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ABSTRACT 

Coordination Chemistry deals with the synthesis and study of the physicochemical 

properties of metal complexes. Cluster Chemistry is a subfield of Coordination 

Chemistry, which focuses on the functionalization of complexes in which two or 

more metal atoms are directly bonded. Over the past few years, Cluster Chemistry 

has attracted a growing interest among scientists from diverse areas, mainly due to 

the fascinating properties of these compounds. A historical evolution of the term 

cluster, as well as an outline of the role of coordinated ligands and structural types in 

the final properties of metal clusters are provided in Chapter 1. 

This PhD Thesis is devoted to the synthesis, characterization and 

applications of two families of group VI metal clusters containing dithiolene or 

diimine ligands, as detailed in Chapter 2. The synthetic approaches employed for the 

preparation of a series of dinuclear M2Q2S2 cluster chalcogenides (M = Mo, W; Q = 

O, or S) bearing bifunctional dithiolene ligands are described in Chapter 3. These 

metal clusters present great potential for the design of heterometallic systems. 

Chapter 4 is concerned with the preparation of an extensive family of mixed-

ligand diimine-halide (or diimine-dithiolene) trinuclear molybdenum sulfides based 

on the Mo3S7 core. A great number of bipyridine and phenanthroline derivatives have 

been coordinated to these Mo3S7 units. The most important feature of the resulting 

cluster complexes of formula Mo3S7X4(diimine), where X = Cl, or Br, is their 

crystallization as [Mo3S7X4(diimine)·X]- aggregates, in which the sulfur axial atoms 

participate in non-bonding interactions with halide anions. 

The physicochemical properties of both series of metal clusters mentioned 

above are explored in Chapters 5 and 6. The luminescence properties of 

bis(dithiolene) M2Q2S2 clusters (M = Mo, W; Q = O, or S), together with those of 

Mo3S7 clusters functionalized with imidazophenanthroline ligands are detailed in 



 

Chapter 5. These diimine Mo3S7 complexes exhibit luminescent anion sensing 

behavior. The optical limiting capabilities of both series of compounds, namely 

M2Q2S2- and Mo3S7-based clusters, are also described in Chapter 5 with the aim of 

finding correlations between molecular structures and third-order nonlinear optical 

functions. 

Chapter 6 examines the electro- and photocatalytic activity of diimine Mo3S7 

clusters immobilized on TiO2 nanoparticles toward the hydrogen evolution reaction. 

This study has been stimulated by the analogy between the structure of Mo3S7 and 

the catalytic active sites of MoS2 nanoparticles. The electrochemical properties of 

these TiO2 electrodes are assessed in two different media, that is, aqueous perchloric 

acid and sulfide-sulfite mixtures. The role of the diimine ligands in the adsorption 

process is also described in this Chapter. 

All experimental procedures employed in this work, together with the 

characterization of all compounds are presented in Chapter 7. Finally, the general 

conclusions of this PhD Thesis are provided in Chapter 8. 

  



 
 

RESUM (ABSTRACT IN CATALAN) 

La Química de Coordinació s’ocupa de la síntesi de complexos metàl·lics, així com 

de l’estudi de les seues propietats fisicoquímiques. La Química de Clústers és un 

subcamp de la Química de Coordinació, centrat en la funcionalització de complexos 

en els quals dos o més àtoms metàl·lics es troben enllaçats directament. En els darrers 

anys, la Química de Clústers ha tingut un interès creixent entre científics de diverses 

àrees, degut principalment a les fascinants propietats d’aquests compostos. L’evolució 

històrica del concepte de clúster, així com el paper que tenen els lligams i les 

estructures en les propietats finals dels clústers metàl·lics s’esmenten al Capítol 1. 

 Aquesta Tesi Doctoral s’ocupa de la síntesi, caracterització i aplicacions de 

dues famílies de clústers metàl·lics del grup VI funcionalitzats amb lligams diimina i 

ditiolè, tal i com es detalla al Capítol 2. Les estratègies sintètiques utilitzades per a la 

preparació d’una sèrie de calcogenurs clúster dinuclears de fórmula general M2Q2S2 

(M = Mo, W; Q = O, ó S), que contenen lligams ditiolè bifuncionals, es descriuen al 

Capítol 3. Aquests clústers metàl·lics presenten un gran potencial per al disseny de 

sistemes heterometàl·lics. 

 El Capítol 4 s’ocupa de la preparació d’una extensa família de sulfurs 

trinuclears de molibdè basats en el nucli Mo3S7 funcionalitzats amb lligams mixtes 

(diimina-halur o diimina-ditiolè). Un gran nombre de derivats de la bipiridina i de la 

fenantrolina s’han coordinat a aquestes unitats del tipus Mo3S7. La característica més 

important dels complexos preparats, de fórmula Mo3S7X4(diimina), on X = Cl, ó Br, 

és la seua cristal·lització com a agregats del tipus [Mo3S7X4(diimina)·X]-, en els quals 

els àtoms de sofre axials participen en interaccions no enllaçants amb anions halur. 

 Les propietats fisicoquímiques d’ambdues sèries de clústers metàl·lics 

mencionades anteriorment s’estudien als Capítols 5 i 6. Les propietats luminiscents 

de clústers del tipus M2Q2S2(ditiolè)2 (M = Mo, W; Q = O, ó S), juntament amb les 



 

de clústers Mo3S7 funcionalitzats amb lligams imidazofenantrolina, es detallen al 

Capítol 5. Aquests complexos Mo3S7 amb diimines es comporten com a sensors 

luminiscents d’anions. La capacitat de limitació òptica de les dues sèries de compostos 

(clústers M2Q2S2 i Mo3S7) també es descriu al Capítol 5, amb l’objectiu de trobar 

correlacions entre estructures moleculars i funcions d’òptica no lineal de tercer ordre. 

 El Capítol 6 examina el comportament electro- i fotocatalític de clústers 

Mo3S7 amb diimines, immobilitzats sobre TiO2. Aquest estudi ha estat motivat per 

l’analogia descrita entre l’estructura del nucli Mo3S7 i els llocs catalíticament actius de 

les nanopartícules de MoS2. Les propietats electroquímiques d’aquests elèctrodes de 

TiO2 s’avaluen en dos medis diferents: àcid perclòric aquós i mescles sulfur-sulfit. El 

paper dels lligams diimina en el procés d’adsorció també es discuteix en aquest 

Capítol. 

 Tots els procediments experimentals emprats en aquest treball, juntament 

amb la caracterització dels compostos, es presenten al Capítol 7. Finalment, les 

conclusions generals d’aquesta Tesi Doctoral es troben al Capítol 8. 

  



 
 

ABBREVIATIONS 

et al. et alii (and others) 

vide supra see above 

vide infra see below 

i.e. id est (that is) 

ca. circa (approximately) 

Me methyl 

Et ethyl 

iPr isopropyl 

Bu n-butyl 

Ph phenyl 

PPN bis(triphenylphosphine)iminium 

DMSO dimethyl sulfoxide 

DMF dimethylformamide 

THF tetrahydrofuran 

RT room temperature 

HER Hydrogen Evolution Reaction 

UV/Vis Ultraviolet/Visible 

NMR Nuclear Magnetic Resonance 

XPS X-ray Photoelectron Spectroscopy 

ICPE Incident Photon to Current Efficiency 

ESI-MS Electrospray Ionization Mass Spectrometry 

m/z mass/charge 

IR infrared 

CV Cyclic Voltammetry 

TDDFT Time-Dependent Density Functional Theory 

ORTEP Oak Ridge Thermal Ellipsoid Plot 



 

ADP Atom Displacement Parameters 

GooF Goodness of Fit 

calcd. calculated 

CB Conduction Band 

VB Valence Band 

HOMO Highest Occupied Molecular Orbital 

LUMO Lowest Unoccupied Molecular Orbital 

MLCT Metal to Ligand Charge Transfer 

LMCT Ligand to Metal Charge Transfer 

ILCT Intraligand Charge Transfer 

met cis-1,2-dicarbomethoxyethylene-1,2-dithiolate 

Cl2bdt 3,6-dichloro-1,2-benzenedithiolate 

BPyDTS2 2-bis-(2-pyridyl)methylene-1,3-dithiolene 

pdt 2,3-pyrazinedithiolate 

dmit 1,3-dithiole-2-thione-4,5-dithiolate 

dtc diethyldithiocarbamate 

bpy 2,2’-bipyridine 

dmbpy 4,4’-dimethyl-2,2’-bipyridine 

dnbpy 4,4’-dinonyl-2,2’-bipyridine 

dcbpy 2,2’-bipyridine-4,4’-dicarboxylic acid 

dcmbpy 4,4’-dicarbomethoxy-2,2’-bipyridine 

phen 1,10-phenanthroline 

mphen 4-methyl-1,10-phenanthroline 

dmphen 5,6-dimethyl-1,10-phenanthroline 

tmphen 3,4,7,8-tetramethyl-1,10-phenanthroline 

BPhen 4,7-diphenyl-1,10-phenanthroline 

ppl Pyrazino[2,3-f][1,10]phenanthroline 

IPDOP 1H-Imidazo[4,5-f][1,10]phenanthroline-2-[3,4-bis(dodecyloxy)phenyl] 
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“Nature uses only the longest threads to weave her patterns, 
so each small piece of her fabric reveals the organization of 
the entire tapestry.” 

Richard P. Feynman, The Character of Physical Law 
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1.1. AN OVERVIEW OF METAL CLUSTERS 

The 50th anniversary of metal clusters was celebrated in 2014, coinciding with the 

100th anniversary of Crystallography. The term “metal atom cluster” was first 

introduced by Cotton in 1964 to designate interactions between metal atoms. As the 

original paper reads:1 “The term cluster seems an appropriate one for a finite group 

of metal atoms which are held together mainly, or at least to a significant extent, by 

bonds directly between the metal atoms, even though some nonmetal atoms may also 

be intimately associated with the cluster.” This definition was broadened two years 

later “to include compounds in which the metal atoms are held together entirely by 

metal-metal bonds”.2 At the time when this definition was provided, only a few 

examples of clusters had been reported. However, research in this field has grown 

exponentially over the past decades, mainly stimulated by the development of X-ray 

crystallography, which allowed a profound insight into cluster chemistry. 

 Metal clusters have become attractive research targets in the fields of 

Coordination and Organometallic Chemistry, due to the fascinating electronic 

structures and physicochemical properties that can result upon functionalization of 

cluster cores with diverse ligands. Some examples of these properties include 

luminescence,3 optical nonlinearities,4 magnetism5 or electrical conductivity.6 

Another noteworthy aspect of cluster chemistry is that an extremely large number of 

metal-metal bonds can be envisioned upon combination of transition metals, thus 

resulting in a wide range of structural types for these compounds.7 

 The first example of a metal cluster dates back to 1985 when C. Bloomstrand 

discovered a molybdenum compound which was supposed to contain two different 

types of halogen, since addition of silver ion only afforded the precipitation of one 

third of the halides present in that compound.8 That observation led to postulate 

more than fifty years later that the molybdenum atoms would presumably be joined 
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together by bridging halide ligands. A [Mo3X4]X2 formula (X = Cl, Br) was then 

proposed to explain the unusual behavior of that system.  

Hexanuclear clusters of formula [M6X12]X2 (M = Nb, Ta; X = Cl, or Br) were 

reported at the beginning of the twentieth century. These compounds were followed 

by molybdenum clusters based on octahedral Mo6Cl8 cores in which the metal atoms 

define the vertices of an octahedron, and each triangular face is capped with a 3-Cl 

atom. The first sixty decades of the 20th century have witnessed the advent of metal 

carbonyl clusters, being the trinuclear Fe3(CO)12 the first reported complex of this 

type. This trimetallic cluster was followed by the tetrametallic Co4(CO)12  and the 

hexametallic Rh6(CO)16 clusters. Finally, the triangular [Re3Cl12]2- cluster (Figure 1.1), 

which was reported in the 1960s coinciding with the coinage of the term cluster, is 

the first example of multiple bonds between metal atoms.9,10 

 

Figure 1.1. Structure of the [Re3Cl12]2- anion. 

A large number of cluster compounds of different structural types have 

emerged since the term cluster was introduced. Although an exhaustive classification 

of them is not straightforward, molecular clusters can be classified into two major 

groups according to the nature of their constituent atoms, namely main-group 

elements clusters and transition metal clusters.11 The former group encompasses 

clusters with elements from either the s- or the p- block, whereas the latter group is 

based on d-block metals. In this introduction we will focus on transition metal 

clusters, as they are more relevant to the topic of the present Thesis. 
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Two different types of transition metal clusters are known: electron-rich and 

electron-poor, also known as -donor and -acceptor, respectively. Electron-rich 

clusters contain early transition metals in low to medium oxidation states (generally, 

+2, +3, or +4) bound to -donor ligands, such as halides, oxides or chalcogenides. 

Some examples of them include trinuclear M3 (M = Mo, W, Re or Nb), or 

hexanuclear M6 (M = Mo, Nb, Re), clusters featuring triangular or octahedral 

structures, such as those observed in Re3Cl9 and Mo6Cl8 cores, respectively.  In 

contrast, electron-poor clusters are mainly based on late transition metals in very low 

(close to zero) oxidation states, which contain -acceptor ligands (most commonly 

carbonyl, but also nitrosyl, phosphine, and others). These clusters form polyhedral 

structures with triangular faces, in which the metals occupy the vertices of the 

polyhedrons. The triangular M3(CO)12, (M = Ru, Os), and the tetrahedral M4(CO)12, 

(M = Co, Rh or Ir), metal carbonyls are representative examples of them (see Figure 

1.2).12,13 

 

Figure 1.2. Structure of triangular M3(CO)12 (a) and tetrahedral M4(CO)12 (b) metal carbonyl 
clusters. 

A combination of main group elements and transition metals is feasible in 

cluster chemistry. In particular, carbon and nitrogen have been incorporated into late 

transition metal clusters. This is exemplified in RCCo3(CO)9, (R = H, CH3, C6H5, 

among others), wherein the carbon and cobalt atoms define a tetrahedral cluster.14 

Combining different metal atoms results in the formation of heterometallic bonds. 

For instance, the metal cluster CuAg3{MoCp(CO)3}4 presents d10 - d10 heterometallic 
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interactions between its constituent atoms.15 As shown in Figure 1.3, its peculiar 

structure contains a central square metal core formed by three silver(I) and one 

copper(I) ions in which each edge of the metal core is bridged by a MoCp(CO)3 

fragment.  

 

Figure 1.3. Crystal structure of the cluster complex CuAg3{MoCp(CO)3}4. 

 Large clusters containing close-packed metal atoms have been gaining 

attention over the past decades. In this context, the mixed nickel-platinum cluster of 

formula [Pd33Ni9(CO)41(PPh3)6]4- (see Figure 1.4) is notable for its large 

heterometallic Pd33Ni9 core bearing both carbonyl and triphenylphosphine ligands.16 

In this metal cluster, triphenylphosphine is bound to nickel, while the carbonyl 

ligands are coordinated to both nickel and palladium ions. 

 

Figure 1.4. Crystal structure of the [Pd33Ni9(CO)41(PPh3)6]4- anion. 
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Metal-metal bonding is not only restricted to molecular species. Bonds 

between metals have also been observed in solid state inorganic compounds, such as 

in Chevrel-type phases of formula MxMo6Q8, were x can range from 1 to 4, M is a 

transition metal, and Q is a chalcogen (S, Se or Te).17 These compounds have 

attracted a great deal of attention owing to their interesting structures and high-

temperature superconductivity. In their crystal structure (see Figure 1.5), eight 

chalcogen atoms form a cube, and the six molybdenum atoms nearly occupy the 

center of its faces. This Mo6Q8 unit is inscribed in a larger cube defined by the 

heterometal atoms (M). 

  

Figure 1.5. Schematic representation of a MxMo6Q8 Chevrel phase (M = transition metal; x 
= 1 – 4; Q = S, Se, or Te). In the latter figure, the atoms in the vertices have been omitted 
for clarity. 

The major classes of metal clusters have been presented herein, together with 

the most accepted definition of the term cluster, and a historic evolution of these 

compounds. The role of the outer ligands and structural types in the properties of 

molecular clusters will be discussed in the following sections. This discussion will be 

focused on dinuclear and trinuclear molybdenum cluster chalcogenides, as they are 

the cornerstone of this PhD thesis. 

 

 

 

+ +

Mo Q M 
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1.2. TUNING THE PROPERTIES OF MOLECULAR CLUSTERS 

Transition metal complexes can be conveniently functionalized with a variety of 

ligands, with the aim of affording molecular materials with a number of properties 

and applications.18–21 Metal cluster compounds offer more diversity of structural 

types than mononuclear complexes owing to the immense number of chemical bonds 

that can be envisioned upon combination of the existent transition metals. 

Furthermore, apart from the intrinsic properties that can emerge from intermetallic 

interactions in cluster units, their properties can still be tailored to meet the 

requirements of specific applications by means of ligands. In other words, the 

physicochemical properties of inorganic cluster compounds can be easily tuned by 

modification of the cluster core and outer ligands. For these reasons, cluster 

chemistry has engaged the interest not only of synthetic chemists, but also of 

scientists from other areas, such as medicine,22 catalysis23,24 and materials science.25 

Therefore, today a diversity of cluster complexes bearing different ligands, and either 

homometallic or heterometallic interactions can be found in the literature.13,26  

 Metal-metal interactions have been reported to confer intriguing 

photophysical properties to cluster complexes.7 Incidentally, d8 and d10 cluster 

compounds are frequently luminescent, being the emission dependent on the nature 

of the metals, ligands and their structural features.27 However, luminescence 

properties in clusters is not only restricted to d8 and d10 complexes. Octahedral 

molybdenum clusters of general formula [Mo6X8Y6]n, where X is an inner ligand (Cl, 

Br or I) and Y an outer ligand, have led to molecular materials exhibiting 

luminescence in both the visible and near-infrared regions, with high emission 

quantum yields and lifetimes.28 The structure of the aforementioned octahedral 

clusters is illustrated in Figure 1.6 for the [Mo6I8(OOCC3F7)6]2- cluster anion. In order 

to outline the role that ligand functionalization plays in cluster complexes, it is worth 

mentioning that the luminescence quantum yield of cluster 



  GENERAL INTRODUCTION 

9 
 

(Bu4N)2[Mo6I8(OOCC3F7)6] decreases from ca. 0.60 to a value of less than 0.01 upon 

replacement of iodide by chloride in its inner ligands.29 

 

Figure 1.6. Structure of the [Mo6I8(OOCC3F7)6]2- cluster anion. 

 Synthetic transition metal complexes containing sulfur are well-known to 

mimic the chemical behavior of certain biological systems.30 In particular, redox-

active iron-sulfur clusters of diverse nuclearities (typically, Fe2S2, Fe3S4 and Fe4S4) 

functionalized with alkylthiol or related ligands have been used as models for the 

active sites of a diverse family of metalloproteins which play essential roles in living 

organisms, such as in electron transfer chains, photosynthesis and nitrogen fixation.31 

Some examples of synthetic analogues of protein sites containing two, three and four 

iron atoms are depicted in Figure 1.7. The electronic and magnetic properties of these 

Fe-S systems have also been investigated in the past few decades.32 

 

Figure 1.7. Iron cluster complexes which mimic protein sites containing two (a), three (b), 
and four (c) iron atoms. In all cases, R = methyl, ethyl, phenyl, or related groups. 
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1.3. DINUCLEAR AND TRINUCLEAR GROUP VI CLUSTERS 

The research of the Molecular Materials group at Jaume I University is focused on 

the functionalization of dinuclear and trinuclear molybdenum and tungsten clusters 

with diverse ligands, with the aim of tuning the properties of the metal cores.33–35 

More specifically, dinuclear M2O2(-Q)2, and trinuclear M3(3-Q)(-Q2)3 and M3(3-

Q)(-Q)3 clusters, where M = Mo, or W, and Q = S, or Se, have attracted a wide 

interest in our group over the last few decades.  

 A family of bis(dithiolene) Mo2O2(-Q)2-based clusters (Q = S, Se) was 

prepared by simple ligand substitution in the [Mo2O2S2(DMF)6]2+ cation.36 The 

structure of the M2O2(-Q)2 core is depicted in Figure 1.8a. Their tungsten 

counterparts were prepared by treating the {W3S7Br4}n polymeric phases with 

triphenylphosphine in the presence of oxygen and a dithiolene source.  

 

Figure 1.8. Structure of dinuclear and trinuclear group VI cluster chalcogenides (M = Mo, 
or W; X = O, or S; Q = S, or Se) 

 Much more attention was devoted to the functionalization of the triangular 

M3(3-Q)(-Q)3  and M3(3-Q)(-Q2)3 cluster cores (M = Mo, W; Q = S, Se), their 

structures being depicted in Figures 1.8b and 1.8c, respectively. The difference 

between both cores arises from the nature of their brigding ligands: dichalcogenides 

(-Q2) vs chalcogenides (-Q).35 The M3Q4 core can be conveniently prepared by 

excision of {M3Q7X4}x (X = Cl, Br) polymeric phases with diphosphine under 
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nitrogen atmosphere.33 The resulting [M3Q4X3(diphosphine)3]+ clusters were used for 

the synthesis of heterometallic M3M’Q4 cubane-like complexes, where M’ is a 

heterometal (Cu, Co, and others).37 These M3Q4 and M3M’Q4 compounds found 

applications in catalysis38,39 and nonlinear optics.40,41 

Regarding the M3Q7 core, a number of Mo3S7-based complexes were 

prepared in our group by ligand substitution in the [Mo3S7X6]2- cluster anion, where 

X = Cl, or Br.42 The functionalization of these Mo3S7 clusters with dithiolene ligands 

afforded a series of tris(dithiolene) molybdenum clusters with interesting redox, 

conducting and magnetic properties.43,44 The use of a diversity of ligands, such as 

oxalate and thiocyanate afforded trinuclear molybdenum cluster sulfides with 

promising optical limiting capabilities.45  

In the present PhD thesis, we have focused on the functionalization of the 

triangular Mo3S7 cluster unit with diimine ligands. The optical properties of the 

resulting compounds have been investigated, as well as their catalytic activity in the 

visible-light driven water splitting. The dinuclear M2Q2(-S)2 core (M = Mo, W; Q = 

O, or S) has been functionalized with dithiolene ligands bearing two coordination 

poles (S and N), aimed at the preparation of heterometallic complexes with 

luminescent properties. Further details about the objectives of this work will be 

provided in the following Chapter. 
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“I would like to live about three hundred years. I think 
I have ideas enough to keep me busy that long.” 

Thomas A. Edison 
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Cluster chemistry has arisen a great deal of interest among the scientific community, 

mainly due to the structural diversity and physicochemical properties of these 

compounds. This PhD thesis is devoted to the functionalization of molybdenum and 

tungsten clusters with different ligands, with the aim of tailoring their properties to 

specific applications. A large variety of ligands can be coordinated to cluster units. 

Among them, we have focused on diimines and dithiolenes. This choice of ligands 

has been stimulated by their non-innocent character, which results in transition metal 

complexes with fascinating properties. The specific objectives of this work are 

detailed herein: 

1) Preparation of a series of M2Q2(µ-S)2-based dinuclear clusters, where M = 

Mo, or W, and Q = O, or S, functionalized with dithiolene ligands possessing 

two coordination poles with different chemical nature; sulfur and nitrogen. 

2) Exploration of the reactivity of bis(dithiolene) dinuclear molybdenum and 

tungsten clusters toward other metals, with a view to the preparation of 

discrete and polymeric heterometallic compounds. 

3) Synthesis and structural characterization of a family of triangular mixed-

ligand diimine-halide Mo3(µ3-S)(µ-S2)3 clusters, and study of their reactivity 

toward sulfur donor ligands. 

4) Study of the luminescence properties of bis(dithiolene) Mo2O2S2 complexes, 

and also those of mixed-ligand diimine-halide Mo3S7 clusters. 

5) Assessment of the optical limiting performance of homoleptic Mo2O2S2 

clusters containing dithiolene ligands, as well as that of heteroleptic Mo3S7 

complexes functionalized with diimine ligands together with halides, or 

dithiolenes. 

6) Immobilization of heteroleptic diimine-halide Mo3S7 clusters on TiO2 

nanoparticles, and investigation of their electro- and photocatalytic activity 

toward the hydrogen evolution reaction. 
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“I have no special talent. I am only 
passionately curious.” 

Albert Einstein 

 



DINUCLEAR AND TRINUCLEAR MOLYBDENUM AND TUNGSTEN CLUSTER COMPLEXES 
CONTAINING DITHIOLENE LIGANDS 

23 
 

3.1. INTRODUCTION 

3.1.1. DITHIOLENE LIGANDS CONTAINING NITROGEN GROUPS 

Metal complexes containing non-innocent redox-active dithiolene ligands possess 

characteristic electronic structures which determine their electrical, magnetic and 

optical properties. Such complexes are usually notable for extensive ligand-metal 

mixing in their frontier orbitals, facile ligand-centered electron transfers and intense 

colors in solution. Several examples of mononuclear dithiolene complexes can be 

found in the literature, and typical coordination geometries are square planar and 

trigonal prismatic, although the latter are less frequent.1–3 

Among the large number of dithiolene ligands reported, the most frequent 

contain a single coordination pole.4 Nevertheless, in the past few years interesting 

examples of dithiolene ligands bearing both sulfur and nitrogen donor atoms have 

emerged. These ligands possess therefore two possible coordination poles with 

different chemical nature (S vs N) and charge (anionic vs neutral), which can be 

classified as primary and secondary, depending on the strength of the interaction with 

metal centers.5 Some examples of dithiolene ligands containing nitrogen coordinating 

atoms are depicted in Figure 3.1. 

Nitrogen coordinating groups may include cyano and pyridyl functionalities. 

The cyano group can be found to be appended directly to the C2S2 dithiolene group 

(mnt), or through a functionalized benzene ring (dcbdt). Moreover, it is possible to 

link a pyridyl group to the thiocarbonate ring by a methylene moiety (BpyDTS2), or 

by an alkyl chain (dpesdt), which allows more flexibility to the nitrogen groups. Other 

moieties that have been traditionally used to functionalize dithiolene ligands are 

pyrazine (pdt), 1,10-phenanthroline (fendt) and 4,5-diazafluorene (DazDTS). 
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Figure 3.1. Dithiolene ligands containing nitrogen coordinating groups. 

Dithiolene ligands bearing two coordination poles can selectively bind 

different metal ions, which may lead to a diversity of novel heterometallic 

coordination architectures. However, despite their potential, the coordination ability 

of dithiolene ligands containing nitrogen donor atoms has been so far much less 

explored than that of dithiolene ligands bearing only sulfur atoms.5 

By an appropriate choice of auxiliary ligands, heterometallic discrete 

coordination or polymeric structures can be easily envisioned. A possible strategy for 

the preparation of the aforementioned structures is shown in Figure 3.2. Interaction 

of a bifunctional dithiolene ligand with a metal ion (metal 1) may afford a discrete 

complex. This unit possessing two identical coordination poles oriented in a 

divergent fashion represents a convenient building block, since in the presence of a 

second metal two different coordination structures can emerge. If a second metal ion 

(metal 2) is allowed to react with the building block, the iterative coordination 

processes taking place between metal centers and the secondary coordination poles 

(nitrogen groups) may lead to the formation of heterometallic coordination networks. 
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Nevertheless, reaction between the building block and a metal complex containing 

non-labile ligands (capped) would afford discrete trimetallic coordination 

complexes.6

 

Figure 3.2. Stepwise approach to the design of heterometallic coordination architectures by 
using dithiolene ligands bearing two coordination poles. 

3.1.2. HETEROMETALLIC STRUCTURES BASED ON 
BIFUNCTIONAL DITHIOLENE LIGANDS 

In the past few years, the coordination ability through the nitrogen atoms of 

dithiolene ligands has been explored. Several ligands included in Fig. 3.1 have been 

used for these purposes. Regarding the use of mnt (mnt = maleonitriledithiolate), 

which bears a nitrile group, it is worth mentioning the heterobimetallic complex 

[(CH3CN)Ni(L)][Cu(mnt)2]·CH3CN, (L = tetrabenzo[b,f,j,n][1,5,9,13] tetra-

azacyclohexadecine),7 and the trimetallic compound [K(DC18C6-B)]2[Pd(i-mnt)2], 

(DC18C6-B = cis-anti-cis-dicyclohexyl-18-crown-6; i-mnt = 
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isomaleonitriledithiolate).8 The molecular structures of them are depicted in Figure 

3.3. In the former, the copper(II) ion is coordinated by four sulfur atoms of the two 

mnt ligands, one of which is bound to a nickel(II) ion through the nitrogen atom, 

completing an octahedral coordination. In the latter, the mnt ligand is coordinated to 

palladium(II) and two coordinating nitrogen atoms in the ligand are bound to 

potassium cations. 

 

 

(a) (b) 

 
Figure 3.3. Molecular structure of heterobimetallic (a) and trimetallic (b) complexes bearing 
dithiolene ligands with cyano functionalities. 

It is also worth considering the work of Zuo et al., who used the ligand 

BPyDTS2 (see Fig. 3.1) to afford heterometallic luminescent materials upon 

coordination to rhenium(I) and other transitition metals, such as gold (I) and 

platinum(II).9 This choice of metals was motivated by the interesting photophysical 

and photochemical properties of rhenium(I).10–13 

Dithiolate-4,5-diazafluorene-like ligands have also been extensively used for 

the generation of both discrete heterotrinuclear complexes and coordination 

polymers. For instance, the group headed by S. A. Baudron prepared interesting 

examples of heterotrimetallic complexes by using the mononuclear compounds 

depicted in Figure 3.4 as building blocks.6 In particular, such compounds containing 
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the bifunctional dithiolene ligand DazDTS-B (see Figure 3.1) have been used for 

further coordination to nickel complexes and sodium cations. 

 

 

 

 

 

Figure 3.4. Mononuclear complexes containing a bifunctional dithiolene ligand with a 4,5-
diazafluorene moiety. 

The mononuclear dianionic palladium 1,1-bis(dithiolene)-4,5-diazafluorene complex 

represented in Figure 3.4 was used as a building block to prepare the trimetallic 

complex [(Nicyclen)2Pd(DazDTS-B)2](BF4)2·6DMF, (cyclen = 1,4,7,10-

tetracyclododecane; Fig. 3.5). This heterometallic complex contains two terminal 

nickel atoms capped by a cyclen ligand, which blocks the remaining coordination sites 

of the metal, and one central palladium atom. The two nickel(II) ions are 

paramagnetic with S = 1, while the palladium(II) ion is diamagnetic, and there is a 

weak antiferromagnetic coupling between the nickel centers. 

 

Figure 3.5. Molecular representation of the trimetallic complex [(Nicyclen)2Pd(DazDTS-
B)2](BF4)2. 

By using the same ligand, 1D coordination networks of formula [M(DazDTS-

B)2Na2(DMSO)5] (M = Ni, Pd; for M = Pd, see Fig. 3.6) were obtained. In these 
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structures the dianionic complexes are bridged by sodium cation dimers bearing five 

dimethylsulfoxide molecules. Both coordination polymers are diamagnetic with a 

square-planar coordination for the central atoms.  

 

Figure 3.6. One-dimensional chains in complex [Pd(DazDTS-B)2Na2(DMSO)5]. 

The polymeric compound (Et4N)[Hg(DazDTS-B)2Na(DMSO)](H2O)0.5 (see Fig. 

3.7) was obtained by using a similar strategy. In this complex, one 

tetraethylammonium cation is substituted by a sodium cation which acts as a bridging 

unit between adjacent [Hg(DazDTS-B)2]2- dianions. The resulting 1D coordination 

network presents Hg-S short contacts between adjacent chains. Therefore, the overall 

arrangement can be described as a 2D network. 

 

Figure 3.7. Two-dimensional networks in compound (Et4N)[Hg(DazDTS-
B)2Na(DMSO)](H2O)0.5 (b). The Et4N+ cations have been omitted for clarity. 
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 Complexes based on the pyrazine-like ligands pdt (pyrazine-2,3-diselenol) 

and pds (pyrazine-2,3-diselenol) show a remarkable ability to side coordinate alkaline 

metal ions, such as Li+, Na+ and Cu+, generating 3D extended metal-organic 

frameworks (MOFs). Most examples of these MOFs were firstly published by C. 

Rovira et al.5 Treatment of the ligand precursors with LiOH or NaOH, followed by 

addition of copper or nickel salts afforded the polymeric coordination compounds 

M[CuIII(pds)2]·xH2O (M = Li, Na or CuI)14,15 and Na2[Ni(pds)2]·2H2O, among 

others.16 A remarkable MOF, formulated as CuI[NiIII(pdt)2], was published by the 

group headed by J. R. Long.17 This heterometallic coordination polymer is 

isostructural with the previously reported CuI[CuIII(pdt)2],18 whose structure is 

depicted in Figure 3.8. The microporous network assembled from CuI[NiIII(pdt)2] 

represents the first reported example of a MOF exhibiting electronic conductivity, 

doping capability and redox behavior at the same time. 

 

Figure 3.8. Crystal structure of CuI[CuIII(pdt)2]. 
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3.1.3. APPROACH TO THE DESIGN OF HETEROMETALLIC 
MOLYBDENUM AND TUNGSTEN DITHIOLENE CLUSTER 
COMPLEXES 

The Molecular Materials group at Jaume I University is focused on the synthesis and 

characterization of dinuclear and trinuclear molybdenum and tungsten complexes 

functionalized with different ligands. In the past, interesting examples of cluster 

complexes containing dithiolene ligands and Mo3S7 and Mo2O2S2 cores were 

published. For the trinuclear unit, either dialkyltin or zinc dithiolene complexes must 

be used as hidden forms of dithiolates, since the Mo3S7 core is not stable under the 

basic conditions which are usually required for the coordination of dithiolene ligands. 

In particular, the cluster (Bu4N)2[Mo3S7(dmit)3], prepared by the transmetallation 

reaction between (Bu4N)2[Mo3S7Br6]19 and (Bu4N)2[Zn(dmit)2], was used for the 

design of single component molecular conductors.20–23 Despite the potential of these 

systems, the coordinative ability through the nitrogen groups of dithiolene ligands in 

molybdenum and tungsten complexes remain unexplored. 

Motivated by the heterometallic coordination architectures reported in the 

literature,5 we decided to study the reactivity of dithiolene ligands containing nitrogen 

groups towards molybdenum and tungsten cluster complexes. The resulting 

compounds could presumably open a new avenue in the search of heterometallic 

structures based on molybdenum and tungsten clusters. By following a similar 

approach to that described in Figure 3.2, should bis(dithiolene) dinuclear clusters be 

used as starting materials, either discrete tetrametallic complexes or 1D heterometallic 

networks could be achieved. The use of a tris(dithiolene) trinuclear complex would 

afford either an hexametallic complex or a 2D heterometallic layer instead. A 

schematic representation of such architectures is depicted in Figure 3.9. 
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Figure 3.9. Schematic representation of possible coordination structures built from dinuclear 
and trinuclear clusters containing dithiolene ligands with nitrogen donor atoms. 

A different strategy for the preparation of heterometallic dithiolene cluster 

complexes is depicted in Scheme 3.1. Three different synthetic routes are possible. 

Cubane-like clusters of formula M2M’M’’S4, where M = Mo or W, and M and M’ are 

heterometals (M’ = M’’ or M’ ≠ M’’) can be prepared by using a dinuclear M2S4 cluster 

as a starting material. By following the so-called [2 + 2] route, heterometallic cubane 

clusters with M2M’M’’S4 (M’ = M’’) cores have been reported. By means of the [2 + 

1 + 1] route, M2M’M’’S4 (M’ ≠ M’) complexes containing three different metals can 

be envisaged, although no examples have been reported so far to the best of our 

knowledge. Finally, M3M’Q4 clusters (Q = S, Se) can be prepared in a similar fashion, 

by reacting a trinuclear cluster with a metal ion ([3 + 1] route).24 

 

Tetrametallic complex 1D Heterometallic network 
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Scheme 3.1. Stepwise strategy for the design of heterometallic cubane-like clusters. 

Several examples of heterobimetallic cubane-like M3M’Q4 clusters (M = Mo 

or W; Q = S or Se;  M’ = Fe, Ni, Cu, Co, Pd…) bearing aquo,25,26 cyclopentadienyl27–

30 or diphosphine ligands31–33 have been reported. However, the number of 

heterometallic cubane-type clusters containing sulfur-donor ligands is rather scarce, 

and date back to the late 80’s and early 90’s. All known examples contain dithiolate, 

dithiophosphate or dithiocarbamate ligands, and the most frequent building block is 

the syn-M2(µ2-S)2S2 unit (M = Mo or W). In particular, the dinuclear molybdenum 

and tungsten clusters M2S4(dtc)2 (dtc = diethyldithiocarbamate)33,34 and 

(Et4N)2[M2S4(edt)2] (edt = 1,2-ehanedithiolate),36 with two terminal and two µ2-

bridged sulfide ligands, have been used as precursors.24  

Among the reported cubane-like clusters containing the ligands dtc or edt, it 

is worth mentioning the cluster Mo2Fe2S4(dtc)5, which was prepared in 18 % yield by 

a one-pot reaction in which the [Mo2S4(dtc)2]2- precursor was prepared in situ.37 The 

M2Co2S4 (M = Mo or W) clusters [M2Co2S4(dtc)2(CH3CN)2(CO)2] were prepared by 

using the complex Co2(CO)8 as a cobalt source.38 Scheme 3.2 shows a schematic 

representation of the approach followed in order to prepare M2CuxS4 (x = 1 or 2) 

cubane complexes. The incomplete cubane clusters (Et4N)[M2CuS4(edt)2(PPh3)] (M 

= Mo or W) were synthesized by reaction between [M2S4(edt)2]2- and the copper 
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complex Cu(PPh3)2(dtp).39,40 The incorporation of two copper atoms in the cluster 

core was achieved by reacting [W2S4(edt)2]2-, CuCl2·H2O and PPh3, or CuCl in the 

presence of KSCN to afford W2Cu2S4(edt)2(PPh3)2 or (Et4N)4[W2Cu2S4(SCN)8], 

respectively.39,40 The molybdenum analogue cluster Mo2Cu2S4(edt)2(PPh3)2 was 

obtained by reaction with Cu(PPh3)3Cl.41 Finally, the trinuclear clusters 

[M3S4(dtp)3(µ2-dtp)(L)] (dtp = diethyldithiophosphate, L = H2O or CH3CN) have 

also been employed to incorporate copper as heterometal, affording M3CuS4 cubane 

complexes.43–45  

 

Scheme 3.2. Incorporation of one or two copper atoms into the dinuclear cluster 
[M2S4(edt)]2-, (M = Mo, or W). 

 In this chapter, two dithiolene ligands containing nitrogen groups, namely 2-

bis-(2-pyridyl)methylene-1,3-dithiolene (BPyDTS2 in Figure 3.1) and 2,3-

pyrazinedithiolate (pdt) have been coordinated to M2Q2(µ-S)2 dinuclear units (M = 

Mo or W; Q = O or S), and their reactivity towards other metals has been investigated 

by following the different strategies mentioned above. Furthermore, a novel 

dibutyltin dithiolate, Me2Sn(BPyDTS2), and two zinc bis(dithiolene) complexes, i.e. 

(Bu4N)2[Zn(met)2] (met = cis-1,2-dicarbomethoxyethylene-1,2-dithiolate) and 

(PPN)2[Zn(Cl2bdt)2] (Cl2bdt = 3,6-dichloro-1,2-benzenedithiol) have been prepared. 
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The reactions of the latter zinc and tin complexes towards the molybdenum cluster 

precursor (Bu4N)2[Mo3S7Br6]19 are also described herein. 

3.2. RESULTS AND DISCUSSION 

3.2.1. SYNTHESIS AND CHARACTERIZATION 

In the past decades, several synthetic approaches were used for the preparation of 

molybdenum and tungsten dithiolene cluster complexes. One of these strategies 

consists in the fragmentation of clusters of higher nuclearity. Dithiolene cluster 

complexes of formula [M2O2(µ-Q)2(dithiolene)2]2- (M = Mo or W; Q = S or Se) were 

obtained by reaction between the trinuclear clusters [M3Q4(dppe)3Br3](PF6), (dppe = 

1,2-bis(diphenylphosphino)ethane) and the zinc complex (Bu4N)2[Zn(dmit)2]. 

Alternatively, [M2O2(µ-Q)2(dithiolene)2]2- clusters were obtained starting from the 

{M3Q7Br4}n cluster polymers (M = Mo or W; Q = S or Se), although in the latter 

case longer reaction times were required (1 day vs 2 days). A schematic representation 

of the most common approaches to the preparation of bis(dithiolene) molybdenum 

and tungsten cluster complexes is depicted in Scheme 3.3.  In all cases, the formation 

of the air-sensitive [M3Q4(dmit)3]2- complexes was observed, which in the presence 

of oxygen afforded the desired dinuclear clusters in low yields.46 

Scheme 3.3. Synthetic strategies employed for the preparation of [M2O2(µ-Q)2(dithiolene)2]2- 
cluster complexes (M = Mo or W; Q = S or Se). 

The cluster [Mo2O2(µ-S)2(dmit)2]2- was also prepared in moderate yields by 

substitution of the labile dimethylformamide ligands in the [Mo2O2(µ-S)2(DMF)6](I2) 
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precursor. Apart from this complex, dinuclear molybdenum or tungsten cluster 

chalcogenides bearing labile ligands that could be easily replaced by dithiolates have 

not been reported. For this reason, we decided to investigate alternatives to the 

cluster complexes [M3Q4(dppe)3Br3]+, (M = Mo, W; Q = S or Se), and to the 

polymers{M3Q7Br4}x, which allowed us to obtain bis(dithiolene) dinuclear clusters in 

high yields. 

As mentioned earlier, dithiolene derivatives of the Mo2O2(µ-S)2 dinuclear unit 

can be conveniently prepared from the [Mo2O2(µ-S)2(DMF)6]2+ cation by simple 

ligand exchange reactions.46 Nevertheless, its reactivity towards dithiolates is 

restricted to only a few examples, which include the use of dmit and dithiooxalate as 

ligands.46,47 With the aim of extending this chemistry, we decided to synthesize and 

coordinate two dithiolene ligands containing nitrogen groups, namely 2-bis-(2-

pyridyl)methylene-1,3-dithiolene (hereinafter, BPyDTS2)9 and 2,3-pyrazinedithiolate 

(pdt),14,17 the molecular structure of them being represented in Figure 3.1. This choice 

of dithiolene ligands with two coordination poles would afford potential building 

blocks based on molybdenum dinuclear clusters which may be used for the 

construction of extended architectures, as envisioned in Figure 3.9. 

 Ligand BPyDT(SCH2CH2CN)2 was prepared in ca. 50 % yields by the cross-

coupling reaction between di(2-pyridyl)ketone and 4,5-bis(2-cyanoethylthio)-1,3-

dithiole-2-thione48 in the presence of P(OEt)3, as reported in the literature.9 In the 

step concerning the synthesis of 4,5-bis(2-cyanoethylthio)-1,3-dithiole-2-thione, the 

yield of the reaction was greatly increased with respect to the reported (90 % vs 66 

%)48 by increasing the quantity of 3-bromopropionitrile used. Deprotection of the 

dithiolene ligand was achieved with potassium tert-butoxide, a widely-used reagent 

for these purposes.49 Compound 2,3-pyrazinedithiol was prepared by modifying the 

literature procedures.14,17 This modification allowed us to prepare the ligand H2pdt 
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in a significantly higher yield (72 % vs 43 %). Addition of a 2M sodium hydroxide 

solution in methanol afforded the deprotonation of the ligand. 

As shown in Scheme 3.4, the in situ generated BPyDTS22- and pdt2- dithiolates 

were reacted with the dinuclear molybdenum species [Mo2O2(µ-S)2(DMF)6](I2) 

containing labile dimethylformamide ligands, which were easily replaced by the 

dithiolate to afford the desired (Et4N)2[Mo2O2(µ-S)2(BPyDTS2)2], (hereinafter 

(Et4N)2[4]) and (Et4N)2[Mo2O2(µ-S)2(pdt)2], ((Et4N)2[7]), clusters respectively in ca. 

80 % yields. The molybdenum precursor [Mo2O2(µ-S)2(DMF)6](I2) was prepared by 

reaction of the cluster (Et4N)2[Mo2O2S8] with I2 in DMF.47 

Scheme 3.4. Stepwise approach to the synthesis of bis(dithiolene) Mo2O2(µ-S)2 cluster 
complexes. 

 As mentioned in the introduction, molybdenum and tungsten cluster units 

containing M2S2(µ-S)2 cores (M = Mo or W) are very promising as they allow the 

synthesis of heterometallic structures based on cubane-like cluster units.24 Since the 

number of dithiolene ligands coordinated to M2S2(µ-S)2 units is scarce, we decided to 

extend this chemistry by coordinating dithiolene ligands bearing nitrogen groups. For 

this purpose, we chose the ligand pdt due to its ability to side coordinate metal ions. 

 As shown in Scheme 3.5, for the synthesis of clusters (PPN)2[Mo2S2(µ-

S)2(pdt)2], ((PPN)2[6]) and (PPN)2[W2S2(µ-S)2(pdt)2], ((PPN)2[8]), the ligand pdt was 

mixed with commercial ammonium tetrathiomolybdate or tetrathiotungstate, 
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respectively in the presence of dimethylformamide. Reddish-brown solutions were 

obtained upon heating for a few hours. Compound (NH4)2[WS4] is less reactive than 

(NH4)2[MoS4], and consequently higher temperatures and longer reaction times were 

required. Addition of PPNCl afforded the desired salts in ca. 60 % yields. The 

tetraethylammonium salts of complexes [M2S2(µ-S)2(pdt)2]2- (M = Mo or W) were 

also obtained by using Et4NBr instead of PPNCl. This convenient route is an 

adaptation of that proposed by Stiefel for the coordination of 1,2-ethanedithiol and 

o-aminobenzenethiol to molybdenum and tungsten dinuclear units.36 In this synthetic 

approach, the anion precursors [MS4]2- (M = Mo or W), in which the formal oxidation 

state for the metal is +6, are reduced to form dinuclear M(V), (M = Mo or W), cluster 

complexes. The reductant may be the pdt ligand or the sulfide which is present in the 

coordination sphere of the metals.  

 

Scheme 3.5. Synthesis of bis(dithiolene) Mo2S2(µ-S)2 cluster complexes. 

A tentative mechanism for the latter reaction was proposed by Stiefel and co-

workers.50 As shown in Scheme 3.6, the first step involves proton transfer from NH4+ 

to [MS4]2-, followed by expulsion of the HS- anion and formation of the [M2S7]2- 

dimer.51 The instability of the [M2S7]2- complex may lead to the formation of an 

isomeric intermediate. Reaction between the bidentate ligand (pdt) and the 

intermediate could replace the S22- and S2- sulfides present in the dimer in order to 

generate the species containing the [M2S2(µ-S)2]2+ core.  
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Scheme 3.6. Tentative mechanism for the synthesis of [M2S2(µ-S)2(pdt)2]2- (M = Mo or W). 

As mentioned in the Introduction, dithiolene ligands have been coordinated 

to trinuclear Mo3S7 and Mo3S4 cluster units by transmetallation starting either from 

tin or zinc dithiolene complexes to afford highly versatile redox active multifunctional 

cluster-based molecular conductors.20–23 In order to provide further insight into the 

reactivity of Mo3S7 clusters towards dithiolene ligands, we decided to explore the 

coordinative abilities of dithiolates functionalized with several groups, namely 

carboxylates, chlorine and nitrogen. For this purpose, we chose four different ligands: 

cis-1,2-dicarbomethoxyethylene-1,2-dithiolate (met), 3,6-dichloro-1,2-

benzenedithiolate (Cl2bdt), and the aforementioned BPyDTS2 and pdt. The ligands 

met and Cl2bdt have the potential to generate complexes with interesting redox 

properties,52 and in the former case, due to the presence of carboxylate groups in the 

ligand, the resulting clusters could be anchored onto semiconductor oxides.53 On the 

other hand, the coordination of the nitrogen-containing ligands BPyDTS2 and pdt to 

trinuclear molybdenum clusters could pave the way for the design of interesting 

heterometalic architectures based on transition metal clusters.  
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Since the Mo3S7 cluster unit is unstable under the basic conditions required 

for the deprotection of dithiolene ligands, we have used dialkyltin and zinc dithiolene 

complexes as hidden forms of dithiolates for the synthesis of tris(dithiolene) Mo3S7 

clusters. Scheme 3.7 shows the synthetic procedures employed for the preparation of 

complexes (Bu4N)2[Zn(met)2], ((Bu4N)2[1]), and (Bu4N)2[Zn(Cl2bdt)2], ((Bu4N)2[2]). 

Both compounds were prepared in moderate yields (40 % and 60 %, respectively) by 

reaction between ZnCl2 and the corresponding dithiolates, which were generated in 

situ. The use of a 1:1 mixture of methanol and aqueous ammonia was required in 

order to dissolve the zinc chloride. The met ligand was obtained by treating dimethyl-

2-oxo-1,3-dithiole-4,5-dicarboxylate54 with a methanol solution of LiOH, whereas 

H2Cl2bdt was deprotonated with triethylamine. Complex Me2Sn(BPyDTS2), (3), was 

prepared in 70 % yields by reacting the BPyDTS22- dithiolate with dimethyltin 

dichloride, since the reaction with zinc chloride did not afford the desired product. 

To date, all attempts to prepare tin or zinc derivatives containing the pdt ligand have 

been unsatisfactory. Further details about the preparation of these precursors can be 

found in the Experimental Section. 

 

Scheme 3.7. Synthetic route for the preparation of zinc and tin dithiolene complexes. 
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 The cluster complexes (PPN)2[Mo3S7(met)3], ((PPN)2[10]), and 

(Bu4N)2[Mo3S7(Cl2bdt)3], ((Bu4N)2[11]), were prepared in moderate yields (ca. 70%) 

by reaction between the [Mo3S7Br6]2- precursor19 and [Zn(met)2]2- or [Zn(Cl2bdt)2]2-, 

respectively in acetonitrile at room temperature. Reaction of the tin complex 

Me2Sn(BPyDTS2), (3), with [Mo3S7Br6]2- under the same conditions afforded the 

[Mo2O2(µ-S)2(BPyDTS2)2]2-, ([4]2-), dinuclear cluster species upon oxidation of the 

trinuclear cluster core. Nevertheless, the presence of byproducts precluded the 

isolation of the dinuclear cluster compound [4]2- in its pure form. The molecular 

structures of complexes [10]2- and [11]2- are represented in Figure 3.10. 

 

Figure 3.10. Molecular representation of the cluster anions [10]2- and [11]2-. 

The compounds presented in this section have been fully characterized by 

different techniques: NMR, mass spectrometry, IR, UV/Vis spectroscopy and 

elemental analysis, as described in detail in the Experimental Section. The crystal 

structures of compounds 3, (Et4N)2[4], (PPN)2[6], (Et4N)2[7], (PPN)2[8–10] and 

(Bu4N)2[11] have been determined by using single crystal X-ray diffraction techniques, 

as detailed in a subsequent section. To our dismay, diffraction data for compounds 

(Bu4N)2[1 – 2] did not lead to a satisfactory refinement of the structures. All 

compounds are stable in both solid and solution phases with the exception of 3, 

which decomposes in solution within few hours. 
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The electrochemical properties of (PPN)2[Mo3S7(met)3], ((PPN)2[10]), and 

(Bu4N)2[Mo3S7(Cl2bdt)3], ((Bu4N)[11]), were investigated by cyclic voltammetry. The 

cyclic voltammogram of (PPN)2[10] in dichloromethane (Figure 3.11a) reveals three 

quasi-reversible oxidation waves at easily accessible potentials (0.38, 0.70 and 1.03 V 

; vs Ag/AgCl). Cluster (Bu4N)2[11] exhibits one quasi-reversible oxidation wave at 

0.55 V (vs Ag/AgCl) in acetonitrile solution (see Figure 3.11b). No reduction peaks 

were observed for both complexes within the solvent window. 
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Figure 3.11. Cyclic voltammograms of clusters (PPN)2[Mo3S7(met)3] (a) and 
(Bu4N)2[Mo3S7(Cl2bdt)3] (b) in solution, recorded at a scan rate of 100 mV/s (vs Ag/AgCl). 

Table 3.1 lists the redox potentials of clusters (PPN)2[10] and (Bu4N)[11], 

together with those of related complexes. With the exception of [10]2- and [11]2-, all 

Mo3S7 complexes show a reduction process which is associated to the reduction of 

the µ2-bridged disulfide groups to sulfide, and implies transformation from the Mo3S7 

to the Mo3S4 unit. Consequently, we conclude that the coordination of met and 

Cl2bdt ligands to trinuclear molybdenum cluster units results in complexes which are 

more difficult to reduce than their bromide precursors or other tris(dithiolene) Mo3S7 

complexes. As shown in Table 3.1, the oxidation potentials of compounds (PPN)2[10] 

and (Bu4N)2[11] are in agreement with those reported for similar cluster complexes. 
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Table 3.1. Redox potentials (vs Ag/AgCl) measured at 100 mV/s in dichloromethane for 
several Mo3S7 dithiolene complexes. 

Cluster Complex Reduction, Ec / V Oxidation, E1/2 (E) / V 

(NH4)2[Mo3S13]55 -1.03a - - - 

(Bu4N)2[Mo3S7Br6]56 -1.15 - - - 

(PPN)2[10] - 0.38 (0.07) 0.70 (0.08) 1.04 (0.09) 

(Bu4N)2[11] - 0.54 (0.07)b - - 

(Bu4N)2[Mo3S7(bdt)3]21 -1.26 0.23 (0.07) 0.41 (0.13) - 

(Bu4N)2[Mo3S7(tfd)3]21 -1.22 0.51 (0.07) 0.89 (0.06) - 

(Bu4N)2[Mo3S7(mnt)3]56 -1.04 0.77 (0.07) 1.16 (0.07) - 

(Bu4N)2[Mo3S7(tdas)3]57 -1.31 0.72 (0.08) - - 

(Bu4N)2[Mo3S7(dmid)3]21 -1.27 0.36 (0.10) - - 

(Bu4N)2[Mo3S7(dmit)3]20 -1.20 0.38 (0.17) - - 

(Bu4N)2[Mo3S7(dsit)3]21 -1.69 0.34 (0.18) - - 

E1/2 = (Ea + Ec)/2 ; E = |Ea - Ec| ; a Data recorded in etanol ; b Data recorded in acetonitrile 

Theoretical calculations show that the oxidation processes of 

[Mo3S7(dithiolene)3]2- complexes are ligand centered.20–23 In particular, the oxidation 

of the already reported [Mo3S7(dmit)3]2- (dmit = 1,3-dithiole-2-thione-4,5-dithiolate) 

anion has been associated to a bielectronic process which affords neutral radical 

species, as shown in the following scheme:20 

 

The shape of the oxidation waves of [Mo3S7(dmit)3]2- suggests that insoluble species 

are formed at the electrode surface. This is not the case for the [11]2- cluster anion, 

for which similar intensities are observed in the cathodic and anodic peaks of the 

quasi-reversible redox wave registered at 0.54 V. With these data, it is not possible to 

assess whether the electron transfer corresponds to a mono- or bielectronic redox 

process. Nevertheless, the oxidation potential of [11]2- is in agreement with a ligand-
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based oxidation (see Table 3.1). The presence of three reversible or quasi-reversible 

oxidation waves in the cyclic voltammogram of complex [10]2- can be explained by 

taking into consideration the ligand-based character of the HOMO orbitals in 

tris(dithiolene) Mo3S7 clusters.21 In view of these redox waves, it can be postulated 

that the oxidation process observed in [10]2- occurs via a three-stepped one-electron 

mechanism, as follows: 

 

3.2.2. REACTIVITY OF BIS(DITHIOLENE) DINUCLEAR CLUSTER 
COMPLEXES TOWARDS OTHER METALS 

As mentioned in the Introduction, dithiolene ligands bearing two coordination poles 

have given rise to a series of interesting heterometallic discrete complexes, or 

coordination polymers, in which a combination of physical properties is present.5 

With the aim of extending this chemistry to transition metal cluster complexes, we 

decided to use the dinuclear molybdenum cluster [Mo2O2(µ-S)2(BPyDTS2)2]2-, ([4]2-), 

as a building block for the formation of heterometallic structures in which the 

heterometals were bridged to the cluster unit by the nitrogen groups in the BPyDTS2 

dithiolene ligand. In the past, the ligand BPyDTS2 was used by Zuo and co-workers 

for the preparation of luminescent heterometalic complexes containing rhenium(I) 

and other transition metals, such as platinum(II) and gold(I).9 

 Motivated by the reported photophysical properties of rhenium(I) tricarbonyl 

complexes with diimine ligands,9,58 we focused our investigation on the reactivity of 

the molybdenum dimer (Et4N)2[Mo2O2(µ-S)2(BPyDTS2)2] towards 

pentacarbonylchlororhenium(I), represented in Scheme 3.8. Optimum reaction 

conditions were achieved by using microwave irradiation (100 W) and a 

DMF/CH3CN (1:4) mixture as a solvent. This mixture of solvents was crucial since 

it allowed the precipitation of impurities over the course of the reaction. The resulting 
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heterometallic cluster compound (Et4N)2[Mo2O2S2(BPyDTS2)2{Re(CO)3Cl}2], 

((Et4N)2[5]), was isolated in 67 % yield and represents to the best of our knowledge, 

the first example of a discrete heteronuclear complex with two metal atoms (rhenium) 

connected to a molybdenum dinuclear cluster unit through a bridging ligand. As 

shown in Scheme 3.8, reaction between [Mo2O2(µ-S)2(BPyDTS2)2]2- and Mn(CO)5Br 

under analogous conditions did not afford the expected product.  

 

Scheme 3.8. Synthetic approach to the preparation of discrete heterometallic 
structures based on dinuclear Mo2O2(µ-S)2 clusters and rhenium(I). 

The IR spectrum of complex (Et4N)2[5] shows the three typical bands found 

in the CO stretching region for Re(I) distorted octahedral complexes with three 

substituted positions (two nitrogen atoms and a halogen atom). These bands are 

consistent with a facial arrangement for the three coordinated C≡O ligands, and the 

infrared frequency values (2017, 1906 and 1891 cm-1) are also in agreement with those 

reported previously.9,58,59 

With the aim of constructing 1D polymeric coordination architectures, akin 

to those reported by Baudron and co-workers containing the ligand DazDTS-B (see 

Introduction for further details),6 the cluster complex [Mo2O2(µ-S)2(BPyDTS2)2]2-, 

([4]2-), was allowed to react with several transition metal ions bearing labile ligands, 

namely Cu(I), Ag(I), Pd(II) and Ni(II). For this purpose, a concentrated solution of 

(Et4N)2[4] in DMSO (ca. 3 mL) was prepared. Then 3 mL of a 1:2 DMSO/CH3CN 

solution was carefully layered on the top of the dark brown solution containing the 

cluster. Finally, a solution of a transition metal source ([Cu(CH3CN)4](PF6),60 AgOTf, 

PdCl2(CH3CN)2 or Ni(PPh3)2Cl2) in CH3CN (ca. 3 mL) was layered on top of the 
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latter solvent mixture. Crystal formation was observed when solutions of complex 

PdCl2(CH3CN)2 were layered. However, to our dismay, their quality was not good 

enough for X-ray structural analysis. 

 The ability of cluster complex (Et4N)2[Mo2O2(µ-S)2(pdt)2], ((Et4N)2[7]), to 

side-coordinate copper(I) through the nitrogen atoms contained in the 2,3-

pyrazinedithiolate ligand17,18 was also explored. Reaction between [Mo2O2(µ-

S)2(pdt)2]2- and 2 equivalents of CuBr in acetonitrile solution afforded the 

precipitation of a dark powder, insoluble in common organic solvents. All attempts 

to fully characterize the reaction product have to date been unsuccessful. 

 The reactivity of [M2S2(µ-S)2(pdt)2]2-, (M = Mo; [6]2-, or W; [8]2-), towards 

transition metals in order to obtain cubane-like clusters containing dithiolene ligands 

was also investigated. For this purpose, (PPN)2[M2S2(µ-S)2(pdt)2] (M = Mo or W) was 

reacted with several metal complexes in dichloromethane, as summarized in Scheme 

3.9. Copper(I) was used in the form of complex Cu(PPh3)2(dtp), (dtp = 

diethyldithiophosphate).40 When the compounds (PPN)2[M2S2(µ-S)2(pdt)2] (M = Mo, 

W) were allowed to react with 1 or 2 equivalents of Cu(PPh3)2(dtp) in 

dichloromethane under reflux conditions, the expected M2CuxS4 (x = 1 or 2) clusters 

bearing triphenylphosphine coordinated to the copper(I) atom39,40 were not obtained, 

according to 31P-NMR and ESI-MS techniques. Reaction of (PPN)2[M2S2(µ-S)2(pdt)2]  

(M = Mo or W) with FeCl3 (4 eq) in dichloromethane at room temperature led to the 

precipitation of a dark solid, insoluble in common organic solvents. 

The reaction outcome between compound (PPN)2[M2S2(µ-S)2(pdt)2] (M = 

Mo or W) and Co2(CO)8 was unexpected. Instead of affording the M2Co2S4 cubane 

complexes,38 substitution of sulfur by oxygen in the terminal M=S bonds was 

elucidated from the ESI-MS spectra (see Scheme 3.9). This unusual reactivity of 

M2S2(µ-S2) complexes towards cobalt carbonyl is to the best of our knowledge, 

unprecedented. Addition of 1.1 equivalents of cobalt carbonyl to a dichloromethane 
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solution of (PPN)2[M2S2(µ-S)2(pdt)2] (M = Mo, W) at room temperature replaces the 

terminal sulfide groups by oxygen, resulting in the formation of the [M2O2(µ-

S)2(pdt)2]2- clusters (M = Mo; [7]2-, or W; [9]2-). Nevertheless, when 0.5 equivalents of 

cobalt carbonyl were added, the partial substitution of the terminal sulfur was 

observed, leading to a mixture of species: [M2O2(µ-S)2(pdt)2]2-, [M2OS(µ-S)2(pdt)2]2- 

and [M2S2(µ-S)2(pdt)2]2-, where M = Mo or W. Addition of an excess of cobalt 

carbonyl (> 1.5 eq.) led to the precipitation of dark products, insoluble in common 

organic solvents. Interestingly, not only cobalt carbonyl was able to oxidize the metal-

sulfur bond in the M2S2(µ-S)2 dinuclear cluster species, but also other metal carbonyl 

complexes, such as M(CO)4(piperidine)2 (M = Mo or W).61 However, reactions 

between [M2S2(µ-S)2(pdt)2]2- (M = Mo, W) and the latter carbonyl complexes under 

reflux conditions in CH2Cl2 led to the formation of more by-products and resulted 

in lower yields, as compared to reactions with Co2(CO)8. 

 

Scheme 3.9. Synthetic approach to the formation of heterometallic cubane-like complexes 
based on bis(dithiolene) M2S2(µ-S)2 cluster (M = Mo or W). 
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3.2.3. CRYSTAL STRUCTURE DESCRIPTION 

3.2.3.1. BIS(DITHIOLENE) MOLYBDENUM AND TUNGSTEN 
CLUSTERS 

Single crystals of compounds (Et4N)2[4], (PPN)2[6], (Et4N)2[7], (PPN)2[8] and 

(PPN)2[9] were obtained by slow (or gas) diffusion methods, and their solid state 

structures were determined by X-ray diffraction. Figures 3.12 and 3.13 show the 

ORTEP representations of anions [4]2- and [7]2- with the atom numbering scheme. 

The crystallographic data collection parameters of all structures are given in the 

Experimental. 

 

Figure 3.12. ORTEP representation (50 % probability ellipsoids) of the anionic dinuclear 
cluster [4]2- with the atom numbering scheme. 

All complexes contain the dinuclear cluster core M2Q2(µ-S)2, (M = Mo or W; 

Q = O or S), in which the two metal centers are connected through two doubly 

bridged sulfide ligands, and each metal atom is five-coordinated (if the metal-metal 

interaction is not considered). The remaining positions are occupied by the two sulfur 

atoms of the dithiolate ligand and a terminal chalcogenide atom (oxygen or sulfur) in 

a square pyramidal environment. The chalcogenide atoms of these cluster complexes 

are in a syn configuration. For all compounds, the metal atoms are located between 

0.70 and 0.73 Å above the approximate square plane defined by the bridging 

chalcogenides and the sulfur atoms in the dithiolate ligand. Consequently, this 
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distance value remains relatively unchanged regardless of the nature of the metal, the 

dithiolene ligand, or the presence of M=S terminal bonds instead of M=O bonds. 

 

Figure 3.13.  ORTEP representation (50 % probability ellipsoids) of the anionic dinuclear 
cluster [7]2- with the atom numbering scheme. 

The arrangement of atoms described herein is typical for dinuclear clusters 

of general formula M2X2(µ-Q)2L2, (M = Mo or W; X = O, S, or Se; Q = S or Se), in 

which L represents a variety of terminal ligands such as dithiocarbamates, 

maleonitriledithiolate, dithiophosphates, dithiolates, disulfide ligands or 

polyselenides.14,46,62–67 Table 3.2 shows a list of selected bond lengths and angles for 

structures (Et4N)2[4], (PPN)2[6], (Et4N)2[7], (PPN)2[8] and (PPN)2[9] together with 

those of other dinuclear complexes containing M2Q2(µ-S)2 (Q = O or S) cluster cores 

and dithiolene ligands. As can be seen in the Experimental Section, the cluster anions 

[6]2-, [8]2- and [9]2-, containing the ligand pdt, have similar structures to that of cluster 

[7]2-. A dichloromethane molecule was found co-crystallized with clusters (PPN)2[6] 

and (PPN)2[8], whereas in structure (PPN)2[9], two molecules of acetonitrile were 

observed. 

The metal-metal bond distances in these clusters are consistent with those of 

an oxidation state of +5 for the metal, and the presence of a single metal-metal bond. 

For all complexes the metal-metal bond distances remain unchanged upon 

substitution of molybdenum by tungsten, and have a value of ca. 2.85 Å. Replacing 

molybdenum by tungsten, as also changing the outer ligands in M2Q2(µ-S)2 (Q = O 

or S) cluster complexes leaves the M-(µ-S) bond lengths unchanged, with a value of 
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ca. 2.33 Å. The metal-ligand distances (ca. 2.43 Å) do not vary significantly along the 

series of complexes, either. As expected, the most significant difference in bond 

length values is observed in terminal M=Q bonds (Q = O or S) when oxygen is 

replaced by sulfur, or vice versa. For instance, the M=S bond distances in cluster 

(PPN)2[8] decrease by a factor of 0.40 upon replacement of sulfur by oxygen. In 

addition, the M=O bond lengths are slightly larger for the tungsten derivatives. This 

tendency is not unprecedented.46 

Table 3.2. Selected average bond distances (Å) and angles (º) for clusters (Et4N)2[4], 
(PPN)2[6], (Et4N)2[7], (PPN)2[8] and (PPN)2[9], and comparison with similar complexes 
(standard deviations are given in parentheses). 

Cluster M-M M-(µ-S) M=Qa M-Sligand b c 

(Et4N)2[4] 2.8435(9) 2.3273(14) 1.687(3) 2.4315(14) 141.8 17.7 

(PPN)2[6] 2.8531(4) 2.3204(10) 2.1198(2) 2.4139(10) 148.4 19.6 

(Et4N)2[7] 2.8622(9) 2.3258(2) 1.680(6) 2.4283(2) 146.1 19.1 

(PPN)2[8] 2.8504(2) 2.3278(9) 2.1344(9) 2.4115(9) 149.0 19.8 

(PPN)2[9] 2.84137(19) 2.3315(8) 1.737(3) 2.4183(8) 148.7 19.4 

(Bu4N)2[Mo2O2(µ-

S)2(dmit)2]46 
2.822(12) 2.316(2) 1.658(3) 2.432(2) 143.4 20.1 

(Bu4N)2[W2O2(µ-

S)2(dmit)2]46 
2.825(2) 2.323(6) 1.788(14) 2.432(6) 141.8 18.9 

(PPN)2[W2S2(µ-

S)2(edt)2]36 
2.862(1) 2.328(2) 2.144(2) 2.404(2) 148.9 23.8 

 

a Q = O or S. b Dihedral angle between the two M–(-S)2 planes. c Folding angle in the metallacycle MS2C2. 

In structure (Et4N)2[4] each pyridine ring connected to C(4) constitutes a 

plane which deviates from the plane defined by the adjacent pyridine ring. The 

dihedral angle between the two planes of the six-membered pyridyl moieties is 

111.974(5)º. In all cluster complexes, the MS2C2 metallacycle is folded along the 

dithiolene S-S hinge. The folding angles () observed in the salts of all cluster anions, 
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as also the dihedral angles () between the two M-(µ-S)2 planes are given in Table 

3.2. No clear tendencies in the folding angle are observed upon substitution of the 

metal, terminal chalcogenide, or outer dithiolene ligands. However, counterion 

exchange in mononuclear titanium and molybdenum complexes containing 

dithiolene ligands has been reported to dramatically affect the folding angle along the 

dithiolene S-S hinge.3 The M-(µ-S)2 dihedral angles also seem to depend on the 

counterions rather than on the cluster anions themselves, and the larger  angles in 

Table 3.2 correspond to the PPN+ salts. 

3.2.3.2. TRIS(DITHIOLENE) MOLYBDENUM CLUSTERS 

Single crystals of compounds (PPN)2[10] and (Bu4N)[11] were obtained by slow 

diffusion methods, and the solid structure was determined by X-ray diffraction. The 

ORTEP representations of the cluster anions [10]2- and [11]2- with the atom 

numbering schemes are depicted in Figures 3.14 and 3.15, respectively. 

 Both structures contain an equilateral Mo3 core capped by an apical µ3-S2- 

ligand (S(1) in the figures) which lies above the metallic plane. In addition, three 

bridging μ-S22- groups connect adjacent metal atoms, with three sulfur atoms 

occupying an equatorial position (Seq, labeled as S(2), S(4), and S(6)) essentially in the 

Mo3 plane, and three axial sulfur atoms (Sax, labeled as S(3), S(5) and S(7)) which are 

located out of the metal plane. The dithiolate groups fill the remaining two positions 

on the seven-coordinated molybdenum atoms, and are oriented almost perpendicular 

to the plane defined by the three molybdenum atoms in the Mo3S7 cluster core. A 

dichloromethane molecule was found co-crystallized with cluster (Bu4N)[11]. 



DINUCLEAR AND TRINUCLEAR MOLYBDENUM AND TUNGSTEN CLUSTER COMPLEXES 
CONTAINING DITHIOLENE LIGANDS 

51 
 

 

Figure 3.14.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [10]2- with the atom numbering scheme. 

 

Figure 3.15.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [11]2- with the atom numbering scheme. 

As shown in Table 3.3, the average bond lengths in clusters (PPN)2[10] and 

(PPN)2[11] are within the range of those reported for other Mo3S7 cluster complexes 

containing dithiolene ligands.20,21 The average Mo-Mo bond distances in clusters 

(PPN)2[10 – 11] of ca. 2.73 Å, as also the lengths between the molybdenum atoms and 

the bridging sulfide ligands, remain relatively unchanged regardless of the nature of 

the counterion and the outer dithiolate ligand. 
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Table 3.3. Selected average bond lengths (Å) for clusters (PPN)2[10] and (PPN)2[11], together 
with those of similar complexes (Q = S or Se). 

Cluster Mo-Mo Mo-(µ3-S) Mo-Sax Mo-Seq Mo-Qligand 

(PPN)2[10] 2.7744(10) 2.372(2) 2.404(2) 2.529(2) 2.461(2) 
(Bu4N)2[11] 2.7797(14) 2.368(4) 2.407(4) 2.523(4) 2.447(4) 

(Bu4N)2[Mo3S7(dmit)3]20 2.765(2) 2.367(3) 2.407(3) 2.508(4) 2.477(3) 
(Bu4N)2[Mo3S7(bdt)3]21 2.7859(8) 2.364(2) 2.415(2) 2.520(2) 2.466(2) 
(PPh4)2[Mo3S7(dmid)3]21 2.777(2) 2.376(3) 2.415(5) 2.514(5) 2.479(4) 
(Bu4N)2[Mo3S7(dsit)3]21 2.761(2) 2.373(4) 2.417(4) 2.511(4) 2.607(2) 

Mo3S7(dmit)3 
20 2.772(3) 2.380(1) 2.413(5) 2.511(5) 2.476(4) 

 

It is also worth remarking the existence of short S···H intermolecular 

contacts in the solid structure of complex (Bu4N)2[11], as shown in Figure 3.16.  These 

contacts (2.838 – 2.961 Å) are given between two sulfide atoms in the cluster core 

(S3 and S5), a sulfur atom in the dithiolate (S11), and a hydrogen atom in the Cl2bdt 

ligand contained in a neighboring cluster anion. For compound (PPN)2[10], only 

intermolecular interactions between the cluster anion [10]2- and the phenyl groups 

contained in the PPN+ counterion were observed. Intermolecular interactions 

between dithiolate Mo3S7 cluster units are not unprecedented.20,56    

                               

Figure 3.16. Crystal packing in structure (Bu4N)2[11] showing the intermolecular interactions 
between neighboring cluster anions. 

Contact Lengths: 

S5···H    2.959 Å 

 S3···H    2.961 Å 

   S11···H    2.838 Å 
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3.3. CONCLUSIONS 

A series of M2Q2(µ-S)2-based (M = Mo or W, Q = O or S) cluster complexes 

containing dithiolene ligands have been prepared. The ligands 2-bis-(2-

pyridyl)methylene-1,3-dithiolene (BPyDTS2) and 2,3-pyrazinedithiolate (pdt) have 

been employed for the coordination to these dinuclear units, resulting in the clusters 

anions [4]2-, and [6 – 9]2-, respectively. Reaction between compound [4]2- and 

Re(CO)5Cl affords the discrete heterometallic cluster [5]2-, which represents to the 

best of our knowledge the first example of a discrete heteronuclear complex with two 

metal atoms (rhenium) connected to a molybdenum dinuclear cluster unit through a 

bridging ligand. The luminescence behavior of complexes [4]2- and [5]2- will be 

discussed in a subsequent chapter. 

The reactivity of complexes [6 – 9]2- towards transition metal complexes to 

afford cubane-like clusters of formula M2M’2S4 was also investigated. Surprisingly, 

the reaction of clusters [M2S2(µ-S)2(pdt)]2- (M = Mo or W) with metal carbonyls 

affords the substitution of the terminal sulfur atoms by oxygen, resulting in the 

formation of M=O bonds. 

A series of trinuclear Mo3S7 clusters containing dithiolene ligands has also 

been prepared by using zinc dithiolene complexes as hidden forms of dithiolates. The 

resulting cluster complexes (PPN)2[10] and (Bu4N)2[11] were obtained in high yields, 

and their electrochemical properties were investigated. Complex (PPN)2[10] shows 

three quasi-reversible oxidation waves at easily accessible potentials in 

dichloromethane solution. The crystal packing in compound (Bu4N)2[11] reveals the 

existence of intermolecular interactions between neighboring cluster anions. 
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“One of the ways of stopping science would be only to do 
experiments in the region where you know the law. But experimenters 
search most diligently, and with the greatest effort, in exactly those 
places where it seems most likely that we can prove our theories 
wrong. In other words we are trying to prove ourselves wrong as 
quickly as possible, because only in that way can we find progress.” 

Richard P. Feynman, The Character of Physical Law 
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4.1. INTRODUCTION 

4.1.1. APLICATIONS OF COMPLEXES CONTAINING DIIMINE 
LIGANDS 

A great diversity of transition metal complexes reported in the literature contain 

diimine ligands such as phenanthroline and bipyridine derivatives (see Figure 4.1). 

These complexes have a great potential due to the phyisicochemical properties that 

can emerge. Their non-innocent redox character, as well as their ability to induce 

metal ligand charge transfers are the most notable features of complexes containing 

phenanthroline- and bipyridine-type ligands.1,2 In particular, ruthenium bipyridyl 

complexes are characterized by their broad absorption spectra, long-lived excited-

state lifetimes and good electrochemical stability. All these features make such 

complexes suitable in areas such as photocatalysis and photovoltaic cells.3,4 

 

Figure 4.1. Examples of diimine ligands that have been coordinated to metal complexes. 

Ruthenium(III) and iridium(III) polypyridyl complexes have been widely 

used as photoredox catalysts in a number of organic reactions which include the intra- 

and intermolecular addition of alkyl radicals to unsaturated carbon-carbon bonds.5 

One example of this type of reaction is the visible-light mediated halogenation of 

alcohols using [Ru(bpy)3]Cl2 as a catalyst.6 The manganese complexes cis-[MnL2Cl2] 

(L = 2,2’-bipyridine or 1,10-phenanthroline) have also been reported to efficiently 
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catalyze the disproportionation of hydrogen peroxide: 2H2O2 → O2 + 2H2O, an 

important reaction in cell detoxification.7 

Ruthenium complexes containing bipyridyl ligands have been extensively 

used in the visible-light-driven water splitting reaction when anchored to 

semiconductor oxides, such as TiO2.3 In order to ensure a good anchoring, several 

functional groups have been appended to bipyridine and phenanthroline ligands, 

being phosphonic acids (P(O)(OH)2), and carboxylic acids (COOH) the most 

common.8 In addition, ruthenium complexes containing functionalized bipyridyl 

ligands have also been used in dye-sensitized photovoltaic cells.4 In particular, 

complex (Bu4N)2[Ru(dcbpy)2(NCS)2], (dcbpy = 2,2’-bipyridine-4,4’-dicarboxylic 

acid), has been reported to be an outstanding solar light harvester and charge-transfer 

sensitizer.9 

Ruthenium is not the only metal employed for photocatalytic water splitting. 

In the recent past, Eisenberg and co-workers have reported that heteroleptic 

platinum(II) complexes, containing both diimine and dithiolene ligands, act as 

efficient catalysts for the reductive side of the water splitting reaction.10 

Representative examples include Pt(dcbpy)(met), (dcbpy = 2,2’-bipyridine-4,4’-

dicarboxylic acid; met = cis-1,2-dicarbomethoxyethylene-1,2-dithiolate), and 

Pt(dcbpy)(bdt), (bdt = 1,2-benzenedithiol), depicted in Figure 4.2. Similar 

heteroleptic platinum(II) complexes have been employed as photosensitizers in TiO2-

based solar cells, showing conversion efficiencies close to 2.5 %.11 

 

Figure 4.2. Molecular structure of complexes Pt(dcbpy)(met); (a) and Pt(dcbpy)(bdt); (b), 
reported by Eisenberg et al. 
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Transition metal complexes containing diimine ligands also find applications 

in Optics. In particular, heteroleptic nickel(II) complexes containing 1,10-

phenanthroline and imidizaphenanthroline derivatives have been reported to exhibit 

third-order optical nonlinearities.12 The luminescence and anion sensing properties 

of complexes derivatized with imidazophenanthroline-like ligands have also been 

investigated.13 Finally, functionalization of imidazophenanthroline ligands with long 

alkyloxy chains has been explored with a view to the preparation of luminescent liquid 

crystals based on transition metal complexes.14 

 Regarding trinuclear clusters, a judicious choice of outer ligands in M3(µ3-

Q)(µ-Q2)3 units (M = Mo or W; Q = S or Se) has resulted in homoleptic molybdenum 

and tungsten cluster chalcogenides exhibiting interesting physicochemical properties. 

Among all reported homoleptic M3Q7 complexes, to the best of our knowledge there 

are only two examples of M3Se7 clusters (M = Mo or W) functionalized with 

phenanthroline ligands.15,16 As shown in Scheme 4.1, these complexes of formula 

[M3Se7(phen)3]Br4 (M = Mo or W; phen = 1,10-phenanthroline) were prepared in ca. 

40 – 60 % yields by the solid state reaction between the {M3Se7Br4}n coordination 

polymers and an excess of 1,10-phenanthroline at 250 ºC. Despite the potential of 

these systems, their physicochemical properties remain unexplored. 

 

Scheme 4.1. Synthesis of [M3Se7(phen)3]4+ complexes (M = Mo or W). 



CHAPTER 4 

64 
  

Some examples of applications that result from homoleptic Mo3S7 complexes 

include non-linear optics,17 magnetic conductivity,18–21 or catalytic activity in the 

hydrogen evolution reaction (HER).22 For instance, cluster (Bu4N)2[Mo3S7(SCN)6] is 

an efficient optical limiter.17 Compound Mo3S7(dmit)3, (dmit = 1,3-dithiole-2-thione-

4,5-dithiolate), is a paramagnetic single-molecule molecular conductor which 

presents multiple sulfur-sulfur intermolecular contacts.21 Finally, the 

(NH4)2[Mo3S7(S2)3] cluster, bearing active sites that mimic those of MoS2 

nanomaterials, is a low-cost alternative to precious metal catalysts which efficiently 

electrocatalyzes the generation of hydrogen from water when adsorbed onto graphite 

surfaces.22 Interesting properties have also emerged from functionalized M3Q4 cluster 

complexes (M = Mo or W; Q = S or Se), although these systems are not the object 

of study in the present thesis.23–25 

4.1.2. NON-BONDING INTERACTIONS IN TRINUCLEAR 
MOLYBDENUM CLUSTERS 

The crystal structure of Mo3S7 complexes is illustrated in Figure 4.3 for the 

[Mo3S7Br6]2- cluster anion, a widely used starting material.26 In trinuclear cluster 

chalcogenides containing the Mo3S7 core, the metal atoms are arranged in an 

equilateral triangle, which is capped by one apical µ3-S2- ligand (Sap in Fig. 4.3). 

Additionally, the molybdenum(IV) ions are bridged by S22- ligands, which results in a 

C3v symmetry for the cluster core. The µ-S22- disulfide bridging ligands are oriented 

perpendicularly to the Mo3 triangle. One sulfur atom is lying on the metal plane 

(equatorial position; Seq), whereas the other occupies an axial position (Sax), out of the 

triangular metal plane. The coordination sphere of the molybdenum atoms is 

completed by peripheral ligands, which occupy cis and trans positions relative to the 

apical µ3-S2- ligand. The occupation of such coordination sites by ligands to afford 

homoleptic Mo3S7 clusters was discussed in the previous section.  
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 A further remarkable feature of Mo3S7 systems is their ability to bind different 

anions to the sulfur atoms occupying axial positions (Sax), owing to their electrophilic 

character.27 Over the past 25 years, a great number of examples have been reported 

in which the axial sulfur atoms in Mo3S7 units are found to interact with a variety of 

anions and atoms. The distances of these Sax···X contacts are smaller than the sum 

of the van der Waals radii of the involved atoms, and the three Sax···X contacts 

present similar length values. As will be discussed later, these non-bonding 

interactions play a significant role in the formation of crystal structures, and they are 

crucial to understand the results presented in this chapter. 

 

Figure 4.3. Crystal structure of the [Mo3S7Br6]2- cluster anion. 

Some examples of counterions which are known to interact with the axial 

sulfur atoms in Mo3S7 complexes include halides,28–30 perchlorates,31 nitrates,31 

sulfates,31 sulfides32 and dithiocarbamates.30 The formation of anionic aggregates is 

clearly exemplified in the [Mo3S7(dtc)3]+ cluster cation (dtc = diethyldithiocarbamate), 

as summarized in Scheme 4.2. Reaction between the [Mo3S7Br6]2- cluster and Na(dtc) 

afforded a solid identified as the [Mo3S7(dtc)3]·Br aggregate by X-ray studies.28 Under 

an excess of Na(dtc), the [Mo3S7(dtc)3]·dtc aggregate was prepared.30 Compounds 

[Mo3S7(dtc)3]·ClO4 and [Mo3S7(dtc)3]·NO3 were obtained from cluster 

[Mo3S7(dtc)3]·Br by counterion exchange on a Dowex column.31 Replacing the Br- 

ion in cluster [Mo3S7(dtc)3]·Br by I- resulted in a mixture of bromide and iodide 
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adducts.31 Heating [Mo3S7(dtc)3]·NO3 in DMF resulted in the formation of the 

tetrameric complex [Mo3S7(dtc)3]4·(SO4)2, as revealed by X-ray structural 

determination.31 The source of the sulfate anion is unclear in the latter case. The 

dimeric compound [Mo3S7(dtc)3]2·S, and the chloride aggregate [Mo3S7(dtc)3]·Cl were 

achieved by treating cluster [Mo3S7(dtc)3]·dtc with aqueous potassium hydroxide, or 

by boiling it in 1,2-dichloroethane, respectively.30,31 

 

Scheme 4.2. Formation of aggregates in [Mo3S7(dtc)3]+ complexes. 

 The nature and charge of the counterion play a significant role in the crystal 

structure of these [Mo3S7(dtc)3]·X aggregates. Structures containing monocharged 

anions form 1:1 adducts, whereas dimeric or tetrameric aggregates are obtained in the 

presence of dicharged anions such as sulfide or sulfate, respectively. The formation 

of 1:1 adducts is illustrated in Figure 4.4a for the [Mo3S7(dtc)3]·I aggregate, which 

presents average Sax···I contacts of ca. 3.30 Å. Figure 4.4b shows the formation of 

tetrameric aggregates in [Mo3S7(dtc)3]4·(SO4)2. In this structure, one doubly charged 

sulfate anion is bound to four [Mo3S7(dtc)3]+ cluster entities, with Sax···O contacts of 
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ca. 2.60 Å. This correlation between a higher anion charge and an increased number 

of interacting cluster entities around it is not a golden rule. In fact, in the structure of 

{[Mo3S7(dtp)3]4·I}(HgI3)3}·4H2O (dtp = diethyl dithiophosphate), four 

[Mo3S7(dtp)3]+ cluster units were found to interact with a monocharged iodide anion 

through the axial sulfur atoms.29 

 

 

 

 

(a) (b) 

 

Figure 4.4. Crystal structure of the [Mo3S7(dtc)3]·I (a) and [Mo3S7(dtc)3]4·(SO4)2 (b), 
aggregates showing the Sax···X interactions. For the latter, one of the sulfate anions has been 
omitted for clarity. 

The axial sulfide atoms in Mo3S7 clusters can also interact with nucleophilic 

atoms contained in neighboring cluster complexes to afford supramolecular 

structures.33–36 For instance, Sax···S contacts (ca. 3.02 Å) involving the capping µ3-S2- 

ligand are observed in the structure of compound (NH4)2[Mo3S7(S2)3].37 These 

interactions result in the formation of a linear polymeric chain of anions. In contrast, 

the tetraphenylarsonium salt of cluster [Mo3S7(S2)3]2- does not present analogous non-

bonding interactions. The formation of dimeric aggregates has been observed in the 

crystal structure of compound (Bu4N)2[Mo3S7(tdas)2] (tdas = 1,2,5-thiadiazole-3,4-

dithiol). As shown in Figure 4.5, the axial sulfur atoms in the [Mo3S7(tdas)2]2- cluster 
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anion interact with the dithiolene sulfur atoms from a neighboring cluster through 

two short Sax···Sligand contacts of ca. 3.30 and 3.40 Å. 

             

Figure 4.5. Crystal structure of the {[Mo3S7(tdas)3]2}4- dimeric anion. 

Finally, non-bonding interactions can also arise between Mo3S7 cluster units 

and radical anions. In particular, the structure of [Mo3S7(dtc)3]2(TCNQ)2 (dtc = 

diethyldithiocarbamate; TCNQ = 7,7,8,8-tetracyanoquinodimethane), depicted in 

Figure 4.6, presents short Sax···N contacts of ca.  2.93 Å between the nitrogen atoms 

of the TCNQ- anion and the axial sulfur atoms in the [Mo3S7(dtc)3]+ cluster cation. 

The Sax···X interactions (X = Br, I…) in these [Mo3S7(dtc)3]·X aggregates 

has been investigated by Hegetschweiler and co-workers.31 Raman spectroscopy 

revealed that the force constants of the Seq-Sax bonds are rather sensitive to the nature 

of the anions interacting with the sulfur axial atoms. For hard anions, such as ClO4- 

or NO3- the stretching vibration frequencies proved to be higher than those for softer 

nucleophiles, such as I- and S2-. The decrease in the stretching vibration frequencies 

has been correlated with an elongation of the Seq-Sax bonds, which results in a higher 

force constant for the Sax···X interactions, and therefore in a more covalent character 

for the non-bonding interactions in I- and S2- adducts, as compared to those of the 

harder anions ClO4- and NO3-. Theoretical calculations were used to confirm this 

interpretation. 
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Figure 4.6. Crystal packing of [Mo3S7(dtc)3]2(TCNQ)2, showing S···N non-bonding 
contacts. 

4.1.3. HETEROLEPTIC TRINUCLEAR MOLYBDENUM CLUSTERS 

Despite the large number of homoleptic complexes reported in the literature, the 

coordination of different ligands in order to afford heteroleptic compounds still 

remains a non-trivial task in coordination chemistry,38 and cluster complexes are not 

an exception. The number of heteroleptic cluster compounds is rather scarce, as 

compared to their homoleptic analogues, mainly due to the difficulty involved in their 

synthesis. Attempts to coordinate two or more different ligands to a metal core 

usually afford mixtures of complexes which are very difficult to separate by traditional 

purification methods.39 

 The chemistry of transition metal clusters containing the [Mo3(µ3-S)(µ2-

S2)3]4+ triangular core has been extensively developed over the past few decades.40 

Due to the lability of bromide ligands in the [Mo3S7Br6]2- cluster precursor,26 

derivatives containing Mo3S7 units are readily accessible by simple ligand substitution 

reactions. Some examples of homoleptic Mo3S7-based cluster complexes contain a 

variety of charged ligands such as thiocyanate (NCS-),41 diethyl dithiocarbamate (dtc-

),28,31 8-hydroxyquinoline (oxq-),28 2-thiopyridine (tpy-),28 catecholate (cat2-),28 

imidodiphosphinochalcogenido ([N(QPPh2)2]-, Q = S, Se),42 mercapto succinate 

(Hmsa2-),43 and dithiolate (dt2-),19–21 among others. Unlike the straightforward 
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coordination of charged ligands to Mo3S7 units (Q = S or Se) to afford homoleptic 

complexes, the coordination of neutral ligands usually proceeds with great difficulty, 

and more often than not results in heteroleptic complexes. The formation of 

homoleptic trisubstituted phenanthroline clusters is exemplified in complex 

[M3Se7(phen)3]Br4 (M = Mo, W; phen = 1,10-phenanthroline), which was synthesized 

by a solid state reaction, as shown in Scheme 4.1.15,16 

To date, only a limited number of heteroleptic Mo3S7 complexes have been 

reported. All known examples result from the partial substitution of chloride or 

bromide ligands in the [Mo3S7X6]2- (X = Cl or Br) cluster precursors by solvent 

molecules, such as acetonitrile,44 dimethylsulfoxide45 or aniline.46 These compounds 

containing labile monodentate ligands are attractive targets for the synthesis of other 

heteroleptic Mo3S7 clusters upon ligand exchange. Nevertheless, to the best of our 

knowledge the potential of these systems is yet to be explored. 

Scheme 4.3 shows the synthetic approach used for the synthesis of 

heteroleptic Mo3S7 complexes. Compound [Mo3S7Cl6]2- reacts with acetonitrile at 120 

ºC leading to substitution of one chloride ligand by an acetonitrile molecule to afford 

[Mo3S7Cl5(CH3CN)]-.44 Crystallization of [Mo3S7Br6]2- in DMSO/benzonitrile 

mixtures in the presence of ThBr4 afforded compound [Mo3S7Br5(DMSO)]-, in which 

one bromide ligand in [Mo3S7Br6]2- has been substituted by a dimethylsulfoxide 

molecule. The [Mo3S7Br5(DMSO)]- heteroleptic compound was found co-crystallized 

with the [Th2(µ-SO4)2(DMSO)12]4+ dinuclear cluster.45 Finally, reaction of the cluster 

precursor [Mo3S7Br6]2- with an excess of aniline in hot acetonitrile afforded the 

heteroleptic complex [Mo3S7(NH2Ph)3Br3]+ in moderate yield.46 It goes without 

saying that non-bonding interactions between cluster entities and counterions were 

observed in all the aforementioned heteroleptic complexes. 
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Scheme 4.3. Synthesis of heteroleptic Mo3S7 complexes containing neutral organic 
molecules. 

As previously mentioned, a feature of the cluster precursors [Mo3S7X6]2- (X 

= Cl or Br) is the non-equivalence of the halide ligands, since three of them are cis to 

the µ3-S capping ligand, while the others are on the opposite side (trans position). In 

heteroleptic Mo3S7 complexes derivatized from [Mo3S7X6]2- clusters (X = Cl or Br), 

the orientation of the neutral ligands relative to the trimetallic plane is unpredictable. 

In clusters [Mo3S7Cl5(CH3CN)]- (Fig. 4.7a) and [Mo3S7Cl5(DMSO)]-, the neutral 

ligands occupy the trans position, whereas in cluster [Mo3S7Br3(NH2Ph)3]+ (Fig. 4.7b), 

the aniline ligands are located in a cis position, relative to the apical sulfide ligand Sap. 

In this chapter, a series of heteroleptic Mo3S7X4(diimine), (X = Cl or Br), 

complexes have been obtained by reacting bipyridine-, phenanthroline-, 

pyrazinophenanthroline- and imidazophenanthroline-like ligands (see Figure 4.1) 

with the [Mo3S7X6]2- , (X = Cl or Br)26 cluster precursors. Further derivatization of 

these Mo3S7X4(diimine) complexes with dithiolates afforded clusters bearing a 

mixture of diimine and dithiolene ligands. The optical properties, as also the potential 
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ability of the aforementioned cluster complexes to catalyze the hydrogen evolution 

reaction will be discussed in subsequent chapters. 

 

(a) 

 

(b) 

Figure 4.7. Crystal structure of the heteroleptic cluster complexes [Mo3S7Cl5(CH3CN)]- (a) 
and [Mo3S7Br3(NH2Ph)3]+ (b). Hydrogen atoms have been omitted for clarity. 
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4.2. RESULTS AND DISCUSSION 

4.2.1. SYNTHESIS AND CHARACTERIZATION 

As mentioned in the Introduction, the lability of the bromide ligands in the [Mo3(µ3-

S)(µ2-S2)3Br6]2- cluster complex26 has led to the straightforward synthesis of a large 

number of Mo3S7-based homoleptic clusters containing a diversity of ligands.17,19–21 

The coordination of phenanthroline ligands to the Mo3Se7 core was explored by 

Sokolov and co-workers.15 The trisubstituted [Mo3Se7(phen)3]4+ complex was 

achieved in 63 % yields by the solid state reaction between the {Mo3Se7Br4}n 

coordination polymer and an excess of 1,10-phenantroline. 

Motivated by the interesting properties that can emerge from transition metal 

complexes containing diimine ligands, such as photocatalysisis,5,10 luminescence13,14 

and optical nonlinearities,12 we decided to investigate the coordination of bipyridine, 

phenanthroline, and related ligands to trinuclear molybdenum clusters using mild 

reaction conditions. For this purpose we focused on the ligands depicted in Figure 

4.8, which can be classified into four different groups, according to their nature: 

Bipyridine-like  

ligands 

2,2’-bipyridine (bpy) 

4,4’-dimethyl-2,2’-bipyridine (dmbpy) 

4,4’-dinonyl-2,2’-bipyridine (dnbpy) 

2,2’-bipyridine-4,4’-dicarboxylic acid (dcbpy) 

4,4’-dicarbomethoxy-2,2’-bipyridine (dcmbpy) 

 

Phenanthroline-like 

ligands 

1,10-phenanthroline (phen) 

4-methyl-1,10-phenanthroline (mphen) 

5,6-dimethyl-1,10-phenanthroline (dmphen) 

3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) 

4,7-diphenyl-1,10-phenanthroline (BPhen) 
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4,7-dicarbomethoxy-1,10-phenanthroline (dcmphen) 

 

Pyrazinophenanthroline-

like ligands 

Pyrazino[2,3-f][1,10]phenanthroline (ppl) 

 

2,3-dimethoxycarbonylpyrazino[2,3-f] 

[1,10]phenanthroline ((COOMe)2ppl) 

 

Imidazophenanthroline-

like ligands 

1H-Imidazo[4,5-f][1,10]phenanthroline-2-[3,4-

bis(dodecyloxy)phenyl] (IPDOP) 

 

Figure 4.8. Molecular representation of selected diimine ligands. 
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Most ligands in Figure 4.8 were obtained from commercial sources. The 

ligands dcbpy and dcmbpy are not widely commercially available, and were therefore 

prepared according to literature procedures.47,48 The novel ligands dcmphen (L1) and 

IPDOP (L2) were obtained by adapting synthetic methods previously reported for 

similar compounds.49,50 The (COOMe)2ppl ligand was kindly provided by the 

Novosibirsk Institute of  Organic Chemistry (Russia). The synthetic pathways 

employed for the preparation of dcbpy, dcmbpy, dcmphen and IPDOP are shown 

in Schemes 4.4 – 4.6. 

The ligand 2,2’-bipyridine-4,4’-dicarboxylic acid (dcbpy) was prepared in 85 

% yield by oxidation of commercial 4,4’-dimethyl-2,2’-bipyridine (dmbpy), according 

to Scheme 4.4.47 The sterification of dcbpy in methanol catalyzed by sulfuric acid 

afforded 4,4’-dicarbomethoxy-2,2’-bipyridine (dcmbpy) in 86 % yield.48 These ligands 

were characterized by NMR techniques, and their spectra are in good agreement with 

the reported in the literature. 

 

Scheme 4.4. Synthetic routes for the preparation of dcbpy and dcmbpy. 

The novel ligand 4,7-dicarbomethoxy-1,10-phenanthroline (dcmphen) was 

prepared in two steps (see Scheme 4.5). The first step involves the oxidation of 

commercial 4,7-dimethyl-1,10-phenanthroline (4,7-dmbpy) to afford 1,10-

phenanthroline-4,7-dicarboxylic acid (dcphen). All attempts to reproduce the already 

published reaction conditions for the oxidation of 4,7-dmbpy by nitric acid afforded 

the desired carboxylic acid in extremely low yields (< 10 %), and abundant emission 

of NO2 was observed, presumably due to decomposition of the starting material.49 

Therefore, the reported conditions were modified in order to improve the reaction 
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yield (see Experimental Section). A decrease in the temperature from 120 ºC to 60 

ºC, and an increase in the reaction time from 3 h to 4 h, afforded the dcphen ligand 

in 58 % yield, which is significantly higher than both the reported (43 %) and the 

reproduced in our laboratories (less than 10 %). The sterification of dcphen ligand 

with methanol to afford 4,7-dicarbomethoxy-1,10-phenanthroline (dcmphen) was 

carried out by adapting the reported procedure for the synthesis of dcmbpy (vide 

supra).48 The dcmphen ligand was isolated as a white solid in 66 % yields, and it was 

fully characterized by different techniques to prove its purity. For instance, its 1H-

NMR spectrum in deuterated chloroform reveals the presence of three signals in the 

 = 8.10 – 9.40 ppm region, corresponding to the aromatic ring, and one single signal 

at  = 4.09 ppm, which can be assigned to the hydrogen atoms of the terminal 

methoxy groups in the ligand. 

 

Scheme 4.5. Synthetic pathway for the preparation of dcmphen. 

The novel IPDOP ligand was prepared by adapting the procedures described 

in the literature for similar compounds (see Scheme 4.6).50 Reaction between 1,10-

phenanthroline-5,6-dione (phendione) and 3,4-(didodecyloxy)benzaldehyde in the 

presence of glacial acetic acid and ammonium acetate afforded the desired 

imidazophenanthroline ligand as a yellowish solid in moderate yield (58 %). The 1H-

NMR spectrum of this compound in deuterated chloroform presents three groups 

of signals than can be clearly distinguished: a first group at  = 0.86 – 3.91 ppm, 

corresponding to the long alkoxy chains, a second group in the  = 7.06 – 9.23 ppm 

range, which can be assigned to the C – H aromatic protons, and finally a signal at  

= 14.86 ppm, corresponding to the NH group in the imidazole ring. 
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Scheme 4.6. Synthetic route for the preparation of IPDOP. 

Coordination of the diimine ligands shown in Figure 4.8 to the Mo3S7 unit 

was carried out starting from the (Bu4N)2[Mo3S7X6] (X = Cl or Br) cluster precursors, 

and following the synthetic approach shown in Scheme 4.7. The starting material 

(Bu4N)2[Mo3S7X6] (X = Cl or Br) was mixed with an excess (3 – 5 equivalents) of the 

diimine ligand in dichloromethane. The substitution reaction in cluster 

(Bu4N)2[Mo3S7Br6] occurred at room temperature, while reflux conditions were 

needed to facilitate the substitution of the less labile chloride ligands of 

(Bu4N)2[Mo3S7Cl6]. In all cases, color changing from orange to red was observed, due 

to the substitution of two halide ligands in [Mo3S7X6]2- by the nitrogen atoms in the 

diimine ligand to afford Mo3S7X4(diimine) complexes (X = Cl or Br). It is noteworthy 

that addition of a larger excess of diimine ligand equally led to the monosubstituted 

products. 

 

Scheme 4.7. General synthetic pathway for Mo3S7X4(diimine) complexes (X = Cl or Br). 
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For the synthesis of Mo3S7Br4(dcmbpy), (22), the reaction conditions were 

slightly modified owing to the particular solubility behavior of the ligand 4,4’-

dicarbomethoxy-2,2’-bipyridine (dcmbpy). This ligand resulted to be extremely 

soluble in hot acetonitrile but exhibited a poor solubility in cold acetonitrile. 

Therefore, aimed at facilitating the removal of the excess ligand from the reaction 

mixture, complex (Bu4N)2[Mo3S7Br6] was reacted with the dcmbpy ligand in 

acetonitrile under reflux conditions. A change in the color of the solution (from 

orange to dark red) was observed after a few hours. Cooling this red solution afforded 

the complete precipitation of the dcmbpy ligand, which was removed by filtration, 

and hence the reaction product 22 could be purified in a straightforward fashion. The 

conditions for the reaction between the analogous ligand 2,2’-bipyridine-4,4’-

dicarboxylic acid (dcbpy) and [Mo3S7Br6]2- were also modified due to the low 

solubility of dcbpy in common organic solvents. Reaction between [Mo3S7Br6]2- and 

ca. 5 equivalents of dcbpy in dimethylformamide at 130 ºC afforded an orange solid 

which was insoluble even in the most polar solvents, such as dimethylformamide and 

dimethylsulfoxide. The extremely low solubility of the resulting product precluded its 

characterization. Nevertheless, the reaction mixture containing the putative 

(Bu4N)[Mo3S7Br4(dcbpy)·Br] species (soluble in DMF) was used for the preparation 

of the dmit derivative (dmit = 1,3-dithiole-2-thione-4,5-dithiolate) of this diimino 

complex, as detailed in the following section. 

In all cases, the reaction mixture was taken to dryness by rotary evaporation, 

and the solid residue was thoroughly washed with various solvents to afford reddish 

powders of formula Mo3S7X4(diimine), (X = Cl or Br; complexes 12 – 28 in Table 

4.1), in moderate to high yields (67 – 98 %). The most intriguing aspect of these 

Mo3S7X4(diimine) complexes is their anomalous solubility behavior. Compounds 12 

– 28 were completely soluble in the reaction mixture. However, after completing the 

purification process, the isolated solids became extremely insoluble in common 

organic solvents, the only exceptions being complexes 12, 13 and 23, which presented 
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an exceptional solubility in non-polar solvents owing to the long alkyl chains 

appended to their coordinated diimine ligands. To our astonishment, sonication of 

compounds 14 – 22 and 24 – 28 in dichloromethane in the presence of an excess of 

a tetrabutylammonium halide salt (either chloride or bromide) led to the complete 

dissolution of the cluster species. As will be detailed later in this chapter, toluene 

diffusion into the aforesaid solutions of complexes afforded red crystals whose X-ray 

diffraction studies revealed the formation of [Mo3S7X4(diimine)·X]- aggregates, (X = 

Cl or Br), containing Sax···X non-bonding interactions between the three axial sulfur 

atoms in the cluster entity and a halide anion. As already mentioned in the 

Introduction, the formation of adducts between Mo3S7 clusters and halide anions is 

not unprecedented.28–30 It is well established that the axial chalcogenide atoms in 

M3Q7 (M = Mo or W, Q = S, Se or Te) cluster complexes possess an electrophilic 

character, and can therefore interact with a variety of anions.27,31,51,52 

Table 4.1. List of the Mo3S7X4(diimine) complexes (X = Cl or Br) obtained by reacting 
(Bu4N)2[Mo3S7X6] (X = Cl or Br) with the diimine ligands in Figure 4.8. 

Complex Nº Complex Nº 

Mo3S7Br4(IPDOP) 12 Mo3S7Br4(phen) 21 

Mo3S7Cl4(IPDOP) 13 Mo3S7Br4(dcmbpy) 22 

Mo3S7Br4(BPhen) 14 Mo3S7Br4(dnbpy) 23 

Mo3S7Cl4(BPhen) 15 Mo3S7Br4(dcmphen) 24 

Mo3S7Br4(tmphen) 16 Mo3S7Cl4(ppl) 25 

Mo3S7Cl4(tmphen) 17 Mo3S7Br4(ppl) 26 

Mo3S7Cl4(dmbpy) 18 Mo3S7Cl4(mphen) 27 

Mo3S7Br4(dmbpy) 19 Mo3S7Br4((COOMe)2ppl) 28 

Mo3S7Br4(bpy) 20   

The red crystals corresponding to tetrabutylammonium salts of [(14 – 22)·X]- 

and [(24 – 28)·X]- anionic aggregates, where X = Cl or Br, readily dissolved in 
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dichloromethane, which contrasts with the insoluble character of the neutral cluster 

complexes 14 – 22 and 24 – 28. Electrospray Ionization Mass Spectra revealed the 

presence of these aggregates in solution with the characteristic isotope pattern. This 

is illustrated in Figure 4.9 for the [22·Br]- anion, which presents a m/z ratio of 1183.5. 

                  

Figure 4.9. ESI-MS spectrum showing the simulated and experimental peaks corresponding 
to [22·Br]-.  

The use of Bu4NCl as halide salts for the solubilization of neutral bromide 

Mo3S7Br4(diimine) complexes led to halide scrambling. For instance, sonication of 

Mo3S7Br4(bpy), (20) in dichloromethane in the presence of Bu4NCl afforded a 

mixture of species of formulae [Mo3S7Br2Cl3(bpy)]-, [Mo3S7Br3Cl2(bpy)]-, 

[Mo3S7Br4Cl(bpy)]- and [Mo3S7Br5(bpy)]-, as evidenced by their ESI-MS spectrum 

(Figure 4.10). 

In general terms, these results can be summarized by saying that 

solubilization of neutral Mo3S7X4(diimine) complexes (X = Cl or Br) in common 

organic solvents can only be achieved through formation of [Mo3S7X4(diimine)·X]- 

aggregates in which the halide anions participate in non-bonding interactions with 

the axial sulfur atoms in these cluster units. The purification process of these neutral 

clusters presumably breaks the weak Sax···X interactions leading to insoluble 

powders. As previously mentioned, the only exceptions are the IPDOP derivatives 

12 and 13, and complex 23, for which the long alkyl chains present in the ligands are 

responsible for their high solubility in non-polar solvents, even in their neutral forms. 
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 Figure 4.10. ESI-MS spectrum of complex Mo3S7Br4(bpy), (20), in the presence of an excess 
of Bu4NCl. 

Although the neutral character (and in general poor solubility) of the isolated 

complexes 12 – 28 led to certain difficulties in the characterization process, the 

reported compounds have been fully characterized by elemental analysis, UV-Vis and 

1H-NMR spectroscopies. In addition, with a few exceptions, the crystal structure of 

the [Mo3S7X4(diimine)·X]- aggregates (X = Cl or Br) was determined by X-ray 

structural analysis so that the composition of the neutral Mo3S7X4(diimine) clusters 

was confirmed. To our dismay all attempts to grow single crystals of compounds 12, 

13 and 23 have to date been unsuccessful due to the presence of long alkyl chains in 

the diimine ligand, which impede crystal packing, and therefore crystallization. For 

complex 26, the obtained crystals did not have enough quality for X-ray diffraction, 

and hence its structure could not be determined.  The mass/charge ratio of the 

neutral clusters 12 – 28 could not be elucidated from their ESI-MS spectra. 

Nevertheless, as mentioned earlier this technique was employed to confirm the 

formation of anionic aggregates when the complexes were crystallized in the presence 

of Bu4NX salts (X = Cl or Br). The neutral complexes 12, 13 and 23 could not be 

elucidated by ESI-MS since they do not tend to form anionic aggregates, and 

furthermore cannot become ionized under typical electrospray ionization conditions. 
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The 1H-NMR spectra of the current series of complexes, i.e. 12 – 28 were 

recorded in solution, with the limitation imposed by their low solubility in typical 

organic solvents. In all cases, the peaks corresponding to the hydrogen atoms 

adjacent to the chelating nitrogen groups in the ligand appear in their NMR spectra 

at different chemical shifts owing to the different electronic environment in the cis 

and trans positions relative to the capping sulfur atom in the cluster unit. As a 

representative example, the 1H-NMR spectrum of complex Mo3S7Br4(dcmbpy) (22; 

dcmbpy = 4,4’-dicarbomethoxy-2,2’-bipyridine) in deuterated acetonitrile is provided 

in Figure 4.11. This compound presents a doublet at  = 4.04 ppm, corresponding 

to the hydrogen atoms of the terminal methoxy groups in the ligand, and four signals 

in the aromatic region at  = 10.18 (1H), 9.68 (1H), 9.02 (2H) and 8.16 (2H) ppm, 

which can be assigned to the hydrogen atoms in the bipyridine ring, represented as 

Ha, Hb, Hc and Hd, respectively. As expected, in the free ligand (dcmbpy) only three 

signals in the aromatic region were observed, corresponding each of them to two 

protons. 

 

 

 

Figure 4.11. 1H-NMR spectrum for 22 in deuterated acetonitrile. The doublet peak at  = 
4.04 ppm has been omitted for clarity. 

Ha Hb 
Hc Hd 
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The UV-Vis spectra of complexes 12 – 28 in dimethylsulfoxide solution 

reveal the existence of high intensity absorption bands in the UV region, and weaker 

bands in the 440 – 500 nm range, with  values of ca. 1100 – 3900 M-1 cm-1. The 

solubility behavior of the current series of complexes precluded a profound study of 

their absorption bands in different solvents. Nevertheless, in the cases where the 

readily soluble (Bu4N)[Mo3S7X4(diimine)·X] aggregates (X = Cl, Br) were isolated in 

high yields, the influence of the solvent on the absorption bands was investigated, 

and a marked negative solvatochromism was observed in the visible region of the 

spectra. This solvatochromic behavior is illustrated in Table 4.2 and Figure 4.12 for 

complex (Bu4N)[Mo3S7Br4(dcmphen)·Br], ((Bu4N)[24·Br]). 

The maximum absorption bands for cluster (Bu4N)[24·Br] in various 

solvents, namely dichloromethane, acetonitrile, dimethylformamide and 

dimethylsulfoxide, shift towards the blue (hypsochromic shift) upon increasing the 

solvent polarity. In particular, a shift of ca. 44 nm towards shorter wavelength values 

was registered on proceeding from CH2Cl2 to DMSO or DMF (see Table 4.2 for 

further details). Analogous solvatochromic effects have already been reported in 

iron(II) complexes containing phenanthroline ligands.53 More specifically, the 

solvatochromic shift observed in Fe(phen)2(CN)2 in acetonitrile and water solutions 

has been ascribed by DFT calculations to the stabilization of the HOMO orbital as a 

result of interactions between the cyanide ligands and solvent molecules. 

Solvatochromism is a very complex phenomenon in which a large number of 

interactions can play a role. Understanding the nature of the solvatochromic effect 

observed in Mo3S7X4(diimine) complexes would require complex theoretical 

calculations.54 Therefore we are unable to comment further at present. 
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Table 4.2. UV/Vis absorption data for complex (Bu4N)[24·Br] in different solvents. 

Solvent Polarity Index Wavelength (nm)  (M-1cm-1) 

CH2Cl2 3.1 532 3730 

CH3CN 5.8 493 3653 

DMF 6.4 488 2729 

DMSO 7.2 488 2995 

400 450 500 550 600 650 700
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

 
(M

-1
cm

-1
)

Wavelength (nm)

 CH
2
Cl

2

 CH
3
CN

 DMF
 DMSO

 

Figure 4.12. Absorption spectra of complex (Bu4N)[24·Br] in different solvents. 

 Motivated by the non-innocent redox character of diimine ligands,5,15,16,55 we 

decided to investigate the redox properties of the current series of Mo3S7X4(diimine), 

(X = Cl, Br) cluster complexes. Once again, the poor solubility of the majority of 

these neutral compounds limited our study to a few complexes, and hence precluded 

a detailed analysis of the redox waves for all these clusters in solution. As illustrative 

examples, the electrochemical properties of (Bu4N)[Mo3S7Br3(dcmbpy)], 

((Bu4N)[22·Br]), and Mo3S7Br4(dnbpy), (23) were investigated by cyclic voltammetry. 

These complexes present good solubility in acetonitrile and dichloromethane 

respectively, thus allowing the investigation of their redox behavior in solution in a 

wide range of easily accessible potentials. The cyclic voltammogram of complex 
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(Bu4N)[22·Br] in acetonitrile (Figure 4.13a) presents one irreversible reduction peak 

at -0.83 V (vs Ag/AgCl), a quasi-reversible reduction wave at E1/2 = -0.58 V (E1/2 = 

(Ea+Ec)/2), and another irreversible peak in the oxidation region at 0.92 V. For 

compound 23, its cyclic voltammogram recorded in dichloromethane reveals one 

irreversible reduction peak at -1.06 V (vs Ag/AgCl), and one irreversible peak at 0.74 

V which is generated upon oxidation of the reduced species (Figure 4.13b). 

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5

-1,0x10
-5

-5,0x10
-6

0,0

5,0x10
-6

1,0x10
-5

1,5x10
-5

I 
(A

)

E (V vs Ag/AgCl)

(a) 

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5

-1,0x10
-5

-8,0x10
-6

-6,0x10
-6

-4,0x10
-6

-2,0x10
-6

0,0

2,0x10
-6

4,0x10
-6

6,0x10
-6

8,0x10
-6

I 
(A

)

E (V vs Ag/AgCl)

(b) 

Figure 4.13. Cyclic voltammograms of clusters (Bu4N)[22·Br] (a) and 23 (b) in solution, 
recorded at a scan rate of 100 mV/s (E vs Ag/AgCl). 

 Table 4.3 collects the reduction potentials (vs Ag/AgCl) for a series of 

homoleptic molybdenum and tungsten cluster chalcogenides bearing diimine ligands, 

together with those of complexes (Bu4N)[22·Br] and 23. The first reduction 

processes in ruthenium(III) and iridium(III) polypyridyl complexes have been 

ascribed to reduction of the ligands.5,56,57 Analogous ligand-based reductions have 

also been postulated for homoleptic M3Q4 and M3Q7 (M = Mo, W; Q = S, Se) clusters 

containing bipyridine and phenanthroline derivatives.15,55 In view of these redox 

behavior, the reduction processes observed in our complexes could also presumably 

be attributed to reduction of the diimine ligands. The reduction potentials for 

complexes (Bu4N)[22·Br] and 23 present a cathodic shift with respect to other 
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homoleptic Mo3S4 and Mo3S7 clusters containing related ligands, thus indicating that 

our heteroleptic diimine-halide Mo3S7 clusters are more reluctant to be reduced. 

Table 4.3. Reduction potentials (vs Ag/AgCl) for a series of diimino cluster complexes. 

Cluster Reduction, E1/2 (V) Reduction, Ec 

(Bu4N)[22·Br] -0.58 -0.83 

23 - -1.06 

[Mo3S4Cl3(phen)3]Cl -0.090 -1.25 

[Mo3S4Cl3(bpy)3]Cl 0.116 - 

[Mo3Se7(phen)3]Br4 -0.086 - 

[W3Se7(phen)3]Br4 -0.625 - 

 

4.2.2. REACTIVITY OF TRINUCLEAR DIIMINE COMPLEXES 
TOWARDS SULFUR DONOR LIGANDS 

In the recent past, interesting examples of platinum(II) complexes containing a 

mixture of diimine and dithiolate ligands have been reported. These complexes have 

proved to be very efficient as photosensitizers in photovoltaic cells, and also as 

catalysts for the photogeneration of hydrogen from water.10,11 Motivated by the 

properties of platinum(II) complexes, as also with the aim of providing some insight 

into the chemical behavior of Mo3S7X4(diimine) complexes (X = Cl or Br), we 

decided to prepare heteroleptic Mo3S7 clusters containing both diimine and dithiolate 

ligands. More specifically, we focused on 4,4’-dinonyl-2,2’-bipyridine (dnbpy), 4,4’-

dicarbomethoxy-2,2’-bipyridine (dcmbpy), and 2,2’-bipyridine-4,4’-dicarboxylic acid 

(dcbpy) as examples of diimines (see Figure 4.8), and on dmit (1,3-dithiole-2-thione-

4,5-dithiolate) as a dithiolate ligand. The approach used for the synthesis of the target 

molecules is depicted in Scheme 4.8. 

 The reaction between complex Mo3S7Br4(dnbpy), (23), and one equivalent of 

(Bu4N)2[Zn(dmit)2], (dmit = 1,3-dithiole-2-thione-4,5-dithiolate)58,59 in 
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dichloromethane at room temperature resulted in a deep purple solution, owing to 

the substitution of four bromide groups in compound 23 by two dmit ligands to 

afford the neutral cluster Mo3S7(dnbpy)(dmit)2, (29), in almost quantitative yield. This 

strategy for the coordination of dithiolene ligands had previously been employed in 

our group for the preparation of trisubstituted Mo3S7 clusters containing 

dithiolenes.19–21  

 

Scheme 4.8. Synthetic pathway for complexes 29 – 31. 

Complex Mo3S7Br4(dcmbpy), (22), proved not to be a convenient starting 

material due to its poor solubility in common organic solvents. Consequently, the 

bromide adduct (Bu4N)[Mo3S7Br4(dcmbpy)·Br], (Bu4N)[22·Br], was used as a source 

of the neutral cluster 22. Reaction of [22·Br]- with [Zn(dmit)2]2- under analogous 

conditions to those of compound 29 afforded Mo3S7(dcmbpy)(dmit)2, (30), in high 

yield (82 %). 

The application of the above procedures to the preparation of complex 

Mo3S7(dcbpy)(dmit)2, (dcbpy = 2,2’-bipyridine-4,4’-dicarboxylic acid; 31) was 

unsatisfactory owing to the insolubility of the Mo3S7Br4(dcbpy) precursor. As already 

stated in the previous section, all attempts to isolate complex Mo3S7Br4(dcbpy) 

resulted in orange solids which were insoluble even in dimethylformamide or 

dimethylsulfoxide. Consequently, an alternative procedure for the synthesis of the 

dmit derivative was developed. Complex Mo3S7(dcbpy)(dmit)2, (31), was successfully 
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prepared by a one-pot procedure starting from (Bu4N)2[Mo3S7Br6] and dcbpy. 

Reaction between these precursors in dimethylformamide at 130 ºC afforded an 

orange solution from which the excess ligand precipitated upon cooling. After 

removing the excess ligand, the putative Mo3S7Br4(dcbpy) species, which remained 

soluble in DMF, was reacted with one equivalent of [Zn(dmit)2]2- in situ at room 

temperature to afford complex 31 in 74 % yield. 

This chemistry could also be extended to other sulfur-donor ligands, such as 

diethyldithiocarbamate (dtc). As an illustrative example, we focused on 5,6-dimethyl-

1,10-phenanthroline (dmphen) as a diimine ligand. The reaction between 

(Bu4N)2[Mo3S7Br6] and an excess of dmphen in dichloromethane afforded a red 

solution containing compound (Bu4N)[Mo3S7Br4(dmphen)]. As shown in Scheme 

4.9, addition of Na(dtc)·3H2O to the latter solution resulted in color changing, owing 

to the formation of cluster [Mo3S7(dmphen)(dtc)2]Br. Counterion exchange on silica 

gel column afforded the adduct complex [Mo3S7(dmphen)(dtc)2·Br](PF6), 

([32·Br](PF6)), in 70 % yields. This strategy apparently seemed to be extremely 

convenient for the preparation of charged (and hence readily soluble) Mo3S7 

complexes bearing diimine ligands. Nevertheless, to our dismay in most cases the dtc 

ligand was able to replace the diimine ligand, leading to the formation of trisubstituted 

[Mo3S7(dtc)]+ complexes even when stoichiometric amounts of dtc were employed. 

 

Scheme 4.9. Synthetic route for complex [32]2+. 



HETEROLEPTIC TRINUCLEAR MOLYBDENUM CLUSTER COMPLEXES CONTAINING DIIMINE 
LIGANDS 

89 
 

 Complexes 29 – 31 exhibit a poor solubility in common organic solvents due 

to their neutral nature; an analogous behavior to that observed in compounds 12 – 

28, presented in the previous section. Also in this case, the series of dmit derivatives 

(29 – 31) are dissolved upon sonication in dichloromethane in the presence of Bu4NX 

salts (X = Cl, Br). Nevertheless, to our dismay all attempts to grow single crystals of 

these complexes suitable for X-ray structural analysis have to date been 

unsatisfactory. Crystal growing in the form of very fine needles of poor quality was 

observed for complex 31 by gas diffusion water/dimethylsulfoxide, although the 

characteristics of the obtained crystals precluded their analysis by X-ray diffraction. 

In contrast, the charged [32·Br]+ complex exhibits good solubility in common 

solvents and its structure was obtained by the slow evaporation of a sample solution 

in chloroform. 

 Electrospray Ionization Mass Spectrometry was employed aimed at the 

determination of the m/z ratio in complexes 29 – 32. However, the reluctance of 

complexes 29 – 31 to be ionized precluded their characterization by this technique. 

In the case of complex [32·Br]+, the molecular peak at m/z = 1096 was observed, 

for which there is a good agreement between the experimental and simulated isotopic 

patterns.  

Complexes 29 – 32 have been characterized by elemental analysis and 

infrared and UV/Vis spectroscopies. In all complexes, there is a good correlation 

between the calculated and experimental compositions for carbon, hydrogen, 

nitrogen and sulfur. The characteristic bands of the Mo3S7 units, as well as those of 

their outer diimine and dithiolene ligands were observed in the IR spectra of 

complexes 29 – 31. These bands were identified on the basis of the stretching 

frequencies reported for similar cluster complexes.15,20,21,55 In all cases, a weak band 

corresponding to the Seq – Sax stretching vibration was observed at ca. 516 cm-1. The 

vibrations of the Mo - µ3S bonds were observed in the form of multiple bands in the 
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416 – 420 cm-1 range. The multiple signals corresponding to the C=C stretching 

vibrations of the bipyridine rings appear in the range of 1417 – 1613 cm-1. The bands 

assigned to the C=S vibrations of the dmit ligand were found in all cases at 1053 cm-

1. In addition, further bands were observed due to the vibration of the atoms of the 

groups appended to the functionalized bipyridine ligands. For instance, in complex 

29, the Csp3-H vibration bands of the long alkyl chains in the ligand were found in 

the range of 2849 – 2920 cm-1. In complex 30 the vibrations of the C=O and C-O 

groups were observed as two single bands at 1732 cm-1 and 1267 cm-1, respectively. 

Finally, in complex 31, containing the analogous dcbpy ligand, apart from the C=O 

and C-S bands discussed for complex 30, the vibrations of the terminal O-H groups 

were found as a broad band centered at 3446 cm-1. 

The UV/Vis absorption spectra of complexes 29 – 31 in dimethylsulfoxide 

exhibit high intensity bands in the 307 – 407 nm region, with molar extinction 

coefficients () in the range of 7.4 – 27.7  103 M-1 cm-1. In addition, weaker 

absorption bands can be found in the 450 – 500 nm region, presenting  values which 

lie between 5.1  103 and 10.2  103 M-1 cm-1. As will be more thoroughly discussed 

in Chapter 5, these mixed-ligand diimine-dithiolene complexes present absorption 

bands with higher molar extinction coefficients than those of their diimine-halide 

counterparts. To our dismay, the limited solubility of complexes 29 – 31 in common 

organic solvents prevented a deep study of their possible solvatochromism. 

4.2.3. CRYSTAL STRUCTURE DESCRIPTION 

Single crystals of compounds (Bu4N)[(14 – 22)·X] and (Bu4N)[(24 – 28)·X], where X 

= Cl or Br, were obtained by slow diffusion methods, and their solid structure was 

determined by X-ray diffraction. As illustrative examples, the ORTEP 

representations of the cluster anions [Mo3S7Cl4(dmbpy)·Cl]-, [18·Cl]-, and 

[Mo3S7Br4(dcmphen)·Br]-, [24·Br]-, with the atom numbering schemes are depicted 

in Figures 4.14 and 4.15, respectively. 
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Figure 4.14.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [18·Cl]- with the atom numbering scheme. 

The current series of clusters present similar structural features, crystallizing 

as tetrabutylammonium salts of anionic aggregates. In them, neutral cluster molecules 

of formula Mo3(3-S)(2-S2)3X4(diimine), (X = Cl or Br) participate in non-bonding 

interactions between the three sulfur axial atoms (Sax) in the cluster, i.e. those labeled 

as S(3), S(5) and S(7), and a chloride or bromide anion, as depicted in Figures 4.14 

and 4.15, respectively for complexes 18 and 24. The Mo3S7 cluster core possess its 

usual geometry with one Sap apical sulfur atom, S(1), bonded to the three metals 

which define an equilateral triangle. Each side of the metal triangle is bridged by a 

disulfide ligand with three Seq equatorial sulfur atoms essentially located in the metal 

plane, S(2), S(4) and S(6), and three Sax axial sulfur atoms placed out of the metal 

plane.30,31,44–46,60,61 The two nitrogen atoms of the diimine ligand are coordinated to 

one of the molybdenum atoms in a chelating mode, and the plane defined by the 

ligand is oriented almost perpendicular to the trimetallic plane.  
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Figure 4.15.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [24·Br]- with the atom numbering scheme. 

The average bond lengths for the series of complexes presented in this 

section together with those of other Mo3S7 clusters are collected in Table 4.4. In all 

compounds, the metal-metal bond distances (ca. 2.75 Å) are in agreement with an 

oxidation state of +4 for the molybdenum, and a single metal-metal bond. One 

diimine ligand binds to one molybdenum atom with an average Mo – N distance of 

ca.  2.22 Å.  Furthermore, the bond lengths between metal atoms and the different 

sulfide ligands (Sap, Seq and Sax) present similar values to those reported for other 

Mo3S7 complexes.30,31,44–46,60,61 The distances between the molybdenum atoms and 

the halide ligands (Mo – X) follow the expected tendency based on ionic radii criteria, 

i.e. the Mo – Br lengths are ca. 0.15 Å longer than the Mo – Cl distances.60,61 In 

addition, these Mo – X bond lengths depend on the nature of the coordinated diimine 

ligands. The Mo – Br distances are in the range of 2.5814(12) – 2.6277(5) Å, while 

the Mo – Cl bond lengths lie between 2.460(3) and 2.4708(3) Å. Nevertheless, no 

clear tendencies in Mo – X bond distances can be drawn from the data in Table 4.4. 
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Short intermolecular contacts between the axial sulfur atoms in the cluster 

unit and halide anions have also been observed in these series of complexes. For 

instance, the Sax···Cl interactions in [18·Cl]- have a length of 2.896 – 2.910 Å, and are 

in the range of those reported for similar cluster complexes interacting with chlorides 

through the axial sulfur atoms.44 The Sax···Br contacts in complex [24·Br]- (2.969 – 

3.146 Å) are also in agreement with previously reported analogous interactions.45,46 

For comparative purposes, Table 4.5 lists the length of the non-bonding interactions 

observed for the series of novel cluster complexes presented in this chapter, together 

with those reported previously. With the exception of complex (Bu4N)[27·Cl], the 

Sax···Cl contacts in [Mo3S7X4(diimine)·X]- clusters (X = Cl or Br) are slightly shorter 

than the Sax···Br interactions, which is in agreement with the smaller ionic radii of 

chloride anions. 

Table 4.5. Non-bonding Sax···X (X = Cl or Br) contacts in heteroleptic Mo3S7 complexes, 
together with those of similar complexes. 

Cluster Interaction Contact Length,  Å 

(Et4N)3[Mo3S7Cl6]60 Sax···Cl 2.921 – 2.955 
(ET)3[Mo3S7Br6]61 Sax···Br 2.985 – 3.120 

(Bu4N)[14·Br] Sax···Br 2.944 – 3.020 
(Bu4N)[15·Cl] Sax···Cl 2.829 – 2.973 
(Bu4N)[16·Br] Sax···Br 2.991 – 3.156 
(Bu4N)[17·Cl] Sax···Cl 2.841 – 2.931 
(Bu4N)[18·Cl] Sax···Cl 2.896 – 2.910 
(Bu4N)[19·Br] Sax···Br 3.004 – 3.108 
(Bu4N)[20·Br] Sax···Br 3.030 – 3.058 
(Bu4N)[21·Br] Sax···Br 2.991 – 3.134 
(Bu4N)[22·Br] Sax···Br 2.959 – 3.020 
(Bu4N)[24·Br] Sax···Br 2.970 – 3.146 
(Bu4N)[25·Cl] Sax···Cl 2.863 – 2.967 
(Bu4N)[27·Cl] Sax···Cl 2.912 – 2.933 
(Bu4N)[28·Br] Sax···Br 2.936 – 3.092 

[Mo3S7(dtc)3]·Cl30 Sax···Cl 2.969 – 3.051 
[32·Br](PF6) Sax···Cl 2.949 – 3.009 
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 Formation of additional Seq···Br interactions connecting adjacent cluster 

units has been observed in the crystal structure of various [Mo3S7X4(diimine)·X]- 

complexes. As a representative example, the crystal packing of (Bu4N)[24·Br] is 

depicted in Figure 4.16. In this structure, Seq···Br interactions connect neighboring 

[24·Br]- aggregates, resulting in the formation of {[24·Br]2}2- dimers. The formation 

of similar dimeric aggregates between neighboring cluster units is not unprecedented. 

Analogous intermolecular interactions have already been observed by Sokolov and 

co-workers in the heroleptic cluster compound (Et4N)[Mo3S7Cl4(CH3CN)·Cl].44 

 

Figure 4.16. Crystal packing in the structure of (Bu4N)[24·Br] showing the formation of 
{[24·Br]2}2- dimers owing to intermolecular interactions between neighboring cluster anions. 

The halide atoms in [Mo3S7X4(diimine)·X]- complexes can be easily replaced 

by sulfur donor ligands, as stated previously in Section 4.2.2. The structure of 

compound [Mo3S7(dmphen)(dtc)2·Br](PF6), [32·Br](PF6), was obtained by slow 

evaporation methods, and again non-bonding contacts were observed in the crystal 

structure. The ORTEP representation of the [32]2+ cation is shown in Figure 4.17. 

The structure of [32·Br](PF6) presents the characteristic Mo3S7 unit already observed 

in [Mo3S7X4(diimine)·X]- complexes (X = Cl, Br). Two diethyldithiocarbamate 
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ligands (dtc) are coordinated to two molybdenum atoms in a chelating mode, whereas 

the third molybdenum atom is bound to a chelating 5,6-dimethyl-1,10-

phenanthroline ligand (dmphen), with an average Mo – N length of ca. 2.22 Å. This 

distance value is in good agreement to those observed in the mixed-ligand diimine-

halide complexes, i.e. (Bu4N)[(14 – 22)·X] and (Bu4N)[(24 – 28)·X], (X = Cl, Br). The 

average Mo – Slig bond length (roughly 2.49 Å) also correlates well with that reported 

for the trisubstituted [Mo3S7(dtc)3]·Cl complex (see Table 4.4).30 

 

Figure 4.17.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [32]2+ with the atom numbering scheme. 

The intermolecular interactions in [32·Br](PF6) are displayed in Figure 4.18. 

The crystal packing in the structure of [32·Br](PF6) reveals the presence of aggregates 

in which each [32]2+ cluster cation interacts with a bromide anion through the axial 

sulfur atoms, with Sax···Br distances ranging from 2.949 to 3.009 Å. These contact 

distances are within the range of those reported for homoleptic Mo3S7 complexes 

containing diethyldithiocarbamate ligands (see Table 4.4).27,28,30,31 Interestingly, the 

[32·Br]+ adducts are connected via short S···S contacts between the apical or axial 

sulfur atoms in the cluster core, and the sulfur atoms in the dtc ligand. These contacts 
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have average lengths of ca. 3.491 Å (Sap···Slig) and 3.577 Å (Sax···Slig). Similar S···S 

non-bonding interactions have been observed in other Mo3S7 clusters containing 

sulfur donor ligands.33–36 Nevertheless, compound [32·Br](PF6) represents to the best 

of our knowledge the first example of a heteroleptic Mo3S7 cluster containing both 

diimine (dmphen) and sulfur donor ligands (dtc), in which short S···S and S···Br 

contacts are present at the same time. 

 

Figure 4.18. Crystal packing of [32·Br](PF6) showing the intermolecular interactions between 
neighboring [32·Br]+ cations. 
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4.3. CONCLUSIONS 

A series of Mo3S7X4(diimine) complexes (X = Cl or Br) containing a diversity of 

bipyridine-, phenanthroline-, imidazophenathroline- and pyrazinophenanthroline-

like ligands have been prepared. The resulting complexes 12 – 28 have been 

characterized by different techniques. Crystallization of such compounds in the 

presence of Bu4NX (X = Cl or Br) affords single crystals suitable for X-ray structural 

determination. The X-ray structure of the aforementioned clusters reveals the 

presence of Sax···X (X = Cl or Br) interactions, which result in the formation of 

[Mo3S7X4(diimine)·X]- adducts. Additional interactions between equatorial sulfur 

atoms (Seq) and halide ligands connect neighboring cluster adducts, resulting in the 

formation of {[Mo3S7X4(diimine)·X]2}2- dimers. 

 Reaction of Mo3S7X4(diimine) complexes (X = Cl or Br) with sulfur donor 

ligands yields clusters of formula [Mo3S7(diimine)L2]0, 2+ (L = dmit or dtc). The 

neutral complexes 29 – 31 (bearing the dmit ligand) are highly insoluble in common 

organic solvents, which limits the number of techniques employed for their 

characterization to elemental analysis, and infrared and UV/Vis spectroscopy. In 

contrast, complex [32·Br](PF6), containing the dtc ligand, exhibits good solubility in 

common organic solvents. Its crystal structure presents S···S interactions between 

neighboring cluster molecules giving rise to extended networks. 

 The optical properties of Mo3S7X4(diimine) complexes, namely luminescence 

and optical nonlinearities will be discussed in Chapter 5. The ability of such 

complexes to photocatalyze the water splitting reaction will be investigated in 

Chapter 6.  
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“There is always the possibility of proving any definite 
theory wrong; but notice that we can never prove it right.” 

Richard P. Feynman, The Character of Physical Law 
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5.1. LUMINESCENCE PROPERTIES OF DINUCLEAR 
MOLYBDENUM CLUSTERS 

5.1.1. INTRODUCTION 

Dithiolene complexes have been extensively studied since their early ages, stimulated 

by their potential applications in diverse areas such as light-energy conversion, 

hydrogen generation,1 nonlinear optics2 and biological models.3 These applications 

mainly emerge from their interesting electronic structures, characterized by extensive 

ligand-metal mixing in their frontier orbitals.4,5 In contrast, the extent of metal-ligand 

delocalization in other transition metal complexes containing non redox-active 

ligands is significantly lower. This difference is due to the -delocalized electronic 

structure that results from coordination of dithiolate ligands to metal ions. For 

instance, the electronic structure of 1,2-dithiolene complexes containing unsaturated 

five-membered MS2C2 rings can be regarded as a resonance hybrid of the 

enedithiolate and the dithione forms (Figure 5.1), and therefore the metal oxidation 

states cannot be unequivocally assigned in these complexes.6 

 

Figure 5.1. Delocalization in 1,2-dithiolene complexes. 

 In metal complexes, changes in electron distribution are commonly known 

as charge transfers (CT). Charge transfer can occur from metal to ligand (MLCT), 

from ligand to metal (LMCT), and even between two different ligands interacting via 

a metal center (LLCT). On the other hand, intraligand charge transfer (ILCT) occurs 

in ligands containing simultaneously a donor and an acceptor site. Therefore ILCT 

transitions are strictly ligand based, and can arise in free, as well as in coordinated 
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ligands. It is noteworthy that the emission energies that arise from MLCT, LMCT 

and LLCT excited states are strongly metal and ligand dependent, and are usually 

lower than those originating from ILCT transitions.6 

 In general, the most common dithiolene ligands are not notable for their 

emission. Nevertheless, luminescence properties have been reported in a significant 

number of square-planar homoleptic or heteroleptic complexes containing dithiolene 

ligands.6 Heteroleptic complexes usually contain nonchromophoric or diimine 

ligands apart from dithiolenes, and exhibit stronger emission. Figure 5.2 shows the 

molecular structure of an homoleptic platinum(II) dithiolate complex, [Pt(mnt)2]2- 

(mnt = 1,2-maleonitrile-1,2-dithiolate; Fig. 5.2a),7 a heteroleptic iridium(I) compound 

containing carbonyl, cyanide and mnt ligands, [Ir(CN)(CO)(mnt)]- (Fig. 5.2b),8 and a 

mixed-ligand diimine-dithiolene complex, Pt(dmbpy)(bdt), (dmbpy = 4,4’-dimethyl-

2,2’-bipyridine; bdt = toluene-3,4-dithiolate; Fig. 5.2c).9 In these systems, the 

luminescence arises from charge transfers either between the metal centers and the 

ligands, or between the two different ligands. 

 

Figure 5.2. Molecular structure of [Pt(mnt)2]2-; (a), [Ir(CN)(CO)(mnt)]-; (b), and 
Pt(dmbpy)(tdt); (c). 

 In homoleptic dithiolene complexes, the luminescence can be explained by a 

charge transfer from either the metal or the mixed metal-dithiolene orbitals to the * 

orbitals of the dithiolate ligand. On the other hand, in heteroleptic complexes 

containing dithiolene ligands, the origin of the charge transfer depends on the relative 

energy of the * orbitals of the coordinated ligands. For instance, the presence of 
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both diimine and dithiolene ligands in a metal complex leads to charge transfer from 

dithiolene  (or metal-dithiolene) to diimine * orbitals, due to the lower energy of 

the * diimine LUMO, as compared to that of the corresponding dithiolene * 

orbitals.6,10,11 

 In contrast to the vast majority of dithiolene ligands, the N-heterocyclic-

substituted 1,2-enedithiolates reported by Pilato’s group are emissive in their non-

coordinated forms. Interestingly, the coordination of such ligands to platinum(II) 

affords room temperature dual emitters.12 The origin of the dual emission has been 

ascribed to 3ILCT* (phosphorescence) and 1ILCT* (fluorescence) excited states.13 

 As mentioned in Chapter 3, a great many examples of dithiolene ligands 

containing nitrogen donor atoms have been reported.14 In particular, the 

coordination of 2-bis-(2-pyridyl)-methylene-1,3-dithiolene (hereinafter, BPyDTS2) to 

gold(I) and platinum(II) has been explored by Zuo and co-workers (see Fig. 5.3).15 

The preparation of heterometallic complexes containing rhenium(I) coordinated 

through the terminal nitrogen groups in the complexes depicted in Figure 5.3 was 

motivated by the interesting photophysical and photochemical properties reported in 

rhenium(I) complexes with diimine ligands.16–19 

 

Figure 5.3. Molecular structure of Au2(PPh3)2(BPyDTS2), (a; PPh3 = triphenylphosphine, 
BPyDTS2 = 2-bis-(2-pyridyl)-methylene-1,3-dithiolene), and Pt(dbbpy)(BPyDTS2), (b; dbpy 
= 4,4’-di-tert-butyl-2,2’-bipyridine). 
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 The coordination of the aforementioned BPyDTS2 ligand to the 

Mo2O2(µ-S)2 cluster unit to afford compound (Et4N)2[Mo2O2S2(BPyDTS2)2], 

((Et4N)[4]), was described in Chapter 3. Herein, we present the luminescence 

properties of (Et4N)[4]), as well as those of the heterometallic complex that results 

from the coordination of (Et4N)2[4] to rhenium(I) through the nitrogen atoms in the 

BPyDTS2 ligand, namely (Et4N)2[Mo2O2S2(BPyDTS2)2{Re(CO)3Cl}2], ((Et4N)2[5]). 

The emission of the organotin complex Me2Sn(BPyDTS2), (3), has also been studied 

for comparative purposes. Density Functional Theory (DFT) calculations have been 

performed in order to provide further insight into the origin of the emission in these 

complexes. The molecular structures of complexes 3, [4]2- and [5]2- are depicted in 

Figure 5.4. Details about the synthesis and structural characterization of these 

compounds are provided in Chapters 3 and 7. 

 

Figure 5.4. Molecular structures of complexes 3, [4]2- and [5]2-. 

5.1.2. RESULTS AND DISCUSSION 

The absorption and emission properties of complexes 3, (Et4N)2[4] and (Et4N)2[5], 

containing the BPyDTS2 ligand, have been investigated both in solution and in the 

solid state in collaboration with Dr. K. Brylev and Prof. N. Kitamura at Hokkaido 

University (Sapporo, Japan). The UV/Vis electronic spectra of these complexes in 
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acetonitrile, as well as that of the protected form of the dithiolene ligand, i.e. 

BPyDT(SCH2CH2CN)2.15 are shown in Figure 5.5. The absorption bands of the three 

complexes present similar shape but different intensities and wavelengths of 

maximum absorption. The molar extinction coefficient for all the absorption maxima 

are listed in Table 5.1. 
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Figure 5.5. UV/Vis absorption spectra of complexes 3, (Et4N)2[4], (Et4N)2[5] and ligand 
BPyDT(SCH2CH2CN)2. 

Complexes 3, (Et4N)2[4] and (Et4N)2[5] exhibit intense absorption bands in 

the 250 – 310 nm wavelength region, and the molar absorption coefficients lie 

between 1  104 and 5  104 M-1 cm-1. These bands can be ascribed to intraligand -

*  transitions, since the protected BPyDT(SCH2CH2CN)2 ligand exhibits analogous 

transitions when coordinated to a series of metal ions, which include platinum(II), 

gold(I) and rhenium(I).15,20 All three complexes present absorption bands in the 

visible region of the spectrum. The absorption band at ca. 435 nm observed for 

complex (Et4N)2[4] has been investigated by TDDFT calculations (vide infra). This 

band can be ascribed to an intraligand charge transfer (ILCT) transition, whereby the 
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dithiolate moiety acts as an electron donor, and the bis(2-pyridyl) subunits as electron 

acceptors. 

In complex (Et4N)2[4], the ILCT band appears at longer wavelengths, as 

compared to the free ligand, BPyDT(SCH2CH2CN)2. More specifically, this band is 

red-shifted by 60 nm. Analogously, in complexes 3 and (Et4N)2[5] similar shifts to 

longer wavelengths have been registered, being more pronounced in (Et4N)2[5] (ca. 

117 nm, as compared to the free ligand) than for compound 3 (ca. 36 nm). 

Displacements of the ILCT absorption bands towards longer wavelengths 

(bathochromic shifts) have also been reported in platinum(II) and gold(I) complexes 

containing the BPyDTS2 ligand.15 These results prove that coordination of the 

BPyDTS2 ligand to transition metals results in longer absorption wavelengths, and 

therefore in lowering the absorption energy. It is also noteworthy that the 

coordination of rhenium(I) to cluster (Et4N)2[4] through the nitrogen atoms in the 

BPyDTS2 ligand results in increasing the maximum absorption wavelength by a factor 

of 57 nm, in comparison with complex (Et4N)2[4]. 

Table 5.1. Absorption data for compounds 3, (Et4N)2[4], (Et4N)2[5], and 
BPyDT(SCH2CH2CN)2 in acetonitrile solution at 298 K. 

Compound 
 

λabs (nm)  (M–1 cm–1) 

BPyDT(SCH2CH2CN)2 254, 310 sh, 375 16 545, 9 701, 26 250 

3 251, 281, 411 16 788, 13 859, 17 384 

(Et4N)2[4] 267, 283, 338 sh, 435 52 715, 52 880, 20 451, 29 035 

(Et4N)2[5] 266, 299, 388, 492 38 682, 36 811, 13 578, 16 111 

 

 Quantum-chemical calculations have been performed for cluster (Et4N)2[4], 

aimed at providing insight into the nature of the ILCT band which is observed at 435 

nm in acetonitrile solution. Such theoretical studies have been carried out in 

collaboration with M. Ryzhikov from the Nikolaev Institute of Inorganic Chemistry 
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(Novosibirsk, Russia). According to TDDFT calculations, the highest intensity 

dipole-allowed excitation occurs at 432 nm. As shown in Figure 5.6, the calculated 

band at 432 nm has its origin in an electronic transition arising from the HOMO-6 

to the LUMO +3, and these orbitals are mainly located on the coordinated BPyDTS2 

ligand (ca. 100 % electron distribution). The energy of the calculated transition is 2.87 

eV (432 nm), which is in close agreement with the experimental value (435 nm), 

obtained from the UV/Vis spectrum of complex (Et4N)2[4] (see Figure 5.5 and Table 

5.1). It is noteworthy that the electronic distribution on the HOMO-6 is located on 

the dithiolate moiety of the ligand, and has -donor character (60 %). In contrast, the 

electron distribution on the LUMO+3 is located on the pyridyl moieties, and presents 

-acceptor character (70 %). 

 

Figure 5.6. Molecular orbital scheme and graphical representation of the HOMO-6 and 
LUMO+3 orbitals for complex (Et4N)2[4]. 

 The photophysical data for complexes 3, (Et4N)2[4] and (Et4N)2[5] in 

acetonitrile at room temperature are listed in Table 5.2. Compound (Et4N)2[4] 

exhibits emission in the 600 – 800 nm wavelength region upon excitation at 532 nm 
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(see Figure 5.7). For this complex, the maximum emission intensity is observed at 

628 nm, and the emission quantum yield (fem, relative to [Ru(bpy)3](BF4)2) has a value 

of 0.092. Complex (Et4N)2[5], which results from the coordination of rhenium(I) 

through the nitrogen groups in complex (Et4N)2[4], presents a similar emission band 

shape, although the emission quantum yield is reduced by a factor of 4.6, as compared 

to that of (Et4N)2[4]. The dialkyltin dithiolene complex, 3, presents a quantum yield 

value which lies between those of complexes (Et4N)2[4] and (Et4N)2[5], and its 

emission band coincides in shape and position with those of the dinuclear 

molybdenum clusters, i.e. [4]2- and [5]2-. 

Table 5.2. Luminescence data for compounds 3, (Et4N)2[4] and (Et4N)2[5] in acetonitrile 
solution at 298 K. 

Compound 
 

λem (nm)  fema 

3 628 0.038 

(Et4N)2[4] 628 0.092 

(Et4N)2[5] 628 0.020 

a Relative quantum yield using [Ru(bpy)3](BF4)2 as a standard. 

 

Figure 5.7. Emission spectra for complex 3, (Et4N)2[4] and (Et4N)2[5] in acetonitrile at 298 
K. 
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 The analogous shape and position of the emission spectra of complexes 3, 

(Et4N)2[4] and (Et4N)2[5] indicates that the observed emission can be ascribed to 

ILCT* excited states. This observation is in good agreement with the TDDFT 

calculations performed for compound (Et4N)2[4], and for other transition metal 

complexes containing the same ligand.15,20 Analogous ILCT transitions have been 

reported in a number of transition metal complexes containing a diversity of ligands 

with both -donor and -acceptor sites.21–25 In particular, an azobenzene-conjugated 

dithiolate platinum(II) complex presents electronic bands that can be attributed to -

* ILCT transitions from the dithiolene to the azobenzene moiety.23 A series of 

complexes of formula (dppe)M{S2C2(heterocycle)(H)}, (dppe = 1,2-

bis(diphenylphosphino)ethane; M = Ni, Pd, and Pt; heterocycle = pyridine, pyrazine 

or quinoxaline derivatives), reported by Pilato and co-workers are notable for their 

ILCT absorption and emission transitions.13,26–29 For instance, complex 

(dppe)Pt{S2C2(2-quinoxaline)(H)} presents two ILCT transitions arising from 

1ILCT* and 3ILCT* excited states. For this complex, the maxima absorption and 

1ILCT* emission wavelengths in dichloromethane were observed at 442 nm and 636 

nm, respectively.27 These values are in good agreement with those listed in Tables 5.1 

and 5.2 for complexes 3, (Et4N)2[4] and (Et4N)2[5]. The absorption and emission 

bands in the aforementioned platinum(II) complexes have been ascribed to an ILCT 

from the 1,2-enedithiolate () to the N-heterocycle (*). This explanation gives 

support to our description about the nature of the emission bands in complexes 3, 

(Et4N)2[4] and (Et4N)2[5]. 

 Despite the luminescence behavior exhibited by reported molybdenum 

clusters, the emission of clusters (Et4N)2[4] and (Et4N)2[5] is not directly related to 

the dinuclear molybdenum core, since the emission band of the tin complex 3 

presents identical shape and em to those of [4]2- and [5]2- (see Fig. 5.7). Nevertheless, 

the Mo2O2S2 core seems to play a significant role in the emission quantum yield, as 
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the fem value for complex [4]2- is almost 2.5 times that of the tin complex 3. The 

emission quantum yield values obtained for the series of complexes in Table 5.2 are 

significantly higher than those reported for transition metal complexes of formula 

(dppe)M{S2C2(heterocycle)(H)}, presenting intraligand charge transfers.13,26–29 In 

these complexes the fem values typically lie between less than 0.01 and 0.03. The 

emission lifetime of complexes 3, (Et4N)2[4] and (Et4N)2[5] in acetonitrile resulted to 

be extremely short (< 10 ns), and therefore they could not be determined with the 

equipment employed. This short emission lifetime agrees well with the em values for 

the systems reported by Pilato, which present analogous ILCT transitions to the 

series of complexes investigated in this chapter.13,26–29 The lower quantum yield in 

the heterometalic complex [5]2- in comparison to [4]2- could be tentatively ascribed to 

fast charge separation in the excited state, since it is well stablished that rhenium 

tricarbonyl polypyridine complexes can act as electron acceptors.17,30 Finally, it is also 

worth mentioning that powdered samples of compounds 3, (Et4N)2[4] and (Et4N)2[5] 

did not display emission at room temperature, presumably due to self-quenching 

processes in the solid state. 
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5.2. LUMINESCENCE AND ANION SENSING BEHAVIOR OF 
TRINUCLEAR MOLYBDENUM CLUSTERS 

5.2.1. INTRODUCTION 

Imidazo[4,5-f]-1,10-phenanthroline ligands have the ability to form stable complexes 

with a diversity of transition metals, which include zinc, platinum, rhenium, 

ruthenium, lanthanides, and even uranium.16,31–33 The extensively investigated 

coordination of imidazophenanthroline-like ligands to transition metals has been 

motivated by the interesting properties of these compounds.31–45 More specifically, 

imidazophenanthrolines have been used for the design of metallomesogens,33,45 anion 

sensors,32,34 nonlinear optical materials,44 and electroluminescent devices,36,38 among 

other applications. Additionally, the luminescent character of substituted 

imidazophenanthroline ligands allows the synthesis of multifunctional materials, in 

which a combination of physical properties can be present.33,45 

 Cardinaels and co-workers have developed a series of 

imidazophenanthrolines substituted with long alkyl chains, and their coordination to 

different metals has been investigated.33,45 In particular, the ruthenium(II) complex 

depicted in Figure 5.8 presents liquid crystalline properties with smectic A phases, 

and the transition temperature strongly depends on the counterion.33 In addition, this 

complex is luminescent in both chloroform solution and in the solid state, with an 

emission maximum located at 630 nm, which can be assigned to *(ligand)d(Ru) 

MLCT transitions. 

 An interesting imidazophenanthroline ligand containing a ferrocenyl group 

has been employed by Tárraga et al. for the preparation of iridium(III) and 

ruthenium(II) complexes. For instance, the trisubstituted iridium(III) complex in 

Figure 5.9 is a reversible redox-luminescent switch, in which the fluorescence 

intensity is enhanced upon addition of a chemical oxidant.37 The ruthenium(II)-

ferrocene heterobimetallic system in Figure 5.9 exhibits a high anion sensing 
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selectivity towards chloride.34 A dramatic increase in the fluorescence intensity and 

in the emission quantum yield was registered in acetonitrile solutions of this complex 

upon addition of Cl-. This increase was attributed to the formation of a hydrogen-

bonded adduct in which the chloride anion interacts with the imidazophenanthroline 

ligand. The formation of this aggregate was not observed in other anions. 

 

Figure 5.8. Molecular structure of a ruthenium(II) complex exhibiting simultaneously liquid 
crystalline and luminescence properties. 

 

Figure 5.9. Molecular structure of iridium(III) and ruthenium(II) complexes containing an 
imidazophenanthroline ligand with a ferrocenyl subunit. 

 Raposo and co-workers have developed a series of –conjugated 

imidazophenanthroline derivatives containing thiophene moieties.44 These 

compounds exhibit a strong solvatochromic effect and luminescence properties. In 
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addition, they present a modest second-order nonlinear optical response. These 

properties make these compounds suitable for the preparation of optical materials 

based on transition metals, and also for the development of solvent polarity probes. 

Another noteworthy aspect of imidazophenanthroline ligands is their 

relatively straightforward preparation, as well as their versatility.  To illustrate this, the 

synthetic pathway for 2-phenylimidazo[4,5-f]-1,10-phenanthroline (PIP) is provided 

in Scheme 5.1. These types of ligands can be conveniently prepared by following an 

adaptation of the method reported by Steck and Day for the synthesis of 2-substitued 

phenanthrimidazoles.46 Reaction between 1,10-phenanthroline-5,6-dione 

(abbreviated as phendione) and an aldehyde (benzaldehyde in this case) in the 

presence of ammonium acetate and glacial acetic acid affords the desired 

imidazopheanthroline ligand in good yields.47 In this way, a judicious choice of 

benzaldehyde precursor can afford a diversity of imidazophenanthroline derivatives. 

 

Scheme 5.1. Synthetic approach to the preparation of imidazophenanthroline ligands. 

Motivated by the interesting properties that can emerge from transition metal 

complexes functionalized with imidazophenanthroline ligands,31–45 as well as by their 

relatively simple and convenient synthetic procedures,47 we decided to explore the 

preparation and further coordination of such ligands to Mo3S7 cluster units. As 

already mentioned in Chapter 4, the coordination of diimine ligands to [Mo3S7X6]2- 

cluster precursors (X = Cl or Br)48 results in the partial substitution of two bromide 
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ligands by the nitrogen groups in the diimine to afford neutral cluster complexes of 

formula Mo3S7X4(diimine), where X = Cl or Br.48 The luminescence properties of 

complexes Mo3S7X4(IPDOP) (X = Br; 12, or Cl; 13), obtained by coordination of the 

novel ligand 1H-Imidazo[4,5-f]-1,10-phenanthroline-2-[3,4-bis(dodecyloxy)phenyl] 

(IPDOP) to the Mo3S7 unit (see Scheme 5.2) are investigated herein. Moreover, the 

potential ability of complexes 12 and 13 to detect halide ions in solution, as well as 

the study of their liquid-crystalline properties are also presented in this chapter. 

 

Scheme 5.2. Synthetic pathway for complexes 12 and 13. 
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5.2.2. RESULTS AND DISCUSSION 

Complexes 12 and 13 represent the first examples of molybdenum clusters derivatized 

with imidazophenanthroline ligands, and hence could lead to potential optical 

materials.32–34,44,45 The photophysical behavior of complexes 12, 13, as well as that of 

the free ligand, IPDOP, was investigated by steady-state and time-resolved 

fluorescence spectroscopy at Universitat Jaume I (Castelló, Spain) in collaboration 

with Prof. F. Galindo. As a representative example, the normalized absorption and 

emission spectra of complex 12 in both dichloromethane and dimethylformamide are 

depicted in Figure 5.10. For all compounds, the emission spectra were recorded upon 

excitation at 330 nm. 

300 350 400 450 500 550 600

0,0

0,2

0,4

0,6

0,8

1,0

1,2

N
o

rm
a

liz
e

d
 I

n
te

n
si

ty
 (

a
.u

.)

Wavelength (nm)

 12 in CH
2
Cl

2

 12 in DMF

Absorption

Emission

 

Figure 5.10. Absorption and emission spectra of 5 µM solutions of complex 12 in 
dichloromethane and dimethylformamide. The emission spectra were recorded upon 
excitation at 330 nm. 

 The UV/Vis spectra of complexes 12 and 13 present high intensity 

absorption bands in the 275 – 375 nm range, and low intensity bands in the visible 

range, the latter leading to reddish-colored solutions in CH2Cl2 and DMF. These 

bands may be assigned to charge-transfer transitions, as reported for transition metal 
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complexes containing phenanthroline derivatives.49 The steady-state emission spectra 

of complexes 12 and 13 in CH2Cl2 present maxima at 436 nm. These spectra coincide 

in shape and position with that of the free ligand, IPDOP, which exhibits an emission 

maximum intensity at 435 nm in the same solvent. As listed in Table 5.3, the emission 

maxima of complexes 12 and 13 in DMF (448 nm and 451 nm, respectively) also 

coincide with that of IPDOP ligand in this solvent (450 nm).  

The emission quantum yields (fem) of the samples were calculated according 

Equation 5.1, using quinine sulfate as a standard (fem = 0.546 in 0.5 M H2SO4).50 

   f
�
= (f

�
· A� · I� · n�

�)/(A� · I� · n�
�)  (5.1) 

where As and Ar are the absorbance of the sample and the reference; Is and Ir are the 

corresponding integrated emissions, and ns and nr are the refractive indexes of the 

solvent of the sample, and the reference. In both solvents, the emission quantum 

yield (fem) for the free ligand is higher than those of complexes 12 and 13. For 

instance, the emission quantum yield of IPDOP in DMF (0.29) decreases three-fold 

in complex 12, and is roughly reduced by ca. a factor of 2 in complex 13. An analogous 

tendency was observed for the same compounds in CH2Cl2. The difference between 

the emission quantum yield for complexes 12 and 13 indicates that the value of fem 

strongly depends on the halide groups coordinated to the Mo3S7 cluster. On the other 

hand, the coincidence in the positions of the emission maxima in complexes 12 and 

13, and in the free ligand IPDOP suggest that the nature of the emission in these 

imidazophenanthroline-based clusters can be ascribed to intraligand charge-transfer 

(ILCT) transitions.51 As a matter of fact, unsubstituted 1H-imidazo[4,5-f]-1,10-

phananthroline has been reported to emit at 460 nm in methanol, with a quantum 

yield of 0.25 and a lifetime of 2.5 ns.35 These values are in good agreement with the 

fluorescence data listed in Table 5.3 for the ligand IPDOP and for complexes 12 and 
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13, and therefore give support to our description of the ligand-based emission in 

these clusters. 

Table 5.3. Fluorescence data for the free ligand IPDOP, and for complexes 12 and 13, 
recorded upon excitation at 330 nm. 

Solvent Compound fema , ns kr, s-1 knr, s-1 em, nm 

CH2Cl2 
IPDOP 0.21 5.5 3.8 × 107 1.4 × 108 435 

12 0.06 5.4 1.1 × 107 1.7 × 108 436 
13 0.11 5.5 2.0 × 107 1.6 × 108 436 

DMF 
IPDOP 0.29 7.5 3.9 × 107 9.5 × 107 450 

12 0.10 7.6 1.3 × 107 1.2 × 108 448 
13 0.15 7.5 2.0 × 107 1.1 × 108 451 

a relative to quinine sulfate 

The emission behavior of complexes 12 and 13 sharply contrasts with that of 

other transition metal complexes. For instance, the solid state emission spectrum of 

an imidazophenanthroline cadmium(II) complex described by Wang et al. has been 

ascribed to ligand to metal charge-transfer (LMCT) transitions.52 It is also noteworthy 

the solvent dependency found in the emission maxima of complexes 12 and 13, as 

well as in that of the free ligand IPDOP (see Table 5.3). The most dramatic shift was 

registered for complex 13. The emission spectrum of this complex in 

dimethylformamide is red-shifted by 15 nm, as compared to that of the same 

compound in dichloromethane. This bathochromic effect is not unprecedented, since 

it has already been reported in analogously functionalized imidazophenanthroline 

ligands.44 

 In order to determine the emission lifetimes () of the free ligand IPDOP 

and complexes 12 and 13, time-resolved emission measurements were carried out, 

and the decays fitted to a monoexponential model (see Equation 5.2). All three 

compounds present virtually identical  values, which strictly depend on the solvent 

(ca. 5.5 ns in CH2Cl2 vs 7.5 ns in DMF). These low  values indicate that the emission 

originates from a 1ILCT* excited state (fluorescence). 
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I(t) = A · e��/�                                           (5.2) 

Aimed at providing further insight into the quenching processes associated 

to the emission of our compounds, the radiative (kr) and non-radiative (knr) rate 

constants were calculated according to Equations 5.3 and 5.4. 

   k� = f
��
/τ                                                                            (5.3) 

   k�� = (1 − f
��
)/τ                                                                (5.4) 

As can be seen in Table 5.3, the singlet excited state of the free ligand IPDOP is 

radiatively deactivated at a rate of 3.8  107 s-1 in dichloromethane solution, whereas 

for complexes 12 and 13, kr is significantly lower. On the other hand, the non-

radiative processes are enhanced in the complexes, as compared to the free ligand. 

More specifically, knr increases from 1.4  108 to ca. 1.7  108 s-1 upon coordination 

of the IPDOP ligand. The same tendencies in kr and knr were observed when the 

measurements were carried out in dimethylformamide (see Table 5.3). These decrease 

in kr and increase in knr (relative to the free ligand) for complexes 12 and 13 indicate 

that the singlet excited state is deactivated by non-radiative processes. As shown in 

the simplified Jablonski diagram for the free ligand IPDOP (Figure 5.11), there are 

four non-radiative processes that may participate in the deactivation of a singlet 

excited state, namely internal conversion (IC), intersystem crossing (ISC) to the triplet 

state, electron transfer (eT), or energy transfer (ET). Further studies would be 

required to discern between IC, ISC, eT and ET as the main cause of the deactivation 

process. Nevertheless, it can be concluded that coordination of 

imidazophenanthrolines to molybdenum clusters has a significant effect on the 

photophysical properties. These results pave the way to a new series of photoactive 

materials based on Mo3S7 cluster units. 
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Figure 5.11. Simplified Jablonski diagram for IPDOP in CH2Cl2. Note that according to Palit 

et al., the S1S0 transition must be observed at ca. 400 nm, corresponding to a n-* forbidden 
excitation.35 

 An important aspect of the fluorescence behavior of complexes 12 and 13 is 

the striking changes in their emission spectra upon addition of various anions. As 

depicted in Figure 5.12, in the presence of anionic species such as F-, OH- and AcO- 

in their tetrabutylammonium forms, the emission band of complex 12 in DMF 

undergoes a dramatic red-shift of roughly 92 nm (from 448 to 540 nm). 

Nevertheless, addition of Cl-, Br- or SCN- do not have any effect on the emission 

spectrum of complex 12. A similar behavior was observed for complex 13 in the same 

solvent. This intriguing phenomenon can be presumably attributed to charge 

redistributions within the IPDOP ligand originated by hydrogen bonding interactions 

between the NH group of the imidazole ring and certain anions, as already observed 

by Liu et al. for a calix[4]arene compound containing imidazophenanthroline 

groups.53 Analogous emission shifts induced by anions have been recently reported 

in a number of transition metal complexes bearing imidazole moieties, which serve 

as chemosensors for the selective detection of anions.54–59 For instance, Zheng and 

co-workers have described a lanthanide complex containing a 2-(3,4,5-
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trimethoxyphenyl)imidazo[4,5-f]-1,10-phenanthroline ligand, which displays a red 

shift in its emission spectrum of ca. 50 nm (from roughly 450 to 500 nm) upon 

interaction with acetate anions in dimethylsulfoxide solution.32  
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Figure 5.12. Emission spectra of 5 µM complex 12 in DMF in the presence of different 
anions: a) 100 eq OH-, b) 100 eq CH3COO- and c) 100 eq F-. The emission spectra were 
recorded upon excitation at 330 nm. 

 The liquid-crystalline phases observed by Cardenaels et al. in ruthenium 

complexes containing imidazophenanthroline ligands with long alkoxy chains led us 

to investigate the liquid-crystalline character of complexes 12 and 13.33,45 This 

property was studied in collaboration with Dr. Y. Molard from the Institut de 

Sciences Chimiques de Rennes (France) by Temperature Dependent Polarized 

Optical Microscopy. To our dismay, both of these compounds decomposed upon 

heating to temperatures above the boiling point (> 240ºC), and neither isotropic 

states nor clear birefringence were observed. Nevertheless, the complexes presented 

in this section, i.e. 12 and 13, represent to the best of our knowledge the first examples 

of Mo3S7 clusters containing imidazophenanthroline ligands which exhibit dramatic 

shift in their emission spectra upon interaction with anionic species, and hence open 
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new avenues in the search for anion probes based on transition metal complexes.54–

59 

5.3. OPTICAL NONLINEARITIES OF HETEROLEPTIC 
TRINUCLEAR MOLYBDENUM CLUSTERS 

5.3.1. INTRODUCTION 

In the digital era, electronic devices are taken for granted without considering the 

limitations of electronics, such as limits in the operational speed which are intrinsic 

to the electric circuits, and the existence of electromagnetic interferences. Photonics 

has emerged as a new field which uses photons instead of electrons to acquire, store, 

process and transmit information, overcoming in this way the drawbacks of 

traditional electrical devices.60 

 Nonlinear optics is a cornerstone in photonics. When light propagates on a 

material, its electrons oscillate in response to the external electromagnetic field. At 

low light intensities, the induced electrical polarization is proportional to the 

amplitude of the electrical field, E. However, if the light intensity is high, a non-linear 

response to the electric field may emerge. This phenomenon is commonly known as 

nonlinear optics (NLO), and in such a case the dipole moment (µ) can be determined 

by Equation 5.5. 

    μ� = μ�
� + α��E� + β��E�E� + γ����E�E�E� + ⋯                       (5.5) 

In the latter expression, µi0 is the permanent dipolar moment in the i direction, α 

represents the linear polarizability, while β and γ are the second-order and third-order 

polarizabilities, respectively. Ej,k,l refers to the electrical field inside the material in the 

different directions, i.e. j, k, and l.61–63  

One important aspect in nonlinear optics is optical limiting (OL). This 

physical phenomenon consists in a decrease in the transmittance of a material when 

the incident light intensity increases. An ideal optical limiter should become 
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transparent at low light intensity, and opaque at high intensity. Moreover, it should 

be able to present reversibility between these two states, as well as fast responses to 

external optical stimuli. This behavior is opposite to that of most materials, which 

become more transparent upon irradiation with high-intensity light. Some 

applications of optical limiters include the protection of human eyes and optical 

devices from high intensity lasers.64,65 

 Inorganic materials have been widely used in optics and electronics for a long 

time. The development of microelectronics has led to a growing demand of novel 

compounds able to meet the demands of technology. In this context, the search for 

materials presenting optical nonlinearities is of outmost importance these days, 

motivated by their use in communications and information storage devices, among 

other fields.66–68 

 Over the past few decades, a great deal of effort has been devoted to the 

development of third-order nonlinear optical materials based on inorganic 

semiconductors, organic polymers, and fullerenes.60 A diversity of transition metal 

complexes exhibiting optical nonlinearities have also been developed as potential 

photonic materials.61 Nevertheless, inorganic cluster compounds have been far less 

explored for these purposes mainly due to two reasons: their usual deep color, which 

makes them unsuitable for most NLO applications, and their frequent instability 

when exposed to high-intensity light.60  

 Despite the apparent limitations of metal clusters in the field of nonlinear 

optics, they present a number of advantages over other inorganic/organic 

compounds traditionally used in nonlinear optics. Firstly, their constituent heavy 

atoms introduce more energy sublevels, and thus more allowed transitions and larger 

NLO effects, as compared to organic molecules. Secondly, the NLO properties of 

metal clusters can be easily tailored to specific application requirements by changing 

the constituent elements, oxidation state, structural type and/or outer ligands.60  
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Furthermore, the photochemical stability of metal clusters can be enhanced with 

bridging sulfide groups which reinforce the metal-metal bonds. Incidentally, 

M/Q/M’ (M = Mo, W; Q = S, Se; M’ = Cu, Ag) heterometallic clusters have attracted 

significant interest in the search for novel materials with strong third-order optical 

nonlinearities and good optical limiting performance.69,70 It is noteworthy that a series 

of reported heterometallic cubane-like clusters present great stability toward light 

irradiation, and exhibit superior optical limiting capabilities to fullerene C60, a well-

known optical limiter.71–73 

 The nonlinear optical performance of a series of trinuclear and tetranuclear 

cluster chalcogenides of formulae [M3(µ3-Q)(µ2-Q)3X3(diphosphine)3]+ and 

[M3Cu(µ3-Q)(µ2-Q)3X3(diphosphine)3]+, respectively (M = Mo or W; Q = S or Se; X 

= Cl or Br) have been investigated in the past few years.74,75 These compounds are 

efficient optical limiters, and their optical limiting merit decrease on proceeding from 

the tetranuclear to the trinuclear core, and upon replacing tungsten by molybdenum. 

Optical power limiting has also been found in Mo3(µ3-S)(µ2-S2)3  cluster sulfides 

bearing maleonitriledithiolate, oxalate or thiocyanate ligands, although no clear 

tendencies in the effect of the outer ligand on the NLO properties could be drawn 

from these results.76  

In our search for better NLO materials, in this Section we have investigated 

the nonlinear optical properties of a series of heteroleptic Mo3S7 clusters containing 

either mixed diimine-halide, Mo3S7X4(diimine), (X = Cl, Br; complexes 18 – 21), or 

diimine-dithiolene ligands, Mo3S7(dithiolene)2(diimine), (complexes 29 – 31). This 

choice of outer ligands was motivated by the nonlinear optical behavior reported in 

transition metal complexes with diimine ligands.77,78 Furthermore, dithiolene -

extended systems are well-known to enhance the NLO properties of a material.79,80 

Complexes 18 – 21 and 29 – 31 (see Figure 5.13) represent to the best of our 

knowledge the first examples of heteroleptic trinuclear molybdenum cluster 
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exhibiting third-order NLO effects. The NLO behavior of the dinuclear cluster 

(Et4N)2[Mo2O2S2(BPyDTS2)2], ((Et4N)2[4]; BPyDTS2 = 2-bis-(2-pyridyl)methylene-

1,3-dithiolene; Fig. 5.4), whose luminescent properties were studied in Section 5.1, 

has also been investigated, with the aim of finding correlations between nuclearity 

and third-order nonlinear optical functions. 

 

Figure 5.13. Molecular structure of complexes 18 – 21 and 29 – 31. 

5.3.2. RESULTS AND DISCUSSION 

The linear and non-linear optical properties of clusters 18 – 21 and 29 – 31 were 

assessed by the group of Prof. M. Humphrey at the Research School of Chemistry 

(Australian National University), and compared to those exhibited by the dinuclear 

cluster (Et4N)2[4]. All measurements were carried out in dimethylformamide, owing 

to the limited solubility of the samples in less polar solvents. 

Table 5.4 lists the UV/Vis absorption wavelengths for complexes 18 – 21, 

bearing both diimine and halide ligands. All complexes present high intensity bands 

in the 300 – 375 nm region, with molar extinction coefficients lying between 5.2  

103 and 21.1  103 M-1 cm-1. The absorption bands for the mixed-ligand diimine-

dithiolene complexes 29 – 31 are in general more intense than those for the diimine-

bromide derivatives, and present molar extinction coefficients in the range of 7.4 – 

27.7  103 M-1 cm-1 between 307 and 407 nm. In addition, weaker absorption bands 
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have been found in the 450 – 500 nm region for both series of complexes. The molar 

absorption coefficients for complexes 29 – 31 (5.1 – 10.2  103 M-1 cm-1) in this region 

are again higher than those for compounds 18 – 21 (1.9 – 3.7  103 M-1 cm-1). 

Remarkably, the highest energy maximum in the 450 – 500 nm region has been 

observed for the chloro-ligated cluster 18, whereas the lowest energy maxima have 

been registered for complexes 29 – 31, containing the dmit (1,3-dithiole-2-thione-4,5-

dithiolate) ligand.  

The cluster (Et4N)2[Mo2O2S2(BPyDTS2)2], ((Et4N)2[4]) is structurally 

distinct, possessing a Mo2O2(µ-S)2 core, in contrast to the other Mo3S7-based 

heteroleptic complexes. The absorption bands in this complex present the lowest 

energy values in the series. Interestingly, the linear optical spectra of the eight metal 

clusters present low-intensity absorption bands in the visible region of the spectrum, 

a requisite for the design of broad-band optical limiters.75 

Table 5.4. Linear optical data for (Et4N)2[4], 18 – 21 and 29 – 31. 

Cluster abs/nm (10-3· / M-1 cm-1) 

(Et4N)2[4] 341 (32) 423 (sh, 10.1) 525 (2.4) 

    

18 320 (sh, 11.1) 370 (sh, 5.3) 450 (2.3) 

19 313 (sh, 21.1) 375 (sh, 7.5) 461 (3.7) 

20 313 (sh, 16.5) 370 (sh, 5.2) 471 (sh, 2.4) 

21 304 (sh, 14.9) 352 (sh, 6.1) 493 (sh, 1.9) 

    

29 307 (sh, 27.7) - 497 (5.1) 

30 332 (sh, 17.1) 407 (sh, 7.4) 493 (10.2) 

31 311 (sh, 24.8) 335 (sh, 17) 500 (9.7) 
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Relevant data for the optical limiting merit of the di- and trinuclear complexes 

investigated in this chapter are collected in Table 5.5. The optical limiting power was 

assessed by the Z-scan technique at 570 nm,81 where the absorption of all eight 

clusters is rather low ( = 310 – 4 410 M-1 cm-1). This technique has already been 

employed in previous studies on trinuclear molybdenum and tungsten 

chalcogenides.74–76 The data from the power limiting curves was converted into 

transmittance-fluence plots assuming a Gaussian character for the laser beam, and 

the effective cross-sections were calculated.82 

Table 5.5. Optical limiting data for (Et4N)2[4], 18 – 21 and 29 – 31. 

Cluster 
570 F15% Cross Section ( 10-18 cm2) 

 (M-1 cm-1)a  (J cm-2)b Ground State, 0 Excited State, eff 

(Et4N)2[4] 1590 0.32 6.1 5.5 

     

18 310 0.25 1.2 2.1 

19 830 0.14 3.2 3.4 

20 790 0.13 3.0 3.2 

21 820 0.20 3.2 3.9 

     

29 4410 0.05 16.9 21.3 

30 1790 0.07 13.6 16.8 

31 3060 0.20 11.7 12.7 

 

a Molar extinction coefficient at the measurement wavelength (570 nm). b Incident fluence 
required to reduce the transmittance through the sample by 15 % 

 A representative transmission vs fluence (energy of laser/unit area) plot (that 

of complex 20) is displayed in Figure 5.14. For comparative purposes, a threshold 

limiting fluence F15% was used to assess the relative optical limiting merit of the 

current clusters. This value represents the incident fluence required to reduce the 
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transmittance through a sample by 15 %. The threshold limiting fluence F15% for our 

series of complexes increases on decreasing the nuclearity (see Table 5.5). In other 

words, the optical limiting merit increases on proceeding from the dinuclear 

((Et4N)2[4]) to the trinuclear (18 – 21 and 29 – 31) clusters. The skeletal structure and 

metal nuclearity have been reported to have a strong impact on the NLO properties 

of transition metal complexes.69,83 In particular, in cluster chalcogenides of formula 

[M3(µ3-Q)(µ2-Q)3X3(diphosphine)3]+ (M = Mo, W; Q = S, Se; X = Cl, Br), the 

threshold limiting fluence has been found to decrease upon insertion of copper into 

the trinuclear core to afford tetranuclear [M3Cu(µ3-Q)(µ2-Q)3X3(diphosphine)3]+ 

complexes.74 

 

Figure 5.14. Optical limiting behavior of complex 20 in dimethylformamide. 

 Values of the excited-state cross section (eff) for all eight clusters are given 

in Table 5.5. With the exception of the dinuclear cluster (Et4N)2[4], the eff values are 

larger than those of the corresponding ground-state cross section, 0, that is to say, 

all heteroleptic trinuclear clusters in the series (i.e. 18 – 21 and 29 – 31) are efficient 

optical limiters. The mixed-ligand diimine-dithiolene complexes 29 – 31 present 

larger eff values than those of complexes 18 – 21 bearing both diimine and halide 
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ligands. This fact suggests that -delocalization induced by dmit ligands enhances the 

optical limiting performance of the trinuclear clusters. This is not unexpected, since 

it is well established that the presence of dithiolene ligands has a dramatic effect in 

the NLO responses of transition metal complexes.80,84,85 Moreover, mixed-ligand 

diimine-dithiolene complexes analogous to compounds 29 – 31 have attracted a great 

deal of interest due to the NLO effects that can derive from the different character 

of the ligands; acceptor for the diimine, and donor for the dithiolate.86 In these push-

pull complexes, the HOMO is formed by a mixture of metal and dithiolate orbitals, 

while the diimine orbitals contribute predominantly to the LUMO. It is noteworthy 

that the effective excited state cross section, eff, should be regarded as only a measure 

of the power limiting ability of a material under certain experimental conditions, and 

therefore comparison between eff values obtained in different experiments should 

be circumspect.74–76 

5.4. CONCLUSIONS 

The luminescent properties of a novel dinuclear cluster complex, i.e. 

(Et4N)2[Mo2O2(µ-S)2(BPyDTS2)2], ((Et4N)2[4]), have been investigated. This complex 

exhibits fluorescence in acetonitrile solution with an emission maximum at 628 nm 

and a quantum yield of ca. 0.10. According to TDDFT calculations, the emission in 

(Et4N)2[4] arises from an ILCT transition from the dithiolene () to the pyridyl 

moieties (*). Insertion of two terminal Re(CO)3Cl fragments into complex 

(Et4N)2[4] through the outer nitrogen atoms in the BPyDTS2 ligand leads to a 

decrease in the emission quantum yield by a factor of ca. 4.6, as compared to that of 

(Et4N)2[4]. The emission behavior of a tin complex containing the BPyDTS2 ligand, 

namely Me2Sn(BPyDTS2), (3), has also been investigated for comparative purposes. 

The coincidence in shape and position of the emission spectra in all three complexes 

indicates that the emission arises in all cases from an ILCT* excited state. 
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 Two novel heteroleptic Mo3S7 complexes bearing imidazophenanthroline 

ligands, i.e. Mo3S7X4(IPDOP), (X = Br; 12, or Cl; 13) exhibit luminescence in the 375 

– 600 nm region in both dichloromethane and dimethylformamide solutions. The 

maximum quantum yield and emission lifetime were achieved for complex 13 in 

DMF, with fem = 0.15 and  = 7.5 ns. The emission spectrum of this complex in 

dimethylformamide is red-shifted by 15 nm, as compared to that of the same 

compound in dichloromethane. It is also noteworthy that the non-radiative processes 

are enhanced in complexes 12 and 13, in comparison with those of the free ligand 

IPDOP. A dramatic shift towards longer emission wavelengths was observed in the 

emission spectra of complexes 12 and 13 in solution upon addition of proton-

abstractor anions (F-, OH- or AcO-). These results envisage the potential of these 

systems for metal-cluster-based halide sensors, as long as they are tailored to the 

specific sensitivity and selectivity requirements of a given application. 

 The optical power limiting of a series of mixed-ligand diimine-halide or 

diimine-dithiolene Mo3S7 cluster complexes (i.e. 18 – 21 and 29 – 31) has been 

assessed by Z-scan techniques in dimethylformamide solution. The threshold limiting 

fluence and effective cross section values for the aforementioned series of trinuclear 

complexes were compared to those of the dinuclear complex (Et4N)2[Mo2O2(µ-

S)2(BPyDTS2)2], ((Et4N)2[4]). All trinuclear clusters are efficient optical limiters with 

eff > 0. The optical limit merit increases on increasing the metal nuclearity and 

upon replacing the halides by dmit ligands. These results contribute to the search for 

better molecular materials presenting third-order NLO properties. 
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6.1. INTRODUCTION 

Nowadays, the world energy demand is mainly supplied by fossil fuels, which are 

known to increase carbon dioxide levels, and hence to have a profound impact on 

global climate. Another major drawback of fossil fuels is that they are an exhaustible 

resource, and consequently a hike in fuel prices seems likely in the future. Despite the 

growing effort devoted over the past few years to the discovery and development of 

efficient, abundant and renewable sources of energy, to date none of them have been 

able to replace or significantly reduce fossil fuels consumption.1 

Light energy from the sun would vastly exceed our current power demand. 

However, sunlight is intermittent and diffuse, and thus its substantial use as a source 

of energy would require energy storage in chemical bonds. In this context, the use of 

hydrogen as a fuel has been widely investigated.2 The combustion of hydrogen 

presents the highest enthalpy of all existent chemical fuels. In addition, water is the 

only product of this reaction, making the process environmentally benign. For these 

reasons, the use of hydrogen as a fuel using water as a feedstock has emerged as one 

of the best alternatives to petroleum-based fuels.3–5 Nevertheless, water splitting is 

energetically demanding, and the efficient generation of hydrogen from water still 

remains one of the major challenges in the use of hydrogen as a fuel. 

The past four decades have witnessed significant progress in the 

development of solar energy conversion systems that to some extent mimic natural 

photosynthesis, and this interest has led to the emergence of Artificial 

Photosynthesis. In contrast to naturally occurring photosynthesis, in which the solar 

energy is stored in the form of chemical bonds in NADPH (nicotinamide adenine 

dinucleotide phosphate), in artificial systems, sunlight is employed for the generation 

of hydrogen and oxygen by water splitting.1,4,6 

Artificial photosynthetic systems usually employ semiconductor oxides in 

order to enhance the water splitting process.2,7 In the presence of an electron donor, 
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this species is oxidized, and hence the oxidation of water to produce oxygen is 

blocked. Focusing on the reductive side of water splitting, visible-light driven 

hydrogen evolution systems involve three basic steps (see Figure 6.1):8 

(1) Absorption of sunlight by a photosensitizer (PS), such as [Ru(bpy)3]2+ (bpy 

= 2,2’-bipyridine) anchored onto the surface of a wide band gap 

semiconductor, most commonly titanium dioxide. 

(2) Electron injection from the chromophore into the conduction band of the 

semiconductor to generate a long-lived excited state. 

(3) Transfer of the photogenerated electrons to water molecules by a catalyst 

adsorbed over the semiconductor surface, and concomitant regeneration of 

the photosensitizer by a sacrificial electron donor (ED), such as 

triethanolamine (TEOA), ethylenediaminetetraacetic acid (EDTA) or the 

S2-/SO32- system. 

 

Figure 6.1. Schematic representation of a hydrogen evolution system employing a 
photosensitizer and an oxide semiconductor. CB: conduction band; VB: valence band. 

 The use of photosensitizers in systems commonly employed for the 

hydrogen evolution reaction (HER) is not strictly necessary if the semiconductor 
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presents a visible light response, hence being able to generate electrons and holes 

upon absorption of sunlight.9–11 In these systems, the sacrificial agent is still required 

to avoid recombination of electrons and holes in the semiconductor, and it is well 

known that a cocatalyst adsorbed over the semiconductor surface improves the HER 

rate, since it participates in transferring the photogenerated electrons to water. A 

schematic representation of these types of systems is depicted in Figure 6.2. 

 

 

 

 

 

 

Figure 6.2. Schematic representation of a visible-light induced hydrogen evolution system 
based on a semiconductor photocatalyst. CB: conduction band; VB: valence band. 

Over the past decades, colloidal platinum has been widely investigated as a 

catalyst (or cocatalyst) in the hydrogen evolution reaction (HER).1 Nevertheless, its 

use in water splitting systems presents a major drawback: the high cost of this metal, 

which renders it problematic for use on a large scale. Recently, molybdenum sulfide 

(MoSx) materials have emerged as low-cost alternatives to platinum and other 

precious metals for the photo- and electrocatalytic reduction of water.12 

Electrocatalysis, in which the electrons are generated by an electrochemical process, 

usually serves as an inspiration to the design of photocatalysts, owing to the 

electrochemical nature of most of the steps involved in a photocatalytic process. 

Molybdenum sulfide, MoS2, is a well-known catalyst for the hydrodesulfurization 
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reaction.13 However, it was not until MoS2 nanoparticles were employed instead of 

bulk material that molybdenum sulfides began to be considered as attractive research 

targets for the hydrogen evolution reaction.14  

Since the catalytically active sites in MoS2 nanocrystals were identified to have 

a triangular geometry with sulfur edges, these materials have opened new avenues in 

the search for photo- and electrocatalysts based on molecular molybdenum sulfides 

presenting similar structural motifs to those of MoS2 nanocrystals. For instance, 

Jaramillo et al. have shown that incomplete cubane-type complexes of formula 

[Mo3S4(H2O)9]4+, containing three bridging µ-S2- sulfides, when supported on highly 

oriented pyrolytic graphite (HOPG) possess a similar electrocatalytic activity in the 

HER to that of the edge sites of MoS2 nanoparticles.15 These electrocatalytic studies 

have also been extended to molybdenum clusters containing both three bridging (µ-

S22-) and three terminal (S22-) sulfide ligands. In particular, adsorption of [Mo3S7(S2)3]2- 

over graphite has resulted in an excellent performance in the hydrogen evolution 

reaction.16 The highest electrocatalytic activity of the [Mo3S7(S2)3]2- system, as 

compared to that of the Mo3S4-based cluster, has been attributed to the presence of 

more catalytically active edge sites in the Mo3S7 complex. Mononuclear molybdenum 

sulfides have also been investigated for the HER. For instance, a molecular 

poly(pyridyl) molybdenum sulfide complex containing a terminal S22- ligand has been 

reported to be an efficient electrocatalyst for water reduction under acidic 

conditions.17 

A significant number of molybdenum sulfides which serve as catalysts or co-

catalysts for light-driven water splitting have also emerged.12 For instance, trinuclear 

Mo3S4 clusters are efficient catalysts for the HER when coupled to a p-type silicon 

semiconductor which harvests sunlight.18 The photocatalytic water splitting 

performance of NaTaO3 has been significantly enhanced by using a molecular Mo3S4 

complex as a co-catalyst.19 In addition, a number of publications describe an 
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increased catalytic activity towards the hydrogen evolution reaction upon 

modification of the surface of TiO2,20,21 CdS,22 Si23,24 and copper oxide25 with MoS2 

nanoparticles of different morphologies. 

Over the past decades, the Molecular Materials group at Jaume I University 

has developed a series of functionalized molecular molybdenum(IV) clusters based 

on Mo3S7 and Mo3S4 cores, which only differ in the nature of their bridging ligands: 

disulfides vs sulfides.26 In the case of the Mo3S7 cluster unit, the metal atoms define a 

triangle with a capping sulfur and three bridging S22- ligands; an ideal topology to 

mimic the active edge sites of MoS2.14,17 This analogy between the structural motifs 

of both materials is illustrated in Figure 6.3. 

        

Figure 6.3. Representation of the analogy between the topology of the Mo3S7 cluster unit 
and the catalytically active sites of MoS2. 

 As mentioned above, molecular molybdenum clusters containing Mo3S4 and 

Mo3S7 cores have been employed to modify the surface of semiconductors, thus 

enhancing the hydrogen evolution reaction.15,16,18,19 Motivated by these results, and 

also by the widespread use of transition metal polypyridyl complexes as sensitizers in 

artificial photosynthesis systems,1 we decided to investigate the electro- and 

photocatalytic activity of mixed-ligand diimine-halide Mo3S7 clusters adsorbed over 

titanium dioxide. More specifically, we focused on complexes 
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(Bu4N)[Mo3S7Br4(dcmbpy)·Br], ((Bu4N)[22·Br]; dcmbpy = 4,4’-dicarbomethoxy-

2,2’-bipyridine), and Mo3S7Br4(dnbpy), (23; dnbpy = 4,4’-dinonyl-2,2’-bipyridine), 

which can be obtained from the [Mo3S7Br6]2- cluster precursor27 by simple ligand 

substitution. Further details about the preparation of Mo3S7X4(diimine), (X = Cl, Br) 

complexes are provided in Chapter 4. A representation of the molecular structure of 

compounds (Bu4N)[22·Br] and 23 is depicted in Figure 6.4. 

 

Figure 6.4. Molecular structure of complexes [22·Br]- and 23. 

6.2. RESULTS AND DISCUSSION 

The trinuclear clusters (Bu4N)[22·Br] and 23 were adsorbed from acetone solutions 

over nanoporous TiO2 thin films deposited on FTO (fluorine-doped tin oxide), and 

their electrocatalytic activity toward hydrogen evolution was investigated. The 

chemical nature of the resulting molybdenum species was studied by UV/Vis and X-

ray photoelectron spectroscopies. The electrochemical experiments, as well as the 

characterization of the resulting materials, were carried out in collaboration with Prof. 

T. Lana and Prof. R. Gómez at University of Alacant (Spain). The photocatalytic 

activity of complex (Bu4N)[22·Br] adsorbed over TiO2 was investigated in 

collaboration with Dr. E. A. Kozlova at Boreskov Institute of Catalysis (Novosibirsk, 

Russia). 
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6.2.1. SPECTROSCOPIC AND ELECTROCHEMICAL STUDIES 

The UV/Vis diffuse reflectance spectra for the TiO2 electrodes before and after 

adsorption of (Bu4N)[22·Br] from acetone solutions are shown in Figure 6.5. It is 

noteworthy that the TiO2 electrodes (initially white) became pink after adsorption of 

the complex, and this fact is reflected by a shoulder in their diffuse reflectance spectra 

at roughly 500 nm. The intensity of this band varies depending on the solution 

concentrations and adsorption time, thus indicating different cluster loadings. In 

contrast, the absorption spectrum of complex (Bu4N)[22·Br] in acetone (see inset in 

Fig. 6.5) presents a band at 525 nm. This solvatochromic effect can be ascribed to a 

change in the environment of complex (Bu4N)[22·Br] upon adsorption over TiO2. 
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Figure 6.5. UV/Vis diffuse reflectance spectra (in Kubelka Munk units) for TiO2 
electrodes (2 µm) before (black line) and after immersion in acetone solutions of 
(Bu4N)[22·Br] for different periods of time (5 min (pink), 15 min (grey), 1 hour (blue, 
orange, red) with different concentrations (18 μM (pink and grey), 72 μM (blue), 172 μM 
(orange), 290 μM (red)). The inset shows the UV/Vis absorption spectrum for a 72 μM 
solution of (Bu4N)[22·Br] in acetone 

The Cyclic Voltammograms (CVs) for the TiO2 electrodes were recorded 

under nitrogen atmosphere before and after modification with (Bu4N)[22·Br]. For 

this purpose, the electrodes were immersed either in a 0.1 M Na2S/0.02 M 

Na2SO3 mixture, or in a 0.1 M HClO4 solution. The resulting CVs are depicted in 

Figures 6.6a and 6.6c, respectively. A clear change in the shape of the CVs occurs 
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upon adsorption of (Bu4N)[22·Br]. The electrochemical behavior of TiO2 

supported on FTO has previously been reported. When the potential is scanned 

toward negative values, electron transfer from the FTO substrate to the TiO2 

nanoparticles occurs, and hence electrons are accumulated in the TiO2.28 This 

accumulation is reflected in the blue curves in Figures 6.6a and 6.6c. A fast 

electron transfer from the modified TiO2 to the molybdenum species, which 

results in their reduction (see below), is observed in both media (either 

Na2S/Na2SO3 or HClO4 aqueous solutions). The as-generated species behave as 

efficient electrocatalysts for the HER, precluding electron accumulation in TiO2. 

This is evidenced by the Faradaic currents observed in both media (red curves in 

Figures 6.6a and 6.6c) instead of the typical accumulation region of TiO2 (blue 

curves in Figures 6.6a and 6.6c). 

Complex (Bu4N)[22·Br] was also reduced when adsorbed over bare FTO, 

although the total contribution to the current can be regarded as negligible since the 

FTO surface is blocked by the TiO2 nanoparticles, and furthermore the measured 

current densities for FTO electrodes are one order of magnitude lower than those of 

TiO2 electrodes. The enhancement of the activity of (Bu4N)[22·Br]/TiO2 toward 

hydrogen evolution was assessed by comparing the overpotential values of the 

modified TiO2 electrodes with those of bare TiO2 supported either on FTO or 

titanium. In this context, the overpotential is regarded as the difference between the 

observed and the theoretical reduction potential for the H+/H2 conversion.29 It is 

noteworthy that the use of titanium as a substrate instead of FTO permits to avoid 

the contribution of FTO to hydrogen evolution. In both materials, the HER 

electrocatalytic activity is significantly enhanced upon modification of TiO2 with 

(Bu4N)[22·Br]. More specifically, the overpotential for a current density of 1 mA·cm-

2 (with respect to the geometric electrode area) decreased by roughly 0.30 V (in 

Na2S/Na2SO3 mixtures) and 0.40 V (in aqueous HClO4) in the presence of the cluster 

complex, as compared to that of bare TiO2 supported on titanium (see Figure 6.6). 
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In addition, the overpotentials observed for the modified TiO2 electrodes supported 

on FTO presented values of -0.16 and -0.35 V, in 0.1 M HClO4 and in 0.1 M Na2S + 

0.02 M Na2SO3, respectively.  
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Figure 6.6. Stationary cyclic voltammograms for TiO2 electrodes ( 3 µm in thickness) 
before (blue line) and after immersion in a 72 µM (Bu4N)[22·Br] acetone solution for 1 
hour. The red and black lines display the first and subsequent cycles, respectively. Scan 
rate: 20 mV s-1 in both cases. The CVs for TiO2 nanoporous films deposited on titanium 
are presented in panels b) and d) using scan rates of 0.2 and 2 mV s-1, respectively. Panels 
a) and b) correspond to N2-purged 0.1 M Na2S + 0.02 M Na2SO3, while panels c) and d) 
correspond to N2-purged 0.1 M HClO4. The vertical blue dashed line indicates the value 
of Eeq (H+/H2) at the corresponding pH. 

 The overpotential at a specific current density is not commonly used to 

make comparisons between different electrocatalysts, owing to differences in the 

experimental conditions, such as the nature of the support and electrocatalyst 

coverage. As an alternative, the onset potential for the hydrogen evolution 

reaction is usually regarded as the basis for comparison. The TiO2 electrodes 

modified with complex (Bu4N)[22·Br] present low onset overpotentials, with 

values of -0.05 V in 0.1M HClO4 and -0.26 V in 0.1 M Na2S/0.02 M Na2SO3 

mixtures. The previously reported onset overpotentials for MoS2 adsorbed over 

a variety of substrates are in good agreement with those registered for our 
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systems, and lie in the range between -0.15 and -0.20 V.30–34 

As mentioned earlier in this Section, the chemical nature of (Bu4N)[22·Br] 

adsorbed over TiO2 changes upon electrochemical reduction. Furthermore, the 

modified TiO2 electrodes (initially pink) became brownish upon immersion in the 

Na2S/Na2SO3 mixture. This color changing was not observed when the modified 

TiO2 electrodes were soaked in the HClO4 solution. Nevertheless, in both media 

electrochemical reduction led to gray electrodes (see Figure 7.23 in Chapter 7). The 

color changing upon electrochemical reduction of the (Bu4N)[22·Br]/TiO2 system in 

Na2S/Na2SO3 is illustrated in the UV/Vis diffuse reflectance spectra for the modified 

electrodes before and after the CV experiments (see Figure 6.7). The shape of the 

spectra for the modified TiO2 after the electrochemical experiments sharply contrasts 

with those of the electrodes before the CV studies, which suggests that the as-

generated molybdenum species are not well-defined molybdenum cluster sulfides. 
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Figure 6.7. UV/Vis diffuse reflectance spectra for a TiO2 electrode before and after 
modification with (Bu4N)[22·Br], and after the electrochemical experiments shown in 
Figure 6.6a in Na2S/Na2SO3 mixtures. 

 The difference between the first (red curve in Fig. 6.6a and c) and subsequent 

cycles (black lines in Fig. 6.6a and c) in the cyclic voltammograms for the electrodes 

in either Na2S/Na2SO3 or HClO4 solutions reveals that during electrochemical 
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experiments, an irreversible reduction occurs in both media. Remarkably, although 

the electrodes that correspond to Figures 6.6a and c are virtually identical in terms of 

film thickness and cluster loading, the charge difference between the first and further 

scans is significantly larger in acidic media (Fig. 6.6c). This result is in good agreement 

with the fact that the reduction of (Bu4N)[22·Br] in aq. HClO4 occurs only during 

the electrochemical experiments, whereas in the presence of Na2S/Na2SO3 mixtures, 

presumably an initial reduction of the complex occurs concomitantly upon 

immersion of the electrode in the sulfide-sulfite media. The charge required to 

complete the reduction of complex (Bu4N)[22·Br] in acidic media is thus larger than 

in aq. Na2S/Na2SO3 due to the higher stability of the (Bu4N)[22·Br]/TiO2 system in 

aq. HClO4. As will be discussed later, XPS studies reveal that the electrogenerated 

species in both media (aq. Na2S/Na2SO3 and aq. HClO4) are virtually identical. 

 A number of metal complexes containing diimine ligands functionalized with 

anchoring groups, such as carboxylic acids, act as sensitizers when anchored onto 

TiO2.2 These diimine ligands are usually bipyridine and phenanthroline derivatives, 

which are well-known to undergo one-electron reduction processes.35 Moreover, it is 

well established that Mo3(µ3-S)(µ-S2)3 clusters can undergo reduction of the µ-S2 

ligands to generate incomplete cubane-like Mo3(µ3-S)(µ-S)3 complexes.36 Incidentally, 

these Mo3S4 clusters are good electro- and photocatalysts for the HER.15,18,19 These 

facts lead to two questions. Firstly, whether the reduction of (Bu4N)[22·Br] occurs 

mainly on the metal core or on the diimine ligand, and secondly which is the role of 

the diimine ligand in the adsorption of (Bu4N)[22·Br] over TiO2. To answer these 

questions, we decided to adsorb and perform electrochemical measurements in other 

closely related Mo3S7 clusters. We chose compound Mo3S7Br4(dnbpy), (23; dnbpy = 

4,4’-dinonyl-2,2’-bipyridine), bearing long alkyl chains appended to the bipyridine 

ligand, and complex (Bu4N)2[Mo3S7Br6], which is not functionalized with diimine 

ligands. To our astonishment, complex 23 adsorbed over nanoporous TiO2 despite 

having no anchoring groups. The resulting yellow electrodes underwent color 
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changing after immersion in the 0.1M Na2S + 0.02 M Na2SO3 solution, and also upon 

the CV experiments in both media (aq. HClO4 and aq. Na2S/Na2SO3). In addition, 

the electrochemical behavior of TiO2 modified with complex 23 was identical to that 

of (Bu4N)[22·Br]/TiO2. These results indicate that bipyridine-like ligands do not play 

a key role in the electrochemical behavior of Mo3S7X4(diimine) complexes (X = Cl, 

Br), and hence the reduced Mo3S7 core is responsible for the electrocatalytic activity 

toward HER. Nevertheless, it is noteworthy that in the absence of diimine ligands, 

Mo3S7 complexes do not adsorb over TiO2. All attempts to adsorb complex 

(Bu4N)2[Mo3S7Br6] from acetone solutions were unsatisfactory, which proves that the 

diimine ligand plays a crucial role in the immobilization of the Mo3S7X4(diimine) 

complexes on TiO2. 

 The CV scans in aq. Na2S/Na2SO3 for different cluster loadings, as well as 

the turnover frequency (TOF) at an overpotential of -0.53 V versus the cluster 

coverage are displayed in Figures 6.8a and b, respectively. The TOF (number of H2 

molecules generated per second and per molybdenum atom) has been calculated by 

taking into account that each (Bu4N)[22·Br] molecule adsorbed over TiO2 contains 

three molybdenum atoms. As expected, the currents associated with the HER 

strongly depend on the cluster loading: higher loadings result in higher current 

densities at a given potential (Fig. 6.8a). In contrast, as the coverage increases, the 

TOF is progressively reduced (Fig. 6.8b), presumably due to the generation of Mo-

based aggregates. The calculated TOF values for our (Bu4N)[22·Br]/TiO2 systems 

are in good agreement with those reported by Jaramillo et al. for amorphous 

molybdenum sulfide, which lie in the 0.03 – 3 s-1 range for an overpotential of -0.20 

V and a current density of 10 mA·cm-2.34 
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Figure 6.8. a) Cyclic voltammograms for nanoporous TiO2 electrodes (2 µm in 
thickness) in N2-purged 0.1 M Na2S + 0.02 M Na2SO3 before (black line) and after 
immersion in acetone solutions of (Bu4N)[22·Br] for different periods of time (5 min 
(pink), 15 min (grey), 1 hour (blue, orange, red) and different concentrations (18 µM 
(pink and grey), 72 µM (blue), 172 µM (orange), 290 µM (red)). Scan rate: 20 mV s-1. b) 
Turnover frequency at an overvoltage of -0.53 V as a function of the (Bu4N)(22·Br) 
coverage. 

 With the aim of providing some insight into the nature of the as-generated 

Mo-based catalyst, the Mo 3d and S 2p high-resolution XPS spectra for 

(Bu4N)[22·Br] were recorded before and after the CV experiments in aq. 

Na2S/Na2SO3 (see Figure 6.9). The Mo 3d XPS spectrum (Fig. 6.9a) is 

characterized by two peaks: Mo 3d5/2 at a binding energy (BE) of 229.8 eV, and 

Mo 3d3/2 at 232.8 eV. These energy values are in agreement with a formal 

oxidation state of +4 for the molybdenum, as already reported in the 

literature.37,38 A broad shoulder at approximately 226 eV can also be observed, 

which has been ascribed to the S 2s contribution. After the CV experiments, the 

peak intensities diminish, presumably due to partial desorption of the complex. 

In addition, the peaks shift toward slightly lower binding energy values (Mo 3d5/2 
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at 229.1 eV, and Mo 3d3/2 at 232.6 eV). This shift can be attributed either to the 

partial reduction of the molybdenum ions or to a change in their chemical 

environment. 
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Figure 6.9. XPS spectra for (Bu4N)[22·Br] adsorbed on TiO2 before (black line) and 
after (red line) the CV experiments: a) Mo 3d and S 2s peaks; b) S 2p peaks. 

 The XPS spectra for the (Bu4N)[22·Br]/TiO2 system before the CV 

experiments in Na2S/Na2SO3 reveal two peaks at binding energies of 163.4 and 

166.7 eV, corresponding to S 2p contributions (Fig. 6.9b). The first peak can be 

assigned to two different types of sulfide ligands: S22- and S2-.37 After the 

experiments, the peak at 163.4 eV shifts to 161.9 eV, indicating reduction of the 

S22- ligands to S2-.39 To our astonishment, the peak at 166.7 eV is absent in the 

XPS spectrum reported for complex (Et4N)2[Mo3S7Cl6].37 This binding energy 

value agrees well with that reported for thiosulfate-like species,40 and the intensity 

of the S 2p peaks decreases upon CV measurements. The lack of strong anchoring 

groups in the 4,4’-dicarbomethoxy-2,2’-bipyridine ligand suggests that the 
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(Bu4N)[22·Br] clusters are adsorbed over the TiO2 surface in a flat-lying 

geometry, thus allowing interaction between the Mo3S7 core and the oxide 

semiconductor surface. This direct interaction could presumably lead to 

decomposition of the cluster core, and hence to the generation of thiosulfate-like 

structures. The decrease in the intensity of the S 2p peaks at 166.7 eV would be 

thus explained by the high solubility of the thiosulfate-type species in water. 

Furthermore, it is well established that bipyridine ligands are able to interact with 

TiO2 surfaces through the nitrogen atoms.41 Interestingly, the species generated 

upon CV measurements in 0.1 M HClO4 present an analogous chemical nature to 

those obtained in Na2S/Na2SO3 mixtures, as revealed by the UV/Vis diffuse 

reflectance spectra and XPS analysis of the modified TiO2 electrodes. The only 

difference is the absence of the peak at 166.7 eV in the S 2p XPS spectrum. 

  The results presented so far reveal that the as-generated electrocatalyst 

contains molybdenum atoms in a formal oxidation state of +4, mainly in a S2- 

environment. This species exhibit greatly enhanced catalytic activity toward HER, 

as compared to that of bare TiO2, with overpotential values in the range of 0.3 – 

0.4 V. Incidentally, MoS2 nanoparticles have been reported to efficiently sensitize 

TiO2 to visible light.42 The question that now arises is whether the 

electrogenerated molybdenum species could also act as sensitizers (by injecting 

electrons into the semiconductor). Although it seems unlikely that the clusters 

themselves act both as sensitizers and catalysts, the answer to that question has 

been provided by comparing the photocurrent response of the modified 

(Bu4N)[22·Br]/TiO2 electrodes with that of bare TiO2. The photocurrent 

response was measured at -0.40 V in a N2-purged 0.1 M Na2S/0.02 M Na2SO3 

mixture, and the Incident Photon to Current Efficiency (IPCE) was plotted versus 

wavelength (see Figure 6.10). No response was registered in the visible region of 

the spectra ( > 420 nm), and the same IPCE onset was observed for both bare 

and modified TiO2 electrodes, which indicates that TiO2 is not sensitized to 
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visible light by the as-generated molybdenum sulfide species. 
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Figure 6.10. IPCE spectra in a N2-purged 0.1 M Na2S/0.02 M Na2SO3 mixture for a TiO2 
electrode before and after modification with (Bu4N)[22·Br]. 

The fact that the Mo-based catalyst does not act as a sensitizer indicates that 

the function of these species is to extract electrochemically generated electrons from 

the semiconductor, and transfer them to water molecules. The ability of these 

molybdenum sulfides to transfer electrons in the presence of visible light is discussed 

in the following section. 

6.2.2. PHOTOCATALYTIC BEHAVIOR 

The photocatalytic activity of the (Bu4N)[22·Br]/TiO2 system was assessed in 

collaboration with Dr. E.A. Kozlova at Boreskov Institute of Catalysis. The samples 

were prepared by sonicating the TiO2 nanoparticles in acetone solutions of the 

complex, followed by evaporation of the acetone. The resulting pink powder 

contained 5 wt. % of (Bu4N)[22·Br]. The photocatalytic experiments were carried out 

under analogous conditions to those of the electrochemical measurements presented 

in the previous section in this chapter, that is to say, a 0.1 M Na2S/0.02 M Na2SO3 

mixture was used as a sacrificial donor, and the studies were carried out under an 
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argon atmosphere. All samples were irradiated with visible light by using a previously 

described setup.43 

 The photocatalytic activity of modified TiO2 was compared to that of bare 

TiO2, and also to those of complexes (Bu4N)[22·Br] and (Bu4N)2[Mo3S7Br6]. The 

latter complex was also adsorbed over TiO2 for comparative purposes. The rate of 

hydrogen generation for (Bu4N)[22·Br]/TiO2, together with that of complex 

(Bu4N)[22·Br] alone under different conditions is represented in Figure 6.11. 
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Figure 6.11. Kinetic curves for hydrogen generation in an Ar-purged 0.1 M Na2S/0.02 M 
Na2SO3 mixture in the presence of: a) 1 g L-1 of 5 wt. % (Bu4N)[22·Br]/TiO2; b) 0.31 g L-1 
suspension of (Bu4N)[22·Br]; c) 0.77 g L-1 suspension of (Bu4N)(22·Br) in a water/acetone 
mixture. 

The (Bu4N)[22·Br]/TiO2 system presents a TOF of 8  10-5 s-1 (per Mo 

atom), whereas the hydrogen evolution activity for (Bu4N)[22·Br] suspended either 

in water or in water/acetone mixtures is almost negligible. No hydrogen evolution 

was observed for bare TiO2 or for TiO2 modified with (Bu4N)2[Mo3S7Br6] under the 

same conditions. The obtained TOF value for (Bu4N)2[22·Br]/TiO2 is significantly 

lower than that obtained in the electrocatalytic studies, due to the fact that in the 

electrochemical experiments the injection of electrons into TiO2 is favored by FTO. 

Furthermore, the different catalyst loadings used in the electro- and photocatalytic 

experiments can have a strong influence on hydrogen evolution owing to differences 
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in catalyst aggregation. The as-generated molybdenum sulfide cocatalyst presents a 

remarkably high stability, since the hydrogen evolution rate remains constant 

throughout the 8 h experiment. Incidentally, hydrogen generation was found to cease 

completely in the dark. However, hydrogen evolution was observed again when the 

sample was irradiated after a brief period of darkness (ca. 20 min). 

 The energy levels for the (Bu4N)[22·Br]/TiO2 system immersed in a 0.1 

M Na2S/0.02 M Na2SO3 mixture before and after irradiation with visible light are 

depicted in Figure 6.12. This diagram includes the presence of surface state 

distribution (SS) below the conduction band (CB), and monoenergetic trap states 

ascribed to grain boundaries (GB), as reported in the literature for anatase.44 The 

energy of the (Bu4N)[22·Br] level corresponds to the potential value in which the 

irreversible reduction is observed in the CV experiments. The levels for the 

species in solution have been assumed to correspond to their redox potentials. 

    

Figure 6.12. Energy band diagram for the (Bu4N)[22·Br]/TiO2 system in contact with 
an Ar-purged 0.1 M Na2S/0.02 M Na2SO3 mixture a) when the illumination starts b) 
during the photocatalytic measurements. The position of the energy levels for TiO2 
anatase has been obtained from the literature.44 SS stands for surface states whereas GB 
indicates grain boundary traps. 

As previously mentioned, the (Bu4N)[22·Br] complex can be reduced by 

the sulfide-sulfide species. In addition, upon illumination the TiO2 

(Bu
4
N)[22·Br] 
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photogenerated electrons are presumably transferred to the molybdenum species, 

thus generating an analogous species to that of the CV experiments (see Section 

6.2.1). The as-generated electrocatalyst favors the funneling of the 

photogenerated electrons to water molecules to produce hydrogen. The absence 

of photocatalytic activity upon substitution of (Bu4N)[22·Br] by 

(Bu4N)2[Mo3S7Br6] can be explained by the fact that the latter complex cannot be 

adsorbed over the TiO2 surface, thus resulting in the formation of aggregates 

which are difficult to reduce. As already mentioned in the Introduction, the 

necessity of modifying semiconductors with co-catalysts in order to enhance the 

visible-light driven water splitting has been reported in a number of recent 

publications, and our results represent a significant contribution to this field.45–48 

6.3. CONCLUSIONS 

The electro- and photocatalytic activity toward HER of a diimino molybdenum 

cluster, namely (Bu4N)[Mo3S7Br4(dcmbpy)·Br], ((Bu4N)[22·Br]; dcmbpy = 4,4’-

dicarbomethoxy-2,2’-bipyridine) adsorbed over TiO2 has been investigated. The 

electrocatalytic activity of TiO2 modified with Mo3S7Br4(dnbpy) (23; dnbpy = 4,4’-

dinonyl-2,2’-bipyridine) has also been studied with the aim of analyzing the role of 

the diimine ligands in the adsorption and reduction processes. The diimine ligand has 

been found to be crucial for the adsorption of Mo3S7 complexes over TiO2 

nanoparticles. Complex (Bu4N)[22·Br] is a precatalyst, which evolves to generate 

molybdenum(IV) sulfide species. The as-generated Mo-S species show superior 

electro- and photocatalytic activity for hydrogen evolution to bare TiO2 due to the 

efficient interfacial electron transfer from TiO2 to the Mo-S species, and the decrease 

in the hydrogen reduction overpotential by 0.3 – 0.4 V. These results pave the way 

for the design of novel photocathodes for hydrogen generation based on 

molybdenum sulfides.  
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“If science is to progress, what we need is the ability to 
experiment, honesty in reporting results […], and finally – an 
important thing – the intelligence to interpret the results.” 

Richard P. Feynman, The Character of Physical Law 
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7.1. SYNTHESIS AND CHARACTERIZATION 

7.1.1. GENERAL PROCEDURES 

Infrared spectra were recorded in the 400–4000 cm–1 range on a Jasco FT/IR 6200 

spectrometer using KBr pellets. Characteristic IR bands were assigned on the basis 

of those of previously reported complexes. 1H, 13C and 31P NMR spectra were 

recorded either on a Varian Mercury Vx 300 MHz or a Varian VNMR System 500 

MHz using deuterated solvents. For 1H-NMR and 13C-NMR, tetramethylsilane was 

used as an internal reference. Electronic spectra in the different solvents were 

recorded either on an Agilent Cary 60 UV/Vis spectrophotometer or on a Hewlett-

Packard UV/Vis 8453 over the spectral range 200-800 nm. 

Elemental analysis was performed on a Euro EA 3000 CHN analyzer. 

Electrospray ionization mass spectra were recorded on a triple quadrupole mass 

spectrometer (Micromass Quattro LC). The chemical composition of each peak in 

the scan mode was assigned by comparing the isotope experimental pattern with that 

calculated using the MassLynx 4.1 program.  

Cyclic voltammetry experiments were performed with an Echochemie 

PGSTAT20 electrochemical analyzer. All measurements were carried out with a 

conventional three-electrode configuration consisting of glassy carbon working and 

platinum auxiliary electrodes and an Ag/AgCl reference electrode. The solvent used 

in all experiments was acetonitrile or dichloromethane (HPLC grade), which was 

deoxygenated before use. Tetrabutylammonium hexafluorophosphate (0.1 M 

solution) was used as a supporting electrolyte. Redox potentials values (E1/2) were 

determined as ½(Ea + Ec), where Ea and Ec are anodic and cathodic peak potentials, 

respectively. The microwave-assisted synthetic reactions were carried out with a CEM 

Discover microwave system. 

Unless otherwise stated, all synthetic reactions were carried out under 

nitrogen-gas atmosphere using standard Schlenk techniques. Air and moisture 
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sensitive compounds were handled inside a gloves box. High-purity solvents for 

synthesis were used. Dichloromethane, acetonitrile, tetrahydrofuran and toluene were 

further purified by using an MBRAUN SPS-800 system. Dimethylformamide (DMF) 

was degassed in vacuo. Methanol was dried over molecular sieves (4 Å), and deaerated 

by bubbling a N2-gas stream for 30 min prior to use. 

7.1.2. STARTING MATERIALS 

The syntheses and characterization of metal precursors and ligands are described 

below. Commercially available starting materials were obtained from several sources, 

and used as received without further purification. Some compounds were prepared 

according to literature procedures with modifications. Numbers between brackets are 

used to indicate novel metal compounds. Novel ligands are indicated by the 

combination of the letter “L” and a number, e.g. L1. 

7.1.2.1. MOLECULAR CLUSTERS 

(Et4N)2[Mo2O2S8] 1 

The synthesis of this compound was carried out with a 

modification of the reported procedure. Commercial 

(NH4)2Mo7O24·4H2O (10 g, 8.1 mmol) was dissolved in 

400 mL of water. A polysulfide ammonium solution obtained by mixing 20 % purity 

(NH4)2S (65 mL, 0.19 mol) and elemental sulfur (15 g, 0.47 mol) was added to the 

solution. The mixture was briefly stirred for 24 h in air, and then Et4NBr (10.7 g, 50 

mmol) dissolved in 150 mL of water was added. The orange-brown precipitate was 

filtered and washed with EtOH, CS2 and Et2O. Further purification was achieved by 

recrystallization from DMF/isopropanol mixtures. Yield: 14.00 g, (67 %).  

ESI(-) MS (CH3CN, 5V): m/z = 240.0 [M]2-. 
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(NH4)2[Mo3S13]·nH2O (n = 0 - 2) 2  

Elemental sulfur (27 g, 0.84 mmol) was dissolved in 120 

mL of (NH4)2S (20 % purity). The solution turned 

reddish. Separately, (NH4)6[Mo7O24]·4H2O (4 g, 3.24 

mmol) was dissolved in water (20 mL) in a 250 mL 

Erlenmeyer flask. The ammonium molybdate solution 

was warmed, and then the ammonium polysulfide 

solution was slowly added. The flask was covered with a watch glass and the dark red 

mixture was heated to 82 – 85 ºC for 5 days without stirring. After cooling to room 

temperature, the red microcrystalline solid formed was filtered off. The product was 

thoroughly washed with water, ethanol, carbon disulfide and diethyl ether. Yield: 5.05 

g (88 %). 

Elemental analysis (%) calcd. for H8Mo3N2S13·H2O: H, 1.33; N, 3.69; S, 54.93; found 

H, 1.10; N, 3.35; S, 55.80. 

(Bu4N)2[Mo3S7Cl6] 3 

The thiocluster (NH4)2[Mo3S13]·H2O (5 g, 6.59 mmol) 

was mixed with 37 % purity HCl (250 mL), and heated 

to ca. 80 ºC overnight under air. Precipitation of 

elemental sulfur was observed. The dark orange solution 

was filtered, and an excess of Bu4NCl was added to the 

filtrate. After standing at 2 ºC for a few hours, the 

microcrystalline orange solid was filtered off and thoroughly washed with water, 

methanol and diethyl ether. The reaction is almost quantitative. Yield: 7.90 g (99 %).  

ESI(-) MS (CH3CN, 20V): m/z = 690.4 [M - Cl]-, 362.7 [M]2-. 
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(Bu4N)2[Mo3S7Br6] 3  

This compound was prepared in a similar fashion to (Bu4N)2[Mo3S7Cl6]. The cluster 

compound (NH4)2[Mo3S13]·H2O (5 g, 6.59 mmol) and 48 % purity HBr (350 mL) 

were gently refluxed overnight. An excess of tetrabuthylammonium bromide was 

used to afford the complete precipitation of the product. Yield: 9.10 g (94 %). 

ESI(-) MS (CH3CN, 20V): m/z = 912.1 [M - Br]-, 495.2 [M]2-. 

7.1.2.2. LIGANDS 

4,5-Bis(2-cyanoethylthio)-1,3-dithiole-2-thione 4 

Freshly prepared (Et4N)2[Zn(dmit)2] 5 (10 g, 0.014 mol) 

was dissolved in 80 mL of CH3CN, and 3-

bromopropionitrile (7.5 g, 0.056 mol) was added. The 

mixture was refluxed for 1h. After filtration, the solution was concentrated by rotary 

evaporation. Then 125 mL of CH2Cl2 were added, and the white precipitate was 

removed by filtration. The solution was washed with water (3 x 100 mL), and the 

organic extracts were combined and dried with anhydrous MgSO4. Ethanol was 

slowly added and the mixture was cooled overnight in the freezer. The brown needle 

crystals formed were washed with EtOH and Et2O. Yield: 7.70 g (90 %). 

1H-NMR (300 MHz, CDCl3):  = 2.80 (t, 4H), 3.16 ppm (t, 4H). 

4,5-Bis(2-cyanoethylthio)-2-bis(2-pyridyl)methylene-1,3-dithiole, 

BPyDT(SCH2CH2CN)2 6 

 Under a nitrogen atmosphere, a mixture of di(2-

pyridyl)ketone (2.76 g, 15 mmol) and 4,5-bis(2-

cyanoethylthio)-1,3-dithiole-2-thione (4.57 g, 15 

mmol) was dissolved in 40 mL of toluene. Then 

triethyl phosphite, P(OEt)3 (15 mL) was added 
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dropwise. The mixture turned reddish. After heating to reflux for 4 h, a dark green 

solution was observed. After cooling to -20 ºC overnight, a green solid precipitated. 

The product was collected by filtration and washed with cold toluene and diethyl 

ether. Then it was redissolved in CH2Cl2 in the presence of activated charcoal. After 

filtration, the yellow solution was layered with Et2O. Needle-like crystals were 

obtained after cooling to -20 ºC overnight. The solid was kept at 2 ºC protected from 

sunlight. Yield: 3.19 g (48 %). 

1H-NMR (CDCl3, 300 MHz): 2.71 (t, 4H), 3.09 (t, 4H), 7.12 (d, 2H), 7.19 (m, 2H), 

7.68 (t, 2H), 8.75 ppm (d, 2H).  

ESI(+) MS (CH3CN, 20V): 441.1 [M+H]+. 

IR (KBr, cm-1): 2247 (m,  (C≡N)), 1582 (s), 1527 (m), 1459 (s,  (C=C)), 1278 (m), 

784 (m), 671 (m), 621 (m), 502 (w,  (C-S)), 407 (m). 

UV/Vis (CH3CN): max ()= 254 (16 545), 310 sh (9701), 375 (26 250) nm (M-1cm-1) 

 Pyrazine-2,3-dithiol (pdt) 7,8 

2,3-dichloropyrazine (1.5 mL, 13.7 mmol) was slowly mixed with a 

yellow solution of NaHS·xH2O (3.93 g, 35.7 mmol assuming 

trihydrate) in 15 mL of water, which was degassed by bubbling N2 for 

30 min. The mixture was refluxed under vigorous stirring for 3 h. The 

color of the solution turned orange-red and a small amount of a yellow precipitate 

was observed. The precipitate was filtered off the solution, and the filtrate was exactly 

adjusted to pH 7.5 with HCl 1.8 M. The abundant brown precipitate formed was 

filtered and washed thoroughly with water, cold methanol and diethyl ether. The solid 

was dried in vacuo at 50 ºC overnight. Yield: 1.42 g (72 %) 

1H-NMR (d6-DMSO, 300 MHz):  = 6.88 (s, 2H), 13.70 ppm (s, 2H).  

13C-NMR (d6-DMSO, 300 MHz): 117.43, 180.05 ppm. 

N

N SH

SH
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2,2′-Bipyridine-4,4′-dicarboxylic acid (dcbpy) 9 

Commercial 4,4’-dimethyl-2,2’-bipyridine (2.70 g, 

15 mmol) was dissolved in concentrated sulfuric 

acid (70 mL). The mixture was cooled to 0 ºC and 

then an excess of K2Cr2O7 (17.6 g, 60 mmol) was 

added in small portions. After heating to 50 ºC for 1 h, the dark green mixture was 

poured onto water-ice (ca. 300 mL). The light yellow solid was filtered off, and 

thoroughly washed with water. After drying, the solid was mixed with 50 % nitric 

acid (70 mL), and refluxed for 4 h. The solution was then poured again over water-

ice (ca. 300 mL). The precipitated white solid was filtered off, washed with water and 

acetone, and dried in vacuo overnight. The afforded product is insoluble in common 

organic solvents. Yield: 3.12 g (85 %).  

1H-NMR (d6-DMSO, 300 MHz):  = 7.91 (d, 2H), 8.85 (s, 2H), 8.92 ppm (d, 2H).  

4,4’-Dicarbomethoxy-2,2’-bipyridine (dcmbpy) 10  

The ligand 2,2′-bipyridine-4,4′-dicarboxylic acid 

(1.71 g, 7 mmol) was suspended in CH3OH (25 

mL). Concentrated H2SO4 (3.5 mL) was slowly 

added while stirring. The mixture was heated to 

reflux for 8 h. The slightly reddish solution was then poured onto water-ice (75 mL), 

resulting in a white slurry. The pH was adjusted to 8 with 25 % NaOH, and the 

product was extracted with CH2Cl2 (3  100 mL). The organic extracts were dried 

over anhydrous MgSO4, and taken to dryness by rotary evaporation. The solid residue 

was recrystallized from hot toluene to afford white crystals. Yield: 1.65 g (86 %). 

1H-NMR (CD2Cl2, 300 MHz):  = 3.99 (s, 6H), 7.89 (dd, 2H), 8.85 (d, 2H), 8.95 ppm 

(s, 2H). 

 

N N

O

OH

O

HO
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1,10-Phenanthroline-4,7-dicarboxylic acid, (dcphen) 11 

 This compound was prepared by modifying the 

reported procedure. Commercial 4,7-dimethyl-

1,10-phenanthroline (1.97 g, 9.27 mmol) and 

SeO2 (5 g, 45 mmol) were mixed with 130 mL of 

dioxane:water (96:4, v/v). The suspension was refluxed for 2 h. Abundant 

precipitation of selenium was observed. The mixture was filtered over Celite while 

hot. The filtrate was then cooled to 2 ºC for a few hours. The solid was filtered off 

and recrystallized from tetrahydrofuran to afford yellow crystals. Yield: 1.88 g (76 %). 

This solid was identified as 4,7-diformyl-1,10-phenanthroline, and used in the next 

step without further purification. 

Compound 4,7-diformyl-1,10-phenanthroline (0.95 g, 3.54 mmol) was mixed with 70 

% HNO3 (20 mL) and heated to 60 ºC for 4 h. Emission of nitrogen dioxide was 

observed. Then the yellow solution was cooled to 0 ºC, and water was slowly added 

until the complete precipitation of a white solid. The powder was filtered off, and 

washed with water, isopropanol and diethyl ether. The afforded white product is 

insoluble in common organic solvents. Yield: 0.63 g (58 %).  

1H-NMR (d6-DMSO, 300 MHz):  = 8.15 (d, 2H), 8.77 (s, 2H), 9.26 ppm (d, 2H). 

4,7-Dicarbomethoxy-1,10-phenanthroline, (dcmphen, L1) 

 Compound 1,10-phenanthroline-4,7-dicarboxylic 

acid (1.63 g, 6.1 mmol) was suspended in CH3OH 

(35 mL), and concentrated H2SO4 (3.5 mL) was 

slowly added while stirring. The mixture was heated 

to reflux overnight. The resulting solution was then poured onto water-ice (175 mL). 

The pH was adjusted to 9 with 25 % NaOH, and a copious white precipitate was 

observed. The product was extracted with CH2Cl2 (3  150 mL), dried with 
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anhydrous MgSO4, and taken to dryness by rotary evaporation. The white solid was 

recrystallized from toluene to afford a slightly pink solid. White needles appeared 

from the filtrate after cooling to - 30 ºC overnight. Yield: 1.19 g (66 %). 

 1H-NMR (CDCl3, 500 MHz):  = 4.09 (s, 6H), 8.17 (d, 2H), 8.91 (s, 2H), 9.34 ppm 

(s, 2H).  

ESI(+) MS (CH2Cl2/CH3CN, 20V): m/z = 297.1 [M + H]+.  

Elemental analysis (%) calcd. for C16H12N2O4: C, 64.86; H, 4.08; N, 9.46; found C, 

64.10; H, 4.70; N, 8.85. 

1,10-Phenanthroline-5,6-dione (dipyridobenzoquinone, dpq)12 

An ice cold mixture of concentrated H2SO4 (40 mL) and 

HNO3 (20 mL) was added to 1,10-phenanthroline (4 g, 

22.2 mmol) and KBr (4 g, 33.6 mmol). The mixture was 

heated to reflux for 3 h. Abundant emission of Br2 was 

observed. The yellow solution was poured over water-ice 

(500 mL), and neutralized carefully with NaOH until pH=7. The product was 

extracted with CHCl3 (3  200 mL) and dried over anhydrous Na2SO4. After taking 

to dryness by rotary evaporation, the yellow solid was further purified by 

recrystallization from ethanol. Small yellow needles were obtained. Yield: 3.04 g (65 

%). 

1H-NMR (CDCl3, 300 MHz):  = 7.58 (ddd, 2H), 8.46 (dd, 2H), 9.06 ppm (dd, 2H). 

ESI(+) MS (CH3CN, 20V): m/z = 211.2 [M+H]+. 
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3,4-(Didodecyloxy)benzaldehyde.13  

 Commercial 3,4-dihydroxybenzaldehyde (4 g, 28.9 mmol) and 

1-bromododecane (16 mL, 66 mmol) were dissolved in dry 

DMF (140 mL). The solution was purged with nitrogen for 15 

minutes, and then anhydrous K2CO3 (15.9 g, 15.6 mmol) was 

added. The mixture was stirred at 60 ºC for 16 h. After cooling 

to room temperature, the mixture was poured onto ice-water 

(ca. 400 mL). A white precipitate formed, which was filtered under reduced pressure, 

and washed several times with water. The crude product was crystallized twice from 

ca. 1 L of acetone to afford off-white crystals. Yield: 9.73 g (71 %). 

1H-NMR (CDCl3, 300 MHz):  = 0.88 (t, 6H), 1.26 – 1.32 (m, 32H), 1.45 (m, 4H), 

1.84 (m, 4H), 4.06 (q, 4H), 6.94 (d, 1H), 7.39 (m, 1H), 7.42 (m, 1H), 9.82 ppm (s, 1H). 

1H-Imidazo[4,5-f][1,10]phenanthroline-2-[3,4-bis(dodecyloxy)phenyl], 

(IPDOP, L2) 

Compound 3,4-(didodecyloxy)benzaldehyde (0.95 g, 2 

mmol) was added to a warm solution of 1,10-

phenanthroline-5,6-dione (0.42 g, 2 mmol) and ammonium 

acetate (1.34 g, 1.70 mmol) in glacial acetic acid (20 mL). The 

mixture was heated to 85 ºC in air for 5 h and then allowed 

to cool to room temperature overnight. The orange 

suspension was poured onto water (100 mL) and neutralized 

to pH 7 with 25% NH4OH. The orange precipitate was 

filtered off, washed with water, acetone and diethyl ether. Then the solid was dried in 

vacuo at 50 ºC. The product was purified on a silica column with 

CHCl3/hexane/MeOH (50:50:10) as the eluent. After taking to dryness, a sticky 

yellowish solid was obtained. Since the compound holds solvents firmly, it was dried 

in a vacuum oven at 50 ºC. Yield: 0.77 g (58 %).  
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1H-NMR (CDCl3, 300 MHz):  = 0.86 (m, 6H, CH3-), 0.90-1.80 (m, 40H, -CH2-), 

3.24 (t, 2H, -CH2-O-), 3.91 (t, 2H, -CH2-O-), 6.78 (d, 1H, Ar-H), 7.06, (br. s, 1H, Ar-

H), 7.70, (br. s, 1H, Ar-H), 7.85-8.05, (m, 2H, Ar-H), 8.60 (br. s, 2H, Ar-H), 8.91 (br. 

s, 1H, Ar-H), 9.23 (br. s, 1H, Ar-H), 14.86 ppm (br. s, 1H, N-H).  

ESI(+) MS (CH3CN, 20V): m/z = 665.5 [M+H]+, 687.4 [M+Na]+.  

Elemental analysis (%) calcd. for C43H60O2N4: C, 77.67; H, 9.09; N, 8.43; found C, 

76.67; H, 8.52; N, 6.96.  

UV/Vis (CH2Cl2): max () = 280 (26 308), 328 sh (27 524) nm (M–1cm–1). 

Dimethyl 2-oxo-1,3-dithiole-4,5-dicarboxylate.14  

Commercial dimethyl 2-thioxo-1,3-dithiole-4,5-

dicarboxylate (2.79 g, 0.011 mmol) was dissolved in 

CH2Cl2 (140 mL) and glacial acetic acid (70 mL). Then 

solid mercury (II) acetate, Hg(OAc)2, (4.20 g, 0.013 

mmol) was added in one portion. The mixture was 

stirred at 50 ºC for 24 h. The black precipitate was filtered through Celite / activated 

charcoal, and the filtrate was concentrated up to ca. 50 mL by rotary evaporation. The 

yellow solution was washed three times with a saturated aqueous NaHCO3 solution. 

The organic extract was dried over anhydrous MgSO4, and taken to dryness by rotary 

evaporation. The yellow residue was mixed with hexane, and a yellow precipitate was 

observed. The solid was filtered off and recrystallized from ethyl acetate / hexane. 

Yellow needles were observed after cooling to - 30 ºC overnight. Yield: 0.93 g (36 

%). 

1H-NMR (CDCl3, 300 MHz):  = 3.88 ppm (s, 6H).  

13C-NMR (CDCl3, 300 MHz):  = 53.84, 129.47, 159.54, 186.71 ppm. 
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7.1.2.3. BIS(DITHIOLENE) ZINC AND TIN COMPLEXES 

(Et4N)2[Zn(dmit)2] and  (Bu4N)2[Zn(dmit)2] 5  

Under a nitrogen atmosphere, carbon disulfide 

(90 mL, 1.5 mol) and dimethylformamide (200 

mL) were mixed and cooled to 0 ºC. Sodium 

(11.5 g, 0.5 mol) was added in small portions over a period of 4 h. The mixture was 

allowed to warm to room temperature overnight with continuous stirring. Then the 

deep red solution containing residual sodium was cooled to 0 ºC again. Methanol (25 

mL) was slowly added, followed by a mixture of methanol (250 mL) and water (250 

mL). A solution of zinc chloride, ZnCl2, (10 g, 0.073 mol) in a mixture of 

concentrated aqueous ammonium hydroxide (250 mL) and methanol (250 mL) was 

then added to the red solution while stirring. After a brief period of time, 

tetraethylammonium bromide (26.5 g, 0.13 mol) or tetrabuthylammonium bromide 

(40.3 g, 0.13 mol), dissolved in deionized water (125 mL) was added. The mixture 

was allowed to stir for a few hours. The abundant precipitate was collected by 

filtration, and thoroughly washed with water (250 mL), isopropanol (ca. 400 mL; until 

the filtrate became colourless), and finally with diethyl ether (100 mL). The 

tetraethylammonium or tetrabutylammonium zincates were obtained as red or purple 

powders respectively, depending on the salt employed for the precipitation. Yield: 

(Et4N)2[Zn(dmit)2] (33.0 g, 63 %) ; (Bu4N)2[Zn(dmit)2] (52.1 g, 69 %).  

ESI(-) MS (CH3CN, 20V): m/z = 229.0 [M]2-. 

(Bu4N)2[Zn(met)2], ((Bu4N)2[1]) 

Dimethyl 2-oxo-1,3-dithiole-4,5-dicarboxylate (440 

mg, 1.88 mmol) was dissolved in dry and degassed 

methanol (50 mL). A solution of lithium methoxide 

(164 mg, 4.23 mmol) in methanol (20 mL) was 

added dropwise. The yellow solution was allowed 
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to stir for 20 minutes at room temperature. ZnCl2 (128 mg, 0.94 mmol) was dissolved 

in 20 mL of a CH3OH : 25 % NH4OH solution (1:1, v/v), and added to the latter 

mixture. There was a slight change in the colour of the solution. Then solid Bu4NBr 

(691 mg, 2.1 mmol) was added in one portion, and the mixture was stirred overnight 

at room temperature. The solution was filtered, and the filtrate was concentrated to 

ca.  5 - 10 mL by rotary evaporation. The yellow solid was filtered off and washed 

with water, isopropanol and diethyl ether. Single pale yellow crystals were obtained 

from CH2Cl2/toluene mixtures. Yield:  0.73 g (40 %). 

1H-NMR (CD2Cl2, 300 MHz):  = 0.99 (t, 24H), 1.41 (m, 16H), 1.62 (m, 16H), 3.19 

(m, 16H), 3.62 ppm (s, 12H). 

13C-NMR (CD2Cl2, 300 MHz):  = 14.05, 20.30, 24.65, 51.94, 59.43, 137.15, 171.00 

ppm.  

ESI(-) MS (CH3CN, 20V): m/z = 238.0 [M]2-.  

Elemental analysis (%) calcd. for C44H84N2O8S4Zn: C, 54.89; H, 8.79; N, 2.91; S, 

13.32; found: C, 53.90; H, 8.50; N, 2.77; S, 12.70. 

(Bu4N)2[Zn(Cl2bdt)2], ((Bu4N)2[2]) 

Compound 3,6-dichloro-1,2-benzenedithiol (250 

mg, 1.13 mmol) was dissolved in dry and degassed 

methanol (75 mL), affording a reddish solution. 

Then 2.5 equivalents of triethylamine (400 µL, 2.83 

mmol) were added, and the mixture was stirred for 10 minutes at room temperature. 

The solution turned yellowish. Zinc chloride (80 mg, 0.55 mmol) was dissolved in 20 

mL of a CH3OH : 25 % NH4OH solution (1:1, v/v), and added to the latter mixture. 

After stirring overnight at room temperature the solution became slightly darker. The 

mixture was filtered, and the filtrate was concentrated up to ca. 20 mL by rotary 

evaporation. Solid Bu4NBr (405 mg, 1.25 mmol) was added to the concentrated 
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solution while stirring vigorously. An abundant yellow precipitate was observed. The 

solid was filtered off and washed with methanol (ca. 3 mL), ethanol, water, 

isopropanol, and finally with diethyl ether. A yellow powder was obtained. Crystals 

were obtained by slow diffusion Et2O/CH3CN. Yield: 325 mg (61 %). 

1H-NMR (CD3CN, 300 MHz):  = 0.96 (t, 24H), 1.34 (m, 16H), 1.58 (m, 16H), 3.08 

(m, 16H), 6.71 ppm (s, 4H).  

13C-NMR (d6-DMSO, 300 MHz):  = 13.43, 19.16, 23.05, 57.50, 120.09, 131.14, 

149.78 ppm.  

ESI(-) MS (CH3CN, 20V): m/z = 242.0 [M]2-.  

Elemental analysis (%) calcd. for C44H76Cl4N2S4Zn: C, 54.56; H, 7.91; N, 2.89; S 

13.24; found: C, 54.41; H, 7.62; N, 2.70; S, 12.72 

Me2Sn(BPyDTS2), (3) 

BPyDT(SCH2CH2CN)2 (0.30 g, 0.68 mmol) was 

dissolved in 60 mL of dry THF. Then solid potassium 

tert-butoxide (0.16 g, 1.36 mmol) was added to the yellow 

solution with vigorous stirring. A red precipitate was 

formed. Stirring was continued for 30 min. Then dimethyltin dichloride (0.23 g, 1.02 

mmol) dissolved in 20 mL of THF was added dropwise for 5 min to the red mixture 

containing the dithiolate. The solution turned orange, and a suspension was formed. 

After 2 h of stirring at room temperature, it was immediately filtered and 

concentrated by rotary evaporation. Hexane (ca. 20 mL) was slowly added to the 

solution, and after standing for some minutes, the yellow-brown solid was filtered off 

and washed with warm hexane, iPrOH, H2O, again with iPrOH, and finally with 

Et2O. Yield: 0.23 g (70 %). 
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1H-NMR (d6-DMSO, 300 MHz):  = 0.95 (s, 6H), 7.04 (dt, 2H), 7.23 (ddd, 2H), 7.75 

(m, 2H), 8.69 ppm (ddd, 2H).  

ESI(-) MS (CH3CN, 20V): 516.9 [MCl]–.  

Elemental analysis (%) calcd. for C16H14N2S4Sn: C, 39.9; H, 2.9; N, 5.8; S, 26.7; found: 

C, 40.3; H, 3.1; N, 6.1; S, 26.6.  

IR (KBr, cm–1): 1585 (m), 1570 (m), 1492 (s), 1458 (s, C=C), 782 (m), 670 (m), 468 

(m), 420 (m). 

UV/Vis (CH3CN): max () = 251 (16 788), 281 (13 859), 411 (17 384) nm (M–1cm–1)  

7.1.3. DINUCLEAR BIS(DITHIOLENE) MOLYBDENUM AND 
TUNGSTEN CLUSTERS 

Dinuclear molybdenum and tungsten cluster complexes containing dithiolene ligands 

were synthesized starting either from the [Mo2O2S8]2- species or commercial 

ammonium tetrathiomolybdates or tetrathiotungstates, [MS4]2-, where M = Mo or W. 

The synthetic procedure and characterization of the compounds are described below. 

(Et4N)2[Mo2O2S2(BPyDTS2)2], ((Et4N)2[4]) 

Compound BPyDT(SC2H4CN)2 

(0.71 g, 1.62 mmol) was dissolved in 

30 mL of dry THF. Solid potassium 

tert-butoxide (0.38 g, 3.28 mmol) 

was added to the yellow solution rapidly and in one portion under vigorous stirring. 

A copious red solid precipitate corresponding to the potassium salt of the dithiolate 

ligand was observed. The mixture was further stirred for 30 min. Separately, 

(Et4N)2[Mo2O2S8] (0.6 g, 0.81 mmol) was dissolved in 30 mL of degassed DMF, and 

5 mL of a I2 solution in DMF (0.41 g, 1.62 mmol) were added while stirring to the 

latter brown-orange solution to generate the species (Et4N)2[Mo2O2S2(DMF)6].1 
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Stirring was continued for 15 min, and the precipitation of elemental sulfur was 

observed. This mixture was added without filtering to the red solution containing the 

dithiolate. The precipitate dissolved, and the solution turned brown. After 2 h of 

stirring at room temperature, the solution was concentrated by removing the THF in 

a rotary evaporator. Diethyl ether (ca. 150 mL) was slowly added to the DMF solution 

and the mixture was cooled to -20 ºC overnight. The solution was decanted, and the 

brown solid was washed with Et2O, iPrOH, H2O, EtOH, CS2, and finally dried with 

Et2O (0.82 g). The product obtained in this way was almost pure. Further purification 

was achieved by slowly diffusing Et2O (ca. 150 mL) into a solution of the compound 

in DMF (ca. 25 mL). A crystalline dark brown solid was obtained. Yield: 0.75 g (77 

%).  

1H-NMR (CD3CN, 300 MHz):  = 1.14 (t, 24H), 3.09 (q, 16H), 7.09 (d, 2H), 7.19 

(dd, 2H), 7.71 (td, 2H), 8.73 ppm (d, 2H).  

ESI(-) MS (CH3CN, 20V): m/z = 477.0 [M]2-.  

Elemental analysis (%) calcd for C44H56N6Mo2O2S10: C, 43.5; H, 4.7; N, 6.9; found: 

C, 42.7; H, 4.6; N, 6.95. 

IR (KBr, cm-1): 1580 (s), 1522 (w), 1457 (s,  (C=C)), 1271 (w), 944 (m,  (Mo=O)), 

785 (m), 670 (w), 619 (w), 503 (w,  (C-S)), 469 (w,  (Mo-Sligand)), 408 (w). 

UV/Vis (CH3CN): max () = 267 (52 715), 283 (52 880), 338 sh (20 451), 435 (29 

035) nm (M-1cm-1). 

CV (in CH3CN, vs Ag/AgCl): E1/2 = 0.43 V. 
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(Et4N)2[Mo2O2S2(BPyDTS2)2{Re(CO)3Cl}2], ((Et4N)2[5])  

 

 

 

Compound (Et4N)2[Mo2O2S2(BPyDTS2)2] (50 mg, 0.041 mmol) and fresh Re(CO)5Cl 

(45 mg, 0.12 mmol) were mixed with DMF (1 mL) and CH3CN (4 mL). The mixture 

was heated in a microwave system (110 ºC, 100 W, 25 min). After cooling to room 

temperature, the dark red solution was cooled to -20 ºC for some hours. Then it was 

immediately filtered using a 0.2 µm nylon syringe filter. Diethyl ether was added to 

the filtrate until the complete precipitation of a red solid, which after standing for 10 

minutes was filtered and washed with toluene and Et2O. Yield: 50 mg (67 %). 

1H-NMR (d6-DMSO, 300 MHz):  = 1.15 (t, 24H), 3.18 (q, 16H), 7.56 (m, 2H), 8.13 

(m, 4H), 8.88 ppm (m, 2H). 

ESI(-) MS (CH3CN, 20V): 782.9 [M]2-, 737.9 [M – 3CO]2-, 694.9. 

Elemental analysis (%) calcd. for C50H56Cl2Mo2N6O8Re2S10: C, 32.9; H, 3.1; N, 4.6; 

S, 17.6; found C, 31.2; H, 2.8; N, 5.1; S, 17.7 

IR (KBr, cm–1): 2017 (s,  (C≡O)), 1906 (s,  (C≡O)), 1891 (s,  (C≡O)), 948 (w,  

(Mo=O)), 536 (w, (C–S)), 458 (w, (Mo–Sligand)). 

UV/Vis (CH3CN): max () = 266 (38 682), 299 (36 811), 388 (13 578), 492 (16 111) 

nm (M-1cm-1). 
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(PPN)2[Mo2S4(pdt)2], ((PPN)2[6]) 

Ammonium tetrathiomolybdate (100 mg, 0.38 

mmol) and 1.5 equivalents of 2,3-pyrazinedithiol 

(83 mg, 0.58 mmol) were dissolved in dry and 

degassed DMF (5 mL). The reddish-brown mixture was heated to 90 ºC for 1 h. After 

cooling to room temperature, 2.5 equivalents of PPNCl (560 mg, 0.95 mmol) were 

added. After stirring for 30 minutes, the mixture was filtered. Diethyl ether (ca. 50 

mL) was added to the filtrate, and the mixture was cooled to 2 ºC for 2 - 3 days. The 

brown precipitate was redissolved in acetonitrile (ca. 50 mL), and filtered. The 

afforded brown microcrystalline precipitate was washed with acetonitrile, 

isopropanol, water, again with isopropanol, and finally with diethyl ether. The 

product is soluble in dichloromethane and methanol. Yield: 193 mg (60 %).  

1H-NMR (d6-DMSO, 300 MHz):  = 7.50 – 7.57 (m, 60H), 8.04 ppm (s, 2H).  

13C-NMR (d6-DMSO, 300 MHz):  = 126.03 (2), 127.48 (2), 129.46 (3), 131.92 (3), 

133.60, 136.09, 164.47 ppm.  

31P-NMR (d6-DMSO, 300 MHz):  = 20.57 ppm.  

ESI(-) MS (CH3CN, 20V): m/z = 302.0 [M]2-.  

Elemental analysis (%) calcd. for C80H64Mo2N6P4S8: C, 57.14; H, 3.84; N, 5.00; S, 

15.25; found: C, 55.28; H, 3.75; N, 5.55; S, 14.86. 

(Et4N)2[Mo2S4(pdt)2], ((Et4N)2[6]) 

This compound was prepared in a similar fashion to (PPN)2[Mo2S4(pdt)2], but using 

Et4NBr (200 mg, 0.95 mmol) instead of PPNCl as a precipitation salt. After stirring 

for some minutes at room temperature, the mixture was filtered. Diethyl ether (ca. 50 

mL) was added to the filtrate, and the mixture was cooled to 2 ºC for 2 – 3 days. A 

brown precipitate was obtained. The solid was redissolved in acetonitrile (ca. 50 mL) 
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and the mixture was filtered. The filtrate was layered with diethyl ether (ca. 100 mL). 

After cooling to 2 ºC overnight, the brown solid was collected by filtration and 

washed with ethanol and diethyl ether.  Yield: 105 mg (64 %). 

1H-NMR (d6-DMSO, 300 MHz):  = 1.10 (t, 24H), 3.12 (q, 16H), 8.09 ppm (s, 4H). 

13C-NMR (d6-DMSO, 300 MHz):  = 7.04, 51.43 (3), 136.20, 164.39 ppm.  

ESI(-) MS (CH3CN, 20V): m/z = 302.1 [M]2-.  

Elemental analysis (%) calcd. for C24H44Mo2N6S8: C, 33.32; H, 5.13; N, 9.72; found: 

C, 34.95; H, 6.16; N, 8.45. 

(Et4N)2[Mo2O2S2(pdt)2], ((Et4N)2[7]) 

Pyrazine-2,3-dithiol (137 mg, 0.94 mmol) was 

suspended in 5 mL of degassed methanol. A 2 M 

solution of NaOH in CH3OH (1 mL, 2 mmol) 

was slowly added. The mixture was stirred for 10 min, and then the yellow solution 

was diluted with 15 mL of THF. Separately, compound (Et4N)2[Mo2O2S8] (350 mg, 

0.47 mmol) was dissolved in 20 mL of degassed DMF, and I2 (240 mg, 0.94 mmol) 

dissolved in 5 mL of DMF was added to the cluster solution to generate the species 

(Et4N)2[Mo2O2S2(DMF)6].1 After stirring for 15 min, the orange-brown mixture was 

slowly added (without filtering) to the yellow solution containing the dithiolate ligand. 

The solution turned reddish-orange. The mixture was stirred for 100 min at room 

temperature. Then the lowest boiling point solvents (THF and CH3OH) were 

removed by rotary evaporation. The DMF solution containing the final product was 

layered with 100 mL of Et2O and cooled to 2 ºC for 2 - 3 days. A crystalline yellow 

solid was observed. After filtration, the product was washed with iPrOH, H2O, 

EtOH, Et2O, CS2 and again with Et2O. Yield: 0.31 g (80 %). 
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1H-NMR (d6-DMSO, 300 MHz):  = 1.11 (t, 24H), 3.15 (q, 16H), 7.99 ppm (s, 4H). 

13C-NMR (d6-DMSO, 300 MHz):  = 7.03, 51.40 (3), 135.96, 163.67 ppm.  

ESI(-) MS (CH3CN, 20V): m/z = 286.0 [M]2-. 

Elemental analysis (%) calcd. for C24H44Mo2N6O2S6: C, 34.61; H, 5.32; N, 10.09; 

found: C, 34.25; H, 5.25; N, 9.70. 

IR (KBr, cm–1): 1480 (m), 1329 (s), 1294 (m), 1185 (m), 1151(s), 1051 (w), 948 (s, 

Mo=O), 536 (w, C-S), 446 (m, Mo-Sligand). 

UV/Vis(CH3CN): max ()= 238 (48 756), 310 sh (18 611), 357 nm (33 595 M-1cm-1).  

CV (in CH3CN, vs Ag/AgCl): E1/2 = 1.18 V. 

(PPN)2[Mo2O2S2(pdt)2], ((PPN)2[7]) 

Compound (PPN)2[Mo2S4(pdt)2] (50 mg, 0.030 mmol) and cobalt carbonyl, 

Co2(CO)8, (11 mg, 0.033 mmol) were dissolved in dry dichloromethane (10 mL), and 

stirred overnight at room temperature. A dark brown solution was observed together 

with a black precipitate, which was removed by filtration. The filtrate was 

concentrated up to ca. 5 mL by rotary evaporation. Then diethyl ether was slowly 

added while stirring to afford the precipitation of a brown solid. After filtration, the 

solid was washed with toluene and diethyl ether. A dark brown powder, soluble in 

dichloromethane was obtained. Yield. 36 mg (73 %).  

1H-NMR (d6-DMSO, 300 MHz):  = 7.45 – 7.75 (m, 60H), 8.0 ppm (s, 4H).  

31P-NMR (d6-DMSO, 300 MHz):  = 20.56 ppm.  

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 286.0 [M]2-. 

Elemental analysis (%) calcd. for C80H64Mo2N6O2P4S6: C, 58.25; H, 3.91; N, 5.09; S, 

11.66; found: C, 58.10; H, 3.75; N, 5.05; S, 12.16. 
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(PPN)2[W2S4(pdt)2], ((PPN)2[8]) 

Ammonium tetrathiotungstate (100 mg, 0.29 

mmol) and 2,3-pyrazinedithiol (65 mg, 0.45 

mmol) were mixed with dry and degassed DMF 

(5 mL). The mixture was heated to 140 ºC for 2h. 

After cooling to room temperature, 2.5 equivalents of PPNCl (432 mg, 0.73 mmol) 

were added, and the mixture was further stirred for 30 minutes. Then the brown 

solution was filtered. After filtration, the solution was flooded with diethyl ether, and 

cooled to 3 ºC for 2 – 3 days. The mother liquor was decanted, and the sticky solid 

was suspended in acetonitrile (ca. 50 mL), and sonicated for a few minutes. The 

orange powder was filtered off and washed with acetonitrile, isopropanol, water, 

ethanol, methanol, and finally with diethyl ether. An orange solid, soluble in 

dichloromethane was obtained. Yield: 168 mg (62 %). 

1H-NMR (d6-DMSO, 300 MHz):  = 7.48 – 7.75 (m, 60H), 8.00 ppm (s, 4H). 

13C-NMR (d6-DMSO, 300 MHz):  = 126.03 (2), 127.47 (2), 129.45 (3), 131.91 (3), 

133.59, 136.42, 165.66 ppm.  

31P-NMR (d6-DMSO, 300 MHz): 20.59 ppm.  

ESI(-) MS (CH3CN, 20V): m/z = 389.7 [M]2-. 

Elemental analysis (%) calcd. for C80H64N6P4S8W2: C, 51.73; H, 3.47; N, 4.52; S, 

13.81; found: C, 50.53; H, 3.45; N, 4.90; S, 13.76. 

(Et4N)2[W2S4(pdt)2], ((Et4N)2[8]) 

This compound was prepared in a similar fashion to (PPN)2[W2S4(pdt)2], but using 

Et4NBr (153 mg, 0.73 mmol) instead of PPNCl as a precipitation salt. After stirring 

for a few minutes at room temperature, the brownish solution was flooded with 

diethyl ether. The mixture was left at 3 ºC overnight. The orange precipitate was 
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filtered off, and washed with isopropanol, ethanol, water, methanol and diethyl ether. 

An orange powder, soluble in acetonitrile, was obtained. Yield: 107 mg (71 %). 

1H-NMR (d6-DMSO, 300 MHz):  = 1.16 (t, 24H), 3.11 (q, 16H), 8.02 ppm (s, 4H). 

13C-NMR (d6-DMSO, 300 MHz):  = 7.03, 51.39, 136.50, 165 ppm. 

ESI(-) MS (CH3CN, 20V): m/z = 389.7 [M]2-. 

Elemental analysis (%) calcd. for C24H44N6S8W2: C, 27.69; H, 4.26; N, 8.07; found: 

C, 26.13; H, 4.07; N, 7.85. 

(PPN)2[W2O2S2(pdt)2], ((PPN)2[9])  

Compound (PPN)2[W2S4(pdt)2] (50 mg, 0.027 

mmol) and 1.1 equivalents of Co2(CO)8 (10 mg, 

0.030 mmol) were mixed with dry CH2Cl2, and 

stirred overnight at room temperature. The solution turned dark brown, and a dark 

precipitate was observed. The precipitated solid was removed by filtration, and the 

filtrate was concentrated up to ca. 5 mL by rotary evaporation. Then diethyl ether was 

slowly added while stirring to afford the complete precipitation of a brown solid. The 

product was filtered off and washed with toluene and diethyl ether to afford a brown 

powder, soluble in dichloromethane. Yield: 32 mg (66 %). 

1H-NMR (d6-DMSO, 300 MHz):  = 7.50 – 7.74 (m, 60H), 7.95 ppm (s, 4H).  

31P-NMR (d6-DMSO, 300 MHz):  = 20.56 ppm.  

ESI(-) MS (CH2Cl2/CH3CN, 15V): m/z = 374.1 [M]2-. 

Elemental analysis (%) calcd. for C80H64N6O2P4S6W2: C, 52.64; H, 3.53; N, 4.60; S, 

10.54; found: C, 52.75; H, 3.25; N, 4.10; S, 10.92. 
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7.1.4. TRINUCLAR TRIS(DITHIOLENE) MOLYBDENUM 
CLUSTERS 

The synthesis and characterization of molybdenum trinuclear clusters containing 

dithiolene ligands is described herein. These clusters were prepared by 

transmetalation using a bis(dithiolene) zinc complex. The thiocluster 

(Bu4N)2[Mo3S7Br6] was employed as a molybdenum cluster source. 

(PPN)2[Mo3S7(met)3], ((PPN)2[10]) 

 The cluster complex (Bu4N)2[Mo3S7Br6] (200 

mg, 0.135 mmol) was dissolved in acetonitrile 

(30 mL), and then solid (Bu4N)2[Zn(met)2] (196 

mg, 0.204 mmol) was added all at once. The 

mixture was stirred overnight at room 

temperature. The dark solution was taken to 

dryness by rotary evaporation, and the sticky 

solid residue was redissolved in warm methanol (60 – 70 mL). An excess of PPNCl 

was dissolved in methanol and added dropwise to the latter solution under vigorous 

stirring. A brown solid precipitated from the solution. After stirring for 1h at room 

temperature, the solid was filtered off and washed with methanol and diethyl ether. 

Crystals were grown by slow diffusion CH3CN/Et2O. Yield: 228 mg (76 %). 

1H-NMR (CD2Cl2, 300 MHz):  = 3.62 (dd, 18H), 7.45 – 7.75 ppm (m, 60H). 

31P-NMR (CD2Cl2, 300 MHz):  = 21.07 ppm.  

ESI(-) MS (CH3CN, 20V): m/z = 565.2 [M]2-.  

Elemental analysis (%) calcd. for C90H78Mo3N2O12P4S13: C, 48.95; H, 3.56; N, 1.27; 

S, 18.88; found: C, 48.48; H, 3.24; N, 1.21; S, 18.98. 

CV (in CH2Cl2, vs Ag/AgCl): E1/2 = 0.38 (q. rev.), 0.70 (q. rev.), 1.04 V (q. rev.). 
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(Bu4N)2[Mo3S7(Cl2bdt)3], ((Bu4N)2[11]) 

 The cluster species (Bu4N)2[Mo3S7Br6] (100 mg, 

0.068 mmol) and (Bu4N)2[Zn(Cl2bdt)2] (105 mg, 

0.11 mmol) were mixed with acetonitrile (15 

mL), and stirred overnight at room temperature. 

The mixture turned reddish-brown. The solution 

was filtered, and the filtrate taken to dryness by 

rotary evaporation. The brown solid residue was 

suspended in methanol (ca. 20 mL) and sonicated. The precipitate was filtered off and 

washed with methanol, water, again with methanol, and finally with diethyl ether. A 

brown powder, soluble in acetonitrile and dichloromethane, was obtained. Crystals 

were grown by gas diffusion Et2O/CH2Cl2. Yield: 73 mg (66 %). 

1H-NMR (CD3CN, 300 MHz):  = 0.95 (t, 24H), 1.35 (m, 16H), 1.60 (m, 16H), 3.08 

(m, 16H), 6.82 ppm (m, 6H).  

ESI(-) MS (CH3CN, 20V): m/z = 569.81 [M]2-. 

Elemental analysis (%) calcd. for C50H78Cl6Mo3N2S13: C, 36.97; H, 4.84; N, 1.72; S, 

25.66; found: C, 36.49; H, 4.64; N, 1.58; S, 25.53. 

CV (in CH3CN, vs Ag/AgCl): E1/2 = 0.547 V (q. rev.), Ea = 1.412 (irrev.). 
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7.1.5. HETEROLEPTIC MOLYBDENUM CLUSTERS CONTAINING 
DIIMINE LIGANDS 

A series of Mo3S7 complexes functionalized with halides (chloride or bromide) and 

diimine ligands (bipyridine or phenanthroline derivatives) were prepared. Their 

general synthetic procedures starting from the (Bu4N)2[Mo3S7X6] species (X = Cl or 

Br) are described below. 

General Synthetic Method for Mo3S7X4(diimine) Complexes, (X = Cl or Br) 

The cluster complex (Bu4N)2[Mo3S7X6] (X = Cl or Br) and an 

excess of a diimine ligand (3 – 5 eq.) were mixed with CH2Cl2, 

and stirred at room temperature (X = Br), or refluxed (X = 

Cl). The reddish solution was filtered and taken to dryness by 

rotary evaporation. Unless otherwise stated, the sticky solid 

residue was thoroughly washed with methanol, acetonitrile 

(until the filtrate became colorless), dichloromethane and diethyl ether to afford an 

orange or a reddish powder in high yields. 

Mo3S7Br4(IPDOP), (12) 

The cluster (Bu4N)2[Mo3S7Br6] (100 mg, 0.068 mmol) and 

the ligand IPDOP (136 mg, 0.20 mmol) were mixed with 

CH2Cl2 (30 mL), and stirred overnight at room temperature. 

The product was washed with methanol, acetonitrile and 

diethyl ether to afford a red solid which was dried in a 

vacuum oven at 50 ºC. Yield:  100 mg (98 %). 

1H-NMR (CDCl3, 300 MHz):  = 0.85 (m, 6H, CH3-), 1.10-2.00 (m, 40H, -CH2-), 

3.10 (m, 2H, -CH2-O-), 3.92 (m, 2H, -CH2-O-), 6.84 (br s, 1H, Ar-H), 7.51 (br s, 2H, 

Ar-H), 7.92 (m, 2H, Ar-H), 8.83 (br s, 2H, Ar-H), 9.14 ppm (br s, 2H, Ar-H).  
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Elemental analysis (%) calcd. for C43H60Br4Mo3N4O2S7: C, 34.50; H, 4.04; N, 3.74; 

found: C, 34.2; H, 3.7; N, 3.4.  

UV/Vis (CH2Cl2): max () = 282 (104 488), 330 sh (45 600), 484 (2 400) nm (M–1cm–

1). 

Mo3S7Cl4(IPDOP), (13) 

The cluster (Bu4N)2[Mo3S7Cl6] (100 mg, 0.083 mmol) and the ligand IPDOP (165 

mg, 0.25 mmol) were dissolved in CH2Cl2 (20 mL) and refluxed overnight. 

Purification was achieved by washing with methanol, acetonitrile and diethyl ether. 

The red powder obtained was dried in a vacuum oven at 50 ºC. Yield: 105 mg (96 

%).  

1H-NMR (CDCl3, 300 MHz):   = 0.83 (m, 6H, CH3-), 0.90-1.90 (m, 40H, -CH2-), 

3.06 (m, 2H, -CH2-O-), 3.89 (m, 2H, -CH2-O-), 6.81 (br s, 1H, Ar-H), 7.47 (br s, 2H, 

Ar-H), 7.95 (m, 2H, Ar-H), 8.83 (br s, 2H, Ar-H), 9.13 ppm (br s, 2H, Ar-H).  

Elemental analysis (%) calcd. for C43H60Cl4Mo3N4O2S7: C, 39.15; H, 4.58; N, 4.25; 

found: C, 39.4; H, 4.3; N, 4.2.  

UV/Vis (CH2Cl2): max () = 282 (66 312), 330 sh (33 868), 489 (2 680) nm (M–1cm–

1). 

Mo3S7Br4(BPhen), (14) 

The cluster (Bu4N)2[Mo3S7Br6] (100 mg, 0.068 mmol) 

and commercial 4,7-diphenyl-1,10-phenanthroline (90 

mg, 0.27 mmol) were mixed with CH2Cl2 (30 mL) and 

stirred overnight at room temperature. The solid was 

rinsed with methanol, acetonitrile and diethyl ether. A red powder was obtained. 

Yield: 73 mg (92 %).  
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1H-NMR (d6-DMSO, 300 MHz):  = 7.59 (s, 3H), 7.62-7.77 (m, 5H), 7.82 (d, 1H), 

7.91 (s, 1H), 8.17 (m, 2H), 8.23 (d, 1H), 9.20 (d, 1H), 9.85 (d, 1H), 10.19 ppm (d, 1H). 

 ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 1243.0 [MBr]-.  

Elemental analysis (%) calcd. for C24H16Br4Mo3N2S7: C, 24.76; H, 1.39; N, 2.41; 

found: C, 25.0; H, 1.6; N, 2.7.  

UV/Vis (DMSO): max () = 389 sh (7632), 467 (3853) nm (M–1cm–1). 

Mo3S7Cl4(BPhen), (15) 

The cluster compound (Bu4N)2[Mo3S7Cl6] (100 mg, 0.083) was treated with 4,7-

diphenyl-1,10-phenanthroline (138 mg, 0.42 mmol) in the presence of CH2Cl2 (20 

mL). The mixture was refluxed for 6.5 h. After washing with methanol, acetonitrile 

and diethyl ether, a reddish-orange powder was obtained. Yield: 77 mg (94 %).  

1H-NMR (d6-DMSO, 300 MHz):  = 7.59 (s, 3H), 7.62-7.78 (m, 5H), 7.87 (s, 1H), 

8.19 (s, 2H), 8.22 (d, 2H), 9.17 (d, 1H), 9.87 (d, 1H), 10.09 ppm (d, 1H) ppm.  

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 1020.4 [MCl]-.  

Elemental analysis (%) calcd. for C24H16Cl4Mo3N2S7: C, 29.22; H, 1.63; N, 2.84; 

found: C, 29.4; H, 1.9; N, 3.1.  

UV/Vis (DMSO): max () = 382 sh (4546), 462 (2484) nm (M–1cm–1). 

Mo3S7Br4(tmphen), (16) 

The cluster (Bu4N)2[Mo3S7Br6] (100 mg, 0.068 

mmol) and commercial 3,4,7,8-tetramethyl-1,10-

phenanthroline (64 mg, 0.27 mmol) were mixed 

with CH2Cl2 (30 mL), and stirred overnight at room temperature. Washing with hot 

N

N

=

N N
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methanol, acetonitrile and diethyl ether afforded an orangish powder. Yield: 67 mg 

(92 %).   

1H-NMR (d6-DMSO, 300 MHz):  = 2.60 (m, 6H), 2.87 (m, 6H), 8.48 (m, 2H), 9.30 

(s, 1H), 10.02 (m, 1H) ppm.  

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 1148.1 [MBr]-, 1102.2 [MCl]-.  

Elemental analysis (%) calcd. for C16H16Br4Mo3N2S7: C, 17.99; H, 1.51; N, 2.62; 

found: C, 17.70; H, 1.35; N, 2.85.  

UV/Vis (DMSO): max () = 375 sh (6075), 442 (3339) nm (M–1cm–1). 

Mo3S7Cl4(tmphen), (17) 

The cluster species (Bu4N)2[Mo3S7Cl6] (100 mg, 0.083 mmol) and the ligand 3,4,7,8-

tetramethyl-1,10-phenanthroline (78 mg, 0.33 mmol) were mixed with CH2Cl2 (20 

mL). The mixture was refluxed overnight. Rinsing with hot methanol, acetonitrile, 

and diethyl ether afforded the title compound as an orangish powder. Yield: 59 mg 

(97 %).   

1H-NMR (d6-DMSO, 300 MHz):   = 2.57 (d, 6H), 2.87 (d, 6H), 8.49 (m, 2H), 9.40 

(s, 1H), 9.86 (s, 1H) ppm. 

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 924.4 [MCl]-, 970.4 [MBr]-.  

Elemental analysis (%) calcd. for C16H16Cl4Mo3N2S7: C, 21.58; H, 1.82; N, 3.15; 

found: C, 21.8; H, 2.1; N, 2.9. 

UV/Vis (DMSO): max () = 370 sh (4211), 441 (2674) nm (M–1cm–1). 
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Mo3S7Cl4(dmbpy), (18) 

The cluster (Bu4N)2[Mo3S7Cl6] (100 mg, 0.083 mmol) 

and 4 equivalents of commercial 4,4’-dimethyl-2,2’-

bipyridine (62 mg, 0.33 mmol) were mixed with 

CH2Cl2 (20 mL) and heated to reflux for 1 day. Purification afforded an orange 

powder. Yield: 67 mg (96 %).   

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 874.3 [MCl]-.  

Elemental analysis (%) calcd. for C12H12Cl4Mo3N2S7: C, 17.19; H, 1.44; N, 3.34; 

found: C, 17.5; H, 1.76; N, 3.45.  

UV/Vis (DMSO): max () = 381 (1654), 447 (1056) nm (M–1cm–1). 

Mo3S7Br4(dmbpy), (19) 

The starting material (Bu4N)2[Mo3S7Br6] (100 mg, 0.068 mmol) and an excess of 4,4’-

dimethyl-2,2’-bipyridine (50 mg, 0.27 mmol) were mixed with CH2Cl2 (30 mL) and 

stirred overnight at room temperature. After purification, an orange powder was 

obtained. Yield: 57 mg (82 %). 

1H-NMR (d6-DMSO, 300 MHz):  = 2.59 (s, 6H), 7.73 (m, 2H), 8.78 (m, 2H), 9.19 

(d, 1H), 9.57 ppm (m, 1H).  

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 1096.0 [MBr]-, 1052.3 [MCl]-, 1006.3 [M - 

Br + 2Cl].  

Elemental analysis (%) calcd. for C12H12Br4Mo3N2S7: C, 14.18; H, 1.19; N, 2.76; 

found C, 14.3; H, 1.4; N, 2.4.  

UV/Vis (DMSO): max () = 450 (2389) nm (M–1cm–1). 
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Mo3S7Br4(bpy), (20) 

The complex (Bu4N)2[Mo3S7Br6] (100 mg, 0.068 mmol) 

and an excess of 2,2’-bipyridine (0.34 mmol, 53 mg) 

were stirred overnight at room temperature using 

CH2Cl2 (30 mL) as a solvent. Purification afforded an orange solid. Yield: 45 mg (67 

%).   

1H-NMR (d6-DMSO, 300 MHz):  = 7.91 (m, 2H), 8.48 (q, 2H), 8.91 (m, 2H), 9.36 

(d, 1H), 9.81 ppm (d, 1H).   

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 1068.0 [MBr]-, 1024.0 [MCl]-, 979.1 [M – 

Br + 2Cl]-.  

Elemental analysis (%) calcd. for C10H8Br4Mo3N2S7: C, 12.16; H, 0.82; N, 2.84; found: 

C, 12.40; H, 1.10; N, 2.85.  

UV/Vis (DMSO): max () = 458 (2258) nm (M–1cm–1). 

Mo3S7Br4(phen), (21) 

The cluster species (Bu4N)2[Mo3S7Br6] (100 mg, 

0.068 mmol) and 5 equivalents of commercially 

available 1,10-phenanthroline (62 mg, 0.34 mmol) 

were mixed with CH2Cl2 (30 mL), and allowed to stir overnight at room temperature. 

The product was purified, and a reddish-orange solid was obtained. Yield: 55 mg (69 

%).  

1H-NMR (d6-DMSO, 300 MHz):  = 8.27 (m, 2H), 8.41 (s, 2H), 9.13 (m, 2H), 9.65-

9.80 (m, 1H), 10.12 ppm (m, 1H).   

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 1092.0 [MBr]-, 1048.0 [MCl]-.  

N

N
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Elemental analysis (%) calcd. for C12H8Br4Mo3N2S7: C, 14.24; H, 0.80; N, 2.77; found: 

C, 14.55; H, 1.30; N, 2.65.  

UV/Vis (DMSO): max () = 453 (3149) nm (M–1cm–1). 

Mo3S7Br4(dcmbpy), (22) 

The cluster complex (Bu4N)2[Mo3S7Br6] (1 g, 

0.68 mmol) and the ligand 4,4’-

dicarbomethoxy-2,2’-bipyridine (1 g, 3.68 

mmol) were mixed with CH3CN (60 mL). 

The mixture was heated to reflux overnight. After cooling to room temperature, the 

precipitated ligand was filtered off. To afford the complete precipitation, the filtrate 

was then taken up to ca. 5 mL by rotary evaporation, cooled to -30 ºC, and filtered 

again. The filtrate was taken to dryness by rotary evaporation and washed with 

methanol, a few mL of acetonitrile, and finally with diethyl ether. To afford the 

complete precipitation, the mixture was concentrated by rotary evaporation and 

cooled to -30 ºC for 2 – 3 h. After filtration, an excess of diethyl ether was added to 

afford the precipitation of a red powder. The solid was collected by filtration and 

washed with methanol, a few mL of acetonitrile and diethyl ether. Yield: 0.69 g (92 

%).  

1H-NMR (CD3CN, 300 MHz):  = 4.04 (d, 6H), 8.16 (m, 2H), 9.02 (s, 2H), 9.68 (d, 

1H), 10.18 ppm (d, 1H). 

ESI(-) MS (CH3CN, 20V): m/z = 1183.5 [MBr]-.  

Elemental analysis (from the crystals, %) calcd. for C14H12Br4Mo3N2O4S7·Bu4NBr: 

C, 25.26; H, 3.39; N, 2.95; S, 15.7; found: C, 25.80; H, 3.50; N, 3.0; S, 15.7.  

UV/Vis (DMSO): max () = 499 (2822) nm (M–1cm–1). 
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CV (in CH3CN, vs Ag/AgCl): Ea = 0.92 V (irrev.), Ec1 = - 0.58 V (q. rev.) and Ec2 = 

- 0.83 V (irrev.). 

Mo3S7Br4(dnbpy), (23) 

The cluster (Bu4N)2[Mo3S7Br6] (100 mg, 0.068 mmol) 

and 4,4′-dinonyl-2,2′-bipyridine (110 mg, 0.27 mmol) 

were mixed with CH2Cl2 (30 mL), and allowed to stir 

for 5 hours at room temperature. The solid residue 

that resulted from the evaporation of the solvent was 

washed with methanol, acetonitrile and diethyl ether to afford an orange powder. 

Yield: 71 mg (84 %). 

1H NMR (CH2Cl2, 300 MHz): δ = 0.88 (m, 4H), 1.04, (t, 6H), 1.20 – 1.80 (m, 20H), 

2.90 (m, 4H), 3.22 (m, 4H), 7.45 (d, 1H), 7.52 (d, 1H), 8.20 (d, 2H), 9.37 (d, 1H), 9.84 

ppm (d, 1H). 

Elemental analysis (%) calcd for C28H44Br4Mo3N2S7: C, 27.11; H, 3.57; N, 2.26; 

found: C, 26.9; H, 3.65; N, 2.15. 

IR (KBr, cm-1): 2922 (s, Csp3-H), 2850 (m, Csp3-H), 1614 (s, C=C), 1542 (w, C=C), 

1457 (m, C=C), 1419 (m, C=C), 540 (m, Seq-Sax), 419 (w, Mo-µS3).  

UV/Vis (CH2Cl2): max () =  445 (2921) nm (M–1cm–1). 

CV (in CH2Cl2, vs Ag/AgCl): Ec = -1.06 V. 

Mo3S7Br4(dcmphen), (24) 

The complex (Bu4N)2[Mo3S7Br6] (500 mg, 0.34 

mmol) and the same amount of 4,7-

dicarbomethoxy-1,10-phenanthroline (500 mg, 



CHAPTER 7 

202 
  

1.7 mmol) were mixed with CH2Cl2 (130 mL). Purification was carried out as usual 

to afford a red powder. Yield: 320 mg (84 %).  

1H-NMR (CD2Cl2, 300 MHz):  = 4.16 (d, 6H), 8.48 (d, 2H), 9.19 (d, 2H), 10.17 (d, 

1H), 10.72 ppm (d, 1H).   

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 1208.0 [MBr]-, 1163.1 [MCl]-. 

 Elemental analysis (%) calcd. for C16H12Br4Mo3N2O4S7: C, 17.03; H, 1.07; N, 2.48; 

found: C, 16.65; H, 1.4; N, 2.1.  

UV/Vis (DMSO): max () = 497 (2926) nm (M–1cm–1). 

Mo3S7Cl4(ppl), (25) 

The cluster complex (Bu4N)2[Mo3S7Cl6] (100 mg, 

0.083) and the ligand pyrazino[2,3-

f][1,10]phenanthroline (100 mg, 0.43 mmol) were 

mixed with CH2Cl2 (20 mL). The mixture was heated 

to reflux for 8.5 h. Purification afforded a reddish 

solid. Yield: 50 mg (68 %). 

1H-NMR (d6-DMSO, 300 MHz):  = 8.40 (m, 2H), 9.35 (s, 2H), 9.75 – 10.15 ppm 

(m, 4H).   

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 922.2 [MCl]-, 966.1 [MBr]-. 

Elemental analysis (%) calcd. for C14H8Cl4Mo3N4S7: C, 18.97; H, 0.91; N, 6.32; found: 

C, 18.65; H, 1.30; N, 6.20.  

UV/Vis (DMSO): max () = 448 (2552) nm (M–1cm–1). 
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Mo3S7Br4(ppl), (26) 

The cluster complex (Bu4N)2[Mo3S7Br6] (100 mg, 0.068 mmol) and the ligand 

pyrazino[2,3-f][1,10]phenanthroline (63 mg, 0.27 mmol) were mixed with CH2Cl2 (30 

mL). The mixture was stirred overnight at room temperature. The usual purification 

method was carried out. A reddish solid was obtained. Yield: 60 mg (83 %).  

1H-NMR (d6-DMSO, 300 MHz):  = 8.41 (m, 2H), 9.38 (s, 2H), 9.88 (m, 3H), 10.22 

ppm (d, 1H).   

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 1142.2 [MBr]-, 1099.6 [MCl]-. 

Elemental analysis (%) calcd. for C14H8Br4Mo3N4S7: C, 15.80; H, 0.76; N, 5.27; found: 

C, 16.15; H, 1.15; N, 5.0.  

UV/Vis (DMSO): max () = 460 (2657) nm (M–1cm–1). 

Mo3S7Cl4(mphen), (27) 

The cluster complex (Bu4N)2[Mo3S7Cl6] (100 mg, 

0.083) and the ligand 4-methyl-1,10-phenanthroline 

(50 mg, 0.25 mmol) were mixed with CH2Cl2 (20 

mL). Reflux overnight followed by purification afforded an orange powder. Yield: 70 

mg (99 %). 

1H-NMR (d6-DMSO, 300 MHz):  = 2.98 (s, 3H), 8.10 (d, 1H), 8.25 (t, 1H), 8.45 (m, 

2H), 9.10 (t, 1H), 9.60 – 10.10 ppm (m, 2H). 

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 883.4 [MCl]-, 927.4 [MBr]-. 
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Mo3S7Br4((COOMe)2ppl), (28) 

The complex (Bu4N)2[Mo3S7Br6] (50 mg, 0.034 mmol) 

and an excess of 2,3-dimethoxycarbonylpyrazino[2,3-

f][1,10]phenanthroline (36 mg, 0.10 mmol) were mixed 

with CH2Cl2 (15 mL). The mixture was stirred overnight 

at room temperature. After taking to dryness, the solid 

residue was washed with methanol, acetonitrile, 

dichloromethane and diethyl ether to afford a reddish powder. Yield:  28 mg (70 %). 

1H-NMR (d6-DMSO, 300 MHz):  = 4.07 (d, 6H), 8.01 (dd, 1H), 8.45 (m, 2H), 9.29 

(d), 9.40 (d), 9.80 (m), 9.90 (d), 10.27 ppm (d, 1H). 

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 1260.2 [MBr]-, 1216.1 [MCl]-, 1170.1 [M – 

Br + 2Cl]-.  

UV/Vis (DMSO): max () = 460 sh (1593) nm (M–1cm–1). 
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7.1.6. HETEROLEPTIC MOLYBDENUM CLUSTERS WITH 
DIIMINE AND SULFUR DONOR LIGANDS 

Reaction between heteroleptic molybdenum cluster complexes of general formula 

Mo3S7Br4(diimine) and stoichiometric amounts of [Zn(dmit)2]2- or 

diethyldithiocarbamate (dtc-) afforded complexes of formulae [Mo3S7(diimine)L]0, 2+ 

(L = dmit or dtc) by substitution of the halide ligands. The synthetic procedure, as 

well as the characterization of such compounds is described below. 

Mo3S7(dnbpy)(dmit)2, (29) 

To a solution of Mo3S7Br4(dnbpy) (300 mg, 0.24 

mmol) in CH2Cl2 (75 mL), 1.1 equivalents of 

(Bu4N)2[Zn(dmit)2] (252 mg, 0.27 mmol) were 

added. The solution was stirred for 6 h at room 

temperature. The dark red mixture was filtered, 

and the filtrate was taken to dryness by rotary 

evaporation. The sticky dark residue was thoroughly washed with methanol, water, 

acetonitrile, and diethyl ether. A dark powder was obtained. The reaction is almost 

quantitative. Yield:  315 mg (99 %).  

Elemental analysis (%) calcd. for C34H44Mo3N2S17: C, 31.09; H, 3.38; N, 2.13; S, 41.50; 

found C, 31.3; H, 3.7; N, 2.1; S, 41.2.  

IR (KBr, cm–1): 2920 (s, Csp3-H), 2849 (s, Csp3-H), 1613 (m, C=C), 1542 (w, C=C), 

1457 (m, C=C), 1417 (m, C=C), 1053 (s, C=S), 1023 (s, C-S), 516 (w, Seq-Sax), 420 

(w, Mo-µ3S).  

UV/Vis (DMSO): max () = 326 sh (17 550), 492 (11 665) nm (M–1cm–1). 
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Mo3S7(dcmbpy)(dmit)2, (30) 

To a solution of (Bu4N)[Mo3S7Br5(dcmbpy)] 

(360 mg, 0.25 mmol) in CH2Cl2 (60 mL), solid 

(Bu4N)2[Zn(dmit)2] (240 mg, 0.25 mmol) was 

added in one portion. The dark purple mixture 

was stirred for 6.5 h at room temperature. After 

filtration, the solution was taken to dryness by 

rotary evaporation. The sticky dark residue was 

thoroughly washed with methanol, water, hot acetonitrile (until colorless filtrate), and 

diethyl ether. A dark powder, insoluble in common organic solvents, was obtained. 

Yield: 240 mg (82 %).  

Elemental analysis (%) calcd. for C20H12Mo3N2O4S17: C, 20.40; H, 1.03; N, 2.38; 

found: C, 20.4; H, 1.3; N, 2.4.  

IR (KBr, cm–1): 1732 (s, C=O), 1617 (m, C=C), 1542 (w, C=C), 1437 (m, C=C), 1267 

(m, C-O), 1053 (s, C=S), 1029 (s, C-S), 517 (w, Seq-Sax), 420 (w, Mo-µ3S).  

UV/Vis (DMSO): max () = 326 sh (6730), 490 (4513) nm (M–1cm–1). 

Mo3S7(dcbpy)(dmit)2, (31) 

The synthesis of the title compound was carried 

out in two steps. The cluster complex 

(Bu4N)2[Mo3S7Br6] (500 mg, 0.34 mmol) and 

5.5 equivalents of 2,2’-bipyridine-4,4’-

dicarboxylic acid (460 mg, 1.88 mmol) were 

mixed with degassed DMF (100 mL). The 

mixture was heated to 125-130 ºC for 20 h. The 

red solution, presumably containing the species (Bu4N)[Mo3S7Br4(dcbpy)·Br], was 

allowed to cool to room temperature. The excess of ligand precipitated as a white 
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crystalline solid, which was not removed. To this suspension, 1.1 equivalents of solid 

(Bu4N)2[Zn(dmit)2] (353 mg, 0.37 mmol) were added. The deep purple mixture was 

stirred overnight at room temperature. The white solid was removed by filtration, 

and the filtrate was concentrated by rotary evaporation. The solution was cooled to -

30 ºC to allow the complete precipitation of the excess of the ligand. After filtration, 

the solution was taken to dryness by rotary evaporation. Then the dark residue was 

thoroughly washed with methanol, water, hot acetonitrile and diethyl ether to afford 

a dark powder, insoluble in common organic solvents. Yield: 290 mg (74 %).  

Elemental analysis (%) calcd. for C18H8Mo3N2O4S17: C, 18.81; H, 0.70; N, 2.44; 

found: C, 18.5; H, 1.0; N, 2.5.  

IR (KBr, cm–1): 3446 (br, OH), 1716 (m, C=O), 1542 (m, C=C), 1458 (m, C=C), 

1053 (s, C=S), 516 (w, Seq-Sax), 416 (m, Mo-µ3S). 

UV/Vis (DMSO): max () = 336 sh (12 181), 484 (5475) nm (M–1cm–1). 

[Mo3S7(dmphen)(dtc)2·Br](PF6), ([32·Br](PF6)) 

The cluster (Bu4N)2[Mo3S7Br6] (50 mg, 

0.034 mmol) and 5,6-dimethyl-1,10-

phenanthroline (38 mg, 0.18 mmol) were 

dissolved in 10 ml of CH2Cl2. The mixture 

was refluxed for 1 h. Then solid 

Na(dtc)·3H2O (16 mg, 0.071 mmol) was 

added to the red solution. The mixture was 

refluxed for further 1 h. The solution was filtered and evaporated to dryness. The 

solid was washed with CH3OH and Et2O, and dissolved in the minimum amount 

of CH2Cl2.  This solution was loaded on a silica gel column and washed with 

CH2Cl2. After that, a red fraction was eluted with a saturated solution of KPF6 in 

acetone, and evaporated to dryness. The product was dissolved in CH2Cl2. The 
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KPF6 and KBr salts were filtered off, the solution was concentrated, and the 

product was precipitated with diethyl ether. The precipitate was successively 

washed with H2O, EtOH, iPrOH and Et2O. Yield: 30 mg (70 %). 

ESI(-) MS (CH2Cl2/CH3CN, 20V): m/z = 1096 [MBr]+, 1052 [MCl]+. 

Elemental analysis (%) calcd. for C24H32N4BrF6PMo3S11: C, 23.2; H, 2.6; N, 4.5; 

S, 28.4; found: C, 23.4; H, 3.2; N, 4.1; S, 28.5. 

IR (KBr, cm-1): 2963 (m), 2927 (m), 2862 (w), 1512 (s), 1435 (s), 1355 (m), 1274 

(s), 1205 (m), 1148 (w), 1077 (m), 1039 (w), 913 (w), 805 (s), 721 (m), 524 (m), 

400 (w). 
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7.2. STRUCTURAL DETERMINATION 

7.2.1. GENERAL REMARKS 

The methods used for the diffraction data collection, as well as the solution and the 

refinement of the structures are described in this section. The solid structure of the 

compounds was determined by X-ray diffraction. In virtually all cases diffraction data 

were collected at 200 K on an Agilent Supernova diffractometer equipped with an 

Atlas CCD detector. Data were integrated with the CrysAlisPro program.15 Mo-Kα 

radiation ( = 0.71073 Å) or Cu-Kα radiation (λ = 1.54180 Å) were employed. No 

instrument or crystal instabilities were observed during data collection. Absorption 

corrections based on the multi-scan method were applied.16 In general, structures 

were solved by charge-flipping methods using Superflip,17 and refined by the least 

squares method using SHELXL-2013.18 Olex2 1.2 software package was used for 

both the solution and the refinement of the structures.19 For structures (Bu4N)[22·Br] 

and [32·Br](PF6), diffraction data were collected on a Bruker CCD diffractometer. 

These structures were solved by the Patterson method or direct methods, respectively 

using SHELXS-97, and refined by least squares using SHELXL-97. The SHELXTL 

software package was used for both the solution and the refinement of the latter 

structures.18 

The crystallographic data and structure refinement parameters are given for 

each compound. Unless otherwise stated, the non-hydrogen atoms were refined 

anisotropically. The hydrogen atoms bonded to carbon were included at their 

idealized positions and refined as riders with isotropic displacement parameters 

assigned as 1.2 times the Ueq value of the corresponding bonding partner (1.5 for the 

methyl groups). Disordering was modelled by expressing the occupation factors of 

the atoms in terms of a “free variable” so that their sum was contrained to 1, and 

their Uij parameters were equated using the EADP constraint. The structural figures 

were drawn by using ORTEP3 v2.02.20 For trinuclear clusters, the axial sulfide ligands 

(Sax) are designated by S(3), S(5) and S(7), whereas those which lie in the equatorial 
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plane (Seq) are designated by S(2), S(4) and S(6). The apical sulfurs (Sap) are labeled as 

S(1). 
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7.2.2. STRUCTURE OF BIS(DITHIOLENE) MOLYBDENUM AND 
TUNGSTEN CLUSTERS 

7.2.2.1. STRUCTURE OF (Et4N)2[Mo2O2S2(BPyDTS2)2], ((Et4N)2[4]) 

Brown needle-like single crystals of compound (Et4N)2[4] were obtained by slow 

diffusion of diethyl ether into a sample solution in DMF, and the solid structure was 

determined by X-ray diffraction. The structure of (Et4N)2[4] was refined in the 

monoclinic space group C2/c. All non-hydrogen atoms were refined anisotropically. 

Figure 7.1 shows its ORTEP representation with the atom numbering scheme. No 

cocrystallized solvents were found.  The equivalent positions were generated by 

symmetry, applying the rule (1-x, y, 3/2 - z). The crystallographic data collection 

parameters are given in Table 7.1.1. 

 

Figure 7.1. ORTEP representation (50 % probability ellipsoids) of the anionic dinuclear 
cluster [4]2- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.8435(9); Mo-
(µ-S), 2.3273(14); Mo=O, 1.687(3); Mo-Sligand, 2.4315(14). 
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Table 7.1.1. Crystal Structure Data 

Crystal Data 

  
Species (Et4N)2[Mo2O2S2(BPyDTS2)2] 
Formula C44H56Mo2N6O2S10 Crystal system monoclinic 
Space group C2/c   Formula 

weight 
1213.43 

a (Å) 29.411(2)  (º) 90 

b (Å) 9.4996(4)  (º) 114.965 

c (Å) 21.3574(15)  (º) 90 

Z 4 Vol (Å3) 5409.7(6) 
Colour brown Crystal size 

(mm) 
0.4411 × 0.0638 
× 0.0272 

dcalc (mg/mm3) 1.490  (Å) 0.71073 

Absorption 
coefficient (mm-1) 

0.891 F (000) 2488.0 

 
Experimental Data 

    
Temperature (K) 220 R(int) 0.0795 
Time per frame (s) 22 R () 0.0792 

2 Range (º) 5.74 to 58.82 Index ranges -38 ≤ h ≤ 40 
-12 -≤ k ≤ 12 
-27 -≤ l ≤ 28 

Collected 
reflections 

31083 Independent 
reflections 

6874 

 
Solution and Refinement 

    
Parameters 293 GooF on F2 1.059 
Restraints 0   
Final R1 ([I>2sigma(I)]) 0.0598 Final R1 (all data) 0.1168 
Final wR2 
([I>2sigma(I)]) 

0.1194 Final wR2 (all data) 0.1512 

Max/Min peak (e·Å-3) 1.56 / -0.59 Max. shift/ 0.002 
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Table 7.1.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo1 Mo1i 2.8436(9)  S3 C2 1.747(5) 

Mo1 S1i 2.3250(13)  C4 C5 1.458(7) 

Mo1 S1 2.3298(14)  C4 C3 1.343(7) 

Mo1 S2 2.4401(14)  N1 C5 1.354(6) 
Mo1 S3 2.4224(14)  N1 C9 1.329(7) 

Mo1 O1 1.687(3)  C5 C6 1.397(7) 
S5 C3 1.771(5)  C2 C1 1.321(7) 
S5 C2 1.756(5)  C8 C7 1.363(8) 

S4 C3 1.773(5)  C9 C8 1.378(8) 

S4 C1 1.763(5)  C6 C7 1.369(8) 
S1 Mo1i 2.3250(13)  C10 C4 1.509(7) 

S2 C1 1.759(5)     

 

i Equivalent positions generated by symmetry, applying the rule (1-x, y, 3/2-z) 
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Table 7.1.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S1 Mo1 Mo1i 52.27(3)  C8 C7 C6 120.5(6) 

S11 Mo1 Mo1i 52.42(3)  C5 C4 C10 118.0(4) 

S11 Mo1 S1 99.46(5)  C3 C4 C10 118.2(4) 

S1 Mo1 S2 148.12(5)  C3 C4 C5 123.6(5) 
S11 Mo1 S2 79.77(5)  C9 N1 C5 117.9(5) 

S11 Mo1 S3 142.93(5)  N1 C5 C4 115.8(4) 
S1 Mo1 S3 78.43(5)  N1 C5 C6 121.0(5) 
S2 Mo1 Mo1i 131.61(4)  C6 C5 C4 123.2(5) 

S3 Mo1 Mo1i 129.16(4)  S5 C3 S4 113.1(3) 

S3 Mo1 S2 83.39(5)  C4 C3 S5 120.4(4) 
O1 Mo1 Mo1i 100.99(12)  C4 C3 S4 126.4(4) 

O1 Mo1 S1 107.91(13)  S3 C2 S5 118.9(3) 
O1 Mo1 S1i 109.89(12)  C1 C2 S5 117.0(4) 

O1 Mo1 S2 102.12(13)  C1 C2 S3 123.9(4) 

O1 Mo1 S3 105.80(12)  S2 C1 S4 119.2(3) 
C2 S5 C3 95.7(2)  C2 C1 S4 118.4(4) 
C1 S4 C3 94.7(2)  C2 C1 S2 122.2(4) 

Mo1i S1 Mo1 75.31(4)  N1 C9 C8 124.1(6) 

C1 S2 Mo1 103.39(17)  C7 C6 C5 118.8(5) 
C2 S3 Mo1 103.60(17)  C7 C8 C9 117.5(6) 

 

i Equivalent positions generated by symmetry, applying the rule (1-x, y, 3/2-z) 
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7.2.2.2. STRUCTURE OF (PPN)2[Mo2S4(pdt)2], ((PPN)2[6]) 

Single crystals of compound (PPN)2[6] were obtained by slow diffusion of 

dichloromethane into a toluene solution of the sample. The structure of (PPN)2[6] 

was refined in the triclinic space group P-1. All non-hydrogen atoms were refined 

anisotropically. Figure 7.2 shows its ORTEP representation with the atom numbering 

scheme. Dichloromethane was found cocrystallized with the cluster complex. In 

addition, the crystal structure contains disordered solvent molecules. In spite of 

several attempts, the electronic density in this area could not be resolved satisfactorily. 

Therefore the contribution of the disordered solvent species was subtracted from the 

structure factor calculations by using the solvent mask21 instruction in the program 

Olex2 1.2. The crystallographic data collection parameters are given in Table 7.2.1. 

 

Figure 7.2.  ORTEP representation (50 % probability ellipsoids) of the anionic dinuclear 
cluster [6]2- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.8531(4); Mo-
(µ-S), 2.3204(10); Mo=S, 2.1198(2); Mo-Sligand, 2.4139(10). 
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Table 7.2.1.  Crystal Structure Data 

Crystal Data 

  
Species (PPN)2[Mo2S4(pdt)2]·CH2Cl2 
Formula C81H68Cl2Mo2N6P4S8 Crystal system triclinic 
Space group P-1 Formula 

weight 
1766.53 

a (Å) 12.2417(2)  (º) 74.0845 

b (Å) 17.5979(3)  (º) 79.6296 

c (Å) 20.8957(3)  (º) 71.4901 

Z 2 Vol (Å3) 4083.64(11) 
Colour dark red Crystal size 

(mm) 
0.593  0.081  

 0.055 
dcalc (g/cm3) 1.437  (Å) 1.54184 

Absorption 
coefficient (mm-1) 

6.138 F (000) 1800 

    
Experimental Data 

    
Temperature (K) 200 R(int) 0.0478 
Time per frame (s) 5 R () 0.0255 

2 Range (º) 6.16 to 129.32 Index ranges -14 ≤ h ≤ 14 
-20 ≤ k ≤ 20 
-24 ≤ l ≤ 24 

Collected 
reflections 

64062 Independent 
reflections 

13580 

 
Solution and Refinement 

    
Parameters 928 GooF on F2 1.083 
Restraints 0   
Final R1 ([I>2sigma(I)]) 0.0598 Final R1 (all data) 0.1599 
Final wR2 ([I>2sigma(I)]) 0.0648 Final wR2 (all data) 0.1684 
Max/Min peak (e·Å-3) 1.34 / -0.54 Max. shift/ 0.001 
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Table 7.2.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo1 Mo2 2.8531(4)  S5A C1A 1.747(4) 

Mo1 S6A 2.3951(10)  N1B C1B 1.324(5) 

Mo1 S3 2.3187(9)  N1B C3B 1.336(6) 

Mo1 S1 2.1145(10)  C2B C1B 1.423(6) 
Mo1 S4 2.3258(10)  C2B N2B 1.333(5) 

Mo1 S5A 2.4283(10)  N2B C4B 1.338(6) 
Mo2 S6B 2.4233(10)  N2A C2A 1.337(6) 
Mo2 S3 2.3232(10)  N2A C4A 1.338(7) 

Mo2 S2 2.1250(10)  C2A C1A 1.405(7) 

Mo2 S4 2.3138(10)  C4A C3A 1.359(9) 
Mo2 S5B 2.4083(9)  N1A C1A 1.330(6) 

S6A C2A 1.741(5)  N1A C3A 1.343(7) 
S6B C2B 1.743(4)  C3B C4B 1.376(7) 

S5B C1B 1.738(4)     
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Table 7.2.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S6A Mo1 Mo2 126.08(3)  S5B Mo2 Mo1 127.32(3) 

S6A Mo1 S5A 82.02(4)  S5B Mo2 S6B 82.03(3) 

S3 Mo1 Mo2 52.15(2)  C2A S6A Mo1 106.67(15) 

S3 Mo1 S6A 140.09(4)  C2B S6B Mo2 106.24(14) 
S3 Mo1 S4 100.46(3)  Mo1 S3 Mo2 75.85(3) 

S3 Mo1 S5A 79.86(3)  Mo2 S4 Mo1 75.90(3) 
S1 Mo1 Mo2 104.33(3)  C1B S5B Mo2 107.07(14) 
S1 Mo1 S6A 108.12(4)  C1A S5A Mo1 106.05(15) 

S1 Mo1 S3 110.35(4)  C1B N1B C3B 116.3(4) 

S1 Mo1 S4 107.08(4)  C1B C2B S6B 120.6(3) 
S1 Mo1 S5A 102.39(4)  N2B C2B S6B 117.9(3) 

S4 Mo1 Mo2 51.86(2)  N2B C2B C1B 121.5(4) 
S4 Mo1 S6A 77.75(4)  N1B C1B S5B 119.0(3) 

S4 Mo1 S5A 148.19(4)  N1B C1B C2B 121.3(4) 

S5A Mo1 Mo2 130.67(3)  C2B C1B S5B 119.7(3) 
S6B Mo2 Mo1 128.78(3)  C2B N2B C4B 116.1(4) 
S3 Mo2 Mo1 52.00(2)  C2A N2A C4A 115.6(5) 

S3 Mo2 S6B 146.71(4)  N2A C2A S6A 117.9(4) 

S3 Mo2 S5B 78.58(3)  N2A C2A C1A 121.1(4) 
S2 Mo2 Mo1 103.14(3)  C1A C2A S6A 121.0(3) 
S2 Mo2 S6B 105.75(4)  N2A C4A C3A 123.3(5) 

S2 Mo2 S3 105.72(4)  C1A N1A C3A 115.9(5) 
S2 Mo2 S4 110.31(4)  C2A C1A S5A 119.6(3) 
S2 Mo2 S5B 107.24(4)  N1A C1A S5A 118.2(4) 

S4 Mo2 Mo1 52.24(3)  N1A C1A C2A 122.1(4) 
S4 Mo2 S6B 78.18(4)  N1A C3A C4A 121.9(5) 

S4 Mo2 S3 100.68(4)      

S4 Mo2 S5B 141.02(4)      
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7.2.2.3. STRUCTURE OF (Et4N)2[Mo2O2S2(pdt)2], ((Et4N)2[7]) 

Single crystals of compound (Et4N)2[7] were obtained by slow diffusion Et2O/DMF. 

The structure of (Et4N)2[7] was refined in the orthorhombic space group P212121. All 

non-hydrogen atoms were refined anisotropically. Figure 7.3 shows its ORTEP 

representation with the atom numbering scheme. Owing to disorder, the exclusion 

of the hydrogen atoms for the CH2/CH3 groups in the most disordered alkyl chains 

in the tetraethylammonium counterion (those centered at N(300) and N(400)) was 

considered as justified. The crystallographic data collection parameters are given in 

Table 7.3.1. 

 

Figure 7.3.  ORTEP representation (50 % probability ellipsoids) of the anionic dinuclear 
cluster [7]2- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.8622(9); Mo-
(µ-S), 2.3258(2); Mo=O, 1.680(6); Mo-Sligand, 2.4283(2). 
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Table 7.3.1.  Crystal Structure Data 

Crystal Data 

  
Species (Et4N)2[Mo2O2S2(pdt)2] 
Formula C24H44Mo2N6O2S6 Crystal system orthorhombic 
Space group P212121 Formula weight 832.89 
a (Å) 25.2807(5)  (º) 90.00 

b (Å) 16.3588(3)  (º) 90.00 

c (Å) 16.7295(2)  (º) 90.00 

Z 8 Vol (Å3) 6918.7(2) 
Colour yellow Crystal size 

(mm) 
0.171 × 0.139 
× 0.0747 

dcalc (mg/mm3) 1.599  (Å) 0.71073 

Absorption 
coefficient (mm-1) 

1.119 F (000) 3408.0 

 
Experimental Data 

    
Temperature (K) 220 R(int) 0.0455 
Time per frame (s) 130 R () 0.0539 

2 Range (º) 5.84 to 50 Index ranges -37 ≤ h ≤ 29 
-23 ≤ k ≤ 23 
-24 ≤ l ≤ 25 

Collected 
reflections 

39128 Independent 
reflections 

12130 

 
Solution and Refinement 

    
Parameters 729 GooF on F2 1.066 
Restraints 0   
Final R1 ([I>2sigma(I)]) 0.0484 R1 (all data) 0.0733 
Final wR2 ([I>2sigma(I)]) 0.1108 wR2 (all data) 0.1251 
Max/Min peak (e·Å-3) 0.98 / -0.51 Max. shift/ 0.003 
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Table 7.3.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo1 Mo2 2.8641(11)  N1A C1A 1.318(13) 

Mo1 S2 2.328(2)  N1A C3A 1.332(13) 
Mo1 S1 2.332(2)  C2B C1B 1.371(13) 

Mo1 S4A 2.426(2)  C4A C3A 1.361(15) 
Mo1 S3A 2.429(3)  N1B C3B 1.384(14) 

Mo1 O1 1.680(6)  N1B C1B 1.330(12) 
Mo2 S2 2.333(2)  N2B C2B 1.348(12) 
Mo2 S1 2.321(2)  N2B C4B 1.343(14) 

Mo2 S4B 2.428(3)  C3B C4B 1.333(16) 
Mo2 S3B 2.421(3)  C2A C1A 1.422(13) 
Mo2 O2 1.675(6)  S3A C1A 1.743(9) 

S4A C2A 1.748(10)  N2A C2A 1.343(12) 

S4B C2B 1.745(10)  N2A C4A 1.351(13) 
S3B C1B 1.779(10)     
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Table 7.3.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S2 Mo1 Mo2 52.17(6)  O2 Mo2 S4B 107.1(2) 

S2 Mo1 S1 100.01(9)  O2 Mo2 S3B 103.6(2) 
S2 Mo1 S4A 78.45(8)  Mo1 S2 Mo2 75.82(7) 

S2 Mo1 S3A 144.76(10)  Mo2 S1 Mo1 75.98(8) 
S1 Mo1 Mo2 51.84(6)  C2A S4A Mo1 106.2(3) 

S1 Mo1 S4A 143.45(10)  C2B S4B Mo2 105.9(3) 
S1 Mo1 S3A 78.86(9)  C1B S3B Mo2 105.3(3) 

S4A Mo1 Mo2 128.43(7)  C1A S3A Mo1 107.3(4) 

S4A Mo1 S3A 82.16(9)  C2A N2A C4A 116.7(9) 
S3A Mo1 Mo2 128.89(7)  C1B N1B C3B 114.3(10) 
O1 Mo1 Mo2 103.1(2)  C4B N2B C2B 116.9(10) 

O1 Mo1 S2 108.3(2)  C4B C3B N1B 122.6(10) 

O1 Mo1 S1 108.9(2)  N2A C2A S4A 117.7(8) 
O1 Mo1 S4A 106.1(2)  N2A C2A C1A 120.8(9) 

O1 Mo1 S3A 105.2(2)  C1A C2A S4A 121.4(7) 
S2 Mo2 Mo1 52.01(6)  C1A N1A C3A 115.6(10) 

S2 Mo2 S4B 78.69(8)  N2B C2B S4B 117.8(8) 

S2 Mo2 S3B 146.79(10)  N2B C2B C1B 120.5(9) 
S1 Mo2 Mo1 52.18(6)  C1B C2B S4B 121.7(7) 

S1 Mo2 S2 100.19(8)  N1B C1B S3B 116.4(8) 
S1 Mo2 S4B 141.85(11)  N1B C1B C2B 123.6(10) 

S1 Mo2 S3B 79.17(9)  C2B C1B S3B 119.9(7) 
S4B Mo2 Mo1 128.08(7)  N2A C4A C3A 120.4(10) 
S3B Mo2 Mo1 129.99(8)  C2A C1A S3A 119.4(7) 

S3B Mo2 S4B 81.89(9)  N1A C1A S3A 118.8(8) 

O2 Mo2 Mo1 103.0(2)  N1A C1A C2A 121.8(8) 
O2 Mo2 S2 107.7(2)  C3B C4B N2B 122.1(12) 

O2 Mo2 S1 109.4(2)  N1A C3A C4A 124.7(11) 
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7.2.2.4. STRUCTURE OF (PPN)2[W2S4(pdt)2], ((PPN)2[8]) 

Single crystals of compound (PPN)2[8] were obtained by gas diffusion Et2O/ CH2Cl2. 

The structure of (PPN)2[8] was refined in the triclinic space group P-1. Figure 7.4 

shows its ORTEP representation with the atom numbering scheme. All non-

hydrogen atoms were refined anisotropically. Dichloromethane was found 

cocrystallized with the cluster complex. In addition, the crystal structure contains 

disordered solvent molecules. In spite of several attempts, the electronic density in 

this area could not be resolved satisfactorily. Therefore the contribution of the 

disordered solvent species was subtracted from the structure factor calculations by 

using the solvent mask21 instruction in the program Olex2 1.2. The crystallographic 

data collection parameters are given in Table 7.4.1. 

 

Figure 7.4.  ORTEP representation (50 % probability ellipsoids) of the anionic dinuclear 
cluster [8]2- with the atom numbering scheme. Average distances (Å): W-W, 2.8504(2); W-(µ-
S), 2.3278(9); W=S, 2.1344(9); W-Sligand, 2.4115(9). 

 

  



CHAPTER 7 

224 
  

Table 7.4.1.  Crystal Structure Data 

Crystal Data 

  
Species (PPN)2[W2S4(pdt)2]·CH2Cl2 
Formula C81H66Cl2N6P4S8W2 Crystal 

system 
triclinic 

Space group P-1 Formula 
weight 

1942.35 

a (Å) 12.2682(5)  (º) 74.054(3) 

b (Å) 17.6185(8)  (º) 79.548(3) 

c (Å) 20.8938(7)  (º) 71.173(4) 

Z 2 Vol (Å3) 4088.6(3) 
Colour orange Crystal size 

(mm) 
0.7533  0.0757 

 0.0732 
dcalc (g/cm3) 1.578  (Å) 1.54184 

Absorption 
coefficient (mm-1) 

8.742 F (000) 1928.0 

Experimental Data 

    
Temperature (K) 200 R(int) 0.0567 
Time per frame (s) 8 R () 0.0328 

2 Range (º) 6.16 to 144.16 Index ranges -14 ≤ h ≤ 15 
-21 ≤ k ≤ 21 
-25 ≤ l ≤ 25 

Collected 
reflections 

71375 Independent 
reflections 

15803 

 
Solution and Refinement 

    
Parameters 928 GooF on F2 1.061 
Restraints 0   
Final R1 ([I>2sigma(I)]) 0.0338 Final R1 (all data) 0.0398 
Final wR2 ([I>2sigma(I)]) 0.0901 Final wR2 (all data) 0.0937 
Max/Min peak (e·Å-3) 1.33 / -1.40 Max. shift/ 0.001 
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Table 7.4.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

W1 W2 2.8504(2)  S6A C2A 1.742(4) 

W1 S4 2.3261(9)  Cl12 C10 1.757(8) 

W1 S1 2.1283(9)  N2B C2B 1.332(5) 

W1 S5A 2.3960(10)  N2B C4B 1.352(6) 
W1 S3 2.3316(9)  N2A C2A 1.334(5) 

W1 S6A 2.4247(9)  N2A C4A 1.346(6) 
W2 S4 2.3293(8)  C1B N1B 1.329(5) 
W2 S6B 2.4077(9)  C1B C2B 1.417(6) 

W2 S5B 2.4175(9)  N1B C3B 1.339(6) 

W2 S2 2.1404(9)  N1A C3A 1.353(7) 
W2 S3 2.3242(10)  N1A C1A 1.338(6) 

S6B C2B 1.745(4)  C2A C1A 1.414(6) 
S5B C1B 1.741(4)  C4B C3B 1.368(7) 

S5A C1A 1.739(4)  C3A C4A 1.359(8) 
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Table 7.4.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S4 W1 W2 52.30(2)  S3 W2 S6B 141.10(3) 

S4 W1 S5A 139.96(4)  S3 W2 S5B 78.01(3) 
S4 W1 S3 101.05(3)  W1 S4 W2 75.51(3) 

S4 W1 S6A 79.56(3)  C2B S6B W2 106.72(14) 
S1 W1 W2 104.69(3)  C1B S5B W2 106.45(13) 

S1 W1 S4 110.37(4)  C1A S5A W1 106.64(15) 
S1 W1 S5A 108.16(4)  W2 S3 W1 75.50(3) 
S1 W1 S3 106.89(4)  C2A S6A W1 106.03(13) 

S1 W1 S6A 102.30(4)  C2B N2B C4B 115.8(4) 
S5A W1 W2 125.90(3)  C2A N2A C4A 116.1(4) 
S5A W1 S6A 82.06(3)  N1B C1B S5B 118.5(3) 

S3 W1 W2 52.13(2)  N1B C1B C2B 121.2(4) 

S3 W1 S5A 77.54(3)  C2B C1B S5B 120.3(3) 
S3 W1 S6A 148.36(3)  C1B N1B C3B 116.0(4) 

S6A W1 W2 130.45(2)  N2B C2B S6B 117.9(3) 
S4 W2 W1 52.19(2)  N2B C2B C1B 122.0(4) 

S4 W2 S6B 78.45(3)  C1B C2B S6B 120.1(3) 

S4 W2 S5B 146.92(3)  C1A N1A C3A 115.6(5) 
S6B W2 W1 127.22(2)  N2A C2A S6A 118.9(3) 

S6B W2 S5B 82.08(3)  N2A C2A C1A 121.5(4) 
S5B W2 W1 128.65(3)  C1A C2A S6A 119.5(3) 

S2 W2 W1 103.89(3)  N2B C4B C3B 121.6(4) 
S2 W2 S4 105.94(4)  N1A C3A C4A 122.7(5) 
S2 W2 S6B 106.92(4)  N1A C1A S5A 117.7(4) 

S2 W2 S5B 105.19(4)  N1A C1A C2A 121.5(4) 

S2 W2 S3 110.38(4)  C2A C1A S5A 120.8(3) 
S3 W2 W1 52.37(2)  N2A C4A C3A 122.5(4) 

S3 W2 S4 101.17(3)  N1B C3B C4B 123.3(4) 
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7.2.2.5. STRUCTURE OF (PPN)2[W2O2S2(pdt)2], ((PPN)2[9])  

Single crystals of compound (PPN)2[9] were obtained by slow diffusion 

Et2O/CH3CN. The structure of (PPN)2[9] was refined in the triclinic space group P-

1. Figure 7.5 shows its ORTEP representation with the atom numbering scheme. All 

non-hydrogen atoms were refined anisotropically. Acetonitrile was found 

cocrystallized with the cluster complex. A relatively high residual density peak (3.74 

electrons per Å3) can be found nearby a tungsten atom, which is considered as 

justified. The crystallographic data collection parameters are given in Table 7.5.1. 

 

Figure 7.5.  ORTEP representation (50 % probability ellipsoids) of the anionic dinuclear 
cluster [9]2- with the atom numbering scheme. Average distances (Å): W-W, 2.84137(19); W-
(µ-S), 2.3315(8); W=O, 1.737(3); W-Sligand, 2.4183(8). 

 

  



CHAPTER 7 

228 
  

Table 7.5.1.  Crystal Structure Data 

Crystal Data 

  
Species (PPN)2[W2O2S2(pdt)2]·2CH3CN 
Formula C84H71N8O2P4S6W2 Crystal 

system 
triclinic 

Space group P-1 Formula 
weight 

1908.42 

a (Å) 12.0249(3)  (º) 73.616(2) 

b (Å) 17.7279(5)  (º) 79.331(2) 

c (Å) 20.7210(5)  (º) 71.884(3) 

Z 2 Vol (Å3) 4004.7(2) 
Colour brown Crystal size 

(mm) 
0.391  0.303  

 0.162 
dcalc (g/cm3) 1.5  (Å) 0.71073 

Absorption 
coefficient (mm-1) 

3.159 F (000) 1902.0 

Experimental Data 
    
Temperature (K) 200 R(int) 0.0487 
Time per frame (s) 5 R () 0.0224 

2 Range (º) 5.66 to 53.0 Index ranges -15 ≤ h ≤ 15 
-22 ≤ k ≤ 22 
-26 ≤ l ≤ 26 

Collected 
reflections 

164803 Independent 
reflections 

16575 

 
Solution and Refinement 

    
Parameters 957 GooF on F2 1.073 
Restraints 0   
Final R1 ([I>2sigma(I)]) 0.0243 Final R1 (all data) 0.0332 
Final wR2 ([I>2sigma(I)]) 0.0561 Final wR2 (all data) 0.0626 
Max/Min peak (e·Å-3) 3.74 / -0.90 Max. shift/ 0.002 
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Table 7.5.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

W2 W1 2.84137(19)  N1A C1A 1.323(4) 

W2 S1 2.3306(8)  N1A C3A 1.339(5) 

W2 S2 2.3331(8)  N2A C2A 1.328(4) 

W2 S4B 2.4341(8)  N2A C4A 1.345(5) 
W2 S3B 2.3990(8)  C2A C1A 1.423(5) 

W2 O2 1.738(2)  N2B C2B 1.333(4) 
W1 S3A 2.4228(9)  N2B C4B 1.338(5) 
W1 S1 2.3277(8)  C1B N1B 1.329(5) 

W1 S2 2.3353(8)  C1B C2B 1.407(5) 

W1 S4A 2.4172(8)  N1B C3B 1.337(6) 
W1 O1 1.736(3)  C11 N10 1.116(6) 

S3A C1A 1.744(3)  C11 C12 1.410(6) 
S4A C2A 1.743(3)  C3B C4B 1.373(7) 

S4B C2B 1.751(4)  C21 N20 1.109(6) 

S3B C1B 1.740(4)  C21 C22 1.433(7) 
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Table 7.5.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S1 W2 W1 52.37(2)  O1 W1 S4A 105.89(8) 

S1 W2 S2 101.49(3)  C1A S3A W1 106.32(11) 

S1 W2 S4B 148.36(3)  W1 S1 W2 75.17(2) 

S1 W2 S3B 76.95(3)  W2 S2 W1 74.98(2) 
S2 W2 W1 52.54(2)  C2A S4A W1 106.50(11) 

S2 W2 S4B 80.18(3)  C2B S4B W2 105.95(12) 
S2 W2 S3B 140.52(3)  C1B S3B W2 106.83(12) 

S4B W2 W1 131.33(2)  C2A N2A C4A 115.5(3) 

S3B W2 W1 125.78(2)  N2A C2A S4A 118.3(3) 

S3B W2 S4B 82.06(3)  N2A C2A C1A 121.5(3) 
O2 W2 W1 104.01(8)  C1A C2A S4A 120.2(2) 

O2 W2 S1 106.19(9)  C2B N2B C4B 116.0(4) 
O2 W2 S2 110.31(8)  N1A C1A S3A 117.7(3) 

O2 W2 S4B 102.61(9)  N1A C1A C2A 121.9(3) 

O2 W2 S3B 107.85(8)  C2A C1A S3A 120.3(2) 
S3A W1 W2 128.38(2)  N1B C1B S3B 117.1(3) 
S1 W1 W2 52.46(2)  N1B C1B C2B 121.8(3) 

S1 W1 S3A 77.48(3)  C2B C1B S3B 121.1(3) 

S1 W1 S2 101.51(3)  C1B N1B C3B 116.1(4) 
S1 W1 S4A 142.65(3)  N2B C2B S4B 118.9(3) 
S2 W1 W2 52.474(19)  N2B C2B C1B 121.4(3) 

S2 W1 S3A 147.41(3)  C1B C2B S4B 119.7(3) 
S2 W1 S4A 79.73(3)  N1A C3A C4A 122.9(4) 

S4A W1 W2 129.26(2)  N2A C4A C3A 122.6(4) 

S4A W1 S3A 82.16(3)  N10 C11 C12 179.5(6) 
O1 W1 W2 103.19(8)  N1B C3B C4B 122.2(4) 

O1 W1 S3A 104.77(9)  N2B C4B C3B 122.4(4) 

O1 W1 S1 109.40(9)  N20 C21 C22 176.3(6) 
O1 W1 S2 106.14(9)      
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7.2.3. STRUCTURE OF TRIS(DITHIOLENE) MOLYBDENUM 
CLUSTERS  

7.2.3.1. STRUCTURE OF (PPN)2[Mo3S7(met)3], ((PPN)2[10]) 

Single crystals of compound (PPN)2[10] were obtained by slow diffusion 

Et2O/CH3CN. The structure of (PPN)2[10] was refined in the triclinic space group 

P-1. All non-hydrogen atoms were refined anisotropically. Figure 7.6 shows its 

ORTEP representation with the atom numbering scheme. The bond distances of the 

atoms C(18), C(19), O(11) and C(12) contained in the dithiolene ligand coordinated 

to Mo(1) were restrained to a fixed value. The oxygen atoms O(9), O(10), O(11) and 

O(12), as well as the carbon atoms C(16) and C(19), contained in the latter dithiolate 

were refined with a partial occupancy of 0.66, 0.82, 0.33, 0.60, 0.80 and 0.91, 

respectively. In the dithiolene ligand coordinated to Mo(2), the methyl group close to 

O(2) was found disordered over two positions with partial occupations of 0.38 and 

0.62. In the PPN+ counterion, the phenyl groups close to P(100) and P(300) were 

refined with a partial occupancy of 0.75. Relatively high residual peaks whose density 

lies between 3.49 and 2.24 electrons per Å3 can be found nearby the metal atoms of 

the cluster core. This is considered as justified. The crystallographic data collection 

parameters are given in Table 7.6.1. 

 

Figure 7.6.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [10]2- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7744(10); 
Mo-(µ3-S), 2.372(2); Mo-Sax, 2.404(2); Mo-Seq, 2.529(2); Mo-Sligand, 2.461(2). 
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Table 7.6.1.  Crystal Structure Data 

Crystal Data 

  
Species (PPN)2[Mo3S7(met)3] 
Formula C85.2H57.8Mo3N2O10.4P4S13 Crystal 

system 
triclinic 

Space group P-1 Formula 
weight 

2104.62 

a (Å) 14.3667(3)  (º) 100.9205(18) 

b (Å) 17.4281(4)  (º) 103.1263(18) 

c (Å) 21.4529(4)  (º) 91.3941 

Z 2 Vol (Å3) 5123.61(19) 
Colour dark red Crystal size 

(mm) 
0.3242  0.199 

 0.1033 
dcalc (g/cm3) 1.364  (Å) 0.71073 

Absorption 
coefficient (mm-1) 

0.740 F (000) 2121.0 

 
Experimental Data 

    
Temperature (K) 200 R(int) 0.0527 
Time per frame 
(s) 

50 R () 0.0550 

2 Range (º) 5.56 to 50 Index ranges - 19 ≤ h ≤ 19   
- 22 ≤ k ≤ 24     
- 29 ≤ l ≤ 28 

Collected 
reflections 

90383 Independent 
reflections 

18020 

 
Solution and Refinement 

    
Parameters 1123 GooF on F2 1.079 
Restraints 22   
Final R1 ([I>2sigma(I)]) 0.0887 Final R1 (all data) 0.1137 
Final wR2 
([I>2sigma(I)]) 

0.2536 Final wR2 (all data) 0.2900 

Max/Min peak (e·Å-3) 3.48 / -0.89 Max. shift/ <0.001 
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Table 7.6.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo3 Mo1 2.7807(9)  Mo1 S6 2.525(2) 

Mo3 Mo2 2.7713(10)  Mo1 S13 2.483(2) 

Mo3 S10 2.432(2)  Mo2 S1 2.365(2) 

Mo3 S11 2.501(2)  Mo2 S3 2.405(2) 
Mo3 S5 2.409(2)  Mo2 S7 2.406(2) 

Mo3 S1 2.377(2)  Mo2 S6 2.531(2) 
Mo3 S3 2.409(2)  Mo2 S2 2.525(2) 
Mo3 S4 2.534(2)  Mo2 S9 2.491(3) 

Mo3 S2 2.521(2)  Mo2 S8 2.420(3) 

Mo1 Mo2 2.7711(10)  S10 C8 1.767(8) 
Mo1 S5 2.398(2)  S11 C11 1.748(8) 

Mo1 S1 2.374(2)  S5 S4 2.040(3) 
Mo1 S4 2.537(2)  S3 S2 2.041(3) 

Mo1 S7 2.397(2)  S7 S6 2.036(3) 

S13 C17 1.746(11)  S12 C14 1.769(10) 
Mo1 S12 2.441(2)  S9 C5 1.724(12) 
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Table 7.6.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo2 Mo3 Mo1 59.88(2)  S7 Mo2 Mo1 54.62(6) 

S10 Mo3 Mo1 121.25(6)  S7 Mo2 S6 48.62(7) 

S10 Mo3 Mo2 122.50(6)  S7 Mo2 S2 132.09(8) 

S10 Mo3 S11 81.97(7)  S7 Mo2 S9 85.47(9) 
S10 Mo3 S4 89.25(8)  S7 Mo2 S8 135.78(8) 

S10 Mo3 S2 91.01(8)  S6 Mo2 Mo3 116.87(6) 
S11 Mo3 Mo1 139.95(7)  S6 Mo2 Mo1 56.65(6) 
S11 Mo3 Mo2 137.95(6)  S2 Mo2 Mo3 56.63(6) 

S11 Mo3 S4 95.23(8)  S2 Mo2 Mo1 116.78(6) 

S11 Mo3 S2 92.88(8)  S2 Mo2 S6 172.57(8) 
S5 Mo3 Mo1 54.48(5)  S9 Mo2 Mo3 138.43(6) 

S5 Mo3 Mo2 95.11(6)  S9 Mo2 Mo1 139.64(7) 
S5 Mo3 S10 134.70(9)  S9 Mo2 S6 94.06(8) 

S5 Mo3 S11 85.72(8)  S9 Mo2 S2 93.37(8) 

S5 Mo3 S4 48.68(7)  S8 Mo2 Mo3 121.42(7) 
S5 Mo3 S2 133.17(8)  S8 Mo2 Mo1 119.77(7) 
S1 Mo3 Mo1 54.12(5)  S8 Mo2 S6 89.77(8) 

S1 Mo3 Mo2 54.05(6)  S8 Mo2 S2 91.22(8) 

S1 Mo3 S10 80.16(7)  S8 Mo2 S9 83.16(10) 
S1 Mo3 S11 162.05(7)  C8 S10 Mo3 106.9(3) 
S1 Mo3 S5 108.22(7)  C11 S11 Mo3 105.5(3) 

S1 Mo3 S3 108.40(8)  Mo1 S5 Mo3 70.68(6) 
S1 Mo3 S4 86.26(8)  S4 S5 Mo3 68.86(9) 
S1 Mo3 S2 85.74(8)  S4 S5 Mo1 69.18(9) 

S3 Mo3 Mo1 95.61(5)  Mo1 S1 Mo3 71.66(6) 
S3 Mo3 Mo2 54.80(5)  Mo2 S1 Mo3 71.53(6) 

S3 Mo3 S10 136.30(8)  Mo2 S1 Mo1 71.57(6) 

S3 Mo3 S11 83.59(8)  Mo2 S3 Mo3 70.30(6) 
S3 Mo3 S5 84.64(8)  S2 S3 Mo3 68.47(9) 

S3 Mo3 S4 133.11(8)  S2 S3 Mo2 68.65(9) 

S3 Mo3 S2 48.84(8)  Mo3 S4 Mo1 66.51(6) 
S4 Mo3 Mo1 56.80(5)  S5 S4 Mo3 62.46(9) 

S4 Mo3 Mo2 116.63(5)  S5 S4 Mo1 62.08(8) 
S2 Mo3 Mo1 116.57(6)  Mo1 S7 Mo2 70.47(6) 

S2 Mo3 Mo2 56.76(5)  S6 S7 Mo1 68.87(9) 
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Table 7.6.3. [cont.] Bond Angles 

Atom  Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S2  Mo3 S4 171.84(7)  S13 Mo1 Mo3 137.89(7) 

Mo2  Mo1 Mo3 59.89(2)  S13 Mo1 Mo2 139.62(7) 

S5  Mo1 Mo3 54.84(5)  S13 Mo1 S4 92.86(8) 

S5  Mo1 Mo2 95.36(6)  S13 Mo1 S6 94.34(8) 
S5  Mo1 S4 48.74(7)  Mo1 Mo2 Mo3 60.23(2) 

S5  Mo1 S12 136.82(9)  S1 Mo2 Mo3 54.43(5) 
S5  Mo1 S6 131.65(7)  S1 Mo2 Mo1 54.36(5) 
S5  Mo1 S13 83.49(8)  S1 Mo2 S3 108.88(7) 

S1  Mo1 Mo3 54.22(5)  S1 Mo2 S7 108.70(8) 

S1  Mo1 Mo2 54.07(6)  S1 Mo2 S6 87.10(7) 
S1  Mo1 S5 108.67(7)  S1 Mo2 S2 85.89(7) 

S1  Mo1 S4 86.26(8)  S1 Mo2 S9 161.48(9) 
S1  Mo1 S7 108.70(8)  S1 Mo2 S8 78.36(9) 

S1  Mo1 S12 79.93(8)  S3 Mo2 Mo3 54.91(5) 

S1  Mo1 S6 87.07(8)  S3 Mo2 Mo1 95.93(6) 
S1  Mo1 S13 162.30(8)  S3 Mo2 S7 83.59(8) 
S4  Mo1 Mo3 56.70(5)  S3 Mo2 S6 132.07(8) 

S4  Mo1 Mo2 116.54(6)  S3 Mo2 S2 48.82(7) 

S7  Mo1 Mo3 94.55(5)  S3 Mo2 S9 83.96(8) 
S7  Mo1 Mo2 54.92(6)  S3 Mo2 S8 136.92(9) 
S7  Mo1 S5 83.03(8)  S7 Mo2 Mo3 94.59(6) 

S7  Mo1 S4 131.51(7)  S6 S7 Mo2 68.91(9) 
S7  Mo1 S12 135.69(8)  C14 S12 Mo1 106.1(4) 
S7  Mo1 S6 48.78(7)  Mo1 S6 Mo2 66.47(6) 

S7  Mo1 S13 85.05(9)  S7 S6 Mo1 62.34(9) 
S12  Mo1 Mo3 122.44(6)  S7 S6 Mo2 62.47(8) 

S12  Mo1 Mo2 121.06(7)  Mo3 S2 Mo2 66.62(6) 

S12  Mo1 S4 91.53(8)  S3 S2 Mo3 62.69(9) 
S12  Mo1 S6 90.04(8)  S3 S2 Mo2 62.52(8) 

S12  Mo1 S13 82.42(9)  C5 S9 Mo2 104.5(4) 

S6  Mo1 Mo3 116.76(6)  C17 S13 Mo1 105.2(4) 
S6  Mo1 Mo2 56.88(5)  C1 S8 Mo2 106.0(4) 

S6  Mo1 S4 172.77(8)      
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7.2.3.2. STRUCTURE OF (Bu4N)2[Mo3S7(Cl2bdt)3], ((Bu4N)2[11]) 

Single crystals of compound (Bu4N)2[11] were obtained by gas diffusion 

Et2O/CH2Cl2. The structure of (Bu4N)2[11] was refined in the monoclinic space 

group Cc. Figure 7.7 shows its ORTEP representation with the atom numbering 

scheme. Owing to disorder, the hydrogen atoms in the Bu4N+ counterion centred at 

N(200) were not included. Their atoms were refined isotropically due to the same 

reason. In this molecule, the bond distances between atoms N(200), C(209), C(210), 

C(211) and C(212) were restrained to fixed values. The carbon atoms C(202) and 

C(217) in the same molecule were refined with a partial occupancy of 0.75 and 0.50, 

respectively. Additionally, the atom C(215) was found to be disordered over two 

positions, with a 0.70/0.30 occupancy ratio. A dichloromethane molecule was found 

co-crystallized with the cluster complex. In this molecule the carbon atom C(10) was 

defined as a free variable, refined, and then constrained to a fixed value. The 

crystallographic data collection parameters are given in Table 7.7.1. 

 

Figure 7.7.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [11]2- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7797(14); 
Mo-(µ3-S), 2.368(4); Mo-Sax, 2.407(4); Mo-Seq, 2.523(4); Mo-Sligand, 2.447(4). 
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Table 7.7.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)2[Mo3S7(Cl2bdt)3]·CH2Cl2 
Formula C50.1H43.7Cl8Mo3N2S13 Crystal system monoclinic 
Space group Cc Formula 

weight 
1662.93 

a (Å) 17.4843(3)  (º) 90 

b (Å) 20.0823(4)  (º) 104.793(2) 

c (Å) 20.5113(5)  (º) 90 

Z 4 Vol (Å3) 6963.3(2) 
Colour brown Crystal size 

(mm) 
0.4841  0.2284 

 0.0371 
dcalc (g/cm3) 1.586  (Å) 1.54184 

Absorption 
coefficient (mm-1) 

11.099 F (000) 3315.0 

 
Experimental Data 

    
Temperature (K) 293 R(int) 0.0877 
Time per frame (s) 25 R () 0.0594 

2 Range (º) 6.84 to 145.36 Index ranges -21 ≤ h ≤ 21 
-24 ≤ k ≤ 24 
-25 ≤ l ≤ 19 

Collected 
reflections 

31545 Independent 
reflections 

11505 

 
Solution and Refinement 

    
Parameters 616 GooF on F2 1.045 
Restraints 10   
Final R1 ([I>2sigma(I)]) 0.0737 Final R1 (all data) 0.0822 
Final wR2 
([I>2sigma(I)]) 

0.1981 Final wR2 (all data) 0.2116 

Max/Min peak (e·Å-3) 1.85 / -1.14 Max. shift/ 0.001 
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Table 7.7.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo2 Mo1 2.7829(14)  Mo1 S6 2.512(4) 

Mo2 Mo3 2.7900(14)  Mo3 S1 2.371(4) 

Mo2 S11 2.474(4)  Mo3 S13 2.469(4) 

Mo2 S1 2.370(4)  Mo3 S12 2.412(4) 
Mo2 S2 2.527(4)  Mo3 S7 2.400(4) 

Mo2 S3 2.420(4)  Mo3 S5 2.401(4) 
Mo2 S10 2.435(4)  Mo3 S6 2.498(4) 
Mo2 S5 2.404(4)  Mo3 S4 2.546(4) 

Mo2 S4 2.516(4)  S11 C8 1.753(16) 

Mo1 Mo3 2.7662(15)  S8 C1 1.742(16) 
Mo1 S8 2.428(4)  S9 C2 1.769(18) 

Mo1 S1 2.363(4)  S2 S3 2.030(5) 
Mo1 S9 2.471(4)  S13 C14 1.721(18) 

Mo1 S2 2.536(4)  S12 C13 1.745(18) 

Mo1 S3 2.410(3)  Cl3 C12 1.73(2) 
Mo1 S7 2.407(4)  S10 C7 1.788(17) 
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Table 7.7.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo1 Mo2 Mo3 59.52(4)  S12 Mo3 S4 94.56(14) 

S11 Mo2 Mo1 139.76(11)  S7 Mo3 Mo2 94.37(9) 

S11 Mo2 Mo3 139.65(12)  S7 Mo3 Mo1 54.99(9) 

S11 Mo2 S2 94.27(15)  S7 Mo3 S13 85.16(13) 
S11 Mo2 S4 93.93(15)  S7 Mo3 S12 133.44(13) 

S1 Mo2 Mo1 53.87(9)  S7 Mo3 S5 83.06(13) 
S1 Mo2 Mo3 53.95(9)  S7 Mo3 S6 48.63(12) 
S1 Mo2 S11 161.25(13)  S7 Mo3 S4 131.10(13) 

S1 Mo2 S2 85.81(13)  S5 Mo3 Mo2 54.56(9) 

S1 Mo2 S3 108.04(13)  S5 Mo3 Mo1 95.63(10) 
S1 Mo2 S10 79.42(13)  S5 Mo3 S13 84.03(13) 

S1 Mo2 S5 107.97(13)  S5 Mo3 S12 139.58(14) 
S1 Mo2 S4 86.06(13)  S5 Mo3 S6 131.54(13) 

S2 Mo2 Mo1 56.80(8)  S5 Mo3 S4 48.37(12) 

S2 Mo2 Mo3 116.26(9)  S6 Mo3 Mo2 116.84(10) 
S3 Mo2 Mo1 54.65(9)  S6 Mo3 Mo1 56.73(9) 
S3 Mo2 Mo3 95.40(9)  S6 Mo3 S4 172.33(13) 

S3 Mo2 S11 85.47(13)  S4 Mo3 Mo2 56.03(9) 

S3 Mo2 S2 48.40(13)  S4 Mo3 Mo1 116.08(10) 
S3 Mo2 S10 136.15(14)  C8 S11 Mo2 107.2(6) 
S3 Mo2 S4 133.63(13)  C1 S8 Mo1 106.9(6) 

S10 Mo2 Mo1 121.68(11)  Mo2 S1 Mo3 72.10(11) 
S10 Mo2 Mo3 120.81(10)  Mo1 S1 Mo2 72.02(10) 
S10 Mo2 S11 81.83(13)  Mo1 S1 Mo3 71.51(10) 

S10 Mo2 S2 90.89(14)  C2 S9 Mo1 106.8(6) 
S10 Mo2 S4 89.15(14)  Mo2 S2 Mo1 66.69(10) 

S5 Mo2 Mo1 95.13(9)  S3 S2 Mo2 63.06(15) 

S5 Mo2 Mo3 54.46(9)  S3 S2 Mo1 62.57(13) 
S5 Mo2 S11 85.59(14)  C14 S13 Mo3 105.5(6) 

S5 Mo2 S2 133.25(13)  Mo1 S3 Mo2 70.36(10) 

S5 Mo2 S3 85.15(13)  S2 S3 Mo2 68.55(15) 
S5 Mo2 S10 134.93(14)  S2 S3 Mo1 69.04(15) 

S5 Mo2 S4 48.71(13)  C13 S12 Mo3 106.9(6) 
S4 Mo2 Mo1 116.54(9)  C7 S10 Mo2 106.9(6) 

S4 Mo2 Mo3 57.08(9)  Mo3 S7 Mo1 70.27(10) 
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Table 7.7.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S4 Mo2 S2 171.72(13)  S7 Mo1 S6 48.40(12) 

Mo3 Mo1 Mo2 60.37(4)  S6 Mo1 Mo2 116.61(9) 

S8 Mo1 Mo2 121.56(10)  S6 Mo1 Mo3 56.24(9) 

S8 Mo1 Mo3 119.29(10)  S6 Mo1 S2 172.59(13) 
S8 Mo1 S9 82.74(13)  Mo1 Mo3 Mo2 60.11(4) 

S8 Mo1 S2 91.96(13)  S1 Mo3 Mo2 53.95(9) 
S8 Mo1 S6 89.94(13)  S1 Mo3 Mo1 54.12(9) 
S1 Mo1 Mo2 54.11(9)  S1 Mo3 S13 162.11(14) 

S1 Mo1 Mo3 54.37(9)  S1 Mo3 S12 79.25(13) 

S1 Mo1 S8 78.43(13)  S1 Mo3 S7 108.91(13) 
S1 Mo1 S9 161.16(14)  S1 Mo3 S5 108.07(13) 

S1 Mo1 S2 85.76(12)  S1 Mo3 S6 87.77(13) 
S1 Mo1 S3 108.62(13)  S1 Mo3 S4 85.36(13) 

S1 Mo1 S7 108.92(13)  S13 Mo3 Mo2 138.18(11) 

S1 Mo1 S6 87.60(12)  S13 Mo3 Mo1 139.69(11) 
S9 Mo1 Mo2 140.34(10)  S13 Mo3 S6 93.91(13) 
S9 Mo1 Mo3 138.31(11)  S13 Mo3 S4 93.67(14) 

S9 Mo1 S2 95.40(13)  S12 Mo3 Mo2 123.37(11) 

S9 Mo1 S6 91.94(13)  S12 Mo3 Mo1 118.45(12) 
S2 Mo1 Mo2 56.50(9)  S12 Mo3 S13 83.02(15) 
S2 Mo1 Mo3 116.81(10)  S12 Mo3 S6 87.49(13) 

S3 Mo1 Mo2 54.99(9)  S6 S7 Mo1 68.52(15) 
S3 Mo1 Mo3 96.25(10)  S6 S7 Mo3 68.22(15) 
S3 Mo1 S8 137.22(13)  Mo3 S5 Mo2 70.98(11) 

S3 Mo1 S9 85.63(13)  S4 S5 Mo2 68.50(16) 
S3 Mo1 S2 48.39(13)  S4 S5 Mo3 69.55(16) 

S3 Mo1 S6 131.58(13)  Mo3 S6 Mo1 67.03(9) 

S7 Mo1 Mo2 94.40(9)  S7 S6 Mo1 63.08(14) 
S7 Mo1 Mo3 54.75(9)  S7 S6 Mo3 63.14(14) 

S7 Mo1 S8 135.75(13)  Mo2 S4 Mo3 66.89(10) 

S7 Mo1 S9 84.39(13)  S5 S4 Mo2 62.79(15) 
S7 Mo1 S2 131.38(13)  S5 S4 Mo3 62.08(14) 

S7 Mo1 S3 83.31(13)      
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7.2.4. STRUCTURE OF HETEROLEPTIC MOLYBDENUM 
CLUSTERS CONTAINING DIIMINE LIGANDS 

7.2.4.1. STRUCTURE OF (Bu4N)[Mo3S7Br4(BPhen)·Br], (Bu4N)[14·Br] 

In order to obtain single crystals of compound (Bu4N)[14·Br], the neutral cluster 14 

was suspended in CH2Cl2 in the presence of a large excess of Bu4NBr. After 

sonicating for a few minutes, the cluster dissolved. Toluene was layered on the top 

of the resulting solution to afford reddish needle-like crystals after few days. The 

structure of (Bu4N)[14·Br] was refined in the triclinic space group P-1. All non-

hydrogen atoms were refined anisotropically. Figure 7.8 shows its ORTEP 

representation with the atom numbering scheme. Dichloromethane and toluene were 

found cocrystallized with the cluster complex. In the dichloromethane molecule one 

chlorine atom was found disordered over two positions with an occupancy ratio of 

0.75/0.25, and therefore the hydrogen atoms were not included. The crystallographic 

data collection parameters are given in Table 7.8.1. 

 

Figure 7.8.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [14·Br]- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7478(4); 
Mo-(µ3-S), 2.3593(10); Mo-Sax, 2.3912(10); Mo-Seq, 2.4837(10); Mo-N, 2.218(3); Mo-Br, 
2.6277(5); Sax-Br, 2.98(4). 
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Table 7.8.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Br4(BPhen)·Br]·CH3C6H5·CH2Cl2 
Formula C48H60Br5Cl2Mo3N3S7 Crystal system triclinic 
Space group P-1 Formula 

weight 
1661.68 

a (Å) 12.4004(3)  (º) 65.333(2) 

b (Å) 15.8574(3)  (º) 85.9821(17) 

c (Å) 17.2858(4)  (º) 75.2290(18) 

Z 2 Vol (Å3) 2984.23(11) 
Colour reddish Crystal size 

(mm) 
0.4198 × 0.0829 
× 0.0362 

dcalc (g/cm3) 1.849  (Å) 1.54180 

Absorption 
coefficient (mm-1) 

12.395 F (000) 1652.0 

 
Experimental Data 

    
Temperature (K) 200 R(int) 0.0487 
Time per frame (s) 1.50 R () 0.0343 

2 Range (º) 6.34 to 145.58 Index ranges -14 ≤ h ≤ 15 
-19 ≤ k ≤ 19 
-21 ≤ l ≤ 21 

Collected 
reflections 

55474 Independent 
reflections 

11682 

 
Solution and Refinement 

    
Parameters 621 GooF on F2 1.053 
Restraints 0   
Final R1 ([I>2sigma(I)]) 0.0341 Final R1 (all data) 0.0442 
Final wR2 
([I>2sigma(I)]) 

0.0838 Final wR2 (all data) 0.0911 

Max/Min peak (e·Å-3) 1.25 / -1.05 Max. shift/ <0.001 
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Table 7.8.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo1 Mo3 2.7436(4)  N1 C24 1.366(5) 

Mo1 Mo2 2.7465(4)  N1 C1 1.331(5) 

Mo1 S1 2.3652(10)  Mo3 S4 2.4791(10) 

Mo1 S7 2.3993(9)  Mo2 Br2 2.6735(5) 
Mo1 S3 2.3942(10)  Mo2 Br1 2.5937(5) 

Mo1 S6 2.4846(10)  Mo2 S1 2.3595(10) 
Mo1 S2 2.4737(10)  Mo2 S3 2.3825(10) 
Mo1 N2 2.218(3)  Mo2 S5 2.3943(9) 

Mo1 N1 2.218(3)  Mo2 S4 2.4816(10) 

Mo3 Mo2 2.7533(4)  Mo2 S2 2.4926(10) 
Mo3 Br3 2.6215(6)  S7 S6 2.0471(14) 

Mo3 Br4 2.6222(5)  S3 S2 2.0646(14) 
Mo3 S1 2.3532(9)  S5 S4 2.0430(15) 

Mo3 S7 2.3917(10)  N2 C23 1.363(5) 

Mo3 S5 2.3997(10)  N2 C22 1.334(5) 
Mo3 S6 2.4907(10)     
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Table 7.8.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo3 Mo1 Mo2 60.199(11)  S3 Mo2 Br2 79.84(3) 

S1 Mo1 Mo3 54.24(2)  S3 Mo2 Br1 137.16(3) 

S1 Mo1 Mo2 54.36(3)  S3 Mo2 S5 83.71(3) 

S1 Mo1 S7 108.70(3)  S3 Mo2 S4 132.94(4) 
S1 Mo1 S3 108.61(3)  S3 Mo2 S2 50.05(3) 

S1 Mo1 S6 85.06(3)  S5 Mo2 Mo1 94.83(2) 
S1 Mo1 S2 84.84(3)  S5 Mo2 Mo3 55.04(2) 
S7 Mo1 Mo3 54.94(2)  S5 Mo2 Br2 84.75(3) 

S7 Mo1 Mo2 96.05(2)  S5 Mo2 Br1 133.04(3) 

S7 Mo1 S6 49.52(3)  S5 Mo2 S4 49.50(3) 
S7 Mo1 S2 135.17(4)  S5 Mo2 S2 133.28(4) 

S3 Mo1 Mo3 95.84(2)  S4 Mo2 Mo1 116.05(3) 
S3 Mo1 Mo2 54.70(2)  S4 Mo2 Mo3 56.24(2) 

S3 Mo1 S7 85.32(3)  S4 Mo2 Br2 97.94(3) 

S3 Mo1 S6 134.51(3)  S4 Mo2 Br1 87.94(3) 
S3 Mo1 S2 50.16(3)  S4 Mo2 S2 169.88(4) 
S6 Mo1 Mo3 56.64(2)  S2 Mo2 Mo1 56.10(2) 

S6 Mo1 Mo2 116.71(3)  S2 Mo2 Mo3 115.77(3) 

S2 Mo1 Mo3 116.78(3)  S2 Mo2 Br2 92.12(3) 
S2 Mo1 Mo2 56.75(2)  S2 Mo2 Br1 92.30(3) 
S2 Mo1 S6 169.89(4)  Mo3 S1 Mo1 71.11(3) 

N2 Mo1 Mo3 141.46(8)  Mo3 S1 Mo2 71.50(3) 
N2 Mo1 Mo2 137.43(9)  Mo2 S1 Mo1 71.09(3) 
N2 Mo1 S1 160.78(9)  Mo3 S7 Mo1 69.87(3) 

N2 Mo1 S7 86.72(8)  S6 S7 Mo1 67.41(4) 
N2 Mo1 S3 83.41(9)  S6 S7 Mo3 67.75(4) 

N2 Mo1 S6 97.22(9)  Mo2 S3 Mo1 70.20(3) 

N2 Mo1 S2 92.22(9)  S2 S3 Mo1 66.92(4) 
N1 Mo1 Mo3 128.05(9)  S2 S3 Mo2 67.74(4) 

N1 Mo1 Mo2 127.05(8)  Mo2 S5 Mo3 70.11(3) 

N1 Mo1 S1 87.20(9)  S4 S5 Mo3 67.29(4) 
N1 Mo1 S7 133.26(9)  S4 S5 Mo2 67.47(4) 

N1 Mo1 S3 131.96(9)  Mo1 S6 Mo3 66.93(3) 
N1 Mo1 S6 90.63(9)  S7 S6 Mo1 63.07(4) 

N1 Mo1 S2 88.54(9)  S7 S6 Mo3 62.72(4) 
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Table 7.8.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N1 Mo1 N2 73.72(12)  S4 Mo3 Br4 94.28(3) 

Mo1 Mo3 Mo2 59.953(11)  S4 Mo3 S6 170.69(3) 
Br3 Mo3 Mo1 124.141(16)  Mo1 Mo2 Mo3 59.848(11) 

Br3 Mo3 Mo2 122.705(17)  Br2 Mo2 Mo1 134.567(17) 
Br3 Mo3 Br4 81.260(17)  Br2 Mo2 Mo3 139.741(17) 

Br4 Mo3 Mo1 138.127(17)  Br1 Mo2 Mo1 125.390(17) 
Br4 Mo3 Mo2 138.095(17)  Br1 Mo2 Mo3 121.942(18) 
S1 Mo3 Mo1 54.65(2)  Br1 Mo2 Br2 82.546(18) 

S1 Mo3 Mo2 54.36(3)  S1 Mo2 Mo1 54.55(2) 
S1 Mo3 Br3 81.58(3)  S1 Mo2 Mo3 54.15(2) 
S1 Mo3 Br4 162.84(3)  S1 Mo2 Br2 164.09(3) 

S1 Mo3 S7 109.36(3)  S1 Mo2 Br1 82.06(3) 

S1 Mo3 S5 108.86(3)  S1 Mo2 S3 109.20(3) 
S1 Mo3 S6 85.17(3)  S1 Mo2 S5 108.83(3) 

S1 Mo3 S4 85.67(3)  S1 Mo2 S4 85.48(3) 
S7 Mo3 Mo1 55.19(2)  S1 Mo2 S2 84.53(3) 

S7 Mo3 Mo2 96.05(3)  S3 Mo2 Mo1 55.10(2) 

S7 Mo3 Br3 135.56(3)  S3 Mo2 Mo3 95.86(3) 
S7 Mo3 Br4 83.14(3)  Mo3 S4 Mo2 67.42(3) 

S7 Mo3 S5 83.84(3)  S5 S4 Mo3 63.24(4) 
S7 Mo3 S6 49.53(3)  S5 S4 Mo2 63.03(4) 

S7 Mo3 S4 133.09(4)  Mo1 S2 Mo2 67.15(3) 
S5 Mo3 Mo1 94.78(3)  S3 S2 Mo1 62.92(4) 
S5 Mo3 Mo2 54.86(2)  S3 S2 Mo2 62.21(4) 

S5 Mo3 Br3 134.74(3)  C23 N2 Mo1 116.3(3) 

S5 Mo3 Br4 83.58(3)  C22 N2 Mo1 125.7(3) 
S5 Mo3 S6 132.95(4)  C22 N2 C23 117.8(3) 

S5 Mo3 S4 49.48(3)  C24 N1 Mo1 116.3(3) 
S6 Mo3 Mo1 56.43(2)  C1 N1 Mo1 126.9(3) 

S6 Mo3 Mo2 116.26(3)  C1 N1 C24 116.7(3) 

S6 Mo3 Br3 90.81(3)  N1 C24 C23 116.7(3) 

S6 Mo3 Br4 94.97(3)  N1 C24 C10 123.2(4) 

S4 Mo3 Mo1 116.24(3)  C10 C24 C23 120.1(4) 

S4 Mo3 Mo2 56.33(2)  N2 C23 C24 116.8(3) 
S4 Mo3 Br3 89.50(3)  N2 C23 C13 122.6(4) 
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7.2.4.2. STRUCTURE OF (Bu4N)[Mo3S7Cl4(BPhen)·Cl], (Bu4N)[15·Cl] 

Single crystals of compound (Bu4N)[15·Cl] were obtained by dissolving the neutral 

compound 15 in CH2Cl2 in the presence of Bu4NCl. Toluene was layered on the top 

of the solution, and reddish crystals grew from the mixture after few days. The 

structure of (Bu4N)[15·Cl] was refined in the monoclinic space group P21/n. All non-

hydrogen atoms were refined anisotropically. Figure 7.9 shows its ORTEP 

representation with the atom numbering scheme. A toluene molecule was found 

cocrystallized with the cluster complex. The atom C19A in the bathophenanthroline 

ligand was refined isotropically in order to improve the Atom Displacement 

Parameters (ADP). In addition, the crystal structure contains disordered toluene as 

solvate molecules. In spite of several attempts, the electronic density in this area could 

not be resolved satisfactory. Therefore the contribution of the disordered solvent 

species was subtracted from the structure factor calculations by using the solvent 

mask instruction21 in the program Olex2 1.2. A relatively high residual density peak 

(3.37 electrons per Å3) can be found nearby a molybdenum atom, which is considered 

as justified. The crystallographic data collection parameters are given in Table 7.9.1. 

 

Figure 7.9.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [15·Cl]- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7452(13); 
Mo-(µ3-S), 2.3597(3); Mo-Sax, 2.3895(3); Mo-Seq, 2.4867(3); Mo-N, 2.2145(10); Mo-Cl, 
2.4708(3); Sax-Cl, 2.91(7). 
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Table 7.9.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Cl4(BPhen)·Cl] 
Formula C42.3H54.7Cl5Mo3N3S7 Crystal system monoclinic 
Space group P21/n Formula weight 1295.04 
a (Å) 12.8628(2)  (º) 90 

b (Å) 27.4873(6)  (º) 91.4164(16) 

c (Å) 48.7034(9)  (º)  90 
 

Z 12 Vol (Å3) 17214.5(6) 
Colour reddish Crystal size 

(mm) 
0.041  0.057 

 0.563 
dcalc (g/cm3) 1.499  (Å) 1.54184 

Absorption 
coefficient (mm-1) 

10.049 F (000) 7832.0 

 
Experimental Data 

    
Temperature (K) 211 R(int) 0.0533 
Time per frame (s) 100 R () 0.0644 

2 Range (º) 6.32 to 144.26 Index ranges  -10 ≤ h ≤ 15, 
-32 ≤ k ≤ 33,  
-59 ≤ l ≤ 58 

Collected 
reflections 

65295 Independent 
reflections 

 32767 
 

 
Solution and Refinement 

    
Parameters 1633 GooF on F2 1.119 
Restraints 1   

Final R1 ([I>2(I)]) 0.0894 Final R1 (all data) 0.1087 

Final wR2 ([I>2(I)]) 0.2118 Final wR2 (all data) 0.2177 

Max/Min peak (e·Å-3)  3.36/-1.57  
 

Max. shift/ < 0.001 
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Table 7.9.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo3 Mo2 2.7502(13)  N1 C1 1.332(16) 

Mo3 Mo1 2.7394(13)  N1 C24 1.385(16) 

Mo3 S5 2.392(3)  Mo2 S2 2.490(3) 

Mo3 S1 2.355(3)  Mo1 S1 2.359(3) 
Mo3 S4 2.476(3)  Mo1 S3 2.394(3) 

Mo3 S7 2.393(3)  Mo1 S7 2.392(3) 
Mo3 Cl4 2.479(3)  Mo1 S2 2.485(3) 
Mo3 Cl3 2.433(3)  Mo1 S6 2.483(3) 

Mo3 S6 2.504(3)  Mo1 N2 2.221(10) 

Mo2 Mo1 2.7460(13)  Mo1 N1 2.208(9) 
Mo2 S5 2.382(3)  S5 S4 2.035(4) 

Mo2 S1 2.365(3)  S3 S2 2.061(4) 
Mo2 S3 2.384(3)  S7 S6 2.048(4) 

Mo2 S4 2.482(3)  N2 C22 1.322(15) 

Mo2 Cl2 2.516(3)  N2 C23 1.388(15) 
Mo2 Cl1 2.455(3)     
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Table 7.9.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo1 Mo2 Mo3 59.79(3)  S2 Mo2 Cl2 95.85(11) 

S5 Mo2 Mo3 55.00(7)  Mo3 Mo1 Mo2 60.18(3) 

S5 Mo2 Mo1 93.93(8)  S1 Mo1 Mo3 54.39(7) 

S5 Mo2 S3 82.51(10)  S1 Mo1 Mo2 54.57(7) 
S5 Mo2 S4 49.40(10)  S1 Mo1 S3 108.87(10) 

S5 Mo2 Cl2 82.03(10)  S1 Mo1 S7 108.85(11) 
S5 Mo2 Cl1 136.21(11)  S1 Mo1 S2 84.98(10) 
S5 Mo2 S2 132.05(11)  S1 Mo1 S6 84.62(11) 

S1 Mo2 Mo3 54.18(7)  S3 Mo1 Mo3 95.79(8) 

S1 Mo2 Mo1 54.35(7)  S3 Mo1 Mo2 54.76(7) 
S1 Mo2 S5 108.95(10)  S3 Mo1 S2 49.94(10) 

S1 Mo2 S3 108.98(10)  S3 Mo1 S6 135.33(11) 
S1 Mo2 S4 86.53(10)  S7 Mo1 Mo3 55.10(8) 

S1 Mo2 Cl2 164.65(10)  S7 Mo1 Mo2 96.79(8) 

S1 Mo2 Cl1 82.51(10)  S7 Mo1 S3 86.05(11) 
S1 Mo2 S2 84.75(10)  S7 Mo1 S2 135.70(11) 
S3 Mo2 Mo3 95.73(8)  S7 Mo1 S6 49.65(10) 

S3 Mo2 Mo1 55.08(7)  S2 Mo1 Mo3 116.61(8) 

S3 Mo2 S4 131.72(11)  S2 Mo1 Mo2 56.58(8) 
S3 Mo2 Cl2 82.56(10)  S6 Mo1 Mo3 57.05(8) 
S3 Mo2 Cl1 134.99(12)  S6 Mo1 Mo2 117.04(8) 

S3 Mo2 S2 49.98(10)  S6 Mo1 S2 169.58(11) 
S4 Mo2 Mo3 56.20(7)  N2 Mo1 Mo3 141.6(3) 
S4 Mo2 Mo1 115.98(8)  N2 Mo1 Mo2 135.2(3) 

S4 Mo2 Cl2 93.20(10)  N2 Mo1 S1 161.8(3) 
S4 Mo2 S2 170.94(11)  N2 Mo1 S3 81.2(3) 

Cl2 Mo2 Mo3 136.66(8)  N2 Mo1 S7 86.6(3) 

Cl2 Mo2 Mo1 137.55(8)  N2 Mo1 S2 90.7(3) 
Cl1 Mo2 Mo3 123.65(9)  N2 Mo1 S6 99.0(3) 

Cl1 Mo2 Mo1 124.34(8)  N1 Mo1 Mo3 128.7(3) 

Cl1 Mo2 S4 91.22(11)  N1 Mo1 Mo2 128.0(3) 
Cl1 Mo2 Cl2 82.15(10)  N1 Mo1 S1 88.0(3) 

Cl1 Mo2 S2 90.05(11)  N1 Mo1 S3 131.8(3) 
S2 Mo2 Mo3 116.06(8)  N1 Mo1 S7 131.8(3) 

S2 Mo2 Mo1 56.42(7)  N1 Mo1 S2 89.2(3) 
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Table 7.9.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N1 Mo1 S6 89.6(3)  S6 S7 Mo1 67.50(12) 

N1 Mo1 N2 74.2(4)  Mo1 S6 Mo3 66.63(8) 
Mo2 S5 Mo3 70.34(8)  S7 S6 Mo3 62.48(11) 

S4 S5 Mo3 67.46(12)  S7 S6 Mo1 62.86(12) 
S4 S5 Mo2 67.86(12)  C22 N2 Mo1 128.4(8) 

Mo3 S1 Mo2 71.28(8)  C22 N2 C23 117.7(11) 
Mo3 S1 Mo1 71.06(8)  C23 N2 Mo1 113.1(7) 
Mo1 S1 Mo2 71.08(8)  C1 N1 Mo1 128.4(9) 

Mo2 S3 Mo1 70.16(8)  C1 N1 C24 116.6(11) 
S2 S3 Mo2 67.67(12)  C24 N1 Mo1 114.8(8) 
S2 S3 Mo1 67.34(12)  N1 C1 C2 123.3(13) 

Mo3 S4 Mo2 67.37(8)  N1 C24 C10 123.3(12) 

S5 S4 Mo3 63.16(11)  N1 C24 C23 116.3(11) 
S5 S4 Mo2 62.74(11)  N2 C23 C24 118.0(11) 

Mo1 S7 Mo3 69.85(8)  N2 C23 C13 121.2(12) 
S6 S7 Mo3 68.13(12)      
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7.2.4.3. STRUCTURE OF (Bu4N)[Mo3S7Br4(tmphen)·Br], (Bu4N)[16·Br] 

Single crystals of compound (Bu4N)[16·Br] were obtained by dissolving the neutral 

compound 16 in CH2Cl2 in the presence of Bu4NBr. Toluene was slowly added to 

afford single crystals after few days. The structure of (Bu4N)[16·Br] was refined in 

the triclinic space group P-1. All non-hydrogen atoms were refined anisotropically. 

Figure 7.10 shows its ORTEP representation with the atom numbering scheme. 

Dichloromethane was found cocrystallized with the cluster complex. In the 

tetrabutylammonium counterion centered at N(200), a terminal carbon atom was 

found disordered over two positions with an occupancy ratio of 0.60/0.40, and 

therefore the hydrogen atoms were not included. The crystallographic data collection 

parameters are given in Table 7.10.1. 

 

Figure 7.10. ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [16·Br]- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7480(8); 
Mo-(µ3-S), 2.3601(18); Mo-Sax, 2.3811(16); Mo-Seq, 2.4848(16); Mo-N, 2.222(6); Mo-Br, 
2.5814(12); Sax-Br, 3.05(9). 
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Table 7.10.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Br4(tmphen)·Br]·1.5CH3C6H5 
Formula C42.5H49.2Br5Mo3N3S7 Crystal system triclinic 
Space group P-1 Formula 

weight 
1513.84 

a (Å) 14.6617(3)  (º) 83.8100(14) 

b (Å) 17.5340(3)  (º) 80.5709(15) 

c (Å) 23.8551(4)  (º) 67.1680(17) 

Z 4 Vol (Å3) 5569.14(18) 
Colour reddish Crystal size 

(mm) 
0.1729 × 0.1333 
× 0.0537 

dcalc (g/cm3) 1.806  (Å) 1.54180 

Absorption 
coefficient (mm-1) 

12.351 F (000) 2953.0 

 
Experimental Data 

    
Temperature (K) 200 R(int) 0.0367 
Time per frame (s) 4 R () 0.0271 

2 Range (º) 6.50 to 145.6 Index ranges -17 ≤ h ≤ 18,    
 -21 ≤ k ≤ 21,    
-29 ≤ l ≤ 27 

Collected 
reflections 

102370 Independent 
reflections 

21820 

 
Solution and Refinement 

    
Parameters 1108 GooF on F2 1.093 
Restraints 1   
Final R1 ([I>2sigma(I)]) 0.0561 Final R1 (all data) 0.0746 
Final wR2 
([I>2sigma(I)]) 

0.1672 Final wR2 (all data) 0.1833 

Max/Min peak (e·Å-3) 1.85/-2.84 Max. shift/ < 0.001 
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Table 7.10.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo1 Mo2 2.7479(7)  Mo2 S4 2.476(2) 
Mo1 Mo3 2.7434(8)  Mo3 Br3 2.5677(12) 
Mo1 S1 2.3656(17)  Mo3 Br4 2.5785(14) 
Mo1 S7 2.3956(19)  Mo3 S1 2.3579(19) 
Mo1 S3 2.3943(18)  Mo3 S7 2.3940(18) 
Mo1 S2 2.4882(19)  Mo3 S6 2.4946(18) 
Mo1 S6 2.4795(19)  Mo3 S5 2.386(2) 
Mo1 N2 2.226(5)  Mo3 S4 2.4707(19) 
Mo1 N1 2.217(6)  S7 S6 2.053(3) 
Mo2 Mo3 2.7527(8)  S3 S2 2.055(3) 
Mo2 Br2 2.6186(11)  S5 S4 2.034(3) 
Mo2 Br1 2.5608(11)  N2 C15 1.365(9) 
Mo2 S1 2.3567(18)  N2 C14 1.345(9) 
Mo2 S3 2.3961(18)  N1 C16 1.371(8) 
Mo2 S2 2.4995(19)  N1 C1 1.326(9) 
Mo2 S5 2.388(2)     
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Table 7.10.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo3 Mo1 Mo2 60.17(2)  S1 Mo3 S7 86.01(7) 

S1 Mo1 Mo2 54.27(4)  S1 Mo3 S6 135.37(8) 

S1 Mo1 Mo3 54.36(5)  S1 Mo3 S5 56.67(4) 

S1 Mo1 S7 108.83(6)  S1 Mo3 S4 116.66(5) 
S1 Mo1 S3 108.74(6)  S7 Mo3 Mo1 96.12(5) 

S1 Mo1 S2 84.66(6)  S7 Mo3 Mo2 55.02(5) 
S1 Mo1 S6 84.69(6)  S7 Mo3 Br3 135.31(7) 
S7 Mo1 Mo2 96.55(5)  S7 Mo3 Br4 49.65(8) 

S7 Mo1 Mo3 55.03(4)  S7 Mo3 S6 116.79(5) 

S7 Mo1 S2 135.79(7)  S7 Mo3 S4 56.74(5) 
S7 Mo1 S6 49.76(6)  S6 Mo3 Mo1 169.66(7) 

S3 Mo1 Mo2 55.03(4)  S6 Mo3 Mo2 140.74(17) 
S3 Mo1 Mo3 96.43(5)  S6 Mo3 Br3 137.67(17) 

S3 Mo1 S7 86.39(7)  S6 Mo3 Br4 161.37(18) 

S3 Mo1 S2 49.73(6)  S5 Mo3 Mo1 85.84(18) 
S3 Mo1 S6 135.81(7)  S5 Mo3 Mo2 97.02(17) 
S2 Mo1 Mo2 56.77(4)  S5 Mo3 Br3 83.19(17) 

S2 Mo1 Mo3 116.76(5)  S5 Mo3 Br4 92.59(17) 

S6 Mo1 Mo2 116.77(5)  S5 Mo3 S7 74.1(2) 
S6 Mo1 Mo3 56.79(4)  S5 Mo3 S6 128.75(18) 
S6 Mo1 S2 169.30(6)  S5 Mo3 S4 126.30(16) 

N2 Mo1 Mo2 138.91(15)  S4 Mo3 Mo1 87.29(18) 
N2 Mo1 Mo3 139.47(16)  S4 Mo3 Mo2 133.64(17) 
N2 Mo1 S1 161.37(16)  S4 Mo3 Br3 91.20(17) 

N2 Mo1 S7 84.72(16)  S4 Mo3 Br4 130.70(18) 
N2 Mo1 S3 84.22(15)  S4 Mo3 S6 87.78(17) 

N2 Mo1 S2 94.48(16)  Mo2 S1 Mo1 71.17(5) 

N2 Mo1 S6 95.30(16)  Mo2 S1 Mo3 71.44(5) 
N1 Mo1 Mo2 127.33(15)  Mo3 S1 Mo1 71.01(5) 

N1 Mo1 Mo3 128.12(15)  Mo3 S7 Mo1 69.89(5) 

N1 Mo1 S1 87.39(15)  S6 S7 Mo1 67.24(7) 
N1 Mo1 S7 132.41(16)  S6 S7 Mo3 67.75(7) 

N1 Mo1 S3 131.41(16)  Mo1 S3 Mo2 70.01(5) 
N1 Mo1 S2 88.73(16)  S2 S3 Mo1 67.51(7) 

N1 Mo1 S6 89.83(16)  S2 S3 Mo2 67.83(7) 
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Table 7.10.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N1 Mo1 N2 74.0(2)  S4 Mo2 Br1 88.96(6) 

Mo1 Mo2 Mo3 59.84(2)  S4 Mo2 S2 170.46(7) 

Br2 Mo2 Mo1 138.97(3)  Mo1 Mo3 Mo2 60.19(2) 

Br2 Mo2 Mo3 136.48(4)  Br3 Mo3 Mo1 54.14(5) 
Br1 Mo2 Mo1 125.13(3)  Br3 Mo3 Mo2 54.28(5) 

Br1 Mo2 Mo3 122.07(4)  Br3 Mo3 Br4 108.63(7) 
Br1 Mo2 Br2 81.59(4)  Br4 Mo3 Mo1 84.43(7) 
S1 Mo2 Mo1 54.57(4)  Br4 Mo3 Mo2 108.85(7) 

S1 Mo2 Mo3 54.30(5)  S1 Mo3 Mo1 85.25(7) 

S1 Mo2 Br2 163.41(6)  S1 Mo3 Mo2 55.06(5) 
S1 Mo2 Br1 81.86(5)  S1 Mo3 Br3 96.62(5) 

S1 Mo2 S3 108.98(6)  S1 Mo3 Br4 49.67(7) 
S1 Mo2 S2 84.59(6)  Mo1 S2 Mo2 66.86(5) 

S1 Mo2 S5 108.79(7)  S3 S2 Mo1 62.76(7) 

S1 Mo2 S4 86.10(7)  S3 S2 Mo2 62.59(7) 
S3 Mo2 Mo1 54.97(4)  Mo1 S6 Mo3 66.94(5) 
S3 Mo2 Mo3 96.15(5)  S7 S6 Mo1 62.99(7) 

S3 Mo2 Br2 84.06(5)  S7 S6 Mo3 62.65(7) 

S3 Mo2 Br1 136.41(6)  Mo3 S5 Mo2 70.43(6) 
S3 Mo2 S2 49.58(6)  S4 S5 Mo2 67.57(8) 
S3 Mo2 S4 132.70(7)  S4 S5 Mo3 67.43(8) 

S2 Mo2 Mo1 56.37(4)  Mo3 S4 Mo2 67.62(5) 
S2 Mo2 Mo3 116.03(5)  S5 S4 Mo2 63.03(8) 
S2 Mo2 Br2 97.08(5)  S5 S4 Mo3 63.09(7) 

S2 Mo2 Br1 91.79(5)  C15 N2 Mo1 115.4(5) 
S5 Mo2 Mo1 94.01(5)  C14 N2 Mo1 126.4(5) 

S5 Mo2 Mo3 54.75(5)  C14 N2 C15 118.1(6) 

S5 Mo2 Br2 82.25(5)  C16 N1 Mo1 115.1(4) 
S5 Mo2 Br1 134.24(6)  C1 N1 Mo1 127.3(5) 

S5 Mo2 S3 83.52(7)  C1 N1 C16 117.7(6) 

S5 Mo2 S2 132.61(7)  N2 C15 C16 116.7(6) 
S5 Mo2 S4 49.40(7)  N2 C15 C9 122.1(7) 

S4 Mo2 Mo1 115.91(5)  N1 C16 C15 117.6(6) 
S4 Mo2 Mo3 56.09(5)  N1 C16 C6 122.2(6) 

S4 Mo2 Br2 92.44(6)  N1 C1 C2 123.8(7) 
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7.2.4.4. STRUCTURE OF (Bu4N)[Mo3S7Cl4(tmphen)·Cl], (Bu4N)[17·Cl] 

Single crystals of compound (Bu4N)[17·Cl] were obtained by slowly diffusing toluene 

into a solution of 17 in CH2Cl2, in the presence of a large excess of Bu4NCl. The 

structure of (Bu4N)[17·Cl] was refined in the monoclinic space group P21. All non-

hydrogen atoms were refined anisotropically. Figure 7.11 shows its ORTEP 

representation with the atom numbering scheme. Dichloromethane was found 

cocrystallized with the cluster complex. The crystallographic data collection 

parameters are given in Table 7.11.1. 

 

Figure 7.11.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [17·Cl]- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7465(10); 
Mo-(µ3-S), 2.3517(2); Mo-Sax, 2.3922(2); Mo-Seq, 2.4872(2); Mo-N, 2.209(7); Mo-Cl, 
2.4605(2); Sax-Cl, 2.89(4). 
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Table 7.11.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Cl4(tmphen)·Cl]·3CH2Cl2 
Formula C35H58Cl11Mo3N3S7 Crystal system monoclinic 
Space group P21   Formula 

weight 
1423.03 

a (Å) 11.8749(3)  (º) 90.00 

b (Å) 19.5703(3)  (º) 108.810(2) 

c (Å) 12.5826(3)    (º) 90.00 

Z 2 Vol (Å3) 2767.97(10) 
Colour reddish Crystal size 

(mm) 
0.3267 × 0.221 
× 0.0469 

dcalc (g/cm3) 1.707  (Å) 0.71070 

Absorption 
coefficient (mm-1) 

1.494 F (000) 1428.0 

 
Experimental Data 

    
Temperature (K) 200 R(int) 0.0435 
Time per frame 
(s) 

18 R () 0.0429 

2 Range (º) 5.6 to 50 Index ranges -14 ≤ h ≤ 13,    
-23 ≤ k ≤ 23,     
-14 ≤ l ≤ 14 

Collected 
reflections 

26486 Independent 
reflections 

9629 

 
Solution and Refinement 

    
Parameters 540 GooF on F2 1.076 
Restraints 1   
Final R1 ([I>2sigma(I)]) 0.0431 Final R1 (all data) 0.0464 
Final wR2 
([I>2sigma(I)]) 

0.1192 Final wR2 (all data) 0.1237 

Max/Min peak  (e·Å-3) 0.93/-0.91 Max. shift/ <0.001 
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Table 7.11.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo1 Mo2 2.7368(9)  Mo2 S2 2.489(2) 

Mo1 Mo3 2.7504(10)  Mo3 S1 2.346(2) 

Mo1 S1 2.357(2)  Mo3 S4 2.479(2) 

Mo1 S3 2.392(2)  Mo3 S5 2.387(2) 

Mo1 S7 2.398(2)  Mo3 S7 2.397(2) 

Mo1 S2 2.483(2)  Mo3 S6 2.498(2) 

Mo1 S6 2.491(2)  Mo3 Cl3 2.452(2) 

Mo1 N2 2.198(7)  Mo3 Cl4 2.475(3) 

Mo1 N1 2.220(7)  S3 S2 2.045(3) 

Mo2 Mo3 2.7524(10)  S4 S5 2.040(3) 

Mo2 S1 2.352(2)  S7 S6 2.053(3) 

Mo2 S3 2.400(2)  N2 C15 1.350(13) 

Mo2 Cl1 2.441(2)  N2 C14 1.364(11) 

Mo2 S4 2.483(2)  N1 C1 1.320(12) 

Mo2 S5 2.379(2)  N1 C16 1.356(12) 

Mo2 Cl2 2.474(2)     
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Table 7.11.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo2 Mo1 Mo3 60.21(3)  S4 Mo3 Mo2 56.37(6) 

S1 Mo1 Mo2 54.37(6)  S4 Mo3 S6 170.73(9) 

S1 Mo1 Mo3 54.03(6)  S5 Mo3 Mo1 93.98(7) 

S1 Mo1 S3 109.27(8)  S5 Mo3 Mo2 54.60(6) 

S1 Mo1 S7 108.52(8)  S5 Mo3 S4 49.52(8) 

S1 Mo1 S2 85.73(8)  S5 Mo3 S7 83.22(9) 

S1 Mo1 S6 84.87(8)  S5 Mo3 S6 132.31(9) 

S3 Mo1 Mo2 55.31(5)  S5 Mo3 Cl3 135.98(10) 

S3 Mo1 Mo3 96.15(6)  S5 Mo3 Cl4 83.24(10) 

S3 Mo1 S7 85.01(8)  S7 Mo3 Mo1 55.01(6) 

S3 Mo1 S2 49.57(8)  S7 Mo3 Mo2 95.67(6) 

S3 Mo1 S6 134.35(9)  S7 Mo3 S4 132.54(8) 

S7 Mo1 Mo2 96.05(6)  S7 Mo3 S6 49.55(8) 

S7 Mo1 Mo3 54.98(6)  S7 Mo3 Cl3 135.30(9) 

S7 Mo1 S2 134.27(8)  S7 Mo3 Cl4 84.45(9) 

S7 Mo1 S6 49.62(8)  S6 Mo3 Mo1 56.43(6) 

S2 Mo1 Mo2 56.71(6)  S6 Mo3 Mo2 115.95(7) 

S2 Mo1 Mo3 116.82(6)  Cl3 Mo3 Mo1 123.74(8) 

S2 Mo1 S6 170.60(8)  Cl3 Mo3 Mo2 122.94(7) 

S6 Mo1 Mo2 116.75(6)  Cl3 Mo3 S4 90.43(8) 

S6 Mo1 Mo3 56.67(6)  Cl3 Mo3 S6 90.35(9) 

N2 Mo1 Mo2 141.4(2)  Cl3 Mo3 Cl4 81.25(10) 

N2 Mo1 Mo3 138.9(2)  Cl4 Mo3 Mo1 139.32(7) 

N2 Mo1 S1 159.9(2)  Cl4 Mo3 Mo2 137.31(9) 

N2 Mo1 S3 86.5(2)  Cl4 Mo3 S4 92.81(9) 

N2 Mo1 S7 84.6(2)  Cl4 Mo3 S6 96.43(10) 

N2 Mo1 S2 95.9(2)  Mo2 S1 Mo1 71.07(6) 

N2 Mo1 S6 93.0(2)  Mo3 S1 Mo1 71.58(7) 

N2 Mo1 N1 73.4(3)  Mo3 S1 Mo2 71.74(7) 

N1 Mo1 Mo2 125.6(2)  Mo1 S3 Mo2 69.66(6) 
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Table 7.11.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N1 Mo1 S1 86.7(2)  S5 Mo2 S3 83.17(8) 

N1 Mo1 S3 130.8(2)  S5 Mo2 Cl1 134.44(9) 

N1 Mo1 S7 134.8(2)  S5 Mo2 S4 49.55(8) 

N1 Mo1 S2 87.7(2)  S5 Mo2 Cl2 83.86(10) 

N1 Mo1 S6 92.0(2)  S5 Mo2 S2 132.23(8) 

Mo1 Mo2 Mo3 60.14(3)  Cl2 Mo2 Mo1 138.16(7) 

S1 Mo2 Mo1 54.56(5)  Cl2 Mo2 Mo3 138.30(8) 

S1 Mo2 Mo3 54.04(6)  Cl2 Mo2 S4 94.15(9) 

S1 Mo2 S3 109.18(8)  Cl2 Mo2 S2 94.53(9) 

S1 Mo2 Cl1 81.25(9)  S2 Mo2 Mo1 56.50(6) 

S1 Mo2 S4 85.83(8)  S2 Mo2 Mo3 116.54(6) 

S1 Mo2 S5 108.62(9)  Mo1 Mo3 Mo2 59.65(2) 

S1 Mo2 Cl2 162.87(9)  S1 Mo3 Mo1 54.40(6) 

S1 Mo2 S2 85.71(8)  S1 Mo3 Mo2 54.22(6) 

S3 Mo2 Mo1 55.02(5)  S1 Mo3 S4 86.02(8) 

S3 Mo2 Mo3 95.90(6)  S1 Mo3 S5 108.54(9) 

S3 Mo2 Cl1 136.94(8)  S1 Mo3 S7 108.92(8) 

S3 Mo2 S4 132.51(8)  S1 Mo3 S6 84.95(8) 

S3 Mo2 Cl2 83.40(8)  S1 Mo3 Cl3 81.57(9) 

S3 Mo2 S2 49.42(8)  S1 Mo3 Cl4 162.77(9) 

Cl1 Mo2 Mo1 124.20(7)  S4 Mo3 Mo1 115.99(6) 

Cl1 Mo2 Mo3 121.54(7)  S2 S3 Mo2 67.57(9) 

Cl1 Mo2 S4 88.77(8)  Mo3 S4 Mo2 67.39(6) 

Cl1 Mo2 Cl2 81.62(10)  S5 S4 Mo2 62.59(9) 

Cl1 Mo2 S2 91.92(8)  S5 S4 Mo3 62.90(9) 

S4 Mo2 Mo1 116.36(6)  Mo2 S5 Mo3 70.54(7) 

S4 Mo2 Mo3 56.25(6)  S4 S5 Mo2 67.86(10) 

S4 Mo2 S2 171.31(8)  S4 S5 Mo3 67.59(9) 

S5 Mo2 Mo1 94.50(6)  Mo3 S7 Mo1 70.01(6) 

S5 Mo2 Mo3 54.86(6)  S6 S7 Mo1 67.56(10) 
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Table 7.11.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S6 S7 Mo3 67.80(9)  C1 N1 Mo1 126.1(7) 

Mo1 S2 Mo2 66.78(6)  C1 N1 C16 118.1(8) 

S3 S2 Mo1 62.88(9)  C16 N1 Mo1 115.8(6) 

S3 S2 Mo2 63.01(9)  N1 C1 C2 124.0(9) 

Mo1 S6 Mo3 66.90(6)  N2 C15 C16 116.2(8) 

S7 S6 Mo1 62.82(9)  N2 C15 C9 123.9(9) 

S7 S6 Mo3 62.66(9)  N1 C16 C15 117.1(9) 

C15 N2 Mo1 117.4(6)  N1 C16 C6 122.0(9) 

C15 N2 C14 116.2(8)  N2 C14 C12 124.1(9) 

C14 N2 Mo1 126.4(6)      
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7.2.4.5. STRUCTURE OF (Bu4N)[Mo3S7Cl4(dmbpy)·Cl], (Bu4N)[18·Cl] 

Reddish single crystals of compound (Bu4N)[18·Cl] were obtained in a similar fashion 

to compound (Bu4N)[15·Cl]. The structure of (Bu4N)[18·Cl] was refined in the 

monoclinic space group P21/n. All non-hydrogen atoms were refined anisotropically. 

Figure 7.12 shows its ORTEP representation with the atom numbering scheme. 

Three molecules of dichloromethane were found cocrystallized with the cluster 

complex. In the dichloromethane molecule centered at C(20) one chlorine atom was 

refined with a free occupancy and then constrained to the optimum occupancy value. 

The crystallographic data collection parameters are given in Table 7.12.1. 

 

 

Figure 7.12.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [18·Cl]- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7502(6); 
Mo-(µ3-S), 2.3531(12); Mo-Sax, 2.3852(13); Mo-Seq, 2.4861(14); Mo-N, 2.211(4); Mo-Cl, 
2.4644(13); Sax-Cl, 2.93(4). 
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Table 7.12.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Cl4(dmbpy)·Cl]·3CH2Cl2 
Formula C31H53Cl11Mo3N3S7 Crystal system monoclinic 
Space group P21/n Formula 

weight 
1369.95 

a (Å) 13.8174(2)  (º) 90 

b (Å) 19.3711(3)    (º) 103.4323(15) 

c (Å) 20.0877(3)  (º) 90 

Z 4 Vol (Å3) 5229.55(14) 
Colour reddish Crystal size 

(mm) 
0.4689 × 0.1936 
× 0.0702 

dcalc (g/cm3) 1.740  (Å) 0.71070 

Absorption 
coefficient (mm-1) 

1.578 F (000) 2740.0 

 
Experimental Data 

    
Temperature (K) 200 R(int) 0.0332 
Time per frame (s) 28 R () 0.0229 

2 Range (º) 5.86 to 50 Index ranges -16 ≤ h ≤ 16,     
-22 ≤ k ≤ 23,    
-23 ≤ l ≤ 23   

Collected 
reflections 

50572 Independent 
reflections 

9195 

 
Solution and Refinement 

    
Parameters 502 GooF on F2 1.088 
Restraints 0   
Final R1 ([I>2sigma(I)]) 0.0426 Final R1 (all data) 0.0541 
Final wR2 
([I>2sigma(I)]) 

0.1056 Final wR2 (all data) 0.1188 

Max/Min peak (e·Å-3) 1.54/-0.90 Max. shift/ < 0.001 
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Table 7.12.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo3 Mo1 2.7371(6)  Mo1 N2 2.210(4) 

Mo3 Mo2 2.7599(6)  Mo2 S1 2.3519(13) 

Mo3 Cl3 2.4419(13)  Mo2 S5 2.3947(13) 

Mo3 S1 2.3527(12)  Mo2 S4 2.4768(13) 

Mo3 Cl4 2.4858(12)  Mo2 Cl1 2.4512(13) 

Mo3 S5 2.3939(13)  Mo2 S3 2.3912(13) 

Mo3 S4 2.4843(13)  Mo2 Cl2 2.4785(14) 

Mo3 S7 2.3859(13)  Mo2 S2 2.4987(13) 

Mo3 S6 2.4884(13)  S5 S4 2.0347(18) 

Mo1 Mo2 2.7537(6)  S7 S6 2.0458(18) 

Mo1 S1 2.3548(12)  S3 S2 2.0460(18) 

Mo1 S7 2.3891(13)  N1 C6 1.366(6) 

Mo1 S3 2.3991(13)  N1 C1 1.343(7) 

Mo1 S6 2.4768(14)  N2 C12 1.341(6) 

Mo1 S2 2.4918(14)  N2 C7 1.361(6) 

Mo1 N1 2.212(4)     
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Table 7.12.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo1 Mo3 Mo2 60.124(15)  S5 Mo2 S2 133.06(5) 

Cl3 Mo3 Mo1 123.82(4)  S1 Mo2 Cl1 82.02(5) 

Cl3 Mo3 Mo2 122.56(4)  S1 Mo2 S3 108.63(4) 

Cl3 Mo3 Cl4 81.07(5)  S1 Mo2 Cl2 163.15(5) 

Cl3 Mo3 S4 90.38(4)  S1 Mo2 S2 83.99(4) 

Cl3 Mo3 S6 90.98(4)  S5 Mo2 Mo3 54.79(3) 

S1 Mo3 Mo1 54.49(3)  S5 Mo2 Mo1 93.91(3) 

S1 Mo3 Mo2 54.07(3)  S5 Mo2 S4 49.34(4) 

S1 Mo3 Cl3 81.66(4)  S5 Mo2 Cl1 135.19(5) 

S1 Mo3 Cl4 162.62(5)  S5 Mo2 Cl2 83.03(5) 

S1 Mo3 S5 108.63(4)  S4 Mo2 Mo3 56.33(3) 

S1 Mo3 S4 86.08(4)  S4 Mo2 Mo1 115.84(3) 

S1 Mo3 S7 109.19(4)  S4 Mo2 Cl2 92.84(5) 

S1 Mo3 S6 85.62(4)  S4 Mo2 S2 170.09(5) 

Cl4 Mo3 Mo1 136.95(4)  Cl1 Mo2 Mo3 122.67(4) 

Cl4 Mo3 Mo2 139.78(4)  Cl1 Mo2 Mo1 124.52(4) 

Cl4 Mo3 S6 92.81(4)  Cl1 Mo2 S4 89.93(4) 

S5 Mo3 Mo1 94.35(3)  Cl1 Mo2 Cl2 81.16(5) 

S5 Mo3 Mo2 54.82(3)  Cl1 Mo2 S2 90.46(5) 

S5 Mo3 Cl3 135.60(5)  S3 Mo2 Mo3 96.51(4) 

S5 Mo3 Cl4 85.25(4)  S3 Mo2 Mo1 55.05(3) 

S5 Mo3 S4 49.26(4)  S3 Mo2 S5 84.23(5) 

S5 Mo3 S6 131.90(5)  S3 Mo2 S4 133.38(5) 

S4 Mo3 Mo1 116.18(3)  S3 Mo2 Cl1 134.85(5) 

S4 Mo3 Mo2 56.07(3)  S3 Mo2 Cl2 84.12(5) 

S4 Mo3 Cl4 95.89(4)  S3 Mo2 S2 49.41(4) 

S4 Mo3 S6 171.30(4)  Cl2 Mo2 Mo3 137.32(4) 

S7 Mo3 Mo1 55.08(3)  Cl2 Mo2 Mo1 139.10(4) 

S7 Mo3 Mo2 95.69(4)  Cl2 Mo2 S2 97.00(5) 

S7 Mo3 Cl3 136.02(5)  S2 Mo2 Mo3 115.70(4) 

S7 Mo3 Cl4 82.33(5)  S2 Mo2 Mo1 56.39(3) 
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Table 7.12.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S7 Mo3 S5 82.69(4)  Mo3 S1 Mo1 71.10(4) 

S7 Mo3 S4 131.75(5)  Mo2 S1 Mo3 71.84(4) 

S7 Mo3 S6 49.58(4)  Mo2 S1 Mo1 71.61(4) 

S6 Mo3 Mo1 56.35(3)  Mo3 S5 Mo2 70.39(4) 

S6 Mo3 Mo2 116.37(3)  S4 S5 Mo3 67.68(5) 

Mo3 Mo1 Mo2 60.349(14)  S4 S5 Mo2 67.43(5) 

S1 Mo1 Mo3 54.41(3)  Mo2 S4 Mo3 67.60(3) 

S1 Mo1 Mo2 54.14(3)  S5 S4 Mo3 63.06(5) 

S1 Mo1 S7 109.01(4)  S5 S4 Mo2 63.23(5) 

S1 Mo1 S3 108.27(5)  Mo3 S7 Mo1 69.95(4) 

S1 Mo1 S6 85.84(4)  S6 S7 Mo3 67.82(5) 

S1 Mo1 S2 84.08(4)  S6 S7 Mo1 67.39(5) 

S7 Mo1 Mo3 54.97(3)  Mo2 S3 Mo1 70.18(4) 

S7 Mo1 Mo2 95.77(3)  S2 S3 Mo1 67.65(5) 

S7 Mo1 S3 86.07(5)  S2 S3 Mo2 68.03(5) 

S7 Mo1 S6 49.68(4)  Mo1 S6 Mo3 66.90(3) 

S7 Mo1 S2 135.09(5)  S7 S6 Mo3 62.60(5) 

S3 Mo1 Mo3 96.93(3)  S7 S6 Mo1 62.93(5) 

S3 Mo1 Mo2 54.78(3)  Mo1 S2 Mo2 66.98(3) 

S3 Mo1 S6 135.50(5)  S3 S2 Mo1 62.93(5) 

S3 Mo1 S2 49.41(5)  S3 S2 Mo2 62.56(5) 

S6 Mo1 Mo3 56.75(3)  C6 N1 Mo1 116.5(3) 

S6 Mo1 Mo2 117.00(3)  C1 N1 Mo1 126.4(3) 

S6 Mo1 S2 169.90(5)  C1 N1 C6 116.7(4) 

S2 Mo1 Mo3 116.75(3)  C12 N2 Mo1 124.9(3) 

S2 Mo1 Mo2 56.63(3)  C12 N2 C7 117.9(4) 

N1 Mo1 Mo3 125.48(11)  C7 N2 Mo1 117.0(3) 

N1 Mo1 Mo2 130.09(11)  N2 C12 C11 123.0(5) 

N1 Mo1 S1 87.70(11)  N2 C7 C8 121.5(4) 

N1 Mo1 S7 129.49(12)  N2 C7 C6 115.7(4) 

N1 Mo1 S3 134.59(12)  N1 C6 C7 116.0(4) 

 



CHAPTER 7 

272 
  

Table 7.12.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N1 Mo1 S6 86.43(12)  N2 Mo1 N1 73.95(14) 

N1 Mo1 S2 92.66(12)  Mo1 Mo2 Mo3 59.527(14) 

N2 Mo1 Mo3 137.20(11)  S1 Mo2 Mo3 54.10(3) 

N2 Mo1 Mo2 140.68(11)  S1 Mo2 Mo1 54.24(3) 

N2 Mo1 S1 161.62(11)  S1 Mo2 S5 108.63(4) 

N2 Mo1 S7 82.86(11)  S1 Mo2 S4 86.26(4) 

N2 Mo1 S3 86.00(11)  N1 C6 C5 121.5(5) 

N2 Mo1 S6 91.96(12)  N1 C1 C2 123.8(5) 

N2 Mo1 S2 97.46(12)      
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7.2.4.6. STRUCTURE OF (Bu4N)[Mo3S7Br4(dmbpy)·Br], (Bu4N)[19·Br] 

Single crystals of compound (Bu4N)[19·Br] were obtained by slow diffusion 

toluene/CH2Cl2, in a similar fashion to compound (Bu4N)[14·Br]. The structure of 

(Bu4N)[19·Br] was refined in the triclinic space group P-1. All non-hydrogen atoms 

were refined anisotropically. Figure 7.13 shows its ORTEP representation with the 

atom numbering scheme. One terminal carbon atom in the tetrabutylammonium 

counterion centered at N(400) was found to be disordered over two positions with a 

0.55/0.45 partial occupancy ratio. Dichloromethane and toluene were found co-

crystallized with the cluster complex. In the dichloromethane molecule centered at 

C(40), one chlorine atom was found disordered between two positions with partial 

occupancies of 0.60 and 0.40, and therefore the hydrogen atoms were not included. 

The bond distances in the dichloromethane molecule centered at C(30) were 

restrained to fixed values, and all the atoms in this molecule were refined isotropically. 

The crystallographic data collection parameters are given in Table 7.13.1. 

 

Figure 7.13.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [19·Br]- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7502(11); 
Mo-(µ3-S), 2.359(3); Mo-Sax, 2.393(3); Mo-Seq, 2.481(3); Mo-N, 2.211(8); Mo-Br, 2.6172(14); 
Sax-Br, 3.05(5). 
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Table 7.13.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Br4(dmbpy)·Br]·(1/6)CH3C6H5·(1/2)CH2Cl2 
Formula C29.7H49.2Br5ClMo3N3S7 Crystal system triclinic 
Space group P-1 Formula weight 1395.96 
a (Å) 19.3605(3)  (º) 71.8853(15) 

b (Å) 25.9644(4)  (º) 76.3237(14) 

c (Å) 34.7600(5)  (º) 70.0386(15) 

Z 12 Vol (Å3) 15442.7(5) 
Colour reddish Crystal size 

(mm) 
0.4007 × 0.2194 
× 0.0933 

dcalc (g/cm3) 1.797  (Å) 0.71073 

Absorption 
coefficient (mm-1) 

4.957 F (000) 8124.0 

 
Experimental Data 

    
Temperature (K) 200 R(int) 0.0725 
Time per frame (s) 38 R () 0.0684 

2 Range (º) 5.58 to 52 Index ranges -23 ≤ h ≤ 23 
-32 ≤ k ≤ 32 
-42 ≤ l ≤ 42 

Collected 
reflections 

331374 Independent 
reflections 

60352 

 
Solution and Refinement 

    
Parameters 2663 GooF on F2 1.029 
Restraints 2   
Final R1 ([I>2sigma(I)]) 0.0647 Final R1 (all data) 0.1153 
Final wR2 
([I>2sigma(I)]) 

0.1675 Final wR2 (all data) 0.2012 

Max/Min peak (e·Å-3) 3.08 / -1.57 Max. shift/ < 0.001 
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Table 7.13.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo3 Mo2 2.7598(12)  Mo2 S5 2.395(3) 
Mo3 Br2 2.6373(13)  Mo2 S4 2.481(3) 

Mo3 Br1 2.5971(15)  Mo2 Mo1 2.7456(11) 
Mo3 S3 2.394(3)  S7 Mo1 2.390(3) 

Mo3 S1 2.357(3)  S6 Mo1 2.473(3) 

Mo3 S2 2.489(2)  S3 S2 2.048(4) 

Mo3 S5 2.394(3)  S3 Mo1 2.391(3) 
Mo3 S4 2.477(3)  S1 Mo1 2.367(3) 

Mo3 Mo1 2.7453(11)  S2 Mo1 2.474(3) 
Mo2 Br4 2.6537(14)  N2 C7 1.343(12) 
Mo2 Br3 2.5777(14)  N2 C12 1.354(14) 

Mo2 S7 2.391(3)  N2 Mo1 2.210(8) 
Mo2 S6 2.491(3)  N1 C6 1.368(13) 
Mo2 S1 2.354(3)  N1 Mo1 2.212(8) 
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Table 7.13.3. Bond Angles 

 Atom Atom Atom Angle/º Atom Atom Atom Angle/º 

 Br2 Mo3 Mo2 137.30(5) S4 Mo2 Mo1 115.88(7) 

 Br2 Mo3 Mo1 139.17(5) Mo1 Mo2 Mo3 59.82(3) 

 Br1 Mo3 Mo2 123.51(5) S6 S7 Mo2 67.66(11) 

 Br1 Mo3 Br2 81.67(5) S6 S7 Mo1 67.11(10) 
 Br1 Mo3 Mo1 122.55(4) Mo1 S7 Mo2 70.10(8) 

 S3 Mo3 Mo2 95.62(7) S7 S6 Mo2 62.57(10) 
 S3 Mo3 Br2 84.38(7) S7 S6 Mo1 62.90(10) 
 S3 Mo3 Br1 134.14(8) Mo1 S6 Mo2 67.15(7) 

 S3 Mo3 S2 49.53(9) S2 S3 Mo3 67.66(11) 

 S3 Mo3 S4 132.83(10) S2 S3 Mo1 67.24(10) 
 S3 Mo3 Mo1 54.94(6) Mo1 S3 Mo3 70.02(8) 

 S1 Mo3 Mo2 54.09(7) Mo3 S1 Mo1 71.06(8) 
 S1 Mo3 Br2 162.76(8) Mo2 S1 Mo3 71.73(8) 

 S1 Mo3 Br1 81.21(8) Mo2 S1 Mo1 71.12(8) 

 S1 Mo3 S3 109.17(9) S3 S2 Mo3 62.81(10) 
 S1 Mo3 S2 85.21(9) S3 S2 Mo1 63.02(10) 
 S1 Mo3 S5 108.54(10) Mo1 S2 Mo3 67.15(7) 

 S1 Mo3 S4 85.31(9) Mo3 S5 Mo2 70.39(8) 

 S1 Mo3 Mo1 54.65(7) S4 S5 Mo3 67.44(11) 
 S2 Mo3 Mo2 115.87(7) S4 S5 Mo2 67.53(11) 
 S2 Mo3 Br2 96.44(7) Mo3 S4 Mo2 67.65(7) 

 S2 Mo3 Br1 89.02(7) S5 S4 Mo3 63.18(10) 
 S2 Mo3 Mo1 56.16(6) S5 S4 Mo2 63.13(10) 
 S5 Mo3 Mo2 54.82(7) C7 N2 C12 117.4(9) 

 S5 Mo3 Br2 82.92(7) C7 N2 Mo1 118.2(7) 
 S5 Mo3 Br1 136.76(8) C12 N2 Mo1 124.2(7) 

 S5 Mo3 S3 83.71(10) C6 N1 Mo1 116.6(7) 

 S5 Mo3 S2 132.82(10) C1 N1 C6 117.4(9) 
 S5 Mo3 S4 49.39(10) C1 N1 Mo1 126.0(7) 

 S5 Mo3 Mo1 94.74(7) N2 C7 C6 115.3(9) 

 S4 Mo3 Mo2 56.23(7) N2 C7 C8 122.1(10) 
 S4 Mo3 Br2 93.20(7) N1 C6 C7 116.6(9) 

 S4 Mo3 Br1 91.53(8) N1 C6 C5 119.9(11) 
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Table 7.13.3. [cont.] Bond Angles 

 Atom Atom Atom Angle/º Atom Atom Atom Angle/º 

 S4 Mo3 S2 170.31(9) N1 C1 C2 123.3(11) 

 S4 Mo3 Mo1 116.02(7) Mo3 Mo1 Mo2 60.35(3) 

 Mo1 Mo3 Mo2 59.83(3) S7 Mo1 Mo3 96.34(7) 

 Br4 Mo2 Mo3 138.30(5) S7 Mo1 Mo2 54.96(7) 
 Br4 Mo2 Mo1 136.95(5) S7 Mo1 S6 49.99(9) 

 Br3 Mo2 Mo3 123.25(5) S7 Mo1 S3 85.37(9) 
 Br3 Mo2 Br4 81.58(5) S7 Mo1 S2 134.82(9) 
 Br3 Mo2 Mo1 124.43(5) S6 Mo1 Mo3 116.91(7) 

 S7 Mo2 Mo3 95.93(7) S6 Mo1 Mo2 56.74(6) 

 S7 Mo2 Br4 82.21(7) S6 Mo1 S2 170.01(10) 
 S7 Mo2 Br3 135.10(8) S3 Mo1 Mo3 55.04(7) 

 S7 Mo2 S6 49.76(9) S3 Mo1 Mo2 96.06(7) 
 S7 Mo2 S5 84.16(10) S3 Mo1 S6 135.03(9) 

 S7 Mo2 S4 133.21(10) S3 Mo1 S2 49.74(9) 

 S7 Mo2 Mo1 54.93(6) S1 Mo1 Mo3 54.29(6) 
 S6 Mo2 Mo3 115.75(7) S1 Mo1 Mo2 54.22(7) 
 S6 Mo2 Br4 94.74(7) S1 Mo1 S7 108.69(9) 

 S6 Mo2 Br3 90.41(7) S1 Mo1 S6 84.69(9) 

 S6 Mo2 Mo1 56.11(6) S1 Mo1 S3 108.91(9) 
 S1 Mo2 Mo3 54.18(7) S1 Mo1 S2 85.33(9) 
 S1 Mo2 Br4 163.69(8) S2 Mo1 Mo3 56.69(6) 

 S1 Mo2 Br3 82.13(8) S2 Mo1 Mo2 116.91(6) 
 S1 Mo2 S7 109.10(9) N2 Mo1 Mo3 140.3(2) 
 S1 Mo2 S6 84.56(9) N2 Mo1 Mo2 138.6(2) 

 S1 Mo2 S5 108.60(10) N2 Mo1 S7 84.1(2) 
 S1 Mo2 S4 85.29(9) N2 Mo1 S6 93.7(2) 

 S1 Mo2 Mo1 54.66(7) N2 Mo1 S3 85.6(2) 

 S5 Mo2 Mo3 54.79(7) N2 Mo1 S1 161.0(2) 
 S5 Mo2 Br4 83.70(7) N2 Mo1 S2 95.6(2) 

 S5 Mo2 Br3 134.75(8) N2 Mo1 N1 72.9(3) 

 S5 Mo2 S6 133.41(10) N1 Mo1 Mo3 127.7(2) 
 S5 Mo2 S4 49.34(10) N1 Mo1 Mo2 128.6(2) 

 S5 Mo2 Mo1 94.71(7) N1 Mo1 S7 132.6(2) 
 S4 Mo2 Mo3 56.11(6) N1 Mo1 S6 90.1(2) 
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7.2.4.7. STRUCTURE OF (Bu4N)[Mo3S7Br4(bpy)·Br], (Bu4N)[20·Br] 

Single crystals of compound (Bu4N)[20·Br] were obtained in a similar fashion to 

cluster (Bu4N)[14·Br]. The structure of (Bu4N)[20·Br] was refined in the monoclinic 

space group P21. Figure 7.14 shows its ORTEP representation with the atom 

numbering scheme. Dichloromethane and toluene were found cocrystallized with the 

cluster complex. In the tetrabutylammonium anion centered at N(200), the terminal 

carbon C(116) was found to be disordered over two positions with a partial 

occupancy ratio of 0.6/0.4. Owing to disorder, we considered as justified the 

omission of the hydrogen atoms in this molecule. The crystallographic data collection 

parameters are given in Table 7.14.1. 

 

Figure 7.14.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [20·Br]- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7438(14); 
Mo-(µ3-S), 2.3583(3); Mo-Sax, 2.391(3); Mo-Seq, 2.485(3); Mo-N, 2.225(10); Mo-Br, 
2.6212(17); Sax-Br, 3.043(14). 
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Table 7.14.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Br4(bpy)·Br]·CH2Cl2·CH3C6H5 
Formula C30H30.5Br5ClMo3N3S7 Crystal system monoclinic 
Space group P21 Formula 

weight 
1380.31 

a (Å) 11.19024(19)  (º) 90 

b (Å) 32.5907(6)  (º) 108.499(2) 

c (Å) 14.5892(3)  (º) 90   

Z 4 Vol (Å3) 5045.73(16) 
Colour reddish Crystal size 

(mm) 
0.063 × 0.189  
× 0.296 

dcalc (g/cm3) 1.817  (Å) 0.71070 

Absorption 
coefficient (mm-1)

5.060 F (000) 2646.0 

 
Experimental Data 

    
Temperature (K) 200 R(int) 0.0338 
Time per frame (s) 28 R () 0.0409 

2 Range (º) 5.68 to 50 Index ranges -13 ≤ h ≤ 13,    
-38 ≤ k ≤ 38,     
-17 ≤ l ≤ 17   

Collected 
reflections 

48304 Independent 
reflections 

17681 

 
Solution and Refinement 

    
Parameters 891 GooF on F2 1.068 
Restraints 6   
Final R1 ([I>2sigma(I)]) 0.0429 Final R1 (all data) 0.0470 
Final wR2 
([I>2sigma(I)]) 

0.1225 Final wR2 (all data) 0.1256 

Max/Min peak (e·Å-3) 3.29/-0.58 Max. shift/ <0.001 
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Table 7.14.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo1 Mo3 2.7359(13)  Mo2 S3 2.387(3) 

Mo1 Mo2 2.7405(14)  Mo2 S4 2.493(3) 

Mo1 S1 2.366(3)  Mo2 S2 2.488(3) 

Mo1 S3 2.393(3)  Mo2 S5 2.398(3) 

Mo1 S7 2.390(3)  S3 S2 2.047(5) 

Mo1 S6 2.476(3)  S7 S6 2.048(4) 

Mo1 S2 2.489(3)  S4 S5 2.047(5) 

Mo1 N2 2.214(10)  N2 C10 1.348(17) 

Mo1 N1 2.236(9)  N2 C6 1.339(16) 

Mo3 Mo2 2.7549(15)  C10 C9 1.38(2) 

Mo3 Br3 2.5847(16)  C3 C4 1.37(2) 

Mo3 Br4 2.6381(17)  C3 C2 1.36(2) 

Mo3 S1 2.354(3)  N1 C1 1.337(18) 

Mo3 S7 2.379(3)  N1 C5 1.321(15) 

Mo3 S6 2.491(3)  C6 C7 1.379(18) 

Mo3 S4 2.471(3)  C6 C5 1.462(18) 

Mo3 S5 2.397(3)  C4 C5 1.434(17) 

Mo2 Br2 2.6394(18)  C1 C2 1.408(19) 

Mo2 Br1 2.6226(18)  C7 C8 1.40(2) 

Mo2 S1 2.355(3)  C9 C8 1.34(2) 
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Table 7.14.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo3 Mo1 Mo2 60.40(4)  S1 Mo2 Br2 163.60(10) 

S1 Mo1 Mo3 54.37(8)  S1 Mo2 Br1 81.94(9) 

S1 Mo1 Mo2 54.33(8)  S1 Mo2 S3 109.37(11) 

S1 Mo1 S3 108.79(12)  S1 Mo2 S4 85.00(11) 

S1 Mo1 S7 108.71(11)  S1 Mo2 S2 85.45(11) 

S1 Mo1 S6 85.29(11)  S1 Mo2 S5 108.71(12) 

S1 Mo1 S2 85.19(11)  S3 Mo2 Mo1 55.13(8) 

S3 Mo1 Mo3 96.11(8)  S3 Mo2 Mo3 95.75(9) 

S3 Mo1 Mo2 54.92(8)  S3 Mo2 Br2 80.71(9) 

S3 Mo1 S6 134.75(12)  S3 Mo2 Br1 136.62(10) 

S3 Mo1 S2 49.54(12)  S3 Mo2 S4 132.83(13) 

S7 Mo1 Mo3 54.80(8)  S3 Mo2 S2 49.61(12) 

S7 Mo1 Mo2 96.04(8)  S3 Mo2 S5 83.71(12) 

S7 Mo1 S3 85.27(12)  S4 Mo2 Mo1 115.57(9) 

S7 Mo1 S6 49.75(11)  S4 Mo2 Mo3 55.91(8) 

S7 Mo1 S2 134.49(12)  S4 Mo2 Br2 97.63(9) 

S6 Mo1 Mo3 56.85(7)  S4 Mo2 Br1 88.73(10) 

S6 Mo1 Mo2 117.12(8)  S2 Mo2 Mo1 56.61(8) 

S6 Mo1 S2 170.48(11)  S2 Mo2 Mo3 116.20(9) 

S2 Mo1 Mo3 116.85(8)  S2 Mo2 Br2 92.08(9) 

S2 Mo1 Mo2 56.56(8)  S2 Mo2 Br1 91.87(9) 

N2 Mo1 Mo3 138.6(3)  S2 Mo2 S4 170.25(12) 

N2 Mo1 Mo2 139.8(3)  S5 Mo2 Mo1 94.70(9) 

N2 Mo1 S1 161.2(3)  S5 Mo2 Mo3 54.93(8) 

N2 Mo1 S3 85.2(3)  S5 Mo2 Br2 84.77(9) 

N2 Mo1 S7 84.3(3)  S5 Mo2 Br1 133.64(9) 

N2 Mo1 S6 93.6(3)  S5 Mo2 S4 49.44(12) 

N2 Mo1 S2 95.3(3)  S5 Mo2 S2 132.94(12) 

N2 Mo1 N1 73.4(4)  Mo3 S1 Mo1 70.85(9) 

N1 Mo1 Mo3 128.7(3)  Mo3 S1 Mo2 71.61(9) 

N1 Mo1 Mo2 127.4(3)  Mo2 S1 Mo1 70.96(9) 
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Table 7.14.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N1 Mo1 S1 87.9(3)  Mo2 S3 Mo1 69.96(9) 

N1 Mo1 S3 131.3(3)  S2 S3 Mo1 67.66(13) 

N1 Mo1 S7 133.3(3)  S2 S3 Mo2 67.75(13) 

N1 Mo1 S6 90.7(3)  Mo3 S7 Mo1 70.01(9) 

N1 Mo1 S2 88.9(3)  S6 S7 Mo1 67.30(12) 

Mo1 Mo3 Mo2 59.88(4)  S6 S7 Mo3 68.02(12) 

Br3 Mo3 Mo1 122.98(5)  Mo1 S6 Mo3 66.84(8) 

Br3 Mo3 Mo2 123.21(5)  S7 S6 Mo1 62.95(12) 

Br3 Mo3 Br4 81.89(5)  S7 S6 Mo3 62.30(12) 

Br4 Mo3 Mo1 138.34(6)  Mo3 S4 Mo2 67.41(8) 

Br4 Mo3 Mo2 137.65(6)  S5 S4 Mo3 63.27(13) 

S1 Mo3 Mo1 54.78(8)  S5 S4 Mo2 62.85(13) 

S1 Mo3 Mo2 54.22(8)  Mo2 S2 Mo1 66.83(9) 

S1 Mo3 Br3 81.14(9)  S3 S2 Mo1 62.80(13) 

S1 Mo3 Br4 163.01(9)  S3 S2 Mo2 62.64(12) 

S1 Mo3 S7 109.52(11)  Mo3 S5 Mo2 70.13(9) 

S1 Mo3 S6 85.21(10)  S4 S5 Mo3 67.02(14) 

S1 Mo3 S4 85.53(11)  S4 S5 Mo2 67.71(14) 

S1 Mo3 S5 108.78(12)  C10 N2 Mo1 124.7(9) 

S7 Mo3 Mo1 55.19(8)  C6 N2 Mo1 117.2(8) 

S7 Mo3 Mo2 95.93(9)  C6 N2 C10 118.0(11) 

S7 Mo3 Br3 134.48(9)  N2 C10 C9 122.9(14) 

S7 Mo3 Br4 83.32(9)  C1 N1 Mo1 124.8(8) 

S7 Mo3 S6 49.68(10)  C5 N1 Mo1 115.8(8) 

S7 Mo3 S4 133.27(12)  C5 N1 C1 119.4(11) 

S7 Mo3 S5 83.77(11)  N2 C6 C7 121.6(12) 

S6 Mo3 Mo1 56.32(8)  N2 C6 C5 115.4(11) 

S6 Mo3 Mo2 116.06(8)  C10 N2 Mo1 124.7(9) 

S6 Mo3 Br3 89.40(8)  C6 N2 Mo1 117.2(8) 

S6 Mo3 Br4 95.60(9)  C6 N2 C10 118.0(11) 

S4 Mo3 Mo1 116.51(9)  N2 C10 C9 122.9(14) 
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Table 7.14.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S4 Mo3 Mo2 56.68(8)  Br1 Mo2 Mo1 125.07(6) 

S4 Mo3 Br3 90.54(9)  Br1 Mo2 Mo3 122.39(6) 

S4 Mo3 Br4 93.65(9)  Br1 Mo2 Br2 81.94(6) 

S4 Mo3 S6 170.64(12)  S1 Mo2 Mo1 54.70(8) 

S5 Mo3 Mo1 94.83(9)  S1 Mo2 Mo3 54.17(8) 

S5 Mo3 Mo2 54.95(9)  C1 N1 Mo1 124.8(8) 

S5 Mo3 Br3 136.13(9)  C5 N1 Mo1 115.8(8) 

S5 Mo3 Br4 83.05(9)  C5 N1 C1 119.4(11) 

S5 Mo3 S6 133.02(11)  N2 C6 C7 121.6(12) 

S5 Mo3 S4 49.71(12)  N2 C6 C5 115.4(11) 

Mo1 Mo2 Mo3 59.72(4)  N1 C1 C2 122.6(13) 

Br2 Mo2 Mo1 135.49(6)  N1 C5 C6 118.1(10) 

Br2 Mo2 Mo3 139.62(6)  N1 C5 C4 121.0(11) 
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7.2.4.8. STRUCTURE OF (Bu4N)[Mo3S7Br4(phen)·Br], (Bu4N)[21·Br] 

Single crystals of compound (Bu4N)[21·Br] were obtained in a similar fashion to 

compound (Bu4N)[14·Br]. Reddish needle-like crystals grew from the mixture after 

few days. The structure of (Bu4N)[21·Br] was refined in the triclinic space group P-

1. All non-hydrogen atoms were refined anisotropically. Figure 7.15 shows its 

ORTEP representation with the atom numbering scheme.  In the 

tetrabutylammonium counterion, three terminal carbons (C104, C108 and C112) 

were refined with a partial occupancy (0.5, 0.5 and 0.75, respectively). Additionally, 

the bond distances between three pairs of terminal atoms (C103-C104, C107-C108 

and C111-C112) were restrained to fixed values. The crystallographic data collection 

parameters are given in Table 7.15.1. 

 

Figure 7.15.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [21·Br]- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7414(7); 
Mo-(µ3-S), 2.3553(15); Mo-Sax, 2.3958(16); Mo-Seq, 2.4852(17); Mo-N, 2.216(5); Mo-Br, 
2.6083(9); Sax-Br, 3.04(8). 
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Table 7.15.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Br4(phen)·Br] 
Formula C26.8H36.3Br5Mo3N3S7 Crystal system triclinic 
Space group P-1 Formula 

weight 
1311.63 

a (Å) 11.9690(3)  (º) 71.325(3) 

b (Å) 12.7039(4)  (º) 79.119(2) 

c (Å) 16.6526(5)  (º) 65.163(3) 

Z 2 Vol (Å3) 2172.55(12) 
Colour reddish Crystal size 

(mm) 
0.5229 × 0.2075 
× 0.034 

dcalc (g/cm3) 2.005  (Å) 1.54180 

Absorption 
coefficient (mm-1) 

15.699 F (000) 1262.0   

 
Experimental Data 

    
Temperature (K) 200 R(int) 0.0712 
Time per frame (s) 1 R () 0.0430 

2 Range (º) 5.16 to 144 Index ranges -14 ≤ h ≤ 14,     
-14 ≤ k ≤ 15,     
-20 ≤ l ≤ 20   

Collected 
reflections 

31156 Independent 
reflections 

8395 

 
Solution and Refinement 

    
Parameters 419 GooF on F2 1.027 
Restraints 3   
Final R1 ([I>2sigma(I)]) 0.0538 Final R1 (all data) 0.0612 
Final wR2 
([I>2sigma(I)]) 

0.1534 Final wR2 (all data) 0.1654 

Max/Min peak (e·Å-3) 1.75 / -1.46   Max. shift./ 0.306 
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Table 7.15.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo1 Mo3 2.7283(6)  Mo3 S4 2.4804(17) 

Mo1 Mo2 2.7454(7)  Mo2 Br1 2.6119(9) 

Mo1 S1 2.3568(15)  Mo2 Br2 2.6210(9) 

Mo1 S7 2.4021(14)  Mo2 S1 2.3566(15) 

Mo1 S6 2.4900(15)  Mo2 S5 2.3880(17) 

Mo1 S3 2.4005(16)  Mo2 S3 2.3882(18) 

Mo1 S2 2.4892(16)  Mo2 S2 2.4890(18) 

Mo1 N2 2.218(5)  Mo2 S4 2.4780(19) 

Mo1 N1 2.213(5)  S7 S6 2.047(2) 

Mo3 Mo2 2.7506(7)  S5 S4 2.034(3) 

Mo3 Br3 2.5976(9)  S3 S2 2.051(2) 

Mo3 Br4 2.6025(9)  N2 C11 1.357(7) 

Mo3 S1 2.3526(15)  N2 C10 1.350(8) 

Mo3 S7 2.4018(15)  N1 C12 1.384(8) 

Mo3 S6 2.4843(15)  N1 C1 1.334(8) 

Mo3 S5 2.3943(17)     
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Table 7.15.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo3 Mo1 Mo2 60.333(18)  S1 Mo2 Mo1 54.38(4) 

S1 Mo1 Mo3 54.53(4)  S1 Mo2 Mo3 54.19(4) 

S1 Mo1 Mo2 54.37(4)  S1 Mo2 Br1 80.60(4) 

S1 Mo1 S7 109.40(5)  S1 Mo2 Br2 163.14(5) 

S1 Mo1 S6 85.22(5)  S1 Mo2 S5 108.91(6) 

S1 Mo1 S3 108.60(6)  S1 Mo2 S3 109.01(5) 

S1 Mo1 S2 84.38(6)  S1 Mo2 S2 84.39(6) 

S7 Mo1 Mo3 55.39(4)  S1 Mo2 S4 86.22(6) 

S7 Mo1 Mo2 96.72(4)  S5 Mo2 Mo1 94.10(4) 

S7 Mo1 S6 49.43(5)  S5 Mo2 Mo3 55.00(4) 

S7 Mo1 S2 135.60(6)  S5 Mo2 Br1 135.48(5) 

S6 Mo1 Mo3 56.64(4)  S5 Mo2 Br2 82.85(5) 

S6 Mo1 Mo2 116.84(4)  S5 Mo2 S3 83.70(6) 

S3 Mo1 Mo3 96.55(4)  S5 Mo2 S2 132.87(6) 

S3 Mo1 Mo2 54.81(4)  S5 Mo2 S4 49.38(6) 

S3 Mo1 S7 86.36(6)  S3 Mo2 Mo1 55.23(4) 

S3 Mo1 S6 135.42(5)  S3 Mo2 Mo3 96.25(4) 

S3 Mo1 S2 49.55(6)  S3 Mo2 Br1 135.69(5) 

S2 Mo1 Mo3 116.67(5)  S3 Mo2 Br2 83.74(5) 

S2 Mo1 Mo2 56.53(4)  S3 Mo2 S2 49.68(6) 

S2 Mo1 S6 169.60(6)  S3 Mo2 S4 132.88(6) 

N2 Mo1 Mo3 141.87(13)  S2 Mo2 Mo1 56.53(4) 

N2 Mo1 Mo2 136.95(14)  S2 Mo2 Mo3 115.87(4) 

N2 Mo1 S1 160.48(14)  S2 Mo2 Br1 90.50(5) 

N2 Mo1 S7 86.62(14)  S2 Mo2 Br2 96.48(5) 

N2 Mo1 S6 97.80(14)  S4 Mo2 Mo1 115.86(5) 

N2 Mo1 S3 82.79(14)  S4 Mo2 Mo3 56.35(4) 

N2 Mo1 S2 91.88(14)  S4 Mo2 Br1 89.82(5) 

N1 Mo1 Mo3 125.93(13)  S4 Mo2 Br2 93.05(5) 

N1 Mo1 Mo2 127.92(13)  S4 Mo2 S2 170.42(6) 

N1 Mo1 S1 86.29(13)  Mo3 S1 Mo1 70.81(4) 
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Table 7.15.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N1 Mo1 S7 130.83(13)  Mo3 S1 Mo2 71.48(4) 

N1 Mo1 S6 88.07(13)  Mo2 S1 Mo1 71.25(4) 

N1 Mo1 S3 133.65(13)  Mo3 S7 Mo1 69.21(4) 

N1 Mo1 S2 90.83(13)  S6 S7 Mo1 67.52(6) 

N1 Mo1 N2 74.59(18)  S6 S7 Mo3 67.35(6) 

Mo1 Mo3 Mo2 60.142(18)  Mo3 S6 Mo1 66.52(4) 

Br3 Mo3 Mo1 122.29(3)  S7 S6 Mo1 63.05(6) 

Br3 Mo3 Mo2 121.69(3)  S7 S6 Mo3 63.15(6) 

Br3 Mo3 Br4 81.42(3)  Mo2 S5 Mo3 70.22(5) 

Br4 Mo3 Mo1 141.09(3)  S4 S5 Mo3 67.56(7) 

Br4 Mo3 Mo2 137.01(3)  S4 S5 Mo2 67.61(7) 

S1 Mo3 Mo1 54.67(4)  Mo2 S3 Mo1 69.96(5) 

S1 Mo3 Mo2 54.33(4)  S2 S3 Mo1 67.47(6) 

S1 Mo3 Br3 79.89(4)  S2 S3 Mo2 67.72(7) 

S1 Mo3 Br4 161.10(5)  Mo2 S2 Mo1 66.94(4) 

S1 Mo3 S7 109.54(5)  S3 S2 Mo1 62.97(6) 

S1 Mo3 S6 85.44(5)  S3 S2 Mo2 62.61(7) 

S1 Mo3 S5 108.83(6)  Mo2 S4 Mo3 67.39(4) 

S1 Mo3 S4 86.25(6)  S5 S4 Mo3 63.15(7) 

S7 Mo3 Mo1 55.40(4)  S5 S4 Mo2 63.00(7) 

S7 Mo3 Mo2 96.58(4)  C11 N2 Mo1 115.1(4) 

S7 Mo3 Br3 134.99(5)  C10 N2 Mo1 126.3(4) 

S7 Mo3 Br4 85.82(4)  C10 N2 C11 118.6(5) 

S7 Mo3 S6 49.50(5)  C12 N1 Mo1 114.6(4) 

S7 Mo3 S4 132.76(6)  C1 N1 Mo1 128.6(4) 

S6 Mo3 Mo1 56.84(4)  C1 N1 C12 116.8(5) 

S6 Mo3 Mo2 116.84(4)  N1 C12 C11 117.4(5) 

S6 Mo3 Br3 89.55(4)  N1 C12 C4 122.0(6) 

S6 Mo3 Br4 97.21(4)  N2 C11 C12 117.8(5) 

S5 Mo3 Mo1 94.39(5)  N2 C11 C7 121.6(5) 

S5 Mo3 Mo2 54.78(4)  N1 C1 C2 123.5(6) 
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7.2.4.9. STRUCTURE OF (Bu4N)[Mo3S7Br4(dcmbpy)·Br], (Bu4N)[22·Br] 

Single crystals of compound (Bu4N)[22·Br] were obtained by slow diffusion 

Et2O/CH3CN by following the procedure described herein. The reaction mixture 

was cooled to -30 ºC, and the excess ligand was removed by filtration. Then diethyl 

ether was layered on the top of the acetonitrile solution. Dark red crystals were 

obtained. The structure of (Bu4N)[22·Br] was refined in the triclinic space group P-

1. All non-hydrogen atoms were refined anisotropically. Figure 7.16 shows its 

ORTEP representation with the atom numbering scheme. Toluene and 

dichloromethane were found cocrystallized with the cluster complex. The toluene 

molecule was found to be disordered over two close positions with a 0.4/0.3 

occupancy ratio. The dichloromethane molecule has also disordering over three 

positions with a 0.3/0.2/0.2 ratio. Since the solvent molecules are highly disordered 

with small occupancies, their carbon atoms were refined isotropically. The 

crystallographic data collection parameters are given in Table 7.16.1. 

 

Figure 7.16.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [22·Br]- with the atom  numbering scheme. Average distances (Å): Mo-Mo, 2.7531(4); 
Mo-(µ3-S), 2.3607(9); Mo-Sax, 2.3948(9); Mo-Seq, 2.4881(10); Mo-N, 2.229(3); Mo-Br, 
2.6259(5); Sax-Br, 2.990(2). 
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Table 7.16.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Br4(dcmbpy)·Br]·0.7CH3C6H5·0.7CH2Cl2 
Formula C35.6H55Br5Cl1.4Mo3N3O4S7   Crystal 

system 
triclinic 

Space group P-1 Formula 
weight 

1550.45 

a (Å) 12.3010(3)  (º) 64.2000(10) 

b (Å) 15.2101(4)  (º) 80.5140(10) 

c (Å) 17.2369(4)  (º) 78.0520(10) 

Z 2 Vol (Å3) 2830.40(12) 
Colour dark red Crystal size 

(mm) 
0.20  0.12  

 0.08 
dcalc (g/cm3) 1.819  (Å) 0.71073 

Absorption 
coefficient (mm-1) 

4.544 F (000) 1517.0 

 
Experimental Data 

    
Temperature (K) 296 R(int) 0.0400 
Time per frame (s) 25 R () 0.0420 

2 Range (º) 4.04 to 75.28 Index ranges -20 ≤ h ≤ 18,    
-25 ≤ k ≤ 26,    
-29 ≤ l ≤ 27   

Collected 
reflections 

63649 Independent 
reflections 

26635 

 
Solution and Refinement 

    
Parameters 546 GooF on F2 0.961 
Restraints 12   
Final R1 ([I>2sigma(I)]) 0.0495 Final R1 (all data) 0.1478 
Final wR2 
([I>2sigma(I)]) 

0.1223 Final wR2 (all data) 0.1543 

Max/Min peak (e·Å-3) 1.08 / -0.84 Max. shift./ 0.001 
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Table 7.16.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo2 S1 2.3604(9)  Mo1 Mo3 2.7494(4) 

Mo2 S3 2.3862(9)  Mo3 S1 2.3565(9) 

Mo2 S5 2.3909(9)  Mo3 S5 2.3920(9) 

Mo2 S4 2.4811(10)  Mo3 S7 2.3955(9) 
Mo2 S2 2.4918(10)  Mo3 S4 2.4869(10) 

Mo2 Br1 2.6004(5)  Mo3 S6 2.4938(9) 
Mo2 Br2 2.6612(5)  Mo3 Br3 2.6210(5) 
Mo2 Mo3 2.7506(4)  Mo3 Br4 2.6212(5) 

Mo2 Mo1 2.7591(4)  S6 S7 2.0534(12) 

Mo1 N1 2.227(3)  S3 S2 2.0606(12) 
Mo1 N2 2.231(3)  S4 S5 2.0438(13) 

Mo1 S1 2.3651(9)  N1 C15 1.351(4) 
Mo1 S3 2.3995(9)  N1 C11 1.354(4) 

Mo1 S7 2.4043(9)  N2 C25 1.354(4) 

Mo1 S2 2.4864(10)  N2 C21 1.363(4) 
Mo1 S6 2.4891(10)     
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Table 7.16.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S1 Mo2 S3 108.89(3)  S4 Mo3 S6 170.94(3) 

S1 Mo2 S5 108.89(3)  S1 Mo3 Br3 81.35(2) 

S3 Mo2 S5 83.45(3)  S5 Mo3 Br3 134.66(3) 

S1 Mo2 S4 86.16(3)  S7 Mo3 Br3 135.93(3) 
S3 Mo2 S4 132.80(3)  S4 Mo3 Br3 89.20(3) 

S5 Mo2 S4 49.56(3)  S6 Mo3 Br3 91.02(3) 
S1 Mo2 S2 84.47(3)  S1 Mo3 Br4 163.40(3) 
S3 Mo2 S2 49.92(3)  S5 Mo3 Br4 82.99(3) 

S5 Mo2 S2 132.91(3)  S7 Mo3 Br4 82.93(3) 

S4 Mo2 S2 170.49(3)  S4 Mo3 Br4 93.72(3) 
S1 Mo2 Br1 81.87(2)  S6 Mo3 Br4 95.28(3) 

S3 Mo2 Br1 136.70(3)  Br3 Mo3 Br4 82.048(16) 
S5 Mo2 Br1 134.01(3)  S1 Mo3 Mo1 54.53(2) 

S4 Mo2 Br1 88.56(3)  S5 Mo3 Mo1 94.71(3) 

S2 Mo2 Br1 91.71(3)  S7 Mo3 Mo1 55.20(2) 
S1 Mo2 Br1 164.10(3)  S4 Mo3 Mo1 116.47(3) 
S3 Mo2 Br2 81.53(2)  S6 Mo3 Mo1 56.43(2) 

S5 Mo2 Br2 83.74(3)  Br3 Mo3 Mo1 124.096(15) 

S4 Mo2 Br2 95.48(3)  Br4 Mo3 Mo1 137.969(16) 
S2 Mo2 Br2 93.98(3)  S1 Mo3 Mo2 54.40(2) 
Br1 Mo2 Br2 82.360(17)  S5 Mo3 Mo2 54.87(2) 

S1 Mo2 Mo3 54.26(2)  S7 Mo3 Mo2 96.34(3) 
S3 Mo2 Mo3 95.85(2)  S4 Mo3 Mo2 56.28(2) 
S5 Mo2 Mo3 54.91(2)  S6 Mo3 Mo2 116.51(3) 

S4 Mo2 Mo3 56.48(2)  Br3 Mo3 Mo2 122.079(15) 
S2 Mo2 Mo3 115.95(2)  Br4 Mo3 Mo2 137.490(16) 

Br1 Mo1 Mo3 122.076(16)  Mo1 Mo3 Mo2 60.219(11) 

Br2 Mo2 Mo3 138.475(16)  S7 S6 Mo1 63.06(4) 
S1 Mo2 Mo1 54.36(2)  S7 S6 Mo3 62.70(3) 

S3 Mo2 Mo1 55.02(2)  Mo1 S6 Mo3 66.98(2) 

S5 Mo2 Mo1 94.49(2)  Mo3 S1 Mo2 71.34(3) 
S4 Mo2 Mo1 116.32(3)  Mo3 S1 Mo1 71.23(2) 

S2 Mo2 Mo1 56.25(2)  Mo2 S1 Mo1 71.45(3) 

Br1 Mo2 Mo1 124.870(16)  S2 S3 Mo2 67.70(4) 
Br2 Mo2 Mo1 136.317(16)  S2 Mo1 Mo2 56.44(2) 



  EXPERIMENTAL 

295 
 

Table 7.16.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo3 Mo2 Mo1 59.869(10)  Mo3 Mo1 Mo2 59.912(11) 

N1 Mo1 N2 73.08(10)  S1 Mo3 S5 108.98(3) 

N1 Mo1 S1 87.54(8)  S1 Mo3 S7 109.24(3) 

N2 Mo1 S1 160.40(7)  S5 Mo3 S7 83.70(3) 
N1 Mo1 S3 131.87(8)  S1 Mo3 S4 86.11(3) 

N2 Mo1 S3 83.59(8)  S5 Mo3 S4 49.48(3) 
S1 Mo1 S3 108.29(3)  S7 Mo3 S4 132.99(3) 
N1 Mo1 S7 133.19(8)  S1 Mo3 S6 84.97(3) 

N2 Mo1 S7 87.35(7)  S5 Mo3 S6 132.89(3) 

S1 Mo1 S7 108.65(3)  S7 Mo3 S6 49.62(3) 
S3 Mo1 S7 85.42(3)  S2 S3 Mo1 67.27(4) 

N1 Mo1 S2 88.91(8)  Mo2 S3 Mo1 70.41(2) 
N2 Mo1 S2 92.14(8)  S3 S2 Mo1 62.88(4) 

S1 Mo1 S2 84.49(3)  S3 S2 Mo2 62.38(4) 

S3 Mo1 S2 49.85(3)  Mo1 S2 Mo2 67.32(3) 
S7 Mo1 S2 134.92(3)  S5 S4 Mo2 62.92(4) 
N1 Mo1 S6 90.71(8)  S5 S4 Mo3 62.84(4) 

N2 Mo1 S6 97.90(8)  Mo2 S4 Mo3 67.24(3) 

S1 Mo1 S6 84.89(3)  S4 S5 Mo2 67.52(4) 
S3 Mo1 S6 134.61(3)  S4 S5 Mo3 67.67(4) 
S7 Mo1 S6 49.58(3)  Mo2 S5 Mo3 70.21(3) 

S2 Mo1 S6 169.39(3)  S6 S7 Mo3 67.68(4) 
N1 Mo1 Mo3 128.40(8)  S6 S7 Mo1 67.36(4) 
N2 Mo1 Mo3 142.08(7)  Mo3 S7 Mo1 69.89(2) 

S1 Mo1 Mo3 54.24(2)  C15 N1 C11 117.4(3) 
S3 Mo1 Mo3 95.57(2)  C15 N1 Mo1 125.4(2) 

S7 Mo1 Mo3 54.90(2)  C11 N1 Mo1 117.0(2) 

S2 Mo1 Mo3 116.18(2)  C25 N2 C21 117.8(3) 
S6 Mo1 Mo3 56.59(2)  C25 N2 Mo1 124.6(2) 

N1 Mo1 Mo2 127.31(7)  C21 N2 Mo1 117.4(2) 

N2 Mo1 Mo2 137.41(7)  N2 C21 C22 121.7(3) 
S1 Mo1 Mo2 54.20(2)  N2 C21 C11 115.1(3) 

S3 Mo1 Mo2 54.57(2)  N1 C11 C12 122.2(3) 
S7 Mo1 Mo2 95.91(2)  N1 C11 C21 116.5(3) 

S6 Mo1 Mo2 116.36(2)  N2 C25 C24 123.3(3) 
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7.2.4.10. STRUCTURE OF (Bu4N)[Mo3S7Br4(dcmphen)·Br], (Bu4N)[24·Br] 

Single crystals of compound (Bu4N)[24·Br] were obtained in a similar fashion to 

(Bu4N)[14·Br]. The structure of (Bu4N)[24·Br] was refined in the monoclinic space 

group C2/c. All non-hydrogen atoms were refined anisotropically. Figure 7.17 shows 

its ORTEP representation with the atom numbering scheme. The bond distances of 

some adjacent carbon atoms in the Bu4N+ counterion (C107 – C108 and C115 – 

C116) were restrained to fixed values. A remaining high electronic density peak was 

modelled as an oxygen atom with a factor occupancy of 0.50. The crystallographic 

data collection parameters are given in Table 7.17.1. 

 

Figure 7.17.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [24·Br]- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7507(17); 
Mo-(µ3-S), 2.358(3); Mo-Sax, 2.398(4); Mo-Seq, 2.486(4); Mo-N, 2.221(11); Mo-Br, 2.6155(19); 
Sax-Br, 3.06(9). 
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Table 7.17.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Br4(dcmphen)·Br]·H2O 
Formula C32H50Br5Mo3N3O4.5S7 Crystal 

system 
monoclinic 

Space group C2/c Formula 
weight 

1460.54 

a (Å) 36.5632(14)  (º) 90.00 

b (Å) 13.1724(4)  (º) 105.689 

c (Å) 24.2562(12)  (º) 90.00 

Z 8 Vol (Å3) 11247.2(8) 
Colour red Crystal size 

(mm) 
0.3237 × 0.1727 
× 0.0758 

dcalc (mg/mm3) 1.725  (Å) 0.71070 

Absorption 
coefficient (mm-1) 

4.504 F (000) 5696.0 

 
Experimental Data 

    
Temperature (K) 298 R(int) 0.0596 
Time per frame (s) 55 R () 0.0784 

2 Range (º) 6.26 to 50 Index ranges -42 ≤ h ≤ 43 
-15 ≤ k ≤ 11 
-28 ≤ l ≤ 28 

Collected 
reflections 

26951 Independent 
reflections 

9880 

 
Solution and Refinement 

    
Parameters 498 GooF on F2 1.047 
Restraints 2   
Final R1 ([I>2sigma(I)]) 0.0766 Final R1 (all data) 0.1348 
Final wR2 
([I>2sigma(I)]) 

0.2061 Final wR2 (all data) 0.2566 

Max/Min peak (e·Å-3) 1.82 / -0.60 Max. shift/ 0.001 
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Table 7.17.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo1 Mo2 2.7551(17)  Mo2 S4 2.480(4) 

Mo1 Mo3 2.7393(17)  Mo3 Br3 2.6098(19) 

Mo1 S1 2.364(4)  Mo3 Br4 2.6205(18) 

Mo1 S7 2.398(3)  Mo3 S1 2.355(3) 
Mo1 S3 2.406(4)  Mo3 S7 2.409(4) 

Mo1 S2 2.480(4)  Mo3 S6 2.474(4) 
Mo1 S6 2.488(4)  Mo3 S5 2.392(4) 
Mo1 N2 2.230(12)  Mo3 S4 2.498(4) 

Mo1 N1 2.211(10)  S7 S6 2.058(5) 

Mo2 Mo3 2.7558(16)  S3 S2 2.052(5) 
Mo2 Br1 2.6029(18)  S5 S4 2.043(5) 

Mo2 Br2 2.6286(19)  N2 C14 1.323(17) 
Mo2 S1 2.345(3)  N2 C15 1.359(16) 

Mo2 S3 2.381(4)  N1 C16 1.378(17) 

Mo2 S2 2.498(4)  N1 C1 1.330(17) 
Mo2 S5 2.399(3)     
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Table 7.17.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo3 Mo1 Mo2 60.21(4)  S1 Mo3 S5 108.67(12) 

S1 Mo1 Mo2 53.87(9)  S1 Mo3 S4 85.91(13) 

S1 Mo1 Mo3 54.37(9)  S7 Mo3 Mo1 55.08(9) 

S1 Mo1 S7 109.34(13)  S7 Mo3 Mo2 96.51(10) 
S1 Mo1 S3 107.76(13)  S7 Mo3 Br3 134.58(11) 

S1 Mo1 S2 84.31(12)  S7 Mo3 Br4 82.98(10) 
S1 Mo1 S6 84.72(12)  S7 Mo3 S6 49.82(12) 
S7 Mo1 Mo2 96.80(10)  S7 Mo3 S4 132.76(13) 

S7 Mo1 Mo3 55.46(10)  S6 Mo3 Mo1 56.72(9) 

S7 Mo1 S3 86.27(12)  S6 Mo3 Mo2 116.72(10) 
S7 Mo1 S2 135.66(13)  S6 Mo3 Br3 89.58(10) 

S7 Mo1 S6 49.77(12)  S6 Mo3 Br4 94.71(10) 
S3 Mo1 Mo2 54.43(10)  S6 Mo3 S4 170.99(13) 

S3 Mo1 Mo3 96.00(11)  S5 Mo3 Mo1 94.43(10) 

S3 Mo1 S2 49.63(11)  S5 Mo3 Mo2 55.00(9) 
S3 Mo1 S6 135.49(12)  S5 Mo3 Br3 135.77(12) 
S2 Mo1 Mo2 56.72(10)  S5 Mo3 Br4 83.73(10) 

S2 Mo1 Mo3 116.75(11)  S5 Mo3 S7 83.63(13) 

S2 Mo1 S6 169.01(13)  S5 Mo3 S6 133.04(14) 
S6 Mo1 Mo2 116.28(10)  S5 Mo3 S4 49.33(13) 
S6 Mo1 Mo3 56.26(10)  S4 Mo3 Mo1 116.24(10) 

N2 Mo1 Mo2 136.4(3)  S4 Mo3 Mo2 56.07(10) 
N2 Mo1 Mo3 143.0(3)  S4 Mo3 Br3 90.73(11) 
N2 Mo1 S1 160.2(3)  S4 Mo3 Br4 94.24(10) 

N2 Mo1 S7 87.6(3)  Mo2 S1 Mo1 71.61(10) 
N2 Mo1 S3 82.8(3)  Mo2 S1 Mo3 71.79(10) 

N2 Mo1 S2 90.6(3)  Mo3 S1 Mo1 70.95(9) 

N2 Mo1 S6 99.5(3)  Mo1 S7 Mo3 69.46(10) 
N1 Mo1 Mo2 129.0(3)  S6 S7 Mo1 67.37(14) 

N1 Mo1 Mo3 126.7(3)  S6 S7 Mo3 66.73(15) 

N1 Mo1 S1 87.8(3)  Mo2 S3 Mo1 70.27(10) 
N1 Mo1 S7 130.0(3)  S2 S3 Mo1 67.05(15) 

N1 Mo1 S3 133.9(3)  S2 S3 Mo2 68.15(15) 
N1 Mo1 S2 91.2(3)  Mo1 S2 Mo2 67.21(10) 
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Table 7.17.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N1 Mo1 S6 87.8(3)  S4 Mo2 Br1 91.69(10) 

N1 Mo1 N2 73.1(4)  S4 Mo2 Br2 91.06(11) 

Mo1 Mo2 Mo3 59.61(4)  S4 Mo2 S2 170.60(14) 

Br1 Mo2 Mo1 123.51(6)  Mo1 Mo3 Mo2 60.18(4) 
Br1 Mo2 Mo3 123.97(6)  Br3 Mo3 Mo1 123.98(6) 

Br1 Mo2 Br2 80.80(6)  Br3 Mo3 Mo2 123.02(6) 
Br2 Mo2 Mo1 140.23(7)  Br3 Mo3 Br4 81.04(6) 
Br2 Mo2 Mo3 136.38(6)  Br4 Mo3 Mo1 137.86(7) 

S1 Mo2 Mo1 54.53(9)  Br4 Mo3 Mo2 138.33(7) 

S1 Mo2 Mo3 54.28(8)  S1 Mo3 Mo1 54.68(9) 
S1 Mo2 Br1 81.94(9)  S1 Mo3 Mo2 53.93(9) 

S1 Mo2 Br2 162.49(10)  S1 Mo3 Br3 82.03(9) 
S1 Mo2 S3 109.27(14)  S1 Mo3 Br4 163.07(10) 

S1 Mo2 S2 84.30(13)  S1 Mo3 S7 109.27(13) 

S1 Mo2 S5 108.77(12)  S1 Mo3 S6 85.21(12) 
S1 Mo2 S4 86.55(13)  S3 S2 Mo1 63.32(14) 
S3 Mo2 Mo1 55.30(10)  S3 S2 Mo2 62.19(15) 

S3 Mo2 Mo3 96.17(10)  Mo3 S6 Mo1 67.01(10) 

S3 Mo2 Br1 133.64(10)  S7 S6 Mo1 62.86(13) 
S3 Mo2 Br2 84.99(11)  S7 S6 Mo3 63.45(15) 
S3 Mo2 S2 49.66(12)  Mo3 S5 Mo2 70.23(10) 

S3 Mo2 S5 83.31(13)  S4 S5 Mo2 67.33(15) 
S3 Mo2 S4 132.65(13)  S4 S5 Mo3 68.04(15) 
S2 Mo2 Mo1 56.08(9)  Mo2 S4 Mo3 67.23(11) 

S2 Mo2 Mo3 115.52(10)  S5 S4 Mo2 63.20(15) 
S2 Mo2 Br1 89.13(9)  S5 S4 Mo3 62.63(15) 

S2 Mo2 Br2 98.31(11)  C14 N2 Mo1 125.5(11) 

S5 Mo2 Mo1 93.86(10)  C14 N2 C15 117.9(13) 
S5 Mo2 Mo3 54.76(9)  C15 N2 Mo1 116.6(8) 

S5 Mo2 Br1 137.06(12)  C16 N1 Mo1 116.4(8) 

S5 Mo2 Br2 82.32(10)  C1 N1 Mo1 125.9(10) 
S5 Mo2 S2 132.37(13)  C1 N1 C16 117.7(11) 

S5 Mo2 S4 49.47(13)  N1 C16 C6 122.2(12) 
S4 Mo2 Mo1 116.29(10)  N1 C16 C15 116.7(12) 

S4 Mo2 Mo3 56.70(10)  N2 C14 C13 122.5(15) 
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7.2.4.11. STRUCTURE OF (Bu4N)[Mo3S7Cl4(ppl)·Cl], (Bu4N)[25·Cl] 

Single crystals of compound (Bu4N)[25·Cl]  were obtained in a similar fashion to 

compound (Bu4N)[15·Cl]. The structure of (Bu4N)[25·Cl] was refined in the 

monoclinic space group P21/n. Figure 7.18 shows its ORTEP representation with 

the atom numbering scheme. Dichloromethane and toluene were found 

cocrystallized with the cluster complex.  Owing to disorder, the carbon atoms in the 

cocrystallized toluene molecule centered at C(30) were refined isotroprically. The 

same was done for two terminal atoms in the tetrabutylammonium counterion 

centered at N(100), that is, C(111) and C(112). For the latter atoms, hydrogens were 

not included. Additionally, the carbon atom C(112) was refined with a free occupancy 

and then constrained to the optimum occupancy value (ca. 0.30). With the exception 

of the atoms mentioned, all non-hydrogen atoms were refined anisotropically. The 

crystallographic data collection parameters are given in Table 7.18.1. 

 

Figure 7.18.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [25·Cl]- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7486(13); 
Mo-(µ3-S), 2.357(3); Mo-Sax, 2.395(3); Mo-Seq, 2.485(3); Mo-N, 2.219(10); Mo-Cl, 2.460(3); 
Sax-Cl, 2.90(4). 
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Table 7.18.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Cl5(ppl)·Cl]·CH3C6H5·(1/2)CH2Cl2 
Formula C37.2H50.5Cl6Mo3N2S7   Crystal system monoclinic 
Space group P21/n Formula 

weight 
1292.30 

a (Å) 22.0304(4)  (º) 90.00   

b (Å) 14.6079(3)  (º) 91.8093(17) 

c (Å) 34.2716(8)  (º) 90.00 

Z 8 Vol (Å3) 11023.7(4) 
Colour reddish Crystal size 

(mm) 
0.4598 × 0.1175 
× 0.0705 

dcalc (g/cm3) 1.557  (Å) 0.71070 

Absorption 
coefficient (mm-1) 

1.259 F (000) 2129.0 

 
Experimental Data 

    
Temperature (K) 150 R(int) 0.0425 
Time per frame (s) 80 R () 0.0310 

2 Range (º) 5.71 to 50 Index ranges -26 ≤ h ≤ 26 
-17 ≤ k ≤ 17 
-40 ≤ l ≤ 40 

Collected 
reflections 

105489 Independent 
reflections 

19396 

 
Solution and Refinement 

    
Parameters 1008 GooF on F2 1.195 
Restraints 1   
Final R1 ([I>2sigma(I)]) 0.0926 Final R1 (all data) 0.1022 
Final wR2 
([I>2sigma(I)]) 

0.2196 wR2 (all data) 0.2272 

Max/Min peak (e·Å-3) 2.79 / -1.16 Max. shift/ 0.002 
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Table 7.18.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo1 Mo2 2.7492(13)  Mo2 S4 2.480(3) 

Mo1 Mo3 2.7459(14)  Mo2 S5 2.393(3) 

Mo1 S1 2.361(3)  Mo3 S1 2.353(3) 

Mo1 S2 2.476(3)  Mo3 S7 2.397(3) 

Mo1 S7 2.398(3)  Mo3 Cl3 2.457(3) 

Mo1 S3 2.394(3)  Mo3 Cl4 2.461(3) 

Mo1 S6 2.486(3)  Mo3 S4 2.493(3) 

Mo1 N1 2.228(9)  Mo3 S5 2.396(3) 

Mo1 N2 2.210(10)  Mo3 S6 2.484(3) 

Mo2 Mo3 2.7506(13)  S2 S3 2.053(4) 

Mo2 Cl1 2.450(3)  S7 S6 2.056(4) 

Mo2 S1 2.357(3)  S4 S5 2.046(4) 

Mo2 S2 2.491(3)  N3 C6 1.309(18) 

Mo2 S3 2.392(3)  N3 C5 1.362(16) 

Mo2 Cl2 2.472(3)  N1 C14 1.364(15) 

Mo2 S4 2.480(3)  N1 C1 1.344(15) 

Mo2 S5 2.393(3)  N4 C7 1.321(17) 

Mo3 S1 2.353(3)  N4 C8 1.362(17) 

Mo3 S7 2.397(3)  N2 C13 1.360(15) 

Mo3 Cl3 2.457(3)  N2 C12 1.334(15) 
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Table 7.18.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo3 Mo1 Mo2 60.07(3)  S7 Mo3 Mo2 95.87(8) 

S1 Mo1 Mo2 54.28(7)  S7 Mo3 Cl3 136.43(11) 

S1 Mo1 Mo3 54.24(7)  S7 Mo3 Cl4 83.43(11) 

S1 Mo1 S2 84.24(10)  S7 Mo3 S4 131.66(11) 

S1 Mo1 S7 108.85(11)  S7 Mo3 S6 49.78(10) 

S1 Mo1 S3 108.59(10)  Cl3 Mo3 Mo1 124.07(9) 

S1 Mo1 S6 84.88(10)  Cl3 Mo3 Mo2 121.99(8) 

S2 Mo1 Mo2 56.65(7)  Cl3 Mo3 Cl4 80.64(11) 

S2 Mo1 Mo3 116.50(8)  Cl3 Mo3 S4 90.02(11) 

S2 Mo1 S6 169.12(11)  Cl3 Mo3 S6 91.19(11) 

S7 Mo1 Mo2 95.89(8)  Cl4 Mo3 Mo1 138.10(9) 

S7 Mo1 Mo3 55.06(8)  Cl4 Mo3 Mo2 139.55(10) 

S7 Mo1 S2 135.33(11)  Cl4 Mo3 S4 94.65(11) 

S7 Mo1 S6 49.75(10)  Cl4 Mo3 S6 93.92(11) 

S3 Mo1 Mo2 54.90(8)  S4 Mo3 Mo1 116.21(8) 

S3 Mo1 Mo3 96.54(8)  S4 Mo3 Mo2 56.20(8) 

S3 Mo1 S2 49.82(10)  S5 Mo3 Mo1 93.86(8) 

S3 Mo1 S7 85.91(10)  S5 Mo3 Mo2 54.88(7) 

S3 Mo1 S6 135.30(11)  S5 Mo3 S7 82.38(11) 

S6 Mo1 Mo2 116.36(9)  S5 Mo3 Cl3 135.63(12) 

S6 Mo1 Mo3 56.42(8)  S5 Mo3 Cl4 85.16(12) 

N1 Mo1 Mo2 129.0(2)  S5 Mo3 S4 49.44(10) 

N1 Mo1 Mo3 127.0(3)  S5 Mo3 S6 131.75(11) 

N1 Mo1 S1 87.8(3)  S6 Mo3 Mo1 56.49(8) 

N1 Mo1 S2 90.7(2)  S6 Mo3 Mo2 116.38(8) 

N1 Mo1 S7 131.1(2)  S6 Mo3 S4 171.42(11) 

N1 Mo1 S3 133.0(3)  Mo2 S1 Mo1 71.29(8) 

N1 Mo1 S6 88.5(2)  Mo3 S1 Mo1 71.24(8) 

N2 Mo1 Mo2 138.7(2)  Mo3 S1 Mo2 71.47(8) 

N2 Mo1 Mo3 139.1(3)  Mo1 S2 Mo2 67.20(8) 

N2 Mo1 S1 161.9(3)  S3 S2 Mo1 63.00(11) 
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Table 7.18.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N2 Mo1 S2 95.1(3)  Cl2 Mo2 S4 94.46(12) 

N2 Mo1 S7 84.3(3)  S4 Mo2 Mo1 116.54(8) 

N2 Mo1 S3 84.1(3)  S4 Mo2 Mo3 56.64(8) 

N2 Mo1 S6 95.1(3)  S4 Mo2 S2 170.76(11) 

N2 Mo1 N1 74.1(4)  S5 Mo2 Mo1 93.85(8) 

Mo1 Mo2 Mo3 59.90(3)  S5 Mo2 Mo3 55.00(8) 

Cl1 Mo2 Mo1 124.98(8)  S5 Mo2 Cl1 134.39(11) 

Cl1 Mo2 Mo3 121.40(8)  S5 Mo2 S2 132.48(11) 

Cl1 Mo2 S2 91.90(10)  S5 Mo2 Cl2 84.24(11) 

Cl1 Mo2 Cl2 81.71(11)  S5 Mo2 S4 49.62(10) 

Cl1 Mo2 S4 88.53(10)  Mo1 Mo3 Mo2 60.02(3) 

S1 Mo2 Mo1 54.44(7)  S1 Mo3 Mo1 54.51(7) 

S1 Mo2 Mo3 54.21(7)  S1 Mo3 Mo2 54.32(7) 

S1 Mo2 Cl1 81.53(10)  S1 Mo3 S7 109.14(10) 

S1 Mo2 S2 84.02(10)  S1 Mo3 Cl3 81.24(10) 

S1 Mo2 S3 108.83(10)  S1 Mo3 Cl4 161.82(12) 

S1 Mo2 Cl2 163.15(11)  S1 Mo3 S4 86.69(10) 

S1 Mo2 S4 86.92(10)  S1 Mo3 S5 109.00(10) 

S1 Mo2 S5 109.00(11)  S1 Mo3 S6 85.10(10) 

S2 Mo2 Mo1 56.14(7)  S7 Mo3 Mo1 55.08(7) 

S2 Mo2 Mo3 115.83(8)  S3 S2 Mo2 62.65(12) 

S3 Mo2 Mo1 54.98(7)  Mo3 S7 Mo1 69.86(8) 

S3 Mo2 Mo3 96.47(8)  S6 S7 Mo1 67.34(12) 

S3 Mo2 Cl1 136.61(11)  S6 S7 Mo3 67.29(12) 

S3 Mo2 S2 49.67(10)  Mo2 S3 Mo1 70.12(9) 

S3 Mo2 Cl2 82.44(11)  S2 S3 Mo1 67.18(12) 

S3 Mo2 S4 132.85(10)  S2 S3 Mo2 67.68(12) 

S3 Mo2 S5 83.36(11)  Mo2 S4 Mo3 67.16(8) 

Cl2 Mo2 Mo1 137.21(9)  S5 S4 Mo2 62.96(12) 

Cl2 Mo2 Mo3 138.88(9)  S5 S4 Mo3 62.81(12) 

Cl2 Mo2 S2 94.74(11)  Mo2 S5 Mo3 70.12(8) 
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Table 7.18.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S4 S5 Mo2 67.41(12)  N1 C14 C4 122.7(10) 

S4 S5 Mo3 67.75(13)  N1 C14 C13 116.4(10) 

Mo3 S6 Mo1 67.09(8)  N4 C7 C6 122.5(13) 

S7 S6 Mo1 62.91(11)  N3 C6 C7 123.9(13) 

S7 S6 Mo3 62.93(12)  N2 C13 C14 116.7(11) 

C6 N3 C5 115.2(12)  N2 C13 C9 123.6(11) 

C14 N1 Mo1 116.1(7)  N1 C1 C2 122.1(12) 

C1 N1 Mo1 125.9(8)  N2 C12 C11 123.3(12) 

C1 N1 C14 117.9(10)  N4 C8 C9 118.4(12) 

C7 N4 C8 115.1(13)  N4 C8 C5 122.0(12) 

C13 N2 Mo1 116.7(8)  N3 C5 C4 118.0(12) 

C12 N2 Mo1 127.0(8)  N3 C5 C8 121.3(12) 
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7.2.4.12. STRUCTURE OF (Bu4N)[Mo3S7Cl4(mphen)·Cl], (Bu4N)[27·Cl] 

Single crystals of compound (Bu4N)[27·Cl] were grown by slow diffusion methods, 

by following the same approach used for cluster (Bu4N)[15·Cl]. The structure of 

(Bu4N)[27·Cl] was refined in the orthorhombic space group Pbna. All non-hydrogen 

atoms were refined anisotropically. Figure 7.19 shows its ORTEP representation with 

the atom numbering scheme. In the tetrabutylammonium anion centered at N(100), 

one terminal carbon was found to be disordered over two positions with a 0.58/0.42 

partial occupancy ratio. Owing to disorder, the omission of the hydrogen atoms in 

the carbon atoms C(115), C(116) and C(117) in this molecule was considered as 

justified. Furthermore the carbon atom C(112) was refined with a partial occupancy 

of 0.75. The crystal structure contains disordered solvent molecules. In spite of 

several attempts, the electronic density in this area could not be resolved satisfactorily. 

Therefore the contribution of the disordered solvent species was subtracted from the 

structure factor calculations by using the solvent mask21 instruction in the program 

Olex2 1.2. The crystallographic data collection parameters are given in Table 7.19.1. 

 

Figure 7.19.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [27·Cl]- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7461(10); 
Mo-(µ3-S), 2.354(3); Mo-Sax, 2.388(2); Mo-Seq, 2.494(2); Mo-N, 2.213(7); Mo-Cl, 2.463(2); Sax-
Cl, 2.920(11). 
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Table 7.19.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Cl4(mphen)·Cl] 
Formula C28.8H40.3Cl5Mo3N3S7 Crystal system orthorhombic 
Space group Pbna Formula 

weight 
1117.38 

a (Å) 12.7736(2)  (º) 90 

b (Å) 23.3575(5)  (º) 90 

c (Å) 36.7215  (º) 90 

Z 8 Vol (Å3) 10956.2(3) 
Colour reddish Crystal size 

(mm) 
0.224  0.138  

 0.124 
dcalc (g/cm3) 1.355  (Å) 0.71073 

Absorption 
coefficient (mm-1) 

1.207 F (000) 4454.0 

 
Experimental Data 

    
Temperature (K) 200 R(int) 0.0548 
Time per frame (s) 66 R () 0.0367 

2 Range (º) 5.74 to 52 Index ranges -16 ≤ h ≤ 16 
-32 ≤ k ≤ 29 
-48 ≤ l ≤ 48 

Collected 
reflections 

122345 Independent 
reflections 

10753 

 
Solution and Refinement 

    
Parameters 437 GooF on F2 1.087 
Restraints 0   
Final R1 ([I>2sigma(I)]) 0.0781 Final R1 (all data) 0.1855 
Final wR2 
([I>2sigma(I)]) 

0.1855 Final wR2 (all data) 0.1944 

Max/Min peak (e·Å-3) 1.83 / -0.75 Max. shift/ 0.001 
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Table 7.19.2.  Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo3 Mo1 2.7368(10)  Mo1 S6 2.485(2) 

Mo3 Mo2 2.7534(10)  Mo2 Cl1 2.451(3) 

Mo3 Cl3 2.436(2)  Mo2 Cl2 2.488(2) 

Mo3 Cl4 2.475(2)  Mo2 S5 2.382(2) 
Mo3 S5 2.380(2)  Mo2 S1 2.354(2) 

Mo3 S7 2.382(2)  Mo2 S4 2.491(3) 
Mo3 S1 2.357(2)  Mo2 S2 2.496(3) 
Mo3 S4 2.487(2)  Mo2 S3 2.399(3) 

Mo3 S6 2.500(2)  S5 S4 2.050(3) 

Mo1 Mo2 2.7480(10)  S7 S6 2.051(3) 
Mo1 S7 2.397(2)  S2 S3 2.051(3) 

Mo1 S1 2.352(2)  N2 C11 1.336(11) 
Mo1 S2 2.497(2)  N2 C12 1.374(11) 

Mo1 S3 2.396(2)  N1 C13 1.372(11) 

Mo1 N2 2.212(7)  N1 C1 1.344(11) 
Mo1 N1 2.213(6)     
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Table 7.19.3.  Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo1 Mo3 Mo2 60.07(3)  S5 Mo2 S3 83.38(9) 

Cl3 Mo3 Mo1 122.36(6)  S1 Mo2 Mo3 54.28(5) 

Cl3 Mo3 Mo2 123.36(6)  S1 Mo2 Mo1 54.25(5) 

Cl3 Mo3 Cl4 81.68(8)  S1 Mo2 Cl1 82.30(8) 
Cl3 Mo3 S4 91.46(8)  S1 Mo2 Cl2 163.98(9) 

Cl3 Mo3 S6 89.43(7)  S1 Mo2 S5 108.63(8) 
Cl4 Mo3 Mo1 139.79(6)  S1 Mo2 S4 85.96(8) 
Cl4 Mo3 Mo2 136.72(6)  S1 Mo2 S2 84.96(8) 

Cl4 Mo3 S4 92.00(8)  S1 Mo2 S3 108.72(8) 

Cl4 Mo3 S6 96.39(8)  S4 Mo2 Mo3 56.36(6) 
S5 Mo3 Mo1 94.45(6)  S4 Mo2 Mo1 115.98(6) 

S5 Mo3 Mo2 54.73(6)  S4 Mo2 S2 170.74(8) 
S5 Mo3 Cl3 137.31(8)  S2 Mo2 Mo3 116.16(6) 

S5 Mo3 Cl4 82.61(8)  S2 Mo2 Mo1 56.62(6) 

S5 Mo3 S7 82.45(8)  S3 Mo2 Mo3 95.68(6) 
S5 Mo3 S4 49.77(8)  S3 Mo2 Mo1 54.97(5) 
S5 Mo3 S6 131.70(8)  S3 Mo2 Cl1 136.34(10) 

S7 Mo3 Mo1 55.32(5)  S3 Mo2 Cl2 83.48(9) 

S7 Mo3 Mo2 95.47(6)  S3 Mo2 S4 132.86(8) 
S7 Mo3 Cl3 134.76(8)  S3 Mo2 S2 49.50(8) 
S7 Mo3 Cl4 84.65(8)  Mo3 S5 Mo2 70.65(6) 

S7 Mo3 S4 132.05(8)  S4 S5 Mo3 67.84(9) 
S7 Mo3 S6 49.60(7)  S4 S5 Mo2 67.90(9) 
S1 Mo3 Mo1 54.39(6)  Mo3 S7 Mo1 69.87(6) 

S1 Mo3 Mo2 54.18(5)  S6 S7 Mo3 68.20(8) 
S1 Mo3 Cl3 81.22(7)  S6 S7 Mo1 67.42(8) 

S1 Mo3 Cl4 162.71(8)  Mo1 S1 Mo3 71.07(6) 

S1 Mo3 S5 108.63(8)  Mo1 S1 Mo2 71.46(6) 
S1 Mo3 S7 109.37(8)  Mo2 S1 Mo3 71.54(6) 

S1 Mo3 S4 85.97(8)  Mo3 S4 Mo2 67.16(6) 

S1 Mo3 S6 85.92(7)  S5 S4 Mo3 62.38(8) 
S4 Mo3 Mo1 116.51(7)  S5 S4 Mo2 62.40(9) 

S4 Mo3 Mo2 56.48(6)  Mo2 S2 Mo1 66.79(6) 
S4 Mo3 S6 171.61(8)  S3 S2 Mo1 62.67(9) 

S6 Mo3 Mo1 56.44(5)  S3 S2 Mo2 62.80(10) 
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Table 7.19.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S6 Mo3 Mo2 116.45(6)  Mo1 S6 Mo3 66.59(5) 

Mo3 Mo1 Mo2 60.26(3)  S7 S6 Mo3 62.20(8) 

S7 Mo1 Mo3 54.81(6)  S7 S6 Mo1 62.95(8) 

S7 Mo1 Mo2 95.26(6)  S6 Mo1 Mo2 117.17(5) 
S7 Mo1 S2 133.53(8)  S6 Mo1 S2 171.30(9) 

S7 Mo1 S6 49.63(7)  Mo1 Mo2 Mo3 59.67(2) 
S1 Mo1 Mo3 54.54(5)  Cl1 Mo2 Mo3 122.64(7) 
S1 Mo1 Mo2 54.29(5)  Cl1 Mo2 Mo1 125.07(7) 

S1 Mo1 S7 109.01(8)  Cl1 Mo2 Cl2 81.69(9) 

S1 Mo1 S2 84.96(8)  Cl1 Mo2 S4 88.89(9) 
S1 Mo1 S3 108.88(8)  Cl1 Mo2 S2 91.67(9) 

S1 Mo1 S6 86.36(7)  Cl2 Mo2 Mo3 136.77(7) 
S2 Mo1 Mo3 116.73(7)  Cl2 Mo2 Mo1 138.36(8) 

S2 Mo1 Mo2 56.59(7)  Cl2 Mo2 S4 93.24(9) 

S3 Mo1 Mo3 96.20(6)  Cl2 Mo2 S2 95.98(9) 
S3 Mo1 Mo2 55.09(6)  S5 Mo2 Mo3 54.63(5) 
S3 Mo1 S7 84.37(8)  S5 Mo2 Mo1 94.09(6) 

S3 Mo1 S2 49.53(8)  S5 Mo2 Cl1 134.37(10) 

S3 Mo1 S6 133.82(8)  S5 Mo2 Cl2 82.53(8) 
N2 Mo1 Mo3 138.0(2)  S5 Mo2 S4 49.70(8) 
N2 Mo1 Mo2 141.79(19)  S5 Mo2 S2 132.46(9) 

N2 Mo1 S7 84.1(2)  Mo1 S3 Mo2 69.94(6) 
N2 Mo1 S1 159.9(2)  S2 S3 Mo1 67.81(9) 
N2 Mo1 S2 97.0(2)  S2 S3 Mo2 67.70(10) 

N2 Mo1 S3 87.0(2)  C11 N2 Mo1 127.3(6) 
N2 Mo1 N1 74.0(3)  C11 N2 C12 117.2(8) 

N2 Mo1 S6 91.3(2)  C12 N2 Mo1 115.1(6) 

N1 Mo1 Mo3 125.36(17)  N2 C11 C10 123.5(9) 
N1 Mo1 Mo2 128.03(19)  C13 N1 Mo1 115.8(5) 

N1 Mo1 S7 131.94(19)  C1 N1 Mo1 128.1(6) 

N1 Mo1 S1 86.02(18)  C1 N1 C13 116.0(7) 
N1 Mo1 S2 91.92(18)  N1 C13 C5 122.3(8) 

N1 Mo1 S3 134.84(18)  N1 C13 C12 116.5(8) 
N1 Mo1 S6 88.07(18)  N2 C12 C8 122.8(8) 

S6 Mo1 Mo3 56.97(5)  N2 C12 C13 117.8(8) 
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7.2.4.13. STRUCTURE OF (Bu4N)[Mo3S7Br4((COOMe)ppl)·Br], 
(Bu4N)[28·Br] 

Single crystals of compound (Bu4N)[28·Br] were grown in a similar fashion to cluster 

(Bu4N)[14·Br]. The structure of (Bu4N)[28·Br] was refined in the triclinic space group 

P-1. All non-hydrogen atoms were refined anisotropically. Figure 7.20 shows its 

ORTEP representation with the atom numbering scheme. In the terminal groups of 

the ligand coordinated to Mo(1B), disordering was observed. The oxygen atom 

O(1B), close to C(7B) was found to be disordered over two positions with partial 

occupancies of 0.52 and 0.48. The same situation was observed for O(2B), which is 

also connected to C(7B). In the latter case, the occupation factors of O(2B1) and 

O(2B2) resulted to be 0.48 and 0.52, respectively. The terminal methyl group C(8B) 

was found to be in two positions with a 0.55/0.45 occupancy ratio. Finally, the 

oxygen atom connected to C(10B) was also refined with two partial occupancies: 0.51 

and 0.49. The crystallographic data collection parameters are given in Table 7.20.1. 

 

Figure 7.20.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [28·Br]- with the atom numbering scheme. Average distances (Å): Mo-Mo, 2.7448(4); 
Mo-(µ3-S), 2.3628(10); Mo-Sax, 2.3908(11); Mo-Seq, 2.4831(11); Mo-N, 2.226(3); Mo-Br, 
2.6114(6); Sax-Br, 3.02(6). 
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Table 7.20.1.  Crystal Structure Data 

Crystal Data 

  
Species (Bu4N)[Mo3S7Br4((COOMe)2ppl)·Br] 
Formula C34H45.5Br5Mo3N5O4S7 Crystal system triclinic 
Space group P-1 Formula 

weight 
1500.04 

a (Å) 12.73580(10)  (º) 84.9513(6) 

b (Å) 19.92427(15)  (º) 84.4925(7) 

c (Å) 21.54206(14)  (º) 74.3313(7) 

Z 4 Vol (Å3) 5227.90(7) 
Colour red Crystal size 

(mm) 
0.2158  0.1827 

 0.1453 
dcalc (g/cm3) 1.906  (Å) 0.71073 

Absorption 
coefficient (mm-1) 

4.849 F (000) 2918.0 

 
Experimental Data 

    
Temperature (K) 200 R(int) 0.0315 
Time per frame (s) 24 R () 0.0282 

2 Range (º) 5.68 to 59.09 Index ranges - 17 ≤ h ≤ 17   
- 25 ≤ k ≤ 26      
- 29 ≤ l ≤ 29    

Collected 
reflections 

115507 Independent 
reflections 

26425 

 
Solution and Refinement 

    
Parameters 1068 GooF on F2 1.075 
Restraints 0   
Final R1 ([I>2sigma(I)]) 0.0417 Final R1 (all data) 0.0595 
Final wR2 
([I>2sigma(I)]) 

0.1089 Final wR2 (all data) 0.1171 

Max/Min peak (e·Å-3) 1.67 / -2.31 Máx. shift./ < 0.001 
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Table 7.20.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo1 Mo2 2.7448(4)  Mo2 S1 2.3610(11) 

Mo1 Mo3 2.7494(4)  Mo3 Br3 2.6063(6) 

Mo1 S2 2.4815(11)  Mo3 Br4 2.6224(6) 

Mo1 S6 2.4857(11)  Mo3 S4 2.4798(11) 
Mo1 S3 2.3854(11)  Mo3 S6 2.4842(10) 

Mo1 S7 2.3991(10)  Mo3 S7 2.3948(10) 
Mo1 S1 2.3660(10)  Mo3 S5 2.3917(11) 
Mo1 N1 2.227(3)  Mo3 S1 2.3613(10) 

Mo1 N2 2.224(3)  S2 S3 2.0529(14) 

Mo2 Mo3 2.7402(5)  S4 S5 2.0328(16) 
Mo2 Br1 2.5800(6)  S6 S7 2.0485(15) 

Mo2 Br2 2.6370(6)  N1 C18 1.363(5) 
Mo2 S2 2.4858(10)  N1 C1 1.333(5) 

Mo2 S4 2.4818(11)  N2 C17 1.358(4) 

Mo2 S3 2.3817(11)  N2 C16 1.347(5) 
Mo2 S5 2.3921(10)     
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Table 7.20.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo2 Mo1 Mo3 59.834(12)  S7 Mo3 Mo1 55.08(2) 

S2 Mo1 Mo2 56.53(2)  S7 Mo3 Mo2 95.95(3) 

S2 Mo1 Mo3 116.10(3)  S7 Mo3 Br3 137.60(3) 

S2 Mo1 S6 168.51(4)  S7 Mo3 Br4 83.07(3) 
S6 Mo1 Mo2 116.09(3)  S7 Mo3 S4 131.87(4) 

S6 Mo1 Mo3 56.39(2)  S7 Mo3 S6 49.61(4) 
S3 Mo1 Mo2 54.78(3)  S5 Mo3 Mo1 94.17(3) 
S3 Mo1 Mo3 96.54(3)  S5 Mo3 Mo2 55.06(3) 

S3 Mo1 S2 49.85(4)  S5 Mo3 Br3 134.22(3) 

S3 Mo1 S6 135.52(4)  S5 Mo3 Br4 83.89(3) 
S3 Mo1 S7 86.35(4)  S5 Mo3 S4 49.29(4) 

S7 Mo1 Mo2 95.73(3)  S5 Mo3 S6 131.95(4) 
S7 Mo1 Mo3 54.93(3)  S5 Mo3 S7 82.74(4) 

S7 Mo1 S2 135.72(4)  S1 Mo3 Mo1 54.52(3) 

S7 Mo1 S6 49.55(4)  S1 Mo3 Mo2 54.53(3) 
S1 Mo1 Mo2 54.42(3)  S1 Mo3 Br3 80.84(3) 
S1 Mo1 Mo3 54.36(3)  S1 Mo3 Br4 162.66(3) 

S1 Mo1 S2 83.73(4)  S1 Mo3 S4 87.10(4) 

S1 Mo1 S6 84.78(4)  S1 Mo3 S6 84.92(4) 
S1 Mo1 S3 108.53(4)  S1 Mo3 S7 109.09(3) 
S1 Mo1 S7 108.79(4)  S1 Mo3 S5 109.36(4) 

N1 Mo1 Mo2 129.00(8)  Mo1 S2 Mo2 67.09(3) 
N1 Mo1 Mo3 128.71(9)  S3 S2 Mo1 62.64(4) 
N1 Mo1 S2 89.33(9)  S3 S2 Mo2 62.45(4) 

N1 Mo1 S6 90.04(9)  Mo3 S4 Mo2 67.05(3) 
N1 Mo1 S3 131.19(9)  S5 S4 Mo2 63.07(4) 

N1 Mo1 S7 131.88(9)  S5 S4 Mo3 63.10(4) 

N1 Mo1 S1 88.58(9)  Mo3 S6 Mo1 67.17(3) 
N2 Mo1 Mo2 137.61(9)  S7 S6 Mo1 63.02(4) 

N2 Mo1 Mo3 139.25(8)  S7 S6 Mo3 62.93(4) 

N2 Mo1 S2 94.71(9)  Mo2 S3 Mo1 70.31(3) 
N2 Mo1 S6 96.14(9)  S2 S3 Mo1 67.51(4) 

N2 Mo1 S3 83.05(9)  S2 S3 Mo2 67.72(4) 
N2 Mo1 S7 84.49(9)  Mo3 S7 Mo1 69.99(3) 

N2 Mo1 S1 162.49(8)  S6 S7 Mo1 67.43(4) 
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Table 7.20.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N2 Mo1 N1 73.95(11)  S1 Mo2 S3 108.82(4) 

Mo3 Mo2 Mo1 60.166(12)  S1 Mo2 S5 109.36(4) 

Br1 Mo2 Mo1 127.047(18)  Mo2 Mo3 Mo1 60.001(12) 

Br1 Mo2 Mo3 122.007(19)  Br3 Mo3 Mo1 124.579(17) 
Br1 Mo2 Br2 81.099(19)  Br3 Mo3 Mo2 121.000(18) 

Br2 Mo2 Mo1 135.577(19)  Br3 Mo3 Br4 81.867(19) 
Br2 Mo2 Mo3 138.919(18)  Br4 Mo3 Mo1 137.887(19) 
S2 Mo2 Mo1 56.38(3)  Br4 Mo3 Mo2 138.53(2) 

S2 Mo2 Mo3 116.28(3)  S4 Mo3 Mo1 116.51(3) 

S2 Mo2 Br1 92.64(3)  S4 Mo3 Mo2 56.51(3) 
S2 Mo2 Br2 93.59(3)  S4 Mo3 Br3 88.58(3) 

S4 Mo2 Mo1 116.60(3)  S4 Mo3 Br4 93.82(3) 
S4 Mo2 Mo3 56.44(3)  S4 Mo3 S6 171.67(4) 

S4 Mo2 Br1 87.57(3)  S6 Mo3 Mo1 56.44(3) 

S4 Mo2 Br2 95.62(3)  S6 Mo3 Mo2 116.31(3) 
S4 Mo2 S2 170.71(4)  S6 Mo3 Br3 92.49(3) 
S3 Mo2 Mo1 54.91(3)  S6 Mo3 Br4 94.51(3) 

S3 Mo2 Mo3 96.87(3)  S6 S7 Mo3 67.46(4) 

S3 Mo2 Br1 136.69(3)  Mo3 S5 Mo2 69.89(3) 
S3 Mo2 Br2 80.86(3)  S4 S5 Mo2 67.67(4) 
S3 Mo2 S2 49.83(3)  S4 S5 Mo3 67.61(5) 

S3 Mo2 S4 133.19(4)  Mo2 S1 Mo1 70.99(3) 
S3 Mo2 S5 84.08(4)  Mo2 S1 Mo3 70.94(3) 
S5 Mo2 Mo1 94.28(3)  Mo3 S1 Mo1 71.12(3) 

S5 Mo2 Mo3 55.05(3)  C18 N1 Mo1 115.6(2) 
S5 Mo2 Br1 132.38(3)  C1 N1 Mo1 127.0(3) 

S5 Mo2 Br2 84.05(3)  C1 N1 C18 117.4(3) 

S5 Mo2 S2 133.40(4)  C17 N2 Mo1 116.3(3) 
S5 Mo2 S4 49.26(4)  C16 N2 Mo1 126.0(2) 

S1 Mo2 Mo1 54.59(3)  C16 N2 C17 117.6(3) 

S1 Mo2 Mo3 54.54(3)  N1 C18 C4 122.4(4) 
S1 Mo2 Br1 83.09(3)  N1 C18 C17 117.5(3) 

S1 Mo2 Br2 163.83(3)  N1 C1 C2 123.3(4) 
S1 Mo2 S2 83.74(4)  N2 C17 C18 116.6(3) 

S1 Mo2 S4 87.06(4)  N2 C17 C13 122.1(4) 
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7.2.5. STRUCTURE OF HETEROLEPTIC MOLYBDENUM 
CLUSTERS WITH DIIMINE AND SULFUR DONOR LIGANDS 

7.2.5.1. STRUCTURE OF [Mo3S7(dmphen)(dtc)2·Br](PF6), ([32·Br](PF6)) 

Single crystals of compound [32·Br](PF6) were obtained by the slow evaporation of 

a CHCl3 solution of the sample. The structure of [32·Br](PF6) was refined in the 

monoclinic space group P21/n. All non-hydrogen atoms were refined anisotropically. 

Figure 7.21 shows its ORTEP representation with the atom numbering scheme. The 

terminal carbon atoms of the dtc- ligand coordinated to Mo(3) were found to be 

disordered over two positions with relative occupancies of 0.70 and 0.30. The PF6- 

anion was also found to be disordered over two close positions with a 0.5/0.5 

occupancy ratio. Chloroform was found cocrystallized with the cluster complex. This 

solvent molecule has disordering over two positions with a 0.7/0.3 ratio. The 

crystallographic data collection parameters are given in Table 7.21.1. 

 

Figure 7.21.  ORTEP representation (50 % probability ellipsoids) of the anionic trinuclear 
cluster [32]2+ with the atom numbering scheme. The bromide anion has been omitted for 
clarity. Average distances (Å): Mo-Mo, 2.7248(7); Mo-(µ3-S), 2.3735(16); Mo-Sax, 2.4021(16); 
Mo-Seq, 2.4869(17); Mo-N, 2.216(5); Mo-Sligand, 2.4933(17); Sax-Br, 2.98(4). 
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Table 7.21.1.  Crystal Structure Data 

Crystal Data 

  
Species [Mo3S7(dtc)2(dmphen)·Br](PF6)·CHCl3 
Formula C27H35BrCl9F6Mo3N4PS11 Crystal system monoclinic 
Space group P21/n Formula 

weight 
1600.00 

a (Å) 19.779  (º) 90.0 

b (Å) 14.7004(19)  (º) 111.490(4) 

c (Å) 19.957(3)  (º) 90.0 

Z 4 Vol (Å3) 5399.3 
Colour yellowish Crystal size 

(mm) 
0.29  0.18  

 0.07 
dcalc (g/cm3) 1.968  (Å) 0.71073 

Absorption 
coefficient (mm-1) 

2.377 F (000) 3136.0 

 
Experimental Data 

    
Temperature (K) 243 R(int) 0.0585 
Time per frame 
(s) 

25 R () 0.0725 

2 Range (º) 3.54 to 56.56 Index ranges - 26 ≤ h ≤ 26   
- 19 ≤ k ≤ 16      
- 26 ≤ l ≤ 18 

Collected 
reflections 

38102 Independent 
reflections 

13399 

 
Solution and Refinement 

    
Parameters 717 GooF on F2 1.051 
Restraints 216   
Final R1 ([I>2sigma(I)]) 0.0560 Final R1 (all data) 0.0970 
Final wR2 
([I>2sigma(I)]) 

0.1378 Final wR2 (all data) 0.1563 

Max/Min peak (e·Å-3) 1.85 / -1.12 Máx. shift./ 0.001 
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Table 7.21.2. Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Mo1 Mo3 2.7297(7)  Mo2 S2 2.4991(16) 

Mo1 Mo2 2.7226(7)  Mo2 S3 2.3912(16) 

Mo1 S1 2.3896(16)  Mo2 S4 2.4907(17) 

Mo1 S2 2.4818(16)  Mo2 S5 2.4083(16) 
Mo1 S3 2.4072(16)  Mo2 S8 2.4780(18) 

Mo1 S7 2.4112(16)  S9 C15 1.723(7) 
Mo1 S6 2.4703(17)  S2 S3 2.052(2) 
Mo1 N1 2.221(5)  S11 C20 1.708(7) 

Mo1 N2 2.211(5)  S4 S5 2.056(2) 

Mo3 Mo2 2.7222(7)  S7 S6 2.055(2) 
Mo3 S1 2.3652(16)  S10 C20 1.725(7) 

Mo3 S11 2.5117(17)  S8 C15 1.725(7) 
Mo3 S4 2.4910(17)  N1 C14 1.374(8) 

Mo3 S7 2.3923(17)  N1 C1 1.330(8) 

Mo3 S6 2.4883(17)  N3 C15 1.305(8) 
Mo3 S10 2.4756(17)  N2 C12 1.332(8) 
Mo3 S5 2.4022(16)  N2 C13 1.370(8) 

Mo2 S9 2.5077(17)  N4 C20 1.313(9) 

Mo2 S1 2.3657(16)     
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Table 7.21.3. Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

Mo2 Mo1 Mo3 59.904(19)  S3 Mo2 S8 131.77(6) 

S1 Mo1 Mo3 54.55(4)  S4 Mo2 Mo1 116.97(4) 

S1 Mo1 Mo2 54.66(4)  S4 Mo2 Mo3 56.88(4) 

S1 Mo1 S2 85.44(6)  S4 Mo2 S9 93.08(6) 
S1 Mo1 S3 109.27(6)  S4 Mo2 S2 170.83(6) 

S1 Mo1 S7 109.03(5)  S5 Mo2 Mo1 96.02(4) 
S1 Mo1 S6 84.90(6)  S5 Mo2 Mo3 55.43(4) 
S2 Mo1 Mo3 116.94(4)  S5 Mo2 S9 86.61(6) 

S2 Mo1 Mo2 57.17(4)  S5 Mo2 S2 134.05(6) 

S3 Mo1 Mo3 96.15(4)  S5 Mo2 S4 49.60(6) 
S3 Mo1 Mo2 55.15(4)  S5 Mo2 S8 133.36(6) 

S3 Mo1 S2 49.60(5)  S8 Mo2 Mo1 126.99(5) 
S3 Mo1 S7 85.58(6)  S8 Mo2 Mo3 127.56(5) 

S3 Mo1 S6 135.05(6)  S8 Mo2 S9 70.44(6) 

S7 Mo1 Mo3 55.04(4)  S8 Mo2 S2 89.39(6) 
S7 Mo1 Mo2 96.04(4)  S8 Mo2 S4 90.54(6) 
S7 Mo1 S2 134.90(6)  C15 S9 Mo2 87.8(2) 

S7 Mo1 S6 49.77(5)  Mo3 S1 Mo1 70.07(4) 

S6 Mo1 Mo3 56.92(4)  Mo3 S1 Mo2 70.26(4) 
S6 Mo1 Mo2 116.67(4)  Mo2 S1 Mo1 69.85(4) 
S6 Mo1 S2 170.34(6)  Mo1 S2 Mo2 66.27(4) 

N1 Mo1 Mo3 127.76(13)  S3 S2 Mo1 63.31(6) 
N1 Mo1 Mo2 127.55(13)  S3 S2 Mo2 62.49(6) 
N1 Mo1 S1 86.79(14)  C20 S11 Mo3 87.6(2) 

N1 Mo1 S2 89.36(13)  Mo2 S3 Mo1 69.14(4) 
N1 Mo1 S3 132.17(13)  S2 S3 Mo1 67.09(6) 

N1 Mo1 S7 132.55(14)  S2 S3 Mo2 67.96(6) 

N1 Mo1 S6 89.70(13)  Mo2 S4 Mo3 66.25(4) 
N2 Mo1 Mo3 137.26(13)  S5 S4 Mo3 62.93(6) 

N2 Mo1 Mo2 140.86(13)  S5 S4 Mo2 63.12(6) 

N2 Mo1 S1 161.09(14)  Mo3 S7 Mo1 69.26(4) 
N2 Mo1 S2 96.69(13)  S6 S7 Mo1 66.61(6) 

N2 Mo1 S3 85.85(13)  S6 S7 Mo3 67.56(7) 
N2 Mo1 S7 82.74(13)  Mo1 S6 Mo3 66.80(4) 

N2 Mo1 S6 92.32(13)  S7 S6 Mo1 63.62(6) 
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Table 7.21.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N2 Mo1 N1 74.47(19)  S5 Mo3 S6 134.01(6) 

Mo2 Mo3 Mo1 59.920(19)  S5 Mo3 S10 134.83(6) 

S1 Mo3 Mo1 55.39(4)  Mo3 Mo2 Mo1 60.176(19) 

S1 Mo3 Mo2 54.88(4)  S7 S6 Mo3 62.70(6) 
S1 Mo3 S11 156.22(6)  C20 S10 Mo3 88.4(2) 

S1 Mo3 S4 85.29(6)  Mo3 S5 Mo2 68.93(4) 
S1 Mo3 S7 110.51(5)  S4 S5 Mo3 67.42(7) 
S1 Mo3 S6 85.02(5)  S4 S5 Mo2 67.29(7) 

S1 Mo3 S10 86.06(6)  C15 S8 Mo2 88.7(2) 

S1 Mo3 S5 109.95(6)  C14 N1 Mo1 114.7(4) 
S11 Mo3 Mo1 141.84(5)  C1 N1 Mo1 127.3(4) 

S11 Mo3 Mo2 141.72(5)  S9 Mo2 Mo1 142.48(5) 
S4 Mo3 Mo1 116.71(4)  S9 Mo2 Mo3 140.98(5) 

S4 Mo3 Mo2 56.87(4)  S1 Mo2 Mo1 55.49(4) 

S4 Mo3 S11 94.06(6)  S1 Mo2 Mo3 54.86(4) 
S7 Mo3 Mo1 55.70(4)  S1 Mo2 S9 156.11(6) 
S7 Mo3 Mo2 96.50(4)  S1 Mo2 S2 85.56(5) 

S7 Mo3 S11 86.93(6)  S1 Mo2 S3 110.63(6) 

S7 Mo3 S4 134.09(6)  S1 Mo2 S4 85.29(6) 
S7 Mo3 S6 49.75(6)  S1 Mo2 S5 109.73(6) 
S7 Mo3 S10 130.16(6)  S1 Mo2 S8 85.73(6) 

S7 Mo3 S5 84.68(6)  S2 Mo2 Mo1 56.56(4) 
S6 Mo3 Mo1 56.28(4)  S2 Mo2 Mo3 116.61(4) 
S6 Mo3 Mo2 116.06(4)  S2 Mo2 S9 95.53(6) 

S6 Mo3 S11 95.16(6)  S3 Mo2 Mo1 55.71(4) 
S6 Mo3 S4 170.27(6)  S3 Mo2 Mo3 96.73(4) 

S10 Mo3 Mo1 126.17(5)  S3 Mo2 S9 87.48(6) 

S10 Mo3 Mo2 128.96(5)  S3 Mo2 S2 49.55(5) 
S10 Mo3 S11 70.20(6)  S3 Mo2 S4 134.25(6) 

S10 Mo3 S4 92.42(6)  S3 Mo2 S5 84.86(6) 

S10 Mo3 S6 87.79(6)  C1 N1 C14 118.0(5) 
S5 Mo3 Mo1 95.98(4)  C12 N2 C13 118.0(5) 

S5 Mo3 Mo2 55.64(4)  C13 N2 Mo1 116.3(4) 
S5 Mo3 S11 86.99(6)  S11 C20 S10 113.3(4) 

S5 Mo3 S4 49.65(6)  N4 C20 S11 123.7(6) 
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Table 7.21.3. [cont.] Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N3 C15 S8 123.7(6)  N4 C20 S10 122.9(5) 

N1 C14 C13 118.3(5)  S9 C15 S8 113.0(4) 

N1 C13 C14 116.1(5)  N3 C15 S9 123.3(6) 
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7.2.6. STRUCTURE OF DIALKYLTIN DITHIOLENE COMPLEXES 

7.2.6.1. STRUCTURE OF Me2Sn(BPyDTS2), (3) 

Single crystals of complex 3 suitable for X-ray diffraction were obtained by slowly 

diffusing hexane into a solution of the compound in tetrahydrofuran under a N2 

atmosphere. The structure of compound 3 was refined in the monoclinic space group 

P21. All non-hydrogen atoms were refined anisotropically. Figure 7.22 shows its 

ORTEP representation with the atom numbering scheme. Co-crystallized with the 

tin complex, a tetrahydrofuran molecule was found. The oxygen atom in the THF 

molecule was found to be disordered, and consequently was modelled over two 

positions with a constraint to the total occupancy of one. The hydrogen atoms for 

the CH2 groups in the solvent molecule were not included owing to disorder. The 

crystallographic data collection parameters are given in Table 7.22.1. 

 

Figure 7.22.  ORTEP representation (50 % probability ellipsoids) of the complex 3 with the 
atom numbering scheme. Average distances (Å): Sn-C, 2.116(5); Sn-S, 2.4881(13). 
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Table 7.22.1.  Crystal Structure Data 

Crystal Data 

  
Species Me2Sn(BpyDTS2)·THF 
Formula C20H15N2OS4Sn Crystal system monoclinic 
Space group P21 Formula 

weight 
546.27 

a (Å) 6.90185(15)  (º) 90 

b (Å) 15.7670(4)  (º) 93.706(2) 

c (Å) 10.3916(3)  (º) 90 

Z 2 Vol (Å3) 1128.46(5) 
Colour yellow Crystal size 

(mm) 
0.429 × 0.196  
× 0.085 

dcalc (mg/mm3) 1.608  (Å) 0.71073 

Absorption 
coefficient (mm-1) 

1.515 F (000) 542.0 

 
Experimental Data 

    
Temperature (K) 200 R(int) 0.0316 
Time per frame (s) 2 R () 0.0417 

2 Range (º) 5.92 to 57.82 Index ranges -9 ≤ h ≤ 9 
-21 ≤ k ≤ 21 
-13 ≤ l ≤ 12 

Collected 
reflections 

12798 Independent 
reflections 

5281 

 
Solution and Refinement 

    
Parameters 264 GooF on F2 1.072 
Restraints 1   
Final R1 ([I>2sigma(I)]) 0.0338 Final R1 (all data) 0.0406 
Final wR2 
([I>2sigma(I)]) 

0.0729 Final wR2 (all data) 0.0791 

Max/Min peak (e·Å-3) 0.66 / -0.82 Max. shift/ <0.001 
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Table 7.22.2.  Bond Distances 

Atom Atom Length/Å  Atom Atom Length/Å 

Sn1 S2 2.5196(12)  N1 C11 1.346(6) 

Sn1 S1 2.4607(11)  C6 C12 1.491(5) 

Sn1 C2 2.116(4)  C6 C7 1.461(5) 

Sn1 C1 2.120(4)  C13 C12 1.389(6) 
S3 C3 1.764(4)  C13 C14 1.371(6) 

S3 C5 1.756(4)  C12 N2 1.351(5) 
S4 C4 1.762(4)  C7 C8 1.389(6) 
S4 C5 1.756(4)  N2 C16 1.336(5) 

S2 C4 1.749(4)  C16 C15 1.376(6) 

S1 C3 1.753(4)  C11 C10 1.370(7) 
C3 C4 1.329(5)  C15 C14 1.377(6) 

C5 C6 1.366(5)  C8 C9 1.375(7) 
N1 C7 1.350(5)  C10 C9 1.370(8) 
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Table 7.22.3.  Bond Angles 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

S1 Sn1 S2 87.62(3)  C11 N1 C7 117.9(4) 

C2 Sn1 S2 102.41(11)  C5 C6 C12 118.6(3) 

C2 Sn1 S1 116.34(13)  C5 C6 C7 122.3(3) 

C2 Sn1 C1 130.28(19)  C7 C6 C12 119.1(3) 
C1 Sn1 S2 102.55(12)  C14 C13 C12 120.0(4) 

C1 Sn1 S1 107.00(15)  C13 C12 C6 121.0(3) 
C5 S3 C3 95.48(18)  N2 C12 C6 117.7(3) 
C5 S4 C4 96.73(18)  N2 C12 C13 121.3(4) 

C4 S2 Sn1 95.28(13)  N1 C7 C6 116.1(3) 

C3 S1 Sn1 97.11(13)  N1 C7 C8 121.3(4) 
S1 C3 S3 115.1(2)  C8 C7 C6 122.5(4) 

C4 C3 S3 118.4(3)  C16 N2 C12 117.6(3) 
C4 C3 S1 126.3(3)  N2 C16 C15 123.8(4) 

S2 C4 S4 116.0(2)  N1 C11 C10 123.2(5) 

C3 C4 S4 115.8(3)  C16 C15 C14 118.4(4) 
C3 C4 S2 128.1(3)  C13 C14 C15 118.7(4) 
S3 C5 S4 113.5(2)  C9 C8 C7 119.5(5) 

C6 C5 S3 125.4(3)  C11 C10 C9 118.7(4) 

C6 C5 S4 121.1(3)  C10 C9 C8 119.3(5) 
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7.3. PHOTOPHYSICAL STUDIES 

7.3.1. LUMINESCENT PROPERTIES 

The luminescence behavior of compounds 3, (Et4N)2[4] and (Et4N)2[5] was assessed 

in collaboration with Dr. K. Brylev and Prof. N. Kitamura at Hokkaido University 

(Sapporo, Japan). Emission measurements were carried out at 298 K, and acetonitrile 

solutions were deaerated by purging an Ar-gas stream for 30 min. The samples were 

excited by 532-nm laser pulses (6 ns duration, LOTIS TII, LS-2137/3). Corrected 

emission spectra were recorded on a red-sensitive multichannel photodetector 

(Hamamatsu Photonics, PMA-12). The emission quantum yields (fem) of the samples 

were estimated by using [Ru(bpy)3](PF6)2 as a standard: em = 0.095 in deaerated 

acetonitrile.22,23 

For clusters Mo3S7X4(IPDOP), (X = Br; 12, or Cl; 13), the luminescent properties 

were studied at Universitat Jaume I (Castelló, Spain) in collaboration with Prof. F. 

Galindo. Emission measurements were carried out at 298 K in air. Steady-state 

fluorescence spectra were recorded on a Spex Fluorog 3-11 fluorimeter equipped 

with a 450 W xenon lamp, and the emission spectra were corrected. The emission 

quantum yields (fem) of the samples were estimated by using quinine sulfate as a 

standard (fem = 0.546 in 0.5 M H2SO4),24 and using the formula 

fs=(fr·Ar·Is·ns2)/(As·Ir·nr2), where As and Ar are the absorbance of the sample and 

the reference; Is and Ir are the corresponding integrated emissions, and ns and nr are 

the refractive indexes of the solvent of the sample and the reference. Luminescence 

lifetimes were recorded at 298 K on a single photon counting Jobin Yvon Horiba 

IBH-5000-U fluorimeter by using a 304 nm LED as a light source (pulsewidth < 1.2 

ns). Data were fitted to a monoexponential model using the IBM DAS6 emission 

decay analysis software. 
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7.3.2. OPTICAL LIMITING BEHAVIOR 

The optical nonlinearities of clusters (Et4N)2[4], 18 – 21 and 29 – 31  were studied at 

the Research School of Chemistry (RSC), Australian National University (ANU) by 

the group headed by Prof. M. Humphrey. Optical measurements were performed on 

dimethylformamide solutions of samples placed in 1 mm glass cells. Linear optical 

spectra were obtained on a Varian Cary 5 spectrophotometer over the spectral range 

270 - 800 nm. The light source used for the determination of power limiting 

properties was an Opolette (HE) 355 II (Opotek), located at RSC, ANU. This is a 

single-housing tuneable ns laser system in which a flashlamp-pumped Nd:YAG laser 

(355 nm pump wavelength, 20 Hz repetition rate, 5 ns pulse length) pumps an OPO 

(tuning range 410-2200 nm, peak OPO energy 10 mJ, spectral linewidth 4 - 7 cm-1).  

The optical power limiting experiments were performed on solutions of 

concentrations 0.07 - 0.35% w/w. The properties were assessed by the open-aperture 

Z-scan technique at 570 nm at which the samples had low, but non-zero, linear 

absorption (corresponding to  values of 307 - 4411 M-1 cm-1 at the measurement 

wavelength). The data from the power limiting curves obtained by the open-aperture 

Z-scan technique were then converted into transmittance-fluence plots assuming a 

Gaussian character of the beam, the w0 parameter of the beam being determined 

from closed-aperture Z-scan results. 
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7.3.3. PHOTOCATALYSIS 

Spectroscopic and electrochemical studies were carried out in collaboration with 

Prof. R. Gómez and T. Lana at University of Alacant. UV/Vis diffuse reflectance 

spectra of powdered samples were recorded either on a Shimadzu UV-2450 or a 

Shimadzu UV-2401 PC spectrophotometer equipped with integrating spheres. The 

high-resolution XPS spectra were acquired using a K-Alpha spectrometer from 

Thermo-Scientific. 

The electrodes were prepared by the application of an aqueous slurry of TiO2 

Degussa P25 nanoparticles (composed of 1.3 mL water + 30 mL acetylacetone + 30 

mL Triton X-100) on FTO substrates (Pilkington) by using the doctor blade method. 

After drying in air, the electrodes were heated in air at 450 ºC for 1 h. The electrode 

film thickness was measured by using an AlphaStep D-100 Stylus Profilometer from 

KLA Tencor. The modification of TiO2 with (Bu4N)[22·Br] or compound 23 was 

performed by immersing the electrodes in the corresponding acetone solution in the 

dark. Figure 7.23 shows the aspect of the TiO2 electrodes after several experimental 

conditions. 

 

 
Figure 7.23. Photographs showing the aspect of the TiO2 electrodes: a) naked; b) after 
immersion for 1 hour in a 72 μM (Bu4N)[22·Br] acetone solution; c) after immersion of the 
modified electrode in a N2-purged 0.1 M Na2S + 0.02 M Na2SO3 aqueous solution; d) after 
CV experiments in N2-purged 0.1 M Na2S + 0.02 M Na2SO3; e) after CV experiments in N2-
purged 0.1 M HClO4.  
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The electrochemical measurements were performed by using an Autolab 

PGSTAT 30 potentiostat in a three-electrode cell, using a Pt wire as a counter 

electrode and an Ag/AgCl/KCl electrode as a reference electrode. The electrolyte 

was either 0.1 M HClO4 or 0.1 M Na2S + 0.02 M Na2SO3 purged with N2. The 

illumination for the photoelectrochemical experiments was provided by a 300 W Xe 

arc lamp (ThermoOriel) coupled with a monochromator (Oriel, model 74100). The 

light intensity was measured by using an optical power meter (Oriel, model 70310) 

equipped with a photodetector (ThermoOriel, model 71608). 

The photocatalytic hydrogen evolution experiments of (Bu4N)[22·Br]/TiO2 

were carried out by Dr. E.A. Kozlova at Boreskov Institute of Catalysis (Novosibirsk, 

Russia). The sample was illuminated with a Hg lamp equipped with a visible light 

filter, and the hydrogen emission was measured by Gas Chromatography. Further 

details are published in the journal ChemSusChem.25  

7.3.4. THEORETICAL CALCULATIONS 

The electronic structures of complexes 3, (Et4N)2[4] and (Et4N)2[5] were calculated 

by M. R. Rhzhikov at the Nikolaev Institute of Inorganic Chemistry (Novosibirsk, 

Russia). The DFT calculations were performed with the ADF2012 program suite.26 

Geometry optimizations and frequency calculations were done with standard STO’s, 

all electron TZP basis set.27 VWN and Becke+Perdew functional were used for LDA 

and GGA parts, respectively. The geometries for excitation energy calculations were 

taken from the previous steps. QZ4P basis set and the statistical average of orbital 

potentials (SAOP) model were used for Time-Dependent Density Functional Theory 

(TDDFT) calculations of excitation energies.28,29 All calculations were performed 

with Zero Order Regular Approximation (ZORA) in order to take into account scalar 

relativistic effects.30  
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“[…] We live in an ordered universe that can be 
understood by the application of rational reasoning.” 

Richard P. Feynman, The Character of Physical Law 
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The following conclusions can be drawn from the results presented in this PhD 

thesis: 

1) A family of M2Q2(µ-S)2-based clusters, where M = Mo or W, and Q = O, or 

S, functionalized with dithiolene ligands bearing nitrogen donor atoms have 

been prepared by diverse synthetic methods. These cluster complexes can be 

employed as building blocks for the preparation of heterometallic 

compounds, in which the additional metal fragments are connected through 

the outer nitrogen atoms of the dithiolene ligands. 

2) The reaction of molybdenum and tungsten cluster anions of formulae 

[M2S2(µ-S)2(pdt)2]2- (pdt = 2,3-pyrazinedithiolate) with metal carbonyls 

affords the substitution of the terminal sulfur atoms in the cluster unit by 

oxygen, resulting in the formation of M=O bonds. 

3) Triangular heteroleptic Mo3S7X4(diimine) clusters (X = Cl, or Br) bearing a 

diversity of bipyridine- or phenanthroline- derivatives can be conveniently 

prepared under mild reaction conditions by partial ligand substitutions in the 

[Mo3S7X6]2- cluster precursors. The use of a large excess of diimine ligand 

equally leads to the same monosubstituted neutral products. 

4) Heteroleptic Mo3S7X4(diimine) clusters (X = Cl, or Br) exhibit an anomalous 

solubility behavior. These complexes are soluble in the reaction mixture. 

However, after purification they become extremely insoluble in common 

organic solvents, and their redissolution in CH2Cl2 requires sonication in the 

presence of tetrabutylammonium halide salts, due to the formation of 

[Mo3S7X4(diimine)·X]- aggregates. 

5) In Mo3S7X4(diimine) clusters (X = Cl, or Br), the two nitrogen atoms of the 

diimine ligand are coordinated to one of the molybdenum atoms in a 

chelating mode, and the plane defined by the ligand is oriented almost 

perpendicular to the trimetallic plane. The structure of 

[Mo3S7X4(diimine)·X]-  cluster aggregates present non-bonding interactions 
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between the halide anions and the axial sulfur atoms in these cluster units. 

These anionic adducts are readily soluble in common organic solvents. 

Additional interactions between equatorial sulfur atoms and halide ligands 

connect adjacent aggregates, resulting in the formation of 

{[Mo3S7X4(diimine)·X]2}2- dimers. 

6) The reaction between Mo3S7X4(diimine) clusters (X = Cl, or Br) and sulfur 

donor ligands, such as 1,3-dithiole-2-thione-4,5-dithiolate (dmit) or 

diethyldithiocarbamate (dtc) affords the substitution of the halides by the 

sulfur atoms of the bidentate ligand, resulting in complexes of formulae 

[Mo3S7(diimine)L2]0, 2+, where L = dmit or dtc. The dmit derivatives exhibit 

poor solubility in common organic solvents, which limits the number of 

techniques available for their characterization. 

7) The dinuclear cluster complex (Et4N)2[Mo2O2(µ-S)2(BPyDTS2)2] exhibits 

emission in acetonitrile solution at 628 nm, with a quantum yield of ca. 0.10. 

This emission band has been ascribed by TDDFT calculations to an ILCT 

from the dithiolene () to the pyridyl (*) orbitals. Insertion of two terminal 

Re(CO)3Cl fragments in the aforementioned cluster decreases the quantum 

yield by a factor of around 4.6, presumably due to fast charge separation in 

the excited state. 

8) Two heteroleptic Mo3S7 complexes bearing the IPDOP 

imidazophenanthroline ligand, namely Mo3S7X4(IPDOP), (X = Cl, or Br), 

exhibit luminescence in the 375 nm – 600 nm region in both 

dichloromethane and dimethylformamide. The maximum quantum yield and 

emission lifetime have been registered for the bromide derivative in DMF, 

with values of 0.15 and 7.5 ns, respectively. Addition of proton-abstractor 

anions (F-, OH- and AcO-) to sample solutions of these complexes leads to a 

striking shift in their emission spectra of around 92 nm towards longer 

emission wavelengths. 
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9) Correlations between molecular structures and nonlinear optical functions 

have been obtained by comparing the optical power limiting of a series of 

mixed-ligand diimine-halide and diimine-dithiolene Mo3S7 cluster complexes 

to that of a dithiolene dinuclear cluster possessing the Mo2O2S2 core. All 

trinuclear clusters are efficient optical limiters, and the optical limiting merit 

increases on increasing the metal nuclearity, and upon extending the -

conjugated system with dithiolene ligands. 

10) Functionalization of Mo3S7 clusters with diimine ligands facilitate their 

adsorption over TiO2 nanoparticles supported on FTO. These complexes 

can be electrochemically reduced to generate molybdenum(IV) sulfide 

species. The as-generated species exhibit significantly superior 

electrocatalytic activity in the hydrogen evolution reaction to bare TiO2, with 

a decrease in the hydrogen reduction overpotential by 0.3 – 0.4 V, depending 

on the media (0.1 M Na2S/0.02 M Na2SO3 mixtures, or 0.1 M HClO4, 

respectively). In agreement with the electrochemical results, the modified 

TiO2 nanoparticles show photocatalytic activity (TOF = 8  10-5 s-1) for 

hydrogen generation in the presence of Na2S/Na2SO3 as a sacrificial electron 

donor system. 
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(CATALAN VERSION) 

A partir dels resultats presentats en aquesta Tesi Doctoral, es poden obtindre les 

següents conclusions: 

1) Una família de clústers del tipus M2Q2(µ-S)2, on M = Mo, ó W, i Q = O, ó 

S, funcionalitzats amb lligams ditiolè que contenen àtoms de nitrogen 

donadors, han sigut preparats mitjançant diversos mètodes sintètics. Aquests 

complexos clúster poden ser utilitzats com a blocs de construcció per a la 

preparació de compostos heterometàl·lics, en els quals els fragments 

metàl·lics addicionals es connecten a través dels àtoms de nitrogen externs 

dels lligams ditiolè. 

2) La reacció entre els anions clúster de molibdè i tungstè de fórmula [M2S2(µ-

S)2(pdt)2] (pdt = 2,3-pirazinaditiol) i carbonils metàl·lics resulta en la 

substitució dels àtoms de sofre terminals de la unitat clúster per oxigen, amb 

la conseqüent formació d’enllaços M=O. 

3) Els clústers heterolèptics triangulars de fórmula general Mo3S7X4(diimina), 

(X = Cl, ó Br), funcionalitzats amb un gran nombre de derivats de la 

bipiridina o de la fenantrolina, poden ser convenientment preparats sota 

condicions suaus de reacció, mitjançant la substitució parcial de lligams en el 

precursor [Mo3S7X6]2-. L’ús d’un gran excés de lligam diimina condueix 

igualment als mateixos productes neutres monosubstituïts. 

4) Els clústers del tipus Mo3S7X4(diimina), (X = Cl, ó Br) presenten un anòmal 

comportament de solubilitat. Aquests complexos són solubles en el medi de 

reacció. No obstant, després de la purificació es tornen completament 

insolubles en dissolvents orgànics comuns, i la seua redissolució en CH2Cl2 

requereix sonicació en presència d’halurs de tetrabutilammoni, ja que així es 

formen agregats del tipus [Mo3S7X4(diimina)·X]-. 

5) En clústers del tipus Mo3S7X4(diimina), (X = Cl, ó Br), els dos àtoms de 

nitrogen es coordinen al mateix àtom de molibdè, i el plànol definit pel lligam 



CHAPTER 8 

346 
  

és quasi perpendicular al pla trimetàl·lic. L’estructura dels agregats clúster del 

tipus [Mo3S7X4(diimina)·X]- presenta interaccions no enllaçants entre els 

anions halur i els àtoms de sofre axials de la unitat clúster. Aquests adductes 

aniònics són solubles en dissolvents orgànics comuns. Interaccions 

addicionals entre els àtoms de sofre equatorials i els lligams halur connecten 

agregats contigus, resultant en la formació de dímers de fórmula 

{[Mo3S7X4(diimine)·X]2}2-. 

6) La reacció entre els clústers Mo3S7X4(diimina), (X = Cl, ó Br) i lligams amb 

àtoms de sofre donadors, tals com 1,3-ditiol-2-tiona-4,5-ditiolat (dmit) o 

dietilditiocarbamat (dtc), resulta en la substitució dels halurs pels àtoms de 

sofre del lligam bidentat, amb la conseqüent formació de complexos de 

fórmula [Mo3S7(diimina)L2]0, 2+, en què L = dmit ó dtc. Els derivats de dmit 

presenten baixa solubilitat en dissolvents orgànics comuns, la qual cosa limita 

el nombre de tècniques disponibles per a la seua caracterització. 

7) El clúster dinuclear de fórmula (Et4N)2[Mo2O2(µ-S)2(BPyDTS2)2] presenta 

emissió en acetonitril a 628 nm, amb un rendiment quàntic de ca. 0.10. 

Aquesta banda d’emissió ha sigut identificada mitjançant càlculs TDDFT 

amb una ILCT des dels orbitals del ditiolè () fins als dels grups piridil (*). 

La inserció de dos fragments terminals, Re(CO)3Cl, en el clúster esmentat 

anteriorment disminueix el rendiment quàntic un factor d’aproximadament 

4.6, probablement degut a una ràpida separació de càrrega en l’estat excitat. 

8) Dos complexes heterolèptics del tipus Mo3S7 que contenen el lligam 

imidazofenantrolina IPDOP, és a dir Mo3S7X4(IPDOP), amb X = Cl, ó Br, 

presenten luminiscència en la regió compresa entre 375 i 600 nm, tant en 

diclorometà com en dimetilformamida. El màxim rendiment quàntic i el 

màxim temps de vida d’emissió han sigut registrats per al derivat bromat en 

DMF, que presenta uns valors de 0.15 i 7.5 ns, respectivament. L’addició 

d’anions abstractors de protons (F-, OH- i AcO-) a dissolucions d’aquests 
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complexos condueix a un desplaçament de l’espectre d’emissió de vora 92 

nm cap a longituds d’ona més llargues. 

9) La comparació entre el poder òptic limitant d’una sèrie de clústers Mo3S7 

funcionalitzats amb lligams mixtes (diimina-halur o diimina-ditiolè) i el d’un 

clúster dinuclear basat en el nucli Mo2O2S2 i lligams ditiolè, ha permès 

obtindré correlacions entre estructures moleculars i funcions d’òptica no 

lineal. Tota la sèrie de clústers trinuclears són limitadors òptics eficients, i el 

mèrit de limitació òptica augmenta en augmentar la nuclearitzat, i en estendre 

el sistema  conjugat mitjançant lligams ditiolè. 

10) La funcionalització de clústers Mo3S7 amb lligams diimina facilita la seua 

adsorpció sobre nanopartícules de TiO2 suportades sobre FTO. Aquests 

complexos poden ser reduïts electroquímicament per generar sulfurs de 

molibdè(IV). Les espècies generades d’aquesta manera presenten activitat 

electrocatalítica superior a la del TiO2 sense modificar, amb un 

sobrepotencial de reducció d’hidrogen de 0.3 – 0.4 V en funció del medi 

(Na2S 0.1M/Na2SO3 0.02M, ó HClO4 0.1 M). En concordança amb els 

resultats electroquímics, les nanopartícules de TiO2 modificades mostren 

activitat fotocatalítica (TOF = 8  10-5 s-1) per a la generació d’hidrogen en 

presència del sistema Na2S/Na2SO3 com a agent de sacrifici. 
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“La patience, c’est comme le chocolat… 
On n’en a jamais assez!” 

Christelle Heurtault 
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