Chapter 5

Classification and synthesis of
textures

5.1 Introduction

In this chapter we try to arrive to a description of textures in such a way that it should
be able both to classify and synthesize textures. Why precisely these two purposes?
The idea is to derive a texture representation that can be directly used to recognize
or classify textures by defining a suitable distance or similarity measure between two
such descriptions, and, at the same time, be able to apprehend what’s the texture(s)
ideally recognized or belonging to each class in a supervised framework. On way to
do that is being able to synthesize any number of texture samples from a given built
class. Thus, we can sort of ‘explain’ the decisions of the classifier. Although we limit
to classification and synthesis this approach can be extended later to other areas as
compression, filtering, segmentation, etc.

Among different proposals studied, we have chosen a probabilistic model to char-
acterize and describe texture, because it is one of the most versatile. Besides, most of
the studied models have some probabilistic background. When we see texture images
we perceive that some relations and patterns repeat over the entire image. This be-
havior, to a higher or lower degree, allows us to guess some hidden probability model
that we want to exploit.

Hence, to model texture we use the probability density function (pdf) based on
the occurrence of pixel gray level values given a certain neighborhood, in a similar
way as in the work of Popat [73]. To clarify the idea of this model let us consider this
simple example: if we restrict this neighborhood to a single pixel we obtain as pdf
the histogram of the studied image, which can be readily used. For instance, a L; or
L, histogram distance functions could perhaps classify a set of textures. Similarity,
the histogram could be used to predict the value of the next pixel based on that of
the present one in certain causal scanning order.

But this is a too naif situation. In order to obtain acceptable classification and (def-
initely) synthesis results, we must increase the size of neighborhood. We also explore
other situations; changing the distribution of neighbors of a pixel we obtain different

87

88 CLASSIFICATION AND SYNTHESIS OF TEXTURES

density functions associated to such neighborhoods. These pdfs are n-dimensional
functions, where n is the number of neighbors considered. There are as many pdfs
as neighborhoods can be defined. Large neighborhoods allow representing better the
complex interrelations present in real-life textures but this quickly sentences us to
the curse of dimensionality. Therefore it is increasingly difficult or even impossible
in practice to have enough data to obtain an accurate representation. Small or non-
existent neighborhoods are easy to manipulate but they do not summarize long range
the behaviors and relations between pixels. First solution, with large neighborhoods,
is mandatory for several applications as synthesis of texture where relations among
pixels must be taken into account. And there are some other solutions where so much
demanding requirements are not needed as in the classification case. We should arrive
to an average solution to obtain a good representation in all the cases, though it could
be adapted to each situation.

5.1.1 Goals

This work represents an important change in relation to the preceding chapters. It
is planned as an initial contact to probabilistic texture modelization and synthesis.
Here, we present basically results obtained in classification and synthesis, but the most
important part of this work is the different proposed alternatives and experiments
done to arrive to these results.

A principal objective of this partial work is to arrive to a description useful to
identify a texture. We searched in the literature which were the principal ideas in
this field of texture modelization and realized that synthesis needs strongly a good
model in which it can be based because procedural synthesis methods usually fail to
generalize to different classes of textures. Other problems related to texture analysis
as classification do not have this major requirement of a good and complete model
although there is always an implicit model. Hence, we want a trade-off between the
two approaches analyzed.

Also, and based on the model of texture we also want to develop new strategies
to classify and synthesize texture. To perform such tasks we propose for classification
a direct comparison of texture models with a metric adapted to those models. For
synthesis we explore previous works [72, 73] and propose alternatives to simplify
calculation and to extend the model to a multiresolution decomposition framework.

5.1.2 Background

As we mentioned before, synthesis is a good starting point to search a plausible model
because it is a very demanding process over it. It is necessary to well characterize
a texture in order to produce similar but not simple copies of the original image.
Once we have a model, we can of course validate it through synthesis. Having such
a representation allow us to address other problems related to texture analysis with
a better understanding of their internal relations and their construction. Besides,
if we obtain a compact representation, then chances are that we can employ it in
new fields like compression, restoration, and generation of computer graphic images.
Specifically, computer graphics field is one of the most actives areas with regard to

5.1. Introduction 89

synthesis, because it feeds on texture to achieve good and realistic visualizations.

Synthesis requires several model parameters to take place. Therefore, we need
a previous stage of analysis where an image or a set of images is presented to an
algorithm which extracts a parametric model. This process is known as ‘synthesis by
analysis’.

A review of the literature in this field points out the seminal work of Heeger
and Berger [39], a clear precursor of other more recent works. They start with an
analysis stage by applying a decomposition based on a steerable pyramid [88]. Then,
to achieve a synthetic image, they apply the same process to a random noise and try
to match the histograms of both trees at each level of the decomposition. Applying
this matching of histograms a certain number of times they obtain a synthetic image
remarkably similar to the first one. Besides, this technique was extended to color
images using the K-L transform an applying to each output channel the same process.
This algorithm presents some drawbacks: the number of iterations needed to achieve
good results must be set by trial and error, and the impossibility of synthesizing
textures presenting big and well-defined patterns (textural elements). But, in spite
of these problems, results are great.

Portilla et al. [74] use also a decomposition scheme but in this case based on
a Gabor transform. This decomposition is part of the analysis devoted to extract
simple parameters that allow the texture description. The synthesis is also done from
an initial noise image, which is transformed and adapted taking the parameters from
the analysis process. Results are good for statistical textures but similarity decreases
when some structured patterns appear.

De Bonet and Viola [22] are able to synthesize almost any texture, no matter
whether statistical or structured. They propose a strategy based on a decomposition
of one example image in a Laplacian pyramid. Then, the synthetic image is built
by substituting each path of the original decomposition tree by similar paths of the
same decomposition. In this way we obtain a new image with a similar aspect to the
initial texture image. This procedure yields a good visual impression because it plays
with the same information for the synthesis than the source image, with non-radical
changes in the representation.

Popat and Picard [73] exploit the fact that texture is a property that somehow
repeats over the space, which can thus be explained as a probabilistic process. They
propose the construction of a probability density function of an image by a sliding
neighborhood. In [72] Popat explains a procedure to synthesize texture images from
this pdf in a sequentially and hierarchical way. This approach is the one that we have
adopted due to its versatility for different purposes.

Portilla and Simoncelli [75] try to merge the most important aspects of each ap-
proach, using joint statistical constraints of a decomposition based on a steerable
pyramid. They analyze several kinds of textures finding possible failures and includ-
ing such statistic constraints to avoid them. Synthesis results are impressive for many
kind of textures and, compared to the former methods, their method is definitely able
to generalize the learnt texture; it means that generated results, although perceived
as the same texture, are completely different to those used in the analysis.

Bar-Joseph et al. [7] extend previous techniques to 1D, 2D, and 3D (temporal)
textures. They even provide a method to fuse pairs of textures. In the 2D case

90 CLASSIFICATION AND SYNTHESIS OF TEXTURES

they decompose images with again a steerable pyramid and obtain several trees. To
synthesize or mix textures they generate a new tree in a similar way than [22], but
with several trees as input from the same texture (synthesis) or from different textures
(mixing).

In sum, results for most methods presented here are good some of them have not a
real parametric model behind, some others are visually a simple repetition of patches
of an original texture. We want to build a model in order to recognize textures trying
to discern the decisions taken by the classifier. This works is still in progress so some
of our results and tests have not been explored in-depth.

5.2 Estimation and comparison of probability den-
sity functions

Once we have decided that texture will be characterized by a model based on a pdf,
it is necessary to build this function from samples of the original texture(s) in the
analysis step. Here, we are going to explain some basic aspects of how to perform
this task. Afterwards, we have to select a criterion to compare them for classification
purposes. In this section we will review some alternatives proposed in the literature
and in the next section we will explain our specific choice.

5.2.1 Estimation of pdfs

To modelize a texture we will use a probability density function extracted from data
of an image. We define a neighborhood and we model the image as the independent
realization, for each pixel and its neighbors, of a probability density function! (p(z)).

Data used to envisage the model are extracted in an analysis stage from a texture
image. The process used in this data extraction is a simply sliding neighborhood
that scans the area of interest (in some causal order) accounting the frequency of
these values. If we limit the neighborhood to a single pixel, we obtain the histogram
normalized to area 1 as the simplest 1D pdf approximation. More interestingly, for
larger neighborhoods we obtain probability laws of higher dimensionality:

p(X) = Prob{x =X}, XeX?,

where d is the dimension of the probability space, x = (x1, 2, ...,24) is a random
vector, x is a particular value of X, and z; € X;. The proposed model implies
independence among the different realizations, which actually is not true in a real
image. Nevertheless, if internal dependences of the vector components are stronger
than external dependence, then this requirement can be relaxed.

These probability laws are not the data itself. Data represent a series of realization
of some random variables following those probability functions. Therefore, we need a
procedure to generalize the observed data, and we follow the steps presented in [73].

IStrictly speaking, in the case of conventional gray level images we do not have continuous vari-
ables that can give rise to a true pdf, but a probability mass function (pmf). Nevertheless, for the
sake of generalization, we will stick to the continuous notation, in case @ is real valued (a floating
point quantity.

5.2. Estimation and comparison of probability density functions 91

One of these techniques is the histogram, which tends to the real function when data
goes to infinity. But in practice and for high dimensionality spaces, this condition is
never reached. This is a serious problem because most points in the space have zero
probability even in high probability areas. Histograms summarize data, but cannot
generalize. Another technique that tries to generalize is kernel regression [84]. In this
case each sample data propagates its probability to the surrounding space with the
help of a kernel function. In this case, we can generalize but we need to store all the
data. This means that though we can generalize, we cannot summarize and it is an
important drawback for a huge amount of data. As a final solution derived from the
kernel regression is a technique based on cluster analysis. First, our pdf is expressed
as a weighted sum of Gaussian functions [9]. This estimation tries to model our data
as a set of clusters, the more complicate the distribution of data over the space, the
more clusters we need for a reliable representation. An isolated cluster, in our case, is
modeled as a Gaussian function. Second, in order to summarize the representation,
a clustering process by k-means is performed, followed by a refinement step with the
EM algorithm, which tries to slightly move the k& centers to the best places.

k-means is a simple process that splits data into several clusters. The algorithm
starts throwing some centers over the space? and associating to each center the nearest
data. Then, we recalculate the new centers of each cluster as its center of mass and
iterate the process until stationarity. This is a fast technique to achieve a preliminary
result of the model. At this point we can try to represent each cluster with a unique
Gaussian function.

A refinement step proceeds with the Expectation-Maximization algorithm. This
is in essence very similar to the previous one, but in this case we do not group data
to clusters by an Euclidean distance criterion. Instead, data are softly grouped based
on a ‘probability distance’, data is assigned to each center of a group weighted by the
expectation of belonging to that group. The mixture of Gaussian functions evolves
in time to reach a good match between the data and the model.

This is the pdf estimation procedure we have selected.

5.2.2 Comparison of pdfs

Now, the idea is to use these pdfs in order to decide if an image belongs to a certain
class of textures, represented by another pdf. The main reason to do this comparison
is that, ideally, textures of the same class should give rise to the same probability
function. Therefore, we want to measure how much similar are two pdfs. To compare
pdfs we use a criterion based on the relative entropy or Kullback Leibler measure (Eq.
(5.1)) that is a natural way to compare probability distributions [19]:

Do) = ¥ o) log 22 6.1

zeX ()
The relative entropy is a measure of the ‘distance’ between two distributions.
Although it is not a real distance (does not satisfy all the requirements of distance),
it is often useful to think of relative entropy as a distance between distributions.

2We have chosen as centers samples of the initial data randomly.

92 CLASSIFICATION AND SYNTHESIS OF TEXTURES

Other works that rely on similar probability models [73] use for classification
purposes a measure related to relative entropy. They assign to an image the class
where it is coded with the fewest bits. Due to the fact that relative entropy D(p||q)
is a measure of the inefficiency of assuming that the distribution is ¢ when the true
distribution is p; hence, if we hit on the correct distribution of an image the coder
give us a reduced relative entropy and compact output.

Also, we use this measure to know if a certain model is better than another one
over a set of data. Thus, we can decide which are the best parameters of a certain
process.

5.2.3 Generation of new values

To perform synthesis we need to obtain new values from data of a given neighborhood
already calculated (we assume a causal order in the image generation). For a certain
pixel location, let X, X, ..., X4—1 the values of the preceding neighborhood pixels,
and x4 that of the pixel to be calculated. We choose x; as the value that better
explains the occurrence of this neighborhood Xi, X, ..., X4_1. This calculation can
be done in different ways: (i) maximum a posteriori probability (MAP), (ii) least
expected squared error (LSE), and we also choose (iii) pseudorandom values according
to its conditional pdf. To get a random number with a particular distribution we
obtain the function of distribution of this probability and apply it as an inverse map
of a uniform random number.

MAP Xq = argmaxp(zq| Xy, Xo, ..., Xg-1) , (5.2)
Td
LSE Xy = Ey(zXi, X, Xa_1) . (5.3)

where F, is the expected value according to pdf p.
All three of them have been assessed in the results section.

5.3 Our proposal

Here we explain which are the solutions adopted in our test in the three domains
pointed out before: pdf estimation, pdf comparison, and texture synthesis.

5.3.1 Estimation of the model

We have compared several strategies such as histograms, mixture of Gaussians, and
also we have tried to model the conjoint pdf as a product of independent single
probabilities in order to estimate it as a product of marginals. Nevertheless, the
mixture of Gaussian functions has gained most of the efforts because it has proven
the best in synthesis (though not in time or memory performance). We started with
simple models as 1D pdf rising to 2D pdfs and higher dimensions just as they are
or with a reduction of dimensionality. To limit the amount of possibilities we have
studied the estimation based on a 2D mixture pdf changing parameters like: number
of centers, shape of the function that approximate cluster, number of iterations, and
addition or not of a refinement step.

5.3. Our proposal 93

initial 4 16 64

neighborhood
N =[(0,0), (-2,-2)]

DI Wz)ven
aluminum wire

(a) (b) (©)

Figure 5.1: Estimation of an initial pdf as a mixture of Gaussian functions varying
the number of centers. Up: initial pdf and approximations by a mixture. Bellow:
texture used in the pdf computation and plots that shows centers and elongations of
the Gaussians.

Figure 5.1 shows in the bottom left part the texture used in these preliminary
trials of estimation. We use the neighborhood Ny = {(0,0), (—2,—2)}; where (0,0)
means the analyzed pixel and (—2,—2) the neighbor at this relative position. The
accumulation of data is showed at top left and we see that its distribution cannot
be easily explained with a single function. A first test, reflected in this figure, shows
how the shape is better approximated when the number of centers increases. This
approximation has been obtained with the k-means algorithm without the refinement
step.

A second test tries to determine which is the best shape of the Gaussian functions
given a certain number of centers. To do this experiments we force the covariance of
each cluster to be: (a) a single value (spherical case), (b) a diagonal matrix (diag.
case) or (c) without restriction (full case). To assess which is the best approximation
we compute the relative entropy. We see in Fig. 5.2 how full case gives better results.
Due to the fact that the initialization is a random step we can obtain different results;
therefore we choose the best results among a set of trials.

After we have analyzed those results of the k-means step, we apply the refinement
based on the EM algorithm to better adapt our model. We conclude that the shape
of the function is important, but the introduction of this new stage allows a strong
reduction of the distance between the estimated and the true model (Fig. 5.3).

A further improvement can be reached in the light of the previous experiments: to
increase the number of centers, do not limit the shape of the Gaussian functions, and
to apply the EM refinement. But all these things imply also a rise in computation time
and storage requirements. Figure 5.4 illustrates how are affected this improvement in
relation to the number of centers for a full case. We can see how the EM step gives a

94 CLASSIFICATION AND SYNTHESIS OF TEXTURES

spherical diag full

a

Dll)=0.71872 * & D(pflq=0.65487 = = D(plq)=0.63522 =

ls=}
[

Figure 5.2: The best estimation of ten tests with several shapes of Gaussian func-
tions and their relative entropy.

spherical diag full
» . a
=
<
)
g . B . - -
= .
h i - h i 4 . B X I
D(pl|q)=0.85703 D(p||q)=0.74558 D(p|lq)=0.76614
=
= .
5 " = s = -
D(pl||q)=0.62095 D(pl|q)=0.58499 D(pl|q)=0.50283

Figure 5.3: Improvement of estimation using EM algorithm.

better approximation of the model, but also shows how the number of centers is not
a critical parameter because we soon arrive to a stationarity case.

In this search of a good estimation, we only show and specific configuration of
neighbors but it is clear that global shape on the accumulation space depends on the

5.3. Our proposal 95

Evolution of the relative entropy

D(pllq)

k-means

EM

number of centers

Figure 5.4: Stabilization of the goodness of the estimation increasing the number
of centers.

neighborhood. We have done several tests changing those neighborhoods, but we have
not thoroughly studied how those distributions affect the classification and synthesis
results. One special case must be point out for synthesis purposes, which use causal
neighborhoods where the new values need as neighbors already calculated positions.

We try to introduce a multiresolution approach at this point doing pdf estimation
by means of the solution presented in [98]. In this case, we obtain an estimation recon-
structing a few levels of the decomposition. Figure 5.5 shows a histogram generated
from a texture image and three estimations of this distribution where the number of
levels in the reconstruction increases and therefore also the similarity to the original
histogram. The extension of this procedure to 2D pdfs is easy to implement, but if
we grow further in dimensionality the computational requirements of size and time
increase exponentially. Therefore, we have stopped these experiments at this point,
but this can be considered as a future theme to be explored in-depth.

histogram approximation (1 level) approximation (2 levels) approximation (3 levels)

1000 I 1000 1000 1000

®
8
3

800 800 ‘(\ 800 A

number of pixels
«
2
2

IS
8
3

’[|

J |
\ / n
| k 200 200 | \ 200
M o, \‘w‘ﬂ ﬁ o / \“”\
100 200 0 100 200 0 100 200
gray levels gray levels gray levels

N
8
8

S

o

0 100 200
gray levels

Figure 5.5: Estimation of a density function by partial reconstruction of a wavelet
decomposition.

5.3.2 Classification

To estimate the degree to which a sample belongs to a certain class we compare the
estimated pdfs of both. The classification rule is to assign the image to the class
which reaches minimum distance. Tests have been done using simple distances like
the Ly, i.e. the sum of absolute values of the difference of components; or Lo, i.e. the

96 CLASSIFICATION AND SYNTHESIS OF TEXTURES

Euclidean distance. These two measures are generic distances and not well adapted
to our case. We need to compare pdfs that are a special case of functions, and which
have specific similarity measures to perform that comparison. Therefore, we also
adopt as potential measure some ‘distances’ based on the relative entropy explained
in Sec. 5.2.2.

D(pllq) is always non-negative and is zero if and only if p = ¢q. However, it is
not a true distance between distributions because does not satisfy symmetry and the
triangle inequality. To build a real distance we need to obtain both properties without
losing the other two. We try to remove the non-symmetry drawback calculating the
maximum between the relative entropy in both senses:

D(p, q) = max(D(pl|q), D(q|lp)) - (5.4)

It means that with this similarity measure comparison between p and ¢ gives
the same result than between ¢ and p. This new measure D is not a real distance;
it still lacks the triangle inequality, but allows a fair comparison of a pair of pdfs.
Proving that this measure is symmetric is trivial and that triangular inequality is
not satisfied can be done easily by a counterexample. We have also tested other
symmetric distances such as the sum of both relative entropies, but similar results
were obtained. It remains as an open issue to find a real distance able to establish a
metric in the space of those models.

5.3.3 Synthesis

The idea of synthesis based in a probability model is to obtain pixels of the new image
following the probability law of the model. We have done a lot of trials varying several
aspects of this idea. First, in most trials, density estimation was performed using a
mixture of Gaussian functions, estimating the pdf with a k-means as initialization
stage and after a stepwise refinement with EM algorithm. In some experiments we
have expressed the probability model as an independent probability process. Second,
and related to how to generate new values, we use the three proposal of MAP, LSE
and random mentioned before.

If we try to build a new image as a set of independent trials following a correct
probability distribution, we fail if we do not include neighborhood information. See
in Fig. 5.6 how result looks like a noise image without defined texture patterns al-
though it obeys the correct density function. To do this test we build a model of ten
dimensions and generate random samples obeying this law but with random neigh-
bors. This neighborhood, also used in other tests, is: Nio = {(0,0), (—=1,0), (-=2,0),
(27 _1)7 (17 _1)7 (07 _1)7 (_17 _1)7 (_27 _1)7 (17 _2)7 (07 _2)7 (_17 _2)}

First attempts of synthesis follow the guidelines of [72]. With a causal neighbor-
hood (Np) we try to perform a sequential synthesis (see Fig. 5.15) and a hierarchical
synthesis (see Fig. 5.16). An aspect that strongly affects the final result is the previ-
ous initialization. We use a causal neighborhood, but if first values do not correspond
to typical values of the image the synthesis does not ‘start’ generating similar values
and soon gets completely lost. Figure 5.7 shows on the first group of synthesis how
it fails completely for MAP and LSE cases if we choose a uniform initialization, only

