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Abstract

The main goal of this thesis is to deal with the colour texture representation problem
from a computer vision point of view. It is easy to demonstrate that the extension
of classical grey level methods for texture processing to the three channels of the
corresponding colour texture does not succeed in having a human-like behaviour on
this visual task. Chromatic induction mechanisms of the human visual system, that
has been widely studied in psychophysics, plays an important role on the dependency
of the colour perception from its surround. Chromatic induction includes two com-
plementary e�ects: chromatic assimilation and chromatic contrast. While the former
has been psychophysically measured and lately extended to computer vision, some
aspects on the last one still remain to be measured. The main contribution of this
thesis is a computational operator that simulates the contrast induction phenomena
that has demonstrated a coherent behaviour on di�erent texture colour perception
problems, since it allows to emphasise colour di�erences on almost-unimodal colour
distributions and consequently improving the segmentation of colour regions. An open
problem that will remain open from this work is the psychophysical measurement of
the operator parameters, in the same sense as it was done with the s-cielab for the
assimilation process.

A perceptually-consistent colour texture computational representation is a goal of
extreme importance in automatic colour-textured surface inspection problems, where
the classic colorimetric tools does not succeed in given good colour appearance mea-
surements. In this scope, a second contribution is a colour-texture representation
based on global colour features considering colour assimilation and local features
based on properties of colour blobs considering colour contrast. This representation
is applied to an automatic tile classi�cation problem.

Since an important accuracy is needed to measure such small di�erences, we have
devoted a great part of this work to the colour acquisition issue, and to the problem
of achieving good colour constancy properties on the acquired images. In this sense,
a last contribution of this work has been to de�ne an on-line colour constancy algo-
rithm for a high colour precision scan line camera based on a diagonal linear colour
constancy model previously guaranteed by linear transform changing the camera sen-
sitivity properties.
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Resum

El principal objectiu d'aquest treball de tesi �es tractar el problema de la representaci�o
de la textura en color des del punt de vista de la visi�o per computador. No �es dif��cil
demostrar que l'extensi�o dels m�etodes classics de processament de textura per imatges
en nivells de grisos a cada un dels tres canals d'una imatge en color no �es sin�onim
d'assolir resultats semblants als de la percepci�o humana en aquesta tasca. Els mecan-
ismes d'inducci�o crom�atica del sistema visual hum�a, que han estat �ampliament estudi-
ats en psicof��sica, tenen un paper molt important en la depend�encia que crea l'entorn
en la percepci�o del color. La inducci�o crom�atica inclou dos efectes complementaris:
l'assimilaci�o crom�atica i el contrast crom�atic. Mentre el primer ja ha estat mesurat
des de la psicof��sica i ext�es a la visi�o per computador, molts aspectes del segon encara
queden per fer. La contribuci�o principal d'aquesta tesi �es la de�nici�o d'un operador
computacional que simula el fen�omen del contrast crom�atic i que t�e un comportament
coherent amb el del sistema visual hum�a en diferents problemes de la percepcci�o de
la textura en color, ja que permet enfatitzar les difer�encies de color en distribucions
que s�on quasib�e unimodals i conseq�uentment millorar la segmentaci�o de les petites
regions de color. El problema que encara queda obert despr�es d'aquest treball, �es la
realitzaci�o de mesures psicof��siques pels par�ametres de l'operador de�nit, tal com es
va fer amb l's-cielab per al proc�es de l'assimilaci�o.

La de�nici�o de representacions computacionals de textura i color que siguin per-
ceptuals �es un objectiu de gran import�ancia en els problemes d'inspecci�o autom�atica
de superf��cies en els que els dispositius de la colorimetria cl�assica no permeten donar
bones mesures d'aparen�ca de color. La segona contribuci�o d'aquesta tesi, s'emmarca
en aquest �ambit, i de�neix una representaci�o computacional basada en mesures glob-
als de color que inclouen l'assimilaci�o de color i mesures locals de les propietats de
les regions segmentades considerant el contrast crom�atic. Aquesta representaci�o �es
aplicada al problema de la classi�caci�o autom�atica de gres porcel�anic.

Tenint en compte que s'han de realitzar mesures molt acurades de petites difer�encies,
s'ha dedicat una gran part d'aquest treball al tema de l'adquisici�o d'imatges en color,
i en concret al problema d'aconseguir bones propietats de const�ancia de color a les
imatges adquirides. En aquest sentit, la darrera contribuci�o d'aquest treball ha estat
la de�nici�o d'un algorisme de cont�ancia de color en l��nea per a una c�amera lineal
amb alta precisi�o de color. Aquest m�etode s'ha basat en el model lineal diagonal de
const�ancia de color pr�eviament garantit amb una transformaci�o lineal que canvia les
propietats de la sensibilitat de la c�amera.
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Chapter 1

Introduction

The aim of this thesis is the computational representation of two surface properties:

colour and texture. To build computational representations of visual information is

an essential goal in the computer vision �eld in which this thesis is framed. A com-

putational texture-colour representation has to allow building automatic descriptions

of surfaces that can help in a wide range of computer vision tasks. A large number of

works have been reported in the last decades on these two properties separately. But,

for the last years the number of works dealing with both properties at the same time

is increasing considerably. In this chapter we give a brief review of previous works on

colour and texture to put the scope of this thesis within the computer vision �eld.

1.1 Surface properties

Any natural scene in the world is projected on our retina as a map of di�erent regions
that are the projections of 3D surfaces. The properties of these projected surfaces
are concrete perceptions derived from speci�c positioning conditions of the surfaces
in the scene and the observer, and the lighting conditions that provoke the neuronal
excitation of the visual system. In computer vision, people usually work with the
following set of surface properties: shape, orientation, colour and texture. In this
work we will only deal with the last two.

Up to this point, we have only revealed one of the two goals of this thesis. The
second goal of this thesis is also to develop the engineering background to take the
computational texture colour representation to make it works on a real system ready to
solve problems of automatic measurement of surface properties in the industry. A wide
range of automatisation of industrial problems requires the measurement of coloured
surfaces. These measurements are easily solved using calibrated colorimetric devices
specially developed to measure colour-homogeneous surfaces. This solution fails when
surfaces are coloured textures. Colorimetric measurements on colour texture surfaces
give a quantitative measurement that is the result of a colour integration over the
surface, and two very di�erent colour textures can give similar measurements even
though they have a very di�erent spatial appearance, this is the case for the three

1
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Figure 1.1: Images with the same colour mean but di�erent appearance

images shown in �gure 1.1 that share the same colour mean but a very di�erent colour
texture appearance.

In the next sections we will give a brief outline on how colour and texture have
been treated in computer vision.

1.1.1 Colour

Colour is the visual cue derived from the human visual processing of the electromag-
netic radiation that reaches the retina [78]. This process can be seen as a change in
representation, which, in general, implies a dimensionality reduction. Although colour
has not been given much importance in the �rst decades of computer vision, since
most of the previous work in computer vision has been made for grey level images, the
situation has changed and colour has become a very important visual cue for most of
the vision tasks, such as object recognition [47], image indexing [100], tracking [66],
shape extraction from colour variations [16], etc.

To introduce colour cue in the visual tasks we must take into consideration the
variability of this visual stimulus. Colour perception is always dependent on the
context: the illuminant, the receptor sensibility and the scene geometry have a great
in
uence on the perceived scene. The human visual system presents a chromatic
adaptation ability, which allows avoiding in some sense those context in
uences over
the �nal perception. Any system doing a visual task involving colour processing
should always take into account the colour constancy problem. This problem has
been the topic of a lot of research that will be reviewed in chapter 3.

1.1.2 Texture

Texture is the visual cue derived from non-homogeneous surfaces in the scenes. De-
pending on the surface re
ectance, positioning of the observer and lighting conditions,
we can obtain di�erent texture images from the same surface. Although there are
some recent works dealing with the recovery of the physical re
ectance properties of
a texture [25, 48] and some other works that have recovered 3D shape information
from texture [115, 44], the most traditional approach in computer vision has been the
analysis of the texture images without taking considerations on the image formation
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process. Extensive reviews can be found in [49, 111, 103, 90], where it is shown that
texture has been studied for di�erent purposes such as segmentation, classi�cation or
synthesis. Despite the large number of works, there is still a lack of a standard texture
de�nition and does not exist a widely accepted texture representation space, as it ex-
ists for colour. Interesting works directed to de�ne a standard texture space based on
perceptual considerations has to be considered [89, 88, 101], since this kind of work
could be the basis to establish a standard computational representation. Before to go
deeply on computational representations we will do a short inside on psychophysics
theories on texture perception, that have been the basis for some of the works in
computer vision.

In psychophysics, the aim has been to understand how the human visual system
represents textures and which are the mechanisms used for texture segregation. Tex-
ture is one of the most complex visual cues and for the moment there is not a unique
accepted theory. Two basic approaches are confronted as being the basis for a vi-
sual internal representation of texture. On one hand, feature extraction processes
have received a hard support from the Julesz's texton theory [62], and on the other
hand a global spatial frequency analysis seems to be indispensable as it has been
demonstrated by J. Beck et al in [7]. Let us go deeply in these two approaches.

The �rst approach, the Julesz's texton theory is based on the fact that di�erences
between two textures, are due to di�erences in the �rst order statistics, or densities, of
the texton attributes, it ignores the positional relationships between adjacent textons.
Texton attributes are de�ned as the blob properties, that is, size and contrast for
general blobs, and orientation for elongated blobs. Other textons can be line endings
or terminators, but a more exhaustive list of texton has not been developed yet.
Although all the texton theory conclusions are based on psychophysical experiments,
Julesz associates the feature extractors with simple or complex cortical receptive �elds
described by Hubel and Wiesel in 1968.

The second approach, leaded by J. Beck [7] and supported by other researchers
[52, 51] advocates that, di�erences on �rst order statistics of local properties indepen-
dently of the blob arrangement is not enough to be able to capture the segregation of
textures, since in a wide range of cases, di�erences are due to patterns emerging from
the di�erent arrangements of image blobs. In these cases a global spatial-frequency
analysis is needed in order to represent di�erent textures.

In �gure 1.2 we demonstrate the complementary character of these two approaches.
While the textures (a) and (b) can be easily di�erentiated in the frame of the Julesz's
texton theory due to di�erences on blob contrast; textures (b) and (c) are equals
from this theory, since there is no di�erence in terms of texton attributes. Di�erences
between textures (b) and (c) can be easily derived in the frame of a of a global
frequency analysis, for which a di�erence in emergent orientations can be considered.

Considering the conclusions from psychophysical theories, di�erent approaches
have been followed to solve problems involving di�erent visual tasks in computer
vision. We brie
y summarise the taxonomy proposed by Tuceryan et al in [103]:

Geometrical approach Texture is described by the set of textural primitives that
composes the image, therefore a texton isolation step is always needed. Once the
basic elements have been extracted, two approaches are essentially used. One
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(a) (b) (c)

Figure 1.2: Examples of textures formed by simple blobs and their emergent pat-

terns.

computes statistical properties of the extracted elements and their attributes
[105]. The second one extracts the placement rules that organise these shapes
in the texture [41], this last approach is called a structural approach.

Model-based approach Texture is considered as the realisation of a concrete math-
ematical model, hence it is de�ned by the model parameters. From a method-
ological point of view this is the most well de�ned solution, problems can arise
from generality, it does not exist a unique model that can represent any natural
texture. Interesting texture models can be seen in [1, 54, 61, 87, 23]

Filtering approach Texture is described by the responses of convolving a set of �l-
ters with the image. This approach is based on the previous introduced idea
of the existence of an spatial-frequency global analysis of the textures in the
human visual system. Malik and Perona in [71] proposed a global preatten-
tive texture perception model based on neuro-physiological and psychophysical
considerations. A global Fourier-based analysis of textures has been recently
proposed in [39] and when spatial dependency is needed the Gabor transform
has been used [59, 73].

From all these approaches, di�erent visual tasks can be carried out. In texture seg-
mentation, region-based or edge-based mechanisms have been used, all these methods
try to evaluate when two small regions have a uniform texture or, on the contrary, have
di�erent textures. The general problem of texture representation has been mainly de-
veloped for image retrieval, image annotation or image classi�cation. In all these
problems the �nal goal is to build a feature vector expressing an enough quantitative
measure of the image content. The rest of this work will be devoted to study how
texture and colour can be combined considering these previous experiences on gray
level textures.
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(a)

(b) (c) (d)

Figure 1.3: (a) A colour image. (b) Red channel of (a), (c) Green channel of (a),

(d) Blue channel of (a).

1.2 Colour and Texture

Colour texture representation is a current topic in computer vision. Although both
are properties of a surface as we have just introduced, these two visual cues have been
usually studied separately. One reason is that while colour is a point feature given
by the value of a pixel in several bands or channels, texture has to be modeled as a
spatial relationship of the point with its neighbours. The trichromatic representation
of colour images taken from common imaging devices has provoked an important
dependency, that is probably not the best to deal with these two dependent properties.
In �gure 1.3 we can see the RGB channel representation of a colour image, where we
can observe that the spatial information of the colour image is not present in the
separate channels and therefore speci�c representations have to be constructed in
order to deal with both cues at the same time.

The study of colour texture representations has received an increasing attention.
The objective of many researchers has been to �nd co{joint representations of spa-
tial and chromatic information which capture the spatial dependence (in particular,
correlation) within and among spectral bands. One of the most frequent approaches
is the construction of a feature vector mixing grey level texture features and colour
features [19, 102]. Another one is to extend classical texture models, such as Markov
Random �elds and the autocorrelation function, in order to deal with multichannel
images [82, 53]. Other works, like [42], convert RGB values into a single code from
which texture measurements are computed as if it were a grey scale image. Spatio{
chromatic representations are computed in [17, 37] over the smoothed Laplacian of
the image, and the structural tensor that is usually used to represent local texture
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properties is extended to colour images in [113].

Finally, there are some works that have been in
uenced by known perceptual
mechanisms of the human visual system, where the interaction of colour with the
spatial frequency of the coloured patterns is considered [84, 80]. These works have
considered some important conclusions from psychophysical experiments on colour
texture interaction which are the conclusions of some works [2, 85, 109, 119, 118]. The
contributions of these works and its application to computer vision will be reviewed in
more detail in chapter 4. This perceptual mechanism simulates the colour assimilation
phenomenon of the human visual system that is a�ected by a spatial blurring of
the colour representation when looking at colour textures presenting high spatial
frequencies.

In this work we will present a complementary operator that will allow simulating
the colour contrast phenomenon that appears in the visual system when looking at
colour textures presenting low spatial frequencies.

1.3 Thesis Outline

The content of this thesis work has been organised in �ve chapters. Chapter 1 is the
introduction we have done above. We have introduced the thesis goals and a brief
introduction on how colour and texture have been studied in computer vision.

Chapter 2 is devoted to explain the design of a colour image acquisition system.
Since one of the �nal goals of this work is to design a vision system able to measure
colour appearance on textures as colorimetry does on homogeneous surfaces, we will
need to take an special attention to the accuracy and to the stability of the designed
system. Is for this reason we will dedicate a complete chapter to the problem of
acquiring colour images with a CCD-based sensor.

In chapter 3, we give the basis of a colour image formation and the laws underlying
colour constancy theories. Afterwards, a brief review of the most important methods
for colour constancy is given. In order to be able to apply a linear diagonal model the
spectral sharpening transform is computed once the sensitivities of the camera have
been recovered. In the last part of this chapter an on{line colour constancy algorithm
for scan line cameras is proposed.

Chapter 4 begins with a review on psychophysical literature, it is directed to es-
tablish the basis for the most common colour induction phenomena: assimilation and
contrast. Considering the most important conclusions from the previous review, a
computational pattern-colour separable model based on the opponent-colour space
is derived. The chromatic assimilation model based on a perceptual blurring is in-
troduced, and all the details of the Spatial{CIELAB are explained. In the following
sections we propose a chromatic contrast model that is based on a perceptual sharp-
ening. Three types of perceptual sharpening are proposed: local, region and spread.
Finally, we show the behaviour of the spread sharpening on some natural textures.

The goal of chapter 5 is to build a computational colour texture representation
based on the previous considerations, and to apply it to a pair of automatic surface
inspection problems, these are: tile classi�cation and printing quality evaluation. In
both cases we will see how the perceptual blurring proposed allows improving the
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results.
In the last chapter we sum up all the conclusions of this thesis work, and after

a short discussion on the results we describe the open research directions that have
been outlined from this work.
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