Chapter 4

Computational operators for colour
texture perception

Most of the previous works dealing with computational representations for colour tex-
ture have been directed to extend gray level representations to every one of the RGB
channels. As we have already seen in the introduction chapter, to deal with colour
texture we need operators that combine co—jointly the spatial and the colour infor-
mation in a way that simulates the especial behaviour demonstrated by the human
visual system. In this chapter we will analyse colour induction as the most important
phenomena that acts on the colour texture perception, and we will propose a com-
putational operator for a perceptual sharpening that allows to complement previous
results on perceptual blurring, providing both a general model for colour induction,
the first one in chromatic contrast and the last one in chromatic assimilation.

4.1 Colour Induction

Colour induction is a colour phenomena that changes the colour appearance of a
stimulus due to the influence of the scene contents in the field of view. In this
category we have to include the colour adaptation phenomena introduced in chapter
3, which is always involved in any scene interpretation. Adaptation models or colour
constancy methods usually are global visual mechanisms.

In this section we will deal with other induction phenomena that depend on the
surrounding colour of a certain stimulus. The surrounding colour is called the induc-
ing stimuli or inductor [116]. Depending on the direction of the chromatic change
provoked by the inductor, we will distinguish two types of colour induction:

Chromatic Assimilation occurs when the chromaticity of the test stimulus changes
towards the chromaticity of the inducing stimulus. An example of assimilation
phenomena is shown in figure 4.1.(a).

Chromatic Contrast occurs when the chromaticity of the test stimulus changes
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44 COMPUTATIONAL OPERATORS FOR COLOUR TEXTURE PERCEPTION

away from the chromaticity of the inducing stimulus. An example of this effect
can be seen in figure 4.1.(b).

In figure 4.1.(c) and (e), we can see a plot of the chromaticity coordinates of the
stimuli presented in images (a) and (b). We denote the test stimulus as TS, that
is, the image region that is affected by an inducing surround. These inductors are
denoted as S1 and S2.

In the first column of figure 4.1 we see the effects of the assimilation, the test
stimulus moves its appearance towards the appearance of its own surround. The
TS is yellow, and it appears pink when surrounded by S1, that is red, i.e. yellow
moves toward red and becomes pinkish. The same TS becomes greenish when it is
surrounded by S2 that is green.

In the second column of figure 4.1, we see the effects of the colour contrast, the
test stimulus moves its appearance away from the appearance of its own surround.
The TS is grey and it appears yellowish when it is surrounded by the S1 bluish
surround. Complementary, the same TS appears bluish when it is surrounded by a
S2 yellowish surround. In this case, the induction phenomena is behaving inversely as
it behaves in assimilation. Chromaticities of the perceived stimuli are going far from
the surround chromaticity. This phenomena is called simultaneous contrast when it is
given on achromatic images. A typical example of simultaneous contrast or brightness
contrast is shown in figure 4.2, where the same stimulus seems darker when surround
is lighter and lighter when the surround is darker.

Considering the given definitions and examples, it is obvious that any perceptual
approach towards a colour texture representation should take into account the colour
induction effects we have introduced above.

In psychophysics we find a wide range of works dealing with the induction phe-
nomena or the influence of surrounding chromaticities on the appearance of colour
[98, 81, 96, 97, 95, 24, 94, 2, 86, 109, 20, 85, 112, 110]. In all these works, authors
present different aspects of colour human induction measurements. The influence
from direct surrounds or remote inducers, the asymmetry of the measurements due to
changes from luminance or the dependency on spatial frequency of patterns are some
of the aspects that are measured and analysed. Conclusions from all these measure-
ments pursue to give answers about how this perceptual mechanisms are organised in
the human visual system. They help in building a more precise model on how human
visual system acts from the retinal representation of colour to the final judgements on
colour appearance. Considerations are done in terms of different physiological aspects
as cone absorption rates and their retinal distribution, optical chromatic aberrations
or the existence of opponent-colour signals in the visual pathways.

The most interesting conclusions from all these works from a computer vision
point of view can be summarised in the two following points:

1. Changes on colour appearance due to the spatial frequency of patterns can be
described by a two-step pattern-colour separable model [85, 109]:

e First step, a colour transformation to a new coordinate space that is in-
dependent of the image content. The best correspondence of the derived
data is given by the opponent-colour transformation.
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Figure 4.1: Colour Induction. (a) Colour Assimilation. (b) Colour Contrast. (c),
(d), (e) and (f) plot chromaticity coordinates of the RGB values of the images (a)
and (b) denoted as given in the below graphics. (¢) and (e) Chromaticity moves to-
wards the inducing surround.(d) and (f) Chromaticity moves away from the inducing
surround.
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Figure 4.2: Simultaneous Contrast

e Second step, in the previous coordinate frame, colour representation is
transformed by a gain factor that is dependent of the image content.

2. The relationship between spatial frequency and the two types of colour induction
can be summed up as follows [98, 29]:

e A spatial frequency of 4 cpd. is a transition frequency between assimilation
induction to contrast induction.

e Spatial frequencies at 9 cpd. and 0.7 cpd. assures assimilation and contrast
induction respectively for any inductor.

Frequency measures are given in cpd units (cycles per degree), that represents
the number of cycles for 1 degree of visual angle. The visual angle is a common
way to express a spatial measure that allows to adjust the observer distance and the
displayed window size to different possibilities. In figure 4.3, we can see coloured
square-wave patterns at different spatial frequencies. These plots are given on image
size corresponding to the diameter of 6 degrees of visual angle when observed at 30cm.
From 0.5 cpd tp 2 cpd we can perceive images with two coloured types of blobs, blue
and yellow. As the frequency increases we tend not to perceive separate blobs but a
global colour that is the result of the two basic colours plus the frequency effect.

Considering the above conclusions, we can derive a computational model for colour
texture image representation based on the pattern-colour separable model shown at
figure 4.4. Where Opp represents the opponent-colour transformation and Ay and C,,
are respectively the assimilation and contrast operators, that represent the induction
effects on each colour channel and for the corresponding range of spatial frequencies
in the image. We have also indicated the possibility to insert other special phenomena
that has been referred in the bibliography. A combination step of the resulting signals
is represented by a P transformation.

This model has to allow to derive colour texture properties from the set of per-
ceptually defined images. While the perceptual blurring has to allow defining global
colour properties, the perceptual sharpening has to allow a better segmentation of
different coloured blobs and the computation of their attributes.
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0.5 cpd 1 cpd

2 cpd 4 cpd

6 cpd 9 cpd

Figure 4.3: Colour Induction at different spatial frequencies. Frequencies are com-
puted by considering observer position at 30cm from the image. Images are displayed
on 6 degrees of visual angle.
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In the next sections we will go deeply on how to define computational operators
implementing the induction operators, but before to do it, we will introduce the
opponent-colour space.

4.1.1 Opponent-Colour Space

The concept of opponent colours was first described by Hering in 1878, he made some
interesting observations about some pairs of colours one never sees together at the
same place and at the same time. While we are able to see a reddish or a yellowish
orange, and a bluish or a greenish cyan, we never can observe a greenish red or a
bluish yellow neither the opposite. These two hue pairs, red-green and blue-yellow
are called opponent colours.

From this observation Hering hypothesised the existence of a unique visual path-
way to encode red and green, and a unique visual pathway to encode blue an yellow.
The same hypothesis was done for a visual pathway encoding achromatic black and
white signals. It takes to formulate a neural representation of colours.

This opponent process model was left behind while the trichromatic theory of
colour was stabilising the basis of the modern colorimetry based on the colour-
matching experiments and all the derived standard spaces. It was resurrected when a
hue-cancellation method was defined by Hurvich and Jameson [58] to quantitatively
measure colour-opponency.

Due to the efforts of Hurvich and Jameson with the hue-cancellation experiment
and plus the quantitative data provided by direct neurophysiological responses ob-
tained from some measurements in the retinal neurons of a fish and in the lateral
geniculate nucleus of non human primates, the opponent processing has been no
longer questioned.

From the Hurvich and Jameson measurements a general opponent model schema
can been derived, we show a computational approach of it in figure 4.5. There are
some variations of the transform to this space from a trichromatic Young-Helmholz
space, all of them follow the same schema of colour incompatibility the difference lies
in the coefficients, a;, 8; and 7y, that combine the input signals.

In computer vision we usually only have a colour image representation in a RGB
space of an unknown camera and under undefined conditions. Among others, a com-
mon representation of the opponent colour space is the one used in [100] that is defined
as:

11 1
Opp(p)=p-| 1 -1 1 |, (4.1)
1 0 -2

1/3  1/3  1/3
RGB(p) = Opp~' () =p- | 1/2 -12 0 (4.2)
1/6 1/6 —-1/3
where p is a 3D-vector of the RGB coordinates of the given space.

To be able to better establish the parameters for the spatial operators we will
define in the next sections, we will use an orthonormal basis, given by:
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Figure 4.5: An Opponent colour vision model for a computational approach.

1 1 1
TP
Opp(p) =p- ooVl (4.3)
0%
11 L
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RGB(p)=Opp "(p=p-| 5 &% O (4.4)
1 1 —2
V6 V6 V6

In both cases the first dimension represents the intensity or dark-white channel,
the second dimension represents the red-green chromaticity channel and the third
dimension represents the yellow-blue chromaticity channel.

4.2 Colour Assimilation as a perceptual blurring

As has been previously introduced, colour assimilation is the perceptual mechanism
that takes chromaticities of regions with very high frequencies towards the chromatic-
ities of the neighbouring regions. This effect is the result of a spatial blurring, that
is usually implemented in computer vision with the convolution of the image with a
gaussian spatial filter [75, 68]. However, in this case the spatial filter will not be ap-
plied on the RGB space as it is usually done, it will be applied to the opponent-colour
space.
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The idea of building a perceptual tower for a multiscale representation simulating
different views of the same scene from different observer distances and considering the
human colour perception has been taken to a computer vision model for the first time
in [11, 79, 84, 80]. All these works have been based on pshychophysical measurements
of colour appearance on human subjects given by the Spatial-CIELAB space defined
in [119], this measurements have given the parameters of the spatial filters needed to
simulate human assimilation on a CIELAB colour space. We will go deeply on this
space in the next section.

In order to correctly apply Spatial-CIELAB blurring in images, the sensor blur-
ring should be removed and be substituted by the perceptual one. In the thesis of
Boukoubalas [12] there is an interesting explanation on how to do this.

4.2.1 S-CIELAB: Spatial CIELAB

S-CIELAB is a spatial extension to the CIELAB' colour metric that is used for
measuring the quality of colour reproduction in digital images. It has been defined
to improve the error computation on non-uniform spatial regions.

The Spatial-CIELAB representation is based in the two-step model defined by
Wandell et al in [85, 109]. Firstly, a step to an opponent-colour space from the
CIELAB representation is done, and secondly a convolution with a kernel whose
shape has been psychophysically determined for each colour dimension. Finally, the
filtered channels are transformed again to the standard CIELAB [117], that is actually
representing the Spatial-CIELAB.

In this case, the opponent representation is built from the standard XYZ colour
space, and is given by:

0.279 —-0.449 0.086
Opp(p) =p- 0.72 0.29 —0.59 (4.5)
—-0.107 —-0.077 0.501

where p is given by (X,Y, Z) following the standard CIE 1931.
The spatial filters for each opponent channel are built as a sum of gaussian func-
tions, that is:

fk =m; Z wiEi (46)
i
where k represent every one of the three opponent channels, m; is a scale factor

chosen to make that the kernel sums to one, and

22 +y2

E; = k;exp o} (47)

again the k; factor scale is selected to make that F; sums to 1. The measured
values to substitute the parameters w; and o; are given for each opponent channel
in table 4.1. Where the spreads are given in degrees of visual angle. Depending on

IThe CIELAB space is an important international standard for colour measurement. The main
property of CIELAB space is the uniformity with respect to human colour judgements.
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Opponent  Weights Spreads

Channel w; o
1(I) 0.921 0.0283
0.105 0.133
-0.108 4.336
2 (R-G) 0.531 0.0392
0.330 0.494
3(Y-B) 0.488 0.0536
0.371 0.386

Table 4.1: Parameters of the Spatial-CIELAB spatial kernels.

Figure 4.6: Profiles of the two-dimensional symmetric kernels for the Spatial—
CIELAB. Black, Red and Blue colour lines represent the kernel for the Intensity,
Red-Green and Yellow-Blue channel respectively.

the observing conditions the equivalence in pixels is easily computed by the following
expression:

Opizels = d - tan (Udegrees) ‘R (48)

where, 0pizers and ogegrees represent the spreads in pixels and in degrees of visual
angle, respectively; d is the distance in cm between the stimulus and the observer
(or the camera in computer vision), and R is the display resolution that is given in
pixels/cm.

The profiles of these symmetric filters are shown in figure 4.6, where the filters
have been built to simulate the human colour perception of an image of 550 pixels,
displayed on a visual field of 20cm and observed from 40cm.

To illustrate how this transformation behaves on a given image we shown in fig-
ure 4.7 the results of applying the Spatial-CIELAB transformation on two images
presenting an important colour assimilation effect. We can see on the profiles below,
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(a) (b) (©)

Figure 4.7: (a), (b) Examples of two images presenting important assimilation
effects. (c) and (d) Previous images transformed by Spatial-CIELAB. (e), (f), (g)
and (h) are the RGB profiles of images (a), (b), (c) and (d), respectively.

how the Spatial-CIELAB transformation makes that the green-blue band is becoming
bluish when is surrounded by blue and it becomes reddish when surrounded by red.

4.3 Colour Contrast as a perceptual sharpening

Colour contrast is the complementary mechanism to the assimilation that takes chro-
maticities of regions with spatial low frequency. Whereas a computational model for
colour assimilation has been proposed in computer vision, a computational operator
that simulates colour contrast phenomena has not been proposed in the computer
vision literature.

In the following sections we will present the main contribution of this work that
is devoted to this end, that is, to define an operator that enhances differences in
the transitions among colours of regions presenting lower frequencies. While the
assimilation effect has been solved by a blurring operator, it seems quite natural that
the contrast effect will have to be implemented by a sharpening operator.

The final foal of this operator is to produce a sharpened image that allows a better
segmentation of texture blobs in order to be able to compute their local attributes,
following human perceptual considerations.

4.3.1 Local perceptual sharpening

In this section and in the subsequents we will progressively define sharpening opera-
tors presenting good properties to represent colour contrast. The first and the most
common sharpening filter is defined as:
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(a) (b)

Figure 4.8: Effect of the traditional sharpening operator:(a) original image, (b)
sharpening of the image using the usual transform on the RGB space

Sc(Ia 7) =1 - ’YV(IC) (49)

where I, is the c—th channel of a colour image I of dimensions N x M, V(I.) is
the laplacian of the image channel ¢ (V(I) = 8°1/0x® + 8*I/dy*) and 7 is a constant
that controls the amount of the enhancement. This process is done for each channel
separately. Nonetheless, the laplacian operator is very noise sensitive. To avoid this
problem, the laplacian of a gaussian (LoG) is used, that is, to smooth the image
before the enhancement in order to reduce noise effects. The resulting operator has
the following expression:

Sc(lv 'Y) =1I. - ’)/LOG(IC), (4.10)

LoG(I) = — 5,0 | € 202 (4.11)
o

1 22 4+ 92 22442
wot

where the LoG(I) expression is centered on zero and with gaussian standard de-
viation o. Whichever it is the method used, there is a post—process to clip the output
of the responses outside the range of the image (usually [0...255] in the rgh—space).
We will use the notation S(I,7) to indicate that the operator S.(I,7[c]) is applied
for each channel of the image and merged together to form a new n—spectral band
image.

The first attempt to chromatic contrast perception enhancement is the usual
brightness sharpening, but applied to all the bands of the image, that is: S(I,7).
This operator has been applied to the colour texture image of figure 4.8. Apparently,
there is a clear enhancement of the texture that form the image. In the original image
the transition from one blob to another blob of different colour is very smooth. Even
that, some texture is appreciated. Enhancing the image makes the colour blobs more
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4.3. Colour Contrast as a perceptual sharpening

Figure 4.11: Example of the Local perceptual operator for large stimuli: (a) original
image, (b) RGB profiles of image (a), (c) RGB profiles of image (a) applying operator
T.

o7
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ones. Some extra colours are created nearby the edges of the image, and this is what
makes the texture emerge substantially. Although the edges are enhanced, and so
is the texture, the main area of the colour stimulus is not changed as it should be
for a chromatic contrast effect. An example of this situation is figure 4.11. (a) is the
image used in explaining colour contrast but enhancing its colours. It can be observed
that the effect is on the edges of the stimuli and not on the stimuli themselves. The
centres of them are the same when there should be chromatically different. In fact,
the operator should spread the edge response all over the areas that form the edge.

4.3.2 Region perceptual sharpening

Based on the work of Grossberg? [50] and the operator T', we want to construct a new
operator to improve chromatic contrast simulation. The main idea is to recognise
inhibited and activated areas, whichever the colour dimension is analysed. When
applied, for example, to the red-green opponent colour dimension, the active areas
will be the reddish ones and the inhibited areas the greenish ones. Computationally
its is equivalent to the intensity of the stimulus. In the preceding example a red
area is positive and a green area negative. However, whichever is the sign of the
area it can not be considered neither positive nor negative unless it is compared
with another area. There will be positive and negative responses when comparing
against its surround. A yellow area is a negative area when its surround is red but
negative when green. The laplacian operator performs well in such definition because
its response is positive in the transition between dark and light, and negative on the
contrary. We will use the fact that the laplacian indicates the edge location by a zero
cross, i.e: a change between positive an negative response or vice versa. We define
an homogeneous area as the points that lie inside the regions surrounded by zero
cross points. But as we are working in a discrete domain, the zero—crossings are not
well locate. Then, a zero cross are those points where there is a change of sign of
the laplacian between it and one of its neighbours. That makes us define two sets of
7ero—crossings:

Zw(I)={pel|3pi€ H(p): sgn(LoG(I,0)p,) = =1 A sgn(LoG(I,0)p) = 1§4.13)
Zy(I)={pel|3pi € Hp) : sgn(LoG(I,0)p,) =1 A sgn(Log(I,0)p) = —1}4.14)

where p stands for the pixels of the image I, H(p) for the pixels belonging to
the neighbourhood of p, and sgn(p) is the sign of the intensity value in p, which
equals 1 when positive and —1 when negative. Z,,(I) are the zero-crossings taken
at the falling edge, and Z,(I) at the raising edge. Z,,(I) coincide with the limits of
the light (or white) areas and Z,(I) are the limits of dark (or black) areas. I is a
one—channel image, being it the responses to one of the opponent channels. Usually
H(p) is defined as

H(p) = {(pzspy — 1), 02 + 1,py), (P2, 0y + 1), (2 — 1,py)} (4.15)

2This a psychophysical work on brightness contrast based on on—off lateral geniculate cells, mod-
eling responses in the boundary contour system by a sum of exponential functions that is nearly
equivalent to the laplacian of gaussian.




