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where (px; py) are the coordinates of p. From these de�nitions we construct two
sets of connected components. The inner points of the connected components are
areas where there is no sudden changes, and will be considered homogeneous areas.
We will say that a connected component is white when all of its surround is darker
than itself. In the same way, black connected components are lighter than all of
their surround. From this point, :Zw(I) de�nes the set of plausible white connected
components, Cw(I) = fCw

i (I)g, whereas :Zb(I) de�nes a set, Cb(I) = fCb
i (I)g, of

plausible black connected components. From now on, we will use the term region

instead of connected component. The following step is to distinguish those Cw
i (I)

and Cb
i (I) that are, actually, white or black regions. We de�ne the white regions as

W (I) = fCw
i (I) 2 C

w(I) j
X

p2Cw
i
(I)

�sgn(LoG(I; �)(p)) = jCw
i (I)jg; (4.16)

and in a similar way it is de�ned the set of black regions

B(I) = fCb
i (I) 2 C

b(I) j
X

p2Cb
i
(I)

sgn(LoG(I; �)(p)) = jCb
i (I)jg (4.17)

Up to this point, not all the pixels are classi�ed as belonging to a black or white
region. Those unclassi�ed pixels will be merged in a neutral class, N(I). The pixels
in N(I) belong to regions that are surrounded by lighter and darker regions at the
same time, and so, can not be classi�ed as black or white regions.

N(I) = (Cb(I) [ Cb(I))�W (I)�B(I) (4.18)

Thus far, all regions of the image are classi�ed in one of the three types of regions.
Moreover, we need to specify how much black or white these regions are. The �nal
image ELoG (Expanded Laplacian of Gaussian) will measure how di�erent is a region
from its surround assigning at each pixel of the region the maximum di�erence of all
the pixels in this region with its surround (i.e: the laplacian of gaussian).

ELoG(Ip; �) =

8<
:

minpk2Wi(I)(LoG(I; �)pk ) : p 2 Wi(I)
maxpk2Bi(I)(LoG(I; �)pk ) : p 2 Bi(I)

0 : p 2 Ni(I)
(4.19)

We use ELoG(Ip; �) when applying the process to the pixel p of I , and ELoG(I; �)
when it is calculated all over the pixels of the image I . Two examples of the ELoG
operator applied on monochromatic stimulus are shown in �gure 4.12. The upper
graphics show the original stimuli in blue lines. Graphics (c) and (d) show the result
of laplacian in blue lines and the output of ELoG in red lines. Black regions have
positive response whereas white regions are negative. Regions between darker and
lighter ones have 0 response. We want to remark how the maximum and minimum
inside each region is expanded all around it.

What remains to conclude is to apply the sharpening formula using ELoG(I)
instead of LoG(I). We will call the new operator Expanded Sharpening (ES(I;~
)~�),

ES(I;~
)~� = I � ~
ELoG(I; ~�) (4.20)
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Figure 4.12: Graphic explanation of the e�ect of operator ES(I), on (a) and (b): In

solid lines the original stimulus, in dotted lines the output from the ES(I) operator,

compared with the T operator in dashed lines. On (c) and (d): In solid lines the

Laplacian of Gaussian response, and in dotted lines the output form ELoG(I).
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Figure 4.13: Region perceptual sharpening: (a) the input image, (c) and (d) the

results with two di�erent parameter con�gurations. (b) shows the displacement of

the chromatic values of the test stimulus in (d) with regard to the original stimulus.

And (e),(f),(g) comparison of the pro�les of an horizontal line in the RGB space,

from left to right: original, (c) and (d).
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Returning to �gure 4.12 in (a) and (b) the red lines are the response of the new
region perceptual operator ES compared to the responses of the local perceptual
operator T , green lines. Whereas T (I) only have e�ect in a short neighbourhood,
ELoG(I) works on the whole region. The question is, will it work? and the answer is
not so simple. When dealing with perceptual vision the way to validate a model is by
means of psychophysical experiments. Some times they are done with a very reduced
group of individuals and a short set of test, it is because of the intrinsic complexity
of this type of experiments. The kind of tests are a uniform background scene with
regular polygons, there are some that are more complex than others. They could be
gratings or two simple squares [95, 98, 110, 81]. In any case they should be done by
scientists of this �eld.

In this thesis this problem will not be broached as it is a computational approach
to perceptual vision and we are not trying to imitate the human vision but to ap-
proximate the images to what humans see. As a matter of fact, this operator has
been inspired in the experiments before mentioned. These experiments analyse the
reaction to certain isolated stimulus and lead us to look for the di�erent stimuli in
the image.

We have introduced the example in �gure 4.11 to see the leaks of operator T ,
in this case the result is what is expected. It is depicted in �gure 4.13, where the
original colours of the example are used. In (a) there is the input image and in (c)
and (d) two examples of the operator changing the parameter ~
. (e), (f) and (g) are
the horizontal pro�les of the central line of the image for the input image and both
examples (c) and (d). The red response is occluded by the green one as they are the
same. It can be appreciated a shift of the test stimulus against the surround. The
chromatic coordinates of the test stimulus for the �rst example (c) are the same as
in the input image as the parameter ~
 has been adjusted to work only in the black{
white pathway. In the second example ~
 is a constant vector, and thus, all pathways
are equally weighted. In this case there is a change in the chromatic coordinates of
the �nal stimuli. This situation is plotted in the graphic Fig.4.13(b), where the two
surround of the stimuli have chromatic coordinates S1 and S2 (left to right) and the
original test stimulus is TS. TS1 and TS2 are the chromatic values of the test in the
output image. It is clear that they behave in the same direction that the HVS does.

One such examples of the operator on images of small isotropic texture is illus-
trated on �gure 4.14.

This operator is based on the fact that a region is conceived as inhibited or ac-
tivated in intensity, red{green or blue{yellow channel. If there is a problem it will
be in the de�nition of the regions and the assumption that a region can be only in-
hibited or activated for a certain channel. But the reality shows that under certain
circumstances it can be inhibited and at the same time activated. This is the case of
the example of the bars. What happens when both bars are joined together with a
slim bar of the same stimulus? Taking as example the blue{yellow channel, the left
grey bar will be an activated region whereas the right bar will inhibit. But as they
are connected, they are the same region. When a region is inhibited and activated
simultaneously then it belongs to the set of neutral regions that show no reaction and
then the result is the same input image. The modi�ed experiment is shown in �gure
4.15, where the stimuli are the same colour as before and the results of the operator
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are not shown because they are exactly the same image.

4.3.3 Spread perceptual sharpening

In short, the local perceptual sharpening operator fails because it does not extend to
the centre of the stimulus and the region perceptual sharpening fails because,although
it comes from psychophysical ideas, it does not consider one region to have two di�er-
ent behaviours at the same time. To solve this con
ict we have designed an alternative
operator that combines the good properties of the previous operators. The idea is to
use the LoG edge enhancing to locate the boundary of regions and to use some of the
de�nitions of the region perceptual sharpening to reduce the number of points used
in the operator. The intensity of inhibition/activation in this points will be scattered
to the centre of the region no matter which kind of region it is.

Starting form equations 4.13 and 4.14, which de�ne the points that form the
borders of the regions of the image, we can take the local inhibition or activation of
a region taking the LoG in these points. The following step is to construct a surface
where its height in a certain point indicates the level of activation of this point, taking
into account the intensity on the points of edges that de�ne the region to which it
belongs. This surface must have some properties:

1. The points on the boundaries must preserve its energy, i.e: the relationship
between adjacent regions must be maintained.

2. The zero crossings between points of the boundaries must remain equal, i.e:
there will not be more regions than in the input energy image.

3. Zero crossing can only be added inside a neutral region (de�ned in Eq. 4.18).

Let us call S(X ;Y) the operator that constructs this surface from the energies of
a set of boundary points, X , giving the activation energy on points Y . An immediate
solution is to use some kind of surface interpolation, but not all possible. Some of
the possibilities are: nearest neighbourhood interpolation, linear interpolation and
cubic Hermite interpolation. Some that are not possible are those based on spline
interpolation. The choice of the interpolation method will a�ect the smoothness of
the resultant image. The smoothness is achieved constraining interpolation to certain
conditions on the continuity of the �rst and second derivatives. The complexity of
these methods is considerable and it has to be kept in mind when working with large
images. In this case, it is reasonable to use linear interpolation, instead. Now we can
de�ne the new operator. Since our de�nition of the operator spreads the energy of the
region borders into its inside, we will call it Spread Sharpening (SS), and similarly
the resulting energy surface is a spread modi�cation of the LoG surface. Then,

SLog(I; �) = S(LoG(I; �)Zw(i)
S
Zb(I); I); (4.21)

is the spread Log taking as a control points the energy of the points where there
is a change on the inhibition/activation, and evaluated all over the points of image
I . Following the same schema than in the local and region perceptual sharpening
operators (Eqs. 4.12, 4.20) the �nal operator will be de�ned as:
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Figure 4.16: Graphic explanation of the functioning of region perceptual sharpening

(SS). In (a) the original signal (blue line), the ES output (green) and the SS (red)

are plotted. (b) is the response of SLoG in red in front of the LoG in blue.

SS(I;~
)~� = I � ~
ILoG(I; ~�) (4.22)

Taking the 1D signal of �gure 4.12(b) we will illustrate the e�ects of the operator.
Figure 4.16(a) plots in blue line the original input, in (b) the blue line is the LoG
response of the signal, green line is the ELoG response of the previous operator and
red line is the SLoG response. It is evident the spread e�ect of the function S. The
function solves de problems of neutral regions and makes the edges in
uence the inner
part of the region. The �nal output signal is shown in red in (a) compared to the
output of operator ES in green.

We noted that the region perceptual sharpening failed when applied to image in
�gure 4.15. Let us test the performance of this last operator. Figure 4.17(a) depicts
the resultant image, whereas in (b) we have shown, as an example, the output from
the inhibition/activation function SLoG of the blue{yellow pathway. The pro�les
shown are from the original image and the output image. The pro�le from the output
of ES applied on the same image is not shown because it is exactly the same as the
pro�le from the input image.

4.3.4 Examples

These operators should be tuned to the contents of the image to adjust the frequencies
at which they work better taking into account the distance from which the images are
seen. Other parameter to adjust are the ratios of each opponent channel in the con-
trast response. These adjustments should come from psychophysical measurements.
Whereas it seems that there begins to be a consensus on the �rst set of parameters,
contrast begins at least at 1.7 cpd, it is not clear the in
uence of each channel in
the response. Psychophysics agree that the intensity is the most sensitive channel,
in second term there is the red{green channel and �nally the blue{yellow channel.
However we did not �nd any literature on which their ratios are.
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Figure 4.17: Graphic explanation of the spread perceptual sharpening operator:

(a) is the spread perceptual operator output applied to the image in �gure 4.15, (b)

is the SLoG response using linear interpolation of the blue{yellow pathway, (c) is the

pro�le of an horizontal line from the original image in the RGB space and (d) in the

case of (a).
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Mps
1 > Mo

1^
scale (~�) Mps

1 > Mo
1 Mps

2 > Mo
2 Mps

2 > Mo
2 Mps

1 imp. Mps
2 imp.

high 73.78 67.07 48.17
medium 99.39 42.68 42.07
low 63.41 58.54 38.41
all 99.39 85.98 85.37 159.4 97.1

Table 4.2: Spread percetual sharpening on VisTex image database. Values are in

%.

To study the operators we have analysed a set of images from the texture image
database VisTex from MIT MediaLab. It is a large database from which we have
selected some of them to illustrate the e�ects of the spread perceptual operator.
The �gures 4.18, 4.19, 4.20 and 4.21 show four of these images. In all cases: (a)
is the original image, (b) is the output image for which the parameters have been
chosen empirically, (c) and (d) are the projected histograms of (a) and (b) respectively
rejecting one of the dimensions, in each case the dimension rejected was the one that
enables to show a better view, and �nally, (f) and (g) are the projected histograms
on the opponent space, the rejected dimensions have also been chosen to best display
the e�ects of the operator.

The e�ects are more visible when analysing the opponent space. In the �rst
example the division between green and orange is greater in the perceptual sharpened
image than in the original one. Although the printed images do not show a large
di�erence it exists and it is very useful in segmenting colours. The second example
show one case where there are some colours but they can not be intuited from neither
the RGB nor the opponent RGB 2D{histogram. When the image is perceptually
sharpened the opponent histogram show peaks belonging to the colours on the image,
that do not appear in the original. The e�ects on the third example can be seen
even in the RGB histogram. Two narrow peaks (those in red and yellow) show the
localisation of the red and green leaves. In the last example the e�ects of the operator
are weaker than in the previous images. However this is natural if we consider that
the number of colours is large and their spatial location does not produce a colour
contrast e�ect. In this case the operator does not spread colours but concentrates the
distributions of colours.

4.4 Validation

While psychophysical test are not done we have validated the operators looking for
indexes that show a better discrimination between colours. If the operators perform
well the resultant images should be easier to segment in the predominant colours.
Following the scheme in [46], we segment the image in two clusters and get a measure
of how good this clustering is. A new segmentation is done with three clusters and
the measure is calculated. If the previous measure is better than the new one we stop,
if not the number of cluster is incremented and the comparison is done again until
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Mps
1 > Mo

1^
scale (~�) Mps

1 > Mo
1 Mps

2 > Mo
2 Mps

2 > Mo
2 Mps

1 imp. Mps
2 imp.

high 82.32 67.68 57.93
medium 73.78 66.46 52.44
low 68.29 70.73 48.78
all 87.80 86.59 76.22 102 87.2

Table 4.3: Region perceptual sharpening on VisTex image database. Values are in

%.

Mps
1 > Mo

1^
scale (~�) Mps

1 > Mo
1 Mps

2 > Mo
2 Mps

2 > Mo
2 Mps

1 imp. Mps
2 imp.

high 73.78 78.66 58.54
medium 75.61 75.61 59.15
low 71.34 79.88 59.76
all 86.59 90.24 79.27 38.06 46.94

Table 4.4: Local perceptual sharpening on VisTex image database. Values are in

%.

Mps
1 > Mo

1^
process Mps

1 > Mo
1 Mps

2 > Mo
2 Mps

2 > Mo
2 Mps

1 imp. Mps
2 imp.

SS vs None 99.39 85.98 85.37 159.4 97.1
ES vs None 87.80 86.59 76.22 102 87.2
T vs None 86.59 90.24 79.27 38.06 46.94

Table 4.5: Summary on perceptual sharpening on VisTex image database. Values

are in %.
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a maximum on the measure is reached. Instead of using a k-means algorithm as in
[46] we used an Expectation{Maximisation mixture of gaussians which is more general
and �ts better the data. Both methods are brie
y explained in section 5.2. There
are a number of ways of measuring how good a clustering is, Coleman and Andrews
enumerate some of them in [21]. In this validation experiment we have selected the
following two:

M1 = tr(Sb)tr(Sw) (4.23)

M2 =
Sb

Sw
(4.24)

where tr(�) indicates "trace" or sum of the diagonal elements of a matrix, Sw is the
within groups scatter matrix, a measure of how condensed the cluster is, and Sb is
the between scatter matrix, a measure of the distance between clusters. The scatter
matrices are de�ned in a better context in equations A.2 and A.3 in section A. We
will use them here just as a tool.

The measure used should have a maximum when the best clustering is reached.
Although M2 is better when evaluating the dispersion of clusters, it is not upper
bounded whereas M1 is. We have used M1 to iterate the clustering process and both
M1 and M2 to measure the behaviour of the operators.

Another problem is that the parameter ~� involved in the operators should be
settled specially for each image, however to automatically �nd the best scale for each
image is still an open issue that will derive form this thesis. What we will do is to try
three di�erent scales: high, medium and low, keeping the best clustering. The original
image is also clustered using the same criterion. When Mi is applied on the original
clustered image we will denote it as Mo

i and when done with the sharpened images
Mps

i , whichever it is the used operator. The sharpening is done on the two chromatic
channels, the intensity is left as it is to show the computational chromatic contrast
behaviour. The experiment is done on 164 images of the VisTex image database.
Tables 4.2, 4.3 and 4.4 show the results for the SS, ES and T operator. The last two
columns of the tables are the percentage of improvement of the measures wit respect
to the measure on the original image.

From these results we can conclude that the operators are performing a good
separation of colours on the image. And as we suspected, the more complex is the
operator the better is its performance. The last row of the tables takes the best
clustering in the three scales. Table 4.5 summarises the three operator to show their
evolution.

4.5 Discussion

After an introduction to the colour induction phenomena it is concluded that com-
puter vision lacks of an approach to the chromatic contrast e�ect. While there exists
a computational model of colour assimilation, this is not the case for colour contrast.

Our contribution in this subject materialises in three new operators. The �rst one
takes the traditional RGB sharpening operators to a space where colour appearance
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is best modeled, adding spatial constraints to the generated responses. It has been
illustrated it can work in some circumstances where the stimuli are small, and it can
be adequate to very high frequency textures, but there are many situations where it
does not �t well. This drives us to psychophysical literature that gives us the trail
to search for inhibited and activated regions on the di�erent visual pathways. Once
more, there are many cases where the operator is useful but in some others it can
not simulate the human visual perception. It was an in
ection point to the search
of a more general chromatic contrast operator. The result was the Spread perceptual

sharpening operator that gather the experience in the preceding operators. The core
of the operator is the idea of spreading the inhibition and activation of the cells on
the transition between regions.

The capacity of the operators to di�erentiate colours has been tested on a texture
image database, performing a segmentation and measuring how good it was compared
to the image itself. The results obtained shows a good progression. Although the third
operator is the more complete, the knowledge of the scene can advise to choose one
of the other operators. This is a matter of complexity. Each operator can cope with
more circumstances than the previous one but at the expense of computer resources.

There are open issues that have to be addressed in a near future and they are
outside the scope of this thesis. The �rst one is to �nd the way to combine both
spatial blurring and contrast induction in the same scene. One approach could be to
look for di�erent frequency regions in an image and applying the most suitable colour
induction. On the other hand, we have presented a method that can be adjusted
to viewing distance (~�) and to the weight of each channel in the chromatic contrast
e�ect (~
). Both set of parameters have to be analysed from a psychophysical point
of view, and then transferred to the computer vision �eld.


