Chapter 5

Application to surface inspection
problems

All the previous chapters define the necessary conditions to broach the problem of
surface inspection, basically on industrial problems. This term includes a wide range
of problems but we will centre in those where texture and colour simultaneously are
the key factors in the problem solution. The work presented here began with an
application devoted to the classification of coloured and textured samples of ceramic
tiles. Nonetheless, the tools and methods used can be applied for many similar
applications.

Considering the perceptual operator introduced in the previous chapter, here we pro-
pose a computational colour texture representation based on a multiscale approach.
In it, colour measurements are done considering the perceptual blurring that simu-
lates a large distance observer position, and the proposed sharpening to simulate a
short distance observer position, from which the blob extraction is derived. From
these blobs the features of textons associated to colours are defined.

Finally, we will apply this approach to the classification of ceramic tiles, and to the
problem of printing quality classification.

5.1 Building a colour texture representation

In chapter 1 we have briefly introduced previous works on colour, texture and colour-
texture computational representations. In chapter 4 we have explained induction
phenomena of the human visual system that explains the interaction between these

two visual cues when appear jointly on a surface.

Now we want to build a computational colour-texture representation that considers
the induction phenomena. To this end, we will follow a common approach in computer
vision that is building a feature vector that combines different image properties, but
in this case we will make it to take into account the induction phenomena that are

involved in the human perception of colour textures.

In figure 4.4 we have plot a model proposal to integrate the most common effects
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76 APPLICATION TO SURFACE INSPECTION PROBLEMS

of colour induction: assimilation and contrast. We have seen that the first can be
computationally simulated by a perceptual blurring and the second can be compu-
tationally simulated by a perceptual sharpening. Their activity is complementary,
the first one is produced when the spatial frequency is high and the second one is
produced when the spatial frequency is low. This scale-dependent mechanisms are
very common in multiscale approaches in computer vision, and it allows to extract
different information of a given image as it is implementing a vision process of looking
at the image from different observer positions or looking at different image regions in
a more attentive process.

The colour assimilation allows to take a global colour measurement of an image
region when observed from a long distance position and when blob details are lost.
The colour contrast phenomena allows to take local measurements of the image blobs
when observed separately, that is, from a short distance position. We have seen in
chapter 1 the need for these two types of measurements, when we propose a colour-
texture representation. In this case, and to consider colour and texture interactions
we will define the measurement on a set of preprocessed images that will simulate the
induction phenomena. These sets of images are constructed in the following steps:

Step 1 A given input image, I, has to be transformed to its opponent colour repre-
sentation, as it has been seen in chapter 4, we will represent as Opp([); the i
channel of the opponent representation of I.

Step 2 An assimilation process is simulated by building the following set of images:

{A(Opp(I);,5)} (5.1)

where 7 represents the image channel and s represents the scale of the perceptual
blurring, A(I,s), that represents the convolution of the image I with a kernel
defined by the s parameter. In this case, the convolution kernels can be built
accordingly for different observer conditions, by considering the psychophysical
measurements presented in the Spatial-CIELAB introduced in section 4.2.1. In
this case the selected scale will be directed to tune the high spatial frequency
image relationships, these set of images will be the basis for global measurements
of the image colour.

Step 3 A chromatic contrast process is simulated by building the following set of
images:

{C(Opp(1);,5)} (5.2)

where 7 represents the image channel and s represents the scale of the perceptual
sharpening, C(I, s), which can be implemented by the spread sharpening defined
in section 4.3.3. In this case we do not have the psychophysical measurements
that can provide the needed parameters to represent the conditions for a given
scale. Therefore we will only use this set of images for the blob segmentation
step, but not for colour measurements.
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Step 4 The results of the previous steps put the basis for a consistent blob segmen-
tation step based on colour properties. The blob segmentation process will be
explained in the following section. The set of k segments of a given sharpened
image will be denoted as:

{ng(Iias)}sgzl...k (53)

Once, the colour induction phenomena have been simulated on a set of blurred
and sharpened images, now we want to measure colour and texture properties of these
images.

In the next sections we will explain how to perform a blob segmentation based on
colour properties, afterwards, we will define the global and local measurements that
are usually computed for colour and texture representation, and finally we will build
the complete computational colour-texture representation we want to propose.

5.2 Perceptual blob segmentation

In the representation of the colour texture that we propose, the blobs play an impor-
tant role in the description and they should be treated carefully. In the next section
we will describe the possible mechanism to obtain the set of images where which
content are blobs of similar colour.

The first step to describe colour texture is to separate pixels on the image that
share similar colour properties. This step can be seen as a colour-granulometric
stage, where we sieve pixels of different colours. Given an image, the output of
this segmentation step is a set of images containing the blobs of a specific colour.
Although there are many ways to segment images most of them are based on its spatial
contents (region growing, split and merge, etc) and they are not what we want. Our
segmentation has to be independent of the spatial relations between colours. The
objective is to return a set of sets of pixels where in each of these set the colour
variance is minimum independently of the pixel location. From the segmentation
methods we will focus on clustering methods, and from these ones on the bayesian
approach.

We can do this as a supervised operation in which approximate colour coordinates
are introduced to initialise each colour centre, or in unsupervised mode starting from
algorithmically chosen centres. In the second case the clustering algorithm can have
non—deterministic solutions, depending on the way these centres are chosen. However
most of the times these algorithms tend to the same solution. This point should be
kept in mind when working with colourful images.

The basic idea of cluster algorithms is that given an image I with ¢ different
colours, and given a set, of initial colours {Cy,...,C,} the segmentation step output
is a set of images:

{I,...,I.}

where each image I; contains all the blobs of a specific colour labeled i. Although
there are many algorithms to cluster colour data, we have selected two of them for
being widely used in computer vision. One of the methods is chosen for its simplicity
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and the other one is based on the same idea but a more complex model is behind it. In
the last case not only blobs are clustered but also it gives statistical information of its
colour content that can be useful for posterior colour classification. These algorithms
are the well known k-means and expectation maximisation mizture of gaussians. In
both cases the number of clusters to obtain must be set a priori. To solve this problem
a simple method is defined in [46] to analyse how many colour clusters appear in the
image. In all of our cases the number of clusters is known since we have information
of the production process or we know what we are looking for. We will summarise
both clustering methods briefly that are described in detail in [26, 10].

The point of departure in any case should be an image where clustering is helped
by its content i.e: the much separate the colours are the easier is the problem of
clustering. If we manage colour separation by means of linear transform the problem
remains the same as the proportions are maintained. So a non linear transform is
needed. In chapter 4 we have introduced the colour contrast perceptual operators.
In a normal situation they act to simulate human behaviour when looking at low
frequencies patterns. In our examples we have high frequency texture, however we
use the spread perceptual sharpening operator (Eq. 4.22) to simulate a human being
looking at the sample at very high resolution: In this case colour contrast conditions
operates and colour blobs are easier to segment. Figure 5.1 explains this effect where
an original sample with their 2D-histogram distribution in the RGB and opponent
space are depicted in the left column, and when applying the SS operator (right
column) the colours in the image appear more clearly. We are not saying that colour
contrast is the effect that helps humans to distinguish colour blobs, in fact if any
process is done it is assimilation, but in order to better cluster colour data to describe
how colour texture is, humans perform better at high resolution.

5.2.1 K-means clustering

Given a set of n—dimensional data, the goal of the k—means clustering is to find the

centres of the colour cluster wq, po,..., e to be used as their prototypes, where c i
the number of clusters that has been set a priori.
Starting form a set of initialised cluster prototypes ® = p1,..., g we want to

know which is the probability for one pixel x; to belong to the cluster wg, P(wy |
x;,0). The algorithm works with the assumption that if the distance between x; and
wr is small the probability is large. Then, we compute the square Eculidean distance
between the pixel and all the cluster prototypes, || z; — p, ||>. Let w,, be the nearest
prototype to x; then, we approximate P(wk | ;,©) as

R 1 : k=m

Plor | 2:,0) = {0 :  otherwise. (5.4)

Following this schema each pixel of the image is set to belong to one cluster and

from the pixels in each cluster the prototypes pj are recalculated. This process is

done until some stop condition is reached. This condition could be the number of

iterations to do or the stability of prototypes of a minimum threshold to reach of the
RMS error.
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Therefore, k-Means algorithm is performing a clustering step over the colour space,
where clusters are formed considering the euclidean distance between colour coordi-
nates of pixels in this space. Given that we are using an euclidean distance on a colour
space we should do it on a perceptually uniform colour space as CIELAB or CIELUV.
Some experiments have been done in this sense and they make us to conclude that, for
the images of our applications, the segmented blobs are nearly the same, hence, there
is no need to introduce a step that needs further calibration and does not improve
the clustering result.

5.2.2 Parameter estimation of the colour distribution

In this section we assume the colour distribution as the sum of several gaussian dis-
tributions. To get an estimation of the parameters of these gaussian we will use an
Ezxpectation—Maximisation method.

This method assumes that data are generated from a set of gaussian distributions
that when mixed form the final distribution. Its goal is to extract the parameters of
the gaussians that best describes the distribution form the data themselves. It is done
in a two steps process were in the first and starting from an initial guess an expectation
of which are the best parameters is done. The second step takes the set of all possible
parameter modifications and chooses the one that maximises the fitting of data with
the mixture. With this new guess another iteration is done until some condition is
reached (as in the case of k—means procedure). The degree of data fitting is measured
in terms of likelihood £ = HnN:1 p(x,), where data are N points, x,, and p(x,) is
the a priori probability of a given point to happen. But to reduce the complexity of
the problem the log—likelihood is used and then it becomes a minimisation problem
of the expression

N
E=-InL=-) Inp(z,) (5.5)
n=1
p(x) is defined in term of the probability of belonging to the gaussian distribution
of the mixture given a probability of each particular gaussian to occur, p(xz) =
Z;c:l p((z) | 7)P(j). In the case of mixture of gaussian and for the case of diag-
onal covariance to simplify the problem, the probability of a given d—dimensional
point to belong to a certain gaussian distribution j is

(z — 1) S (@ — py)

Pl i) = e
(2m)4/2\/] 55 |

Then we can take derivatives on the unknown parameters of the gaussians max-

imise the likelihood. In this case gTE] and % for all j he details can be found in [10].

(5.6)

The a priori probability of a certain gaussian P(j) has to be also derived to maximise
L. As our intention is jut to pose the method we will not focus in the mathematical
description. From this maximisation step we obtain a set of parameters that define

the configuration of the mixture, fi;, &; and P(j) that are the initial guess for the
next iteration.
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Xy

Figure 5.2: Decision criterion: when a point z can belong to more than one gaussian
distribution it is rejected. In the example, y will be set as a point in G because its
differential to G is large enough.

5.2.3 Decision criterion for clustering

When using mixture of gaussians the pixel x is classified as belonging to the cluster
i with maximum posterior probability p(i | =, ©;) = p(xz | i,@i)P(i)/Z;:1 p(x |
7,©;)P(j), where ©; are the parameters of the i—th gaussian. The original method
does not take into account that some times a pixel can belong to two or more different
gaussians with nearly equal probability. It is the case of point x in figure 5.2. Those
pixels with this ambiguity should not be considered to avoid colours to shift from
one cluster to another one. We have introduced a criterion to ensure that pixels
are unambiguous. The idea is quite simple, instead of assigning a pixel to the class
with the prior criterion, the posterior probabilities for each class are sorted and if the
difference between the two maximum posteriors is greater than a certain percentage
Ap then the pixel is assigned to the first cluster, in any other case the pixel is keep
away in an ambiguous cluster. Then, C(x,®) as the expression to classify a pixel to
a cluster i from a set of gaussian parameters @ = 0 ... 0, is:

C(2,) = {z ol | 2,0)(1=Ap) 2 p(j [ 2,0) Vji=1...cAi#]
ambiguous : otherwise

(5.7)
To finish this section we show an example of the two cluster techniques applied
both to the input image an the perceptually sharpened image of figure 5.1(a) and
(b). If the images are not reproduced with a high quality printing device the colour
differences perhaps will not be seen and the attention should focus in the shape of
blobs. In figure 5.3 we have applied the k—means method, and a small portion of
the central part of the image is shown for better detail. (a) is the detailed input
image. (b), (c) and (d) are the three clusters generated using this technique to
the input image as it is. The last row are the respective clusters when the input
data to the clustering algorithm is the spread sharpened image. Small differences
can be appreciated but they can be crucial in describing textures based on blobs
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Figure 5.3: K-means clustering example: (a) is the central area from the original
image to which clustering is performed. The following row is the result of segmenting
in 3 clusters on the original image. Last row when applied to the sharpened image.
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() () (m)

Figure 5.4: Mixture of gaussians clustering example: (a) is the central area from
the original image to which clustering is performed. The following row is the result
of segmenting in 3 clusters on the original image. The middle row when applied to
the sharpened image. The last one when using automatic supervised clustering.
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characteristics. In the middle and right cluster, the less populated, some blobs that
are merged in the first row are well segmented in the last one. One of the advantages
of this method is its simplicity and low computational complexity, however the result
are not very good as colours rarely group in spheres. It is more likely to find colour
distributions resembling gaussian distributions, and so mixture of gaussian fit well
when it is the case. The following picture is from the same image but applying
the expectation maximisation mixture of gaussian distributions. Figure 5.4 are the
resultant images whit this clustering method. The first row of images contains the
image of clusters from the original image and the last image of the row with those
points that are classified as ambiguous cluster following equation 5.7. It has already
improved the clustering without using the perceptual sharpening. The second row of
images has the same configuration being the results of the sharpened image. Some
characteristics are remarkable, the number of ambiguous pixels reduces in this case
and like in the k—means algorithm blobs are better segmented in the case of dark and
light blobs. Blue blobs are somewhat messy and is difficult to appreciate improvement.
Even in this case when analysed carefully the blob boundaries are better. The last
row introduces a new approach to the clustering. As it has been commented these
techniques can be supervised initialising the first guess on the centres of the clusters,
normally it is done manually. This supervision can be done automatically if some
maximum localisation criterion is used. However, in our case the colour data forms a
4—dimensional distribution surface. To construct such surface is very time and space
consuming and it is unfeasible. The approach used is to locate the desired number
of maximums in a 3D space projecting one of the dimensions and use it to find
compatible maximums in the other projections. These maxima are the input centres
of the mixture of gaussians. To control the behaviour of the EM algorithm we only
iterate on the covariances, fixing the mean of the gaussian distributions. Applying
this criterion we obtain the results of the third row of figure 5.4. The density of blobs
is more equilibrated and principally, the blue cluster contains more homogeneous
colours, and the blobs are more accurate. The light blobs are the ones which receive
the colours that are not included in the blue cluster. Nevertheless the inhomogeneity
is not very large, in fact when looking at the original image white points are more
dispersed. It should be noted that this criterion can not be done in the original image
because there not exist clear maxima, whereas in the sharpened image it does.

5.3 Global features

With the following global colour measurements we try to capture a first coarse de-
scription of the image using basic statistics. For a given image I of size N x 3 where
each row is a colour triplet and p different types of blobs we will derive from the
clustering step the images {I,...,I,}.

Global colour mean: A global colour measurement of the whole image:
-1
Mi(I)=1= N(Ill) , (5.8)

where 1 is the constant 1 vector of dimension N.



5.4. Local features 85

Global colour variance: A global colour measurement of how constant the colour
on the whole image is:

Mo(T) = < diag((T — I)(I - I) (59)

where diag(A) is the diagonal vector of the matrix A.

Obviously these two measures describe very coarsely the colour contents of all the
surface.

5.4 Local features

Now we will give some measurements on local properties of the blobs. We are defining
the measures to get a more detailed description of the geometry and distribution of
colour textons. Most of them are based on the central moments of inertia ([60]),
which are defined as:

Mpg= Y, (@—2)(y—7) (5.10)

(z,y)ER

where R is the region (or blob) of the image where the moment is calculated, and
T=1/n) ,vand §=1/n}_ y is the centre of gravity with n the total number of
pixels in the region. The moments are calculated for each blob in each segmented
image. Next, we enumerate the different moments proposed to the description of the
form of textons. Although there are many more possible, using high order moments
will capture information on blob geometry, which is usually useless when dealing with
a large amount of blobs. All this measures are over a binary mask of the colour
segmented images.

Blob area It is the moment of order (0,0) that simplifying is the count of the pixels
of a region.

a(R) =moo= » 1 (5.11)

Blob eccentricity A measure of how rounded a region is. When the blob is line—
shaped the value of this measure, ¢, is 1 and 0 when it is circular.

(ma,0 —mo2)* +4mi |

e(R) = (m2,0 + mo,2)?

(5.12)

Elongation A measure proportional to the elongation of the object taken in the di-
rection which maximises the measure. It can be set as the maximum eigenvalue.

moo + mMo2 + \/(m270 + m0,2)2 + 4m%71
Amaz (R) =2

5.13
2m070 ( )



86 APPLICATION TO SURFACE INSPECTION PROBLEMS

Orientation The angle, ¢, between the x axis and the axis around which the blob
can be rotated with minimum inertia which is given by the eigenvector to the
minimal eigenvalue.

2m171

#(R) = arctan (5.14)

ma o — Mo,2

Instead of recording all the values for each blob in each image the information is
reduced to the mean and standard deviation of the measures. For every segmented
image I; we obtain a set of parameters to define the overall form of blobs in it:

i 1
Ml = ﬁ Z Cl(b),
beReg(I;)
. 1
‘2\4'2Z = ﬁ Z E(b)a
bEReg(I;)
Mé = ﬁ Z )\maz (b)a (515)
bEReg(I;)

M= o Y e

beReg(I;)

which are the mean values, being Reg(I;) the set of blobs in the segmented image I,
and N? the number of blobs in the image. And the measures standard deviations:

i 1 ,

WESES N1 Z (a(b) — M})?,
bEReyg(I;)

My = w—,) 2o (€(0)—M5)2,
bEReyg(I;)

; 1 i

M = s 2 Owmae(d) = MJ?, (5.16)
bEReg(I;)

) 1 .

My = s, 2o (6(b) - Mj)?
beReg(I;)

In some cases it can be useful to get a more fine description of the distribution of a
certain measure. Then, instead of using the mean and the standard deviation we will
use an small dimensional histogram of the parameter in question. For example, we
have used in one of the cases that we will present in section 5.6, the histogram of blob
areas for each segmented image. As we knew a priori which were the usual size of the
blobs we divide them in four bins: very small, small, medium and large blobs. When
the texture is thought to be described by a certain parameter it is straightforward to
obtain its histogram. The small histogram will be denoted as the feature M¢ where
the number of bins is specific for each problem.
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As we want to describe colour textures, a representation of the colour of each
cluster is needed. Three more parameters are extracted from each image I;. We
compute the mean colour of all the pixels in each cluster as M; (I;)

Although strictly speaking only M;, M> and M, (I;) are measurements on colour,
all the other measures can be considered to extract information of similar colour
blobs, defining, separately, how the texture of colours are. The colour space where
the colour measurements are done is not specified. Any suitable one can be selected
whereas it captures the information that is wanted. As in high frequency patterns
colour assimilation is one of the main factors to perceive colour, a perceptual blurring
as defined in [12] and introduced in section 4.2 is feasible. With this approach the
distance from the scene to the observer can be modeled by a few parameters.

5.5 Proposal for a perceptual colour texture repre-
sentation

So far we have introduced the methods to isolate the blobs on the image that form the
texture based on the colour information. Colour induction has been used to enlarge
colour differences and help to a better segmentation of coloured blobs. It is done
at different scales to simulate the human process of attentive vision. When done at
high frequencies perceptual blurring is performed, and at low frequencies we apply
perceptual sharpening.

The second stage has been to define a set of measures to capture global an local
features on the colour and texture of the image. At this point there is no connection
between both stages.

Our proposal is to merge the two previous points in a single feature vector rep-
resenting the colour texture descriptor of the image. The schema of this proposal
is presented in figure 5.5. We will take the global measures from the set of images
obtained from the assimilation process, and the local measures from the blob segmen-
tations using different scales on the contrast process. The number of segments used
in the local features will depend on the image content and, when available, on the a
priori information of the problem.

From the schema of colour assimilation and contrast a set of images are obtained
that have to be recombined to be the input to the feature extraction. Given a scale
sp, where 1 < p < n,(i.e.: assimilation conditions) the outputs A(Opp(I).,s,) for
¢ =1...3 are combined in a tristimulus image A(I,s;,), that is, the image obtained
after an assimilation process at observer conditions defined by s,. For all the set of
images obtained at the different scales for assimilation we compute the global feature
vector composed by M; and Ms:

(M;(AI,5,))} p=1...n, f=1...2 (5.17)

A similar process is done with the outputs from the perceptual sharpening, the
images C(Opp(I)., sp) forc =1...3 and n+1 < p < m, are combined in a tristimulus
image C'(I,s,) and then a set of k segmented images is obtained from the clustering
process, {C®9(1,s,)} for sg = 1...k. At this point we have k X (m — n) images as
the result of the clustering process on the m — n scales of the perceptual sharpening.



‘[opow uorjeIusseIdol 9INIXa}-INO[0)) (GG 2INSI ]

A: Assimilation Operator
C: Contrast Operator

Opp(1),

\4

' Opp(1),

\ 4

Opp(l),

— A(Opp(1),,s)

Global measures

_» AOpp(l),;s,)

_’C(Opp(l )1’ Sq+1)

{M ¢ (A(l ,Sp))} 1..n

pl
fl1.2

Blob segmentation

—C(Opp(1),,s,)
— > AOpp(l),;,8) _|

——» AOp(l),,s,) _|

—C(0pp(1),S,)

—C(Opp(1),s,)

— AOp(1)z,8)

- » AOpp(1)s,8) —
—C(Opp(1)3, Sp) ——

—C(Opp(1)s,80) —

{ng (I ! Sn+1)} sgl.k

{ng (l ’ Sm)} sg:l.k

l

Local measures

{M =(C9(] ,Sp))}sg:l...k

pint+l.m
fa..

88

SIWHTHOYd NOLLOAdSNI HOVAHNS OL NOILLVOI'TddV



5.6. Case 1: Ceramic tile classification 89

(a) (b)

Figure 5.6: Tile classification system: (a) Real conditions in which human operators
classify the production. In (b) the off-line classification system designed for this
purpose.

From those images the local feature vector is obtained. The features included are
those defined in section 5.4, from M; to Mj:

{M?(C*(1,sp))} wheresg =1...k, p=1...n, f=1...9 (5.18)

This is a general framework for colour—texture representation, but in each problem
the parameters k, m, n, and the desired features f have to be defined to adjust to
the knowledge of the problem.

From now on we will describe two applied cases were colour texture is the key
factor to analyse the problem. The first case is the classification of ceramic tiles were
a representation of the texture is needed to differentiate between classes with small
differences in colour and/or texture. The second case is the quantification of printing
quality from the appearance of the texture in homogeneous ink patches.

5.6 Case 1: Ceramic tile classification

5.6.1 The problem

In this section we treat a specific problem of classification of polished ceramic tiles.
Tile manufacturing needs of pigments and clay which are mixed, melted, sprayed to
form the tile substrate, and finally baked. This is a high quality tile whose produc-
tion can be affected by external factors that are difficult to control, such as humidity,
temperature, pressure conditions, origin of clays and colour pigments. Changes in
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any of these parameters provoke subtle visual variations of the tile aspect when tiles
are placed on the floor, one next to the other. These visual changes are due to small
alterations of colour and texture properties of the tiles. It forces an on line classifica-
tion of the production. At present, the classification is done by human experts, and it
always involves subjectivity and loss of repetitiveness. In figure 5.6(a) we can see the
place devoted to classify the production. In each production line only one model of
tiles is produced. Thus, the classification must be done among classes of each model
and not among models. During one day production up to eight classes can be created.
A correct and non—subjective ceramic tile classification would allow to avoid returns
from customers and to optimise the storage of the production stock reducing stock
fragmentation. Previous research in computer vision techniques has contributed with
interesting works on this problem [12, 83]. Now we will work on it with our colour
texture description approach.

Previous works on the same application only use colour information for the clas-
sification task. In one of them [83] the first and second order moments of the RGB
histograms are computed as colour and texture measurements, respectively. The sec-
ond work [12] is based on three-dimensional histograms over the RGB space. The
classification process extracts a similarity measure based on the Pearson correlation
coefficient between 3D histograms. None of them compute blob measurements.

5.6.2 Human criteria for tile classification

Nowadays, this classification task is performed by specialised workers requiring a
training period before to do it. One worker is replaced from the production line every
two hours in order to avoid fatigue. It is such a subjective task that two different
people can disagree in classifying the same sample. However, they have developed
their own jargon to speak about tile differences. With the collaboration of a company
of this industrial sector we did an experiment with human operators om order to get
maximum information on hoe they do the classification.

Firstly, we asked classification experts to list the vocabulary that has been the
basis to develop this work. The following list presents the characteristics they look
at:

1. Fine—grained vs. coarse—grained: It is an obvious feature that defines the size
of the grains.

2. Opened grain vs. closed grain: it is a measure of the distance among grains of
the same size that could be intuitively interpreted as some density factor.

3. Light vs. dark grain colour: The colour properties of a specific type of blobs.

4. Light vs. dark background: The colour properties of the tile background. For
some tile models with an important difference between the amount of every
colour can provoke a predominant colour and a secondary colour. The first one
will be called the background and will the blobs froming this bakground will
not be considered.
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5. Light vs. dark global colour: The colour properties of the overall colour im-
pression due to the interaction between background and grains or between all
grains.

Two tests were done with a group of trained people to search for the motivations
they make conclude a certain classification.

e For a set of seven different classes of the same model and for two models they
were asked to enumerate and quantify which were the features that, from their
point of view, allowed to discriminate between a pair of classes. When describing
these differences several tiles of each class were used.

e For each class the expert had to determine which were the three most similar
classes.

The conclusion in the first experiment was that they do not focus on the interaction
between colours but in the global appearance of tile and in local features of each colour.
In the second case it was clear that they admit that some classes can be mixed without
a very high inter—class difference, and that when a class can be confused with another
one the behaviour is usually symmetric. From the models used in the experiments
and from the experience of human operators, it was agreed that human classification
is more difficult as the number of colours increases.

5.6.3 Preliminary approach

Although there exist some commercial systems that claim they cope with the ceramic
classification problem only the works in [83] and [12] are documented, the others
only have a short brochure without any indication of its classification rates and the
methods they use. In both cases global colour information has been used, although
the influence of the texture has been considered by simulating an assimilation step in
the second one.

Our first attempt is to check if using only global colour information is enough or
something else is needed.

Similarity measurement

In computer vision the problem of defining similarity measurements has been widely
studied for the object recognition task. In [27] it is argued that the recognition is
mainly based on distances on a small dimensional space and on the definition of
prototypes which can define a class of objects.

In this work, as in [13] we will use the linear correlation coefficient (Pearson’s r)
between image histograms to compare the tiles. Then we define D as a similarity
measurement:
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Figure 5.7: Classification of the same tile set using two different reference tiles: (a)
Reference tile is 36. There is no possibility to discriminate between classes tb33 and
tb41. (b) Reference tile is 26. Only class tb35 can be discriminated in relation to the
other two.

where I" and I*® are images to be compared, H(I7) is the histogram of the I/ image
and H(I7); denotes de number of pixels of the I/ image having colour i, where i is a
triplet of red, green and blue values which range from 0 to 2°, being b the number of
bits used to digitise the image. H(I") is the histogram mean.

So that, the correlation coefficient helps us to get a similarity value between two
different tiles. Every tile is defined by its own histogram. If D(r,s) value is near to
0 it means that images I" and I® belong to the same class, on the contrary, a value
near to 1 signifies images are from two different classes.

Classification by similarity

The use of similarity measures to classify involves the election of the representative
samples for every class of tile. Usually, they are arbitrarily selected among those
whose classification is known. This can cause some problems since an algorithm can
obtain different results depending on which is the sample used as prototype.

In Boukouvalas’s work [13], the classification uses one reference sample. The
algorithm classifies based on thresholds on the correlation coefficients between the
sample and the reference tiles that have been taken. Applying this method to our
samples makes us realise on how important is the choice of the reference sample.
Changing the reference sample can vary the capability to discriminate among classes.
An example of this problem is shown in figure 5.7. The z axis is the number of sample
and the y axis is the distance D(r, s) from each sample to a reference sample, which
is different in the first and second plot.

To avoid the above mentioned problem and to get a classification less dependent
on the reference chosen, we propose a new method to select the prototypes of each
class. N images of each class of tiles were taken to elect the representative sample.
From them we obtained a similarity matrix calculated using the measure D between
the three—dimensional histograms of all of them.

To select the most representative images for every class, its configuration inside
the space of classes has to be analysed. We used Multidimensional Scaling as a
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method to explore the configuration among them [64]. This method allow us to use
a similarity matrix to find the point coordinates of each sample in a D—dimensional
space. The distances between pairs of points in the configuration agree with the
similarity measurements.

The dimension D of the space where samples are represented is fixed by the stress
measure. This is an error measure between the similarity matrix used and the dis-
tances matrix of the points in the new space. In our experiment we generate a
6—dimensional space with an stress value of 0.07, which we consider enough for our
purposes. A stress value of 0.05 is considered good to establish the real space dimen-
sion.

In this space, we group the samples of the same class. For every group, the first
three samples closest to the centroid of the group are taken as class prototypes.

The classification process consists of two steps. Firstly, to calculate the similarity
of the input sample to every prototype computed in the above step. Secondly, if
the minimum distance does not exceed a certain threshold, 7, the input sample is
classified as belonging to the same class of the representative sample from which the
minimum is obtained. Otherwise a new class is defined and a new space to classify is
calculated. The parameter 7 determines the stock fragmentation, the smaller 7 the
higher fragmentation.

Results

The test has been carried out in laboratory conditions, where 90 tiles were used from 3
different models with 3 classes in each model. We used the full histogram to calculate
the similarity D implementing the histogram with BTrees in order to save memory
space. If the histogram dimension is reduced the method is unfeasible because of
the small differences in colour between classes. The classification rate was over 90%
using exclusively colour information, but when used in a larger set of samples the
classification rates dropped to approximately 75%. This was because colour can not
cope with all the cases and both colour and texture has to be considered. There are
samples with the same colour distribution that they only differ on how colours are
distributed on the sample. These were the first steps in the colour texture inspection
problems.

5.6.4 Classification based on proposed perceptual features

From the conclusion of section 5.6.2 we translated the list of visual features to compu-
tational features on the image. There is not a one to one equivalence between expert
and computer features but we define measures that involve several expert words.
We can associate measurements M{, M and the small dimensional histogram on
a(R), M, to the first characteristic from the list. M¢ can also catch information on
the second characteristic. Light vs. dark grain colour and Light vs. dark background
are represented by measurement M;(I?), depending on the segment applied it will
be grain or background. Which one it is the segment assigned to background is not
relevant because we do not need to explain the reasons because the computational
system classify, and for all 4, M, (I*) will be calculated. M, (I) and M;(I) are used
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to define the fifth characteristic, Light vs. dark global colour. We also add two more
measure to the list of selected ones, M and M: because when the grain is open, in
their jargon, blobs are more rounded and have less variation in its elongation. From
this set of measures M} and M are rejected because they are redundant to some
extent with M¢.

In short and as a summary 2 vectors are obtained as a more global description
(M;(I) and M>(I)). Two more set of vectors describe globally how are the main
statistical properties of each of the colours in the image, M;(I*) and are applied to
each of the p segmented images. Finally the M¢, Mi and M# measures geometric
properties of the blobs in each of the images I;.

To result these concepts in the general colour-texture representation (section 5.5),
parameter f associated to global features is f = {1,2}, and f associated to local
features is f = {2,7,9} The last step is to input the feature vector into a classifier.
We have used the Linear Discriminant Analysis defined in A.

Results

We have tested the classification method on a variety of feature vectors obtained com-
bining the two clustering methods and applying perceptual blurring and without it,
that is: n = 0 and n = 1 in the colour texture representation model. The segmenta-
tion method is done on the original image and in the perceptually sharpened image,
m = 0 and m = 2. We did not combine them, but tested two different configurations
{n =0,m =0} and {n = 1,m = 2}. As the tiles of the same model have a single main
frequency, there is no need to extent the feature vector to a multiscale representation
on perceptual blurring and sharpening. For both cases, the frequencies are selected
manually for each model.

We have used six different models of tiles with a total set of 514 samples distributed
in 47 different classes. Each sample has been divided in three regions which results
in 1542 images. One third of the images are randomly selected to be used as learning
set and the others are the test set. The classification percentages obtained are those
from table 5.1 to 5.6. The first column of the tables is the preprocessing applied
to the image which can be the SS operator ({n = 1,m = 2}) or the image itself
({n = 0,m = 0}). The second column is the clustering algorithm used where MG
stands for Mixture of Gaussians. As the experts recognise that some times the same
sample can be included in two different classes, we have obtained the percentage of
images classified as the class that they actually belong and the percentage of images
that their real class is the first or second best match. Due to the fact that the tiles
are previously sorted by humans it is reasonable to take this second percentage as the
capability of the system to cope with the problem. The percentages are taken only
on the test sample, the learning set is not considered.

Not all the models have the same number of pigments. When it increases the
human experts have more difficulties to classify them. The models used in this ex-
periments where Duero, Tiber, Cinca, Orinoco, Ohio and Mijares with 2, 4, 3, 3, 2,
and 3 different pigments respectively. Table 5.7 contains the global results for all the
models. The conclusions from the tables can be summarised in

e When the number of pigments is greater than two, there is more confusion
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Process Clustering | 1st rank 1st or 2nd rank

SS operator MG 98.75% 100%
KMeans 97.08% 100%

None MG 84.16% 92.08%
KMeans 85.83% 92.91%

Table 5.1: Classification results for Duero model. Number of images in the test set:

240.
Process Clustering | 1st rank 1st or 2nd rank
SS operator MG 97.5% 100%
KMeans 97.08% 99.5%
None MG 92.5% 96.66%
KMeans 91.25% 96.66%

Table 5.2: Classification results for Tiber model. Number of images in the test set:

240.
Process Clustering | 1st rank 1st or 2nd rank
SS operator MG 98% 100%
KMeans 98% 99%
None MG 89% 92%
KMeans 87% 93%

Table 5.3: Classification results for Cinca model. Number of images in the test set:

100.
Process Clustering | 1st rank 1st or 2nd rank
SS operator MG 94.05% 99.01%
KMeans 91.08% 97.02%
None MG 88.17% 90.59%
KMeans 86.13% 89.10%

Table 5.4: Classification results for Orinoco model. Number of images in the test

set: 202.
Process Clustering | 1st rank 1st or 2nd rank
SS operator MG 99.30% 100%
KMeans 99.30% 100%
None MG 95.83% 97.22%
KMeans 94.44% 96.52%

Table 5.5: Classification results for model Ohio. Number of images in the test set:

144.

95
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Process Clustering | 1st rank 1st or 2nd rank

SS operator MG 100% 100%
KMeans 100% 100%

None MG 100% 100%
KMeans 100% 100%

Table 5.6: Classification results for Mijares model. Number of images in the test
set: 102.

Process Clustering | 1st rank 1st or 2nd rank

SS operator MG 97.47% 99.61%
KMeans 96.40% 99.03%

None MG 90.76% 94.36%
KMeans 89.30% 93.87%

Table 5.7: Average classification results for all models.

between blobs and working on the original image has worst results.

e Although the ratios are not so high than in the previous case, perceptual sharp-
ening operator always gives better results even if the number of different pig-
ments is low.

e The use of the clustering algorithms is not very crucial in the final classification.
There are some advantages in the case of mixture of Gaussians, but at the
expense of processing time and memory usage. Thus, when the classification
ratio is not crucial kmeans is a feasible option.

e Due to subjectiveness in the human classification, taking the first and second
best classes to fit the sample is an approximation in the uncertainty introduced
in the classification process.

Although the number of classes in each model is important, the higher the number
of classes is the higher probability of misclassification, but it can happen even with
very few classes. In the case of Cinca model there are three different classes but the
classification is not perfect, whereas in the Mijares model there is no error with the
same number of classes. This is because of the the tiles supplied in the second case
are very different between them and any approach will solve it. In regard to Duero,
Tiber, Orinoco and Ohio models, the number of grades respectively is 10, 12, 11 and
7.

In spite of these good results, the problem is not completely solved. What we get
is an evidence that the colour texture description approach is valid for this problem.
However the dynamic creation of new classes inside a model is not obvious, and until
it is not done a full on—line system can not be build. To work with this problem
we should have all the tiles produced before and after a new class is created, and
that needs a more complex logistic when the prototype is done in off-line production.
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None of the works found in this field cope with this problem and it is still an open
problem to solve in the future.

5.7 Case 2: Printing Quality evaluation

The second industrial problem that we focused on was a particular aspect of the
printing quality evaluation. One of the problems of the printing industry is to assure
printers can print homogenous colour patches, if they cannot do it very poor final
results are obtained. Sometimes the print head produces a vertical degradation that
translates to an striped patch which is called a banding effect that diminishes the
printing quality. Sometimes it is a very smooth effect and sometimes is very obvious.
As many other applications it is done by humans, which implies subjectivity and non—
repetitiveness, as in the previous case. To control the printing quality they grade each
patch in different levels. The problem is to find a set of parameters to automatically
evaluate this grade or, even better, to give a number in a continuous domain of how
good the printer is.

Unfortunately we had a very short set of examples. In addition the images were
scanned at a medium resolution and we do not know exactly the parameters of the
process. Despite these adverse circumstances we have tried the SS operator to this
problem.

The perceptual sharpening operator SS can work on any colour space whenever
it is tristimulus. Although the opponent space is the best to be used when simulating
human behaviour, others can be used to make differences more obvious in specific
problems. That is relevant when analysing printed images because the tristimulus
used in this process is based on the subtractive primaries cyan, magenta and yellow
plus a fourth ink introduced for practical purposes, black, and so it is called CMYK
model. Then instead of using the opponent space we will use the SS operator on the
CMY space as the quality test are usually done with pure inks. With this modification
we can operate only on the principal channel of the patch, which is a priori known.
For example, if we operate on the opponent space a nearly homogeneous cyan patch
will present a colour distribution that will be shared by the two chromatic opponent
channels. When performing in the CMY space the representation lays on a single
channel and this is the only one that has to be sharpened.

The transform from RGB (the original colour space of the images) and the CMY
space can be approximated by:

c 1 R
M|=|1]|-]@ (5.20)
Y 1 B

When testing the black ink, as it is just luminance, the opponent space is used
and the first component is sharpened as there should be no chromatic information.

The images from banding effects are somewhat textured because the white colour
of paper sheet becomes more visible as worst is the defect of the printer. That is, the
more evident is the defect the more texture appears in the image. A printed image
is never perfectly homogeneous but when it is good the colours that appear are very
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Figure 5.8: Cyan patches from different printers, ordered from top to down by its
banding quality. From left to right: original image, colour distribution of the image
on the cyan channel, distribution of the image after the SS operator in the CMY
colour space, gaussian mixture of the previous distribution.

close one to the other. When there exist non—homogeneity and the colour distribution
is analysed the main colours that appear are white (the paper colour) and the hue of
the basic ink. Those colours are clearly far away one from the other. We will use this
effect to visualise the printer banding error.

What we do is to cluster the colours of the image into two groups using the decision
criterion based on modeling de distributions by a mixture of gaussians defined in
section 5.2.2. If the region is homogeneous two clusters with their means very close
have to be found, and the covariance matrices of both of them have to be compact.
One way to measure this compactness is to calculate the ellipsoids that includes 99.5%
of the distribution. The length of the semi—axes is a parameter of how scattered is
the colour. If a simpler parameterisation is needed the linear discriminant analysis
of gaussian distributions can be calculated and then the mean and covariance will be
2—-dimensional instead of 3—dimensional.

It is common that on some inks the banding effect is stronger than on others
and this makes each ink to have different grades. For example, gray patches are
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Figure 5.9: Magenta patches from different printers, ordered from top to down by
its banding quality. From left to right: original image, colour distribution of the
image on the cyan channel, distribution of the image after the SS operator in the
CMY colour space, gaussian mixture of the previous distribution.
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Figure 5.10: Grey patches from different printers, ordered from top to down by
its banding quality. From left to right: original image, colour distribution of the
image on the intensity channel, distribution of the image after the SS operator in
the opponent colour space, gaussian mixture of the previous distribution.

usually better than cyan, and light colours are less sensitive to banding effects than
the darker ones of the same hue. It is for that reason that in the examples that we
show de number of grades are different and the magnitude of the parameters is specific
for each ink.

Figures 5.8, 5.9 and 5.10 shows the results on some samples. The first one, a cyan
patch, has four grades shown in the first column of the figure, sorted from best to worst
according to the given classification. The first patch is clearly homogeneous whereas
the last one is the worst case. In the middle the degradation can be continuous. When
plotting the histogram of the cyan channel from the original image, second column,
we observe a peak in all cases and in the last one there is a queue that is the white
pixels. The other three cases are difficult to evaluate from this distribution. When
applying the SS operator in the same view, third column, there appear two peaks
when the image is more or less homogeneous, corresponding to the cyan in the image
and the last one with one peak of the cyan and a more exaggerated queue of the
white. The distance between peaks, if they exist, and their width can characterise
the homogeneity of the sample. The results from modeling them with a mixture of
gaussians are shown in the fourth column. The first ellipsoid, in red, is linked with
the highest cyan in the image and the grey one to or the second cyan in the image or
the white pixels. When it captures information of white pixels it is more elongated
and its centre is far away from the centre of the red ellipsoid. If it is the coverage of
a second cyan then the semi—axes are more similar and the centres are closer.
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Figure 5.9 shows the same effect in a magenta sample where the same rules can
be applied. And the last image is from a grey patch, where the red ellipsoid holds
information of white pixels and the grey one includes the black pixels. In this case
there are only three different samples because this colour is not so sensitive to the
effect.

No numerical results can be extracted as we would need a number of samples to
get a good validation of the parameters and their meaning. Despite this lack the
preliminary results show encouraging performance towards its quantification.

5.8 Discussion

In this chapter we have addressed the colour texture representation based on percep-
tual mechanisms. To define a general framework to describe an image we have taken a
multiscale approximation. In this way human attentive processes can be represented
computationally. A clustering process on the perceptual sharpened images is done
to better adjust the blob segmentation, which can be adjusted to reject ambiguous
colours.

Another point of interest is the definition of two sets of features valid for a wide
set of different sort of iamges. Global and local features are calculated for every scale
needed. The use of feature vectors is not new in representing textures. What it
changes from existing works is the use of the features on the images that segregate
similar colours.

The general framework is closed defining a general schema that can be adapted
to the knowledge of the problem, rejecting features, assimilation scales or contrast
scales. Its flexibility allows adapting to a wide variety of problems.

Two of such problems are presented at the end of the chapter. The first one to
demonstrate the viability of a classification system of ceramic tiles, which is badly
posed as a problem of just colour differences. The second one uses the perceptual
segmentation to quantify the banding error of printing industry. In this case, the
results are preliminary but they present a good perspective.
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