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Figure 4.7: Three level �a trous decomposition for one tile of each model. First row:

a portion of 256�256 pixels of the image. Second row: approximation and details at

three levels.

480. In order to prune the search for the best method, we will stick to this scheme
from now on.

The next issue is to choose the classi�cation features. Now, we are going to take
advantage of the former three generic models of color textures. Images of tile model
A follow quite closely M.a conditions. This can be seen in Fig. 4.7, which shows
the �a trous decomposition of three levels with �rst order B-Spline for a tile of each
model. This redundant decomposition has the remarkable property of representing an
image as the pointwise sum of the approximation and the detail images at di�erent
levels. For the �rst tile, the approximation is a rather uniform ochre background
to which mostly monochrome details must be superimposed in order to recover the
original image. These detail images alone would give rise to almost all of the textural
component of the original image if we had decomposed two or three more levels.

Tile models B and C are closer to M.b or M.c than to M.a, as can be deduced
from their slightly more colored detail images and less uniform approximation. This
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can be more clearly appreciated in the image of model C. Therefore, all types of
features F.a to F.d can be envisaged. On one hand, however, it is not possible
to compute correlation signatures between images of di�erent size, as would be the
cases of details/approximation images at di�erent levels in the Mallat's multiresolu-
tion analysis and wavelet packets. On the other hand, F.d is the set of all possible
correlation signatures between channels and levels, which, for three channels and a
modest number of levels, means a huge number of features, outnumbering the images
of the training set. For these two reasons, we have decided to discard features of
type F.d and to take into account just F.a, F.b and F.c for models B and C. This
will improve the best scores of Table 4.4, whose features were limited to F.a for the
three tile models. Best results are obtained for 3 levels and �rst order B-Spline, as
illustrates Table 4.5.

All previous tests were performed over the RGB representation. The last step
was to check whether other spaces would further reduce the classi�cation error of the
�a trous, 3 levels, �rst order B-Spline and most suitable features for each tile model.
Thus, the two K-L transforms of Section 4.3.1 , generic and speci�c, were applied
before decomposing. Results, however, did not improve signi�cantly, see Table 4.5.

Table 4.3: The three di�erent decomposition schemes used with family bases and

number of levels studied.

Scheme family of bases bases levels

�a trous B-Spline 0,1st,2nd order 1 { 7
Mallat Daubechies D2 { D20 1 { 7

Wavelet packets Daubechies D2 { D20 1 { 2

Table 4.4: Results of the decomposition schemes tests. The �rst row for each scheme

correspond to the worst case and the second to the best. Features are energies of

approximation and detail coeÆcients (F.a). B1: �rst order B-Spline, D: Daubechies.
(1) only leaves of the wavelet packet tree are taken into account, (2) all tree nodes.

Worst/Best global results
Scheme levels base #features A B C global

�a trous 7 B1 24 92.5% 80.6% 85.6% 86.2%
3 B1 12 95.6% 84.4% 95.6% 91.9%

Mallat 5 D8 48 95.6% 76.9% 82.5% 85.0%
2 D12 21 96.3% 83.1% 92.5% 90.6%

Wavelet 2(1) D2 48 95.0% 71.9% 82.5% 83.1%

packets 2(2) D6 60 93.1% 75.0% 90.6% 86.2%
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Table 4.5: Results of correct classi�cation with di�erent set of features and the

same features with a color space transform applied to data. (R only de red channel)

Features Color space #features A B C

F.a C.a 4 97.5% 77.5% 85.0%
F.b C.aR 7 98.1% 84.4% 83.1%
F.c C.b 24 95.6% 87.5% 95.0%

Color space Features #features A B C

Ohta (generic K-L) (C.c) F.c 24 98.1% 88.1% 93.3%
Speci�c K-L (C.d) F.c 24 98.1% 86.9% 95.0%

4.5 Paint recognition

4.5.1 The problem

The second problem we have addressed is the reverse engineering of metalized paints.
In the paint manufacturing industry the speci�cation of certain paint is done starting
from a piece sample with the required paint. In most cases paint components are
unknown and must be guessed from the study of the sample trough the microscopy
and the colorimeter and also with the help of the experience. In these paints there are
a mix of one or more base paints and several e�ect pigments. The �rst one provides
a background color whereas e�ect pigments (usually no more than three) produce
changes in color and re
ection depending on the viewing angle. The goal is to �nd
out a combination of base and e�ect pigments that best matches a given sample part,
even though its pigments are di�erent from those available. To our knowledge, this
is still an open problem for the paint industry due to its complexity. We believe
that it can be solved by combining the outcomes of two kinds of comparisons: the
spectral responses of the sample under di�erent lighting and viewing angles, and the
microscopy images showing the pigments texture, both with regard to the sample and
the database of pigments. As this is an on going project, we will only report on the
second part, which is again a texture recognition problem. However, it has an interest
on its own, because there is a widespread application or color texture recognition, car
re�nishing.

Firstly, we broach this problem as a classi�cation problem like in the previous
case. We have a set of images of di�erent classes and we want that if we show a new
image to the system it relates the sample to the closest class in the set. This is a �rst
attempt to solve the problem. The global problem consists in �nding what are the
e�ect pigments, base pigments and its concentrations of an unknown sample with the
help of the microscopy and a colorimeter. Nowadays, the problem is solved by skilled
professionals that achieve a good matching between the problem sample and the �nal
solution by successive approximation with the microscope, colorimeter and experience
as only tools. If this previous classi�cation gives good results will permit trying to
solve the problem performing a huge database with the most common mixtures of
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e�ect and base pigments. Really, collecting all this possible mixtures is a colossal and
nearly impossible task and it means that the problem must be started from a new
point of view, trying to extrapolate information of the mixture composition from the
single elements properties.

Which features should we use? Again, this depends on the assumed image model.
In these preliminary proofs we start with gray paints Fig. 4.8 with no important
color information. The study of some �a trous decompositions with these samples
quickly show that texture is uncorrelated to color, that is, images can be thought as
the addition of a background color to a gray level texture, which is our M.a model.
Therefore, only F.a features will be computed. In addition, when we examine Fig.
4.9 we realize that colors are similar and, besides texture, the main di�erence among
classes is their contrast and brightness. Though all images were taken under constant
lighting conditions, we want the classi�er to be independent of it, that is, to rely only
on the particles texture. For this reason, we have computed the intensity of each
color image and normalized it to zero mean and unit variance. This decision is very
restrictive because samples used have not an important color contents. Working with
the whole problem, where color is a very important property, need the use of color
information, and it means that models M.b and M.c must be explored.

4.5.2 Test images

Two di�erent acquisition conditions have been used. Images were acquired with a
Zeiss Olympus microscope, and a 3 CCD Sony camera. Firstly, we use a high magni-
�cation (�500) to observe the individual particles and secondly a low magni�cation
(�100) to observe the texture globally. The usefulness of two resolutions is noted also
in [23]. A �rst step in analyzing an e�ect pigment would be to observe it in bright
�eld illumination at low magni�cation (�200). Here, a rough estimation about the
e�ect can be made: pigment load, mica/aluminum ratio, and kind of mica. Then, a
study in bright �eld and dark �eld at high magni�cation (�400 or �500) gives more
detailed information about the pigments.

Test images have been taken from a Ford paints card, which was readily available
(see Fig. 4.8). A set of 14 samples (target classes) were selected, all of them appearing
as slightly di�erent grayish colors. We try to avoid color and intensity information in
these samples to relegate success on classi�cation to the texture information.

For each one of these 14 paint samples, �ve images 768�576 of non-overlapping
�elds were acquired at �100 magni�cation. Figure 4.9 shows an image of each class.
Subdividing each one of these images we obtain the sets used in classi�cation. We
planned three strategies form the case of few and big images to the cases of many and
little images:

� A. Whole images, it means, �ve images per class: two for training and three for
test.

� B. Each image was divided into six disjoint 256�256 subimages in order to
increase the number of samples. Hence, we had 30 images per class, 12 of them
for training and 18 for testing.
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Figure 4.8: Fourteen paint classes used in the classi�cation.

� C. Each image was divided into 24 disjoint 128�128 subimages in order to
increase the number of samples. Hence, we had 120 images per class, 48 of
them for training and 72 for testing.

After some preliminary results presented in Table 4.6 we discard set A because
the good results obtained maybe re
ect that 70 samples are few elements to start a
classi�cation, nevertheless, for a real application it is interesting to consider big images
because they summarize better the texture. Set C was also discarded because they do
not represent well the global texture image. The reduction of the image size reduce
the capability to describe all the image and therefore the classi�cation performance
decrease, To show this behavior we perform a simple test limiting the number of
samples to the minimum case (70 images: 28 for training and 42 for test). The
classi�cation results using mean and variance as features were: A (90.5%), B(78.6%),
C(66.7%). We have to choose between a better performance and a suÆcient class
representation and, for this reason, we use the intermediate set B for an in-depth
study.

For the high magni�cation setup (�500) we also acquire �ve images but, in this
case, for eight of the fourteen classes. The problem that arises in this kind of images
is that the whole �eld of view is wrongly focused. Some of the particles are in focus
and another ones are badly focused. To solve this, we have acquired three images
at di�erent focusing depth. We focus the whole image using a method based on a
wavelet decomposition that chooses those largest coeÆcients in the decomposition of
each image and after that we rebuild the image. This procedure is also used in other
�eld as in data fusion [48] explained in Section 2.2.8. Figure 4.10 shows how the
images acquired at di�erent depth have been merged to obtain a focused image. The
set of focused images was further subdivided in order to achieve a suÆcient number
of samples for classi�cation purposes.
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Figure 4.9: One sample image per class.
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Table 4.6: Preliminary results for the three set. Now, classi�cation tests were done

with all the available samples for each set. The dash means that this proof has not

been done.

Method A B C

Mean and variance (m.v.) 90.5% 81.3% 69.1%
RGB, �a trous 4 level, B1 90.5% 92.9% |
RGB without m.v., �a trous 4 level, B1 88.1% 87.3% |
Grey, �a trous 4 level, B1 95.2% 90.1% 74.6%
Grey without m.v., �a trous 4 level, B1 85.7% 82.5% 65.0%

� D. Each image was divided into four non-overlapping subimages, that is, 160
images of 256�256 pixels.

4.5.3 Features

As in the previous case the methodology used to classify the samples starts with
some simple features as mean and variance. With these preliminary results we realize
that they are not intended for classi�cation, although the good results obtained,
due to the high dependency to the illumination. Next we explore simple features
as energy on multiresolution decompositions to evaluate the best number of levels
and decomposition scheme. These results are obtained for images without mean and
variance, therefore reducing illumination problems, and we compare them with the
previous ones. In this case the features express only the texture behavior and with
this methodology we try to tune the best decomposition where the discrimination
among classes is better. Finally we improve features adding cross terms in order to
re�ne the classi�cation. In this step better results are obtained due to two reason, in
one hand the inclusion of cross terms increase the dimensionality and therefore in a
large space classes a easier to discern reducing in this the generalization power [84]; on
the other hand these new features add extra information useful for the classi�cation.

4.5.4 Results

The decomposition scheme, number of levels and base are those most successful in
the former application, that is, �a trous, 3 and B1 respectively. Table 4.7 shows the
classi�cation results. What is more remarkable is that a high recognition rate is
achieved with only four parameters (energies of details at three levels and approxi-
mation), given the high visual similarity of the textures. In addition, errors happen
when classes are harder to discern, even by a human observer (Fig. 4.11).

For the �500 magni�cation case, we do not achieve a similar classi�cation ratio as
the obtained with a lower magni�cation (�100). A reason to this behavior could be the
fact that texture, as a global feature, is lost in this high magni�cation images, di�erent
images of the same class have very di�erent aspect. This result is agree with the
protocol we have presented and also pointed in [23]: �rstly, we use a high magni�cation
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Figure 4.10: The focusing procedure selects the focused areas in each one of the

input images taken at di�erent depth. Bellow, a detail of a set of three images and

its focused result image. To obtain this result we use a multiresolution analysis with

a Daubechies6 as base.

(�500) to observe the individual particles and secondly a low magni�cation (�100)
to observe the texture globally. For the test we have done, the results for the high
magni�cation case are with similar conditions to previous cases are 32.3% (cross-levels
of �a trous decomposition, 3 level, without color information and without mean and
variance). An extended table of results is showed in Appendix A (Table A.7). This
table shows how we can achieve until a 68.8% of correct classi�cation if we relax some
conditions as, (i) inclusion of color information, (ii) more levels in the decomposition.
The increase of performance with the number of levels can be a clue to realize that
magni�cation too high.

4.6 Marble recognition

Once, we have developed a protocol to classify texture, we also prove the classi�cation
of marble images used in Chapter 3. There are some handicaps that point to a failure
in this results, on the one hand the few set of images (in the best case we have a couple
of images for each quarry), on the second hand grains are large compared to the size
of the images (a similar problem that previous �500 magni�cation paint case). These
problems arise due to fact that the problem was focused �rstly as a segmentation
problem and samples were taken with this goal. Nevertheless, the test were done
and a slightly classi�cation were obtained far from the previous results. We obtain
results for 9 classes, 8 images per class (2 sample images that were cut each one in 4
disjoint subimages). The worst classi�cation that we can obtain based on bad features
(random) should be near of an 11.1% due to we have 8 classes. Simple features (mean
and variance) give a classi�cation ratio of 15.25% that is a very bad result. Adding
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Figure 4.11: Examples of confusion. Numbers below are the actual and assigned

class.
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Table 4.7: Paint recognition results over 18 images per class. n (x%) means that

x% of the 18 tested images of that class were assigned to class n. One image over 18

is 5.6%.

Class Assigned 2nd 3rd 4th

1 2 (33.3%) 1 (27.8%) 10 (22.2%) 7 (16.7%)
2 2 (83.3%) 1 (11.1%) 10 (5.6%)
3 3 (77.8%) 4 (16.7%) 2 (5.6%)
4 4 (72.2%) 5 (27.8%)
5 5 (66.7%) 6 (33.3%)
6 6 (88.9%) 4 (11.1%)
7 7 (100%)
8 8 (94.4%) 14 (5.6%)
9 9 (94.4%) 13 (5.6%)
10 10 (83.3%) 1 (11.1%) 2 (5.6%)
11 11 (100%)
12 12 (100%)
13 13 (94.4%) 9 (5.6%)
14 14 (66.7%) 12 (33.3%)

a decomposition scheme in order to make texture as feature for classi�cation give us
a value of 36.1% that is nearly the double of the classi�cation with simple features
and threefold the worst case. The scheme used for this result was a four level �a
trous decomposition with out mean and variance, and B1 base. The classi�er was
the same but in this case 50% of samples were used to the learning stage and 50%
to test. More results are presented in Appendix A (Table A.8). In this results we
can observe how results improve as number of decomposition levels rise, it is due
to the fact point before that grains in images are very big, and grains are the most
important contribution to the texture features used to distinguish among classes.
When the number of decomposition levels increase we can access to low frequencies
and therefore to the information related with big structures in the image. Also if we
do not perform a mean and variance normalization we can improve results but in a
tricky way because we need in this case to control accurately the illumination and
the acquisition in our system. Also we obtain better results if we use a little base in
the decomposition in this way for �xed conditions if we reduce the �lter we obtain an
increase in the results. Taking into account all the things we explained before we can
arrive to a 47.2% of classi�cation.

4.7 Brodatz

Finally, in order to compare this scheme of texture analysis we use a standard image
database of texture. Brodatz [13] is a compilation of di�erent textures. This book
is really a photo album with material useful for artist but that has been adopted by
texture analysis community as a test-bed for the analysis of algorithms performance.
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These images have been widely used in classi�cation problems. Also, they have been
assembled in a mosaic in order to perform and evaluate segmentation processes. A
common problem in most part of the bibliography devoted to this topic is that the
sets of images used in each experiment are di�erent form one paper to another.

Another problem related to the Brodatz album that do not match in our problems
is that most textures in Brodatz are very di�erent form one image to another but there
are several images that has similar appearance. Some of the album images do not
present homogeneity that is a good property because we can measure the texture
parameters in any point with similar results. Our problems are restricted to images
that di�ers slightly form one image to another and also, images are homogeneous, it
is to say, properties related to textures are nearly constant over the entire image. In
this case as in the previous one the problem is not well adapted to our scheme but
we want to quantify the classi�cation rate.

We obtain over the net a Brodatz set with 111 images (see Fig. A.2). Each
images is 640�640 pixels and we break each image in a 16 subimages of 160�160.
Eight images were used as test and eight for learning. The total amount of images
is 1776 subimages. The �rst attempt was to classify all the images with our scheme
and without caution. In this case we obtain a classi�cation rate of 23.5% for the
mean and variance parameters and the best result for the studied cases was 66.05%
with 7 parameters of a cross-level �a trous decomposition with 3 levels with mean and
variance, 47.65% for the same case with out mean and variance (see table A.9 for more
results). If we try to explain these moderate results we must to analyze the images
and �nd how there are some images that are very similar and some other images has
inhomogeneities, it means that subimages from these images are not similar. In order
obtain a fear results trying to distinguish among di�erent textures we select 55 images
(a half of the total, see Fig. A.1) where these problems has been avoided. Results
obtained for Cross-levels, �a trous decomposition with 3 levels and without mean and
variance (47.65% before) was in this case 93.55% nearly the double percentage. These
results are very high if we take into account that the total number of images to classify
is 55. In the literature some times there are very good results closer to the 100% but
for a limited number of images no greater than ten or twenty. If we reduce our set
of images to a selected and reduced set of images the results we can obtain will be
higher, near the 100% of correct classi�cation.

4.8 Conclusions

We have addressed a problem of color texture classi�cation through multiresolution
decomposition techniques. Our aim was to �nd an optimal combination of color rep-
resentation, decomposition scheme plus base and number of levels, and discriminant
features. Through the search strategy described in the results section we have arrived
to the conclusion that, for the speci�c images of our study, only the decomposition
scheme substantially in
uences the �nal result. The family of bases and the speci�c
base within it do not play a signi�cant role, as all tests varying them get similar
percentages of success. Nevertheless, we have been able to tune them in order to
slightly (1% or 2%) reduce the classi�cation error. Likewise, in the problem we have
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addressed color spaces do not achieve a noticeable improvement.
From a more theoretical point of view, we have proposed three image models ac-

cording to which several types of spatial and chromatic features are or not meaningful.
These models refer to how texture is embedded into color and how texture in each
channel relates to texture of the other ones. In this way, given images following one of
such models, we know that only certain features computed from the multiresolution
decomposition should be taken into account. This idea has been supported by actual
results showing that selecting the right features achieves the smallest classi�cation
error.

Future work will address the assessment of features of type F.d as well as other
measures of dependence between the images of the decomposition. In particular, the
mutual information measure as an extension to entropy will be examined.


