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2.2 Creaseness operator

Antonio López, a member of our group, has studied for his PhD dissertation the
differential operators described in this section [72]. He has compared the performance
of various classical creaseness operators, and studies the theoretical reason of their
lack of continuity. Following, we synthesise his results for the sake of completeness,
but for further information regarding particular points, the cited bibliography should
be consulted.

Today’s literature defines a crease (ridge or valley) in many different ways [10].
Intuitively, a crease can be defined:

1. paths where water gathers downhill when it rains in a landscape (turn the
landscape upside-down for a ridge) .

2. points with sharp drops on both hand sides. .

3. when walking uphill, points where you make a sharp turn. .

Before giving the proper definitions, we need to introduce some notation.
We define a discrete image as the sampling of a d-dimensional continuous function:

L : Ω ⊂ Rd → Γ ⊂ R (2.1)

the level set for a constant l consists of the set of points

Sl = {x ∈ Ω|L(x) = l} (2.2)

Figure 2.5 shows the graphical interpretation for the d = 2. For the 3–D case, the
level sets will be surfaces having the same intensity level. A related family of curves
are the slope lines, which follow the gradient and are orthogonal to the level lines.

Operators over a function are defined as usual:

∇ = (∂/∂x1, . . . , ∂/∂xd) (Gradient) (2.3)

∇∇ = (∇t · ∇) (Hessian) (2.4)

The derivative of L along the vector v = (v1, . . . , vd)t:

Lv = ∇L · (v/‖v‖) (2.5)

And the second-order derivative of L along v and w = (w1, . . . , wd)t:

Lvw = (vt/‖v‖) · ∇∇L · (w/‖w‖) (2.6)

Derivatives along the axis of coordinates xi are annotated as Lxi . In 2–D, useful
definitions are w = (Lx, Ly)t and v = (Ly,−Lx)t.
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Figure 2.5: Graphical interpretation of terms related to level curves: ridges, valleys
as lines following the minimum and maximum curvature, and the v and w vectors at
any point.

2.2.1 Three classical definitions of creases

Definition 1: paths where water gathers downhill when it rains in a landscape.
This definition, due to R. Rothe, was saved from oblivion in [36, 37, 38]. It can

be written as “parts of slope-lines where other slope-lines converge”. Slope-lines are
solutions of the ordinary differential equation:

∇⊥I · dx = 0 (2.7)

Given an initial point, the slope-line including a point will be the set of consecutive
points solution of equation 2.7, which is done for instance by means of Runge-Kutta
(as implemented in [80]). That can be seen as tracing the path of a rain drop as it
runs down-hill. López in [51] studied the algorithmic implementation compared to
other operators, but results where not satisfactory.

The main drawback is that the operator is not local, which means that it cannot
be described as a function of a neighbourhood. That is to say, many initial points are
needed to properly trace the crests, and that has a very high computational cost.

We extensively studied the response of this operator for registration purposes
during the initial stages of the research; the registration achieved with this scheme
some results [44]. In that paper, we compared its response to other operators, and
also started preliminary registrations. However, the final accuracy was limited because
the segmentation presented gaps were it was not expected, similarly to those of the
Lvvoperator, explained in the following pages.

The first year of my research was dedicated to study this operator, and the first
two publications [44, 52] were based on those results. Afterwards, another creaseness
operator compared favourably to Rothe’s, so it was replaced in the registration algo-
rithm. See an example with the response for a heart gammagraphic image in figure
2.6.
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Figure 2.7: Graphical interpretation of the Lvv operator: a) shows the shape func-
tion with a crest line; b) at each point the direction of the gradient w in dark and the
vector perpendicular v in grey. c) shows the profile following each vector at non-crest
and crest (d) points.

Definition 2: points with sharp drops on right and on the left hand side.
We will refer to figure 2.7 to explain the mathematical definition. At any point of

an image seen as a landscape, w points uphill, and v is perpendicular to w. If we look
at the function profile for a section following v, the shape will be different depending
on the neighbouring values: for point at (c), it will be flat , but for a crease point (d)
it will clearly show a parabola.

Therefore Lvv, which is the second derivative of the function along v, will take
high values for valleys and low values for ridges. The explicit formula for Lvv for
d = 2 [56] is:

Lvv =
L2

yLxx + L2
xLyy − 2LxLyLxy

L2
x + L2

y

(2.8)

Definition number 3: when walking uphill, points where you need to make a
sharp turn.

This definition recalls that of the level-curve curvature κ: following a level curve,
the points where the curvature is higher (lower) determine the valleys (ridge). It has
the following analytical expression:

κ = (2LxLyLxy − L2
yLxx − L2

xLyy)(L2
x + L2

y)−
3
2 , (2.9)

Comparing equations 2.8 and 2.9, we see that Lvv is κ multiplied by the gradient
magnitude Lw:

κ = −Lvv/Lw = −LvvLα
w, α = −1 (2.10)
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For α taking values other than −1, α ∈ [−1, 0], κ is normalised in several degrees
with respect to the gradient magnitude.

2.2.2 New creaseness operators

The differential operators κ and its reduced form Lvv are in fact the particular ex-
pression for 2–D of the curvature of the level-curves, which, in 3–D, is termed mean
curvature κM of the level surfaces. In the d–dimensional case we will call it level-set
extrinsic curvature, LSEC .

The general formula for LSEC uses Einstein summation convention:

κd = (LαLβLαβ − LαLαLββ)(LγLγ)−
3
2 , α, β, γ ∈ Xd , (2.11)

where Xd is the d-dimensional (local) coordinate system {x1, . . . , xd}.
In 3–d we have level surfaces and the straightforward extension of κ is two times

the Mean curvature κM of the level surfaces:

κM =
[
2(LxLyLxy + LxLzLxz + LyLzLyz)− L2

x(Lyy + Lzz)

−L2
y(Lxx + Lzz)− L2

z(Lxx + Lyy)
]

2(L2
x + L2

y + L2
z)
− 3

2 (2.12)

However, the way LSEC is usually computed —directly discretizing Eq. (2.12)
or the equivalent expression in the 2–d case for κ— gives rise to a number of dis-
continuities : there appear gaps at places where we would not expect any reduction
of creaseness because they are at the centre of elongated objects and creaseness is a
measure of medialness for grey–level elongated objects.

We have checked that this happens independently of the scheme of discretizing
derivatives and even when the gradient magnitude is far away from the machine’s
zero, this is, at pixels where Eq. (2.12) is well-defined.

To avoid discontinuities we present an alternative way of computing creaseness
from the level set extrinsic curvature. For a d–dimensional vector field u : Rd →
Rd,u(x) = (u1(x), ..., ud(x))t, the divergence measures the degree of parallelism of
its integral lines :

div(u) =
d∑

i=1

∂ui

∂xi
(2.13)

Now, if we define the normalised gradient vector field of L : Rd → R as

w̄ =
{

w/‖w‖ if ‖w‖ > 0
0d if ‖w‖ = 0 (2.14)

it can be shown that:
κd = −div(w̄) (2.15)

For d = 3 Eqs. (2.12) and (2.15) are equivalent in the continuous domain. How-
ever, and this is the key point, the same approximation using derivatives substituted
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Figure 2.8: Comparison of the operators: on the left row, original CT image with the
creaseness images for Lvv and Cκ̃d. The middle column zooms the window extracted
from each image at the location show in the CT image. It can be seen that although
the bone in the CT image is consistent ridge, gaps appear in the Lvv operator. The
cause can be seen if the window is depicted as a landscape (third column): gaps
correspond to local minima along the crease, i.e., saddle points. Our operator Cκ̃d

solves this problem.

into Eqs. (2.12) and (2.15) gives rise to very different results, namely, Eq. (2.15)
avoids the gaps that Eq. (2.12) produces on creases.

For example, in the case of ridge-like saddle points, as those in figure 2.8, κ not only
decreases but also suffers a change of sign barrier on the path of the expected ridge-
like curve . The reason is that the neighbourhood of the saddle point is composed
mainly of concave zones ( κ < 0) but the sub-pixel ridge-like curve runs through
convex zones ( κ > 0) missed by the discretization of Eq. (2.12).

In order to obtain derivatives of a discrete image L in a well–posed manner we
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have approximated image derivatives by finite centred differences of the Gaussian–
smoothed image instead of convolution with Gaussian derivatives of a given standard
deviation σD. For each pixel, neighbour derivatives are calculated ’on the fly’ as
needed and stored in buffers for the next one. This approach is necessary because
otherwise the algorithm would require 10 float images simultaneously. Thus, Eq.
(2.15) produces similar results being computationally less time and memory consum-
ing.

The creaseness measure κd can still be improved by pre–filtering the image gradient
vector field in order to increase the degree of attraction/repulsion at ridge–like/valley–
like creases, which is what κd is actually measuring. This can be done by the structure
tensor analysis ( [52], [53]):

1. Compute the gradient vector field w and the structure tensor field M

M(x; σI) = G(x; σI) ∗ (w(x) ·w(x)t) (2.16)

being ∗ the element–wise convolution of matrix w(x) ·w(x)t with the Gaussian
window G(x; σI). The standard deviation σI controls the size of the averaging
window.

2. Perform the eigenvalue analysis of M. The normalised eigenvector w′ corre-
sponding to the highest eigenvalue gives the predominant gradient orientation.
In the structure tensor analysis, opposite directions are equally treated. Thus,
to recover the direction we put w′ in the same quadrant in 2–d, or octant in
3–d, as w. Then, we obtain the new vector field w̃ and the creaseness measure
κ̃d:

w̃ = sign(w′tw)w′ (2.17)
κ̃d = −div(w̃) (2.18)

The discretization of κ̃d results from approximating partial derivatives of Eq.
(2.13) by finite centred differences of the w̃ vector field. When the smallest
neighbourhood is taken, namely, the 6 pixels neighbouring a pixel (i, j, k), the
following expression is obtained:

κ̃d[i, j, k] = w̃1[i + 1, j, k]− w̃1[i− 1, j, k] + w̃2[i, j + 1, k]− (2.19)
w̃2[i, j − 1, k] + w̃3[i, j, k + 1]− w̃3[i, j, k − 1]

3. Compute a confidence measure C ∈ [0, 1] to discard creaseness at isotropic ar-
eas. As similarity of the eigenvalues (λ1, . . . , λd) of the structure tensor implies
isotropy we can base the computation of C on a normalised measure based on
their difference. A suitable choice is:

C(x) = 1− exp

(
−

( ∑d
i=1

∑d
j=i+1(λi(x)− λj(x))2

)2

2c2

)
(2.20)

where threshold c is experimentally chosen. In this way, Cκ̃d has a lower
response than κ̃d at isotropic regions.
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Figure 2.9: From left to right: 3–D creaseness measures of the MR slice in (a) for
σD = 2.0 mm: (b) κ, (c) κ̃ for σI = 2.0 mm, (d) Cκ̃ for c = 10000. The gaps in (b)
do not appear in (c).

We have tested several methods to compute the eigenvalues. If we only need
the highest, the fastest method is Powell’s applied to an optimised expression from
[21]. If we choose to implement step 3, the fastest is singular value decomposition as
implemented in [80]. Figure 2.9 compares κ, κ̃ and Cκ̃ on an MR volume.




