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3.4 Robustness assessment

After the extraction of the crease, the next step is to iteratively transform one of the
images until it becomes properly aligned with the other. The core of the algorithm is
the 2–D version of that used for volumes in page 85.

The initial approach was to run the algorithm with the same values as obtained
for the volume images. Results were good for all pairs of images for reasonable values
of the parameters, but when we started working with SLO sequences we realized it
was important to state the influence of each variable, regarding:

• robustness how many of the results were aligned enough to be good.

• accuracy how accurate was the registration for accepted results.

• time spend for each registration.

Of course we expected the usual tradeoff between the time and the two other
variables, but due to the high volume of frames in the sequences it was important to
determine exactly its relationship. We were interested in the following items (default
values in brackets, steps as defined in figure 3.5):

• Levels ② Number of levels build for the hierarchical piramid. For Levels= 1,
the base image is used.

• Rotations(6) ③ Rotations performed at the base level, where all translations
are sampled using the Fourier transform. Each rotation has a step of 1.5 deg.

• Ftol (10E − 3) ④ controls the accuracy of the convergence. The convergence
factor is defined as:

rtol =
Ch − Cl

(C̄h + C̄l)/2
(3.1)

where Ch and Cl are the highest and lowest values of the seeds stored in the
Simplex algorithm, as implemented in [80]. The algorithm exits when:

rtol < ftol (3.2)

• Seeds ④ are the number of seeds keept from one level the next. In theory, a
higher number of seeds makes less likely to miss a candidate from the previous
level which would have been underestimated. In practice, most seeds would
converge to approximately the same transformation. At this point, we imple-
mented an intermediate filter to discard too similar seeds, those which are likely
to lead to the same solution.

• Transf (SC) ③, ④ We have tried three different transformations:

– SC rigid+centered scaling.

– NSC rigid+non centered scaling.

– Rigid only rotation+traslation.
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Method # levels # seeds Comment
(bottom to top)

1S 1 {1} No hierarchical
2M 2 {1, 3} 2 Levels, multiple seeds
2S 2 {1, 1} 2 Levels, single seed
3M 3 {1, 3, 6} 3 Levels, multiple seeds
3S 3 {1, 1, 1} 3 Levels, single seed
4M 4 {1, 3, 6, 12} 4 Levels, multiple seeds
4S 4 {1, 1, 1, 1} 4 Levels, single seed

1S-H 1 1 1S + lower tolerance ftol = 10E − 6
1S-NROT 1 1 1S + no trial rotations
3M-NC 3 {1, 3, 6} 3M + scaling not centered (NSC)
3M-RI 3 {1, 3, 6} 3M + rigid transf.

Table 3.4: Benchmark of configurations for the registration algorithm. See text for
the explanation of each term.

See appendix A for the formal mathematical description of this transformations.

We have not made all possible combinations of the previous items, with the aim of
bounding the time to complete. Table 3.4 presents the complete list of combinations
we have tested for three sequences of SLO images.

A further run we made was not included in the final figures, for its rate of success
was too low to be of any significance other than that it fails. The run was made
without the initial search in Fourier for translations, and without the hierarchical
structure. The images were set to converge with the Simplex algorithm without
initial transformations. Visual inspections showed that the search got trapped most
of the times into a neighboor maximum.

We run the tests for three sequences of SLO images, all belonging to different
patients. Table 3.5 presents the specifications of the images.

Dataset A B C
Number of frames 3190 1510 1820

Frame size 720× 400
Frames per second 25

Start 700 600 550
End 3190 1250 1820
Step 2 2 2

Empty 49 4 6
Total valid 1196 321 631

Reference frame 2998 1000 1430

Table 3.5: List of control sequences, each belonging to a different patient.

After running the tests for three sequences, we obtained a long set of transforma-
tions. Figure 3.10 depicts results for method 1S . Figures would show similar shapes
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for other methods. At the sight of the function profiles, a few remarks can be made.
It is interesting to the ability of the algorithm to recover even high value in the

traslations parameters: sometimes the combination of both reduces the usable com-
mon region up to 1/4 of the total. The profile of the function is fairly constant through
the acquisition, with only a couple of high rate changes caused by the blink of the
eyes. Despite this, small oscillations occur between consecutives frames, indicating
some sort of error in the registration process. Whether it is caused by our algorithm
or intrinsic on the images will be investigated in the next sections.
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Figure 3.10: Each row corresponds to the results for one patient: traslation values
on the left and rotation values on the right. We represent the success of each individ-
ual frame registration with straight lines on the left graphic. Lines are discontinuous
where the method fails (validation described in next section). Transformation values
given here are those of method 1S. We also give the success line for methods G4M
and G3M, described later in page 107. The translation between consecutive frames is
usually low, but sudden jumps can be very high, up to half the size of the image. The
rotational value is low. In both cases, the values present some sort of fluctuation.
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3.4.1 Methods to validate the testbench

The first step in the evaluation of results was to assess whether each registration was
actually successful or not. That is, to visually compare the reference and the dynamic
frames, once the later has been registered. However, the large number of frames made
this process extrememly tedious. A more intelligent approach was necessary. First,
we computed the histograms of some associated measures of alignement, to see if the
two clusters – valid and non valid– could be easily distinguished.

Many measures of alignment exist. Simple linear correlation, the one used at
the optimization process, was not suitable because it does not take into account
variations on the contents of the image. This is to say, brighter images would have
higher correlation, even if unmatched, compared to others with less visible structures.

A related suitable standard measure is the normalized correlation, defined as fol-
lowing. Given two images F and G with mean F̄ , Ḡ and standard deviation F̂ , Ĝ,

NC(F, G) =
∑

~x∈F (F (~x)− F̄ ) · (G(~x)− Ḡ)√
F̂ Ĝ

(3.3)

In addition to NC, we have defined a function to resemble the semantics of ’number
of pixels that actually agree’. However, a measure counting overlapping pixels would
not work properly for creases that, although very near, do not match for a few pixels.
This case is common, and caused by the different shape they have due to optical
distortions. To compensate this effect, we computed a dilation of the creaseness
image. Given two registered creasness images F and G, and the threshold value thrk
from table 3.3, we define the Normalized matching measure as:

After defining the standard threshold operator

Thr(Im, v) = {Imi,j > v? 1 : 0}
We threshold the creaseness images

Fb = Thr(F, thrk)
Gb = Thr(G, thrk)

And dilate the dynamic image

Gd = Dilate(Gn, 3)

Now, count the number of non-void pixels

VF = Volume(Fb)
VFG = Volume(Fb ·Gd)

And finally its quotient

NM(F,G) =
VFG

VF
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The response of both classification methods is similar, as figure 3.11 shows. Only
for this figure, we manually validated each single registration in the sequence, and
then computed the histogram of the NC and NM functions for the valid and non-valid
frames. For both measures, the two clusters (valid and non-valid) can be separated
by means of two threshold values, one for the top in the rejected cluster, and the
other for the bottom in the accepted cluster. But since this separation is clearer for
NC, we decided to employ solely the NC function at the automatic validation step.
Another favorable factor was that NC is much faster to compute than NM.

We checked that this classification method worked for all the sequences, and results
were positive and consistent. Taking them into account, we devised a simple semi-
automatic classification scheme to validate the correctness of each registration. The
algorithm we used was:

Given the normalized correlation NC and two given thresholds NCB and NCA

(for rejected below and accept above),

if NC < NCR Reject
if NC > NCA Accept

otherwise validate manually

Once we have validated a sequences for a given method, the existing classification
can be for other methods applied to the same sequence. For a given registration
with NC values between NCR and NCA, which had to be validated manually, it is
reasonable to use for comparison the NCG value of the already classified corresponding
pair. Then, for NC > NCG and NCG being accepted, the registration in process may
be also accepted.

Therefore, in additon to those previous rules, if NCR < NC < NCA, we have
applied:

if NC > NCG And Model Accepted Accept
if NC < NCG And Model Rejected Reject

if Transformations are similar Copy results

We have taken, for each patient, the method 1S as the reference to validate the
other methods. This choice makes sense since its search is the most succesful due
to the fact it does not employ the sampled levels in the piramid: it uses all the
information at the base level to locate the best seeds for translations, while others
rely on the hierarchical sample, more prone to be missguided.

Following we present the table 3.6 with the statistical results for the three patients
and, in the next section, we make an analysis of the results with the aim of stating
which method is considered to be the best.
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0
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Figure 3.11: To validate automatically the registration of a frame, we have com-
puted two measures: normalized correlation (NC) and number of matchings (NM).
The two clusters of valid and not-valid segmentation are easily distinguible.
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3.4.2 Conclusion from the testbench

At a first sight of table 3.6 one can see that robustness depends on the quality of the
sequences. For patient A and B, it is above 90%, dropping to 60− 90% for patient C.
However, we feel that it would not be fair for the method to expect independency on
the source data. Indeed, visual examination of the sequence C showed the reference
frame not to be contained in the frames where registration failed. This is particularly
true for method 1S , which, as explained in a previous section, would give the top
expected rate for each patient. Therefore, the comparison will always be relative to
these upper boundary.

It is remarkable that numbers (robustness and time, mainly) follow the same
pattern along the methods for all the patients, thus indicating their consistency. The
following conclusions have been deduced:

• Because of manual validation for each frame is a user-dependent task, small
variations are not statistically significant. For instance, 1S and 1S-H should
equal in robustness, since the last is simply a version of the first with higher
requirements in accuracy. Expected fluctuation is about 2%.

• The correlation mean for some methods is higher than that of the reference
method, 1S . This is because the mean is computed only for the frames accepted
as valid. The method 1S may register frames with less information, i.e. low
correlation values, which the other methods would fail to register. Therefore,
low correlation frames would lower the mean value for the reference method,
while being unused for the others.

• Results do not differ between one and multiple seeds for a given level. This
implies that the maximum found at the exhaustive search leads to the final
solution, with no false responses, and that the creaseness segmentation together
with the correlation is a sound basis for registration for ophthalmologic images.

• If no rotation is tried at the Fourier level, results are equivalent. This is due
to the low rotation found for all the sequences. Of course, in images with
stronger rotations, results would be worse, but this has not been observed in
the sequences analysed until now.

• A more demanding tolerance threshold ftol achieves equivalent robustness,
higher correlation means and higher computation times. Whether better corre-
lation is relevant to the final accuracy is not clear, for the characteristics of the
images (non-rigid distortions) probably make it useless.

• The transformation model is relevant: if it does not include scaling, correlation
mean drops. Robustness, on the contrary, does not, because scaling factors are
actually computed as an extra run of the algorithm, which should already have
converged to a valid result.

• The sequence to compose the transformation matrix is also relevant. It is bet-
ter to compute scaling as centered rather than not centered (recall definitions
at page 201). Although algebraically any transformation expressed with one
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method can be expressed with the other, the structure of the algorithm favours
centered scaling. The cause is the same as the previous paragraph: since a rigid
transformation is computed first, the optimization would converge more easily
with the transformation more similar to the rigid one, which is the centered
scaling. Note that at this second optimization step, not only the scaling but all
the parameters are computed, and often they change significantly.

• The hierarchic strategy is efficient at reducing the computation time, while
keeping results acceptable. For large images (more than 512 rows or columns)
the proposed method has a bottleneck at the initial step: each sampled rotation
demands the computation of three costly Fourier transforms. As the number of
levels increases the size of the images halves and, since the complexity of the
transformation to the Fourier domain is O(n2 log n), the time required drops.
However, the method is less robust because a) false maxima appear, b) true
maxima are hidden.

The comparison demonstrates the method 4S to be the best choice to achieve
acceptable success in the shortest time. For sequences with highest rotations or worse
contrast, it may be preferable to shorten the number of levels (3S), and increase the
number of seeds at each level (3M).




