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1. Introduction: Our place in the cosmos

and tools to study it

“Our understanding of astrophysics
increases as we widen our horizon.”

— Edwin Hubble.

1.1. The historical development of Cosmology

1.1.1 Early developments on cosmology

Humanity has long been wondering about our place in the universe. This has led us to always
been asking about the nature of what we observe, and therefore about the physical laws
governing the material world and the nature of the universe itself. Through the development
of the Scientific Method we have been able to reliably answer many questions. However,
the scientific method as understood today, where alternative hypotheses and theories are
proposed which can make quantifiable predictions, which are then carefully tested against
observations, was born in a decisive way only a few centuries ago. Previously, some advances
on our understanding of the shape of the Earth and its place in the cosmos had occurred
at a very slow pace: the size of the Earth was measured by Eratosthenes from the distance
covered on the ground that corresponded to a certain change in the angular position of the
Sun or a star, and the size and distance to the Moon was determined from the size of Earth’s
shadow during a lunar eclipse, and the diurnal parallax measurements of Hypparchus during
the second and first centuries BC in classical Greece.

To reach a step further and to understand the nature of Earth as a planet of the Solar
System, substantial progress did not occur until the Middle Ages had passed, when the he-
liocentric model was carefully studied by Copernicus in the late 16th century and defended
by Galileo thanks in part to many observations revealed by the use of telescope. This event
was the one of the main drivers of the Scientific Revolution. This revolution was further
strengthen thanks to accurate observations of the motion of the planets by Tycho Brahe that
gave rise to the discovery of the laws of motion of planets in the Solar System by Kepler in the
early 17th century. All this was solidly grounded into scientific demonstration when Newton
proved Kepler’s laws from his Universal Law of Gravitation at the end of the 17th century.
Newton’s theoretical tour-de-force was able to explain such a large number of new phenomena
(planet perturbations on their motions which result in corrections to Kepler’s laws, the precise
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motion of the Moon, Earth’s ellipsoidal shape and its precession rate...) that no one could
seriously doubt any longer about the structure of the Solar System, even though an actual
observational proof of Earth’s motion around the Sun arrived only in in the fist half of the 18
century with the discovery of the aberration of the light of stars by Bradley.

Our understanding of the cosmos that we inhabit went through its next revolution with
the comprehension of the nature of next larger structure that we are part of, the Milky Way.
Observations from Wright pointed to the Milkyway being a rotating disc of stars sustained
by gravitation in the mid 18 century. Its shape was later confirmed by Hershel at the end of
that century to be a rotating disc of which the Solar System is part.

Finally about one century latter we reached the position in which we were able to study
nature of what lied outside the Milky Way galaxy. This was possible thanks to the steady
development of both observations and theory that gave rise to the field of Cosmology. This
is the topic that I am involved, the study of the universe, which has become a proper branch
of the science tree since little less than a century ago. With it came the beginning of a clear
picture in our long journey of understanding the nature and place in the Universe.

The theory that allowed for first time to describe the universe as a whole is one that
accounts for the behaviour of the dominant force on large scales: gravity. Thanks to General
Relativity understanding gravity as the relation between mass and the shape of space time
allowed the precise description of the gravitational phenomena, this was contained in Einstein’s
Field equations developed in the 10s,

Gµν =
8πG

c4
Tµν − Λgµν , (1.1)

which explained briefly basically relates the geometry of the universe Gµν and gµν (how
space-time is bent) with its matter and energy distribution Tµν .

Soon the GR framework allowed to develop equations that provided a description of the
evolution of space-time and its content as a whole, therefore it gave the basis to describe the
universe and allowed to develop the first predictions of how a universe could evolve, assuming
it is homogeneous and isotropic. Friedman, Lemetre, Roverson and Walker (FLRW) in the
early 20s and 30s developed differential equations and metric that account for the scale factor
of the universe (a is the scale factor of the universe normalized to 1 at the present day), its
energy density ρ and pressure p:
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These equations allowed various evolutionary paths depending on the balance of the com-
ponents such as p, ρ, curvature (k), cosmological and constant (Λ) that are intersect charac-
teristics of the universe; ȧ is its temporal evolution, i.e. how fast is increasing or deceasing
in size and ä its acceleration; c is the speed of light; and G is the constant of gravity. The
universe could be ever expanding, contracting, it was demonstrated early on that it could not
be static i.e., not evolving in time, as that solution is unstable if the universe has any minimal
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inhomogeneity, as it is the case. Observations should then follow to discern between these
various possibilities.

Astronomical observations came from much earlier than just century ago. They have al-
ways been linked one way or the other to our wondering about the cosmos. They have been
continuously awakening our craving for understanding the world, and constitute the main
source for the scientific revolution at the end of the medieval age. Ever since then they have
been revolutionizing the understanding of the cosmos we live in, to higher or lower degree.
Technology has also played a key role here, the development of optics, photography, spec-
trography many technologies that have come later allowed us to peer further and further in
the universe. To be able to discern this enormous and expanding universe not only better
telescopes where needed, but also a way to measure distances. With the help of photography
applied to astronomical observations, Cepheids, stars with a constant period of oscillation
of their brightness, could be used to measure distances once its periodicity and brightness
was measured and it was inferred that they were tightly related (Leavitt, 1912). Using this
and powerful telescopes such as the Mont Palomar, Cepheids stars could be observed in An-
dromeda, measuring then its distance and placing it very far from the Milky Way, Andromeda
was found to be a galaxy on its own (Hubble, 1924) closing definitely the Great Debate on
whenever the Milky Way was the Whole universe or just one galaxy out of many. To obser-
vational cosmology this was its main inception, for first time we could investigate the oceans
of space that lied outside our galaxy.

Later on, not only distances but also velocities were measured for distant galaxies through
the Doppler effect. It was discovered that the galaxies were moving away from us in all direc-
tions, and the further they where the faster they were moving from us (Hubble, 1929). This
is how a law that related velocity and distance of distant galaxies was discovered. Hubble’s
law

v = H · d, (1.4)

where v is the velocity measured, H is the rate at which the universe is expanding, and
d is the distance to the galaxy, allowed to compute distances to distant galaxies by simply
measuring their velocity. Since in an expanding universe the galaxies are receding from us,
the wavelength of the light that they emit is shifted to the red due to Doppler effect, how
much their wavelengths were shifted to the red gives their redshift which is directly related
to their velocity with respect us.

This placed us in an ever expanding universe in all directions. All the matter was moving
away from each other if the Copernican Principle (that we are not in a special place of
the universe) was followed. In the universe that meant that space itself was expanding.
The evolution of the expansion rate with time(H(t)) allows to rewrite equation 1.3 as the
dependence of the expansion rate on the different density of the ingredients that define the
universe,

H(t)2 =

�
ȧ

a

�2

= H2

0 (ΩRa
−4 + ΩMa−3 + Ωka

−2 + ΩΛ), (1.5)

where H0 is the expansion time at present time, ΩR is the radiation density , ΩM is the
matter density, Ωk is the curvature curvature of the universe, and ΩΛ = Λ from equation 1.1
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Figure 1.1: Original Hubble diagram where redshift and distance of galaxies is fitted by the
simple equation 1.4.

is the cosmological constant, all the densities are values at current cosmological time. These
densities are referred to the percentage of critical density necessary for the geometry of the
universe to be flat.

Ω ≡ 8πGρ

3H2
. (1.6)

This provided vital clues for the theoretical models and the advent of theories like the
Big Bang which modeled the universe as the outcome of an explosion that expanded universe
from a really compact and really hot and dense plasma to the universe that we inhabit today,
cooling as it expanded, forming all the structure that we see in the universe in the process.
From that theory, the moment of this expansion started is taken as the moment the universe
was born. The rate at which the universe is expanding is linked to the age of the universe,
the faster it is expanding the shorter the time where all the universe was in hot dense plasma
phase is. Therefore measuring the expansion rate combined with our theories of the universe
allows to compute the age of the universe,

t0 ∼ H−1

0
(1.7)

this will be important to test our theories and understanding and will impulse further devel-
opments on cosmology.

1.1.2 Main features of our cosmological model: Nucleosynthesis, Dark Matter
and the primordial Power Spectrum

Early on, the collaboration of theory observations and technology gave rise to an essential
part of the Big Bang theory. A combination of high energy physics and the expansion of
the universe allowed to account for the ratios of light elements (Hydrogen isotopes, Helium
isotopes, Lithium) measured in the local universe with the spectrographs of the epoch. This
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allowed Primordial nucleosynthesis to be developed (R. Alpher 1948). Matter and antimatter
should be in equilibrium, but for the universe to have matter in it, matter should be more
abundant than antimatter. Computing how much of one there is over the other, or the ratio
of radiation to matter, allows to make very accurate predictions of the abundances of the light
elements. When compared with the observations of the light elements measured in gas and
stars around us the prediction matched them. This was later refined and measured at various
epochs, which combined with fine details of other theories allows the observations to match
the predictions really nicely.

The next crucial ingredient on building the SCM was discovered in a paradigmatic ex-
ample of how observations push theories forward. This is the fact that non baryonic Cold
Dark Matter (CDM) constitutes an important fraction of the budget of the present universe.
Curiously enough observations about the need for non luminous matter to account for veloc-
ities dispersions on stars in the Milky Way exist as early as the 20s (J.Jeans and J. Kapteyn
1922), and also in the 30s to explain the large velocity dispersion on galaxies in the viralized
coma cluster in the 30s (F. Zwicky 1933). This apparent problem went unnoticed on the
community for a long time (it has to be said that the non barionic nature of this matter was
not introduced at that time). Until when in the 70s the rotation curves of many galaxies
showed a non Keplerian motion with distance (Rubin and Ford 1970), those were consistent
with the presence of matter not being observed. The addition of observations led to realize
that the mass to light ratios increased as you observed larger structures. (Einasto, Kaasik,
and Saar, Ostriker; Peebles, and Yahil 1974). A direct measure of Ωm and Ωb , those being
very different, further indicated the presence of mass that was not accounted for, and that
this mass could not be baryonic on nature. Many other observations afterwards pointed in
the same direction, like X rays in clusters where emission depends on the mass, lensing where
mass bends the light in the background, and also from the inhomogeneities on the CMB.
These inhomogeneities should be smaller if decoupled DM was not present, since the presence
of it modifies the epoch of reionization and therefore the growth of structures to that point.
All of this soon led most of the community to accept that a big part of the content of the
universe is non baryonic matter. The nature and properties of this matter will be, and still
are, further explored, but nevertheless CDM constitutes on of the main ingredients of the
CSM. The fact that it is estimated to be Cold (with small velocity dispersion) will take a long
process in itself, and further developments on the cosmology field that continue until present
day.

Then another paradigmatic example essential to the SCM is how a model predated ob-
servations. This is the case of the Cosmic Micorwave Bakground (CMB) and its properties.
As introduced, from the Big Bang Nucleosynthesis a radiation remanent was already pre-
dicted arising from a time of phase transition, where matter and radiation came from being
in equilibrium to be decoupled. This leaved a residual background of a black body at a char-
acteristic temperature. It was eventually measured as a uniform microwave background with
the spectrum of a black body that had cooled to a temperature of 2.7k (Penzias and Wilson,
1965). This large uniformity was one of the motivations of another theory that has become
an important part of the CSM.

It is difficult to explain why the universe looks so similar in all directions, not only on
the CMB but also large galaxy surveys. That uniformity would meant that as some point all
parts of the universe where in causal contact, that would explain why they share the same
characteristics of temperature and density. However this cna only be produced if the universe

— 13 —



CHAPTER 1. INTRODUCTION: OUR PLACE IN THE COSMOS AND TOOLS TO STUDY IT

19
70
Ap
J.
..
15
9.
.3
79
R

Figure 1.2: Original rotation curve of andromeda as measured by Rubin and Ford, 1970, where
the velocity with radius does not follow a keplerian low 1.4.

was perfectly uniform since the beginning or that a ray of light had time to cross the entire size
of the universe several times to exchange energy from one point to the other and thermalize
it. Both options are disfavoured by theory and computations. Since its unlikely that only
one state is chosen of all the possible states that each part of the universe can be. And from
computations it was measured that a photon could not travel faster than the expansion of the
universe, that means that horizon of the universe (how far can a photon travel since the origin
of the universe) has always been smaller than the universe itself , therefore being unable to
thermalize it at any point on its evolution. This could imply an extremely fast expansion at the
beginning of the universe, where a really small part of the universe that was inside a common
horizon expanded exponentially, stretching this uniform part of the universe so fast that big
inhomogeneities could not be formed. ( Zeldovich, 1978, Starobinsky , 1979; Guth 1980, Linde
1981, 1983). This is the inflation theory that can explain the horizon problem as well as others
(like the flatness of the universe, where the density it is very precisely at its critical value, or
originally, why we do not observe magnetic monopoles if they were created in the Big Bang).
Therefore the theory of Inflation advanced a series of solutions and predictions that are now
in the verge to be tested thanks to among other things, the polarization of the CMB (Plank
collaboration 2014, BICEP2 collaboration 2014). From the CMB came the measure of the
inhomogeneity of the CMB, its expected size and shape. These have been in accordance with
predictions from the origin of the perturbations and its growth in the primordial universe
(Bardeen 1980, Kodama and Sasaki 1984; Thorne 1980, Ellis, Matravers and Treciokas 1983).
These inhomogeneities where first measured, when the COBE satellite was launched. Out
of it, the cosmological model came in really strong shape. Those measurements have been
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refined with exquisite precision on later missions of WMAP and Plank satellites.

1.1.3 The detection of Dark Energy and its addition in the cosmological model

The field of cosmology can not be understood without the aggregate of many contributions.
An essential part of this aggregate comes from numerical and computational power, the advent
of current cosmology is definitely linked to the advent of more and more advanced computers.
This comes in the form of simulations, crunching of big data, analytical models and methods
to analyse and describe the universe. This high amount of computational power is needed
due to the nature of the problem studied, the complex dynamics and high amounts of data
needed. All of this and the computer to process that are now available. After all, a modern
cosmologist is like a cook that tries to reproduce a dish that can only be seen when served.
You do not know how it is made but you need to guess the set of ingredients and steps that
are necessary to cook it from the final complex result with all the information and tools that
you have. All previously stated is just the discovery of the ingredients and the invention of
the tools required to be able to cook our universe again. In this frame simulations are just the
tools to actually cook the universe and taste it. They allow to see if the result matches real
characteristics that are being observed or we are missing something. In that way computers
have been used since the very beginning to try to work out the complex problems at hand,
from simple dynamical evolution of dust like particles bounded by gravity to the ambition of
fully simulating a universe with most of its main features evolving at the same time. This for
example allowed to pin down the thermal characteristic of DM, if it was Hot, Warm or Cold;
Cold being preferred by the results of simulations matching observations, although many other
details had to be work out.

When analysing the ingredients necessary to reproduce the universe one comes to the fact
that Cosmology is the curious case of a science in which the ingredients fundamental to it
are not know, only its most basic characteristics are used. This is the case for the ”dark”
sectors that form the basic frame of cosmology. Non baryonic CDM was already introduced,
the nature of which is highly hypothesized but so far (as the writing of this thesis) is not
understood. Only its gravitational effects on ordinary matter and light are known. In the
same way the last main ingredient for the CSM is another dark entity. At the end of the 80s
a predicted slow down on the expansion of the universe due to gravity in the most evolved
universe in the accepted Einstein de-Sitter model was not being observed. That would have
repercussions on the age of the universe, and the growth of the structures within it. The
discrepancy between model and observation where pointing that the characteristics of the late
universe could not be explained by the simple model of big bang expansion and gravitational
slowing down, but yet the models where not trustful enough to accept that conclusion. Finally
just before the end of the millennium the final and definitive push to the shift of paradigm
came thanks again to a technique to accurately measure distances further away than before.
This allowed to characterise the expansion of the late universe. This method used supernovae
as standard candles to measure distances. A specific kind of supernova was studied and
understood well enough to relate its luminosity to its distance ( Phillips, 1993) thanks to an
intense supernova survey (Caln/Tololo 1989-1995). Once an accurate use of these standard
candles was ready, two independent groups used them to measure the distances to many
galaxies. From that they discovered that the universe was not only not slowing down but has
to be expanding faster as it evolves. Thanks to this, an accelerated phase in the evolution
of the universe could be directly measured (Riess et al. 1998 and Perlmutter et al. 1999).
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Figure 1.3: Original diagram similar to Hubble one where the best fit is a cosmology with
cosmological constant, as measured by Riess et al, 1998.

The universe has to be expanding faster as it grows older to match the observations. That
expansion could be understood as a cosmological constant arising from an integration constant
of the field equations of general relativity. Cosmology was back at the beginning, closing
an uncertainty that existed since the inception of cosmology, the value of the Cosmological
Constant. Most importantly, if this was 0 or different from 0. A positive value could be
understood as the pressure of the empty space, repealing all the parts of the universe from
each other and therefore acting opposed to gravity. This really answer arose many interesting
questions, but most importantly for this discussion a new and essential ingredient to build
our universe was firmly discovered, this is the era dominated by Dark Energy (DE) both in
the history of the universe and the history of cosmology.

Since the addition of DE, constituting most of the budget of the present universe, the
ΛCDM model has dominated the scene as the Standard Cosmological paradigm. It has been
really successful in explaining many of the elements of our universe and provides . But more
importantly, it has put forward predictions that can be tested, and have been successfully so in
the last years. Is during this time that cosmology has seen the biggest wealth of data until now
and it continues to grow at extraordinary rates. As said, two more satellites to study the CMB
where launched, WMAP and Plank tested finer and finer details this snapshot of the early
universe. This holds an enormous amount of information of the epoch of reionization, also
mixed into it there is information from before and after reionization, putting tight constrains
on many parameters of the model. Ground observations of the CMB at smaller angular scales
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Figure 1.4: Schematic of the Cosmological standard model after the addition of dark energy.

also can test other characteristics of the universe. Other instruments like the Hubble Space
telescope continue to push the frontiers of what can be seen on the early universe to validate or
eliminate models of that epoch. And finally the most important new observational technique
that has seen this decade is, in the same way that SN are used as standard candles, the use of
a standard ruler that allows to characterize the universe at various epochs. This ruler is the
Baryonic Acoustic Oscillation (BAO), an imprint on the structure of the universe itself. Then
as long as you can observe large spans of the universe you can measure the BAO. Therefore
since its size (but also its shape in more complex ways) depends on the characteristics of the
cosmos, a wealth of data can be extracted from it.

Finally the ΛCDM framework allows to place all the main elements that shape our uni-
verse. Thanks to the observations and tools and understanding gained in the last few years
we are in the process of grasping down many of the details of the universe that we live in.

1.2. The Intergalactic Medium

Going through the history of cosmology we have seen that our knowledge in cosmology has
been achieved by to the combination of many various disciplines and methods and obser-
vations. In this thesis I focus on one of the research fields that are most related to our
understanding of the universe, the characterization of the intergalactic medium (here after,
IGM).

Of the palette of tools that cosmology are available to study the universe, the IGM is
one that is convenient and versatile. The study of the IGM provides with a view of the
large structure of space at different time, ranging from the local universe to the epoch of
recombination. This allows to study from very small objects that leave a clear imprint in
our observations to large linear scales that can be traced by correlations between different
parts of the IGM. Since the IGM allows to measure the structure of the universe, its careful
analysis allows the measure of cosmological characteristics at various and interesting epoch
of the universe, obtaining valuable cosmological information at different times. However this
structure of the universe is more prominent in our observations the denser and more compact
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it is, meaning it is in a very evolved state, no longer following the linear behaviour that
best traces the cosmology that defines the universe. Also the obsrvations depend on non
linear physics like thermal and pressure processes. Therefore it is of high importance to
understand all the phenomena and characteristics of this structures that although might be
small compare to cosmological scales are basic to extract information about the nature of the
universe. And not only that, the IGM plays a major role on the galaxy formation, these dense
parts of the structure of the IGM are the nurseries of the galaxies, and provide the material
for galaxy formation. This way the IGM goes from small amplitude cosmological primordial
perturbations of big size that evolve in to big amplitude perturbations but of small size that
end up forming stars galaxies. Then to reconstruct the small perturbations on large scales
on the primordial universe we make use of the small dense evolved structures that constitute
the most prominent observation from the IGM . Summarizing to have a complete view of the
IGM we need to understand the small to comprehend the big.

1.2.1 Our understanding of the Intergalactic Medium from the absorption in
spectra

In the same way that cosmology has had its own development an history the IGM also has been
shaped trough time until we achieved our current knowledge. In the 50s from fist principles
it could already be predicted that there should exist a gaseous environment around galaxies
(Spitzer, 1956). This mixture of mainly hydrogen and some helium should be ionized due
to the radiation emitted by the stars residing in the galaxies. However this ionized plasma
should be in thermodynamic equilibrium, meaning that some fraction of it should capture
and electron and pass to a neutral atomic gaseous state again. This predicts a certain amount
of neutral gas nI = x · nH in this ionized medium, were nI is the number density of neutral
hydrogen (I comes from an electron being in the 1st atomic level), nH is the number density
of the total hydrogen, and x is the neutral fraction, then

nIΓi + ne · nI · γc(T ) = αA(T ) · ne(1− x)nH , (1.8)

where the first term accounts for the photoionization, being Γi the photo-ionization flux
due to the astrophysical background of light; the 2nd term is the collision ionization, ne is
number density of electrons and γc(T ) the collision parameter, dependent on temperature.
The rightmost term accounts for the recombination of the ionized hydrogen, being αA(T )
the photo-ionization factor, also depending on the temperature. From this, knowing the gas
temperature, Γi and the ne at each place and time, an estimation of the neutral fraction
can be found. Once it is known that there is a certain amount of neutral hydrogen in the
IGM ( independently predicted by Gunn and Peterson, 1965; Scheuler, 1965; Schklovoski,
1965), that means that there are observational implications. Unlike ionized plasma, atomic
gas strongly interacts with light, therefore it has to have an observational signal that can be
detected. Again the technology helped here, the spectrographs and telescopes where evolved
enough to be able to observe objects far enough that would have redshifted to the visible
range the ultraviolet light absorbed by the Hydrogen Lyα transition of Hydrogen ( 1215Åat
laboratory at redshift 3 would be at 4860Å, λ = λ0(1+z), well within the visible range of 3900
to 7000Å). Then it was expected that gas at high enough redshift between a luminous source
and us would leave a characteristic absorption feature in the spectrum of that source bluewards
of its Lyα emission. When a photon of the source is emitted it gets redshifted as it travels
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Figure 1.5: A didactic example of the looks of a quasar spectrum, with the absorption in the
form of the Lyα forest and a Damped Lyα system (DLA) and its metals. This is compared
with the absorption of a real forest, seen on the right.

the universe, as tehy get redsiftet they will have the frequwency of the Lyα transition of the
neutral hydrogen gas that they cross and will be absorbed at that redshift, if al the IGM had a
big enough fraction of neutral gas thet would produce he complete abortion all the photons in
a section of the spectum, this feature was called Gunn-Peterson Trough. Then observations
of the spectra of Quasars (Active Galaxy Nucleus that are the most bright objects in the
universe) that found that the spectral region that should interact with the neutral Hydrogen
was not completely absorbed, this allowed to put upper limits to the amount of intergalactic
neutral Hydrogen (Gunn and Peterson, 1965).

Soon after it was also predicted that there should exist clumps of gas around galaxies that
would produce narrow absorption features corresponding to narrow redshift space (Bahcall and
Salpeter 1965). The theoretical predictions impulsed to observe even more objects with higher
resolution and soon discrete absorbing lines where discovered (Lynds and Stockton, 1966;
Burbidge, 1966; Kinman, 1966), and when their higher order Lyman series where detected it
was proven that the absorption was indeed due to Neutral Hydrogen Lyα (Baldwin, 1974).

Once higher resolution spectrograph came at hand it was seen that there was hundreds
or thousands of fine absorption lines in almost al the spectra analysed, small features only
ranging few Angstroms. This was called the Lyman α Forest thanks to the narrow lines being
similar to a densely wooden forest (Weymann 1981). The nature of this forest was open to
speculation. Various models arose on the true nature of the medium that produced these fine
absorbing features, but in principle non could be proven or disproven. At first only statistical
observations such as relative abundance, frequency and distribution on the few spectra at hand
was done in the 70s and 80s thanks to new telescopes and instruments. This allowed to set
the basis for the nature of this absorbers as representing a new class of astrophysical object:
intergalactic clouds with much larger rate of incidence and weak clustering than galaxies and
metal absorbers (Sargent, 1980).

Finally thanks to some models put forward a clear picture of the nature of the medium that
gave rise to the Forest started to come into shape. This is the Intergalactic Medium, eventually
it came to be seen as a continuum medium with more or less linear perturbations over a mean.
This perturbations could reliably explain the sharp and narrow features of absorption of the
forest. This picture falls well inside the framework developed by the DM model, when the
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first analytical models and simulations of dust like particles where done it was seen that
they formed flattered structures and voids, but also knots and filaments. These simulations
even though were not done for baryons, produced the Lyα structures as a byproduct of the
CDM structure formation. The neutral gas that was present in the ionized medium could
simply follow those potential wells of the CDM particles, deep enough to contain the heated
photoionized plasma creating the overdensities that produced the absorption features, this
gave a common origin for all the features of the forest. This picture was clearly established
thanks to the advent of hydrodynamical simulations in which the baryons could be simulated
alongside the CDM particles, allowing to produce synthetic Lyα forest that could match that
of observations . Therefore being able to produce a representation of the evolution of the gas
and the traces that it leaves, the Lyα forest (Cen, 1994). This picture has been improves
since then thanks to the measurament the power spectrum of the forest (how probable is
to find structures of a given size in the forest) and matching it with the one produced by
hydrodinamical simulations (Croft, 1998; McDonald, 2000) observation, clearly representing
the cosmological origin of the Lyα Forest.

1.2.2 The Intergalactic Medium as a Cosmological tool

Over the years trough the use of semianalytical models and hydrodynamical simulations a clear
view was developed showing that the gas in the IGM is tracer of the gravitational density
fluctuations of the matter in the universe. This allowed to develop a framework in which the
IGM could be well tested and understood (Croft 1998, McDonald 2000). The IGM is aside
from CMB the only environment from which the observable properties can be calculated from
a simple set of cosmological initial conditions since the large reservoirs of the baryonic gas can
be found in structures that are still within the linear regime. These reservoirs of neutral gas
are the ones that leave the leave the Lyα forest as a imprint in the spectra of more distant
objects.

That meant that the Lyα Forest was a perfect tool to study the structure formation in
the universe. Since this structure formation would be sensitive to the cosmological model
in which they grow, a measure of the forest would directly put constrains on the cosmology
under which the structure was formed. This was firstly studied with the use of few thousands
high redshift spectra which allowed to compute the IGM transmission 1D power spectrum
(how probable is to find structures of a given size in line of sight from the source to us).
This allowed to put strong constrains in cosmology, particularly important in neutrino masses
(McDonald, 2006).

Since the Lyα forest traces the large structure of the universe, and as mentioned the BAO
is a standard ruler that can be used to extract cosmological information at different redshifts,
the BAO can also be measured from the forest giving a unique window to study the universe
at that epoch (roughly 10 billion years ago) (Slosar, 2011).

All of this pointed to the importance of doing large surveys that covered big parts of the
sky with thousands of objects at high redshift from which to obtain the spectrum and measure
the Lyα forest and extract features like the BAO from it (McDonald and Eiseinstein, 2007).
With that as one the main aims, the Sloan Digital Sky Survey with the Baryon Oscillation
Spectroscopic Survey (SDSSIII-BOSS) program was developed to measure, among others,
hundreds of thousands quasars spectra that allowed such measurement from the Lyα forest
(Slosar, 2013).
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Figure 1.6: Visualization of the mapping of the SDSS-BOSS survey, dots are galaxies and
colors represent the density field extracted from the Lyα forest.

However local non linear effects and features of the simulations like convergence of the
simulations, non linearity, non uniform photoionization, winds, shocks... might leave impor-
tant signal on the spectra that can upset some of the cosmological conclusions. For that we
need to understand these non linear effects. That can be made thanks to large sets of hydro-
dynamical simulations. Once they became good enough to make reliable predictions of the
physical properties of the physics of the IGM they could be used to make predictions of the
effects of these non linear features on the forest. We have just reached that point in which we
can start to have growing sets of hydrodynamical simulations to study some of the mentioned
effects, as is demonstrated in this Thesis.

Finally it is important to mention that predictions from the IGM and its forest are not
only useful for the big picture of the universe at large scales but also offer important answers
on other fields, like galaxy formation, growth of structure, metal enrichment of the universe
and the helium reionization that came latter than the Hydrogen one.

1.2.3 Understanding the small non linear scales to comprehend the large linear
structure

As mentioned earlier to have a clear picture and understanding of the multiple facets of the
IGM and be able to extract useful information from it, it is important to have a clear image
and modeling of what are the basic physics that drive what we observe from the Lyα forest and
the IGM, what structures give rise to the features that we observe.Tthat means understanding
the phenomena that happens at structures of few parsecs to some megaparsecs, that way being
able to extract information of cosmological scales and about the universe itself. That is the
basic motivation to proceed in this thesis with the detailed study of the non linear evolution
of the small scales of the IGM.
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First as mentioned one has to understand the photoionization of the medium. Thanks
to the firsts stars and other astrophysical sources like super novae and Quasars, simple EM
interaction, coupled with heating, the originally neutral medium gets reionized into plasma. A
fraction of this plasma still has some neutral gas in it, as described in 1.8. Therefore knowing
the ionization history would teach us about the state of the IGM, or the other way around, a
clear picture of the state of the IGM can teach us the ionization history.

Then what are the major repositories of this neutral gas are systems that produce the
absorption signals. These absorbers are high density perturbations of the underling density
field, that arises from non-linear gravitational evolution of the structure, however even having
a non linear origin they ultimately trace the linear evolution of the matter in the universe
with a bias that can be predicted and latter measured.

This linear evolution traces the large scales of the universe. But the correspondence
between of the Lyα absorbers is not direct, there is the Bias, how much more significant is
one observable with respect another, and Redshifts Distortions, we do not observe in the real
space but in the redshift one, where velocities and positions get mixed by the way the light
form the objects is redshifted, this distorts the mapping that we do of the universe. This bias
and redshift distortions ultimately can be used to relate any observer the linear evolution of
the matter linear distribution of the universe.

Finally the linear evolution depends directly on the of cosmology of the universe, therefore
specific predictions can be made using a specific cosmological model and its physical param-
eters, producing an outcome that is what it would be expected if the model was the real
representation of the universe. Then again to go all the way from the model to match ob-
servations we need to understand all the intermediate steps to reproduce observations. Then
this can be matched to real observations to see if the model is able to reproduce them. Also
from observations we can build all the way up and try to deduce the model that give rise to
them.

Since this is a complex process it is difficult or not always possible or desirable to go from
models to mock observations or from observations to specific models, therefore a way to com-
pare them in the intermediate steps can be used. We can build statistics from observations
that should be reproduced by the theories, models and simulations. Obtaining these statistical
tools and their results allows a common baseline to compare all shorts of models and observa-
tions from different origins. Thus having this common ground allows for a more or less direct
comparison to obtain our information about the world. Some of these methods that are used
in this work are to obtain Lyα forest statistics from simulations, its power spectrum, abun-
dance and metallicities of Damped Lyα systems from large datasets of observations. These
allow to present predictions and expectations from simulations an observations that can be
latter cheeked on other studies that want to determine main properties of the universe and
its evolution like its cosmology, reionization, galaxy formation etc. Thus probing the value of
the IGM as a formidable tool to understand our world.
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1.2.4 IGM in this thesis

The IGM, by means the Lyα absorption in quasar spectra, is a unique tool allowing the study
of the large scales of the universe, which in this way constrains several cosmological, the growth
factor of the structure. Moreover the IGM also plays primordial role in galaxy formation.
Understanding the physics of the IGM and the way non-linear processes affect the observed
Lyα forest, hydrodynamical simulations are necessary because the non linear evolution of the
physics cannot be treated in any analytic framework. At the same time, a large number of
observations, which have been obtained from the Barionic Oscilation Spectrographic survey
(BOSS) to be used in this thesis allows studding in unprecedented large number of Lyα forest
from quasar spectra, allowing to achieve major breakthroughs.

We have seen the importance of the IGM in the boarder picture of cosmology, structure
and galaxy formation. Furthermore It is clear that due to the nature of the IGM we need
a good understanding not only of the IGM at large linear scales but also it is necessary
to understand what happens at small and non linear scales, as these leave characteristics
imprints in our observations that would affect the way we extract valuable information from
these obervations. In this thesis I have worked with that aim, to understand the physics of the
small and non linear scales of the IGM. In first place, as proposed by Jordi Mriralda Escudè I
had the opportunity to develop a detailed study of the power spectrum in 3 dimensions of the
transmission field of the IGM from hydrodynamical simulations. Then thanks to the valuable
collaboration with Matteo Viel and also having at my disposition simulations from Renyue
Cen I was able to amass a large set of simulations that supposed the basis of the work. From
that large sample of simulations with different simulation and physical properties I am able
to model the said non linear power spectrum.

In the 2nd chapter of this thesis I describe the methodology that I developed to extract
the power spectrum from the transmission flux of the Hydrodynamical simulations. Using a
set of simulations provided by various collaborators we study the effects of various simulation
characteristics, such as resolution, box size, particles, and cell division, to see how they might
affect the extracted power spectrum. Then a model was developed to fit the power spectrum
of each of the simulations and in this way see the effects of different simulation and physical
properties on the predictions from the power spectrum. Once the model fit has been obtained,
the non linear power spectrum of the transmission can be related on the matter power spec-
trum, which on the form of its biased relation with the matter power spectrum contains the
cosmological information. This relation is measured by the bias and redshift distortions that
can be directly measured from simulations, making predictions for these values that could
be later tested with the observations from current and future surveys like BOSS, eBOSS and
DESI.

After the main results of the 3D power spectrum were achieved I was sent to collaborate
with George Becker on studding another piece of the IGM, the Damped Lyman Alpha Systems
(DLAs), sections of completely absorbed flux in the spectra of some of the high redshift objects,
the quasars, observed by the SDSSIII-BOSS survey.

In the 3rd chapter we use the data from the large catalogue of Damped Lyα systems
(DLAs) provided by BOSS. These DLAs, broad regions of completely absorbed flux in the
spectra ob about 10% of the high redshift objects, the quasars. The DLAs are a large repos-
itory of neutral hydrogen, that is why they absorb all the flux that corresponds to their
redshift. Since there is so much Neutral Hydrogen the absorption is damped, meaning that
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wavelength close to the one of the DLA also get absorbed, forming characteristic Lorenz wings
that are sensitive to the column density of Hydrogen of the DLA. DLAs are interesting objects
that are expected to be very relevant for galaxy formation, and also because they trace the
large structure, therefore also being relevant for cosmology. They are, similarly to IGM of
which they form part, a bridge between the large cosmological framework and the galaxies
that populate the universe. The BOSS survey has allowed us for the first time have a set of
thousands of DLAs. Given this amount of data and the interest of the DLAs, we developed a
new method and a new parameterization to study the DLAs in the framework of large surveys
such as BOSS. First we constructed a method to measure the equivalent width of several metal
absorption lines associated with each DLA, even if individually they are not detected because
they can not be observed due to the noise and resolution of the spectrum. The equivalent
width are combined in a newly defined parameter called Metal Strength, which is a an optimal
combination of the equivalent width of the metals measured for a DLA. This classification
can then have many applications to measure the mean stack, mean bias and mean redshift
evolution with respect this new parameter. The Metal Strength is therefore used to analyse
the evolution and characteristics of the various populations of DLAs.
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2. The 3D power spectrum of the Lyα forest

from simulations

“The model made testable predictions, a
rare but risky undertaking for
astrophysical theories, that eventually
led to its demise.”

— Michael Rauch.

2.1. Introduction

The Lyα forest is one of the main observational probes we have for studying the structure
and evolution of the intergalactic medium (hereafter, IGM). The fraction of the flux in the
spectrum of a source (typically a quasar), F (λ), that is transmitted through the hydrogen gas
in the region between the Lyα and Lyβ lines in the rest frame of the source provides us with
a one-dimensional map of absorption along the line of sight. The way in which F (λ) is related
to the density, temperature and peculiar velocity gradient of the gas on small scales is non-
linear, and can only be modelled in detail from hydrodynamic cosmological simulations (Cen
et al., 1994; Zhang et al., 1995; Hernquist et al., 1996; Miralda-Escudé et al., 1996; Theuns
et al., 1998) of the evolution of random realizations of the initial density field. However, in the
limit of large scales, the transmission fraction averaged over a large region depends linearly on
the mean overdensity and peculiar velocity gradient in the region, and the power spectrum of
the transmission is simply proportional to the power spectrum of mass fluctuations, with the
standard redshift distortions that were predicted initially for galaxy surveys (Kaiser, 1987;
Hamilton, 1992).

This simple linear treatment of the Lyα forest applicable on large scales has led to its use
as a cosmological tool to measure the power spectrum, first from single quasar spectra (where
the projected one-dimensional power as a function of the parallel Fourier component only is
measured; see Croft et al., 1998; McDonald et al., 2000; Croft et al., 2002; McDonald et al.,
2006) and then in full redshift space, where the correlation in the transmission among parallel
lines of sight is used (Slosar et al., 2011). As proposed in (McDonald & Eisenstein, 2007)
and implemented in the Baryon Oscillation Spectroscopic Survey (BOSS; see Dawson et al.,
2013a) of the Sloan Digital Sky Survey-III (SDSS-III, see Eisenstein et al., 2011a), the Lyα
power spectrum is proving to be a powerful tool to measure the general large-scale mass power
spectrum at high redshift, and in particular to measure the baryon acoustic oscillation scale
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and the constraints it provides on the expansion rate and the angular diameter distance as a
function of redshift (Busca et al., 2013; Slosar et al., 2013; Font-Ribera et al., 2014; Delubac
et al., 2014).

In contrast to the large scales, the Lyα power spectrum at small scales is affected by a
variety of non-linear physical processes that govern the evolution of the IGM. These phys-
ical processes are highly complex, and they may include several phenomena related to the
formation of stars and quasars in galaxies that can perturb the IGM: the reionization and
the inhomogeneous heating it causes, and the hydrodynamic effects from galactic winds and
quasar jets. There is, however, a more simple assumption that can be made for the evolution
of the IGM: that the ionization of the IGM is caused only by a nearly uniform radiation
background, causing also a nearly uniform heating, and that shock waves arise only from the
gravitational collapse of structure, and not from the ejection of any gas from galaxies due to
supernovae-driven winds or quasars. Even though it is known that quasar jets and galaxy
winds are present in the universe and they have some impact on the IGM, the volume they
affect may in practice be very small, and it is useful to test first the most simple assumption
for the evolution of the IGM against the observations. This simple model should be mostly
described by only five parameters, which determine the statistical properties of the Lyα forest:

• The mean transmission F̄ (z), which depends on the intensity of the cosmic ionizing
background and is directly measured in the observations.

• The density-temperature relation, usually parameterized with the two parameters T0

and γ in the power-law relation T = T0(1 + δ)γ , where δ = ρ/ρ̄− 1 is the overdensity of
the gas. When the IGM is heated in photoionization equilibrium and cools adiabatically
due to Hubble expansion, one expects this power-law relation to hold with γ � 0.6, but
the relation may be altered by the heating due to HeII reionization (Hui & Gnedin,
1997). We describe this further below.

• The mass power spectrum of primordial perturbations near the characteristic Jeans
scale of the IGM, λJ = 2π/kJ , which we can parameterize also with two parameters
as a power-law with free amplitude and index, P (k) = Aα(k/kJ)nα . The Jeans scale is
related to the IGM temperature, although in detail it depends also on the entire thermal
history (Gnedin & Hui, 1998), and therefore may be considered as a sixth parameter.

Even though the large-scale properties of the Lyα forest are simply understood from
linear theory, there is a strong interest in understanding the small-scale, non-linear properties
as well. There are several reasons for this: first, we need to test if our understanding of the
IGM in terms of a simple uniform photoionization as mentioned above is essentially correct,
or if there are important modifications due to a strong impact of galactic winds and jets
(Kollmeier et al., 2006) or large inhomogeneities due to HeII reionization (McQuinn et al.,
2009; Compostella et al., 2013). Second, the Lyα forest linear power spectrum depends on two
bias factors, with values that can be measured and can be predicted from an understanding of
the small-scale physics. Finally, the detailed comparison of the observed Lyα power spectrum,
determined from a combination of large-scale surveys like BOSS and quasar pairs at small
angular separations to better probe the small-scale transverse correlations, with predictions
from detailed numerical simulations of the fully non-linear power spectrum, may offer us new
clues to essential questions in cosmology, such as the impact of neutrino masses on the growth
of structure, or limits on models of warm dark matter or other possible variations on the
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nature of the dark matter. There is therefore a need to obtain reliable theoretical predictions
for the non-linear power spectrum of the Lyα transmission fraction as a function of redshift
from numerical simulations of a large array of cosmological models, in terms of the most
important Lyα forest parameters mentioned above.

The goal for the theory of the non-linear Lyα forest is comparable to the that of nu-
merical simulations of the hot, X-ray emitting gas in clusters of galaxies. Detailed determi-
nations of the gas density and temperature distributions from X-ray observations and the
Sunyaev-Zeldovich effect, together with the mass distribution from gravitational lensing and
the kinematic distribution of galaxies, have spurred advances in the theoretical modelling
of clusters, the comparison of numerical codes, and tests of the convergence of the results.
At present, the abundance of clusters of galaxies can be used to infer the normalization of
the mass power spectrum, but this determination depends on the uncertain relation between
the observable properties from X-rays and the Sunyaev-Zeldovich temperature decrement to
the cluster mass. This relation needs to be predicted from numerical simulations, and the
theoretical modelling affects the comparison with the power spectrum normalization derived
from CMB observations (e.g., Hasselfield et al., 2013). Similarly, the Lyα forest is sensitive to
the amplitude of the power spectrum and several other cosmological parameters and physical
properties of the IGM, but constraints on these quantities can only be inferred once we have
a reliable understanding and modelling of non-linear effects on the observed properties of the
Lyα forest.

The aim of this paper is to study several cosmological simulations of the Lyα forest,
to study the non-linear spectrum that they predict, and to test for the conditions that the
simulations must satisfy, in terms of resolution and the simulation volume, to reach a satisfying
convergence of the results. This problem was first addressed in the pioneering paper by
McDonald (2003), and here we attempt to continue this study by examining a large number
of hydrodynamic simulations, characterizing the power spectrum with a new, more simple
fitting formula with several non-linear parameters, and studying the dependence of the linear
bias factors on the IGM properties. The simulations are described in §2, our technique for
measuring and fitting the power spetrum is explained in §3, and the results for the power
spectrum fits are presented in §4, with a discussion of the results and conclusion in §5.

2.1.1 The bias factors of the Lyman Alpha Forest

on several of a prediction for the value of the mean transmission in a region where the initial
cosmological perturbation has average values of the overdensity δ = ρ/ρ̄ − 1 and peculiar
velocity gradient η = (1 + z)/H(z) dv/dx (where v and x are the line-of-sight components of
the peculiar velocity and comoving coordinate) is simply given in the linear approximation by
F = F̄ (1+bδδ+bηη), where bδ and bη are two bias factors for the Lyα forest (McDonald (2003)
McDonald 2003). Therefore, when measuring large-scale properties where linear theory can
be used, all of the complexities of non-linear collapse and the impact of galactic winds should
be absorbed in the values of the two bias factors, while the shape of the Lyα power spectrum
in redshift space should reflect the power spectrum of the initial cosmological perturbations
with linear redshift distortions (Kaiser (1987) Kaiser 1987, Hamilton (1992) Hamilton 1992).
Note, however, that this assumes that the impact of fluctuations in the intensity of the ion-
izing background and the heating rate due to photoionization can be neglected compared to
cosmological density perturbations in the limit of large scales.
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2.2. Method of analysis of the simulations

Our goal in this paper is to use cosmological hydrodynamic simulations of the intergalactic
medium to predict the three-dimensional power spectrum of the Lyman alpha forest trans-
mission fraction in redshift space, P (k, µ; z), where k and µ are the modulus and the cosine
of the angle from the line of sight of the Fourier mode vector, and z is the redshift denoting
the cosmological epoch. The simulations we use are described in §2.2.1. The method of
analysis is inspired in that of McDonald (2003) and proceeds with the following steps: (1)
starting from a grid of cells containing the hydrodynamic quantities of gas density, ionized
fraction, temperature and velocity at a certain redshift output, the corresponding spectra of
Lyα transmission are computed for the entire grid, using one of the simulation axes as the
assumed line of sight direction, and the 3D Fast Fourier Transform of this transmission field
is obtained ( §2.2.2 ); (2) the mean value of P (k, µ) is computed in bins of these two variables,
and errorbars are assigned which take into account the variance due to the finite simulation
volume ( §2.2.3); (3) a parameterized fitting function for P (k, µ) is chosen to obtain best-fit
values of the parameters for several simulations §2.2.4.

2.2.1 Simulation characteristics

Two types of hydrodynamic simulations will be used in this paper. Most of our simulations
use the particle-based GADGET code Springel (2005). We also use one simulation that is
based on a fixed-grid Eulerian code, described in Cen (2010), to allow for a first comparison
of the results for the two types of codes.

Table2.2.1 shows a list of all the simulations that will be used in this paper, including
variations in the spatial grid size and spectral pixel size for the analysis of the Lyα forest.
The first two columns give the comoving box size, L, and the number of dark matter particles
in for the SPH simulations. Note that the simulation labeled Euler does not use particles,
and the cells used to run the simulation are the same as those used to compute the cells and
spectra. . The third gives the number of cells, N3

c , in the uniform grid that is constructed to
compute the density, temperature and velocity in real space (this is the same number of grid
of cells for the Eulerian simulation) . The Lyα spectra are computed for each of the three
axes of the simulation playing the role of the line of sight, with the number of pixels in each
spectrum from each row of Nc cells of length L given in the fourth column; generally there are
used as many pixels in the spectra as cells in the spatial grid, except in the analysis labelled
P1024 where the number of pixels is doubled. The last columns give physical parameters of
the simulations: the variable σ8 parameterizing the present amplitude of linear perturbations,
the mean temperature at the mean density T0, and the power-law index that fits the density-
temperature relation at low densities, which is described below in more detail. In general,
models have variations of different parameters around the values of the fiducial model in the
first row of Table2.2.1 , and they are labelled with names that refer to the parameter that is
being varied.

Gadget-2

All simulations in Table2.2.1 except for the one designated as Euler were run using the
publicly available Tree-Particle Mesh Smoothed Particle Hydrodynamics (SPH) GADGET-2
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Name Box size Particles Cells Pixels σ8 γ log(T0)

Fiducial 60 Mpc/h 5123 5123 512 0.88 1.6 4.3
P1024 60 Mpc/h 5123 5123 1024 0.88 1.6 4.3
C256 60 Mpc/h 2563 2563 256 0.88 1.6 4.3

R384C256 60 Mpc/h 3843 2563 256 0.88 1.6 4.3
R384 60 Mpc/h 3843 5123 512 0.88 1.6 4.3
R640 60 Mpc/h 6403 5123 512 0.88 1.6 4.3
L80 80 Mpc/h 5123 5123 512 0.88 1.6 4.3
L120 120 Mpc/h 7683 5123 512 0.88 1.6 4.3
Euler 50 Mpc/h — 20483 2048 0.82 1.9 4.1

Lagrange 50 Mpc/h 5123 5123 512 0.82 1.9 4.1
G1.3 60 Mpc/h 5123 5123 512 0.88 1.3 4.3
G1.0 60 Mpc/h 5123 5123 512 0.88 1.0 4.3
G1T4 60 Mpc/h 5123 5123 512 0.88 1.0 4.0
S0.76 60 Mpc/h 5123 5123 512 0.76 1.6 4.3

Table 2.1: List of simulations and analysis variations used in this paper. The first column lists
the name, the second the simulation box size, and the third indicates the number of particles
used in the simulation (both for dark matter and gas), except for the simulation named Euler,
which uses a fixed Eulerian grid instead of particles. The fourth column gives the number
of cells used to represent the hydrodynamic variables in the spatial grid that is computed to
obtain the Lyα forest spectra, and the fifth column is the number of pixels on the line of sight
direction used to compute the Lyα spectra.

code Springel (2005).

The fiducial simulation uses a box of 60 comoving h−1Mpc and 2 × 5123 particles (for
the total of gas and dark matter). Other simulations are run with larger boxes of 80 and 120
h−1Mpc (L80 and L120) to test the effect of the missing large-scale power, or with different
resolution to check the convergence as the particle masses are reduced. The cosmological
model is flat ΛCDM with the following parameters: Ω0m = 0.3, Ω0Λ = 0.7, Ω0b = 0.05,
h = 0.7, ns = 1 and σ8 = 0.878. The initial conditions are generated using the software CAMB
1 and the Zel’dovich approximation at the initial redshift of z = 49. The particle mesh grid
used to calculate the long range forces is chosen to be equal to the number of gas particles 5123,
while the gravitational softening is 4 kpc/h in comoving units for the 60h−1Mpc box and scales
proportionally to the initial particle separation for the other simulations The hydrodynamics
is followed according to Katz et al. (1996). Star formation is also included in the model
with a simplified prescription that allows to convert into a star particle any gas particle of
overdensity larger than 1000 and temperature colder than 105 K this has been demonstrated
to have negligible impact on flux power statistics Viel et al. (2004).

We explore the impact of different thermal histories on the Lyα forest by modifying the
Ultra Violet (UV) background photo-heating rate in the simulations, as in Bolton et al. (2008).
A power-law temperature-density relation, T = T0(1 + δ)γ−1, arises in the low density IGM
(1 + δ < 10) as a natural consequence of the interplay between photo-heating and adiabatic
cooling Hui & Gnedin (1997). We consider two different values for the temperature at mean
density, T0, and three different values for the power-law index of the temperature-density

1http://camb.info/readme.html
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relation, γ, which bracket the most recent observational constraints.

Eulerian

In addition to the smoothed particle hydrodynamics simulations based on lagrangian ap-
proach, in this work it has also been analysed a different paradigm for hydrodynamical sim-
ulations, a rigid grid one with eulerian approach. This simulation provided by Renyue Cen
is based on his series of simulations; (see Cen et al., 1990; Cen, 1992; Cen & Ostriker, 1993;
Cen, 2002) . In this work the simulation used features a 50 Mpc/h box consisting on 20483

regularly distributed cells. Its cosmology is Ωm = 0.28, Ωb = 0.04, Ωr = 0, Lambda = 0.72,
w0 = −1, wa = 0.0, H0 = 70, ns = 0.96, σ8 = 0.82.

2.2.2 Extracting the Lyα power spectrum from the simulations

For the SPH simulations, we follow the SPH-formalism of Theuns et al. (1998) (their Appendix
A4) to compute the hydrodynamic variables of gas density, temperature and velocity on a
cartesian grid, and then extract mock Lyα spectra with a period equal to the simulation
box size. For the Euler simulation, the cartesian grid on which the simulation is run is used
directly to obtain the Lyα spectra, as in Miralda-Escudé et al. (1996). Each cartesian grid
in real space from a simulation at a certain redshift results in three simulated boxes of Lyα
spectra, taking each of the three axes as the line of sight. For each of the three axes, the
spectra for the entire simulated box are computed, resulting in N2

c Lyα spectra, where Nc is
the number of cells per periodic row of the spatial grid.

Apart from the parameters of each simulation, an additional parameter is necessary to
compute the Lyα spectra: the intensity of the ionizing background, which can be altered to
adjust the mean transmission F̄ (z) to a certain value. We fix the mean transmission to the
values given by the expression:

F̄ (z) = exp(−0.0023(1 + z)3.65), (2.1)

which adequately fits the observational determinations in Kim et al. (2007). The com-
puted Lyα spectra are modified to adjust this value of the mean transmission by using the
approximation that the optical depth varies at each pixel as the inverse of the intensity of
the ionizing background, and that the gas temperature is not affected by this background
intensity. This assumes that collisional ionization can be neglected and that the atomic frac-
tion is much smaller than unity, which is generally an excellent approximation (except in high
density regions where the optical depth is very large in any case, and therefore does not affect
the computed Lyα spectra). The use of this approximation avoids having to recompute the
Lyα spectra every time that the mean transmission is adjusted to the required value in the
expression above.

In the majority of cases, the Lyα spectra have a number of pixels equal to the number of
cells in the spatial grid (see Table2.2.1). Only for the case P1024, the number of spectral
pixels is doubled to test the impact on the power spectrum calculation. For this case, the
transmission is averaged over each two neighbouring pixels after having computed the optical
depths and readjusted the mean transmitted fraction.
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A 3D Fast Fourier Transform is then applied to the entire box of Lyα spectra, for each of
the three cases taking each axis as the line of sight. The routine fftn from the scipy pakage in
Python is used for this computation. This results in N3

c /2 independent Fourier modes, each
with a modulus and a phase. The moduli are used to obtain the estimate of the Lyα power
spectrum P (k, µ; z).

2.2.3 Fourier space binning and errorbars

The Fourier modes obtained from the three boxes of Lyα spectra from a given simulation
analysis (using each of the three axes as the assumed line of sight) are then used to obtain
the average of their squared amplitudes at all the possible values of k, µ that arise from the
cubic grid. The total number of modes contributing to each value of k, µ is also stored as a
weight, w(k, µ). As an example, it is useful to mention the number of independent modes that
are obtained for the few smallest values of k allowed by the size of the box, L. The smallest
Fourier modes have a modulus k1 ≡ 2π/L. For the direction parallel to the line of sight (with
kx = ky = 0 and kz = k1, if the z-axis is chosen as the line of sight), with µ = 1, only one
independent Fourier mode is obtained (the mode with kz = −k1 is not independent because
of the condition that the Lyα transmission field is a real function). Two independent modes
perpendicular to the line of sight are available (for µ = 0): kx = k1, ky = 0, and kx = 0,
ky = k1. The next smallest modes have k =

√
2k1, with two independent modes for µ = 0

(kx = k1, ky = k1, and kx = k1, ky = −k1), and four independent modes for µ = 1/
√
2 (with

either kx or ky being equal to +/- kz). In general, eight independent modes are available for
any values of kx, ky and kz when they are all different from zero and kx �= ky (owing to the
symmetry under two independent sign changes and under the exchange of kx for ky), which
are used to estimate the Lyα power for the values k = (k2x+k2y+k2z)

1/2, µ = kz/k. In this way,
estimates of the power at each of the set of discrete values of k, µ obtained from all the modes
in the box are collected by averaging the square amplitudes of all the modes, and storing also
the number of modes contributing, w(k, µ).

For large values of k, keeping the estimates of the power at all of the discrete sets of values
of k, µ that are obtained from all the positions in a Cartesian cubic grid becomes impractical.
At the same time, when obtaining fits to the form of P (k, µ), the number of values to be
fitted needs to be reduced to ensure that the required computational time for performing the
χ2 minimization is reasonable. Therefore choose a threshold value kt is chosen, above which
the exact values of k, µ for each Fourier mode are no longer stored, and fixed bins of k, µ are
instead chosen to average the square amplitudes of all the modes within each bin, this scale
is chosen to be kt = 1[h/Mpc] for the 60[h/Mpc]. The process to select this value is further
explained in §A.1.6 Notice that in order to keep the same number discrete modes kt depends
on box size i.e. for the box of 120[Mpc/h] (twice the side length) kt = 0.5[h/Mpc].

To proceed with the binning also the largest k = kl mode must be selected, the fft returns
modes up to the Nyquist length, which corresponds to the number of flux cells in each axis, this
translates to scales much smaller than the ones to be considered on this work. The smallest
scale to be used corresponds to the mode 100 for the Reference simulation of 60[Mpc/h], that
is kl = 10.47[h/Mpc] This upper limit is kept teh same for all the different box sizes, unlike
the case of kt. Then the binning is done between kt and kl, the values used for the Fiducial
simulation are 16 × 16 bins in k, µ for values in k, this leaves to 256 bins and 296 discrete
modes, leaving a total of 552 fitting points for all simulations. The reason for this binning
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values is described in A.1.4.

In addition to compute the fit using a MCMC method, each fitting point has a weight or
”error” associated, for all data points exists a lower limit error know as � which avoids the low
k modes dominating the fit, this � represents the percentage of the total value of the fitting
point, � = 0.05 representing a 5% is used through the work. The reason for this values is
explained in detail in A.1.3.

The errorbar for each of the power spectrum values is computed as:

σ(k, µ) = P (k,mu)
�
1/
�
w(k, µ) + �

�
. (2.2)

When preparing the vector of the power spectrum P3D(kx,y,z), kx,y,z being the components
along the 3 axis of the box, one is only interested in certain range of scales. It is desirable to
cut the higher k modes, corresponding to lower scales. In this work, that scale corresponds
to 10.47[h/Mpc] , that translates to different k mode depending on the simulation box size.
The highest mode of each axis is chosen to be kcut = 2π · (klowscale · size)−1

After the fft the output has to be converted from the 3 axis realization to a k||,per space.
This straightforward, the k|| direction is the one the has been computed flowing the Hubble

flux (the line of sight) k|| = kx, while kper =
�
k2y + k2z . Different values of P (kx,y,z) contribute

to the the same P3D(k||,per). Therefore here it is important to keep the weights of each new
P (k||,per), that is, the number of old modes that fall in the same new configuration of the
parameters space.

The fft output is a 3D vector, the fft output has 23 times the elements from the initial 3D
flux matrix. As seen in the documentation 2 it returns the modes from 0 to the number of
elements in each axis (nyquist number), and then it comes back all the way to 0. The values
are symmetric over one axis but not in each axis, therefore each combination of modes has
2ndim−1 different contributions. This means that there are 4 different modes which contribute
to the same element of the power spectrum , those four must be accounted for: each power
spectrum value has at least 4 different contributions. This is needed to correctly sum all the
modes.

Once all the previous is done, computing P (k||,per) is automatic. Just sum the number of
elements that have the same pair of k||,per and divide the number of elements that contribute
to that value. To know the weight will be important since our way to compute the errors
depends on it, the weight corresponds to the total number of elements that contribute to one
final value in the new parameters space. The errors will be explained in A.1.3

Next is to transform to the data to the desired format in which the fitting procedure will be
made. In the literature the chosen parametrization for the power spectrum is P (k, µ) because

it has a better representation of the physical observed space. With modulus k =
�

k2|| + k2per
and the projection along the line of sight µ = k||/k.

Since to fit the data from the simulation, which is done using the ξ2 test, the bigger the
number of points, the longer it takes to compute it. The number of elements if a direct
transformation is done is more than 105, moreover most of them representing large values
of k, which correspond to low scales, deep in the nonlinear regime. Those very small scales

2http://docs.scipy.org/doc/numpy/reference/routines.fft.html
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are not considered since resolution limits make them not trustworthy. Therefore the solution
is to aggregate the values in a defined number of intervals of k, µ. On the other hand the
number of elements that fall in intervals corresponding at low k, large scales, is small. This
regions are the most interesting since map the transition from non linear to linear behaviour.
Therefore is important to have the specific exact value of each of those modes, not putting
them in intervals that only have few elements. Those two different treatments effectively
imply dividing the spectrum of the data in 2 regions: for low k were each value is computed
individually, and for bigger k all the elements are aggregated in intervals. The scale at which
that happens is called transition scale or kt

The way to chose this transition from one region to the other is related with the total
number of data points used for the fitting procedure. It is desired that the the number of
intervals in one region to be of the order of the number of low modes of the other. That must
be explored until reaching an optimal configuration of enough data points to trace the power
spectrum , but not too much making the fitting procedure too slow. That can vary depending
on several factors, however it must be adequate for all the simulations analysed, and it is
preferable to use always the same procedure to allow an easy comparison. This exploration
is described in the appendix A.1.6

Finally the intervals are made both by considering the central point of the interval, or the
mean value of all the elements that fall in that k, µ interval. Since even for the smallest bins
there are large amounts of modes being considered, both methods return mostly the same
outcome.

2.2.4 Parameterized fitting function for the Lyα power spectrum

When all the data is prepared, a theory to compare with is needed. The basic description
of the evolution of the power spectrum is that of the linear evolution of it, that is plus
corrections for the non linear evolution at small scales :

P3D(k, µ) = b2
δ
(1 + βµ2)2 Plin(k)D(k, µ), (2.3)

where b2 and β are the bias parameters that characterize how the actual values for the power
spectrum depart from the initial power spectrum of the perturbations P (k). The linear power
evolves with redshift by the growth factor . At the scales that we are analysing the non
linearities are parametrized by D(k, µ). There are several ways to express that, but basically
some factors that trace how non linearities affect the growth of the power spectrum must be
introduced. Tree non linear effects can be accounted for: The Power spectrum is enlarged
at low scales by the effect of gravitational bounding and falling of the hallos one to another.
Another is the suppression by the effect of pressure that keeps structure from collapsing.
Finally the increasing of the velocity dispersion which smooths the inhomogeneity.

Therefore the non linearities are accounted by those factors:

D(k, µ) = e(nl−p−v),

where nl, p, v are the functions that trace for the variation of power due to the non linear
physical effects. Those can have different forms, and in this work several options have been
checked. One will be chosen as the standard, from there all the different simulations will be
fitted using the same expression for D(k, µ).

Different options were tried in this work for nl, p, v, here are present the most tested ones:
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nl0 =
�

k

knl

�anl

,

this form only tries to account for effects on the scales lower than knl and anl controls
the shape with K.

nl1 = k3Plin(k) · knl,

this is chosen to always converge to linearity at large scales, as n can still be large in
the low end of k shifting the effect of non linearity to larger scales than expected. The
factor k3Plin(k) is adimensional.

p0 =
�

k

kp

�ap

tries to model the effect of the pressure at small scales, it stops the growth of

structures when the pressure dominates.

p1 =
�

k

kp

�2

,

here ap is fixed to 2 because it is the expected evolution with the pressure and agrees
with the values found when it is let be free on the fitting.

v0 =
�

k·µ
kv0(1+k/kv1)

av1

�av0

,

this form comes form the McDonald 2003 McDonald (2003) where it tries to model the
peculiar velocity dispersion dependence both in scale k and angle from the line of sight
µ.

v1 = k3Plin(k) ·
�

k

kv

�av

µbv ,

this is the most simple dependence of the power spectrum, to model the effect of peculiar
velocities and thermal broadening that has been found. It uses one less parameter than
the v0 form.

Therefore with these factors 2 main different formulas have been used to model the non
linear evolution of the power spectrum . The combination of nl1, p1 and v1 (D1) and nl0, p0
and v0 (D0), with D0 having 10 parameters, 3 more than D1. D0 is the same as used in
McD2003 and is useful for tests and comparison, but the default one will be D1, as it behaves
better and has less free parameters, as described in the appendix. A.1.1

That leaves the final expressions as:

D0(k, µ) = exp

�
Plin(k)

�
k

knl

�anl

−
�

k

kp

�ap

−
�

k · µ
kv0(1 + k/kv1)av1

�av0
�
. (2.4)

D1(k, µ) = exp

�
k3Plin(k)

�
knl −

�
k

kv

�av

µbv

�
−
�

k

kp

�2
�
. (2.5)
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Figure 2.1: power spectrum for the reference model with D1(k, µ) eq. at redshift 2.2 and
simulation L120, in function of k and in 4 bins of µ. Left are the therms due to the non linear
behaviour, as can be seen those tend to 1 for large scales, one of the motivations to explore
different D(k, µ) Right is the power spectrum from the simulations normalized by the linear
power spectrum form the simulation. The lines represent the fit with the D1(k, µ) eq. while
the points represent the data from the simulation and the error bars represent the number of
modes that fall in each interval of k, µ, with an added 5% error to all values to avoid large
modes to have very small associated errors.

2.2.5 Results: Fiducial model

Once the equations to proceed with the fit are decided, next is to select the arrangement of
the data to be fitted, and pass different tests to check which eq and configuration is better to
proceed systematically with for the rest of the work. Since the number of modes for the 3D
power spectrum grows as n3 where n is the number of modes in one dimension, once one goes
to sufficiently large n, which in its turn corresponds to small scales, the number of data points
corresponding to those modes grows to an intractable amount. The points at high modes,
small scales, must be aggregated in bins of k, µ as described previously, On the other hand,
there are few modes to account for the large scales, those of the same size of the box and
fractions of it, that is better to resolve them exactly. Therefore for some large scales (small
k) the data points are directly computed from the modes, while for large k the large amount
of data points is binned in intervals.

How to select how many bins are used and where to make the transition from small to
large scales, and the effect that varying those things has is discussed through the appendix.
2.5 Another thing to be considered for the fitting is which error to associate to each data

point, to proceed to do the fit. For the fitting a χ2 test is used which uses the error for each
data point to proceed with the minimization. It has been decided to assign an error depending
on the amount of modes that contribute to a determinate k, µ values and bins. The problem
with that is that the amount of modes that correspond to small (and therefore highly non
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linear) k is huge compared with the linear counterpart.

Therefore similar as in McDonald (2003), to avoid the non linear terms dominating the
fit, an additional error is added to all data points. How the error is computed and the effects
that it has over the fitting is discussed in §A.1.3 . Next the behaviour of the two equations
should be tested. It has been decided to use a different expression that the one in McDonald
(2003) because it failed to pass some tests, basically it had a stronger than desired effect on
the linear scales, therefore affecting greatly to the values of the bias parameters. That can be
seen by how the value of D(k, µ) tends to 1 for the fitted parameters at large scales. Another
test is considering the fit up to smaller or grater scales, if the values are similar that means
that the influence of the small scales over the linear ones is not dominant. Those tests are
described in A 2.5

Since D1(k, µ) provides a good fit even with less parameters, behaves better at large scales,
and passes more tests than other expressions do, it will be used as default fitting formula.
Therefore:

P3D(k, µ) = b2
δ
(1 + βµ2)2 Plin(k) D1(k, µ). (2.6)

2.2.6 Growth factor and linear power spectrum

Other detail to consider for the fit is the linear power spectrum that is used. It comes from the
outcome of the CAMB 3 code using the cosmology of each of the simulations, as mentioned in
§2.2.1 and it plays an important role on the fit, as it is present both in the linear an non linear
terms. The growth factor is also to be considered as is the only place in which the cosmology
affects the fitting. The linear power spectrum is computed for redshift 0, therefore the linear
growth of perturbations must be scaled back to the redshift at which the fit is done. This
growth of perturbations depends on the cosmology used, therefore it has an influence, although
minor, on the fitting. Since it is minor it is not sensible to small changes in the cosmological
parameters therefore the power spectrum can not be used to constrain the cosmology in this
way.

2.2.7 Fitting procedure: MCMC

With a theoretical model and the data prepared, only to fit the one to another remains. That
also can be done in several ways, the one chosen here, as pointed earlier, is the minimization
of the χ2 function:

χ2(x1,...,p) =
N�

i

[di − fi(x1,...,p)]2

σ2

i

, (2.7)

di the data points, σi the error given to each data point, fi(x1,...,p) the function to be fitted
to the data depending on x1,...,p being the parameters that will vary in order to minimize χ2,

∂χ
2

∂x1,...,p=0
.

As explained in A.1.3 the values for cσi are artificially increased for high k modes. Since
the error affects to the value of the best fit for the χ2 . This implies that now χ2/N is no

3http://camb.inf
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longer a reliable test of how good the fit is N being the number of data points minus the
number of degrees of freedom, number of fitting parameters. For this case case χ2/N is going
to be quite small since � = 0.05, meaning that the error is over estimated, as it is the case.
Through this work a simply minimization of the χ2 will be used for the fitting.

For the chosen function with n DoF, a good method to explore all the possible values for
the parameters and find the best combination is necessary. Also a method that returns the
errors associated with each of the parameters, since it is very important to know to which
degree the the best fitted values can be trusted. If they are very degenerate or if they give
some valuable information should be known.

In this work a simple routine based on the Monte-Carlo Machovff Chain (MCMC) using
the Metropolis algorithm has been developed to deal with the minimization process, finding
the errors of each parameter, and how the degenerations and correlations between them. See
(Bhanot, 1988) for a review on the Metropolis algorithm.

To improve the performance of the method, is desired to start the chain from values
that are not far form the ones expected. It will take longer if they are not. Also it is
recommendable to start the chain and the fitting from different points to check if it finds
always the same minimum, if that were not the case that means it is falling each time in
different local minimums, or has not completely explored all the minimum for very degenerated
parameters. In those cases is simply run longer and bigger number of chains.
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Figure 2.2: In this diagram is shown a comprehensive summary of the flow of the work.
First we have a set of simulations, Gadget-2 with different resolutions an box sizes, and
various modifications of the physical properties: amplitude of the perturbations σ8, mean
temperature T and temperature density relation γ. Then the outcome of this simulations
for various redshifts is processed, by dividing by cells, extracting the neutral fraction and
computing the optical depth. Then this has to be renormalized at a certain mean flux,
and from that the fast fourier transform (fft) provides the power spectrum in the 3 axes
P (kx, ky, kz). The eulerian simulation provides directly the power spectrum. The power
spectrum is then transformed to k, µ coordinates. This is then used to create the standard
method for all the simulations, a series of tests are used to select the equation to describe the
non linear part of the spectrum, which will make use of the linear matter power spectrum.
Through this method are selected the binning, scales (cut, transition) that are considered, and
minimum error (�). This determines the fiducial model to be used. From this are extracted
the predictions, convergence tests and effects of the method used. This are the outcomes
of the set of initial simulations and the methodology created to extract and fit the power
spectrum for reach of the simulations.
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2.3. Convergence tests

To be able to obtain strong results from this study, it is necessary to check that all the results
hold. All the data analysed comes from cosmological simulations, therefore it is important to
check if the results are or not critically dependent on the simulation used, and its characteris-
tics. Also it has been checked in §2.5 the effect that the data reduction for the fitting on the
values of the parameters.

the next step to proceed is to do the same analysis with simulations, modifying each of
the characteristics that can have an effect on the results. For clarity we will divide those
characteristics in two parts:

First one would be Prostprocesing, which is all the modifications that can be done to the
power spectrum and the fitting procedure; the binning of the data intervals, the transi-
tion point in k space in which the power spectrum data points pass from being computed
exactly to be computed in bins in k and µ, the added error to avoid the small scales
dominating the fit, the effect of doing the fitting up to larger or smaller scales, renor-
malization of the flux to have the same mean flux in all boxes and finally how the results
depend on the fitting formula used. Since those are technical proceedings and have been
tested for the production of the fiducial model, they are discussed in the appendix 2.5.

Second one would be Simulation characteristics, which correspond to the different data that
I use to compute the power spectrum of the flux. That is: different dimension of the
simulation (box size), numerical resolution of the simulation, number of flux cells in the
grid, number of pixels on the line of sight and finally using totally different simulation.

2.3.1 Box Size

As discussed in §2.2.1 the scales in which the power spectrum is characterised are of the order
0.1 to 100Mpc, therefore a simulation must be able to explore inside this range of scales with
enough resolution. Simulations within this given box size will be used. However must be also
checked that the results obtained are not simply due to the physical size of the simulation,
i.e. physical process that occur only at those scales and might affect the power spectrum . Or
simply check if the simulated physics scales well enough for bigger sections of the universe,
and if not, how that could affect the results.

In order to accomplish that it is only needed to run with bigger boxes given the same
initial conditions. For this propose the Gadget simulation has been run in 80Mpc/h with
5123 particles and a 120Mpc/h with 7683 particles, an ”equivalent” resolution (i.e number
of particles per volume) as the Reference simulation with 3843 particles. Also to have an
equivalent physical resolution the L120 with 5123 cells vs. R384 with 2563.

Then simply compare the results of the fittings for each redshift output for those simula-
tions. In fig.2.3 is compared the power spectrum for L60 and L120 with equivalent spacial
resolution (7683 particles and 5123 cells for 120Mpc/h; 2563 cells and 3843 for 60Mpc/h at
z=2.2). It can be seen how the fit for the small scales is very similar, while for large scales
the fit shows increasing difference for decreasing µ. Although this difference is minor and
decreases when more simulations are stuck together for the small box, decreasing cosmic vari-
ance, the difference still remains. Therefore it would be important to understand the cause
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of it, if is a simulation glitch or data processing. The fact that it depends on µ and the
differences are more important along the LoS probably points to an effect of the large scales
peculiar velocity playing a different role in each simulation. Having less power on L60 along
the LoS hints that for it the peculiar velocities are more important, while for L120 maybe
larger structures probably present in L120 but not on L60 on large scales limit the influence
of the velocity smaller scales.

Visually the difference is more noticeable for large scales where the power is bigger for
L120, but that does not translate to large fitting bias values fig.2.4 were it can be seen that
the values are similar for the different boxes. But surprisingly the gradient of the values of
β is reversed, something that one would not expect even if by small differences exist. L80 is
in one extreme and L120 or L60 in the middle while one would expect the opposite. Notice
that L80 has different physical resolution than L60 and L120, which have the same. Also the
fiducial model has been chosen for it to give the same β as L120 at redshift 2.2, as explained
in the appendix fig.A.1.4 . Such setting has not been done for the rest of the redshift outputs
or other simulations. Yet the agreement, even if not total is quite good. And curiously for
bdelta, and the non linear parameters seen in fig.2.5 now L80 does behave as expected for most
of the parameters and redshifts the values falling in between L60 and L120. This behaviour
might have to do with the method used to select the fiducial model, or the different physical
resolutions used when comparing L80 with the others, nevertheless the effect minor but shows
how complex this study is.
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Figure 2.3: Comparing the 120Mpc/h box with the 60Mpc/h with equivalent resolution,
7683 vs. 3843 particles and equivalent physical cell resolution 512 vs. 256. At z = 2.2 The
agreement is evident for small scales but not much for large ones, yet the bias from the fit
result in similar values.
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Figure 2.4: Comparing the bias parameters for different box sizes. Notice that while L60 and
L120 have equivalent physical resolution, i.e. L60 has 3843 particles and 2563 cells, L120 has
7683 par and 5123 cells, L80 has different physical resolution since it has 5123 particles and
cells.

2.3.2 Resolution

To test if the results are sensitive to the resolution of the simulation, the same setup is
used with different number of particles for the G-2 simulation: 3823, 5123&6803. The same
fiducial model has been used for all of them. Is expected that the major discrepancies will be
important for small scales where the resolution plays a major role. This can be seen in fig.2.6
where the discrepancies are stronger for small scales, and mostly for angles perpendicular
to the LoS (high k low µ). This agrees with what would be expected when having more
resolution and its effect on the small scales. Curiously, similar to the box case, can be seen a
slight but systematic increase on power at all scales, also greater for smaller µ values.

Nevertheless the difference is rather small if one only looks to the data points. This is
reflected directly in the values for b2

δ
remain almost the same, as seen in fig.2.7, here can

be easily observed that the resolution has an effect on the parameter β and dependence in
redshift, being the effects more clear at high z. Lower resolution decreasing systematically
the values β wile higher resolution increases it. R384 and R640 agree surprisingly well for
both bias parameters at low redshift, but R640 has bigger β for high redshift even though
converges a low redshift. That is probably due to the ability of the simulation to resolve
non linear scales depending on the resolution, not being enough particles at the non linear
scales and high redshift, and therefore not being resolved the same way for higher and lower
resolutions at those redshifts.

Interestingly when comparing the fits for the non linear parameters fig.2.8 there are no
significant differences, nor strong discrepancies depending on redshift. Overall the parameters
for R640 are more different but in a constant way. Except knl and kp in which R640 has
different trend. For kp, if the interpretation given to it as to account for the scales in which
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Figure 2.5: Comparing the nonlinear parameters for different box sizes. Notice that while L60
and L120 have equivalent physical resolution, i.e. L60 has 3843 particles and 2563 cells, L120
has 7683 par and 5123 cells, L80 has different physical resolution since it has 5123 particles
and cells.

the pressure plays a role, then it would reflect that this pressure is solved differently for
the higher resolution and higher redshift, as it better analyses the non linear behaviour for
those redshifts. But again that is only an interpretation, other tests and analysis should be
developed to check those interpretations. Nevertheless the effects are small and are only over
non linear parameters with strong degeneracies between themselves, therefore is difficult to
isolate those effects.

Overall higher resolution reduces the trend on the redshift evolution of β, being now
compatible with no evolution with redshift if the errors are considered. On the other hand
this non evolution trend is unlikely for the lower resolution. Finally what that shows is that
even effects at small scales like the resolution, have a noticeable effect on computing the bias
parameters when this method is used. In this case making what was a clear evolution on β
not so clear for higher once higher resolution is used.
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Figure 2.6: Comparing the power spectrum for the lower and higher resolution simulations
(colors 6403 vs grey 3843 particles ) for the 60Mpc/h box at redshift 2.6.
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Figure 2.7: Different resolution for the 60Mpc/h box for the same initial conditions. Here
the highest and lowest resolution simulations with 6403 and 3843 particles are compared with
the reference 5123 particles for 5123 cells.
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Figure 2.8: The non linear parameters for different resolutions, they do not show any signif-
icant trend or divergence other than the kp one, which probably links with the differences in
non linear scales for different resolutions.
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2.3.3 Number of flux cells

Another effect related to the resolution in number of particles is the cell resolution for the flux
box. Converting particles of the simulation to a box with regular grid. This can be done for
different number of of total cells, the method to obtain those cells is explained in appendix
A4 of Viel et al. (2004). From those cells that contain peculiar velocity, hydrogen density, and
temperature, is easy to extract the flux and compute the power spectrum , the amplitude for
each mode of the box. The more cells there are, the better the large modes are solved, however
this implies that more memory is used to handle the three dimensional Fourier transform, and
since is a tree dimensional box, increasing the cells increases the memory consumption as n3

cells
.

Therefore selecting the minimum amount of cells to resolve all scales is needed. To obtain
scales of 0.6Mpc/h for L60 means 100 cells per side, and for L120 should be 200. However
when L120 is divided in 256 cells the power spectrum is not well solved for small scales, has to
be considered that in other to produce those cells the neighbour particles are play a role,like
in all the SPH systems, therefore cells too big can disturb that, and when computing the
power spectrum more physical resolution is needed. All SPH simulations in this work will be
divided in 5123 cells as standard, to keep the same cells for comparison, except L60,R364,C256
in which is the physical resolution is the same as L120, described in §2.3.1. The problem is
that modifying the total number of cells has an effect on the power spectrum , even for L60
the modes mainly at small scales, but also at large scales, is affected by selecting a box with
different number of cells. This is probably due to the way the cells are build, but in any case
this effect must be also considered and explored. In fig.2.9 is shown the effect of modifying the
number of cells for the highest resolution simulation: R640, where the effect is stronger since
there are more particles and the neighbours affected differ more depending on the number of
cells. It can be seen how for small and intermediate scales the discrepancies are noticeable,
and moreover for large scales in the C256 simulation the power of the data points is slightly
lower for increasing µ. As there is less spacial resolution probably lower modes that would
be taken into account by the neighbouring system, now are not resolved and contribute to
increase the power at higher scales.

From fig.2.11 the different tendency for β and bδ at z=3, the only major difference
for this redshift, as seen in fig.2.10 is that the non linear terms perpendicular to the LoS
are have a bigger difference, and probably that forces the fit to give smaller β. From the
fitting eq is obvious that when µ → 0 the non linear effects have more importance over the
bias parameters since the pareameters depending on µ have little or non effect now. This
then motives once more to compute the power spectrum for the IGM, or at least the power
spectrum perpendicular to the LoS since it constrains more strongly the bias, which describe
the growth of the perturbations and the departure from the linear evolution. The fact that
this discrepancy is stronger at z=3 is probably also due to having smaller structures which
involve less particles to and a coarse cell can not resolve them good enough.

Finally the non linear parameters, one hand they differ significantly as seen in fig.2.12,
probably reflecting the differences in the non linear scales, but on the other they do not show
a great difference in trends for z=3 as is the case with β, except for the case of bv and maybe
kp, showing this change in trends for z=3.
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Figure 2.9: For the simulation with 6403 particles, comparing for 5123 (grey) and 2563 cells
(colors) at redshift 2.6. The number of cells chosen to compute the power spectrum form the
flux has an appreciable influence, it increases the power for the small scales of the simulation.
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Figure 2.10: For the simulation with 6403 particles, comparing for 5123 (grey) and 2563

cells (colors) at redshift 3. The the discrepancies for small scales are greater than at lower
redshifts.

— 46 —



CHAPTER 2. THE 3D POWER SPECTRUM OF THE LYα FOREST FROM SIMULATIONS

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 2.2  2.4  2.6  2.8  3

β

z

 C512,R640 
 C256,R640 

 0.01

 2.2  2.4  2.6  2.8  3

b
2

δ

z

Figure 2.11: Effect of the flux number of cells on the power spectrum for the higher resolution
6403 where the effect is stronger. Higher β values for C256 are mainly driven form small scales
effects, as seen in fig.2.9, except for z=3 where the trend is reversed.
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Figure 2.12: 256 versus 512 cells for R640 for the non linear parameters. The values are quite
different, but the only breaking of the trend for z=3 is seen bv, and to a minor degree in av
and kp.
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2.3.4 Number of pixels in the line of sight direction

Finally another technical detail to check is the effect of increasing the number of pixels along
the line of sight, that way having more resolution along this axis. Then the position space
is stretched when converting to to the velocity space due to the Hubble flow, therefore more
pixels along this direction could in principle modify the power spectrum . Increasing the
pixels is done by dividing the optical depth (τ) along the line of sight in 1024, while in the
perpendicular direction only 512. Latter when the flux is computed, 2 pixels of the optical
depth from the LoS are combed to form a flux cell, having finally a cubic 5123 cells box for
the flux, but with the flux computed from more τ pixels along the LoS.

The curious thing is that increasing the pixels along the LoS has apparently stronger effect
on the for the modes prependicular to the LoS, as seen in fig.2.13. The fact that those are
affected is not surprising though, that bin contains some modes along the LoS, and moreover
when building the cells the neighbouring particles in all directions are considered, as explained
in §.2.3.3, therefore increasing the number of pixels in one direction affects all of them, and
finally since the renormalization is affected by the total power, a decreasing or increasing along
one direction is going to be redistributed for all, as the flux is modified up or down to have
the same mean. The fact that the perpendicular seems to be the most affected is simply due
to the fit procedure, also as explained in §.2.3.3 the the bias and the fitting is more sensitive
when µ → 0, therefore small changes on this will affect mainly β and have an effect on the fit
at all scales, which is the case seen in fig.2.13.

This modification, is seen to have similar but much weaker effect than increasing the
resolution. Affecting the values of β for high redshifts, seen in fig.2.14, the similarities with
the R640 are clear, but the increase in β is lower than for R640, pointing to some other effect
which is present in one of the simulations but not the other.

For z=3 the slight decreasing in power reflected by smaller bδ as well as β points again to
some effect of the resolution with redshift, being the number of cells or pixels ore sensitive to
smaller number of particles to describe non linear perturbations that have not grow much at
high redsifts, therefore harbouring smaller number of particles, affecting that to the optical
depth pixels build. Overall the effect is quite small, also in the fitting on the non linear
parameters, not shown here, but again it shows the sensitivity of the fitting procedure to
small differences on the non linear scales, especially if they are present perpendicular to the
LoS.
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Figure 2.13: Comparing double number of pixels in the line of sight direction 512 to 1024
pixels at z = 3. The effect is small but affects the µ bin perpendicular to the LoS, which
explains why β is affected greater for this redshift.
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Figure 2.14: Bias parameters. Comparing the relevance in the fitting of increasing the spacial
resolution along the LoS increasing the number of pixels in the line of sight whit the reference
model. The effects go in the same direction as increasing the resolution, as seen in fig.2.7 .
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2.3.5 Comparing Lagrangian and Eulerian simulations

Last thing to be tested is if the results are consistent despite the simulation that is being
analysed, which means that they might be more general than the specific case studied.

For this work an Eulerian simulation could be also used, described in §2.2.1. Comparing
it with the reference setting of the Gadget-2 simulation, the results for the bias parameters
some differences, mostly in bδ fig.2.16. The differences probably arise form many different
characteristics of each simulation (see Table2.2.1). This translates in quite different power
spectrum , seen in fig.2.15. When comparing the two simulations, all the postprocessing for
both is the same, adjusting for different box sizes as done previously. In the event that the
fiducial model can be safely applied to any given simulation or data sample, the discrepancies
on the bias parameters could be used to select which kind of simulation better recovers the
power spectrum of the IGM. Unfortunately since it is such a complex matter and depends
on so many factors it will require a great effort to reach the point in which we are able to
spot such differences. For the non linear parameters, the disagreement is even larger than the
bias for most of the parameters fig.2.17. Most likely reflecting the combined effects of all the
different physics and characteristics from both simulations.

 0.01

 0.1

 0.1  1  10

P
f(
k)

/P
l(
k)

k [h/Mpc]

color: Eu
grey:  Lag

z = 2.6 µ 0.0-0.25
µ 0.25-0.5
µ 0.5-0.75
µ 0.75-1.0

Figure 2.15: Comparing the reference disposition for Gadget-2 in grey versus the Eulerian
simulation at redshift 2.6, can be seen that the dispersion at low modes is much grater, affected
also by the smaller size of the box and greater resolution, among many other differences.
Visually can be seen as the fitted curves differ quite, which will translate to different values
for the bias parameters.
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Figure 2.16: Comparing the 50Mpc/h Eulerian simulation with the 60Mpc/h reference for
Gadget-2 . The discrepancies are most likely due to many major differences. With enough
sensitivity using this method it could be used to check which simulation better reproduces
observations.
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Figure 2.17: The non linear the parameters probably simply show expected differences in
solving the non linear regions for Eulerian vs. Lagrangian simulations.
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2.4. Effect of different physical properties on the power

spectrum

All this work revolves around the bias parameters in the Lyα power spectrum . Therefore it
is interesting to see how those are affected by the physics of the IGM, analysing those effects
will help to better understand the physics of the IGM. If the bias are well known that will
constrain the physics, or the other way around, i.e knowing the physics from the simulations
and form them constrains can be extract for the bias, as done in this work. To understand how
the physics affects the bias, and how that limits the possible characteristics of our universe,
the best way to proceed is to play with the physics of the simulated universe, see what effect
it has and which constrains can be found for the IGM. Four major ingredients that affect the
IGM where chosen to play with, those are:

1. Mean temperature of the IGM.

2. Pressure-density relation (γ).

3. Amplitude of the perturbations (σ8).

4. Mean flux of the IGM.

But firstly it will be analysed the the simple evolution with time, trough the different cosmo-
logical outputs from the simulations (redshift from 3 to 2). This is, the dependence of the
bias parameters on the redshift, and how it is related whit the effect of the rest of the physics
studied here.

2.4.1 Redshift

One simple yet important thing to observe is the evolution of the power spectrum with redshift,
and with it, the bias and other parameters. When doing that, it is convenient to analyse the
results from both Eulerian and Lagrangian simulations, despite the differences. That way
more general results can be extracted.

To see the evolution on redshift for G-2, even if is not the standard γ = 1.6 but γ = 1,
fig.2.27, fig.2.28 can be used. Here it can be seen how the linear scales are more important
for high redshift, and how the amplitude of the power spectrum (highest to smallest power
depending on µ) is smaller for high z. Also the point where the different cuts on µ intersect
is more to the left (higher scales) for lower redshift, while the place where the power peaks
for µ → 0 is more to the right for smaller z. This is general for all the cases and simulations
explored, and simply reflects the growth of the non linear effects for a more evolved universe,
as it is expected after all.

The evolution of the bias for the Eulerian and Lagrangian (G-2) simulations can be seen
in fig.2.16. Both bδ and β show a strong evolution with redshift. bδ evolution is expected
since the older the universe is, the more ionized it becomes. This erases power from the flux
spectrum decreasing bδ. The fact that the evolution follows a power law can be explained
by the bias tracing the evolution of the mean flux that follows itself a power law as seen in
eq.2.1.
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For β no clear evolution can be expected since different factors play different roles, as will
be seen in the next sections. An increase in ionization results less absorption and more
flux, which implies increasing β fig.2.19; but increasing temperature results in a decrease
on β fig.2.19; finally increasing the perturbations results in bigger β fig.2.22. The evolution
with redshift of the temperature-density relation is weak in the simulations, but it increases
slightly with redshift, then an increase in γ means bigger β fig.2.25 but again this is a small
effect. Then there are opposite contributions, bigger perturbations and flux increase β, while
higher mean temperature decreases it. As a summary β ∝ σ + F̄ − T̄ . This accounts for the
evolution on redshift and the change in trend, this change pointing to T̄ gaining in relative
importance over the others. Again this simplistic interpretation should be taken lightly, since
other effects that evolve with redshift are not considered: from technical details with the
simulations, to other physical aspects that can be of importance, like shocks or a major role
of the temperature density relation, or different ways to proceed with the ionization. Also it is
too simplistic since the ionization is related with the mean flux and also the mean temperature,
which have opposite effects on β; those have been studied in different ways therefore more
direct interdependence can not be ruled out.

For the non linear parameters, from fig.2.17 can be seen how the trends for all the param-
eters (except maybe kavv ) are the same, despite the large differences in values. This points to
some common evolution in redshift for the the effects that drive the non linear evolution of
the power spectrum . Also can be noticed the quite neat linear evolution of bv with redshift,
and how despite all the other differences, both Eulerian and Lagrangian simulations agree
quite well in both the values and slope of this parameter.

2.4.2 Mean Flux

One piece of physics for the IGM not well described yet is the ionization radiation background.
Therefore it is interesting to see how different amounts of ionization, which translates in
different mean flux, affects the data and the value for the fitting parameters. To achieve that
a simple rescaling of the flux is done, in the same way of the renormalization of §2.4.2. It
is done for one specific redshift of z = 2.6. The values to which the mean flux is rescaled
are the ones corresponding to the mean flux for each of the other redshift outputs, that way
they can be compared to the corresponding mean flux of each redshift. Direct comparison
of the power spectrum can not be made since the power increases or decreases with redshift,
however comparing the non linear power D(k) is possible since are normalized to 1. In fig.2.18
can be seen how similar this terms are for 2 different redshifts, once they are rescaled to the
same F̄ . At the same time can be seen how the differences are mainly dependent on µ, being
almost the same perpendicular to the LoS but quite different along it. This shows how the
non linear evolution can be well described by a change in the neutral content of the universe
if the velocity distribution is not considered, but when it is directly involved on the resulting
spectra, like in the LoS, other physics depending on redshift play a major part. This allows
to disentangle the redshift evolution from the mean flux evolution.

All of that is reflected on the values of the bias. In fig.2.19 two effects can be observed:
how the bias parameters change for different rescaled flux at the same redshift (blue line) and
how they change with the normal redshift evolution (red line). The effect of the flux on bδ is
clear, being the main characteristic that dominates its evolution. However the slope still is
different, hinting that other process have some relevance. For β it is seen how it also has a
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strong effect on the evolution of the parameter, but accounts for a smaller slope of β, therefore
having weaker effect on the β evolution with redshift. This evolution is expected from the
µ dependence in redshift, mainly traced by β and other non linear parameters. This implies
that this evolution is driven by other effects more dominant than the flux.

In fig.2.20 can be seen the dependence of the non linear parameters on the flux. All
the parameters but bv have inverted slopes. It is expected since the time evolution of the
perturbations tends to increase velocity dispersion and hampers perturbation growth. This is
enhanced along the LoS by the redshift distortions which tend to expand the modes, removing
power along the LoS for smaller scales and increasing the power in larger scales. While a
decreasing in flux tends to increase the power, since there is more neutral gas which traces
more structures, especially the low density ones which better trace the linear evolution. This
means that for lower flux the non linear terms are smaller. For the same F̄ that translates
in lowering the D(k) for smaller redshifts, as seen in fig.2.18. It is curious that kp has much
stronger evolution only when modifying the flux, while is not that evident for the redshift
evolution; translating the effect of increasing the mean flux as a pressure therm that hampers
the growth of the perturbations.

 0.1

 1

 0.1  1  10

D
(k

)

k [h/Mpc]

F: =0.69

µ 0.0-0.25
µ 0.25-0.5
µ 0.5-0.75
µ 0.75-1.0

Figure 2.18: Non linear Part of the power spectrum fthe same mean flux but at different
redshifts: Grey is the reference simulation at z=3; Colors are the rescaled power spectrum
from z=2.6 to the mean flux of redshift 3. It can be seen how the differences are mainly
dependent on µ, pointing to other effects dependent on redshift shifting it.
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Figure 2.19: Values for the bias parameters. Rescaled fluxes compared with the equivalent
flux for the analysed redshifts, being the same at the central value corresponding to z = 2.6.
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Figure 2.20: Evolution for the non linear parameters, rescaling the mean flux for redshift 2.6
compared with the values for the vias corresponding to the normal redshift evolution.
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2.4.3 Overdensity amplitude

The amplitude of the perturbations σ8, characterized by the amplitude of the linear power
spectrum at 8Mpc/h, is not yet well constrain to de level of other cosmological parameters.
It is seen that σ8 has a strong effect on the structure collapsing since it will affect the the
transition from linear to non linear scales, depending on the densities, having expected strong
effect on the the redshift distortions and therefore on β.

This strong effect in β is clearly seen in fig.2.21 where there is a strong dependency on
µ, this is reflected in fig.2.22. What is surprising is the small effect on bδ despite the great
differences on the power spectrum , being it much lower for large scales and larger σ8. This
points to a still a large effect of the non linear parts on the value of the bias parameters. There
is also an strong evolution depending on k, being the effect stronger for k low and high µ or k
high and low µ. All this makes one of the stronger effect seen, both in β and in the non linear
parameters seen in fig.2.23, However it must be noticed that despite all those differences bv
remains the same even if it should represent the variation on µ for high k.

Although the effect on β is probably the most clear from the whole work, and has no
strong redshift dependence, the values are still compatible within the given error bars, which
means that the method should be greatly refined before strong conclusions can be derived
from this results. This points to an effect due to σ8, but is still far to give a quantitative
dependence.
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Figure 2.21: Comparing different power spectrum spectrums from simulations with reference
σ8 = 0.88 (grey) vs. σ8 = 0.72 (colors). Can be clearly seen that it will have a strong effect
on the redshift distortion parameter β, because of the strong dependency on µ. Also how the
effect is stronger for low k and high µ or high k and low µ, but not low k and low µ or the
opposite, pointing also to some dependence in k.
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Figure 2.22: Comparing bias for the reference model with σ8 = 0.88 and a model with
σ8 = 0.76 The overall effect of reducing the amplitude off the perturbations is a diminution
of the redshift distortion parameter β as hinted by fig 2.21. There is not a different slope on
redshift, which means that σ8 has an overall effect with no redshift dependence.
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Figure 2.23: Effect of lowering σ8 on the non linear parameters compared with the reference
simulation (red line), it is interesting to notice that the effects although great for almost all
the parameters is almost non-existent for bv which should represent the power on µ for the
non linear scales.
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2.4.4 Temperature-Density relation

The temperature density relation (γ) models how hot the barionic gas is expected to be
depending on its density, therefore T ∝ ργ whit γ determining the relation between both.
This is still not perfectly characterised and affects the evolution and growth of the structures.
This effect can be better understood by introducing variations in the simulation and see how
it alters the resulting power spectrum . In fig.2.24 can be seen an overall growth of the power
spectrum for smaller γ, being more pronounced for small scales, which is expected as denser
but not so hot halos produce more growth and therefore higher power. Also a slightly bigger
increase in power for µ → 0 is present; this is even more pronounced for bigger redshifts,
inducing to a greater reduction of β for higher redshifts as seen in fig.2.25. From fig.2.25,
2.26 can be also clearly deduced that the effect on the parameters when increasing γ is not
linear; producing a strong modification in all parameters, going from γ = 1.6 to 1.3 but not
much form 1.3 to 1.0. Meaning that for low enough T − ρ relation it becomes a second order
effect. Also from fig.2.26 is curious to notice how there is a strong redshift dependence on
kavv , and it has a small inversion of the values respect to decreasing γ, probably both effect
are related with the degeneracy between kavv and β which is the only other parameter that
has some evolution on redshift.
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Figure 2.24: Comparison of the reference simulation with γ = 1.6 (grey) versus one with
γ = 1.0 (colors). The power is overall increased, being more significant for lower scales and
µ → 0.
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Figure 2.25: Comparing how different values of γ affect the bias parameters for the reference
simulation (L60, R512). It can be seen how it has a strong and noticeable effect on β, also
minor in bδ which represents the increase in power seen in fig.2.24.

2.4.5 Lower temperature for lower γ

Modifying the mean temperature at which the simulation develops is one major effect over
the Lya, it can represent mechanisms as He II reionization, shell shocks, etc. Therefore is also
interesting to study which is the effect that it has on the power spectrum and the corresponding
bias, because so far the temperature of the IGM is not well characterized . Here has been
chosen to lower this temperature for a γ = 1, where it has been seen in §2.4.4 that for low γ
its effect is small. That way the sole effect from the temperature is more relevant. The way
to alter the overall temperature is simply by modifying the ionization background until the
desired temperature is achieved.

Overall lower temperature means lower power, except for the small scales, where it is
bigger for all my values but 0.0 < µ < 0.25. When the temperature is decreased one expects
more neutral gas, therefore more absorption and higher amplitude for the power, however
with the renormalization where the optical depth is modified to have the same mean flux
this effect is cancelled, this can be seen for the values Γ ; the other effect is that for lower
temperatures the broadening of the absorption lines becomes smaller, therefore the transition
between low density and high density gas becomes more sharp, and produces the overall
effect of reducing the power, since there can be more saturated lines now which before, due
to thermal broadening that expanded the absorption to different frequencies and contributed
to different modes, resulting in more power for each mode. However this effect of increasing
the power is overtaken by other effect at small scales and modes along the LoS. Here the
decreasing in power due to the sharper absorption lines is overtaken by the redshift distorted
structures µ → 1. Now those modes get enhanced due to sharper abortion contributing to
the power of those scales.

For variations of the power, when µ → 0 the effect is better fitted by different values of
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Figure 2.26: Comparing how different values of γ affect the non linear parameters for the
reference simulation (L60, R512). Here the differences are clear for all parameters for a
transition from γ 1.6 to 1.3 but not so large for 1.3 to 1.0.

β, while for µ → 1 it is by bv. This is clearly shown in fig.2.27 and fig.2.28, where visually
the differences for the power spectrum are grater at z=3 for µ → 1 than µ → 0, while for
z=2.2 is the opposite, resulting in the trends of β with redshift seen in fig.2.29, and in fig.2.30
for bv. The opposite trend of bv on redshift compared to β means that bv scans better for
differences when µ → 1 while β does it better for µ → 0. One would expect for redshift 3 to
have lower β (if only the lower modes are considered) and higher β for redshift 2.2, but the
effect is much stronger than expected, pointing again to strong relevance of the small scales
to the bias. Nevertheless always consider that the errors for the fitting are large, and the
fitted parameters have themselves large error bars form the χ2 reduction method Finally kp
also has a trend on redshift, this time in the same way as β, here it can be clearly seen when
comparing fig.2.27 and fig.2.28 that the differences at low scales are bigger for z = 2.2.
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Figure 2.27: Different mean temperatures for the standard L60,R512 but with γ =1.0 at
redshift 2.2. The effect is mostly an over all decrease of the power spectrum for lower mean
T (color) although the power increases for high k and all µ bins except the lowest. Also there
is bigger redshift distortion β for large scales and µ → 0, which translates to a higher fitted
value for β.
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Figure 2.28: Different mean temperatures for the standard L640,R512 but γ =1.0 at redshift
3.0. Now with stronger redshift distortion β for large scales and µ → 1 than seen in the other
redshift fig.2.27 , which translates to a lower bv.
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Figure 2.29: Modification of mean T for γ = 1 for the bias parameters. The effect over β is
strong when lowering redshift, this results form the fitting eq being more sensible to changes
when µ → 0, being the effect stronger for z=2.2 as seen in fig.2.27. For bδ a small systematic
decreasing for all redshift is what would be expected from fig.2.27, fig.2.28.
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Figure 2.30: Non linear parameters for the different mean Temperature. It seems to have a
clear effect on all the non linear parameters.

— 64 —



CHAPTER 2. THE 3D POWER SPECTRUM OF THE LYα FOREST FROM SIMULATIONS

2.5. Conclusions

In this work a method has been created to extract the 3D power spectrum of from the
transmission flux of a series very different hydrodynamical simulations, ranging from 0.1
h/Mpc to 10h/Mpc. This method has to be common for all simulations, allowing comparison
between them and common predictions from the various simulations. To make sure that this
is true a series of tests have been made that analyse how modifying some characteristics of the
method affect the outcome of our analysis, with that a fiducial method has been established
and used thorough the work. This specific methodology should be the one followed in future
works to allow easy and direct comparisons.

Once the methodology is set, it is necessary to understand the effect of technical details
like resolution or box since, these even though not being completely convergent show that
with the current simulations specific predictions can be done with sufficient certainty. The
main aim of this work can be pursued, the aim is to model the linear and non linear power
spectrum in the form of a simple physically motivated equation with few parameters. Then
the outcome from the simulations is fit to that modelisation. This has been done for the
various simulations with different technical aspects and then with a fiducial simulation where
the cosmology has been modified around a central, with that the effect of each variation on
the model and fitted parameters can be seen and then build a small grid of these effects.

Crucially from this simulations and the model specific predictions and its uncertainty
can be made for each simulation, and physical characteristics and cosmology, specifically
estimation of the bias and redshift distortions of the Lyα have been made. This allows to
test with observations these models and simulations done for redshift 3 to 2. This is aimed
ultimately to be used to put constrains on these simulations, cosmological models and physics
when comparing with Lyα surveys, whether current like SDSSIII-BOSS or future like SDSS-
IV/eBOSS or DESI.

It is important to notice the relevance of works like the one done here, the transmission
field of the Lyα forest is directly determined by the non linear physics that are only mod-
elled by hydrodynamical simulations. As the number and density of surveys increases the
perpendicular to the line of sight non linear scales are further and further mapped with better
resolution, therefore the necessity of a good modelling of these that is already indispensable,
will be even more necessary to understand and extract reliable cosmology information from
these future studies.

This work is the baseline that lies the methodology and modelling, this can be easily
extended in future work as long the same guidelines are followed to analyse many more simu-
lations. This would allow ideally to generate a grid that assuming the simulations reproduce
with fidelity the underlying physics of the universe, can be extensively used you constrain and
understand the cosmology and structure formation.

A.1. Building the Fiducial model

Through this abstract a specific fiducial model is created. A fiducial model and a good
characterisation of it is needed because an important goal of this work is to build a reliable
method to measure the bias parameters form the power spectrum . In order to achieve that,
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different simulations should be used to compare the results, finally providing a framework in
which the comparisons are direct and independent on the steps of the method.

To build the fiducial model one has to correctly study the effect of varying each procedure.
Each variation on the method produces slight that must be constrained to assert the robustness
of the results. This is complex to proceed with since many factors play a role and have some
minor or major effect that is coupled with others. This means that a systematic and foolproof
method is difficult to be found, however finding a method that suits for the analysis and is
reliable can be done, and it is done here.

Two main steps that determine the fiducial handling of the information extracted form
the simulation are, on one hand Processing (how to prepare the data from the simulations to
fit it with a model) and on the other Fitting (which model to fit and which fitting numerical
method to use). Those are not fixed by any well determined mechanism, therefore an optimal
configuration has to be found by educated guess. This forces to characterise how modifying
them affects the results.

This appendix is organized as follows: In §A.1.1 teh different equations that can be used to
fit the power spectrum are tested. In §A.1.2 the various equations are tested against the effect
of using different ranges of scales. Next is to select the minimum error that a bin should have,
this is done in §A.1.3. The same is done in §A.1.4 for selecting the binning to be used. Then
is seen that the minimum error and the binning are related in §A.1.5. Similarly it is check
in §A.1.6 the effect of selecting a different transition scale between binning and computing
specific modes. Finally it is studied in §A.1.7 the effect of adding more simulations with same
technical characteristics and physics but different initial conditions.

It should be reminded that this is a fiducial model build using L120 simulation as reference.
It should be tested if the same or similar method will still hold for different simulations, or
eventually if observational data that is eligible to be treated in a similar way. It is important to
know that the final results are only given by this specific fitting and data processing method
which will constitute the fiducial model. For the smallest boxes any modification on the
configuration of those will alter (even if by an small amount) the result.

A.1.1 Different fitting equations

As mentioned in §2.2, depending on the fitting expression used, the results wil vary. Trough
all the work eq. D1 2.5 has been used to show all the results, however this expression is
just physically motivation and its value is not fixed by any theory or empirical observation.
This allows for other options to be considered, this are studied here in the same way as eq.
D1. For brevity only eq. D02.4 explored there. Several other fitting equations had been
checked, those are not mentioned here, they simply where modifications of the ones shown,
and which did not provide any improvement on the fitting. Here Eqs. D0 2.4 and D1

2.5 are compared, they are used to fit the non linear behaviour of the power spectrum , as
described in §2.2.4.

The former formula D0, extracted from McDonald (2003) had to be dropped.An important
problem specific of D0 is that it has not a perfect linear behaviour for the larger scales with
the fitting points provided (it does not converge to 1 for the smallest modes), this is seen
in the left panel of fig.32. Notice that in the this case, the errors attributed for the modes
corresponding to large scales are much bigger than in McDonald (2003), here the total number
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of simulations is much smaller, therefore the variance larger and that is represented as larger
errors, this is described in §A.1.3.

A prevailing problem in the small 60Mpc/h boxes is that for both D0 and D1, when
different limit scales kl are considered as explained in §A.1.2, the fitted values returned for
β change by a 10 − 30%. However when this is computed for the 120Mpc/h box, the fitted
values are stable for D1 but not D0, implying that the fitting done with D1 is more reliable.

A different formula has a strong effect to compute the bias parameters for the reference
simulation (60Mpc/h, 5123 particles), despite how similar curves it returns for the fit of the
power spectrum fig.34. The effect on bδ is due to the described inability to for the formula to
achieve linear behaviour for large scales and high redshifts, that in its turn is caused by the
degeneracy of bδ with some of the non linear parameters, mostly knl and αnl.

Finally the degeneracies found using D1 eq.2.5 are shown. In fig.33, where the 1σ contours
for the minimization of χ2 is plotted.
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Figure 31: Comparison of the two fitting eq. D1 (grey) and D0 (colors), at z=2.2 for the L120
simulation. It can be seen that the differences are not strong visually, but that translates to
noticeable differences in the value for the fitted parameters, mostly for the bias parameters.

A.1.2 Scale cut test

One easy test to check the behaviour of the above options is to cut part of the non linear
scales, set a lower limit scale kl, if they recover similar bias parameters it means that those
are not strongly affected by the analysis done for the non linear scales. The cuts used are the
default 10.47h/Mpc, half of that 5.23h/Mpc and also 3h/Mpc, which is not shown in fig.34
since has similar behaviour as 5.23h/Mpc cut. In fig.34 can bee seen how D1 recovers similar
bias values when scales up to different kl are used, this tests plays a major role for selecting
D1 to be the fitting expression for the fiducial model, as is discussed in §A.1.1.
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Figure 32: power spectrum data and Fitted curves with D0 for L120, right panel. In the
left panel the non linear terms are ploted and it is clearly seen how the non linear terms from
D(k, µ) does not tend to 1 for the larger scales, meaning that they still have relevance on the
linear terms, an effect that is not desired for a well behaved eq. To be compared with fig.2.1
where D1 is used.

In order to correctly cut the smaller scales while retaining the valance between non linear
and linear contributions, the weight and number of bins of the non linear part has to be
modified. That is delicate to do because it has to be decided which equilibrium to preserve
and how to do it. The method used is to move the binned interval to higher scales (kt = 0.8)
in order to preserve the same number of binned data points at the same h/Mpc intervals,
while sacrificing modes computed for the specific values of k and µ. Other options consist in
increasing the density of bins or reducing the error associated to the remaining bins, conserving
that way the relative weight. Those different methods have also been also used to check the
effect, returning similar results as the one shown.

A.1.3 Selecting the Error

In order to apply a fitting method, the points crafted from the simulation must have some
variance, error or weights assigned. An optimal way to compute the variance associated to the
simulations would be to obtain the dispersion of the modes, using several simulations with the
same configuration but different initial perturbation field. However that is computationally
time consuming.

The way chosen to do this is by using the total number of modes that contributes to the
final value or fall in the k, µ interval. The bigger the number of elements the bigger is its
weight and the lower is its associated variance or error. The way in which the final weight of
points used for the fitting has strong effect on the results from the fitting procedure. Since
the number of modes grows as k3, the weight of the large modes which have a fixed binning
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Figure 33: Contours showing the degeneracies between the different fitting parameters for
the reference simulation at redshift 2.6. Those contours show the 1σ region for 2 parameters
obtained from the minimization of χ2 using a MCMC. There are some degeneracies but all of
them seem quite linear, showing elliptic shapes.

rapidly dominates the fitting. To avoid that a minimum ”error” is fixed for all the fitting
points, that way the smaller scales are no longer dominant in the fit.

The errors associated to the fitting points in this work are defined as:

σ(k, µ) = P (k, µ)/(
�
w(k, µ)) + P (k, µ) · �; (8)

where P3D(k, µ) is the power spectrum , w(k, µ), the weights and P3D(k, µ) · � is the factor
added to avoid the higher k dominating the fitting. For large k, 1/(

�
w(k, µ)) << � then

the error simply approaches �, for low k it only adds a small artificial uncertainty since the
variance dominates those modes. The value � accounts for how much this artificial increase
of the error is.

To compute the weights simply keep track of the number of elements that fall in each value
or interval of the new parameters space, r with just one more consideration, each element of
the amplitude power spectrum has contribution of 2ndim−1 = 4, if one of the modes along
one axis is 0 (only 2 dimensions, the perpendicular plane) the number of contributions is
now 22−1 = 2. That must considered for the weighting, although they appear 4 times in the
procedure, only 2 values are different, only 2 modes have information. The weigh associated
is half the one given to the rest.

In fig.35 is shown the retuned fitted value of β at redshift 2.2 for different values of �,
maintaining all other characteristics of the method the same. z =2.2 is chosen because during
the preparation of the work it has shown the most sensitivity to all the tests, due to the grater
relevance of the non linear evolution, growing to larger scales. β is chosen as reference because
also it is more variable than bδ.It is seen how the fitting is affected by the value of �, however
the returned values for the fittings are stable as long as it is kept around few percentage points
of the P3D values. The values for two different box sizes (60 and 120Mpc/h) are plotted, can
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Figure 34: Comparison of the fitted bias parameters for the two eqs. when using up to
different kl, in this case D1 to sclaes of k=[0.1:10.4] (red), and k=[0.1:5.2] (blue); D0 scales
k=[0.1:10.4] (green), and k=[0.1:5.2] (purple). Can be seen how D1 behaves similar for both
cuts while D0 eq.2.4 changes despite having more parameters, that is due to the non linear
terms having strong effect on the linear part. The differences in b2

δ
between the 2 eq. show

the effect of the non linear terms on the linear scales as those do not decrease to 1 for large
scales, as seen in fig.32 .

be seen how for L120 the fitted β is stable for orders of magnitude in �, that is not the case
for L60 where it keeps evolving for big enough differences in �.

To choose the fiducial value for �, L120 will be used as the reliable source. For L120Mpc/h
both bδ and β are stable for different �, but not in the case of 60Mpc/h. Then the value of �
is chosen in order to recover similar L120 fit. This fixes � = 0.05 that is, a 5% of the value of
the P3D. It is also practical since it is the one chosen in McDonald (2003). This value will be
used as the fiducial one for all the work, it will not be modified unless otherwise specified.

Finally it has to be mentioned that although for z 2.2 the changes are notable, for z=3
similar tests have been done. In those cases the values returned for the fitting are really
stable for variations on � and all the other modifications, therefore the fiducial model is
mostly constrained by the redshift 2.2, probably as hinted due to major relevance of the non
linear behaviour reaching larger scales for lower redshifts as the perturbations have evolved
and grown more. The same test have also been run for different number of particles and cells,
all of them retuning similar results.

A.1.4 Effect of the binning of the power spectrum

As discussed in §2.2.3 the data for low scales must be binned and added together in intervals
of k µ, modes and angle from the line of sight for the perturbations. The effect of this binning
on the outcome must be accounted for. Also must be considered that although it would be
ideal to have as many bins as possible to better describe the data, this excessive binning has
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Figure 35: Returned values of β for the fitting with different � (in this case the percentage is
showed) in log scale at redshift 2.2 for L120 (red) and 60Mpc/h (blue). It is clear how L120
is sable for a great range of � values while L60 changes greatly in the interval of interest, only
stabilizing at very small or big �. The crossing point at about 0.05 is chosen for the fiducial
model. The errors increase or decrease simply because for greater � a grater range of values
can give similar χ2, since only � is modified.

also negative effects, i.e. considering too many data points or small binning adds more data
on the non linear parts, out weighting it versus the large scales in which the number of modes
is limited, also a large number of bins lows down the MCMC.

Choosing a convenient number of bins in k, µ space has to be done in similar way as
choosing � in §A.1.3, that means computing β for L120 and Fiducial 60Mpc/h at z=2.2 for
different number of bins (as with � other redshifts are also analysed, but z=2.2 has proven to
be the most sensitive). The number of divisions in µ and k can be treated differently, but no
appreciable effect has been seen when modifying one for a fixed value of the other with respect
of varying the total number of bins by the same amount. The results are only sensitive to the
total number of bins chosen, not the way the division is done in k, µ, prompting to chose the
same number of divisions for both, the number of bins being the square of a integrer number.
In fig.36 is shown variation of the total number of bins, it is clear how L120 is sable for the
useful range of number of bins (not too large to slow down the MCMC, nor too mall to lose
information) while 60 changes greatly in the interval of interest. They cross at little more
than 200 bins, since number of bins is the square of an integrer then 225 and 256 are good
options, but we settle at 256 since it means 16x16 divisions in k, µ and multiple of 2, for easy
splitting. Notice that the total number of bins for L120 and L60 are not exactly the same, for
comparison reasons when constructing the bins they are forced to have the same k interval
when the boxes are different. For the case of 120Mpc/h that means adding few more bins,
that explains why in fig.36 the number of bins is not exactly the same for 120 and 60.
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As with the case of modifying � only the total number of bins is modified, maintaining
the rest of characteristics fixed. That translates in an increase of the errors returned from the
MCMC fitting when less bins are considered, or a decrease when more bins are.

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 10  100  1000

β

# bins

z = 2.2 L60
L120

Figure 36: Returned values of β for the fitting with different number of bins in log scale at
redshift 2.2 for L120, 6403 particles (red); and 60Mpc/h, 5123 particles (blue). The crossing
point gives around 200 bins, that is translated in 14 k and 14 µ intervals. The errors increase
or decrease simply because if there are less bins, less data points to compute χ2, the fitting is
less constrained.

A.1.5 Relation of error and binning effects

As can be deduced from fig.36 and fig.35 the influence of the increasing the binning is inverse
to increasing �. That means that those variations have opposite effect while have the same
origins: giving more or less relative weight to small scales versus large ones, if the small
non linear scales start to weight more (having smaller error or having more data describing
those ranges), the bias is finally affected, going down to values that better describe the non
linear scales rather than the linear ones. This also means that different combinations of � and
number of bins can give similar results for the bias, this is connected by the relation:

� ∼ n3/2; (9)

where n stands for the number of total fitting points. The exponent 3/2 is given by the cubic
dependence of the number of modes with k, which reduces the error, and its square-root is
simply the divergence. The values of � = 0.05 and number of bins = 256 have been chosen
to build the fiducial model. An � too small implies smaller error which does not reflect well
the uncertainty, bigger � implies bigger errors that might better reflect the uncertainty but
also implies bigger number of data points, which will slow down the analysis. Also when
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the errors become too large it is more difficult to extract any meaningful information from
the data. Since computing directly all the modes for the power spectrum is computationally
extremely time consuming, the procedure to reduce the data in bins, and then add an error
is an artificial management of the raw data. Understanding those effects and selecting which
best describes the original data is the objective of those tests. Therefore although the final
values are chosen because of their convenience and the ability to return similar values to L120,
other combinations are possible considering the degeneracy of n and �. In fact has been tested
that the values for the parameters remain the same if � is modified in accordance of eq.9. The
final values will be use for the large amount of simulations to be analysed, having a more or
less constrain errors allow comparisons between the different simulations. With enough time
it would be interesting to check which is the ideal combination and how it probably depends
on the resdshift, resolution, and others. If in a future those results want to be compared
with other computations is advised to use at least the same fiducial model if possible when
comparisons are done. It should be easily doable and not time consuming.

A.1.6 Transition scale effect kt

The effect of the of the scale interval for which the data points are computed exactly as
opposite to the binned interval onk is also studied. This is needed for the fit, the fitting can
be obtained directly form the value of the power spectrum at each k, µ, however there are
too many modes in small intervals, it is computationally desirable to reduce the number of
data points by staking them in bins. For the small k modes, on the other hand, is better if
the specific modes are computed, since correspond the linear scales which are desired to be
computed exactly. Since the number of modes grows as k3, at certain k it is necessary to start
the binning, that value will be the transition scale kt. As with the other tests the transition
scale is modified for the same simulation, for all redshifts and latter only for z = 2.2 both for
L120 and Fiducial 60Mpc/h. This change differs with the others in that the results from the
fitting are not sensible to it. For large differences in kt the value for the different parameters
remains almost constant both for L60 and L120. Only if a large kt is used has the contra
intuitive effect of slightly decreasing β, that is similar to giving more relative weight to the
non linear scales. This can be explained because although there are more points in the linear
regime, each one has bigger associated error and therefore its relative weight is smaller. Also
those points have now more dispersion as they are not averaged over, therefore the fitting
procedure would not be as sensitive to those points as compared to the less dispersed ones
from bins. Those effects can be checked by increasing �, which corrects for that variation.

Given that the selection of kt has no big relevance on the results, and that a large value
for ti is not desired as the number of modes increases rapidly with k, slowing down the
computation, a value of kt(60) = 1.0h/Mpc is used as a transition scale, it is arbitrary scale,
but is well inside the linear regime at those redshifts. It corresponds to 296 modes in k, µ
for the 60Mpc/h box, which is a convenient number as is of the order of the number of bins
chosen for the low k modes, i.e. 256 as seen in §.A.1.4 .

Note that if the same number of modes bellow kt are to be maintained for different box size
then kt will have to change. If the box is doubled kt must be halved. This is only necessary
if this specific quantity wants to be maintained for comparison. Maintaining this number of
modes constant translates to kt(120) = 0.5h/Mpc for 120Mpc/h.
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A.1.7 Number of seeds

Another test is simply to check how using the same simulation with different initial conditions,
a different seed, might affect the result. Also should be check if combining axis produced from
different seeds is or not equivalent to combine the 3 axes from the same seed.

No appreciable difference has been observed when conniving 3 different axes from simula-
tions with different seeds in the same way as done combining the 3 axes (x,y.z) of a simulation
box fig.A.1.7, confirming the validity of the method of using the 3 orthogonal axes of a simu-
lation to increase the statistical weight obtained from one given simulation.

 0.01

 0.1
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color: 3seeds
grey:  3axes
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Figure 37: Power for 1 box combining the Fourier transform along its 3 axes (grey) and
combining 1 axe of 3 different simulations (colors). It can bee seen how the differences are
minimum (only appreciable for the small modes) and the fit is virtually the same.

— 74 —



3. Metal content of the Damped Lyα Sys-

tems: the Metal Strength

“Quantity has a quality all its own.”
— Joseph Stalin.

3.1. Introduction

For fist Time in history we are able to access to the high redshift universe in astonishing large
numbers, the Baryon Oscillation Spectroscopic Survey Dawson et al. (2013b) inside the Sloan
Digital Sky Survey-III (SDSS-BOSS)Eisenstein et al. (2011b) has obtained spectra for more
than 160 000 quasars at z > 2. These spectra provide access to not only to the the source of
them, the quasars, but also to the high redshifts gas that lies in between the emitting source
and us. This in its turn is at a redshift high enough that we can observe from the ground
the originally ultraviolet absorption features produced by neutral hydrogen and metal species
that form this gas in the spectra of the background sources. The main absorbing features are
objects that are present in a fraction of all the observed spectra, these are Damped Lyman
alpha systems ( DLAs from now on) , they are generally defined to have column densities
NHI > 2 × 1020 cm−2. The SDSS-BOSS survey provides an unprecedentedly large sample of
DLAs. These are systems with high column density, this systems have two useful character-
istics: firstly the damped profile of their hydrogen Lyα line can be measured, providing the
column density can from the absorption profile, secondly the high column density provides
self-shielding of the external cosmic ionizing background, this implies that the hydrogen in
these systems is mostly in atomic form (see Wolfe et al. (2005) for a review). then using
the DLAs we have access to a sample of the atomic gas repository at that time. Their col-
umn density distribution yields directly the mean density of baryons that are contained in
these systems, this account for a fraction of the critical density ΩDLA � 10−3 at redshifts
2 < z < 3.5, or ∼ 2% of all the baryons in the universe Noterdaeme et al. (2012).

DLAs have been known for a long time, bun only now in such large numbers. Previously
studies of high resolution spectra have revealed fine characteristics like a diversity of velocity
structure of the absorbers which is characterized by multiple components, ranging form single
component with the typical velocity width of photoionized gas clouds of ∼ 10 km s−1 up
to ∼ 100 km s−1 Prochaska & Wolfe (1997). The derived metallicities are generally low,
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distributed over a broad range of 10−3 to 10−1Z⊙, and on average declining slowly with
redshift ( see Rafelski et al. (2012) and see also Kulkarni et al. (2005)). The complex velocity
profiles suggest a highly turbulent environment, and models of gaseous galactic halos in which
cool clouds move in random orbits can generally explain the observations (e.g., Haehnelt et al.
(1998), McDonald & Miralda-Escudé (1999)).

The nature of the DLAs within the paradigm of the Cold Dark Matter model of structure
formation should follow the model for structure of hierarchical growth, starting from a mass
power spectrum that predicts a number density of halos as a function of their mass at each
time of the universe.

The need to better understand characteristics of the DLAs like the velocity structure and
metallicities has impulsed us to the creation of new and creative method to use the data
from large surveys like BOSS and be able to extract the most juicy results that can light our
understanding of the DLAs and the universe in which they reside.

Despite the relatively low resolution and signal-to-noise of the BOSS spectra, the large
number of observed DLAs allows one use high number statistics to study global properties of
the systems.

We aim to develop a method to pinpoint two of the most important characteristics of the
DLAs, as mentioned earlier: the velocity structure and metallicity, that are traced by the
equivalent width of the metal lines of the DLAs. Being able to study them in large numbers
even for low resolution spectra promises to deliver new and interesting results. For that end
we developed a new method to compute equivalent width for 17 of the strongest low ionization
lines associated with the DLAs, this methods is able to measure an equivalent width regardless
of how weak or noisy a signal is, this has the drawback of having measurements that are not
very reliable but on the other hand allows us to have large numbers of them, and several
metal lines per DLA.

Then we aim to have the strongest way to use this wealth of newly measured equivalent
widths. Therefore we crated a parametrisation that combines all the lines measured for a
DLA, weighted by the expected mean value of the global population and corrected by the
natural evolution of the equivalent width of the metals with the column density of the host
DLA. We have named this parameter Metal Strength and we infer that it is a way to be able
to account for the mixture of different gas phases, velocity dispersions and the metallicity.
By the nature of the Metal Strength we can compute it for almost all the DLAs from BOSS.
With that we are free to group the DLAs as it best suits our interests to study properties of
the DLAs themselves and the universe and structures in which they reside.

This approach has the advantage of providing directly properties of population of DLAs,
and allows to group them by their mixture of different gas phases and metal content, which is
individually complex to model because of their large intrinsic random variation, but we can
try to model it from these populations with large samples and from which we can extract
average values.

Once we have group a set of DLAs we can extract average characteristics of the group by
staking them, this allows to average out the intrinsic fluctuations of individual DLAs and see
fine and weak features that would be otherwise lost due to the noise and intrinsic variability.

Another interesting property of the DLA population that has been extensively studied
is the redshift evolution of their metallicity. Although the Metal Strength computes a com-
bination of velocity dispersion and metal content, thanks to the large number of objects at
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our hands we can proceed to study the mean redshift evolution of the Metal Strength with
high precision. This provides the ground to be compared with other studies and models and
simulations that try to mimic the metallicity and velocity evolution of structures like the
DLAs.

Finally on the grounds of cosmology recent observations of the large-scale cross-correlation
amplitude of DLAs with the Lyα forest absorption have determined their mean bias factor
bDLA � 2 Font-Ribera et al. (2012), which indicates that the DLAs are distributed over a broad
range of halo masses 109M⊙ � Mh � 1013M⊙. We can now compute the bias not just for the
global average population but also for subpopulations according to this new parametrization,
grouping the DLAs depending on their Metal Strength.

Therefore in this work we describe our method to compute these equivalent width of 17
metal lines for the DLAs in §3.3, then we present the way to compute the Metal Strength of
the DLA and its correction by the column density in §3.4 and then we proceed to present a
newly compiled catalogue containing the equivalent with for these lines and the value of the
Metal strength for each DLA §3.5.1. We can then divide the total sample in three populations
depending on their Metal Strength and stack them to see the evolution of the mean of each
population with Metal strength §3.5.3, and see the evolution of the Metal Strength with
redshift §3.3.2. In §3.6 we discuss the results.

3.2. Data sampling

For our study we make use of a DLA catalogue containing 34 366 DLA candidates (but
only 19 698 have logNHI > 20.3, the column density used in the literature to catalogue an
absorbing system as DLA) at a redshift between 1.9 and 5.7, this catalogue will be referred
from now on as DR12DLA. DR12DLA is made from the SDSS-III BOSS Data Release 12
Quasar Catalogue (DR12Q). This is an update of the catalogue produced from Data Realese
9 see Noterdaeme et al. (2009) in which the detection of the DLAs in quasar spectra is made
through a fully-automatic procedure based on profile recognition using Spearman correlation
analysis based on Voigt-profile recognition from Noterdaeme et al. (2009). The data used in
the present work is obtained through the application of this technique to the Pâris et al. (2014)
to updated to DR12Q, it is basically an update of the DR9 DLA Catalogue Noterdaeme et al.
(2012)).

Our calculations are performed over almost the whole catalogue in order to obtain big
statistical samples for the overall DLA population. However, it is important to notice that
this DLAs catalogue was designed to be as large as possible and with minimal cuts on data
quality and robustness of DLA detection. Although by definition DLAs are those systems
with hydrogen column densities greater than 2 x 1020cm−2 we here use all absorption systems
with NHI ≥ 1020cm−2. Due to this, some systems can be false positive DLA detections or can
have significant uncertainties for the redshift and NHI.
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For each DLA we use the quasar continuum and noise for their measured wavelength from
BOSS, which is measured in units of log10(λ) This corresponds to a fixed velocity pixel of
69km/s which i. All the operations will be made in velocity space because of the fixed width
of the pixel. Just the equivalent width will be computed in Angstroms at the end.

The estimated redshift of the Quasar and DLA, its continuum to noise, and column density
are extracted from Notredam’s work. Also the fact that they might be flagged as a Lyβ form
another DLA on the same quasar spectra, the objects flagged can be not used to avoid
contamination with obvious false positives.

A table with a total of 872 skylines detected in the SDSS-BOSS survey is also used to
avoid these parts of the spectra contaminating the measure of the equivalent width. A list of
the the sky lines and description of the sky mask can be found in Blomqvist (2014). Also we
make use of the strongest emission features of the red part of the quasar continuum seen in
Pâris et al. (2012) to avoid using them to normalize that region of the spectrum.

3.3. Determining Metal lines equivalent width (W )

In this section we will proceed to compute the equivalent width of a set of lines that we
consider can best give a estimation of the level of metallicity of the DLAs. We proceed to
describe which are these lines to be used, how they are selected for each DLA and how their
W is measured. Finally this allows us to make an update to DR12DLA catalogue, we add
more W computed metals and the value measured with our method for the existing metals,
which we have realized traces better the equivalent width.

3.3.1 Metal lines used for the analysis

For this work a set of metal lines will be used as a proxy of the metal content of the DLA. This
lines are 17 low ionization transitions that correspond to the lines with a mean W̄ > 0.5 from
BOSS, as measured from Mas-Ribas et al. (2014), in the region between 1260Å to 3000Å at
restframe, that means that they are redwards from the Lyα line, but within the spectrograph
range. With the exception of and MnII 2576 since it has W̄ just slightly > 0.5 and also since
it has a long wavelength that usually falls in the reddest and nosiest part of the spectrum,
making its signal really noisy.

In Table 3.3.1 those 17 lines are shown, it can be seen that they are low ionization lines
in the restframe range mentioned. The equivalent with computed from staked DR10 spectra
Mas-Ribas et al. (2014) is shown, this will be used latter in §3.4, it is compared with the
mean value that we measure from our method to compute W , the description of this method .
Then to have a vision of the relative importance of each line, we show the mean contribution
of each line to the total weight of a computed MetalStrength that we will use latter in §3.4.
This basically shows how much on average that line contributes to the strength when that
line is used.
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where Wi is the equivalent width for each i metal extracted from the stack as shown in the
table, �i,j is the error of the i metal line measured for each j DLA, and Ni is the number of
times that each i metal has been measured.

The last column shows fraction of times that each line is used (F ) , Fi = Ni/NT where
NT = 33 939 the total number of DLAs where at least one line is measured. It can be seen
how non of the lines can be used for all the DLAs, specially the lines that are close to the
limits of the wavelengths used.
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Table 3.1: Metal lines used and their principal characteristics used for this work. The name of
the metal line appears with its rounded metal transition at vacuum and at restframe. Then
the W are shown for the stacked spectrum of the DLAs in DR10 Mas-Ribas et al. (2014), this
is compared with the W̄ computed in this work, the errors shown are the variance divided
by the square-root of the number of lines measured. The mean contribution of Each line is
shown as C, and the fraction of the total 33 939 DLAs in which a line is present is shown as
F .

Name λ Å Staked W DR10 W̄ Ci Fi

SiII − Fe 1260 1260.42 0.53± 0.03 0.79± 0.02 0.37 0.02
OI − SiII 1303 1303.20 0.68± 0.02 0.79± 0.011 0.34 0.20

CII 1334 1334.53 0.50± 0.01 0.53± 0.006 0.46 0.35
SiII 1526 1526.71 0.38± 0.03 0.38± 0.004 0.34 0.68
FeII 1608 1608.45 0.19± 0.01 0.21± 0.004 0.11 0.67
AlII 1670 1670.79 0.39± 0.01 0.39± 0.004 0.35 0.69
SiII 1808 1808.01 0.05± 0.01 0.08± 0.006 0.02 0.67
AlIII 1854 1854.72 0.10± 0.02 0.15± 0.006 0.04 0.61
AlIII 1862 1862.79 0.06± 0.01 0.12± 0.008 0.01 0.61
FeII 2344 2344.21 0.44± 0.02 0.42± 0.02 0.17 0.22
FeII 2374 2374.46 0.21± 0.03 0.31± 0.03 0.04 0.19
FeII 2383 2382.76 0.57± 0.03 0.61± 0.03 0.23 0.18
FeII 2587 2586.65 0.42± 0.04 0.45± 0.02 0.10 0.14
FeII 2600 2600.17 0.63± 0.07 0.61± 0.06 0.17 0.15
MgII 2796 2796.35 1.06± 0.12 1.08± 0.04 0.28 0.08
MgII 2803 2803.53 0.85± 0.14 0.91± 0.05 0.27 0.09
MgI 2853 2852.96 0.23± 0.04 0.25± 0.04 0.02 0.07
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To visualize this in Figure 3.1 it can be seen the mean contribution Ci of each line to the
DLAs in which that line is present (dark grey) and this value weighted by the fraction of the
total DLAs Fi in which this line is used. It can be seen how for example SiII-FeII1260 which
has a high mean contribution, this is not an important line in the global of the population
since it only can be used in a small fraction of all the DLAs (618 out of 33 939)

Figure 3.1: Dark grey, mean contribution of each line. On average to compute the metal
strength S that line will represent the fraction shown here. Light grey, the contribution is
weighted by the fraction of DLAs in which it appears, it is Ci multiplied by Fi, its sum is 1.
This shows how a metal specie is more o less important in the global population.

It has to be noticed that case of OI-SiII1303 doublet is special, OI1302 and SiII1304 lie
close enough for them to bend on the extremes, especially for high metallicity systems. There-
fore the lines do not reach the continuum between them and therefore overlap. Then to avoid
uncertainty when trying to split the 2 of them, it is better to measure both as a combined
absorption feature. This will make this one of the strongest features when measured, since
both OI1302 and SiII1304 are quite strong themselves and are more so combined. Unfortu-
nately since these lie close to the Lyα line, most of the time these fall in the Lyα emitting
region from the quasar, or in the Lyα forest if the DLA is far from the Quasar.
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3.3.2 Redshifts

For each DLA we need an estimate of its redshift. It can be corrected using the metal
lines associated with the DLA, but we have seen that the redshift estimated in DR12DLA
is accurate for DR12, this means that the correction does not change the redshift by more
than 1%, therefore DR12DLA redshift for the DLAs is used unless it is otherwise mentioned.
During the work the metal lines in the Quasar spectrum are identified thanks to this redshift
and the their laboratory wavelength. After that for each line the area around the expected
position of the metal line should lie is put in restframe. All the rest of the operations will be
made on this window on restframe, the size of this windows will be discussed latter §3.3.3.
The redshift of the Quasar is also needed to determine the region where the analysis has to be
done, only redwards from the Lyα emission. But it is not needed to be a precise estimation,
as the area around the Lyα peak would not be used.

3.3.3 Windows for continuum fitting and W measurement

As mentioned in §3.3.2, a section of the spectra around each line is shifted to restframe. But
how to select this section? For each line we will need a set of 2 windows centred around the
expected position of the metal line.

A smaller Measurement Window around the line will be the one that should contain the
whole absorbing feature, that means the pixels that have been affected by the absorption of
that metal specie due to the width of the line. This window will be fixed for all the lines
except for OI-SiII1303 where the two lines are measured together in the same window. For
this work we are assuming that all the lines for all the DLAs have similar width since their
widths, or Doppler parameter value, is mainly due to the spectrograph resolution. therefore
we will be using the same fixed window for all the lines of all the DLAs. We have check this
by computing the Doppler parameter of a subsample containing the best resolved lines of the
total population and seeing that it is indeed centred around the spectrograph resolution and
the distribution is not wide. The size of the measurement window is taken to be 10 pixels of
69km/s or 690km/s. With this size we have seen that the absorption feature sits well within
the window and not many continuum pixels sit inside.

A bigger Continuum Window is set around the smaller measurement window, but the
pixels of the this window are not used in the continuum one. This window will be used to
set the value of the continuum around the line, as it is explained in §3.3.5. This is used to
normalize the flux of the Quasar on the integration window. This window is also fixed for
all the lines except when 2 lines would fall within the continuum window of eachother in
order to avoid contamination on the continuum. In this case the continuum window is not
centred in one line but around of both of the integration windows, having a common continuum
window for both. This is the case for the pairs: AlIII 1855-AlIII 1863; FeII 2374-FeII 2383;
FeII 12587-FeII 2600; MgII 2796-MgII 12804. The size is nevertheless fixed, only the where
it is around and the distance to the line varies. The size of the continuum window is 50 pixels
of 69km/s, 28 at each side of the integration window or 1 725km/s, with 1 pixel in between
that is not used for neither.
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Figure 3.2: An example of the windows for a restframe flux in velocity, which is non normalized
(left panel) and already normalized (right panel) around the absorbing metal line AlII 1670
for the DLA in Quasar spectrum 55182-3587-0100 from BOSS . The Measurement Window is
what lies inside the red vertical lines, what lies outside corresponds and in between the blue
vertical lines is used for to the Continuum Window. These pixels of the Continuum Window
are fitted by a linear regression, this is shown in magenta in the right panel.

3.3.4 Selecting the Metal lines

Not all the 17 lines will be used for each DLA, only few of them at a time will have the
conditions to be analysed . For example it is very unlikely that a line close to the Lyα from
the DLA will fall on the red part of the continuum of the Quasar. That would mean that the
DLA is almost on top of the Quasar. This happens for the SiII-Fe1260 line, this line is so
close to the Lyα line that only 618 of them have been used 3.3.1. The criteria to select the
lines for each DLA are that they have to fulfil the flowing set of conditions:

• The red end of the lines’ continuum window has to lie redwards of the Lyα peak from
the quasar. Given the Quasar redshift, the line must be at least 150 · 69km/s redwards
of the Lyα peak as shown in Table 3.3.4. This is to avoid the line being in the Lyα
and NIV 1240 emission, or directly in the forest, where the continuum is difficult to
estimate.

• The red end of the lines’ continuum window has to fall bluewards of the last pixel of
the spectrograph. Given the highest wavelength measured the line must be at least
30 · 69km/s bluewards of the end of the spectra. This is to avoid the right continuum
being cut when it is close to the end of the spectrum.

• The lines’ integration window can not have any sky line in it. This is to avoid a sky line
contaminating the equivalent width.This set of 872 skylines can be bound in Blomqvist
(2014)

• The lines’ continuum window can not have an emission line from the quasar within it
or close to it. This is to avoid the emission feature upsetting the continuum estimation.
The emission features to be avoided are those shown in Table 3.3.4, wich represent the
strongest emission features of the red part of the spectra, as seen in Pâris et al. (2012)
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and the separation s between absorbing and emitting line must be bigger than the one
in the table, except for the Lyα case that is disused above.

Table 3.2: Strongest emission lines to be avoided in the red part of the continuum of the
Quasar. The metal line ha to be at a separation bigger than s or at more than the number of
pixels p from the emission line for the continuum to avoid being affected by the emission.

Name λ s p

Lyα-NV 1215.0 Å 10 350 km/s 150
SiIIV -OIV 1400.0 Å 4 029 km/s 61

CIV 1549.2 Å 4 029 km/s 61
CIII 1908.7 Å 4 029 km/s 61
MgII 2798.7 Å 4 029 km/s 61

Once the lines that meet these criterion are selected, these will be used through the rest
of the analysis for that DLA. The average number of lines used for each DLA is 6 Figure
3.3, but not the 6 of them have to be strong one. For the ones that contribute the most (we
have chosen the 8 that have C > 0.2) the most common is to have only a couple of these
contributing, and in 2 818 cases non of the strong lines contribute. A few DLAs (427) do not
have any lines computed.

Figure 3.3: Relative amount of lines in which the equivalent width was computed for each
DLA for the all 17 metal lines and for the 8 with contribution C > 0.2.
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3.3.5 Continuum estimation

Once the lines and regions around them are selected and in restframe we need to normalize
the region to compute the equivalent width of the line. In order to do that an effective and
simple method is to compute the continuum around the line and normalize by it. The simplest
estimator of this continuum is to assume that the continuum is flat in window used, therefore
a linear regression can be fitted to the pixels on both sides of the Continuum Window. This
simple example is shown in Figure 3.3.3 where the area around one absorbing metal line is
shown before and after the normalization.

This nevertheless arises some problems that have to be tracked. A bad estimation of
the continuum will result in big differences on the final equivalent width computed. Once
the emission features of the quasar continuum are avoided as described in §3.3.3, the main
problem to tackle is to avoid bad pixels or big outliers that will affect the estimation of the
continuum. In order to deal with this first a linear fit weighted by the noise of each pixel is
done. Then this is used to see if any pixel lies at more than 4σ from the first linear estimation.
If that is the case this pixel is removed and the linear fit is done again. This is repeated until
there are no more pixels at more than 4σ from the estimation, or when half of the pixels
have been removed, in that case the equivalent width of that line is not computed due to bad
continuum.

Once the linear fit is estimated, the flux pixels inside the integration window are normalized
by it, and also the noise of these pixels. This can now be used to compute the equivalent
width of each line and its uncertainty.

3.3.6 Measurement and error estimation of the W of the metal lines

There are different ways of computing the equivalent width. In this subsection we have decided
for a method suited for the data we are dealing with, a low resolution and noisy one.

By simply summing all the pixels within the integration window and transforming them
to Angstroms, dx = 69km/sλM/C we have a raw estimate of the equivalent width. The
associated error to this equivalent width is the sum of the noise of the pixels. This error
underestimates the real uncertainty since the fitting of the continuum would add uncertainty
here, but nevertheless this is a minimum estimation and it is sensitive to how noisy the region
used is.

This method is unbiased as it is independent of any characteristics of line or the process
used, but it gives the unrealistic solutions of negative equivalent width, this is due to some
lines having effectively no absorbing signal, just noise. This noise can be either positive or
negative therefore the sum over it can be either positive or negative. Actually the negative
values with their errors should be and are compatible with 0 at 3σ. This means that positive
values within 3σ of 0 are also likely to be non detection.

To test the method we have added mock lines in empty parts of the spectrum and we have
successfully recovered their initial equivalent widths within the uncertainty estimated for
spectra for different levels of noise. This can be further checked by computing the equivalent
with in areas of the spectrum that we do not expect to be any absorbing line. If the result of
the calculus is compatible with 0 then there is no bias on the measure.
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3.4. Metal Strength Index

Once we have a measurement for multiple metal lines for thousands of DLAs, we have pro-
duced a simple index of the matallicity to classify the DLAs according to their metal content.
This Metal Strength Index uses the equivalent widths of different lines, allowing for better
statistical power and larder number of DLAs with metal strength measured them if only
one metal transition is used since not one line can be used for all DLAs. This combination
also allows for reduced uncertainty or systematics, a combination of lines has less relative
uncertainty that the measure of only one line.

The way to measure this metal strength S for each DLA is by computing:

S =
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where wi is the equivalent width of each of the lines; �i is the error for the equivalent
width of each line ; and w̄i is the mean equivalent width computed for the whole population
of DLAs from the BOSS catalogue, here both the staking value or the mean value seen in
table 3.4.1 can be used. The staking from Mas-Ribas et al. (2014) is slightly more reliable
since it has more statistics (uses all the DLAs) and its uncertainty is smaller. Nevertheless
the 2 methods are compatible for all but the Fe 2374 value. This metal strength combines
the expected W from the global population, how each measured line is stronger or weaker
with respect to that, and its contribution to the metal strength is weighted by this expected
W and the uncertainty that each individual equivalent width for a metal. This way the lines
that have stronger expected Wand less relative noise contribute more to the Metal Strength
parameter.

A representation of this Metal Strength S is shown in the blue curve of Figure 3.4.

And the Uncertainty for the metal strength is:
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With this metal strength index we can build different groups of DLAs according to the
metal content of the DLAs.

3.4.1 Correction for the dependence of W on column density of neutral
Hydrogen

We have seen in Mas-Ribas et al. (2014) that there is a clear linear dependence of the equivalent
width of the different species of metals with the logarithm of the neutral Hydrogen column
density of the DLA to which they belong (log(NHI)). This can be seen in table A3 in Mas-
Ribas et al. (2014) and also in our own analysis, but with less precision since the number of
DLAs used for each subgroup is smaller. With this dependence in column density the Metal
Strength Index can be further refined.

W̄i(NHI) = a(log(NHI)− 20) + b, (3.4)
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where a is the slope computed for the fit and b is the value of Wi( log(NHI ) = 20). Now
the equivalent width of each line is not just ”weighted” by the mean of the population, but
by what should be expected to be the mean of a given the logarithm of the column density.
Therefore W̄i → W̄i( log(NHI ) and this linear dependence on the logarithm of the neutral
Hydrogen column density is extracted from as mentioned from table A3 of Mas-Ribas et al.
(2014).

In Table 3.4.1 the fitted parameters of the linear regression are shown.
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Table 3.3: Values for the linear regression fitted to the evolution of the staked W for different
intervals of NHI , from 3.4.

Name a b

SiII-Fe 1260 0.41 0.34
OI-SiII 1303 0.67 0.35
CII 1334 0.40 0.31
SiII 1526 0.41 0.18
FeII 1608 0.38 0.21
AlII 1670 0.12 0.01
SiII 1808 0.11 0.05
AlIII 1854 0.05 0.03
AlIII 1862 0.31 0.04
FeII 2344 0.51 0.19
FeII 2374 0.35 0.05
FeII 2383 0.57 0.28
FeII 2587 0.59 0.13
FeII 2600 0.63 0.30
MgII 2796 0.20 0.10
MgII 2803 0.83 0.52
MgI 2853 0.88 0.50
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In 3.4 it is shown that the effect o the correction on the total distribution is not noticeable.
This is because the corrections at bigger and lower HNI average out since the effects are
contrary as seen in Figure 3.4.1 .

Figure 3.4: Dark grey, mean contribution of each line. On average to compute the Strength
S that line will represent the fraction shown here. Light grey, the contribution is weighted by
the fraction of DLAs in which it appears, basically it is C multiplied by F , its sum is 1. This
shows how a metal specie is more o less important on the global population.

In 3.4.1 the sample is split depending on its log(NHI) for the lower range (log(NHI) <
20.25) shown in the upper panel it can clearly be seen how the correction affects deeply the
population, the same is true for the lower panel. Using this the populations can be better
defined. If log(NHI) for a DLA is bigger than the mean then that translates in a smaller S
since it is now ”weighted” by a bigger w̄ and the dispersion on S is smaller than when not
considering the correction. The opposite happens when DLAs with smaller column density
than the mean are considered.
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Figure 3.5: Comparison of the distribution of metal strength S when corrected by the depen-
dence on the DLA column density log(NHI) Upper panel shows the difference in distribution
for the low density end log(NHI) < 20.25 and lower panel shows the same for the high den-
sity end log(NHI > 20.6
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3.4.2 Splitting the DLAs into Metal Strength Populations

Once we have this Metal Strength Index S we can classify our population of DLAs according
to it. A good way to start is to divide the population in 3 groups. To avoid mixing of objects
belonging to different groups, only DLAs with a errs < 0.5 are used, out of the 33 939, 22 849
DLAs still follow that requisite. With that 3 groups are made with roughly 6500 to 9000
objects in each. The 3 groups are:

• S ≥ 0.5, Low metallicity group, with 7308 objects.

• 0.5 < S ≥ 1.5, Medium metallicity group, with 9010 objects.

• 1.5 < S, High metallicity group, with 6531 objects.

3.5. Results

Here we present the main results of the work, the elavoration of a a cataloge with the new way
of measuring the equivalent widths and the metal strength for each DLA §3.5.1, an analysis
of the redshift evolution of the metal strength parameter and a staking of the DLAs acording
to different populations selected depending on their metal strength.

3.5.1 Catalogue of the metal lines

Finally with the results we have produced a list containing all the equivalent widths measured
in the raw way. Each DLA contains the values for the column density, redshifts of DLA and
Quasar, signal to noise, name of the Quasar spectra in Julian Fiver Plate units. And then the
equivalent widths for all the 17 lines, with their error and a flag detecting strange features.
When the value of the equivalent width is 0 that means it has not been measured. In addition
to that the 2 final columns are the Metal Strength parameter measured as described in 3.4.1
and its uncertainty for each DLA.

This list differs from DR12DLA one in that the way of measuring the equivalent width is
different and that more lines are considered. In DR12DLA the line is fitted by a Gaussian
or Void profile and the equivalent width is measured from that. We have checked that this
method overestimates the equivalent widths since it only integrates over the values that are
below the continuum, therefore it is biased because the noise that tends to decrease the
continuum flux is considered for the fit, but the one that increases it, if it is putted above the
estimated continuum, is not used. This translates in an overestimation of the equivalent with
by about 15− 20% on average.
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Table 3.4: Sample of the catalogue, with some of the DLAs information: Redshift of the
Quasar, Julian-Fiver-Plate from BOSS, DLA redshift and Column density as measured by
Noterdaeme et al. (2009), then the measured W and its uncertainty for the 16 of the 17 lines
(MgI 2853 lacks due to the format of the table.). Other spectrum characteristics are included
in the public catalogue but are not shown here for brevity, these are: thingID, flag Right
Ascension, Declination, Continuum to Noise Ratio, and Balnicity index.

Qz JFP DLAz log(NHI) SiII1260 eSiII1260

2.72 56604-7167-0290 2.49 21.09 0 0
2.48 56265-6151-0936 2.37 20.02 0 0
2.78 56190-6182-0338 2.34 21.22 0 0

OI-SiII1303 eOI-SiIIi1303 CII1334 eCII1334 SiII1526 eSiII1526

0 0 0 0 0.66 0.5
0.17 0.15 0.11 0.14 -0.04 0.14
0 0 0 0 1.35 0.1

FeII1608 eFeII1608 AlII1670 eAlII1670 SiII1808 SiII1808

-0.01 0.56 -0.26 0.47 0 0
0 0 0.04 0.15 -0.06 0.19

0.39 0.12 0 0 0.32 0.16
AlIII1854 eAlIII1854 AlIII1862 eAlIII1862 FeII2344 eFeII2344

-0.44 0.88 0 0 -0.74 1.7
0.29 0.2 -0.01 0.21 0 0
0.45 0.15 0 0 0 0

FeII2374 eFeII2374 FeII2382 eFeII2382 FeII2587 eFeII2587

0 0 0 0 0 0
0 0 0 0 0.15 0.24
0 0 0 0 0 0

FeII2600 eFeII2600 MgII2796 eMgII2796 MgII2803 eMgII2803

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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3.5.2 Redshift evolution of the Metal Strength

Once we have developed the metal strength as a measurement of the intrinsic properties of
a DLA, driven by its velocity dispersion and metal content, then we can easily use this new
parameter to study its evolution under other properties from the DLAs, thanks again to the
large number of objects that we have at our disposition. One evolution that is very direct and
pursued in the literature is the study of the evolution of the metallicity with redshift Rafelski
et al. (2012), Kulkarni et al. (2005). Although in these studies the metallicity is directly
measured, we can do a similar exercise with the evolution of our metal strength S with the
redshift, we remind here that the metal strength connives a measurement of the velocity
dispersion and metal content of the DLA. In Figure 3.5.2 we can see how the distribution of S
clearly tends to be predominantly around lower values of S, this is more evident for redshift
higher than 3. In Figure ??, lower panel, we can see this trend with redshift more easily, here
the mean S and its standard deviation is plotted for each redshift interval, we clearly see how
for high redsift, 5 to 3.5, the Metal Strength increases sharply and then flattens for redshift
3 to 2, therefore this is not a linear monotonic evolution but it depends on the epoch of the
universe having a seemingly sharp rise in redshift 4 to 3, probably tracing some phases of
major structure and star formation. It has to be noted that a mean vale of S = 1 is what
should be expected for the whole population, therefore mean values above 1 imply stronger
than average and below 1 smaller than average metal strength.
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Figure 3.6: Evolution of the Metal Strength S with redshift. Upper panel shows the dis-
tribution of the metal strength for various cuts in redshift space. Lower panel shows the
mean S and its mean its standar deviation for several redshift intervals. At higher redshift
the errors grow as there are fewer DLAs in these bins that at lower redshift, the last bin is
twice as big as the others and ranges from 5.4 to 4.6.
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3.5.3 Stacked spectra for different Metallicity Estimation Populations

Thanks that we have a large number of observed DLAs, this allows one to examine the aver-
age metal-line absorption by averaging over many systems, and studying the dependence of
the equivalent widths of any line with the Metal Strength parameter, presented in §3.2. This
has the advantage of providing directly properties of the average population of DLAs, rather
than individual systems which have a large intrinsic random variation and are more affected
by the individual noise, are actually probing a mixture of different gas phases. Moreover,
absorption lines that are located in the Lyα forest region can also be accurately measured
after averaging over a large number of absorption systems while it is not possible to extract
any useful information since the metal absorption lines are mixed with the Lyα lines from the
forest.

With 3 different populations of DLAs selected by their metal strength we can do a dif-
ferent analysis. One thing that can be done is to see the evolution of the characteristics of
each population with this metal strength. Since each DLA has low resolution and high signal
to noise, a good solution to estimate the mean characteristics of each population is to build
a synthetic model representative of the population. Traditionally this model has been con-
structed by stacking many different spectra that share similar features, this way these features
(the DLA is our case) are highlighted while all the noise is suppressed. Here we can do the
same for these 3 populations of objects, build a synthetic mean spectrum of each population
made by stacking all of the objects belonging to each group. With that we can latter study
the evolution of the main features with respect to the Metal Strength.

From the stack seen in Figure 3.5.3 we can extract many interesting points. Firstly and
most obvious is the clear evolution of the equivalent width of all the absorption lines with
increasing Metal Strength, black is the interval corresponding to the smallest S range (S up
to 0.5), here many weak lines can not be discern, and even the strong ones have really small
equivalent widths. The intermediate range in blue ( 0.5 < S <, 1.5 ) and the upper one in
green (S bigger than 1.5) show a clear growth of the equivalent width of all the lines, weak
and strong, ad also in the ones that usually lie in the Lyα forest and that are not used in this
study. Also interestingly not only for the low ionization lines but also for the high ionization
lines like CIV or NV we can see the same trend. All these trends in addition give strength to
the method and the usefulness of the Metal Strength as a prove and important characteristic
of the DLAs, since selecting only few equivalent width of each DLA that would be saturated
in mots of the cases, we clearly see how all the rest of characteristics that this parameter
aims to represent follow the same trend even though were not used a priory. This was in
any case expected, as many studies show the correlation between all the metal features of the
spectrum, nevertheless the fact that the correlation is seen here is non minor feat.

Then with the stacking we can also do more detailed studied. For example we can study
the evolution for different kinds of lines, these that are strong and therefore are saturated
for most of the cases, then they are only sensitive to the velocity dispersion (e.g. SiII 1806,
AlII 1670, FeII 1606), but not an increase in metallicity. On the other hand weak lines
like NiII 1455 usually wont be saturated and would not increase their equivalent width if
the velocity dispersion increases, but only if their metallicity does. Then we can see using
these tow polulations of lines how each of the characteristics that the Metal Strength traces
evolves with it. Finally as mentioned we can do the same study as done with low ionization
metals but for high ones. This lead to the position in which with a refined and thoughtfully
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Figure 3.7: Stack for 3 different populations, black is for S < 0.5, blue for 0.5 < S < 1.5,
and green for 1.5 < S. The 11 lines marked in blue could be detected in even higher S > 2.5
as seen in 8.
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tested method we can modelise this trends in metallicity and velocity dispersion with Metal
Strength.

In the same way, if we just center in the higher order Lyman series (β, γ, δ, �, . . . ),
they are obviously saturated and therefore we just study the velocity dispersion. As we can
clearly see in the upper panel of 3.5.3 the evolution with S is evident, therefore by selecting
a higher or smaller Metal Strength we are effectively selecting different populations of DLAs
with much larger or weaker velocity dispersion independently of column density of the Lyα
because we already corrected by that.

And then we can let us enjoy the method and go to extreme cases, like selecting the DLAs
with most Metal Strength to see what hidden features we can observe, thanks to that we have
been able to pinpoint metal lines never observed before in spectra like BOSS, a total of 11
new transitions can be seen in Figure 8 when selecting a metal strength above 2.5 (S > 2.5).
These lines mark with blue in 3.5.3 are new for this work, and some like PV have never been
realibly measured before because they lie in the Lyα forest of the quasar. This points to a
wealth of results can be achieved with this method and very interesting discoveries await as
it is refined and the amount of available data increases over time.
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3.6. Conclusions

During this work we developed a new and simple and easily exportable method to measure
the equivalent width W of the 17 strongest low ionization metal transitions for the DLAs
absorbing spectrum between 1260Å and 3000Å at restframe. With this long sentence we
want to transmit that for the first time we have the tools that allow to compute better than
ever an equivalent width for tens of thousands of individual lines belonging to thousands
of DLAs form the database in DR12DLA from the BOSS survey DR12, large numbers of
measurements is pursued as a main result of the work. We demonstrated a new and simpler
method to estimate the equivalent width for low resolution spectra, this allowed to achieve a
more complete and representative sample of a bigger than ever number of metal transitions.
With this we have produced a new large catalogue with more W measured for more low
ionization metal transitions than ever for this kind of data, and we achieved measurements
for up to 33 939 DLAs.

Nevertheless we notice that the reliability of this measurements is not sufficient in itself
to be a major breakthrough since the uncertainty in most of the newly computed equivalent
width is intrinsically is high.

In other to compensate for this, we can take advantage of the large catalogue of equiva-
lent widths and the fact that for each DLA we have measured several metal transitions (an
average of 6, with 2 being strong ones), combined with the mean expected equivalent width
for different column densities of the DLA (W̄ (log(NHI ))). We created a new parameter, the
Metal Strength which supposes way of classifying the DLAs by the metallicity, saturation and
velocity dispersion of the metals associated to each DLA. This parameter is better than a
direct measurement of the metallicity from low ionzation because it is better suited to be ap-
plied to this kind of data, a large dataset with thousands of low resolution and noisy spectra.
This allows for unprecedented high numbers of objects to be analysed depending on this new
parameter, the Metal Strength.

We have proceeded with several direct studies once we have the measurement of the
equivalent widths and a way to group them depending on this new parameter. First we have
build 3 populations of low, medium and high Metal Strength. To highlight the faint features
and present in each population we have stacked the spectra corresponding these 3 different
populations, this allows to reveal really faint meta lines, some never seen before. Also the
metal evolution is very clear for all the lines, low and high ionization on the stack, this does not
only shows how the mean absorptions features change with Metal strength, but also validates
the method, as they evolved in the way that was expected. This also allows to compute
the elution of the strongest lines which are likely to be saturated and allow to estimate the
increase of velocity dispersion with Metal Strength, and the weak lines, which should not be
saturated and therefore directly trace the growth in metallicity.

Then we studied the evolution of the Metal Strength with redshift, although this is not
a direct evolution of metallicity with redshift as has been pursued in many studies, we have
seen a clear and strong evolution of our parameter, which is also non monolithic, it flattens at
redshift 3 to 2, has a strong growth at redshifts 4 to 3, and seems tat flattens again at redshift
higher than 5, but here we are prudent on that since the statistics are low. This has direct
implications on star, galaxy and structure formation trough the time, and could be used in
the future to model and test simulations that aim to measure the metallicity and velocity
dispersion history of the universe.
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Finally we expect an evolution of the bias of the DLAs with respect the matter spectrum,
depending on the Metal Strength, since the dispersion of velocities and high metallicity is
associated with bigger halos, therefore the bigger the Metal Strength, the bigger the bias
should be. Adding another tool to prove the cosmology.

In conclusion this work provides with a new, easy and reliable method to extract properties
of a common and characteristic object of the universe, the DLAs. It constitutes a preliminary
study of this new method and it can be further refined and polished to extract more useful
data and more and precise conclusions, but we have shown that it delivers many interesting
results and it promises to be a tool that can be used for many and diverse applications. The
strength of this obviously will grow as the many surveys that are in the pipeline increase
the number of objects that can be used to increase our population and be able to have more
subdivisions and more fine testing.

A.1. High Metal Strength subsample stacking

Here we present the taking of the high Metal Strength subsample (S > 2.5) where 11 new
weak lines are tantalizingly detected, those marked in blue as seen in Figure 8. Lines in the
Lyα forest have never been detected before in individual spectra as they can be confused with
the forest. The lines marked in red where detected in Mas-Ribas et al. (2014) metallic sample.
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Figure 8: Stack for the high Metal Strength subsample (S > 2.5). The lines marked in red
where detected in Mas-Ribas et al. (2014) metallic sample, the 11 lines marked in blue are
detected only here.
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Pâris, I., Petitjean, P., Aubourg, É., et al. 2012, A&A, 548, A66
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