measure likely play a relevant role in the cross-talks be-
tween different parts of the network, and thus, have an important
pleitropic effect accounting for the selective constraint acting on
them. In order to estimate the relative importance of a protein
within the network, one can also consider its participation and posi-
tion in relation to module. Modules are groups of highly connected
genes which, together, perform a given function. Under this scope,
in S. cerevisiae, the evolutionary rate (dN/dS) has been described
to be lower for local hubs, that is highly connected genes with inter-
actions essentially within modules than for global hubs, i.e. which
connect different modules [233]. This observation suggests that
modules are quite conserved while their co-action is more likely to
be targeted by positive selection.

4. Positive Selection in Protein-Interaction Networks. The fraction
of genes that shows this signature of positive selection is generally
small. However studying the genes that have evolved under puta-
tive positive selection is informative because they are the molecular
basis of new phenotypic adaptations. A study of the distribution
of the events of positive selection within the human PIN [234] us-
ing divergence data from human and chimpanzee species, using the
dN/dS based likelihood ratio test (see Section 1.4.1), demonstrate
that they are more likely to occur at the periphery of the PIN (Fig-
ure 1.30). The authors claimed that the periphery corresponds to
the physical periphery of the cell. This article of the distribution of
events of selection within a PIN seems to be the only one preceding
the study presented in Chapter 6 which has been carried using both
polymorphism data in human populations and divergence data in
mammals and analyzing both positive and purifying selection.
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Figure 1.30: Events of positive selection are more likely to occur at the periph-
ery of the Physical Protein-protein Interaction Network. (A) The gene likelihood
to be positively selected and betweenness centrality are represented along the
y and x-axes, respectively (Spearman’s correlation coefficient, ρ, = 0.06; P =
1.2e-06). Dark red and light red points for genes likely to be under positive se-
lection with high and low likelihood, respectively, while yellow points represent
genes that has not evolved under positive selection. (B) The gene dN/dS score
and betweenness centrality are represented along the y and x-axes, respectively
(Spearman’s correlation coefficient, ρ, = 0.06; P = 1.2e-06) (C Upper) Between-
ness centrality of genes under positive selection vs all other genes. (C Lower)
Betweenness centrality of genes with a high ratio of nonsynonymous to synony-
mous SNPs (pN/pS) vs. genes with a low pN/pS . From [234].
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Metabolic interaction networks.
Knowledge on metabolic reactions in model organisms has been drawn

from decades of biochemical research and its integration with the cur-
rently available whole-genome information is allowing the reconstruc-
tion of a single organism-scale metabolic network [235–237] which in-
tegrates the whole metabolic machinery of an organism. Based on the
huge amount of knowledge on the biochemistry of the involved processes,
metabolic networks result to present much better annotation of the func-
tions and role within the global process for the elements composing it.
Therefore, interpret the phenotype from the the genotype happens to be
easier.
In metabolic networks, there is the information about reactions, enzymes
and metabolites. Because of this coupled information about the reactions,
the enzymes catalyzing them and their substrates and products, different
graph representation can be adopted. Each representation captures differ-
ent aspect of the metabolism machinery and, thus, gives a different focus
to the analysis. Two main representations arise [238]: the substrate graph,
in which the substrates are the nodes and edges their co-occurrence in the
same reaction; and the reaction graph, in which nodes represent reactions
and edges indicate shared compounds.

1. Metabolic network organization. Using the substrate graph, those
networks appear to (1) follow the scale-free organization [224, 239];
(2) be hierarchical [240]; and (3) be organized according the the
small-world property [238, 239]. This latter property implies that
most pairs of nodes (substrates) can be connected through a rela-
tively short path of reactions, thus, conferring an advantage to the
system by enabling it a quick recover of the required concentration
of metabolites after perturbations.

2. Evolutionary Rates and Centrality Measures. The reaction graph,
where the genes encoding the enzymes are the nodes is more in-
formative to study the distribution of the impact of natural selec-
tion across the network. This representation has been used for the
studies described below. In the E. coli metabolic network, no sig-
nificant relationship has been found between connectivity and the
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evolutionary rate, measured with the dN score [241]. On the other
hand, for Drosophila and yeast, the dN/dS score is negatively cor-
related with connectivity. This points to the same direction than
studies which describe in the same networks that highly connected
genes evolve at slower rates, most likely due to the action of pu-
rifying selection [242, 243]. Moreover, this relationship happens
to be stronger with global centrality measure, such as betweenness
[244]. To date, it seems that there is no published analysis carried
out with polymorphism data (at intraspecific level) to describe the
distribution of natural selection throughout the metabolic network.

Gene regutory networks.
Transcription Factors (TFs) regulate the expression of their targets (which
can also encode TFs). The gene regulatory network (or TF network) en-
codes those regulatory relationships. Although in other networks the in-
teractions are undirected, the gene regulatory network is composed of
directed edges (or arcs) connecting each TF to its targets. For directed
graphs, connectivity can be divided into two components: the in-degree
and out-degree which are the number of incoming edges upon a node and
the number of outgoing edges from a node, respectively.
Available network reconstructions may be incomplete since TF-target as-
sociations are highly context dependent [245], and it is experimentally
possible to only test a few of them. Therefore, one can argue that the
gene regulatory networks that have been retrieved to date are largely in-
complete. Nevertheless, different large scale compilations of gene regula-
tory networks are now available and can be used as a proxy of the whole
network to study its topological architecture and evolution [246, 247]. In
yeast (S. cerevisiae), gene regulatory networks are organized into a hi-
erarchical structure and follow the scale-free model [248] in which few
TFs are at the top and are not regulated by others. Gerstein et al. de-
scribed a hierarchical human gene regulatory network derived from EN-
CODE data with a bow-tie structure, with middle level elements having
the most information flow bottlenecks [249]. Moreover, Rodriguez-Caso
et al. also observed that the human gene regulatory network shows the
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properties of a scall-free and small-world network [247]. The upstream
TFs of gene regulatory network are usually activated through a signal
transduction pathway in response to an extra-cellular stimuli.

1. Evolutionary rates and centrality measures. TF hubs in the yeast
TF network do not exhibit lower evolutive rates than other elements
[250, 251] suggesting that TF connectivity does not affect its selec-
tive constraint. However, another study on a bigger dataset found
a significant correlation between the rate of protein evolution and
centrality with central TFs evolving faster [252]. The authors also
claimed that the higher rate of divergence among central TFs could
be due to the action of positive selection because of their role in
controlling information flow. On the other hand, the opposite trend
was described in the human regulatory network : more connected
elements of the network are more constrained (as inferred by the
SNP density in the genes encoding it and the dN/dS rate) [249].
Hence, the effect of TFs position in the gene regulatory network on
the evolution of genes encoding them remains to be elucidated, and
further studies are needed.

2. Gene co-expression networks. Analysing co-expression networks
is also informative to understand gene regulation. In such net-
works, two genes are linked if they are co-expressed in the same tis-
sues and conditions. The human co-expression network, retrieved
from tissue-specific expression profiles, exhibits scale-free prop-
erties [253]. This implies evolutionary self-organization through
preferential node attachment. The authors also observed that genes
with many co-expressed partners, i.e. the hubs, evolve more slowly
on average than genes than others, as well as similar evolutive rates
for co-expressed genes.

Integration of different types of large-scale networks within a meta-
network.
Khurana et al. integrated the diverse modes of gene interactions (regula-

tory, genetic, phosphorylation, signaling, metabolic and physical protein-
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Figure 1.31: MULTINET: a meta-network integrating different types of large-
scale networks. The edges of the MULTINET are shown in grey (only the in-
teractions of genes that are involved in more than one network are shown). (A)
Nodes corresponding to loss-of-function tolerant and essential genes are shown
in blue and red respectively. Size of the nodes reflects the degree centrality of
the gene within MULTINET. Essential and loss-of-function tolerant genes tend
to be at the centre and the periphery of the network, respectively. (B) Nodes
corresponding to loss-of-function tolerant and essential genes are shown in or-
ange and green respectively. Size of the nodes reflects the number of networks
the gene is involved in. Essential and loss-of-function tolerant genes genes tend
to be involved in more and less networks, respectively. Moreover, most loss-of-
function tolerant genes are not involved in any network and are not present in the
MILTINET. From [200].
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protein interactions) in order to create an unified biological network in
humans called MULTINET (Figure 1.31) [200]. Although such meta-
network is likely to suffer a large number of errors, it is a step forwards
to the integration of many layers of complexity in the functioning of the
organism. Indeed, different pathways and networks interact one with the
others in a complex dynamical way. For instance, a signal transduction
pathway can respond to a stimuli to active a gene regulatory network
which to turn on the expression of enzymes involved in some metabolic
reactions. The authors then studied how natural selection acts within each
individual network as well as in the MULTINET. First, when evolutive
constraint was estimated by the dN/dS ratio using human and chimpanzee
sequences, they found that dN/dS values are negatively correlated with
their degree centralities in all networks. This shows that highly connected
genes tend to be under stronger purifying selection constraints over long
evolutionary time-scale. Then, they analysed polymorphism data from
three human populations [155], and calculated the average heterozygos-
ity for missense SNPs for each gene. They observed a significant neg-
ative correlation between MULTINET connectivity and heterozygosity,
suggesting that more variation has been allowed to arise at the periphery
of the network. Such trend was not observed when analysing synonymous
sites. The higher selective constraint in human populations for gene act-
ing at the core of the MULTINET may account for those results.
Based on this MULTINET and other features (such as selective constraint,
participation to the diferrent networks, etc...) of loss-of-function tolerant
genes (as defined in [254]) and essential genes (as defined in [255]), they
implemented a computational model to predict global perturbation caused
by deleterious mutations in all genes with good accuracy (Figure 1.31)
[200].
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Chapter 2

OBJECTIVES

This work aimed at broadening our knowledge on selective events at the
molecular level, using mostly polymorphsim data. The action of posi-
tive selection on advantageous genetic variants is at the molecular basis
of phenotypic adaptation of a population to a given environment. How-
ever, genes and proteins rarely act in isolation, and, therefore they have
to be considered within networks describing the interactions occurring
among them. Thus, working within a network framework allows to reduce
the gap between genotype and phenotype but has been overlooked while
studying adaptation. First, positive selection has been detected at gene-
level using either candidate-gene (Section 2.1) or genome-scan (Section
2.2) approaches. Then, an analysis of a small-scale gene-network repre-
senting a specific transduction signalling pathway has been performed in
order to illustrate how the information on protein-protein interactions can
be useful to understand how adaptation occurs at biological pathway level
(Section 2.3). Finally, a study was carried out to describe the distribution
of positive selection throughout the whole protein-protein interaction map
to implicitly consider a much larger biological scale taking into account
cross-talks among pathways and gene pleitropy (Section 2.4).
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2.1 Study the impact of positive selection on a
candidate gene.

VKORC1 enzyme is the direct pharmacologic target of oral anticoagu-
lants of antivitamin K type (AVK), such as wafarin and acenocoumarol.
These drugs are widely prescribed and the dose recommended vary sub-
stantially among individuals according to their genetic composition (e.g.
see [256] for warfarin). The enzyme is encoded by VKORC1 gene. Sev-
eral genome-wide scans suggest that positive selection was the main force
driving the evolution of the 450 Kb region encompassing this gene [257–
260]. Furthermore, while interrogating the patterns of genetic differentia-
tion of four loci associated with warfarin dose requirement in HGDP [19],
Ross et al. showed an extensive geographic differentiation at the site lo-
cated within VKORC1 [261]. They revealed that the high frequency of the
derived allele in East Asians population accounted for such high genetic
differentiation. Moreover, they observed molecular patterns suggesting
the past action of positive selection in CHB+JPT population as measured
by several methods applied to Hapmap data [20]. Chapter 3 describes
a follow-up study on HGDP with extra genotyped SNPs to increase the
variant density to interrogate in VKORC1. This study allowed to conclude
that the signal of selection is restricted to East Asia and shared among all
East Asian populations. Moreover, the gene targeted by selection could
be either VKORC1 or another gene located in the 45 kb region covered by
the selective sweep signal identified in East Asia.
This study provides an explicit example of the difficulties to pinpoint the
target of positive selection. Some a priori information on VKORC1 func-
tion and on the selective pressure allowed to start with an a priori hypoth-
esis on the adaptive phenotype: large geographic differences in dietary
vitamin K intake, especially in vitamin K2, is well-documented; and the
highest plasma levels of vitamin K are found in Asian populations. Al-
though the differences in AVK sensibility could be a direct consequence
of adaptation of East Asian populations to their diet, it remains impossible
to conclude which variant drove the signal without performing functional
analysis for the several genes hitchhiked by the selective sweep.
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2.2 Scan the genome for positive selection.

While Chapter 3 focuses on a gene-candidate study, Chapter 4 describes
a genome-wide scan. For this project, specific populations with known
recent history were selected to detect signals of positive selection shared
by populations with different ancestry but that have lived within the same
environment. Namely, three populations were analysed: (1) one with Eu-
ropean ancestry from Romania; (2) a Rroma/Gypsie one which has also
lived in Romania for the last thousand years; and (3) a Northwest Indian
one. The Rroma/Gypsie population migrated from Northwest India to
Europe one thousand years ago [141]. Therefore, Rroma/Gypsie and Ro-
manian populations may have adapted to the European environment with
their different genetic background. Particularly, the last thousand year
European history has been affected by severe epidemic events (plague, in-
fluenza, smallpox, etc.) which may have been severe selective pressures
for the immune system. Using the Illumina Immunochip array [262],
several tests for positive selection in the three populations have been per-
formed and signals from the same genomic region in Rroma/Gypsies and
Romanians, but absent in Northindians were identified.
Chapter 4 gives an interesting example of the genome-wide scan ap-
proach. Several signals of putative interest were identified, and a strik-
ing one was picked for follow-up studies. Indeed, the molecular patterns
observed at Toll-like receptor 1 (TLR1/TLR6/TLR10) suggested that pos-
itive selection was the main evolutive force acting on it in Rroma/Gypsies
and Romanians. Functional analyses pointed to its role as a pattern recog-
nition pathway of Yersinia pestis, the vector of plague.

2.3 Distribution of selective events within a small-
scale protein-protein interaction map.

In order to understand the evolution of genes, it is informative to bridge
the gap between genotype and phenotype. For that purpose, one may take
into account the interaction networks they are involved in. A network-
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level and population genetics analysis of the Insulin/TOR transduction
pathway (IT pathway) is presented in Chapter 5. This study was the first
one to describe how recent positive selection, as inferred using polymor-
phism data, distributes within an interaction network. Indeed previous
works focused either on the distribution of purifying selection or on posi-
tive selection at much larger evolutionary time-scale using a comparative
genomics approach.
It was observed that the most central elements in the pathway have been
more targeted by positive selection than other genes. This result con-
trasts to previous observations in the whole human interactome where
positive selection was inferred since the divergence between human and
chimpanzee [234]. This indicates that the IT pathway structure affects the
impact of positive selection on genes composing it. Therefore, consid-
ering the topology of a network representing a given pathway seems to
provide important insights on how local adaptation to new environments
occurs to efficiently tune a biological function. Further analyses of dif-
ferent pathways are needed to contrast whether this is a general pattern
shared among many pathways, or whether it is specific to the IT pathway.

2.4 Distribution of selective events within a large-
scale protein-protein interaction map.

As mentioned in Section 1.7, studies of interaction networks can be per-
formed at either small or large scale. Small-scale analyses present the
caveat of not taking into account the cross-talks among different pathways
and of the artificial delimitation of a specific pathway. The pleitropic ef-
fect of the genes is very likely to be an important feature affecting gene
evolution, and particularly its likelihood to be targeted by positive selec-
tion, as formulated by Ronald A. Fisher [33]. Chapter 6 illustrates a study
of the distribution of positive selection within the human protein–protein
interaction network (PIN), also referred as Interactome. This large-scale
network is a fair representation of all the physical interactions occurring
among proteins in the human organism. In a previous study, Kim et al.
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estimated the likelihood of a gene to be targeted by positive selection
through a comparative genomics approach of Human and Chimpanzee
sequences [234]. The authors observed that positive selection concen-
trates at the PIN periphery. The study described in Chapter 6 used both
polymorphism data in human populations and divergence data from 10
mammal species to estimate the impact of positive selection at small and
large evolutionary time-scales, respectively. It was observed that signa-
tures of recent positive selection are more prone to target genes with high
number of interactions while at large evolutionary scale the results were
in the opposite direction, with more selective events detected at low con-
nected nodes.
These results show that signals of positive selection at different evolu-
tionary time-scales are distributed in different parts of the interactome.
It seems that innovations have a molecular basis with variants in genes
with more pleiotropic effects, more indispensable and in general are re-
sponsible for strong changes as a result of a mutation. More layers of
complexity must be considered to fully understand those results and will
be discussed in Chapter 7.
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Part II

Results
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Chapter 3

STUDY THE IMPACT OF
POSITIVE SELECTION ON A
CANDIDATE GENE.
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Bicêtre, France, 3 Institute of Evolutionary Biology, CEXS-UPF-PRBB, Catalonia, Barcelona, Spain, 4 Fondation Jean-Dausset-CEPH, Paris, France, 5 Human Evolutionary

Genetics, CNRS URA3012, Institut Pasteur, Paris, France, 6 UMR IRD 216, Université Paris Descartes, Paris, France

Abstract

VKORC1 (vitamin K epoxide reductase complex subunit 1, 16p11.2) is the main genetic determinant of human response to
oral anticoagulants of antivitamin K type (AVK). This gene was recently suggested to be a putative target of positive
selection in East Asian populations. In this study, we genotyped the HGDP-CEPH Panel for six VKORC1 SNPs and downloaded
chromosome 16 genotypes from the HGDP-CEPH database in order to characterize the geographic distribution of footprints
of positive selection within and around this locus. A unique VKORC1 haplotype carrying the promoter mutation associated
with AVK sensitivity showed especially high frequencies in all the 17 HGDP-CEPH East Asian population samples. VKORC1
and 24 neighboring genes were found to lie in a 505 kb region of strong linkage disequilibrium in these populations.
Patterns of allele frequency differentiation and haplotype structure suggest that this genomic region has been submitted to
a near complete selective sweep in all East Asian populations and only in this geographic area. The most extreme scores of
the different selection tests are found within a smaller 45 kb region that contains VKORC1 and three other genes (BCKDK,
MYST1 (KAT8), and PRSS8) with different functions. Because of the strong linkage disequilibrium, it is not possible to
determine if VKORC1 or one of the three other genes is the target of this strong positive selection that could explain
present-day differences among human populations in AVK dose requirement. Our results show that the extended region
surrounding a presumable single target of positive selection should be analyzed for genetic variation in a wide range of
genetically diverse populations in order to account for other neighboring and confounding selective events and the
hitchhiking effect.
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Introduction

Oral anticoagulants of antivitamin K type (AVK) 2 such as

warfarin and acenocoumarol 2 are widely prescribed drugs for

the prevention and treatment of arterial and venous thromboem-

bolic disorders [1,2]. They exert their anticoagulant effect by

inhibiting the vitamin K 2,3-epoxide reductase complex 1

(VKORC1). Besides well-known physiopathological and environ-

mental factors, including age, sex, body mass index, disease states,

co-medications and diet, genetic factors have been identified as

major determinants of AVK dose variability [3]. Candidate-gene

and genome-wide association studies have identified four main

genes 2 CYP2C9, CYP4F2, CYP2C18 and VKORC12 which

explain together between 28.2% and 43.5% of the AVK dose

variance [3,4,5,6,7]. CYP2C9, CYP4F2 and CYP2C18 encode

proteins involved in the hepatic metabolism of AVK [8,9,10].

VKORC1 encodes the VKORC1 enzyme, which is the direct

pharmacologic target of AVK [11,12]. Differences in the

worldwide distribution of the most important polymorphisms

influencing AVK dosing are likely to underlie the wide interethnic

variability in AVK dose requirements: current population-based

trends in warfarin dosing, as reported by the International

Warfarin Pharmacogenetics Consortium, indicate a mean weekly

dose of 21 mg in Asians, 31.5 mg in Europeans and 40 mg in

individuals of African ancestry [13].

Recently, Ross et al. [14] documented the distribution of four

functional variants located in the three main genes known to

influence AVK dose requirement 2 rs9923231 (VKORC1),

rs1799853 and rs1057910 (CYP2C9), and rs2108622 (CYP4F2) 2

in a large set of samples from the Human Genome Diversity

Project - Centre d’Etude du Polymorphisme Humain (HGDP-
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CEPH) Panel, representing 52 world populations [15]. They

observed a pattern of genetic differentiation among human

populations for the VKORC1 single nucleotide polymorphism

(SNP) rs9923231. They applied three formal tests of positive

selection to the VKORC1 gene 2 the locus-specific branch length

(LSBL) test [16], the log of the ratio of heterozygosities (lnRH) test

[17], and Tajima’s D [18] 2 using genome-wide data available for

the West African, European and East Asian HapMap samples

[19]. The tests yielded significant results in the East Asian sample.

Interestingly, the rs9923231 SNP (g.-1639G.A), which was found

to be a putative target of positive selection [14], is the main genetic

determinant of AVK dose requirement and can alone explain

between 25% to 30% of the dose variance among patients

[4,5,6,7]. This SNP, located in the promoter region, alters a

VKORC1 transcription factor binding site, leading to lower protein

expression [20]. By decreasing VKORC1 activity, the derived -

1639A allele thus confers an increased AVK sensitivity phenotype

and patients carrying one and two -1639A alleles require on

average respectively 25% and 50% lower daily warfarin doses than

-1639G homozygous carriers to obtain the same anticoagulant

effect [21,22]. Understanding the processes of local adaption that

may result in high levels of population differentiation and

important interethnic differences in the required AVK dose is

thus of particular relevance.

During these last few years, newer methods than those proposed

by Ross et al. have been developed to detect the molecular

footprints of positive selection. These methods are particularly well

suited to detect classical signatures of selective sweeps, i.e. when a

new advantageous mutation spreads rapidly to fixation in

particular populations (the so-called ‘hard sweep’ model) [23].

Such a selective sweep occurs too quickly to leave enough time for

recombination events to break down the linkage disequilibrium

(LD), leading to a similar increase in frequency of alleles at nearby

variants. Therefore, the pattern of genetic variation in the genomic

region surrounding the selected allele may differ among popula-

tions [24], and the selected allele is expected to be carried by a

long and frequent haplotype only in those populations that

experienced the local adaptive event [25]. Signals of positive

selection can thus be detected by looking for an increased genetic

differentiation among populations (using methods such as FST [26]

and the Cross-Population Composite Likelihood Ratio (XP-CLR)

test [24]), and an extended haplotype homozygosity (EHH) at the

putatively selected locus (using methods such as the Cross-

Population Extended Haplotype Homozygosity (XP-EHH) test

[27] and the integrated Haplotype Score (iHS) [28]). These

methods have proved to be powerful and largely complementary

to detect and localize a selective sweep, and are more robust to

ascertainment bias in SNP discovery than methods based on the

allele frequency spectrum such as the Tajima’s D used by Ross

et al. [14,29].

In this study, we investigated whether and how positive selection

has acted on the VKORC1 gene locus using these complementary

analytic methods. Our first objective was to determine (1) if the

selective sweep is restricted to East Asia or if it is detected in other

geographic regions, in particular Central South Asia and America,

which are geographically close to East Asia, and (2) if it occurred in

all East Asian populations or only in a few of them. Thus, we

genotyped six VKORC1 SNPs in the HGDP-CEPH Panel [30]

which covers a much wider range of world populations – including

17 populations from East Asia – than the HapMap Panel in which

positive selection at the VKORC1 locus was initially evidenced.

Furthermore, by expanding the analysis to a 2 Mb region

encompassing the VKORC1 gene, we sought to determine if the

selective sweep identified around VKORC1 was due to positive

selection directly acting on this gene, or if it was caused by positive

selection at a nearby linked gene resulting in genetic hitchhiking

[23]. Finally, we discuss combining different methods for

uncovering distinct selection signatures, in order to both increase

power to detect a selective signal and precisely define its genomic

location. We address the difficulty, even with such detailed

analyses, in identifying the specific target of selection.

Results

VKORC1 Haplotype Study
A haplotype study of the 4.1 kb VKORC1 gene was carried out

with seven VKORC1 SNPs genotyped in the 52 HGDP-CEPH

population samples (Figure 1A). Haplotypes were reconstructed

from these SNPs. Seven of these haplotypes had a frequency above

1% in at least one geographic region and were labeled H1 to H7

according to their frequency at the global level (Figure 1B). Four

haplotypes are found in at least five geographic regions and only

two are shared among all regions. The highest and lowest

haplotype diversity values are observed in Sub-Saharan Africa

(0.7560.02) and East Asia (0.1960.02), respectively. Most

individuals carrying the ancestral haplotype (H6), i.e. the haplotype

carrying the ancestral allele at each SNP, are from Sub-Saharan

Africa (Figure 1B and Figure S1). Interestingly, the -1639A allele

(rs9923231) conferring the increased sensitivity to AVK is carried

by a unique haplotype (H1). This haplotype associated with AVK

sensitivity is the most frequent at the worldwide level (49.7%) and

shows an extremely high differentiation among geographic regions

(Figure 1B). While rare in Sub-Saharan Africa (4.4%), it is found at

intermediate frequencies in the Middle East, Europe, Central

South Asia, Oceania and America (from 27.8% to 51.2%), and is

largely predominant in East Asia (89.6%). The prevalence of H1

tends to be high in all of the 17 East Asian population samples

investigated, ranging from 75% in She to 100% in Oroqen (Figure

S1). However, the sample size is small for most of them, with 10 or

less individuals.

The median-joining haplotype network describes the mutational

relationships between the different VKORC1 haplotypes inferred

(Figure 1C). Haplotype H1 differs from the others by two

nucleotide substitutions at the functional rs9923231 SNP and at

the rs9934438 SNP, which are found in complete LD in all

geographic regions (D’ = 1 and r2 = 1, Figure S2).

Detection of Signatures of Positive Selection
To support the hypothesis that positive selection has played a

role in shaping patterns of genetic variation at VKORC1, four

complementary methods were applied to detect signatures of

selective sweeps in the genome. FST and XP-CLR are both based

on allele frequency differentiation, whereas XP-EHH and iHS are

based on haplotype structure. Scores for the four test statistics were

computed at both the regional and population levels for the seven

VKORC1 SNPs and for some other available SNPs [15]

representing the expected neutral genomic background. For each

score, a p-value was derived from the empirical distribution

obtained from the genomic background (cf. Material and

Methods). We considered as significant any p-value below 0.05.

The results of the four tests are presented in Table 1 and Table 2.

At the global level, when we evaluated the level of genetic

differentiation among the seven HGDP-CEPH Panel geographic

regions, an atypical pattern of genetic differentiation was detected

for four VKORC1 SNPs: rs2359612, rs8050894, rs9934438 and

rs9923231 (p,0.05). The functional rs9923231 polymorphism and

the rs9934438 SNP, in complete LD with each other, displayed

FST values falling above the 99th percentile of the empirical
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genome-wide distribution (FST = 0.32, p = 0.008) (Figure 2A).

When global FST values were computed among the 52 world

populations, very similar results were obtained (Table S1). At the

inter-regional level, i.e. between a given geographic region and the

remaining ones, the same four VKORC1 SNPs showed highly

significant FST values (p,0.01) when comparing Central South

Asia and East Asia to the rest of the world (Table 1, Figures 2B

and 2C). Regarding East Asia, the highest FST values (FST = 0.41,

p = 0.003) were also observed for the two SNPs, rs9923231 and

rs9934438. For the other geographic regions, no VKORC1 SNP

displayed an inter-regional FST value as much significant as the

ones observed for Central South Asia and East Asia (Table 1 and

Figure S3). At the intra-regional level, i.e. among populations

within a region, no extreme pattern of genetic differentiation

(p,0.01) was observed for any VKORC1 SNP in any geographic

region (Table 1 and Figure S4).

The XP-CLR test applied to each geographic region also

provided evidence of an atypical pattern of genetic differentiation

at the VKORC1 gene locus, with XP-CLR scores in East Asia

ranging from 16.53 (p = 0.050) to 43.44 (p = 0.012) in the 16 kb

genomic region centered on VKORC1 (Table 2). For each of the

other six geographic regions, the XP-CLR scores were very low,

supporting the existence of a selective sweep restricted to East

Asia. In this geographic region, when the XP-CLR test was

Figure 1. Results of the VKORC1 haplotype study. (A) Position of the seven SNPs along the VKORC1 gene. VKORC1 is a 4.1 kb gene
(GenBank accession number AY587020) located at 16p11.2. The three exons of the gene are represented as boxes, with 59UTR and 39UTR regions
colored in grey and coding regions in black. Flanking and intronic regions are represented as thin and thick lines, respectively. The seven studied
SNPs are shown in their sequential order along the VKORC1 gene. The functional polymorphism rs9923231 located in the promoter, is highlighted in
red and the SNP already present in the Illumina 650K chip in blue. Physical position along chromosome 16 is indicated in kb below. (B) Distribution
of VKORC1 haplotypes at the global and regional level. For each haplotype, SNPs are listed in the same sequential order than in Figure 1A.
Ancestral and derived alleles are shown in blue and orange, respectively. Haplotype labels H1 to H7 were given according to the global haplotype
frequency. AF, sub-Saharan Africa; ME, Middle East; EUR, Europe; CSA, Central South Asia; EA, East Asia; OCE, Oceania; AM, America. (C) Median-
joining network of the inferred VKORC1 haplotypes at the global level. Circles areas are proportional to the global haplotype frequency and
branch lengths to the number of mutations separating haplotypes. Labels of haplotypes are indicated in corresponding circles, and labels of
mutations on the network branches. The haplotype carrying the -1639A allele conferring the AVK sensitivity phenotype (H1) is shown in red and the
ancestral haplotype (H6) in black.
doi:10.1371/journal.pone.0053049.g001
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performed for each population, all of the 17 population samples,

except Oroqen, showed this extreme pattern of genetic differen-

tiation, with at least three significant XP-CLR scores out of the five

scores computed in the 16 kb genomic region surrounding

VKORC1 (Table S2). As most of the SNPs in the VKORC1

genomic region have reached fixation in the Oroqen sample, XP-

CLR scores could be calculated for only very few SNPs on either

side of VKORC1, making difficult the interpretation of XP-CLR

results in this sample.

Regional results obtained with the extended haplotype-based

XP-EHH test indicated that the unusual pattern of genetic

differentiation observed at the VKORC1 gene locus resulted from a

selective sweep in East Asia. Significant XP-EHH scores, ranging

from 2.68 (p = 0.011) to 3.10 (p = 0.005), were observed for the

seven VKORC1 SNPs in East Asia, while no significant values were

observed for any other geographic region (Table 1). For East Asian

populations, evidence for a selective sweep was detected in all 17

population samples with significant XP-EHH scores for each of

the seven VKORC1 SNPs, ranging from 1.84 (p = 0. 049) in the Dai

sample for rs7294, to 3.78 (p = 0.004) in the Tujia sample for

rs8050894 (Table S3).

With the iHS test, only two VKORC1 SNPs (rs7294 and

rs2359612) exhibited significant iHS scores in East Asia (p = 0.040

and 0.047, respectively; Table 1). Two other significant scores

were observed for the rs2359612 SNP in the Middle East (2.69,

p = 0.009) and Europe (2.00, p = 0.039). At the population level in

East Asia, only three samples (Hezhen, Lahu, and Yakut)

displayed significant iHS scores for two, three and four SNPs,

respectively (Table S3).

The four selection tests consistently evidenced the signature of a

selective sweep involving the VKORC1 genomic region in East

Asia. However, this result did not allow us to determine with

certainty that VKORC1 is the direct target of positive selection. A

linked gene could be the target instead, resulting in genetic

hitchhiking of VKORC1 [23]. In an attempt to seek the true target

of positive selection, we probed the downloaded chromosome 16

genotypes [15] with the four tests for selection and examined the

results over an extended 2 Mb genomic region centered on

VKORC1. We focused on clusters of selection test scores with

highly significant p-values (p,0.01) for East Asia only. Three

clusters were observed (Figure 3): (i) , 570 kb downstream of

VKORC1, the first cluster was found with partially overlapping

clusters of extreme XP-CLR and XP-EHH scores over a region of

64 and 39 kb, respectively, involving the genes ITGAL, ZNF768,

and ZNF747; (ii) at or close to VKORC1 genomic position, the

second cluster was determined by overlapping clusters of extreme

FST values when comparing East Asia to the rest of the world (with

the lowest p-values observed for the same two VKORC1 SNPs

evidenced before, rs9923231 and rs9934438) and extreme XP-

CLR and XP-EHH scores. These clusters ranged in size from 45

to 244 kb; (iii) , 230 kb upstream of VKORC1, the third cluster of

32 kb was found with XP-EHH and concerned the genes ITGAM

and ITGAX. If SNPs within clusters are in high LD (D’$0.97,

except for one SNP in the third cluster), only limited LD exists

between the SNPs located in the different clusters (Figure 4 and

Figure S5) and several recombination hotspots are present

between these clusters (Figure 4). This suggests that each of the

three clusters represents a different adaptive event.

Examination of the second cluster showed that VKORC1 is

contained in a block of strong LD spanning , 505 kb in East Asia

(Figure 4 and Figure S5). Similar LD blocks were observed for

Central South Asia and Europe, and to a lesser extent, for the

Middle East (Figure S5). This LD block encompasses 25 genes

(Figure 4). We used the most extreme FST, XP-CLR and XP-EHH

scores in order to spatially localize a target of selection within the

LD block. Significant XP-CLR scores (p,0.05) were found in a

350 kb region encompassing 19 genes including VKORC1 (Table

S4). XP-EHH scores were almost all significant at the 0.05

threshold but four adjacent genes VKORC1, BCKDK, MYST1

(KAT8) and PRSS8 displayed most extreme XP-EHH scores

(p,0.01). Clusters of highly significant FST values when comparing

East Asia to the rest of the world (p,0.01) and significant global

FST values (p,0.05) were also found for these four genes (Table

S5). It is thus probable that the selective pressure has targeted one

of these genes.

Table 2. Results of the XP-CLR test in a 16 kb region centered
on VKORC1 in the seven geographic regions.

Region
Physical
position

XP-CLR
score

XP-CLR
p-valuea

Africa 31005354 0.00 1.000

31009354 0.00 1.000

31013354 0.96 0.289

31017354 0.58 0.348

31021354 0.09 0.470

Middle East 31005354 4.00 0.138

31009354 0.85 0.306

31013354 3.28 0.158

31017354 0.27 0.403

31021354 6.25 0.092

Europe 31005354 0.54 0.351

31009354 0.00 1.000

31013354 2.63 0.186

31017354 0.15 0.427

31021354 2.40 0.198

Central South Asia 31005354 0.03 0.464

31009354 0.00 1.000

31013354 0.00 1.000

31017354 0.01 0.476

31021354 0.00 0.490

East Asia 31005354 24.08 0.032 *

31009354 16.53 0.050 *

31013354 30.49 0.023 *

31017354 26.82 0.028 *

31021354 43.44 0.012 *

Oceania 31005263 0.00 1.000

31009263 0.00 1.000

31013263 0.00 1.000

31017263 0.00 1.000

31021263 0.00 1.000

America 31005354 0.00 1.000

31009354 0.00 1.000

31013354 0.00 1.000

31017354 0.01 0.587

31021354 0.00 0.597

aP-values are derived from the empirical distribution of the XP-CLR scores along
the chromosome 16.
*p,0.05; ** p,0.01; *** p,0.005.
doi:10.1371/journal.pone.0053049.t002
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When did the -1639A VKORC1 Allele begin to Increase in
East Asia?

The time at which the frequency of the -1639A allele started to

increase in East Asia was estimated by using a maximum-

likelihood method [31] with the 17 East Asian HGDP-CEPH

sample data. Our analysis yielded an age estimate of 181

generations (95% CI: 128–256 generations). Assuming a genera-

tion time of 25 years, the expansion therefore occurred about

4,525 years ago (95% CI: 3,200–6,400 years).

Discussion

Numerous genes involved in absorption, distribution, metabo-

lism and excretion (ADME) of drugs, exhibit evidence of recent

positive selection and/or high population differentiation levels

[32]. However, there are fewer examples of the action of natural

selection on genes involved in the pharmacodynamics of drugs,

such as VKORC1. Although numerous surveys have examined the

genetic polymorphism of VKORC1 in samples from diverse ethnic

origins [13,20,33,34,35,36,37], these studies provided an incom-

plete picture of haplotype diversity because different sets of SNPs

were used and worldwide coverage was incomplete. In this study,

we took advantage of the worldwide coverage of the HGDP-

CEPH Panel to provide the first detailed analysis of VKORC1

population diversity using the same set of SNPs. Haplotype

analysis revealed that the -1639A derived allele that confers AVK

sensitivity is carried by a unique haplotype in all 52 population

samples investigated. This haplotype associated with AVK

sensitivity is predominant in East Asia, rare in Sub-Saharan

Africa and occurs at intermediate frequencies in other geographic

regions. Because it is found in Sub-Saharan Africa and other world

populations, this haplotype is probably rather old. Its geographic

distribution leads to striking differences between East Asian and

non East Asian samples for genetic susceptibility to AVK

sensitivity.

One explanation for worldwide diversity of this haplotype could

be positive selection. This hypothesis was supported by five

genome-wide scans that found atypical patterns of the allele

frequency spectrum [38], extended LD [39,40], and unusual

genetic differentiation [40,41,42] in a 450 kb genomic region

encompassing VKORC1. When specified, the target population was

Asian [38,40]. Ross et al. [14] found evidence of positive selection

at VKORC1 in the East Asian HapMap sample, based on the level

of genetic diversity (lnRH test [17]), genetic differentiation (LSBL

test [16]) and allele frequency spectrum (Tajima’s D [18]).

Figure 2. Atypical patterns of genetic differentiation observed for VKORC1 SNPs. Genome-wide empirical distributions of FST values were
constructed from 644,143 SNPs having a MAF $0.001 at the global level. Individual values of FST calculated for each of the seven VKORC1 SNPs are
plotted against their global MAF. The functional rs9923231 SNP is shown in red. The 50th, 95th and 99th percentiles are indicated as dotted, dashed
and full red lines, respectively.
doi:10.1371/journal.pone.0053049.g002
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In this study, we provided compelling evidence of positive

selection at the VKORC1 gene locus in East Asia and only in this

geographic region. A footprint of natural selection was found in

each of the widely distributed 17 HGDP-CEPH East Asian

population samples. By using four different tests of positive

selection and by assessing significance at a given locus on the basis

of an empirical distribution derived from the genomic background,

we believe we can be confident that positive selection, rather than

demographic forces, accounts for the data presented here. Indeed,

it is well known that large allele frequency differences between

populations are not infallible proofs of positive selection: these can

also result from genetic drift, migration and other neutral

demographic processes [43,44]. This might be the explanation

for the significant inter-regional FST values observed in Central

South Asia (Table 1 and Figure 2B).

Because the XP-EHH test is designed to detect fixation events

that are relatively young (, 30,000 years) [27], the selective event

we have detected is likely to be rather recent. This is indeed

supported by an age estimate of 4,525 years (95% CI: 3,200–6,400

years) for the time at which the VKORC1 -1639A allele started to

increase in frequency in East Asia. The poor performance of the

iHS test that detected only very few signals of positive selection in

this study could have been predicted since its power to detect

selective sweeps involving alleles near fixation is known to be low

[28,45]. By contrast, XP-EHH and XP-CLR perform better when

the allele targeted by selection is near fixation and indeed showed

strong evidence of a selective sweep in this study [24,27].

In an attempt to determine if the VKORC1 gene has been the

direct target of positive selection or if it reflects genetic hitchhiking

[23], we extended our analysis to a 2 Mb region surrounding the

VKORC1 gene (Figure 3). Apart from the highly significant

footprint of positive selection localized in the VKORC1 region,

two other significant signals, at , 570 kb downstream and ,
230 kb upstream of VKORC1, were detected with XP-CLR and/or

XP-EHH in East Asia. These two regions contains genes that

belong to the same integrin family – specifically to the CD11 gene

cluster: ITGAL downstream, and adjoining genes ITGAM and

ITGAX upstream – involved in immune functions and being thus

good candidates for positive selection [46,47,48]. However, since

SNPs located in these integrin genes show limited LD with those of

VKORC1, a single adaptive event is unlikely. Apart from East Asia,

the ITGAL region showed signals of positive selection in other

Figure 3. Distribution of –log10 (p-values) for four selection tests across a 2 Mb region centered on VKORC1. A black vertical line
indicates the physical position of VKORC1 on chromosome 16. Horizontal red dotted and dashed lines show 0.05 and 0.01 chromosome-wide
significance levels, respectively. The selection tests (inter-regional FST, XP-CLR, XP-EHH and iHS, respectively) were separately applied in each of the
seven geographic regions.
doi:10.1371/journal.pone.0053049.g003
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Figure 4. Detailed analysis of a 1.1 Mb genomic region surrounding the VKORC1 gene locus in East Asia. The boundaries of the region
displayed (chr16:30,271,572-31,391,123; UCSC human genome build hg18) were chosen so as to include the three clusters of significant scores
detected in East Asia by the selection tests in the 2 Mb region centered on VKORC1 (Figure 3). (A) Name and location of genes. Exons are
displayed as blue boxes and the transcribed strand is indicated with an arrow. Genes located in the block of strong LD encompassing VKORC1 and
including the SNPs in the red box shown in Figure 4C, are highlighted in the grey area. (B) XP-EHH results in East Asia. The significance of the XP-
EHH scores (2log10 empirical p-value) are shown for individual SNPs with a MAF $0.01 in East Asia. Horizontal dashed lines indicate 0.05 and 0.01
chromosome-wide significance levels. Recombination hotspots detected in HapMap Phase II data are indicated by red vertical dotted lines. The data
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geographic regions (America with XP-CLR, and Sub-Saharan

Africa and Oceania with XP-EHH), arguing for a different

evolutionary history from that of VKORC1, which was only found

in East Asia. This observation emphasizes the need for studying

the geographic distribution of a selective event in a wide range of

genetically diverse populations, as per Scheinfeldt et al. [49] who,

after performing a detailed analysis of a 3 Mb region surrounding

a gene showing strong footprints of positive selection, discovered

patterns of genetic variation consistent with the presence of a

cluster of three independent selective events occurring in different

populations. By extending their analysis to the entire genome, they

identified several other genomic regions exhibiting evidence for

the presence of multiple and independent selective targets,

suggesting that clusters of adaptive evolution, such as the one

detected herein, are widespread in the human genome.

After delimitating the selective signal for VKORC1 by analyzing

selective events identified in the 2 Mb region just described, we

aimed at precisely mapping the gene targeted by positive selection.

VKORC1 is located in a , 505 kb LD block in East Asia

containing 25 genes (Figure 4), and the selective pressure could

have targeted any gene in this LD block. We used FST, XP-CLR

and XP-EHH scores to spatially localize possible targets of positive

selection within the LD region. A block of four adjacent genes –

VKORC1, BCKDK, MYST1, and PRSS8– was found to be the most

likely selective target (Table S4).

BCKDK codes for the mitochondrial branched chain ketoacid

dehydrogenase kinase. MYST1 and PRSS8 are two immunity-

related genes, listed as candidates for positive selection in several

databases [40,42,50]. If, indeed, one of these three genes is the

target of the selective sweep detected here, it should contain a

functional variant of high frequency in East Asia and we did not

find such a variant in HapMap data.

Assuming that selection has directly targeted the VKORC1 gene,

the advantage would then probably be related to vitamin K

metabolism,vitamin K being the only known substrate of

VKORC1. This vitamin plays a crucial role in the synthesis of

vitamin K-dependent (VKD) proteins, especially blood coagula-

tion factors, which requires VKORC1 activity [51,52]. Large

geographic differences in dietary vitamin K intake, especially in

vitamin K2, exist between human populations, with the highest

plasma levels found in Asian populations, as compared to

Europeans and Africans [53,54]. These differences could be

explained by the wide consumption of fermented soybean food

(natto) - a major source of vitamin K2 - in East Asia [55,56]. It is

then possible that, at some points in the history of East Asian

populations, these high levels of vitamin K intakecould have been

deleterious and created a selective pressure against VKORC1 gene

expression and coagulant activity. There is, however, no report so

far of a deleterious effect associated with a high consumption of

vitamin K and it is more the low dietary vitamin K intake that is

problematic, hampering the adequate synthesis of VKD proteins

in extrahepatic tissues notably bone and arterial vessels [57]. An

alternative hypothesis could be that a naturally occurring

environmental molecule of AVK type - such as a coumarin

derivative - specifically found in East Asia, exerted a selective

pressure on the VKORC1 gene in populations of this region during

their recent history. Such molecules are present in the nature, as

illustrated by the example of the sweet clover disease that affected

cattle in Canada and North America in the 1920’s. Sweet clover

hay, used to feed cattle, contains a natural coumarin that is

oxidized in mouldy hay to form dicoumarol, a hemorrhagic agent.

Its discovery led to the synthesis of coumarin derivatives used in

clinical application as oral anticoagulants since the 1940’s [58,59].

Evidence of an effect of warfarin in shaping VKORC1 genetic

diversity could be found in rats and mices. Indeed, since the

introduction in the 1950’s of this molecule as rodenticide,

mutations in the VKORC1 gene conferring warfarin resistance

have spread in rodent populations but the mechanisms by which

they lead to warfarin resistance are still not elucidated

[60,61,62,63].

In conclusion, we found that the VKORC1 genomic region

exhibits diversity patterns consistent with the action of positive

selection in East Asia. Nearly complete selective sweeps, such as

the one described herein, are believed to be rare in recent human

adaptive history [64,65,66,67]. This selective event is probably

responsible for the spread of the derived -1639A allele conferring

the increased AVK-sensitive phenotype in East Asian populations

and contributes to present-day differences among human popu-

lations in the genetic sensitivity to AVK. A detailed analysis of the

extended VKORC1 genomic region revealed selective signals at

several independent genetic loci, indicating a complex evolution-

ary history for this chromosome 16 region. Our evolutionary

analysis emphasizes the importance of considering the surrounding

genomic region of a candidate gene for selection in order to avoid

erroneous conclusions about the true target of selection. We show

here that the gene targeted by selection could be either VKORC1 or

another gene located in the 45 kb region covered by selective

sweep detected in East Asia. Our ability to identify the target of

selection may be limited by the number of genetic polymorphisms

investigated. Examining the selective signal with more genetic

variation using whole-genome sequences from the 1000 Genomes

Project [68] may well improve the mapping of the gene targeted

by selection. Furthermore, allele frequency spectrum bias tends to

be minimized with whole genome sequences, which may allow the

use of tests for natural selection based on this spectrum.

Materials and Methods

The HGDP-CEPH Panel
We used the HGDP-CEPH Panel that presently includes 1,064

individuals from 52 populations worldwide [69]. For the analysis

presented here, the standardized subset panel H952 containing no

first nor second degree relative pairs, was used [70]. This subpanel

includes 952 individuals grouped into seven broad geographic

regions as defined by Li et al. [15]: Sub-Saharan Africa (N = 105),

the Middle East and Mozabites from north Africa (N = 163),

Europe (N = 158), Central South Asia (N = 202), East Asia

(N = 232), Oceania (N = 28) and America (N = 64). A full

description of the 52 samples included in the HGDP-CEPH

Panel is provided in Table S6.

SNP Genotyping
A total of 940 individuals from the original H952 subpanel were

previously genotyped by Li et al. [15] with the Illumina

HumanHap 650 K platform and their genotypes at 644,258

autosomal SNPs were downloaded from the public HGDP-CEPH

and methods used to derive these hotspots are available from the HapMap website (http://www.hapmap.org/) [83,84]. (C) LD plot. Pairwise LD
values, depicted as D’, are shown for SNPs with a MAF $0.01 in East Asia. D’ values are displayed in different colors from yellow to red for D’ = 0 to
D’ = 1, respectively. The red box highlights SNPs included in the LD block encompassing VKORC1. The plot was produced using the snp.plotter R
package [74].
doi:10.1371/journal.pone.0053049.g004
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database (http://www.cephb.fr/en/hgdp/). Only one SNP

(rs7294) from this dataset is located in the VKORC1 gene. We

additionally genotyped six SNPs in VKORC1 in the 940

individuals, using the TaqManH SNP Genotyping Assay-by-

Design method in 5 ml reaction volumes according to the

manufacturer’s protocol (Applied Biosystems, Foster City, CA):

rs9923231 (g.-1639G.A) located in the promoter region,

rs13336384 and rs9934438 in the first intron, rs2359612 and

rs8050894 in the second intron, and rs7200749 in the third exon

(Figure 1A). Missing genotype rates varied from 0.5% to 2.2% for

SNPs rs7200749 and rs9934438, respectively. Since the two SNPs

rs9923231 and rs9934438 were found in complete LD in the seven

geographic regions (Figure S2), we were able to impute the missing

genotypes of a given SNP using available information from the

other, leading to a total of 0.96% missing genotypes for these two

SNPs. No significant deviations from the Hardy-Weinberg

proportions were observed for any VKORC1 SNP in any of the

52 population samples at the 0.01 significance level (data not

shown). Allele frequency distributions of the seven VKORC1 SNPs

in the 52 population samples are shown in Figure S6.

Statistical Analysis
VKORC1 haplotype study. To investigate the worldwide

diversity of the VKORC1 gene, we conducted a haplotype study

using the seven genotyped SNPs. A total of 931 individuals with

less than three missing genotypes were included in the haplotype

reconstruction. For each geographic region, haplotype frequencies

were estimated with the Bayesian statistical method implemented

in Phase v2.1 [71] using defaults parameters. To avoid the

convergence of the algorithm to a local maximum, we ran it 10

times with different random seeds and kept the output from the

run with the best average value. The worldwide haplotype

frequencies were then calculated as the weighted average of the

frequencies estimated in each of the seven geographic regions.

Similar results were obtained when a single pooled sample of all

individuals was considered in the haplotype frequency estimation

(data not shown). Since information on ancestral allele state is

required to distinguish between ancestral and derived haplotypes,

we used the snp131OrthoPt2Pa2Rm2.txt file downloaded from

the UCSC genome browser (http://genome.ucsc.edu/) which

provides the orthologous alleles in chimpanzee, orangutan and

rhesus macaque. For each SNP, the allele shared by the three

species was identified as the ancestral allele. Haplotype networks

were drawn with the Network v4.5.1.6 software (http://www.

fluxus-engineering.com/), using the median-joining algorithm

which builds the minimum spanning network from the given

haplotypes by favoring short connections [72]. LD analyses were

performed with Haploview v4.1 [73] and the snp.plotter R

package [74], using Lewontin’s disequilibrium coefficient D’ [75]

and the correlation coefficient r2 [76].

Detection of Signatures of Positive Selection
To explore whether VKORC1 has evolved under positive

selection in humans, we looked for two distinct genetic patterns

of a selective sweep that are expected to remain detectable in the

genome over different time scales after the action of natural

selection: (i) an important genetic differentiation among popula-

tions nearby the locus of interest, and (ii) the presence of unusually

frequent and long haplotypes in the surrounding genomic region.

For each method, we used an outlier approach to calculate the p-

values of the computed scores. Under this approach, an empirical

distribution is constructed using other SNPs in the genome that

are assumed to be neutral and to represent the genomic

background under neutrality. An empirical p-value is computed

that corresponds to the proportion of values from the empirical

distribution that are higher than the value observed at the locus of

interest. If the value obtained for the SNP of interest is greater

than the 95th percentile (p,0.05) of the empirical distribution,

positive selection is invoked. For that purpose, we used the

empirical distributions obtained from the scores calculated either

on a genome-wide (all autosomal chromosomes) or chromosome-

wide (chromosome 16, where VKORC1 is located) basis.

First, we used two statistics, FST and XP-CLR, which measure

the genetic differentiation among human populations [24,26].

These methods are able to detect selective sweeps that have

occurred up to 75,000 years ago [77]. The fixation index FST [78]

quantifies the proportion of genetic variance explained by allele

frequency differences among populations. FST ranges from 0 (for

genetically identical populations) to 1 (for completely differentiated

populations). We calculated FST values using the BioPerl module

PopGen [79] for each autosomal SNP with a minor allele

frequency (MAF) $1023 (644,143 SNPs) at three different levels:

(i) global level (either among the seven HGDP-CEPH Panel

geographic regions or among the 52 Panel populations), (ii) inter-

regional level (each geographic region versus the remaining ones),

and (iii) intra-regional level (among populations within a region).

Since FST strongly correlates with heterozygosity [41,80,81],

empirical p-values were calculated within bins of 10,000 SNPs

grouped according to MAF. The resulting distributions represent

the average genetic differentiation of human populations corrected

for heterozygosity.

We next applied the XP-CLR test [24] which identifies selective

sweeps in a population by detecting significant genetic differen-

tiation in an extended genomic region of interest as compared to a

reference population. This method presents both the advantages of

being robust to ascertainment bias and of not requiring any

information on haplotypes, thus avoiding errors of haplotype

estimation from genotype data. XP-CLR scores were computed at

regularly spaced grid points (every 4 kb) across chromosome 16

using the genotypes from SNPs within overlapping windows of

0.1 cM around each grid point. To account for different SNP

densities among genomic regions, we restricted to 200 the

maximal number of SNPs used to compute a XP-CLR score

within the 0.1 cM genomic region, by removing excess SNPs at

random. We applied this method by considering all SNPs with a

MAF $1023 on chromosome 16 at both the regional and

population levels (17,729 SNPs). P-values were calculated from the

empirical distribution of the collected scores obtained with these

SNPs. XP-CLR requires the definition of a reference population:

the Sub-Saharan African samples were used as a reference for non

Sub-Saharan African regions, and the European samples as a

reference for Sub-Saharan Africa. For the analyses performed at

the population level, we defined the Yoruba as the reference for

non Sub-Saharan African samples, and the French for Sub-

Saharan African samples.

The second class of methods that we used is based on EHH, i.e.

the sharing of identical alleles across relatively long distances by

most haplotypes in population samples [25]. In brief, the EHH is

computed for a given SNP (the core SNP) of a sequence being

interrogated for a selective sweep. In the absence of a selective

sweep, recombination events break down haplotypes relatively

rapidly with time and with increasing distance from the core SNP.

In the case of a selective sweep, LD tends to maintain the

haplotype carrying the selected allele, and the relative frequency of

this (favored) haplotype will increase with time leading to so-called

EHH. Integration of genetic distance in both directions from the

core SNP can be used to discriminate between selected and non-

selected alleles, and be applied to ancestral and derived alleles.
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Analytic methods based on EHH are able to detect recent selective

sweeps (i.e. those occurring less than 30,000 years ago [77]). Such

analyses require haplotype data. We used fastPHASE v1.3.0 EM

algorithm [82] to infer haplotypes with chromosome 16 SNPs for

individuals from each geographic region. For each region, the K-

selection procedure was first run several times in order to define

the optimal number of clusters of similar haplotypes by minimizing

chance error rates. Ultimately, phase was determined with K = 6

for Oceania, K = 14 for Europe and Central-South Asia and

K = 12 for the remaining regions. Using these values, the EM

algorithm was then run with 20 random starts and 25 iterations.

Once haplotypes were reconstructed, we computed the XP-

EHH statistic [27] that compares the integrated EHH

computed in a test population versus that of a reference

population. Therefore, this method detects a sweep in which

the selected allele has risen to near fixation in one population

but remains polymorphic in the other. XP-EHH scores were

computed using the same parameters as those described in

Sabeti et al. (2007). Reference populations were defined as for

XP-CLR.

We finally applied the iHS [28] that compares the rate of EHH

decay observed for both the derived and ancestral allele at the core

SNP. An extremely positive or negative value at the core SNP

provides evidence of positive selection with unusually long

haplotypes carrying the ancestral or the derived allele, respectively.

The raw iHS scores were computed using the iHS option

implemented in the WHAMM software developed by Voight

et al. (2006). The scores were standardized to have null mean and

unit variance in 5% bins of the derived allele frequency at the core

SNP. Information on ancestral allele state was obtained from the

snp131OrthoPt2Pa2Rm2.txt file downloaded from the UCSC

website. We were unable to determine with certainty the ancestral

allele status of 111 SNPs on chromosome 16 and we removed

them from the analysis.

XP-EHH and iHS scores were calculated for all available SNPs

on chromosome 16 (19,733 and 19,622, respectively) at both the

regional and population levels. The resulting distributions were

used to calculate empirical p-values.

The genetic map used for applying XP-CLR, XP-EHH and

iHS was retrieved from release 22, build 36 of HapMap (www.

hapmap.org).

Age of the Expansion of the -1639A VKORC1 Allele in East
Asia

We inferred the age at which the -1639A allele started to

increase in frequency in East Asia by estimating the age of the

most recent common ancestor carrying this allele in East Asia

using the likelihood-based method implemented in the Estiage

program [31]. This method assumes that all individuals derive

from a common ancestor who introduced the mutation n

generations ago. Estimation of n is based on the length of the

haplotype shared by the individuals, which is estimated

through the identification of recombination events on the

ancestral haplotype by taking into account allele frequencies

and recombination rates. We estimated n using only one

haplotype per East Asian population sample (i.e., 17 haplo-

types). For each population, this one haplotype was construct-

ed by taking at each locus over a 6 Mb region the allele the

most frequently seen in individuals from the population

carrying the -1639A allele. A mutation rate of 1026 per

individual and per generation, and a 25-year generation time

were assumed.

Supporting Information

Figure S1 Distribution of VKORC1 haplotypes in the 52
HGDP-CEPH samples. The haplotype carrying the -1639A

allele (H1) is represented in red and the ancestral haplotype (H6) in

black.

(TIF)

Figure S2 Pairwise LD between the seven VKORC1
SNPs at the regional and global level. Red squares indicate

statistically significant (logarithm of odds .2) LD between the pair

of SNPs, as measured by the D’ statistic [75] with the Haploview

software [73]; darker colors of red indicate higher values of D’, up

to a maximum of 1. White squares indicate pairwise D’ values of

,1 with no statistically significant evidence of LD. Blue squares

indicate pairwise D’ values of 1 but without statistical significance.

(TIF)

Figure S3 Genome-wide empirical distributions of
inter-regional FST values against MAF in the seven
geographic regions. Empirical distributions of FST were

constructed by calculating an FST value for 644,413 SNPs having

a MAF $0.001 at the global level. Individual values of FST

calculated for each of the seven VKORC1 SNPs are plotted against

their global MAF. The functional rs9923231 SNP is shown in red.

The 50th, 95th and 99th percentiles are indicated as dotted, dashed

and full red lines, respectively.

(TIFF)

Figure S4 Genome-wide empirical distributions of in-
tra-regional FST values against MAF in the seven
geographic regions. Empirical distributions of FST were

constructed by calculating an FST value for all SNPs having a

MAF $0.001 at the intra-regional level. Individual values of FST

calculated for each of the seven VKORC1 SNPs are plotted against

the regional MAF. The functional rs9923231 SNP is shown in red.

The 50th, 95th and 99th percentiles are indicated as dotted, dashed

and full red lines, respectively.

(TIFF)

Figure S5 LD patterns over a 2 Mb region centered on
VKORC1 in the seven geographic regions. Pairwise LD,

depicted as D’, is shown for SNPs with a MAF $0.05 at the global

level. D’ values are displayed in different colors from yellow to red

for D’ = 0 to D’ = 1, respectively. The plot was produced using the

snp.plotter R package [74]. The vertical dashed lines delineate

VKORC1 gene position.

(TIF)

Figure S6 Allele frequency distribution of the seven
VKORC1 SNPs in the 52 HGDP-CEPH samples: rs9923231

(A), rs13336384, (B) rs9934438 (C), rs8050894 (D), rs2359612

(E), rs7200749 (F) and rs7294 (G). The derived and ancestral

alleles are represented in orange and blue, respectively.

(TIF)

Table S1 Global FST values among populations and among

regions for the seven VKORC1 SNPs.

(XLS)

Table S2 Results of the XP-CLR test in a 16 kb region centered

on VKORC1 in the 52 HGDP-CEPH samples.

(XLS)

Table S3 Results of the XP-EHH and iHS tests in the 52

HGDP-CEPH samples.

(XLS)
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Table S4 Results of the XP-CLR test in the , 500 kb genomic

region of the LD block encompassing VKORC1 in East Asia.

(XLS)

Table S5 Results of the XP-EHH, iHS tests, inter-regional FST

and global FST for all SNPs located in the linkage disequilibrium

block encompassing VKORC1 in East Asia.

(XLS)

Table S6 Description of the 52 HGDP-CEPH samples grouped

into seven main geographic regions.

(XLS)
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ABSTRACT

Genes  vary  in  their  likelihood  to  undergo  adaptive  evolution.  The  genomic  factors  that 

determine adaptability, however, remain poorly understood. Genes function in the context of 

molecular  networks,  with some occupying more important  positions  than others  and thus 

being  likely  to  be  under  stronger  selective  pressures.  However,  how  positive  selection 

distributes across the different parts of molecular networks is still not fully understood. Here, 

we  inferred  positive  selection  using  comparative  genomics  and  population  genetics 

approaches through the comparison of 10 mammalian and 270 human genomes, respectively. 

In agreement with previous results, we found that genes with lower network centralities are 

more likely to evolve under positive selection (as inferred from divergence data). Surprisingly, 

polymorphism data yields results in the opposite direction than divergence data: genes with 

higher centralities are more likely to have been targeted by recent positive selection during 

recent human evolution. Our results indicate that the relationship between centrality and the 

impact of adaptive evolution highly depends on the mode of positive selection and/or the 

evolutionary  time-scale.  Most  likely,  network  adaptation  occurs  through  intra-specific 

adaptive  leaps  affecting  key  network  genes,  followed  by  fine-tuning  adaptations  in  less 

important network regions.

Keywords

Physical protein interaction, Protein interaction network, Natural selection, Positive selection, 

Mammals, Humans
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BACKGROUND

In  recent  years,  the  availability  of  large-scale  network  and  genomic  datasets  has 

allowed  researchers  to  study  the  relationship  between  the  position  of  proteins  within 

molecular  networks  and their  patterns of  molecular  evolution (Cork & Purugganan 2004; 

Wagner 2012).  These studies have shown that the strength of purifying selection acting on 

individual genes is affected by the position that their encoded products occupy in molecular 

networks. Indeed, genes acting at the centre of protein-protein interaction networks (PINs) 

and  metabolic  networks  (i.e.,  genes  coding  for  proteins  with  many  interactions  or 

connections) evolve under higher levels of purifying selection than those acting at the network 

periphery  (Alvarez-Ponce & Fares 2012; Alvarez-Ponce 2012; Fraser et al. 2002; Hahn & 

Kern 2005; Vitkup et al. 2006) (but see (Hahn et al. 2004; Jordan et al. 2003)) . Furthermore, 

interacting proteins  evolve  at  similar  rates,  probably  as  a  result  of  molecular  coevolution 

(Agrafioti et al. 2005; Codoñer & Fares 2008; Cui et al. 2009; Fraser et al. 2002; Lovell & 

Robertson 2010; Pérez-Bercoff et al. 2013).

Less well  understood,  however,  is  how adaptive events distribute across molecular 

pathways and networks. Some evidence supports that adaptive events tend to occur in less 

centrally located regions of gene networks. In an early study using two genomes, the human 

and chimpanzee genomes, Kim et al. found that positive selection often targeted genes acting 

at  the  periphery  of  the  PIN  (Kim  et  al.  2007).  Powerful  detection  of  positive  selection 

requires, nevertheless, comparing many genomes (Anisimova et al. 2002; Kosiol et al. 2008), 

making it appropriate to re-evaluate this trend in light of the currently available mammalian 

genomes.

In addition, some recent population genetics studies appear to contradict the notion 

that  positive  selection  targets  preferentially  the  periphery  of  molecular  networks.  Indeed, 

positive  selection  often  targets  genes  acting  at  the  most  “influential”  positions  of  these 

pathways, including the most entral genes in the human insulin/mTOR pathway (Luisi et al. 

2012), genes acting at bifurcation points of the human N-glycosylation pathway (Dall’Olio et 

al. 2012) and the Drosophila pathways involved in glucose metabolism (Flowers et al. 2007), 

and the gene encoding the first enzyme of the Arabidopsis glucosinolate pathway (Olson-

Manning et al. 2013). Simulation studies also indicate that adaptation preferentially targets 

genes acting at the upstream and branch-point parts of pathways, at least when the system is 

far from the fitness optimum (Rausher 2012; Wright & Rausher 2010). Proteins occupying 

these key network positions are expected to exert strong influence over the pathway function, 

and thus on the associated phenotypes and organism’s fitness (Olson-Manning et al. 2013; 
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Rausher 2012; Wright & Rausher 2010). Therefore, positive selection on genes encoding such 

proteins may lead to rapid adaptation. 

Here, we make use of the unprecedented wealth of genomic (Kersey et al. 2012; The 

1000  Genomes  Project  Consortium  2012)  and  interactomic  data  (Stark  et  al.  2011),  to 

ascertain  what  parts  of  the  human  protein–protein  interaction  network  were  affected  by 

positive selection, using both comparative genomics and population genetics approaches. We 

found that positive selection, as inferred from divergence data, preferentially targets genes 

acting at more peripheral positions in the network, in agreement with previous observations 

(Kim et al. 2007). Conversely, genes with signatures of recent  positive selection, identified 

considering polymorphism data, occupy more central parts  of the network. We discuss on the 

apparently contradictory results from divergence and polymorphism data and propose, for the 

first time, an evolutionary scenario reconciling both patterns.
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MATERIAL AND METHODS

Reconstructing the Human Protein–Protein Interaction Network

The  human  protein–protein  interaction  network  (PIN)  was  reconstructed  from the 

interactions available from the BioGRID database version 3.1.81 (Stark et al.  2011). Only 

non-redundant  physical  interactions  were  considered  to  calculate  centrality  measures.  We 

removed from our analysis proteins without an Ensembl ID as well as Ubiquitin C (encoded 

by the gene with Ensembl ID ENSG00000150991), which has an outlier degree centrality.

Detecting Natural Selection Events from 10 Mammalian Genomes

In  order  to  infer  events  of  positive  selection  that  have  occurred during  mammals 

evolution we used sequence data for a set of mammals, enriched in primates. The analysis was 

restricted to 10 high-coverage genomes: human, chimpanzee, gorilla, orang-utan, macaque, 

mouse, rat, cow, dog, and opossum. The platypus genome was not included in the analysis, as 

the currently available assembly is highly fragmented, making gene annotation difficult. Also 

excluded  were  non-mammalian  genomes,  in  order  to  avoid  the  problem of  saturation  of 

synonymous sites (Smith & Smith 1996), and to maximize the number of genes with 1:1 

orthologs in all studied genomes.

All protein and coding (CDS) sequences for the selected genomes were obtained from 

Ensembl release 62 (Kersey et al. 2012). For each of the 9,041 human protein-coding genes 

represented in the PIN, we searched the 9 non-human genomes for 1:1 orthologs using the 

best reciprocal BLAST approach. First, we selected the longest protein (or, in the case of 

multiple proteins sharing the maximal length, that classified as the canonical isoform), and 

used it as query in a BLASTP search against each of the non-human proteomes. Second, for 

the best hits in each proteome, we performed a BLASTP search against the human proteome. 

If the hit obtained in the second search was the original human protein, then it was considered 

to be a 1:1 ortholog. Only human genes with 1:1 orthologs in all 9 non-human genomes were 

used in subsequent analyses (in total, 5,916 genes met this criterion).

Each group of orthologous proteins was aligned using ProbCons 1.12 (Do et al. 2005). 

Because  tests  of  positive  selection  are  sensitive  to  sequencing,  annotation  and  alignment 

errors (Scheinfeldt et al. 2009; Talavera & Castresana 2007), we used highly stringent criteria 

to filter our alignments. First, unreliably aligned regions were removed using Gblocks version 
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0.91b (Talavera & Castresana 2007), with default parameters. Additionally, we used an  ad-

hoc filtering procedure in order to remove annotation errors, including the following steps: (1) 

identification of unique amino acid replacement (i.e., amino acids that are unique to a given 

species in a certain alignment column); (2) identification of alignment regions with a very 

high incidence of unique substitutions in the same species; in particular,  we used a sliding 

window  approach  to  identify  regions  of  15  amino  acids  containing  10  or  more  unique 

substitutions in the same sequence, as well as regions of 5 amino acids containing 5 unique 

substitutions in the same sequence; these patterns are unlikely to represent true divergence 

between species,  provided that  the  species  included in  the  current  analysis  are  relatively 

closely related; and (3) removal of these alignment regions. These procedures resulted in the 

removal of 35.5% of amino acid positions. The resulting filtered protein alignments were used 

to guide the alignment of the corresponding CDSs.

We evaluated the impact of both purifying and positive selection on each orthologous 

group using the program codeml from the package PAML 4.4 (Yang et al. 2005). For each 

CDS alignment, three different evolutionary models (M0, M7 and M8) were fitted. First, for 

each  gene,  an  overall  ω  estimate  was  obtained  from  the  M0  model,  which  assumes  a 

homogeneous ω for all branches in the tree and all codons in the alignment. This score was 

used as a proxy of the impact of purifying selection. Second, in order to infer the action of 

positive selection, we applied the M7 vs. M8 test (Nielsen & Yang 1998). The M7 model 

assumes that codons' ω values follow a beta distribution, limited to the interval (0, 1), whereas 

model M8 allows for an additional class of codons with ω > 1. The likelihood ratio test was 

used to contrast whether model M8 fits the data significantly better than model M7. Twice the 

difference between the log-likelihoods of both nested models,  [2Δℓ = 2 × (ℓM8 – ℓM7), 

where ℓii is the log-likelihood of the observed data under model i], is assumed to follow a χ2 

distribution with two degrees of freedom. In order to avoid the problem of local optima, for 

each gene each model was fitted three times, using different starting ω values (0.04, 0.4 and 

4), and the computation with the highest likelihood was retained. The commonly accepted tree 

topology was used.

In order to discard potential alignment errors, not detected by our stringent filtering, 

the alignments corresponding to genes with  P < 0.1 in the  likelihood ratio test  for positive 

selection were inspected visually. Alignment regions containing evident errors were manually 
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removed using BioEdit v7.0.5.2 (Hall 1999), and analyses of positive selection were re-run. 

This  process  was  iterated  until  no  further  errors  were  detected  in  the  alignments 

corresponding to genes with putative signatures of positive selection. We obtained a total of 

554 genes with putative signatures of positive selection (divPSGs; P < 0.05).

Detecting Natural Selection from 1000 Human Genomes

We obtained phased genotypes from low-coverage data of the phase I of the 1000 

Genomes Project (The 1000 Genomes Project Consortium 2012), which makes available data 

for over 36 millions Single Nucleotide Variants (SNVs) for 1,092 individuals sampled from 

14 populations worldwide. We used a subset of 270 individuals from YRI, CEU and CHB 

populations.

For each of the 9,041 genes contained in the PIN, we analysed the genomic region 

corresponding to the transcript spanning the longest chromosome region. Gene coordinates 

were  obtained  from release  37  of  the  human  genome at  NCBI  (Flicek  et  al.  2010).  We 

removed 365 genes located at sex chromosomes because some of the methods used to detect 

signals of positive selection have been devised for autosomal regions, or provide results that 

cannot  be  compared  between  autosomal  and  sex  chromosomes.  In  order  to  increase  the 

statistical power in the detection of positive selection, we removed from the analyses 96 genes 

with less than 10 SNVs annotated in the 1000 genomes.

We used the genetic map provided by the 1000 Genomes Consortium. Ancestral states 

inferred from comparison with orthologous sequences in the chimpanzee and rhesus macaque 

genomes were obtained from the UCSC Genome Bioinformatics Site (Karolchik et al. 2009) 

(http://genome.ucsc.edu/; table ‘‘snp128OrthoPanTro2RheMac2’’).

Retained genes (a total of 8,580), have a length ranging from 0.414 to 2,305 Kb (mean 

= 61.70 Kb; median = 25.95 Kb) and are covered by a total of 6,815,879 SNVs. The number 

of SNVs located in a gene ranges from 10 (28 genes) to 45,577 with a mean of 794.4 and a 

median of 312.

To identify the genes belonging to the PIN that have evolved under positive selection 

during human evolution, we applied three different tests: (i) the Cross-Population Composite 

Likelihood  Ratio  method  (Chen  et  al.  2010)  (XP-CLR),  based  on  the  multi-locus  allele 

frequency  differentiation  between  two  populations,  (ii)  the  integrated  Haplotype  Score 
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(Voight et al. 2006) (iHS), which aims to detect extended haplotype homozygosity from the 

local haplotype structure, and (iii) DH (Zeng et al. 2007), based on the excess of rare variants, 

which combines Tajima’s D (Tajima 1989) and Fay and Wu's H (Fay & Wu 2000). Those tests 

are designed assuming the hard sweep model which states that a new advantageous mutation 

arises in the population and rapidly increases in frequency hitchhiking the surrounding neutral 

variants located on the same haplotype. 

We computed a raw iHS for each SNV with ancestral state information following the 

method  proposed  by  Voight  et  al.  (2006).  We  used  the  script  available  at 

http://hgdp.uchicago.edu/Software/,  which  we  slightly  modified  in  order  to  speed  up 

computation  times;  thresholds  for  Extended  Haplotype  Homozygosity  (EHH) decay  were 

modified from 0.25 to 0.15 and we used a size for the analysed region of 0.2 Mb (original 

size: 2.5 Mb). Using coalescent simulations (COSI) (Schaffner et al. 2005) we validated that 

these  changes  do  not  affect  sensitivity  and  specificity  of  the  method  (data  not  shown). 

Standardized iHS scores were obtained by grouping SNVs into 20 bins separated by a derived 

allele frequency of 0.05, subtracting the mean, and dividing by the standard deviation for all 

SNVs in the same bin as in Voight et al. (2006). Extreme positive or negative values indicate 

high extended haplotype homozygosity of haplotypes carrying the ancestral or derived allele, 

respectively. Hence, we consider both extreme positive or negative iHS as potential signatures 

of positive selection. We integrated the |iHS| scores observed at each gene of interest into a 

gene-level summary statistic using the mean.

The  XP-CLR  method  aims  at  detecting  important  genetic  differentiation  in  an 

extended genomic region in comparison with a reference population. This method provides a 

good localization of the position of the selected variant (Chen et al. 2010). XP-CLR scores 

were computed at regularly spaced grid points (every 2 Kb) using the information from SNVs 

within a flanking window of 0.2 cM. To account for different SNV densities among genomic 

regions, we restricted to 200 the maximal number of SNVs used to calculate a XP-CLR score 

within each window, by randomly removing SNVs in excess.  We integrated the XP-CLR 

scores observed at each gene of interest into a gene-level summary statistic using the mean.

Extreme iHS and XP-CLR scores  could  also  be  attributable  to  the  action  of  non-

selective events such as demographic changes and genetic drift. However, these selectively 

neutral events act randomly on the genome, in contrast with positive selection, which targets 
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specific  genes.  Therefore,  we adopted  an  outlier  approach to  infer  the  action  of  positive 

selection  on  PIN  genes  (Kelley  et  al.  2006;  Teshima  et  al.  2006):  we  evaluated  the 

significance of the scores for each gene by taking into account the whole genome context. For 

that purpose, we used a genomic gene-level background containing all annotated genes that 

were distant one from each other and from the 8,580 genes included in the analysis, by at least 

5  Kb and contained at  least  10  SNVs.  The complete  background gene  set  obtained thus 

includes  13,388  genomic  regions  and  8,431,716  SNVs.  For  each  of  these  background 

genomic regions, we computed the mean summary statistics based on iHS and XP-CLR and 

then obtained gene-level empirical distributions. Empirical  P-values associated to iHS and 

XP-CLR for PIN genes were obtained using these distributions.

For each gene, using the SNVs with ancestral state information, we also computed 

Tajima's D, Fay and Wu's H and DH, using a program kindly provided by Kai Zeng. For each 

gene, the DH P-value was obtained as in (Zeng et al. 2007) from Tajima's D and Fay and Wu's 

H by a bivariate comparison to their neutral distributions. However, instead of using 10,000 

replicates  of  coalescent  simulations  to  build  these  neutral  distributions  as  in  the  original 

article,  we used the 13,388 genomic regions described before in order  to  better  take into 

account demographic forces that acted on the studied populations.

In order to summarize the results of the three different tests, we combined the gene-

level empirical P-values obtained as described above using the Fisher combination test:

Z F=−2 log∑
i=1

i=3

Pi ,

where  Pi are  the empirical  P-values obtained from the three tests. Thus, for each gene we 

obtained a unique ZF score, which follows a χ2 distribution with 6 degrees of freedom. This 

combination requires independence of the three combined  P-values. We confirmed that this 

assumption  is  appropriate  to  our  data  (Supplementary  Figure  1).  We  invoked  positive 

selection if the  P-value associated to the  ZF score was below 5%. Therefore, we obtained 4 

lists of genes with putative signatures of positive selection inferred from polymorphism data 

(polyPSGs): 3 populations + global level.

The major limitation of the methods implemented to detect positive selection using 

polymorphism data is that demographic events, such as population growth, bottleneck, and/or 

subdivision, can mimic patterns similar to those produced by selection. However, the outlier 
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approach framework that we implemented and which combines three tests that consider three 

different  molecular  patterns  (namely  genetic  differentiation,  site  frequency  spectrum  and 

linkage disequilibrium) is very likely to overcome this issue.

In order to estimate the strength of purifying selection acting on the genes involved in 

the  PIN  we  calculated  the  average  Derived  Allele  Frequency  (DAF)  among  the  270 

individuals  belonging  to  YRI,  CEU  and  CHB  populations  (The  1000  Genomes  Project 

Consortium 2012).

Determining Fitness Effect of Genes

Using data from the Mouse Genome Database “MRK_Ensembl_Pheno.rpt” (Bult et al. 

2008) (file downloaded on 7 October 2010), we classified genes as essential and non-essential 

when described to be lethal and viable when knocked out in mice, respectively. We retrieved 

such information for 3,994 genes represented in the PIN.

We also used the functional indispensability score (Khurana et  al.  2013) estimated 

from  functional  and  evolutionary  properties.  This  score  shows  great  performance  to 

distinguish between essential genes (those showing clinical features of death before puberty 

or infertility when Loss-of-Function –LoF– mutations occur (Liao & Zhang 2008)) and LoF-

tolerant  genes  (those  observed  to  contain  homozygous  LoF  mutations  in  at  least  one 

individual  in  the  1000  Genomes  Pilot  Data  (MacArthur  et  al.  2012)).  We  obtained  the 

functional indispensability score for 8,816 genes involved in the PIN.
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RESULTS

Positive  selection  inferred  from  divergence  data  and  gene  centrality  in  the  human 

protein-protein interaction network

We used 10 mammalian  genomes  (Kersey et  al.  2012)  to  infer  events  of  positive 

selection that took place within the last ~165 million years. The test used in this study looks 

for a non-synonymous to synonymous divergence ratio (ω = dN/dS) higher than 1 at a subset of 

codons (Nielsen & Yang 1998). It provides a positive selection likelihood score, termed 2Δℓ 

(see Methods), that is proportional to the likelihood of positive selection. We identified a total 

of 554 putative positively selected genes (divPSGs; those with P < 0.05). 

We measured  the  difference  in  the  mean  degree (number  of  protein-protein 

interactions, or number of proteins with which a protein interacts) between divPSGs and the 

other genes in the network (non-divPSGs), and tested whether this difference was expected at 

random through 10,000 random permutations of the two groups containing divPSGs and non-

divPSGs. We observed that divPSGs encode proteins with a lower significantly lower degree 

than non-divPSGs (permutation test: P = 0.0067; Figure 1A; Supplementary Table 1). Indeed, 

divPSGs and non-divPSGs encode proteins with, on average, 7.578 and  9.122  interactions, 

respectively,  i.e. the  degree  for  divPSGs  is  17%  lower  than  the  one  observed  for  non-

divPSGs. The  magnitude of this difference is similar to previous observations  (Kim et al. 

2007).

We  next  observed  that  log-likelihood  increments  (2Δℓ scores)  from  the  positive 

selection test  exhibit  a  significant  negative correlation with proteins’ degrees  (Spearman's 

rank correlation coefficient, ρ = −0.0490; P = 0.0002; Table 1), indicating that central genes 

are less likely to be under positive selection.  Finally, when proteins were binned into four 

degree classes (low, medium-low, medium-high and high degree), we observed a continuous 

decrease in their positive selection likelihood scores (2Δℓ) (Figure 2D; Table 1). Indeed, the 

non-parametric Analysis Of Variance (ANOVA) F-test is significant (P = 0.0101), and there is 

a trend towards higher 2Δℓ scores in the lower degree groups (linear trend test on ranks; P = 

0.0014).  Taken  together,  our  observations  indicate that  adaptation  (as  inferred  from 

divergence  data)  more  frequently  occurs  at  the  less  connected  proteins  of  the  human 

interactome, consistent with previous observations (Kim et al. 2007).

Positive selection inferred from polymorphism data and gene centrality in the human 

protein-protein interaction network
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We inferred recent events of positive selection in humans using genomic data from 

three different populations of West African, Northern European and East Asian ancestry (YRI, 

CEU and CHB, respectively). We used a Fisher's combination (ZF score) of three tests  of 

positive selection assuming the hard sweep model: XP-CLR (Chen et al. 2010), iHS (Voight 

et al. 2006) and DH (Zeng et al. 2007) (see Material and Methods). Assuming that ZF follows 

a χ2 distribution with 6 degrees of freedom, we identified putative positive selection genes 

(polyPSGs). 

We measured  the  difference  in  the  mean  degree  between  these  genes  and  genes 

without evidences of having evolved under positive selection (non-polyPSGs) (Figure 1A; 

Supplementary Table 1). When all populations were analysed together (global analysis), we 

observed  a  statistically  significant  higher  degree  for  genes  with  signatures  of  positive 

selection (permutation  test:  P  =  0.0254). Indeed,  polyPSGs  and  non-polyPSGs  encode 

proteins  with,  on  average,  9.637  and  8.107  interactions,  respectively,  i.e. the  degree  for 

polyPSGs is 19% higher than the one observed for non-polyPSGs. The magnitude of this 

difference is similar to what has been observed at inter-specific level yet in the other direction. 

When  the  three  populations  were  considered  separately,  polyPSGs  were  always  more 

connected than non-polyPSGs, although the test was significant only for YRI (Supplementary 

Table 1).

ZF scores and network degrees exhibit a significant positive correlation for all three 

populations  (Table  1).  Finally,  comparison of  ZF scores  for  the  four  degree  groups  (low, 

medium-low,  medium-high  and  high  degree)  using  a  non-parametric  ANOVA  showed 

significant differences in all three populations, as a result of higher  ZF scores at the highest 

degree groups, according to a linear trend test on ranks (Figure 2A–C; Table 1). These results 

were reproduced using the three positive selection statistics separately (DH, iHS and XP-CLR 

in  all  populations,  except  XP-CLR in CEU and CHB),  and also using  the  Composite  of 

Multiple  Signals  method  (CMS)  (Grossman  et  al.  2013,  2010)  (Supplementary  Note; 

Supplementary Figure 2; Supplementary Table 2). Furthermore, the observed trends remain 

significant when removing the putative effect of linkage disequilibrium among genes by using 

a subset of unlinked genes (see Supplementary Note; Supplementary Figure 3; Supplementary 

Table 3). 

These  analyses  indicate  that  genes  encoding  proteins  with  a  greater  number  of 

interactions in the human PIN are more likely to present signals of recent selective sweeps 

than those acting at more peripheral positions.
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Correcting for several putative confounding factors and validations

A number  of  factors  correlate  with  both  network  centrality  and  the  likelihood  of 

observing positive selection,  and might thus be confounding our observations. In order to 

discard this possibility, we conducted a number of validations.

In  agreement  with  previous  results  (Alvarez-Ponce  &  Fares  2012;  Alvarez-Ponce 

2012; Fraser et al. 2002; Hahn & Kern 2005; Vitkup et al. 2006), we observed that purifying 

selection is stronger in genes acting at the centre of the human PIN than at those acting at the 

periphery,  regardless  of  whether  it  was  measured  from the  ω  ratio  or  the  derived  allele 

frequency  (Figure  2E–F,  Table  1,  Supplementary  Table).  Purifying  selection,  through 

background selection (BGS), can produce signatures that can be confounded with positive 

selection by tests based on DNA polymorphism (Charlesworth et al. 1993), thus raising the 

possibility that our results could be a by-product of the distribution of purifying selection 

across  the  network.  This  effect,  however,  is  unlikely  to  have  affected  our  network-level 

analyses,  given that  we combined the  results  of  different  positive  selection  tests.  Indeed, 

multivariate analyses confirmed that the relationship between network degree and positive 

selection  was  independent  of  purifying  selection  (Supplementary  Note;  Supplementary 

Figures 9–10; Supplementary Tables 6–7).

Factors such as gene expression level and breadth (tissue specificity), and the length of 

the encoded proteins, correlate with both network centralities and the likelihood of detecting 

positive selection (Duret & Mouchiroud 2000; Pál et al. 2006; Subramanian & Kumar 2004) 

and  thus  could  also  represent  confounding  factors.  However,  the  relationship  between 

network degree and all metrics of positive selection (2Δl and ZF) and purifying selection (ω 

and DAF) considered in this study remains unaltered when controlling for these parameters 

(Table 1; Supplementary Note; Supplementary Figure 4).

Our results might also be biased by the incompleteness and low quality of available 

interactomic data. However, similar results were obtained when a high-quality sub-network of 

BioGRID (Stark et al. 2011), or the Human Protein Reference Database (Keshava Prasad et 

al.  2009), were  analysed (see  Supplementary  Note;  Supplementary  Figures  5–6; 

Supplementary Table 4), indicating that our observations are not a by-product of the quality of 

network data.

In addition to degree, which is a local measure of network centrality, we used two 

additional centrality measures that take into account the global position of proteins within the 

network: betweenness (the number of shortest paths between other proteins passing through a 

protein),  and  closeness  (the  inverse  of  the  average  distance  to  all  other  proteins  in  the 
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network). Similar trends to those observed when using degree were observed in both cases 

(see Supplementary Note; Supplementary Figures 7–8; Supplementary Table 5).

Gene essentiality and impact of positive selection

To explore whether genes putatively under recent positive selection in our data set (i.e. 

affected by a  hard sweep during recent human evolution) have important fitness effects, we 

classified  the  genes  under  study  as  viable  or  lethal  using  information  from  The  Mouse 

Genome Database (Bult et al. 2008). Lethal genes present a significantly higher degree than 

viable genes (Mann-Whitney test;  P < 0.0001; Table 2), in agreement with previous results 

(Fraser  et  al.  2002;  Iyer  et  al.  2013;  Jeong  & Albert  2000).  This  demonstrates  that,  as 

expected, the phenotypic effect of a gene is highly associated with its position within the PIN 

(for a review, see (Olson-Manning et al.  2012)). We next compared the scores of positive 

selection on the PIN genes between the two groups (Table 2; Figure 3). As expected, lethal 

genes  have  significantly  lower  DAF  and  ω scores  (Mann-Whitney  test,  P  <  0.0001), 

indicating that they evolve under higher selective constraints. Moreover, they are more likely 

to be targeted by recent positive selection,  since they exhibit  significantly higher positive 

selection scores in the three human populations (Mann-Whitney test; P = 0.0047 in YRI, P = 

0.0009 in CEU and P = 0.0248 in CHB). This indicates that recent positive selection targets 

genes  with  the  highest  effects  on  fitness.  However,  during  mammal  evolution,  positive 

selection is more likely to act on viable genes: 2Δℓ scores are significantly higher for viable 

than for lethal genes (Mann-Whitney test;  P < 0.0001). Similar results were obtained when 

using the “functional  indispensability” score attributed to  a  specific  gene according to  its 

functional and evolutionary properties (Khurana et al. 2013) (Table 2).
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DISCUSSION

The  results  presented  here  indicate  that  signatures  of  positive  selection  identified 

following  two  different  methodological  frameworks  concentrate  on  different  parts  of  the 

human PIN: when interrogating mammal divergence data, we observe that positive selection 

had a greater impact on genes with a lower network centrality, whereas recent, human-specific 

positive  selection  (as  inferred  from polymorphism data)  has  targeted  preferentially  genes 

occupying more central positions in the network. These patterns are independent of several 

potentially confounding factors. 

The  signatures  of  adaptation  detected  in  this  study  through  either  a  comparative 

genomics or population genetics approach might correspond to different kinds of changes at 

the sequence level, a problem with no obvious solution. The maximum-likelihood test used to 

detect positive selection using divergence data is powerful only in situations in which the 

gene  has  experienced  recurrent  selection  events  at  the  coding  sequence;  adaptation  at 

regulatory sites, however, cannot be detected using this method. Therefore, positive selection 

during mammal evolution, as inferred here,  should be viewed as  sequence adaptations that 

alter  the  function  of proteins recurrently  across  the  mammalian  phylogeny.  Signatures 

detected in a genomic region using re-sequencing data, on the contrary, can correspond to 

unique selective sweeps (not necessarily recurrent) that occurred recently, either at the studied 

region or at a linked one (e.g., promoters and other regulatory regions). Thus, the putative 

signals of recent positive selection can be the result of variants that alter protein sequence, but 

are perhaps more likely to correspond to cis-regulatory variants, whose role in recent human 

evolution seems to have been pivotal (Enard et al. 2014; Fraser 2013). Since protein-coding 

genes are particularly constrained at the core of the interactome, their regulatory regions may 

provide the necessary pool of variation for adaptation. Therefore, recent positive selection 

events  detected  using  polymorphism data  are  likely  to  correspond  to  adaptation  through 

changes in expression patterns (gene expression level or regulation), while selective events 

detected through divergence analysis may mostly correspond to changes in protein function. 

The higher centrality of essential genes suggests that the centre of the network may 

roughly correspond to the most important, influential and pleiotropic genes of the system. 

Certain  evolutionary  mechanisms may promote  a  higher  adaptability  at  the  centre  of  the 

network where the effects of genes on fitness are important, whereas others may promote a 

higher incidence of positive selection at the periphery. On the one hand, in the 1930s, Ronald 

Fisher formulated the hypothesis that mutations with large effects on phenotype, such as those 

with  highly  pleiotropic  effects,  should  often  be  deleterious  (Fisher  1930;  Orr  2005).  In 
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agreement with this hypothesis, purifying selection is stronger on genes acting at the centre of 

molecular networks (Fraser et al. 2002; Hahn & Kern 2005; Vitkup et al. 2006; Alvarez-Ponce 

& Fares 2012; Alvarez-Ponce 2012) (but see (Hahn & Kern 2005; Jordan et al.  2003)), a 

pattern that  we have  confirmed analysing  both divergence and polymorphism data.  Since 

purifying selection quickly removes a high fraction of new mutations at  these genes, one 

would expect positive selection to rarely act on them because of their  reduced variability 

(Olson-Manning et  al.  2012).  Therefore,  we may expect  positive selection to  target  more 

frequently the periphery of the network. On the other hand, the action of positive selection at 

genes  occupying  the  centre  of  the  network  is  not  to  be  discarded.  Indeed,  signatures  of 

positive selection are frequent at genes occupying relatively important positions in a number 

of  metabolic  and  signal  transduction  pathways  (Dall’Olio  et  al.  2012;  Luisi  et  al.  2012; 

Flowers et al. 2007; Olson-Manning et al. 2013).

Simulation  analyses  of  hypothetical  metabolic  pathways  have shown  that,  when 

pathways are far from the fitness optimum, positive selection first targets enzymes lying at the 

upstream part,  and at  the branch points  of  the  pathway,  which  exert  greater  control  over 

metabolic flux. In turn, when the system approaches its optimum, positive selection tends to 

concentrate  on  enzymes  with  less  flux  control,  and  purifying  selection  constrains  the 

evolution of upstream and branch-point enzymes (Rausher 2012; Wright & Rausher 2010). 

These  observations  match  the  expected  pattern  of  diminishing  returns,  first  proposed  by 

Ronald Fisher in his Geometric Model of Adaptation (Fisher 1930) (FGM) which states that 

selection tends to act progressively more often on mutations with smaller phenotypic effects 

as populations approach a peak in the adaptive landscape. A mutation's effect is measured as a 

function of both its effect on a given trait and the numbers of phenotypes that are jointly 

modified  by  the  mutation  (pleiotropic  effect)  (Fisher  1930;  Orr  2005),  and  theoretical 

development  is  undergoing in  order  to  relate  the  FGM to  information  on protein-protein 

interaction networks (e.g. see (Martin 2014)). According to the FGM, events of selection are 

more likely to be observed on mutations with small phenotypic effects (following a geometric 

distribution), whereas positive selection on mutations with large effects is most likely to occur 

during the first steps of adaptation. 

The results described in the present study can be understood according to both the 

FGM and the different kinds of advantageous changes detected at the sequence level. Indeed, 

when  focusing  at  large  evolutionary  time-scale,  i.e.  during  mammal  evolution,  we  are 

studying the  whole process  of  adaptation  acting exclusively on protein-coding genes  that 

made  the  species  overall  fit.  Therefore,  according  to  the  geometric  distribution  of  the 

probability of a mutation to be favourable, it  is more likely to detect events of adaptation 
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acting  on  genes  with  lower  effect  on  fitness,  that  is  genes  encoding  proteins  with  less 

interacting partners. On the other hand, when focussing at much shorter evolutionary time-

scale, i.e. during recent human evolution, we are studying the recent adaptation of human 

populations to a wide range of new environments (e.g. the Mesolithic-Neolithic transition, the 

human diaspora across the world, etc.). We speculate here that events of strong recent positive 

selection,  as  inferred  from  polymorphism  data  assuming  the  hard  sweep  model,  mainly 

targeted cis-regulatory regions of genes with important effects on fitness in order to efficiently 

tune some specific phenotypes without affecting the whole protein interaction map. 

In summary, even though the interactome is a raw simplification of the processes that 

take place within the cell, it contains valuable information on the relative role of the many 

gene  products  that  interact  to  sustain  life.  The  position  occupied  by  a  protein  within  an 

interaction network provides useful information –albeit incomplete– on the phenotypic effects 

of  mutations  arising  at  the  encoding  gene.  Interestingly,  we  have  shown that  using  this 

information  can  also  help  to  better  understand the  impact  of  positive  selection  acting  on 

protein-coding genes and their cis-regulatory region. Although network centrality used alone 

remains a modest predictor of  the impact of  positive selection, it could be included in an 

integrative biology approach to shed light on adaptive processes acting on the genome. The 

present study also underscores the fact that the relationship between positive selection and 

network position is more complex than previously recognised, when positive selection was 

suggested to mostly act at the network periphery. Indeed, the discovery of the rules governing 

network evolution may shed light on the dynamics of the evolutionary processes driven by 

selection.  Notably,  the  distribution  of  selective  events  in  a  large-scale  protein-protein 

interaction network described in the present study, which relies on extensive sequence data, 

can be understood in the light of the Fisher's Geometric Model of Adaptation. Particularly, 

results presented here show that the prime matter for innovation is also to be found in genes, 

or in their cis-regulatory region, encoding proteins with high network centrality, meaning that 

they have more pleiotropic effects, are more indispensable and in general are at the basis of 

strong changes as a result of mutations during the initial  high-risk high-gain phase of the 

adaptation process.
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FIGURE LEGENDS

Figure 1. Distribution of genes with putative signatures of positive selection within the 

Protein–Protein Interaction Network. ZF and 2Δℓ were used to estimate the likelihood of 

having evolved under positive selection in human populations and in mammals, respectively. 

A. Average degrees (number of interactions) for genes with and without signatures of positive 

selection. We represent the mean of centrality measure ± one standard error for the genes with 

a putative signal of positive selection (in red) and the other genes (in blue). The significance 

of the differences between the mean of both groups was assessed through 10,000 

permutations. Asterisks represent significant differences. *: P < 0.05; **: P < 0.01;.  B. 

Human protein–protein interaction network with genes with signatures of positive selection 

according to divergence data (P < 0.05 estimated from 2Δℓ) represented in red. C. Human 

protein–protein interaction network with genes with signatures of positive selection according 

to polymorphism data represented in red. 

Figure 2. Impact of natural selection among groups of genes divided according to degree 

quartiles. Genes were divided into four groups according to the degree quartiles. The median 

positive selection score ± one median absolute deviation for each group is represented in the 

y-axis. ZF and 2Δℓ scores were used to estimate the likelihood of positive selection in human 

populations and in mammals, respectively. DAF and ω were used to estimate the impact of 

purifying selection in human populations and in mammals, respectively. A non parametric 

ANOVA analysis was performed to contrast whether the medians of the scores are equal 

across the groups. A trend test on ranks was also carried out to test for a linear relationship 

between the four groups (encoded from 1 to 4) and natural selection scores. A Tukey's 

honestly significant difference test was further applied to test for all pairwise differences. 

Significantly different pairs are marked with asterisks according to the level of significance. 

*: P < 0.05; **: P < 0.01; ***: P < 0.001.

Figure 3. Comparison of the impact of natural selection between essential and non-

essential genes. We performed a Mann-Whitney test to compare the positive selection scores 

between genes that are lethal (essential, in red) and viable (non essential, in blue) when 

knocked out in mice (data from the Mouse Genome Database (Bult et al. 2008); 



i
i

“thesis” — 2014/9/8 — 10:58 — page 173 — #203 i
i

i
i

i
i

“MRK_Ensembl_Pheno.rpt” file downloaded on 7 October 2010). ZF and 2Δℓ scores were 

used to estimate the likelihood of positive selection in human populations and in mammals, 

respectively. DAF and ω were used to estimate the impact of purifying selection in human 

populations and in mammals, respectively. In order to put all the scores within the same scale 

the mean standardized scores are plotted (standardized scores were calculated by subtracting 

the mean and dividing by the standard deviation). Significant differences between lethal and 

viable genes pairs are marked with asterisks. *: P < 0.05; **: P < 0.01; ***: P < 0.001.
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TABLES

Table 1. Relationship between degree and the impact of natural selection
Positive selection Purifying selection

YRI CEU CHB Mammals Humans Mammals

Spearman correlationa ρ 0.0501 0.0410 0.0471 -0.0490 -0.0879 -0.2039

P-value 1.11×10-5*** 0.0004*** 3.48×10-5*** 0.0002 4.51×10-16*** 6.91×10-56***

Partial Spearman 
correlationb

ρ 0.0451 0.0326 0.0374 -0.0340 -0.0668 -0.1697

P-value 0.0001*** 0.0059** 0.0015** 0.0107* 2.38×10-09*** 3.08×10-37***

Non parametric 
ANOVAc

F 5.324 5.844 5.074 3.780 18.027 77.82

P-value 0.0012** 0.0006*** 0.0016** 0.0101** 1.17×10-11*** 2.37×10-49***

Trend test on ranksc F 15.88 12.14 14.12 10.23 52.564 229.3

P-value 6.79×10-5*** 0.0005** 0.0002*** 0.0014** 4.53×10-13*** 7.59×10-51***

Partial non parametric 
ANOVAb,c,

F 2.731 3.149 2.080 2.537 6.353 51.87

P-value 0.0423* 0.0240* 0.1006 0.0548 0.0003*** 4.65×10-33***

Partial trend test on 
ranksb,c

F 7.794 2.360 5.107 6.281 16.48 153.5

P-value 0.0053** 0.1246 0.0239* 0.0122* 4.97×10-5*** 8.70×10-35***
a Spearman correlation between degree and selection scores (ZF for positive selection in YRI, CEU and CHB populations; 2Δℓ for positive selection in 
mammals; DAF for purifying selection in humans; and ω for purifying selection in mammals). High ZF and 2Δℓ scores indicate a higher probability of 
having evolved under positive selection as inferred from polymorphsim and divergence data, respectively. Low DAF and ω scores indicate higher 
evolutionary constraint estimated from polymorphism and divergence data, respectively.
b In order to test for an association between degree and natural selection scores while controlling for putatively confounding factors, we applied a linear 
regression between the selection scores and protein length, expression level and breadth. The linear regression residuals were then used to perform the 
Spearman's correlation analysis, the non parametric ANOVA and the linear trend on ranks test.
c Non parametric ANOVA and linear trend tests on ranks performed to contrast whether the score used as a proxy of natural selection are equal across 
the degree groups. *: P < 0.05; **: P < 0.01; ***: P < 0.001.
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Table 2. Association between gene essentiality and degree and the impact of natural selection

Lethal vs. viable genesa Indispensability scoreb

Mean lethal Mean viable P-value ρ P-value

Degree 14.55 7.048 6.62×10-52*** 0.2311 3.03×10-107***

Positive selection in 
YRIc

6.419 6.154 0.0047** 0.0473 4.34×10-05***

Positive selection in 
CEUc

6.754 6.350 0.0009*** 0.0695 2.00×10-09***

Positive selection in 
CHBc

6.712 6.423 0.0248* 0.0380 0.0010**

Positive selection in 
mammalsd

1.830 2.270 2.03×10-08*** -0.1157 3.62×10-25***

Purifying selection in 
humanse

0.1041 0.1109 4.66×10-08*** -0.1131 5.14×10-25***

Purifying selection in 
mammalsf

0.0768 0.1160 3.70×10-29*** -0.2600 6.67×10-89***

a Mann-Whitney test to compare the degree or the natural selection score between genes that are 
essential and genes that are not essential, i.e. lethal and viable when knocked out in mice, 
respectively (data from the Mouse Genome Database (Bult et al. 2008) “MRK_Ensembl_Pheno.rpt” 
file downloaded on 7 October 2010).
b Spearman's correlation analysis to test for the relationship between degree or the natural selection 
score and the functional indispensability score (Khurana et al. 2013). 
c,d High ZF and 2Δℓ scores indicate a higher probability of having evolved under positive selection 
during human and mammal evolution, respectively.
e,f Low DAF and ω scores indicate higher selective constraints during human and mammal 
evolution, respectively.
*: P < 0.05; **: P < 0.01; ***: P < 0.001.
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Chapter 7

DISCUSSION

Doubt is not a pleasant condition, but
certainty is absurd.

Letter to Frederick II of Prussia
VOLTAIRE

As outlined in the objectives (Chapter 2), the aim of the work presented
in this thesis was to explore how integrating information on gene net-
works could shed light on adaptive processes at the molecular level. For
that purpose, first two gene-level studies have been described: (i) a gene-
candidate study to understand the role of positive selection on a region
encompassing a specific gene of interest; and (ii) a genome-wide scan
for positive selection to identify signals of positive selection across the
genome with a functional study to follow-up an outstanding signal thus
detected. These two studies are representative examples of traditional
analyses performed to understand the impact of adaptive evolution at a
particular genomic region encompassing a protein-coding gene. Then,
adaptive evolution of genes was studied within a gene-network frame-
work, that is by integrating information on the physical interactions in
which are involved the encoded proteins. Two gene-network scales have
been considered: (i) a gene-network representing a specific biological
pathway, and (ii) one including all the known physical protein-protein in-
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teractions occurring in the organism. These two studies come within the
scope of an emerging field which could be designed as evolutionary sys-
tem biology. They represent one of the first attempts to describe how the
impact of positive selecion on protein-coding genes is related to biologi-
cal network in which are involved the encoded proteins.
This chapter will first provide a discussion on the strengths and drawbacks
for each of the four studies. Second, the importance of the network frame-
work to study adaptive selection will be discussed. Finally, the underlying
challenges, and potential perspectives for the evolutionary system biology
field will be examined.

7.1 General remarks on the four studies de-
scribed.

7.1.1 Single gene studies.

As already stressed in Chapter 1, most of the studies of adaptive evolution
at molecular level have focused on its impact on single genes, as in the two
articles presented in Chapters 3 and 4 which illustrate the gene-candidate
and genome-wide scan approaches, respectively.

Gene-candidate approach.
The gene-candidate study of the region encompassing VKORC1 gene

shows that detecting the advantageous variant in a region that have un-
dergone a selective event is particularly complicated. This study was per-
formed using the HGDP genotype data (see Section 1.2.2) and allowed
to better localize geographically the selective sweep, namely it occurred
only in East Asian populations and the signal is shared among all the
studied populations in this area. However, it was impossible to precisely
pinpoint a putative mutation driving the selective event. A selective sweep
leaves an extreme pattern of LD, and, although such molecular pattern is
useful to contrast whether a genomic region evolved adaptively, most of
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the variants within the region exhibit similar scores for the methods used
to detect positive selection. Specifically, an in-depth analysis of the region
encompassing VKORC1 allowed to restrict to 45 Kb the region in which
is located the putative advantageous variant. However, four genes are lo-
cated within this 45 Kb region, thus different functional variants are good
candidates for being the target of positive selection. The genotype data
from HGDP does not give much precision since the SNPs present on the
genotyping array are tag-SNPs, reducing the variant density for cost pur-
poses. Therefore, additional SNPs in the studied region were genotyped
to increase the density of the variants to be interrogated. Such effort was
vain, and if more money could have been invested in the study, sequencing
the 45Kb region for the East Asian individuals would have been the best
solution. Alternatively, one can study the 1000 Genomes re-sequencing
data (see Section 1.2.2) which presents a higher variant density and is free
of ascertainment bias (see Section 1.5.1). Such analysis is presently per-
formed in the hope of identifying a single variant with an extreme score
for several methods to detect positive selection. All together, although the
study of the region encompassing VKORC1 did not reach its initial goals,
it provides very useful insights for follow-up studies. There is no doubt
that the region has evolved under an adaptive regime, and therefore, a par-
ticularly variant within those 45 Kb had enough phenotypic relevance to
be selected for in East Asia. Such information might be very useful to
anyone with an hypothesis on a phenotype specific to East Asian popu-
lations that provided a fitness advantage to the past environment in this
geographic area, and in which one of the four genes is involved.

Genome-wide scan approach
The study presented in Chapter 4 is a good example of the alternative

to the gene-candidate approach: first the genome is interrogated for posi-
tive selection without any a priori assumption on the adaptive phenotype,
in order to, in turn, pick a region with a putative signal of selection for
which an a posteriori assumption can be tested. However, the study de-
sign here is unique. Indeed, instead of studying an unique population, or
different populations each with an assumed independent history, as usu-
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ally done (e.g. see [70, 71, 119, 154]), here three populations were inter-
rogated simultaneously in order to take profit of their history. Namely, the
Rroma/Gypsie population was of particular interest. This population mi-
grated one thousand years ago from North India to the Balkans [141]. In
order to have a reference population sharing the selective pressures faced
by the Rroma/Gypsies after their migration, a population with European
ancestry from Romania was included. Moreover, a Northwest Indian pop-
ulation was used as a reference population sharing most of its history, thus
sharing most of the genetic background, with the Rroma/Gypsies. The
aim of this study was then to scan the genome for shared signals of pos-
itive selection in Rroma/Gypsies and Romanians but absent in Nortwest
Indians, assuming that such signals must have emerged from the adap-
tation to the European environment from different genetic backgrounds.
The triangular design of the study allowed then to (1) reduce the FPR in
the signals of positive selection detected in two populations sharing the
same environment; (2) control for genetic drift that occurred before the
Rroma/Gypsies emigration using the Northwest Indian population, and
(3) be able to infer the selective pressures driving the signal, i.e. any
environmental variable that appeared in the laste thousand years in Eu-
rope and not in Northwest India. The last point is particularly interesting
since in their recent history, European populations faced severe epidemic
events (plague, influenza, smallpox, etc.) arguably exercising important
selective pressures on the immune system. Several genomic regions have
been identified according to the criteria aforementioned. A particular one
was blindingly obvious to follow-up: a region containing the gene cluster
TLR1/TLR6/TLR10 encoding for the Toll-Like Receptors 1, 6 and 10,
respectively. This region had already been described to have undergone a
selective event in non-African population in a study which, however, did
not include any Central South Asian population [266].
The TLR family is recognized as a key family of innate immunity. After
recognition of their ligand(s), TLRs transduce the signalling responses to
activate the innate immunity effector mechanisms and the subsequent de-
velopment of adaptive immunity (for a review see [267]). In humans, ten
members compose the TLR family (TLR1-10) [267]). They can be classi-
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fied according to their subcellular distribution: TLR3, TLR7-9 are located
in intracellular compartments (typically in endosomes) whereas TLR1-2
and TLR4-6 are mostly expressed on the cell surface [267]. Intracellu-
lar or cell surface TLRs have different kinds of agonists: the intracellular
TLRs sense nucleic acid-based agonists, and are typically involved in vi-
ral recognition, while the cell surface TLRs detect other products such as
glycolipids, lipoleptides and flagellins present in bacteria, parasites and
fungi [267]. Although functional roles of TLRs are well described, little is
known for TLR10 which is expressed on cell surface. The study described
here allowed to broaden our knowledge on this specific gene. Since the
TLR1/TLR6/TLR10 gene cluster has undergone convergent positive se-
lection (but see below) in two populations with different genetic back-
grounds and which have lived for the last thousand years in the same en-
vironment, one particular selective pressure from this environment must
be the driving force. A direct assumption one can make is that Yersinia
pestis, the agent of plague, has played such role since plague had be the
most devastating epidemics in this specific area at that time. Functional
analyses allowed to confirm that TLR1, TLR6 and TLR10 contain genetic
variation that modulate Y. pestis-induced immune responses. Namely, Y.
pestis is known to induce proinflammatory cytokines (e.g. TNF, IL-1β
and IL-6) that are are modulated by specific combination of variants in
the TLR1/TLR6/TLR10 gene cluster. Interestingly, TLR10 receptors in-
hibitated the IL-6 induction by IL-1, suggesting that TLR10 may act as
an inhibitor of the IL-1 family cytokines. However, the same immunolog-
ical analysis yet performed using Y. pseudotuberculosis showed similar
results to that with Y. pestis, suggesting that these TLRs may also respond
to other deadly bacteria and other diseases might have been the causes of
the selective signal observed in this genomic region. However, Y. pseudo-
tuberculosis was used because it seems to be the ancestror of Y. pestis and
the observed reaction to Y. pestis was much stronger.
In the article, the convergent selective event affecting TLR1/TLR6/TLR10
in both European and Rroma/Gypsie populations was suggested. Al-
though such parallel adaptation has been proved to be potentially common
[139], one may thing that the shared specific molecular pattern observed
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at the TLR1/TLR6/TLR10 and detected in both populations could result
from recent admixture between the two populations, i.e. interbreeding
between the two populations that were isolated until very recently. ”Re-
cent” here refers to admixture that would have occurred during or after the
completion of the selective sweep in one population. Thus, the adapted
population would provided the adaptive variation to the population with
which it admixed. Such scenario has been observed in Tibetans who are
a mixture of ancestral populations related to Sherpas and Han Chinese.
The ancestral population related to Sherpa was already adapted to the hy-
poxic environment due to the high altitude of the Tibetan plateau. Jeong
et al. showed that the Tibetans present the same genetic variants than
the Sherpas in both EGLN1 and EPAS1 genes conferring better fitness to
hypoxia, and could demonstrate that migrants from low altitude acquired
the adaptive alleles from the highlanders [160]. Although such hypothe-
sis is evolutionary fascinating, it was not possible to test it on European
and Rroma/Gypsie populations. Indeed, the study was performed on the
Immunochip which presents a very heterogeneous SNP density across the
genome, thereby preventing one to accurately phase the data to obtain in-
formation on haplotype variation from genotypes, while such information
is essential to perform any admixture inference. Although this scenario
has not been tested, this study provides striking results on putative paral-
lel adaptation and illustrates how a genome-wide scan for positive selec-
tion can allow to point a specific genomic region for follow-up functional
study. The functional study, in turn, sheds light on the immune response
to pathogens, and broaden our knowledge on the role played by TLR fam-
ily members, particularly the poorly characterized TLR10 gene.

7.1.2 Network-level analyses.

Two analyses of the impact of positive selection in protein-protein in-
teraction networks have been presented in Chapters 5 and 6, the former
representative of a particular biological pathway, the later representative
of the whole sets of physical interactions among proteins occurring in the
human organism. These two biological scales have their own drawbacks
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and advantages.

Pathway-level.
In Chapter 5, the distribution of signals of positive selection, as inferred

from human polymorphism data, within the network representing the In-
sulin/TOR transduction signalling (IT) pathway has been studied. It was
the first published study of this kind. Working at the pathway-level allows
good confidence on the proteins and their interactions since such informa-
tion is retrieved from the literature, provided one is able to define biologi-
cally relevant boundaries of the studied pathway (see Section 1.8.1 for de-
tails). Such direct manual curation of the information allows to consider
different kinds of interactions involved in the biological pathway (see Sec-
tion 1.7.2). Namely, three types of interactions are participating to the IT
pathway: physical protein-protein, metabolic, and transcriptional interac-
tions. Network centrality metrics were computed taking into account the
different modes of interaction or only the physical protein-protein inter-
actions, yet the results pointed towards the same direction in both cases.
On the other hand, the completeness of the information on protein inter-
actions available in the literature may suffer a bias towards historically
more studied proteins. Particularly, paralogous copies resulting from re-
cent gene duplication events have been difficult to identify given the low
divergence between the resulting copies, which might have been treated
as a single copy during genome assembly. Therefore, one expects to find
more information in the literature for the original copy than for its par-
alogs. To circumvent this issue, the network representing the IT pathway
was build from genes known to be involved in the pathway according to
the literature or their close paralogs that cluster within these genes in phy-
logenetic trees. Genes that are known not to play any role, despite having
paralogs that are actually involved, were excluded. This illustrates how
working at small-biological scale may suffer from interaction ascertain-
ment bias because of incomplete knowledge from specific biochemistry
experiments. However, it also illustrates that accurate strategies may exist
to circumvent such bias.
Another issue is the accuracy of the interaction annotation in available
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pathway databases. For example, Dall’Olio et al. manually curated the
Asparagine N-linked glycosylation pathway. Although this pathway per-
forms one of the most important forms of protein post-translational modi-
fication in eukaryotes and is one of the first metabolic pathways described
at a biochemical level, its annotatyion in public databases such as Reac-
tome [168] remained poorly accurate, and several correction had to be
performed [268]. The authors advice to use Reactome, rather than other
widely used databases (e.g. KEGG [167]) as it operates in a open-source
fashion, encouraging feedback from its users and, thereby making it eas-
ier to keep the annotation of this pathway updated with future knowledge
[268]. The study of the IT pathway did not suffer such caveat since the
network was built directly from the literature instead of relying on any
database.
Another challenge when studying a specific pathway using polymorphism
data arises from the fact that the genes that are involved may be located
in either autosomal or sexual chromosome. However, most methods de-
signed to detect positive selection exhibit different sensitivity for sexual
and autosomal variants. This complicates the comparison of signals of
selection between genes located in sexual and autosomal chromosomes.
Usually, while performing a genome-wide scan for positive selection sex-
ual and autosomal chromosomes are studied separately. However, when
studying a specific pathway, genes in sexual chromosomes have to be
taken into account somehow to perform a proper network-level analysis
of the detected signals of selection. To circumvent this issue, the strat-
egy followed in the present study was to simply remove such genes from
the network-level, yet obviously accounting for them to calculate network
centrality metrics.
When inferring simultaneously the potential impact of positive selection
on many genes, one can not perform an in-depth analysis of the signals
for each gene such as for single gene studies. A natural way to overpass
this issue is to compute for each gene and each positive selection statistics
a combination score. In this study, since the genotype data used comes
from the HGDP dataset and thus mainly includes tag-SNPs (see Section
1.2.2), the Fisher’s combination test of the empirical P-values for SNPs
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located in a gene (thus assumed to be independent one form the others)
was used as a summary statistics. Moreover, since the number of genes
in the study remains relatively limited (˜ 70 genes), a visual inspection of
the signals was still possible as illustrated in Figure 7.1.
One advantage inherent of a pathway-level analysis is that one can inte-

grate the information on positive selection on each gene together in order
to contrast whether the studied endophenotype, i.e. the specific biolog-
ical function performed by the pathway, has evolved under an adaptive
regime. A hypergeometric test performed in each geographic region rep-
resented in the HGDP dataset (see Section 1.2.2) suggests that the trans-
duction of Insulin and mTOR protein has been tuned by positive selection
in recent human history in West Eurasia populations. Moreover, the re-
sults from the network-level analysis point to the fact that such adaptive
evolution has occurred through specific selective events in genes located
at central positions in the pathway, thus on genes potentially exerting a
higher influence on the IT pathway function. Other studies described
similar results in other pathways, yet the feature considered to define
“genes potentially exerting a higher influence” remains somewhat vague
(see Section 1.8.1 and further discussion in Section 7.2.1).

Interactome level.
In order to gain more insights from the potential of considering network

topology to understand the impact of positive selection on protein-coding
genes, a study at broader scale was performed (Chapter 6). In this study,
the whole human interactome was considered, that is, the whole set of
identified physical protein-protein interactions occurring in the human or-
ganism. As already mentioned, such a large-scale study allows to consider
the cross-talks among different biological pathways (provided they in-
volve physical interactions), and thereby take into consideration the gene
pleiotropic effects. Gene pleiotropy has been proposed as a major feature
for the probability of a mutation to be adaptive ([33], Figure 1.29).
However, in this study, only one type of interactions was taken into ac-
count, and therefore all the interactions at stake were not included. The
interactome remains a raw simplification of the processes that take place
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Figure 7.1: Visual inspection of signal of positive selection for the IT pathway
genes. |iHS| scores were calculated and plotted for each SNP within the ge-
nomic region containing the gene of interest plus 800 flanking Kb. These plots
allow comparing observations for SNPs nearby the gene and in its surrounding
region. Hence, they provide better visualization of signals of selection. Colour
blocks on the bottom represent gene locations. SNPs within the gene are plotted
in the same colour as the gene block, whereas SNPs within flanking regions are
represented in grey. Red lines represent the spline function computed from SNP
scores using the smooth.spline function in R (parameters: df=4, spar=0.7).
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within the cell. An arguably more wondering issue is the quality of the
interaction data available to date. Although immense efforts have been
lately made to more accurately identify the physical interactions, the in-
formation remains largely imperfect. Indeed, to build such a large-scale
network one must mostly rely on results from high-throughput experi-
ments. Many screening using high-throughput techniques have been con-
ducted in different organisms. Now different databases have curated and
compiled the resulting information in order to provide an as exhaustive
as possible interaction map in those organisms. In the particular case of
this study, the interaction map was recovered from both yeast-two hybrids
(Y2H) and mass spectometry experiments to complete individual focused
studies available in the litterature [269]. A Y2H experiment follows the
following strategy. Two proteins named the bait and prey are coupled to
two halves of a transcription factor and expressed in yeast. A reporter
gene is activated by the transcription factor when both proteins (prey and
bait) are interacting and, thus, are reconstituting the DNA binding and
transvaction domains of the transcription factor. On the one hand, such
experiments allows the identification of many physical interactions, thus
broadening the knowledge on biological processes to great extent. This
could not be possible in individual focused studies. On the other hand,
the quality of the data remains poor and one must be fully aware of this
issue. Indeed, several attempts to identify and discard false positives have
shown that the accuracy of the experimental approaches to identify bi-
nary protein interactions is underwhelming. For example, a study using
a method designed to computationally assign scores to interactions de-
tected through Mass Spectrometry identified an astonishing number of
false positives: the original list of 2,553 interactions was narrowed down
to 751 [270]. The same procedure reduced the initial list of 2,000 inter-
actions among human mitogen activated protein kinases (MAPKs) down
to 641 [271]. The development of more precise procedures is required
in order to assessing the false negatives (unidentified true binary protein
interactions). The main methodological limitations are: (i) the nature of
the interactions (whether the interactions are transient or permanent); (ii)
the physiological conditions under which such interactions occur; (iii) the
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algorithms utilized for assigning scores during the identification of inter-
action complexes; and (iv) the types of proteins identified (e.g. interaction
between plasma membrane).
All together, the currently available datasets have a relatively low qual-
ity, being subject to very high false positive and false negative rates, and
thus the contained information remains relatively noisy [272–275]. How-
ever, the data used in the study presented in this thesis rely on BioGRID
database with dedicated efforts to provide curated information [269]. This
allowed to perform a second more accurate evaluation of how positive
selection, as inferred from divergence data, is distributed across the in-
teractome, in order to validate results presented by Kim et al. [234].
Moreover, a strategy to avoid spurious relationship between the impact
of positive selection and the interactome topology is to validate it using
interactomes retrieved from different databases. For that purpose, data
from the Human Protein Reference Database (HPRD [276]) and the High
Quality subnetwork from BioGrid (containing only interactions from at
least two independent high-throughput experiments or individual focused
studies; [269]) were also used.
Besides the more accurate interaction data used as compared to the study
by Kim et al. [234], the study described in this thesis also relies on
the recent wealth in genomic data allowing a more powerful estimation
of the putative impact of positive selection on genes using divergence
data (for details see Chapter 6). This study also dramatically broaden the
knowledge on the distribution of selective events across the interactome
by inferring the impact of positive selection using polymorphism data, an
unprecedented attempt. Using the recently available re-sequencing data
from 1000 Genomes Project ([21]; see Section 1.2.2), the impact of posi-
tive selection was inferred by combining methods based on the three pat-
terns expected in a region that underwent a hard sweep (see Section 1.4.2).
One must be careful to the type of data used: the low-coverage (at ˜ 2-6
X) data and the exome data (at ˜50-100 X) do not have the same power to
detect rare alleles in a population (see Section 1.2.2) and therefore results
of statistics of positive selection can not be compared if computed on the
two different sets. A reasonable strategy is therefore to only use the low-
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coverage data which covers the whole genome. Contrary to the HGDP
genotype data used for the IT pathway analysis, 1000 Genomes Project
made available genotype for a much denser set of SNPs that can not be
assumed independent. For this reason the Fisher’s combination test is not
suitable to summarize the scores for a given statistics observed in a given
gene, and instead more simple statistics, as the average, were used. More
interestingly, the 1000 Genomes Project re-sequencing data contains a
larger fraction of rare variants than any genotyping data such as HGDP
[16] or HapMap (www.hapmap.org). Therefore, the Site Frequency Spec-
trum (SFS) is unbiased, or at least the bias towards common variants is
reduced as compared to traditional publicly available genotype data, and
SFS-based methods could be applied. Once computed an unique posi-
tive selection score for each gene for DH [117], iHS [71] and XPCLR
[79], an empirical P-value at gene level was calculated for each gene and
statistics using a genome-wide distribution obtained from ˜ 13,000 genes
using the outlier approach (see Section 1.5.4). To contrast whether a gene
underwent a selective sweep in a given population, a visual inspection of
the signals in the ˜ 9,000 genes was not possible, and the study relies only
on the summary statistics and its associated empirical P-value.
Another issue arising from using polymorphism data to infer the impact
of selection in genes involved in the interactome is the fact that the num-
ber of analysed genes is relatively important (˜ 9,000 genes) and there-
fore many are located one very close to others. To study the impact of
positive selection on genes we only used the SNVs located within the ge-
nomic region corresponding to the longest transcript. However, it is well
known that the regions affected by a selective sweep are large, spanning
hundreds of kilobases or even megabases and containing many potential
variants driving the signal. Thus, several adjacent genes may be affected
by an unique event of selection targeting one particular variant. Therefore,
some of the genes showing signals of positive selection in our study may
be false positives, even though we do not expect that this bias can affect
our network-level analysis, since there is no reason why false positives
should tend to concentrate in specific parts of the PIN. To confirm that
our study does not suffer from this caveat, we first validated our results
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using the Composite of Multiple Signals (CMS) method [106] calculated
in the YRI, CEU and CHB+JPT populations using the Pilot1 genotype
data from the 1000 Genomes Project [106]. Although this study used the
less accurate Pilot1 data, the implemented method presents the strong ad-
vantage of more accurately pinpointing a small number of variants within
a large genomic region [106]. Thus, using this test we expect to reduce to
a great extent the number of falsely detected genes due to genetic hitch-
hiking. Our network-level analyses have been confirmed by the use of
CMS and, in fact, the association between the impact of selection and
network centrality appears to be stronger. To further confirm that hitch-
hiking does not affect the association between the impact of positive se-
lection and network centrality, we built a subset of unlinked genes, i.e. not
in linkage disequilibrium, for the three populations (YRI, CEU and CHB).
For that purpose, in each population, we used the population-specific re-
combination rates estimated genome-wide (recombination map provided
by the 1000 Genomes Project Pilot 1 [155]) and defined as a recombina-
tion hotspot a region where the observed recombination rates was greater
than 10 times the genome average, i.e. greater than 18.36 cM/Mb, 18.55
cM/Mb and 17.61 cM/Mb in YRI, CEU and CHB, respectively. Then,
we randomly sampled one PIN gene located between two recombination
hotspots and obtained three subsets of most likely unlinked genes.
Relying on the recent wealth in both genomic and interactomic data, this
study describes very interesting results. First, it validated the trend al-
ready described by Kim et al. that genes acting at the periphery of the hu-
man interactome are more likely to have evolved under positive selection
(as inferred from divergence data from human and chimp) as described
in Section 1.8.2 and Figure 1.30 [234]. However, when studying the dis-
tribution of the putative events of recent positive selection, as inferred
from human polymorphism data, the opposite trend was observed: more
central genes are more likely to have been targeted by positive selection.
Those results are very interesting and challenge the traditional view that
positive selection is active at the network periphery. An association with
the Fisher’s Geometric Model of Adaptation is discussed in the article
(see Discussion in Chapter 6) and will be further developed in Section
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7.2.1. However, as mentionned in the article, the signatures of adaptation
detected in this study through either a comparative genomics or popula-
tion genetics approach might correspond to different kinds of changes at
the sequence level. Indeed, recent positive selection events detected using
polymorphism data are likely to correspond to adaptation through changes
in expression patterns (gene expression level or regulation), while selec-
tive events detected through divergence analysis may mostly correspond
to changes in protein function. To gain more insight on the relationship
between network centrality and positive selection at different evolutionary
time-scale, one could perform a similar analysis using the asymptomatic
McDonald-Kreitman (MK) test recently proposed by Messer and Petrov
[277]. The original MK test estimates whether the ratio of functional (i.e.
non-synonymous) to neutral (i.e. synonymous) polymorphisms (pN and
pS , respectively) differs statistically from the ratio of functional to neu-
tral divergence (dN to dS). Excess of functional divergence compared
to polymorphism is attributable to positive selection. The parameter α
(α = 1 − (pN/pS)/(dN/dS)) estimates the proportion of functional sub-
stitutions driven by positive selection. Such test is therefore designed to
infer the rate of positive selection in a given lineage at protein-coding se-
quence level. Messer and Petrov performed a simulation-based study of
the behaviour of the MK test under different scenarios, making varying
the proportion of adaptive variants and their selective coefficient as well
as the strength of Background Selection (BGS) by playing with the num-
ber of deleterious variants, their negative selective coefficient and the rate
of recombination. They found that MK estimates of α severely under-
estimate the true rate of adaptation and, therefore, proposed the asymp-
tomatic MK test that yielded accurate estimates of alpha in their simu-
lations. Moreover, with the recently published Great Apes Project Data
[278], this test could be performed in different ape lineages to contrast
whether the same trend for recent positive selection across the interac-
tome holds for different species.
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7.2 Evolutionary system biology is dead! Long
life to evolutionary system biology!

In this section, perspectives in evolutionary system biology will be dis-
cussed. The study of the relationship between the position occupied by
a gene within a biological network and the strength of natural selection
acting on it receives strong critics. One may think that such studies are
vain since network topology appears as a poor predictor of the impact of
natural selection. However, one may also consider the half-full glass and
see evolutionary system biology as an emerging filed with promising po-
tential insights, acknowledging that most methodological tools remains to
be developed and more accurate data are getting produced. Evolutionary
system biology tries to put together new layers of biological complexity to
better understand the action of natural selection on protein-coding genes.
This makes a lot of sense since it is a way to bridge the gap between
genotype and phenotype (see Figure 7.2). However, both the biological
data and the statistical framework to consider such complexity can still be
dramatically improved as discussed in this section.

7.2.1 Insights from network-level analyses: Is the glass
half-full or half-empty?

As already largely described in Section 1.8, several studies have iden-
tified a relationship between the position occupied by a protein and the
impact of natural selection —mostly purifying, but also positive —on the
encoding gene. Those studies have been performed at different biological
scales using networks describing either a given biological pathway or the
whole set of identified interactions of a given type, i.e. either physical,
metabolic or regulatory interactions.
The results of these studies stress the usefulness of using biological net-
works to capture the epistasis among genes that gives rise to a given phe-
notype as an emergent property, but also the pleiotropic effects of genes
involved in different phenotypes. In particular they have demonstrate that
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Figure 7.2: Bridge the gap between genotype and phenotype. Adapted from
[279].

the position of a gene within its network accounts for a part of the variabil-
ity in evolutionary rates between genes: network organization imposes
constraints on the evolution of its constituent genes. However, universal
patterns and general principles can not be derived despite several indepen-
dent pieces of evidence of the constraint imposed by network structure on
genes’ evolution. Indeed, the constraints imposed by network structure
appears to depend on the specific types of interactions considered, its size
and, in case of small-scale networks, on the specific pathway it describes.
The effect of network organization on the strength and probability of
genes’ adaptive evolution have been overlooked. However, the few stud-
ies analysing how positive selection distributes across small-scale net-
works, i.e. describing a given biological pathway, points to the same
direction: positive selection often targets genes acting at the most “in-
fluential” positions of these pathways, including the most central genes
in the human insulin/mTOR pathway [265], genes acting at bifurcation
points of the human N-glycosylation pathway [280] and the Drosophila
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pathways involved in glucose metabolism [202], and the gene encoding
the first enzyme of the Arabidopsis glucosinolate pathway [216]. Sim-
ulation studies also indicate that adaptation preferentially targets genes
acting at the upstream and branch-point parts of pathways, at least when
the system is far from the fitness optimum [281, 282]. Proteins occupying
these key network positions are expected to exert strong influence over the
pathway function, and thus on the associated phenotypes and organism’s
fitness [216, 281, 282]. Therefore, positive selection on genes encoding
such proteins may lead to rapid adaptation. Although all those studies
point to “influential” genes within a given biological pathway being un-
der positive, the gene feature characterizing genes’ “influence” is not uni-
versal. As for evolutionary constraint, the relationship between adaptive
evolution and small-scale network structure appears to also depend on the
specific types of interactions considered, its size and the specific pathway
it describes.
Only two studies of the distribution of selective events across a large-
scale network, namely the interactome, have been published (see Chapter
6 and [234]). Although different results at two evolutionary time-scales
have been observed, a relationship between large-scale network topology
and the impact positive selection appears to exist. The consensus since
the study by Kim et al. [234] was that events of positive selection oc-
cur mostly at the periphery of the interactome. The study presented here
challenges this view and suggests that there is not an universal pattern
which could be applicable at every evolutionary time-scales and/or mode
of adaptation. Indeed, it appears that the impact of positive selection
within the interactome depends on (1) if only signals at protein-coding
level can be identified and/or (2) the range of the selective events age one
is able to detect. One possible interpretation with the results presented
in Chapter 6 comes from the Fisher’s Geometric Model of Adaptation
(FGM) which predicts when and how likely a mutation of given pheno-
type effects is advantageous, that is, it is selected for [33]. The effects on
fitness are measured considering the pleiotropic effects —as a funtion of
the number of phenotypes in which a mutation is involved in —and the
effect on each specific phenotype. The interactome is most likely a good
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proxy of genes’ fitness effects (see Figure 3 in Chapter 6), with genes act-
ing at the periphery being less “influential”, i.e. with lower fitness effects,
than genes at the core of the network. Therefore, according to the FGM,
one would expect to detect signals of positive selection in different parts
of the interactome according to the evolutionary time-scale considered.
Namely, if one considers a very long evolutionary time-scale, such as
evolution since the divergence of many mammal species, it is likely that
the detected selective events correspond to the whole processes of adap-
tation of the analysed species, and their common ancestors, that made
them overall fit. Thus, as predicted by the FGM, it is more likely to detect
selective events acting on mutation with lower fitness effects since such
events are expected to be more numerous than the ones on mutation with
greater fitness effects. On the other hand, when studying recent human
evolution, during which human populations had to face drastic environ-
mental changes, one may detect selective events of the new processes of
adaptation to the new environments and may expect to observe them on
mutations located in genes with important effects on fitness. However, as
stated in Section 7.1.2, the study of the interacome in this thesis is not
free of some putative confounding factors, such as the methodology used
to detect signals of selection at the two evolutionary time-scales. The
link between the map of physical interactions among proteins and the
FGM appears to be promising and theoretical development is undergoing
to bring them together (e.g. [283]; see Figure 7.3)
All together, it is now clear that studying natural selection in the con-

text of biological network is worth. Small-scale networks represent a first
approximation to integrate endophenotypes —the function performed by
the encoded biological pathway —into evolutionary biology. Large-scale
networks allow to account for the genes’ pleiotropic effect. However, it
is also true that the position occupied by a protein within a network re-
mains a poor predictor of the impact of positive selection or the strength
of evolutionary constraint on the encoding gene. Indeed, although the re-
lationship between network topology and both selective processes, that
is, positive and purifying selection, is significant in most studies, the de-
scribed effect is always relatively limited and depends on factors such as
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Figure 7.3: Integration of physical interaction maps into a model of genotype-
phenotype-fitness map. Schematic representation showing the different levels
of integration assumed in the model, from a single mutation (left) to its effect
on the fitness of the whole organism. Each mutation affects a large subset of p
traits (orange ovals) through the interaction network among proteins because of
their pleiotropic effects. The vector x represents the parent phenotype at all these
traits. The effect of a mutation (on the offspring’s phenotype) is a random small
perturbation dx. These basic mutational changes diffuse through the network of
interactions to induce changes at a much smaller set of n key integrative traits
(optimized traits; green ovals), which are those under selection, represented by
the vector y. From [283].
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the mode of interaction, the evolutionary time-scale and the biological
scale considered.

7.2.2 Other mechanisms at stake: lessons from protein
evolutionary rates.

The position occupied by a protein within a biological network accounts
for some phenotypic effects of the encoding gene. However, other genes
features also account for their phenotypic effects. Those features are not
independent one from the others and, more interestingly, are also related
to evolutionary constraint (Figure 7.4). Therefore, those features may
also be considered when studying adaptive evolution of protein-coding
genes. The literature on the putative gene’s features affecting evolutive
constraint is abundant: for decades, biologists tried to assess why certain
proteins accumulate many mutations, whereas others remain unchanged
over long evolutionary periods. The following description is only a brief
overview on this topic and does not pretend to be exhaustive.
In 1965, Zuckerkandl and Pauling [285] suggested that the differences in

the rates of evolution of hemoglobin and cytochrome c were attributable
to the different levels of selective constraint acting on them. In the follow-
ing decade, the neutral theory of molecular evolution stated that proteins
with low functional importance should evolve faster than more important
ones (see Section 1.3). It was also proposed that the proportion of amino
acids involved in its function (“functional density”) affects levels of selec-
tive constraint [286]: proteins with a low functional density are expected
to be less constrained, thereby to evolve faster. However, although it ap-
pears logical that proteins’ rates of evolution are mainly determined by
their importance and/or functional density, it is difficult to test this hy-
pothesis since the measure of these parameters remains experimentally
challenging to assess.
The recent emergence of genome-scale datasets allowed to measure an
important number of characteristics for most of the genes in model or-
ganisms. In turn, a long list of factors correlating with rates of evolu-
tion has been drawn up. Factors more or less related to proteins’ im-
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Figure 7.4: Interindependance between gene features that affect evolutionary
constraint. PPI, number of protein–protein interactions; τ , range of tissue ex-
pression; ω is the dN/dS value. Positive correlations are represented in orange,
and negative correlations are represented in blue. The width of the lines is pro-
portional to the strength of the correlations. From [284].
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portance and/or functional density appear to be relatively poor predictors
of rates of evolution. These factors are the following: functional cate-
gory [193, 243, 287, 288], number of functions [289–291], essentiality
for survival [288, 292, 293] and dispensability measured as the fitness ef-
fect upon gene knockout [53, 294–296]. On the other hand, patterns and
levels of gene expression [297, 298] appear to be the strongest determi-
nants of levels of selective constraint. Some studies in yeasts described
that gene expression levels may account for more than 30% of the vari-
ability of rates of evolution [299]. Nevertheless, not all analyses reached
this conclusion and some of them suggested that certain factors aforemen-
tioned may be as determinant as expression for selective constraint (e.g.
see [300–303]).
All together, the prevailing view is that patterns and levels of gene ex-
pression are the most important factors affecting evolutionary rates while
other factors have a relatively minor, yet observable, effect. Several stud-
ies already described the relationship between the strength of positive se-
lection acting on a gene and its expression patterns (e.g. see [170, 297,
304, 305]). However, further experimental and theoretical advances are
necessary to better understand the contributions of the different factors
driving evolutionary rates as well as the probability and the strength of
positive selection targeting protein-coding genes. Indeed, currently avail-
able datasets have a relatively low quality and are being subject to very
high false positive and false negative rates [272–275]. Despite the poor
accuracy of those datasets, they allowed to perform a first evaluation of the
mechanisms affecting the impact of natural selection on protein-coding
genes. Available measures of protein–protein interactions may be partic-
ularly noisy, as they are the result on the application of high-throughput
techniques, especially for large-scale networks (see Section 7.1.2). This
could result in an under-estimation of the relative effect of the network
topology on the impact of natural selection on protein-coding genes (see
Section 7.1.2). Indeed, a study in which noise levels were equalized
across 7 putative predictors of dN/dS in yeasts, described a roughly equal
contribution to the variability of evolutionary rates [302]. Therefore, the
critics stating that using biological network topology to better understand
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selective processes is uninformative as compared to other biological fea-
tures (e.g. expression patterns and levels) are not receivable since they do
not take into account the discrepancy in the accuracy of the available data.

7.2.3 Perspectives in evolutionary system biology.

Consider different modes of adaptive selection.
In order to better understand the mechanisms driving natural selection

in a system, it is obviously important to first have a general picture of
its impact on the involved genes and their main regulatory regions. As
largely discuss in Section 1.3.1, there are three modes of natural selec-
tion: purifying, balancing and positive selection. Balancing selection has
been overlooked and relating its impact to the position occupied by the
encoded proteins in biological network would be informative. Positive
selection is mostly studied assuming the hard sweep model. Consider-
ing other modes of positive selection, such as soft sweeps and polygenic
adaptation, would be interesting to provide a full picture of the distribu-
tion of selective events within biological networks. Actually, the study of
polygenic adaptation in the context of biological network is necessary for
obvious reasons. Moreover, the fact that more selective events have been
observed in more central genes in the interactome and individual path-
ways using polymorphism data (see Chapter 6) is arguably not surprising
since hard selective sweeps have been detected, that is selective events on
mutations with a relatively important selective coefficient. The selective
coefficient of advantageous mutation is likely to be more important for
mutations affecting the function or the regulation of central genes which
have greater effects on fitness.
Using methodological tools allowing to infer the action of natural selec-
tion on mutations that can affect the regulation of genes may be infor-
mative to understand how biological systems evolve through the action
of natural selection. While the action of purifying selection in biological
system has been well studied, it relies on a methodology biased towards
coding regions. Recent efforts have been made to also infer the evolu-
tionary constraint in regulatory regions taking as a reference putatively
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neutrally evolving regions as ancestral repeats or pseudogenes (e.g. see
[306] for micro RNAs and [307] for transcription factor binding sites)
from divergence data. The same direction should be followed to estimate
positive selection using divergence data.

The study of network topology can shed more light on the mecha-
nisms driving natural selection.
Although the relationship between the impact of natural selection —ei-

ther positive or negative —and network topology is weak, yet measurable,
it is worth keeping studying it across many more biological networks.
First, at small-scale, the distribution of selective events across biologi-
cal pathways has been studied only for very few of them. It is necessary
to broaden the range of studied pathways in this framework in order to
better understand whether the impact of natural selection on and across
a pathway varies according to the pathway size (number of proteins and
interactions involved), its linearity (number of branching points), its iso-
lation from other pathways, the type of interactions involved, the cellular
compartment in which proteins are active, the tissue specificity of the
pathway, etc. However, one must be cautious while performing a sys-
tematic analysis of pathways based on database annotation (see Section
7.1.2).
Second, at large-scale, although purifying selection has been relatively
well studied the three main interaction maps (transcriptome, metabolome
and interactome), more analyses would be informative in other organisms
and using networks of increasing accuracy to further validate the view that
central genes are more constrained in their evolution. Moreover, the dis-
tribution of selective events across such large-scale networks have been
overlooked and contrasting whether the patterns observed in the interac-
tome stand in the metabolome and the transcriptome would be interesting.
Before proceeding to such studies, one would rather increase the accu-
racy of the large-scale network of interest. For example, the Bertranpetit
Group is currently curating manually the human metabolome in collabo-
ration with biochemists. Such effort is necessary to reduce the noise and,
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thereby, increase the power of the study. Furthermore, in order to better
consider the processes that take place within the cell, it would be interest-
ing to study networks that encompass all the types of interactions, such as
the MULTINET built by Khurana et al. [200]. Indeed, as illustrated by
the IT pathway (see Chapter 5), different types of interactions are at stake
within many pathways, mostly the transduction signalling ones. There-
fore, considering large-scales networks that include only one type of in-
teractions remains a raw simplification of genes epistasis and pleiotropy.
Third and last, when studying network topology, one would have to take
into account the fact that interactions do not have the same importance for
the processes taking place in the organism: (1) interactions happen in dif-
ferent compartment of the cell; (2) some are tissue specific while others
operate within a broad range of cells; (3) proteins may compete one with
the others for the same interacting partners; and (4) interactions are not
necessarily occurring at any time. Therefore, including into the network
studies more information on the expression patterns, the cell compartment
and the tempo of interactions, could be important. For now, network-level
studies, such as the ones presented in this thesis, settle for only correcting
for those parameters through multivariate analyses. More insight would
be gain if, instead, this information could be used to build subnetworks to
study individually and to compare.

Include dynamics.
Considering the fixed topology of the networks was the first step in evo-

lutionary system biology, and it is clear that it is a huge simplification of
the protein interaction complexity. Some efforts have been recently made
to include dynamical features into the studied system.
First, one can directly rely on measures of dynamical characteristics of
the involved proteins. For example Colombo et al. studied the relation-
ship between metabolic flux and evolutionary rates of enzyme encoding
genes in the human erythrocyte cells [308]. The flux is the movement of
matter through metabolic networks that are connected by chemical equi-
libria, and thus describes the activity of the metabolic network as a whole
using a single characteristic. They found that genes encoding enzymes
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Figure 7.5: Metabolic flux is a determinant of the evolutionary rates of enzyme-
encoding genes in human erythrocytes. From [308].

carrying high fluxes evolved under stronger purifying selection, while
evolutive constraint was relaxed in genes encoding enzymes carrying low
metabolic fluxes (Figure 7.5). This demonstrates the importance of con-
sidering the dynamical functioning of gene networks in order to study the
action of selection on biological systems. In the Glucosinolate pathway in
Arabidopsis thaliana, Olson-Manning et al. observed that the gene with
greater control over metabolic flux and was the only one with signature
of adaptive selection [216]. The fact that they demonstrated that the up-
stream gene in the pathway was the one with greater control on flux [216]
is also comforting: network topology is informative. Properties such as
metabolic flux has not been well assessed for many systems, and the two
aforementioned studies are unique. More importantly the flux measure
remains specific to metabolic pathways.
Studies based on simulations of metabolic pathways also pointed to the

importance of enzyme control on the dynamic process and the impact of
natural selection on the encoding gene, but also described the relation-
ship between the position in the network and control on metabolic flux
[281, 282]. A study also based on simulations assessed the relationship
between the intensity of regulatory action and the strength of evolutionary
constraint in a regulatory network [309], in order to circumvent the fact
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that a gene connected to many loci but only through weak regulation ef-
fects is not expected to be strongly exposed to selection since it does not
in practice have a strong effect on the expression of the products of the
different genes. The authors observed that an increasing intensity of puri-
fying selection on the phenotype leads to an increased level of regulation
between the genes [309]. They also showed that the genes responding
more strongly to selection within the network were those evolving to-
wards stronger regulatory action on the other genes and/or those that are
the less regulated by the other genes [309]. Although those simulations
studies shed light on how gene influence , i.e. the control exerted by the
gene on the output of the system, they represent idealized systems that do
not characterize real ones operating in an organism.
Less commonly used in the study of evolution are dynamic models of
real biochemical systems: a mathematical model can be built in order to
simulate known system dynamics. In turn, it can be used as a test of the
breadth of knowledge of a system. This model would include known reac-
tions and if the simulations are accurate, it is likely that the mechanisms
of the system are well-assessed. Building such models rely on a deep
biochemical knowledge of the interactions at stake in a given biomolec-
ular pathway. Invergo and colleagues built a deterministic model of the
mammalian phototransduction pathway [210]. In such model, reactions
are described by a system of differential equations that track the concen-
trations of the various molecules in the system. At any time point in the
simulation, it is possible to calculate the exact concentrations at the next
instant. Using relevant model parameters as a proxy of dynamic influ-
ence, perhaps surprisingly, the authors observed that proteins with greater
potential to disrupt the system dynamics exhibited a more relaxed evolu-
tionary constraint, in the form of higher evolutionary rates (personal com-
munication). Such biochemical models are useful to better understand the
role exerted by the genes in biological systems, to ,in turn, understand the
mechanisms affecting the impact of natural selection. However, the pho-
totransduction pathway is unique in the sense that it is isolated, involving
specific proteins. Building such dynamical models for other pathways
remains challenging.
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Chapter 8

CONCLUSIONS

A major challenge in evolutionary biology is to understand how natural
selection, which acts on phenotypes, shapes the genome, and particularly
the protein-coding genes that contribute to the phenotype. The two first
studies of this thesis illustrates how the impact of adaptive selection can
be detected at the gene-level. However, here genes are considered as inde-
pendent entities, while they do not act in isolation but rather interact one
with many others to give rise to the phenotype as an emergent property.
This concerted contribution to the phenotypes has to be taken into con-
sideration to better understand the mechanisms driving natural selection
at the molecular level. With others, the results from the two last studies
presented in this thesis demonstrate how encoding biological systems into
networks allows a first approximation that captures the concerted action
of the genes. Those studies show that the position of a gene within its
biological network allows to understand some of the variability in evolu-
tionary rates between genes and the impact of adaptive selection: those
works prove that the action of natural selection is somehow circumscribed
by network organization.
Several independent pieces of evidence derived from studies of different
network types and at different scales did not allow to define universal
patterns and general principles. This could be due to the fact that the
constraints imposed by network topology likely depend on the type of in-
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teraction considered, its size and, for small-scale networks, on the specific
system, but also on the tempo of the adaptive process.
On the other hand, the discrepancy between the observed patterns may
also come from the poor quality of the interaction maps, particularly from
high-throughput experiments allowing to build large-scale networks. Ad-
vances in assessing with higher accuracy the interactions taking place in
an organism will most likely allow to clarify how network structure has
an impact on gene evolution.
Moreover, when natural selection is inferred from divergence or poly-
morphism data, that is at two different evolutionary time-scales but also
relying on different kinds of methods, its relationship with network topol-
ogy differs: while interspecific studies point to positive selection being
particularly active at the periphery of the networks, intraspecific analyses
described an enrichment of selective events in highly connected genes.
This point needs further inspection in the future.
Despite all the difficulties, much knowledge has been and will be derived
from considering the topological organization of the networks, provided
an increase accuracy of the interaction maps and the integration of new
layers of complexity for both the biological processes and the mode of
natural selection. Moreover, a deeper understanding might arise from the
dynamics and functioning in space and time of the networks, to move be-
yond their topology. The evolutionary system biology field has still long
years ahead. However, much experimental work is needed to gather all the
information to allow the integration of new layers of complexity. At the
very end, evolutionary system biology is likely to contribute significantly
to the understanding of the genetic bases of complex adaptation.
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Worldwide genetic variation at the 3’ untranslated region of the
HLA-G gene: balancing selection influencing genetic diversity. Genes
Immun. 2013 Dec 19
* Equal contribution
http://www.ncbi.nlm.nih.gov/pubmed/24352166

5. Marc Pybus*, Giovanni M Dall’Olio*, Pierre Luisi*, Manu Uzkudun*,
Angel Carreño-Torres, Pavlos Pavlidis, Hafid Laayouni, Jaume Bertran-
petit and Johannes Engelken
1000 Genomes Selection Browser 1.0: a genome browser dedicated
to signatures of natural selection in modern humans. Nucleic Acids
Res. 2013 Nov 25
* Equal contribution
http://www.ncbi.nlm.nih.gov/pubmed/24275494

6. Blandine Patillon, Pierre Luisi, Audrey Sabbagh and Emmanuelle
Génin
Signatures Of Recent Positive Selection At The VKORC1 Gene Lo-
cus. Genetic epidemiology. 2012;36(2), 170-170

7. Blandine Patillon*, Pierre Luisi*, Hélène Blanché, Etienne Patin,
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SUPPLEMENTARY
MATERIALS.

Study the impact of positive selection on a candi-
date gene.
The Supplementary Material for the article presented in Chapter 3 [263] is
available at http://www.plosone.org/article/info\%3Adoi\
%2F10.1371\%2Fjournal.pone.0053049#s5.

Scan the genome for positive selection.
The Supplementary Material for the article presented in Chapter 4 [264]
is available at http://www.pnas.org/content/111/7/2668.
long?tab=ds.

Distribution of selective events within a small-scale
protein-protein interaction map.
The Supplementary Material for the article presented in Chapter 5 [265] is
available at http://mbe.oxfordjournals.org/content/29/
5/1379/suppl/DC1.

Distribution of selective events within a large-scale
protein-protein interaction map.
The Supplementary Material for the submitted article presented in Chap-
ter 6 is provided below.
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SUPPLEMENTARY NOTES

Network-Level  Analysis  Using  Different  Methods  to  Detect  Positive  Selection  from 

Polymorphism Data

In order to confirm the relationship observed between the position of proteins in the 

Protein-Protein Interaction Network (PIN) and intraspecific positive selection, we broadened 

the analysis by using separately the three original tests to detect positive selection iHS (Voight 

et al. 2006); XP-CLR (Chen et al. 2010) and  DH  (Zeng et al. 2007) used to compute the 

Fisher's combination test score (ZF). We also used the Composite of Multiple Signals (CMS) 

method (Grossman et al.  2010) calculated in YRI, CEU and CHB+JPT populations using 

Pilot1 genotype data from the 1000 Genomes Project (Grossman et al. 2013). For each gene 

we used the average score (for iHS, XP-CLR and CMS) or the −log10(P-value) (for  DH) as 

summary scores.  We then applied a  Spearman's  correlation analysis  between gene degree 

(number of interactions), as an estimator of network centrality, and these scores. Moreover, 

genes  were  classified  into  four  groups  delimited  by  their  first,  second  and  third  degree 

quartiles.  The  median  summary  scores  of  the  four  groups  were  compared  using  a  non-

parametric ANOVA test. We also applied a linear trend test to contrast whether the putative 

differences  among groups were due to  a trend towards  higher  summary scores in  groups 

corresponding to higher degrees (Supplementary Table 2; Supplementary Figure 2).

The  Spearman's  correlation  between  the  iHS  score  and  degree  is  positive  and 

significantly  different  from  0  in  the  three  populations  (P  ≤ 0.0014  in  all  three  cases; 

Supplementary Table 2). In addition, iHS values are significantly different in the different 

groups according to the degree quartiles in all three populations (non-parametric ANOVA; P 

≤ 0.0032;  Supplementary Table 2;  Supplementary Figure 2),  and these differences among 

groups are due to a clear trend towards higher iHS scores in groups corresponding to higher 

degrees (linear trend test on ranks; P ≤ 0.0017; Supplementary Table 2). When using the XP-

CLR score, we did not observe such a clear relationship between degree and the impact of 

positive selection. Indeed, although the Spearman's correlation coefficient is positive in the 

three populations and significantly different from 0 in YRI and CHB (P equal to 0.0007 and 

0.0127,  respectively;  Supplementary  Table  2),  the  non-parametric  ANOVA  reaches 

significance only in YRI (P = 0.0211), and so does the linear trend test on ranks in YRI and 

CEU (P =  0.0028 and  P =  0.0236,  respectively;  Supplementary  Table  2;  Supplementary 

Figure  2).  Moreover,  we  also  observe  an  association between  degree  and  the  impact  of 
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selection as measured by DH. Indeed, the Spearman's correlation coefficient is positive and 

significantly different from 0 in the three populations (P ≤ 0.0015; Supplementary Table 2), 

and we observed significantly different DH values in different degree groups (non-parametric 

ANOVA;  P ≤ 0.0222;  Supplementary  Table  2;  Supplementary  Figure  2),  as  well  as  a 

significant linear trend test on ranks in all three populations (P ≤ 0.0027; Supplementary Table 

2; Supplementary Figure 2). Finally, using the CMS score, the association appears clearer: we 

observe significantly positive Spearman's correlation coefficients in all three populations (P ≤ 

0.0009; Supplementary Table 2) as well as significant differences in CMS scores among the 

degree groups due to a clear tendency towards higher CMS values in groups corresponding to 

higher degrees (non-parametric ANOVA, P ≤ 0.0080; linear trend test on ranks P ≤ 0.0016; 

Supplementary Table 2; Supplementary Figure 2).

In summary, the observed general tendency of central genes to evolve under recent 

positive  selection  remains  significant  when  positive  selection  is  inferred  separately  from 

different statistics.

Network-Level Analysis for  Positive Selection Inferred Using Polymorphism Data in a 

Subset of unlinked Genes

To study the impact of positive selection on genes we only used the SNVs located 

within the genomic region corresponding to the longest transcript. However, it is well known 

that the regions affected by a selective sweep are large,  spanning hundreds of kilobases or 

even  megabases  and  containing  many  potential  variants  driving  the  signal.  Thus,  several 

adjacent genes may be affected by a unique event of selection targeting one particular variant. 

Therefore, some of the genes showing signals of positive selection in our study may be false 

positives, even though we do not expect that this bias can affect our network-level analysis, 

since there is no reason why false positives should tend to concentrate in specific parts of the 

PIN. To confirm that our study does not suffer from this caveat, we first validated our results 

using the Composite of Multiple Signals (CMS) method (Grossman et al. 2010) calculated in 

the  YRI,  CEU and CHB+JPT populations  using  the  Pilot1  genotype  data  from the  1000 

Genomes Project (Grossman et al. 2010). Although this study used the less accurate Pilot1 

data, the implemented method presents the strong advantage of more accurately pinpointing a 

small number of variants within a large genomic region (Grossman et al. 2010). Thus, using 

this test we expect to reduce to a great extent the number of falsely detected genes due to 

genetic hitch-hiking. Our network-level analyses have been confirmed by the use of CMS 
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and, in fact, the association between the impact of selection and network centrality appears to 

be stronger (see  Supplementary Table 2;  Supplementary Figure 2; see previous part of this 

supplementary information).

To further confirm that hitch-hiking does not affect the association between the impact 

of  positive selection and degree,  we built  a  subset  of  unlinked genes,  i.e.  not  in  linkage 

disequilibrium, for the three populations (YRI, CEU and CHB). For that purpose, in each 

population,  we  used  the  population-specific  recombination  rates  estimated  genome-wide 

(recombination  map provided by the  1000 Genomes Project  Pilot  1  (The 1000 Genomes 

Project  Consortium  2010))  and  defined  as  a  recombination  hotspot  a  region  where  the 

observed recombination rates was greater than 10 times the genome average, i.e. greater than 

18.36 cM/Mb, 18.55 cM/Mb and 17.61 cM/Mb in YRI, CEU and CHB, respectively. Then, 

we  randomly  sampled  one  PIN  gene  located  between  two  recombination  hotspots.  We 

obtained three subsets of most likely unlinked genes involved in the PIN containing 2792, 

3106 and 3107 genes in YRI, CEU and CHB, respectively.

For  each gene we used the  ZF score as  the  likelihood of  having been targeted  by 

positive selection in the human populations, and observed that it is significantly positively 

correlated with degree in all three populations (Spearman's correlation analysis; P ≤ 0.0248). 

Moreover, when genes were classified into four groups delimited by the first, second and third 

degree quartiles,  we observed significant differences of summary scores among groups in 

CEU and CHB (non-parametric ANOVA test,  P  equal to 0.0036 and 0.0075, respectively; 

Supplementary Table 3; Supplementary Figure 3). Through a  linear trend test on ranks, we 

concluded that these differences among groups were due to a trend towards higher summary 

scores  in  groups  corresponding  to  higher  degrees  in  these  two  populations  (P ≤  0.0053; 

Supplementary  Table  3;  Supplementary  Figure  3).  For  YRI,  although  the  non-parametric 

ANOVA was  not  significant  (P  = 0.2661),  the  linear  trend test  on ranks  was  marginally 

significant (P = 0.0482).

Network-Level Analysis Correcting for Putative Confounding Factors

Factors  such  as  gene  expression  level  and  breadth  (tissues  in  which  a  gene  is 

expressed), and the length of the encoded proteins, correlate with both network centralities 

and the likelihood of detecting natural selection, and hence could potentially have an effect on 

the observed relationship between the impact of natural selection and the gene centrality in 
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the network (Anisimova et al. 2002; Duret & Mouchiroud 2000; Kim et al. 2007; Kosiol et al. 

2008; Pál et al. 2006; Subramanian & Kumar 2004). In order to evaluate the effect of these 

factors, we applied a linear regression between the  scores used as the likelihood of having 

been targeted by  positive selection during human and mammalian evolution (ZF and  2Δℓ, 

respectively), as well as the scores that estimate the strength of purifying selection (DAF and 

ω,  respectively)  and  the  mentioned  putative  confounding  factors.  The  linear  regression 

residuals were then used to perform the correlation analysis in each case. The relationship 

between positive selection inferred using polymorphism data and degree remains significant 

in all three populations with a Spearman's correlation coefficient, ρ, ranging between 0.0326 

(P = 0.0059) in CEU and 0.0451 (P = 0.0001) in YRI (Main text Table 1). Moreover, the non-

parametric ANOVA and trend tests  on ranks provide similar results  when using the linear 

regression residual instead of the  ZF  score, although  P-values tend to be higher (Main text 

Table 1; Supplementary Figure 4). Indeed, the non-parametric ANOVA test is significant in 

YRI (P = 0.0423) and CEU (P = 0.0240), while it does not reach significance in CHB (P = 

0.1006). Moreover, we observe a trend towards higher residuals in groups corresponding to 

higher degree (Supplementary Table 3; Supplementary Figure 4). Indeed, in YRI and CHB the 

linear trend test on ranks reaches significance (P =  0.0053 and  P =  0.0239, respectively). 

Taken together, these observations indicate that the association observed between the ZF score 

and degree within the PIN cannot be attributed to the three putative confounding factors. 

Similarly, the association observed between the impact of  positive selection inferred using 

divergence data (as estimated by 2Δℓ) and degree remains significant when we correct for the 

three putative confounding factors. Indeed, we observed a significant negative Spearman's 

partial  correlation  coefficient  (ρ  =  -0.0340;  P  =  0.0107).  Moreover,  although  the  non-

parametric ANOVA test is not significant (P = 0.0548), the trend test remains significant (P = 

0.0122)  with  lower  residuals  in  groups  corresponding  to  higher  degree. Finally, the 

relationship between purifying selection and degree also remains significant when using the 

residuals of the linear regression of either DAF or ω with protein length, expression level and 

expression breadth. Indeed, the correlation tests remain significant (ρ = -0.0668 and -0.1697, 

respectively; P < 0.0001 in both cases), as well as the non-parametric ANOVA (P ≤ 0.0003) 

and the linear trend tests (P < 0.0001).
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Network-Level Analysis Using Different Protein-Protein Interaction Networks

To  validate  the  association  between  network  position  and  the  impact  of  positive 

selection, analyses were repeated using two additional high-quality networks: a high-quality 

(HQ) subnetwork from BioGRID (Stark et al. 2011), in which we retained only interactions 

discovered by low-throughput  techniques,  plus  those reported in  at  least  two independent 

high-throughput  analyses,  and  the  network  from  the  Human  Protein  Reference  Database 

(HPRD) (Keshava Prasad et al. 2009), derived from the literature. As in the main analysis, we 

calculated the number of interactions in which each protein is involved (degree centrality), 

considering the whole set of non-redundant interactions.

For both the HQ and HPRD networks, the Spearman's correlation coefficient between 

degree and the recent positive selection ZF scores is positive and significantly different from 0 

in all three populations (ρ ≥  0.0257; P  ≤ 0.0294; Supplementary Table 4), except for CHB 

when using the HPRD data set (ρ = 0.0229; P=0.0533). Moreover, for the HQ sub-network 

the  non-parametric  ANOVA test  is  significant  in  the  three  populations  (P  ≤  0.00950) 

(Supplementary Table 4; Supplementary Figure 5). These differences among groups are due to 

a trend towards higher ZF scores in groups corresponding to higher degree. Indeed, the linear 

trend test on ranks reaches significance in all three populations (P ≤ 0.0027 in the three cases). 

When using the HPRD network, although most of the non-parametric ANOVA tests do not 

reach significance, the overall pattern also points to higher ZF scores in groups corresponding 

to higher degrees: the linear trend test on ranks is significant in YRI and CEU (P equal to 

0.0364  and  0.0053,  respectively;  Supplementary  Figure  6;  Supplementary  Table  4)  and 

marginally significant in CHB (P = 0.0628).

When studying the association between positive selection as inferred from divergence 

data (estimated by 2Δℓ) and degree in the HQ and HPRD networks, we observed a negative 

Spearman's correlation coefficient (ρ = -0.0620 and  ρ = -0.0577, respectively;  P < 0.0001; 

Supplementary Table 4). We also observed differences in the 2Δℓ scores among degree groups 

(non-parametric ANOVA; P ≤ 0.0011; Supplementary Table 4; Supplementary Figures 5 and 

6), with higher 2Δℓ scores in groups corresponding to lower degrees. Indeed, the linear trend 

test on ranks reaches significance in both networks (P ≤ 0.0001) . Finally, when studying the 

association between purifying selection and degree in both the HQ and HPRD networks, we 

observed a significantly negative Spearman's correlation coefficient (ρ ≤ -0.0488; P < 0.0001; 

Supplementary Table 4). Moreover, we observed clear differences in both DAF and ω among 
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degree groups (non-parametric ANOVA, P ≤ 0.0007), due to a clear tendency towards lower 

scores in groups corresponding to higher degrees (linear trend test  on ranks;  P  ≤ 0.0001; 

Supplementary Table 4; Supplementary Figures 5 and 6).

Network-Level Analysis Using Different Centrality Measures

We explored whether the association found between the impact of natural selection 

and network centrality, as estimated by degree (the number of interactions in which a protein 

is involved), was also significant when using other centrality measures. For that purpose, we 

calculated two other centrality measures: betweenness (the number of shortest paths between 

other proteins passing through a given protein),  and closeness (the inverse of the average 

distance to all other proteins in the network). The association between the impact of natural 

selection and these network centrality measures remains similar, regardless of the centrality 

measure  considered.  Indeed,  the  Spearman's  correlation  coefficient  between  either 

betweenness or closeness and ZF, the score used as the likelihood of having been targeted by 

positive selection in recent human evolution, is significantly positive in all three populations 

(ρ ≥  0.0295;  P  ≤ 0.0096; Supplementary Table 5). Moreover,  we observed  ZF  differences 

among betweenness groups in the three populations performing a non-parametric ANOVA 

(Supplementary Table 5; Supplementary Figure 7), which reaches significance in the three 

populations (P ≤ 0.0332; Supplementary Table 5; Supplementary Figure 7). These differences 

are  due  to  a  clear  tendency  for  higher  ZF scores  in  groups  corresponding  to  higher 

betweenness (linear trend test on ranks, P ≤ 0.0157; Supplementary Table 5; Supplementary 

Figure  7).  When  comparing  the  ZF scores  among  closeness  groups,  the  non-parametric 

ANOVA test reaches significance in YRI and CHB (P = 0.0093 and P = 0.0113, respectively; 

Supplementary Table 5; Supplementary Figure 8). These differences among groups are also 

due to a trend towards higher ZF scores in groups corresponding to higher closeness. Indeed, 

the linear trend test on ranks is significant in all three populations (P ≤ 0.0091; Supplementary 

Table 5; Supplementary Figure 8).

When  studying  the  association  between  positive  selection  during  mammalian 

evolution  (as  estimated  by  2Δℓ)  and  network  centrality,  using  both  betweenness  and 

closeness, we observed a significantly negative Spearman's correlation coefficient (ρ equal to 

-0.0645  and  -0.0726,  respectively;  P  <  0.0001;  Supplementary  Table  5).  We  observed 

differences  in  the  2Δℓ scores  among  betweenness  groups  (non-parametric  ANOVA,  P < 

0.0001; Supplementary Table 5; Supplementary Figure 7), and  among closeness groups (non-
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parametric ANOVA,  P <  0.0001;  Supplementary Table 5; Supplementary Figure 8), with a 

clear tendency for higher  2Δℓ scores among groups corresponding to lower betweenness or 

closeness (linear trend test on ranks ,  P <  0.0001; Supplementary Table 5; Supplementary 

Figures 7-8).

Finally,  when  studying  the  association  between  purifying  selection  and  either 

betweenness  or  closeness,  we  observed  significantly  negative  Spearman's  correlation 

coefficients (ρ ≤ -0.0641; P < 0.0001; Supplementary Table 5). Moreover, we observed clear 

differences in both DAF and ω values among either betweenness or closeness groups (non-

parametric ANOVA,  P < 0.0001; Supplementary Table 5; Supplementary Figures 7 and 8), 

due to a clear tendency towards lower scores in groups corresponding to higher centrality 

measures (linear trend test  on ranks;  P <  0.0001;  Supplementary Table 5; Supplementary 

Figures 7 and 8).

Network-Level  Analysis  for  Positive  Selection  Inferred  Using  Polymorphism  Data 

Correcting for the Action of Purifying Selection

The action of purifying selection on a genomic region can leave some patterns that are 

similar to the ones expected under recent positive selection (e.g. an excess of rare variants). 

Therefore,  we  wanted  to  confirm  that  the  association  found  between  positive  selection 

estimated from polymorphism data and degree is not a by-product of the already described 

association between purifying selection and network centrality. For that purpose, we applied a 

linear regression between ZF, the score used as the likelihood of having been targeted by the 

impact of recent  positive selection in human populations, and ω, which estimates the strength 

of purifying selection during mammalian evolution. The linear regression residuals were then 

used to perform the analysis. The relationship between positive selection and degree remains 

positive in all three populations, with a Spearman's correlation coefficient, ρ, greater than or 

equal to 0.0195 (Supplementary Table 6). It is significantly different from 0 in YRI and CHB 

(P equal to 0.0020 and 0.0032, respectively). Moreover, the residuals are marginally different 

among  degree  groups  (non-parametric  ANOVA;  P  ranging  from  0.0371  to  0.0578; 

Supplementary  Table  6;  Supplementary  Figure  9).  These  differences  are  due  to  a  trend 

towards higher residuals in groups corresponding to higher degrees in YRI and CHB (linear 

trend test  on ranks;  P  equal  to  0.0081 and 0.0100,  respectively;  Supplementary  Table  6; 

Supplementary Figure 9). In summary, the observed association between ZF scores and protein 

degree cannot be attributed to the association between network centrality and the action of 
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purifying selection.

We further confirmed that background selection (BGS), a process that removes neutral 

variation linked to deleterious mutations, thus reducing levels of polymorphism in regions of 

high functional density and low recombination (Charlesworth et al. 1993), does not confound 

the association observed between network centrality and positive selection estimated from 

polymorphism data. We estimated the level of BGS acting on each gene using two correlates 

of BGS: GC content and recombination rate. Note that we did not take into account the level  

of functional constraint because the present study focuses on protein-coding genes. For each 

gene, we calculated the average of GC content from the 5-mer table downloaded from the 

UCSC browser  (Karolchik et  al.  2009)  (table  “gc5Base” downloaded on the 10 th of  July, 

2013), as well as the average recombination rate from the population-specific recombination 

rates  estimated genome-wide (recombination map provided by the 1000 Genomes Project 

Pilot 1 (The 1000 Genomes Project Consortium 2010)). We then applied a linear regression 

between ZF, the score used as the likelihood of having been targeted by positive selection, and 

both recombination rate average and GC content average. The linear regression residuals were 

then used to perform the analysis.  The relationship between positive selection and degree 

remains positive in all three populations, with a Spearman's correlation coefficient, ρ, greater 

than  0.0369  (Supplementary  Table  7)  and  significantly  different  from  0  (P ≤  0.0013). 

Moreover,  the  residuals are  different  among  degree  groups  in  all  three  populations  (non-

parametric  ANOVA;  P  ranging  from  0.0017  to  0.0089;  Supplementary  Table  7; 

Supplementary Figure 10), and these differences are due to a trend towards higher residuals in 

groups corresponding to higher degree (linear trend test on ranks; P ranging from 0.0007 to 

0.0016;  Supplementary  Table  7;  Supplementary  Figure  10).  Therefore,  the  association 

observed  between  ZF scores  and  degree  cannot  be  attributed  to  the  association  between 

network centrality and the action of BGS.

9
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Supplementary Table 1. Number of interactions (Degree) for genes with putative signal 
of positive selection test and for the others.

Humansa

Globalb YRI CEU CHB Mammalsc

Mean degree for genes with signals of 
positive selection

9.637 10.34 8.844 9.263 7.578

Mean degree for genes without signals of 
positive selection

8.107 8.438 8.526 8.456 9.122

Permutation test (P-value)d 0.0254* 0.0108* 0.2862 0.0929 0.0067**
a Positive selection is invoked when the P-value associated to ZF score is below 5%.
b Positive is invoked at global level when the P-value associated with the ZF score is below 5% 
in at least one of the three studied populations (YRI, CEU or CHB).
a Positive selection is invoked when the P-value associated to 2Δℓ score is below 5%.
d P-values were calculated using permutations. In each permutation a set of genes is randomly 
drawn, with the sampling size corresponding to the number of genes with signals of positive 
selection. Then, the average of their degree is compared to the one obtained for the genes with 
signals of positive selection. P- values are computed as the proportion of permutations with an 
average degree higher or equal to the observed one.
*: P < 0.05; **: P < 0.01; ***: P < 0.001.
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Supplementary Table 2. Relationship between degree and the likelihood of 

havingevolved under recent positive selection in human populations as estimated from 

four different statistics.

YRI CEU CHB

iHS Spearman correlationa ρ 0.0347 0.0433 0.0357

P-value 0.0014** 6.79×10-05*** 0.0010**

Non-parametric 

ANOVAb

F 4.609 5.761 4.942

P-value 0.0032** 0.0006*** 0.0020**

Trend test on ranksb F 9.844 15.65 10.41

P-value 0.0017** 7.70×10-05*** 0.0013**

XPCLR Spearman correlationa ρ 0.0385 0.0149 0.0282

P-value 0.0007*** 0.1906 0.0127*

Non-parametric 

ANOVAb

F 3.241 0.7999 1.592

P-value 0.0211* 0.4941 0.0849

Trend test on ranksb F 8.918 1.999 2-209

P-value 0.0028** 0.1574 0.0236

DH Spearman correlationa ρ 0.0343 0.0360 0.0436

P-value 0.0015** 0.0009*** 5.82×10-05***

Non-parametric 

ANOVAb

F 3.206 3.648 4.612

P-value 0.0222* 0.0121* 0.0032**

Trend teston ranksb F 8.980 9.467 12.91

P-value 0.0027** 0.0021** 0.0003***

CMS Spearman correlationa ρ 0.0700 0.0566 0.0368

P-value 1.61×10-10*** 2.59×10-07*** 0.0009***

Non-parametric 

ANOVAb

F 12.46 8.597 3.945

P-value 1.09×10-09*** 1.07×10-05*** 0.0080**

Trend test on ranksb F 37.24 25.61 9.998

P-value 1.09×10-09*** 4.27×10-07*** 0.0016**
a Spearman correlation between degree and the positive selection score given in the fist 

column.

High scores indicate a higher probability to have evolved under positive selection.
b Non-parametric ANOVA and trend tests on ranks performed to contrast whether the medians 

of the positive selection scores are equal across the degree groups.

*: P < 0.05; **: P < 0.01; ***: P < 0.001.
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Supplementary Table 3. Relationship between degree and the likelihood of having 

evolved under positive selection in human populations using a subset of independent 

genes.

YRI CEU CHB

Spearman correlationa ρ 0.0450 0.0600 0.0605

P-value 0.0248* 0.0017** 0.0014**

Non-parametric 

ANOVAb

F 1.320 4.521 4.000

P-value 0.2661 0.0036** 0.0075**

Trend test on ranksb F 3.908 8.901 7.791

P-value 0.0482* 0.0029** 0.0053**

We obtained a subset of most likely unlinked genes represented in the network containing 

2,792, 3,106 and 3,107 genes in YRI, CEU and CHB, respectively, by randomly sampling one 

network gene located between two recombination hotspots (defined as a region where the 

observed recombination rates is greater than 10 times the genome recombination rate 

average).

a Spearman correlation between degree and ZF in YRI, CEU and CHB.

High ZF scores indicate a higher probability of having evolved under positive selection.
b Non-parametric ANOVA and trend tests on ranks performed to contrast whether the medians 

of the ZF score are equal across the degree groups (calculated on the whole set of genes).

*: P < 0.05; **: P < 0.01.
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Supplementary Table 4. Relationship between degree and the impact of natural selection using two alternative high-quality protein-protein 

interaction networks.

Positive selection Purifying selection

YRI CEU CHB Mammals Humans Mammals

High-Quality 

network from 

BioGRID

Spearman correlationa ρ 0.0379 0.0420 0.0441 -0.0620 -0.0715 -0.1730

P-value 0.0034** 0.0012** 0.0006*** 2.53×10-05*** 5.82×10-09*** 5.50×10-32***

Non-parametric ANOVAb F 3.819 4.194 4.237 5.363 10.29 45.42

P-value 0.0095** 0.0057** 0.0053** 0.0011** 9.35×10-07*** 6.44×10-29***

Trend test on ranksb F 9.492 9.504 8.995 14.91 28.10 131.2

P-value 0.0021** 0.0021** 0.0027** 0.0001*** 1.19×10-07*** 5.39×10-30***

Network from 

Human Protein 

Reference 

Database

Spearman correlationa ρ 0.0257 0.0365 0.0229 -0.0577 -0.0488 -0.1353

P-value 0.0294* 0.0021** 0.0533 1.04×10-05*** 6.88×10-06*** 7.97×10-21***

Non-parametric ANOVAb F 2.223 2.787 1.443 5.733 5.729 27.39

P-value 0.0833 0.0392* 0.2281 0.0006*** 0.0007*** 1.49×10-17***

Trend test on ranksb F 4.380 7.765 3.463 16.90 15.03 80.29

P-value 0.0364* 0.0053** 0.0628 3.99×10-05*** 0.0001 4.56×10-19***
a Spearman correlation between degree and selection scores (ZF for positive selection in YRI, CEU and CHB populations; 2Δℓ  for positive selection in 

mammals; DAF for purifying selection in humans; and ω for purifying selection in mammals). High ZF and 2Δℓ scores indicate a higher probability of 

having evolved under positive selection. Low DAF and ω scores indicate higher selective constraint during human and mammalian evolution, 

respectively.
b Non-parametric ANOVA and trend tests on ranks  performed to contrast whether the medians of the natural selection scores are equal across the 

degree groups.

*: P-value < 0.05; **: P-value < 0.01; ***: P-value < 0.001.
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Supplementary Table 5. Relationship between network centrality and the impact of natural selection using betweenness and closeness.

Positive selection Purifying selection

YRI CEU CHB Mammals Humans Mammals

Betweenness Spearman correlationa ρ 0.0295 0.0353 0.0385 -0.0645 -0.0641 -0.1848

P-value 0.0096** 0.0020** 0.0007*** 6.84×10-07*** 3.15×10-09*** 4.92×10-46***

Non-parametric ANOVAb F 3.406 4.445 5.728 11.33 15.29 91.33

P-value 0.0332* 0.0118* 0.0033** 1.23×10-05*** 2.36×10-07*** 8.77×10-40***

Trend test on ranksb F 5.835 8.853 10.69 22.41 30.55 182.0

P-value 0.0157* 0.0029** 0.0011** 2.26×10-06*** 3.34×10-08*** 7.23×10-41***

Closeness Spearman correlationa ρ 0.0413 0.0332 0.0427 -0.0726 -0.0802 -0.1679

P-value 0.0003*** 0.0037** 0.0002*** 2.28×10-08*** 1.25×10-13*** 3.30×10-38***

Non-parametric ANOVAb F 3.839 2.362 3.698 9.923 16.73 54.87

P-value 0.0093** 0.0693 0.0113* 1.60×10-06*** 7.82×10-11*** 5.71×10-35***

Trend test on ranksb F 9.702 6.809 10.59 26.40 49.72 153.9

P-value 0.0018** 0.0091** 0.0011** 2.85×10-07*** 1.91×10-12*** 6.81×10-35***
a Spearman correlation between degree and natural selection scores (ZF for positive selection in the YRI, CEU and CHB populations; 2Δℓ  for positive 

selection in mammals; DAF for purifying selection in humans; and ω for purifying selection in mammals). High ZF and 2Δℓ scores indicate a higher 

probability of having evolved under positive selection, respectively. Low DAF and  ω scores indicate higher selective constraint during human and 

mammalian evolution, respectively.
b Non-parametric ANOVA and trend tests on ranks performed to contrast whether the medians of the natural selection scores are equal across the 

connectivity measure groups. For Betweenness, the 1st and 2nd quartiles were merged due to the uneven distribution of values.

*: P-value < 0.05; **: P-value < 0.01; ***: P-value < 0.001.



i
i

“thesis” — 2014/9/8 — 10:58 — page 234 — #264 i
i

i
i

i
i

Supplementary Table 6. Relationship between degree and the impact of recent positive 

selection in human populations controlling for ω in mammals.

YRI CEU CHB

Spearman correlationa ρ 0.0432 0.0195 0.0412

P-value 0.0020** 0.1655 0.0032**

Non-parametric ANOVAb F 2.51 2.827 2.499

P-value 0.0569 0.0371* 0.0578

Trend test on ranksb F 7.012 2.032 6.646

P-value 0.0081** 0.1541 0.0100**

In order to test for an association between degree and the impact of positive selection in humans 

controlling for ω, we used the ZF as the likelihood of having been targeted by positive selection. We 

then applied a linear regression between this score and ω. High ZF values indicate a higher 

probability of having evolved under positive selection. Low ω scores indicate higher  selective 

constraint. The linear regression residuals were then used to perform the Spearman's correlation 

analysis, the non-parametric ANOVA and the linear trend test on rank.
a Spearman correlation between degree and the residuals.
b Non-parametruc ANOVA and trend tests performed to contrast whether the medians of the 

residuals across the degree groups.

*: P < 0.05; **: P < 0.01; ***: P < 0.001.
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Supplementary Table 7. Relationship between degree and the impact of recent positive 

selection in human populations controlling for covariates of background selection.

YRI CEU CHB

Spearman correlationa ρ 0.0427 0.0369 0.0428

P-value 0.0002*** 0.0013** 0.0002***

Non-parametric ANOVAb F 3.872 5.043 4.110

P-value 0.0089** 0.0017** 0.0064**

Trend test on ranksb F 11.53 9.947 11.48

P-value 0.0007*** 0.0016** 0.0007***

In order to test for an association between degree and the impact of positive selection in humans 

controlling for background selection, we used ZF as the likelihood of having been targeted by 

positive selection. We then applied a linear regression between this score and both population-

specific recombination rate average across the gene and GC content average across the gene.

High ZF values indicate a higher probability of having evolved under positive selection.

The linear regression residuals were then used to perform the Spearman's correlation analysis, the 

ANOVA and the linear trend test.
a Spearman correlation between degree and the residuals.
b Non-parametric ANOVA and trend tests performed to contrast whether the medians of the 

residuals across the degree groups.

*: P < 0.05; **: P < 0.01; ***: P < 0.001.
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Supplementary Figure 1. Confirmation of the accuracy of the Fisher's combination test score.

A-C: Comparison of the Fisher's combination  ZF score distribution observed for the genes within 

the interactome and the genome background set (in black) to the χ2
(6)  expected distribution (in red) 

in YRI, CEU and CHB populations, respectively. D-F: Venn diagram of the genes with a signal of 

positive selection (P-value < 0.05) for the four tests in YRI, CEU and CHB, respectively.
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Supplementary Figure 2. Impact of positive selection in human populations as measured by 

four different tests based on polymorphism data among groups of genes divided according to 

the degree quartiles.

Genes were classified into four groups according to the degree quartiles calculated in the network. 
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The median of the positive selection score ± one median absolute deviation within each group is 

represented in the y-axis. A non-parametric ANOVA analysis was performed to contrast whether the 

medians of the positive selection scores were equal across the groups. A trend test on ranks was also 

been carried out to test for a linear relationship between the four quartiles (encoded from 1 to 4) and 

natural selection scores. A Tukey's honestly significant difference test was further applied to test for 

all pairwise differences. Significantly different pairs are marked with asterisks.  *: P < 0.05; **: P < 

0.01; ***: P < 0.001.



i
i

“thesis” — 2014/9/8 — 10:58 — page 239 — #269 i
i

i
i

i
i

Supplementary Figure 3. Impact of positive selection during recent human evolution among 

groups of genes classified according to their degree using a subset of independently evolving 

genes.

We obtained a subset of most likely unlinked genes involved in the network containing 2,793, 3,107 

and 3,108 genes in YRI, CEU and CHB, respectively, by randomly sampling one network gene 

located between two recombination hotspots (defined as a region where the observed recombination 

rates is greater than 10 times the genome recombination rate average).  Genes were classified into 

four groups according to the degree quartiles. The median of the ZF  scores ± one median absolute 

deviation within each group is represented in the  y-axis. A non-parametric ANOVA analysis was 

performed to contrast whether the median scores are equal across the groups. A trend test on ranks 

was also carried out to test for a linear relationship between the four groups (encoded from 1 to 4) 

and natural selection scores. A Tukey's honestly significant difference test was further applied to test 

for all pairwise differences. Significantly different pairs are marked with asterisks. *: P < 0.05; **: 

P < 0.01; ***: P < 0.001.
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Supplementary  Figure  4.  Impact  of  natural  selection  among  groups  of  genes  classified 

according to their degree controlling for confounding factors.

ZF and  2Δℓ  were used to estimate the impact of positive selection in human populations and in 

mammals,  respectively. DAF and  ω were used to  estimate the impact of purifying selection in 

human populations and in mammals, respectively. In order to test for an association between degree 

and positive selection scores controlling simultaneously for protein length,  expression level and 

expression  breadth,  we applied  a  linear  regression  between positive  selection  scores  and these 

factors.  The  linear  regression  residuals  were  then  used  to  perform the  Spearman's  correlation 

analysis, the non-parametric ANOVA and the linear trend test on ranks. Genes were classified into 

four groups according to the degree quartiles. The median of the residuals ± one median absolute 

deviation within each group are represented in the y-axis. A non-parametric ANOVA analysis was 

performed to contrast whether the medians of the scores are equal across the groups. A trend test  

was carried out to test for a linear relationship between the four groups (encoded from 1 to 4) and 

natural selection scores. A Tukey's honestly significant difference test was further applied to test for 

all pairwise differences. Significantly different pairs are marked with asterisks. *: P < 0.05; **: P < 

0.01; ***: P < 0.001.
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Supplementary  Figure  5.  Impact  of  natural  selection  among  groups  of  genes  classified 

according to their degree in the BioGRID high quality network.

Genes were classified into four groups according to the degree quartiles calculated in the network 

HQ. The median of the positive selection score used as  likelihood of  having been targeted by 

natural selection ± one median absolute deviation within each group is represented across the  y-

axis.  ZF and  2Δℓ  were used to infer the impact of positive selection in human populations and in 

mammals,  respectively. DAF and  ω were used to  estimate the impact of purifying selection in 

human populations and in mammals, respectively.  A non-parametric ANOVA analysis was been 

performed to contrast whether the medians of the scores were equal across the groups. A trend test 

on ranks was also carried out to test for a linear relationship between the four groups (encoded from 

1  to  4)  and natural  selection  scores.  A Tukey's  honestly  significant  difference  test  was  further 

applied to test for all pairwise differences. Significantly different pairs are marked with asterisks. *: 

P < 0.05; **: P < 0.01; ***: P < 0.001.
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Supplementary  Figure  6.  Impact  of  natural  selection  among  groups  of  genes  classified 

according to their degree in the Human Protein Reference Database network.

Genes were classified into four groups according to the degree quartiles calculated in the HPRD 

network. The median of the positive selection scores ± one median absolute deviation within each 

group is represented across the y-axis.  ZF and 2Δℓ  were used to estimate the likelihood of having 

been targeted by positive selection in human populations and in mammals, respectively. DAF and ω 

were used to estimate the impact of purifying selection in human populations and in mammals, 

respectively. A non-parametric ANOVA analysis was performed to contrast whether the medians of 

the positive selection scores are equal across the groups. A trend test on ranks was also carried out 

to test for a linear relationship between the four groups (encoded from 1 to 4) and natural selection 

scores. A Tukey's honestly significant difference test was further applied to test for all pairwise 

differences. Significantly different pairs are marked with asterisks. *: P < 0.05; **: P < 0.01; ***: P 

< 0.001.
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Supplementary  Figure  7.  Impact  of  natural  selection  among  groups  of  genes  classified 

according to their betweenness in the BioGRID network.

Genes were classified into four groups according to the betweenness quartiles calculated in the 

interactome. The 1st and 2nd groups were merged due to the uneven distribution of values. The 

median  of  the  positive  selection  scores  ±  one  median  absolute  deviation  within  each group is 

represented across the  y-axis.  ZF and  2Δℓ  were used to  estimate the  likelihood of  having been 

targeted by positive selection in human populations and in mammals, respectively. DAF and ω were 

used  to  estimate  the  impact  of  purifying  selection  in  human  populations  and  in  mammals, 

respectively. A non-parametric ANOVA analysis was performed to contrast whether the medians of 

the scores are equal across the groups. A trend test on ranks was also carried out to test for a linear 

relationship between the four quartiles (encoded from 1 to 3) and natural selection scores. A Tukey's 

honestly  significant  difference  test  has  been further  applied to  test  for  all  pairwise  differences. 

Significantly different pairs are marked with asterisks. *: P < 0.05; **: P < 0.01; ***: P < 0.001.
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Supplementary  Figure  8.  Impact  of  natural  selection  among  groups  of  genes  classified 

according to their closeness in the BioGRID network.

Genes were classified into four groups according to the closeness quartiles. The median of the 

positive selection scores ± one median absolute deviation within each group is represented across 

the  y-axis.  ZF and  2Δℓ  were used to estimate the  likelihood of having been targeted by positive 

selection in human populations and in mammals, respectively. DAF and ω were used to estimate the 

impact of purifying selection in human populations and in mammals, respectively. A non-parametric 

ANOVA analysis was performed to contrast whether the medians of the scores are equal across the 

groups. A trend test on ranks was also carried out to test for a linear relationship between the four 

quartiles  (encoded  from  1  to  4)  and  natural  selection  scores.  A Tukey's  honestly  significant 

difference test was further applied to test for all pairwise differences. Significantly different pairs 

are marked with asterisks. *: P < 0.05; **: P < 0.01; ***: P < 0.001.
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Supplementary Figure 9. Impact of positive selection during recent human evolution among 

groups of genes classified according to their degree  controlling for the effect of  purifying 

selection during mammalian evolution.

In  order  to  test  for  an  association  between  degree  and  the  ZF  score  controlling  for  purifying 

selection, we applied a  linear regression between  ZF and ω. The linear regression residuals were 

then used in a Spearman's correlation analysis, a non-parametric ANOVA and a linear trend test on 

ranks. Genes were classified into four groups according to the degree quartiles. The median of the 

residuals ± one median absolute deviation within each group is represented across the  y-axis. A 

Tukey's honestly significant difference test was further applied to test for all pairwise differences. 

Significantly different pairs are marked with an asterisk. *: P < 0.05; **: P < 0.01; ***: P < 0.001.
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Supplementary Figure 10. Impact of positive selection during human evolution among groups 

of genes divided according to their degree controlling for covariates of background selection.

In order to test for an association between degree and the  ZF  scores controlling for background 

selection,  we applied a  linear regression between  ZF and both the GC content  and the average 

population-specific recombination rate across the gene. The linear regression residuals were then 

used in a Spearman's correlation analysis, a non-parametric ANOVA and a linear trend test on ranks. 

Genes were classified into four groups according to their degree. The median of the residuals ± one 

median absolute deviation within each group is represented across the  y-axis.  A Tukey's honestly 

significant  difference  test  was  further  applied  to  test  for  all  pairwise  differences.  Significantly 

different pairs are marked with asterisks. *: P < 0.05; **: P < 0.01; ***: P < 0.001.
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Abstract (or Author Summary)

Detecting Darwinian selection in human genomic regions has been a recurrent

topic in human population genetic studies. Over the years, many positive selection

tests have been implemented to highlight specific genomic patterns left by a selec-

tive event when compared to neutral expectations. However, there is little consis-

tency among the regions detected in several genome-wide scans using different

tests: population-specific demographic dynamics, local genomic features or differ-

ent types of selection acting along the genome might explain such discrepancies.
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We have implemented a machine-learning classification framework that exploits

the combined ability of some positive selection tests to uncover different features

of a given selective sweep (such as completeness and oldness). Our simulation-cali-

brated framework estimates composite scores of several positive selection tests

while controlling for population-specific demographies within a hard sweep model

context. As a result, we increase the sensitivity toward hard selective sweeps while

adding insights about the completeness and oldness of the sweep. Our method also

allows to interpret the relevance of a given positive selection test under specific se-

lection scenarios. We calibrated and applied the method to three reference popula-

tions from The 1000 Genome Project to generate a genome-wide classification map

of hard selective sweeps that can be used to find putative regions under positive

selection in the human lineage. Different genomic patterns arise under specific de-

mographies and different time-spanning hard selective sweeps and, probably, dif-

ferent selection models (soft, balancing). This study is aimed at improving the way

a selective sweep is inferred by taking into account that such differences may exist

and can be used as proxies to understand better how natural selection has shaped

our genome. We found very few signals of hard sweep in the African population

analyzed, putatively appointing to alternative modes of adaptation at stake.

Author Summary (or Abstract)

Almost all the current methods to detect positive selection are designed to detect a

very specific type of selective sweep: the recent strong hard selective sweep. A hy-

pothetical beneficial mutation appears in a population (hard sweep model) and is

increased in frequency until it reaches fixation in a relatively short period of time

(strong selection coefficient). Allele fixation occurs at the present time (recent se-

lective event), leaving no time for mutation and recombination to recover previous

diversity levels and linkage disequilibrium patterns. While this type of sweeps ap-

pears to be common in some animal species (e.g. in some Drosophila species), in

human populations seem to be not so common: few have been detected in Out-of-

Africa populations and almost none have been found in African populations. Selec-

tion  on  standing  variation  (soft  sweep  model),  balancing  selection  or  different

types of hard sweeps (such as partial or old sweeps) may have played a bigger role
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in human evolution. Thus, we have developed a calibrated framework based on re-

alistic simulations that builds composite scores from different positive selection

tests to detect and classify different types of hard selective sweeps. With this new

approach we are able to increase sensitivity toward almost-fixed selective sweeps

and get insights about the relative oldness of a given selection signal. Once vali-

dated,  we applied the method to empirical  data of  three reference populations

from  The 1000 Genomes Project to generate a genome-wide classification map of

human hard sweeps.  Very few signals  were observed in the African population

studied, while our method presents higher sensitivity in this population. In the fu-

ture, our framework implementation could be used to include more types of selec-

tion (soft  sweeps,  balancing selection)  so they could be properly classified and

used to further understand how Darwinian evolution has shaped our genome.

Introduction 

Over the last few decades, many different methods to detect positive selection in

genomic regions have been developed. Such methods rely on the different genomic

patterns left by an hypothetical selection event occurring in an idealized human

population: a beneficial  de-novo mutation arises and increases its frequency in a

relatively low number of generations until it reaches population fixation at present

times, in what was called the hard sweep model. This process leaves some charac-

teristic patterns in the region surrounding the beneficial allele (selective sweep),

such as skewed site frequency spectrum towards low frequency variants, long link-

age disequilibrium haplotypes and population differentiation. Over the years, meth-

ods aimed at distinguishing such patterns have been developed and the genetic ba-

sis of some examples of human adaptation were confirmed, such as lactase persis-

tence allele [1,2] or malaria resistance gene variants [3–6]. However, most of such

methods usually lack consistency in reporting the same selective events along the

genome [7]. This disagreement might appear due to the specific method capacity

to uncover selection patterns under some local features of a local genomic region

(such as specific recombination maps) or due to specific demographic dynamics of

a given natural population. Thus, during the last decade, special effort was made to

incorporate population-specific demographic models and region-specific recombi-
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nation  maps to  approximate  the  neutral  model  to  more  complex  scenarios  [8].

However, while this approach improved the sensitivity to detect positive selection,

it did not explain the lack concordance between methods. Other hypothesis pointed

that other types of selection acting in the genome might explain such discrepan-

cies, like selection on standing variation and polygenic adaptation [9] or balancing

selection. Recently, a Bayesian method called CMS was developed and trained with

neutral and selection simulations with the aim to integrate the signals of different

positive selection tests in a composite score  [10,11]. This Bayesian method com-

bines the common signals shown by different positive selection tests under many

selection  scenarios  so  that  the  resulting  sensitivity  to  general  hard  selective

sweeps is increased. Nonetheless, the method did not try to uncover the specific

features of a given selective sweep, such as the extent of completeness (final allele

frequency of the selected allele) or the oldness of a selective event. We hypothesize

that these internal features of the hard sweep model might explain, in part, the ob-

served inconsistency between statistics signals so we can use them to uncover spe-

cific hard sweep features. Here, we applied a similar strategy (combination of neu-

trality scores through a machine-learning algorithm trained with simulations) with

the difference that our framework works by automatically giving more weight to

those tests that perform better at distinguishing between two simulated scenarios.

This approach increases the sensitivity toward hard selective sweeps and uncovers

some specific features of such sweeps. In the framework, we train different boost-

ing models with very specific coalescent simulations to use the resulting regression

functions as classification methods embedded in a hierarchical classification tree.

A boosting algorithm is a widely used machine-learning algorithm that estimates a

linear regression function of different input variables (here, positive selection test

scores) so it maximizes the differences between two competing scenarios (for ex-

ample, neutrality versus selection). Given an empirical genomic region for which

we know their positive selection test scores, our framework sequentially applies

different boosting functions in order to classify it based on the patterns observed

when simulating different selection scenarios. Accordingly, we trained our frame-

work with selection simulations with different final allele frequencies of the se-

lected allele (completeness of a selective sweep) and with different time-spanning

selective events (oldness of a selective sweep). After evaluating our method perfor-

mance through independent simulations we applied it to empirical genome-wide
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data from The 1000 Genomes Project  [12] with the objective of obtaining an im-

proved genome-wide map of positive selection in three reference human popula-

tions. To our knowledge, this is the first genome-wide attempt to build a machine-

learning classification method for hard sweeps in human populations.

A conservative average estimation of  0.47% of the genome exhibiting signals of

hard sweep in the three studied populations suggests that such selective events

were rare during human evolution. Moreover, we detected 13-fold and 15-fold de-

crease of signals in the African population as compared to the European and East

Asian populations, respectively, underlying the fact that adaptive processes may

have been different within and out of Africa.

Materials and Methods

Reference Empirical Dataset

We downloaded genome-wide single nucleotide variant (SNV) data representing

three continental populations -- Yoruba in Ibadan, Nigeria (YRI), Han Chinese in

Beijing,  China (CHB) and Utah residents with Northern and Western European

ancestry, USA (CEU) -- from the low-coverage Phase I release (April 2012) of The

1000 Genomes Project  [12].  After extracting all  polymorphic SNVs we counted

more than 24M segregating sites genome-wide. The SNV data was already phased

by The 1000 Genomes Consortium and its phasing state was kept in other to apply

haplotype-based  statistics.  We  also  downloaded  both  the  ancestral  allele  state

genome and the global genetic map provided by the consortium since this informa-

tion is required by some of the positive selection statistics used.

Coalescent Simulations

Coalescent simulations covered a total of 46 scenarios (45 with selection + 1 neu-

tral) simulating each one of the selected populations (CEU, CHB and YRI) under

population-specific demographic models (Figure 1). Additionally, the same 46 sce-

narios were replicated to obtain an independent dataset that was used for the eval-

uation process. We used the software cosi version 1.2.1 [13] to generate such simu-
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lations since it includes a tuned human demography for three continental popula-

tions of Northern Europe, Asian and African ancestry (CEU, JPT/CHB, and YRI). In

addition to the neutral scenario, this version of cosi is able to simulate classic se-

lective sweeps (hard sweep model) under specific constraints [10]. Three parame-

ters are required to simulate a hard selective sweep in cosi: selection coefficient,

time when the sweep ends and final allele frequency of the selected allele. We set

up these parameters to build 45 selection scenarios in a similar way to Grossman

et al. 2010 [10]. Cosi does not allow any population effective size change or migra-

tion between populations while selection is occurring. Accordingly, we removed mi-

gration between populations from the provided "best fit" demographic model and

simulated  selective  sweeps  in  a  period  when  population  effective  sizes  do  not

change in any population (between 10 Kya and 45 Kya). Generation time was set to

25 years,  as described in the original  paper.  In short,  nine classes of  selective

sweeps were simulated (grouped as Recent, Recent Long and Ancient selective

sweeps) spanning different time periods between 10 Kya and 45 Kya, and for each

class we also simulated five different final allele frequencies (FaF) for the selected

allele (grouped as Complete, Incomplete and Partial selective sweeps).  More de-

tails on the demographic and selection parameters used in our simulations are pro-

vided in Supporting Text S1. We also used the hotspot recombination model im-

plemented in the simulation package (recosim) in order to obtain more realistic

linkage disequilibrium patterns: this model incorporates features of recombination

hotspots observed in human populations data instead of a mean genome-wide re-

combination rate. We computed 3000 replicates for the neutral scenario and 100

replicates for each one of the 45 selection scenarios. For each replicate, we simu-

lated regions of 600 Kbp, to allow extended homozygosity statistics to calculate

properly the EHH decay, and 97, 85 and 88 diploid individuals for CEU, CHB and

YRI populations respectively, thus matching the sample size found in the reference

empirical dataset. Note that our demographic model, contrary to Grossman et al.

2010 [10], allowed for the last agricultural population size increase as in the origi-

nal  cosi publication.   Cosi's  'best fit'  demography was designed to produce se-

quence data that match different genome-wide evolutionary statistics distributions

but it does not simulates the site frequency spectrum (SFS) bias towards low-fre-

quency variants found in the low-coverage release of 1000 genomes Phase I [12].

Consequently, we applied a SFS thinning strategy to all simulations and replicates
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that randomly removed 48% of the singletons present in the all-together popula-

tions site frequency spectrum to adjust simulation data to the SFS found in the ref-

erence empirical dataset. Figure 2 shows the difference in relative site frequency

spectrum of empirical genome-wide data, original neutral simulations and thinned

neutral simulations for each population.

Implemented Positive Selection Tests

In order to detect positive selection in empirical genome-wide and simulated SNV

data we implemented an informatic pipeline including 21 different positive selec-

tion statistics (Table 1) that allowed us to parallelize the analysis in a computer

cluster. Pipeline design and detailed descriptions of the tests can be found in Pybus

et al., 2014 [14]. All the included tests were applied as described in their respec-

tive papers except for XP-EHH and iHS algorithms, which were modified to speed

up the calculations by increasing the EHH threshold from 0.05 to 0.15. Both modi-

fied versions were then verified to report signal of positive selection through simu-

lations. Positive selection tests based on regions, such those based on allele fre-

quency spectrum, were ran applying a sliding window approach, also described in

Pybus et al., 2014 [14]. For the empirical genome-wide data we developed a fur-

ther parallelization strategy which consisted in splitting the genome-wide data in

overlapping regions of 5Mb. Once the regions were analyzed with our 21 positive

selection statistics, their outputs were re-merged seamlessly to retrieve concate-

nated genome-wide results. For the simulation datasets we ran each positive selec-

tion test to the 600 Kbp simulated sequence, although we only used the results

from the central 25 Kbp region to train the algorithm and evaluate the results. For

that purpose, we used the positive selection scores obtained from the central 25

Kbp region containing the selected allele. To get a unique score per region we used

a specific summary statistic to each test so that it maximizes the selective sweep

signal in the central region, as explained below. After the validation process, only

11 positive selection statistics were used to train the machine-learning algorithm

as explained below.

Simulation and Positive Selection Test Validation
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One important step to use this method in empirical data was to validate all the pos-

itive selection tests we implemented. By comparing statistics’ scores on neutral

and selection simulations we were able to  confirm that most of  the tests  were

showing incremented signals on selective sweep simulations when compared to

neutral ones. This approach confirmed their suitability to report regions under pos-

itive selection in a human demographic context (Figure 3 and Supporting Fig-

ures S2). 'Best fit' demography was fine-tuned to match SFS, Fst and LD decay in

Schaffner et al. 2005 [13]. Having implemented those and more evolutionary statis-

tics we wanted to check that the score distributions at neutral simulations of our

positive selection tests were similar to those found in empirical genome-wide data.

The genome-wide distributions were obtained from analyzing 13,969 autosomal 25

Kbp regions separated by a distance of 200 Kbp each other. We also selected 102

autosomal  25kb  regions  that  have  putatively  evolved  neutrally  and  dispersed

throughout the genome. Those regions were selected to meet the following crite-

ria: (1) to be a least 100 Kbp away from any known or predicted gene or expressed

sequence tag or region transcribed into mRNA; (2) to be outside any segmental du-

plication or region transcribed into long noncoding RNA or conserved noncoding

element (as defined in Woolfe et al. 2007 [15]); (3) to be distant from each other by

at least 100 Kbp and not in LD each other. By manually checking the score distri-

bution of the positive selection tests implemented in the framework, we confirmed

a good correspondence between empirical and simulated datasets, thus confirming

the  suitability  of  the  chosen  demographic  model.  Figure  4 shows  distribution

plots, box plots and violin plots for neutral simulations, 1000 genomes genome-

wide data and the neutral subset of 1000 genomes data for dDAF, Tajima's D and

XP-EHH statistics in CEU / EUR population as reference examples. The rest of the

plots for the other statistics and populations can be found in Supporting Figures

S3. 

Score combination into window-based summary statistics

Positive selection statistics usually report scores for genomic regions of different

lengths and, in some cases, for individual SNVs. However, a common region size
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was needed in order to  compare and combine different  positive selection tests

within the boosting analysis. Accordingly, different region summarizing approaches

were evaluated for each positive selection test. We chose to work with a region of

25 Kbp and considered as summary statistics the maximum, minimum or mean

score across the region. To identify the best of these summary statistics for each

positive selection test, we considered the 25 Kbp window located at the center of

the simulated sequences, thus containing the selected allele. We then performed a

sensitivity  vs sensibility  analysis  comparing neutral  simulations  to  estimate the

false discovery rate to selection simulations with final allele frequencies of 0.8 and

1.0 to estimate the true positive rate. Thus, for each positive selection statistic we

computed three Receiver Operating Characteristic Curves (ROC Curves) and, for

each method, we chose summary statistics  showing the highest Area Under the

Curve (AUC) score (Table 3). 

The Hierarchical Boosting Framework

We define a boosting function as a linear regression function of positive selection

test scores that can be used as a classification method and that has been estimated

through a boosting algorithm. In our framework, the four different boosting func-

tions are sequentially considered within a hierarchical decision tree implementa-

tion (Figure 5). These boosting functions optimally combine each positive selec-

tion test ability to uncover specific properties of different selective sweeps. In or-

der to estimate the different boosting functions, we grouped the 45+1 simulated

datasets according to some common selective sweep features. After analyzing sev-

eral simulations under different selection parameters we found that the main force

driving statistics' scores was the final allele frequency of the selected allele (Fig-

ure 3). Hence, we decided to create groups of different selection scenarios accord-

ing to the final allele frequency of the selected variant as main property (Complete:

FAF=1.0,  Incomplete:  FAF=0.8  and  0.6,  Partial:  FAF=0.4  and  0.2  and  Neutral

scenarios)  and then,  according to the oldness  of  the simulated sweep (Recent:

sweep ends 10 Kya, Ancient: sweep ends 30 Kya). Having our simulation scenarios

groups defined (Figure 5) and their positive selection test scores calculated, we

ran the machine-learning algorithm to train boosting functions which allowed to



i
i

“thesis” — 2014/9/8 — 10:58 — page 258 — #288 i
i

i
i

i
i

classify competing groups of scenarios. To do so we used the positive selection

scores obtained from the central 25 Kbp region containing the selected allele using

an specific summary statistic to each test so that it maximizes the selective sweep

signal in the central region, as explained above (Table 3). Boosting algorithm esti-

mates regression  coefficients  for  input  positive selection tests  scores  from two

competing sets  of  scenarios (training datasets)  so that the resulting regression

score maximizes the differences between the two. This allows to set up a regres-

sion score threshold to, in turn, classify an unknown empirical or simulated ge-

nomic region for which we already know its individual positive selection scores. We

systematically verified coefficient convergence for every estimated boosting func-

tion (Supplementary Figures S8). To circumvent a putative convergence to local

instead of global optimal, and thus, to obtain a more robust regressions, we devel-

oped a bootstrapping strategy which is explained below. Thus, the estimated coeffi-

cients (Figure 6) have an amplitude according to their performance to distinguish

among distinct scenarios. We used the mean coefficient value for each positive se-

lection test to build our boosting functions. Then, using the reference set of simula-

tion replicates at a given step,  we calculated the thresholds for estimated regres-

sion scores that were needed to classify the evaluation datasets allowing 1% of

false discovery rate. According to the chosen decision tree scheme, the iterative

classification of a genomic region of interest is done as following:

(1a) if the Complete Boosting score is above the 99th percentile of the distri-

bution of the Complete Boosting scores for the training simulations under Neutral

scenario and Partial and Incomplete sweep scenarios, the region is classified as

Complete Sweep and go to step 2a, otherwise go to step 1b.

(1b) if the Incomplete Boosting score is above the 99th percentile of the dis-

tribution of the Incomplete Boosting scores for the training simulations under Neu-

tral scenario and Partial sweep scenarios, the region is classified as Incomplete

Sweep and go to step 2b, otherwise go to step 1c.

(1c) If not classified at iteration 1a or 1b, the genomic region is left unclassi-

fied and the algorithm stops.

(2a) If the Ancient/Recent Complete Boosting score is above the 99th per-

centile of the distribution of the Ancient/ancient Complete Boosting scores for the

training simulations under Complete Recent scenario the region is classified as An-

cient Complete Sweep, while if it is below  the 1th percentile of the distribution of
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the Ancient/Recent Complete Boosting scores for the training simulations under

Complete Ancient scenario the region is classified as Recent Complete Sweep , oth-

erwise the region remains only classified as Complete Sweep.

(2b) If the Ancient/Recent Incomplete Boosting score is above the 99th per-

centile of the distribution of the Ancient/ancient Incomplete Boosting scores for the

training simulations under Incomplete Recent scenario the region is classified as

Ancient Incomplete Sweep, while if it is below  the 1th percentile of the distribu-

tion of the Ancient/Recent Incomplete Boosting scores for the training simulations

under Incomplete Ancient scenario the region is classified as Recent Incomplete

Sweep , otherwise the region remains only classified as Incomplete Sweep.

Two more alternative classification  tree  configurations  were tested but  showed

lower performance (Supplementary Text S4). 

Boosting Algorithm, Bootstrapping and Quality Control

We have used the boosting algorithm as exactly implemented in Lin  et al, 2011

[16]: among different versions of boosting, they chose a logistic regression model

with only one predictor a time as base procedure, thus permitting an easy interpre-

tation of the relevance of each input variable. The loss of function used was the

squared error loss function, as described in the manuscript. Because the boosting

algorithm is predicted to be robust to overfitting we did not use an information-

based iteration stopping criteria: we allowed boosting to iterate enough times until

we observed that regression coefficients reached stable convergence. While testing

different combinations of positive selection tests to build our boosting predictors

we noted that, when highly correlated input variables were used, boosting algo-

rithm never reached coefficient convergence. Thus, once we removed correlated

positive selection statistics, we achieved coefficient convergence in only few hun-

dreds of iterations (Supplementary Figures S8). The boosting algorithm imple-

mentation we used and other relevant functions are available in the R package

mboost [17]. Each boosting was trained with different number of simulations de-

pending on each scenarios different number of replicates (Table 2). We decided to

apply a bootstrapping strategy to evaluate and correct differences in input sizes as

well as to show the robustness of the coefficients estimated. We trained 1000 times
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each boosting algorithm performing a 90% resampling of input data from each

competing scenarios. To build the final boosting regression function we used the

mean coefficient values from the resampling procedure (Figure 6). All together,

the following quality control analysis was performed to choose the positive selec-

tion statistics to be included in the boosting framework:

1.  Comparison  of  distributions  from  Neutral  simulations  with

Genome-wide and Putatively Neutral Real data: a poor match between the

scores distributions of a given test in genome-wide empirical data compared with

neutral  or  selection simulations was considered as strong reason for  excluding

such test from an empirical analysis. We removed Fu's F statistic according to this

criteria (Supporting Figures S3). 

2. Correlation among positive selection statistics and with recombi-

nation rate, GC content and read coverage:  highly correlated input statistics

had to be removed to facilitate coefficient convergence and avoid overfitting dur-

ing the training process. We analyzed the correlation between statistics and other

variables under neutral, selection and empirical genome-wide data. Purifying se-

lection, through background selection (BGS), can produce signatures that can be

confounded with positive selection by tests based on DNA polymorphism [18]. We

controlled for such the putative confounding effect of BGS using genomic  covari-

ates (recombination rate and GC content). Moreover, the power of detecting rare

variants depends on the read coverage [12], making the SFS-based tests putatively

correlated of the sequencing depth. Those putative correlations could bias the final

boosting score regarding local properties of the analyzed region. Figure 9 shows

the correlation analysis between positive selection tests and with recombination in

empirical genome-wide data: Wall's B, Wall's Q, Za, ZnS, R2, Fu & Li's F were

removed following this criteria. Population-specific correlation plots in empirical

and simulated data are shown in Supporting Figures S5.

3. Intrinsic nature of the statistic: cross-population non-directional sta-

tistics show the same signal either selection is happening on the target population

or on the reference one.  Fst is a clear example of this, so it can not be used for

training population-specific boosting algorithms.  XP-EHH  and  dDAF are cross-

population directional tests but since boosting algorithm can handle negative and

positive values, all negative values for these two tests were set to zero to avoid
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confounding signals before the boosting training was applied. XP-CLR is a cross-

population directional test reporting only positive values, so its output did not need

to be modified.  Dh statistic was discarded because it is not a positive selection

test.

At the end, 11 positive selection statistics were selected as being suitable for a

combined boosting analysis.  Table 4 summarizes the quality control process ap-

plied to all the implemented statistics and its outcome.

Results

Method Performance

Using an independent set of evaluation simulations (same parameters as the train-

ing dataset) we evaluated our framework performance through two methods: its

ability to classify selection scenarios and its sensitivity compared to the positive se-

lection tests used as input variables. To evaluate its classification power we calcu-

lated population-average false and true positive rates for each scenario in the eval-

uation dataset (Table 5  and Table 6).  Equivalent population-specific tables are

found in Supporting Text S6. Note that unclassified cases are also taken into ac-

count yet we do not consider them as negative results. Population-averaged, our hi-

erarchical boosting implementation was able to classify the evaluation scenarios

with  low false  positive  rates  (5.37%).  Many cases  were  left  unclassified  (false

negatives,  28.14%), making the hierarchical boosting a conservative method. It

also showed different true positive rates depending on the scenario to classify:

complete  sweeps  were  easier  to  classify  (89.58%)  than  incomplete  sweeps

(43.04%),  explained  because  most  of  the  positive  selection  tests  were  imple-

mented to detect hard sweep upon important final allele frequency of the selected

variants.  Recent complete sweeps (25.41%)  were better classified than ancient

complete sweeps (23.76%). The same pattern was observed with incomplete re-

cent sweeps (18.89%) and incomplete ancient sweeps (11.00%). A selection signal

is expected to be stronger in recent sweeps because the recovery phase have less

time to affect genomic region diversity. When looking at population-specific perfor-
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mance we noted that hierarchical boosting was performing better in the simulated

African-ancestry  population  (93.44% for  complete  and  52.27% for  incomplete

sweeps) than in the simulated Out-of-Africa populations (87.64% for complete and

38.97% for incomplete sweeps).  On the other hand, we compared independently

the power of each statistic used in our boosting functions and the method itself.

For that purpose we calculated the true positive rate observed among a group of

selective sweep simulations at a given false discovery rate assessed on neutral sim-

ulations alone. We observed an improvement of our method to detect sweeps re-

gardless final allele frequencies (Figure 7, Supporting Text S6). While individual

positive selection statistics may show a comparable sensitivity to  Complete and In-

complete  boosting  functions,  like  XP-EHH and  iHS respectively,  our  method

showed higher sensitivity at different final allele frequencies overall, probably be-

cause the unifying power of the hierarchical classification scheme. We controlled

for confounding factors and local genomic features that might bias the application

of the method to empirical genome-wide data. To evaluate the robustness of our

method to such features we performed a correlation analysis between the obtained

boosting scores and recombination rate, GC content and read coverage. Neither

feature showed correlation with selected individual positive selection tests or the

hierarchical boosting itself (Supporting Figures S5).

Application to 1000 Genomes Data

We applied our population-specific hierarchical boosting method to the reference

empirical genome-wide data that was used to  calibrate the simulations on which

relies the framework.  We obtained a list of 25 Kbp widows per population that

were classified according to the different boosting functions described above (Ta-

ble 7). Overall, higher number of windows were classified as Incomplete rather

than Complete. This is expected as complete sweeps should be surrounded by in-

complete signals due to the genetic  hitchhiking effect.  Yet more windows were

classified as being Recent than Ancient,  probably explained because the higher

sensitivity of the positive selection tests towards recent selective events than to old

ones. From a population-specific point of view, much less windows were reported

to be under selection in YRI population than in the CEU and CHB populations. A
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population average of 0.47% of over 103,000 genome-wide 25 kbp windows were

classified  as  being  either  complete  or  incomplete  (CEU:0,6%,  CHB:0.8%,

YRI:0,03%). We also observed more windows showing recent rather than ancient

selection signal, as expected (Table 7). However, the number of 25 Kbp windows

showing  evidence  of  selection  does  not  inform  about  the  number  of  selective

events that happened or are happening along the genome and that are detectable

using this  framework.  The strength of  selection and the recombination hotspot

map of a local region determine how much a selective sweep signal would span for

a given selective event as observed in many cases of positive selection. Thus, we

implemented an algorithm that concatenates consecutive 25 Kbp windows accord-

ing to their proximity, allowing for valley of non-significant scores as long as they

do not contain any recombination hotspot (for details see  Supplementary Text

S7). After applying the algorithm we counted 27, 355 and 424 selective events in

YRI, CEU and CHB populations, respectively  (Table 8; Supporting Table S9).

Roughly, a 13-fold and 15-fold decrease in the number of selective events was de-

tected in YRI population with respect to CEU and CHB populations, respectively.

Additionally,  we  classified  the  selective  events  according  to  boosting  function

scores  showing  significance  in  the  genomic  region  encompassing  the  selective

sweep signal (Table 8). One satisfying result is the excellent classification of the

selective events detected. Indeed, we observed few signals with any ambiguity for

the Class (Complete or Incomplete): only 10.2% of the identified selective sweeps

in any of the three populations (0%, 7.6% and 12.1% in only YRI, CEU and CHB,

respectively)  encompass  significant  scores  for  both  Complete  and  Incomplete

Boosting functions  (Table 8). Moreover, those ambiguous signals exhibit a much

longer size and lower proportion of significant scores as compared to unambiguous

signals (Supplementary Text 7); hence, most of those signals may actually arise

from different adjacent independent selective events. On the other hand, most of

the selective events could not be assigned to a selective sweep Type (Ancient or

Recent):  59.4% of the identified selective sweeps in any of the three populations

(44.4%, 71.5% and 50.2% in only YRI, CEU and CHB, respectively) could be as-

signed a given Type.  This demonstrates the difficulty to asses the oldness of  a

sweep. However, we have designed here a very conservative framework for that

purpose, as demonstrated by the very low number of regions with a signal that has
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been assigned to both Recent and Ancient selective sweep (0%, 0.6%, 2.4% and

1.5% in YRI, CEU, CHB and any of the three populations, respectively). Finally, as

signaled when describing the results for individual 25 Kbp windows, we detected

overall  more than twice Recent  sweeps than Ancient ones (28.0% and 11.0%,

respectively). However, this trends is clearly driven by selective events in CEU and

CHB, while in YRI we observe a slightly higher number of Ancient selective sweeps

than Recent ones (29.6% and 25.9%, respectively)

We generated UCSC supertracks to easily visualize our hierarchical boosting re-

sults  in  any  UCSC  Genome  Browser  server.  Visualizing  selective  sweeps  in  a

genome browser helps to properly evaluate their genomic context and allows to in-

terpret their strength and properties to propose putative candidate genes under

positive selection. Figure 8 shows four known examples of selection in the popula-

tions analyzed:  LCT and  SLC24A5 genes in CEU population,  EDAR gene in CHB

and  DARC gene in YRI. These supertracks and the raw hierarchical boosting re-

sults can be found in a local implementation of the UCSC Browser of our institute.

We also provide raw scores of the 21 original positive selection tests used in this

project and their estimated p-value under population-specific neutral expectations

(http://hsb.upf.edu/).  We did not  attempted to speculate about  the phenotypic

consequences of the detected selective events because extensive functional analy-

sis are usually needed to do so.
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Discussion

Interpretation of the Estimated Boosting Functions

In order to properly compare the regression coefficients assigned to each positive

selection statistics within a given boosting function, we standardized them as in

Lin  et al. 2011  [16].  We multiplied the estimated coefficients of each test by the

square root of the variance observed in the related statistic  distribution across

replicates from both competing scenarios. The standardized coefficient assigned to

a positive selection test in a boosting function (Figure 6) gives some insight on

how well a given test is performing to distinguish between the two competing sce-

narios. We observe that to highlight complete sweeps against the other scenarios

the two most important statistics are, in order of importance, XP-EHH, dDAF, Fu

& Li's D, Omega and CLR. On the other hand, to detect incomplete sweeps, our

boosting functions relied mostly on iHS, XP-CLR and Fay & Hu's H. For recent

complete sweeps, XP-EHH contributed the most along with EHH Average and Fu

& Li's D.  Instead, for complete ancient sweeps,  dDAF  and Tajima's D are the

ones more relevant. Within incomplete sweeps cases, iHS highlights recent selec-

tion patterns while  dDAF defines more ancient ones. We observe that all three

populations show very similar boosting function coefficients,  indicating that the

method is  robust to continental human demography (Figure 6). These results are

also in agreement with the estimated power of each statistic to detect a selective

sweep with a given final allele frequency (Supporting Text S6). 

Missing Hard Sweep Signals in Yoruba Population

We report less selective events or regions under selection (13-fold  and  15-fold

reduction)  in  African-ancestry  populations  (YRI)  than  Out-of-Africa  populations

(CEU and CHB, respectively). A similar pattern was observed in previous works

[19]. In these studies, the authors hypothesize that this lack of hard sweep signals

might be attributed to (i) the SNV ascertainment bias present in the chip-array

data they used in their studies or (ii) the use of positive selection tests with puta-

tively less power in African ancestry populations because particular genomic fea-
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tures (shorter LD, higher diversity) . They also proposed as an alternative explana-

tion, a scenario in which selection acted on standing variation. The present study is

able to overcome both methodological caveats since (i) it relies on sequencing data

without explicit ascertainment bias to a specific population, and (ii) the hierarchi-

cal  boosting  framework  shows  greater  power  to  uncover  selective  events  for

African-ancestry  populations  than  Out-of-Africa  populations  (EUR  and  ASN)  as

shown in  Supporting Text S6.  Assuming that there is no biological reason for

African populations to have suffered from less selection pressure than Out-of-Africa

populations, we suggest that this 10-fold difference is likely due to selection acting

on standing variations (soft sweep),  rather than de-novo mutations (hard sweep),

segregating in African-ancestry populations and, unfortunately, out of the scope of

our  framework.  Furthermore,  the  Out-of-Africa  human diaspora  likely  occurred

through serial founder effects, a specific case of population bottlenecks. Such de-

mographic scenario seems to increase the rates of fixation of favored alleles [20].

This would imply that complete hard sweeps were more frequent Out-of-Africa, as

observed  in  the  present  study.  Alternatively,  Wilson  et  al.  2014  [21] recently

showed that population bottlenecks can lead a soft sweep to leave molecular foot-

prints expected under the hard sweep model.  Indeed, under this specific demo-

graphic scenario, it is likely that only one unique haplotype carrying the standing

favored mutation is sampled. Unfortunately, the coalescent framework used here to

generate training simulations does not allow the implementation of selective sce-

narios on a standing variant.  Therefore,  we could not assess whether the hard

sweeps signals observed in Out-of-Africa populations are driven by selective sweep

on de-novo or standing mutations, that is by hard or soft sweeps, respectively. Fur-

ther work is necessary to include even more alternative selective scenarios in our

framework  implementation.  This  could  provide  more  insights  on  the  modes  of

adaptation at stake and their relative importance during human population evolu-

tion. However, this study already appoints that hard sweeps have definitely not

been common in African populations (or at least in Yoruba studied here), and un-

derlines the dramatic role of demography in understanding human adaptation.
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Figure Legends

Figure 1. Coalescent simulations. 

Simulations were run following a calibrated human demography that resembles

population genetic data from three reference continental populations (YRI, CEU

and CHB, from left to right) [Schaffner et al. 2005]. Nine different time-spanning

selective sweep were simulated (grouped as Neutral,  Recent,  Recent Long and

Ancient) allowing for five different final allele frequencies (FaF = 0.2 ,0.4, 0.6, 0.8

and 1.0).

Figure 2. Demography validation. 

The difference in relative site frequency spectrum (SFS) of neutral simulations and

genome-wide 1000 genomes data is shown. In dashed lines, the original  cosi de-

mography (no migration) without thinning applied. In solid lines, same demogra-

phy after singleton thinning. Incomplete matching at the low-frequency region af-

ter thinning process is explained by inaccuracies of the ’bestfit’ model. Whereas

the slight deviation at the high-frequency region is explained due to the lack of mi-

gration in the demographic model used, which would bring back ancestral alleles

already fixed in the target population. However, the SFS match is overall adequate

to use the neutral simulations as a reference selectively neutral model.

Figure 3.  Comparison of positive selection score along the simulated se-

quence under selective and neutral scenarios.

Summary statistics for three neutrality tests (dDAF, Tajima’s D and XP-EHH, re-

spectively) in simulated EUR population for the Complete scenario (brown), the In-

complete scenario (red),  the Partial  scenario (orange) and the Neutral scenario

(blue) along the simulated sequence length (600 Kbp). Simulated sequence was di-

vided in 25 Kbp regions and a specific summary statistic was applied for each test.

The thick line indicates the mean score across the replicates whereas the shape

represents two mean standard errors.  (A)  dDAF uses the maximum of individual

scores within the 25 Kbp regions; (B) Tajima’s D uses the minimum of individual

scores within the 25 Kbp regions and (C) XP-EHH uses the average of individual
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scores within the 25 Kbp regions. Population-specific plot for each one of the sta-

tistics implemented can be found in Supporting Figures S2.

Figure 4. Positive selection test and simulation validation. 

Distribution plots, box plots and violin plots for dDAF (A-B), Tajima’s D (C-D) and

XP-EHH (E-F) summary scores (Table 3) in neutral simulation data, genome-wide

1000 Genomes data and the neutral subset of 1000 genomes data for EUR / CEU

population.  Plots for the rest of the statistics and populations can be found in Sup-

porting Figures S3.

Figure 5. Hierarchical boosting classification tree.

The implemented classification tree was organized in two levels: an unknown ge-

nomic region is firstly classified according to the completeness of the sweep, being

either Complete, Incomplete or Unclassified. In a second step, it is then classified

according to the oldness of the sweep, being Ancient, Recent or Unclassified. The

algorithm can be described as following: (1a) if the Complete Boosting score is

above the 99th percentile of the distribution of the Complete Boosting scores for

the training simulations under Neutral scenario and Partial and Incomplete sweep

scenarios, the region is classified as Complete Sweep and go to step 2a, otherwise

go to step 1b. (1b) if the Incomplete Boosting score is above the 99th percentile of

the distribution of the Incomplete Boosting scores for the training simulations un-

der Neutral scenario and Partial sweep scenarios, the region is classified as Incom-

plete Sweep and go to step 2b, otherwise go to step 1c. (1c) If not classified at iter -

ation 1a or 1b, the genomic region is unclassified and stop. (2a) If the Ancient/Re-

cent Complete Boosting score is above the 99th percentile of the distribution of the

Ancient/ancient Complete Boosting scores for the training simulations under Com-

plete Recent scenario the region is classified as Ancient Complete Sweep, while if

it is below  the 1th percentile of the distribution of the Ancient/Recent Complete

Boosting scores for the training simulations under Complete Ancient scenario the

region is classified as Recent Complete Sweep , otherwise the region remains only

classified  as  Complete  Sweep.  (2b)  If  the  Ancient/Recent  Incomplete  Boosting

score is above the 99th percentile of the distribution of the Ancient/ancient Incom-

plete Boosting scores for the training simulations under Incomplete Recent sce-

nario the region is classified as Ancient Incomplete Sweep, while if it is below  the
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1th percentile of the distribution of the Ancient/Recent Incomplete Boosting scores

for the training simulations under Incomplete Ancient scenario the region is classi-

fied as Recent Incomplete Sweep , otherwise the region remains only classified as

Incomplete Sweep.

Figure 6. Standardized coefficients for the three populations and imple-

mented boosting functions. 

Estimated coefficients for each population in the four boosting functions used in

the classification tree: Complete  (A), Incomplete  (B), Complete Recent / Ancient

(C) and Incomplete Recent / Ancient  (D). The relevance of the positive selection

statistics to classify the different scenarios is given by the strength of its standard-

ized coefficient.

Figure 7. Sensitivity analysis for Complete and Incomplete Boostings and

other positive selection statistics. 

Upper panel: for each method, ROC curves were separately performed for the

different selective scenarios, as defined by the Final Allele Frequency (FaF). For

that purpose, we assessed the thresholds corresponding to a given specificity (false

positive rate across the x-axis) using as a reference the summary statistic distribu-

tion observed for the 25 Kpb central regions of the 3000 replicates for the neutral

scenario; in turn, the sensitivity (true positive rate across the  y-axis) was calcu-

lated as the proportion of the summary statistics for the 25 Kpb central regions

across the 600 replicates of the analyzed selective scenario above this threshold.

The line colors  appear as described in the lower panel.  Lower panel: The Area

Under the Curve (AUC) score for each for each method and selective scenario (as

defined by the FaF). For direct visualization of the performance, we plotted a circle

proportional to the AUC besides the AUC value is provided as well.

Figure 8.  Classic  examples of  positive selection as seen by hierarchical

boosting. 

A UCSC supertrack containing our hierarchical boosting results for each target

population was generated: Complete signal is shown in red, Incomplete signal is

shown in orange, Recent signal is shown in blue and Ancient signal is shown in vio-



i
i

“thesis” — 2014/9/8 — 10:58 — page 276 — #306 i
i

i
i

i
i

let. The 1% significance thresholds for each boosting were also included. Changing

the supertrack overlaying visualization to ”none” splits the hierarchical boosting

results into individual tracks. (A) Complete Recent sweep signal in the region sur-

rounding  LCT in  CEU;  (B) Complete  sweep  signal  in  the  region  surrounding

SLC24A5 in CEU; (C) Incomplete sweep signal in the region surrounding EDAR in

CHB and (D) Complete Ancient sweep signal in the region surrounding DARC in

YRI. More information about how to interpret the supertracks can be found in our

blog (http://hsb.upf.edu/)
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Supporting Information 

Supporting Text S1. Selection and demographic parameters for cosi simulator.

Supporting Figures S2. Population-specific selection signal plots along the simu-

lated sequence length.

Supporting Figures S3. Distribution plots of positive selection tests in simu-

lated and empirical genome-wide population-specific data.

Supporting Text S4. Testing alternative classification tree configurations.

Supporting Text S5.  Population-specific correlation matrices for neutral and

empirical genome-wide data.

Supporting Text S6. Performance analysis for each  population-specific hierarchi-

cal boosting.

Supporting Text S7. Estimating the number of selective events detected in 1000

genomes data

Supporting Figures S8.  Coefficient convergence for each population-specific

hierarchical boosting.

Supporting Table S9. Regions encompassing putative selective events.
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Tables

Table 1. Implemented positive selection tests. 

Method Family Method Reference Analyzed window size Reporting  window

size

Allele Frequency Spectrum Tajima's D [31] 30 Kbp 3 Kbp

CLR [35] variable size 2 Kbp

Fay and Wu's H [36] 30 Kbp 3 Kbp

Fu and Li's F* [37] 30 Kbp 3 Kbp

Fu and Li's D* [37] 30 Kbp 3 Kbp

R² [38] 30 Kbp 3 Kbp

Linkage Disequilibrium XP-EHH modified from [24] variable size SNV-based

diHH modified from [22] variable size SNV-based

iHS modified from [22] variable size SNV-based

Omega [23] variable size 0.1 Kbp

EHH Average modified from [24] 30 Kbp 3 Kbp

Wall's B [25] 30 Kbp 3 Kbp

Wall's Q [26] 30 Kbp 3 Kbp

Fu's F [27] 30 Kbp 3 Kbp

Dh [28] 30 Kbp 3 Kbp

Za [29] 30 Kbp 3 Kbp

ZnS [30] 30 Kbp 3 Kbp

ZZ [29] 30 Kbp 3 Kbp

Population Differentiation Fst (global and pairwise) [32] SNV-specific SNV-based

dDAF [33] SNV-specific SNV-based

XP-CLR [34] 0.1 cM (max. window) 2 Kbp
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Table 2. Number of replicates used in each boosting analysis.

Boosting Scheme Number of replicates used

Complete* vs Incomplete*+Partial*+Neutral 900 vs 6600

Incomplete* vs Partial*+Neutral 1800 vs 4800

Complete Ancient vs Complete Recent 300 vs 300

Incomplete Ancient vs Incomplete Recent 600 vs 600
* Recent, Recent Long and Ancient

Table 3. Selection of the best region summarizing approach for each positive se-

lection test.

Statistic Mean Min / Max Best Approach

dDAF 0.5945 0.9893 (Max) MAX

Fst 0.9052 0.9901 (Max) MAX

XP-CLR 0.7009 0.6990 (Max) MEAN

diHH 0.8220 0.6562 (Max) MEAN

iHS 0.9673 0.8130 (Max) MEAN

XP-EHH 0.9947 0.9839 (Max) MEAN

EHH Average 0.9253 0.8495 (Max) MEAN

Omega 0.7882 0.7983 (Max) MAX

CLR 0.7457 0.7327 (Max) MEAN

Tajima's D 0.9684 0.9735 (Min) MIN

Fu & Li's D* 0.8793 0.8828 (Min) MIN

Fu & Li's F* 0.9541 0.9504 (Min) MEAN

Fay & Wu's H 0.8042 0.7811 (Min) MEAN

R² 0.9689 0.9743 (Min) MIN

Fu's F 0.7734 0.7549 (Min) MEAN

Dh 0.9949 0.9948 (Min) MEAN

Wall's B 0.4879 0.5651 (Max) MAX

Wall's Q 0.4594 0.5354 (Max) MAX

Za 0.4504 0.5301 (Max) MAX

ZnS 0.4401 0.5215 (Max) MAX

ZZ 0.4516 0.5147 (Max) MAX
Positive selection test scores were unified for a fixed region size in order to be used in the boosting

analysis. Region size was set to 25 Kbp. Mean, maximum and minimum summary statistics were eval -

uated in EUR simulations.
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Table 4. Quality Control analysis. 

Statistic Distribution

Analysis

Correlation among Statistics Statistic Properties 

dDAF ---- Fst cross-population directional

Fst ---- dDAF cross-population non-directional

XP-CLR ---- ---- cross-population directional

diHH ---- ---- fails on complete sweeps

iHS ---- ---- fails on complete sweeps

XP-EHH ---- ---- cross-population directional

EHH Average ---- ---- ----

Omega ---- ---- only sensitivity at FaF=1.0

CLR ---- ---- artifact at low SNV density A

Tajima's D ---- R² / Fu & Li's F* ----

Fu & Li's D* ---- Fu & Li's F* ----

Fu & Li's F* ---- Fu & Li's D* / Tajima's D / R² ----

Fay & Wu's H ---- ---- ----

R² ---- Fu & Li's F* / Tajima's D ----

Fu's F inconsistent ---- ----

Dh ---- ---- not a positive selection test

Wall's B ---- Wall's Q / Za / ZnS low sensitivity 

Wall's Q ---- Wall's B / Za / ZnS low sensitivity 

Za ---- Wall's Q / Wall's B / ZnS low sensitivity 

ZnS ---- Wall's Q / Za / Wall's B low sensitivity 

ZZ ---- ---- low sensitivity 

Criteria used to ascertain suitability of a positive selection test to be used in our boosting analysis in

combination with the other tests. Removed statistics and main reasons are marked in bold
A masked in low-density regions in empirical data  
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Table 5. Average hierarchical boosting classification power for the three popula-

tions in True Positives evaluation scenarios. 

Scenarios to Classify Hierarchical Boosting Classification

Class Type Correct

Class

Correct

Class  &

Type

Wrong

Class

Wrong

Type

Partial/Ne

utral

Complete Recent 87.59% 25.41% 1.83% 1.81% 10.58%

Complete Recent

Long

91.10% --------- 2.67% ---------- 6.23%

Complete Ancient 90.05% 23.76% 1.78% 0.44% 8.17%

Incomplete Recent 55.67% 18.89% 10.45% 1.50% 33.89%

Incomplete Recent

Long

50.67% --------- 4.44% ---------- 44.89%

Incomplete Ancient 23.89% 11.00% 11.05% 0.00% 65.06%

average 66.49% 19.77% 5.37% 1.18% 28.14%
Population-specific True Positive tables can be found in Supporting Text S6.

Table 6.  Average hierarchical boosting classification power for the three popula-

tions in True Negative evaluation scenarios. 

Scenarios to Classify Hierarchical Boosting Classification
Class Type Wrong Class Partial/Neutral
Neutral Neutral 0.20% 99.80%
Partial Recent 0.95% 99.05%
Partial Ancient 1.17% 98.83%

Population-specific True Negative tables can be found in Supporting Text S6.

Table 7. Regions of 25 Kbp in genome-wide 1000 genomes data classified as being

under selection. 

Classified as CEU CHB YRI
Complete 263 427 18
- Complete Ancient 1 18 6
- Complete Recent 77 119 0
Incomplete 394 451 16
- Incomplete Ancient 27 69 5
- Incomplete Recent 29 81 9
number of 25 Kbp regions analyzed 103215 103617 103496

Due to the hierarchical nature of the method, a region classified as Complete cannot be classified as

Incomplete at the same time. Within each of these two classes, regions can be classified as Recent,

Ancient or not classified.
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Table 8. Classification of the putative selective events detected.

Population Class Ancient Recent Ancient &
Recent

Undefined Total Proportion

YRI Complete &
Incomplete

0 0 0 0 0 0.000

Complete 4 0 0 10 14 0.519

Incomplete 4 7 0 2 13 0.481

Total 8 7 0 12 27 1.000

Proportion 0.296 0.259 0.000 0.444 1.000 1.000

CEU Complete &
Incomplete

3 9 2 13 27 0.076

Complete 1 42 0 76 119 0.335

Incomplete 21 23 0 165 209 0.589

Total 25 74 2 254 355 1.000

Proportion 0.070 0.208 0.006 0.715 1.000 1.000

CHB Complete &
Incomplete

10 25 6 14 55 0.130

Complete 8 76 1 98 183 0.432

Incomplete 38 44 3 101 186 0.439

Total 56 145 10 213 424 1.000

Proportion 0.132 0.342 0.024 0.502 1.000 1.000

Globala Complete &
Incomplete

13 34 8 27 82 0.0102

Complete 13 118 1 184 316 0.392

Incomplete 63 74 3 268 408 0.506

Total 89 226 12 479 806 1.000

Proportion 0.110 0.280 0.015 0.594 1.000 1.000
A putative selective event (as defined in Supporting Text S7) is assigned to a given class , i.e. Com-

plete or Incomplete, when the genomic region encompassing the signal contains 25 Kbp windows

with a significant score only for Complete or Incomplete boosting, respectively. If significant scores

are observed for both Complete and Incomplete Boostings, the selective event is defined as both

Complete & Incomplete. Similarly, the type of the selective event (Ancient or Recent) is assigned

when the genomic region encompassing it only contains 25 Kbp windows with a significant score for

the related boosting, i.e. Ancient/Recent Complete, Ancient/Recent Incomplete boosting or one of the

two, if the selective event was classified as Complete, Incomplete or both, respectively. 
a Global refers to the analysis overall the three populations. 
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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mann T, et al. The genetic prehistory of southern Africa. Nature
communications. 2012 Jan;3:1143.

[113] Akey JM. Constructing genomic maps of positive selection in
humans: where do we go from here? Genome research. 2009
May;19(5):711–22.

[114] Kelley JL, Madeoy J, Calhoun JC, Swanson W, Akey JM. Genomic
signatures of positive selection in humans and the limits of outlier
approaches. Genome research. 2006 Aug;16(8):980–9.

[115] Teshima KM, Coop G, Przeworski M. How reliable are em-
pirical genomic scans for selective sweeps? Genome research.
2006;16(6):702–712.

302



i
i

“thesis” — 2014/9/8 — 10:58 — page 303 — #333 i
i

i
i

i
i

[116] Zeng K, Fu Yx, Shi S, Wu Ci. Statistical Tests for Detecting Pos-
itive Selection by Utilizing High-Frequency Variants. Genetics.
2006;174:1431–1439.

[117] Zeng K, Shi S, Wu CI. Compound tests for the detection of hitch-
hiking under positive selection. Molecular biology and evolution.
2007 Aug;24(8):1898–908.

[118] Watterson Ga. The homozygosity test of neutrality. Genetics. 1978
Feb;88(2):405–17.

[119] Grossman SR, Andersen KG, Shlyakhter I, Tabrizi S, Winnicki S,
Yen A, et al. Identifying recent adaptations in large-scale genomic
data. Cell. 2013 Feb;152(4):703–13.

[120] Lin K, Li H, Schlötterer C, Futschik A. Distinguishing positive se-
lection from neutral evolution: boosting the performance of sum-
mary statistics. Genetics. 2011 Jan;187(1):229–44.

[121] Schapire RE. The strength of weak learnability. Machine Learning.
1990 Jun;5:197–227.

[122] Pritchard JK, Pickrell JK, Coop G. The genetics of human adapta-
tion: hard sweeps, soft sweeps, and polygenic adaptation. Current
biology : CB. 2010 Feb;20(4):R208–15.

[123] Hamblin MT, Di Rienzo A. Detection of the signature of natural
selection in humans: evidence from the Duffy blood group locus.
American journal of human genetics. 2000 May;66(5):1669–79.

[124] Tishkoff Sa, Reed Fa, Ranciaro A, Voight BF, Babbitt CC, Silver-
man JS, et al. Convergent adaptation of human lactase persistence
in Africa and Europe. Nature genetics. 2007;39(1):31–40.

[125] Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Dickson
M, Grimwood J, et al. Widespread parallel evolution in stickle-
backs by repeated fixation of Ectodysplasin alleles. Science (New
York, NY). 2005 Mar;307(5717):1928–33.

303



i
i

“thesis” — 2014/9/8 — 10:58 — page 304 — #334 i
i

i
i

i
i

[126] Jeong S, Rebeiz M, Andolfatto P, Werner T, True J, Carroll
SB. The evolution of gene regulation underlies a morphologi-
cal difference between two Drosophila sister species. Cell. 2008
Mar;132(5):783–93.

[127] Scheinfeldt LB, Biswas S, Madeoy J, Connelly CF, Schadt EE,
Akey JM. Population genomic analysis of ALMS1 in humans re-
veals a surprisingly complex evolutionary history. Molecular biol-
ogy and evolution. 2009 Jun;26(6):1357–67.

[128] Hermisson J, Pennings PS. Soft sweeps: molecular population
genetics of adaptation from standing genetic variation. Genetics.
2005 Apr;169(4):2335–52.

[129] Innan H, Kim Y. Pattern of polymorphism after strong artifi-
cial selection in a domestication event. Proceedings of the Na-
tional Academy of Sciences of the United States of America. 2004
Jul;101(29):10667–72.

[130] Orr HA, Betancourt AJ. Haldane ’ s Sieve and Adaptation From
the Standing Genetic Variation. Genetics. 2001;157:875–884.

[131] Pennings PS, Hermisson J. Soft sweeps II–molecular popula-
tion genetics of adaptation from recurrent mutation or migration.
Molecular biology and evolution. 2006 May;23(5):1076–84.

[132] Przeworski M, Coop G, Wall JD. The signature of positive selec-
tion on standing genetic variation. Evolution; international journal
of organic evolution. 2005 Nov;59(11):2312–23.

[133] Fu W, O’Connor TD, Akey JM. Genetic architecture of quanti-
tative traits and complex diseases. Current opinion in genetics &
development. 2013 Dec;23(6):678–83.

[134] Scheinfeldt LB, Tishkoff Sa. Recent human adaptation: genomic
approaches, interpretation and insights. Nature reviews Genetics.
2013 Oct;14(10):692–702.

304



i
i

“thesis” — 2014/9/8 — 10:58 — page 305 — #335 i
i

i
i

i
i

[135] Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. On
detecting incomplete soft or hard selective sweeps using hap-
lotype structure. Molecular biology and evolution. 2014
May;31(5):1275–91.

[136] Garud NR, Messer PW, Buzbas EO, Petrov DA. Recent selective
sweeps in Drosophila were abundant and primarily soft. arXiv.
2014;.

[137] Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using Environ-
mental Correlations to Identify Loci Underlying Local Adaptation.
Genetics. 2010 Jun;1423(August):1411–1423.

[138] Günther T, Coop G. Robust identification of local adaptation from
allele frequencies. 2Genetics. 2013;195(1):205–20.

[139] Ralph PL, Coop G. Parallel Adaptation: One or Many Waves
of Advance of an Advantageous Allele? Genetics. 2010
Jul;668(October):647–668.

[140] Hancock AM, Alkorta-Aranburu G, Witonsky DB, Di Rienzo
A. Adaptations to new environments in humans: the role of
subtle allele frequency shifts. Philosophical transactions of the
Royal Society of London Series B, Biological sciences. 2010
Aug;365(1552):2459–68.

[141] Mendizabal I, Marigorta UM, Lao O, Comas D. Adaptive evolu-
tion of loci covarying with the human African Pygmy phenotype.
Human genetics. 2012 Aug;131(8):1305–17.

[142] Orr HA. Testing Natural Selection vs. Genetic Drift in Pheno-
typic Evolution Using Quantitative Trait Locus Data. Genetics.
1998;149:2099–2104.

[143] Turchin M, Chiang CWK, Palmer CD, Sankararaman, Sriram Re-
ich D, consortium G, Hirschhorn JN. Evidence of widespread se-
lection on standing variation in Europe at height-associated SNPs.
Nature Genetics. 2012;44(9):1015–1019.

305



i
i

“thesis” — 2014/9/8 — 10:58 — page 306 — #336 i
i

i
i

i
i

[144] Berg JJ, Coop G. The Population Genetic Signature of Polygenic
Local Adaptation. arXiv. 2013;.

[145] Leinonen T, McCairns RJS, O’Hara RB, Merilä J. Q(ST)-F(ST)
comparisons: evolutionary and ecological insights from genomic
heterogeneity. Nature reviews Genetics. 2013 Mar;14(3):179–90.

[146] Barrett RDH, Hoekstra HE. Molecular spandrels: tests of
adaptation at the genetic level. Nature reviews Genetics. 2011
Nov;12(11):767–80.

[147] Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis Ca, Doyle F,
et al. An integrated encyclopedia of DNA elements in the human
genome. Nature. 2012 Sep;489(7414):57–74.

[148] Tishkoff Sa, Varkonyi R, Cahinhinan N, Abbes S, Argyropoulos G,
Destro-Bisol G, et al. Haplotype diversity and linkage disequilib-
rium at human G6PD: recent origin of alleles that confer malarial
resistance. Science. 2001 Jul;293(5529):455–62.

[149] Ayodo G, Price AL, Keinan A, Ajwang A, Otieno MF, Orago
ASS, et al. Combining evidence of natural selection with associa-
tion analysis increases power to detect malaria-resistance variants.
American journal of human genetics. 2007 Aug;81(2):234–242.

[150] Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF,
Drake JA, et al. Genetic Signatures of Strong Recent Positive Se-
lection at the Lactase Gene. American journal of human genetics.
2004;74:1111–1120.

[151] Xue Y, Daly A, Yngvadottir B, Liu M, Coop G, Kim Y, et al.
Spread of an Inactive Form of Caspase-12 in Humans Is Due to
Recent Positive Selection. American journal of human genetics.
2006;78:659–670.

[152] Carnero-Montoro E, Bonet L, Engelken J, Bielig T, Martı́nez-
Florensa M, Lozano F, et al. Evolutionary and functional evidence

306



i
i

“thesis” — 2014/9/8 — 10:58 — page 307 — #337 i
i

i
i

i
i

for positive selection at the human CD5 immune receptor gene.
Molecular biology and evolution. 2012 Feb;29(2):811–23.

[153] Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. Interrogat-
ing a High-Density SNP Map for Signatures of Natural Selection.
Genome research. 2002;12:1805–1814.

[154] Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D,
et al. Signals of recent positive selection in a worldwide sample of
human populations. Genome research. 2009;19(5):826–837.

[155] The 1000 Genomes Project Consortium. A map of human
genome variation from population-scale sequencing. Nature. 2010
Oct;467(7319):1061–1073.

[156] Hindorff La, Sethupathy P, Junkins Ha, Ramos EM, Mehta JP,
Collins FS, et al. Potential etiologic and functional implications of
genome-wide association loci for human diseases and traits. Pro-
ceedings of the National Academy of Sciences of the United States
of America. 2009 Jun;106(23):9362–7.

[157] Xue Y, Zhang X, Huang N, Daly A, Gillson CJ, Macarthur DG,
et al. Population differentiation as an indicator of recent posi-
tive selection in humans: an empirical evaluation. Genetics. 2009
Nov;183(3):1065–77.

[158] Sabeti PC, Walsh E, Schaffner SF, Varilly P, Fry B, Hutcheson HB,
et al. The case for selection at CCR5-Delta32. PLoS biology.
2005;3(11):e378.

[159] Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ,
et al. Genetic evidence for high-altitude adaptation in Tibet. Sci-
ence. 2010 Jul;329(5987):72–5.

[160] Jeong C, Alkorta-Aranburu G, Basnyat B, Neupane M, Witonsky
DB, Pritchard JK, et al. Admixture facilitates genetic adaptations
to high altitude in Tibet. Nature communications. 2014 Jan;5:3281.

307



i
i

“thesis” — 2014/9/8 — 10:58 — page 308 — #338 i
i

i
i

i
i

[161] Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J,
et al. Natural selection on EPAS1 ( HIF2 α ) associated with low
hemoglobin concentration in Tibetan highlanders. Proc Natl Acad
Sci U S A. 2010;107(25):11459–11464.

[162] Wilde S, Timpson A, Kirsanow K, Kaiser E, Kayser M, Un-
terländer M, et al. Direct evidence for positive selection of skin,
hair, and eye pigmentation in Europeans during the last 5,000 y.
Proceedings of the National Academy of Sciences of the United
States of America. 2014 Apr;111(13):4832–7.

[163] Lamason RL, Mohideen MAPK, Mest JR, Wong AC, Norton HL,
Aros MC, et al. SLC24A5, a putative cation exchanger, affects
pigmentation in zebrafish and humans. Science (New York, NY).
2005 Dec;310(5755):1782–6.

[164] Engelken J, Carnero-Montoro E, Pybus M, Andrews GK, Lalueza-
Fox C, Comas D, et al. Extreme population differences in
the human zinc transporter ZIP4 (SLC39A4) are explained by
positive selection in Sub-Saharan Africa. PLoS genetics. 2014
Feb;10(2):e1004128.

[165] The Gene Ontology Consortium. Gene Ontology : tool for the.
Nature genetics. 2000;25:25–29.

[166] Mi H, Muruganujan A, Thomas PD. PANTHER in 2013 : mod-
eling the evolution of gene function , and other gene attributes
, in the context of phylogenetic trees. Nucleic acids research.
2013;41(Database issue):377–386.

[167] Kanehisa M, Goto S. KEGG : Kyoto Encyclopedia of Genes and
Genomes. Nucleic acids research. 2000;28(1):27–30.

[168] Croft D, Kelly GO, Wu G, Haw R, Gillespie M, Matthews L, et al.
Reactome : a database of reactions , pathways and biological pro-
cesses. Nucleic acids research. 2011;39(Database issue):691–697.

308



i
i

“thesis” — 2014/9/8 — 10:58 — page 309 — #339 i
i

i
i

i
i

[169] Marques-Bonet T, Ryder Oa, Eichler EE. Sequencing primate
genomes: what have we learned? Annual review of genomics
and human genetics. 2009 Jan;10:355–86.

[170] Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD,
Nielsen R, et al. Patterns of positive selection in six Mammalian
genomes. PLoS genetics. 2008 Jan;4(8):e1000144.

[171] Serra F, Arbiza L, Dopazo J, Dopazo H. Natural selection on func-
tional modules, a genome-wide analysis. PLoS Computational Bi-
ology. 2011;7(3):e10001093.

[172] Daub JT, Hofer T, Cutivet E, Dupanloup I, Quintana-murci L,
Robinson-rechavi M, et al. Evidence for Polygenic Adaptation to
Pathogens in the Human Genome Article Fast Track. Molecular
biology and evolution. 2013;30(7):1544–1558.

[173] Barreiro LB, Quintana-Murci L. From evolutionary genetics to hu-
man immunology: how selection shapes host defence genes. Na-
ture reviews Genetics. 2010;11(1):17–30.

[174] Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Ferrer-
Admettla A, Pattini L, et al. Signatures of environmen-
tal genetic adaptation pinpoint pathogens as the main selec-
tive pressure through human evolution. PLoS genetics. 2011
Nov;7(11):e1002355.

[175] Hancock AM, Witonsky DB, Alkorta-aranburu G, Beall CM, Suk-
ernik R, Utermann G, et al. Adaptations to Climate-Mediated Se-
lective Pressures in Humans. PLoS genetics. 2011;7(4):e1001375.

[176] King Mc, Wilson AC. Humans and Chimpanze es. Science.
1975;188(4184):107–116.

[177] Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosen-
bloom K, et al. Evolutionarily conserved elements in verte-
brate, insect, worm, and yeast genomes. Genome research. 2005
Aug;15(8):1034–50.

309



i
i

“thesis” — 2014/9/8 — 10:58 — page 310 — #340 i
i

i
i

i
i

[178] Fraser HB. Gene expression drives local adaptation in humans.
Genome research. 2013 Jul;23(7):1089–96.

[179] Haygood R, Fedrigo O, Hanson B, Yokoyama KD, Wray Ga. Pro-
moter regions of many neural- and nutrition-related genes have ex-
perienced positive selection during human evolution. Nature ge-
netics. 2007 Sep;39(9):1140–4.

[180] Kudaravalli S, Veyrieras JB, Stranger BE, Dermitzakis ET,
Pritchard JK. Gene expression levels are a target of recent natural
selection in the human genome. Molecular biology and evolution.
2009 Mar;26(3):649–58.

[181] Dawkins R. The Selfish Gene. Oxford University Press; 1976.

[182] Lehner B. Molecular mechanisms of epistasis within and between
genes. Trends in Genetics. 2011;27(8):323–331.

[183] Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA.
Epistasis as the primary factor in molecular evolution. Nature.
2012;490(7421):535–538.

[184] Kondrashov AS, Sunyaev S, Kondrashov FA. Dobzhansky –
Muller incompatibilities in. Proceedings of the National Acadamy
of Sciences. 2002;99(23):14878–14883.

[185] Lovell SC, Robertson DL. An integrated view of molecular co-
evolution in protein-protein interactions. Molecular biology and
evolution. 2010 Nov;27(11):2567–75.

[186] Fryxell KJ. The coevolution of gene familv trees. Trends in Ge-
netics. 1996;12(9):394–369.

[187] Doherty A, Alvarez-Ponce D, McInerney JO. Increased genome
sampling reveals a dynamic relationship between gene duplicabil-
ity and the structure of the primate protein-protein interaction net-
work. Molecular biology and evolution. 2012 Nov;29(11):3563–
73.

310



i
i

“thesis” — 2014/9/8 — 10:58 — page 311 — #341 i
i

i
i

i
i

[188] Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW.
Evolutionary Rate in the Protein Interaction Network. Science.
2002;296(2002):750–752.

[189] Agrafioti I, Swire J, Abbott J, Huntley D, Butcher S, Stumpf
MPH. Comparative analysis of the Saccharomyces cerevisiae and
Caenorhabditis elegans protein interaction networks. BMC evolu-
tionary biology. 2005 Jan;5:23.

[190] Lemos B, Bettencourt BR, Meiklejohn CD, Hartl DL. Evolution
of proteins and gene expression levels are coupled in Drosophila
and are independently associated with mRNA abundance, protein
length, and number of protein-protein interactions. Molecular bi-
ology and evolution. 2005 May;22(5):1345–1354.

[191] Cui Q, Purisima E, Wang E. Protein evolution on a human signal-
ing network. BMC Systems Biology. 2009;3(1):21.

[192] Clark NL, Aquadro CF. A novel method to detect proteins evolv-
ing at correlated rates: identifying new functional relationships be-
tween coevolving proteins. Molecular biology and evolution. 2010
May;27(5):1152–61.

[193] Alvarez-Ponce D, Fares Ma. Evolutionary rate and duplicabil-
ity in the Arabidopsis thaliana protein-protein interaction network.
Genome biology and evolution. 2012 Jan;4(12):1263–74.

[194] Wang GZ, Lercher MJ. The Effects of Network Neighbours on
Protein Evolution. PLoS ONE. 2011 Apr;6(4):e18288.

[195] Clark NL, Alani E, Aquadro CF. Evolutionary rate covariation
reveals shared functionality and coexpression of genes. Genome
research. 2012 Apr;22(4):714–20.

[196] Freeman LC. A Set of Measures of Centrality Based on Between-
ness. Sociometry. 1977;40(1):35–41.

311



i
i

“thesis” — 2014/9/8 — 10:58 — page 312 — #342 i
i

i
i

i
i

[197] Qian W, He X, Chan E, Xu H, Zhang J. Measuring the evolu-
tionary rate of protein-protein interaction. Proceedings of the Na-
tional Academy of Sciences of the United States of America. 2011
May;108(21):8725–8730.

[198] Olson-Manning CF, Wagner MR, Mitchell-Olds T. Adaptive evolu-
tion: evaluating empirical support for theoretical predictions. Na-
ture reviews Genetics. 2012 Dec;13(12):867–77.

[199] Orr HA. The genetic theory of adaptation: a brief history. Nature
reviews Genetics. 2005 Mar;6(2):119–27.

[200] Khurana E, Fu Y, Chen J, Gerstein M. Interpretation of Genomic
Variants Using a Unified Biological Network Approach. PLoS
Computational Biology. 2013;9(3).

[201] Rausher M, Miller RE, Tiffin P. Patterns of evolutionary rate varia-
tion among genes of the anthocyanin biosynthetic pathway. Molec-
ular biology and evolution. 1999 Feb;16(2):266–274.

[202] Flowers JM, Sezgin E, Kumagai S, Duvernell DD, Matzkin LM,
Schmidt PS, et al. Adaptive evolution of metabolic pathways in
Drosophila. Molecular biology and evolution. 2007;24(6):1347–
54.

[203] Livingstone K, Anderson S. Patterns of variation in the evolution
of carotenoid biosynthetic pathway enzymes of higher plants. The
Journal of heredity. 2009;100(6):754–761.

[204] Yang Yh, Zhang Fm, Ge S. Evolutionary rate patterns of the
Gibberellin pathway genes. BMC Evolutionary Biology. 2009
Jan;9:206.

[205] Ramsay H, Rieseberg LH, Ritland K. The correlation of evolu-
tionary rate with pathway position in plant terpenoid biosynthesis.
Molecular Biology and Evolution. 2009;26(5):1045–1053.

312



i
i

“thesis” — 2014/9/8 — 10:58 — page 313 — #343 i
i

i
i

i
i

[206] Montanucci L, Laayouni H, Dall’Olio GM, Bertranpetit J. Molec-
ular evolution and network-level analysis of the N-glycosylation
metabolic pathway across primates. Molecular biology and evolu-
tion. 2011 Jan;28(1):813–823.

[207] Riley RM, Jin W, Gibson G. Contrasting selection pressures on
components of the Ras-mediated signal transduction pathway in
Drosophila. Molecular Ecology. 2003 May;12(5):1315–1323.
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[209] Alvarez-Ponce D, Aguadé M, Rozas J. Comparative Genomics
of the Vertebrate Insulin / TOR Signal Transduction Pathway :
A Network-Level Analysis of. Genome biology and evolution.
2011;3:87–101.

[210] Invergo BM, Montanucci L, Laayouni H, Bertranpetit J. A system-
level , molecular evolutionary analysis of mammalian phototrans-
duction. BMC Evolutionary Biology. 2013;13:52.

[211] Lavagnino N, Serra F, Arbiza L, Dopazo H, Hasson E. Evolution-
ary Bioinformatics Evolutionary Genomics of Genes Involved in
Olfactory Behavior in the Drosophila melanogaster Species Group.
Evolutionary bioinformatics online. 2012;8:89–104.

[212] Fitzpatrick DA, Halloran DMO. Investigating the Relationship
between Topology and Evolution in a Dynamic Nematode Odor
Genetic Network. International Journal of Evolutionary Biology.
2012;2012.

[213] Lu Y, Rausher MD. Evolutionary rate variation in antho-
cyanin pathway genes. Molecular biology and evolution. 2003
Nov;20(11):1844–53.

313



i
i

“thesis” — 2014/9/8 — 10:58 — page 314 — #344 i
i

i
i

i
i

[214] Rausher M, Lu Y, Meyer K. Variation in constraint versus pos-
itive selection as an explanation for evolutionary rate variation
among anthocyanin genes. Journal of molecular evolution. 2008
Aug;67(2):137–144.

[215] Laportes DC, Walsh K, Koshland DE. The Branch Point Effect.
Ultrasensitivity and subsensitivity to metabolic control. Journal of
Biological Chemistry. 1984;259(22):14068–14075.

[216] Olson-Manning CF, Lee CR, Rausher MD, Mitchell-Olds T. Evo-
lution of flux control in the glucosinolate pathway in Arabidopsis
thaliana. Molecular Biology and Evolution. 2013 Jan;30(1):14–23.

[217] Eanes WF. Analysis of Selection on Enzyme Polymorphisms. An-
nual Review of Ecology and Systematics. 1999;30(65):301–26.

[218] Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Iv ESB. Genetic
diversity and selection in the maize starch pathway. Proceedings of
the National Academy of Sciences of the United States of America.
2002;99(20):12959–12962.

[219] Olsen KM, Womack A, Garrett AR, Suddith JI, Purugganan MD.
Contrasting Evolutionary Forces in the Arabidopsis thaliana Floral
Developmental Pathway. Genetics. 2002;1:1641–1650.

[220] Alvarez-Ponce D, Guirao-Rico S, Orengo DJ, Segarra C, Rozas
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