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2.3 Correlation as a measure of matching

The former operator is highly suitable for CT-MR landmark extraction because it
gives a high response in the voxels depicting the skull, which yields to a quick and
accurate alignment of the images. The first step is to reformat the source images
into cubic voxels. After the creaseness extraction, the following step is to iteratively
transform one of the images until it becomes properly aligned with the other.

From here on, we will normally refer the two images as static S and dynamic
D, because in the optimisation step the first is taken as model, and the second is
transformed iteratively until it is aligned. Signal processing literature also employs
the nomenclature f and g.

A suitable function to measure the quality of the alignment is the correlation
function

Cr = f(@) 0 g(T(@) = 3. £(7) - g(T()) (2.21)
zef
where f and g are the creaseness images and T represents a transformation whose
parameters we want to assess. A key step is not to transform all the pixels in the
image, but only those with values higher than a small fixed threshold. This saves up
to 95% of the total computations, due to the sparcity of creases in an image.

Since we are employing the correlation as a measure of alignment, it is interesting
to check the properties described on page 7. For the sake of simplicity, we consider
only 1 dimensional images, with positive values: S = {s1,---,8,}, D ={dy,--- ,dn}:

e continuity
For the nearest neighbour scheme, this measure would not be continuous:

Tim (fxg)a+h) = (Fxg)a—1) # lm (Fxg)a+h) =(Exg)a)

The correlation measure would be continuous for the linear interpolation scheme,
since transformations computed with this interpolation observe:

lim f h) = lim f h) =f
g flocth) = lop Fat ) =H(e)

e nil element
We demonstrate that the maximum of the correlation of an image with itself oc-
curs at a null translation; other maximum with same values for other translation
may exist, i.e., the inequality is not strict.

We compare the value of correlation with a null translation with the value of
correlation obtained with a translation of 1 pixel, this is,

Z 57 > Z 8iSi41 (2.22)
We will proceed by induction. First we prove 2.22 for n = 2:

5% + s% > 5189 + S981 = 25182 &
(s1—52) >0
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which is true for any values of s; and s;. For convenience in annotation, we
define 5,41 = 51

Next step is to suppose equation 2.22 true for n — 1 values:
3% + sg + -+ 531—1 > 8189 + 8283+ -+ Sp—28n—1 + Sp—151
We have to prove the general case for n values:
s%—&—s%—i—n-—i—si > 5182 + 8283 + -+ + Sp_18y + SpS1

We will proceed by variable substitution. Let s, = mln( ;). Then, we write all

s; in terms of s,,:
S; = Sm + Si, t=1---n

We develop the left term of the equation (2.22):

Zs Zsm—i—sz = +Z2Sm81+28
=1

And then the right term:

Z $iSit1 = Z(Sm +8)(Sm + 3i11) = ns, Z 28,8 + Z 5i8i11

=1

Replacing and simplifying:

Z Z+

Sm = 0 from the definition of s,,. We rewrite last equation taking that into
account, and assuming m = n, i.e. the last s; is the minimum, in order to
simplify notation:

0 0
=2 2 2 “ N
Si+ 48, 1+ 5, =815+ + 5, 25,1+ Sp_18, + 8,51
However, for n — 1 we stated
ST4 482 > 81804+ Sp_2Sp—1 + Sn_151
Taking s; = §; and since §; > 0 by construction:

-9 ) -~ ~ ~
S+ +8,_ 128182+ -+ Sp_25,1

Which makes the statement true the general case, and proves the inequality.

For general transformations, we just need to consider that linear interpolation
does not introduce values higher than the original.
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Figure 2.10: The highest correlation value is not at alignment

e monotonicity

For general images, the correlation does not grow monotonically until images are
aligned. This undesirable property will motivate further discussion in following
sections.

The correlation function is a common topic in image processing books. Refer, for
instance, to [90] or [23, pg 67] for more information.

In short, these properties warranty that the alignment function is suitable for
registration:

e The maximum is achieved when the two images are aligned.
e It provides sub-pixel accuracy.
e The profile is smooth.

e Compared to normalised correlation, the linear correlation needs only one pass
per pixel.

The correlation value for a pair of images, one transformed iteratively, can be
computed in two fashions. The straightest is to transform the dynamic image and
then compute the correlation, but, as stated previously, the computational time can
reduced up to 95% by joining the two operations. Also, the correlation computed with
this scheme has the additional advantage that the intermediate transformed image
does not need to be stored. Figure 2.11 describes its pseudo-code.

The only advantage of the normalised correlation is that the measure is indepen-
dent of the grey value of the images; linear correlation is higher for images with higher
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Given two images S and D, a transformation T to apply to D and a threshold value ¢, the
scheme to compute the correlation is
cor =0
For each pixel S%,7 in S,
if S(i,7) > ¢
Find the corresponding coordinates in D: (k,1) = (i,5) T

Interpolate the value D(k, 1) using linear interpolation with neighbouring values.
cor+ = S(i,5)D(k,1)

Figure 2.11: Algorithm to reduce the computational cost of correlation

values. The linear correlation value depends not only on the goodness of the align-
ment, but also on the number and value of the pixels. This is relevant only when
comparing the final alignment of registration of different pairs of images.

The cross-correlation does not give for all cases the same response as a human
operator would. Examples can be build were the maximum given the function differs
from the human alignment concept, because the later considers more concepts than
strictly the number of pixels aligned. See, for instance figure 2.10.
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2.4 The hierarchical approach to optimisation

In previous sections we have showed that the creaseness operator is a suitable choice
to segment the skull, and that the correlation has good properties as a measure of
alignment. In this section we give full report of the technical details of our algorithm.

2.4.1 Building the pyramid

Initially we have considered only the rigid type of transformation, which includes 3
translation parameters (one for each axis), plus 3 rotation parameters (one for each
axis). The rotations are taken at the centre of the image, because the angles obtained
in this fashion are smaller than the using the top left corner as centre of rotation.
Smaller angles are more likely to be found because the initial search samples only a
short range of angles. The full specification of the transformation matrix is included
in appendix A

The function C'1 together with the 6 parameters of the transformation defines a
search space which is difficult to optimise because:

1. the function is non—monotonic, i.e. has many local maxima.

2. the similarity measure is expensive to compute since it involves the transforma-
tion of a large 3—D image plus a product of two images.

3. translation and rotation parameters can not be decoupled in order to reduce
the dimension of the search space, as it can be done in 2-D [91, 1, 41, 4].

An approach to overcome the two first problems is to search within the parameter
space at multiple resolutions. As in [102] we handle multiple resolution by building
two pyramids where the CT ridgeness and MR valleyness images are at the bottom
and each level is a sampled version of the previous at half resolution, until images
have a final size of about 16 pixels in each dimension.

Such a scheme has been largely employed. Usually, the image is sampled after
blurring with a Gaussian, with the aim of avoiding that the sampling would enlarge
the noise of the image. But, in our case, this sampling would not be interesting
since it would spread our precise segmentation, thus becoming useless. Therefore, we
simply take for each pixel at one level the maximum of a local neighbourhood from
the previous level. This approach preserves information through the hierarchy.

We have designed an experiment to check whether the shape of correlation function
is preserved through the levels of the pyramid. We have registered two CT and
MR volumes, and then sampled the correlation function at intervals at the function
maximum. We have seen, as figure 2.12 shows, that the profile is approximately the
same, and therefore our approach is valid. In addition, since the shape is actually
smoother, the optimisation will less likely miss the maximum, thus being more robust.

2.4.2 Exhaustive search

For the finest resolution, an exhaustive search would not be possible because the
number of operation would have been too large. The search starts at the top of
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Figure 2.12: Correlation values (y axis) sampled at registration (centre in the
x axis), and different intervals of x translation (Top) and z-rotation (Bottom).
Throughout the pyramid hierarchy, the function profiles is smoothed but its shape is
preserved.
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pyramid, where the small size of the images permits an exhaustive search. At this
level we are not interested in accurate results, but in obtaining a broad set of promising
seeds.

The first approach was to iterate each transformation parameter at a number of
steps. But that rapidly leads also to a high number of trial values. It is much more
efficient to operate in the Fourier domain. The shift theorem permits to compute
n? trial translation at the computational cost of a single multiplication. Using the
approach, only the rotation parameters need to be iterated.

f(x)og(x) < F(u)G*(u) (2.23)
fx)g*(x) & F(u)oG(u) (2.24)

We had two problems when implementing the Fourier computations. The first
was that images needed to have the size power of two, to make use of the Fast Fourier
implementation. Also, if images were not cubic the transform to the Fourier domain
produced phantom values which misleaded the search. The same problem appeared
when tried to rotate the images at the Fourier domain. Taking into account these
limitations, we finally employed the algorithm set in 2.13.

Given two images S and D and a set of rotations to be sampled,
Build two cubic images S and D¢ with size power of two able to include them.
Insert the images S and D into S¢ and D¢, located at the centre.
Compute the Fourier transform of S¢, Sy = FFT(S¢).
For each rotation r in the set,
Rotate the dynamic image, D" = r(D¢)
Compute the Fourier transform, D}, = F(D")
Compute the product SD = Sp x D},
Anti-transform the product SD~! = FFT~1(SD)
The values of SD~! are the correlation values needed.

Figure 2.13: Algorithm to compute the correlation at the Fourier domain

Table 2.1 gives the statistics of computation times for several operations at each
level of the pyramid. These times, set for an image with size (334 x 334136), are
similar for the other images. The time corresponding to level 0 was skipped because
the cubic image (512 x 512 x 512) was too large to fit in memory.

Often the best transformation at any level is not the one which later will lead to the
final solution, because the hierarchical approach introduces false maxima. Therefore,
for the sake of robustness we have chosen to keep several values from each level as
seeds for the next. For each level we reduce the number of seeds to the half, to end
optimising a single value at the highest resolution level. The third column in 2.1 is
the time for each rotation to be sampled, computed from the sum of the times in
figure 2.13: a rotation, an F'F'T, and an inverse F'F'T. Since there are three rotation
parameters, the total time for a through sampling can be very large.
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Level Size FFT Transform. Full Iteration
(pixels) Time (sec)
1 256 f 41.84
2 128 17.2 2.03 36
3 64 1.7 0.26 3.6
4 32 0.14 0.03 0.31

Table 2.1: Computation times taken by the Fourier transformations.
T Not enough memory to compute it.

We have chosen the following values for the exhaustive search: we sample the
pyramid to level 4, we take 10 rotation values for each axis, and the step value is 0.1
rad. The total computation time for this search is about 5 minutes. Probably the
time could be reduced by taking less steps for the exhaustive search, but the price
again would be a decrease in the final robustness.

2.4.3 [Iterative optimisation

The initial exhaustive search has provided us with a set of transformations, which
are maxima in the correlation for the images in the sampled pyramid. The next
step is to refine these values through the hierarchy, until, at the finest resolution, the
convergence leads to the highest value.

We have used the downhill Simplex algorithm as implemented in [80] to maximise
the correlation function at all levels except the initial. Each search, started from the
seeds from the previous level, finishes when the algorithm achieves a zone where the
difference between the maximum and the minimum values found in the neighbourhood
is lower than a threshold. The tolerance value and number of seeds in the highest
resolution level determine to a high degree its robustness and final time.

We have implemented the optimisation search also with a Simulated Annealing
and Powell’s algorithms, but they did not improve the results as a rule. This is easy
to explain because we did not consider the order of convergence, but rather whether
it converged or not, which is already taken into account by the hierarchical structure.
For medical volume image registration, the total time is not very relevant as far as
it keep reasonable, this is, below 15 minutes. It is far more important to ensure
robustness.

Also, we have extended the matching scheme with chamfer distances as described
in [27]. This algorithm assigns to each voxel the approximate distance to a surface,
i.e. the segmented crease, by means of a fast correlation of the image with two masks.
We apply this process only to the first and second levels (highest resolution) of the CT
image, and at the following levels the optimisation steps run without modification.

As a result, the correlation function does not seek the exact matching of the two
surfaces, but also their proximity, and the peak of the function corresponding to the
maximum becomes wider and easier to locate. In the following section we present the
experiments to validate its use.
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Level | Dim  Slices Cor Cor
(x,y) (thr)
334 136 14.5 0.52
167 68 1.8 76E-3
83 34 0.24 10.5E-3
41 17 0.026  165E-6
20 17 0.0062 61.6E-6

=W N = O

Table 2.2: Computation times in seconds taken by the correlation process

2.4.4 Initial alignment

Another important issue is the initial alignment of the two volumes, specially when
their field of view differs. Although both show the full boundary of the skull in the
axial axis, the number of slices provided for one modality sometimes is the double
of the other one. See, for instance, figure 2.14 showing an example taken from the
Vanderbilt’s database.

Despite this fact, at the beginning a very simple procedure consisting in aligning
their respective centre of mass worked well. Once we had to apply the registration
to the large database from Vanderbilt’s, we realised some failures were due to this
cause. For a very bad initial choice, the short image stack would be placed too close
to a non-corresponding surface, and it would fail to converge. Whereas, for the image
being placed at a reasonable choice, the algorithm worked properly.

Although this problem happened only to a single pair of images, it hindered us to
consider our method as fully automatic. We needed a procedure to do an automatic
coarse alignment of the images, and we decided to make use of the geometric features
of the head. In an axial view, slices depict an elipsoidal form above the eyes, and a
square-like form below it. Thus, a compact representation is the list of the principal
axes of each slice.

We work with the original modality images because in this manner the procedure is
independent of missing segments in the segmentation step. For each slice, we separate
the head from the background with a simple threshold, then we compute the length
of the longest segment for each axis. After this procedure, very fast, we obtain for
each volume a set of pairs a; = {a,,a,} and b; = {b;, by} of length m and n, m and
n not necessarily the same.

The next step is to estimate the translation in the z coordinate which best aligns
the images. We measure the alignment between the two sets with:

Align(d) = > | ai = bi—a || (2.25)

and simply take the translation d with lowest value. This measure is robust against
outliers caused by wrong extractions of slices, which may happen when artifacts ap-

pear in the image.
T, = Arg mdin Align(d) (2.26)
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Figure 2.14: Sometimes images do not overlap because one image is a partial volume
of the other. This example, taken from the Vanderbilt database, shows sagittal (top)
and coronal (bottom) view of CT image (left) with the MR image (right) scanning
only central slices.

See figure 2.17 for a sample of the images at each step before to the actual opti-
misation starts. This preprocessing is necessary to ensure a proper convergence when
the field of view of each volume is very different.
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Figure 2.15: Detecting the main axis of the CT image (top) and MR image (bottom)
to compute the initial alignment.

‘“M«m

Figure 2.16: The initial translation in the z axis is estimated robustly by comparing
the main axis of the head at each slice. The comparing function, as defined in equation
2.25, has a single minimum.
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Figure 2.17: Steps before images are set to register, from top to bottom: original,
formatted at 1.0 pixel size, creaseness images and crests after estimating the centres.
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Figure 2.18: General scheme of our registration algorithm





