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3.4.4 Additional results for single 2–D pairs of retinographies

In addition to these tests with SLO sequences, we have done an additional experiment
with pairs of images belonging to other modalities. The experiment is similar to that
with CT and MR volumes described in page 58: first, we register a given pair of
images. Then, we misalign one images by known parameters TT , and the registration
algorithm is applied again. To measure the distance from the given to the recovered
parameters TT , we have taken the mean distance after applying the two correspond-
ing transformations to all the non-void pixels of the creaseness image, this is, those
detecting vessels. We applied 100 different transformations to three pairs of images,
taken randomly within the range of translations of ±25% the size of the image in
pixels, rotations of ±25 deg and scaling ±10%.

We have tested three different configurations (we recall their definition for clear-
ness)

• no search The iterative optimization is set to run without any previous search,
this is, with nil translation and rotation seed values.

• 1S A single seed is chosen after the exhaustive seach, which is done with the
original not sampled images.

• 3M Severals seeds are taken from the search at level three of the hierarchic
pyramid.

This choice is significative because we try to demonstrate that some sort of search
has to be done (thus first method should not work), and that the time to compute it
can be reduced without loss of robustness (thus third method should take less time
for similar results).

Table 3.7 shows the results, which corroborate the conclusions taken from the
previous experiment. In initial tests, the same trials where done with transformation
which did not include scaling. For them, hierarchical methods were almost 100%
successful. For all tests, the recovered transformations had a mean error lower than
0.2 pixels, which is another evidence that our alignment measure is properly defined.
The mean error is defined in the same way as was with the experiment with CT and
MR volumes: mean distance for non-void pixels after applying trial and recovered
transformations.

The explained scheme worked successfully for all pairs of images detailed in table
3.2; even without the initial exhaustive seed step, all except one actually converged.
We have registered successfully more than 100 pairs of images of several modalities:
49 stereo and 48 temporal pairs ( 1 year apart, size 460× 416) of angiographies and
10 green images to angiographies.

The method ran for all images unmodified for all but two parameters, which are
related to the creaseness extraction: the scale of the crease and the smoothness of
the image, and it had a typical registration time of less than 10 seconds. The visual
inspection of the results, which was easy to perform because creases overlap when
properly registered (see figure 3.15), was found satisfactory for all the sets.

Working with long sequences of images has the advantage that all tests and trials
are immediately statistically relevant. For other modalities, the same relevance would
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Set D Set E Set F
Angiography – Retinography – Stereo
retinography. green angiography

370× 278 250× 202 460× 416
Method Rec (%) Time Rec (%) Time Rec (%) Time
No ini 6 4,6 16 1,7 9 6,1

1S 94 61,4 98 44,3 93 66,2
3M 94 9,7 80 4,0 92 10,3

Table 3.7: Results of the registration algorithm for 100 random trial transformations
for 3 pairs of images. The second image is partially occluded, as can be seen in
figure 3.15. The Rec column represents the percentage of transformations successfully
recovered (mean error lower than 5 pixels); the time is in seconds. Search methods
as numbered are explained in page 91.

need either a very large database, or some artifitial experiment with a lower number
of images. Therefore, we feel we have validated our method under requirements far
more demanding than others in published papers, and results are still excellent.

The testbench has stated clearly that our registration scheme, i.e. creaseness+
translation search + Optimization, is suitable for registration of ophthalmologic im-
ages. Furthermore, the hierarchical approach is successful at lowering time about
95%, while keeping robustness only to 5% to 20% worse.

Next section is devoted to two further refinements of the method, with the aim of
further decresing computation time and increasing accuracy.
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Figure 3.15: Datasets D–F. First and second columns: original images with creases
superimposed in white. Third column: overlapping creases appear in white, non-
overlapping in black and gray. From top to bottom: SLO –SLO , retinography to
green, and retinography to retinography.
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3.5 Refining the search

The methods from the previous testbench registered each frame in the sequence in-
dependently one to the other. But a realistic assumption is that consecutive frames
ought to have similar transformations. Therefore, it makes sense to use the results
from one frame as seeds for the next, thus avoiding the costly initial search in Fourier.

Of course this strategy will not work for all frames. For some, the translation is
too large for the method to converge, so a secondary full search has to be set. This
secondary search will be activated when:

• Previous frame was invalid or its convergence value was too low.

• Search using seeds achieved a convergence value below a threshold.

We have evaluated two methods under the same conditions of those of the previous
section: methods GM and GS (for global multiple seed and global single seed), are
based upon 4M and 4S to use single or multiple search as secondary search. They
are defined in table 3.8. We have examined its performance for the same patients as
the previous. Table 3.10 shows the results, but before commenting on them we would
like to introduce an additional improvement.

Method Secondary search Tranformation Window size
GM 4M Global −−
GS 4S Global −−
L80 4S Local 80
L160 4S Local 160

Table 3.8: Configuration parameters for final registration methods. They use for
each frame the results from the previous as seed for the search, and the labeled
’Secondary search’ method when the search has failed.

When examining visually the alignment of long sequences of SLO images, we real-
ized that at some intervals images seemed to vibrate from one frame to the next. Small
missregistrations for some parts of the images produced this effect, regardless of the
global correctness of the registration. Illustrating figures are drawn in 3.16, numerical
values of tranformations in table 3.9. An accurate inspection reveals that although
all match visually, one frame, number 900, is using the top left region (square-like
shape) to align, while 950 and 1000 converge using other creases. Numeric results
agree with this observation.

The explanation of this oscillation must take into account the low signal-to-noise
ratio but also the optics of the eye. Indeed, the acquisition procedure is very different
from other medical images, rather resembling satellite observation of the earth. The
fundus of the eye is a concave surface, observed through a set of lenses. Any movement
between the camera and the fundus will produce not only translations in the acquired
image, but also as more complex changes. The scheme is shown in figure 3.17. Deguchi
and colleagues [7] model this geometry with the aim of fundus pattern reconstruction,
by taking several views with a calibrated camera.
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NFrame Rotation Tx Ty Sx Sy Correlation NC
(deg) (Pixels)

900 0.2 -183.4 -43.0 0.979 1.023 1086 0.17
950 -2.3 -190.4 -21.5 1.020 1.014 763 0.14
1000 -2.5 -181.6 -34.0 1.019 1.014 736 0.16

Table 3.9: Similar frames may convergence to different solutions.

Figure 3.16: Similar frames may convergence to different solutions. On top, the
reference frame for patient A. Frame 900 uses top left region to converge, while frames
950 and 1000 do not use it.
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Figure 3.17: Model of the eye

This is the reason why adding the scaling parameters improved so much the align-
ment for some images. The actual pixel size derived from the acquisition parameters
does not change, and neither does the distance between the eye and the camera. But
small rotations of the sample plane can be modeled much better with these two extra
parameters. Scaling may improve registration up to a point, but since the actual
underneath model is much more complex, for some slices it is unstable and presents
two solutions alike, thus becoming numerically ill posed.

Since our camera is not calibrated, Deguchi’s approach is unfeasible for us. In-
stead, we propose a further extension of our algorithm, which consists on dividing the
image into a regular set of square regions to be aligned independently ⑥. The method
to align each pair of rectangles is the same we use for the global transformation.

The final algorithm is:

1. Register the images S and D with a global transformation T .

2. Transform the dinamic image with global result to produce another image DT

3. Divide S and DT into two sets of rectangles arranged in grids Si, Di, i = 1 . . . n.

4. For each Si and Di

(a) if Si or Di is empty, set resulting transformation to nil.

(b) Register Si with Di. Let’s call Ti the result.

(c) Discard Ti if its normalized correlation NC is lower than a threshold.

5. Apply T and {Ti} to the dinamic image to compound the final solution.

After all regions have been registered, we must combine the set of local transfor-
mations Ti to produce the aligned dynamic image. We have implemented a method
commonly found in satellite images, namely, a local deformation model [69]: we con-
sider the center of each rectangle as a landmark, and compute its local transformation.
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Method Success Failures Correlation NCor Time
(%) (%) (sec)

4M 86.8 9.3 1288 0.22 4.9
GM 89.7 6.3 1205 0.20 3.6
4S 86.1 10.0 1290 0.22 3.3
GS 89.9 6.2 1203 0.20 3.0
L80 89.9 6.2 1203 0.24 3.0 + 7.7P

at
ie

nt
A

L160 89.9 6.2 1191 0.23 3.0 + 5.4
4M 94.5 4.3 2532 0.21 6.1
GM 95.4 3.4 2318 0.19 4.1
4S 90.8 8.0 2578 0.21 3.8
GS 92.6 6.1 2390 0.19 3.1
L80 92.6 6.1 2385 0.22 3.1+8.5P

at
ie

nt
B

L160 92.6 6.1 2374 0.21 3.1 + 7.15
4M 59.3 39.8 1539 0.20 5.0
GM 75.2 23.9 1308 0.17 4.0
4S 57.9 41.2 1563 0.20 3.2
GS 69.0 30.0 1374 0.18 3.0
L80 69.0 30.0 1530 0.19 2.6+7.2P

at
ie

nt
C

L160 69.0 30.0 1530 0.18 2.6+5.5

Table 3.10: Registration statistics for global and local methods. We have copied
results for methods 4M and 4S to make comparison easier. GM is the based on 4M,
and 4S, L80 and L160 are based on 4S. The time for local methods is shown as: time
for global registration + time for local adjustment.

Then, at any other point, the mapping is computed by two bilinear interpolations of
the x and y coordinates of the nearest four rectangle centers.

When we first ran this experiment, we found the values of Ti where often very
large for windows where enough creaseness information did not exist, which means
that the algorithm had converged to some random solution. Although the threshold
Ti discarded them, still much time was spent in this faulty searchs. The best way to
avoid it was to optimize Ti not centered in the actual window, but centered in the
full image. Then, rotations became more constrained and the solutions more stable.

A parameter of this method is the size of the grid. We have set two configurations
with size 80 and 160, and included them in the same tests as the previous proposals.
They are specified in table 3.8.

After all rectangles have been registered, we need to combine the initial transfor-
mation T with the set of local tranformations Ti to compound the aligned dinamic
image. We have implemented a method commonly found in satelite images: we con-
sider the center of each rectangle as a landmark, and for each we compute its local
transformation. Then, the coordinates of this set of transformed landmarks is bilin-
ealy interpolated for the rest of points. We give full details of the method in appendix
D.

We have applied to these methods the same battery tests as described in table
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Figure 3.18: Images are divided in grids to be aligned independently. Grid size
for method L80 (top) and L160 (bottom). To compound the set of transformations,
the center of each rectangle will be considered as a landmark and its transformed
coordinates are weighted with neighbours in a linear fashion. See appendix D for
technical details.

3.4, page 92. Table 3.10 presents the statics for the four new methods, together with
the two original methods they were based upon.

We have come to the following conclusions:

• Statistics show that the methods usings previous seeds achieve the goal of re-
ducing the registration time. Probably the time could be further cut had we
been less conservative in the requirements to accept a registration: when an
optimization based on a seed has a value lower than a threshold, a full search is
started, which does not always lead to better results. This is particularly true
for patient C, which needed the full search for a larger number of slices (about
one fifth), thus making the mean time similar to the non-seed based method.
It remains for future tests to see whether a lower threshold value improves the
time without loss of robustness.

• We were surprised to see that each seed-based method slightly improves results
with respect to its memory-less version. This is particularly true for patient C,
which had worse statistics. Also, the mean robustness shows that our choice of
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four-level methods as source for the seed-based methods might be problematic
for some sequences. At the price of increasing the processing time, a choice
based on three-level methods would be more robust. However, this is a small
difference which has to be investigated for a bigger number of sequences.

• As we could expect from the results of the previous section, the multiple-seed
method set does not work better than single seed method, but the time spent
is only slightly larger. Therefore it is up to the final requirements, and mainly
up to the average expected rotation, whether to use one or the other.

• Improvements with local refinements are not clearly reflected in the statistics
(NM, NC). We believe the cause is that the changes are too small compared to
the total volume of the image.

The figures in these tests reveal that the seed-based methods are the choice when
working with large volumes of data: with similar or better robustness, they converge
faster. On the other hand, the measures employed so far do not reveal whether local
registration improves the results. The following section is devoted to quantify it with
the aid of other measures.




