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Abstract

In this dissertation, we will study the rank and the dimension of the kernel of binary

1-perfect codes and in general the rank of q-ary 1-perfect codes over a prime power

alphabet, Fq.

It is known the existence of binary 1-perfect codes with any possible rank and

any possible size of the kernel, separately. We will consider the following problem,

for what pairs of numbers (r, k) does there exist a binary 1-perfect code C of length

n = 2m − 1 having r(C) = r and k(C) = k. We establish the exact upper and

lower bounds on the dimension of the kernel, once the rank is fixed. In order to show

that, we also establish some results on the structure of binary 1-perfect codes. We

also construct binary 1-perfect codes with different dimensions of the kernel between

the upper and the lower bounds for any rank, using the Doubling and Switching

construction.

Finally, we establish the existence of q-ary 1-perfect codes of length n =
qm − 1

q − 1
with any possible rank, ∀m ≥ 4. In order to prove that, we generalize an approach

of the Switching construction to construct q-ary 1-perfect codes.
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with Dr. Josep Rifà at Universitat Autònoma de Barcelona (Catalonia, Spain) and

with Dr. Kevin Phelps at Auburn University (Alabama, USA). However, all this

dedication would have failed without the help, advice and affection of many people.

So, I would like to thank all the people that have made this dissertation possible.

I am specially grateful to my advisers Dr. Josep Rifà and Dr. Kevin Phelps for
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nication Group at Universitat Autònoma de Barcelona, who are not only colleagues

but friends too. I thank Quim Borges, Jaume Pujol, Italo Dejter and Victor Zinov’ev

for our talks about perfect codes and Cristina Fernández, Josep M. Basart and Nuria

Esturau for their reviews of some parts of this dissertation.

I would also like to express my gratitude to friends, professors and graduate stu-

dents in Auburn, especially to Liu Chun, Aurora Thorgerson, Dr. Lindner, Selda

Kucukcifci, Sule Yazici and Anthony Hall, for their friendship and help. They made

me feel very comfortable in Auburn although I was very far from my home country.

vii



Finally, I want to thank my family, specially my mother, for their love and uncon-

ditional support, specially during difficult moments when they have been encouraging

me and cheering me up. A special thanks to all my friends, I do not want to write

names because I would miss some of them. Without them nothing that I have done

would had been possible.

To all of you, thank you very much.



Contents

Abstract v

Acknowledgements vii

1 Introduction 1

2 Definitions and previous results 7

2.1 Binary perfect codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Linear binary 1-perfect codes: Hamming codes . . . . . . . . . . . . . 10

2.3 Constructions of binary 1-perfect codes . . . . . . . . . . . . . . . . . 13

2.3.1 Vasil’ev construction . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Doubling construction . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Switching construction . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Properties of binary 1-perfect codes . . . . . . . . . . . . . . . . . . . 19

2.4.1 STS and 1-perfect codes . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 The dual code . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Intersections of 1-perfect codes . . . . . . . . . . . . . . . . . 23

2.5 Rank and kernel of binary 1-perfect codes . . . . . . . . . . . . . . . 26

2.5.1 Ranks of binary 1-perfect codes . . . . . . . . . . . . . . . . . 28

2.5.2 Kernels of binary 1-perfect codes . . . . . . . . . . . . . . . . 30

2.5.3 Full-rank codes and kernels . . . . . . . . . . . . . . . . . . . 33

2.5.4 Rank and kernel for n = 15 . . . . . . . . . . . . . . . . . . . 38

ix



3 Rank and Kernel of binary 1-perfect codes 41

3.1 Properties on the structure of 1-perfect codes . . . . . . . . . . . . . 42

3.2 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Doubling construction . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Some results near the upper bound . . . . . . . . . . . . . . . . . . . 54

3.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Bulging middle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Q-ary perfect codes 69

4.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Constructions of q-ary 1-perfect codes . . . . . . . . . . . . . . . . . . 72

4.3 Ranks of q-ary 1-perfect codes . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Switching construction . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 Subspaces Ti . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.3 Q-ary 1-perfect codes with different ranks . . . . . . . . . . . 81

5 Conclusions 85

5.1 Results of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Binary 1-perfect codes . . . . . . . . . . . . . . . . . . . . . . 86

5.1.2 Q-ary 1-perfect codes . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 95



Chapter 1

Introduction

Investigating perfect codes is one of the most fascinating subjects in coding theory.

Many problems regarding perfect codes are still open, for example, the main problem

of the construction and enumeration of perfect codes remains unsolved. In recent

years, a lot of papers have been devoted to the construction and investigation of

properties of perfect codes.

Let Fnq be a vector space of dimension n over a Galois Field Fq = GF (q). A q-ary

code C of length n is perfect if for some integer r ≥ 0 every x ∈ Fnq is within distance

r from exactly one codeword of C. A q-ary perfect code of length n can correct r

errors, so they are also called perfect r-error correcting codes or r-perfect codes.

It is well-known that, over a prime power alphabet Fq, the only parameter for

which there exist nonequivalent perfect codes is r = 1. These are the q-ary 1-perfect

codes. They have length n =
qm − 1

q − 1
, qn−m codewords and minimum distance 3.

Linear q-ary 1-perfect codes are unique up to equivalence, they are the well-known

q-ary Hamming codes and they exist for all m ≥ 2. Nonlinear q-ary 1-perfect codes

exist for q = 2, m ≥ 4; q ≥ 3, m ≥ 3, and for q a prime power, q 6= 4 or 8, m ≥ 2.

Over other alphabets, the only known perfect codes are the trivial ones. These are

the codes containing all vectors of some length and the codes consisting of only one

codeword of length n. So, we will henceforth only work on 1-perfect codes over a

1



2 CHAPTER 1. INTRODUCTION

prime power alphabet, Fq.

In this dissertation we will focus on two structural properties, rank and dimension

of the kernel, which let us study nonlinear perfect codes. The rank of a code C, r(C),

is simply the dimension of the subspace spanned by C, 〈C〉. The kernel of a binary

code C is defined as: KC = {x ∈ Fn2 : C = C+x}, in other words, it is the subset of

F
n
2 such that any vector in it leaves C invariant under translation. In general, for any

q-ary code it can also be defined as the intersection of all maximal linear subcodes in

that code. We will denote the dimension of the kernel of C by k(C). When the code

C is linear, the rank and the dimension of the kernel are the same and equal to the

dimension of the code. In some sense these two parameters give information about

the linearlity of a code.

The rank and the dimension of the kernel do not give a full classification of 1-

perfect codes, since two nonequivalent 1-perfect codes could have the same rank and

dimension of the kernel. In spite of that, they can help to a classification since if

two 1-perfect codes have different rank or kernel dimension they are not equivalent.

Another invariant, called STS-Graphical invariant for perfect codes has been studied

lately, [Dej01].

Both the rank and the kernel of binary 1-perfect codes have been studied separa-

tely. Ranks of binary 1-perfect codes were investigated by Etzion and Vardy [EV94],

who proved that there exist 1-perfect codes with any possible rank. Phelps and LeVan

[PL95] obtained 1-perfect codes with kernels of all possible sizes. These two results

are the following:

Theorem 1.1. [EV94] For all m ≥ 4 there exists a binary 1-perfect code, C, of length

n = 2m − 1 with a rank of dimension r(C) = n−m+ s for each s ∈ {0, 1, . . . ,m}.

Theorem 1.2. [PL95] For all m ≥ 4 there exists a binary 1-perfect code, C, of length

n = 2m−1 having a kernel of dimension j if and only if j ∈ {1, 2, . . . , n−m−2, n−m}.
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The rank and kernel are known to be related, [EV98]. The first relation is es-

tablished in [BGH83] and it says that for a binary 1-perfect code C, C⊥ ⊂ KC and

k(C) + r(C) ≥ n+ 1.

The main question which we will address in this dissertation, about binary 1-

perfect codes, is for what pairs of numbers (r, k) does there exist a binary 1-perfect

code C of length n having r(C) = r and k(C) = k. This question was posed by

Etzion and Vardy in [EV98].

It is already proved by Phelps for which pairs (r, k) there exists a binary 1-perfect

code C of length 15 constructed using the Doubling construction and having r(C) = r

and kernel dimension k(C) = k, [Phe00]. We will see that it does not exist any 1-

perfect code, C, of length 15 with rank r(C) ≤ 14 having a kernel of dimension

different than the one of the 1-perfect codes obtained in this way. We will assure

this, after showing for each rank which are the lower and the upper bounds for

the dimension of the kernel. For rank r(C) = 15, although it is known that the

admissible kernel dimensions are 1, 2, 3, 4, 5, 6 and 7, it has been only proved that

there exist binary 1-perfect codes of length 15 with kernels of dimensions 1, 2, 3, 4

and 5 (see [EV98]). Summarizing, for n = 15, the following table shows for which

pairs (r(C), k(C)) there exists a 1-perfect code with these parameters. The question

mark sign means it is not known if there exists a 1-perfect code with that rank and

dimension of the kernel.

r(C) k(C)

11 11

12 9 8 7

13 8 7 6 5 4

14 8 7 6 5 4 3 2

15 ? ? 5 4 3 2 1

In general, we will establish the exact upper and lower bounds on the kernel

dimension of binary 1-perfect codes of length n = 2m − 1, once the rank is fixed,
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except for one case. For 1-perfect codes with maximum rank, r(C) = n, called full-

rank 1-perfect codes, and for all m ≥ 4, we will give an upper bound but we will not

prove this upper bound is tight. Despite this, it is already known that for all m ≥ 10

this upper bound for full-rank 1-perfect codes is tight, [EV98]. So, the only cases

which remain unsolved are for 4 ≤ m < 10.

In order to construct binary 1-perfect codes of length n = 2m − 1 with all the

different kernel dimensions, k(C), between the upper and lower bounds for any rank,

r(C), we will use the Doubling and Switching constructions of 1-perfect codes. We

obtain a large number of cases but we do not completely settle the question, partly

because we need to construct full-rank 1-perfect codes with different k(C). We only

know how to construct full-rank 1-perfect codes of length n = 2m − 1 with the lower

kernel dimension, k(C) = 1, for allm ≥ 4 [PL95] and with the upper kernel dimension,

for all m ≥ 10 [EV98].

The rank and the kernel of q-ary 1-perfect codes (q 6= 2) have not been studied

before. On the rank, we will prove the generalization of Theorem 1.1 for q-ary 1-

perfect codes, when q is a prime power. In order to show this result we will also

generalize the approach of the Switching construction developed in [PL95] to construct

q-ary 1-perfect codes. On the kernel, we will not give any result in this dissertation.

The overview of this dissertation is the following:

Chapter 2 exposes definitions and known results we will need in chapter 3, where

we can find the new results we develop in this dissertation about binary 1-perfect

codes. This chapter is organized as follows: first we introduce the binary 1-perfect

codes as a family of codes such that the Hamming bound holds; in section 2.2 we

show some well known results about linear binary 1-perfect codes, called also binary

Hamming codes; in section 2.3 we develop some known constructions of nonlinear

binary 1-perfect codes; in section 2.4 we describe some properties of these codes;
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finally, in section 2.5, we give the known results about two of these properties, the rank

and the kernel of binary 1-perfect codes, which are the main focus of this dissertation.

Chapter 3 and 4 are the core of this work, where the new contributions regarding

binary and q-ary 1-perfect codes respectively are presented.

In chapter 3, we analyze the rank and the kernel dimension for binary 1-perfect

codes of length n = 2m − 1. First of all, we will prove some results on the structure

of 1-perfect codes. Next, we will establish the lower and upper bounds on the kernel

dimension of 1-perfect codes once the rank is fixed. We will show that these bounds

are tight except the upper bound of full-rank codes if m < 10. We will study some

results that will let us to obtain 1-perfect codes with different dimensions of the kernel

between the lower and upper bound, for each possible rank. Since we will not be able

to construct full-rank codes we will not completely settle the question of for what

pairs of numbers (r, k) does there exist a binary 1-perfect code C of length n having

r(C) = r and k(C) = k.

In chapter 4, first of all we will review definitions and known properties and cons-

tructions of q-ary perfect codes. Then, we will generalize an approach of a well-known

construction of binary 1-perfect codes, the Switching construction, to obtain q-ary 1-

perfect codes. Finally, using this construction, we will establish the generalization of

Theorem 1.1 for q-ary 1-perfect codes, that is the existence of q-ary 1-perfect codes

of length n =
qm − 1

q − 1
for m ≥ 4 and rank n−m+ s for each s ∈ {0, 1, . . . ,m}.

Finally, in chapter 5 we summarize the obtained results, we give the conclusions

of this work and we point out possible future lines of research regarding rank and

kernel of perfect codes.
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Chapter 2

Definitions and previous results

In this chapter we expose definitions and known results that we will need in chapter

3, where we can find the new results we develop in this dissertation about binary

1-perfect codes. This chapter is organize as follows: first we introduce the binary

1-perfect codes as a family of codes such that the Hamming bound holds; in section

2.2 we show some well known results about linear binary 1-perfect codes, called

also binary Hamming codes; in section 2.3 we develop some known constructions of

nonlinear binary 1-perfect codes; in section 2.4 we describe some properties of these

codes; finally, in section 2.5, we give the known results about two of these properties,

the rank and the kernel of binary 1-perfect codes, which are the main focus of this

dissertation.

2.1 Binary perfect codes

Let Fn2 be a vector space of dimension n over GF (2). The Hamming distance between

vectors x, y ∈ Fn2 , denoted d(x, y), is the number of coordinates in which x and y

differ. The Hamming weight of x is given by wt(x) = d(x,0), where 0 is the all-zero

vector.

A binary code, C, of length n is simply a subset of Fn2 . Without loss of generality

7
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we shall assume, unless stated otherwise, that 0 ∈ C throughout this thesis. The

elements of C are called codewords. The minimum distance of a code is the smallest

distance between a pair of codewords. A code C is called linear if it is a linear space

over a binary field. In other words, if x and y are codewords, then the resulting sum

x+ y is contained in the code as well.

We say that a code is even if all its codewords have even weight. We shall define an

extended code of the code C, denoted by C∗, to be the code resulting from adding an

overall parity check digit to each codeword of C, thereby causing all of the codewords

to have the same parity. We shall assume that the parity check digit shall cause each

codeword to have even weight, so an extended code is an even code.

Two codes C1, C2 ⊂ Fn2 are isomorphic if there exists a permutation π such that

C2 = π(C1) = {π(c) : c ∈ C1}. They are equivalent if there exists a vector a ∈ Fn2
and a permutation π such that C2 = a + π(C1) = {a + π(c) : c ∈ C1}. In the case

where π is the identity permutation, then C2 is said to be a translate or coset of C1 if

there exists some vector a ∈ Fn2 such that C1 + a = C2. If C1 = C2 then the mapping

c 7→ a+ π(c), ∀c ∈ C1 is said to be an automorphism of C1. Aut(C) will denote the

group of all automorphisms of C.

Throughout this thesis, we shall utilize a particular family of codes, namely binary

perfect codes. A binary code C of length n is perfect if for some integer r ≥ 0 every

x ∈ Fn2 is within distance r from exactly one codeword of C.

A perfect binary code attains the sphere-packing or Hamming bound, that is

|C| = 2n(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
r

)
where

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
r

)
is the number of vectors of length n contain in a sphere of

radius r around the codewords, [MS77]. We can also define a perfect binary code as a

binary code such that the Hamming bound holds. A perfect binary code of length n

can correct r errors, so they are also called perfect r-error correcting codes or r-perfect

codes.
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In 1973 it was proved independently by Tietäväinen [Tie73] and by Zinov’ev and

Leont’ev [ZL73], that the only binary perfect codes of length n are:

• trivial (binary) perfect codes in cases r = 0 and r = n.

• (binary) repetition code in case r = (n− 1)/2 with n odd.

• (binary) Golay code in case r = 3 with n = 23.

• (binary) 1-perfect codes in case r = 1 with n = 2m − 1.

The binary Golay code is unique up to equivalence, [Ple68, Sno73, DG75]. The

1-perfect code with length n = 7 is also unique up to equivalence. Thus the only

parameters for which there exists nonequivalent binary perfect codes are r = 1 and

n = 2m − 1, with m ≥ 4, [Phe84a].

The linear 1-perfect codes are, again, unique up to equivalence, [MS77]. They are

the well-known Hamming codes. We will explain more about these codes in the next

section. Nonlinear 1-perfect codes have been constructed, for example, by Vasil’ev

[Vas62], Solov’eva [Sol81], Mollard [Mol86], Phelps [Phe83, Phe84a], Bauer et al.

[BGH83], Zinov’ev [Zin88], Etzion and Vardy [EV94], Phelps and LeVan [PL95] and

Rifà [Rif99]. Some of these constructions are outlined in section 2.3.

The 1-perfect codes of length n = 2m − 1 have dimension k = n − m, 2n−m

codewords and minimum distance 3.

A binary 1-perfect partition is a partition of the space Fn2 into n+1 binary 1-perfect

codes C0, C1, . . . , Cn. We can assume the zero vector is in C0 and the vectors having

a one in the ith coordinate and zeros elsewhere, ei, are in Ci, ∀i ∈ {1, . . . , n}. Given a

binary 1-perfect code C of length n = 2m− 1 we know that there always exists n+ 1

translates of C, C + e0, C + e1, . . . , C + en, that form a binary 1-perfect partition

of Fn2 , we will call this the trivial partition. Similarly, the set En+1
2 , of all the even

weight vectors in Fn2 , can always be partitioned into even translates of an extended

1-perfect code C∗ ⊂ En+1
2 .
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Two partitions C0, C1, . . . , Cn and D0, D1, . . . , Dn are isomorphic if there exists

a permutation π of the coordinates which maps the vectors of each class into the

vectors of a class in the second partition, that is ∀j ∈ {1, . . . , n} Dj = {π(Ci)} for

some i ∈ {1, . . . , n}. Two partitions C0, C1, . . . , Cn and D0, D1, . . . , Dn are equivalent

if there exists a permutation π of the coordinates and a translation τ such that for

all classes Dj there exists a class Ci such that Dj = {π(Ci) + τ}.

2.2 Linear binary 1-perfect codes: Hamming codes

In this section we will see some known results about Hamming codes, that can be

found for example in [MS77]. We will use these results in next chapters.

A linear code of length n is a linear space over Fn2 . A matrix G is called a generator

matrix of a linear code C if the rows of G form a basis for C. If C has length n and

dimension k, then G is a k × n matrix.

The dual code of a linear code C of length n and dimension k, denoted by C⊥

is the set of vectors which are orthogonal to all codewords of C, that is the set

C⊥ = {v ∈ Fn2 : ∀x ∈ C, v · x = 0}. The dual code is a linear code of length n

and dimension n − k. A matrix H is called a parity-check matrix of a linear code C

if the rows of H form a basis for the dual code C⊥. If C has length n and dimension

k, then H is a (n− k)× n matrix.

A code C is cyclic if it is linear and if any cyclic shift of a codeword is also a

codeword, that is, whenever (c0, c1, . . . , cn−1) is in C, then so is (cn−1, c0, c1, . . . , cn−2).

The polynomials a0 +a1x+a2x
2 + · · ·+an−1x

n−1 of degree at most n−1 over F2 may

be regarded as the words (a0, a1, . . . , an−1) ∈ Fn2 . Thus a code C of length n can be

represented as a set of polynomials over F2 of degree at most n − 1. If C is a cyclic

code, there is only a monic polynomial g(x) such that C = (g(x)), that is, g(x) is a

generator polynomial of C. If r = deg(g(x)), then the dimension of C is n− r.
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A code of length n = 2m − 1, m ≥ 2, having parity-check matrix H whose

columns consist of all nonzero vectors of length m is called a Hamming code of length

n = 2m − 1. This family of codes has minimum distance 3 and 2n−m codewords, so

attains the Hamming bound and is a family of 1-perfect codes. It is well-known that

the Hamming codes are unique, up to equivalence.

If α is a primitive element of a finite field GF (2m) then 1, α, α2, . . . , α2m−2 are

distinct and can be represented by distinct nonzero binary m-tuples. So a parity-

check matrix of a Hamming code of length n = 2m − 1 can be taken to be

H = (1, α, α2, . . . , α2m−2)

where each entry is to be replaced by the corresponding column vector of length m.

The following result give us that there is a cyclic Hamming code of length n =

2m − 1, for each m ≥ 2.

Theorem 2.1. Let α be a primitive element of GF (2m). The Hamming code given

by the parity-check matrix H = (1, α, α2, . . . , α2m−2) is a cyclic code with generator

polynomial g(x) = mα(x), where mα(x) is the minimal polynomial of α.

The intersection of cyclic codes is a cyclic code. So, if we have two different cyclic

Hamming codes H1 = (mα(x)) and H2 = (mβ(x)), where α and β are primitive

elements of GF (2m), the code C = H1 ∩ H2 is a cyclic code such that C = (mα(x) ·
mβ(x)). In this case, deg(mα(x) · mβ(x)) = 2m, so dim(H1 ∩ H2) = n − 2m and

dim(H⊥1 ∪H⊥2 ) = 2m. We will use this result in sections 2.4.3 and 3.3.

The characteristic vector of a subset V , where V ⊆ {1, 2, . . . , n}, is the vector

χ(V ) = (x1, x2, . . . , xn) ∈ Fn2 with xi = 1 if and only if i ∈ V .

A Steiner triple system is an ordered pair (V,B) where V is a finite set of points

or symbols, and B is a set of 3-element subsets of V called blocks or triples, such that

each disordered pair of distinct elements of V is contained in exactly one triple of

B. The order of a Steiner triple system (V,B) is the size of the set V , denoted by

|V | = n. We will denote a Steiner triple system of order n by STS(n).
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The relation between STS’s and Hamming codes is given by the following result:

Proposition 2.2. If Hm is a Hamming code of length n = 2m − 1, then the code-

words of weight 3, called triples, form an STS(n) if we identify the codewords with

characteristic vectors of subsets of {1, 2, . . . , n}.

In fact, there is the same relation between STS’s and 1-perfect codes (not ne-

cessarily linear) if C contains the zero vector. We will talk about this in section

2.4.1.

Another known result about Hamming codes is the following:

Theorem 2.3. The codewords of weight 3 in the Hamming code are a spanning set

for the code.

A finite projective geometry consists of a finite set Ω of points and a collection of

subsets called lines, which satisfies:

1. There is a unique line (denoted by (pq)) passing through any two distinct points

p and q.

2. Every line contains at least 3 points.

3. If distinct lines L, M have a common point p, and if q, r are points of L not

equal to p, and s, t are points of M not equal to p, then the lines (qt) and (rs)

also have a common point.

4. For any point p there are at least two lines not containing p, and for any line L

there are at least two points not on L.

A projective geometry PG(t, q) can be constructed taken the points of Ω as the

nonzero vectors of length t + 1 over GF (q) with the rule that (a0, a1, . . . , at) and
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(λa0, λa1, . . . , λat) are the same point, where λ is any nonzero element of GF (q).

These are called homogeneous coordinates for the points. The number of points in

Ω is qt+1−1
q−1

. The line through two distinct points (a0, a1, . . . , at) and (b0, b1, . . . , bt)

consists of the points (λa0 + µb0, . . . , λat + µbt), where λ, µ ∈ GF (q) are not both

zero. A line contains q+1 points since there are q2−1 choices for λ, µ and each point

appears q − 1 times in (λa0 + µb0, . . . , λat + µbt).

The coordinates of a Hamming code of length n = 2m − 1 are in one-to-one

correspondence with the columns of its parity-check matrix which in turn correspond

to points in the binary projective space PG(m − 1, 2). The Steiner triple system

associated to the Hamming code is in fact lines of the projective space. So, we

can refer to coordinates being independent if the corresponding columns (points) are

independent. Equivalently, we will say that a set of r points is independent if and

only if the smallest subsystem containing these points is a system of order 2r − 1. In

particular, if a set of r points is independent, then no three points are collinear.

2.3 Constructions of binary 1-perfect codes

In this section we briefly outline some known constructions of nonlinear binary 1-

perfect codes.

Many constructions of 1-perfect codes exist. In [Sol00a] we can find a short sum-

mary of constructions which we include now. In 1962, Vasil’ev [Vas62] constructed a

large number of nonequivalent 1-perfect codes. In 1977, Heden [Hed77] constructed

1-perfect codes which are not equivalent to the Vasil’ev codes. The class of 1-perfect

codes described by Solov’eva in [Sol81] (they are not equivalent to the Vasil’ev codes)

contains the Heden codes properly. Two years later, Phelps [Phe83] independently

discovered Solov’eva’s construction and generalized it [Phe84a]. A generalization of

Vasil’ev’s construction can be found in [Mol86]. In 1970 and 1988, Zinov’ev [Zin88]

gave two constructions of 1-perfect codes with the method of concatenation. In 1988
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Solov’eva presented another class of 1-perfect codes [Sol88] and generalized it with

Vasil’ev in [VS95]. In 1994 Vardy and Etzion described a class of 1-perfect codes of

full rank [EV94]. There are also three codes of length 15 (Bauer et al. [BGH83])

and three codes of length 15 described by Heden in [Hed94]. In 1995 Phelps and

LeVan [PL95] presented 1-perfect codes with all possible sizes of kernels. In 1996

Avgustinovich and Solov’eva [AS97] gave a construction of 1-perfect codes which led

to a new lower bound on the number of different 1-perfect codes. In 1996 Lobstein

and Zinov’ev generalized the concatenation construction of 1-perfect codes [LZ97]. In

1997 Rifà and Pujol [RP97] constructed a family of 1-perfect codes called perfect ad-

ditive propelinear codes. In 1999 Borges and Rifà [BR99] give a full characterization

of 1-perfect additive codes. In the same year, Rifà [Rif99] constructed 1-perfect codes

from some Steiner triple systems.

2.3.1 Vasil’ev construction

Nonlinear 1-perfect codes were first constructed by Vasil’ev, [Vas62].

For v ∈ Fn2 , let p(v) = wt(v) mod 2. Let Cn be a 1-perfect binary code of length

n = 2m − 1. Let f : Cn → {0, 1} be an arbitrary mapping, such that f(0) = 0 and

f(c1) + f(c2) 6= f(c1 + c2) for some c1, c2, c1 + c2 ∈ Cn.

Proposition 2.4. [Vas62] The code C2n+1 defined by

C2n+1 = {(v|v + c|p(v) + f(c)) : v ∈ Fn2 , c ∈ Cn}

where (·|·) denotes concatenation, is perfect.

We can construct 2|C|−1 1-perfect codes of length n from a 1-perfect code C of

length (n − 1)/2 using the above construction. This will give 215 different 1-perfect

codes of length 15 (containing the zero vector) but Herget [Her82] prove that there

are only 19 nonequivalent codes.

The following construction, due to Mollard [Mol86], is in a sense a generalization

of Proposition 2.4.
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For x = (x11, x12, . . . , x1n2 , x21, x22, . . . , xn1n2) ∈ Fn1n2
2 , define the generalized pa-

rity functions p1(x) = (σ1, σ2, . . . , σn1) ∈ Fn1
2 and p2(x) = (σ′1, σ

′
2, . . . , σ

′
n2

) ∈ Fn2
2 by

setting σi =
∑n2

j=1 xij and σ′j =
∑n1

i=1 xij. Let C1 and C2 be two 1-perfect codes of

lengths n1 and n2, respectively. Let f : C1 → F
n2
2 be an arbitrary mapping.

Proposition 2.5. [Mol86] The code F defined by

F = {(x|c1 + p1(x)|c2 + p2(x) + f(c1)) : x ∈ Fn1n2
2 , c1 ∈ C1, c2 ∈ C2}

is a 1-perfect code of length n = n1n2 + n1 + n2.

Note that for n2 = 1, Proposition 2.5 reduces to Vasil’ev’s construction.

2.3.2 Doubling construction

The following construction of 1-perfect codes of length 2n + 1 from 1-perfect codes

of length n is due to Phelps [Phe83] and Solv’eva [Sol81], so it is also called Phelps-

Solov’eva construction.

Let ei denote the binary vector of length n having all components equal to zero,

except the ith component, which contains a one. Let X ⊂ Fn2 and Y ⊂ Fm2 . Then,

the direct sum of X and Y , denoted by X ⊕ Y ∈ Fn+m
2 is as follows:

X ⊕ Y = {(x, y) : x ∈ X, y ∈ Y }

Let C1 be a 1-perfect code of length n and C∗2 be an extended 1-perfect code of length

n+ 1.

Proposition 2.6. [Phe83, Sol81] The code

C = (C1 ⊕ C∗2)
n⋃
i=1

(C1 + ei ⊕ (C2 + eπ(i))
∗)

where π is a permutation on the set {1, 2, . . . , n}, is a 1-perfect code of length 2n+ 1.
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In section 3.4, we will establish results on the rank and the kernel of binary 1-

perfect codes constructed with this construction. We will use these results to construct

binary 1-perfect codes with different ranks and dimensions of the kernel, in sections

3.3, 3.5 (or see [PV01a]) and 3.7.

The next proposition is a more general variant of the above construction.

Let C∗0 , C
∗
1 , . . . , C

∗
n and D∗0, D

∗
1, . . . , D

∗
n be partitions of En+1

2 and Fn+1
2 \En+1

2 , res-

pectively, into extended 1-perfect codes by extending with an even parity coordinate

the first ones and with an odd parity coordinate the second ones. Let π be a permu-

tation on the set {0, 1, . . . , n}.

Proposition 2.7. [Phe83, Sol81] The code C defined by

C = {(c|d) : c ∈ C∗i , d ∈ D∗π(i)}

is an extended 1-perfect code of length 2n+ 2.

Puncturing any coordinate of C gives a 1-perfect code of length 2n+ 1.

Let R be an extended 1-perfect code of length k. For each r ∈ R, let Qr be

a minimum distance 2 code of length k over an alphabet of n + 1 symbols, with

|Qr| = (n+ 1)k−1.

Proposition 2.8. [Phe84a] The code P defined by

P = {(c1|c2| · · · |ck) : ci ∈ Cri
ji
, r = (r1, r2, . . . , rk) ∈ R, (j1, j2, . . . , jk) ∈ Qr}

is an extended 1-perfect code of length k(n+ 1).

Puncturing any coordinate of P gives a 1-perfect code of length k(n+ 1)− 1.

Note that for k = 2, R is an extended 1-perfect code consisting of a single vector 01,

and the code Qr is in effect a permutation on the set {0, 1, · · · , n}. Thus Proposition

2.7 is a special case of Proposition 2.8.



2.3. CONSTRUCTIONS OF BINARY 1-PERFECT CODES 17

The following construction, due to Etzion and Vardy [EV94], is in some sense a

generalization of the construction of Phelps [Phe83] and Solov’eva [Sol81].

Let V be a subset of Fn2 . Let A = {A1, A2, . . . , Ak} and B = {B1, B2, . . . , Bk} be

two ordered sets of subsets of V . For v ∈ V , define

ΛA(v) = {i : v ∈ Ai} ΛB(v) = {i : v ∈ Bi}

where Ai ∈ A and Bi ∈ B. We say that A and B form a perfect segmentation of order

k of the set V , if both ∪i∈ΛB(v)Ai and ∪i∈ΛA(v)Bi are 1-perfect codes of length n, for

all v ∈ V .

Proposition 2.9. [EV94] Let A and B be a perfect segmentation of Fn2 . The code C

defined by

C = {(u|v) : u ∈ A∗i , v ∈ Bi}

is a 1-perfect code of length 2n+ 1.

Note that any two partitions of Fn2 into n + 1 1-perfect codes form a perfect

segmentation of Fn2 . Thus Proposition 2.7 is a special case of Proposition 2.9. In fact,

n+ 1 is the minimum order of any perfect segmentation of Fn2 . In [EV94], it is shown

that perfect segmentation of higher order exist.

2.3.3 Switching construction

This construction consists on starting with a 1-perfect code C of length n and switch-

ing out one specially selected set of codewords S ⊂ C for another set of vectors S ′.

The resulting code C ′ = (C\S) ∪ S ′ would be a 1-perfect code.

Let C and D be two (disjoint) 1-perfect codes. In general, we choose D = C + ei

a translate of C. We can form a bipartite graph G with vertex set C ∪D and edges

[x, y] for x ∈ C and y ∈ D where d(x, y) < 3.



18 CHAPTER 2. DEFINITIONS AND PREVIOUS RESULTS

Proposition 2.10. If C is a 1-perfect code and M ∪M+ei is a nontrivial component

in the graph G, then C ′ = (C\M) ∪ (M + ei) is also a 1-perfect code.

Another equivalent formulation of this construction, due to Solov’eva [Sol88], is

the following:

For a 1-perfect code of length n, we define the minimum distance graph of C as a

graph G(C) = (C,E) with the codewords in C as vertices and edges [x, y] ∈ E if and

only if d(x, y) = 3.

We define a subgraph Gi(C) = (C,Ei) as the subset Ei of all the edges [x, y] in

G(C) where codewords x and y disagree with the ith coordinate. Solov’eva in [Sol88]

introduced this subgraph Gi(C) and established that the number of components m

satisfies the following inequalities,

2 ≤ m ≤ 2
n+1

2

n+ 1

so the subgraph Gi is not connected.

Proposition 2.11. [Sol88] If C is a 1-perfect code and S ⊂ C is a component of Gi,

then C ′ = (C\S) ∪ (S + ei) is also a 1-perfect code.

Another approach of the switching construction can be found in [AS97] or [Sol00b].

A neighborhood K(M) of a set M in Fn2 is the union of spheres of radius 1 with centers

at the vectors of M . We can also say that a set C ⊆ F n
2 is a 1-perfect code of length

n if K(C) = F
n
2 and for any x, y ∈ C one has K(x) ∩ K(y) = ∅. A set M ⊂ C is

an i-component of the 1-perfect code C if K(M) = K(M + ei). It is easy to see the

following result:

Proposition 2.12. [AS97] If C is a 1-perfect code and M ⊂ C is an i-component,

then C ′ = (C\M) ∪ (M + ei) is also a 1-perfect code.
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In the next chapters we will use the following approach to the switching construc-

tion due to Phelps and LeVan [PL95].

Define Ti to be the linear subcode of a Hamming code, generated by the codewords

of weight 3 having a 1 in the ith component. There will be a path from x to y in Gi if

and only if there is a sequence of codewords of weight 3 t1, t2, . . . , ts ∈ Ti such that

x+ t1 + t2 + · · ·+ ts = y which is equivalent to saying if and only if y ∈ Ti + x. Thus

Ti + x is a component of Gi in the graph of the Hamming code. We can say that in

the Hamming code the components in the subgraph Gi are cosets of a linear subcode.

Proposition 2.13. [PL95] Given a Hamming code Hm of length n = 2m − 1, let Ti,

xi ∈ Hm. Then,

C = (Hm\(Ti + xi)) ∪ (Ti + xi + ei)

is a nonlinear 1-perfect code of length n, ∀i ∈ {1, . . . , n}.

This idea has been used to solve a number of important problems, [EV94, PL95,

AS95, AS96]. For example, in [AS97], Avgustinovich and Solov’eva used this to

obtain an important lower bound on the number of nonequivalent 1-perfect codes of

a given length n. In this article, they raise the question of if all 1-perfect codes can be

obtained from the Hamming code by a sequence of such switches. In [PL99], Phelps

and LeVan present a 1-perfect code of length 15 and show that it can not be obtained

from the Hamming code by switching. In [Sol00b] it is showed that the Vasil’ev’s

construction is a switching construction.

2.4 Properties of binary 1-perfect codes

In [Sol00b] we can find a short summary of properties of 1-perfect codes. In this

section we will only see the ones that we will use in the next chapters. In the next

section we will talk specifically about two properties that are the main focus of this

dissertation: rank and kernel.
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Let C be a code of length n, and let Ai be the number of codewords on distance

i from a fixed codeword in C. The numbers A0, A1, . . . , An are called the weight

distribution of C. Of course A0 + A1 + · · · + An = |C|. A code is distance invariant

if the number Ai does not depend on the choice of the codeword.

It is easy to see that the linear codes are distance invariants. However, in a

nonlinear code this need not be true. For example, the nonlinear code given by the

following codewords, C = {(0, 0), (0, 1), (1, 1)}, is not distance invariant.

In 1959 Shapiro and Slotnik [SS59] proved the following results:

Proposition 2.14. If a nonlinear code is distance invariant, and it contains the

all ones vector, then for every word contained in the code, its complement is also

contained in the code.

Theorem 2.15. The (extended) 1-perfect codes are distance invariant codes. Thus,

the complement of a codeword is again a codeword.

If the complement of a codeword is again a codeword, we will say that the code

is self-complementary.

2.4.1 STS and 1-perfect codes

A Steiner triple system is an ordered pair (V,B) where V is a finite set of points or

symbols, and B is a set of 3-element subsets of V called blocks or triples, such that

each disordered pair of distinct elements of V is contained in exactly one triple of

B. The order of a Steiner triple system (V,B) is the size of the set V , denoted by

|V | = n. We will denote a Steiner triple system of order n by STS(n).

The existence problem of STS(n) was solved by Kirkman [Kir47], who proved

the following result. We can also see its proof in many books of design theory, for

example in [HP85] or [LR97].

Proposition 2.16. [Kir47] An STS(n) exists if and only if n ≡ 1, 3 (mod 6).
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Given two STS(n), (V,B) and (V,B′), we will say that they are isomorphic if

there exists a permutation π on the set V such that B = π(B′). We will denote by

(V,B) ∼= (V,B′).

For n = 3, 7 and 9, there only exist one STS(n) up to isomorphisms. There are

two STS(13) up to isomorphisms. For n = 15, there are 80 nonisomorphic STS(15),

[WCC19]. In [Gib76] and [Rif99], we can see two methods of uniquely identifying the

80 nonisomorphic STS(15). For n = 31, there are of the order of 10200. The methods

of uniquely identifying the nonisomorphic STS(15) are not useful for n > 15.

We say that (V,B) is a partial Steiner triple system if every pair of elements of V

is in at most one triple of B.

A Steiner quadruple system is an ordered pair (V,B) where V is a finite set of

points, and B is a set of 4-element subsets of V called quadruples, such that each

3-element subset of V is contained in exactly one quadruple of B. We will denote a

Steiner quadruple system by SQS(n), where |V | = n.

The characteristic vector of a subset V , where V ⊆ {1, 2, . . . , n}, is the vector

χ(V ) = (x1, x2, . . . , xn) ∈ Fn2 with xi = 1 if and only if i ∈ V .

The relation between STS and 1-perfect codes is given by the following result

that we can find in [GvT75] or [Til76].

Proposition 2.17. If C is a 1-perfect code of length n containing the zero vector,

then the minimum weight codewords (of weight 3) in the code form an STS(n) if we

identify the codewords with characteristic vectors of subsets of {1, 2, . . . , n}. Similarly,

the words of weight 4 in C∗ form a SQS(n+ 1).

A derived Steiner triple system is a Steiner triple system which can be extended

to a Steiner quadruple system. For length 15, it has already been shown [DSd85] that

all 80 nonisomorphic STS(15) are derived. However, the problem of whether every

STS(n) is derived or not is still unsolved for all admissible n > 15.
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Any 1-perfect code C of length n can be extended to a code C∗ of length n + 1

by adding an overall parity check bit. Thus, the codewords of weight 3 in C that

have become codewords of weight 4 in C∗, along with the codewords of weight 4

already contained in the code, form a SQS(n + 1). This show us that if we have

a 1-perfect code containing a Steiner triple system, then this must necessarily be a

derived Steiner triple system. We will say that a Steiner triple system is perfect if it

is contained in a 1-perfect code of length n.

In [Phe84a], Phelps show that at least 23 of these (derived) STS(15) are perfect.

In [LeV95], it is shown that 8 more STS(15) are perfect using switching techniques.

In [Rif99], Rifà constructed 1-perfect partitions of Fn2 and, therefore, 1-perfect codes

from some STS(n) called well-ordered.

2.4.2 The dual code

By the dual or orthogonal code of a code C of length n, denoted by C⊥, we mean the

dual of the subspace spanned by C, that is the set of vectors which are orthogonal to

all codewords of C

C⊥ = {u ∈ Fn2 : u · v = 0, ∀v ∈ C}

The dimension of C⊥ is n − r(C), where r(C) is the dimension of the subspace

spanned by C, 〈C〉. We will say that r(C) is the rank of C and that C is a full-rank

code if r(C) = n.

Proposition 2.18. [BGH83] Let C be a 1-perfect code of length n = 2m − 1. Any

non-zero codeword in the dual code C⊥ must have weight (n+ 1)/2 = 2m−1.

In [EV94], Etzion and Vardy give a necessary and sufficient condition for a code

C of length n = 2m − 1 to be perfect if there exists a vector w ∈ C⊥ of weight

(n + 1)/2 = 2m−1. Without loss of generality assume that the nonzero entries of w

are in the first (n+1)/2 positions, and hence for each (u|v) ∈ C such that v ∈ F(n−1)/2
2 ,
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wt(u) is even. Define

T (u) = {v ∈ F(n−1)/2
2 : (u|v) ∈ C}

H(v) = {u ∈ E(n+1)/2
2 : (u|v) ∈ C}

Proposition 2.19. [EV94] The code C is perfect if and only if the following two

conditions hold.

1. ∀u ∈ E(n+1)/2
2 , T (u) is a perfect code of length (n− 1)/2.

2. ∀v ∈ F(n−1)/2
2 , H(v) is an extended perfect code of length (n+ 1)/2.

Notice that if C is a 1-perfect code, by Proposition 2.18 all the nonzero vectors in

C⊥ have weight 2m−1. Then, if C⊥ 6= {0}, that is if r(C) < n, we can construct 1-

perfect codes T (u) and extended 1-perfect codes H(v). Actually, the following result

is also true for such a perfect codes.

Given a code C, we can shorten a code by considering the subcode

CI = {c ∈ C : ci = 0, ∀i ∈ I}

The support of a nonzero vector x = (x1, x2, . . . , xn) ∈ Fn2 is the subset of indexs of

its nonzero coordinates, supp(x) = {i : xi 6= 0}.

Theorem 2.20. Let C be a 1-perfect code. For any non-zero codeword w in the dual

code of C, the shortened code Csupp(w) is a 1-perfect code of length (n− 1)/2.

2.4.3 Intersections of 1-perfect codes

Given two binary codes C1, C2 of the same length, the intersection number of C1 and

C2 is defined as η(C1, C2) = |C1 ∩ C2|.
The largest possible intersection number of 1-perfect codes was determined in

[EV94], where Etzion and Vardy showed that if C1 and C2 are two distinct 1-perfect

codes of length n = 2m − 1, then

η(C1, C2) ≤ 22m−m−1 − 22m−1−1
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and this bound is tight, for all m ≥ 3. There exist perfect codes C1, C2 of length 2m−1

such that η(C1, C2) = 22m−m−1−22m−1−1. This bound was established using a switch of

one i-component in Vasil’ev’s construction. Moreover using multiple switchings they

obtained intersection numbers of the form k22m−1−1 for all k = 1, 2, . . . , 22m−1−m − 1,

[EV98].

The smallest possible (nonzero) intersection number of two 1-perfect codes is 2

because since all perfect codes are self-complementary, their intersection must have

even cardinality. This implies that if C1, C2 are 1-perfect codes and η(C1, C2) 6= 0,

then η(C1, C2) ≥ 2. In [EV98], Etzion and Vardy proved that, for each m ≥ 3, there

exist two 1-perfect codes C1, C2 of length 2m− 1 such that η(C1, C2) = 2. This lower

bound was constructed exploring a switch for the concatenation construction of the

Hamming code.

It follows from these results that the intersection number of any two distinct 1-

perfect codes C1, C2 of length n = 2m − 1 is in the range

2 ≤ η(C1, C2) ≤ 22m−m−1 − 22m−1−1

and both bounds are achievable for all m ≥ 3. In [EV98] is given many different inter-

section numbers but the problem of enumerating all possible intersection numbers of

1-perfect codes remains open. Even for the case of length 15, a complete enumeration

does not seem to be easy.

However, in [EV98] Etzion and Vardy provide a complete solution to this problem,

that is, to find all possible intersection numbers, if the perfect codes are linear codes,

namely, the Hamming codes of length n = 2m − 1. Now, we will explain the solution

to this problem and the construction of these codes by induction. We will use it in

section 3.3 to prove the main result in that section.

Let H1, H2 be two Hamming codes of length n = 2m − 1. Since Hamming codes

are unique, H1 and H2 are necessarily isomorphic. Since both codes are linear, their

intersection number is necessarily a power of 2.
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For m = 3 and n = 7, it is easy to find specific permutation such that η(H1,H2) =

2, 4 or 8. For example, let H1 the code defined by the parity-check matrix whose

columns are ordered lexicographically, and let H2 be a code defined by the parity-

check matrix


0011011

0110110

1000111

 or


0011011

0110101

1000111

 or


0001111

0110011

1100101

 (2.1)

respectively. In fact, it is showed that a similar situation occurs for all m ≥ 3,

namely, all the powers of 2 in the range 2n−2m, 2n−2m+1, . . . , 2n−m−1 are attainable as

intersection numbers of distinct Hamming codes of length n = 2m − 1.

Let H1, H2 be parity-check matrices of the Hamming codes H1 and H2 of length

n = 2m − 1. Then C = H1 ∩ H2 is a linear code, whose parity-check matrix is given

by

H =

[
H1

H2

]
We shall henceforth write H = H1‖H2 to denote this structure. It is obvious that

rank(H) ≤ 2m, since H1 and H2 each have m rows, and therefore,

η(H1,H2) = |C| = 2n−rank(H) ≥ 2n−2m

It is also obvious that η(H1,H2) ≤ 2n−m−1 if the codes H1 and H2 are distinct.

Lemma 2.21. [EV98] For each m ≥ 3, there exist two Hamming codes H1, H2 of

length n = 2m − 1 such that η(H1,H2) = 2n−2m.

We could take H1 and H2, for example, two different cyclic Hamming codes H1 =

(mα(x)) and H2 = (mβ(x)), where α and β are primitive elements of GF (2m). See

the comments after the Theorem 2.1 in section 2.2. In [EV98] these Hamming codes

are constructed in a different way.

The following theorem give the solution of the intersection number for Hamming

codes. We will also include the proof to give the construction of these Hamming

codes.
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Theorem 2.22. [EV98] For each m ≥ 3, there exist two Hamming codes H1, H2 of

length n = 2m − 1, such that

η(H1,H2) = 2n−r for r = m+ 1,m+ 2, . . . , 2m

Proof: The proof is by induction on m. The induction basis for m = 3 is established

in (2.1). Now assume that, for each r = m,m + 1, . . . , 2(m − 1), there exist parity-

check matrices H ′1 and H ′2 of two Hamming codes of length 2m−1 − 1, such that

rank(H ′1‖H ′2) = r. Take

H1 =

0 · · · 0 1 1 · · · 1
H ′1 0 H ′1

 H2 =

0 · · · 0 1 1 · · · 1
H ′2 0 H ′2


It is easy to see that H1, H2 are parity-check matrices of isomorphic Hamming codes

of length 2m − 1, and that

rank(H1‖H2) = rank(H ′1‖H ′2) + 1 = r + 1

Thus, all ranks in the range r+ 1 = m+ 1,m+ 2, . . . , 2m− 1 are attainable. Finally,

the rank of 2m is also attainable by Lemma 2.21, which completes the induction.

2.5 Rank and kernel of binary 1-perfect codes

The nonlinear 1-perfect codes are not fully classified. Two structural properties of

nonlinear codes are the rank and kernel. They have been defined in order to study

these codes.

The rank of C, r(C), is simply the dimension of the subspace spanned by C, 〈C〉.
We say that C is of full-rank if r(C) = n or equivalently if 〈C〉 = Fn2

The kernel of C is defined as: KC = {x ∈ Fn2 : C = C + x}, in other words, it

is the subset of Fn2 such that any vector in it leaves C invariant under translation. If

the zero vector is in C, then the kernel of C is actually contained in C, and moreover,
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the kernel is a linear subcode of C. Thus, if C is linear, then the kernel of C is itself.

In general, C can be written as the union of cosets of KC and KC is the largest such

linear code for which this is true [BGH83]. It is also easy to prove that the kernel of

a code is the intersection of all maximal linear subcodes in that code. We will denote

the dimension of the kernel of C by k(C).

Both the rank and kernel of 1-perfect codes have been studied. In this section,

we will give some known results about these two parameters. We can also find a

summary in [Sol00b].

Ranks of binary 1-perfect codes were investigated by Etzion and Vardy [EV94,

EV98]. In [EV94], they proved the following result:

Theorem 2.23. [EV94] For all m ≥ 4 there exists a binary 1-perfect code, C, of

length n = 2m−1 with a rank of dimension r(C) = n−m+s for each s ∈ {0, 1, . . . ,m}.

In 1994, Heden [Hed94] constructed three 1-perfect codes of length 15 which had

kernels of dimension 1, 2 and 3. In 1995, Phelps and LeVan [PL95] obtained 1-perfect

codes with kernels of all possible sizes, by multiple special switching.

Theorem 2.24. [PL95] For all m ≥ 4 there exists a binary 1-perfect code, C, of length

n = 2m−1 having a kernel of dimension j if and only if j ∈ {1, 2, . . . , n−m−2, n−m}.

The rank and kernel are known to be related, [EV98]. The first relation is esta-

blished in [BGH83].

Proposition 2.25. [BGH83] For a 1-perfect code C, C⊥ ⊂ KC and

k(C) + r(C) ≥ n+ 1

This follows easily from two facts: first, the complement of any codeword is always

a codeword, so the all ones word is always in the kernel; second, the dual of C is always

a subcode of the kernel KC .
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The question which we will address in chapter 3 is, for what pairs of numbers

(r, k) does there exist a 1-perfect code C of length n having r(C) = r and k(C) = k.

This question was posed by Etzion and Vardy in [EV98].

In section 2.5.1 and 2.5.2 we describe the construction of the 1-perfect codes given

by Theorem 2.23 and Theorem 2.24 respectively. In section 2.5.3 we will give some

known results about full-rank 1-perfect codes and kernels, since in chapter 3 we will

not be able to construct such that codes with kernels of different dimensions. In

section 2.5.4 we will establish the known results for length n = 15.

2.5.1 Ranks of binary 1-perfect codes

In [EV94], Etzion and Vardy proved the following results about the rank of 1-perfect

codes obtained from different constructions.

Let V (n) be the set of all the 1-perfect codes of length n that may be obtained

using the Vasil’ev construction, see Proposition 2.4.

Lemma 2.26. [EV94] For C2n+1 ∈ V (2n+ 1), rank(C2n+1) = rank(Cn) + n+ 1.

Let M(n) be the set of all the 1-perfect codes resulting from the construction due

to Mollard and given by Proposition 2.5.

Lemma 2.27. [EV94] For F ∈M(n), rank(F ) ≤ n+ rank(C1)− n1.

Let Pk(k(n+ 1)− 1) the set of all the 1-perfect codes obtained by puncturing the

codes given by Proposition 2.8.

Lemma 2.28. [EV94] For C ∈ Pk(k(n+1)−1), rank(C) ≤ k(n+1)+rank(R)−k.

Using the construction given by Proposition 2.9, it is possible to construct 1-

perfect codes of length n and any rank in the range of n − m + 1 to n − 1 in the

following way, [EV94].
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Let H1 and H2 be two isomorphic Hamming codes of length n′ = (n − 1)/2 and

rank n′ −m′, where m′ = m − 1, such that C ′ = H1 ∩ H2 has cardinality 2n
′−m′−1.

ThenH1 = C ′∪(c1+C ′) andH2 = C ′∪(c2+C ′) for some c1 ∈ H1\C ′ and c2 ∈ H2\C ′.
Let V = H1 ∪ (c2 +H1) = H2 ∪ (c1 +H2). It is easy to prove that {A1, A2, A3, A4}
and {B1, B2, B3, B4} form a perfect segmentation of V taken A1 = C ′, A2 = c1 + C ′,

A3 = c2 +C ′, A4 = c1 + c2 +C ′ and B1 = H1,B2 = H2, B3 = c1 +H2, B4 = c2 +H1.

Let (a0 +H1), (a1 +H1), . . . , (an′+H1) and (b0 +H1), (b1 +H1), . . . , (bn′+H1) be two

partitions of Fn
′

2 into cosets of H1, such that a0 = b0 = 0 and a1 = b1 = c2. Define a

perfect segmentation of Fn
′

2 by completing {A1, A2, A3, A4} and {B1, B2, B3, B4} with

Ai+3 = ai +H1 and Bi+3 = bi +H1, for i = 2, 3, . . . , n′.

The rank of a 1-perfect code constructed by applying Proposition 2.9 to this

perfect segmentation, is given by

rank(C) = 2 · rank(H1) + rank(Γ)

where Γ = {(0|0), (c2|0), (0|c2)} ∪ {(ai|bi) : i = 2, 3, . . . , n′}. Obviously, m ≤
rank(Γ) ≤ 2(m − 1) and the vectors a2, a3, . . . , an′ and b2, b3, . . . , bn′ can be always

chosen such as to make Γ have any rank in the above range. Since rank(H1) = n′−m′,
the rank of C can be made to attain any value in the range of n−m+ 1 to n− 1

This construction does not give full-rank 1-perfect codes. However it is shown

that for n = 15, it gives a 1-perfect code of rank 14 which can not be constructed

using neither Vasil’ev construction (Proposition 2.4) nor its generalization by Mollard

(Proposition 2.5) nor any of Phelps constructions (Proposition 2.8). We can see this

from Lemmas 2.26, 2.27 and 2.28.

Using switchings of i-components, Etzion and Vardy [EV94] also constructed full-

rank 1-perfect codes of length n from the Hamming code for all admissible n. In fact,

this construction gives 1-perfect codes of all possible ranks. To describe these codes

we will give the approach developed by Phelps and LeVan in [PL95]. We will also use

this technique to generalize this result for q-ary 1-perfect codes in chapter 4.
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Let Ti be the linear subcode of a Hamming code, generated by the codewords

of weight 3 having a 1 in the ith component. The following result allow us to make

different switches as the described by Proposition 2.13.

Lemma 2.29. [PL95] Let Hm be a binary Hamming code of length n = 2m−1, m ≥ 4,

with {1, 2, . . .m} as a set of its independent points. Then, there exists x1, x2, . . . , xm

such that for i, j ∈ {1, 2, . . . ,m}, Ti + xi is disjoint from Tj + xj for i 6= j.

The following result is not stated this way in [PL95], but it is proved.

Proposition 2.30. [PL95] Let Hm be a binary Hamming code of length n = 2m − 1,

m ≥ 4, with {1, 2, . . . ,m} as a set of its independent points. Let

C ′ =
(
Hm\

s⋃
i=1

(Ti + xi)
)
∪

s⋃
i=1

(Ti + xi + ei)

Then, r(C ′) = n−m+ s, ∀s ∈ {1, . . . ,m}.

So, we have the result given by Theorem 2.23.

2.5.2 Kernels of binary 1-perfect codes

In this section we will describe the results in [PL95], where Phelps and LeVan cons-

truct 1-perfect codes with kernels of all the admissible dimensions.

In order to do that, they showed the following result about the kernel of 1-perfect

codes constructed using the Doubling construction given by Proposition 2.6, as long

as the dimension of the kernel K1 of C1 is less than (n− 1)/2. In chapter 3, Theorem

3.17, we will generalize this result for any K1, not necessarily with dimension less

than (n− 1)/2.

Lemma 2.31. [PL95] Let C = (C1 ⊕C∗2) ∪ni=1 (C1 + ei ⊕ (C2 + eπ(i))
∗) where C1, C2

are 1-perfect codes of length n, then the kernel of C is K1⊕K∗2 , where K1, K∗2 are the

kernels of C1, C∗2 respectively, as long as the dimension of K1 is less than (n− 1)/2.
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As a consequence of this lemma we have that:

Corollary 2.32. [PL95] If there exists C1, C2 1-perfect codes of length n with kernels

K1, K2, respectively, where dim(K1) < (n − 1)/2, then there exists a 1-perfect code

C of length 2n+ 1 having a kernel K = K1 ⊕K∗2 , where dim(K) ∈ {2, 3, . . . , n}.

They also proved the following results about the kernel of 1-perfect codes cons-

tructed with the Switching construction given by Proposition 2.13. Before this, we

will write the results about the size of the intersection of the subspaces we have

defined as Ti. In chapter 4 we will show these results for q-ary Hamming codes.

Let Hm be a Hamming code of length n = 2m − 1. Let Ti be the linear subcode

of a Hamming code, Hm, generated by the codewords of weight 3 having a 1 in the

ith component.

Lemma 2.33. [PL95] The dimension of Ti is (n− 1)/2.

Lemma 2.34. [PL95] For r ≥ 2 independent points in the projective space associated

with the words of weight three in the Hamming code of length n = 2m−1, the subspace

T1 ∩ T2 ∩ · · · ∩ Tr has dimension 2m−r.

We assume that {1, 2, . . . ,m} are independent points. In order to make different

switches, by Lemma 2.29, we can choose x1, x2, . . . , xm such that Ti + xi and Tj + xj

are always disjoint for all j 6= i and m ≥ 4.

Theorem 2.35. [PL95] Let Hm be a Hamming code of length n = 2m − 1, m ≥ 4,

and let

C ′ =
(
Hm\

m⋃
i=1

(Ti + xi)
)
∪

m⋃
i=1

(Ti + xi + ei)

Then, KC′ =
⋂m
i=1 Ti and dim(KC′) = 1.

In fact, by the proof of this Theorem, we also have the following more general

result.
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Theorem 2.36. [PL95] Let Hm be a Hamming code of length n = 2m − 1, m ≥ 4,

and let

C ′ =
(
Hm\

s⋃
i=1

(Ti + xi)
)
∪

s⋃
i=1

(Ti + xi + ei)

Then, KC′ =
⋂s
i=1 Ti ∀s ∈ {1, 2, . . . ,m}.

Independently, Heden [Hed94] found a 1-perfect code of length 15 and kernel of

dimension 1.

It is also possible to make multiple switches from the same coset at one time,

taking a subspace K such that it contains Ti.

Lemma 2.37. [PL95] Let Hm be a Hamming code, and let K be a subspace of Hm

such that Ti ⊆ K ⊆ Hm, and dim(K) ≤ dim(Hm)− 2. Then,

C ′ = (Hm\(K + y)) ∪ (K + y + ei)

is a 1-perfect code with kernel K.

Corollary 2.38. [PL95] There exists C ′, a 1-perfect code of length n = 2m−1, having

kernel K where the dim(K) ∈ {(n− 1)/2, . . . , n−m− 2}.

Using all of these results, Phelps and LeVan proved Theorem 2.24. By Theorem

2.35, we have 1-perfect codes of length n = 2m − 1, m ≥ 4, containing a kernel

of dimension one. From Corollary 2.38, we can find codes containing kernels of all

dimensions from (n − 1)/2 up through n −m − 2, and also n −m. From Corollary

2.32, we have a recursive construction of 1-perfect codes having kernels of dimension

2 up through (n− 1)/2. It is only necessary to see this result for the case n = 15.

For a kernel of dimension 1 we can use the Theorem 2.35, for dimensions 7, 8, 9

and 11, Corollary 2.38. Theorem 2.36 give 1-perfect codes having kernels T1, T1 ∩ T2

and T1 ∩ T2 ∩ T3 if we only make one, two or three switches respectively, so we also

have codes with kernels of dimension 4 and 2. Finally, Heden [Hed94] and [BGH83]
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have constructed 1-perfect codes of length 15 having kernels of dimensions 3, 5 and

6.

So, we have the result given by Theorem 2.24.

2.5.3 Full-rank codes and kernels

In order to prove that for all n ≥ 10, there exists a full-rank tiling of Fn2 , Etzion

and Vardy [EV98] obtained certain bounds relating the dimension of the kernel of

full-rank 1-perfect codes. In fact, they proved which is the largest possible dimension

of the kernel of a full-rank 1-perfect code of length n = 2m − 1 for all m ≥ 10. We

will also see in this section that the existence of full-rank tilings of Fn2 for some values

of n is closely related to the existence of full-rank 1-perfect codes with kernels of high

dimension.

A tiling of Fn2 is a pair (V,A) of subsets of F n
2 such that every x ∈ Fn2 has a unique

representation of the form x = v + a, with v ∈ V and a ∈ A. Thus (V,A) is a tiling

if and only if

V + A = Fn2 and (V + V ) ∩ (A+ A) = {0}.

Without loss of generality, we can always assume that 0 ∈ V ∩ A. A tiling (V,A) of

F
n
2 is trivial if one of the sets V , A is {0} and the other is Fn2 . It is of full-rank if

〈V 〉 = 〈A〉 or, equivalently, rank(V ) = rank(A) = n.

First of all we show the connections between tilings and 1-perfect codes.

Theorem 2.39. [CLVZ96] Let (V,A) be a tiling of Fn2 and let ν = |V | − 1. Further,

let H(V ) be an n×ν matrix having the nonzero elements of V as its columns. Define

C = {x ∈ Fν2 : H(V )xt ∈ A}

Then, C is a 1-perfect code of length ν.
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We will say that C is the 1-perfect code associated with the tiling (V,A). The

following proposition gives that if (V,A) is a full-rank tiling, then the associated

1-perfect code C is also a full rank.

Proposition 2.40. [CLVZ96] If C is the 1-perfect code of length ν associated with a

tiling (V,A), then

rank(C) = ν − rank(V ) + rank(A〈V 〉),

where A〈V 〉 = A ∩ 〈V 〉. In particular, if 〈V 〉 = Fn2 , then

rank(C) = ν − n+ rank(A)

Let C be the 1-perfect code associated with the tiling (V,A). Then it is easy to

see that the kernel of C is KC = {x ∈ C : H(V )xt ∈ KA}. Along with Proposition

2.40, this implies the following.

Proposition 2.41. [EV98] If C is the 1-perfect code of length ν associated with a

tiling (V,A), then

dim(KC) = ν − rank(V ) + dim(KA〈V 〉),

where A〈V 〉 = A ∩ 〈V 〉. In particular, if 〈V 〉 = Fn2 , then

dim(KC) = ν − n+ dim(KA)

Now we will see two different constructions of tilings and how they are used to

construct full-rank tilings.

Construction A Let (V,A) be a tiling of Fn2 and let a∗ be a nonzero element of A.

Consider the sets

V ′ = {(v|0) : v ∈ V } ∪ {(v|1) : v ∈ V }

A′ = {(a|0) : a ∈ A∗} ∪ {(a∗|1)}

where A∗ = A\{a∗}. Then (V ′, A′) is a tiling of Fn+1
2 .
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Proposition 2.42. [EV98] If (V,A) is a full-rank tiling of Fn2 and rank(A∗) = n,

then the tiling (V ′, A′) obtained by Construction A is a full-rank tiling of Fn+1
2 .

Starting with a full-rank tiling (V,A) of F14
2 with |V | = 210 and |A| = 24 cons-

tructed in [CLVZ96], and iteratively applying Construction A, establishes the follow-

ing.

Theorem 2.43. [EV98] For all n ≥ 14, there exists a full-rank tiling of Fn2 .

It was already shown in [EV94, CLVZ96] that full-rank tilings of Fn2 exist for

all n ≥ 112. Since full-rank tilings of Fn2 do not exist for n ≤ 7, as established in

[CLVZ96], these results leave only the six values n = 8, 9, . . . , 13 unresolved.

Construction B Let A0 be a subspace of Fn2 of dimension k. For any V ⊂ Fn2 , we

define V/A0 as follows. Fix a basis a1, a2, . . . , ak for A0 and complete this to a basis

a1, a2, . . . , ak, b1, b2, . . . , bn−k for Fn2 . Then each vector v =
∑k

i=1 αiai+
∑n−k

i=1 βibi in V

is mapped onto the vector v′ =
∑n−k

i=1 βibi in V/A0. Thus V/A0 is just the projection

of V onto Fn2/A0. Note that Fn2/A0 may be regarded as F n−k
2 under an appropriate

change of basis, namely, under the linear transformation that takes b1, b2, . . . , bn−k

into unit vectors. Thus we will identify Fn2/A0 with Fn−k2 and think of V/A0 as a

subset of Fn−k2 . Let (V,A) be a tiling of Fn2 . Let A0 be a k-dimensional subspace of

KA. Then, (V/A0, A/A0) is a tiling of Fn−k2 .

Proposition 2.44. [CLVZ96] If (V,A) is a full-rank tiling of Fn2 , then the tiling

obtained by Construction B, (V/A0, A/A0), is a full-rank tiling of Fn−k2 .

Last proposition implies the following.

Proposition 2.45. If there exists a full-rank tiling (V,A) of Fn2 with dim(KA) = r,

then there exist full-rank tilings of Fn−k2 for all k = 1, 2, . . . , r.

Starting again with the full-rank tiling (V,A) of F14
2 with |V | = 210 and |A| = 24

exhibited in [CLVZ96]. Since KV = KA = {0}, by Theorem 2.39, Proposition 2.40
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and 2.41, the associated 1-perfect code C is a full-rank code of length 210− 1 = 1023

and dim(KC) = 1023 − rank(V ) + dim(KA) = 1009. Let Λn denote the Hamming

sphere of radius 1 in Fn2 . Then (Λ1023, C) is a full-rank tiling of F1023
2 . Applying to

this tiling Construction B and Proposition 2.45, we obtain full-rank tilings of Fn2 for

all n = 14, 15, . . . , 1022. So, we also have Theorem 2.43 using Construction B.

Using Construction B and starting with the full-rank tiling (Λ1023, C) of F1023
2 , the

associated full-rank 1-perfect codes of length n = 2m − 1 have kernels of dimension

≥ n−m−10 for m = 4, 5, . . . , 1022. The 1-perfect code associated with the full-rank

tiling of F14
2 has kernel of dimension n −m − 4 for m = 10. The following theorem

show that this is the upper bound of the dimension of the kernel for full-rank 1-perfect

codes.

Theorem 2.46. [EV98] If C is a full-rank 1-perfect code of length n = 2m − 1, then

dim(KC) ≤ n−m− 4

Furthermore, this bound is tight for m = 10 and m = 11.

More generally, Etzion and Vardy [EV98] give a complete answer to the question

of which is the largest possible dimension α(m) of the kernel of a full-rank 1-perfect

code of length n = 2m−1 for all m ≥ 10. We also give the proof of this result because

we will use the same idea to prove the upper bound on the dimension of the kernel

for a 1-perfect code with any rank.

Theorem 2.47. [EV98] Let δ be the unique integer such that 2δ−1 − (δ − 1) ≤ m <

2δ − δ. Then

α(m) = n−m− δ

for all m ≥ 10.

Proof: We first show that α(m) ≤ n −m − δ = n − (m + δ), where n = 2m − 1.

Assume to the contrary that there exists a full-rank perfect code C of length n such
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that dim(KC) = n −m − δ + 1. Since C is the union of |C|/|KC | cosets of KC , the

total number of linearly independent vectors in C is at most

dim(KC) + (
|C|
|KC |

− 1) ≥ n.

Substituting dim(KC) = n−m−δ+1 and |C| = 2n−m, we obtain m ≤ 2δ−1−δ, which

contradicts the definition of δ. By Theorem 2.46, the theorem is true for m = 10 and

m = 11.

Next, we show how to construct a full-rank 1-perfect code C12 of length n = 212−1,

such that dim(KC) = n − 17 = n − m − δ, for m = 12. Start with the full-rank

tiling (V,A) = (Λ15, C) of F15
2 , where C is a full-rank 1-perfect code of length 15.

Then, apply Construction A to obtain a full-rank tiling (V ′, A′) of F16
2 with |V ′| = 25

and |A′| = 211. Now, apply Construction A again, with the roles of V ′ and A′

interchanged. This produces a full-rank tiling (V12, A12) of F17
2 with |V12| = 212

and |A12| = 25. The full-rank 1-perfect code C12 associated with this tiling has

length n = |V12| − 1 = 212 − 1 and by Proposition 2.41 and Theorem 2.46 we have

dim(KC12) = n− rank(V12) = n− 17.

Now, iteratively applying Construction A to (V12, A12), we obtain full-rank tilings

(Vm, Am) of Fm+5
2 with associated full-rank 1-perfect codes of length n = 2m − 1 and

kernel of dimension n − (m + 5). Since in all of these tilings |Am| = |A12| = 25,

we can keep iterating Construction A in this way as long as m + 5 ≤ 25 − 1 or,

equivalently, m < 25 − 5 = 27. This proves the theorem for all m = 12, 13, . . . , 26.

For m = 27, 28, . . . , 57, we start with the full-rank tiling (Λ31, C), where C is a full-

rank 1-perfect code of length 31, and proceed as before. Continuing in this manner

establishes the theorem for all m ≥ 10.

Note that Theorem 2.46 is not a special case of Theorem 2.47, since it holds also

for m < 10. For example, for m = 4 it follows from Theorem 2.46 that the possible

dimensions of the kernel of a full-rank 1-perfect code of length 15 are 1, 2 . . . , 7. The

problem of determining which of these kernel dimensions are attainable is closely
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related to the problem of existence of full-rank tilings of Fn2 for n = 8, 9, . . . , 13.

Indeed, a full-rank 1-perfect code of length 15 and kernel of dimension k implies

by Proposition 2.45 the existence of a full-rank tilings of Fn2 for all n ≥ 15 − k.

Furthermore, we have the following result.

Proposition 2.48. [EV98] A full-rank 1-perfect code of length 15 with kernel of

dimension 7 exists if and only if a full-rank tiling of F8
2 exists.

It is still open if there exist a full-rank 1-perfect code of length 15 with kernel

of dimension 7. However, Phelps found full-rank 1-perfect codes of length 15 with

kernels of dimensions 2,3,4 and 5 (see [EV98]). This implies full-rank tilings of Fn2

exist for n = 10, 11, 12 and 13. Then, with the Proposition 2.43 we have that for all

n ≥ 10, there exists a full-rank tiling of Fn2 , and the only values unresolved are n = 8

and 9.

2.5.4 Rank and kernel for n = 15

In this section, we will show for which pairs (r, k) there exists a 1-perfect code of

length 15 constructed using the Doubling construction and having rank r(C) = r

and dimension of the kernel k(C) = k. Using the Doubling construction described by

Proposition 2.7 we can get extended 1-perfect codes of length 2n+ 2 from two given

extended 1-perfect partitions of En+1
2 . Puncturing these codes we obtain 1-perfect

codes of length 2n+ 1.

In order to enumerate all nonequivalent extended 1-perfect codes of length 16 that

can be constructed by the Doubling construction, Phelps [Phe00] found all nonequi-

valent 1-perfect partitions of F7
2 into 1-perfect codes of length 7 in the following way.

There are 30 different, but isomorphic, Hamming codes of length 7 corresponding

to the 30 different Steiner triple system of order 7. Each linear code has 8 cosets. Any

1-perfect partition will either have at least 2 cosets of these linear codes or will have

at most one coset of any linear code. In the first case, we can choose one linear code
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and its coset and enumerate all solutions. In this way, Phelps found 192 different

partitions but only 10 nonequivalent partitions. In the second case he found only

one nonequivalent solution. So, there are 11 nonequivalent 1-perfect partitions of F7
2,

[Phe00]. Of these 11 partitions, six had previously been also found by Phelps [Phe83].

Doubling construction uses extended 1-perfect partitions. As with 1-perfect codes

and extended 1-perfect codes, if two partitions are equivalent then the corresponding

extended partitions will also be equivalent; however, the converse is false. Puncturing

extended partitions in different coordinates can result nonequivalent partitions. In

fact, although there are 11 nonequivalent 1-perfect partitions of F7
2, there are only 10

nonequivalent extended 1-perfect partitions of length 8.

For each pair of extended 1-perfect partitions of length 8 it was constructed dif-

ferent nonequivalent 1-perfect codes of length 15. Finally, computing the rank and

the kernel of these 1-perfect codes, Phelps [Phe00] obtain the following table which

shows the number of nonequivalent codes by rank and kernel.

r(C)/ k(C) 11 9 8 7 6 5 4 3 2 1

11 1

12 2 2 3

13 7 11 38 34 20

14 1 4 48 210 374 172 36

15

In chapter 3, we will see that it does not exist any 1-perfect code, C, of length

15 with rank r(C) ≤ 14 having a kernel of dimension different than the one of the 1-

perfect codes obtained in this way. In that chapter, we will assure this after showing

for each rank which are the lower and the upper bounds for the dimension of the

kernel.

For rank r(C) = 15, although it is known by Theorem 2.46 and 2.35 that the

admissible dimensions of the kernel are 1, 2, 3, 4, 5, 6 and 7, it has been only proved

that there exist full-rank binary 1-perfect codes of length 15 with kernels of dimensions
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1, 2, 3, 4 and 5 (see [PL95] and [EV98]). We also constructed these codes ourselves

independently.

Summarizing, for n = 15, the following table shows for which pairs (r(C), k(C))

there exists a 1-perfect code with these parameters. The question mark sign means

it is not known if there exists a 1-perfect code with that rank and dimension of the

kernel.

r(C) k(C)

11 11

12 9 8 7

13 8 7 6 5 4

14 8 7 6 5 4 3 2

15 ? ? 5 4 3 2 1



Chapter 3

Rank and Kernel of binary

1-perfect codes

In this chapter, we analyze the rank and the dimension of the kernel for binary 1-

perfect codes of length n = 2m − 1. First of all, we will prove some results on the

structure of 1-perfect codes. Next, we will establish the lower and upper bounds on

the dimension of the kernel of 1-perfect codes once the rank is fixed. We will show

these bounds are tight except for one case. For 1-perfect codes with maximum rank

r(C) = n, called full-rank 1-perfect codes, we do not prove the upper bound is tight,

∀m ≥ 4. Despite this, it is already known this upper bound for full-rank 1-perfect

codes is tight, ∀m ≥ 10, by Etzion and Vardy [EV98]. So, the only cases that will

remain unsolved will be whether there exist full-rank 1-perfect codes with that upper

bound for 4 ≤ m < 10. These results given in this chapter are new and they will be

also shown in [PV01a].

We will also see that using the Doubling construction and some new results, we

can construct binary 1-perfect codes C of length n = 2m− 1 with any rank r(C) < n

and different dimensions of the kernel, k(C), between the upper and lower bounds.

We will obtain a large number of cases but we will not completely settle the question,

partly because we need to construct full-rank 1-perfect codes with different k(C).

41
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We only know how to construct full-rank 1-perfect codes of length n = 2m − 1 with

the lower dimension of the kernel, k(C) = 1, ∀m ≥ 4 [PL95] and with the upper

dimension of the kernel, ∀m ≥ 10 [EV98].

3.1 Properties on the structure of 1-perfect codes

As we can see by Proposition 2.17, the codewords of weight 3 in a 1-perfect code of

length n form a STS(n), (V,B), if we identify the set of codewords of weight 3 with

the set of triples B, and V is the set of coordinates. In this way, we can say that the

linear code of a Steiner triple system (V,B) is just the span of B. It is well-known

that the dual code of the STS(n) is an equidistant code with all nonzero codewords

having weight (n + 1)/2, [DHV78] (see also [Her85, EV94]). In fact, much more has

been established about the structure of the STS(n) and that of its dual code (see

[DHV78, Tei80, Her85, Bon84]).

For any binary code C of length n and minimum distance 3, then we can define a

neighborhood triple system, NTS(x), for each codeword x ∈ C

NTS(x) = {x+ y : y ∈ C, d(x, y) = 3}

It is easy to see that if the code C has minimum distance 3 then the NTS(x) is

a partial triple system for each x ∈ C. It is well known that if C is a 1-perfect code

of length n then the neighborhood triple systems are in fact STS(n). Moreover, this

property characterizes 1-perfect codes.

Theorem 3.1. A code C of length n and minimum distance 3 is a 1-perfect code if

and only if every neighborhood triple system is a Steiner triple system.

Proof: Let C be a code of length n and minimum distance 3 where every neighbor-

hood triple system is a Steiner triple system. C is 1-perfect if every word is either a

code word or distance one from a unique codeword. Let y ∈ F n, y 6∈ C. Let x ∈ C be

the closest codeword to y. Assume d(x, y) ≥ 2 and that these words disagree at least
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in coordinates i, j. Because the NTS(x) is an STS(n), there exits x′ ∈ NTS(x) such

that x′ disagrees with x in exactly 3 coordinates i, j, k (i.e. the support of x + x′).

But then x′ agrees with y in coordinates i, j and could disagree with y in coordinate

k. Hence x′ is closer to y than x, contradicting the choice of x. Thus we conclude

that d(x, y) = 1 and C is perfect.

Clearly, any word in the dual of a 1-perfect code C must be in the dual of ev-

ery neighborhood triple system NTS(x), x ∈ C. This conversely implies that each

NTS(x) must have a common structure induced by C⊥. First, we review the struc-

ture of a Steiner triple system induced by its dual code when n = 2m − 1. Define

a sub-STS(q) of a Steiner triple system, (V,B), as a pair (Sq, Bq), where Sq ⊂ V ,

Bq ⊂ B where Bq restricted to the subset of coordinates Sq is a STS(q).

Lemma 3.2. [DHV78, Tei80] Given a Steiner triple system, B, of order n = 2m− 1,

and its dual code B⊥, then for every subspace D of dimension m − s in B⊥ there is

a corresponding sub-STS(ns) in B, ns = 2s − 1, on the set of coordinates

SD = {i : ci = 0 ∀(c1, c2, . . . , cn) ∈ D}

Note, that for s = 0, 1 we have the trivial triple systems on 0 and 1 points

respectively with no triples and for s = m we get the entire STS(nm) which is not a

proper subsystem.

We also have:

Lemma 3.3. [DHV78, Tei80] The dual of a 1-perfect code C of length nm = 2m − 1

is a subcode of the dual of a Hamming code of length nm.

We need to introduce some notation in order to discuss the subcodes of a 1-perfect

code C. Given a subset of coordinates S ⊂ V = {1, 2, . . . , nm}, and a codeword y ∈ C
define

CS(y) = {xS : x ∈ C, xi = yi ∀i 6∈ S}

where xS is the restriction of the codeword x to the subset of coordinates S.
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Theorem 3.4. Given a 1-perfect code C of length nm = 2m−1 and its dual code C⊥,

then for every subspace D ⊆ C⊥ of dimension m − s, s > 0, and for every y ∈ C,

the subcode CSD(y) is a 1-perfect code of length ns = 2s− 1 where SD is as above, the

set of coordinates which are zero in every codeword of D. Moreover, when s > 1, the

characteristic vector χ(SD) is in the kernel of C.

Proof: Given the subspace D ⊆ C⊥ of dimension m − s, then |SD| = ns = 2s − 1.

For any y ∈ C, consider the subcode CSD(y) and any codeword x′ ∈ CSD(y). Since

for every x ∈ C, the NTS(x) has a sub− STS(ns) on the set SD, then the NTS(x′)

is an STS(ns) where x′ is the restriction of x to SD. By Theorem 3.1, this means

that CSD(y) is a 1-perfect code.

We know that the all–ones vector (of length ns) is in the kernel of every 1-perfect

code CSD(y) when s > 1. But, this implies that χ(SD), the codeword that has a 1 in

the coordinates SD (and zero elsewhere), is in the kernel of C.

Corollary 3.5. If C is a 1-perfect code and C⊥ is the dual of C, then C⊥ ⊂ C.

3.2 Lower bounds

The lower bound on the dimension of the kernel of a 1-perfect code in terms of the

rank of the code is given by the following result, which comes from Theorem 3.4.

Theorem 3.6. Let C be a 1-perfect code of length nm = 2m−1, rank r(C) = n−m+s

and a kernel of dimension k(C), then

k(C) ≥ 2m−s if s > 1

k(C) ≥ 2m−1 − 1 if s = 1

Proof: Let C be a 1-perfect code of length nm having rank r(C) = n − m + s,

s ≥ 1. Then C⊥ has dimension m − s and has 2m−s − 1 subspaces of dimension

m− s− 1. Let S be the set of coordinates corresponding to the subspace C⊥ and let

Sj, j = 1, 2, . . . , 2m−s − 1 correspond to the subspaces of dimension m − s − 1. By
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the definition of the subsets S and Sj, S ⊂ Sj. Moreover, the 2m−s − 1 codewords

χ(Sj) are independent and in the kernel for s ≥ 1. If s > 1 then the codeword χ(S)

is in the kernel and is also independent giving 2m−s− 1 + 1 independent words in the

kernel of C.

The bound established in Theorem 3.6 is the exact lower bound. The following

result is not stated this way in Phelps and LeVan [PL95], but it is proved. Actually,

we have this result from Theorem 2.30 and 2.36, where it is shown the construction

of these codes using the switching technique.

Theorem 3.7. [PL95] For all m ≥ 4, there exists a 1-perfect code of length n = 2m−1,

having rank n−m+s and kernel of dimension k = 2m−s when s > 1 and k = 2m−1−1

when s = 1.

3.3 Upper bounds

The upper bound on the dimension of the kernel of a 1-perfect code in terms of the

rank of the code is a generalization of an argument of Etzion and Vardy [EV98]. We

included this argument with Theorem 2.47.

Theorem 3.8. A 1-perfect code of length n = 2m − 1 with rank n − m + s and a

kernel of dimension n−m− δ fulfills 2δ − δ − 1 ≥ s.

Proof: A 1-perfect code of length n = 2m − 1 which has rank n−m+ s must have

that many independent vectors. The kernel contains n−m− δ independent vectors.

Since each coset of the kernel can have at most one additional independent vector,

we have that the maximum number of independent vectors will be,

n−m− δ +
2n−m

2n−m−δ
− 1 ≥ n−m+ s

which simplifies to 2δ − δ − 1 ≥ s.
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Etzion and Vardy [EV98] give a construction of full rank 1-perfect codes (i.e.

s = m) that achieve this bound when m ≥ 10. In section 2.5.3 we included this

construction proving Theorem 2.47.

The results from [Phe00], that we also included in section 2.5.4, show that this

bound is tight for m = 4 and s < m. Actually, in that section we saw the rank and

the dimension of the kernel of all the 1-perfect codes of m = 4 (length 15) in [Phe00].

It is showed in [Phe00] it is possible to construct a 1-perfect code of m = 4 for any

rank n−m+ s with 0 ≤ s < m and for any possible dimension of the kernel between

the lower and upper bound. The only open question for length 15 is if there exist

full-rank 1-perfect codes with kernel of dimension 6 and 7. Summarizing, for m = 4,

the following table shows for which pairs (r(C), k(C)) there exists a 1-perfect code

with these parameters.

r(C) k(C)

11 11

12 9 8 7

13 8 7 6 5 4

14 8 7 6 5 4 3 2

15 ? ? 5 4 3 2 1

Now, in this section, we will generalize the previous result to any length. We will

see this bound is tight for m > 4 and 0 ≤ s < m. The extreme case s = m, that is

the construction of full-rank 1-perfect codes with maximum dimension of the kernel,

will still remain open for 4 ≤ m < 10.

In order to establish this upper bound we will need some results on Hamming

codes. Let H1 and H2 be two different isomorphic copies of the Hamming code of

length n = 2m−1 (and dimension 2m−m−1). Let Ti denote the subspace generated

by the words of weight 3 that have a one in the ith coordinate. The coordinates of the
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Hamming code are in one-to-one correspondence with the columns of its parity check

matrix which in turn correspond to points in the binary projective space PG(m−1, 2).

So, we can refer to coordinates as being independent if the corresponding columns

(points) are independent.

As we showed in section 2.5.2, Lemma 2.33 and 2.34 [PL95], we have for any i the

dimension of Ti is 2m−1− 1 and for any r ≥ 2 independent coordinates in a Hamming

code of length 2m− 1, the dimension of the intersection of corresponding r subspaces

Ti is 2m−r. This result is crucial to establishing the next result:

Theorem 3.9. For any m − δ ≥ 1 independent coordinates in a Hamming code of

length 2m − 1, the dimension of the subspace spanned by the union of corresponding

m− δ subspaces Ti is 2m −m− 1− (2δ − δ − 1).

Proof: Let K be the subspace spanned by the union of these m− δ subspaces Ti. If

m− δ = 1, then the result is clear. If m− δ ≥ 2, using inclusion -exclusion we have

dimK = (m− δ)(2m−1 − 1)−
m−δ∑
i=2

(−1)i
(
m− δ
i

)
2m−i

= −(m− δ)− 2δ
m−δ∑
i=1

(−1)i
(
m− δ
i

)
2m−δ−i

= −(m− δ)− 2δ(1− 2m−δ)

= 2m − 1−m− (2δ − δ − 1)

This leads to the next important Corollary.

Corollary 3.10. Given Hamming codes H1, H2 of length 2m − 1 if

K =<
⋃
i∈I

Ti >= H1 ∩H2

where I is a set of m − δ independent coordinates, then the dimension of the inter-

section of the dual codes is

dim(H⊥1 ∩H⊥2 ) = m− (2δ − δ − 1)
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Proof: We have dimH⊥1 = dimH⊥2 = m, and

dimK⊥ = dim(H⊥1 ∪H⊥2 ) = m+ (2δ − δ − 1).

Thus

dim(H⊥1 ∩H⊥2 ) = m+m− dim(H⊥1 ∪H⊥2 )

= m− (2δ − δ − 1)

Observe that if {i, j, k} is the support for a word of weight 3 in a Hamming code

then Tk ⊆ Ti ∪ Tj. Thus if S = {k | Tk ⊆<
⋃
i∈I Ti >} then |S| = 2|I| − 1 = 2m−δ − 1

and the set of coordinates S correspond to a sub Hamming code of this length.

Lemma 3.11. Let K =<
⋃
i∈I Ti >, where I is a set of m−δ independent coordinates

in a Hamming code of length 2m − 1. Then, the following vectors are basis for the

dual space K⊥ 

0 . . . 0 1 . . . 1 0 . . . 0 · · · 0 . . . 0

0 . . . 0 0 . . . 0 1 . . . 1 · · · 0 . . . 0
...

...
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . 0 · · · 1 . . . 1

A A∗1 A∗2 · · · A∗
2δ−1


where A is a check matrix of a Hamming code of length 2m−δ − 1 and A∗i ∀i ∈
{1, . . . , 2δ − 1} is any matrix A∗ = (0 A) or A∗ + Bj, where Bj is a matrix with the

all-ones vector in the jth row and zeros elsewhere.

Proof: We can assume that the first 2m−δ − 1 coordinates are the points of the

smallest sub-STS containing them−δ independent points andA is the check matrix of

the sub Hamming code in these coordinates. We can also order the other coordinates

such that each 2m−δ consecutive coordinates plus the first 2m−δ−1 form a sub-STS of

order 2m−δ+1−1 with check matrix for the sub Hamming code

 0 1 1

A 0 A

. There

are 2δ − 1 of these subsystems.
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By Theorem 3.9, we know that dimK⊥ = m− δ+ 2δ − 1. We have m− δ+ 2δ − 1

linearly independent vectors, thus we only need to see that these vectors are in K⊥.

We have to prove that any vector χ({i, j, k}) ∈ K such that i ∈ I multiplied by any

row is zero. Notice that the coordinates j and k either are both in the first 2m−δ − 1

coordinates or are in the same subset of 2m−δ coordinates. Then, it is clear that the

first 2δ − 1 rows are in K⊥ and if the last m − δ rows are (A A∗ . . . A∗), they are

also in K⊥. If we change any A∗ with A∗ + Bj for any j ∈ {1, . . . ,m − δ}, then the

vectors are still linearly independents and are in K⊥.

Theorem 3.12. [EV98] For each m ≥ 3 and s ∈ {1, . . . ,m}, there exist two Ham-

ming codes H1, H2 of length n = 2m − 1 such that

dim(H⊥1 ∪H⊥2 ) = m+ s

In fact, in [EV98] this result is stated as Theorem 2.22. We included the proof of

this result to show how to construct these two Hamming codes.

We will use the two previous results to prove the next Lemma.

Lemma 3.13. For each m ≥ 4 and s ∈ {1, . . . ,m}, there exist two Hamming codes

H1, H2 of length n = 2m − 1 such that

H⊥1 ∪H⊥2 ⊆<
⋃
i∈I

Ti >
⊥ and dim(H⊥1 ∪H⊥2 ) = m+ s

where I is a set of m− δ independent coordinates, if 2δ − δ − 1 ≥ s and δ < m.

Proof: Let A be a check matrix of a Hamming code of length 2m−δ − 1, and

A∗ = (0 A). Let Bj be a matrix with the all-ones vector in the jth row and zeros

elsewhere.

If 2δ − δ − 1 ≥ s, then δ ≥ 2, ∀s ∈ {1, . . . ,m}.
If δ = 2, then s = 1. We can construct the Hamming codes H1, H2 defined by the

following check matrices 0 b1 . . . b1 b2 . . . b2 b3 . . . b3

A A∗ A∗ A∗


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 0 b1 . . . b1 b2 . . . b2 b3 . . . b3

A A∗ A∗ A∗ +Bj


for any j ∈ {1, . . . ,m − 2}, where B = (b1 b2 b3) =

 011

101

. In this case, by

Lemma 3.11, we know that H⊥1 ∪ H⊥2 ⊆<
⋃
i∈I Ti >

⊥ and it is easy to see that

dim(H⊥1 ∪H⊥2 ) = 2 +m− 2 + 1 = m+ 1.

If δ ≥ 3 and s ≤ δ, then by Theorem 3.12 there exist two Hamming codesH1, H2 of

length 2δ−1 such that dim(H
⊥
1 ∪H

⊥
2 ) = δ+s ∀s ∈ {1, . . . δ}. Let C = (c1 c2 . . . c2δ−1)

and D = (d1 d2 . . . d2δ−1) be the check matrices of H1 and H2. The Hamming codes

H1, H2 defined by the following check matrices 0 c1 . . . c1 c2 . . . c2 . . . c2δ−1 . . . c2δ−1

A A∗ A∗ . . . A∗


 0 d1 . . . d1 d2 . . . d2 . . . d2δ−1 . . . d2δ−1

A A∗ A∗ . . . A∗


have dim(H⊥1 ∪H⊥2 ) = δ + s+m− δ = m+ s, ∀s ∈ {1, . . . , δ}.

If δ ≥ 3 and s > δ, we can take the following check matrices for the Hamming

codes H1 and H2  0 c1 . . . c1 c2 . . . c2 . . . c2δ−1 . . . c2δ−1

A A∗ A∗ . . . A∗


 0 d1 . . . d1 d2 . . . d2 . . . dt . . . dt dt+1 . . . dt+1 . . . d2δ−1 . . . d2δ−1

A A∗ +B1 A∗ +B2 . . . A∗ +Bt A∗ . . . A∗


where C and D are the check matrices of Hamming codes H1 and H2 such that

dim(H
⊥
1 ∪ H

⊥
2 ) = 2δ. We can assume that the 2δ coordinates that generate the

subspace H
⊥
1 ∪H

⊥
2 are the last ones. Then, dim(H⊥1 ∪H⊥2 ) = 2δ+m−δ+t = m+δ+t

∀t ∈ {1, . . . ,m−δ} as long as 2δ−1 ≥ 2δ+t which is true because s = δ+t ≤ 2δ−δ−1.
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Theorem 3.14. Given two Hamming codes H1 and H2 of length 2m − 1 and s ∈
{1, . . . ,m} such that

H⊥1 ∪H⊥2 ⊆<
⋃
i∈I

Ti >
⊥ and dim(H⊥1 ∪H⊥2 ) = m+ s

there exists a 1-perfect code C of length n′ = 2m
′ − 1, where m′ = m + 1, which has

rank n′−m′+s and a kernel of dimension n′−m′−δ where δ is the minimum integer

such that 2δ − δ − 1 ≥ s.

Notice that if m ≥ 4, ∀s ∈ {1, . . . ,m} there exists at least one δ such that

2δ − δ − 1 ≥ s and δ < m. So, Lemma 3.13 and Theorem 3.14 lead to the upper

bound is tight ∀m ≥ 5 and s < m. In order to prove the previous theorem we need

to establish some results on the rank and the kernel of 1-perfect codes constructed

with the Doubling construction. In next section, we will develop these results and we

will also give the proof of this theorem.

3.4 Doubling construction

In this section, we establish results on the rank and the kernel of 1-perfect codes

constructed with the Doubling Construction due to Phelps and Solov’eva and given

by Proposition 2.6. We will use these results to prove Theorem 3.14 at the end of

this section and also to construct 1-perfect codes of different ranks and dimensions of

the kernel in section 3.5.

Let C1 be a 1-perfect code of length n and C∗2 be an extended 1-perfect code of

length n+ 1. By Proposition 2.6, the code

C = (C1 ⊕ C∗2)
n⋃
i=1

(C1 + ei ⊕ (C2 + eπ(i))
∗)

where π is a permutation on the set {1, 2, . . . , n} is a 1-perfect code of length 2n+ 1.

Theorem 3.15. The rank of an 1-perfect code C of length 2n + 1 constructed with

the Doubling construction taking the identity permutation is 2n− r(C⊥1 ∩ C⊥2 ).
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Proof: We will see that r(C⊥) = r(C⊥1 ∩ C⊥2 ) + 1. Let u = (x, y∗), where x =

(x1, . . . , xn), y∗ = (y, yn+1) and y = (y1, . . . , yn). By definition, if u ∈ C⊥, then

(x, y∗)·(c+ei, d∗+ei+en+1) = 0, ∀c ∈ C1, d∗ ∈ C∗2 and i ∈ {0, 1, . . . , n}. From this we

conclude that x ·c = y∗ ·d∗ and xi = yi+yn+1, ∀i = 1, 2, . . . , n. If z = (yn+1, . . . , yn+1),

this is equivalent to (z + y)c = y∗d∗, ∀c ∈ C1, d∗ ∈ C∗2 . If yn+1 = 0, then yc = yd,

∀c ∈ C1, d∗ ∈ C∗2 , so u = (y, y, 0), where y ∈ C⊥1 ∩ C⊥2 . If yn+1 = 1, it is clear that

the vector u = (~0,~1, 1) ∈ C⊥. So, we have that r(C⊥) = r(C⊥1 ∩ C⊥2 ) + 1.

Before establish the kernel of the 1-perfect codes of length 2n+1 constructed with

the doubling construction, we will see the following result which give the kernel of a

trivial 1-perfect partition of Fn2 .

Proposition 3.16. Let C,C + e1, . . . , C + en be a partition of F n in 1-perfect codes.

Then, the kernel of the partition is KP = KC∪i∈I (KC +ei), where I = {i : Ti ⊆ KC}.

Proof: It is clear that KC ⊆ KP . We will see that KC + ei ⊆ KP if i ∈ I. If

x ∈ KC + ei for some i ∈ I, x+ ei ∈ KC , so x+C + ei = C. For each j ∈ {1, . . . , n},
j 6= i exists k, k 6= i and k 6= j such that ei+ej+ek ∈ Ti ⊆ KC , so C+ej = C+ei+ek

and then x+ C + ej = C + ek. Finally, we have x ∈ KP .

If x ∈ KP , then x + C = C or x + C = C + ei for some i ∈ {1, . . . , n}. In the

first case x ∈ KC . We will see that in the second case x ∈ KC + ei where i ∈ I. If

x+C = C+ ei then x+C+ ei = C. We know that x ∈ KP , so ∀j ∈ {1, . . . , n}, j 6= i

exists k, k 6= i and k 6= j such that x+C + ej = C + ek, so C + ei + ej + ek = C and

Ti ⊆ KC .

Phelps and LeVan [PL95] show that if K1 and K2 are the kernels of the codes C1

and C2, then the kernel of C is K1 ⊕K∗2 , where

C = (C1 ⊕ C∗2)
n⋃
i=1

(C1 + ei ⊕ (C2 + ei)
∗)

as long as the dimension of K1 is less than (n − 1)/2. We can also see this result

with Lemma 2.31. Now, we will see which is the kernel of C, in general, without the

condition that the dimension of K1 has to be less than (n− 1)/2.
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Theorem 3.17. The kernel of the 1-perfect code C of length 2n+ 1 constructed with

the Doubling construction from 1-perfect codes C1 and C2, as above, is

(K1 ⊕K∗2)
⋃
i∈I

(K1 + ei ⊕ (K2 + ei)
∗)

where I = {i : Ti ⊆ K1 ∩K2}.

Proof: If (x, y) ∈ K1 ⊕K∗2 , then it is clear that (x, y) ∈ KC . If (x, y) ∈ K1 + ei ⊕
K∗2 +ei+en+1, for some i ∈ I then (x, y)+(C1, C

∗
2) = (C1 +ei, C

∗
2 +ei+en+1) ∈ C and

∀j ∈ {1, . . . , n}, j 6= i (x, y) + (C1 + ej, C
∗
2 + ej + en+1) = (C1 + ei + ej, C

∗
2 + ei + ej) =

(C1+ek, C
∗
2 +ek+en+1) because given i, j i 6= j ∃k such that ei+ej+ek ∈ Ti ⊆ K1 and

ei+ej+ek ∈ Ti ⊆ K2, and then C1 +ei+ej = C1 +ek and C∗2 +ei+ej = C∗2 +ek+en+1.

So, we have that K1 ⊕K∗2 ∪i∈I (K1 + ei ⊕ (K2 + ei)
∗) ⊆ KC .

Now, we suppose that (x, y) ∈ KC . If (x, y) + (C1, C
∗
2) = (C1, C

∗
2) then (x, y) +

(C1 + ej, C
∗
2 + ej + en+1) = (C1 + ej, C

∗
2 + ej + en+1), and we have (x, y) ∈ K1 ⊕K∗2 .

If (x, y) + (C1, C
∗
2) = (C1 + ei, C

∗
2 + ei + en+1) and ∀j 6= i exists s 6= i such that

(x, y) + (C1 + ej, C
∗
2 + ej + en+1) = (C1 + es, C

∗
2 + es + en+1) then x ∈ K1 + ei and

y ∈ K∗2 + ei + en+1. If j = s we have x ∈ K1 and x ∈ K1 + ei, but K1 ⊆ C1, so this

is not possible. If j 6= s, x ∈ K1 + ei and x ∈ K1 + ej + es, so ei + ej + es ∈ K1 and

Ti ⊆ K1. Also, y ∈ K∗2 + ei + en+1 and y ∈ K∗2 + ej + es, so ei + ej + es ∈ K2 and

Ti ⊆ K2.

Now we have the necessary results to prove Theorem 3.14.

Proof: If dim(H⊥1 ∪H⊥2 ) = m + s, then dim(H⊥1 ∩H⊥2 ) = 2m− (m + s) = m− s.
By Theorem 3.15 using the Doubling construction with the identity permutation

we can construct a 1-perfect code C of length n′ = 2m+1 − 1 such that r(C) =

2n − dim(H⊥1 ∩ H⊥2 ) = 2n − m + s = n′ − m′ + s ∀s ∈ {1, . . . ,m}. We know

that <
⋃
i∈I Ti >⊆ H1 ∩ H2, so by Theorem 3.17 the dimension of the kernel is

k(C) ≥ 2(n − m) + m − δ = n′ − m′ − δ. If H⊥1 ∪ H⊥2 ⊆<
⋃
i∈I Ti >

⊥, then

dim(H⊥1 ∪H⊥2 ) ≤ dim(<
⋃
i∈I Ti >

⊥), so s ≤ 2δ − δ − 1. If we take the minimum δ

such that s ≤ 2δ − δ − 1 then k(C) ≤ n′ −m′ − δ by Theorem 3.8.
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3.5 Some results near the upper bound

In previous sections, we established the exact lower and upper bounds on the dimen-

sion of the kernel, once the rank is fixed, except the exact upper bound for full-rank

1-perfect codes of length n = 2m−1 if 4 ≤ m < 10. Now, we would like to know if we

can construct binary 1-perfect codes with any rank and with kernels of any dimension

between the lower and upper bounds.

In this section, we will see that we can construct binary 1-perfect codes of length

n = 2m − 1 with rank r(C) < n and with kernels of dimension near the upper

bound, that is between the upper bound and 2(n′ − m′), where n′ = 2m−1 − 1 and

m′ = m − 1, or equivalently, with kernels of dimension k(C) = n −m − δ for any δ

such that 2δ − δ − 1 ≥ s and δ < m if r(C) = n−m+ s.

Using the Doubling construction, Lemma 5.6 gives us a construction of Hamming

codes which allows us to obtain ∀s ∈ {1, . . . ,m − 1} 1-perfect codes of length n =

2m − 1, rank n−m+ s and kernel of dimension n−m− δ, where δ is the minimum

integer such that 2δ − δ − 1 ≥ s, that is, kernel with maximum dimension. But, in

fact, we can prove a stronger result that will allow us to construct in a similar way

1-perfect codes with rank n−m+ s ∀s ∈ {2, . . . ,m− 1} and dimension of the kernel

n−m− δ for any δ such that 2δ − δ − 1 ≥ s and δ < m.

Notice that for s = 1, in [PL95] it is proved that we can construct 1-perfect codes

with any dimension of the kernel between the lower and upper bounds using the

Switching construction. We include this result in Lemma 2.37. This result shows

that from a Hamming code, Hm, we can make one switch and have a 1-perfect code

C, such that the rank is r(C) = n − m + 1 and the kernel has any dimension,

(n− 1)/2 ≤ k(C) ≤ n−m− 2.

Theorem 3.18. For each m ≥ 3 and s ∈ {2, . . . ,m}, there exist two Hamming codes

H1, H2 of length n = 2m − 1 such that

dim(H⊥1 ∪H⊥2 ) = m+ s and I = {i | Ti ⊆ H1 ∩H2} = ∅
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Proof: If s = m, we can take two different cyclic Hamming codes H1, H2. It is

easy to see that dim(H⊥1 ∪ H⊥2 ) = 2m. In order to see that I = ∅, we can assume

that there is a Ti ⊆ H1 ∩H2, but then Ti+1 ⊆ H1 ∩H2 and we would have H1 = H2

because H1 ∩H2 is also a cyclic code.

Assume now s < m. Let A be a check matrix of a Hamming code of length

2m−s− 1. If s ≥ 3, we can construct the Hamming codes H1 and H2 by the following

check matrices

M1 =

 0 b1 . . . b1 b2 . . . b2 . . . b2s−1 . . . b2s−1

A 0 A 0 A . . . 0 A


M2 =

 0 c1b1 . . . b1 c2b2 . . . b2 . . . c2s−1b2s−1 . . . b2s−1

A 0 A 0 A . . . 0 A


where B = (b1 b2 . . . b2s−1) and C = (c1 c2 . . . c2s−1) are the check matrices of Hamming

codes H1 and H2 such that dim(H
⊥
1 ∪H

⊥
2 ) = 2s, and {i | Ti ⊆ H1∩H2} = ∅. In this

case, dim(H⊥1 ∪H⊥2 ) = m − s + 2s = m + s. Finally, we will show that I = ∅. Let

M1(i), M2(i) denote the ith columns of M1, M2 respectively; then it is sufficient to

show that for any i there is a j such that columns M1(i), M1(j), M1(k) are dependent

but columns M2(i), M2(j), M2(k) are not. We have several cases to consider. If

M1(i) =
(
br
as

)
, or

(
0
as

)
then M1(i) = M2(i). We can assume that b1 6= c1 in which case

we pick j such that M1(j) =
(
b1
0

)
and M2(j) =

(
c1
0

)
. If M1(i) =

(
br
0

)
and M2(i) =

(
cr
0

)
then by the properties of H1, H2 (or of B, C) we can pick j such that M1(j) =

(
bt
0

)
,

M2(j) =
(
ct
0

)
and br, bt, bu are dependent but cr, ct, cu are not.

If s = 2, we can construct the Hamming codes in the same way, where B = 011

101

 and C =

 101

110

. In this case dim(H⊥1 ∪H⊥2 ) = m + 2, and we can see

that I = ∅ using a similar argument as before and that the columns between C and

D are all different.

Now, we can prove the following result which is stronger than Lemma 3.13, for

s ≥ 2.
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Lemma 3.19. For each m ≥ 3 and s ∈ {2, . . . ,m}, there exist two Hamming codes

H1, H2 of length n = 2m − 1 such that

<
⋃
i∈I

Ti >⊆ H1 ∩H2 dim(H⊥1 ∪H⊥2 ) = m+ s

and {k | Tk ⊆ H1 ∩ H2} = {k | Tk ⊆<
⋃
i∈I Ti >}, where I is a set of m − δ

independent coordinates, 2δ − δ − 1 ≥ s and δ ≤ m.

Proof: If δ = m, I = ∅ and then {k | Tk ⊆<
⋃
i∈I Ti >} = ∅. In this case, we can

take the Hamming codes H1 and H2 the same as Theorem 3.18.

If δ < m, then m ≥ 4 and we can use the same argument as in the proof of Lemma

3.13 but taking the two Hamming codes H1 and H2 such that {i | Ti ⊆ H1∩H2} = ∅.
We can do this, because of Theorem 3.18.

Theorem 3.20. For each m ≥ 4 and s ∈ {1, . . . ,m−1}, there exists a 1-perfect code

C of length n = 2m − 1 with rank n −m + s and a kernel of dimension n −m − δ,
where 2δ − δ − 1 ≥ s and δ < m.

Proof: If s = 1, using the Switching construction we have 1-perfect codes with any

dimension of the kernel, [PL95].

If s ≥ 2, using Lemma 3.19 and a similar argument as the proof of Theorem 3.14

we can construct ∀s ∈ {2, . . . ,m− 1} a 1-perfect code C of length n = 2m − 1 which

has rank n −m + s and a kernel of dimension n −m − δ as long as s ≤ 2δ − δ − 1

and δ ≤ m− 1, because now we know exactly how many Ti there are in H1 ∩H2.

3.6 Examples

By Theorem 3.20, we can construct ∀s ∈ {2, . . . ,m − 1} 1-perfect codes of length

n = 2m − 1, rank n−m+ s and kernel of dimension n−m− δ, where 2δ − δ− 1 ≥ s

and δ < m, that is, with a kernel of any dimension between the upper bound and

2(n′−m′), where n′ = 2m−1−1 and m′ = m−1. This is because the maximum δ such



3.6. EXAMPLES 57

that δ < m is m− 1 and in this case the dimension of the kernel is n−m− (m− 1) =

n− 2m+ 1 = 2(n′ −m′).

For s = 1 and m ≥ 5, by Theorem 3.14 we can construct 1-perfect codes with

maximum dimension of the kernel. But, in [PL95] it is proved that we can construct

1-perfect codes with any dimension of the kernel between the lower and upper bounds

using the Switching construction.

For example, for n = 31 and n = 63, we have the following tables that show us

for each rank the dimensions of the kernel we can get using Theorem 3.20.

n = 31 r(C) k(C)

26 26

27 24 23 22 21 . . . 15

28 23 22 ? . . . ? 8

29 23 22 ? . . . . . . ? 4

30 23 22 ? . . . . . . . . . ? 2

31 ? . . . . . . . . . . . . . . . ? 1

n = 63 r(C) k(C)

57 57

58 55 54 53 52 51 . . . 31

59 54 53 52 ? . . . ? 16

60 54 53 52 ? . . . . . . ? 8

61 54 53 52 ? . . . . . . . . . ? 4

62 53 52 ? . . . . . . . . . . . . ? 2

63 ? . . . . . . . . . . . . . . . . . . . . . ? 1

In this section, we will give some examples of 1-perfect codes of length n = 31.
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To construct a 1-perfect code of length 31, rank 26+s and a kernel of maximum

dimension 26 − δ, by Theorem 3.14, we need two Hamming codes H1, H2 of length

15 such that dim(H⊥1 ∪H⊥2 ) = 4 + s and H⊥1 ∪H⊥2 ⊆<
⋃
i∈I Ti >

⊥, where I is a set of

m−δ independent coordinates and δ is the minimum integer such that 2δ−δ−1 ≥ s.

Example 1: If s = 1, the minimum δ such that 2δ − δ − 1 ≥ 1 is δ = 2, so |I| = 2.

By the proof of Lemma 3.13, we can choose the following check matrices for these

Hamming codes:


000 b1b1b1b1 b2b2b2b2 b3b3b3b3

101 0101 0101 0101

011 0011 0011 0011




000 b1b1b1b1 b2b2b2b2 b3b3b3b3

101 0101 0101 1010

011 0011 0011 0011



where B = (b1 b2 b3) =

 011

101

.

In this case, dim(H⊥1 ∪ H⊥2 ) = 5 and H⊥1 ∪ H⊥2 ⊆<
⋃
i∈I Ti >

⊥, where |I| = 2, so

dim(H⊥1 ∩H⊥2 ) = 4 + 4−5 = 3, T1 ⊆ H1∩H2 and T2 ⊆ H1∩H2. Using the Doubling

construction and by Theorem 3.15 and 3.17, we can obtain a 1-perfect code C of length

31, with r(C) = 2 · 15− dim(H⊥1 ∩H⊥2 ) = 30− 3 = 27 and k(C) = 11 + 11 + 2 = 24,

which is the upper bound for rank 27.

Example 2: If s = 4, the minimum δ such that 2δ − δ − 1 ≥ 4 is δ = 3, so |I| = 1.

By the proof of Lemma 3.13, we can choose the following check matrices for these

Hamming codes:

 0 c1c1 c2c2 . . . c7c7

1 0 1 0 1 . . . 0 1


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 0 d1d1 d2d2 . . . d7d7

1 1 0 0 1 . . . 0 1


where

C =


1000111

1011001

1101010

 D =


1001101

0011011

1100011


are check matrices of two Hamming codes H1 and H2 of length 7 such that dim(H

⊥
1 ∪

H
⊥
2 ) = 6 and the subspace H

⊥
1 ∪H

⊥
2 is generated by the last 6 coordinates.

In this case, dim(H⊥1 ∪ H⊥2 ) = 8 and H⊥1 ∪ H⊥2 ⊆ T⊥1 . So, using the Doubling

construction and by Theorem 3.15 and 3.17, we can get a 1-perfect code C of length

31, with r(C) = 30 and k(C) = 23, which is the upper bound for rank 30.

It is also possible to construct 1-perfect codes with an allowed kernel not necessary

of maximum dimension. Next, we will show an example of a 1-perfect code of length

31, such that its kernel does not have maximum dimension.

Example 3: If we want to construct a 1-perfect code of length 31, rank r(C) =

26 + 3 = 29 and kernel of dimension 22, which is not the highest possible, we need

two Hamming codes H1, H2 of length 15 such that dim(H⊥1 ∪H⊥2 ) = 4 + 3 = 7 and

without any Ti in the intersection H1∩H2, so such that I = {i : Ti ⊆ H1∩H2} = ∅,
since we want 22 = 31− 5− δ, δ = 4 and m− δ = 0.

In this case, s = 3. By the proof of Theorem 3.18, we can construct the Hamming

codes H1 and H2 defined by the following check matrices:

M1 =

 0 b1b1 b2b2 . . . b7b7

1 0 1 0 1 . . . 0 1


M2 =

 0 c1b1 c2b2 . . . c7b7

1 0 1 0 1 . . . 0 1


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where

B =


1011100

0101110

0010111

 C =


1110100

0111010

0011101


are check matrices of two Hamming codes H1 and H2 of length 7 such that dim(H

⊥
1 ∪

H
⊥
2 ) = 6 and {i : Ti ⊆ H1∩H2} = ∅. We can take H1 and H2 as two different cyclic

Hamming codes generated by the primitive polynomials g1(x) = x3+x+1 and g2(x) =

x3+x2+1 respectively. Then, we have dim(H⊥1 ∪H⊥2 ) = 7, dim(H⊥1 ∩H⊥2 ) = 8−7 = 1

and I = {i : Ti ⊆ H1 ∩ H2} = ∅. Using the Doubling construction and Theorems

3.15 and 3.17, we can obtain a 1-perfect code C of length 31, with r(C) = 30−1 = 29

and k(C) = 11 + 11 = 22.

3.7 Bulging middle

In this section, we will show how to construct 1-perfect codes with different ranks

and different kernel dimensions between the lower and upper bound. In order to do

that, we will use the Doubling construction and the results of section 3.4.

We will obtain a large number of cases, but we do not completely settle the

question, for what pairs of numbers (r, k) does there exist a binary 1-perfect code C

of length n = 2m − 1 having r(C) = r and k(C) = k.

Let C1 be a 1-perfect code of length n and C∗2 be an extended 1-perfect code of

length n+ 1. By Proposition 2.6, the code

C = (C1 ⊕ C∗2)
n⋃
i=1

(C1 + ei ⊕ (C2 + eπ(i))
∗)

where π is a permutation on the set {1, 2, . . . , n} is a 1-perfect code of length 2n+ 1.

By Theorem 3.15, we know the rank of the 1-perfect code C of length 2n + 1

constructed as above and taking as π the identity permutation is

r(C) = 2n− r(C⊥1 ∩ C⊥2 )
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So, we are interested in knowing how we can choose the 1-perfect codes C1 and C2 to

obtain different dimensions of C⊥1 ∩C⊥2 and therefore different ranks for the 1-perfect

code C. We will compute this dimension in different cases which will also allow us to

know the kernel dimension for the 1-perfect code C of length 2n+ 1.

In this first case, if we use the following result and Lemma 2.31, we will be able to

construct, in a recursive way, 1-perfect codes with all different ranks (except full-rank

codes) and with different kernel dimensions, between the lower and upper bound, for

a fixed rank. We will show, with some examples (n = 31 and n = 63), that we can

not obtain codes for all the possible kernel dimensions.

Proposition 3.21. Given two 1-perfect codes of length n, C1 and C2 such that

r(C2) ≤ r(C1), we can obtain two 1-perfect codes C1 and C2 isomorphic to C1 and

C2 respectively such that 〈C2〉 ⊆ 〈C1〉.

Proof: If r(C2) ≤ r(C1), then r(C
⊥
1 ) ≤ r(C

⊥
2 ). Since the dual codes are linear

codes and r(C
⊥
1 ) ≤ r(C

⊥
2 ), there exist C⊥1 and C⊥2 isomorphic codes to C

⊥
1 and C

⊥
2

respectively, such that C⊥1 ⊆ C⊥2 . Using the same permutation, we have codes C1

and C2 isomorphic to C1 and C2 respectively, such that 〈C2〉 ⊆ 〈C1〉.

By Proposition 3.21, given two 1-perfect codes C1 and C2 of length n = 2m − 1

and ranks r(C1) = n − m + s and r(C2) = n − m + s′, where s, s′ ∈ {0, 1, . . . ,m}
and s′ ≤ s, we can obtain 1-perfect codes C1 and C2 isomorphic to C1 and C2

respectively such that r(C⊥1 ∩ C⊥2 ) = r(C⊥1 ) = m − s, since 〈C2〉 ⊆ 〈C1〉. Then, the

code C of length 2n + 1 constructed with the Doubling construction and taking the

identity permutation has rank r(C) = 2n− (m− s) = 2m+1 − 1− (m+ 1) + s, where

s ∈ {0, 1, . . . ,m}. Taking codes C1 of length n with all possible ranks we obtain

codes C of length 2n+ 1 with all possible ranks except rank 2n+ 1, those which are

full-rank codes.

By Lemma 2.31, we know the kernel dimension of the 1-perfect code C of length



62 CHAPTER 3. RANK AND KERNEL OF BINARY 1-PERFECT CODES

2n + 1 constructed using the Doubling construction and taking the identity permu-

tation is k(C) = k1 + k2, where k1 = k(C1) and k2 = k(C2) as long as k1 < (n− 1)/2.

Next, with some examples, we show for which pairs (r(C), k(C)) we can construct

a 1-perfect code of rank r(C) and kernel dimension k(C).

Example 1: There exist 1-perfect codes of length 31 for the pairs (r(C), k(C)) which

correspond to

• 1-perfect codes with the lower and upper bounds of the dimension of the kernel

for a fixed rank except full-rank 1-perfect codes with the upper bound if 4 ≤
m < 10 (using the results in sections 3.2 and 3.3).

• 1-perfect codes C of length n with k(C) near the upper bound, exactly with k(C)

between the upper bound and 2(n′−m′), where n′ = 2m−1− 1 and m′ = m− 1,

except for full-rank 1-perfect codes (using section 3.5).

• 1-perfect codes C with rank r(C) = n−m+ 1, in this example r(C) = 27, and

with any dimension of the kernel between the lower and upper bounds. It was

proved in [PL95] that from a Hamming code, Hm, we can make one switch and

obtain a 1-perfect code C, with rank r(C) = n −m + 1 and kernel dimension

with any value, (n−1)/2 ≤ k(C) ≤ n−m−2, in this example 15 ≤ k(C) ≤ 24.

• 1-perfect codes constructed from the above arguments using Proposition 3.21,

Lemma 2.31 and the pairs (r(C), k(C)) for which it is known there exists a

1-perfect code of length 15 having rank r(C) and kernel of dimension k(C) (see

table in page 40).

We summarize all these results in the following table. The question mark sign means

that by using the previous results we do not know if there exist 1-perfect codes with

these parameters.
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r(C) k(C)

26 26

27 24 23 22 . . . . . . . . . . . . . . . 15

28 23 22 ? . . . ? 17 . . . . . . 8

29 23 22 ? . . . ? 17 . . . . . . . . . 4

30 23 22 ? . . . . . . ? 16 . . . . . . . . . 2

31 ? . . . . . . . . . . . . . . . . . . . . . . . . ? 1

Example 2: There exist 1-perfect codes of length 63 for the following pairs of num-

bers (r(C), k(C)) doing the same as before starting from the table of length 31.

r(C) k(C)

57 57

58 55 54 53 52 . . . . . . . . . . . . 31

59 54 53 52 ? . . . ? 40 . . . . . . . . . 16

60 54 53 52 ? . . . ? 40 . . . . . . . . . . . . 8

61 54 53 52 ? . . . ? 40 . . . . . . . . . . . . . . . 4

62 53 52 ? . . . . . . . . . ? 27 25 . . . . . . . . . 2

63 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ? 1

In a more general case, in order to use that by Proposition 3.17, the kernel of C

is

(K1 ⊕K∗2)
⋃
i∈I

(K1 + ei ⊕ (K2 + ei)
∗)

where K1 and K2 are the kernels of C1 and C2 respectively and I = {i : Ti ⊆ K1∩K2},
we are interested in results that will give us how many Ti are in K1 ∩ K2. We will

study the case when I = ∅ and it is possible to know the rank of C⊥1 ∩C⊥2 . In this case,

the kernel dimension of the 1-perfect code C of length 2n+ 1 will be k(C) = k1 + k2,

where k1 = k(C1) and k2 = k(C2), and the rank r(C) = 2n− r(C⊥1 ∩ C⊥2 ).

There is a well known result due to Luc Teirlinck [Tei77] which states that given

any two Steiner triple systems (S,B1), (S,B2) on the same set of points, S, there
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is a permutation π of S such that B1 ∩ π(B2) = ∅. This means that given any two

1-perfect codes C1, C2 there is an isomorphic copy of C2 such that these codes have

no words of weight 3 in common. Using these codes in the Doubling construction

would produce a code of length 2n+ 1 with I = ∅, that is, whose kernel is K1 ⊕K∗2 ,

where K1 and K2 are the kernels of C1 and C2 respectively. In fact, we do not need

the triple systems to be disjoint for this result, a weaker condition will suffice.

Let C1 and C2 be two 1-perfect codes of length n = 2k + 1 and let (S,B1) and

(S,B2) be the respective triple systems corresponding to the words of weight 3 in

each. Let S = {∞, x1, . . . , xk, y1, . . . , yk} and assume that the triples through ∞ are

{∞, x1, y1}, . . ., {∞, xk, yk} ∈ B1∩B2. Apply the permutation π = (x1 . . . xk) to B2

giving a triple system π(B2). Clearly the triples through ∞ are different in B1 and

π(B2). Also for each xi ∈ S the triple {∞, xi, yi} ∈ B1 and {∞, xi, yi−1} ∈ π(B2);

similarly for each yi ∈ S. Thus B1 ∩ π(B2) does not contain all k triples through any

given point. In this case we have I = {i : Ti ⊆ K1 ∩ K2} = ∅ but it is not easy to

know r(C⊥1 ∩ C⊥2 ).

Next, we will prove some results which will allow us to know the structure of the

dual code. With these results we will show that given two 1-perfect codes of length

n = 2m − 1 with kernels of dimension k1 and k2 respectively and ranks n − r1 and

n − r2, r1 ≤ r2, then there exists a 1-perfect code C of length 2n + 1 with kernel of

dimension k(C) = k1 + k2 and rank r(C) = 2n− r1 if r1 ≤ m− 2.

Lemma 3.22. [KS93] Let C be a 1-perfect code of length n = 2m − 1 and rank

r(C) = n−m+ s. The set V = {i | xi = 0 ∀x ∈ C⊥} is an s− 1 flat in the projective

space PG(m− 1, 2) , so |V | = 2s − 1, and

〈C〉 = Hm

⋃
j∈V

(Hm + ej)

where Hm is a Hamming code of length n = 2m − 1.

Proposition 3.23. Let C be a 1-perfect code of length n = 2m − 1 and rank r(C) =

n−m+s. The generator matrix H for the dual code C⊥ is a matrix (m−s)×n such
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that every nonzero vector of length m− s occurs as a column vector 2s times and the

zero vector occurs 2s − 1 times.

Proof: The dual code C⊥ is a vector space of dimension m − s, so the generator

matrix H is a (m− s)× n matrix,

H = (h1 h2 . . . hn)

where hi are column vectors of length m − s. By Lemma 3.22 we know 〈C〉 =

Hm∪j∈V (Hm+ej), where Hm is a Hamming code of length n = 2m−1, V = {i | xi =

0 ∀x ∈ C⊥} and |V | = 2s − 1. Since Hm ⊆ 〈C〉, the rows of the matrix H are m− s
rows of the check matrix of the Hamming code Hm. Since Hm+ej ⊆ 〈C〉, the column

hj = 0 ∀j ∈ V , so the zero vector occurs |V | = 2s − 1 times in H. Taking only the

m− s rows in the check matrix of the Hamming code Hm such that have zeros in the

jth component ∀j ∈ V , every nonzero m−s vector occurs as a column vector equally

often 2s times.

We can always order the column vectors of the generator matrix of C⊥, H, lexi-

graphically.

It is easy to see that the direct sum of the symmetric group of 2s − 1 symbols,

S2s−1, with 2m−s− 1 copies of S2s is the group of permutations that fix the generator

matrix of C⊥. The perfect code C will have 2m−s − 1 copies of the STS(2s+1 − 1)

all intersecting in the same 2s − 1 coordinates (the zero columns). The other 2s

coordinates in each system correspond to 2s identical nonzero columns of H.

Example: If C is a 1-perfect code of length 31 and rank r(C) = n − m + s =

31− 5 + 2 = 28, a generator matrix H of the dual code C⊥ is the following:

H =


000 0000 0000 0000 1111 1111 1111 1111

000 0000 1111 1111 0000 0000 1111 1111

000 1111 0000 1111 0000 1111 0000 1111


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The direct sum of the symmetric group of 3 symbols S3 with 7 copies of S4 is the

group of permutations that fix H. The perfect code C will have 7 copies of the

STS(7) all intersecting in the first 3 coordinates. The other 4 coordinates in each

system correspond to 4 identical nonzero columns of H.

Proposition 3.24. If there exist two 1-perfect codes of length n = 2m−1 with kernels

of dimension k1 and k2 respectively and ranks n−r1 and n−r2, 0 ≤ r1 ≤ r2 ≤ m, then

there exists a 1-perfect code C of length 2n+1 with kernel of dimension k(C) = k1+k2

and rank r(C) = 2n− r1 if r1 ≤ m− 2.

Proof: Let C1 and C2 be the two 1-perfect codes of length n = 2m − 1 with rank

n−r1 and n−r2, 0 ≤ r1 ≤ r2 ≤ m, respectively. Since n−r1 ≥ n−r2, by Proposition

3.21 there exist two 1-perfect codes C1 and C2 isomorphic to C1 and C2 respectively

such that 〈C2〉 ⊆ 〈C1〉 or equivalently, C⊥1 ⊆ C⊥2 .

By Proposition 3.15, the rank of the 1-perfect code C obtained using the Doubling

construction and taking as π the identity permutation is r(C) = 2n− r1, 0 ≤ r1 ≤ m.

By Proposition 3.17, the kernel of C is

(K1 ⊕K∗2)
⋃
i∈I

(K1 + ei ⊕ (K2 + ei)
∗)

where K1 and K2 are the kernels of C1 and C2 respectively and I = {i : Ti ⊆ K1∩K2}.
If we find there exist isomorphic copies of C1 and C2 such that we still have C⊥1 ⊆ C⊥2

and I = ∅, the 1-perfect code C would have a kernel of dimension k(C) = k1 + k2

and rank r(C) = 2n− r1. In order to have I = ∅, we do not need the triple systems

of C1 and C2 to be disjoint, we just need they do not contain all triples through any

given point.

Let H1 and H2 be the generator matrices of C⊥1 and C⊥2 respectively, with the

column vectors ordered lexigraphically. If r1 = m − s ≤ m − 2, then s ≥ 2. By

Proposition 3.23, in the matrix H1, every nonzero vector of length r1 = m− s occurs

as a column vector 2s ≥ 4 times and the zero vector occurs 2s − 1 ≥ 3 times.
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We assume that I 6= ∅. Let Ti and T ′i denote the subspace generated by the words

of weight 3 that have a one in the ith coordinate in C1 and C2 respectively. For each

i ∈ I, Ti = T ′i ⊆ K1 ∩K2 ⊆ C1 ∩ C2, we will see we can make a transposition to C2

such that fix i, fix the generator matrix H1 and Ti 6= T ′i . If i is one of the first 2s − 1

coordinates (the zero columns) in H1, we choose a subset of 2s coordinates which

correspond to the same column vector in H1. Notice that in a vector χ({i, j, k}) ∈ Ti,
j and k either are both in the first 2s − 1 coordinates or are in the same subset of

2s coordinates. We can make a transposition of two of these 2s ≥ 4 coordinates in

the same subset such that Ti 6= T ′i . If i is in a set of 2s ≥ 4, we can also make a

transposition of two of these 2s ≥ 4 coordinates in the same subset such that Ti 6= T ′i

and fix i.

Next, using Proposition 3.24 instead of Proposition 3.21 and Lemma 2.31 and

doing the same as in the examples 1 and 2 (pages 62 and 63), we have the following

pairs (r(C), k(C)) for which exist 1-perfect codes of length 31 and 63.

r(C) k(C)

26 26

27 24 23 22 . . . . . . . . . . . . . . . 15

28 23 22 ? . . . ? 19 . . . . . . 8

29 23 22 ? . . . ? 19 . . . . . . . . . 4

30 23 22 ? . . . . . . ? 16 . . . . . . . . . 2

31 ? . . . . . . . . . . . . . . . . . . . . . . . . ? 1

r(C) k(C)

57 57

58 55 54 53 52 . . . . . . . . . . . . 31

59 54 53 52 ? . . . ? 49 . . . . . . . . . 16

60 54 53 52 ? . . . ? 49 . . . . . . . . . . . . 8

61 54 53 52 ? . . . ? 49 . . . . . . . . . . . . . . . 4

62 53 52 ? . . . . . . . . . ? 27 25 . . . . . . . . . 2

63 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ? 1
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Althought Proposition 3.24 give a stronger result than Proposition 3.21 and Lemma

2.31, since we do not use k1 < (n − 1)/2, we still can not obtain all possible pairs

(r(C), k(C)), 1-perfect codes with all different kernel dimensions between the lower

and upper bound for a fixed rank. Even if we knew how to construct full-rank 1-

perfect codes for any k(C) and any length, we would not obtain all the others.



Chapter 4

Q-ary perfect codes

In previous chapters, we discussed about binary 1-perfect codes. We gave some

known definitions and results in chapter 2 and we proved some new results about

the rank and the kernel of these codes in chapter 3. In this chapter, we will give the

generalization, to q-ary 1-perfect codes, of definitions and results we can find in the

previous chapters for the binary 1-perfect codes. The rank and the kernel of q-ary

1-perfect codes (q 6= 2) have not been studied before. The most important result in

this chapter is the existence of q-ary 1-perfect codes of length n =
qm − 1

q − 1
with any

possible rank, ∀m ≥ 4. On the kernel of q-ary 1-perfect codes we will not give any

result in this dissertation.

In section 4.1 we will review some definitions and known properties for q-ary 1-

perfect codes. In section 4.2 we will show some known constructions of q-ary 1-perfect

codes. In section 4.3, first of all we will generalize an approach of a well-known

construction of binary 1-perfect codes, the Switching construction, to obtain q-ary

1-perfect codes. Then, using this construction, we establish the existence of q-ary

1-perfect codes of length n =
qm − 1

q − 1
for m ≥ 4 and rank r(C) = n − m + s for

each s ∈ {1, . . . ,m}. This is a generalization of the binary case proved by Etzion and

Vardy in [EV94]. All the results given in this last section are new and they will be

also shown in [PV01b].

69
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4.1 Definitions and Properties

Let Fnq be a vector space of dimension n over a Galois Field Fq = GF (q). The

Hamming distance between vectors x, y ∈ Fnq , denoted d(x, y), is the number of

coordinates in which x and y differ. The Hamming weight of x is given by wt(x) =

d(x,0), where 0 is the all-zero vector. Obviously, d(x, y) = wt(x− y).

A q-ary code, C, of length n is simply a subset of Fnq . Without loss of generality, we

shall assume, unless stated otherwise, that the all-zero vector is in C. The elements

of C are called codewords and C is called linear if it is a linear space over Fq. In

other words, if x and y are codewords, then λx+ µy is contained in the code as well,

∀λ, µ ∈ Fq. The minimum distance of a code is the smallest distance between a pair

of codewords.

We shall define an extended code of the q-ary code C, denoted by C∗, to be the code

resulting from adding an overall parity check digit to each codeword of C, thereby

causing all of the codewords x = (x1, x2, . . . , xn) ∈ Fnq to satisfy
∑n

i=1 xi = 0 in Fq.

A monomial matrix is a matrix with exactly one nonzero entry in each row and

column. Two codes C1, C2 ⊂ Fnq , are said to be isomorphic if there exists a n × n
monomial matrix A over Fq such that C2 = {cA : c ∈ C1}, [MS77]. They are said

to be equivalent if there exists a vector v and a n × n monomial matrix A over Fq

such that C2 = {v + cA : c ∈ C1}. There is a more general definition of equivalent

codes. Two codes C1, C2 ⊂ Fnq , are said to be equivalent if there are n permutations

τ1, . . . , τn of the q elements in Fq and a permutation σ of the n components such that

C2 = {σ(τ1(c1), τ2(c2), . . . , τn(cn)) : (c1, c2, . . . , cn) ∈ C1}, [CHLL97].

A q-ary code C of length n is perfect if for some integer r ≥ 0 every x ∈ Fnq is

within distance r from exactly one codeword of C. A q-ary perfect code attains the

sphere-packing or Hamming bound, that is that the spheres of radius r around the

codewords partition the whole space Fnq , or equivalently

|C| = qn∑r
i=0

(
n
r

)
(q − 1)i
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where
∑r

i=0

(
n
r

)
(q − 1)i is the number of vectors of length n contain in a sphere of

radius r around the codewords, [MS77]. We can also define a q-ary perfect code as

a q-ary code such that the Hamming bound holds. A q-ary perfect code of length n

can correct r errors, so they are also called perfect r-error correcting codes or r-perfect

codes. If |C| ≥ 2, then the minimum distance of such a code is d = 2r + 1.

In [Tie73, ZL73], was proved that the only perfect codes of length n over a prime

power alphabet are:

• trivial q-ary perfect codes in cases r = 0 and r = n.

• binary repetition code in case r = (n− 1)/2 with n odd.

• binary Golay code in case r = 3 with n = 23.

• ternary Golay code in case r = 2 with n = 11.

• q-ary 1-perfect codes in case r = 1 with n =
qm − 1

q − 1
, m ≥ 2, where q is a prime

or prime power.

Over an arbitrary alphabet, different to a prime power, the only known perfect

codes are the trivial ones. These are the codes containing all vectors of some length

over some alphabet which are 0-perfect codes and the codes consisting of only one

codeword of length n which are r-perfect codes for each r ≥ n. In [Bes83], Best showed

that in general there are not unknown r-perfect codes over arbitrary alphabets for

r 6∈ {1, 2, 6, 8}.
The binary and ternary Golay codes are unique up to equivalence, [Ple68, DG75].

The linear q-ary 1-perfect codes are, again, unique up to equivalence, [MS77]. They

are the well-known q-ary Hamming codes and exist for all m ≥ 2. Nonlinear q-ary

1-perfect codes also exist for q = 2,m ≥ 4; q ≥ 3,m ≥ 3, and for q a prime power,

q 6= 4 or 8, m ≥ 2, [Vas62], [Sch68], [Lin69]. For q = 2, in section 2.3 we have

seen some constructions of nonlinear 1-perfect codes. For other q’s, constructions of

nonlinear 1-perfect codes were presented by Schönheim [Sch68], Lindström [Lin69],
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Phelps [Phe84b], Mollard [Mol86] and Etzion [Etz96]. Some of these constructions

are outlined in section 4.2.

The q-ary 1-perfect codes have length n =
qm − 1

q − 1
, m ≥ 2, and r = 1. They have

qn−m codewords and minimum distance 3.

A q-ary 1-perfect partition, as in the binary case, is a partition of the space Fnq into

n(q − 1) + 1 1-perfect codes C0, C1, . . . , Cn(q−1). We can assume the zero vector is in

C0. Given a q-ary 1-perfect code C of length n = (qm−1)/(q−1) we know that there

always exists n(q− 1) + 1 = qm translates of C, that form a q-ary 1-perfect partition

of Fnq , taking C + αjei, ∀j ∈ {1, . . . , q − 1}, i ∈ {1, . . . , n}, where α is a primitive

element of Fq and ei denote the vector of length n having all components equal to

zero, except the ith component, which contains a one. We will call this partition the

trivial partition.

We know that binary 1-perfect codes are distance invariant codes, [SS59] (or see

Proposition 2.15). Abdurahmanov [Abd91] showed the same result for any q-ary

1-perfect code.

4.2 Constructions of q-ary 1-perfect codes

In this section, we briefly outline some known constructions of nonlinear q-ary 1-

perfect codes. In [CHLL97], we can also find a description of these constructions,

which we include now.

The first construction of nonlinear q-ary 1-perfect codes is due to Schönheim

[Sch68] and it is a generalization of binary Vasil’ev’s construction (Proposition 2.4)

to the q-ary case. We do not describe it now, but we will give two constructions,

which are generalizations of this construction as well as generalizations to the q-ary

case of constructions given by Proposition 2.5, which was itself a generalization of

Vasil’ev’s construction.
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Consider the lexicographical order on the coordinates of any vector u ∈ F(q−1)n1n2
q ,

u = (u1,1,1, u1,1,2, . . . , uq−1,n1,n2). If si =
∑q−1

h=1

∑n2

j=1 uh,i,j and s′j =
∑q−1

h=1 h
∑n1

i=1 uh,i,j,

we define π1(u) ∈ Fn1
q and π2(u) ∈ Fn2

q in the following way:

π1(u) = (s1, s2, . . . , sn1)

π2(u) = (s′1, s
′
2, . . . , s

′
n2

)

Let C1 and C2 be two q-ary 1-perfect codes of lengths n1 =
qm1 − 1

q − 1
and n2 =

qm2 − 1

q − 1
respectively, over Fq. Let f : C1 −→ F

n2
q be an arbitrary mapping.

Proposition 4.1. [Mol86] The code F defined by

F = {(u|v1 + π1(u)|v2 + π2(u) + f(v1)) : u ∈ F(q−1)n1n2
q , v1 ∈ C1, v2 ∈ C2}

is a q-ary 1-perfect code of length n =
qm1+m2 − 1

q − 1
.

Note that for q = 2 we have Proposition 2.5, for n2 = 1 we would have the

generalization of Proposition 2.4, that is the Vasil’ev’s construction, to q-ary case,

and for q = 2 and n2 = 1 we obtain Proposition 2.4.

Next construction is a less straightforward generalization of Proposition 2.4 to the

q-ary case, and it is due to Phelps [Phe84b].

Let C1 and C2 be two q-ary 1-perfect codes of lengths n1 =
qm1 − 1

q − 1
and n2 =

qm2 − 1

q − 1
respectively, over Fq. Let C3 be a q-ary 1-perfect code of length q + 1 and

cardinality qq−1. Let C4 and C5 be two q-ary (n1 + 2, qn1+1, 2) and (n2 + 2, qn2+1, 2)

codes, respectively. Because they have minimum distances 3, 2 and 2, respectively,

the codes C3, C4 and C5 can be expressed as

C3 = {(x|f1(x)|f2(x)) : x ∈ Fq−1
q }

C4 = {(x|f3(x)) : x ∈ Fn1+1
q }

C5 = {(x|f4(x)) : x ∈ Fn2+1
q }
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where fi(x) ∈ Fq for i = 1, 2, 3, 4 and can be interpreted as a parity function.

For c = (c1, c2, . . . , cn1) ∈ C1, d = (d1, d2, . . . , dn2) ∈ C2, ui,j ∈ F
q−1
q , for i =

1, 2, . . . , n1 and j = 1, 2, . . . , n2, let ai = f4(f1(ui,1), . . . , f1(ui,n2), ci) and bj =

f3(f2(u1,j), . . . , f2(un1,j), dj).

Proposition 4.2. [Phe84b] The code F defined by

F = {(u1,1| · · · |ui,j| · · · |un1,n2|(a1, a2, . . . , an1 , b1, b2, . . . , bn2)) :

ui,j ∈ Fq−1
q , c ∈ C1, d ∈ C2}

is a q-ary 1-perfect code of length n =
qm1+m2 − 1

q − 1
.

When q = 2, if we take C3 = {(000), (111)}, then for i = 1, 2 and for x = 0, 1,

fi(x) = x; the functions f3 and f4 can be either the usual binary parity function π

or 1 + π. Now for ui,j ∈ F2, ai = π(ui,1, . . . , ui,n2 , ci) = π(ui,1, . . . , ui,n2) + ci and

bj = π(u1,j, . . . , un1,j) + dj. So, using the generalized parity functions p1 and p2

of construction given by Proposition 2.5 and letting u = (u1,1| · · · |ui,j| · · · |un1,n2) ∈
F
n1n2
2 , we have

F = {(u|c+ p1(u)|d+ p2(u)) : u ∈ F n1n2
2 , c ∈ C1, d ∈ C2}

which is slightly less general than Proposition 2.5.

When n2 = 1, this construction give the generalization of Proposition 2.4, that

is the Vasil’ev’s construction, to q-ary case. When n2 = 1 and q = 2, we have

Proposition 2.4 without the mapping f . So, using a mapping f : C1 −→ F
n2
q this

construction gives a construction which is truly a generalization of Propositions 2.4

and 2.5.

Next construction uses Zinoviev’s generalized concatenated codes [Zin76] to con-

struct q-ary 1-perfect codes.

Let A and B be a q(A)-ary (n(A), |A|, d(A)) and q(B)-ary (n(B), |B|, d(B)) codes,

respectively, with |B| = q(A). We label the codewords of B from 0 to q(A)− 1, B =
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{b(0), . . . , b(q(A) − 1)}. For any codeword a = (a1, . . . , an(A)) ∈ A, we construct the

vector a(B) = (b(a1)| · · · |b(an(A))). Now C = {a(B) : a ∈ A} is a q(B)-ary code with

length n(C) = n(A)n(B), size |C| = |A| and minimum distance d(C) ≥ d(A)d(B).

The codes A, B and C are called, respectively, the outer, inner and concatenated

codes.

Assume now that the inner code B is partitioned into q1 subcodes:

B =

q1−1⋃
i=0

Bi

where, for i = 0, 1, . . . , q1 − 1, Bi is a q(B)-ary (n(B), K1, d1) code.

Assume furthermore that each subcode Bi can be partitioned into q2 subcodes:

for i = 0, 1, . . . , q1 − 1,

Bi =

q2−1⋃
j=0

Bi,j

where, for j = 0, 1, . . . , q2 − 1, Bi,j is a q(B)-ary (n(B), K2, d2) code. Now, any

codeword b ∈ B belongs to exactly one Bi,j and, if b has index k in Bi,j, we see that

(i, j, k) ∈ {0, . . . , q1 − 1} × {0, . . . , q2 − 1} × {0, . . . , K2 − 1}

completely identifies the vector b. We note b = b(i, j, k).

Let q3 = K2. Consider, for l = 1, 2, 3, a ql-ary (n(A), |Al|, d(Al)) code Al and a

codeword ail = (ail,1, . . . , ail,n(A)) ∈ Al. For any s between 1 and n(A), the triple

(ai1,s, ai2,s, ai3,s) designates a codeword b = b(ai1,s, ai2,s, ai3,s) belonging to B.

Let C = {(b(ai1,1, ai2,1, ai3,1| · · · |b(ai1,n(A), ai2,n(A), ai3,n(A)) : ail ∈ Al, 1 ≤ l ≤ 3}.

Theorem 4.3. [Zin76] The code C is a q(B)-ary code of length n(C) = n(A)n(B),

size |A1||A2||A3| and minimum distance d(C) ≥ min{d(A1)d(B), d(A2)d1, d(A3)d2}.

This construction can be extended to more levels of partitioning and more codes

Al, leading to Zinoviev’s generalized concatenated codes.

Now, to construct q-ary 1-perfect codes using the above construction, we take

B = Fnq , where q = q(B) is a prime power and n = n(B) = (qs−1)/(q−1). Partition
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B into qs cosets Bi of a q-ary Hamming code of length n: each Bi is an (n, qn−s, 3)

code and q1 = qs, q2 = qn−s.

For A1, take a q1-ary Hamming (n(A) = (qm1 − 1)/(q1 − 1), q
n(A)−m
1 , 3) code and

let A2 = F
n(A)
q2 .

Then, with this choice of parameters and by Proposition 4.3, we have the following

result:

Proposition 4.4. [Dum98] The code C is a q-ary 1-perfect code with length

n(C) = n(A)n(B) = (qsm − 1)/(q − 1)

Next construction is a generalization of Doubling Construction given by Proposi-

tion 2.7 to the q-ary case and it is due to Mollard [Mol84].

For any vector v = (v1, . . . , vn) ∈ Fnq , let p(v) =
∑n

i=1 vi and for any q − 1 vectors

v1, . . . , vq−1 in Fnq , let p(v1, . . . , vq−1) =
∑q−1

i=1 i · p(vi). Let n = (qm − 1)/(q − 1), and

let C0
0 ∪ C0

1 ∪ . . . ∪ C0
n(q−1) and C1

0 ∪ C1
1 ∪ . . . ∪ C1

n(q−1) be two partitions of Fnq into

n(q − 1) + 1 = qm q-ary 1-perfect codes of length n.

Proposition 4.5. [Mol84] The code C defined by

C = {(v1| · · · |vq−1|p(v1, . . . , vq−1)|vq) : vi ∈ Fnq , i = 1, . . . , q − 1,∑q−1
i=1 vi ∈ C0

j ⇒ vq ∈ C1
j }

is a q-ary 1-perfect code of length n′ = (qm+1 − 1)/(q − 1).

Note that for q = 2, we have

C = {(v1|p(v1)|v2) : v1 ∈ Fn2 , v1 ∈ C0
j ⇒ v2 ∈ C1

j }

which is, up to permutation π, the code defined in Proposition 2.7.
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4.3 Ranks of q-ary 1-perfect codes

A structural property of nonlinear codes is the rank. The rank of a q-ary code C of

length n, r(C), is simply the dimension of the subspace spanned by C. Etzion and

Vardy [EV94] established the existence of 1-perfect binary codes of length n = 2m−1,

m ≥ 4, and rank r(C) = n−m+s for each s, s ∈ {0, 1, . . . ,m}. We will generalize this

result for q-ary 1-perfect codes. So, we establish the existence of q-ary 1-perfect codes

of length n =
qm − 1

q − 1
for m ≥ 4 and rank r(C) = n−m+s for each s ∈ {0, 1, . . . ,m}.

All of these results given in this section are also shown in [PV01b].

First of all, in section 4.3.1, we will generalize an approach of the Switching

construction to obtain q-ary 1-perfect codes. Then, in section 4.3.2, since we need

to assure that we can make multiple switches, we must know the dimension of the

subspaces Ti and the dimension of the intersection of two of these subspaces (see

section 2.5.2 or [PL95]). Finally, in section 4.3.3, we prove that we can obtain q-ary

1-perfect codes of length n =
qm − 1

q − 1
with all the possible different ranks, ∀m ≥ 4,

which it is a generalization of the binary case proved by Etzion and Vardy, but using

techniques developed in [PL95] by Phelps and LeVan.

4.3.1 Switching construction

The most intuitive approach to constructing nonlinear 1-perfect codes consists of

starting with the Hamming code Hm, and switching out one specially selected set of

codewords S ⊂ Hm for another set of words S ′ such that the resulting code

C = (Hm\S) ∪ S ′

would still be a 1-perfect code. This idea has been developed from different approaches

to construct binary 1-perfect codes, see [AS95], [AS96], [EV94] and [PL99]. In [Etz96],

Etzion used one generalization of this technique to construct q-ary 1-perfect codes. In

this section we will generalize the approach developed in [PL95] by Phelps and LeVan

to construct q-ary 1-perfect codes. They use the switching construction to construct



78 CHAPTER 4. Q-ARY PERFECT CODES

nonlinear binary 1-perfect codes with kernels of different sizes.

Let Fq = {0, α0, α, . . . , αq−2}, where α is a primitive element. Let ei denote the

vector of length n having all components equal to zero, except the ith component,

which contains a one. Let C be a q-ary 1-perfect code, and let C+αjei be a translate

of C. Let Ti will denote the subspace spanned by the triples through the point i.

Assume Ti + xi ⊆ C, for some xi ∈ C. We shall define a switch to be the process of

the replacing the coset Ti + xi with the coset Ti + xi + αjei. The resulting code C ′

can be defined as

C ′ = (C\(Ti + xi)) ∪ (Ti + xi + αjei)

for some i ∈ {1, 2, . . . , n} and some j ∈ {0, 1, . . . , q − 2}.

Proposition 4.6. Given a q-ary Hamming code Hm of length n =
qm − 1

q − 1
, let Ti,

xi ∈ Hm. Then,

C ′ = (Hm\(Ti + xi)) ∪ (Ti + xi + αjei)

is a nonlinear q-ary 1-perfect code, ∀i ∈ {1, . . . , n} and ∀j ∈ {0, 1, . . . , q − 2}.

Proof: It’s easy to see that C ′ is not linear.

The code C ′ has the right number of codewords, so we only need to show that the

minimum distance is 3. Assume that c ∈ Hm\(Ti + xi) such that d(c, y) ≤ 2 for some

y ∈ Ti + xi + αjei. Then d(y − c, 0) ≤ 2, and y − c ∈ Hm + αjei, but this implies

that y − c ∈ Ti + αjei since the words of weight less than or equal to 2 in Hm + αjei

are the words v + αjei where v is a triple containing αj in the component i, or when

v = 0. Thus, y ∈ Ti + αjei + c = Ti + αjei + xi. In other words, c ∈ Ti + xi, but

c ∈ Hm\(Ti + xi), so the minimum distance is still three.

By the above proposition, once we have made one switch we have another q-ary

1-perfect code. In order to make 1-perfect codes of different ranks, we want to make

a series of switches such that we can switch T1 + x1 with T1 + x1 + αj1e1, T2 + x2

with T2 + x2 + αj2e2, . . . , Tm + xm with Tm + xm + αjmem. We can do this if Ti + xi

and Tk + xk are always disjoint for all k 6= i. We will see in the Proposition 4.10 that
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this is possible ∀m ≥ 4. In order to prove this result we need to know the dimension

of the subspaces Ti and the dimension of the intersection of two of these subspaces.

4.3.2 Subspaces Ti

Let Hm be a q-ary Hamming code of length n =
qm − 1

q − 1
. The parity check matrix

of Hm consist of n pairwise linearly independent columns vectors of length m over

Fq. From Hm we can construct a projective space PG(m− 1, q) of dimension m− 1

over Fq, where the points are the columns of the parity check matrix of Hm and three

points are in a line if the corresponding columns are linearly dependent (cf [BM75]).

Then, the elements of the support of a word of weight 3 are points that are in a line in

the projective space. We will say that {1, 2, . . . , k} is a set of independent points if the

corresponding columns of the parity check matrix are a set of independent vectors,

that is if in the projective space no set of three points are colinear.

Let x = (x1, x2, . . . , xn) ∈ Fnq , then the support of x is supp(x) = {i : xi 6= 0}.

Proposition 4.7. Given a q-ary Hamming code Hm, the dimension of Ti is qm−1−1,

∀i ∈ {1, . . . , n}.

Proof: If w ∈ Ti such that wt(w) = 3 and the i component is nonzero, then supp(w)

are points in one line through the point i of the projective space associated with the

q-ary Hamming code. Each line corresponds to a subcode isomorphic to the q-ary

code H2 (of dimension q−1). For each line there are q−1 linearly independent triples

that have their support in that line and generate this subcode. There are (n − 1)/q

lines through the point i, because in each line there are q+ 1 points. So, the number

of linearly independent words that generate Ti is

(q − 1)
(n− 1

q

)
= qm−1 − 1.

Lemma 4.8. Given a q-ary Hamming code H3, the dimension of Ti ∩Tj is q(q− 1)

∀i, j ∈ {1, . . . , n} i 6= j.
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Proof: The projective space corresponding to the q-ary Hamming code H3 is a plane

with n =
q3 − 1

q − 1
= q2 + q + 1 points. We will see that Ti ∩ Tj can be generated by

q(q − 1) linearly independent vectors, q − 1 of weight 3 and (q − 1)2 of weight 4.

Let Lij be the set of q + 1 points in the line that contain the points i and j. The

triples in Ti ∩ Tj have their support in Lij. Since for m = 2, n = q + 1 and we know

that Ti ∪ Tj = H2, dim(H2) = dim(Ti) + dim(Tj)− dim(Ti ∩ Tj) and by Proposition

4.7 dim(Ti ∩ Tj) = q − 1 + q − 1 − (q + 1 − 2) = q − 1. So, there are q − 1 linearly

independent triples.

Consider the words of weight 4 in Ti that are generated by two triples that come

from different lines containing i. Their support has two components in one line and

two components in another line through the point i. In each line we can choose q− 1

linearly independent triples such that contain i. We can fix one line, so there are q−1

different lines without the line Lij. In this way, we can construct (q− 1)2 quadruples

which are linearly independent vectors in Ti. The supports of these quadruples are

quadrangles in a projective plane.

Consider quadrangles in a plane determinated by lines through the points i and

j. Let z one of these quadruples. Without loss of generality, we can assume that

supp(z) = {1, 2, 3, 4} and {1, 2, i} and {3, 4, i} are the support of the two triples that

generate z. So, we can write z = (a, b, c, d, 0, . . . , 0), where a, b, c, d ∈ Fq. Given

the following vectors (a, 0, c, 0, . . . , 0) and (0, b, 0, d, 0, . . . , 0), there exist two words of

weight 3, v = (a, 0, c, 0, x, 0, . . . , 0) and w = (0, b, 0, d, 0, y, 0, . . . , 0). Since the code is

linear, z − v − w = (0, 0, 0, 0,−x,−y, 0, . . . , 0) ∈ H3 and then the component where

x and y are must be the same j in the line Lij and x = −y. We need to see that

the others words in Ti ∩ Tj can be generated by triples or quadruples. Suppose we

have w ∈ Ti ∩ Tj such that wt(w) > 4 with minimum weight. We can suppose that

the support of w contain at most one element of Lij, otherwise, if w = βek + γel + v,

where {k, l} ∈ Lij, there exist an unique word c = βek + γel + δes such that s ∈ Lij
and c ∈ Ti ∩ Tj. Then we could take w′ = w− c ∈ Ti ∩ Tj and wt(w′) < wt(w). Since

wt(w) > 4, w has at least 4 components that are not in Lij. We know w ∈ Ti, so
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the components not in Lij are in pairs in lines through the point i and with at most

one pair in each line. Since w ∈ Tj, we can say the same. Then, w = c + v, where

c ∈ Ti ∩ Tj and wt(c) = 4, so we can take w′ = w − c = v ∈ Ti ∩ Tj and we will have

wt(w′) < wt(w). This give us a contradiction since w has minimum weight.

Proposition 4.9. Given a q-ary Hamming code Hm, the dimension of Ti ∩ Tj is

(q − 1)qm−2 ∀i, j ∈ {1, . . . , n} i 6= j.

Proof: If m = 2, then n = q + 1 and by the same argument that in the proof of

Lemma 4.8, we have that dim(Ti ∩ Tj) = q − 1.

Let Lij the set of q + 1 points in the line that contain the points i and j. By the

above argument for m = 2, the elements in Ti ∩ Tj that have their support on Lij

can be generated by q − 1 linearly independent vectors. If m > 2, the dimension of

the projective space is m − 1 ≥ 2, so it contains planes. The number of planes that

contain the line Lij is
n− (q + 1)

q2
since the number of points besides the line Lij is

n− (q + 1) and in each plane there are q2 + q + 1, but only q2 not in Lij. By Lemma

4.8, there are q(q− 1) linearly independent vectors such that they have their support

on the points of a plane. Since q−1 vectors are in the line Lij contained in the plane,

we have (q − 1)2. So,

dim(Ti ∩ Tj) = q − 1 +
(n− (q + 1)

q2

)
(q − 1)2 = (q − 1)qm−2

4.3.3 Q-ary 1-perfect codes with different ranks

Now, as in [PL95] for the binary case, we can prove the following result that allow us

to make different switches.

Proposition 4.10. Let Hm be a q-ary Hamming code of length n =
qm − 1

q − 1
, m ≥ 4,

with {1, 2, . . . ,m} as a set of its independent points. Then, there exists x1, x2, . . . , xm

such that Ti + xi is disjoint from Tj + xj for all i, j ∈ {1, . . . ,m}, and j 6= i.
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Proof: The number of cosets of Ti is exactly

|C|
|Ti|

=
qn−m

qqm−1−1
= q

qm−1
q−1

−m−qm−1+1

Each switch affects at most

|Ti|
|Ti ∩ Tj|

= qq
m−1−1−(q−1)qm−2

of these cosets. Then, if there are m cosets selected, there are at most

mqq
m−1−1−(q−1)qm−2

cosets which intersect these chosen ones. So, we need to prove that

mqq
m−1−1−(q−1)qm−2

<< q
qm−1
q−1

−m−qm−1+1

This can be reduced to the following expression since logq is an increasing function

logq m+ qm−1 − 1− (q − 1)qm−2 <<
qm − 1

q − 1
−m− qm−1 + 1

and by simplifying, we get

m+ logq m− 2 <<
qm−2 − 1

q − 1

Notice that if m = 3, we need that 1 + logq3 << 1, but logq3 > 0. If m = 4, we

have to prove that logq4 << q−1. This is true for q = 3 and for q ≥ 4 since logq4 ≤ 1.

For q = 2 and m = 4, as it is said in [PL95], we can still find a series of switches using

a more careful inclusion/exclusion argument or a simple brute force search. If m > 4

the former equation is true, since m+logqm−2 and
qm−2 − 1

q − 1
= qm−3+qm−4+· · ·+q+1

are increasing functions and
qm−2 − 1

q − 1
increase quicker than the other one.

Theorem 4.11. Let Hm be a q-ary Hamming code of length n =
qm − 1

q − 1
, m ≥ 4,

with {1, 2, . . . ,m} as a set of its independent points. Let

C ′ =
(
Hm\

s⋃
i=1

(Ti + xi)
)
∪

s⋃
i=1

(Ti + xi + αjiei)

where ji ∈ {0, 1, . . . , q − 2} ∀i ∈ {1, . . . , n} and α is a primitive element of Fq. Then

r(C ′) = n−m+ s, ∀s ∈ {1, . . . ,m}.
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Proof: If s = 1, then C ′ = (Hm\(T1 + x1) ∪ (T1 + x1 + αj1e1). The elements of

T1 +x1 +αj1e1 can not be generated by the elements of Hm. Since we need the vector

e1, the rank of C ′ is r(C ′) = n−m+ 1.

Suppose that

C ′ =
(
Hm\

s−1⋃
i=1

(Ti + xi)
)
∪

s−1⋃
i=1

(Ti + xi + αjiei)

r(C ′) = n−m+s−1 and 〈C ′〉 is generated by the elements of Hm and e1, e2, . . . , es−1.

Since {1, 2, . . . , s} is a set of independent points ∀s ≤ m, there are not any codeword

such that its support is a subset of {1, 2, . . . , s}, so es can not be generated by the

elements of Hm and e1, e2, . . . , es−1. Then

C ′′ = (C ′\(Ts + xs)) ∪ (Ts + xs + αjses)

=
(
Hm\

⋃s
i=1 (Ti + xi)

)
∪
⋃s
i=1 (Ti + xi + αjiei)

has rank n−m+ s.

By Theorem 4.11, we proved that starting from the q-ary Hamming code, Hm,

of length n =
qm − 1

q − 1
and using the switching construction we can construct q-ary

1-perfect codes of length n =
qm − 1

q − 1
for m ≥ 4 with all possible different ranks.

We know that also exist nonlinear 1-perfect q-ary codes, for m = 2 if q is a prime

power q 6= 4 or 8 and for m = 3 if q ≥ 3, [Vas62], [Sch68], [Lin69]. For these cases and

using the ideas developed in this section, we can only construct nonlinear 1-perfect

q-ary codes of rank r(C) = n −m + s for some s ∈ {1, . . . ,m}. Actually, if m = 2

then H2 = Ti ∀i ∈ {1, . . . , q + 1}, since dim(H2) = dim(Ti) and Ti ⊆ H2. So, we

can not use our construction to get nonlinear 1-perfect q-ary codes of length q+ 1. If

m = 3, q ≥ 3, then Ti ⊂ H3 since dim(H3) > dim(Ti) ∀q ≥ 3. In this case, we can at

least make one switch, C ′ = (H3\(Ti + xi)) ∪ (Ti + xi + αjiei), so r(C ′) = n−m+ 1,

but we can not assure that if {1, 2, 3} is a set of independent points in H3, there exist

x1, x2 or x1, x2, x3 such that ∀i, j ∈ {1, 2, 3} Ti + xi is disjoint from Tj + xj for j 6= i.
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Chapter 5

Conclusions

In this dissertation new results about the rank and the kernel of perfect codes are

presented. These two parameters are interesting to study nonlinear perfect codes.

We focused on 1-perfect codes over a prime power alphabet, since it is known it is

the only one for which there exist nonlinear perfect codes.

In this work several results about binary 1-perfect codes and, in general, about

q-ary 1-perfect codes, where q is a prime power are obtained. For binary 1-perfect

codes we studied for what pairs of numbers (r, k) does there exist a binary 1-perfect

code C of length n = 2m − 1 having r(C) = r and k(C) = k. For q-ary 1-perfect

codes, we were interested in generalizing previous results about the rank of binary

1-perfect codes proving the existence of q-ary 1-perfect codes of length n =
qm − 1

q − 1
with any possible rank.

In this chapter we will summarize the obtained results and we will give the conclu-

sions of this work. Then, we will point out possible future lines of research regarding

rank and kernel of perfect codes.

85
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5.1 Results of the dissertation

5.1.1 Binary 1-perfect codes

In chapter 3, we proved the following results on the rank and the kernel of binary

1-perfect codes.

First, in order to give the lower bound on the dimension of the kernel of a binary

1-perfect code in terms of the rank of the code, in section 3.1 some properties on the

structure of 1-perfect codes are presented. The first one characterizes 1-perfect codes

and the second one describes the subcodes of a 1-perfect code C.

We remember some notation. For any binary code C of length n and minimum

distance 3, we defined for each codeword x ∈ C a neighborhood triple system

NTS(x) = {x+ y : y ∈ C, d(x, y) = 3}

Given a subspace D of Fn2 we defined the set of coordinates

SD = {i : ci = 0 ∀(c1, c2, . . . , cn) ∈ D}

Given a subset of coordinates S ⊂ V = {1, 2, . . . , n}, and a codeword y ∈ C we

defined

CS(y) = {xS : x ∈ C, xi = yi ∀i 6∈ S}

where xS is the restriction of the codeword x to the subset of coordinates S. The

characteristic vector χ(S) for S ⊂ V is the binary vector of length n that has 1 in

the ith coordinate if and only if i ∈ S.

Theorem 5.1. A code C of length n and minimum distance 3 is a 1-perfect code if

and only if every neighborhood triple system is a Steiner triple system.

Theorem 5.2. Given a 1-perfect code C of length nm = 2m−1 and its dual code C⊥,

then for every subspace D ⊆ C⊥ of dimension m − s, s > 0, and for every y ∈ C,

the subcode CSD(y) is a 1-perfect code of length ns = 2s− 1 where SD is as above, the
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set of coordinates which are zero in every codeword of D. Moreover, when s > 1, the

characteristic vector χ(SD) is in the kernel of C.

From Theorem 5.2, we proved next result which gives the lower bound of the

kernel of a 1-perfect code since the rank is fixed.

Theorem 5.3. Let C be a 1-perfect code of length nm = 2m−1, rank r(C) = n−m+s

and a kernel of dimension k(C), then

k(C) ≥ 2m−s if s > 1

k(C) ≥ 2m−1 − 1 if s = 1

Phelps and LeVan [PL95] proved the following result, which leads us this bound

is the exact lower bound. Actually, we have this result from Theorem 2.30 and 2.36,

where it is shown the construction of these codes using the switching technique.

Theorem 5.4. [PL95] For all m ≥ 4, there exists a 1-perfect code of length n = 2m−1,

with rank n−m+ s and kernel of dimension k = 2m−s when s > 1 and k = 2m−1− 1

when s = 1.

An upper bound on the dimension of the kernel of a 1-perfect code in terms of

the rank was given by the following result, which is a generalization of an argument

due to Etzion and Vardy, [EV98].

Theorem 5.5. A 1-perfect code of length n = 2m − 1 with rank n − m + s and a

kernel of dimension n−m− δ fulfills 2δ − δ − 1 ≥ s.

For the extreme case s = m, Etzion and Vardy [EV98] gave the same upper bound

∀m ≥ 5 and a construction of full-rank 1-perfect codes that achieve this bound when

m ≥ 10. In section 2.5.3 this construction is included by proving Theorem 2.47. For

s = m = 4, Theorem 5.5 says the upper bound is 8. In [EV98] it is showed a better

upper bound, 7, but it was not proved it were tight.
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The table in page 40 shows for which pairs (r, k) there exists a binary 1-perfect

code of length 15 (m = 4) constructed using the Doubling construction and having

r(C) = r and k(C) = k, [Phe00]. From this table, we can assure this upper bound

is tight for m = 4 and 0 ≤ s < m. Actually, from Theorem 5.3 and 5.5, we can also

say it is possible to construct a 1-perfect code of length 15 for any rank 11 + s with

0 ≤ s < 4 and for any possible dimension of the kernel between the lower and upper

bound. The only open remaining question for length 15 is about full-rank 1-perfect

codes with kernel of dimension 6 or 7.

In section 3.3, we generalized the previous result to any length showing this bound

is tight for m > 4 and 0 ≤ s < m. The extreme case s = m, that is the construction

of full-rank 1-perfect codes with maximum dimension of the kernel, will still remain

open for 4 ≤ m < 10. In order to establish this upper bound we proved some results

on Hamming codes. Let Ti denote the subspace generated by the words of weight 3

that have a one in the ith coordinate.

Lemma 5.6. For each m ≥ 4 and s ∈ {1, . . . ,m}, there exist two Hamming codes

H1, H2 of length n = 2m − 1 such that

H⊥1 ∪H⊥2 ⊆<
⋃
i∈I

Ti >
⊥ and dim(H⊥1 ∪H⊥2 ) = m+ s

where I is a set of m− δ independent coordinates, if 2δ − δ − 1 ≥ s and δ < m.

Theorem 5.7. Given Hamming codes H1 and H2 of length 2m−1 and s ∈ {1, . . . ,m}
such that

H⊥1 ∪H⊥2 ⊆<
⋃
i∈I

Ti >
⊥ and dim(H⊥1 ∪H⊥2 ) = m+ s

there exists a 1-perfect code C of length n′ = 2m
′ − 1, where m′ = m + 1, which has

rank n′−m′+s and a kernel of dimension n′−m′−δ where δ is the minimum integer

such that 2δ − δ − 1 ≥ s.

If m ≥ 4, and s ∈ {1, . . . ,m} there exists at least one δ such that 2δ − δ − 1 ≥ s

and δ < m. So, Lemma 5.6 and Theorem 5.7 lead to that the upper bound is tight

∀m ≥ 5 and s < m.
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In order to prove the previous theorem we established some results on the rank

and the kernel of 1-perfect codes constructed with the Doubling construction due

to Phelps and Solov’eva. We also used these results to construct 1-perfect codes of

different ranks and dimensions of the kernel. Next we describe again this construction.

Let C1 be a 1-perfect code of length n and C∗2 be an extended 1-perfect code of

length n+ 1. By Proposition 2.6, the code

C = (C1 ⊕ C∗2)
n⋃
i=1

(C1 + ei ⊕ (C2 + eπ(i))
∗)

where π is a permutation on the set {1, 2, . . . , n} is a 1-perfect code of length 2n+ 1.

Theorem 5.8. The rank of an 1-perfect code C of length 2n+ 1 constructed with the

Doubling construction taking the identity permutation is 2n− r(C⊥1 ∩ C⊥2 ).

Theorem 5.9. The kernel of an 1-perfect code C of length 2n + 1 constructed with

the Doubling construction taking the identity permutation is

(K1 ⊕K∗2)
⋃
i∈I

(K1 + ei ⊕ (K2 + ei)
∗)

where K1 and K2 are the kernels of C1 and C2 respectively and I = {i : Ti ⊆ K1∩K2}.

Lemma 5.6 gives a construction of Hamming codes which allows us to obtain

∀s ∈ {1, . . . ,m− 1} 1-perfect codes of length n = 2m − 1, rank n−m+ s and kernel

of dimension n−m−δ, where δ is the minimum integer such that 2δ−δ−1 ≥ s, that

is, kernel with maximum dimension, using the Doubling construction. But, in fact, a

stronger result is proved that will allow to construct in a similar way 1-perfect codes

with rank n−m+ s ∀s ∈ {2, . . . ,m− 1} and dimension of the kernel n−m− δ for

any δ such that 2δ − δ − 1 ≥ s and δ < m.

Lemma 5.10. For each m ≥ 3 and s ∈ {2, . . . ,m}, there exist two Hamming codes

H1, H2 of length n = 2m − 1 such that

<
⋃
i∈I

Ti >⊆ H1 ∩H2 dim(H⊥1 ∪H⊥2 ) = m+ s
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and {k | Tk ⊆ H1 ∩ H2} = {k | Tk ⊆<
⋃
i∈I Ti >}, where I is a set of m − δ

independent coordinates, if 2δ − δ − 1 ≥ s and δ ≤ m.

Theorem 5.11. For each m ≥ 4 and s ∈ {2, . . . ,m−1}, there exists a 1-perfect code

C of length n = 2m−1 which has rank n−m+s and a kernel of dimension n−m−δ,
where 2δ − δ − 1 ≥ s and δ < m.

For each m ≥ 4 and s ∈ {2, . . . ,m − 1}, in other words the above theorem says

that there exists a 1-perfect code C of length n = 2m− 1, with rank n−m+ s and a

kernel of any dimension between the upper bound and 2(n′−m′), where n′ = 2m−1−1

and m′ = m − 1. This is because the maximum δ such that δ < m is m − 1 and in

this case the dimension of the kernel is n−m− (m− 1) = n− 2m+ 1 = 2(n′ −m′).
For s = 1, in [PL95] it is proved that we can construct 1-perfect codes with any

dimension of the kernel between the lower and upper bounds using the Switching

construction. This result shows that from a Hamming code, Hm, we can make one

switch and have a 1-perfect code C, such that the rank is r(C) = n−m+ 1 and the

kernel has any dimension, (n− 1)/2 ≤ k(C) ≤ n−m− 2.

Using the Doubling construction, we showed how to construct 1-perfect codes with

different ranks and different dimensions of the kernel between the lower and upper

bound. By Theorem 5.9, since the kernel of C is

(K1 ⊕K∗2)
⋃
i∈I

(K1 + ei ⊕ (K2 + ei)
∗)

where K1 and K2 are the kernels of C1 and C2 respectively and I = {i : Ti ⊆ K1∩K2},
we were interested in results that will say how many Ti are in K1 ∩K2. We proved

the following result which corresponds to I = ∅.

Proposition 5.12. If there exist two 1-perfect codes of length n = 2m−1 with kernels

of dimension k1 and k2 respectively and ranks n− r1 and n− r2, r1 ≤ r2, then there

exists a 1-perfect code C of length 2n + 1 with kernel of dimension k(C) = k1 + k2

and rank r(C) = 2n− r1 if r1 ≤ m− 2.
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Summarizing, in chapter 3, we proved we can construct the following binary 1-

perfect codes of length n = 2m − 1, m ≥ 4.

• 1-perfect codes of length n = 2m − 1 with the lower and upper bounds of the

dimension of the kernel for a fixed rank except full-rank 1-perfect codes with

the upper bound if 4 ≤ m < 10 (using the results in sections 3.2 and 3.3).

• 1-perfect codes of length n = 2m − 1 with the dimension of the kernel near the

upper bound, exactly between 2(n′−m′), where n′ = 2m−1−1 and m′ = m−1,

and the upper bound except for full-rank 1-perfect codes (using section 3.5).

• 1-perfect codes of length n = 2m− 1 with rank r(C) = n−m+ 1 and with any

dimension of the kernel between the lower and upper bounds. From a Hamming

code of length n = 2m− 1, Hm, we can make one switch and obtain a 1-perfect

code C, with rank r(C) = n − m + 1 and the kernel with any dimension,

(n− 1)/2 ≤ k(C) ≤ n−m− 2, [PL95].

• 1-perfect codes of length n = 2m−1 constructed using Proposition 5.12 and the

pairs (r(C), k(C)) for which it is known there exists a 1-perfect code of length

2m−1 − 1 having rank r(C) and kernel of dimension k(C) (using section 3.7).

For example, for length 31 and 63 we summarize all these results in the following

tables. The question mark sign means that by using the previous results we do not

know if there exist 1-perfect codes with these parameters.

r(C) k(C)

26 26

27 24 23 22 . . . . . . . . . . . . . . . 15

28 23 22 ? . . . ? 19 . . . . . . 8

29 23 22 ? . . . ? 19 . . . . . . . . . 4

30 23 22 ? . . . . . . ? 16 . . . . . . . . . 2

31 ? . . . . . . . . . . . . . . . . . . . . . . . . ? 1
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r(C) k(C)

57 57

58 55 54 53 52 . . . . . . . . . . . . 31

59 54 53 52 ? . . . ? 49 . . . . . . . . . 16

60 54 53 52 ? . . . ? 49 . . . . . . . . . . . . 8

61 54 53 52 ? . . . ? 49 . . . . . . . . . . . . . . . 4

62 53 52 ? . . . . . . . . . ? 27 25 . . . . . . . . . 2

63 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ? 1

The previous tables show we can not obtain 1-perfect codes for all the different

dimensions of the kernel between the lower and upper bound for a fixed rank. Even

if we knew how to construct full-rank 1-perfect codes for any k(C) and any length,

we would not obtain all the others.

5.1.2 Q-ary 1-perfect codes

In chapter 4, we proved the following results on the rank of q-ary 1-perfect codes.

First, we generalized an approach of the Switching construction to construct q-ary

1-perfect codes. We remember that Ti denote the subspace of Fnq generated by the

words of weight 3 that have a one in the ith coordinate.

Proposition 5.13. Given a q-ary Hamming code Hm of length n =
qm − 1

q − 1
, let Ti,

xi ∈ Hm. Then,

C ′ = (Hm\(Ti + xi)) ∪ (Ti + xi + αjei)

is a nonlinear q-ary 1-perfect code, ∀i ∈ {1, . . . , n} and ∀j ∈ {0, 1, . . . , q − 2}.

By the above proposition, once we have made one switch we have another q-ary

1-perfect code. In order to make 1-perfect codes of different ranks, we want to make

a series of switches such that we can switch T1 + x1 with T1 + x1 + αj1e1, T2 + x2

with T2 + x2 + αj2e2, . . . , Tm + xm with Tm + xm + αjmem. We saw we can do this

∀m ≥ 4 because we can choose x1, x2, . . . xm such that Ti + xi and Tk + xk are always
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disjoint for all k 6= i. In order to prove this result, the dimension of the subspaces Ti

and the dimension of the intersection of two of these subspaces are computed.

Finally, on the rank of q-ary 1-perfect codes, the existence of q-ary 1-perfect

codes of length n =
qm − 1

q − 1
with any possible rank, ∀m ≥ 4 is established. This is a

generalization of Theorem 2.23, due to Etzion and Vardy [EV98], but using techniques

developed by Phelps and LeVan [PL95].

Theorem 5.14. Let Hm be a q-ary Hamming code of length n =
qm − 1

q − 1
, m ≥ 4,

with {1, 2, . . . ,m} as a set of its independent points. Let

C ′ =
(
Hm\

s⋃
i=1

(Ti + xi)
)
∪

s⋃
i=1

(Ti + xi + αjiei)

where ji ∈ {0, 1, . . . , q − 2} ∀i ∈ {1, . . . , n} and α is a primitive element of Fq. Then

r(C ′) = n−m+ s, ∀s ∈ {1, . . . ,m}.

We know that also exist nonlinear 1-perfect q-ary codes, for m = 2 if q is a prime

power q 6= 4 or 8 and for m = 3 if q ≥ 3, [Vas62], [Sch68], [Lin69]. For these cases and

using the ideas developed in section 4.3, we can only construct nonlinear 1-perfect

q-ary codes of rank r(C) = n −m + s for some s ∈ {1, . . . ,m}. Actually, if m = 2

then H2 = Ti ∀i ∈ {1, . . . , q + 1}, since dim(H2) = dim(Ti) and Ti ⊆ H2. So, we

can not use our construction to get nonlinear 1-perfect q-ary codes of length q+ 1. If

m = 3, q ≥ 3, then Ti ⊂ H3 since dim(H3) > dim(Ti) ∀q ≥ 3. In this case, at least

we can make one switch, C ′ = (H3\(Ti +xi))∪ (Ti +xi +αjiei), so r(C ′) = n−m+ 1,

but we can not assure that if {1, 2, 3} is a set of independent points in H3, there exist

x1, x2 or x1, x2, x3 such that ∀i, j ∈ {1, 2, 3} Ti + xi is disjoint from Tj + xj for j 6= i.

5.2 Future research

Since there are still some open questions in our work, in this section we would like to

point out some possible lines for pursuing future research.

For binary 1-perfect codes:
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• We established the exact upper and lower bounds on the dimension of the kernel

of binary 1-perfect codes of length n = 2m − 1, once the rank is fixed, except

for one case. It would be nice to solve this case, that is to know the exact

upper bound of the dimension of the kernel for full-rank binary 1-perfect codes

of length n = 2m − 1, 4 ≤ m < 10.

• Although we have obtained a large number of binary 1-perfect codes with dif-

ferent ranks and different dimensions of the kernel we did not completely settle

the question for what pairs of numbers (r, k) does there exist a binary 1-perfect

code C of length n = 2m − 1 having r(C) = r and k(C) = k. We think it is

possible to look into this problem proving some results using the Doubling and

Switching construction.

• It would be also interesting to completely settle the question for length 15. In

this case the only open question is whether there exist full-rank 1-perfect codes

with kernel of dimension 6 and 7. As we saw in section 2.5.3, this problem is

equivalent to the existence of a full-rank tiling of Fn2 for n = 8 and 9.

• In order to obtain whether there exist binary 1-perfect codes of length n = 2m−1

with any rank and any dimension of the kernel between the lower and the upper

bound, it would be useful to know how to construct full-rank 1-perfect codes of

length n = 2m−1 − 1 with different kernels.

For q-ary 1-perfect codes:

• We established the existence of q-ary 1-perfect codes of length n =
qm − 1

q − 1
with any possible rank, ∀m ≥ 4. Actually, we know that also exist nonlinear

1-perfect q-ary codes, for m = 2 if q is a prime power q 6= 4 or 8 and for m = 3

if q ≥ 3. It would be interesting to construct q-ary 1-perfect codes with any

possible rank for these cases.
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• The kernel of q-ary 1-perfect codes has not been studied before. It would be nice

to generalize Theorem 2.24 which establishes the existence of binary 1-perfect

codes with kernels of all possible sizes, to q-ary 1-perfect codes.
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