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3.3 Our method

Our method resembles the human approach to image matching in the sense that we
also employ as guidelines features common to both images. It seems natural not
to restrict the comparison to the bifurcation points, but to use instead the more
significant structures visible in the image, that is, the vessel tree. Opposite to the
bifurcation points approach [9, 118], ours does not have such a strong dependence of
the quality of the segmentation. In this sense, our method can be considered similar
to that of Pinz et al [75].

The main goal for this chapter was to redesign the algorithm already used for CT
to MR registration to suit any modality of ophthalmologic image. In principle, the
registration in 2-D is far easier to perform:

• images are one order of magnitude faster to process and store.

• the search space is much smaller: only 1 rotation and two translation parame-
ters.

• volumes or surfaces require complex visualisation algorithms, which are not
necessary in 2–D.

However, as we commented in the introduction of this chapter, we had to process
not only one-to-one image registrations, but also many-to-one for the SLO case. Ac-
tually, the sequences of SLO images were stored in CD-ROMs as they contained from
one thousand to three thousand images. New constraints must be dealt with:

• the time spent for each frame becomes important, since it is multiplied thou-
sands of times for the total sequence.

• the resulting transformation from one frame is likely to be a good initial guess
for the next one.

• but at a certain times, image contents vary a lot with regard to the preceding
frame.

• the algorithm will inevitably fail for a number of frames due to two reasons: the
processed image is far too dissimilar from the reference, or because of failures
in the acquisition process. Specifically, movements of the head and eye place
the camera out of field.

• since the acquisition comprises a wide period of time, chances are that the
translation parameters to compute are broader than with the other modalities.
In fact, our results will show they may raise up to one third of the image.

Although most of the chapter is devoted to sequence SLO registration, we have
applied successfully the method to a large database of images as listed in table 3.2.
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Modality Images per Number of
study studies

Stereo angiographies 2 49
Temporal 2 48

Green to retinography 2 10
Temporal sequence 1000 to 3000 3

Table 3.2: Outline of retinographies in the database.

Perfect segmentation of the whole vessel tree is not an easy task because images
often provide poor contrast and vessels vary in diameter and intensity level; some
papers are dedicated to this sole purpose [66, 99]. However, we were fortunate to
have already addressed a similar problem for CT and MR brain registration. For this
purpose, we developed a precise and reliable detector of the creaseness (ridgeness or
valleyness) of an image. We already described this operator in section 2.2.

Compared to the CT and MR volumes processed in the last section, SLO images
have some new properties which must be considered. One which will be relevant at
the results sections, when comparing the evolution of the grey level for a registered
sequence, is the low signal-to-noise ratio. The noise in the grey level of retinographies
is caused by the optical nature of the acquiring devices: the light they measure must
travel from and to the retina, which actually is a set of translucent tissues difficult to
model. Additional noise is originated at the grabbing of the images from the original
analogic source.

We have examined the images to study the nature of the noise: in figure 3.4 (top),
we took a window containing only background information, and made a histogram
of the values contained. The histogram, as shown in the below figure, is well ap-
proximated by a Gaussian of mean η = 68.5 and standard deviation σ = 9.12. This
Gaussian bell, taken for each pixel for its intensity values, must not be confused with
the smoothing convolution of the image when computing the derivatives. Results
were similar for other frames and sequences.

A similar, though much detailed, conclusion can be driven from [50]. In this
paper, Lois evaluates the repeatability of the background fundus measurements in
SLO images, with a group of 10 patients plus 10 normal volunteers. After manual
selection of background values by an expert ophthalmologist, she observes differences
in the ranges (1.4, 13.5) for volunteers and (1.5, 9.3) for patients. Therefore we must
conclude that before using any raw value taken from the original image, it is convenient
to convolve the image with a Gaussian Kernel in order to get rid of some noise
amplitude. This is the same smoothing needed when computing the derivatives.

After vessels have been extracted, we needed to choose a scheme to transform
iteratively the images until they become aligned. In literature many methods to
measure the alignment exist; we could, for instance, segment each branch and follow
some heuristic to choose its corresponding. Its drawback is the same as bifurcation
methods have: the extra segmentation step is prone to propagate its errors to the
optimisation step. Therefore, we choose the well-known cross-correlation between
the two images. This measure is fast and also, as we require, it matches common
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Figure 3.4: SLO images are very noise. The histogram of a sample of the back-
ground can be well modelled with a Gaussian bell of standard deviation σ = 9.12.

extracted features despite of missing or spurious data.
We have implemented the iterative Simplex algorithm to optimise the alignment

process, and added an initial wide search to improve its robustness. The optimisation
process is fully described in section 3.3.

Figure 3.5 summarises graphically the steps forming our algorithm. Each step has
been numbered in a circle as ①, and consist, in short, in:

① Extract the creaseness images.

② Build a hierarchical pyramid for each image.

③ Find the best candidates with exhaustive search.

④ Refine each seed through the image hierarchy.

⑤ Re-run ④ with the best result to include scaling

These steps have been further developed in pseudo-code in figures 3.6 and 3.7.
Through the following sections, numbers labelled as ① refer to this scheme.
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Figure 3.5: Graphic scheme of the alignment procedure.
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R , D reference and dynamic images

N number of pyramid levels (1 bottom, N top)

Sl
set of #Sl best translation and rotation seeds at level l,
1 ≤ l ≤ N

SimplexRefine(A, B,
Seed, tolerance)

Run the iterative Simplex algorithm with the Seed on the im-
ages A and B until the given tolerance threshold is achieved

Notation

① Extract the creaseness images with Gaussian window α, and prune results
for crests shorter than lmin pixels.

R= Prune(Crest(R, α), lmin);

D= Prune(Crest(D, α), lmin);

② Build a hierarchical pyramid for each image.

function BuildLevel (image A) {
NewLevel = NewImage(Width(A)/2, Height(A)/2);
for i=1 to Width(NewLevel)
for j=1 to Height(NewLevel)
NewLevel[i,j] = Max(A2i,2j , A2i+1,2j ,A2i,2j+1, A2i+1,2j+1);

return Newlevel;

}
function BuildPyramid(image A) {
Pyramid[1] = CopyImage(A);
for i = 2 to N {
Pyramid[i] = BuildLevel(Pyramid[i-1]);
}

return Pyramid[];

}
R4= BuildPyramid(R);

D4= BuildPyramid(D);

③ Find the list of best seeds SN at the top level for a range [−r, r] of candidate
rotation angles.

SN = ∅;
for α = −r to r step s {
Dα =Rotate(D4[N], α);
C = FFT−1(FFT(R4[N ]) · FFT(Dα));
SN = SN∪ TopValues(C);

}

Figure 3.6: Pseudo-code of the registration algorithm (1)
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④ Refine each seed through the image hierarchy.

for l = N − 1 to 1 {
Sl = {};
for i = 1 to #Sl+1 {
Sl = Sl∪ SimplexRefine(R4[l], D4[l], Sl+1[i],tolerance);
}
}

⑤ Re-run ④ with the best result within S1, this time including scaling param-
eters.

⑥ Divide registered images in grids, and apply the registration algorithm sepa-
rately to each resulting pair.

Figure 3.7: Pseudo-code of the registration algorithm (2)
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3.3.1 Creaseness measures

Vessels are reliable landmarks in retinal images because they are almost rigid struc-
tures and they are depicted in all modalities. As we have reported in the introduction,
all cited papers except one use them for this purpose.

Little work was necessary to adapt the operator lready defined in 2.2 to 2–D
ophthalmologic images. The first item was to consider whether to extract creases or
valleys; vessels show as one or the other depending on the modality. Moreover, in
time sequences it can be seen their change from low to high values, this is to say, from
valley-like to crease-like shapes, as contrast flows in. After a peak value, the inverse
process takes places and they return to the original low values. Figure 3.8 illustrates
this process. Taking this into account, we resolved to use the creaseness value in
absolute value as input for the registration step, i.e., we discard the information
regarding their creaseness or valleyness.

The creaseness operator must be tuned with a short number of parameters. We
took the choices specified in table 3.3.

Size of the smoothing Gaussian 3.5 pixels
Size of the integration window 5 pixels
Enhancing factor 0.1
Threshold 0.25
Minimal crease length 100 pixels

Table 3.3: Parameters to extract the creases.

This choice performed well for all the modalities, thus we decided not to include
them in our battery of tests for validation. A reasonable modification would be to
make the enhancing and the threshold factor depend on the quality of the image:
less contrasted images could work better with other values. But the additional com-
putation would benefit solely a small number of frames belonging to the begining of
the sequence and therefore we decided to pospone the actual implementation of this
improvement to a further develoment step.

The creaseness images as defined here were suitable for registration of images
from all modalities. However, for the SLO , sequences, sometimes the search was
missguided by the high number of features extracted. A further step was necessary,
and it consisted on the prunning of the creases extracted, in order to keep only those
most relevant, longer than a given threshold (recall figure 3.9 for a sample). Again,
this can be discussed to be an arbitrary choice, for any value ought to be validated in
the battery tests. However, and similarly to the choices at the previous paragraph,
since the method ran well we did not include its validation in our experiments. Figure
3.3 ilustrates this process for an example image.
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Figure 3.8: Vessels change their brightness along the sequence. The artery, marked
with a circle, is not visible in the top frame, has maximum brightness in the middle
one and again barely visible in the bottom one.
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Figure 3.9: a): reference SLO image for patient A, b) Raw creaseness image, c)
Creases after prunning shorter than 100 pixels, d) Composition of a) with c) in blue.




