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2.5 Results of the assessment

This section presents the results of our algorithm under a number of tests. The
experiments can be grouped into two major sets, as listed in table 2.3:

Set Description Section
1 Visual validation 2.5.1
1 Choice of parameters 2.5.2
1 Comparison with mutual information 2.5.3
2 External validation at Vanderbilt 2.5.4

Table 2.3: List of experiments

The first set, which we published in [42], is restricted to 5 pairs of CT–MR images
of different characteristics (table 2.4). The initial experiments were useful to design
the initial layout of our algorithm. First, we examined visually the accuracy of the
matching, both with the overlapping of crests and with the original images. Then,
we tuned several algorithm parameters, and see how it affected the final robustness
and accuracy. Finally, we compared our method with another based on mutual infor-
mation. Images of this section have been kindly given by Dr. P. van den Elsen, from
the Utrecht University.

The second set was an external validation of the accuracy, and was done at the
Vanderbilt university. We take as a gold reference the transformation which min-
imises the mean square correspondence error of several stereotactic frame landmarks
manually pointed out by experts, as in [102]. We participated in the second phase
of the Vanderbilt project [114], to assess the overall accuracy of our method when
compared to an other state of the art extrinsic method. Because results had been
published, strictly speaking our registration could not be considered blind as the ones
in the initial paper. Despite this, since published results could not provide any addi-
tional help, in practise our results are as valid as those from the first group. The site
at Vanderbilt evaluated our registration with the same criteria as with the previous
groups.

The validation procedure for this second set was very demanding: it involved 5
pairs of image modalities for each one of 16 patients. Compared to our previous
experiments with one pairs for 5 patients, these images represented a more realistic
clinical data, which meant that some parts of the algorithm had to be rebuild in order
to gain in generalisation and robustness.

There are two main issues for the validation a registration method:

• accuracy, which bounds the error expected when we relate the coordinates of
one image into the other.

• robustness, which tells the repeatability of the experiment and the reliability
of the method under adverse conditions.

The following sections describe the results obtained. Section 2.5.1 addresses
the accuracy issue by the visual validation of the matching between the five pairs of
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Dataset Modality Dimensions Resolution
number x, y z x, y z

(mm)

1 CT 256 100 0.93 1.55
MR–T1 256 180 0.97 1

2 CT 320 128 0.71 1.5
MR–T1 256 100 0.9 1.5

3 CT 512 29 0.65 4
MR–PD 256 26 1.25 4

4 CT 512 29 0.65 4
MR–T1 256 26 1.25 4

5 CT 512 29 0.65 4
MR–T2 256 26 1.25 4

Table 2.4: Specifications of the 5 pairs of images used in the first set of experiments.

images. For this purpose we chose the 5 pairs of images from the database in order to
represent a variety of conditions. Pairs 1 and 2 represent the best possible conditions:
high resolution, good contrast and wide field of view (figs. 2.9 and 2.19). Pairs 3, 4
and 5 (figs. 2.21 and 2.20) are a challenge because they have a low number of thick
slices, their contrast is non-homogeneous and their MR acquisition settings do not
permit an easy segmentation of the bone.

The first experiment, described in section 2.5.2, had the aim of setting up the
method basis and tune its quantitative parameters. For this experiment we propose
a scheme which consists in measuring how well it is able to recover a trial known
transformation. With these values we justify the utility of our hierarchical method.

A second experiment, in section 2.5.3, was set to compare the performance of our
method to the mutual information’s, which is generally considered the most accurate
[114] and reliable. The method was the same as the previous section, but this time
we used constant values for the parameters, the ones which performed the best, with
regard to the performance of the mutual information algorithm.

Finally, section 2.5.4 reports the accuracy of our method compared to that of
the Vanderbilt’s golden standard. We give a short explanation about the conditions
of the comparison, and we rank it against the results published in the final project
paper [114].
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Figure 2.19: Fusion of registered volumes of data set 1. From left to right, first
row shows MR with CT bone superimposed. Second row shows CT crest (black)
registered with MR valley (white) The white circle marks the intersection of the
three orthogonal views. Despite the perfect alignment of the skull, note a small
miss-registration at the bottom slices.

2.5.1 Visual validation

The experiment reported in this section consists on the visual inspection of the cor-
rectness of the registrations. Figures 2.19 and 2.21 show the mix of the CT and the
MR images using a point to point maximum operation. In this visualisation, we have
paid special attention to a soft tissue in the inner surface of the bone, the dura, the
dura, which appears in black and should be of constant width.

All figures show the MR image with the bone superimposed using the max oper-
ator. Although this pattern is visually attractive, sometimes hides possible misalign-
ments. To take them into account, one needs to examine the alignment of crests too.
For this reasons, figures include both visualisations.

We have visually inspected the registration for all five data sets and found them to
be similarly well aligned both for our method and for mutual information. Differences
are bigger for data sets 3, 4 and 5, and are due to two factors. The first is their low
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resolution, which magnifies the differences, specially for the z coordinate. The second,
also important, is that their settings make the two methods converge to two different
solutions which actually are the maxima for their respective alignment function.

Figure 2.20 shows several axial slices of the data set 3. The bone is properly
segmented for the medium axial cuts, but in higher planes the bone appears filled by
marrow, which is visible in the particular settings of these MR modalities but not in
the CT image. Therefore, for these two pairs the segmentation done by the creaseness
operator is slightly different for each image.

Therefore it is clear that the registration method did not fail, but, rather, the
landmark features can not be made to exactly overlap for the two modalities. In
section 2.5.4 we will compare our alignment against a golden standard, and will see
that the results are accurate for all modalities but one, MR–T1, where the top slices
are, in some cases, dissimilar.

However, we think that the registration is still valid because the correlation, which
measures the quality of a transformation, takes into account only common structures,
which coincide in the rest of the segmentation.

In addition to the images in this section, we have included the appendix B, page
203, with a full report of the visual alignment.

Figure 2.20: Registered creases at two slices of data set 3. The left column shows
two axial views of corresponding creases from CT (black) and MR (white). The
image below shows mis-registration because, although the crease follows properly the
valley, in the MR modality the upper slices do not depict the bone as a valley but as
marrow surrounded by a thin layer of bone. This can be clearly seen comparing the
segmentation of the bone in the middle column (in white) for the MR image, and the
right column (in black) for the CT image.
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Figure 2.21: Fusion of registered volumes of data set 3 showing MR with CT bone
superimposed. Note the thin gap with constant width between the border of the
bone in the CT and the brain tissue in the MR. The white lines in the central image
shows the placement of the adjacent section.



2.5. Results of the assessment 57

T T

=

=

S D

S

S’ D’

S’ D’’

S is registered to D

D’

S is misaligned with

D’ is registered to S’

Should be similar

T

known parameters T T

R

Figure 2.22: Experiment to check for the robustness of the registration method:
after the images have been registered, one is miss-aligned by a known random trans-
formation. The algorithm is run again, and the result transformation must be similar
to the trial.
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2.5.2 Experimental choice of algorithm parameters

We have carried out a set of experiments to assess the properties of the method. The
aim is too see whether the algorithm:

• depends on some parameter in some ill-posed fashion.

• is able to recover large misregistrations, or perhaps it is sensitive to a particular
range of transformation values. (robustness)

• the final alignment is invariant to the relative initial position of the images.
(repeatability)

An ideal experiment would consist on comparing the transformation achieved by
our method to some other registration values with higher accuracy. But this informa-
tion was difficult for us to obtain because we did not have contact with a hospital with
such facilities. Therefore, we had to make up an experiment to simulate a database
with dozens of registered images.

The structure of the experiment, shown in figure 2.22, is as follows:

run the described method to register the source images S (CT ) and D (MR ). Call the
registered image S and DR, and T0 the transformation.

the static image (S) image is transformed with random known parameters TT ; let ST

be the transformed image.

the registration algorithm is applied to ST and DR, giving the transformation parameters
TR.

measure the similarity of the given and recovered transformation (mean distance,
MD):

MD = 0

for each pixel Si in S:

if Si is not void
it = i ∗ TT

ir = i ∗ TR

MD = MD + |it − ir|

Figure 2.23: Experiment to assess the robustness

An error-free method would return TR equal to TT , while a large difference would
correspond to mis-registration. An important issue is the method to assess the quality
of a recovered transformation; a simple subtraction of the six parameters is difficult
to quantify, because of their different unit measures.

We have summarised all the information into a single number, in distance units,
which is meant to be the expected distance between corresponding features. We
measure the distance between coordinates of each pixel transformed by TR and TT ,
and take their mean. To discard pixels belonging to uninteresting regions, we select
only those pixels belonging to the skull by means of a value threshold.
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This is reasonable because we do not have a medical partner to select specific
regions of interest, and if we had selected the full contents of the image the empty
pixels at the corners would have distorted the measure. We have called this measure
MD.

We have build a set of 50 trial transformations with random parameters distributed
uniformly with increasing magnitude. For rotations, the range is ±[4 − 25] deg, and
±[4− 25] mm for translations, which is about 10% of the total length. See table 2.7,
left columns, for a sample of the list of transformations tried. The experiment has
been applied to pairs 1 and 3 from table 2.4, belonging to different modalities, to
ensure the generality.

The first goal was to optimise the parameters in our registration method. There
are several main issues to be investigated experimentally:

• the need of a hierarchical approach.

• the number of seeds needed at each level.

• whether more iterations in the convergence step influence the final accuracy.

An additional run was made changing the alignment function. Instead of corre-
lation the creaseness image, we measure the mean distance between the extracted
surfaces. As explained in page 46, this can be made very efficiently by means of
chamfer matching, which actually leads to the same optimisation scheme applied to
transformed images.

We have tested 4 different combinations of parameters, and checked for their
statistics. We did not test all the combination of parameters because the results
achieved were already significant. Table 2.5 shows the statistics of the experiments.
Labels in the table have the following meaning:

Ftol the tolerance threshold of the optimisation method at the highest resolution
level. It determines the number of iterations to align the images. A low value
would force the algorithm to give up before the proper alignment has been
achieved, but on the other hand a too high value would refine the alignment
with no visible improvement.

Seeds per level how many results are kept from one level to the next. Number are
listed from highest to lowest resolution.

Median the median of the mean distances MD for those transformations which have
successfully converged.

time to compute the results, not including the creaseness extraction.

Success number of registration successfully recovered, i.e., with a MD lower than
10mm, out of 50. The threshold of 10mm has been chosen arbitrarily.

And the four tested configurations are:

Method A passes only one seed through the hierarchy. That means that a false
maximum may misguide the search in the following levels, but has the advantage
to be very fast.
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Figure 2.24: Parameters optimised in the experiment: ① ftol and ② seeds per
level.

Method B should provide the best results for both robustness (multiple seeds are
passed) and accuracy (ftol higher than for method A.

Method C starts the optimisation without any initial search. Thus, convergence for
images not initially close is not bound to succeed.

Method D tries the chamfer function to measure the alignment, to see if provides
any improvement with respect to the simple cross-correlation.

Table 2.5 shows the results for 4 choices of parameters. Methods A and B show
very similar results. Both achieve to recover all the trial transformations, the only
difference being the time and the median. The better median of the second has
been obtained at the price of more steps (determined by ftol), and therefore the
time needed is about four times higher. Part of this time has been spent also in the
optimisation of the full set of seeds, in contrast with the single seed in method A.

The method C has failed for 8 cases out of 50, thus showing the need of the initial
search to ensure convergence. For those transformations which actually converged, the
resulting accuracy is, as expected, as good as with method B, because the parameter
ftol is the same.

Matching with chamfer distances (D) has a success rate comparable to methods A
and B. Although it has the same settings, it converges faster than B, thus indicating
that the function is smoother. But this property also seems to affect the sharpness
of the maximum: the median error is broader, and it is less repeatable than A or
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A B C D
Single seed Multiple seed No hierar. Chamfer

Tolerance (ftol) 10−3 10−5 10−5 10−3

Seeds per level {1,1,1,1,1} {1,3,4,4,8} – {1,3,4,4,8}
Dataset 1 3 1 3 1 3 1 3

Median (mm) 0.59 1.4 0.54 0.95 0.55 0.99 1.38 1.21
Time (min) 2.61 3.12 8.65 13.15 5.43 7.11 4.31 8.12

# Success (50) 50 50 50 50 42 42 49 50

Table 2.5: Performance of our method for 50 trial misregistrations and two datasets.

B. Therefore, the chamfer distance is not of any use for this modalities. A possible
application would be for modalities not showing corresponding features, e.g. MR
and PET. The bone extracted in MR ought to be matched against the single feature
visible in PET, the boundaries of the head. Since both do not match exactly, for this
case the chamfer distance would be a good measure of the closer possible distance.

We conclude from these statistics than the creaseness segmentation is accurate
enough to provide a good alignment, and that the hierarchical scheme is necessary to
ensure convergence. Also, a number of parameters have some influence on the final
accuracy and robustness, and thus they need to be tuned. But the final numbers
are fairly good in all cases, which means that its dependency to the parameters to
optimise is well defined.

2.5.3 Comparison with a mutual information algorithm

The goal now is to validate the performance of our method against another, which
we can take as reference. We have chosen the normalising mutual information (MI
) because it is representative of the voxel-based methods and its results are the best
according to today literature [114]. For this purpose, we were fortunate to have
access to software implementing this measure, written by Dr. C. Studholme under
the direction of Dr. D. Hawkes, from the Computational Imaging Science Group in
Radiological Sciences at UMDS, Guy’s & St Thomas’ Hospital, London.

The experiment to compare both methods is the same as that in the previous
section, i.e., we assess the ability to recover a known random misregistration. Since MI
employs the full contents of the image, we had to make sure that the transformations
applied did not discard out of limits the contents of the image.

For this purpose, we did not actually compute any transformed image, but instead
we applied the misregistration matrix within the algorithm, thus leaving available all
the initial information. Also, the initial transformation to align the images before the
experiment starts (T0 in algorithm 2.23) was computed using the same method that
had to be evaluated afterwards, this is, MI for the MI experiments.

We have set our method to the parameters labelled as ’single seed’ in table 2.5,
in order to achieve times comparable to those of MI . The experiment included 50
random trial miss-registrations applied to 5 pairs of images, as specified in table 2.4.
The transformations were generated randomly with increasing range of values, as
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Dataset Method Error N < 10 Mean
number Mean Max (50) Time

(mm) (min)
1 C 0.59 1.47 50 2.61

CT MR–T1 MI 2.25 4.72 50 6.78
2 C 0.35 0.83 49 3.48

CT MR–T1 MI 1.73 3.61 50 5.97
3 C 1.4 3.8 50 3.12

CT MR–PD MI 4.12 9.69 50 3.13
4 C 1.92 4.49 40 3.86

CT MR–T1 MI 5.34 10.62 50 3.49
5 C 1.53 3.86 41 3.46

CT MR–T2 MI 6.42 14.11 50 2.97

Table 2.6: For each data set we compare the global results of the creaseness method
(C, first row) and mutual information (MI, second row). The mean and max columns
refer to the mean and maximum errors of the 50 trial transformations done for each
pair. The next column gives the number of the transformations recovered within a
distance of 10 mm from the trial.

specified in the previous section.
Our algorithm takes 3–5 min to converge on a PC Pentium at 350 MHz with 256

Mb of memory running under Linux, plus approximately 5 min.×2 images to extract
the creases. Results for the MI algorithm were obtained on the same computer and
took from 3 to 6 min to complete.

We have distributed the results of this experiment into two tables. The first
gives statistical figures, while the second lists some of the tried transformations for
illustration purposes. Table 2.6, right hand-side, provides statistical results for all 5
pairs of images. Tables 2.7 and 2.8 give a sample with the narrower and wider tried
mis-registrations and the resulting error for both methods, for data set 1, 3 and 5.

Our method gives best results for data sets 1 and 2 because the segmentation
process is more accurate due to the quality and number of slices of the images. In
these sets, it converges more confidently and with a higher repeatability than the
mutual information method. Results from data sets 3, 4 and 5 are less clear: failures
are equally high for both methods, and the lower mean of the creaseness method is
less significant.

The explanation is that the overlapping area of the two original images is narrow,
and once the trial transformation TT has been applied, the resulting images may be
too distant to converge. Since the creaseness method has only the extracted crests to
compare, when the exhaustive search at the top of the pyramid (coarser resolution) is
computed, the overlapping section may not be enough to permit a successful recover.
These numbers could be improved if the initial search would be done at lower level,
with higher resolution, but then the price would be an increase of the computing time.
Such increase is not necessary for registration of normal clinical images, which have
a transformation range much more restricted.
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Creaseness measure seems to have a maximum in the optimising function narrower
than MI, as can be seen in table 2.7: for no transformation at all (N = 0), MI has
an error only slightly better than the mean for all the mis-registrations, while the
creaseness method is almost error-free.

We tried to relate the error for each transformation to the magnitude of the mis-
registration, i.e., more severe misregistrations would be expected to have higher error
than those smaller, but no relationship was found. This can be double-checked look-
ing at the numbers in tables 2.7 and 2.8: the MD is not higher for bottom, more
severe, misregistrations.

It is interesting to note that the proper convergence of the algorithm is independent
of the specific tried transformation, but it depends a lot on the quality of the original
images. Some transformations were successful for datasets 1−−3, but failed for the
other pairs.

Another remark is that the recovered parameter ∆θx has an error statistic gen-
erally two or three times worse than the others. This fact, which we have not in-
vestigated in deep, may be attributed to the particular shape of the head or to the
different sampling. The translation in z has similar problems, but these are caused
by the different sampling of the z axis with respect to the x and y. See that this
problem does not apply to dataset 1, which has a more similar sampling.



64 CT TO MR VOLUME REGISTRATION

Creaseness Mutual information

Figure 2.25: Registration of data set 4 exhibits the clearest differences between the
two methods. These three views (sagittal, coronal and axial) show that it is not easy
to decide visually which is better. Our registration is clearly too low along the z axis,
because of the same problems as in data set 3. In contrast, the mutual information
transformation seems to position the bone too high, even overlapping the skin on the
top of the head.
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2.5.4 The Vanderbilt database

It has been proved [15] that the accuracy of retrospective registration can be consis-
tently assessed visually by a human observer. But since our site is outside a medical
centre, we were unable to measure the rate of mis-registration by our own means.
Even if we had access to original images from a medical site, developing a full as-
sessment would require a long and intensive collaboration with a medical team (large
number of images, validated several times) which we could not afford. Dr.Fitzpatrick’s
project kindly provided us with this chance. We acknowledge Dr. J.M. Fitzpatrick,
head of the project “Evaluation of retrospective image registration” (project number
NIH R01 NS33926-01) from Vanderbilt University for providing us with their image
database.

The objective of the study undergone at Vanderbilt’s University [114, 113] was to
perform a comparison of the accuracy of some automatic retrospective registration
methods. The University provided the image database to the sites where the actual
registration had to be taken, and results were given back using an objective protocol.

The comparison was made against a golden standard, a prospective marker-based
method, and markers were removed from the images to ensure the blindness of the
experiment. Also, the communication protocol was based exclusively on the Internet
and designed to detect any inconsistency in the results transformations.

The database consisted in images from seven patients. For each, the CT image
was to be matched against three MR modalities: MR–T1, MR–T2 and MR–PD, and
also against a PET image. At a second phase, not included in the papers published,
nine extra patients were added (numbered 1–9 B), with a extra MR-RAGE modality.
Characteristics are summarised in table C.1, page 209. In total, 70 image pairs.

The accuracy of the methods is evaluated at multiple volumes of interest (VOI),
chosen between areas in the brain of neurological interest as follows: the coordinates
of centroid of the VOI in the MR image (c) are transformed to the CT using a known
(see below) Golden Standard transformation (c′), and then back to the MR using the
evaluated method (c′′). The difference between c and c′′, called the target registration
error TRE, is evaluated at 6 zones for each pair of images to be registered.

The Golden Standard transform against whom the other are compared employed
four fiducial markers attached to the bone. These markers, filled with a liquid visible
in the imaged modality, are rigidly attached to the bone and thus are considered
to provide a very good accuracy. For each image, the markers were segmented and
their coordinates recorded with sub-pixel accuracy by means of a location technique,
published in [107]. Then, the two lists of corresponding coordinates were aligned as
in [2], which gave the Golden Standard transformation parameters between the two
source images. To ensure the blindness of the study, the markers were removed from
the image by substituting their intensity values by neighbouring empty voxels.
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Figure 2.26: For some pairs of images, further optimisation of alignment including
scaling parameters improves results spectacularly with respect to the rigid solution.
Top: the rigid registration misses most of the frontal bone, which can be seen (bot-
tom) to match perfectly on the scaled solution.
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Patient CT-PD CT-PDr CT-T1 CT-T1r CT-T2 CT-T2r CT-RA RA-T2
1–A 3.5 1.5 3.6 3.2 1.7 3.3
2–A 2.4 1.3 3.6 3.9 1.8 2.8
3–A 1.7 2.4 4.5 5.6 1.6 1.4
4–A 3.0 2.1 9.3 6.3 1.2 1.8
5–A 2.0 1.8 1.3 1.7 3.0 1.6
6–A 2.8 2.6 4.5 1.2 0.5
7–A 2.2 1.5 2.1 2.6 1.0 1.4
1–B 2.7 3.0 4.1 5.8 7.9
2–B 2.5 4.4 2.1 1.1 4.8
3–B 3.0 3.9 10.2
4–B 2.4 2.8 1.7 7.9 7.2
5–B 4.5 2.0 1.6 3.6
6–B 3.1 3.1 1.7 4.3
7–B 1.8 2.6 2.4 5.1
8–B 8.0 1.4 2.5 2.9
9–B 2.4 1.9 3.7 3.5

Median 2.51 1.73 3.09 3.41 1.89 1.62 2.7 4.54

Table 2.9: Numerical results of the Vanderbilt tests: for each patient and pair of
images, we give the median of the error once run our method reported at the VOIs.
For each pair we have framed the highest value. Void cells denote non-available
modality pairs.

A secondary goal of the project was to evaluate the importance of correcting
geometrical distortions in the original images. Such distortions, which often occur , are
caused by defects in the calibration of the machine and have the bothersome effect to
widen the registration error. To account for this distortions, a COMPASS stereotactic
frame was attached also to the patient, and its coordinates in the image were then
employed to correct the voxel spacing provided by the scanner. The resulting image
is called with the prefix rect.

The original study comprised 14 different registration techniques from 11 re-
searches in several countries. It includes manual, voxel-based and segmentation-based
techniques. For some of them, the mean error was consistently around 1 mm, and
therefore the authors concluded that automatic registration had the potential to pro-
duce satisfactory results.

After the papers had been published, the Vanderbilt University offered to validate
the additional submissions in a similar procedure. For our team it was very important
to test the algorithm under the variety of settings provided because, as a matter of
fact, leaded to several improvements, as reported in previous sections.

For instance, we discovered that for a particular MR modality, MR T1, the as-
sumption that the skull appears as a valleys does not hold for the upper slices. To
solve this, we selected a lower scale for the computation of derivatives, to segment the
two layers of bone, and then the method converged to one of them. See figure 2.27
for the visual explanation.
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Modality Surface group Creaseness registration Volume group N
Pair Mean (std.) % > 10 Mean (std.) % > 10 Mean (std.) % > 10

CT–T1 5.7 (7.8) 11.7 3.8 (3.8) 9.2 2.9 (2.4) 1.2 7
CT–PD 5.8 (8.0) 11.3 2.4 (0.8) 0 2.9 (2.5) 1.6 7
CT–T2 6.3 (7.9) 12.3 2 (1.0) 0 2.4 (1.4) 0 7

CT–T1 rect. 6.1 (8.3) 13.1 4 (2.2) 0 2.0 (2.5) 1.9 6
CT–PD rect. 5.7 (7.8) 12.0 1.8 (0.7) 0 1.8 (2.0) 0.0 7
CT–T2 rect. 6.1 (7.6) 12.1 1.9 (1.2) 0 2.1 (1.6) 0.0 7

Table 2.10: Global results compared in groups, as in [113]. The error threshold of
10 mm is set in order to have some estimation of misregistered results.

Another item we explored was to include the scaling factor along each axis as a
further parameter to optimise. To avoid too large degrees of freedom, as a first step
we registered the two images without them, and then we ran again the algorithm with
the scaling using the previous solution as a single seed. Results were better for all
cases; for some of them, the correlation value raised up to 20% higher of the value
obtained without scaling.

Table 2.26 gives a visual example of the improvement obtained with the scaling
optimisation. However, we could not validate these results because the Vanderbilt
protocol to transmit results to between our and their site considers exclusively rigid
transformations.

Also, we run the whole set of experiments using the chamfer distance as the
measure of matching between the two crease surfaces. Although it worked well for
most cases, in others the algorithm failed absolutely to converge to a proper solution.
Therefore, we did not further investigate the accuracy.

The global results of our algorithm are presented in table 2.9; they have been pub-
lished at Vanderbilt site at [14]. Appendix C lists full transformations and statistics.
In addition to the median for each modality, it is important to take into account the
maximum value as well, because it gives and indication of the worst mis-registration
to be expected. Modalities CT–PD and CT–T2 present best median values, and also
lowest maximum values. The T1 modality suffers from the segmentation problem, as
reported previously and, although it never fails, for some patients the alignment is
not precise.

The results of pairs CT to MR–Rage are good for most patients, although for
others, such as 1–B, 3–B and 4–B, the median is so high it probably would not be
suitable for clinical routine. The same should hold for most registration of Rage to
T2.

We have ranked our results against those of other research groups participating in
the Vanderbilt project. The first comparison is made in table 2.10: we have grouped
the methods which participated in the initial evaluation phase according to their
paradigm: voxel-based and segmentation-based, same as in [113].

In order to make comparisons fair, our results have been restricted to the same
modalities and group of patients as the two groups. This grouping permits to make
general evaluations: for instance, segmentation-based have a worst profile than voxel-
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based, in mean error as well as in maximum value. The accuracy of the results of our
method is similar to that of voxel-based.

The last comparison is made individually for all the methods included in the
original publication. Each method has been abbreviated as in the papers: Barillot et
al (BA, [40]), Collignon et al (CO, [5]), van den Elsen et al (EL, [103]), Harkness (HA,
[71]), Hemler et al (HE,[29]) Hill et al (HI, [31, 30, 93]), Maintz et al (MAI [57, 58],
[56]), Malandalain et al (MAL, [60, 61, 62]), Noz et al (NO, [55]), Pelizzari (PE, [71])
and Robb et all (RO, four methods [27]).

Because of the low number of patients, a ranking of the methods is not statistically
significant but still it is interesting to make some remarks. The method most similar
to ours is that of MAI: it is segmentation-based, but uses the boundaries as surfaces
to match. Their results consistently have a mean error of around 4 to 5 mm, and are
independent of the modality. Conversely, our results are not, but the error is lower
for all but MR–T1. Of course, differences may be caused by multiple factors, like the
optimisation method and the accuracy of edginess operators, but it seems that for
registration purposes the centre of skull may be more suitable than the edges of the
head.

An open issue is the reason why segmentation-based methods do not improve
accuracy for rectified modalities, something that voxel-based methods do. West,
in [113], left the question unanswered but in further personal discussions by e-mail
he suggested the improvement may be hidden by the high error of segmentation-
based methods, while it would show for the other, more accurate, methods. However,
this explanation does not seem to apply to ours: indeed, it ranks as one of the
most accurate for MR–T2, but the error is not lower for the corresponding rectified
modality.

In our opinion, the reason is that the optimisation space has broad maximum for
the z translation, caused by the particular shape of the head. One pixel translation
in the x or y axis misaligns the whole structure, while the same amount of translation
in the z axis remains hidden because the shape changes relatively less along the axial
direction. In addition, the MR rectified modality changes about 0.01 mm in the x
and y voxel scaling, but 0.09 mm in the z axis, precisely where our method is less
sensitive. That would explain why voxel-based methods, which do not depend on the
shape of segmented features, improve.
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2.6 Conclusions

In this chapter we have presented in detail an algorithm for brain image registration.
We have evaluated its performance under a variety of conditions, and validated it
with a large image database. For one modality, CT to MR–T2, our method achieves
the best results compared to the state of the art (even mutual information), which
indicates that the alignment optimisation step of the algorithm is properly designed
for this problem. Also, it compares favourably to another segmentation-based method
employing the boundaries as anatomical landmarks, which indicates that the crease-
ness operator to extract the skull is precise and robust.

A major problem occurs with some images in MR–T1 modality. For these, the
assumption that the skull depicts as a valley is no longer valid, specially at distal
axial slices, because the marrow shows bright between two layers of bone. For these
cases, the algorithm aligns the segmented surface in the CT image to one of these
layers while keeping the proximal slices registered. Therefore, the final accuracy is
not as good as for the other modalities.

Since our method takes into account only the rigid transformations of the skull
and ignores the soft tissues, we think it can very well suit the applications which need
to compute only the registration of the skull. For instance, in studies which need to
compare images taken over a long time, our method can be useful because the skull is
the only undeformable structure of the head, while others are often changed by chronic
diseases. A further step could be to apply intensity-based registration algorithms to
specific parts of the resulting registered images. This second registration would give
a measure of their relative movement and of their volume changes.

We have not explored yet a further improvement consisting on extracting the
creaseness features at different scales, and combine the resulting creaseness images
simply by computing the correlating simultaneously at all the scales. Then, the
alignment measure would take into account common features other than the skull.
However, this scheme would possibly have an alignment function not so well posed,
and therefore an initial alignment by means of the original algorithm would be nec-
essary before further refinement.




