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Abstract

In many important settings, subjects can show significant heterogeneity

in response to a stimulus or “treatment”. For instance, a treatment

that works for the overall population might be highly ineffective, or even

harmful, for a subgroup of subjects with specific characteristics. Similarly,

a new treatment may not be better than an existing treatment in the

overall population, but there is likely a subgroup of subjects who would

benefit from it. The notion that “one size may not fit all” is becoming

increasingly recognized in a wide variety of fields, ranging from economics

to medicine. This has drawn significant attention to personalize the

choice of treatment, so it is optimal for each individual. An optimal

personalized treatment is the one that maximizes the probability of a

desirable outcome. We call the task of learning the optimal personalized

treatment personalized treatment learning (PTL).

From the statistical learning perspective, building PTL models imposes

important challenges, primarily because the optimal treatment is unknown

on a given training data set. In this thesis, we formalize the PTL

problem from a causal inference perspective and provide a comprehensive

description of the existing methods to solve this problem. We contribute to

the PTL literature by proposing two novel methods, namely uplift random

forests and causal conditional inference forests. Our proposal outperforms

the existing methods based on an extensive numerical simulation and

real-world data.

Next, we introduce the concept of PTL models to insurance marketing

and pricing applications. In particular, we contribute to the insurance

literature in these areas by proposing PTL methods to optimize client

retention and cross-selling in insurance from experimental data. We also

illustrate an application of these methods to price-elasticity estimation

xvii



Abstract

and insurance economic price optimization in the context of observational

data. In the insurance field, the selection of the optimal personalized

treatment also requires consideration of the expected insurance losses of

each individual policyholder within the portfolio. We contribute to the

non-life insurance ratemaking literature by proposing a novel application

of gradient boosting models to estimate insurance loss cost, with key

important advantages over the conventional generalized linear model

approach.

A key problem facing research in this field, has been the lack of publicly

available statistical software to estimate PTL models. We implement

most of the existing methods for fitting these models, as well as our

proposed ones, in a package named uplift, which is now released and

freely available from the CRAN (Comprehensive R Archive Network)

repository under the R statistical computing environment.

xviii
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1 Introduction

In the past two decades, rapid advances in data collection and storage

technology have created vast quantities of data. The field of statistics

has been revolutionized by the development of algorithmic and data

models (Breiman, 2001b) in response to challenging new problems coming

from science and industry, mostly resulting from an increasing size and

complexity in the data structures. In this context, the concept of learning

from data (Abu-Mostafa et al., 2012) has emerged as the task of extracting

“implicit, previously unknown, and potentially useful information from

data” (Frawley et al., 1992). A distinction is usually made between

supervised and unsupervised learning. In the former, the objective is to

predict the value of a response variable based on a collection of observable

covariates. In the latter, there is no response variable to “supervise” the

learning process, and the objective is to find structures and patterns

among the covariates.

In many important settings, the values of some covariates are not only

observable, but they can be chosen at the discretion of a decision maker

(Zliobaitė and Pechenizkiy, 2010). For instance, a doctor can choose the

medical treatment for a patient among a set of alternatives, a company

can decide the type of marketing intervention activity (direct mail, phone

call, email, etc.) to make an offer to a client, a bank can decide the credit

limit to offer a client on a credit card. In all these examples, the objective

is not necessarily to predict a response variable with high accuracy, but

to select the optimal action or “treatment” for each subject based on

his or her individual characteristics. Optimal is understood here as the

treatment that maximizes the probability of a desirable outcome. We

call the task of learning the optimal personalized treatment personalized

treatment learning (PTL).

1



1 Introduction

A key challenge in building models for PTL is that the quantity we are

trying to predict (i.e., the optimal personalized treatment) is unknown

on a given training data set. As each subject can only be exposed to a

single treatment, the value of the subject’s response under alternative

treatments is unobserved, a problem also known as the fundamental

problem of causal inference (Holland, 1986). This aspect makes this

problem unique within the discipline of learning from data.

The underlying motivation for PTL is that subjects can show significant

heterogeneity in response to treatments, so making an accurate treatment

choice for each subject becomes essential. For instance, a new treatment

may not be better than an existing treatment in the overall population,

but it might be beneficial/harmful for a subgroup of subjects. The

idea that “one size may not fit all” has been increasingly recognized

in a variety of disciplines, ranging from economics to medicine. Alemi

et al. (2009) argue that improved statistical methods are needed for

personalized treatments and propose an adapted version of the K-nearest-

neighbor (KNN) classifier (Cover and Hart, 1967). Imai and Ratkovic

(2013) propose a method that adapts the support vector machine classifier

(Vapnik, 1995) and then apply it to a widely known dataset pertaining

to the National Supported Work program (LaLonde, 1986; Dehejia and

Wahba, 1999) to identify the characteristics of workers who greatly

benefit from (or are negatively affected by) a job training program. Tian

et al. (2014) propose a method designed to deal with high-dimensional

covariates and use it to identify breast cancer patients who may or may

not benefit from a specific treatment based on the individual patient’s

gene expression profile. In the context of insurance, Guelman et al. (2012,

2014c) propose a method based on an adapted version of random forests to

identify policyholders who are positively/negatively impacted by a client

retention program. The same authors subsequently propose an algorithm

called causal conditional inference forests to optimize insurance cross-sell

strategies (Guelman et al., 2014a,b). Also, Guelman and Guillén (2014)

describe a framework to determine the optimal rate change (playing the

role of the treatment) for each individual policyholder for the purpose of

maximizing the overall expected profitability of an insurance portfolio.

In addition to the methods discussed above, other methods have been

proposed in the literature, mostly in the context of clinical trials and direct

2



marketing (Su et al., 2009; Qian and Murphy, 2011; Zhao et al., 2012;

Jaśkowski and Jaroszewicz, 2012; Larsen, 2009; Radcliffe and Surry, 2011;

Rubin and Waterman, 2006; Tang et al., 2013). However, considering the

critical importance of these methods to many scientific disciplines and

policy making, PTL models have received relatively little attention in

the literature.

In this thesis, we provide a comprehensive description of the existing

PTL methods and propose two novel methods. Our proposal outperforms

the existing methods in an extensive numerical study. We illustrate several

novel applications of the proposed methods to insurance marketing in

the context of experimental data. We also present an application of PTL

models to economic price optimization in the context of observational

data within the field of insurance. We implement most of the statistical

methods and algorithms described in this thesis in a package named

uplift (Guelman, 2014), which is now freely available from the CRAN

(Comprehensive R Archive Network) repository under the R statistical

computing environment. Although PTL models have applications to a

wide variety of fields, in this thesis we focus mostly on insurance-related

applications. In this context, the selection of the optimal personalized

treatment also requires consideration of the expected insurance losses

of each individual policyholder within the portfolio. We describe an

unprecedented application of gradient boosting models to estimate loss

cost in non-life insurance, with key advantages over the conventional

generalized linear model approach.

This thesis is organized as follows. Chapter 2 defines the scope of

the PTL problem and gives some examples. Chapter 3 follows with a

detailed description of seven existing methods for tackling this prob-

lem. In Chapters 4 and 5 we introduce two new proposed methods. In

Chapter 6 we report the finite sample performance of all methods under

an extensive numerical simulation. Chapter 7 describes model assess-

ment and selection for PTL models. Chapter 8 describes two empirical

applications in insurance marketing in the context of client retention

and cross-selling. Chapter 9 illustrates an application to price elasticity

modeling and economic price optimization in auto insurance. Insurance

loss cost considerations are discussed in Chapter 10. Lastly, in Chapter 11

we provide a practical guide for using the uplift package. In Appendix A,

3
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1 Introduction

we include the package manual with further details about the package

functionality. Our published and submitted articles linked to this thesis

are listed in Appendix B.
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2 The personalized treatment

learning problem

2.1 Problem formulation

We frame the personalized treatment learning (PTL) problem in the

context of Rubin’s model of causality (Rubin, 1974, 1977, 1978, 2005).

Under this model, we conceptualize the learning problem in terms of the

potential outcomes under treatment alternatives, only one of which is

observed for each subject. The causal effect of a treatment on a subject

is defined in terms of the difference between an observed outcome and its

counterfactual. The notation introduced below will be used throughout

the thesis, except where indicated otherwise.

In the following, we use upper-case letters to denote random variables

and lower-case letters to denote values of the random variables. Assume

that a sample of subjects is randomly assigned to two treatment arms,

denoted by A, A ∈ {0, 1}, also referred as control and treatment states,

respectively. Let Y (a) ∈ {0, 1} denote a binary potential outcome of

a subject if assigned to treatment A = a, a = {0, 1}. The observed

outcome is Y = AY (1) + (1 − A)Y (0). Each subject is characterized by

a p-dimensional vector of baseline covariates X = (X1, . . . , Xp)
>. We

assume the data consists of L independent and identically distributed

realizations of (Y,A,X), {(Y`, A`,X`), ` = 1, . . . , L}.
Under the assumption of randomization, treatment assignment A ig-

nores its possible impact on the outcomes Y (0) and Y (1), and hence they

are independent – using the notation of Dawid (1979), {Y`(0), Y`(1) ⊥ A`}.
In this context, the average treatment effect (ATE) can be estimated by

5



2 The personalized treatment learning problem

τ = E[Y`(1)− Y`(0)]

= E[Y`|A` = 1]− E[Y`|A` = 0]. (2.1)

In observational studies, subjects assigned to different treatment condi-

tions are not exchangeable and thus direct comparisons can be misleading

(Rosenbaum and Rubin, 1983).

In many circumstances, subjects can show significant heterogeneity

in response to treatments, in which case the ATE is of limited value.

The problem addressed in this thesis is the identification of subgroups of

subjects for which the treatment is most beneficial (or most harmful). As

discussed by Holland and Rubin (1989), the most granular level of causal

inference is the individual treatment effect (ITE), defined by Y`(1)− Y`(0)

for each subject ` = {1, . . . , L}. However, this is an unobserved quantity,

as a subject is never observed simultaneously in both treatment states.

The best approximation to the ITE that is possible to obtain in practice

is the subpopulation treatment effect (STE), which is defined for a subject

with individual covariate profile X` = x by

τ(x) = E[Y`(1)− Y`(0)|X` = x]

= E[Y`|X` = x, A` = 1]− E[Y`|X` = x, A` = 0]. (2.2)

Understanding the precise nature of the STE variability can be ex-

tremely valuable in personalizing the choice of treatment, so that it is

most appropriate for each individual. Henceforward in this thesis, we use

the term personalized treatment effect (PTE) to refer to the subpopulation

treatment effect (2.2).

A personalized treatment rule H is a map from the space of baseline

covariates X to the space of treatments A, H(X) : Rp → {0, 1}. An

optimal treatment rule is one that maximizes the expected outcome,

E[Y (H(X))], if the personalized treatment rule is implemented for the

whole population. Notice that since Y is binary, this expectation has

a probabilistic interpretation. That is, E[Y (H(X))] = P
(
Y (H(X)) = 1

)

and thus τ(x) ∈ [−1, 1].
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2.2 Examples of the personalized treatment learning problem

A straightforward calculation gives the optimal personalized treatment

rule H∗ = argmaxHE[Y (H(X))] for a subject with covariates X` = x as

H∗ = 1 if τ(x) > 0, and H∗ = 0 otherwise. In many situations, the

alternative treatments have unequal costs, in which case the decision rule

can simply be replaced by H∗ = 1 if τ(x) > c, and H∗ = 0 otherwise, for

some constant threshold c ∈ [−1, 1].

2.2 Examples of the personalized treatment

learning problem

The PTL problem is encountered in many scientific disciplines and policy

making. We describe some examples below.

2.2.1 Example 1: The red/blue envelope problem

A common business problem in direct marketing is to decide which

existing or potential customers a company should contact to promote a

product or service. For simplicity, suppose the company sends a product

offer by direct mail to its existing customers in either a red or blue

envelope. Further, assume the cost of the offer is the same with both

colors. Some customers may be more likely to buy the product with the

red envelope and others with the blue one. The PTL problem is to select

the optimal treatment for each customer – namely, the envelope color

that maximizes the probability of purchase. Figure 2.1 illustrates two

artificial scenarios for the optimal envelope color for each customer based

on a simplified case with two baseline covariates. The company should

send the blue (red) envelope to customers represented by the blue (red)

dots with corresponding covariates X1 and X2. The optimal decision

boundaries are shown in green. The problem is non-trivial as the optimal

envelope color for each customer is unknown on a given training dataset.

7



2 The personalized treatment learning problem
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Figure 2.1: Optimal decision boundaries for the red/blue envelope example
in two simulated scenarios. The covariates X1 and X2 are inde-
pendently generated from a uniform distribution U(−1, 1). In
the left figure, the optimal personalized treatment rule H∗ =
{blue envelope} if 1−X1−X2 > 0, and H∗ = {red envelope} oth-
erwise. In the right figure, H∗ = {blue envelope} if (0.5−X2

1 −
X2

2 )(X2
1 +X2

2 − 0.3) > 0, and H∗ = {red envelope} otherwise.

2.2.2 Example 2: Evaluating personalized treatment

effects from a job training program

The National Supported Work Demonstration (NSW) program was a

short-term employment program implemented in the mid-1970s in the

United States and designed to help individuals facing economic and social

difficulties to move into the labor market. Unlike other employment

programs, the NSW program was a field experiment, in which a heteroge-

nous group of individuals were randomly assigned to join the program.

Those assigned to the program (i.e., the treatment group) participated in

various types of work and received counselling in a sheltered environment.

Those assigned to the control group did not receive any type of support.

Information on the pre-treatment variables was obtained from initial sur-

veys and Social Security Administration records, and includes earnings

at the start of the program, age, education, ethnicity, and marital status.

The NSW dataset has been extensively analyzed by LaLonde (1986)

and Dehejia and Wahba (1999). One of the main points of focus in those

studies was in estimating the ATE, as defined in (2.1). Our interest here

is in identifying the characteristics of workers for whom the program was
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2.2 Examples of the personalized treatment learning problem

Treat = 60.25%
Ctrl = 53.88%

N = 722

Treat = 60.0%
Ctrl = 60.08%

N = 368

Treat = 60.51%
Ctrl = 46.70%

N = 354

Treat = 66.66%
Ctrl = 80.56%

N = 54

Treat = 59.02%
Ctrl = 56.25%

N = 314

Treat = 78.26%
Ctrl = 56.57%

N = 145

Treat = 46.59%
Ctrl = 40.5%

N = 209

Treat = 42.25%
Ctrl = 45.54%

N = 172

Treat = 64.71%
Ctrl = 15.0%

N = 37

educ  <= 10 educ > 10

log(re75+1) <= 6.2859 log(re75+1) > 6.2859

marr = N marr = Y

hisp = Nhisp = Y

Figure 2.2: Causal conditional inference tree on the NSW data. The tree is
designed to partition the universe of subjects into subgroups with
heterogeneous treatment effects. The tree identifies the character-
istics of workers for whom the program was most beneficial.

most beneficial. For illustration purposes, we focused on the same set

of individuals described in Imai and Ratkovic (2013), consisting of 297

treated subjects and 425 controls. The outcome of interest is a binary

indicator which denotes whether the earnings increased after the job

training program (measured in 1978) relative to the earnings at the start

of the program. We built a causal conditional inference tree, which we

discuss further in Chapter 5. Figure 2.2 shows the results. Each node

in the tree shows the proportion of treated and control subjects with

increased earnings after the job training program. It appears that the

program was most effective for individuals with higher number of years

of education and relatively lower earnings at the start of the program,

as well as those married with higher earnings. The program was least

effective for Hispanics with low education.
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2 The personalized treatment learning problem

2.2.3 Example 3: Identifying breast cancer patients

who may benefit from a new treatment

A number of studies have reported that breast cancer can be classified into

molecular subtypes on the basis of distinct gene expression profiles (Loi

et al., 2007). These subtypes have been associated with different clinical

outcomes with respect to the effectiveness of specific treatments (Tian

et al., 2014). A publicly available dataset1, collected by Loi et al. (2007),

consists of 277 patients treated with tamoxifen and 137 patients treated

with an alternative method. Each patient is characterized by 44,928

gene expression measurements and by demographic information. In this

example, the goal is to identify which patients are more likely to benefit

from (or be harmed by) tamoxifen.

For illustrative purposes, we define the outcome of interest as a binary

indicator of distant metastasis–free five-year survival. This outcome was

transformed using the modified outcome method, discussed in Chapter 3,

for the purpose of estimating the personalized treatment effect of tamox-

ifen. We restricted the analysis to patients with complete information.

After exclusions, there were 221 and 116 patients treated with tamoxifen

and the alternative treatment, respectively. We selected 75 patients from

each treatment arm as the training set and left the remaining number of

patients as a test sample.

We first used principal component analysis to preliminarily reduce the

dimensionality of the covariate space. From this analysis, we decided to

keep the first 20 principal components2. We subsequently fitted a LASSO

(least absolute shrinkage and selection operator) logistic regression (Tib-

shirani, 1996) on the modified outcome, using the principal components as

predictors. The LASSO penalty was selected via a 10-fold cross-validation

procedure. Patients were then classified into high/low treatment score

groups, depending on whether the predicted tamoxifen-treatment effect

was greater/smaller than the median level.

1 The data can be downloaded from:
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532.

2 We used a scree plot to guide the selection of an appropriate number of principal
components. A scree plot is a plot of the proportion of the total variance explained
by each component (in decreasing order) versus its number (Johnson and Wichern,
2001, p. 441).
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2.2 Examples of the personalized treatment learning problem

Figure 2.3 shows the boxplots of the actual ATE for the high/low-scored

patients based on 100 random training/test data partitions. The actual

treatment effect is measured as the difference between the fraction of

patients with distant metastasis–free five-year survival in the tamoxifen

group and the corresponding fraction in the alternative treatment group.

Notice that tamoxifen is more effective than the alternative treatment on

high-scored patients (i.e., the fraction of patients with distant metastasis–

free five-year survival in the tamoxifen group is higher than that in the

alternative treatment group). On low-scored patients, the alternative

treatment is more effective than tamoxifen.
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Figure 2.3: Boxplots of the actual average treatment effect for the high/low-
scored patients based on 100 random training/test data partitions.
The overall average treatment effect is shown by the red horizontal
dotted line. Tamoxifen is more effective than the alternative
treatment on high-scored patients. The opposite holds for low-
scored patients.
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3 Existing personalized

treatment learning models

3.1 Introduction

In this chapter, we describe seven methods discussed in the literature

for estimating the personalized treatment effect (PTE). We can gener-

ally classify the methods under indirect estimation methods and direct

estimation methods. The former methods propose a systematic two-stage

procedure to estimate the PTE. In the first stage, they attempt to achieve

high accuracy in predicting the outcome Y conditional on the covari-

ates X and treatment A. In the second stage, they subtract the predicted

value of Y under each treatment to obtain a PTE estimate. The latter

methods attempt to directly estimate the difference E[Y (1)−Y (0)|X = x]

in the potential responses between the two treatments conditional on the

covariates X. The task is non-trivial as the “true” treatment effect is not

observed at the individual subject level on a given training data set.

3.2 Indirect estimation methods

3.2.1 Difference score method

The most intuitive approach to estimating the PTE, known as the differ-

ence score method, is to fit two independent models for the response Y ,

one based on the treated subjects, E[Y |X, A = 1], and one based on the

control subjects, E[Y |X, A = 0] (Larsen, 2009). An estimate of the PTE

for a subject with covariate X` = x is then obtained by subtracting the

estimated values of the response from the two models. That is,

13
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τ̂(x) = (Ŷ`|X = x`, A` = 1)− (Ŷ`|X = x`, A` = 0). (3.1)

Any conventional statistical or algorithmic binary classification method

may serve to fit the models.

3.2.2 Interaction method

A second method in the same spirit as the difference score method is

the interaction approach proposed by Lo (2002). This method consists

in fitting a single model to the response on the main effects and adding

interaction terms between each covariate X = (X1, . . . , Xp)
> and the

treatment indicator A. If the model is fitted using standard logistic

regression, the estimated parameters of the interaction terms measure

the additional effect of each covariate due to treatment. An estimate of

the PTE for a subject with covariates X` = x is obtained by subtracting

the predicted probabilities by setting, in turn, A` = 1 and A` = 0 in the

fitted model.

3.2.3 L2-SVM method

The interaction method represents an improvement over the difference

score method in that it provides a formal means of performing significance

tests of the interaction parameters between the treatment and the covari-

ates. However, it suffers from overfitting problems – which occur when a

model describes the random error or noise in the data instead of the true

underlying relationship – when including all interaction effects with a

high-dimensional covariate space (Zhao and Zeng, 2013). Although over-

fitting may be prevented by using LASSO logistic regression (Tibshirani,

1996) for variable selection and shrinkage, this method places the same

LASSO constraints over main and treatment heterogeneity parameters.

This may be problematic as the variability in the response attributable

to the interaction effects is usually a small fraction of the variability

attributable to the main effects. To address this problem, a third method

proposed by Imai and Ratkovic (2013), called L2-SVM , is an adapted

version of the support vector machine (SVM) classifier (Vapnik, 1995).

The SVM can be expressed as a penalization method (Hastie et al., 2009,
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3.3 Direct estimation methods

p. 426) and this can be adapted to include separate LASSO constraints

over the main and treatment heterogeneity parameters. Specifically, let

Y ∗` = 2Y` − 1 ∈ {−1, 1} and consider the optimization problem

min
(α,θ)

L∑

`=1

∣∣1− Y ∗` (µ+ α>X` + θ>X`A`)
∣∣2
+

+ λX

p∑

j=1

|αj |+ λXA

p∑

j=1

|θj |, (3.2)

where λX and λXA are pre-specified separate LASSO penalties for the

main effect parameters α and treatment heterogeneity parameters θ,

respectively, |t|+ ≡ max(t, 0) is the hinge-loss (Wahba, 2002), and µ is a

constant term.

After model (3.2) is estimated, a PTE estimate can be obtained as

follows. Let R̂` = µ̂+ α̂>X` + θ̂>X`A` and R̂∗` denote the predicted value

R̂` truncated at positive and negative one. The PTE is estimated as the

difference in the truncated values of the predicted response under each

treatment condition. That is,

τ̂(x) =
1

2

[
(R̂∗` |X = x`, A` = 1)− (R̂∗` |X = x`, A` = 0)

]
, (3.3)

where τ̂(x) ∈ [−1, 1].

A key problem with the indirect estimation methods is the mismatch

between the target variable they attempt to estimate and the target

variable defined in (2.2). For instance, even when any of the indirect

estimation methods are correctly specified to predict Y` conditional on

covariates X` = x and treatment A, it is not guaranteed that these models

can accurately predict Y`(1)− Y`(0) conditional on the same covariates.

This is because these methods emphasize the prediction accuracy on

the response, not the accuracy in estimating the change in the response

caused by the treatment at the subject level.

3.3 Direct estimation methods

3.3.1 Modified covariate method

This method, proposed by Tian et al. (2014), consists in modifying the

covariates in a simple way, and then fitting an appropriate regression

model using the modified covariates. A key advantage of this approach is
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that it avoids having to model the main effects directly.

Specifically, the modified covariate method involves performing the

following steps: i) transform the treatment indicator as A∗` = 2A` − 1 ∈
{−1, 1}, ii) transform each covariate in X` as Z` = X∗`A

∗
`/2, where X∗ is

the centered version of X, and iii) fit a regression model to predict the

outcome variable Y on the modified covariates Z. For instance, using a

logistic regression model, estimate

P (Y = 1|X, A) =
exp(γ>Z)

1 + exp(γ>Z)
. (3.4)

Under the very general assumption that P (A∗ = 1) = P (A∗ = −1) = 1/2,

a surrogate to the PTE for a subject with covariates X` = x is given by

τ̂(x) =
exp(γ̂>x/2)− 1

exp(γ̂>x/2) + 1
. (3.5)

To see that (3.5) is an appropriate estimate, we must consider the

maximum likelihood estimator of model (3.4). It is easy to see (Tian

et al., 2014) that the optimizer of E{l(Y, f(X)A∗)} is given by

f∗(x) = log
{

1 + τ(x)

1− τ(x)

}
, (3.6)

where l(.) is the Bernoulli log-likelihood, f(X) = γ>X∗/2, and τ(x) is the

PTE defined in (2.2). Therefore, (3.5) may serve as an estimate of the

PTE.

In case the dimension of X, p, is high, appropriate variable selection

procedures can be applied to the modified data directly. For instance, an

L1-regularized logistic regression (Hastie et al., 2009, p. 125) can be esti-

mated by minimizing 1
L

∑L
`=1−{Y`γ>Z`−log(1+exp(γ>Z`))+λ0

∑p
j=1 |γj |},

where λ0 is a pre-specified LASSO penalty.

In the derivation above, the assumption of equal probability of treat-

ments is used. This may be perceived as very restrictive since this

assumption is unlikely to hold in practice. However, various resampling

methods from the machine learning literature (Weiss and Provost, 2003;

Estabrooks et al., 2004; Chawla, 2005) could be used for the purpose of

balancing treatments.
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3.3 Direct estimation methods

3.3.2 Modified outcome method

The modified outcome method, proposed by Jaśkowski and Jaroszewicz

(2012), consists in first defining a new outcome variable W such that

W` =





1 if A` = 1 and Y` = 1

1 if A` = 0 and Y` = 0

0 otherwise,

and then fitting a binary regression model to W on the baseline covariates

X. If we assume that a value of Y = 1 is more desirable that Y = 0, we can

intuitively think of W = 1 as the event of obtaining a potential outcome

under treatment which is at least as good as the observed outcome. The

probability of this event is given by

P (W` = 1|X` = x) = P (W` = 1|X` = x, A` = 1)P (A` = 1|X` = x) +

P (W` = 1|X` = x, A` = 0)P (A` = 0|X` = x)

= P (Y` = 1|X` = x, A` = 1)P (A` = 1|X` = x) +

P (Y` = 0|X` = x, A` = 0)P (A` = 0|X` = x)

= P (Y` = 1|X` = x, A` = 1)P (A` = 1) +

P (Y` = 0|X` = x, A` = 0)P (A` = 0),

where the last equality follows from the randomization assumption. Now,

making the same assumption as in the modified covariate method that

P (A = 1) = P (A = 0) = 1/2, we obtain

τ(x) = P (Y` = 1|A` = 1,X` = x)− P (Y` = 1|A` = 0,X` = x)

= 2P (W` = 1|X` = x)− 1.

Hence, if for instance a logistic regression model is used to estimate

P (W = 1|X, A) =
exp(β>X)

1 + exp(β>X)
, (3.7)
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3 Existing personalized treatment learning models

then

τ̂(x) = 2
exp(β̂>X)

1 + exp(β̂>X)
− 1 (3.8)

can be used as a surrogate to the PTE.

We next show that the maximum likelihood estimator (MLE) of the

working models (3.7) and (3.4) are equivalent and so they produce similar

PTE estimates.

Proposition 3.3.1. Maximum likelihood estimates of personalized treat-

ment effects from the modified covariate and modified outcome methods

are equivalent.

Proof. From the modified outcome method, we have under the logistic

model for binary response

E{l(W, g(X))|X, A = 1} = E(W |X = x, A = 1)g(X)− log(1 + eg(X)),

and

E{l(W, g(X))|X, A = 0} = E(W |X = x, A = 0)g(X)− log(1 + eg(X)),

where g(X) = β>X and l(.) is the log-likelihood function. Thus,

L(g) = E{l(W, g(X))}

= EX

[
1

2
EW{l(W, g(X))|X, A = 1}+

1

2
EW{l(W, g(X))|X, A = 0}

]

= EX

[
1

2
{E(Y |X, A = 1)g(X)− log(1 + eg(X))} +

1

2
{(1− E(Y |X, A = 0))g(X)− log(1 + eg(X))}

]

=
1

2
EX

[
τ(X)g(X) + g(X)− 2log(1 + eg(X))

]
,

where τ(X) = E[Y |X = x, A = 1]− E[Y |X = x, A = 0]. Therefore,
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3.3 Direct estimation methods

∂L
∂g

=
1

2
EX

[
τ(X) + 1− 2

eg(X)

(1 + eg(X))

]
.

Thus,

g∗(x) = log
{

1 + τ(x)

1− τ(x)

}
,

or equivalently,

τ(x) =
eg

∗(x) − 1

eg
∗(x) + 1

.

That is, the loss minimizer of L(g), g∗(x), is equal to f∗(x) in (3.6),

which is the loss minimizer of E{Y f(X)A − log(1 + exp(f(X)A))} from

the modified covariate method.

3.3.3 Causal K-nearest-neighbor (CKNN)

A simple nonparametric method briefly discussed by Alemi et al. (2009)

and also by Su et al. (2012) for estimating the PTE is to use a modified

version of the K -nearest-neighbor (KNN) classifier (Cover and Hart,

1967).

The basic idea of the CKNN algorithm is that to estimate the PTE

for a target subject, we may wish to weight the evidence of subjects

similar to the target more heavily. Consider a subject with covariates

X` = x and a neighborhood of x, Sk(x), represented by a sphere centered

at x containing precisely K subjects, regardless of their outcome Y and

treatment type A. An estimate of the PTE is given by

τ̂(x) =

∑
`:x`∈Sk(x) Y`A`∑
`:x`∈Sk(x)A`

−
∑

`:x`∈Sk(x) Y`(1− A`)∑
`:x`∈Sk(x)(1− A`)

. (3.9)

The CKNN approach proposed in (3.9) assigns an equal weight of 1 to

each of the K subjects within the neighborhood Sk(x) and 0 weight to

all other subjects. Alternatively, it is common to use kernel smoothing

methods to assign weights that die off smoothly with the distance ||x`−x||
for all subjects ` = {1, . . . , L}. Also, notice that (3.9) is defined if at least

one control and one treated subject are in the neighborhood of x (K ≥ 2).
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3 Existing personalized treatment learning models

A severe limitation of this method is that the entire training data have

to be stored to score new subjects, leading to expensive computations for

large data sets.

3.3.4 Matching before randomization

As preliminarily discussed in Chapter 1, one of the key challenges in build-

ing personalized treatment learning (PTL) models is that the quantity

we are trying to predict (i.e., the PTE) is unknown on a given training

data set. This problem is known as the fundamental problem of causal

inference (Holland, 1986), and results from the fact that each subject

can only be exposed to one treatment condition; thus the value of the

response under the alternative treatment, also called the counterfactual

response, is not observed.

One way to think about the counterfactual responses is that they

are missing values, and therefore they could be imputed to represent

their uncertainty. A special type of randomized design can help in this

direction. Until now we have assumed that subjects in the study were

randomly allocated to two treatment arms, denoted by A, A ∈ {0, 1},
also referred as control and treatment states, respectively. An alternative

method often used in medical research is to perform matching before

randomization. Matching divides a group of L subjects into L/2 pairs to

minimize covariate differences within pairs. Then one subject in each pair

is picked at random for treatment, and the other is assigned to control

(Greevy et al., 2004). The essential idea is to form matched pairs of

subjects who are as similar as possible in terms of their covariates X

before the time of exposure to the intervention, but who differ in the

type of treatment they receive.

Matching before randomization involves solving a so-called nonbipartite

matching problem. In graphic-theoretic terminology, a graph G = (V,E),

consists of a set of nodes or vertices V = {vi, i = 1, . . . , L} and a set of

edges E = {[vi, vj ], vi 6= vj ∈ V }. A matching M ⊂ E in G is a set of pairs

of nodes {[vi, vj ]} between which an edge exists, such that no two edges

share a common node. If the cardinality of M is |V | /2, the matching is

called complete. If we represent each subject in the study by a node, we

can evaluate the “closeness” between any pair of matched subjects by
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3.3 Direct estimation methods

the distance between their covariates. A common measure of distance

is the Mahalanobis distance, discussed in more detail in Chapter 9 (see

Section 9.4.3). A traditional algorithm to create the matches is to first

pair the two subjects with smallest distance, set them aside, pair the

next two subjects with smallest distance, and so on. This algorithm is

called greedy and it does not produce optimal nonbipartite matchings.

An optimal matching algorithm minimizes the total distance summed

over all the pairs. Optimal matching can be formulated as a constrained

optimization problem. Let dij be the distance associated with edge

[vi, vj ] ∈ E. The optimal matching problem is to find the set of

aij =

{
1 if [vi, vj ] ∈M
0 if [vi, vj ] /∈M,

which solves the minimization problem

min
∑

[vi,vj ]∈E

dijaij (3.10)

subject to

∑

j:[vi,vj ]∈E

aij = 1 for vi ∈ V. (3.11)

The optimal nonbipartite matching problem can be solved using the

shortest augmentation path algorithm (Derigs, 1988).

The process for estimating the individual treatment effect from a

matched randomized design can be formulated as follows. Suppose a

matched pair is composed of subjects `1 and `2 who have been assigned

to treatment (A = 1) and control (A = 0), respectively. For each of these

subjects we know the value of the response under the assigned treatment,

but not the counterfactual response. However, as these subjects were

matched, they must be similar in terms of their covariates1. Intuitively,

we could use the observed response on one subject of each pair to fill in

the “missing” counterfactual response for the other subject of the pair.

That is, we can use the observed response of subject `1 under A = 1 to fill
1 Ideally, the covariates used in matching should be those that are relevant for the

response variable (see Greevy et al., 2004 for details).
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3 Existing personalized treatment learning models

in the unobserved response of subject `2 under that treatment. Similarly,

we can use the observed response of subject `2 under A = 0 to fill in

the unobserved response of subject `1 under control. An estimate of the

subject-level treatment effect is then obtained by simply differencing the

observed and (imputed) counterfactual responses between subjects of

a matched pair. Subsequently, we can fit a PTL model by using these

estimates as the response variable and the background covariates as

predictors.

In differencing the observed and imputed values for the counterfactual

response, we can distinguish between four possible outcomes: A) subjects

who would respond positively regardless of which treatment they are

assigned – that is, Y (a) = 1 for a = {0, 1}, B) subjects who would respond

negatively regardless of which treatment they are assigned – that is,

Y (a) = 0 for a = {0, 1}, C) subjects who would respond positively to

treatment but negatively to the control condition – that is, Y (1) = 1 and

Y (0) = 0, and D) subjects who would respond negatively to treatment

but positively to the control condition – that is, Y (1) = 0 and Y (0) = 1.

A multinomial classification model could be built to predict the proba-

bilities associated with the four possible outcomes2.

Matching before randomization is not only useful for building PTL

models. We can also obtain more efficient estimates of the average treat-

ment effect (ATE – Equation 2.1) – in the sense of smaller variance of

an unbiased estimate – using a matched design. Matched randomization

significantly improves covariate balance relative to unmatched randomiza-

tion (Greevy et al., 2004). Covariate balance refers to the extent to which

the distributions of the covariates differ between treatment and control

groups. Although the common suggestion is to control chance imbalance

in the covariates using a model that allows for covariate adjustment, the

adjusted estimate of the ATE is more precise when covariates are more

nearly balanced (Snedecor and Cochran, 1980, p. 368).

2 It is commonly of interest to predict the subjects for whom the treatment is
effective. In this case, we could build a binary classification model for the
probability of being in class C.
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4 Uplift random forests

4.1 Introduction

Uplift random forests are a tree-based method proposed by Guelman

et al. (2014c) to estimate personalized treatment effects (personalized

treatment effect or PTE estimation is known as uplift modeling in the

marketing literature). Tree-based models represent an intuitive approach

to estimating the PTE defined in Equation (2.2), as appropriate split

criteria can be designed to partition the covariate space into meaningful

subgroups with heterogeneous treatment effects. The standard random

forest (Breiman, 2001a) methodology is inherited, but the individual trees

are grown using split criteria more appropriate to the problem at hand.

We follow the split criteria proposed by Rzepakowski and Jaroszewicz

(2012). In this chapter, we discuss the uplift random forest algorithm in

detail and provide performance benchmarks for its key tuning parameters.

4.2 Definition of uplift random forests

Rzepakowski and Jaroszewicz (2012) propose a decision tree model to

estimate PTEs. However, a major concern with their method is that it is

based on a single tree. A key problem with trees is their high variance as

a result of the hierarchical nature of the splitting process: the effect of an

error in the top split is propagated down to all of the splits below. The

instability of trees is even higher in the personalized treatment learning

(PTL) case, as the treatment heterogeneity effects are usually dominated

by the main effects. In this setting, perturbing the learning set can cause

significant changes in the tree constructed.
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4 Uplift random forests

We could smooth out the variance of single trees using bagging (short for

bootstrap aggregation) methods (Breiman, 1996) to achieve higher stability.

The idea behind bagging is to fit a sequence of noisy models (such as

trees), each built on bootstrap1 replicates of the training set, and then

average the result. However, the benefit of averaging in bagging is limited

by the fact that each tree is essentially built using the same candidate

predictors, leading to high correlation between pair of bagged trees in the

sequence (see Hastie et al., 2009). The random forest algorithm (Breiman,

2001a) further improves the variance reduction of bagging by building

a sequence of de-correlated trees. This is achieved by choosing the best

split at each node among a subset of predictors randomly selected at that

node.

The pseudocode for the proposed uplift random forest algorithm is

shown in Algorithm 1. Briefly, an ensemble of B trees are grown, each

built on a fraction ν of the training data2 (where the fraction includes

both treatment and control subjects). The sampling, motivated by

Friedman (2002), incorporates randomness as an integral part of the

fitting procedure. This not only reduces the correlation between the trees

in the sequence, but also reduces the computing time by the fraction ν.

A typical value for ν can be 1/2, although for large data sets, it can be

substantially smaller. The tree-growing process involves selecting n ≤ p

covariates at random as candidates for splitting. This adds an additional

layer of randomness, which further reduces the correlation between trees,

and hence reduces the variance of the ensemble. The split rule is based

on a measure of distributional divergence, as defined in Rzepakowski

and Jaroszewicz (2012), discussed below. The individual trees are grown

to maximal depth (i.e., no pruning is done). The prediction from each

individual tree is induced by its terminal nodes. The estimated PTE

for a data point X = x is obtained by averaging the predictions of the

individual trees in the ensemble.

The split criteria are based on the objective of maximizing the distance

in the class distributions of the response Y between the treatment and

1 Given a dataset with L instances, a bootstrap sample consists in drawing a
sample with replacement of size L from the data (Efron and Tibshirani, 1986).

2 In the standard random forest algorithm, bootstrap samples of the training data
are drawn before fitting each tree. Our motivation for sampling a fraction of the
data instead, was to reduce computational time on large data sets.
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4.2 Definition of uplift random forests

control groups. To that end, it is sensible to borrow the concept of

distributional divergence from information theory. In particular, if we

let P{Y (1)} and P{Y (0)} be the class probability distributions over the

response variable Y for the treatment and control, respectively, then the

Kullback-Leibler distance (KL) or relative entropy (Cover and Thomas,

1991, p. 19) between the two distributions is given by

KL
(
P{Y (1)}||P{Y (0)}

)
=
∑

i∈{0,1}

P{Y (1) = i} log
P{Y (1) = i}
P{Y (0) = i} , (4.1)

where the logarithm is to base3 e. The Kullback-Leibler distance is always

nonnegative and it is zero if and only if P{Y (1)} = P{Y (0)}. Since the

KL distance is nonsymmetric, it is not a true distance measure. However,

it is frequently useful to think of KL as a measure of divergence between

distributions.

For any node, suppose there is a candidate split Ω which divides it into

two child nodes, vL and vR, denoting the left and right node respectively.

Further, let L be the total number of subjects in the parent node and

suppose LvL and LvR represent the number of subjects that go into vL

and vR, respectively. Conditional on a split Ω, distributional divergence

can be expressed as the KL distance within each child node, weighted by

the proportion of subjects in each node

KL
(
P{Y (1)}||P{Y (0)}

∣∣∣Ω
)

=
1

L

∑

j∈{vL,vR}

LjKL
(
P{Y (1)}||P{Y (0)}

∣∣∣j
)
.

(4.2)

Now, define KLgain as the increase in the KL distance from a split Ω,

relative to the KL distance in the parent node:

KLgain(Ω) = KL
(
P{Y (1)}||P{Y (0)}

∣∣∣Ω
)
−KL

(
P{Y (1)}||P{Y (0)}

)
. (4.3)

3 In the information theory literature, the logarithm to base two is used in (4.1) if
information is measured in units of bits, or to base e if information is measured
in nats.
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The final splitting rule adds a normalization factor to (4.3). This

factor attempts to penalize splits with unbalanced proportions of subjects

associated with each child node, as well as splits that result in unbalanced

treatment/control proportion in each child node (since such splits are not

independent of the group assignment). The final split criterion is then

given by

KLratio(Ω) =
KLgain(Ω)

KLnorm(Ω)
, (4.4)

where

KLnorm(Ω) = H
(
L(1)

L
,
L(0)

L

)
KL
(
P{Ω(1)}||P{Ω(0)}

)
+

L(1)

L
H
(
P{Ω(1)}

)
+
L(0)

L
H
(
P{Ω(0)}

)
. (4.5)

L(A) in (4.5) denotes the number of subjects in treatment A ∈ {0, 1},
P{Ω(A)} represents the probability distribution over the split outcomes

{vL, vR} for subjects with treatment A, and H(.) is the entropy function,

defined by H(P{Ω(A)}) = −P{Ω(A) = vL}log(P{Ω(A) = vL})− P{Ω(A) =

vR}log(P{Ω(A) = vR}) and H(
L(1)
L ,

L(0)
L ) = −L(1)

L log(
L(1)
L )− L(0)

L log(
L(0)
L ).

The last two terms in (4.5) penalize splits with a large number of

outcomes, by means of the sum of the entropies of the split outcomes

in treatment and control groups weighted by the proportion of training

cases in each group. This may be seen as unnecessary, given that our

uplift tree is constructed on binary splits (in contrast to Rzepakowski

and Jaroszewicz, 2012), which have important advantages over multiway

splits. However, as discussed in Quinlan (1993) and Mingers (1989), this

normalization factor appears to be advantageous even when all splits are

binary but differ in the proportion of training cases associated with the

two outcomes. The first term penalizes uneven splits, as measured by the

divergence in the distribution of the split outcomes between the groups.

This term is multiplied by the entropy of the proportion of subjects in

treatment and control groups. This explicitly imposes a smaller penalty

when there are not enough data in one of these groups.

A problem with the KLratio is that extremely low values of the KLnorm

may favor splits despite their low KLgain values. To avoid this, the KLratio
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criterion selects splits that maximize KLratio, subject to the constraint

that KLgain must be at least as great as the average KLgain value over all

splits considered.

Algorithm 1 Uplift random forest

1: for b = 1 to B do
2: Sample a fraction ν of the training observations L without replace-

ment
3: Grow an uplift decision tree UTb on the sampled data:
4: for each terminal node do
5: repeat
6: Select n covariates at random from the p covariates
7: Select the best variable/split-point among the n covariates

based on KLratio

8: Split the node into two branches
9: until a minimum node size lmin is reached

10: end for
11: end for
12: Output the ensemble of uplift trees UTb; b = {1, . . . , B}
13: The predicted PTE for a new data point x is obtained by averaging

the predictions of the individual trees in the ensemble:
τ̂(x) = 1

B

∑B
b=1 UTb(x)

Although our exposition is based on the Kullback-Leibler distance

as a measure of distributional divergence, other split criteria can be

used for selecting the best split at each node. Alternative measures of

distributional divergence may include squared Euclidean distance (4.6),

Chi-squared divergence (4.7), and L1-norm divergence (4.8):

E
(
P{Y (1)}||P{Y (0)}

)
=
∑

i∈{0,1}

(
P{Y (1) = i} − P{Y (0) = i}

)2

, (4.6)

χ2
(
P{Y (1)}||P{Y (0)}

)
=
∑

i∈{0,1}

(
P{Y (1) = i} − P{Y (0) = i}

)2

P{Y (1) = i} , (4.7)
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L1
(
P{Y (1)}||P{Y (0)}

)
=
∑

i∈{0,1}

∣∣∣P{Y (1) = i} − P{Y (0) = i}
∣∣∣. (4.8)

Substituting the KL distance above by these functions, we obtain, re-

spectively, the following split criteria: Eratio, χ2
ratio, and L1ratio. Figure 4.1

shows the functional form for the various split criteria. All look similar in

shape, except for L1 which is not differentiable. KL and the χ2 distance

are notably more sensitive to changes in the node probabilities than E

and L1. In addition, only the last two are symmetric. A comprehensive

discussion of these measures (among others) can be found in Lee (1999).

4.3 Input variable importance

An additional piece of information, generally desirable in a PTL model, is

a measure of the relative importance of the input variables in predicting

the PTE. In conventional decision trees, Breiman et al. (1984) proposed

the following measure as an approximation of the relative influence of a

predictor Xj, j = {1, . . . , p}:

Îj =
∑

all splits
on Xj

V̂s, (4.9)

where V̂s is the empirical improvement in the split-criterion as a result

of using Xj as a splitting variable at the non-terminal node s. That is,

the measure of importance given to Xj is the sum of the values given

by the split-criterion produced over all internal nodes for which it was

chosen as the splitting variable. For the standard random forest, this

relative influence measure is naturally extended by averaging (4.9) over

the collection of trees4. We have implemented variable importance for

the uplift random forest algorithm in exactly the same way.

4 Random forests also use an alternative variable influence measure based on
out-of-bag (OOB) samples (see Breiman, 2001a).
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Figure 4.1: Alternative split criteria used by uplift random forests as a
function of P{Y (A) = 1}, A ∈ {0, 1}.
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4.4 Performance of uplift random forests

In this section we examine the performance of uplift random forests under

different values of its key tuning parameters. For this discussion, we focus

on the simulation setting to be described in Chapter 6. Performance

is measured by the Spearman’s rank correlation coefficient between the

estimated PTE τ̂(x) derived from each uplift random forest fit and the

“true” simulated treatment effect in an independent test set. In all

cases, training and test sets are composed of L = 200 and L = 10, 000,

respectively. The results are based on 100 repetitions of the simulation.

4.4.1 Number of covariates

One of the parameters5 in Algorithm 1 is the number n of covariates

selected at random as candidates for splitting. For the standard random

forest, the inventors recommend using6 n =
√
p. However, as discussed

by Hastie et al. (2009), when the number of variables is large, but the

fraction of relevant variables is small, random forests are likely to perform

poorly with small n. This is because at each split, the chance of selecting

the relevant variables decreases as the number of noise variables increases.

This result can also be confirmed for the uplift random forests case in

the context of PTL.

To support this claim, we have simulated data according to model (6.1),

with increasing values of p (while the other parameters were fixed at

ηj = (−1)(j+1)I(3 ≤ j ≤ 10)/2, ρ = 0, and σ0 =
√

2). This models a

situation with a fixed number of four covariates that interact with the

treatment relative to an increasing number of irrelevant covariates. In

each case, we tested using n =
√
p versus n = p/3. Figure 4.2 shows

the performance results. Notice that with a small number of irrelevant

variables, performance is very similar with both methods for choosing n.

However, as the number of total variables increases relative to the number

of treatment heterogeneity variables, n = p/3 outperforms the alternative.

5 Technically called a hyperparameter, as it is not estimated as part of the fitting
procedure, but fixed in advance by the user.

6 More specifically, n = floor(
√
p) is commonly used in software implementations

of random forests, where floor is a function that maps
√
p to the largest integer

not greater that
√
p.
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Figure 4.2: Model performance from fitting uplift random forests with n =
√
p

versus n = p/3 for an increasing ratio of total variables to rele-
vant variables. A relevant variable is one that interacts with the
treatment. Performance is measured by the Spearman’s rank cor-
relation coefficient between the estimated personalized treatment
effect (PTE) and the “true” PTE. The dots outside the boxplots
represent outliers. We used the “1.5 rule” for determining if a data
point is an outlier: less than Q1− 1.5× (Q3−Q1) or greater than
Q3 + 1.5× (Q3−Q1), where Q1 and Q3 represent the first and
third quartiles, respectively.

31



4 Uplift random forests

4.4.2 Split criteria comparison

We provide here a performance comparison among the split criteria

discussed in Section 4.2. For that purpose, we fitted uplift random

forests based on each of the four split criteria under increasing levels of

noise in the data. Specifically, we tested σ0 =
√

2, 2
√

2, 3
√

2, and 4
√

2

(while the other simulation parameters were fixed at ηj = (−1)(j+1)I(3 ≤
j ≤ 10)/2, ρ = 0, and p = 20). The performance results are shown in

Figure 4.3. Chi-squared divergence performs best or next to the best

in all settings, closely followed by Kullback-Leibler distance, Euclidean

distance, and L1-norm. However, the results illustrated here are limited

to a particular simulation setting. We encourage testing different split

criteria in empirical applications.
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Figure 4.3: Model performance comparison among uplift split criteria for
increasing values of σ0.
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4.4 Performance of uplift random forests

4.4.3 Uplift random forests and overfitting

A potential concern with uplift random forests is that, similarly to the

standard random forest algorithm, trees are grown to maximal depth (i.e.,

no pruning is done). While this helps with regard to bias, there is the

usual tradeoff with variance. For the standard algorithm, Segal (2004)

demonstrates small gains in performance by controlling the depths of the

individual trees grown in the forest. Also, Hastie et al. (2009) conclude

that using full-grown trees seldom costs much, and results in one less

tuning parameter.

We fitted uplift random forests using trees grown to maximal depth

(md) against controlling the depth level of the individual trees up to 2

levels (id2) and 3 levels (id3). In each case, we tested performance under

increasing values of the number of uplift trees B and two levels of noise,

σ0 =
√

2 (Low), and σ0 = 4
√

2 (High) (and fixed ηj = (−1)(j+1)I(3 ≤ j ≤
10)/2, ρ = 0, and p = 20). Figure 4.4 shows the model performance values

averaged over the 100 repetitions of the simulation.

Under the low noise scenario, the results show that uplift trees grown

to maximal depth do not overfit. This may not be entirely surprising, as

it is hard to overfit these data when the levels of noise are low. However,

in noisy settings, gains can be obtained by controlling the depth of the

individual uplift trees. Notice that in this case, trees grown to maximal

depth perform worse than constraining the depth level. Lastly, note that

performance tends to increase with the number of uplift trees in the forest,

as more trees add stability to the procedure. However, at some point,

additional trees start to become “redundant” and performance ceases to

improve as a result.
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Figure 4.4: Impact of controlling the depth level of the individual uplift trees
on model performance under two levels of noise: σ0 =

√
2 (Low)

and σ0 = 4
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5 Causal conditional inference

forests

5.1 Introduction

In this chapter, we introduce a tree-based method to estimate PTEs

with important enhancements over the uplift random forest algorithm

described in Chapter 4. There are two fundamental aspects in which

uplift random forests could be improved: overfitting and the selection

bias towards covariates with many possible splits. The development of

the framework introduced here to tackle these issues was motivated by

the unbiased recursive partitioning method proposed by Hothorn et al.

(2006). Following this framework, we have considerably improved the

generalization performance of uplift random forests by solving both the

overfitting and biased variable selection problems. The key to the solution

is separating the variable selection and the splitting procedure, coupled

with a statistically motivated and computationally efficient stopping

criterion based on the theory of permutation tests developed by Strasser

and Weber (1999).

5.2 Definition of causal conditional inference

forests

In the uplift random forest algorithm, the individual trees are grown

to maximal depth. While this helps to reduce bias, there is the usual

tradeoff with variance. Maximal-depth trees could be highly unstable and

this may overemphasize learning patterns and noise in the data which
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5 Causal conditional inference forests

may not recur in future samples. This problem, known as overfitting,

can be exacerbated in the context of personalized treatment learning

(PTL) models. In these models, the variability in the response from the

treatment heterogeneity effects tends to be small relative to the variability

in the response from the main effects. If the fitted model is not able to

distinguish well between the relative strength of these two effects and the

levels of noise in the data are relatively high, this may easily translate into

overfitting problems (see Section 4.4.3). In conventional decision trees

(Breiman et al., 1984; Quinlan, 1993), overfitting is solved by a pruning

procedure. This consists in traversing the tree bottom up and testing

for each (non-terminal) node, whether collapsing the subtree rooted at

that node into a single leaf would improve the model’s generalization

performance. Tree-based methods proposed in the literature to estimate

PTEs (Rzepakowski and Jaroszewicz, 2012; Su et al., 2012; Radcliffe and

Surry, 2011) use some sort of pruning. However, the pruning procedures

used by these methods are all ad hoc and lack a theoretical foundation.

Besides the overfitting problem, the second concern is the bias of

variable selection towards covariates with many possible splits or miss-

ing values. This problem is also present in conventional decision trees,

such as CART (Breiman et al., 1984) and C4.5 (Quinlan, 1993), and

results from the maximization of the split criterion over all possible splits

simultaneously (Kass, 1980; Breiman et al., 1984, p. 42).

A solution to both the overfitting and biased variable selection problems

can be obtained by making the selection of the variable to split a node

independent of the split criterion (Hothorn et al., 2006). Additionally, a

statistically motivated and computationally efficient stopping criterion

based on the theory of permutation tests developed by Strasser and

Weber (1999) is incorporated. The result is an improvement in predictive

performance relative to the uplift random forest method. In Chapter 6,

we conduct an extensive numerical study to support this claim.

The pseudocode of the proposed causal conditional inference forest

algorithm is shown in Algorithm 2. The most relevant aspects to discuss

are steps 7-12. Specifically, for each terminal node in the tree we test the

global null hypothesis of no interaction effect between the treatment A

and any of the n covariates selected at random from the set of p covariates.

The global hypothesis of no interaction is formulated in terms of n partial
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5.2 Definition of causal conditional inference forests

hypotheses Hj
0 : E[W |Xj ] = E[W ], j = {1, . . . , n}, with the global null

hypothesis H0 = ∩nj=1H
j
0 , where W is defined as in the modified outcome

method discussed in Section 3.3.2. Thus, a conditional independence

test of W and Xj has a causal interpretation for the treatment effect1 for

subjects with baseline covariate Xj. Multiplicity in testing can be handled

via Bonferroni-adjusted P values or alternative adjustment procedures

(Wright, 1992; Shaffer, 1995; Benjamini and Hochberg, 1995). When

we are not able to reject H0 at a prespecified significance level α, we

stop the splitting process at that node. Otherwise, we select the j∗th

covariate Xj∗ with the smallest adjusted P value. The algorithm then

induces a partition Ω∗ of the covariate Xj∗ into two disjoint sets M ⊂
Xj∗ and Xj∗ \ M based on the split criterion discussed below. This

statistical approach prevents overfitting, without requiring any form of

pruning or cross-validation.

One approach to measuring the independence between W and Xj

would be to use a classical statistical test, such as a Pearson’s chi-

squared. However, the assumed distribution in these tests is only a valid

approximation to the actual distribution in the large-sample case, and

this does not likely hold near the leaves of the decision tree. Instead, we

measure independence based on the theoretical framework of permutation

tests (Hothorn et al., 2006), which is admissible for arbitrary sample sizes.

Strasser and Weber (1999) developed a comprehensive theory based on a

general functional form of multivariate linear statistics appropriate for

arbitrary independence problems. Specifically, to test the null hypothesis

of independence between W and Xj , j = {1, . . . , n}, we use linear statistics

of the form

Tj = vec

(
L∑

`=1

g(Xj`)h(W`, (W1, . . . ,WL))>

)
∈ Rujv×1 (5.1)

where g : Xj → Ruj×1 is a transformation of the covariate Xj and h : W →
Rv×1 is called the influence function. The “vec” operator transforms the

uj×v matrix into a ujv×1 column vector. The distribution of Tj under the

null hypothesis can be obtained by fixing Xj1, . . . , XjL and conditioning

on all possible permutations S of the responses W1, . . . ,WL. A univariate

1 As discussed in Section 3.3.2, the modified covariate method requires P (A =
1) = P (A = 0) = 1/2. This is incorporated in line 2 of Algorithm 2.
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5 Causal conditional inference forests

test statistic c is then obtained by standardizing Tj ∈ Rujv×1 based on

its conditional expectations µj ∈ Rujv×1 and covariance Σj ∈ Rujv×ujv, as

derived by Strasser and Weber (1999). A common choice is the maximum

of the absolute values of the standardized linear statistic

cmax(T , µ,Σ) = max

∣∣∣∣
T − µ

diag(Σ)1/2

∣∣∣∣, (5.2)

or a quadratic form

cquad(T , µ,Σ) = (T − µ)Σ+(T − µ)>, (5.3)

where Σ+ is the Moore-Penrose inverse of Σ.

In step 11 of Algorithm 2, we select the covariate Xj∗ with smallest

adjusted P value. The P value Pj is given by the number of permutations

s ∈ S of the data with corresponding test statistic exceeding the observed

test statistic t ∈ Rujv×1. That is,

Pj = P(c(Tj , µj ,Σj) ≥ c(tj , µj ,Σj)|S).

For moderate to large samples sizes, it might not be possible to ob-

tain the exact distribution (calculated exhaustively) of the test statistic.

However, we can approximate the exact distribution by computing the

test statistic from a random sample of the set of all permutations S. In

addition, Strasser and Weber (1999) showed that the asymptotic distri-

bution of the test statistic given by (5.2) tends to multivariate normal

with parameters µ and Σ as L→∞. The test statistic (5.3) follows an

asymptotic chi-squared distribution with degrees of freedom given by the

rank of Σ. Therefore, asymptotic P values can be computed for these

test statistics.

Once we select the covariate Xj∗ to split, we next use a split criterion

which explicitly attempts to find subgroups with heterogeneous treatment

effects. Specifically, we use the following measure proposed by Su et al.

(2009), also implemented later by Radcliffe and Surry (2011) for assessing

the PTE from a split Ω:
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5.3 Additional considerations

G2(Ω) =
(L− 4)

{(
ȲvL(1)− ȲvL(0)

)
−
(
ȲvR(1)− ȲvR(0)

)}2

σ̂2
{

1/LvL(1) + 1/LvL(0) + 1/LvR(1) + 1/LvR(0)
} (5.4)

where vL and vR denote the left and right child nodes from a candidate

split Ω, respectively, Li∈{vL,vR}(A) denotes the number of observations in

child node i exposed to treatment A ∈ {0, 1}, and

Ȳi∈{vL,vR}(1) =

∑
∀`∈i Y`A`∑
∀`∈iA`

, (5.5)

Ȳi∈{vL,vR}(0) =

∑
∀`∈i Y`(1− A`)∑
∀`∈i(1− A`)

, (5.6)

σ̂2 =
∑

A∈{0,1}

∑

i∈{vL,vR}

Li(A)Ȳi(A)(1− Ȳi(A)). (5.7)

The best split is given by G2(Ω∗) = maxΩG
2(Ω) – that is, the split that

maximizes the criterion G2(Ω) among all permissible splits. It can easily

be seen (Su et al., 2009) that the split criterion given in (5.4) is equivalent

to a chi-squared test of the interaction effect between the treatment and

the covariate Xj∗ dichotomized at the value given by the split Ω.

5.3 Additional considerations

5.3.1 Categorical covariates

A binary split on a categorical covariate X with q distinct unordered

categories C = {c1, . . . , cq} has 2q−1 − 1 possible partitions. This would

result in a computational burden for large q. For standard decision

trees Breiman et al. (1984) and Ripley (1996) showed that for strictly

concave split criteria, it is possible to obtain a considerable shortcut in

the computations. Simply order the covariate according to the propor-

tion falling in outcome class 1 and then treat this predictor as ordinal.

In building a causal conditional inference tree, a similar shortcut can

be obtained by first ordering the categorical covariate according to the
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5 Causal conditional inference forests

estimated treatment effect within each category and then treating the

covariate as ordinal. Su et al. (2009) showed that this gives an optimal

split in terms of the criterion defined in (5.4) among all 2q−1 − 1 possible

splits.

Algorithm 2 Causal conditional inference forest

1: for b = 1 to B do
2: Draw a sample with replacement from the training observations L

such that P (A = 1) = P (A = 0) = 1/2

3: Grow a conditional causal inference tree CCITb to the sampled
data:

4: for each terminal node do
5: repeat
6: Select n covariates at random from the p covariates
7: Test the global null hypothesis of no interaction effect between

the treatment A and any of the n covariates (i.e., H0 = ∩nj=1H
j
0 ,

where Hj
0 : E[W |Xj ] = E[W ]) at a level of significance α based

on a permutation test
8: if the null hypothesis H0 cannot be rejected then
9: Stop

10: else
11: Select the j∗th covariate Xj∗ with the strongest interaction

effect (i.e., the one with the smallest adjusted P value)
12: Choose a partition Ω∗ of the covariate Xj∗ into two disjoint

setsM⊂ Xj∗ and Xj∗ \ M based on the G2(Ω) split criterion
13: end if
14: until a minimum node size lmin is reached
15: end for
16: end for
17: Output the ensemble of causal conditional inference trees CCITb; b =

{1, . . . , B}
18: The predicted PTE for a new data point x, is obtained by averaging

the predictions of the individual trees in the ensemble:
τ̂(x) = 1

B

∑B
b=1CCITb(x)
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5.3 Additional considerations

5.3.2 Stopping criteria

In Section 5.2 we discussed a statistically motivated stopping criterion

for causal conditional inference trees based on the theory of permutation

tests developed by Strasser and Weber (1999). Additionally, in our uplift

R package (Guelman, 2014) implementation, a split at any given node in

the tree is attempted if any of the following conditions are met: (i) the

total number of observations in the node is higher than a minimum preset

size, (ii) the number of control and treated observations in the node is

higher than a minimum preset size, (iii) the depth level of the tree is less

than a maximum threshold.

5.3.3 Observational studies

Both uplift random forests and causal conditional inference forests are

designed to estimate PTEs in the context of randomized designs. Under

randomization, the assignment of subjects to treatment and control groups

is independent of their baseline covariates. As the sample size grows,

random assignment tends to balance covariates, in the sense that both

groups have similar distributions of covariates. Observational studies differ

from experiments in that randomization is not used to assign treatments.

In this setting, subjects exposed to different treatment conditions are not

directly comparable. In the absence of randomization, the propensity

score (Rosenbaum and Rubin, 1983) is a device for constructing a matched

sample of control and treated subjects that balance many observed

covariates. Once a matched sample is constructed, the proposed tree-

based methods to estimate PTEs can be implemented on the matched

subjects. However, conclusions about the individual effect of treatments

will only be valid in the region of the covariate space in which control

and treated subjects were matched. The propensity score and matching

algorithms in the context of observational data are discussed in detail in

Chapter 9.

5.3.4 Multiple treatments

We have only considered the case of binary treatments. It would be

worthwhile to examine the extent to which the causal conditional inference
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5 Causal conditional inference forests

forests method can be extended to multi-category or continuous treatment

settings. For the former, one option would be to do a series of pairwise

comparisons, but this may not be optimal in the sense of identifying the

best treatment. It is important to note that many well-known classical

tests (e.g., Pearson’s chi-squared, Cochran-Mantel-Haenszel, Wilcoxon-

Mann-Whitney) can be formulated from (5.1) by choosing the appropriate

transformation g, influence function h and test statistic c to map the

linear statistic T into the real line. This sheds light on the possible

extensions of the proposed method to response variables measured in

arbitrary scales and multi-category or continuous treatment settings.
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6 Simulations

In this chapter, we conduct a numerical study for the purpose of assessing

the finite sample performance of the analytical methods introduced

in Chapters 3, 4, and 5. Most of these methods require specialized

software for implementation. We have developed a software package in R

named uplift (Guelman, 2014) that implements a variety of algorithms

for building and testing personalized treatment learning (PTL) models.

Currently, the following methods are implemented: uplift random forests

(upliftRF), causal conditional inference forests (ccif), causal K-nearest-

neighbor (cknn), modified covariate method (mcm), and modified outcome

method (mom). The uplift package functionality is discussed in detail

in Chapter 11. We also used the package FindIt, which implements

the L2-SVM method (l2svm) and was developed by the authors of the

method (Imai and Ratkovic, 2013). Finally, the difference score (dsm)

and interaction (int) methods can be implemented straightforwardly

using readily available software.

Our simulation framework is based on the one described in Tian et al.

(2014), but with a few modifications. We evaluate the performance of

the aforementioned methods in eight simulation settings, by varying

(i) the relative strength of the main effects relative to the treatment

heterogeneity effects, (ii) the degree of correlation among the covariates,

and (iii) the noise levels in the response.

We generated L independent binary samples from the regression model

Y = I

([ p∑

j=1

ηjXj +

p∑

j=1

δjXjA
∗
j + ε

]
≥ 0

)
, (6.1)

where the covariates (X1, . . . , Xp) follow a mean-zero multivariate normal

distribution with covariance matrix (1 − ρ)Ip + ρ1>1, A∗` = 2A` − 1 ∈
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6 Simulations

{−1, 1} was generated with equal probability at random, A` ∈ {0, 1},
and ε ∼ N(0, σ2

0). We let L = 200 (size of the training set), p = 20, and

(δ1, δ2, δ3, δ4, δ5, . . . , δp) = (1/2,−1/2, 1/2,−1/2, 0, . . . , 0).

Table 6.1 shows the simulation scenarios. The first four scenarios model

a situation in which the variability in the response from the main effects

is twice as big as that from the treatment heterogeneity effects, whereas

in the last four scenarios the variability in the response from the main

effects is four times as big as that from the treatment heterogeneity effects.

Each of these scenarios were tested under zero and moderate correlation

among the covariates (ρ = 0 and ρ = 0.5), and two levels of noise (σ0 =
√

2

and σ0 = 2
√

2).

Table 6.1: Simulation scenarios

Scenario ηj ρ σ0

1 (−1)(j+1)I(3 ≤ j ≤ 10)/2 0
√

2

2 (−1)(j+1)I(3 ≤ j ≤ 10)/2 0 2
√

2

3 (−1)(j+1)I(3 ≤ j ≤ 10)/2 0.5
√

2

4 (−1)(j+1)I(3 ≤ j ≤ 10)/2 0.5 2
√

2

5 (−1)(j+1)I(3 ≤ j ≤ 10) 0
√

2

6 (−1)(j+1)I(3 ≤ j ≤ 10) 0 2
√

2

7 (−1)(j+1)I(3 ≤ j ≤ 10) 0.5
√

2

8 (−1)(j+1)I(3 ≤ j ≤ 10) 0.5 2
√

2

Note. This table displays the numerical settings
considered in the simulations. Each scenario is
parametrized by the strength of the main effects, ηj,
j = {1, . . . , p}, the correlation among the covariates,
ρ, and the magnitude of the noise, σ0.

The key benefit of simulations in the context of PTEs is that the

“true” treatment effect is known for each subject, a value which is not

observed in empirical data. The performance of the analytical methods

was measured using the Spearman’s rank correlation coefficient between

the estimated treatment effect τ̂(X) derived from each model, and the

“true” treatment effect
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τ(X) = E[Y (1)− Y (0)|X]

= P

(
p∑

j=1

(ηj + δj)Xj ≤ ε

)
− P

(
p∑

j=1

(ηj − δj)Xj ≤ ε

)

= F

(
p∑

j=1

(ηj + δj)Xj

)
− F

(
p∑

j=1

(ηj − δj)Xj

)
, (6.2)

in an independently generated test set with a sample size of 10,000.

In (6.2), F denotes the cumulative distribution function of a normal

random variable with mean zero and variance σ2
0.

Variable selection for the mcm, mom, dsm, and int methods was per-

formed using the LASSO logistic regression via a 10-fold cross-validation

procedure. Based on this selection method, we found cases where the

LASSO procedure could not select any non-zero covariate based on cross-

validation. In these cases, we simply forced the correlation coefficient to

be zero in the test set since the method did not find anything informative.

For this reason, we alternatively fitted these methods based on random

forests (Breiman, 2001a) using their default settings1. We refer to these

methods based on random forest fits as mcm-RF, mom-RF, dsm-RF and

int-RF. The optimal values for the LASSO penalties in (3.2) for the

l2svm method, and the value of K in (3.9) for the cknn method, were

also selected via 10-fold cross-validation. Lastly, the methods upliftRF

and ccif were fitted using their default settings2.

The results over 100 repetitions of the simulation for the first and last

four simulation scenarios are shown in Figures 6.1 and 6.2, respectively.

These figures illustrate the boxplots of the Spearman’s rank correlation

coefficient between τ̂(X) and τ(X). The boxplots within each simulation

scenario are shown in decreasing order of performance based on the

average correlation. The ccif method performed either the best or next

to the best in all eight scenarios.

1 Specifically, we fitted the models using B = 500 trees and n =
√
p as the number

of variables randomly sampled as candidates at each split.
2 In both cases, we used B = 500 trees and n = p/3 as the number of variables

randomly sampled as candidates at each split. For ccif we set the P value =
0.05.
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Figure 6.1: Boxplots of the Spearman’s rank correlation coefficient be-
tween the estimated treatment effect τ̂(X) and the “true”
treatment effect τ(X) for all methods. The plots illustrate the
results for simulation scenarios 1–4, which model a situation
with “stronger” treatment heterogeneity effects, under zero
and moderate correlation among the covariates (ρ = 0 and
ρ = 0.5) and two levels of noise (σ0 =

√
2 and σ0 = 2

√
2). The

boxplots within each simulation scenario are shown in decreas-
ing order of performance based on the average correlation.
The dots outside the boxplots represent outliers, determined
using the “1.5 rule”.
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Figure 6.2: Boxplots of the Spearman’s rank correlation coefficient be-
tween the estimated treatment effect τ̂(X) and the “true”
treatment effect τ(X) for all methods. The plots illustrate the
results for simulation scenarios 5–8, which model a situation
with “weaker” treatment heterogeneity effects, under zero and
moderate correlation among the covariates (ρ = 0 and ρ = 0.5)
and two levels of noise (σ0 =

√
2 and σ0 = 2

√
2). The boxplots

within each simulation scenario are shown in decreasing order
of performance based on the average correlation.
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7 Model assessment and

selection for personalized

treatment learning models

7.1 Introduction

In conventional supervised learning models, model assessment refers to

estimating the prediction error (sometimes called the generalization error)

of the model. This is generally accomplished by choosing an appropriate

loss function to define the lack of fit between the predicted and the actual

values of the response variable at the individual observational unit. An

independent test sample is commonly used for this purpose. Assessing

model performance is more complex for personalized treatment learning

(PTL) models as the actual value of the response – the “true” treatment

effect – is unknown at the individual subject level. However, we can still

assess model performance by comparing groups of observations exposed

to different treatments. In this chapter we describe methods for model

assessment and selection in the context of PTL models.

7.2 The Qini curve and the Qini coefficient

The Qini curve (Radcliffe, 2007; Radcliffe and Surry, 2011) is a two-

dimensional depiction of model performance for PTL models. It represents

a natural extension of the Gains curve1 (Blattberg et al., 2008, p. 319)
1 The Gains curve is also associated with the Receiver Operating Characteristic
(ROC) curve. In fact, Hand and Till (2001) point out that the more familiar
Gini coefficient is related to the Area under the ROC curve (AUROC) by:
Gini + 1 = 2×AUROC.
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7 Model assessment and selection for PTL models

commonly used by conventional supervised learning models. We formalize

the relevant concepts below.

Let ` = {1, . . . , L} be the set of instances on a given test sample random-

ized in control and treatment arms, denoted by A ∈ {0, 1}, respectively,

Y ∈ {0, 1} be a binary response variable and τ̂M` , ` = {1, . . . , L} be the

personalized treatment effect (PTE) (Equation 2.2) predictions induced

by a model M . Also, let φ ∈ [0, 1] be a given fraction of the L instances

with highest predicted PTE, and Sφ ⊂ L the subset of instances in this

fraction.

We define RA=1(φ) as the number of positive responses in the treatment

group within the fraction φ, expressed as a percentage of the total number

of instances in the treatment group. That is,

RA=1(φ) =

∑
∀`∈Sφ Y`A`∑L
`=1A`

. (7.1)

Similarly, we define RA=0(φ) as the number of positive responses in the

control group within the fraction φ, expressed as a percentage of the total

number of instances in the control group. That is,

RA=0(φ) =

∑
∀`∈Sφ Y`(1− A`)∑L
`=1(1− A`)

. (7.2)

For a given φ, we define the net lift as

net lift(φ) = RA=1(φ)−RA=0(φ). (7.3)

A Qini curve is constructed by plotting net lift(φ) at increasing values

of φ ∈ [0, 1]. This is demonstrated in Figure 7.1. This figure can be

interpreted as follows: on the x-axis we show the fraction of individuals

in the population in which the action is performed, and on the y-axis we

show the incremental number of positive responses between treatment

and control groups2, expressed as a percentage of the size of the target

population. Clearly, if we treat all individuals in the population, the

net lift will be equivalent to the average treatment effect (ATE; see

Equation 2.1). A benchmark for model M can be represented by the

2 If the number of individuals in the treatment and control groups differ, the
incremental number of responses should be scaled based on the relative sizes of
these groups.
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7.2 The Qini curve and the Qini coefficient

strategy of randomly selecting subjects to perform the action. This is

represented in the figure by the diagonal line. For example, if we perform

the action on 30% of the population, we expect to obtain 30% of the net

lift relative to performing the action on the entire population.
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Figure 7.1: Sample Qini curves corresponding to model M and random
targeting strategies.

The Qini coefficient q is a single estimate of model performance obtained

by subtracting the area under the random curve from the area under

the Qini curve. The area under each curve can be approximated by

partitioning the domain of φ ∈ [0, 1] into J panels, or J + 1 grid points

0 = φ1 < φ2 < . . . < φJ+1 = 1, and computing3

3 The approximation uses the formula for the area of a trapezoid, given by the
average height times the width of the base.
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7 Model assessment and selection for PTL models

qm ≈
1

2

J∑

j=1

(
φj+1 − φj

)(
net lift(φj+1) + net lift(φj)

)
, (7.4)

where m ∈ {M, random} and the Qini coefficient q = qM − qrandom. In gen-

eral, given a set of n PTL models {M1,M2, . . . ,Mn} and their associated

Qini coefficients {qM1
, qM2

, . . . , qMn
} measured on the same test data, the

preferred model M∗ is the one with maximum Qini coefficient.

Notice that the Qini coefficient may take any value along a continuous

line. A negative value implies that the model performs worse than

randomly selecting subjects to perform the action. The absolute value

of the Qini coefficient is less meaningful than its relative value among

different models. It is only advisable to compare Qini values on the same

test data.

7.3 Optimal Qini curves

The concept of optimal Qini curves can be more readily explained using

an example. For simplicity, suppose the sample is composed of L = 200

subjects and that
∑L

`=1A` =
∑L

`=1(1 − A`) = 100 – so that an equal

number of 100 subjects is randomly allocated to treatment and control

groups. Assume the response rates in the treatment and control groups

are 20% and 10%, respectively. That is, RA=1(φ = 1) = 20% and RA=0(φ =

1) = 10%. Clearly, the ATE (or equivalently, the net lift at φ = 1) is 10%.

What is the optimal Qini curve representing the best possible model we

could build in this case? The answer to this question depends on a key

feature of PTL models and relates to the presence of negative effects.

A subject is negatively impacted by treatment if the response under

treatment is worse than it would be under control. Thus, if we assume

that a value of Y = 1 is more desirable than a value of Y = 0, a negative

effect happens when the subject’s response is Y = 0 under A = 1, but

would have been Y = 1 under A = 0.

Let us now consider two scenarios. In the first scenario, assume there

are no negative effects and that the treatment positively impacted 10

subjects (their value of Y = 1 under A = 1, but would have been Y = 0

under A = 0). Figure 7.2 (left) shows the optimal Qini curve, Mopt, under
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7.3 Optimal Qini curves

this scenario. In this case, an optimal model is able to identify the 10

subjects positively impacted by the treatment within the first decile of

the target population. In the second scenario, assume the treatment

positively impacted 20 subjects. As the response rate in the control group

is 10%, that can only happen if, in addition, the treatment negatively

impacted 10 subjects. The optimal Qini curve under this scenario is

shown in Figure 7.2 (right). In this case, an optimal model would allocate

the 20 subjects with positive treatment effect within the first two deciles

of the target population, and the 10 subjects with negative impact in the

last decile.

A: w/out negative effects B: with negative effects
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Figure 7.2: Qini curves corresponding to the optimal model Mopt and
random model in the absence (left) and presence (right) of
negative effects.
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7 Model assessment and selection for PTL models

7.4 Top uplift

In certain applications, we may not be interested in obtaining an estimate

of model performance on the entire target population, but only on a

predetermined fraction φ ∈ [0, 1] of this population. This is generally the

case, for example, in direct marketing applications, where a company

may target at most 10% to 30% of a given population. The top uplift

at φ ∈ [0, 1] is obtained by computing the actual ATE on the fraction φ

of the total L subjects with highest predicted PTE. That is,

top uplift(φ) =

∑
∀`∈Sφ Y`A`∑
∀`∈Sφ A`

−
∑
∀`∈Sφ Y`(1− A`)∑
∀`∈Sφ(1− A`)

. (7.5)

7.5 Resampling methods

Conventional statistical learning methods can be highly adaptable, capa-

ble of accurately learning patterns in the data on which the model was

built. Unfortunately, these methods may easily overemphasize learning

patterns and noise in the data which are unlikely to hold in new samples

– in other words, they tend to overfit the data. Overfitting should be

avoided as it degrades a model’s predictive performance.

As discussed in Chapters 4 and 5, the problem of overfitting is generally

worse in the context of PTL models compared to conventional statistical

learning models. Treatment heterogeneity effects tend to be significantly

weaker compared to main effects, and if the levels of noise in the data

are relatively high, a model may have difficulty in accurately learning

the underlying treatment heterogeneity relationships from the data (see

Section 4.4.3).

All models discussed in this thesis have tuning parameters that allow us

to control the degree of flexibility with which they can learn the structure

in the data. A tuning parameter is one that is fixed in advance by the

user, as opposed to being determined as part of the fitting procedure.

For instance, in the context of uplift random forests, we mainly discussed

two tuning parameters: the number n of covariates selected at random

as candidates for splitting and the number B of uplift trees in the forest.

Additionally, in the context of causal conditional inference forests, the P

value in Algorithm 2 can also be considered as a tuning parameter, as it

54



7.5 Resampling methods

controls the maximum acceptable P value required to split a node in the

tree.

Performance measures such as the Qini coefficient or top uplift com-

puted on training data usually overestimate the expected model’s per-

formance on new samples. In the presence of a very large data set, a

designated validation set can be used for model selection by directly

estimating these measures under varying values of the tuning parameters.

In addition, a test set can be used for a final performance evaluation of

the chosen model. The test set contains observations which were not

used for model training or selection. However, we may often have small

samples at our disposal and this is where resampling methods come into

play. These methods consist in drawing a subset of samples to fit a model

and leaving the remaining samples to estimate the model’s performance.

This process is applied repeatedly and the performance results from the

individual fits are aggregated. This section discusses the most relevant

resampling techniques.

7.5.1 K-fold cross-validation

This method involves splitting the data into K mutually exclusive subsets

or “folds” of equal size. We subsequently set aside the first fold and fit a

model to the remaining K − 1 folds. This model is then used to obtain a

performance estimate on the first fold. This process is repeated K times,

each time setting aside a different fold. The performance estimates over

the K folds are then averaged. For instance, if the Qini coefficient q is

used as a performance estimate, the cross-validated q over the K folds is

computed as

CV(K) =
1

K

K∑

k=1

qk. (7.6)

The most common choice for K is 10, but there is no specific rule. There

is a fundamental trade-off between bias and variance in choosing K. As

K gets larger, the difference in size between the training set (composed

of K − 1 folds) and the entire data set gets smaller. As a result, the bias

of the cross-validation estimator also gets smaller. In this context, the

bias refers to the difference between the estimated and true (expected)
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7 Model assessment and selection for PTL models

performance values. For instance, with K = L (called Leave-One-Out

cross-validation), the cross-validation estimator is approximately unbiased

for the true performance value. However, a lower bias usually comes at a

trade-off with a higher variance. As K gets larger, the variance of the

cross-validation estimator also gets larger. The reason is that with a

large K, we are effectively averaging quantities that are highly positively

correlated, since the training sets are very similar to each other. The

variance of the mean of highly correlated identically distributed quantities

is higher than with quantities that are not as highly correlated. Overall,

K = 10 is usually chosen as a good compromise (see Kohavi, 1995).

7.5.2 Monte Carlo cross-validation

This method involves randomly selecting (without replacement) some

fraction α of the entire samples to form a training set, and assigning the

remaining samples to the validation set. A model is fitted to the training

set and the performance measure estimated based on the validation set.

This process is then repeated K times, generating new training and

validation partitions each time. The final performance estimate is derived

by averaging the individual performance estimates over all runs.

Compared to K-fold cross-validation, Monte Carlo cross-validation

allows us to explore more possible partitions, although it is unlikely to

exhaust all
(
L
αL

)
possibilities. As discussed previously, the choice of the

proportion of observations used for training and validation involve a

bias/variance trade-off. The higher the proportion of observations used

in training, the lower the bias but the greater the variance. If the interest

is in model selection (i.e., determining the best tuning parameters for a

given method) as opposed to model assessment (e.g., predicting the future

(expected) top decile uplift with high accuracy), the absolute accuracy of

the cross-validation estimator is less relevant than the relative accuracy

and we might be willing to trade off bias for low variance, assuming the

bias affects all values of the tuning parameters similarly.

7.5.3 Bootstrap methods

Given a dataset with L instances, a bootstrap sample consists in drawing

a sample (with replacement) of size L from the data (Efron and Tibshirani,
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7.5 Resampling methods

1986). This is done B times, resulting in B bootstrap datasets. The

probability of an instance being chosen in a given bootstrap sample

is 1 − (1 − 1/L)L ≈ 0.632. The instances not selected in the bootstrap

sample are referred to as out-of-bag (OOB) samples. For a given iteration

of the bootstrap, a model is fitted to the bootstrap sample and assessed

on the OOB samples using a performance measure. From this procedure,

we can estimate any aspect of the distribution of the performance measure

obtained from the B replications, such as its mean and variance.

The bootstrap method will tend to produce performance estimates

with low variance but high bias, as the training sample size is just slightly

higher than in 2-fold cross-validation. To account for this bias, the “.632

bootstrap” estimator (Efron, 1983) of performance is defined as

perfboot.632 =
1

B

B∑

b=1

(
0.632×simple bootstrap performance estimate +

0.368× apparent performance
)
. (7.7)

The apparent performance represents the estimated performance mea-

sure evaluated on the training set. In estimating performance based on

the Qini coefficient or top uplift, the idea of (7.7) is to correct the down-

ward bias in the simple bootstrap performance estimate by averaging it

with the upward biased apparent performance estimate. This method

will produce over-optimistic performance estimates if the model severely

overfits the data, since the apparent performance will dominate the over-

all performance in this case. A subsequent bootstrap method proposed

by Efron and Tibshirani (1997), called “.632+ bootstrap”, attempts to

put greater weight on the bootstrap performance estimate in situations

where the amount of overfitting is large.

7.5.4 Selecting final tuning parameters

We discuss here an example for choosing the best tuning parameters in a

model based on the estimated Qini coefficient. We will focus on selecting

the P value within the causal conditional inference forests method. This

is the P value required to split a node in a tree (see Algorithm 2). A
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7 Model assessment and selection for PTL models

higher P value creates trees with higher interaction depth, which are

therefore more complex. As previously discussed, if the model is overly

complex, it will easily emphasize learning patterns and noise in the data

which may not be reproduced in new samples. Therefore, the selection of

the final P value aims to avoid overfitting the model.

For the discussion in this section, we use data from a real direct mail

campaign implemented by an international bank. In this campaign, an

experiment was carried out by which 6,256 clients were randomly assigned

in equal proportions to a treatment and a control group. Clients in the

treatment group received a promotion to buy a certain financial product.

Clients in the control group did not receive the promotion. We use causal

conditional inference forests to identify which clients are more likely to

buy this product as a result of the promotion. The performance of the

fitted models is assessed based on the Qini coefficient estimated from

different resampling methods. Further details about this dataset and a

more in-depth analysis are provided in Chapter 11.

Figure 7.3 shows the estimated Qini coefficient as a function of the

P value. The apparent performance (upper left panel) shows the estimated

performance when using all samples to both fit and assess the model.

Notice that performance improves as the P value is increased, although

more complex models overfit the data. The remaining panels show the

estimated performance from three resampling methods: 10-fold cross-

validation, Monte Carlo cross-validation (MCCV), and bootstrap. The

MCCV method was performed with a 75/25 training/validation split, and

the process was repeated 10 times for each P value. For the bootstrap

method, recall that in Algorithm 2 we draw a sample with replacement

from the training observations before fitting each tree. Therefore, the

out-of-bag samples were used as the validation set. We also performed 10

bootstrap replications for each P value. In the figure, we show the mean

and ± one standard error performance estimates. The more instances we

leave for the validation set, the higher the bias of our estimate; however,

fewer validation set instances produce a wider confidence interval for

the estimated Qini. For instance, 10-fold CV only leaves 10% of the

data at each iteration for validation, and so the confidence intervals

are significantly larger than with the other resampling methods. The

MCCV and bootstrap methods indicate a P value of 0.05 as the one that
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7.5 Resampling methods

maximizes the estimated Qini coefficient. This is consistent with the

default value used for this tuning parameter. For the 10-fold CV method,

any P value lower than 0.15 would produce approximately the same

performance. However, as mentioned, our confidence in these estimates

is significantly lower.

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

A: Apparent performance B: 10−fold CV

C: MCCV D: Bootstrap

0.25

0.50

0.75

1.00

1.25

1.50

0.15

0.20

0.25

0.16

0.18

0.20

0.22

0.24

0.19

0.20

0.21

0.22

0.23

0.
01

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
4

0.
5 1

0.
01

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
4

0.
5 1

0.
01

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
4

0.
5 1

0.
01

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
4

0.
5 1

P  value

Q
in

i c
oe

ffi
ci

en
t

Figure 7.3: Qini coefficient performance profile of causal conditional in-
ference forests under increasing P values based on different
resampling methods. For each method, we show the mean
and ± one standard error performance estimates. The results
are based on the bank’s direct mail campaign dataset.

59



7 Model assessment and selection for PTL models

7.6 Model calibration

The Qini coefficient and top uplift methods can assess the ability of a

model to rank-order subjects in terms of their expected personalized

treatment impact. In some applications, in addition to the ranking of

subjects, we are also interested in having well-calibrated PTE probabilities.

That is, the predicted PTE should be equal to the observed PTE. Model

calibration can be assessed using a calibration plot, constructed as follows.

We first use a fitted model to obtain the PTE predictions on each subject,

preferably on a test set. Next, we rank-order the personalized treatment

predictions and group them into bins with approximately equal numbers

of observations in each. Then we plot the average predicted versus the

average actual treatment effect for each bin.

As an illustration, Figure 7.4 shows the calibration plot for a causal

conditional inference forest model fitted to the bank data introduced in

Section 7.5.4. The blue dots show the average observed PTE for each

bin versus the average predicted PTE. Notice that the points fall along

a 45◦ line (red), implying that the model has produced well-calibrated

probabilities.
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Figure 7.4: Calibration plot for a causal conditional inference forest model
fitted to the bank dataset.
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8 Empirical applications in

insurance marketing

8.1 Introduction

In this chapter, we illustrate two empirical applications of the proposed

methods to estimate personalized treatment effects (PTEs; see Chap-

ters 4 and 5) to insurance marketing data. The first is an insurance

cross-sell application. Recent relevant contributions to insurance cross-

sell consider the potential heterogeneity in the profitability of the cross-sell

attempt from an actuarial perspective. In Thuring et al. (2012), a method

for selecting policyholders for cross-selling additional insurance contracts

using multivariate credibility is implemented. In Kaishev et al. (2013), a

new method is proposed for optimal cross-sell selection based on expected

profit maximization and mean-variance optimization. Nevertheless, in

this context the heterogeneity in response to the marketing intervention

activity should also be considered. Personalized treatment learning (PTL)

models provide the specific response of each individual to a particular

treatment or intervention.

The second application is related to insurance client retention. Client

retention is a concept that encompasses all efforts made by a selling

company to retain its customers. It has obvious links with marketing

strategies, quality, customer service and profitability. When looking

at client retention in the context of insurance products, the number of

existing contributions is still scarce and mainly focuses on predictive

models for the probability of a customer switching to another company

(Donkers et al., 2007; Morik and Köpcke, 2004; Smith et al., 2000). Rather

than focusing on clients with a high probability of leaving, PTL models
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8 Empirical applications in insurance marketing

can be used to identify the target clients who are more likely to respond

positively to a retention activity.

8.2 An insurance cross-sell application

8.2.1 The data

The data used for this analysis are based on a direct mail campaign

implemented by a large Canadian insurer between June 2012 and May

2013. The objective of the campaign was to drive more business from

the existing portfolio of auto insurance clients by cross-selling them a

home insurance policy with the company. The standard savings via

multiproduct discount was prominently featured and positioned as the

key element in the offer to the clients. In addition to the direct mail,

the same clients were also contacted over the phone to further motivate

them to initiate a home policy quote. A randomly selected control

group was included as part of the campaign design, consisting of clients

who were not mailed or called. The response variable is determined by

whether the client purchased the home policy between the mail date and

3 months thereafter. In addition to the response, the dataset contains

approximately 50 covariates related to the auto policy, including driver

and vehicle characteristics and general policy information.

Table 8.1 shows the cross-sell rates by group. The average treatment

effect (ATE) of 0.34% (2.55% − 2.21%) is not statistically significant,

with a P value of 0.23 based on a chi-squared test. However, the average

treatment effect would be of limited value if policyholders show significant

heterogeneity in response to the marketing intervention activity. Our

objective is to estimate the PTE and use it to construct an optimal

treatment rule for the auto insurance portfolio – namely, the policyholder-

treatment assignment that maximizes the expected profits from the

campaign.
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Table 8.1: Cross-sell rates by group

Treatment Control

Purchased home policy = N 30,184 3,322
Purchased home policy = Y 789 75
Cross-sell rate 2.55% 2.21%

Note. This table displays the cross-sell rate for the treat-
ment and control groups. The average treatment effect
(ATE) is 0.34% (2.55%−2.21%), which is not statistically
significant (P value = 0.23).

8.2.2 Building the model

We used causal conditional inference forests (ccif) to estimate the PTE

from the marketing intervention activity. To objectively examine the

performance of the proposed method, we randomly split the data into

training and validation sets in a 70/30 ratio. A preliminary analysis

showed that model performance is not highly sensitive to the values of

its tuning parameters (i.e., number of trees B and number of variables

n randomly sampled as candidates at each split), as long as they are

specified within a reasonable range. Thus, we fitted a ccif to the training

data using its default parameter values. Specifically, in Algorithm 2, we

used B = 500, n (= p/3) = 16, and 0.05 as the level of significance α for

the P values. We next ranked policyholders in the validation data set

based on their estimated PTE (from high to low), and grouped them into

deciles. We then computed the actual ATE within each decile (defined

as the difference in cross-sell rates between the treatment and control

groups).

8.2.3 Results

Figure 8.1 shows the boxplots of the actual ATE for each decile based

on 100 random training/validation data partitions. The results show

that clients with higher estimated PTE were, on average, positively

influenced to buy as a result of the marketing intervention activity, with

ATEs above 1% for the first three deciles as compared with the ATE
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of 0.34% over all deciles. Also, notice there is a subgroup of clients

(deciles 8-10) whose purchase behavior was negatively impacted by the

campaign. Negative reactions to sale attempts have been recognized in

the literature (Günes et al., 2010; Kamakura, 2008; Byers and So, 2007)

and may happen for a variety of reasons. For instance, the marketing

activity may trigger a decision to shop for better multiproduct rates

among other insurers. Moreover, if the client currently owns a home

policy with another insurer, she may decide to switch her auto policy to

that insurer instead. We found evidence of higher auto policy cancellation

rates in the higher deciles. In addition, some clients may perceive the call

as intrusive and likely be annoyed by it, generating a negative reaction.

In the context of insurance, it is important to consider not only the PTE

from the cross-sell activity, but also the expected insurance losses from

the targeted clients (Thuring et al., 2012; Kaishev et al., 2013; Englund

et al., 2009). We determined the expected profitability from targeting

each decile by subtracting the fixed and variable campaign expenses from

the product between the ATE and the expected lifetime-value of a home

policy1. Based on these considerations, Figure 8.1 shows that only clients

in deciles 1-3 have positive expected profits from the marketing activity

and should be targeted. The incremental profits from clients in deciles 4-7

is outweighed by the incremental costs, and so the company should avoid

targeting these clients. Clients in deciles 8-10 have negative reactions to

the campaign and clearly should not be targeted either.

1 The expected lifetime-value (LTV) of a home policy in decile i = {1, . . . , 10} is

given by LTVi = [Premi− L̂Ci−Expi]
∑5

t=1 P (Sit)r
t, where Prem is the average

policy premium, L̂C is the predicted insurance loss per policy-year, Exp captures
the fixed and variable expenses for servicing the policy (excluding campaign
expenses), P (Sit) is the probability that a policyholder in decile i = {1, . . . , 10}
will continue with the home product beyond year t = {1, . . . , 5}, and rt is the
interest discount factor.
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Figure 8.1: Boxplots of the actual average treatment effect (ATE) for
each decile based on 100 random training/validation data
splits. The first (tenth) decile represents the 10% of clients
with highest (lowest) predicted PTE. Clients with higher
estimated PTE were, on average, positively influenced to buy
as a result of the marketing intervention activity.

8.3 An insurance customer retention case

8.3.1 The data

As a result of an upcoming increase in auto insurance rates, a large

Canadian insurer was interested in designing retention strategies to

minimize the attrition rate of its existing book of clients. For that

purpose, an experimental retention program was implemented in which

policyholders coming up for renewal were randomly allocated to either

a treatment or to a control group. Policyholders under the treatment

group received a letter in the mail, which notified them about the rate
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increase and clearly explained the reasons for it. This group also received

a courtesy call made by one of the company’s licensed insurance advisors.

The purpose of the call was to verbally reinforce the items described

in the letter, and to ensure that all applicable discounts were in place

for the policy (such as those resulting from also insuring the property

with the company and more than one vehicle). In addition, the advisors

were trained to deal with situations of customer dissatisfaction with the

company.

No retention efforts were applied to the control group. As the campaign

was designed under randomized assignment, the results observed in this

group represent a natural benchmark for comparison. Table 8.2 shows

the attrition results. The observed difference in attrition rates between

the treated group and the control group is very small (0.3%). Certainly,

this result is not enough to cover the cost of the campaign. However, our

aim here is to determine whether the campaign had positive retention

effects on some subgroup of clients, which were however offset by negative

effects on other subgroups. If so, the company would ideally only target

clients with positive impact in the future. Adverse effects can happen in

retention programs (Stauss et al., 2005; Guillén et al., 2011), for example,

if the customer is already dissatisfied and perceives the call as intrusive,

or if the treatment triggers a behavior to shop for a better price among

other insurers.

Table 8.2: Attrition rates by group

Overall Treatment Control

Retained policies 10,857 7,492 3,365
Canceled policies 1,111 757 354
Attrition rate 9.3% 9.2% 9.5%
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8.3.2 Building the models

For this experimental evaluation, we compare four PTL models: the

uplift random forest method (upliftRF), a single uplift tree with pruning

(single-tree), the difference score method (dsm), and the interaction

method (int). All these models are described in Chapters 3 and 4, except

the single uplift tree, described in Rzepakowski and Jaroszewicz (2012).

Model selection in the case of upliftRF involves determining the

optimal value of its two parameters: the number of covariates n randomly

sampled as candidates at each split from the set of p covariates, and the

number of trees B. For that purpose, we first specified a grid of suitable

choices for these parameters. Specifically, we used n = 1, 2, 3, . . . , 31 (= p)

and B = 100 to 2000 (incremented by 100). Euclidean distance was used

as the split criterion, and the sample fraction ν of training observations

was fixed at 0.5. The parameters were selected to maximize the out-of-bag

Qini coefficient. For single-tree, we also fitted the model to the same

fraction, and pruned the tree on the remaining fraction. This was done

by traversing the tree bottom up and testing, for each (non-terminal)

node, whether collapsing the subtree rooted at that node with a single

leaf would improve accuracy as measured by the Qini coefficient, in which

case the subtree was replaced and the process repeated. For the dsm

approach, we fitted two independent stepwise logistic regression models

on the treatment and control observations, and then subtracted the class

probabilities from the two models. We also used a logistic model for the

int approach.

To maximize the usage of the training data, model assessment for all

models was done using a K -fold cross-validation procedure with K = 10.

This involves splitting the training data into K equal parts, following the

model selection procedure described above on K − 1 parts of the data,

and then evaluating the value for the Qini coefficient on the kth part.

This was done for k = 1, 2, . . . , K and then the K estimated values for the

Qini were averaged. Notice this mimics the application of the classifier

to an independent test set, since model selection is not done using the

left-out K samples.
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8.3.3 Results

Figure 8.2 shows the Qini curves (see Chapter 7) from all methods.

The Qini curve shows the cumulative number of incremental retained

clients relative to the cumulative number of targets (both expressed as a

percentage of the total targets). That is, the curve shows the expected

increase in the overall retention rate (or equivalently, the reduction in

attrition rate) as a result of targeting a given proportion of the population.

Also, if we randomly target γ percent of the population, we expect to

obtain γ percent of incremental retained clients relative to targeting the

entire population. This is depicted by the diagonal line.

Based on the Qini coefficient, the upliftRF performs best in this

application, with the int approach being second. The dsm and the

single-tree perform worst. However, none of these models dominate

the others at all target volumes. The upliftRF model performs much

better for low target volumes, which is desirable in this application. This

model identified the 30% of clients for whom the retention program was

highly effective. At this target volume, the overall attrition rate falls by

1.7%, from 9.5% to 7.8%. Any additional targeted client would result in

a smaller reduction in attrition, as a result of null or negative effects of

the campaign on the remaining clients.

In addition, Table 8.3 shows the difference in attrition rates between

treatment and control groups for the top decile targets from each model.

Notice that the int and dsm methods are able to identify the top 10% of

clients with highest attrition rate, but not necessarily the clients most

positively impacted by the retention activity. The results confirm that our

approach is suited to selecting a group of clients for which the retention

program is highly effective, even when the impact of the program on

the overall population is negligible. Targeting the group with highest

expected impact is essential for the profitability of the campaign.
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Figure 8.2: This figure illustrates the Qini curve for each model based on the
client retention dataset. This curve shows the cumulative num-
ber of incremental retained customers relative to the cumulative
number of targets (both expressed as a percentage of the total
targets). The diagonal line depicts the theoretical incremental re-
tained customers from random targeting. The Qini coefficient (q)
is obtained by subtracting the area under the random curve from
the area under the Qini curve and represents a single estimate of
model performance. The approach based on uplift random forest
(red) performs best in this application.

Table 8.3: Top decile uplift

Attrition rate (%)
Control Treatment Uplift

upliftRF 21.24 9.21 12.03
dsm 33.60 23.03 10.57
single-tree 13.98 5.21 8.77
int 27.41 20.60 6.81
random 9.50 9.20 0.30
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9 Personalized treatment

learning in observational

studies: An empirical

application to insurance price

elasticity modeling

9.1 Introduction

In prior chapters, we have assumed that the treatment is assigned to the

observational units using some sort of randomization procedure. In this

chapter, we relax this assumption and present an empirical application

of personalized treatment learning (PTL) to observational data in the

context of insurance price elasticity modeling. We draw on the termi-

nology and framework of causal inference (Holland, 1986) and use the

term causal effect to refer to an effect that is attributable to a specific

treatment. An effect is attributable to a specific treatment if it would

not have been observed had the subject been exposed to an alternative

treatment condition instead (Rosenbaum, 2002).

Understanding the precise nature of price sensitivities at the individual

policyholder level is extremely valuable for insurers. A rate increase has

a direct impact on the premium customers are paying, but there is also

the indirect impact as a result of the “causal effect” of the rate change on

the customer’s decision to renew the policy term. A rate increase may

impair its intended impact on the overall profitability of the portfolio if

it causes a large number of policyholders to lapse their policy and switch
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to an alternative insurer.

The difficulty in measuring price elasticity from most insurance data-

bases is that historical rate changes are reflective of a risk-based pricing

exercise. As a result, the specific rate change to which a customer is

exposed is a deterministic function of her observed covariates. The nature

of the data is thus observational, rather than experimental. In this

context, measuring the causal effect of a rate change on the policyholder’s

lapse outcome requires special modeling considerations. Conventional

modeling approaches aimed to directly fit the lapse outcome as a function

of the rate change and background covariates are likely to be inappropriate

for the problem at hand.

In this chapter, we propose a PTL framework to measure price elasticity

in the context of automobile insurance. One of the strengths of our

approach is transparency about the extent to which the database can

support causal effects from rate changes. The model also allows us to more

reliably estimate price-elasticity functions at the individual policyholder

level. Since the causal effect of a rate change varies across individuals,

making an accurate rate change choice at the individual subject level is

essential. The rate to which each subject is exposed could be optimized

on the basis of the individual’s characteristics, in order to maximize the

overall expected profitability of the portfolio.

This chapter is organized as follows. We first introduce the concept of

price elasticity in insurance and formalize the price elasticity estimation

problem from a PTL perspective. We follow this with an overview of

the key assumptions required to derive unbiased estimates of the average

causal effects caused by treatment interventions from observational data.

Propensity scores and matching algorithms are discussed next. The

second half of the chapter presents a detailed application of our approach

to price elasticity estimation in the context of auto insurance. Finally,

we outline managerial implications, and offer some reflections on shifting

to a causal inference paradigm for estimating price elasticity.

9.2 Price elasticity in insurance

Cost-based pricing of individual risks is a fundamental concept in the

actuarial ratemaking literature. The goal of ratemaking methodologies
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is to estimate the future costs related to the insurance coverage. The

loss cost approach defines the price of an insurance policy as the ratio

of the estimated costs of all expected future claims against the coverage

provided by the policy to the risk exposure, plus expenses (Denuit et al.,

2007). There is a wealth of actuarial literature regarding appropriate

methodologies for using exposure and claims data in order to calculate

indicated rates (Finger, 2006; Brown and Gottlieb, 2007).

A revised set of rates will impact the profitability of an insurance

portfolio due to its direct impact on the premiums that policyholders

are paying. However, there is also an indirect impact resulting from the

policyholders’ reaction to the rate change. As basic auto insurance is

mandatory in many countries, a rate change exceeding a certain threshold

will make a policyholder more likely to shop for an alternative insurer

and potentially switch to another company. If the rate change causes a

large number of customers to lapse their policies, the revised rates could

impair the intended impact on the profitability of the insurance portfolio.

In recent years, insurers have been switching from purely cost-based to

partially demand-based pricing. Price optimization strategies (Santoni

and Gómez Alvado, 2008) aim to integrate cost-based pricing and the

customer’s willingness to pay into an overall pricing framework. A

key component of this framework involves predicting, to a high degree

of accuracy, how customers will respond to alternative rate changes,

conditional on each customer’s characteristics being held fixed1.

If we consider the rate change as a treatment with varying “dose”

levels, the main problem involves the selection of optimal treatments

for individuals on the basis of estimates of potential outcomes resulting

from treatment alternatives. A similar kind of estimation problem is

found in many disciplines, ranging from economics to medicine. In

this sense, the price elasticity problem can be conceived under a causal

inference framework, which is typically interested in questions of the form

“what would happen to a subject had she been exposed to treatment

B instead of A?” The alternative choice B is a counterfactual with an

associated potential outcome. Thus, considerations about potential

outcomes from alternative treatment choices seem an inescapable part of

1 An additional issue is the reaction to new products or cross-selling (see, for
instance Kaishev et al., 2013; Thuring et al., 2012).
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the price elasticity estimation problem.

A randomized controlled experiment is generally the best approach for

drawing statistical inferences about effects caused by treatments. The

most effective way to measure price elasticity at the portfolio level would

be to randomize the allocation of policyholders to various treatment levels

and then measure the impact on retention. However, in the most com-

mon situation, insurance databases contain historical price changes that

reflect a risk-based pricing approach. Under these conditions, treatment

assignment is a deterministic function of the policyholder’s observed risk

characteristics. The nature of the data is thus observational rather than

experimental, as randomization has not been used to assign treatments.

In the absence of experimental design, causal inference is more difficult

and requires appropriate modeling techniques.

The standard actuarial approach to measuring price elasticity in in-

surance is to model the policyholder’s lapse behavior as a function of

the rate change and the policyholder’s covariates (Anderson et al., 2007;

Yeo et al., 2001; Smith et al., 2000). The key assumption is that the

inclusion of those covariates will adjust for the potential exposure cor-

relations between price elasticity and other explanatory variables. This

approach is unreliable for estimating causal effects from observational

data due to masked extrapolation problems, and to the sensitivity of the

results to unwarranted assumptions about the form of the extrapolation

(Rubin, 1973; Rubin, 1979; Morgan and Winship, 2007, p. 129; Berk,

2004, p. 115; Guo and Fraser, 2010, p. 82). The problem is even worse

when the number of explanatory variables is large, as groups may differ

in a multivariate direction and so non-overlap problems are more difficult

to detect (Rubin, 1997). Standard statistical software can be remarkably

deceptive for this objective because regression diagnostics do not include

a careful analysis of the distribution of the predictors across treatment

groups. When the overlap (formally defined as common support ; see

Equation 9.2 in Section 9.4.1) is too limited, the data cannot support any

causal conclusions about the differential effects of treatments (Englund

et al., 2008; Guelman et al., 2012; Guillén et al., 2012).

In this chapter, we propose a method for estimating price elasticity with

roots in Rubin’s causal model (Rosenbaum and Rubin, 1983; Rosenbaum

and Rubin, 1984; Rubin and Waterman, 2006). One of the strengths of
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our approach is its transparency regarding data support for estimating the

impact of rate changes on customer retention at the portfolio level. Our

model also allows us to more reliably estimate individual price-elasticity

functions. As the causal effect of a rate change varies across individuals,

an accurate choice of the treatment at the individual subject level is

essential. Each subject’s treatment could be optimized on the basis of

individual characteristics, and thus maximize the overall positive impact

of the rate change intervention.

9.3 Price elasticity as a personalized

treatment learning problem

We postulate the problem in the context of Rubin’s model of causality

introduced in Section 2.1. Recall that this model conceptualizes the PTL

problem in terms of potential outcomes under each treatment, only one

of which is observed for each subject. For the remainder of this chapter

we use the words treatment and rate change interchangeably.

The insurance portfolio is composed of L policyholders characterized

by baseline covariates X = (X1, . . . , Xp)
>. For each ` ∈ {1, 2, ..., L}, we

postulate the existence of potential responses R`(a) to denote the renewal

outcome2 that would be observed from policyholder ` if assigned to

treatment a ∈ A. In the binary treatment case, A = {0, 1}. Here we allow

A to take a discrete number of T values, A = {1, 2, . . . , T}. Further, we

let {Z`a | a ∈ A} be a set of T binary treatment indicators, such that

Z`a = 1 if subject ` received treatment A = a, and Z`a = 0 otherwise. The

observed response for subject ` is r` =
∑T

a=1 Z`aR`(a).

Our interest lies in estimating price elasticity, defined here as the

expected renewal outcomes that causally result from the rate change

interventions. Here causation is in the sense of ceteris paribus, meaning

that we hold all policyholder’s covariates constant. Our aim is to obtain

an estimate of the price-elasticity functions at the policyholder level,

R̂`(a) ∀ a = {1, . . . , T}, and in particular in differences of the form R̂`(j)−
R̂`(k), the causal effect of exposing subject ` to treatment j rather than

2 We denote the renewal outcome equal to 1 if the policyholder lapses (does not
renew), and 0 otherwise.
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to treatment k (for any j 6= k). We then use these individual estimates

to construct an aggregate price-elasticity function at the portfolio level,

µ̂(a) = (1/L)
∑L

`=1 R̂`(a). If the variability of the causal effect R̂`(j)−R̂`(k)

is large over L, then the average defined by µ̂(a) may not represent the

causal effect on a specific policyholder `. The assumption that the effect

of A is the same on every subject is known as the constant treatment

effect assumption, and it is relaxed in this study.

In the context of observational data, policyholders exposed to different

rate change levels are not directly comparable, so price-elasticity estima-

tion requires adjustment for differences in the pre-treatment covariates.

As discussed above, when the number of covariates is large and their

distribution varies substantially among the different rate change levels,

simple covariance adjustment methods are typically inadequate. We pro-

pose using propensity scores (Rosenbaum and Rubin, 1983) and matching

algorithms (Gu and Rosenbaum, 1993) as a method for removing all

biases associated with differences in the pre-treatment variables. Our

methodology offers a rigorous analysis of price-elasticity in the context of

auto insurance based on causal inference foundations. The next section

discusses our method in detail.

9.4 The method

Without loss of generality, in this section we present our method in a

simplified case. We focus on the binary treatment case, with A = {0, 1},
and let Z` = 1 if subject ` received treatment A = 1 (the treated subjects),

and Z` = 0 if the subject received the alternative treatment A = 0 (the

control subjects). In the context of this study, multi-valued treatments

are handled by analyzing a set of binary treatment dichotomies. That is,

given T treatments, we analyze the T (T − 1)/2 unordered dichotomies3.

9.4.1 Unconfoundedness and common support

The fundamental problem of PTL is that each subject receives only a

single treatment, and thus R`(a) is only observed for a single value of A.

3 For example, with three treatments (T = 3), there are 3 = T (T − 1)/2 unordered
treatment dichotomies: {(1, 2), (1, 3), (2, 3)}.
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Hence, causal inference is, in a sense, a missing data problem because the

counterfactual outcomes are never observed. In principle, if treatment

assignment were randomized across the portfolio of policyholders, imply-

ing that the assignment ignored the possible impact of the treatment on

the outcomes, then estimating the average causal effects of rate changes

would be straightforward. Randomization tends to balance observed and

unobserved covariates across the treatments, as subjects are drawn from

the same population. In this context, the average treatment effect (ATE)

of treatment 1 relative to treatment 0 can be estimated from (2.1).

As discussed above, such randomization is unlikely to happen in most

insurance databases from which price elasticity is to be estimated, since

treatment assignment is a deterministic function of the policyholder’s ob-

served risk characteristics. The nature of the data is thus observational, as

randomization is not used to assign treatments. In this setting, covariates

are not likely to be balanced across treatment groups. Estimating casual

effects is more difficult, since now the groups are not directly comparable.

However, much progress can be made under two assumptions. The first,

the unconfoundedness assumption, states that conditional on X`, the

outcomes (R`(1), R`(0)) are independent of treatment Z`:

(
R`(1), R`(0)

)
⊥ Z`|X`. (9.1)

This condition implies that treatment assignment may depend upon

the observed covariates X, but not on unobserved covariates or potential

responses after controlling for X. This assumption is non-testable, but

very likely to hold in our study, as all the historical variables used to

assign policyholders to rate change levels are observable covariates, which

have been stored and are accessible to us for the modeling exercise.

The second assumption is that of common support (also called overlap),

which states that every unit in the population has a chance of receiving

both treatments:

0 < π(X`) ≡ P (Z` = 1|X`) < 1, (9.2)

where π(X) is known as the propensity score, discussed in the next section.

This assumption is at risk in situations where treatment assignments are

based on ‘hard rules’ (e.g., every policyholder whose age > some constant
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receives a rate change, and no rate change otherwise). However, in many

situations, rate changes are implemented using much more convoluted

frameworks, creating opportunities for finding common support situations.

In Rosenbaum and Rubin (1983), unconfoundedness and common support

together constitute a property known as strong ignorability, which is

necessary for identifying average treatment effects.

Common support may not hold globally, but only for a subset of the

covariate space. Causal effect estimation is still possible for the region

of X in which the treatment and control observations overlap. In the

specific case that the support of X for the treated is a subset of the

support of X for the control, then a quantity of common interest is the

average treatment effect for the treated (ATT), which is identifiable under

unconfoundedness, and it is estimated as

ATT (Z` = 1) = E[R`(1)|Z` = 1]− E[R`(0)|Z` = 1]

= EX`|Z`=1{E[R`|X`, Z` = 1]− E[R`|X`, Z` = 0]|Z` = 1},
(9.3)

where the subscripts X`|Z` = 1 indicate that the outer expectation is

taken over the distribution of X in the treated group. Finding treated

and control observations with similar values of the covariates will be im-

practical, if not impossible, when there are many covariates. Alternative

methods must be used, and we discuss these in the next two sections.

9.4.2 Propensity score

The propensity score is the conditional probability of assignment to the

treatment condition given the pre-treatment covariates,

π(X`) = P (Z` = 1|X`). (9.4)

In a randomized experiment, treatment assignment is performed by

a coin flip, and so the propensity score π(X) = 1/2 for all subjects. In

this case, the results observed in the treatment and control groups are

directly comparable as subjects are likely to be similar. In contrast,

in an observational study, the propensity score is typically unknown,

80



9.4 The method

and must be estimated from observed quantities. Direct comparisons

can be misleading as some individuals are more likely than others to

receive one of the treatments, and so π(X) 6= 1/2 for some individuals.

However, suppose we pair subjects with different treatments, but the

same propensity score. The individual pairs might have different covariate

values, but their difference will be irrelevant for predicting treatment

assignment. Intuitively, this also suggests that the distribution of the

observed covariates will be similar for treated and control subjects with

the same propensity score. This thought is formalized by the balancing

property of the propensity score, which states that treatment Z and the

observed covariates X are conditionally independent given the propensity

score π(X),

Z` ⊥ X`|π(X`). (9.5)

Instead of having to match subjects exactly on their covariates X, the

balancing property allows us to match only on a single variable, namely the

propensity score, and this will tend to balance all the observed covariates.

Notice that this property only ensures balance on the observed covariates.

In that sense, randomization is a much more effective tool to balance

covariates, as it also provides a basis for expecting that unobserved

covariates and potential responses are also balanced4.

The balancing property holds independently of whether the treatment

assignment is strongly ignorable or not. However, a second property of the

propensity score is a key result which shows that if treatment assignment

is strongly ignorable given X, then it is also strongly ignorable given the

propensity score π(X). That is, if (9.1) and (9.2) hold, then the following

also hold:

(
R`(1), R`(0)

)
⊥ Z`|π(X`) (9.6)

and

0 < P
(
Z` = 1|π(X`)

)
< 1. (9.7)

This property implies that if treatment assignment is strongly ignorable,

4 One should still expect imbalances on observed covariates to occur in a randomized
setting – in fact, 1 out of 20 covariates should differ at 0.05 level by chance alone.
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then pair matching based on the propensity score is sufficient to produce

unbiased estimates of the average treatment effect.

9.4.3 Matching: A short review

The essential idea of matching algorithms is to find pairs of subjects, where

one member of the pair has been treated and the other is a control subject,

but they are otherwise identical in terms of their observed covariates prior

to exposure. Finding such pairs for all subjects is a difficult or impossible

task when X contains many covariates, and this is where the propensity

score comes into play. Matching serves two purposes. First, if we can find

among the L subjects a total of 2J distinct subjects matched in J pairs,

we will have reconstructed a randomized experiment from observational

data. Inference about average effects caused by treatments would then

be straightforward. Second, having formed the J closely matched pairs,

we could use the observed response on one subject of the pair to fill in

the “missing” counterfactual response for the other subject of the pair,

thereby using the difference between the responses as an estimate of the

subject-level causal effect (Rubin and Waterman, 2006).

Using matching to find pairs of subjects may be straightforward in

concept, but there are many variants on how this can be achieved in

practice. The selection of a matching method essentially involves three

choices. First, there is the definition of distance between treated and

control subjects in terms of their observed covariate vectors. Second,

there is the choice of the algorithm used to form the matched pairs to

make the distance small. Lastly, there is the choice of the structure of

the match, which involves deciding the number of treated and control

subjects that should be included in each matched set.

Let us first consider the definition of distance. A common method for

multivariate matching is based on Mahalanobis distance (Cochran and

Rubin, 1973; Rubin, 1979). The Mahalanobis distance between any two

subjects, say `1 and `2, with covariate vectors X`1 and X`2 is given by

MD(X`1 ,X`2) = {(X`1 −X`2)
>S−1(X`1 −X`2)}

1
2 , (9.8)

where S is the sample covariance matrix of X, which corresponds to the

data matrix of observations containing the X>` row vectors, ` = {1, . . . , L}.
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The Mahalanobis distance is appropriate for multivariate normal data, but

it can exhibit odd behavior in the presence of highly skewed distributions

or heavily tied covariates. A more robust alternative it to use the rank-

based Mahalanobis distance

RMD(X`1 ,X`2) = {(rk(X`1)− rk(X`2))
>(UDU)−1(rk(X`1)− rk(X`2)}

1
2 ,

(9.9)

where the covariates in X` are replaced by their ranks rk(X`), D is the

covariance matrix of the ranks, and U is a diagonal matrix whose elements

are the ratios of the standard deviation of the untied ranks to the standard

deviation of the tied ranks of the covariates.

Propensity score matching involves matching a treated unit to the

nearest control unit based on the distance along the propensity score

PS(X`1 ,X`2) = |π̂(X`1)− π̂(X`2)|. (9.10)

In practice, the propensity score must be estimated by, for example, a

logistic regression model. This being the case, distance is generally defined

in terms of the estimated linear predictor, rather than on the estimated

propensity score π̂(X), thus avoiding compression of probabilities near

zero and one. Additionally, the linear predictor is often more nearly

normally distributed, which offers a technically justified advantage under

certain data conditions and matching methods (see Rosenbaum and

Rubin 1985; Rubin 1976).

Matched samples may be evaluated based on two different, but desirable,

features. One is based on the balance criterion, which refers to obtaining

a similar distribution of the observed covariates X for treated and control

units. The other is based on a stronger distance criterion, which is

judged by the closeness of the individual matched pairs in terms of their

covariate values. The main disadvantage of propensity score matching

is that matched units with the same estimated propensity score may

have different patterns of covariates X, and this is ignored by (9.10).

A hybrid alternative, the Mahalanobis distance with propensity score

calipers MP(X`1 ,X`2), insists that subjects be close on the propensity

score, but once this is achieved, the values of X matter. This distance is
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set to infinity if π(X`1) and π(X`2) differ by more than a caliper of width

w, and otherwise it is the Mahalanobis distance. That is,

MP(X`1 ,X`2) =

{
MD(X`1 ,X`2), if PS(X`1 ,X`2) ≤ w

∞, if PS(X`1 ,X`2) > w.
(9.11)

The width w of the caliper is generally specified as a multiple of the

standard deviation of the propensity score, with a value required to obtain

balance on the propensity score. Instead of setting MP(X`1 ,X`2) =∞ for

violations of the propensity score constraint, it may be more appropriate

to add a penalty function to the distance (Rosenbaum, 2002). The

matching algorithm will attempt to respect the caliper, but will prefer

to slightly violate it for a few matched pairs when the caliper cannot be

satisfied for all the pairs.

A matching algorithm attempts to find pairs of subjects based on the

defined distance. A common approach is a best-first or greedy algorithm.

Let L1 and L0 be the number of treated and control subjects, respectively,

and assume L1 ≤ L0. Units under each treatment are first randomly

ordered, and the first treated subject is paired with the nearest control

subject, then the second treated subject is paired with the nearest of the

remaining L0 − 1 control subjects, and so on. A greedy algorithm will

not generally find an optimal pair match in the sense of minimizing the

total distance within pairs. The key difficulty is that two or more treated

units may have the same control as their closest match, and greedy

matching resolves this problem arbitrarily. The alternative to greedy

matching is optimal pair matching, which can be reduced to finding a

flow of minimum cost in a certain network (Rosenbaum, 1989). This is a

standard combinatorial optimization problem for which readily available

algorithms exist (Bertsekas, 1998).

Finally, there is the choice of the structure of the match. This may be

performed using pair- or 1-to-1 matching, matching to a fixed number

of m ≥ 2 controls, or matching with a variable number of controls. The

optimal structure for producing similarity within matched sets can be

shown to be a full match (Rosenbaum, 1991) where some matched sets

may contain one treated subject with one or more controls, while other
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matched sets may contain multiple treated units with one control. This is

intuitive because the flexible arrangement of a full match may group sev-

eral controls with a single treated subject in regions of the covariate space

where controls are vastly more numerous, and similarly, it may group

several treated subjects with a single control in regions where treated

subjects are relatively plentiful. Also, because a full match includes as

special cases all of the other matching structures, it will produce matched

sets that are at least as close as those produced by any of those structures.

9.5 An application to auto insurance price

elasticity estimation

9.5.1 The data

The data used for this analysis were extracted from a large database

owned by a major Canadian direct insurer. It consists of L = 230, 507

auto insurance policies that were given a renewal offer between June

2010 and May 2012, and includes more than 60 pre-treatment covariates

describing various characteristics of the policy, the vehicle and the driver.

The company sends a renewal package to its customers 45 days prior to

the expiry date of the current policy term. This package clearly specifies

what the new rate would be for the upcoming policy year, in the event

that the customer decides to renew. The new rate could either be lower

than, equal to, or higher than the current rate. The treatment is the rate

change to which the customer was exposed, computed as the percentage

change in premium from the current to the new rate. This is a continuous

variable, but for the purpose of this study it was categorized into 5 ordered

values A = {1, 2, . . . , 5 = T}.
The response variable is the renewal outcome of the policy (renewed

or lapsed), measured 30 days after the effective date of the new policy

term. Up to that point, the customer is guaranteed her money back if

she decides to terminate the policy. Table 9.1 shows that the lapse rate
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increases with the rate change level5, as one would expect. In addition,

the price sensitivity appears to be higher for price increases than for

price decreases. However, as discussed above, differences in lapse rates

among groups are not directly comparable, as they might be driven by

differences in the covariates.

Table 9.1: Lapse rates by rate change level

rate change level rate change (%) n. obs. lapse rate (%)

1 [−20, 0) 63,212 3.03
2 [0, 5) 44,609 3.45
3 [5, 10) 40,455 4.44
4 [10, 20) 51,283 7.77
5 [20, 40] 30,948 14.22
All 230,507 5.92

Note. This table displays, for each of five rate change levels, the rate
change interval, number of policyholders, and lapse rate.

9.5.2 Building the model

In this study, we followed the PTL framework described in Section 9.3.

Our work has also been influenced by Fahner (2012), but ours is clearly

different in the exposition, the specific application, and the details of the

model building process.

Our ultimate goal is to obtain estimates of lapse probabilities for all

policyholders under each treatment. As each policyholder is only exposed

to a single treatment, the rest remain counterfactual. The ideal way to

think about the unobserved counterfactual outcomes is that they are

missing values, and therefore should be multiply imputed to represent

their uncertainty.

5 In this analysis, the rate change was combined from all the different coverages
(third party liability, damage to the car, etc). Additionally, it would be relevant
to investigate the potential heterogeneity in price-elasticity from the individual
coverages.
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We outline below the conceptual steps involved in the estimation

process. In short, we first fit a series of lapse probability models, one

for each rate change level. We subsequently use propensity scores and

matching algorithms to find pairs of policyholders who were exposed to

distinct rate change levels, but who are otherwise comparable in terms

of their pre-treatment covariates. Having found those pairs, we then use

the estimated lapse probability from each subject of the pair to fill in

the “missing” counterfactual response for the other subject of the pair.

Finally, we fit a “global” model, which allows us to predict price-elasticity

under each rate change level and value of the covariates.

Model estimation steps:

1. Estimate a lapse model for each individual treatment. For each

treatment A = a; a = {1, 2, . . . , 5}, obtain an estimate of the lapse

probability R̂`(a) by regressing R` on X` based only on the subjects

that received treatment A = a. That is, estimate E[R`|X`, A].

2. Propensity score analysis and matching. This step involves:

a) Given the five treatments (T = 5), estimate the propensity

scores π(X`) for all 10 = T (T − 1)/2 treatment dichotomies,

and identify common support (i.e., overlap) regions. Specifi-

cally, given a treatment dichotomy (j, k), estimate E[Z`j |X`, A ∈
(j, k)].

b) For each treatment dichotomy (j, k), form pairs of policyholders

(one from each treatment) using one of the matching algorithms

described in Section 9.4.3.

3. Infer the counterfactual outcomes from the matched pairs. Consider

a matched pair including subjects `1 and `2, which have been exposed

to treatments j and k, respectively. We use the estimate R̂`2(k) to

fill in for the counterfactual outcome of subject `1 under treatment k.

Similarly, we use the estimate R̂`1(j) to fill in for the counterfactual

outcome of subject `2 under treatment j. The causal effect of

exposing subject `1 to treatment j rather than to treatment k can

then be obtained by differencing the observed and counterfactual
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outcomes between the matched pairs, R̂`1(j)− R̂`2(k). In the case

subject `1 cannot find a match among the subjects treated with

k, then the data cannot support causal effect estimates for this

subject and treatment dichotomy, at least not without making

strong external assumptions involving model-based extrapolation.

4. Develop a “global model” of the response. Develop a global model
ˆ̂
R`(a), obtained by fitting the estimates R̂`(a) of the observed re-

sponses, plus the estimates of a subset of the counterfactual re-

sponses (i.e., as far as the overlap situation permits) on the vector

of observed characteristics X` and treatment level A. This model

allows us to predict the response for each treatment A and value of

X. That is, estimate E[R̂`(a)|X`, A].

The idea is that up to step 3, we try to avoid risky extrapolation

by restricting inference to the overlap regions only. Only in step 4

may we choose to ignore the overlap structure by inferring the full

combinatorial set (all covariates X and treatments A). The inclusion of

the counterfactual responses in the estimation of the global model reduces

exposure to extrapolation problems. Our experience concurs with others’

(Fahner, 2012) that this approach gives more control and insight during

the modeling process than trying to fit a global model directly to the

observed data points.

9.5.3 Propensity score estimates

In practice, the propensity score (9.4) is generally estimated with a logistic

regression model. Accurate estimates require inclusion of all variables that

simultaneously influence the treatment status and the outcome, and have

the correct functional form specification. The balancing property (9.5) of

the propensity score is then examined to determine whether refinements

to the model are required. This can be accomplished by stratifying the

estimated propensity score at the quintiles of its distribution, and then

testing whether balance has been achieved for each covariate within each

stratum (Rosenbaum and Rubin, 1984). If there are significant differences

in the distribution of a covariate between the treatment and comparison
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groups within a stratum, then adding higher-order terms or interactions of

the covariate may improve balance. Failure to satisfy this condition under

all model specifications would allow us to conclude that the treatments

do not overlap along all dimensions.

As can be anticipated, moving back and forth between balance statistics

and changing the model specification is a monotonous process. In the

context of this study, much better results, with considerable less model

tuning required, were obtained by estimating the propensity scores using

gradient boosting models (GBMs) (Friedman, 2002). GBMs estimate

the log-odds of treatment assignment, h(X`) = log(π(X`)/(1 − π(X`))),

by iteratively fitting a collection of simple regression trees, and then

combining them to produce a“strong” learning algorithm. Fit is measured

by the Bernoulli deviance, −
∑L

`=1(Z`h(X`)− log(1 + exp(h(X`)))), with

smaller values indicating a better fit. These models have a number of

appealing properties for propensity score estimation. First, GBMs offer

a general data modeling algorithm that allows for a flexible nonlinear

effect of the covariates on the propensity score. Results are invariant

under order preserving transformations of covariates, so there is no need

to consider functional form revision of the variables (e.g., log, power,

squared-root, etc.). Second, since the propensity score is estimated from a

sequence of tree-based models, complex interactions are identified within

the fitting process. Finally, GBMs offer a built-in variable selection

procedure, in the sense that the estimated model does not necessarily

use all the covariates. We discuss GBMs and their application to auto

insurance ratemaking in Chapter 10.

In fitting propensity score models, it is important to realize that the goal

is to obtain estimates of the propensity score that statistically balance

the covariates between each treatment dichotomy, rather than one that

estimates the true propensity score as accurately as possible. Thus, the

model parameters should not be chosen to minimize prediction error,

but to maximize covariate balance. The estimated propensity scores

may tend to overfit the data, in the sense of producing better covariate

balance than would be expected under chance in the data set used to

construct the score, but this is not a problem given the objective (Joffe

and Rosenbaum, 1999).
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In this study, similarly to McCaffrey et al. (2004), GBMs were selected6

to minimize the average standardized absolute mean difference in the

covariates (ASAM). For each covariate, we calculated the absolute value of

the difference between the mean for the treatment group and the weighted7

mean for the comparison group, divided by the standard deviation for

the treatment group. We subsequently averaged these values across all

covariates to obtain the ASAM.

Figure 9.1 shows the distribution of the final fitted propensity scores

for each treatment dichotomy. The propensity scores are labeled “Lin-

ear propensity scores” to reflect the fact that they are in the log-odds

scale. These plots provide a simple, yet powerful diagnostic on the data

examined. We note that the overlap between distributions tends to be

much higher for rate changes that are closer, relative to those that are

farther apart. A key strength of the propensity score method is that

it dramatically alerts us to this fact. For example, it is clear that pro-

portionally fewer of the subjects in the treatment dichotomy (5, 1) are

similar than those in the dichotomy (2, 1). This suggests that finding

appropriate matches will be more difficult in the former dichotomy. Also,

in most treatment dichotomies, there are subjects exposed to one rate

change level with higher estimated propensity scores relative to the other

rate change level, indicating there is a combination of covariate values

not appearing in both groups. The next section provides key insights

for understanding the nature of the differences in the propensity score

distributions.

9.5.4 Matching and covariate balance

In this study, we tested the matching algorithms, distance definitions and

matching structures described in Section 9.4.3. The best results, in the

sense of producing closely matched pairs and balanced matched samples,

were obtained by optimal pair matching using the Mahalanobis distance,

6 Model selection for GBM fundamentally involves selecting the values for two
tuning parameters: the depth level of the individual trees fitted at each iteration
and the number of fitted trees.

7 The weights for subject ` in the comparison group are defined by w` = π̂(X`)/(1−
π̂(X`)), the odds that a subject with covariates X` will be assigned to treatment.
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Figure 9.1: Estimated propensity scores for all treatment dichotomies.
Given a treatment dichotomy (j, k), each plot illustrates the
distribution of the probability of assignment to rate change
level j relative to level k, conditional on the background
covariates. Within each dichotomy, the rate change level with
fewer units is represented by j, and the other level with k.
The propensity scores are labeled “Linear Propensity Scores”
to reflect the fact that they are in the log-odds scale.
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including the propensity score as an additional covariate and propensity

score calipers. Specifically, for each treatment dichotomy, we used a

minimum-cost network solver, as described in Hansen and Klopfer (2006),

to find optimal matched pairs of policyholders (one from each rate change

level) such that the sum of the distances (9.11) between the matched pairs

is minimized. There is a trade-off between producing closely matched

pairs and maximizing the number of matches thus obtained. The width

of the propensity score calipers in (9.11) were selected to obtain a good

compromise between these two objectives.

Table 9.2 displays the balance results for some of the most important co-

variates used in estimating the propensity score. Balance is shown for the

first four treatment dichotomies before and after matching. Notice that

before matching, the means of the covariates differ considerably within

each treatment dichotomy. This is more evident for dichotomies with

larger rate change differences. This provides insights for understanding

the nature of the distributional differences in the propensity scores (see

Figure 9.1 in Section 9.5.3). After matching, the differences in the means

of the covariates between groups diminished substantially. For instance,

in the treatment dichotomy (5,1), we started with 30, 948 subjects treated

with A = 5 and a comparison group of 63, 212 subjects treated with A = 1.

Subjects treated with A = 5 have, on average, lower current premium

(premium), are less likely to have a home insurance policy with the com-

pany (home), less likely to have more than one vehicle (multi_vehicle),

less likely to have policy discounts through an employer benefit (group),

less likely to be in the best driving record category (drv_rec7), and less

likely to have full coverage option (full_cov). By design, the matching

algorithm required exact matches on “at-fault” accidents during the prior

year (accident). This is to ensure we are controlling for premium changes

resulting from accidents caused by the driver, as opposed to rate changes

strictly driven by the company. The matched sample is composed of

26, 592 subjects (13, 296 from each treatment).

When checking covariate balance, it is important not only to examine

differences in means, but to check more general summaries of the dis-

tribution. The quantile-quantile (QQ) plot in Figure 9.2 shows a clear

improvement in balance for the variable premium in the (5,1) treatment

pair after matching.

92



9.5 An application to auto insurance price elasticity estimation

Table 9.2: Balance results of the covariates before and after matching for
the first four treatment dichotomies

Pair (2,1) Pair (3,1) Pair (4,1) Pair (5,1)

A = 2 A = 1 A = 3 A = 1 A = 4 A = 1 A = 5 A = 1

premium(Avg.)
Before 2,012 2,362 2,041 2,362 2,144 2,362 2,130 2,362
After 2,113 2,111 2,285 2,230 2,410 2,507 2,463 2,487
yrs_lic(Avg.)
Before 25.9 22.9 25.5 22.9 24.7 22.9 22.5 22.9
After 25.0 25.2 24.0 24.2 22.3 22.5 20.8 22.0
home(%)
Before 77.6 78.6 73.6 78.6 70.9 78.6 63.6 78.6
After 77.8 79.1 74.1 75.2 71.9 73.4 69.1 71.5
multi_vehicle(%)
Before 54.8 57.2 44.4 57.2 37.9 57.2 29.6 57.2
After 57.2 58.7 50.2 51.0 46.8 47.1 43.5 40.8
group(%)
Before 12.0 14.0 12.6 14.0 8.2 14.0 6.2 14.0
After 12.2 12.3 12.0 12.3 11.5 11.1 8.8 8.4
drv_rec7(%)
Before 65.8 55.6 64.1 55.6 62.1 55.6 40.8 55.6
After 60.8 61.9 55.5 57.3 48.5 51.4 38.2 43.2
full_cov(%)
Before 93.5 89.4 90.1 89.4 84.9 89.4 70.9 89.4
After 92.8 93.0 90.1 88.7 84.1 82.0 80.4 77.5
accident(%)
Before 1.82 1.82 2.16 1.82 2.75 1.82 10.80 1.82
After 1.90 1.90 2.20 2.20 3.22 3.22 5.17 5.17
lease_flag(%)
Before 13.4 13.1 11.7 13.1 10.5 13.1 8.42 13.1
After 13.4 13.6 12.2 12.6 11.5 12.4 10.8 9.9
veh_age(Avg.)
Before 5.87 6.14 6.67 6.14 7.19 6.14 8.48 6.14
After 5.96 5.94 6.59 6.72 7.08 7.11 7.42 7.84
prop_score(Avg.)
Before 0.465 0.377 0.507 0.315 0.655 0.280 0.642 0.175
After 0.437 0.436 0.438 0.431 0.499 0.490 0.429 0.419

n. obs.
Before 44,609 63,212 40,455 63,212 51,283 63,212 30,948 63,212
After 37,171 37,171 28,873 28,873 23,684 23,684 13,296 13,296

Note. This table displays the mean of the most relevant covariates before and
after matching across the first four treatment dichotomies. The differences in
the means of the covariates between groups diminished substantially on the
matched subjects.
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Figure 9.2: Empirical quantile-quantile plot of premium before and after
matching in the (5,1) treatment dichotomy. This figure dis-
plays the quantiles of premium for treatment 5 vs. treatment
1 before (left) and after (right) matching. A red 45◦ reference
line is also plotted (indicating perfect balance). Balance for
this variable was clearly improved after matching.

9.5.5 Price-elasticity functions

Now that we have achieved good balance among all treatment dichotomies,

we can proceed to estimate the global model as discussed in the last

step of Section 9.5.2. This model allows us to obtain estimates of lapse

probabilities under each rate change level A and covariate values X.

We fitted this model using a generalized additive model (Hastie and

Tibshirani, 1990), with continuous covariates represented by penalized

cubic regression splines. The degree of smoothness of model terms was

estimated as part of fitting process and selected by generalized cross-

validation (GCV). Interaction terms between the rate chance and each

covariate were tested and added into the model, guided by the GCV

scores as well as domain expertise. This allows for heterogeneity in

price elasticities to be estimated at the individual policyholder level. As
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9.5 An application to auto insurance price elasticity estimation

previously discussed, understanding the precise nature of individual price

sensitivities can be extremely valuable. Each subject’s treatment could

be optimized on the basis of her individual characteristics.

Having estimated the global model, we then averaged the individual

estimates to construct aggregate price-elasticity functions at the portfolio

level. This was done for various subpopulations within the insurance

portfolio. A subpopulation of the portfolio can be obtained by restricting

the values of the covariates to a subset ω. Suppose the portfolio has

Lω = |{` : X` ∈ ω}| subjects with covariate values in this subset. The

estimated price-elasticity for subpopulation ω and treatment A = a is

defined as P̂E(ω, a) = (1/Lω)
∑
∀`:X`∈ω

ˆ̂
R`(a).

The results are illustrated in Figure 9.3. The plots show the estimated

lapse rate measured at each rate change level for the selected subpopula-

tions. For ease of interpretation, continuous covariates were categorized

at the quartiles of their distributions (labeled with the numbers 1 to 3

in the plots). There is a clear interaction effect between the rate change

level and “at-fault” accidents during the prior year (accident). Insureds

with recent accidents already expect a rate increase and thus have a

lower price sensitivity. Also, as expected, the higher the current premium

(premium), the higher the price elasticity for a given rate change, but

this relation tends to be much stronger with the increase in the rate

change level. Similarly, younger policyholders (age) and newer customers

(term) tend to be more price-elastic. All the remaining variables have the

expected effect on price elasticity8. Overall, price elasticity tends to be

higher for rate increases than for rate decreases. A rate increase provides

an incentive to shop for an alternative insurer, whereas a rate decrease

does inhibit switching but to a lesser extent.

8 An additional issue is the role of the product understanding in the renewal
decision. In some cases, the level of insurance literacy can be limited, potentially
influencing decisions.
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Figure 9.3: Price-elasticity functions. The plots illustrate the average
estimated lapse rate measured at each rate change level for
selected subpopulations within the insurance portfolio. Con-
tinuous covariates have been categorized at the quartiles of
their distributions (labeled with the numbers 1 to 3 in the
plots).
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9.6 Managerial implications: Price

optimization

In this section, we briefly illustrate an application of the derived estimates

of price sensitivities to assist managers in optimizing the expected profit

of an insurance portfolio. The question is: which rate change should be

applied to each policyholder to maximize the overall expected profit for

the company subject to a fixed overall retention rate? By understanding

the precise nature of the price elasticities at the policyholder level, the

individual rates can be optimized based on each customer’s willingness

to pay. The causal inference framework used to derive estimates of

lapse probabilities at the individual subject level under each rate change

scenario allows us to solve this problem effectively.

The problem can be expressed as an integer program. As before, the

portfolio is composed of L policyholders, ` = {1, 2, . . . , L}, characterized

by a vector of pre-treatment covariates X`. Each subject can be exposed

to a rate change level A = {1, 2, . . . , 5 = T}, and we let Z`a be a binary

indicator that takes a value of 1 if subject ` is exposed to rate change

A = a and 0 otherwise. RCa is the actual rate change associated with

treatment A = a. The lapse estimates ˆ̂
R`(a) represent the lapse probability

of subject ` if exposed to rate change level A = a. In addition, Prem` is

the current premium, L̂R`a the predicted loss ratio (i.e., the ratio of the

predicted insurance losses relative to premium)9, and α the overall lapse

rate of the portfolio.

The objective function is to maximize the expected profit of the portfolio

Max
Z`a∀`∀a

L∑

`=1

T∑

a=1

Z`a

[
Prem`(1 +RCa)(1− L̂R`a)(1− ˆ̂

R`(a))
]

(9.12)

9 Specifically, L̂R`a = L̂C`/Prem`(1 +RCa), where L̂C` represents the expected
loss cost for policyholder `. The expected loss cost was derived using a variety of
qualitative customer attributes with traditional quantitative rating risk factors to
accurately predict the likelihood that each policyholder ` may experience a claim
in the future and the expected claim cost. The data supporting this analysis
are based on a 5-year exposures and claim experience from the same insurer,
with losses including the most recent case reserve estimates. The final loss cost
estimates also include an overall base level adjustment for pure IBNR (Incurred
But Not Reported) and development of known claims.
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subject to the constraints

T∑

a=1

Z`a = 1 ∀`, (9.13a)

Z`a ∈ {0, 1}, (9.13b)

1

L

L∑

`=1

T∑

a=1

Z`a
ˆ̂
R`(a) ≤ α. (9.13c)

Equations (9.13a) and (9.13b) ensure that each policyholder is assigned

a rate change level, and (9.13c) ensures that the portfolio has a lapse

rate which does not exceeds α.

We have solved this optimization problem using the data discussed

in Section 9.5.1 along with the estimated lapse probabilities from Sec-

tion 9.5.5. The results for a sequence of (1− α) values10 are illustrated

in Figure 9.4. The efficient frontier represents the maximum expected

profit that this company can obtain at a given desired retention rate. The

expected profit is expressed in terms of change, measured in percentage

points, relative to the current profit level of the company. This insurer

may choose to be at any given point in the efficient frontier depending

on its strategic objectives of market share and profitability. However,

any point below the efficient frontier is suboptimal in that it is possible

to increase profits while maintaining the retention level, or alternatively,

increase retention while maintaining profitability. For instance, at the

current state, the company may choose to move in the “A” direction and

increase profits by almost 18%, without sacrificing customer retention.

Alternatively, the company may choose to shift in the “B” direction

and increase retention with no loss in profits. This might be a good

strategy if the company is aiming to gain market share. Finally, it may

choose to move in the “C” direction if the objective is to retain only the

most profitable customers. In this sense, the causal effects discussed in

this chapter could be adopted as a leading factor in making commercial

decisions that keep the portfolio in good shape.

Another consideration is in relation to situations where the insurer

10 The optimization problem was solved for 8 equally spaced values of α, and the
results were then interpolated.

98



9.6 Managerial implications: Price optimization

may want to limit a certain class of risks in the portfolio, or write more

business in certain regions or distribution channels. These situations

can be handled by imposing additional constraints in the optimization

problem. At the optimum, the company maximizes expected profits

subject to such additional constraints.
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Figure 9.4: Expected profit efficient frontier. The efficient frontier rep-
resents the maximum expected profit that the company can
obtain at a given desired retention rate. The expected profit is
expressed in terms of change, measured in percentage points,
relative to the profit at the current state. The current situ-
ation for this company is not optimal, in that it is possible
to obtain an increase in profit at the current retention level
(A), a higher retention at the current profit (B), or even a
reduction in client base while increasing profit (C).
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9.7 Discussion

In this chapter, we have considered a shift in the paradigm for measuring

price elasticity in the context of auto insurance, from traditional statisti-

cal analysis to a causal inference approach. Price elasticity is ultimately

concerned with the effect of a rate change on each policyholder’s renewal

outcome. The problem that motivates the study is therefore not associa-

tional but causal in nature. As each policyholder is exposed to a single

rate change level, the rest remain counterfactual. The counterfactual

model of causality developed by Rubin represents a useful framework to

conceive the price elasticity estimation problem. Under this framework,

counterfactuals are thought of as missing values, which are multiply

imputed to represent their uncertainty.

Additionally, rate changes reflected in most insurance databases are

not the result of a carefully designed experiment, but of a risk-based

pricing model. Addressing causal inference questions in the presence of

observational data requires appropriate data analysis methods. Conven-

tional analysis based on statistical or algorithmic data models (regression,

decision trees, neural nets, etc.), which attempt to fit the observed data

points directly, is subject to hidden extrapolation problems that do

not raise warning flags. We have shown that the propensity score is a

straightforward method that alerts the analyst to inadequately overlap-

ping covariate distributions, for which the data may not support causal

conclusions without relying on untestable assumptions about the form

of the extrapolation. Further, we have shown that optimal pair match-

ing is a useful method for identifying common support regions from

which estimates of the counterfactual renewal outcomes can be derived

locally in those regions. These estimates were subsequently used jointly

with the estimates of the observed renewal outcomes to obtain a global

price-elasticity function. This function allowed us to predict the renewal

outcome for the full combinatorial set of rate change levels and covariates.

Besides its role in understanding the precise nature of price elasticities

at the individual subject level, our model may assist managers in selecting

an optimal rate change level for each policyholder for the purpose of

maximizing overall profits. Moreover, valuable insights can be gained

by considering the company’s current position of market share and prof-
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itability relative to the optimal values along the efficient frontier provided

by the model. The key managerial decision is then to determine the

direction in which the company should move toward the frontier, given

that each solution point places a different weight on profitability and

market share as objectives.

Some decision model components can be sensitive to the type of insurer.

In particular, this type of portfolio analysis is more relevant to a direct

insurer than to a brokerage-based insurer. In the latter context, the

ability to optimize the rates based on price elasticity considerations is

reduced, as the renewal decision is not necessarily driven by the client

alone, but is likely to be influenced by the broker, possibly due to the

commission rates offered by various competitors. Another consideration

is in relation to individuals with insurance plans from their employment

agreements. The applicability of the proposed model in this case is highly

dependent on the regulatory pricing environment. For instance, if instead

of having a single employee discount, the regulation allows for different

discount levels based on price elasticity considerations, then the model

still applies.

Although the methodology may prove more involved compared to the

conventional approach, it offers rigorous analysis of causal effects from

non-experimental data. We hope this analysis will stimulate more appre-

ciation for the importance of causal inference, and its relevance for price

elasticity estimation in an insurance context.
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10.1 Introduction

Most of the personalized treatment learning (PTL) applications described

in this thesis are related to insurance. In this setting, the selection of

the optimal personalized treatment requires not only the estimation of

personalized treatment effects (PTEs), but also the estimation of the

expected insurance losses for each individual policyholder within the

portfolio. For instance, insurance loss cost was considered when selecting

the optimal treatment in the context of cross-selling in Chapter 8, and

also in the context of price elasticity and optimization in Chapter 9. In

this chapter, we build on the concept of loss cost estimation in non-life

insurance and propose a novel application of gradient boosting trees for

insurance loss cost modeling and prediction.

Gradient boosting (GB) (see Friedman et al., 2000; Friedman, 2001,

2002) is an iterative algorithm that combines simple parametrized func-

tions with “poor” performance (high prediction error) to produce a highly

accurate prediction rule. In contrast to other statistical learning methods

that usually provide comparable accuracy (e.g., neural networks and

support vector machines), GB gives interpretable results, while requiring

little data preprocessing or tuning of the parameters. The method is

highly robust to less than clean data and can be applied to classification

or regression problems from a variety of response distributions (Gaussian,

Bernoulli, Poisson, and Laplace). Complex interactions are modeled

simply, missing values in the predictors are managed almost without

loss of information, and feature selection is performed as an integral

part of the procedure. These properties make GB a good candidate for

insurance loss cost modeling. However, to the best of our knowledge, the
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application of this method to insurance pricing has not been explored

to date. This chapter presents the theory of GB and its application to

the problem of predicting auto “at-fault” accident loss cost using data

from a major Canadian insurer. The predictive accuracy of the model

is compared against the conventional generalized linear model (GLM)

approach.

We first introduce the concept of pricing in non-life insurance and

formalize it as a predictive learning problem. The core of the chapter

follows, comprising a detailed description of gradient boosting trees. We

next describe an empirical application of this method to auto insurance

loss cost modeling and prediction. We conclude with a review of GB as

an effective alternative to GLM for this application.

10.2 Pricing in non-life insurance

GLMs (McCullagh and Nelder, 1989) are widely recognized as an accepted

framework for building pricing models in non-life insurance. These models

are based on a traditional approach to statistical modeling which starts

by assuming that data are generated by a given stochastic data model

(e.g., Gaussian, gamma, Poisson, etc.). There is vast insurance pricing

literature on such models (Anderson et al., 2007; Antonio and Valdez,

2012; Brockman and Wright, 1992; Haberman and Renshaw, 1996). They

are attractive in the sense of producing interpretable parameters which

are combined in a multiplicative fashion to obtain an estimate of loss cost,

defined here as the portion of the premium which covers losses and related

expenses (not including loadings for the insurance company’s expenses,

premium taxes, contingencies, and profit margins). Model validation is

usually done using goodness-of-fit tests and residual examination.

In the past two decades, the rapid development in computation and

information technology has created an immense amount of data. The

field of statistics has been revolutionized by the creation of new tools that

have helped analyze the increasing size and complexity in data structures.

Most of these tools originated from the algorithmic modeling culture as

opposed to the data modeling culture (Breiman, 2001b). In contrast to

data modeling, algorithmic modeling does not assume any specific model

for the data, but treats the data mechanism as unknown. As a result,
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algorithmic models significantly increase the class of functions that can

be approximated relative to data models. They are more efficient in

handling large and complex data sets and in fitting nonlinearities to the

data. Model validation is measured by the degree of predictive accuracy

and this objective is usually emphasized over producing interpretable

models. It is probably this lack of interpretability in most algorithmic

models that has kept their application to insurance pricing problems very

limited so far. Chapados et al. (2001) used several data-mining methods

to estimate auto insurance losses, while Francis (2001) illustrates the

application of neural networks to insurance pricing problems such as

the prediction of frequencies and severities. Kolyshkina et al. (2004)

demonstrate the use of multivariate adaptive regression splines (MARS)

to enhance GLM building.

Among algorithmic models, GB is unique in the sense of achieving both

predictive accuracy and model interpretation goals. The latter objective

is particularly important in business environments, where models must

generally be approved by non-statistically trained decision-makers who

need to understand how the output from the“black box”is being produced.

Given its other advantageous features, discussed in the preceding section,

GB appears highly suited to insurance loss cost modeling.

10.3 Predictive learning and boosting

As before, the predictive learning problem can be characterized by a

vector of inputs or predictor variables X = {X1, . . . , Xp} and an output or

target variable Y . In this application, the input variables are a collection

of quantitative and qualitative attributes of the vehicle and the insured,

and the output is the actual loss cost.

Given a collection of L instances {(Y`,X`), ` = 1, . . . , L} of known (Y,X)

values, the goal is to use these data to obtain an estimate of the function

that maps the input vector X into the values of the output Y . This

function can then be used to make predictions on instances where only

the X values are observed. Formally, we wish to learn a prediction

function f̂(X) : X → Y that minimizes the expectation of some loss

function Λ(Y, f) over the joint distribution of all (Y,X)-values:
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f̂(X) = argmin
f(X)

EY,XΛ
(
Y, f(X)

)
. (10.1)

Boosting methods are based on the intuitive idea that combining many

“weak” rules to approximate (10.1) should result in classification and

regression models with improved predictive performance compared to a

single model. A weak rule is a learning algorithm which performs only a

little bit better than a coinflip. The aim is to characterize “local rules”

relating variables, such as “if an insured characteristic A is present while

B is absent, then a claim has high probability of occurring.” Although

this rule alone would not be strong enough to make accurate predictions

for all insureds, it is possible to combine many such rules to produce a

highly accurate model. This idea, known as the “the strength of weak

learnability” (Schapire, 1990), was originated in the machine learning

community with the introduction of AdaBoost, which is described in the

next section.

10.4 AdaBoost

AdaBoost (short for adaptive boosting) is a popular boosting algorithm

due to Freund and Schapire (1996). Consider a classification problem

with a binary response variable coded as Y ∈ {−1, 1} and classifier

f̂(X) taking one of those two values. The Adaboost algorithm is outlined

as Algorithm 3. In short, the algorithm generates a sequence of weak

classifiers induced on a distribution of weights over the training set. One

such weak classifier often used in AdaBoost is a single-split classification

tree with only two terminal nodes. Initially, all observation weights are

set equally, but on each iteration, the training observations that were

misclassified in the previous step receive more weight in the next iteration.

Thus, the algorithm is forced in each successive iteration to focus on

observations that are difficult to classify correctly. The final classifier is

a weighted majority vote of the individual weak classifiers. The weight

assigned to each weak classifier gets larger as its weighted error rate

measured on the training set gets smaller.

The success of AdaBoost for classification problems was seen as a

mysterious phenomenon by the statistics community until Friedman et al.
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(2000) demonstrated the connection between boosting and statistical

concepts such as additive modeling and maximum likelihood. Their main

result is that it is possible to rederive AdaBoost as a method for fitting

an additive model in a forward stagewise manner, yielding significant

understanding as to why this algorithm tends to outperform a single base

model: by fitting an additive model of different and potentially simple

functions, it expands the class of functions that can be approximated.

Algorithm 3 AdaBoost

1: Initialize observation weights w` = 1
L

2: for b = 1 to B do
3: Fit fb(X) as the weak classifier on the training data using w`

4: Compute the weighted error rate as errb =
∑L

`=1 w`.I(Y` 6=fb(X`))∑L
`=1 w`

5: Let αb = log((1− errb)/errb)
6: Update w` ← w`.exp[αb.I(Y` 6= fb(X`))], scaled to sum to one ∀` ∈

{1, . . . , L}
7: end for
8: Output f̂(X) = sign[

∑B
b=1 αb.f̂b(X)]

10.5 Additive models and boosting

Our discussion in this section will be focused on the regression problem,

where the output Y is quantitative and the objective is to estimate the

mean E(Y |X) = f(X). The standard linear regression model assumes a

linear form for this conditional expectation,

E(Y |X) = f(X) =

p∑

j=1

θjXj . (10.2)

An additive model extends the linear model by replacing the linear

component η =
∑p

j=1 θjXj with an additive predictor of the form η =∑p
j=1 fj(Xj). We assume
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E(Y |X) = f(X) =

p∑

j=1

fj(Xj), (10.3)

where f1(.), . . . , fp(.) are smooth functions. There is a separate smooth

function fj for each of the p input variables Xj or, more generally, each

component fj is a function of a prespecified subset of the input variables.

These functions are not assumed to have a parametric form, but instead

they are estimated in a nonparametric fashion.

This model can be extended by considering additive models with

functions fb(X), b = {1, . . . , B} of potentially all the input variables. In

this context,

f(X) =

B∑

b=1

fb(X) =

B∑

b=1

θbh(X; γb), (10.4)

where the functions h(X; γb) are usually taken to be simple functions

characterized by a set of parameters γ = {γ1, γ2, . . . , γB} and a multiplier θb.

This form includes models such as neural networks, wavelets, multivariate

adaptive regression splines and regression trees (Hastie et al., 2009). In a

boosting context, θbh(X; γb) represents the “weak learner” and f(X) the

weighted majority vote of the individual weak learners.

Estimation of the parameters in (10.4) amounts to solving

min
{θb,γb}B1

L∑

`=1

Λ

(
Y`,

B∑

b=1

θbh(X`; γb)

)
, (10.5)

where Λ(Y, f(X)) is the chosen loss function (10.1) to define lack of fit.

A “greedy” forward stepwise method solves (10.5) by sequentially fitting

a single weak learner and adding it to the expansion of prior fitted

terms. The corresponding solution values of each new fitted term are not

readjusted as new terms are added into the model. This is outlined in

Algorithm 4.

If squared error is used as the loss function, line 3 simplifies to
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Algorithm 4 Forward Stagewise Additive Modeling

1: Initialize f0(X) = 0

2: for b = 1 to B do
3: Obtain estimates θb and γb by minimizing

∑L
`=1 Λ(Y`, fb−1(X`) +

θh(X`; γ))

4: Update fb(X) = fb−1(X) + θbh(X; γb)

5: end for
6: Output f̂(X) = fB(X)

Λ
(
Y`, fb−1(X`) + θh(X`; γ)

)
=
(
Y` − fb−1(X`)− θh(X`; γ)

)2

=
(
r`b − θh(X`; γ)

)2

, (10.6)

where r`b is the residual of the `th observation at the current iteration.

Thus, for squared-error loss, the term θbh(X; γb) fitted to the current

residuals is added to the expansion in line 4. It is also fairly easy to

show (Hastie et al., 2009) that the AdaBoost algorithm described in

Section 10.4 is equivalent to forward stagewise modeling based on an

exponential loss function of the form Λ(Y, f(X)) = exp(−Y f(X)).

10.6 Gradient boosting trees

Squared error and exponential error are plausible loss functions commonly

used for regression and classification problems, respectively. However,

there may be situations in which other loss functions are more appropriate.

For instance, binomial deviance is far more robust than exponential loss

in noisy settings where the Bayes error rate1 is not close to zero, or

in situations where the target classes are mislabeled. Similarly, the

performance of squared error significantly degrades for long-tailed error

distributions or the presence of “outliers” in the data. In such situations,

other loss functions such as absolute error or Huber loss (Huber, 1964)

are more appropriate.

Under these alternative specifications for the loss function and for a

1 The Bayes error rate represents the lowest achievable error rate for a given
classification problem (Duda et al., 2001, Section 2.3).
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particular weak learner, the solution to line 3 in Algorithm 4 is difficult to

obtain. The gradient boosting algorithm solves the problem using a two-

step procedure which can be applied to any differentiable loss function.

The first step estimates γb by fitting a weak learner h(X; γ) to the negative

gradient of the loss function (i.e., the “pseudo-residuals”) using least

squares. In the second step, the optimal value of θb is determined given

h(X; γb). The procedure is shown in Algorithm 5.

Algorithm 5 Gradient Boosting

1: Initialize f0(x) to be a constant, f0(X) = argmin
θ

∑L
`=1 Λ(Y`, θ)

2: for b = 1 to B do
3: Compute the negative gradient as the working response

r` = −
[
∂Λ(Y`, f(X`))

∂f(X`)

]

f(X)=fb−1(X)

, ` = {1, . . . , L}

4: Fit a regression model to r` by least squares using the input X`

and get the estimate γb of θh(X; γ)

5: Estimate θb by minimizing Λ(Y`, fb−1(X`) + θh(X`; γb))

6: Update fb(X) = fb−1(X) + θbh(X; γb)

7: end for
8: Output f̂(X) = fB(X)

For squared-error loss, the negative gradient in line 3 is just the usual

residuals, so in this case the algorithm is reduced to standard least squares

boosting. With absolute error loss, the negative gradient is the sign of

the residuals. Least squares is used in line 4 independently of the chosen

loss function.

Although boosting is not restricted to trees, our work will focus on the

case in which the weak learners represent a “small” regression tree, since

they were proven to be a convenient representation for the weak learners

h(X; γ) in the context of boosting. In this specific case, the algorithm

above is called gradient boosting trees and the parameters γb represent

the split variables, their split values and the fitted values at each terminal

node of the tree. Henceforth in this paper, the term “gradient boosting”
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will be used to denote gradient boosting trees.

10.7 Injecting randomness and regularization

Two additional ingredients for the gradient boosting algorithm were

proposed by Friedman, namely regularization through shrinkage of the

contributed weak learners (Friedman, 2001) and injecting randomness in

the fitting process (Friedman, 2002).

The generalization performance of a statistical learning method is

related to its prediction capabilities on independent test data. Fitting

a model too closely to the training data can lead to poor generalization

performance. Regularization methods are designed to prevent “overfitting”

by placing restrictions on the parameters of the model. In the context

of boosting, this translates into controlling the number of iterations B

(i.e., the number of trees) during the training process. An independent

test sample or cross-validation can be used to select the optimal value

of B. However, an alternative strategy, shown to provide better results,

relates to scaling the contribution of each tree by a factor τ ∈ (0, 1]. This

implies changing line 6 in Algorithm 5 to

fb(X) = fb−1(X) + τ.θbh(X; γb). (10.7)

The parameter τ has the effect of retarding the learning rate of the

series, so the series has to be longer to compensate for the shrinkage, but

its accuracy is better. It has been shown empirically that small shrinkage

factors (τ < 0.1) yield dramatic improvements over boosting series built

with no shrinkage (τ = 1) (Friedman, 2001). The trade-off is that lower

values of τ require a larger value of B for the same test error and so

computational time increases. A strategy for model selection often used

is practice is to set the value of τ as small as possible (i.e. between 0.01

and 0.001) and then choose B by early stopping.

The second modification introduced in the algorithm was to incorporate

randomness as an integral part of the fitting procedure. This involves

taking a simple random sample, without replacement, of usually approxi-

mately 1/2 the size of the full training data set at each iteration. This

sample is then used to fit the weak learner (line 4 in Algorithm 5) and
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compute the model update for the current iteration. As a result of this

randomization procedure, the variance of the individual weak learner

estimates at each iteration increases, but there is less correlation between

these estimates at different iterations. The net effect is a reduction in

the variance of the combined model. In addition, this randomization

procedure has the benefit of reducing the computational demand. For

instance, taking half-samples reduces computation by almost 50%.

10.8 Interpretation

Accuracy and interpretability are two fundamental objectives of predictive

learning. However, these objectives do not always coincide. In contrast

to other statistical learning methods providing comparable accuracy (e.g.,

neural networks and support vector machines), gradient boosting gives

interpretable results. An important measure often useful for interpretation

is the relative influence of the input variables on the output. As discussed

in Chapter 4, for a single decision tree, Breiman et al. (1984) proposed

the following measure as an approximation of the relative influence of a

predictor Xj, j = {1, . . . , p}:

Îj =
∑

all splits
on Xj

V̂s, (10.8)

where V̂s is the empirical improvement in the split-criterion as a result

of using Xj as a splitting variable at the non-terminal node s. For

gradient boosting, this relative influence measure is naturally extended

by averaging Îj over the collection of trees.

Another important interpretation component is given by a visual rep-

resentation of the partial dependence of the approximation f̂(X) on a

subset Xc of size c < p of the input vector X. The dependency of f̂(X)

on the remaining predictors Xc̄ (i.e. Xc̄ ∪Xc = X) must be conditioned

out. This can be estimated from the training data by

f̂(Xc) =
1

L

L∑

`=1

f̂(Xc,X`c̄). (10.9)

Note that this method requires predicting the response over the training
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sample for each set of the joint values of Xc, which can be computationally

very demanding. However, for regression trees, a weighted transversal

method (Friedman, 2001) can be used, from which f̂(Xc) is computed

using only the tree, without reference to the data themselves.

10.9 Application to auto insurance loss cost

modeling

10.9.1 The data

The data used for this analysis were extracted from a large database from

a major Canadian insurer. It consists of policy and claim information

at the individual vehicle level. There is one observation for each period

of time during which the vehicle was exposed to the risk of having an

at-fault collision accident. Mid-term changes and policy cancellations

would result in a corresponding reduction in the exposure period.

The data set includes 426,838 vehicle-years of earned exposure from

January 2006 to June 2009, and 14,984 claims incurred during the same

period of time, with losses based on best reserve estimates as of December

2009. The input variables (for an overview, see Table 10.1) were measured

at the start of the exposure period, and are represented by a collection

of quantitative and qualitative attributes of the vehicle and the insured.

The output is the actual loss cost, which is calculated as the ratio of the

total amount of losses to the earned exposure. In practice, insurance

legislation may restrict the usage of certain input variables to calculate

insurance premiums. Although our analysis was developed assuming a

free rating regulatory environment, the techniques described here can be

applied regardless of the limitations imposed by any specific legislation.

For statistical modeling purposes, we first partitioned the data into

training (70%) and test (30%) data sets. The training set was used for

model training and selection, and the test set to assess the predictive

accuracy of the selected gradient boosting model against the generalized

linear model. To ensure that the estimated performance of the model,

as measured on the test sample, is an accurate approximation of the

expected performance on future “unseen” cases, the inception date of
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Table 10.1: Overview of loss cost predictors

• Driver characteristics

– DC1. Age of principal operator

– DC2. Yrs licensed

– DC3. Age licensed

– DC4. License class

– DC5. Gender

– DC6. Marital status

– DC7. Prior insurance

– DC8. Postal code risk score

– DC9. Insurance lapses

– DC10. Insurance suspensions

• Accident and conviction history

– AC1. Number of chargeable accidents (last 1-3 yrs)

– AC2. Number of chargeable accidents (last 4-6 yrs)

– AC3. Number of non-chargeable accidents (last 1-3 yrs)

– AC4. Number of non-chargeable accidents (last 4-6 yrs)

– AC5. Number of driving convictions (last 1-3 yrs)

– AC6. Accident-benefit claims (last 1-6 yrs)

• Policy characteristics

– PC1. Years since policy inception

– PC2. Presence of multi-vehicle

– PC3. Collision deductible

– PC4. Billing type

– PC5. Billing status

– PC6. Rating territory

– PC7. Presence of occasional driver under 25 yrs

– PC8. Presence of occasional driver over 25 yrs

– PC9. Group business

– PC10. Business origin

– PC11. Home policy

• Vehicle characteristics

– VC1. Vehicle make

– VC2. Vehicle purchased new or used

– VC3. Vehicle leased

– VC4. Horsepower to weight ratio

– VC5. Vehicle age

– VC6. Vehicle price
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policies in the test set is posterior to the one of policies used to build and

select the model.

Loss cost is usually broken down into two components: claim frequency

(calculated as the ratio of the number of claims to the earned exposure)

and claim severity (calculated as the ratio of the total amount of losses

to the number of claims). Some factors affect claim frequency and claim

severity differently, and therefore we considered them separately. For the

claim frequency model, the target variable was coded as binary since only

a few records had more than one claim during a given exposure period.

The exposure period was treated as an offset variable in the model (i.e.,

a variable with a known parameter of 1).

The actual claim frequency measured on the entire sample is 3.51%.

This represents an imbalanced or skewed class distribution for the target

variable, with one class represented by a large sample (i.e., the non-

claimants) and the other represented by only a few (i.e., the claimants).

Classification of data with imbalanced class distribution has proved a

significant drawback for the performance attainable by most standard

classifier algorithms, which assume a relatively balanced class distribu-

tion (Jha et al., 2012; Sun et al., 2007). These classifiers tend to output

the simplest hypothesis which best fits the data and, as a result, classi-

fication rules that predict the small class tend to be fewer and weaker

compared to those that predict the majority class. This may hinder

the detection of claim predictors and ultimately decrease the predictive

accuracy of the model. To address this issue, we rebalanced the class

distribution for the target in the frequency model by resampling the

data space. Specifically, we under-sampled instances from the majority

class to attain a 10% representation of claims in the training sample.

The test sample was not modified and thus contains the original class

distribution for the target. In econometrics, this sample scheme is known

as choice-based or endogenous stratified sampling (Greene, 2003), and

it is also popular in the computer science community (Chan and Stolfo,

1998; Estabrooks et al., 2004). The “optimal” class distribution for the

target variable based on under-sampling is generally dependent on the

specific data set (Weiss and Provost, 2003), and it is usually considered

as an additional tuning parameter to optimize based on the performance

measured on a validation sample.
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The estimation of a classification model from a rebalanced sample

can be efficient but will overestimate the actual claim frequency. An

appropriate statistical method is required to correct this bias, and several

alternatives exist for that purpose. In this application, we used the

method of prior correction, which fundamentally involves adjusting the

predicted values based on the actual claim frequency in the population.

This correction is described for the logit model in King and Zeng (2001),

and the same method has been successfully used in a boosting application

to predict customer churn (Lemmens and Croux, 2006).

10.9.2 Building the model

The first choice in building the model involves selecting an appropriate loss

function Λ(Y, f(X)) as in (10.1). Squared-error loss,
∑L

`=1 (Y` − f(X`))
2,

and Bernoulli deviance, −2
∑L

`=1 (Y`f(X`)− log(1 + exp(f(X`))), were

used to define prediction error for the severity2 and frequency models,

respectively. Second, it is necessary to select the shrinkage parameter τ

applied to each tree and the sub-sampling rate, as defined in Section 10.7.

The former was set at the fixed value of 0.001 and the latter at 50%.

Third, the size of the individual trees S and the number of boosting

iterations B (i.e., the number of trees) need to be selected. The size of the

trees was selected by sequentially increasing the interaction depth of the

individual trees, starting with an additive model (single-split regression

trees), followed by two-way interactions, and up to six-way interactions.

This was done in turn for the frequency and severity models. For each of

these models, we ran 20,000 boosting iterations using the training data

set.

A drawback of the under-sampling scheme described in Section 10.9.1

is that we may lose important information from the majority class when

under-sampled. To maximize the usage of the information available in

2 For the severity model, we also tested a squared error loss function on the log-
transformed dependent variable, since claim severity has a positively skewed
distribution. However, we found no gains in predictive accuracy from this
alternative specification in this analysis. We also note that although it is possible
to derive squared error loss from the principle of maximum likelihood on the
assumption of Gaussian distributed target data, the use of squared error loss
does not require the target data to have a Gaussian distribution (Bishop, 1995,
p. 197).
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10.9 Application to auto insurance loss cost modeling

the training data, the optimal values of S and B were chosen on the basis

of the smallest estimated prediction error from a K-fold cross-validation

(CV) procedure with K = 10, as described in Section 7.5.1. A three-way

interaction gave best results in both frequency and severity models. Based

on this level of interaction, Figure 10.1 shows the training and CV error

as a function of the number of iterations for the severity model. The

optimal value of B was set at the level at which the CV error ceases to

decrease.

The test data set was not used for model selection purposes, but

to assess the generalization error of the final chosen model relative to

the GLM approach. The latter model was estimated based on the same

training data and using binomial and gamma distributions for the response

variables in the frequency and severity models, respectively.
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Figure 10.1: The relationship between training and cross-validation error
and the optimal number of boosting iterations (shown by
the vertical green line).
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10.9.3 Results

Figure 10.2 displays the relative importance of the 10 most influential

predictor variables for the frequency and severity models. The relative

importance of each predictor is computed from Equation (10.8). Since

these measures are relative, a value of 100 was assigned to the most

important predictor and the others were scaled accordingly. There is a

clear differential effect between the models. For instance, the number of

years licensed of the principal operator of the vehicle is the most relevant

predictor in the frequency model, while it is far less important in the

severity model. Among the other influential predictors in the frequency

model, we find the presence of an occasional driver under 25 yrs, the

number of driving convictions, and the age of the principal operator.

For the severity model, the vehicle age is the most influential predictor,

followed by the price of the vehicle and the horsepower to weight ratio.

Partial dependence plots offer additional insights in the way these

variables affect the dependent variable in each model. These plots depict

the marginal effect of each predictor on claim frequency and severity

by averaging out the effect of the other predictors in the model (see

Equation 10.9). Figure 10.3 shows the partial dependence plots for

the frequency model. The vertical scale is in the log odds and the red

marks at the base of each plot show the deciles of the distribution of

the corresponding variable. Claim frequency has a nonmonotonic partial

dependence on years licensed. It decreases over the main body of the

data and increases nearly at the end. The partial dependence on age

initially decreases abruptly up to a value of approximately 30, followed

by a long plateau up to 70, when it steeply increases. The variables

vehicle age (widely recognized as an important predictor in automobile

claim frequency models; see Brockman and Wright, 1992) and postal code

risk score have a roughly monotonically decreasing partial dependence.

Claim frequency is also estimated to increase with the number of driving

convictions and it is higher for vehicles with an occasional driver under

25 years of age.
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Figure 10.2: Relative importance of the predictors for the frequency (left)
and severity (right) models. See Table 10.1 for predictor
variable codes.
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Note that these plots are not necessarily smooth, since there is no

smoothness constraint imposed on the fitting procedure. This is the

consequence of using a tree-based model. If a smooth trend is observed,

this is the result of the estimated nature of the dependence of the pre-

dictors on the response and it is purely dictated by the data. Also note

that no monotonic constraints were imposed on the predictors in this

modeling exercise. In other practical situations, it is sometimes desirable

to maintain a monotonic relationship between the response and some

predictors. Such monotonic constraints can be incorporated within the

context of boosting models (Hofner et al., 2011).

Figure 10.4 shows the partial dependence plots for the severity model.

The nature of the dependence of vehicle age and price of the vehicle is

naturally due to the fact that newer and more expensive cars would cost

more to repair in the event of a collision. The shape of these curves is

fairly linear over the vast majority of the data. The variable horsepower

to weight ratio measures the actual performance of the vehicle’s engine.

The upward trend observed in the curve is anticipated, since drivers with

high performance engines will generally drive at a higher speed. All the

remaining variables have the expected partial dependence effect on claim

severity.

An interesting relationship is illustrated in Figure 10.5, which shows

the joint dependence between years licensed and horsepower to weight

ratio on claim severity. There appears to be an interaction effect between

these two variables. Claim severity tends to be higher for low values of

years licensed, but this relation tends to be much stronger for high values

of horsepower to weight ratio.

120



10.9 Application to auto insurance loss cost modeling

0 10 20 30 40 50 60

−
2.

4
−

2.
2

−
2.

0
−

1.
8

DC2

P
ar

tia
l d

ep
en

de
nc

e

N Y

−
2.

3
−

2.
2

−
2.

1
−

2.
0

−
1.

9

PC7

P
ar

tia
l d

ep
en

de
nc

e

0 1 2
−

2.
30

−
2.

20
−

2.
10

−
2.

00

AC5

P
ar

tia
l d

ep
en

de
nc

e

20 30 40 50 60 70 80

−
2.

3
−

2.
2

−
2.

1
−

2.
0

DC1

P
ar

tia
l d

ep
en

de
nc

e

0 5 10 15

−
2.

6
−

2.
5

−
2.

4
−

2.
3

−
2.

2

VC5

P
ar

tia
l d

ep
en

de
nc

e

550 650 750 850

−
2.

30
−

2.
25

−
2.

20
−

2.
15

−
2.

10

DC8

P
ar

tia
l d

ep
en

de
nc

e

Figure 10.3: Partial dependence plots (frequency model).
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Figure 10.4: Partial dependence plots (severity model).
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We next compare the predictive accuracy of GB against the conventional

GLM approach based on the test sample. This was done by calculating

the ratio of the rate we would charge based on the GB model to the rate

we would charge based on the GLM. Then we grouped the observations

into five fairly equally sized buckets ranked by the ratio. Finally, for

each bucket we calculated the GLM-loss ratio, defined as the ratio of

the actual losses to the GLM predicted loss cost. Figure 10.6 displays

the results. Note that the GLM-loss ratio increases whenever the GB

model would suggest charging a higher rate than the GLM. The steep

upward trend in the GLM-loss ratio curve indicates the higher predictive

performance of GB relative to GLM.
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Figure 10.6: Prediction accuracy of GB relative to GLM (based on test
sample).

124
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10.10 Discussion

In this chapter, we have described the theory of gradient boosting (GB)

and its application to the analysis of auto insurance loss cost model-

ing. GB was presented as an additive model that sequentially fits a

relatively simple function (weak learner) to the current residuals by least

squares. The most important practical steps in building a model using

this methodology have been described.

Estimating loss cost involves solving regression and classification prob-

lems with several challenges. The large number of categorical and numer-

ical predictors, the presence of nonlinearities in the data and the complex

interactions among the inputs is often the norm. In addition, data might

not be clean and/or may have missing values for some predictors. GB fits

this data structure very well. First, based on the sample data used in this

analysis, the level of accuracy in prediction was shown to be higher for GB

relative to the conventional generalized linear model approach. This is

not surprising since GLMs are, in essence, relatively simple linear models

and are thus constrained by the class of functions they can approximate.

Second, as opposed to other nonlinear statistical learning methods such as

neural networks and support vector machines, GB provides interpretable

results via the relative influence of the input variables and their partial

dependence plots. This is a critical aspect to consider in a business

environment, where models usually must be approved by non–statistically

trained decision makers who need to understand how the output from

the “black box” is being produced. Third, GB requires very little data

preprocessing which is one of the most time consuming activities in a

data mining project. Lastly, model selection is done as an integral part

of the GB procedure, and so it requires little “detective” work on the part

of the analyst.

In short, gradient boosting is a good alternative method to generalized

linear models for building insurance loss cost models. The package gbm

implements gradient boosting methods under the R statistical computing

environment (Ridgeway, 2007).
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package

11.1 Introduction

The software package uplift (Guelman, 2014) is the first integrated R

package (R Core Team, 2013) that enables the user to build personalized

treatment learning (PTL) models (also called uplift models). The package

implements a variety of methods for fitting PTL models, including most

of those described in Chapters 3, 4, and 5. In addition, it incorporates

specialized functions for exploratory data analysis (EDA), assessing model

performance, profiling fitted models, and simulating data. uplift is

available from the CRAN (Comprehensive R Archive Network) repository

at http://www.cran.r-project.org/package=uplift. In this chapter,

we provide an overview of the package functionality through various

examples with synthetic and real-world data.

The chapter is organized as follows. We start by creating a simulated

dataset in Section 11.2, used in some of the examples. Section 11.3

describes various useful tools for exploring data. In Section 11.4, we

demonstrate the usage of the package for fitting PTL models. Section 11.5

describes model assessment and profiling. We finalize the chapter with a

real case study on a direct mail campaign from an international bank.

11.2 Creating simulated datasets

The function sim_pte allows the user to simulate data according to spec-

ification (6.1). The properties of the simulated dataset are customizable,

but sim_pte uses the following default arguments in the function call:
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> sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2),

+ beta.den = 4)

These input arguments control the following parameters:

• n: number of observations (parameter L in (6.1)).

• p: number of predictors (parameter p in (6.1)).

• rho: covariance between predictors (parameter ρ in (6.1)).

• sigma: magnitude of noise (parameter σ0 in (6.1)).

• beta.den: size of main effects relative to interaction effects

(ηj = (−1)(j+1)I(3 ≤ j ≤ 10)/beta.den in (6.1)).

Throughout this chapter, we will use the dataset simdata based on

the following simulation settings:

> library(uplift)

> set.seed(1)

> simdata <- sim_pte(n = 1000, p = 20, rho = 0.2,

+ sigma = sqrt(2), beta.den = 1)

This models a situation with 20 covariates, but only the first 4 interact

with the treatment. Also, the total variability in the response from the

main effects is four times as big as that from the treatment heterogeneity

effects. A quick inspection of simdata gives the following:

> head(simdata, 2)

y treat X1 X2 X3 X4 X5 X6

1 0 1 -0.3092 2.3359 -0.5295 0.62640 -0.4921 0.2818

2 0 1 -0.9688 0.4199 -0.3191 0.07015 1.0181 -1.1715

X7 X8 X9 X10 X11 X12 X13

1 1.3147 -0.8925 0.8024 0.30315 1.7406 1.1887 -0.45917

2 0.1781 -0.4389 0.3376 -0.07075 0.0724 0.9971 0.08526

......
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This is a data frame including the binary response variable y ∈ {0, 1},
the treatment indicator treat ∈ {−1, 1}, the predictor variables X, and

the “true” treatment effect score ts defined in (6.2) (not shown). We show

below the average response rate for treat= −1 and treat= 1 (control

and treatment groups, henceforth), giving 53.0% and 53.4%, respectively.

Thus, based on this simulation setting, the average treatment effect

(ATE, defined in Equation 2.1) is negligible. Our goal is to estimate

the personalized treatment effect (PTE) as this quantity varies across

observations.

> prop.table(table(simdata$y, simdata$treat), 2)

-1 1

0 0.470 0.466

1 0.530 0.534

11.3 Exploratory data analysis

An important aspect about the data, which we may want to check first, is

whether the treatment has been randomly assigned to the observational

units, or if there was some sort of underlying non-random mechanism

by which subjects were exposed to treatment. The checkBalance func-

tion can be used for this purpose. This function is simply a wrapper

for xBalance from the RItools package (Bowers et al., 2010). Given

covariates, a treatment variable, and (optionally) a stratifying factor, it

calculates standardized mean differences along each covariate, and tests

for conditional independence of the treatment variable and the covariates.

Under randomization, treatment and control groups should be ap-

proximately similar (i.e., balanced) in their distributions of covariates.

However, one should still expect imbalances on observed covariates to

occur in a randomized setting – in fact, 1 out of 20 covariates should

differ at the 0.05 level by chance alone. The PTL models implemented

by uplift are designed for experimental data. In the presence of observa-

tional data, the analyst should use the appropriate methods discussed in

Chapter 9 to first create a balanced sample.
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We show below the balance properties for the first five covariates and

a test for the null hypothesis of overall balance of covariates against the

alternative of lack of balance. This test follows a chi-squared distribution

and the reported P value is 0.709, so there is little evidence against the

null of balance (as it should be in this case, given the construction of the

artificial data).

> simdata$treat <- ifelse(simdata$treat ==

+ 1, 1, 0)

> balForm <- as.formula(paste("treat ~", paste("X",

+ 1:20, sep = "", collapse = "+")))

> cb <- checkBalance(balForm, data = simdata)

> cb$results[1:5, , ]

stat

vars treat=0 treat=1 adj.diff adj.diff.null.sd

X1 -0.019586 0.0169046 0.03649 0.06628

X2 0.002043 0.0522843 0.05024 0.06350

X3 -0.011385 -0.0426792 -0.03129 0.06083

X4 -0.033873 0.0007947 0.03467 0.06265

......

> cb$overall

chisquare df p.value

unstrat 16.11 20 0.7098

Next, we explore potentially useful PTE predictors. The function

explore provides a basic exploratory tool by computing the average

value of the response variable for each predictor and treatment type. We

illustrate below the usage of explore on two of the covariates. This

function accepts a formula expression of the form “response ∼ predictors”.

A special term of the form trt() must be used in the model equation to

identify the treatment variable.

The result is a list of matrices, one for each variable. The first two

columns display the number of responses in the control and treatment

groups, the next two columns show the average response for the control

and treatment groups, and the last column shows the uplift (difference
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between treatment and control average response). By default, continuous

predictors are binned into quartiles, but this can be easily changed using

the argument nbins in the function call. As expected, since X1 is a

treatment heterogeneity effect, but X10 is not, this is reflected in the

magnitude of uplift values over the range of each of these predictors.

> explore(y ~ X1 + X10 + trt(treat), data = simdata)

$X1

N(Treat=0) N(Treat=1) Ybar(Treat=0)

[-3.18,-0.718] 127 123 0.5906

(-0.718,-0.0071] 120 130 0.5917

(-0.0071,0.715] 138 112 0.5145

(0.715,3.23] 115 135 0.4174

Ybar(Treat=1) Uplift

[-3.18,-0.718] 0.4553 -0.1353

(-0.718,-0.0071] 0.5154 -0.0763

(-0.0071,0.715] 0.5536 0.0391

(0.715,3.23] 0.6074 0.1900

$X10

N(Treat=0) N(Treat=1) Ybar(Treat=0)

[-3.7,-0.659] 127 123 0.4094

(-0.659,-0.00775] 124 126 0.4435

(-0.00775,0.65] 121 129 0.6116

(0.65,3.46] 128 122 0.6562

Ybar(Treat=1) Uplift

[-3.7,-0.659] 0.4228 0.0133

(-0.659,-0.00775] 0.4683 0.0247

(-0.00775,0.65] 0.5349 -0.0767

(0.65,3.46] 0.7131 0.0569

An additional useful function for exploratory data analysis in the con-

text of PTL models is the net information value (Larsen, 2009). Variable

selection is an important step in applications of statistical and machine

learning methods. The predictive performance of these methods tends to

degrade if the dimensionality of the input space is higher than optimal (Ko-

havi and John, 1997). This is due to the curse of dimensionality (Bellman,
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1961), which refers to the extent to which increasing the dimensionality

of the input space leads to a point where data is very sparse, providing

a poor sample representation. The same problem is present in PTL

models. In addition, these models have an additional complexity for

variable selection due to the treatment heterogeneity effects usually being

a small fraction of the main effects. Variable selection not only aids in

improving the predictive performance of the model, but also provides a

better understanding of the underlying process generating the data.

An approach to variable selection used by conventional statistical

learning models is based on information-theoretic criteria, which rely

on empirical estimates of the mutual information between each variable

and the target. Let Y ∈ {0, 1} be a binary response variable and

X = (X1, . . . , Xp)
> a vector of baseline predictors. The weight of evi-

dence (Siddiqi, 2006) has its roots in the logit transform, or equivalently

called the log-odds:

logit
(
P (Y |X)

)
= log

(
P (Y = 1|X)

P (Y = 0|X)

)
. (11.1)

From Bayes’ theorem, (11.1) can be rewritten as

log

(
P (Y = 1|X)

P (Y = 0|X)

)
= log

(
P (Y = 1)P (X|Y = 1)

P (Y = 0)P (X|Y = 0)

)

= log

(
P (Y = 1)

P (Y = 0)

)
+ log

(
P (X|Y = 1)

P (X|Y = 0)

)
. (11.2)

The second term in (11.2) is defined as the weight of evidence (WOE),

which can be re-expressed as

WOE = log

(
P (Y = 1|X)

P (Y = 0|X)

)
− log

(
P (Y = 1)

P (Y = 0)

)
. (11.3)

The right hand side of (11.3) is a measure of the difference between

the log odds after the observation of X and before that observation. A

WOE > 0 (WOE < 0) means that the odds given X is higher (lower) than
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the overall odds by a factor of exp(WOE). A WOE value of 0 means

average odds.

The information value (IV) is a measure of the predictive power of a

predictor, commonly used in credit risk scorecard applications (Anderson,

2007). It is defined as

IV =
∑

X

(
P (X|Y = 1)− P (X|Y = 0)

)
log

(
P (X|Y = 1)

P (X|Y = 0)

)

=
∑

X

(
P (X|Y = 1)− P (X|Y = 0)

)
WOE. (11.4)

Equation (11.4) can be derived from the Kullback-Leibler (Cover and

Thomas, 1991, p. 19) measure of divergence associated with two probabil-

ity distributions Q = P (X|Y = 1) and R = P (X|Y = 0), defined in (4.1).

It is given by

D(Q||R) =
∑

X

Q log

(
Q

R

)
. (11.5)

We see that (11.5) is not symmetric (i.e., D(Q||R) 6= D(R||Q)). The IV

is its symmetric version, also known as the J-divergence (Jeffreys, 1946;

Kullback and Leibler, 1951). It is given by

J(Q||R) = D(Q||R) +D(R||Q) =
∑

X

(Q−R) log

(
Q

R

)
. (11.6)

A natural extension of the WOE for PTL is to consider the J-divergence

between Q and R from both treatment and control groups. Specifically,

let A ∈ {0, 1} be a binary treatment and let QT = P (X|Y = 1, A = 1),

QC = P (X|Y = 1, A = 0), RT = P (X|Y = 0, A = 1), and RC = P (X|Y =

0, A = 0). The net information value (NIV) is given by
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NIV = J(QT /RT || QC/RC)

= D(QT /RT || QC/RC) +D(QC/RC || QT /RT )

=
∑

X

QT /RT log

(
QT /RT

QC/RC

)
+
∑

X

QC/RC log

(
QC/RC

QT /RT

)

=
∑

X

(QT /RT −QC/RC)
[
log(QT /RT )− log(QC/RC)

]

∝
∑

X

(QTRC −QCRT )NWOE, (11.7)

where NWOE = log(QT /RT )− log(QC/RC) is the net weight of evidence,

defined as the difference in the weight of evidence between the treatment

and control groups.

Larsen (2009) also suggests assessing the stability of the NIV over the

training data and computing an adjusted net information value (ANIV).

Our method for computing the ANIV is as follows:

1. Draw B bootstrap samples from the training data and compute the

NIV for each variable in each sample.

2. Compute the mean, NIV, and standard deviation, sd(NIV), of the

NIV for each variable over the B replications.

3. The ANIV for a given variable is computed by subtracting a penalty

term from the mean NIV. Specifically, ANIV = NIV− sd(NIV)√
B

.

The function niv computes the net information value and the adjusted

net information value. We illustrate below the usage of this function on

our simulated dataset. The function produces a list with two components:

• niv_val: a matrix with the following columns: niv (the average

net information value for each variable over all bootstrap samples),

penalty (the penalty term), and adj_niv (the adjusted net infor-

mation value).
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• nwoe: a list of matrices with the net weight of evidence for each

variable. As an example, this is shown below for the variable X3

only.

> modelForm <- as.formula(paste("y ~", "trt(treat) +",

+ paste("X", 1:20, sep = "", collapse = "+")))

> niv_res <- niv(modelForm, B = 50, plotit = FALSE,

+ data = simdata)

> niv_res$niv_val[order(niv_res$niv_val[, 3],

+ decreasing = TRUE), ]

niv penalty adj_niv

X3 5.303 0.2445 5.059

X1 5.297 0.2541 5.043

X4 4.917 0.2506 4.666

X2 4.609 0.2191 4.389

X7 4.190 0.1698 4.021

......

> niv_res$nwoe$X3[, 5:7]

ct1.woe ct0.woe nwoe

[-2.81,-1.24] 0.4516 0.8607 -0.4091

(-1.24,-0.886] 0.0036 0.6530 -0.6495

(-0.886,-0.545] 0.2067 0.7373 -0.5306

(-0.545,-0.267] -0.1740 -0.1627 -0.0112

(-0.267,-0.0521] -0.1726 0.4746 -0.6471

......

11.4 Fitting personalized treatment learning

models

In this section, we demonstrate three key methods implemented by uplift

for building PTL models. We fit these methods relying mostly on their

default options. Model tuning is discussed in Section 11.6.

We first fit an uplift random forest to simdata using the function

upliftRF. This is a tree-based model with split criteria specifically de-

signed to estimate PTEs (see Chapter 4 for details).
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> upliftRF_fit <- upliftRF(modelForm, data = simdata,

+ split_method = "ED")

This simple form of upliftRF hides a number of important options

which have been set to their default values, including:

• mtry: the number of variables to be tested in each node; the default

is floor(sqrt(ncol(x))).

• ntree: the number of trees to generate in the forest; default is

ntree = 100.

• split_method: the split criterion. Possible values are: "ED" (Eu-

clidean distance), "Chisq" (Chi-squared divergence), "KL" (Kullback-

Leibler divergence), "L1" (L1-norm divergence) and "Int" (interac-

tion method).

• interaction.depth: The maximum depth of interactions among

covariates. 1 implies an additive model, 2 implies a model with up

to 2-way interactions, and so on. The default is to grow trees to

maximal depth, constrained on the arguments specified by minsplit

and minbucket.

• bag.fraction: the fraction of training observations randomly se-

lected for the purpose of fitting each tree in the forest. The default

is bag.fraction = 0.5.

• minsplit: the minimum number of observations that must exist in

a node in order for a split to be attempted.

• minbucket_ct0: the minimum number of control observations in

any terminal node.

• minbucket_ct1: the minimum number of treatment observations

in any terminal node.

• keep.inbag: if set to TRUE, an nrow(x) by ntree matrix is returned,

whose entries are the “in-bag” samples in each tree.
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• verbose: print status messages?

The summary function when applied to an object of class "upliftRF"

returns the function call, a measure of the relative importance of each

predictor (shown below), and some additional parameters used in the

fitted model.

> summary(upliftRF_fit, plotit = FALSE)$importance

var rel.imp

1 X1 9.385

2 X3 7.933

3 X2 7.703

4 X4 6.987

5 X11 5.686

6 X14 5.536

7 X19 5.346

8 X7 5.236

9 X6 5.130

......

We next fit a causal conditional inference forest (see Chapter 5 for

details), implemented by the function ccif. Causal conditional infer-

ence trees estimate PTEs by binary recursive partitioning in a causal

conditional inference framework. Roughly, the algorithm works as follows:

1. For each terminal node in the tree we test the global null hypothesis

of no interaction effect between the treatment and any of the mtry

covariates selected at random from the set of p covariates. Stop

if this hypothesis cannot be rejected. Otherwise select the input

variable with strongest interaction effect. The interaction effect is

measured by a P value corresponding to a permutation test (Strasser

and Weber, 1999) for the partial null hypothesis of independence

between each input variable and a transformed response. Specifically,

the response is transformed so the impact of the input variable on

the response has a causal interpretation for the treatment effect.

2. Implement a binary split in the selected input variable.
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3. Recursively repeat steps 1 and 2.

In ccif, the independence test between each input and the transformed

response is performed by calling independence_test from the coin

package (Hothorn et al., 2008). Additional arguments from this function

can be passed to ccif via {. . .}. This is the case below with the argument

distribution = approximate(B=999), which returns a Monte Carlo

function that draws B(= 999) random permutations of the transformed

responses to derive the distribution of the test statistic under the null

hypothesis of no interaction between the treatment and each covariate.

Most of the arguments described above for upliftRF are also avail-

able for ccif. The latter incorporates additional arguments which are

specifically relevant for this method, including:

• pvalue: the maximum acceptable P value required in order to make

a split.

• bonferroni: apply a Bonferroni adjustment to P value?

• {. . . }: additional arguments passed to independence_test{coin}.

> ccif_fit <- ccif(formula = modelForm,

+ data = simdata, split_method = "Int",

+ distribution = approximate(B = 999))

We next fit a causal K-nearest-neighbor. The essential idea of this

method is that when estimating the PTE for a new target observation,

we should weight the evidence of similar training observations to that

target more heavily (see Section 3.3.3). Thus, we first generate a test

sample composed of 10,000 observations based on the same simulation

parameters used to create simdata.

> ### Simulate test data

> set.seed(12345)

> simdata_test <- sim_pte(n = 10000, p = 20,

+ rho = 0.2, sigma = sqrt(2), beta.den = 1)

> simdata_test$treat <- ifelse(simdata_test$treat ==

+ 1, 1, 0)
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We now score the test observations using the training data as follows:

> upliftKNN_fit <- upliftKNN(simdata[, 3:22],

+ simdata_test[, 3:22], simdata$y, simdata$treat,

+ k = 30, dist.method = "euclidean", p = 2,

+ ties.meth = "min", agg.method = "mean")

The object upliftKNN_fit now contains a matrix of predictions for

each test case under control and treatment. This is shown below for the

first few predictions.

> head(upliftKNN_fit)

0 1

[1,] 0.5000 0.5667

[2,] 0.5667 0.7000

[3,] 0.4000 0.3000

[4,] 0.4000 0.5667

[5,] 0.5333 0.6000

......

The arguments used above for the function upliftKNN include:

• k: number of neighbors considered.

• dist.method: the distance used in calculating the neighbors. Any

method supported by the function dist from the stats package is

valid.

• p: the power of the Minkowski distance.

• ties.meth: method to handle ties for the kth neighbor. The default

is min which uses all ties. Alternatives include max which uses none

if there are ties for the kth nearest neighbor, random which selects

among the ties randomly, and first which uses the ties in their

order in the data.

• agg.method: method to combine responses of the nearest neighbors,

defaults to "mean". The alternative is "majority".
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In addition, currently uplift incorporates two additional functions to

facilitate the data preprocessing steps required for fitting models based on

the modified covariate method (Section 3.3.1) and the modified outcome

method (Section 3.3.2). The corresponding functions are tian_transf

and rvtu, respectively.

11.5 Model assessment and profiling

Model assessment for PTL models was discussed in Chapter 7. uplift

incorporates two functions for assessing models, namely performance

and qini. We start by using the predict methods on the "upliftRF"

and "ccif" objects to predict the PTEs on our simdata_test dataset.

Predictions from the upliftKNN were already obtained in the previous

section.

> ### upliftRF predictions

> upliftRF_pred <- predict(upliftRF_fit, simdata_test)

> ### ccif predictions

> ccif_pred <- predict(ccif_fit, simdata_test)

The predict.ccif and predict.upliftRF methods produce a ma-

trix of predictions containing the conditional class probabilities under

each treatment. For illustration, we return the first few predictions

from ccif_pred below. The first column (pr.y1_ct1) represents P (Y =

1|X, A = 1) and the second (pr.y1_ct0) represents P (Y = 1|X, A = 0).

> head(ccif_pred)

pr.y1_ct1 pr.y1_ct0

[1,] 0.5319 0.5590

[2,] 0.5123 0.5518

[3,] 0.5550 0.5261

[4,] 0.5734 0.4429

[5,] 0.5612 0.5005

......

The function performance provides a method for assessing model

performance. Essentially this function 1) computes the differences in
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the predicted conditional class probabilities P (Y = 1|X, A = 1) and

P (Y = 1|X, A = 0), 2) ranks these differences and groups them into bins

with equal number of observations in each, and 3) computes the actual

difference in the mean of the response variable between the treatment and

control groups. This function returns a matrix with the following columns:

the number of groups (group), the number of observations in the treated

group (n.ct1), the number of observations in the control group (n.ct0),

the number of observations in the treated group where Y = 1 (n.y1_ct1)

(not shown), the number of observations in the control group where

Y = 1 (n.y1_ct0) (not shown), the mean of Y over the treated group

(r.y1_ct1), the mean of Y over the control group (r.y1_ct0), and the

difference between r.y1_ct1 and r.y1_ct0 (uplift).

> ccif_perf <- performance(ccif_pred[, 1],

+ ccif_pred[, 2], simdata_test$y, simdata_test$treat)

> ccif_perf[, -c(4, 5)]

group n.ct1 n.ct0 r.y1_ct1 r.y1_ct0 uplift

[1,] 1 503 497 0.6441 0.2636 0.380554

[2,] 2 505 495 0.5703 0.3939 0.176358

[3,] 3 501 499 0.5449 0.4369 0.108036

[4,] 4 468 532 0.5363 0.5000 0.036325

[5,] 5 499 501 0.5251 0.5170 0.008084

......

We can compare the top decile uplift (Section 7.4) among the three

models from the code below.

> upliftRF_perf <- performance(upliftRF_pred[,

+ 1], upliftRF_pred[, 2], simdata_test$y,

+ simdata_test$treat)

> upliftKNN_perf <- performance(upliftKNN_fit[,

+ 2], upliftKNN_fit[, 1], simdata_test$y,

+ simdata_test$treat)

> top10Decile_perf <- data.frame(ccif = ccif_perf[1,

+ 8], upliftRF = upliftRF_perf[1,

+ 8], upliftKNN = upliftKNN_perf[1,
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+ 8])

> top10Decile_perf

ccif upliftRF upliftKNN

uplift 0.3806 0.3308 0.2375

We can also assess model performance using the Qini coefficient, which

is a more general performance measure for PTL models (see Section 7.2).

The function qini computes the Qini coefficient from a "performance"

object. We can compare the performance of the fitted models using this

function as follows:

> qini <- data.frame(ccif = qini(ccif_perf,

+ plotit = FALSE)$Qini, upliftRF = qini(upliftRF_perf,

+ plotit = FALSE)$Qini, upliftKNN = qini(upliftKNN_perf,

+ plotit = FALSE)$Qini)

> qini

ccif upliftRF upliftKNN

1 0.4788 0.4345 0.4165

We see that based on the default arguments used for fitting these

models, the causal conditional inference forests performed best, both on

top decile uplift and Qini.

Next, we use the function modelProfile to profile subjects based on

their estimated PTE. This can be useful to inspect the characteristics of

subjects with high/low treatment impact. Essentially, this function ranks

the PTE predictions supplied in the left hand side of the model formula

and classifies them into groups with equal number of observations. It

subsequently calls the function tabular from the tables package (Mur-

doch, 2013) to compute the average of each numeric predictor and the

distribution of each factor within each group. We illustrate this below

for a subset of predictors.

> pte_pred <- ccif_pred[, 1] - ccif_pred[, 2]

> modelProfile(pte_pred ~ X1 + X2 + X3 + X4 + X5 + X6,
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+ data = simdata_test, groups = 10, group_label = "D",

+ digits_numeric = 1)

Table 11.1: Distribution of predictors using modelProfile

Group
1 2 3 . . . 8 9 10 All

n 1000 1000 1000 . . . 1001 999 1000 10000
pte_pred Avg. 0.157 0.094 0.062 . . . −0.057 −0.085 −0.132 0.004
X1 Avg. 0.649 0.500 0.326 . . . −0.248 −0.394 −0.605 0.002
X2 Avg. −0.809 −0.370 −0.266 . . . 0.315 0.471 0.704 −0.006
X3 Avg. 0.620 0.413 0.326 . . . −0.270 −0.362 −0.586 0.005
X4 Avg. −0.601 −0.243 −0.129 . . . 0.172 0.263 0.455 −0.006
X5 Avg. −0.171 −0.017 0.008 . . . 0.055 0.068 0.028 −0.003
X6 Avg. 0.041 0.174 0.174 . . . −0.026 −0.079 −0.281 0.025

11.6 Case study: A bank’s direct mail

campaign

In this section, we provide a comprehensive view of all the steps discussed

previously in this chapter to conduct an analysis on a real case study

using uplift. The objective of this case study is to identify which clients

from an international bank are more likely to buy one of its financial

products as a result of a marketing intervention activity. The data are

based on a pilot direct mail campaign implemented by this bank, in which

6,256 clients were randomly assigned in equal proportions to a treatment

and a control group. Clients in the treatment group received a promotion

to buy a certain product. Clients in the control group did not receive

the promotion. In addition to the response variable and the treatment

indicator, the dataset (labeled bankDM2) includes 13 predictors describing

various demographic and behavioral client characteristics.

We first check the response rate for the control and treatment groups,

giving 38.4% and 14.8%, respectively. The ATE of 23.6% is significantly

higher than what is usually seen in marketing campaigns of this kind.

Certainly, the marketing intervention activity generated significant posi-

tive effects to buy the product. However, the cost of the promotion was
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very high as well, so the company was interested in identifying a subgroup

of clients for which the intervention was more effective than the average

and targeting those clients in the post-pilot campaign deployment. In

addition, the company’s budget for the post-pilot campaign limited the

quantity of targets to at most 30% of their client base.

> 100 * round(prop.table(table(bankDM2$response,

+ bankDM2$treatment), 2), 4)

0 1

0 85.17 61.60

1 14.83 38.40

We next randomly partition bankDM2 into training and test datasets

in a 70/30 proportion. The former dataset is used for model building

and the latter for performance assessment. We check that the ATE is

consistent in the resulting partition1.

> set.seed(455)

> samp.ind <- sample(1:nrow(bankDM2), 0.7 *

+ nrow(bankDM2), replace = FALSE)

> bankDM.train <- bankDM2[samp.ind, ]

> bankDM.test <- bankDM2[-samp.ind, ]

> ### Check average treatment effect is

> ### consistent in the resulting partition

> 100 * round(prop.table(table(bankDM.train$response,

+ bankDM.train$treatment), 2), 4)

0 1

0 85.11 61.60

1 14.89 38.40

> 100 * round(prop.table(table(bankDM.test$response,

+ bankDM.test$treatment), 2), 4)

0 1

1 Alternatively, stratified random sampling could have been used.
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0 85.30 61.62

1 14.70 38.38

Although the promotion was randomized with respect to clients, it is

always desirable to test any departures from randomization. The results

of checkBalance below indicate that we cannot reject the null hypothesis

of overall balance of covariates between treatment and control groups

(P value = 0.961). Also, by inspecting the mean of the covariates in each

group, we see that all of them are fairly balanced. This is shown for the

first few covariates.

> treat.form <- treatment ~ age + gender +

+ withdrawals + deposit + credit_value +

+ discounts + transactions + bank_logs +

+ accruals + charges + cash_total + loan_payment +

+ e_trans

> cb <- checkBalance(treat.form, data = bankDM.train)

> round(cb$results[, c(1:3, 6:7), ], 2)

stat

vars treatment=0 treatment=1 adj.diff z p

age 35.39 35.38 -0.01 -0.02 0.98

gender0 0.47 0.48 0.01 0.59 0.55

gender1 0.53 0.52 -0.01 -0.59 0.55

withdrawals 100.86 100.27 -0.60 -1.01 0.31

......

> cb$overall

chisquare df p.value

unstrat 5.56 13 0.9607

We now use the function niv to identify potentially useful PTE pre-

dictors. We compute the net information value and the adjusted net

information value over B = 100 bootstrap samples of the training data.

The results indicate that the first five potentially most influential predic-

tors are: gender, age, transactions, e_trans, and charges.
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> set.seed(1)

> Model.form <- response ~ trt(treatment) +

+ age + gender + withdrawals + deposit +

+ credit_value + discounts + transactions +

+ bank_logs + accruals + charges + cash_total +

+ loan_payment + e_trans

> niv_res <- niv(Model.form, B = 100, nbins = 4,

+ plotit = FALSE, data = bankDM.train)

> niv_res$niv_val[order(niv_res$niv_val[, 3],

+ decreasing = TRUE), ]

niv penalty adj_niv

gender 4.9120 0.2027 4.7093

age 1.7385 0.0824 1.6561

transactions 1.5862 0.0993 1.4869

e_trans 1.3714 0.0878 1.2836

charges 1.2391 0.0785 1.1606

......

We now use the function explore for a univariate analysis of uplift.

For illustration purposes, we show univariate results for gender and age.

We can clearly see that the promotion persuaded males (gender = 1) to

buy the product to a much larger extent than to females. This is also

the case for relatively older clients.

> eda <- explore(Model.form, data = bankDM.train)

> eda$gender

N(Treat=0) N(Treat=1) Ybar(Treat=0) Ybar(Treat=1) Uplift

0 1032 1052 0.1492 0.3099 0.1607

1 1157 1138 0.1487 0.4525 0.3039

> eda$age

N(Treat=0) N(Treat=1) Ybar(Treat=0) Ybar(Treat=1)

[20,27] 612 636 0.1438 0.3412

(27,34] 535 512 0.1533 0.3691

(34,43] 537 539 0.1583 0.3673

(43,61] 505 503 0.1406 0.4712

Uplift
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[20,27] 0.1974

(27,34] 0.2159

(34,43] 0.2091

(43,61] 0.3306

Next, we fit three alternative PTL models to the training data: causal

conditional inference forest (ccif), uplift random forest (upliftRF), and

the modified outcome method (mom). We initially fit the first two models

based on preliminary values for their hyperparameters. For the ccif, we

also compute the relative importance of the PTE predictors using the

function varImportance (Figure 11.1). For the mom, we perform stepwise

model selection guided by the Akaike information criterion (AIC : see

Venables and Ripley, 2002).

> ### Causal conditional inference

> ### forests (ccif)

> set.seed(1)

> ccif_fit1 <- ccif(Model.form, data = bankDM.train,

+ ntree = 1000, split_method = "Int",

+ distribution = approximate(B = 999),

+ verbose = TRUE)

> op <- par(mar = c(5, 10, 4, 2) + 0.1)

> varImportance(ccif_fit1, plotit = TRUE)

> ### Uplift random forests (upliftRF)

> set.seed(1)

> upliftRF_fit1 <- upliftRF(Model.form, data = bankDM.train,

+ ntree = 1000, interaction.depth = 3,

+ split_method = "KL", minsplit = 50, verbose = TRUE)

> ### Modified outcome method (mom)

> set.seed(1)

> bankDM.train.mom <- rvtu(Model.form, data = bankDM.train,

+ method = "undersample")
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> Model.form.mom <- z ~ age + gender + withdrawals +

+ deposit + credit_value + discounts +

+ transactions + bank_logs + accruals +

+ charges + cash_total + loan_payment +

+ e_trans

> glm.fit1 <- glm(Model.form.mom, data = bankDM.train.mom,

+ family = "binomial")

> ### Perform stepwise model selection by AIC

> glm.fit_step <- stepAIC(glm.fit1, direction = "backward",

+ trace = 0)

Since the company’s budget limits the number of targets to no more

than 30% of their client base, we assess the performance of all fitted

models by the third decile uplift measured on the test data. We also

compare models based on the Qini coefficient. The results of the code

below show that the ccif performs best on the third decile uplift criterion

and the upliftRF performs best on the Qini criterion. The mom performs

worst on both criteria.

> ### Get predictions on test data

> pred_upliftRF <- predict(upliftRF_fit1,

+ bankDM.test)

> pred_ccif <- predict(ccif_fit1,

+ bankDM.test)

> pred_mom <- 2 * predict(glm.fit_step,

+ bankDM.test) - 1

> ### Get uplift by decile

> ccif_perf <- performance(pred_ccif[,

+ 1], pred_ccif[, 2], bankDM.test$response,

+ bankDM.test$treatment)

> upliftRF_perf <- performance(pred_upliftRF[,

+ 1], pred_upliftRF[, 2], bankDM.test$response,

+ bankDM.test$treatment)

> mom_perf <- performance(pred_mom,

+ rep(0, length(pred_mom)), bankDM.test$response,

+ bankDM.test$treatment)
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Figure 11.1: Relative importance of PTE predictors based on ccif.
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> ### 3rd decile uplift

> Decile_3_perf <- data.frame(ccif = (sum(ccif_perf[1:3,

+ 4])/sum(ccif_perf[1:3, 2])) -

+ (sum(ccif_perf[1:3, 5])/sum(ccif_perf[1:3,

+ 3])), upliftRF = (sum(upliftRF_perf[1:3,

+ 4])/sum(upliftRF_perf[1:3,

+ 2])) - (sum(upliftRF_perf[1:3,

+ 5])/sum(upliftRF_perf[1:3,

+ 3])), mom = (sum(mom_perf[1:3,

+ 4])/sum(mom_perf[1:3, 2])) -

+ (sum(mom_perf[1:3, 5])/sum(mom_perf[1:3,

+ 3])))

> Decile_3_perf

ccif upliftRF mom

1 0.3674 0.3591 0.3571

> ### qini-coefficient

> qini <- data.frame(ccif = qini(ccif_perf,

+ plotit = FALSE)$Qini, upliftRF = qini(upliftRF_perf,

+ plotit = FALSE)$Qini, mom = qini(mom_perf,

+ plotit = FALSE)$Qini)

> qini

ccif upliftRF mom

1 0.2948 0.314 0.2639

The ccif method above was fitted based on preliminary values for its

parameters: the number of trees ntree and the number of candidate

predictors mtry to test at each node. We now attempt to further tune

these parameters. The code below is used to obtain third decile out-of-bag

uplift estimates (see Section 7.5.3) from a grid of suitable values of the

tuning parameters.
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> ### Criteria: out-of-bag 3rd decile

> ### uplift Tune parameters: mtry and

> ### ntree

> mtry.seq <- seq(3, 13, 2)

> ntree.seq <- seq(500, 1000, 100)

> ccif_fits <- vector("list", length(mtry.seq))

> oob_3d_pte <- matrix(nrow = length(ntree.seq),

+ ncol = length(mtry.seq))

> set.seed(1)

> for (i in mtry.seq) {

+ j <- which(i == mtry.seq)

+ ccif_fits[[j]] <- ccif(Model.form,

+ data = bankDM.train, mtry = i,

+ ntree = 1000, split_method = "Int",

+ distribution = approximate(B = 999),

+ keep.inbag = TRUE, verbose = TRUE)

+ }

> ### Obtain out-of-bag predictions

> for (i in ntree.seq) {

+ l <- which(i == ntree.seq)

+ for (j in 1:length(ccif_fits)) {

+ pred <- (predict(ccif_fits[[j]],

+ bankDM.train, n.trees = i,

+ predict.all = TRUE))$individual

+ ### Extract treatment/control

+ ### predictions

+ pred_ct1 <- sapply(1:length(pred),

+ function(k) pred[[k]][,

+ 1])

+ pred_ct0 <- sapply(1:length(pred),

+ function(k) pred[[k]][,

+ 2])

+ ### Insert NAs in observations used

+ ### for model fitting (the inbags)

+ for (h in 1:ncol(pred_ct1)) {
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+ pred_ct1[unique(ccif_fits[[j]]$inbag[,

+ h]), h] <- NA

+ }

+ for (h in 1:ncol(pred_ct0)) {

+ pred_ct0[unique(ccif_fits[[j]]$inbag[,

+ h]), h] <- NA

+ }

+ ### Compute oob predictions by

+ ### removing 'inbag' samples

+ pred_ct1.oob <- apply(pred_ct1[,

+ 1:i], 1, mean, na.rm = TRUE)

+ pred_ct0.oob <- apply(pred_ct0[,

+ 1:i], 1, mean, na.rm = TRUE)

+ ### Get performance

+ perf <- performance(pred_ct1.oob,

+ pred_ct0.oob, bankDM.train$response,

+ bankDM.train$treatment)

+ ### Store 3rd decile oob pte

+ oob_3d_pte[l, j] <- (sum(perf[1:3,

+ 4])/sum(perf[1:3, 2])) -

+ (sum(perf[1:3, 5])/sum(perf[1:3,

+ 3]))

+ }

+ }

> colnames(oob_3d_pte) <- mtry.seq

> rownames(oob_3d_pte) <- ntree.seq

> oob_3d_pte == max(oob_3d_pte)

3 5 7 9 11 13

500 FALSE FALSE FALSE FALSE FALSE FALSE

600 FALSE FALSE FALSE FALSE TRUE FALSE

700 FALSE FALSE FALSE FALSE FALSE FALSE

800 FALSE FALSE FALSE FALSE FALSE FALSE

900 FALSE FALSE FALSE FALSE FALSE FALSE

......
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The values of ntree and mtry that maximize the out-of-bag third decile

uplift estimates are 600 and 11, respectively. The results from the code

below show that based on these tuned parameters, the third decile uplift

has slightly improved on the test data. The uplift on this group is 37%,

relative to 23% for all clients.

> ccif_tuned <- ccif_fits[[5]] ### corresponds to mtry = 11

> pred_ccif_tuned <- predict(ccif_tuned,

+ bankDM.test, n.trees = 600)

> perf_ccif_tuned <- performance(pred_ccif_tuned[,

+ 1], pred_ccif_tuned[, 2], bankDM.test$response,

+ bankDM.test$treatment)

> (sum(perf_ccif_tuned[1:3, 4])/sum(perf_ccif_tuned[1:3,

+ 2])) - (sum(perf_ccif_tuned[1:3,

+ 5])/sum(perf_ccif_tuned[1:3, 3]))

[1] 0.3706

Finally, we use modelProfile to profile the clients predicted to have

highest/lowest PTEs from the marketing intervention activity.

> bankDM.test$pred <- pred_ccif_tuned[, 1] -

+ pred_ccif_tuned[, 2]

> modelProfile(pred ~ age + gender + cash_total +

+ e_trans, data = bankDM.test, groups = 10,

+ group_label = "D", digits_numeric = 1,

+ digits_factor = 2)

Table 11.2: Distribution of specific predictors using modelProfile

Group
1 2 3 . . . 8 9 10 All

n 188 188 187 . . . 187 188 188 1877
pred Avg. 0.4 0.3 0.3 . . . 0.1 0.1 0.1 0.2
age Avg. 46.7 39.5 35.7 . . . 31.4 29.4 27.9 35.4
cash_total Avg. 80.5 85.6 96.0 . . . 94.7 103.2 102.2 100.0
e_trans Avg. 180.5 196.6 198.3 . . . 183.8 201.1 232.3 200.1
gender = F Pctn. 0.00 1.06 10.16 . . . 98.93 99.47 99.47 48.27
gender = M Pctn. 100.00 98.94 89.84 . . . 1.07 0.53 0.53 51.73
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11 Software: The uplift R package

Table 11.2 illustrates the client profile based on the top 4 most influential

predictors obtained above. We see that clients in the first 3 deciles are

relatively older in age, have lower cash_total and lower e_trans, and

are mostly males.
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12 Conclusions and future

challenges

In this thesis, we have introduced the concept of personalized treatment

learning as the problem of learning the optimal “treatment” or action

tailored to each individual for the purpose of maximizing the probability

of a desirable outcome. We have formalized the personalized treatment

learning problem from a causal inference perspective and provided a

comprehensive description of the existing methods to solve this problem.

We have contributed to the personalized treatment modeling literature

by proposing two novel methods, namely uplift random forests (Guelman

et al., 2012, 2014c) and causal conditional inference forests (Guelman

et al., 2014b). Our proposal compares favorably with the existing meth-

ods based on an extensive numerical simulation and real-world data.

Personalized treatment learning models have applications to a wide

variety of fields, ranging from economics to medicine, but their application

to insurance has remained absent. We have contributed to the insurance

literature by highlighting the value of personalized treatment learning

models for insurance marketing and pricing applications. In particular,

we have implemented the existing and our proposed methods to optimize

client retention and cross-selling in insurance from experimental data.

We have also illustrated an application of personalized treatment learn-

ing models to price-elasticity estimation and insurance economic price

optimization in the context of observational data (Guelman and Guillén,

2014; Guelman et al., 2014a).

A key problem facing research in this field has been the lack of publicly
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12 Conclusions and future challenges

available statistical software to estimate personalized treatment learning

models. We have implemented most of the existing statistical methods

along with our proposed algorithms for fitting personalized treatment

learning models in a package named uplift (Guelman, 2014), which is now

released and freely available from the CRAN (Comprehensive R Archive

Network) repository under the R statistical computing environment.

In the context of insurance, the selection of the optimal personalized

treatment also requires consideration of the expected insurance losses of

each individual policyholder within the portfolio. We have contributed

to the insurance ratemaking literature by proposing a novel application

of gradient boosting models to estimate insurance loss cost, with key

important advantages over the conventional generalized linear model

approach (Guelman, 2012).

We would also like to acknowledge the limitations of this thesis and

highlight some future challenges in the area of personalized treatment

learning models. First, we have only considered the case of binary

treatments. It would be worthwhile to examine the extent to which the

methods discussed in this thesis can be extended to multi-category or

continuous treatment settings. Second, our work is limited to the case of

a binary response variable. Clearly, extensions to continuous uncensored

and survival responses would be useful in many applications. Third,

we have only considered the case of personalized treatments in a single-

decision setup. In dynamic treatment regimes, the treatment type is

repeatedly adjusted according to an ongoing individual response (Murphy,

2005). In this context, the goal is to optimize a set of time-varying

personalized treatments for the purpose of maximizing the probability

of a long-term desirable outcome. Lastly, in this thesis, we have defined

the personalized treatment effect in terms of the difference between the

expected responses under alternative treatment conditions. However, in

some settings, having a relative measure of the personalized treatment

effect may be of further interest. In this case, the treatment effect

is defined in terms of the ratio of the expected responses under the

alternative treatments.
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personalized treatment rules for marketing interventions: A review of

methods, a new proposal, and an insurance case study. Submitted.

Guelman, L., Guillén, M., and Pérez-Maŕın, A. M. (2014b). A survey
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Type: Package
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Author(s)

Leo Guelman <leo.guelman@gmail.com>

ccif Causal conditional inference forest

Description

ccif implements recursive partitioning in a causal conditional inference framework.

Usage

## S3 method for class formula
ccif(formula, data, ...)

## Default S3 method:
ccif(
x,
y,
ct,
mtry = floor(sqrt(ncol(x))),
ntree = 100,
split_method = c("ED", "Chisq", "KL", "L1", "Int"),
interaction.depth = NULL,
pvalue = 0.05,
bonferroni = FALSE,
minsplit = 20,
minbucket_ct0 = round(minsplit/4),
minbucket_ct1 = round(minsplit/4),
keep.inbag = FALSE,
verbose = FALSE,
...)

## S3 method for class ccif
print(x, ...)

Arguments

data a data frame containing the variables in the model. It should include a vari-
able reflecting the binary treatment assignment of each observation (coded
as 0/1).

x, formula a data frame of predictors or a formula describing the model to be fitted.
A special term of the form trt() must be used in the model equation to
identify the binary treatment variable. For example, if the treatment is rep-
resented by a variable named treat, then the right hand side of the formula
must include the term +trt(treat).

y a binary response (numeric) vector.
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ct a binary (numeric) vector representing the treatment assignment (coded as
0/1).

mtry the number of variables to be tested in each node; the default is
floor(sqrt(ncol(x))).

ntree the number of trees to generate in the forest; default is ntree = 100.

split_method the split criteria used at each node of each tree; possible values are: "ED"
(Euclidean distance), "Chisq" (Chi-squared divergence), "KL" (Kullback-
Leibler divergence), "L1" (L1-norm divergence), and "Int" (Interaction
method).

interaction.depth

the maximum depth of variable interactions. 1 implies an additive model, 2
implies a model with up to 2-way interactions, etc.

pvalue the maximum acceptable P value required in order to make a split.

bonferroni apply a Bonferroni adjustment to P value.

minsplit the minimum number of observations that must exist in a node in order for
a split to be attempted.

minbucket_ct0 the minimum number of control observations in any terminal <leaf> node.

minbucket_ct1 the minimum number of treatment observations in any terminal <leaf>
node.

keep.inbag if set to TRUE, an nrow(x) by ntree matrix is returned, whose entries are the
"in-bag" samples in each tree.

verbose print status messages?

... additional arguments passed to independence_test{coin}. See details be-
low.

Details

Causal conditional inference trees estimate personalized treatment effects (a.k.a. uplift) by bi-
nary recursive partitioning in a conditional inference framework. Roughly, the algorithm works
as follows: 1) For each terminal node in the tree we test the global null hypothesis of no in-
teraction effect between the treatment T and any of the n covariates selected at random from
the set of p covariates (n ≤ p). Stop if this hypothesis cannot be rejected. Otherwise select
the input variable with strongest interaction effect. The interaction effect is measured by a P
value corresponding to a permutation test (Strasser and Weber, 1999) for the partial null hypoth-
esis of independence between each input variable and a transformed response. Specifically, the
response is transformed so the impact of the input variable on the response has a causal inter-
pretation for the treatment effect (see details in Guelman et al., 2014a). 2) Implement a binary
split in the selected input variable. 3) Recursively repeat steps 1) and 2).

The independence test between each input and the transformed response is performed by calling
independence_test{coin}. Additional arguments may be passed to this function via ‘. . .’.

All split methods are described in Guelman et al. (2014a, 2014c).

This function is very slow at the moment. It was built as a prototype in R. A future version of
this package will provide an interface to C++ for this function, which is expected to improve
speed significantly.

Value

An object of class ccif, which is a list with the following components:

call the original call to ccif.
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trees the tree structure that was learned.

split_method the split criteria used at each node of each tree.

ntree the number of trees used.

mtry the number of variables tested at each node.

var.names a character vector with the name of the predictors.

var.class a character vector containing the class of each predictor variable.

inbag an nrow(x) by ntree matrix showing the in-bag samples used by each tree.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin, A. M. (2014a). Optimal personalized treatment
rules for marketing interventions: A review of methods, a new proposal, and an insurance case
study. Submitted.

Guelman, L., Guillen, M., and Perez-Marin, A. M. (2014c). Uplift random forests. Cybernetics
& Systems. Accepted.

Hothorn, T., Hornik, K. and Zeileis, A. (2006). Unbiased recursive partitioning: A conditional
inference framework. Journal of Computational and Graphical Statistics, 15(3): 651–674.

Strasser, H. and Weber, C. (1999). On the asymptotic theory of permutation statistics. Mathe-
matical Methods of Statistics, 8: 220–250.

Examples

library(uplift)

### Simulate training data

set.seed(12345)
dd <- sim_pte(n = 100, p = 6, rho = 0, sigma = sqrt(2), beta.den = 4)

dd$treat <- ifelse(dd$treat == 1, 1, 0)

### Fit model

form <- as.formula(paste(y ~, trt(treat) +, paste(X, 1:6, sep = , collapse = "+")))

fit1 <- ccif(formula = form,
data = dd,
ntree = 50,
split_method = "Int",
distribution = approximate (B=999),
pvalue = 0.05,
verbose = TRUE)

print(fit1)
summary(fit1)
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checkBalance Standardized differences for stratified comparisons

Description

This function is simply a wrapper for xBalance{RItools}. Given covariates, a treatment vari-
able, and (optionally) a stratifying factor, it calculates standardized mean differences along each
covariate, and tests for conditional independence of the treatment variable and the covariates.

Usage

checkBalance(formula, data, report = "all", ...)

Arguments

formula a formula containing an indicator of treatment assignment on the left hand
side and covariates at right.

data a data frame in which the formula and (optionally) strata are to be evaluated.

report character vector listing measures to report for each stratification; a subset of
c("adj.means","adj.mean.diffs","adj.mean.diffs.null.sd",
"chisquare.test","std.diffs","z.scores","p.values","all").
P values reported are two-sided for the null hypothesis of no effect. The
option "all" requests all measures.

... additional arguments passed to xBalance{RItools}.

Details

See help("xBalance") for details.

Value

An object of class c("xbal", "list"). There are plot, print, and xtable methods for class
xbal.

Note

Evidence pertaining to the hypothesis that a treatment variable is not associated with differ-
ences in covariate values is assessed by comparing the differences of means (or regression
coefficients), without standardization, to their distributions under hypothetical shuffles of the
treatment variable, a permutation or randomization distribution. For the unstratified compari-
son, this reference distribution consists of differences (more generally, regression coefficients)
when the treatment variable is permuted without regard to strata. For the stratified comparison,
the reference distribution is determined by randomly permuting the treatment variable within
strata, then recalculating the treatment-control differences (regressions of each covariate on the
permuted treatment variable). Significance assessments are based on the large-sample normal
approximation to these reference distributions.

Author(s)

Leo Guelman <leo.guelman@gmail.com>
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References

Hansen, B. B. and Bowers, J. (2008). Covariate balance in simple, stratified and clustered
comparative studies. Statistical Science, 23(2):219–236.

Kalton, G. (1968). Standardization: A technique to control for extraneous variables. Applied
Statistics, 17:118–136.

Examples

library(uplift)

set.seed(12345)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

checkBalance(treat ~ X1 + X2 + X3 + X4 + X5 + X6 , data = dd)

explore Explore data for uplift modeling

Description

This function provides a basic exploratory tool for uplift modeling, by computing the average
value of the response variable for each predictor and treatment assignment.

Usage

explore(formula,
data,
subset,
na.action = na.pass,
nbins = 4,
continuous = 4,
direction = 1)

Arguments

formula a formula expression of the form response ~ predictors. A special term of
the form trt() must be used in the model equation to identify the binary
treatment variable. For example, if the treatment is represented by a variable
named treat, then the right hand side of the formula must include the term
+trt(treat).

data a data frame in which to interpret the variables named in the formula.
subset an expression indicating which subset of the rows of data should be included.

All observations are included by default.
na.action a missing-data filter function. This is applied to the model frame after any

subset argument has been used. Default is na.action = na.pass.
nbins the number of bins created from numeric predictors. The bins are created

based on quantiles, with a default value of 4 (quartiles).
continuous specifies the threshold for when a variable is considered to be continuous

(when there are at least continuous unique values). The default is 4. Factor
variables are always considered to be categorical no matter how many levels
they have.
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direction possible values are 1 (default) if uplift should be computed as the difference
in the average response between treatment and control, or 2 between control
and treatment. This only affects the uplift calculation as produced in the
output.

Value

A list of matrices, one for each variable. The columns represent the number of responses over
the control group, the number of the responses over the treated group, the average response for
the control, the average response for the treatment, and the uplift (difference between treatment
and control average response).

Author(s)

Leo Guelman <leo.guelman@gmail.com>

Examples

library(uplift)

set.seed(12345)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

eda <- explore(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat), data = dd)

modelProfile Profile a fitted uplift model

Description

This function can be used to profile a fitted uplift model. Given a vector of scores (uplift pre-
dictions), it computes basic summary statistics for each predictor by score quantile.

Usage

modelProfile(formula, data, groups = 10,
group_label = c("I", "D"), digits_numeric = 1, digits_factor = 4,
exclude_na = FALSE, LaTex = FALSE)

Arguments

formula a formula expression of the form score ~ predictors, where the left hand side
of the model formula should include the predictions from a fitted model.

data a data frame in which to interpret the variables named in the formula.

groups the number of groups of equal observations in which to partition the data set
to show results. The default value is 10 (deciles). Other possible values are
5 and 20.

group_label possible values are "I" or "D", for group number labels which are increasing
or decreasing with the model score, respectively.

digits_numeric the number of digits to show for numeric predictors.

digits_factor the number of digits to show for factor predictors.
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exclude_na should the results exclude observations with missing values in any of the
variables named in the formula?

LaTex should the function output LaTex code?

Details

This function ranks the variable supplied in the left hand side of the model formula and classifies
it into groups of equal number of observations. It subsequently calls the function tabular from
the tables package to compute the average of each numeric predictor and the distribution of
each factor within each group.

Value

An object of S3 class tabular. See help("tabular") in the tables package for details.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

Examples

library(uplift)

### Simulate data
set.seed(12345)
dd <- sim_pte(n = 1000, p = 5, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0) # required coding for upliftRF

### Fit upliftRF model
fit1 <- upliftRF(y ~ X1 + X2 + X3 + X4 + X5 + trt(treat),

data = dd,
mtry = 3,
ntree = 50,
split_method = "KL",
minsplit = 100,
verbose = TRUE)

### Fitted values on training data
pred <- predict(fit1, dd)

### Compute uplift predictions
uplift_pred <- pred[, 1] - pred[, 2]

### Put together data, predictions and add some dummy factors for illustration only
dd2 <- data.frame(dd, uplift_pred, F1 = gl(2, 50, labels = c("A", "B")),

F2 = gl(4, 25, labels = c("a", "b", "c", "d")))

### Profile data based on fitted model
modelProfile(uplift_pred ~ X1 + X2 + X3 + F1 + F2,

data = dd2,
groups = 10,
group_label = "D",
digits_numeric = 2,
digits_factor = 4,
exclude_na = FALSE,
LaTex = FALSE)
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niv Adjusted net information value

Description

This function produces an adjusted net information value for each variable specified in the right
hand side of the formula. This can be a helpful exploratory tool to (preliminarily) determine the
predictive power of each variable for uplift.

Usage

niv(formula, data, subset, na.action = na.pass, B = 10, direction = 1,
nbins = 10, continuous = 4, plotit = TRUE, ...)

Arguments

formula a formula expression of the form response ~ predictors. A special term of
the form trt() must be used in the model equation to identify the binary
treatment variable. For example, if the treatment is represented by a variable
named treat, then the right hand side of the formula must include the term
+trt(treat).

data a data frame in which to interpret the variables named in the formula.

subset an expression indicating which subset of the rows of data should be included.
All observations are included by default.

na.action a missing-data filter function. This is applied to the model frame after any
subset argument has been used. Default is na.action = na.pass.

B the number of bootstrap samples used to compute the adjusted net informa-
tion value.

direction if set to 1 (default), the net weight of evidence is computed as the difference
between the weight of evidence of the treatment and control groups, or if 2, it
is computed as the difference between the weight of evidence of the control
and treatment groups. This will not change the adjusted net information
value, but only the sign of the net weight of evidence values.

nbins the number of bins created from numeric predictors. The bins are created
based on quantiles, with a default value of 10 (deciles).

continuous specifies the threshold for when a variable is considered to be continuous
(when there are at least continuous unique values). The default is 4. Factor
variables are always considered to be categorical no matter how many levels
they have.

plotit plot the adjusted net information value for each variable?

... additional arguments passed to barplot.

Details

The ordinary information value or IV (commonly used in credit scoring applications) is given
by

IV =
G∑

i=1

(P (x = i|y = 1)− P (x = i|y = 0))×WOEi
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where G is the number of groups created from a numeric predictor or categories from a categor-
ical predictor, and the weight of evidence WOEi = ln(P (x=i|y=1)

P (x=i|y=0) ).

The net information value (NIV) is the natural extension of the IV for the case of uplift. It is
computed as

NIV = 100×
G∑

i=1

(QTRC −QCRT )×NWOEi

where QT = P (x = i|y = 1)T , RC = P (x = i|y = 0)C , QC = P (x = i|y = 1)C ,
RT = P (x = i|y = 0)T , and NWOEi = WOET

i −WOEC
i (the net weight of evidence).

The adjusted net information value is computed as follows:

1. Take B bootstrap samples and compute the NIV for each variable on each sample.

2. Compute the mean and standard deviation of the NIV, mean(NIV ) and sd(NIV ), for each
variable over all the B bootstraps.

3. The adjusted NIV for a given variable is computed by subtracting a penalty term from the
mean NIV: mean(NIV )− sd(NIV )√

B
.

Value

A list with two components:

niv_val a matrix with the following columns: niv (the average net information value
for each variable over all bootstrap samples), penalty (the penalty term
calculated as described in the details above), and adj_niv (the difference
between the prior two colums).

nwoe a list of matrices, one for each variable. The columns represent the distri-
bution of the responses (y = 1) over the treated group (ct1.y1), the dis-
tribution of the non-responses (y = 0) over the treated group (ct1.y0), the
distribution of the responses (y = 1) over the control group (ct0.y1), the
distribution of the non-responses (y = 0) over the control group (ct0.y0),
the weight of evidence over the treated group (ct1.woe), the weight of ev-
idence over the control group (ct0.woe), and the net weight of evidence
(nwoe).

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Larsen, K. (2009). Net lift models. In M2009 – 12th Annual SAS Data Mining Conference.

Examples

library(uplift)

set.seed(12345)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

niv.1 <- niv(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat), data = dd)
niv.1$niv
niv.1$nwoe
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performance Performance assessment for uplift models

Description

Provides a method for assessing performance for uplift models.

Usage

performance(pr.y1_ct1, pr.y1_ct0, y, ct, direction = 1, groups = 10)

Arguments

pr.y1_ct1 the predicted probability P (y = 1|x)T .

pr.y1_ct0 the predicted probability P (y = 1|x)C .

y the actual observed value of the response.

ct a binary (numeric) vector representing the treatment assignment (coded as
0/1).

direction possible values are 1 (default) if the objective is to maximize the difference
in the response for Treatment minus Control, and 2 for Control minus Treat-
ment.

groups the number of groups of equal observations in which to partition the data set
to show results. The default value is 10 (deciles). Other possible values are
5 and 20.

Details

Model performance is estimated by 1) computing the difference in the predicted conditional
class probabilities P (y = 1|x)T and P (y = 1|x)C , 2) ranking the difference and grouping it
into ’buckets’ with equal number of observations each, and 3) computing the actual difference
in the mean of the response variable between the treatment and control groups for each bucket.

Value

An object of class performance, which is a matrix with the following columns: (group) the
number of groups, (n.ct1) the number of observations in the treated group, (n.ct0) the number
of observations in the control group, (n.y1_ct1) the number of observations in the treated group
with response = 1, (n.y1_ct0) the number of observations in the control group with response
= 1, (r.y1_ct1) the mean of the response for the treated group, (r.y1_ct0) the mean of the
response for the control group, and (uplift) the difference between r.y1_ct1 and r.y1_ct0
(if direction = 1).

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin, A. M. (2014c). Uplift random forests. Cybernetics
& Systems. Accepted.
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Examples

library(uplift)

set.seed(123)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### Fit uplift random forest

fit1 <- upliftRF(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat),
data = dd,
mtry = 3,
ntree = 100,
split_method = "KL",
minsplit = 200,
verbose = TRUE)

print(fit1)
summary(fit1)

### Get variable importance

varImportance(fit1, plotit = TRUE, normalize = TRUE)

### Predict on new data

dd_new <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd_new$treat <- ifelse(dd_new$treat == 1, 1, 0)

pred <- predict(fit1, dd_new)

### Evaluate model performance

perf <- performance(pred[, 1], pred[, 2], dd_new$y, dd_new$treat, direction = 1)
plot(perf[, 8] ~ perf[, 1], type ="l", xlab = "Decile", ylab = "uplift")

predict.ccif Predictions from a fitted causal conditional inference forest model

Description

Prediction of new data using a causal conditional inference forest.

Usage

## S3 method for class ccif
predict(object, newdata, n.trees = object$ntree, predict.all = FALSE, ...)

Arguments

object an object of class ccif, as that created by the function ccif.

newdata a data frame containing the values at which predictions are required.

n.trees the number of trees used in the prediction; the default is object$ntree.

predict.all should the predictions of all trees be kept?

... not used.
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Details

At the moment, all predictors passed for fitting the uplift model must also be present in newdata,
even if they are not used as split variables by any of the trees in the forest.

Value

If predict.all = FALSE, a matrix of predictions containing the conditional class probabilities:
pr.y1_ct1 represents P (y = 1|x)T and pr.y1_ct0 represents P (y = 1|x)C . This is computed
as the average of the individual predictions over all trees.

If predict.all = TRUE, the returned object is a list with two components: pred.avg is the
prediction (as described above) and individual is a list of matrices containing the individual
predictions from each tree.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin, A. M. (2014a). Optimal personalized treatment
rules for marketing interventions: A review of methods, a new proposal, and an insurance case
study. Submitted.

Examples

library(uplift)

### Simulate training data

set.seed(12345)
dd <- sim_pte(n = 100, p = 6, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### Fit model

form <- as.formula(paste(y ~, trt(treat) +, paste(X, 1:6, sep = , collapse = "+")))

fit1 <- ccif(formula = form,
data = dd,
ntree = 50,
split_method = "Int",
pvalue = 0.05,
verbose = TRUE)

### Predict on new data

dd_new <- sim_pte(n = 200, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)

pred <- predict(fit1, dd_new)
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predict.upliftRF Predictions from a fitted uplift random forest model

Description

Prediction of new data using an uplift random forest.

Usage

## S3 method for class upliftRF
predict(object, newdata, n.trees = object$ntree, predict.all = FALSE, ...)

Arguments

object an object of class upliftRF, as that created by the function upliftRF.

newdata a data frame containing the values at which predictions are required.

n.trees the number of trees used in the prediction; The default is object$ntree.

predict.all should the predictions of all trees be kept?

... not used.

Details

At the moment, all predictors passed for fitting the uplift model must also be present in newdata,
even if they are not used as split variables by any of the trees in the forest.

Value

If predict.all = FALSE, a matrix of predictions containing the conditional class probabilities:
pr.y1_ct1 represents P (y = 1|x)T and pr.y1_ct0 represents P (y = 1|x)C . This is computed
as the average of the individual predictions over all trees.

If predict.all = TRUE, the returned object is a list with two components: pred.avg is the
prediction (as described above) and individual is a list of matrices containing the individual
predictions from each tree.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin, A. M. (2014c). Uplift random forests. Cybernetics
& Systems. Accepted.

Examples

library(uplift)

### Simulate data for uplift modeling

set.seed(123)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)
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### Fit uplift random forest

fit1 <- upliftRF(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat),
data = dd,
mtry = 3,
ntree = 100,
split_method = "KL",
minsplit = 200,
verbose = TRUE)

summary(fit1)

### Predict on new data

dd_new <- sim_pte(n = 2000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd_new$treat <- ifelse(dd_new$treat == 1, 1, 0)

pred <- predict(fit1, dd_new)
head(pred)

qini Computes the Qini coefficient q

Description

This function computes the Qini coefficient from a performance object (as created by the func-
tion performance).

Usage

## S3 method for class performance
qini(x, direction = 1, plotit = TRUE, ...)

Arguments

x an object of class performance.

direction possible values are 1 (default) if the objective is to maximize the difference
in the response for Treatment minus Control, and 2 for Control minus Treat-
ment.

plotit plot the incremental gains from the fitted model?

... additional arguments passed to plot.

Details

Qini coefficients represent a natural generalizations of the Gini coefficient to the case of uplift.
Qini is defined as the area between the actual incremental gains curve from the fitted model and
the area under the diagonal corresponding to random targeting. See the references below for
details.
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Value

A list with the following components

Qini the Qini coefficient as defined above.

inc.gains the incremental gain values from the fitted model.
random.inc.gains

the random incremental gains.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Radcliffe, N. (2007). Using control groups to target on predicted lift: Building and assessing
uplift models. Direct Marketing Analytics Journal, 2007:14–21.

Radcliffe, N. J. and Surry, P. D. (2011). Real-World Uplift Modelling with Significance-Based
Uplift Trees. Technical Report, TR-2011-1, Portrait.

Examples

library(uplift)

### Simulate data for uplift modeling

set.seed(123)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### Fit uplift random forest

fit1 <- upliftRF(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat),
data = dd,
mtry = 3,
ntree = 100,
split_method = "KL",
minsplit = 200,
verbose = TRUE)

print(fit1)
summary(fit1)

### Predict on new data

dd_new <- sim_pte(n = 2000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd_new$treat <- ifelse(dd_new$treat == 1, 1, 0)

pred <- predict(fit1, dd_new)

### Evaluate model performance

perf <- performance(pred[, 1], pred[, 2], dd_new$y, dd_new$treat, direction = 1)

### Compute Qini coefficient

Q <- qini(perf, plotit = TRUE)
Q
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rvtu Response variable transform for uplift modeling

Description

This function transforms the data frame supplied in the function call by creating a new response
variable and an equal number of control and treated observations. This transformed data set can
be subsequently used with any conventional supervised learning algorithm to model uplift.

Usage

rvtu(formula, data, subset, na.action = na.pass,
method = c("undersample", "oversample", "weights", "none"))

Arguments

formula a formula expression of the form response ~ predictors. A special term of
the form trt() must be used in the model equation to identify the binary
treatment variable. For example, if the treatment is represented by a variable
named treat, then the right hand side of the formula must include the term
+trt(treat).

data a data frame in which to interpret the variables named in the formula.

subset an expression indicating which subset of the rows of data should be included.
All observations are included by default.

na.action a missing-data filter function. This is applied to the model frame after any
subset argument has been used. Default is na.action = na.pass.

method the method used to create the transformed data set. It must be one of
"undersample", "oversample", "weights", or "none", with no default.
See details below.

Details

The transformed response variable z equals 1 if the observation has a response value of 1 and
has been treated, or if it has a response value of 0 and has not been treated. Intuitively, z
equals 1 if we know that, for a given case, the outcome in the treatment group would have
been at least as good as in the control group, had we known for this case the outcome in both
groups. Under equal proportion of control and treated observations, it is easy to prove that
2P (z = 1|x)− 1 = P (y = 1|x)T − P (y = 1|x)C (Jaskowski and Jaroszewicz, 2012).

If the data has an equal number of control and treated observations, then method = "none"
must be used. Otherwise, any of the other methods must be used.

If method = "undersample", a random sample without replacement is drawn from the treated
class (i.e., treated/control) with the majority of observations, such that the returned data frame
will have balanced treated/control proportions.

If method = "oversample", a random sample with replacement is drawn from the treated
class with the minority of observations, such that the returned data frame will have balanced
treated/control proportions.

If method = "weights", the returned data frame will have a weight variablew assigned to each
observation. The weight assigned to the treated (control) observation equals 1− proportion of
treated observations (proportion of treated observations).
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Value

A data frame including the predictor variables (RHS of the formula expression), the treatment
(ct = 1) and control (ct = 0) assignment, the original response variable (LHS of the formula ex-
pression), and the transformed response variable for uplift modeling z. If method = "weights",
an additional weight variable w is included.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin, A. M. (2014a). Optimal personalized treatment
rules for marketing interventions: A review of methods, a new proposal, and an insurance case
study. Submitted.

Jaskowski, M. and Jaroszewicz, S. (2012) Uplift Modeling for Clinical Trial Data. In ICML
2012 Workshop on Machine Learning for Clinical Data Analysis, Edinburgh, Scotland.

Examples

library(uplift)

### Simulate data

set.seed(1)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### Transform response variable for uplift modeling
dd2 <- rvtu(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat), data = dd, method = "none")

### Fit a Logistic model to the transformed response
glm.uplift <- glm(z ~ X1 + X2 + X3 + X4 + X5 + X6, data = dd2, family = "binomial")

### Test fitted model on new data
dd_new <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd_new$treat <- ifelse(dd_new$treat == 1, 1, 0)
pred <- predict(glm.uplift, dd_new, type = "response")
perf <- performance(2 * pred - 1, rep(0, length(pred)), dd_new$y, dd_new$treat,
direction = 1)
perf

sim_pte Simulations for personalized treatment effects

Description

Numerical simulation for treatment effect heterogeneity estimation based on Tian et al. (2014).

Usage

sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
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Arguments

n the number of observations.

p the number of predictors.

rho the covariance between predictors.

sigma the multiplier of the error term.

beta.den the size of the main effects relative to the interaction effects. See details
below.

Details

sim_pte simulates data according to the following specification:

Y = I
( p∑

j=1

βjXj +

p∑

j=1

γjXjT + σ0ε > 0
)

where γ = (1/2,−1/2, 1/2,−1/2, 0, ..., 0), β = (−1)j+1I(3 ≤ j ≤ 10)/beta.den, (X1, . . . , Xp)
follows a mean zero multivariate normal distribution with a compound symmetric variance-
covariance matrix, (1− ρ)Ip + ρ1T1, T = [−1, 1] is the treatment indicator and ε is N(0, 1).

In this case, the "true" treatment effect score (P (Y = 1|T = 1)−P (Y = 1|T = −1)) is given
by

Φ

(∑p
j=1(βj + γj)Xj

σ0

)
− Φ

(∑p
j=1(βj − γj)Xj

σ0

)
.

Value

A data frame including the response variable (Y ), the treatment (treat=1) and control (treat=-1)
assignment, the predictor variables (X) and the "true" treatment effect score (ts).

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin, A. M. (2014a). Optimal personalized treatment
rules for marketing interventions: A review of methods, a new proposal, and an insurance case
study. Submitted.

Tian, L., Alizadeh, A., Gentles, A. and Tibshirani, R. (2014). A simple method for detecting
interactions between a treatment and a large number of covariates. Submitted.

Examples

library(uplift)
### Simulate training data

set.seed(12345)
dd <- sim_pte(n = 1000, p = 10, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0) # required coding for upliftRF

### Fit model
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form <- as.formula(paste(y ~, trt(treat) +, paste(X, 1:10, sep = , collapse = "+")))

fit1 <- upliftRF(formula = form,
data = dd,
ntree = 100,
split_method = "Int",
interaction.depth = 3,
minsplit = 100,
minbucket_ct0 = 50,
minbucket_ct1 = 50,
verbose = TRUE)

summary(fit1)

tian_transf Modify covariates for uplift modeling

Description

This function transforms the data frame supplied in the function call by creating a new set of
modified covariates and an equal number of control and treated observations. This transformed
data set can be subsequently used with any conventional supervised learning algorithm to model
uplift.

Usage

tian_transf(formula, data, subset, na.action = na.pass,
method = c("undersample", "oversample", "none"),
standardize = TRUE, cts = FALSE)

Arguments

formula a formula expression of the form response ~ predictors. A special term of
the form trt() must be used in the model equation to identify the binary
treatment variable. For example, if the treatment is represented by a variable
named treat, then the right hand side of the formula must include the term
+trt(treat).

data a data frame in which to interpret the variables named in the formula.

subset an expression indicating which subset of the rows of data should be included.
All observations are included by default.

na.action a missing-data filter function. This is applied to the model frame after any
subset argument has been used. Default is na.action = na.pass.

method the method used to create the transformed data set. It must be one of "un-
dersample", "oversample" or "none", with no default. See details.

standardize if TRUE, each variable is standardized to have unit L2 norm, otherwise it is
left alone. Default is TRUE.

cts if TRUE, contrasts for factors are created in a special way. See details. Default
is FALSE.
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Details

The covariates x supplied in the right hand side of the model formula are transformed as w =
z × T/2, where T = [−1, 1] is the treatment indicator and z is the matrix of standardize x
variables.

If cts = TRUE, factors included in the formula are converted to dummy variables in a special
way that is more appropriate when the returned model frame is used to fit a penalized regression.
In this case, contrasts used for factors are given by penalized regression contrasts from the
penalized package. Unordered factors are turned into as many dummy variables as the factor
has levels, except when the number of levels is 2, in which case it returns a single contrast.
This ensures a symmetric treatment of all levels and guarantees that the fit does not depend on
the ordering of the levels. See help(contr.none) in penalized package. Ordered factors are
turned into dummy variables that code for the difference between successive levels (one dummy
less than the number of levels). See help(contr.diff) in penalized package.

If the data has an equal number of control and treated observations, then method = "none"
should be used. Otherwise, any of the other methods should be used.

If method = "undersample", a random sample without replacement is drawn from the treated
class (i.e., treated/control) with the majority of observations, such that the returned data frame
will have balanced treated/control proportions.

If method = "oversample", a random sample with replacement is drawn from the treated
class with the minority of observations, such that the returned data frame will have balanced
treated/control proportions.

Value

A model frame, including the modified covariates w (the prefix "T_" is added to the name of
each covariate to denote it has been modified), the treatment (ct = 1) and control (ct = 0)
assignment and the response variable (LHS of model formula). The intercept is omitted from
the model frame.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin, A. M. (2014a). Optimal personalized treatment
rules for marketing interventions: A review of methods, a new proposal, and an insurance case
study. Submitted.

Tian, L., Alizadeh, A., Gentles, A. and Tibshirani, R. (2014). A simple method for detecting
interactions between a treatment and a large number of covariates. Submitted.

Examples

library(uplift)

set.seed(1)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

dd2 <- tian_transf(y ~ X1 + X2 + X3 + trt(treat), data =dd, method = "none")
head(dd2)

195



upliftKNN

trt Mark treatment term

Description

This is a dummy function, used to mark the treatment term in various functions within the
uplift package.

Usage

trt(x)

Arguments

x a numeric variable coded as 1 (treatment) and 0 (control).

Value

x, unchanged.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

upliftKNN Uplift k-nearest-neighbor

Description

upliftKNN implements k-nearest-neighbor for uplift modeling.

Usage

upliftKNN(train, test, y, ct, k = 1, dist.method = "euclidean",
p = 2, ties.meth = "min", agg.method = "mean")

Arguments

train a matrix or data frame of training set cases.

test a matrix or data frame of test set cases. A vector will be interpreted as a row
vector for a single case.

y a numeric response variable (must be coded as 0/1 for binary response).

ct a factor or numeric vector representing the treatment to which each training
case is assigned. At least 2 groups are required (e.g. treatment and control).
Multi-treatments are also supported.

k the number of neighbors considered.

dist.method the distance to be used in calculating the neighbors. Any method supported
in function dist is valid.

p the power of the Minkowski distance.

Appendix A: uplift package manual

196



upliftKNN

ties.meth the method used to handle ties for the kth neighbor. The default is "min"
which uses all ties. Alternatives include "max" which uses none if there
are ties for the kth nearest neighbor, "random" which selects among the ties
randomly and "first" which uses the ties in their order in the data.

agg.method the method used to combine responses of the nearest neighbors. Defaults to
"mean"; the alternative is "majority".

Details

k-nearest-neighbor for uplift modeling for a test set from a training set. For each case in the test
set, the k nearest training set vectors for each treatment type are found. The response value for
the k nearest training vectors is aggregated based on the function specified in agg.method. For
"majority", classification is decided by majority vote (with ties broken at random).

Value

A matrix of predictions for each test case and value of ct.

Note

The code logic follows closely the knn and knnflex packages, the latter currently discontinued
from CRAN.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin, A. M. (2014a). Optimal personalized treatment
rules for marketing interventions: A review of methods, a new proposal, and an insurance case
study. Submitted.

Su, X., Kang, J., Fan, J., Levine, R. A., and Yan, X. (2012). Facilitating score and causal
inference trees for large observational studies. Journal of Machine Learning Research, 13(10):
2955-2994.

Examples

library(uplift)

### Simulate data for uplift modeling

set.seed(1)

train <- sim_pte(n = 500, p = 10, rho = 0, sigma = sqrt(2), beta.den = 4)
train$treat <- ifelse(train$treat == 1, 1, 0)

### Fit an uplift k-nearest-neighbor on test data

test <- sim_pte(n = 100, p = 10, rho = 0, sigma = sqrt(2), beta.den = 4)
test$treat <- ifelse(test$treat == 1, 1, 0)

fit1 <- upliftKNN(train[, 3:8], test[, 3:8], train$y, train$treat, k = 1,
dist.method = "euclidean", p = 2, ties.meth = "min",
agg.method = "majority")

head(fit1)
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upliftRF Uplift random forests

Description

upliftRF implements random forests with split criteria designed for binary uplift modeling
tasks.

Usage

## S3 method for class formula
upliftRF(formula, data, ...)

## Default S3 method:
upliftRF(
x,
y,
ct,
mtry = floor(sqrt(ncol(x))),
ntree = 100,
split_method = c("ED", "Chisq", "KL", "L1", "Int"),
interaction.depth = NULL,
bag.fraction = 0.5,
minsplit = 20,
minbucket_ct0 = round(minsplit/4),
minbucket_ct1 = round(minsplit/4),
keep.inbag = FALSE,
verbose = FALSE,
...)

## S3 method for class upliftRF
print(x, ...)

Arguments

data a data frame containing the variables in the model. It should include a vari-
able reflecting the binary treatment assignment of each observation (coded
as 0/1).

x, formula a data frame of predictors or a formula describing the model to be fitted.
A special term of the form trt() must be used in the model equation to
identify the binary treatment variable. For example, if the treatment is rep-
resented by a variable named treat, then the right hand side of the formula
must include the term +trt(treat).

y a binary response (numeric) vector.

ct a binary (numeric) vector representing the treatment assignment (coded as
0/1).

mtry the number of variables to be tested in each node; the default is
floor(sqrt(ncol(x))).

ntree the number of trees to generate in the forest; default is ntree = 100.
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split_method the split criteria used at each node of each tree; Possible values are: "ED"
(Euclidean distance), "Chisq" (Chi-squared divergence), "KL" (Kullback-
Leibler divergence), "L1" (L1-norm divergence), and "Int" (Interaction
method).

interaction.depth

the maximum depth of variable interactions. 1 implies an additive model, 2
implies a model with up to 2-way interactions, etc. The default is to grow
trees to maximal depth, constrained on the arguments specified in minsplit
and minbucket.

bag.fraction the fraction of the training set observations randomly selected for the pur-
pose of fitting each tree in the forest.

minsplit the minimum number of observations that must exist in a node in order for
a split to be attempted.

minbucket_ct0 the minimum number of control observations in any terminal <leaf> node.

minbucket_ct1 the minimum number of treatment observations in any terminal <leaf>
node.

keep.inbag if set to TRUE, an nrow(x) by ntree matrix is returned, whose entries are the
"in-bag" samples in each tree.

verbose print status messages?

... optional parameters to be passed to the low level function upliftRF.default.

Details

Uplift random forests estimate personalized treatment effects (also called uplift) by binary re-
cursive partitioning. The algorithm and split methods are described in Guelman et al. (2014a,
2014c).

Value

An object of class upliftRF, which is a list with the following components:

call the original call to upliftRF.

trees the tree structure that was learned.

split_method the split criteria used at each node of each tree.

ntree the number of trees used.

mtry the number of variables tested at each node.

var.names a character vector with the name of the predictors.

var.class a character vector containing the class of each predictor variable.

inbag an nrow(x) by ntree matrix showing the in-bag samples used by each tree.

Author(s)

Leo Guelman <leo.guelman@gmail.com>
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References

Guelman, L., Guillen, M., and Perez-Marin, A. M. (2014a). Optimal personalized treatment
rules for marketing interventions: A review of methods, a new proposal, and an insurance case
study. Submitted.

Guelman, L., Guillen, M., and Perez-Marin, A. M. (2014c). Uplift random forests. Cybernetics
& Systems. Accepted.

Su, X., Tsai, C., Wang, H., Nickerson, D., and Li, B. (2009). Subgroup Analysis via Recursive
Partitioning. Journal of Machine Learning Research, 10:141-158.

Examples

library(uplift)

### Simulate data for uplift modeling

set.seed(123)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### Fit uplift random forest

fit1 <- upliftRF(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat),
data = dd,
mtry = 3,
ntree = 100,
split_method = "KL",
minsplit = 200,
verbose = TRUE)

print(fit1)
summary(fit1)

varImportance Extract variable importance from upliftRF- or ccif-fitted objects

Description

This is the extractor function for variable importance of predictors.

Usage

## S3 method for class upliftRF
varImportance(x, n.trees = x$ntree, plotit = TRUE, normalize = TRUE, ...)

Arguments

x an object of class upliftRF or ccif.

n.trees the number of trees used in the prediction; The default is x$ntree.

plotit plot variable importance?

normalize if set to TRUE, the importance is scaled to add up to 100.

... additional arguments passed to barplot.
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Details

At each split in each tree, the improvement in the split criterion is the importance measure
attributed to the splitting variable; this is accumulated over all the trees in the forest separately
for each variable.

Value

A numeric vector with the variable importance.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin, A. M. (2014c). Uplift random forests. Cybernetics
& Systems. Accepted.

Examples

library(uplift)

### Simulate data for uplift modeling

set.seed(123)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### Fit uplift random forest

fit1 <- upliftRF(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat),
data = dd,
mtry = 3,
ntree = 100,
split_method = "KL",
minsplit = 200,
verbose = TRUE)

print(fit1)

### Get variable importance

varImportance(fit1, plotit = TRUE, normalize = TRUE)
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Chapters 2, 3, 5, and 6:

Guelman, L., Guillén, M. and Pérez-Maŕın, A. M. (2014a). Optimal
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methods, a new proposal, and an insurance case study. Submitted.

Guelman, L., Guillén, M. and Pérez-Maŕın, A. M. (2014b). A survey of

personalized treatment models for pricing strategies in insurance. Insur-

ance: Mathematics and Economics, 58:68–76.

Chapters 4, 7, and 8:
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