
Chapter 4

Recognition based on

multiresolution decomposition

In this Chapter we address the problem of color texture classi�cation and present
results on practical problems. The central idea is to combine color and texture infor-
mation through the multiresolution decomposition of each channel in order to take
as feature vector the energies and cross correlations of the coeÆcient images. How-
ever, this simple approach can be materialized in many di�erent ways, as several
decisions have to be taken, each one allowing multiple choices: the multiresolution
decomposition scheme (e.g. Mallat's, �a trous, wavelet packets), the subspaces base
family (and within it, which speci�c base), number of decomposition levels, space for
color representation and �nally, the classi�cation features to be computed from the
decomposition. Instead of simply trying some possibilities and take the best one, we
have assessed a very large number of combinations, trying to �nd out which are the
important and the non-relevant issues with regard to the classi�er performance. In
addition, we propose three image models as a framework for color texture classi�-
cation, depending on how texture is combined with color. This allows us not only
to initially select the appropriate types of features but also to reduce the number
of classi�cation parameters so that the training set does not need to be large. This
framework has been successfully applied to two speci�c machine vision problems,
namely, the sorting of ceramic tiles into perceptually homogeneous classes and the
recognition of metalized paints for car re�nishing. Also, it has been applied to the
classi�cation problem of petrographical marble images solved in the previous Chapter
with a di�erent approach.

4.1 Introduction

In this work we present a study on the wavelet decomposition and classi�cation of
color textures. It was prompted to solve an industrial machine vision problem, namely,
the on-line sorting of polished ceramic tiles. Later, we broach another application,
paint identi�cation from microscopy images for car re�nishing. We will see that the
solution to the �rst application also �ts very well the second one. Finally, we use the
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62 RECOGNITION BASED ON MULTIRESOLUTION DECOMPOSITION

same approach to attempt the classi�cation of marble images used in the previous
Chapter.

From the point of view of computer vision, we are addressing in all cases a problem
of color texture representation and classi�cation. The objective is to devise a numeri-
cal representation of images that captures both the color and texture features. In the
present case, we are interested in the bene�ts of this representation for classi�cation
purposes, but it may also be useful in other contexts like color texture synthesis and
database image indexing.

The whole application process consists of the following steps, being the slanted
items those directly associated with the method of color texture analysis we propose
in this work:

� image acquisition

� change of color space representation

� multiresolution decomposition

� feature extraction

� supervised classi�cation

We will focus on the justi�cation and performance of di�erent choices for color
representation spaces and multiresolution decomposition schemes. Our aim is to assess
all possible combinations in terms of minimum classi�cation error over a relatively
large set of samples. Furthermore, we want to provide a sound explanation in terms
of why each choice achieves its result. This is done in the context of models that we
propose to analyse color texture.

This Chapter is organized as follows. Section 4.2 reviews previous work on joint
computational representations of color and texture visual cues, including wavelet
transforms of multichannel images. Next section describes the planned experiments:
the choices for color space, wavelet transform scheme and the classi�cation features
derived from them, which we will combine and assess. In Section 4.4 we introduce the
problem of ceramic tile classi�cation and the main results obtained. Section 4.5 brie
y
deals with the same issues for the second case study of paint recognition. Section 4.6
is a link between the classi�cation based on structural parameters treated in Chapter
3 and the proposed methodology presented here. Finally, Section 4.8 describes the
conclusions and discusses future work.

4.2 Related work

Color texture representation is a current topic in computer vision. Although both are
properties of a surface, these two visual cues have been usually studied separately.
One reason is that while color is a point feature given by the value of a pixel in several
bands or channels, texture has been modeled as a spatial relationship of the point
with its neighbours within each channel. An excellent review of approaches used in
computer vision to deal with the texture representation problem can be found in [79],
whereas and introduction to color representation is given in [103].
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The study of color texture representations has received increasing attention in the
last years. The objective of many researchers is to �nd co-joint representations of
spatial and chromatic information which capture the spatial dependence (in partic-
ular, correlation) within and among spectral bands [14, 33, 24]. One of the most
frequent approaches is the construction of a feature vector mixing gray level texture
features and color features [33]. Another one is to extend classical texture models,
such as Markov Random �elds and the autocorrelation function, in order to deal with
multichannel images [24, 37]. Other works, like [31], convert RGB values into a single
code from which texture measurements are computed as if it were a gray scale image.
Spatio-chromatic representations are computed in [14, 29] over the smoothed Lapla-
cian of the image. Other works have been in
uenced by known perceptual mechanisms
of the human visual system like Gabor �lters [97, 46].

In parallel, multiresolution texture analysis has come to age thanks to the setting
of a sound theoretical basis for wavelet transforms and �lter banks. Recent works
on texture incorporate color as and additional image dimension [97, 62, 94]. This
has been applied to analysis but also to synthesis [22, 39] and texture classi�cation
[97, 46].

A color texture analysis based on a multiresolution decomposition representation
normally involves to make up two decisions: the selection of the decomposition scheme
to perform the texture analysis and the de�nition of a space to represent color. A
general framework for image decomposition is to apply a bank of �lters. Gabor �lter
banks and wavelet transforms are two common approaches found in the literature.

The simplest way to extend them to cope with color images is to �lter or transform
each channel (RGB for instance) independently. However, some authors propose to
represent color in other spaces such as the opponent color space [46], inspired in
biological evidences of the human visual system. Both works start from similar color
representations, followed by di�erent texture analysis methods. We are going to
devote some attention to them, as they are closely related to our study.

The �rst one [97] uses the orthogonal wavelet decomposition and calculates the
energy, eki , of each detail level and the cross terms between di�erent channels at the
same detail level, ckli :
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where u denotes spatial coordinates, i the decomposition level, k and l are channel
indexes. Thus, dki is the detail at level i of the channel k. In this speci�c case, d is an
image of detail coeÆcients of a orthogonal wavelet decomposition, but it can be seen
also as one of the outputs of a �lter bank.

The second work [46] uses a set of Gabor �lters where the response at di�erent
levels and channels is analysed. A biological model is implicit in this scheme due to
the use of Gabor �lters and to the extraction of the information between channels
following the opponent color model. Energies at each level of every channel (terms
e
k
i of Eq. (4.1) for all i and k) are calculated, but also the energies associated to the
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inhibition between channels at di�erent levels

I
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du ; (4.3)

where dki are now the responses of a Gabor �lter bank. If we expand the inhibition
terms of Eq. (4.3) we obtain the energies eki , e

l
j and a cross term that could be

expressed as �2cklij , using the notation of Eq. (4.2). Therefore, both papers are using
a similar representation.

To end this review, we want to mention a sound comparative study on the perfor-
mance of texture classi�cation algorithms by Randen and Hus�y [78]. Like us, they
want to assess combinations of wavelet decompositions and features, including addi-
tional �lter bank schemes. However they test them only on gray level images. But the
main shortcoming of their study with regard to ours is that they work with clearly
distinct textures, that is, a subset of the Brodatz, Meastex and Vistex collections.
Conversly, we are trying to di�erentiate among textures much more visually similar,
as they come from the same industrial process (at least in the tiles case), this being
a much tougher problem, as real problems usually are.

There are a few previous works to be considered in the speci�c subject of tile
inspection. Some research e�ort has been devoted to the detection of other kinds of
defects like cracks and spots. Only in [11, 70] the same problem of tile color texture
classi�cation is addressed. The authors try to solve it taking as features statistical
measurements on the color histogram. Therefore, results are poor in the event of
overall similar color but di�erent textural aspect, as it happens in our samples. Better
results were obtained by performing a color segmentation prior to an analysis of blob
features [6].

4.3 Multiresolution color texture classi�cation

4.3.1 Color spaces

It is a common practice to use color representation that try to decorrelate information
across channels, thus reducing the number of meaningful classi�cation features. How-
ever, we will consider other choices, such as conversion from color to intensity and no
transformation at all, in order to compare them with the decorrelation transforms.
Therefore, the envisaged color spaces/transforms are:

C.a Color to gray level conversion by simple averaging of the R, G and B channels.
Hence, only intensity is taken into account. This would make sense in images
where texture is the only relevant feature for classi�cation.

C.b Raw RGB values. That is, no transformation is applied to the image provided
by the camera and frame grabber. In many applications this is suÆcient to
introduce the color information and classify successfully.

C.c Ohta color space. This space is a good approximation of the results of Kar-
hunen-Lo�eve transform over a big set of natural images [42]. This is obtained
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through the base that best decorrelates the spectral information of a large set
of color images. It is similar to the transformation used in [97], where they use
also a generic K-L transform. This color space transformation is given by the
following �xed linear transform:

2
4 0:3 0:3 0:3

0:5 0:0 �0:5
�0:25 0:5 �0:25

3
5
2
4 R(x; y)
G(x; y)
B(x; y)

3
5 : (4.4)

It does not decorrelate spatially but somehow gets three new channels weighing
each one by its real contribution when describing the input data with the new
base.

C.d Speci�c Karhunen-Lo�eve transform. Now, the base which achieves the maxi-
mum spectral decorrelation is sought, but over the speci�c training set of the
application. In our case, it is the set of images for each class and model. It is
similar to the previous case but adjusting the projection axis to the data.

To �x ideas and for the sake of simplicity, we will illustrate concepts of this section
with �gures of the tile problem. Figure 4.1 shows the former four transforms for a
128�128 region of a tile.

There are a big amount of possible color spaces transformations [69] that can be
applied in this problem at this preliminary stage that were not evaluated. Instead of
an exhaustive search among the di�erent color spaces we reduce it to a few selected
cases. Firstly, in the C.a case we tend towards a reduction of data to gray level (this
can be see as a reduction to the �rst eigenvector in a K-L transform). In the second
case, C.b, we do not manipulate data at all as most of the color texture analysis in
the literature do. Next, we try to decorrelate the color information by means of a K-L
transform: �rst, in case C.c, by a global transformation for a big number of images;
and �nallly, in case C.d, a K-L transform adapted to the data.

Among all the possible spaces not used here we emphasize the opponent color
space because it is physiologically motivated. Proposed by Hering in the 19th cen-
tury and updated by Hurvich and Jameson in the 1960's this theory assumes three
sets of receptor systems, red-green, blue-yellow and black-white, bearing in mind the
process observed in the human visual system. Althought this speci�c color space
transformation has not been used here the opponent theory is implied in this and the
following processes (decomposition and feature extraction) because the reponses of
di�erent channels and the cross-information between channels are evaluated and it is
related to the opponent features Eq. (4.3).

4.3.2 Decomposition scheme and bases

The decomposition scheme is application dependent. Thus, for time critical appli-
cations, an orthogonal scheme as the proposed by Mallat with a reduced number of
levels is generally preferred. Conversely, in images with high frequency content in
the middle zone of the spectrum, a wavelet packet scheme should be better a priori
because it allows to focus the analysis on the levels where the important information
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(a) (b)

(c) (d)

Figure 4.1: Color spaces: (a) gray level, (b) RGB, (c) general Karhunen-L�oeve

transform (Ohta color space), and (d) speci�c Karhunen-L�oeve transform. Images

have been linearly contrast enhanced for the sake of visualization.
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Figure 4.2: Decomposition schemes of a 1D signal f into detail (d) and approxima-

tion (a) coeÆcients for: a) Mallat's, b)�a trous and c) wavelet packet transforms.

is. Likewise, in images which exhibit a regular behavior and without a privileged
direction, an isotropic and symmetric decomposition makes more sense, but then it
must be non-orthogonal and redundant like the �a trous decomposition. Therefore,
the following wavelet transforms have been considered:

D.a Multiresolution analysis with Mallat's algorithm [62].

D.b �A trous algorithm [89]. Opposite to D.a and D.c, it is a non-orthogonal and
hence redundant transform.

D.c Wavelet packets transform [106] using a few �xed tree structure patterns.
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As in the previous color space selection, there are some other multiresolution
decomposition schemes that have not been evaluated. Maybe, among them, Gabor
is the most outstanding and widely studied in the literature. We have reduced the
decomposition schemes to the three mentioned wavelet cases.

In addition to the wavelet transform scheme, a suitable base must be selected.
There are many families of bases, each having di�erent properties like symmetry,
orthogonality and regularity (related to the number of vanishing moments). This
adds still a new dimension to the search space in which we want to minimize the
classi�cation error. We have studied widely the �rst problem, classi�cation of tiles, to
limit the number of proofs to do, in subsequent experiments, in order select the best
parameters, bases, decomposition schemes. Several resolutions, bases and schemes
has been evaluated as we see in Appendix A (Table A.2). In order to cut down the
number of tests, we have �xed the base family for each scheme after a number of
trials. Accordingly, Mallat's multiresolution analysis and wavelet packets transform
are performed with Daubechies orthogonal bases and the �a trous decomposition uses
B-spline bases. Figure 4.2 summarizes the decomposition scheme followed by each
transform in a 1D setup, the 2D extension of these algorithms has been described
in Section 2.2.7. Figure 4.3 shows an example of these three decompositions over
the R channel of a tile. As we can see in the �gure the �a trous decomposition is a
redundant transformation; each new detail level increase the total amount of data in
a quantity equal to the initial image. We can see how wavelet and wavelet packed
based on ortogonal transformations have not this behavior; the amount of data does
not increase.

4.3.3 Feature extraction

Once the decomposition has been performed, we need to compute a vector of features.
In the literature of wavelet texture analysis two types of features are mostly used:
energy and entropy. They are applied to the coeÆcients of the approximation and
details at each level, though in some works cross energies (correlation signatures in
our terminology) of details at di�erent levels are also computed. Joint entropy [96, 19]
of couples of details or approximations at di�erent levels and/or channels could also
be computed and assessed.

In our applications both features had a similar performance. Actually, energy
attained less than 1% improvement on the classi�cation error over entropy, at least
when features were restricted to be the energies of details and approximation for each
channel (terms eki , see bellow in Eq. (4.5)). Although this slight improvement is not
a suÆcient reason to dicard entropy results, we have restricted our study to energy
related features in order to reduce the number of possible features.

The terms we will compute for the analysis stage are the energy and the cross
correlation between levels and channels. We call all of them correlation signatures

like in [97]:

c
kl
ij =

Z
d
k
i (u)d

l
j(u)du : (4.5)

Note that cklij also include the energy terms because eki = c
kk
ii .

The number of features provided by the former three decompositions grows rapidly
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(a) (b) (c)

(d)

Figure 4.3: Decomposition examples: (a) 256�256 image region of the red channel

of a tile. (b) A four level Mallat's wavelet transform. (c) One of the 13 possible

two level wavelet packet decompositions (leafs of the tree at the second level). A

logarithm transformation has been applied on images (b) and (c) for the sake of

visualization. (d) Approximation and detail levels of the �a trous decomposition. All

of them have been contrast maximized separately.

as the number of levels increases. For instance, a three-levels Mallat's wavelet trans-
form of a RGB image gives rise to 30 images (1 approximation plus 29 detail images)
on which 306 correlation signatures of images of the same size are possible. In a well
devised supervised classi�er, when the number of discriminant features increases, the
performance is enhanced. However, if this number is too large with regard to the size
of the training set, the classi�er just learns to succeed over this set but it is not able to
generalize. Therefore, we should keep small the length of the feature vector, namely,
the number of signature terms. For this reason, we propose to test the following
choices, illustrated in Fig. 4.4:

F.a Compute only the energy terms: ckkii 8i; 8k. This is the most frequent choice in
the literature.

F.b Calculate all correlation signatures between levels but only within the same
channel: ckkij 8i; j; 8k .

F.c Calculate all correlation signatures between channels but only within the same
level: cklii 8i; 8k; l . This is the approach taken in [97].

F.d Collect all possible correlation signatures between channels and levels: cklij 8 i; j,
8 k; l. In order to select relevant features, we take into account the former
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Figure 4.4: Features are selected among four types of correlation signatures.

observation of Section 4.2 which related some correlation signatures with the
inhibition energies of the opponent color model.

Mallat's and wavelet packets transforms in which the decomposition tree has dif-
ferent levels can not be combined with options F.b and F.d unless we perform a
speci�c transformation. The reason is that coeÆcient images at di�erent detail levels
have di�erent size due to decimation, thus, it is not possible to cross-correlate them.
If were necessary this problem can be solved removing the decimation step or scaling
the coe�cient image in a deep level to the appropiate size of the level to be compared.

4.3.4 Models

As we stated before, our approach to color texture classi�cation is to �rst select a
suitable space for color representation, a multiresolution decomposition scheme of the
image represented in this space, and �nally a set of discriminant features derived from
this decomposition. However, it does not make sense to try every possible combination
of choices for the three former items. Instead, we must select them according to and
image model which explains how texture is related or mixed with color. We propose
the following three models:

M.a Images resulting from the addition of a gray level texture plus a uniform back-
ground color. Thus, only energy terms F.a from approximation and detail
coeÆcients at di�erent levels and F.b make sense. Furthermore, as this model
in fact assumes a same texture for each channel, the former features must be
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computed just over one of the channels or the intensity image (mean of R, G
and B).

M.b Now, we assume that each channel contributes with a di�erent texture to the
�nal visual aspect of the image. But we further suppose that these textures
are statically independent. Therefore, only F.a and F.b, this time over each
channel, are candidates to be discriminant features with regard to a classi�cation
task. This is the model used in [39] for texture synthesis.

M.c Conversely to M.b, we suppose now that textures along each channel are de-
pendent, and in particular linearly dependent. Thus, besides F.a and F.b,
correlation signatures between approximation or detail coeÆcients of di�erent
levels and channels, F.c and F.d, must be taken into account as potentially
discriminant features.

4.3.5 Classi�cation method

The classi�cation method is a nonparametric discriminant analysis. In order to clas-
sify new samples we need a set of prototypes representing each possible class. Af-
terwards, the distance between the sample and each class can be calculated and the
most similar class assigned. Given that classes are not known a priori, we need some
method to learn the prototypes from a set of samples.

One of the methods that �ts our constraints is that of Fisher discriminant func-
tions, because, without any a priori knowledge of data, it is able to select the best
representation maximizing the ratio between the inter-class covariance and the intra-
class covariance [65]. A linear transform W , is applied to the feature vector x of
a particular image obtaining a new representation, y = W

tx, in a space where the
discriminant capacity is maximized.

The linear transformation, W , which optimizes the discrimination is obtained by
calculating the most signi�cant eigen vectors of the matrix S�1w Sb, assuring that the
following ratio is maximized:

W
t
SbW

W tSwW
;

where Sw is the within data sparse matrix, de�ned as:

Sw =

cX
i=1

X
xk2ci

(xk � �i)(xk � �i)
t
;

where c is the number of possible classes and ci is the set of vectors that are used
as learning samples in the i class. The Sb matrix is the between class sparse matrix,
which is de�ned as:

Sb =

cX
i=1

Ni(�i � �)(�i � �)t ;

where �i is the mean vector of the samples of the i class, Ni is the number of learning
samples in the i class and � is the global mean vector.
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Figure 4.5: Setup of the tile inspection system and detail of the camera and illumi-

nation system.

From an image of a tile, we extract its feature vector, x, and we assign it to class
j if

jW t x�W
t�j j < jW tx�W

t�ij 8 i 6= j :

Further details on the classi�er can be found in [28, 65].

4.4 Sorting of ceramic tiles

4.4.1 The problem

Tile manufacturing needs of pigments and clay which are mixed, melted, sprayed
on to the tile substrate, and �nally baked. Unavoidable variations in the pigments
color, temperature, humidity and pressure conditions provoke subtle visual variations
of the tile aspect when tiles are placed on the 
oor, one next to other. These visual
changes are due to small di�erences in color and texture, and are seen as defects by
customers. A system was thus needed to automatically sort tiles from a given model
into perceptually homogeneous classes. At present, several trained workers at the end
of the production line perform this task. In each production line only a model of tiles
is produced. Thus, classi�cation must be done among classes of each model and not
among models. As it is a tedious, time-consuming and subjective task, an automated
system is needed.

We have built a system prototype to acquire and analyze images from tiles (see
scheme of Fig. 4.5). Tile images are acquired with a 3 CCD digital line scan camera
which yields 10 bits per channel. This allows us to distinguish color details invisible
to the human eye, though a very stable lighting is required. We have designed a line
light system which integrates several halogen sources and optical �ber light guides.
In addition, we adapt the spectral content of the light to the camera CCD sensitivity
by placing a set of color �lters in front of the lens. Tiles move on a conveyor-belt with
controlled speed under the linear camera, and this allows us to adjust the vertical
resolution of the images to be the same as in the horizontal direction. The horizontal
resolution is 5 pixels/mm, and it is given by the camera height above the conveyor
belt and the lens �xed focal length.


