
Chapter 2

Texture analysis by wavelet

decomposition

In this chapter we go to review the main topics of this work. We start with a summary
of the texture analysis methods, enumerating the di�erent approaches taken over this
theme and explaining several applications where texture has an important role. In
a second part we explain in detail the tool that we have choose in order to analyze
texture in this work. This wavelet decomposition explanations start with a fast his-
torical review followed by some theoretical foundation of this theme and �nally with
some basic applications. In the last part of the chapter we try to merge these two
worlds, and we analyze di�erent solutions adopted in the literature.

2.1 Texture analysis

Texture is an important �eld in computer vision. Several applications were texture
information plays a valuable role can be found among others in the medical imaging,
scene analysis, remote sensing and quality control �elds. Since the earliest works on
texture analysis in 1970's the knowledge of this area has grown becoming nowadays
one of the most active research �elds in computer vision.

Texture is a term commonly used to describe properties of the surface of an ob-
ject. One of the de�nitions we can �nd in Webster's dictionary is: \The characteristic
physical structure given to a material, an object, etc., by the size, shape, arrange-
ment, and proportions of its parts..." These properties are mainly related to a tactile
sensation. When seeing texture images people uses similar attributes to the tactile
perception to describe what is being perceived [99] although both perceptions can be
not related.

If we consider how are these textures formed, we realize that they can be described
in a variety of ways [104]. Texture can be generated from primitives or textons (texture
elements) organized by placement rules or as a result of some stochastic process. We
can found textures from purely deterministic, for example a brick wall, to purely
random, as an image of sand.
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6 TEXTURE ANALYSIS BY WAVELET DECOMPOSITION

2.1.1 Approaches to texture analysis

The main methodologies applied when analyzing texture are those related to struc-
tural, statistical, stochastic, and space-frequency models. Di�erences between these
approaches lie on what is it assumed to be the underlying texture structure. For this
reason the most suitable methodology for each application depends on the kind of
texture:

� Structural methods consider texture form the point of view of formal languages
theory. In this case, primitives forming repetitive patterns de�ne images and
these methods try to describe such patterns in terms of their construction rules.
Structural approach is mostly carry out by document analysis community [92,
51].

� Statistical models characterize textures using joint probability distributions of
image pixel intensities. Co-occurrence matrix [36] is the most popular and
representative method of this group.

� Stochastic methods de�ne image gray level as state variables and the texture
has the probability of transition between those stages. Markov random �elds
[49] are probably the most widespread of this methodologies.

� Spatial-frequency models use the fact that most textures, due to their repetitive
behavior, are easier to represent in the spectral domain than in the spatial one.
Spatial-frequency approach to texture analysis have provide the most successful
solutions to the problems of texture characterization. Their success is re
ected
in the large number publications in this �eld. Here we found techniques in which
features are obtained studying new representations as spectral ones or conjoint
representations of space and frequency. Fourier, Gabor, Wavelets are some of
the most representative techniques of this group [78]. The approach we have
used to study our images.

There are several books and articles that give overviews of the available method-
ology in the texture �eld [93, 79]. In these works the previous four categories are
almost represented, maybe with di�erent names.

2.1.2 Applications of texture analysis

There are a wide range of examples where texture recognition is and important part
of the study of these problems. Some of the �elds with several applications examples
where texture has an important role are explained in the next paragraphs.

Machine Vision: There are several point in an industrial process where inspection
of texture can be useful. Among them maybe quality control is the most outstanding.
In most cases quality processes based on visual inspection are done manually, thus
the possibility of automation by means of arti�cial vision is of great interest. Finish
quality of an object or material is a visual impression de�ned by its texture; therefore
texture analysis plays an important role in inspection. There are a lot of examples
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of industrial inspection based on texture, for instance: classi�cation of ceramic tiles
to reduce over segmentation of the stock [57], description of wood texture in order
de�ne criteria of aesthetic compatibility between boards [35].

Image retrieval: The amount of information that is accessible nowadays is its elec-
tronic version is very big compared to a few decades ago. Sometimes this information
consists of images that contain in its turn new information that has not been anno-
tated by hand. Searching over large databases of images is a laborious task more
and more common. Therefore, any improvement on techniques related to this task is
of great interest. Some contents in these repositories have texture as an important
feature. Hence, applications including texture have been proposed [30, 71].

Medical imaging: Images on this �eld come from non-intrusive techniques as pho-
tography, x-ray, ultrasound, tomography, etc.; and from intrusive techniques as mi-
croscopic analysis of tissue. Texture is an important clue in several diagnoses that
takes these images as part of the study. These examples come from early detection of
mammographic lesions [34], cancer detection in liver cells [2], detection of distortion
in trabecular bones [52], and classi�cation of the pneumoconiosis disease degree [100].

Remote sensing: In this �eld images also come from di�erent sensors. These
sensors acquired di�erent features of distant objects on which we want to perform
some measurements. The use of spectral features for image classi�cation is one of
the standard techniques widely used in remote sensing, however, this classi�cation is
very limited if illumination conditions change. Texture features solve some of these
problems [83] because they are invaluable clues for visual human inspection. Some
applications in this �eld include terrain classi�cation, cloud classi�cation, urban/�eld
classi�cation, etc.

More information about other application �elds as document segmentation [45],
shape from texture [91], 1D texture, can be found in [77, 93].

Despite of the scope of the application, researchers use to face several common
problems when they analyze texture information: classi�cation, discrimination, de-
scription, identi�cation, segmentation, and synthesis of textures. The work presented
in this dissertation is mainly concerned about the classi�cation, although, in one way
or another, all these approaches are represented in this work. Segmentation of marble
images can be associated to a classi�cation and description problem; although it is in
essence a segmentation problem it cannot be related to a typical texture segmentation
problem. In the recognition of tiles we classify in order to discriminate samples. In
the recognition of paints we classify in order to identify pigments. The �nal studies
that try to characterize texture in a global way are concerned with classi�cation and
synthesis problems.
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2.2 Wavelets

Nowadays, wavelets are one of the most important tools in the study of textures. If we
do a fast review of the techniques used in segmentation, classi�cation and synthesis
of textures we will see that wavelets, including Gabor �lters1, become the most used
tools in these kinds of works.

There are a number of introductory books on wavelets [1, 20, 63]. Among them it
is fair to emphasize the Mallat's book [63] with a broad perspective on the principles
of wavelets and the applications to 1D and 2D signal processing, besides being one of
the most referenced authors in this �eld. We do in this section a short introduction
to the wavelets because is the most important thread of all the following development
we do in this work.

2.2.1 Introduction to wavelets

Wavelets come to light as a tool to study non-stationary problems. Such problems
where Fourier analysis is not suÆcient. At the beginning of 80's wavelets started as an
alternative to the Fourier analysis in many �elds as: mathematics, quantum physics,
electricity, seismology, etc. The knowledge exchanged among these di�erent �elds
some years ago gave rise to a bulk of new applications inside other �elds. Speci�cally,
a large number of problems were analyzed with this new tool in computer vision,
specially image compression and texture analysis. However, almost every topic in
computer vision has been studied with wavelets, as example: tracking [95], data
fusion [47], database image retrieval [44], edge detection [64], layout segmentation
[45], etc.

The basis of wavelets can be found in the beginning of twentieth century. The
decomposition of a signal as a combination of several signals was developed in 1807
by Joseph Fourier. He devised a method to express a well-behaved function as an
in�nite sum of sinusoidal functions. In this way a function can be studied in terms
of their spectral components. Wavelets perform a decomposition of a function as a
sum of other functions, but unlike Fourier decomposition, these functions are local
bases, have �nite support, and are localized at di�erent scales. It acts as if we have a
window that can be positioned over any point of the function, moving the window we
have a local analysis (localized) and varying the width of the window we can arrive
to di�erent detail levels (scale).

The �eld of image processing has taken this theory adapting it to their signals,
basically extending the algorithms to 2D. But, it is not only a new transformation to
work with. The features that images present, the statistics over the spatial domain
make of wavelets an ideally tool for their analysis. Images, except restricted domains,
have a non-stationary behavior. This non-stationary property force, in most cases,
to perform a local study of this kind of signals. Measures we can take to characterize
an image vary a lot over all their points due to this non-stationary behavior. For
instance, images have contours, it means, discontinuities that breaks any possible

1Gabor �lters are considered as wavelets for most authors although they do not �t exactly in

the de�nition. Nevertheless, they are seen as precursors of wavelets in the sense of non-orthogonal

decomposition.
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stationariness. Moreover, we found objects inside images with sizes and texture that
also varies. Inside and image there are di�erent scales where interest is greater.
A frequency analysis of an image in some cases is suÆcient, but in most cases we
want more information, for example, where some features or patterns occur. With a
frequency analysis we do not have a clear localization of where some patterns appear.

Still, wavelets do not substitute Fourier analysis in the image processing �eld,
since they permit us to consider other approaches.

Wavelets are bounded functions with zero average. This implies that shapes of
these functions are waves restricted in time. From this little wave (wavelet) comes
their name. Their time-frequency limitation yields a good localization. Figure 2.1
shows two examples of wavelets widely used to illustrate this space-frequency local-
ization concept. At the same �gure we can see their Fourier transform spectrum that
give us an idea of their frequency localization.
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Figure 2.1: Functions used as wavelets: (a) Haar, (b) Mexican hat (Laplacian of

Gaussian). And their Fourier transforms: (c), (d).

Starting from a function of the same type that functions showed before,  (t),
named mother wavelet, we are able to build a base, in the sense of a vector (function)
base where we can decompose any vector (function). This base is generated by means
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of translations and dilations of the mother wavelet,

 ab(t) =
1p
a
 

�
t� b

a

�
:

To perform the study of a signal (function) with wavelet decomposition we obtain the
coeÆcients of this signal in the previous generated base from this mother wavelet.

An important di�erence from the Fourier analysis is that functions of these bases
are well-localized in space (or time) and scale (frequency) unlike functions used in
Fourier analysis that are sine and cosine (complex exponential) that are well-localized
in frequency but non-localized in space. Due to the fact of this localization, they
permit the study of abrupt functions with a lower number of coeÆcients.

One of the �rst steps to solve the problem of the bad localization of the Fourier
transform was proposed by Gabor in 1946. It consists on moving a �xed-duration
window over the function and extracting the frequency content in that interval. This
transformation has di�erent names: STFT (Short Time Fourier Transform), Sliding
Window Fourier Transform and, if the window is Gaussian, Gabor Transform. With
this transform we have a better localization, we know what frequencies we have and
where they are located over the signal. This transform is given by:

F (
; �) =

Z 1

�1
f(t)g�(t� �)e�j
tdt ;

where g(t) is the window and � represents the complex conjugate.
This transformation would be suitable for signals that are locally stationary, but

globally non-stationary as speech signals. Image �eld usually associate the concept
of Gabor �lter to g(t)e�j
t, but for image is better to adapt the window width to
the frequency content. Gabor propose Gaussian windows because is the function that
reduces the uncertainty of the transformation to its minimum. It is related to the
uncertainty principle of Heisenberg. According to it, the product of the uncertainties
in time and frequency cannot be reduced below a certain constant. If we choose �xed
windows the uncertainty boxes are equal in shape over the time-frequency space. If
we choose an adapted window, although with the same area due to the uncertainty
principle, boxes can be adapted to the contents.

Wavelets are function basis that share this outstanding property of being well
localized spatially and in frequency. The name of wavelets comes form a short os-
cillating signal over a reduced interval (little wave). For all this things, wavelets are
well adapted to represent short abrupt signals and also smooth functions.

2.2.2 Gabor wavelets

Gabor functions are an important family of �lters used in computer vision because
they can model some properties of the low level human visual system. They have
been successfully used to explain the response of the visual cortex form the human
visual system [21] and also in many applications as texture analysis and segmentation
[12], motion analysis [38], face detection [27], etc. These �lters can be explained in
terms of wavelet transform and Short Fourier Transform.
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There are some evidences that a part of the visual cortex acts as a directional
and two-dimensional �lter bank: in each position of the image a window is centered
to select an area that is directional �ltered (each �lter with a preferred direction)
and next is frequency �ltered (band-pass �lters). This double �ltering process can be
reduced to one, if we build a �lter bank with preferred direction and spatial frequency
band-pass in this direction as input parameters. Gabor �lters are a family of �lters
ful�lling these requirements and also have a minimum of uncertainty over the spatial-
frequency plane. Moreover, these �lters can be adapted to the wavelets format, in
the sense that can be expressed in terms of rotations, dilations and translations of a
mother Gabor �lter.

Several equivalent formulations of Gabor �lters have been proposed. We start
this introduction with the 1D case and we analyze the relation with the Short Time
Fourier Transform (STFT). Later, we will explain the 2D expressions and �nally, we
show how should it be modi�ed to become a Gabor wavelet decomposition.

The 1D impulse response to a Gabor �lter is:

g(t) = e
�t2=2�2t e+j2�!0t = e

�t2=2�2t
�
cos(2�!0t) + j sin(2�!0t)

�
: (2.1)

It is a Gaussian with �t variance, it is modulated by a complex exponential with
!0 frequency. We perform the convolution of a signal with this Gabor �lter in order
to obtain the Gabor transformation at (!0; t):

F (!0; t) =

Z
f(s)g(t� s)ds =

Z
f(s)e�(t�s)

2=2�2t e
j2�!0(t�s)ds =

= e
j2�!0t

Z
f(s)e�(t�s)

2=2�2t e
�j2�!0sds ;

that, except for a phase change, is similar to the STFT with a Gaussian window. In
practice most of the time this �ltering is done in the frequency domain and not in the
spatial domain. This is the Fourier transform of the �lter:

G(!) =

Z
g(t)e�j2�!tdt =

Z
e
�t2(2�2

t e
�j2�(!�!0)tdt = �

p
2� e�2�

2�2
t
(!�!0) : (2.2)

It is a real function, a Gaussian with variance equal to �! = 1=2��t and centered
at !0. G(!) express the way as the �lter modify each frequency component of the
input signal around t. Therefore, parameters of a 1D Gabor �lter are the frequency
!0 and the extent around this frequency �!.

2.2.3 Continuous and discrete wavelet transform

The continuous wavelet transform (CWT) [1], as the STFT, is a correspondence of
L
2(R) �! L

2(R2 ), but with a higher space-frequency localization. L2(R) and L2(R2 )
are, respectively, the space of real 1D and 2D functions with real variable and square
integrable:

f 2 L2(R) ()
Z +1

�1
jf(t)j2dt <1 :
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The CWT assign to each one of these functions a new function W (a; b), but with
two variables, which is de�ned from dilations and translations of a mother wavelet
function:

 a;b(t) =
1p
a
 
� t� b

a

�
(2.3)

W (a; b) =

Z 1

�1
 a;b(t)f(t)dt = h a;b(t); f(t)i : (2.4)

It can be proved that CWT is invertible if the chosen wavelet  (t) ful�ll the
admissibility condition:

C =

Z 1

0

j	(!)j2
!

d! <1 : (2.5)

Then, the inverse transform is:

f(t) =
1

C 

Z 1

�1

Z 1

0

1

a2
W (a; b) a;b(t)da db : (2.6)

This equation can be see �rstly as a way to reconstruct f once the CWT is known,
and secondly how to express f as sum of wavelets  a;b. We can say that f is a lineal
combination of wavelets, for di�erent values of a; b, each one weighted by a factor
W (a; b), as a vector can be expressed as a weighted sum of other vectors of a base.

The election of the wavelet  in the CWT, or later in the discrete transform, is
only restricted to the admissibility condition of Eq. (2.5). In this equation, 	(!) is
the Fourier transform of  (t). If C < 1 we need that 	(0) = 0. Therefore, as the
Fourier transform of a signal at ! = 0 is its average,

R1
�1  (t) = 0. A way to get

it is that  (t) oscillate around the x axis, having positive and negative values that
�nally sum to zero. Besides, for practical reasons,  is chosen concentrated in both
axis: space and frequency. Therefore, j (t)j should decrease when jtj increase (good
spatial localization). Choosing accurately the oscillation shape we can obtain good
frequency localization.

The CWT has two drawbacks: redundancy and impossibility to calculate it in
practice. It is redundant because we are representing a real function f(t) with another
function with two variables W (a; b) (from 1D to 2D). It is impossible to implement
it computationally because their parameters a; b are continuous. We try to solve
these two problems discretizing (sampling) the parameters. One way to discretize
the dilation parameter is a = a

m
0 , m 2 Z, a0 6= 1 constant. Thus, we get a series

of wavelets  m;� of width, a
m
0 . Usually we take a0 > 1, although it is not important

because m can be positive and negative. Often a value of a0 = 2 is taken. For m = 0
we make b to be only integer multiples (positives and negatives) of a new constant
b0. This constant is chosen in such a way that translations of the mother wavelet,
 (t�nb0), be so close as to cover the whole real line. Then, the election of b = nb0a

m
0

assures that wavelets at m level,

 m;n(t) = a
�m=2
0  

� t� nb0a
m

am0

�
= a

�m=2
0  (a�m0 t� nb0) ; (2.7)
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cover the entire real axis as also do the translations  (t � nb0). Summarizing, the
discrete wavelet transform (DWT) consists of the two following discretizations in Eq.
(2.4),

a = a
m
0 ; b = nb0a

m
0 ; m; n 2 Z; a0 > 1; b0 > 0 : (2.8)

Then, we must answer to these questions:

� Can we express every function f(t) 2 L
2(R) as a contribution (weighted sum)

of this set of discrete wavelets? That is, the following equations can be written
for some f ,  ?

f(t) =

1X
m=�1

1X
n=�1

dm;n m;n(t) (2.9)

dm;n = hf(t);  m;n(t)i : (2.10)

In other words, does the linear combination of wavelets f m;n(t)gm;n2Z spans
the function space L2(R)? If it does right, we say that these base functions are
complete.

� If it is complete, it means that it is redundant? That is, can we manage without
one or more functions  m;n and still have a complete set? In this later case, the
set f m;n(t)gm;n2Z is not linear independent.

� If it is complete, which is the longest discretization step (coarsest) that we can
a�ord, in order to achieve a non-redundant set?

The answer to these questions leads us to the multiresolution analysis of the next
section. But before processing, we are going to brie
y introduce the concept of frame.
A frame is a complete set of functions that, though it is able to span L2(R), it is not
a base because lacks the property of linear independence. Wavelets frames

� Do not satisfy Parseval's theorem:

jjf jj2 = hf(t); f(t)i =
Z
jf(t)j2dt ;

but there are two constants 0 < A < B <1 such that,

Ajjf jj2 �
X
m

X
n

jdm;nj2 � Bjjf jj2 : (2.11)

� The expansion of a function is not unique, that is, there are several wavelet
decompositions that can generate one same function f .
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Figure 2.2: Discrete wavelet transform as a bank of �lters. \#a0" denotes to take

one out of a0 samples (downsampling).

A frame is named tight when A = B = 1. But even this not guarantees the
linear independence and therefore having redundancy. A frame is named exact when
removing one of the functions leaves incomplete the set of functions. Finally, a tight
and exact frame establish an orthonormal base of L2(R). Therefore,

h m;n(t);  m0;n0(t)i =
Z
 m;n(t) m0;n0(t)dt = Æm�m0;n�n0 ; (2.12)

that is, they are orthonormal for the two indices. This means that at a same scale
m they are orthonormal in the space and also among scales. The multiresolution
analysis tries to build orthonormal bases for a dyadic grid, where a0 = 2; b0 = 1,
which besides have a compact support region.

Finally, we can imagine the coeÆcients dm;n of the DWT as the sampling of the

convolution of signal f(t) with di�erent �lters  m(�t), where  m(t) = a
�m=2
0  (a�mt)

(see Fig. 2.2):

ym(t) =

Z
f(s) m(s� t)ds

dm;n = ym(na
m
0 ) :

As the frequency increases and the spatial width decreases, thus being closer the
translations of the dilated mother wavelet, unlike Fourier transform where translations
of analysis are at the same distance for all the frequencies (see Fig. 2.3).

2.2.4 Multiresolution analysis

The multiresolution analysis (MRA) proposed in [62] is another representation in
which the signal is a sum of one approximation at a certain level L with L detail
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Figure 2.3: Diadic grid (a0 = 2; b0 = 1)

terms at di�erent (higher) resolutions. This transform is also known as the fast
wavelet transform. The representation is an orthonormal decomposition instead of a
redundant frame and therefore the number of samples that de�nes a signal is the same
that the number of coeÆcients of their transform. A fact that should be emphasized
is that several techniques, already known as subband codi�cation o pyramids, can
be interpreted in terms of the MRA. Besides, MRA has been used successfully in
a big amount of applications: image compression, �ltering, image analysis, texture
classi�cation, image database indexing, etc.

Formulation

A multiresolution analysis consists on a sequence of function subspaces of successive
approximation. They are spaces of functions of L2(R), that ful�ll the next properties:

1. Nesting
: : : � V2 � V1 � V0 � V�1 � V�2 � : : : (2.13)

2. Completeness \
m2Z

Vm = f0g ;
[
m2Z

Vm = L
2(R) : (2.14)

If we named Pj the projection operator of a function over the Vj space, then
this condition say that the approximations of a function tend to this function:
lim
j!1

Pjf = f for all f 2 L
2(R). There are a lot of spaces that ful�ll Eq.

(2.13) and (2.14) but without relation to the multiresolution topic. This is a
consequence of an additional condition:
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Figure 2.4: Function f and its projections in the V0 and V
�1 spaces

3. Multiresolution

f(t) 2 Vj () f(2jt) 2 V0 ; or f(t) 2 Vj () f(2t) 2 Vj�1 : (2.15)

This means that all the Vj spaces are scaled versions of a central space V0. The
simplest example of spaces ful�lling this requirement (Eq. (2.13){(2.15)) is the
MRA of Haar. In it, Vj is the space of functions of L

2(R) that are constant on
the intervals [ 2jk; 2j(k + 1) ) for some �xed integer k (Fig. 2.4). This example
also ful�lls a new condition of the MRA:

4. Invariance to integer translations of V0

f(t) 2 V0 =) f(t� n) 2 V0; 8n 2 Z : (2.16)

Therefore, translations by a multiple of 2j of a function of the space Vj also
belongs to Vj :

f(t) 2 Vj =) f(t� n2j) 2 Vj ;8n 2 Z : (2.17)

Hence, the translation step to obtain this invariance depends on the scale j. For
instance, at V0 the step is 1, 1=2 at V�1, and 1=4 at V�2, etc.
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5. Base property.

There is a function � 2 V0, named scaling function, in such a way that the set
of its integer translations f�(t � n);n 2 Zg is an orthonormal base of V0, that
is,

h�(t� n); �(t � n
0)i = Æ(n� n

0) 8n; n0 2 Z ; (2.18)

spanf�(t� n);n 2 Zg= V0 : (2.19)

The �rst equation expresses orthonormality. In the second one, span denotes
the space generated by a set of functions, that is, integer translations of � form
a frame of V0.

Now, we de�ne a new function2:

�j;n(t) = 2�j=2�(2�jt� n); j; n 2 Z : (2.20)

It is a dilated (by 2�j), translated and scaled (by 2�j=2) version3 of �(t). Then,
f�j;n;n 2 Zg is a orthonormal base of Vj , and this means that

h�m;n; �m;n0i = Æ(n� n
0) 8n; n0 2 Z ; (2.21)

spanf�m;n;n 2 Zg= Vm; m 2 Z : (2.22)

We de�ne the Pj operator as the orthonormal projection of functions of L
2 over the

space Vj . Projection of a function f over Vj is a new function that can be expressed
as a linear combination (weighted sum) of the functions that form the orthonormal
base of Vj . CoeÆcients of the combination of each base function is the scalar product
of f with the base functions, i.e. the projection of f over the base functions:

Pjf =
X
n2Z

hf; �j;ni�j;n ; (2.23)

where scalar product between functions of L2 is a measure of their overlapping.

hf; gi =
1Z

�1

f(t)g(t)dt : (2.24)

Before, we have pointed out the nesting condition of the Vj spaces, Vj � Vj�1.
Well, now we require that if f 2 Vj�1 then or f 2 Vj or f is orthonormal to all the Vj

2In some works �j;n(t) = 2j=2�(2j t � n). Then, as j increases the function is faster and the

nesting property notation is reversed: : : : � V
�2 � V

�1 � V0 � V1 : : :
3The scaling condition can be expressed also as f(t) 2 V0 =) f(2�j t) 2 Vj . Therefore, if

f�0;n;n 2 Zg is a base of V0, f�j;n;n 2 Zg it will be also of Vj because Vj is precisely the space of

the functions of V0 dilated in this way. The scaling constant 2�j=2 attain norm equal to 1 if �0;n
also has norm 1.
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functions, that is, we divide Vj�1 in two disjoint parts: Vj and other space Wj , such
that if f 2 Vj ; g 2 Wj ; f ? g or equivalently, hf; gi = 0 or even Vj ? Wj . Then, we
say that Wj is the orthonormal complement of Vj in Vj�1:

Vj�1 = Vj �Wj : (2.25)

Symbol � is the direct sum, the addition of orthonormal spaces. Applying Eq.
(2.25) recursively and taking into account the completeness condition Eq. (2.14) we
see that

: : :�Wj�2 �Wj�1 �Wj �Wj+1 � : : : =
M
j2Z

Wj = L
2
: (2.26)

Hence, we can write that

Pj�1f = Pjf +
X
n2Z

hf;  j;ni j;n : (2.27)

This equation tells us an important thing that gives sense and usefulness to this
wavelet decomposition. First, we said that projecting a signal f in a space Vj gives
us a new signal Pjf that is an approximation of the initial signal. Secondly, we have
a hierarchy of spaces \: : : Vj+1 � Vj � Vj�1 � : : :". Therefore, Pj�1f will be a better
approximation (more reliable) than Pjf . How can we go from an approximation to
the next better approximation? The expression of Eq. (2.27) tell us: we must add
the projection of the signal over Wj . Hence, if Vj are approximation spaces, then Wj

are detail spaces. The less j, the �ner the details represented by Wj are.
Notice another feature of the MRA that makes interesting in practice the previous

remark. Applying Eq. (2.25) repeatedly,

Vj = Vj+1 �Wj+1 = Vj+2 �Wj+2 �Wj+1 = : : :

= VL �WL �WL�1 � : : :�Wj+1 : (2.28)

Graphically we have a tree of spaces in which edges (branches) represent the
relation of inclusion (Fig. 2.5). We de�ne a new projection operator, not in the
approximation spaces Vj but in the Wj details:

Qjf =
X
n2Z

hf;  j;ni j;n : (2.29)

Then, by Eq. (2.28), we can express f as a sum of one approximation at a certain
scale L (higher L means lower scale and poor approximation without detail) plus L
functions of detail at higher scales. Each detail function is the loss due to passing
form an approximation at scale j to the next j + 1,

Pjf = Pj+1f +Qj+1f = : : : = PLf +

LX
k=j+1

Qkf : (2.30)

Finally, a property we need to build  wavelet from �. We notice that a conse-
quence of Eq. (2.25) and (2.13) and also that Wj ? Wk if j 6= k, that is, functions
 j;n are orthonormal function intra-scale and also inter-scale:
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Figure 2.5: Tree of approximations and details

h m;n;  m0;n0i = Æ(m�m
0
; n� n

0) : (2.31)

Construction of  from �

From the previous �ve conditions of the MRA and the properties of � and  , we can
deduce two useful equations in order to apply MRA to discrete signals and to build
 .

� Dilation equation.

� 2 V0 and V0 � V�1. V�1 has as a orthonormal base f��1;n;n 2 Zg. Therefore,
we can express � as a linear combination of these functions,

� =
X
n

hn��1;n with hn = h�; ��1;ni ;

since ��1;n(t) =
p
2�(2t� n),

�(t) =
p
2
P
n

hn�(2t� n) (2.32)

� Basic wavelet equation

 2 W0 and W0 � V�1 because V�1 = V0 �W0. Equal than before, we can
express it as a linear combination of functions of the base V�1:
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 =
X
n

gn��1;n with gn = h ; ��1;ni ;

 (t) =
p
2
P
n

gn�(2t� n) (2.33)

2.2.5 �A trous algorithm

The �a trous algorithm is a redundant and stationary transform. It means that the
volume of data increases with this transform and decomposition coeÆcients do not
depend on their position. The redundancy is not good if our goal is to compress
data, which is not our case. And stationariness is a desirable property for signal
analysis, just what we want to do now. This property of stationariness, also known
as translation invariance, arises because the decimation step is not performed. The
�ltering process consists of performing a convolution of the samples with a kernel,
but in this case the distance between samples involved in the convolution increases
in a factor 2 from one scale to the next. In the previous MRA, scheme we performed
at this point a decimation step, but in the �a trous algorithm we must to enlarge
the convolution kernel adding zeros between their coeÆcients. A metaphor of this
operation is to perform a transform `with holes'. This idea is used for naming the
algorithm keeping its French root, algorithme �a trous.

In the MRA we can see the initial discrete signal c0(k) to be analyzed as a pro-
jection of continuous function f(x) on V0,

c0(k) =< f(x); �(x � k) >=

Z 1

�1
f(x)�(x � k) dx : (2.34)

The projection on a subspace Vi,

ci(k) =< f(x);
1

2i
�

�
x

2i
� k

�
> ; (2.35)

is then an approximation of c0 at scale or resolution i.
Conversely, in the �a trous transformation we do not perform the decimation step.

Then, the approximation coeÆcients are now:

ci(k) =< f(x);
1

2i
�

�
x� k

2i

�
> : (2.36)

However, we need some expression which allows the calculation of detail and ap-
proximation coeÆcients of a scale i from those of the previous scale. This is because
we do not know the continuous function f(x) but its discrete approximation c0. In
the �a trous algorithm, despite of the non-orthogonality of the subspaces Vi and Wi,
we still have a sequence of embedded subspaces. As the translations of �(x) span V0
and �(x=2) 2 V1 � V0,

1

2
�

�
x

2

�
=
X
n

h(n)�(x � n) ; (2.37)
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where h(n) is a kernel �lter associated with the scaling function �(x). Then, from
(2.36) and (2.37), we see that the approximation coeÆcients at scale i+1 are calculated
by means of the discrete convolution of coeÆcients at scale i with a �lter h,

ci+1(k) =
X
n

h(n) ci(k + n2i) : (2.38)

The wavelet or detail coeÆcients wi are computed as the di�erence between two
consecutive scales,

wi(k) = ci(k)� ci�1(k) ;

The reconstruction step of this algorithm is simply the sum of all the coeÆcients
and the coarsest approximation:

c0(k) = cN (k) +

NX
i=1

wi(k) : (2.39)

2.2.6 Wavelet packets

Wavelets are a good analysis tool for many image-based applications, but in some
cases the frequency content of these images is not centered at the origin. For signals
with a distribution of their information at middle or high frequencies it would be
useful to have a similar tool where the analysis could be focused [106].

Wavelet decomposition can be seen as a particular case of a more general trans-
formation, the wavelet packets transform. Wavelet packets are built as linear combi-
nations of wavelets. They also form a base with some of the properties of wavelets
such as orthogonality, smoothness and localization.

CoeÆcients of the discrete wavelet packet transform are calculated in a recursive
way similar to the procedure followed in Sec. 2.2.4. When we perform a 1D decompo-
sition (DWPA: discrete wavelet packet analysis) at each step of the transformation
for we must open a binary tree. On one hand, one of the branches of the analysis
tree decompose the approximation term �ltering it with a low pass and a high pass
�lters to get the respective approximation and detail coeÆcients at the next level.
This previous process it exactly the same used in the MRA and the spaces related to
this partial decomposition form also a tree structure as we can see at Fig. 2.5. On the
other hand, in the other branch we also perform the same process but to the details.
Thus at each step of the decomposition, for each node two new set of coeÆcients are
calculated. The tree structure of this transform can be see in Fig. 2.6 where a signal
with coeÆcient xi is decomposed in a tree.

The tree built at the analysis stage has a lot of redundant information, but this
complete tree expansion is not necessary at all. The reconstruction stage (DWPS:
discrete wavelet packet synthesis) is done from a subset of nodes of the tree. For
these nodes we apply the same reconstruction as in the wavelet case. From an ap-
proximation node and the corresponding detail node we can obtain the preceding
node (approximation or detail). The nodes that must be selected to obtain a per-
fect reconstruction can be chosen in several ways, but it must be complete, that is,
you must have the necessary and suÆcient information (nodes) to reconstruct any
predecessor.
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Figure 2.6: Decomposition in wavelet packets (N = 8; L = 3). Bold-faced coeÆ-

cients are one of the possible elections to reconstruct completely the signal.

Figure 2.6 shows a discrete wavelet packet analysis tree. For the sake of expla-
nation let's consider a dyadic decomposition. We start from a signal of length N

(eight coeÆcients in the example) and we �lter this signal with H and G �lters whose
coeÆcients de�ne a wavelet and a scaling function as in the MRA case (see Eq. (2.32)
and (2.33)). This process is performed as many times as levels we want in the decom-
position. Let be L the number of levels (L � log2N). Once we obtain the analysis
tree, we can reconstruct by choosing a subset of appropriate nodes. For example: all
the pure detail nodes and the last approximation as in a wavelet reconstruction, or
all the nodes at a certain level, or all the bold-faced nodes in Fig. 2.6.

Synthesis or reconstruction of a signal in the wavelet packet scheme is a similar
process to the wavelet reconstruction presented before. We start at leave nodes and
from one approximation and one detail node we reconstruct its father with �lters H
and G, and in this way and recursively until we arrive to the initial image. In the
example of Fig. 2.6 and starting from the bold-faced nodes we perform the next steps:
a) from sds and dds we get ds0; ds1, b) from ss and ds coeÆcients we get s coeÆcients,
c) �nally, from s and d we get the initial signal x. Several implementations of the
analysis and synthesis with wavelet packets can be found in [106].

There are some techniques oriented to �nd the best basis for a signal without
calculating all the tree [105]. To choose a base means to select those nodes that permits
reconstruction. These techniques achieve the best basis in relation to some criterion
as minimal entropy of the coeÆcients. Wavelet packets analyze both branches in the
same way and this permits to adapt better to the frequency content of the signal. The
election of the wavelet function in the analysis should be done taking into account
the data. And the election of the base used in the synthesis must be designed taking
into account the speci�c problem: compression, classi�cation, recognition, etc.
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2.2.7 Extension to 2D

Gabor �lters

To extent Gabor �lters to two dimensions we take the underlying idea of the 1D
Gabor �lters, to modulate a complex exponential with a Gaussian, with and increase
of the number of parameters.

� There are two modulation frequencies (u0; v0). The direction of modulation is
�0 = tan�1(v0=u0), in which the spatial frequency is !0 =

p
u20 + v20 .

� The Gaussian window is bidimensional, therefore we can have di�erent variances
for each axis, �u; �v. The expressions of this 2D Gabor �lter at spatial and
frequency domains are:

g(x; y) = e
� 1

2
[ x

2

�2x
+ y2

�2y
]
e
+j2�(u0x+v0y) ; (2.40)

G(u; v) = A e
� 1

2
[
(u�u0)

2

�2u
+

(v�v0)
2

�2v
]
; (2.41)

with A = 2��x�y, �u = 1=2��x, �v = 1=2��y.

� When �u 6= �v , Gaussian function is not isotropic. For non-isotropic functions
we can also add a new parameter in order to take into account an angle of
rotation. This angle has not been included in Eq. (2.40) and (2.41).

The 2D Gabor transform is a complex 4D function G(x0; y0;u0; v0) similar to the
STFT, that describes in each point (x0; y0) the spectral contents of an image f(x; y).
Gabor �lters are well localized in spatial and frequency domains and achieve the
minimum uncertainty. Nevertheless, equations (2.40), (2.41) are not used to process
images. It is possible to rewrite them to obtain a family of functions with the next
features:

� All the functions can be expressed as a dilation, translation and rotation of
a mother Gabor function, as wavelets do, for this reason we call them Gabor
wavelets.

� Previous property of well localization is preserved.

Let us de�ne two new parameters: orientation bandwidth, B�, and frequency
bandwidth, B!, which �x the number of possible orientations, N , and the number
of frequency bands for each orientation, M (see Fig. 2.7). A more easy and compact
way to describe a Gabor �lter bank is from M;N parameters and its expression in
polar form:

gm;n(!; �) = e
�(!�!0;m)2=2�2!;m e

�(���0;n)2=2�2� ; (2.42)

with 1 � m �M; 1 � n � N . The angular and radial variances are:
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Figure 2.7: Parameters of the Gabor �lters and bank of �lters for M = 4 bands

and N = 9 orientations

�� =
1

2
B� =

1

2

�

N
; (2.43)

�!;0 = (!max � !min)=(2(2
M � 1)) ; (2.44)

�!;m = 2B!(m�1)�!;0 ; (2.45)

!min; !max are the limit frequencies where we want to place the Gabor �lters, that is,
!min �

p
u2 + v2 � !max. Frequently, !min > 0 in order to do not use the continuous

component of the image. �!;0 is the radial width of the �rst band and �!;m of the
m-th band. Often, B! = 1 is chosen equal to one octave. In this case, the centers in
polar coordinates are:

�0;n = 2��(n� 1) ; (2.46)

!0;m = !min + �!;0[1 + 3(2(m�1) � 1)] ; (2.47)

again for 1 � m �M; 1 � n � N .

Wavelets and wavelet packets

If we want to extend the orthogonal scheme presented in Sec. 2.2.4 to the two-
dimensional case we can follow two direction [90]. See Fif. 2.8 to identify any of
these two approaches.

In the �rst one, known as the standard decomposition, we apply the one-dimensional
transform to each of the axes. This is done in a similar way as FFT extends to 2D.
First, all the rows are transformed with the 1D transform with all the levels we want
to expand. Then, we treat these transformed rows as if they were themselves an
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(a) (b)

Figure 2.8: (a) Standard 2D wavelet decomposition, (b) nonstandard decomposition

(MRA).

image and apply the same transform to each column. The �nal 2D transformation
can be expressed as a decomposition over a base of 2D orthogonal wavelets. The ele-
ments of this base are all the possible tensor products of the elements of the 1D base
( i(x) j (y)). The major drawback of this transformation is that the aspect ratio of
the details is not preserved due to the non-square support of some elements of the
wavelet base.

The second way of extending from one-dimensional to two-dimensional transfor-
mation is known as the nonstandard decomposition. It is the solution adopted by the
image processing community. It preserves the aspect of the image at each scale. The
MRA proposed by Mallat [62] use this technique to achieve the result and alternates
the 1D wavelet transformation of rows and columns at each level of the decomposi-
tion. Here, we have expressed the initial signal as a decomposition in a wavelet base
but unlike previous case, elements of this base at each level i one of these wavelets:
�i(x) i(y),  i(x)�i(y),  i(x) i(y). This is the most used scheme for bidimensional
decompositions of images, it keeps the size of any detail proportional to the initial
image, and computation of the nonstandard is slightly more eÆcient.

Concerning to wavelet packets, we see in Sec. 2.2.6 that it works as a MRA where
at each moment in the decomposition we can choose to decompose approximation or
details, in the two-dimensional case these details can be any of the tree pinpointed
before. The extension to 2D needs of the nonstandard decomposition as in the MRA.

�A trous algorithm

As in the previous case, �a trous algorithm can be extended to 2D if we use separable
�lters in the decomposition. At each level we must to perform the convolution of the
image with a �lter in the x axis and then, the convolution in the other axis. The
�lters we use in our work are a family of functions named the B-splines. This family
of �lters can be built easily from the convolution of a basic box function (B0) with
itself; after, we have the triangle function (B1), etc. Higher is the index of the spline
function more similar is to a Gaussian.

As we see in Sec. 2.2.5, this algorithm is translation-invariant that is a good
property. Using the B-spline family we achieve a new good property, symmetry of the
functions used in the analysis that is not possible in the basic MRA scheme. And, if
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we use high index in this family we come closer to an isotropic functions also useful
for analysis.

Figure 2.9: Filtered images with soft thresholding.
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Figure 2.10: Pro�les of: initial image, image with noise added and �ltered image.

2.2.8 Applications

The usefulness of wavelets as a tool to solve a lot of problems inside the computer
vision �eld is supported by the big amount of works published in this area. As a
little summary of these possibilities we go to emphasized some aspects that were
the starting point in our work. We start in this �eld implementing some wavelet
decomposition algorithm and performing with them a few and basic applications. In
this section we go to fast review some of these applications.

Summarizing most of the next approaches we see that wavelets have the interesting
property of group important information in order to describe the image in a few and
di�erentiate coeÆcients. Selecting and �ltering these coeÆcients we can achieve the
di�erent solutions. The presentation we do in this part is also as an introduction in
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order to shows the power and versatility of these tools in the image processing �eld.
These applications have also and important theoretical background that has been
relaxed for the sake of the explanation.

Filtering

Working with images involves sometime doing assumptions that come from other
�elds in order to apply speci�c algorithms. It is the case of linear �ltering that
supposes images as stationary process. Really, most images are not stationary and
discontinuities are those zones in which the information is. Wavelets are well adapted
to the study of discontinuities and therefore �ltering using these non-linear schemes
achieves better results than linear ones.

Figure 2.11: Filtered image and average of 9 translated and �ltered images.
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Figure 2.12: Pro�les of: initial image, �ltered image and averaged and �ltered

images.

Donoho's work [26] propose a non-linear approach to �lter a signal. The principal
idea is that important information of non-stationary signals is concentrate in disconti-
nuities that gives the highest coeÆcients in a wavelet decomposition. However, noise



28 TEXTURE ANALYSIS BY WAVELET DECOMPOSITION

gives rise to a nearly constant level of small coeÆcients. Filter process is performed
choosing a threshold level t in the coeÆcients of the decomposition and putting to
zero all those with its absolute value is lower than the threshold (see Eq. (2.48)). This
value is related to the power of noise in the image as Eq. (2.49) shows. This technique
is named soft thresholding [25] and example of its application can is showed in Figs.
2.9 and 2.10. Some drawbacks of this techniques as the non-translation invariance
can be solved applying other approaches as the spinning cycle procedure [18] that
implies to average the results of the same process applied to translations of the signal
(see Figs. 2.11 and 2.12).

stu(x) =

�
sign(x)(jxj � u) if jxj > u

0 if jxj � u
: (2.48)

t =
p
2 log(n)�=

p
n : (2.49)

Compression

Compression is a �led where wavelets have beaten other decomposition schemes. As
an interesting case we can analyze the compression of static images as JPEG where
previous version was based on the discrete cosine transform well suited for stationary
signals that gave good results over images. Now, the new standard [43], named
JPEG 2000, is intended to provide a new image coding system using state of the art
compression techniques. It changes previous decomposition schemes based on DCT
introducing the use of wavelet technology. Results we obtain with this new scheme
are visually better than before and also reducing some drawbacks of the previous
scheme as blocking. See reference [82] in order to compare this new standard with
some common compression algorithms.
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Transformation
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Quantization
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Initial

Image

Compressed

Compressed
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Figure 2.13: Compression and reconstruction scheme.

Instead of analyze this standard we go to emphasize the principal idea of the
compression schemes based on wavelets. In we visualize a wavelet decomposition
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we see that most of the coeÆcients are zero or closer to zero. As we say before,
important information is represented in few coeÆcients with high values. Compression
is achieved choosing a new threshold t saving only high values and it is done collapsing
coeÆcients to zero (see Eq. (2.50). Sometimes, compression schemes take pro�t of
the redundancy of coeÆcients over scales; then we need to analyze and save the
decomposition tree [87, 80]. Previous considerations are those related to the early
decomposition stages, but to achieve the �nal result some other step must be done as
quantization and coding of the data. The entire process of compression decompression
is showed in the scheme of Fig. 2.13.

htu(x) =

�
x if jxj > u

0 if jxj � u
: (2.50)

We go to present some compression results based on the hard-thresholding of
coeÆcients (Eq. (2.50)) over a �ngerprint image as an example of the possibilities
of this method and to show how results are degraded. We use MRA decomposition
with di�erent thresholds and di�erent decomposition basis. Results are summarized
in Fig. 2.14.

Filter u = 10 u = 50 u = 100

dau2
45% 7% 2%

dau8
27% 6% 2%

dau16
24% 6% 2%

Figure 2.14: Compression of a �ngerprint image using hard-thresholding.

The compression rates represent the percentage of coeÆcient greater than a thresh-
old; therefore they can be reduced with the quantization and a codi�cation steps.
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Data fusion

Finally, an interesting application that we will use in Sec. 4.5.2 is related to data
fusion. Here, we have di�erent source of information that comes from the same origin
and as result we want to summarize it choosing the more important of each one.
Again, wavelets are well adapted to perform this task of emphasizing which is the
relevant information and where is it. Then, choosing among the most important
coeÆcients (higher absolute values) of each source and reconstructing we obtain the
expected result [47].

Figure 2.15: Pyramid.

(a) (b)

Figure 2.16: (a) Averaged images, (b) focused by means of the wavelet transform.

We use that in order to focus microscopic images. If we see a sample through
the microscope at high magni�cation we realize that it is not focused entirely and
we need to move up and down to visualize it correctly. Wavelets applied over these
images gives high coeÆcient in those focused zones. Taking several images at di�erent
depth we can select the highest coeÆcients on each image. Reconstruction from this
selection of coeÆcients gives us the focused image and also we can compute the depth
map of the sample. Figures 2.15 and 2.17 show a set of images partly out of focus,
the �rst one is a synthetic sequence and the second one a real case. Figures 2.15 and
2.17 show results from the previous sequences with the proposed algorithm and an
averaged solution for comparison purposes.

The technique we have explained can be extended easily to other kind of images
as multichannel images from remote sensing, or medical images.
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Figure 2.17: Circuit.

(a) (b)

Figure 2.18: (a) Averaged images, (b) focused by means of the wavelet transform.


