
Chapter 5

Conclusions

This chapter makes a final review of the results achieved in our research. First, we
briefly report chronologically the steps of the investigations, and then we highlight
the contributions this thesis has brought to the field of medical image registration.
Finally, some remarks for future work are given.

When I started working on this thesis, algorithms based on mutual information
had recently appeared in literature, with impressing results: they could be applied to
a wide range of images, and the accuracy was excellent.

The initial motivation of my work was as a natural extension of the research of a
colleague, who devised an operator to extract the skull in CT and MR images. My
goal was to employ these landmarks for the purpose of registration. Compared to
the mutual information algorithms, ours seemed slow, too much memory consuming
and tailored to a single application. Indeed, extracting the skull demanded high
CPU power, and then sometimes he alignment process would get trapped into a local
maximum after many hours of computation.

Little by little, as I gained knowledge in the field results improved. Firstly, the
segmentation became faster and more reliable, thanks to the dedication of A. López.
Afterwards, improvements in the hierarchical structure and the alignment function
led to a shortening of two orders of magnitude in the final computation time, with
more satisfactory convergence properties.

Then we engaged on a project for an external evaluation of the accuracy of the
algorithm with a large database of images, to be held at Vanderbilt University. This
motivated several improvements, to deal with different field of view in the images,
and also some observations for a particular MR setting, where the creaseness could
not segment the skull so well.

Finally, we designed an experiment to test the robustness of the algorithm, which
consisted on recovering hundreds of known misregistrations of the registered images.
The same procedure was run on a mutual information algorithm, and statistics were
compared.

Chapter 2 gives full report of these experiments. The hierarchical structure per-
mitted a fast and more robust convergence, since a large number of seeds could be
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tested at coarser levels. Also, the initial exhaustive search could provide a set of seeds
which would converge to a proper value. For a few cases where this scheme failed, we
added a fast rough alignment based on the detection of the principal axis of the skull
in the image.

The external evaluation confirmed our visual assessments. All registrations had
succeeded, and the accuracy achieved was comparable to the pixel size of the images.
Our method ranked the first for an MR modality where the skull could be segmented
particularly, and it ranked amongst those based on mutual information for other MR
modalities. Also, the robustness experiments showed similar number for creaseness-
based and MI -based methods.

After publish a paper with these results, we wondered whether the same algorithm
would success on other image modalities depicting creases. We mainly found two
examples in literature: vessels and the convolutions of the brain.

Vessels are visible on most modalities, but we focused on retinographies because
the methods published so far, being highly heuristic al and poorly validated, clearly
left room for improvement.

We adapted the algorithm to work with 2D images, and run it with a set of a about
one hundred pairs of images. To our surprise, it easily succeeded for all. We decided
to test it further, for fist time in literature, for the purpose of to align long sequences
of SLO video images. The research was specially motivating because the hospital
providing the sequences would actually use the algorithm for diagnosis. Therefore
we studied the robustness and accuracy for different sequences and parameters, and
concluded that our algorithm was perfectly suitable. Also, with the collaboration
of one member of the team in the hospital, we produced a first prototype with the
requirements needed for diagnosis, e.g. to depict the contents of a particular landmark
in the vessel tree through the sequence.

Another interesting result was an enhancement of the algorithm in order to model,
by means of local transformations, the elastic deformations in the image produced
by the optics of the eye. Chapter 3 reports the details of the registration of 2D
retinographies.

The third application of the algorithm, explained in chapter 4 was in the field
of intraoperative ecographic images, which was started after the collaboration of the
CISG group in London and Dr. Molet, at the Hospital de Sant Pau. Speaking in
general, the goal is to measure the shift of the brain which occurs after the craniotomy.
Many other groups are working intensively in the field, but our primary interest was
to investigate the use of creases to register the ecographic images in the operating
room to pre-operative images of the same patient.

However, before this could be done, we needed to build a system able to track the
position of the transducer and grab the video images on real time. Another important
issue was to calibrate the probe in the external coordinate system.

We spend some time on this matter, and finally we achieved an error comparable to
that of the tracking system. Then, the next step was to test it in a real environment,
but because real surgery was not available to us at that moment, we run the system
on a phantom, an in-vitro human brain of an adult.

This permitted a number of interesting experiments, unfeasible for the case of a
patient. We could, for instance, scan the whole brain to produce a volume image,
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and then register the image to an MR image of the same brain. We employed for this
purpose our algorithm, and the visual inspection of matching proved very accurate.
To our notice, this is the first ultrasound to MR registration in literature.

A handy way to visualise the registration was to depict for each video frame the
corresponding cutout in the MR image. Some frames showed some sort of misregis-
tration, produced by the errors in the coordinates given by the tracker. The obvious
solution was to produce another version of the registration algorithm, this time to
register 2D ecographies to 3D MR volumes. This choice was very suitable given the
features of the ecographic images: the creaseness operator extracted the sulci with rea-
sonable confidence, and the algorithm was able to discard artifacts and non-matching
surfaces. We visually inspected the results, and found them very satisfactory given
the accuracy depicted by the MR images.

In sum the main contributions of this dissertations are:

• CT to MR volume registration:

– we have proposed a new retrospective algorithm which takes the skull as
the rigid landmark reference and employs a hierarchical approach. The
method takes less than 4 minutes to complete on images of size about
250× 250× 100 pixels.

– The method is robust against large misregistrations with a mean error of
0.6 to 1.9 mm, for some cases lower than the that of mutual information
(1.7 to 6.2 mm).

– The validation, covering a large database of images and carried out ex-
ternally within the Vanderbilt project, has achieved consistent rms errors
(rank out of a group of 16 in brackets): 1.7 mm for CT –MR–PD (7), 3.4
mm for CT-MR–T1 (8) and 1.6 mm CT-MR–t2 (1).

• In the field of retinographies:

– The 2–D version of the previous algorithm is successful at registering pairs
of different modalities and taken with some time interval. Experiments
include cases considered as difficult in published papers.

– Studies have covered, for the first time, long sequences of SLO video frames.
Despite their variability and wide range of misregistrations, the visual in-
spection of the results for three series comprising about 1000 of frames
each has given success rates higher than 80%.

– The algorithm has been tuned in speed and robustness for a real clinical
application, currently running in a hospital. Initial validations have shown
figures similar to those obtained manually.

– The non-rigid transformations caused by the optics of the eye have been
modelled by an extension of the algorithm which works in a local fashion.

• For intraoperative volume us –MR registration:

– We have built a prototype software to acquire and compound ecographies,
which includes a comparison of three different phantoms for calibration.
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The final rms error achieved, about 4 mm, is reasonable considering the
accuracy of the magnetic tracker.

– We have registered successfully, for first time in literature, the compounded
volume ecography to an MR image of a human brain, by means of our
creaseness-based algorithm. The visual inspection of pairs of each pairs of
corresponding images, this is, the B-scan together with the corresponding
cutout, has revealed a very good alignment.

– We have proposed a new 2D–3D creaseness-based registration algorithm,
and tested it on two pairs of modalities: B-scan to ecography volume and
B-scan to MR volume. We have validated manually each the sequences
of images for each case, and results show that the process improves the
alignment in 70−90 % of frames for the first pair, and 50 % for the second.
The method proposed is, again, a novelty in literature, and potentially will
permit to measure the deformation of the brain during surgery, as well as
to provide the landmarks to update the MR volume by means of an elastic
deformation.

We would like to finish with a few remarks directed to possible future work. As
we stated in the introduction, we thought it was only fair to try to revert the results
of the investigation into the society, which meant to translate the implementation of
the algorithms for real clinical practise. Many hours of work have been devoted to
this purpose, but still we feel that very little has actually come out, the retinographies
being the only success. As for the case of neurosurgery, we found difficulties impossible
to overcome, even with the best help of the physicians. For instance, things such as
transferring images was at that time a lengthy task and matter of random because
the devices and the network were poorly set.

Still, initially we managed to design and validate an application for stereotactic
surgery, which could detect the artificial landmarks in the stack of images and calibrate
the coordinate systems. Our plan was to further extend this program to include also
the in-theatre ecographic image but this did not happen to be possible at that time.

However, recently the collaborating hospital has renewed all the equipment, and
therefore the primary goal becomes again feasible. Perhaps with the results presented
here, the work left now as future will some day be put into practise.

Bellaterra, November 2001



Glossary of terms

B-scan Every single frame of a ecography video sequence. (135)

C Image in cuberille in the coordinates of B . (172)

C.N. Condition number of a convergence experiment (232)

CSLO Confocal Scanning laser opthalmoscope (76)

D Dynamic image: for the registration algorithm, the image which iteratively trans-
formed during the optimization. (39)

ftol Tolerance required to the Simplex algorithm to converge (91)

GM Global Multiple seed search (107)

GS Global Single seed search (107)

LSEC Level-Set Extrinsic Curvature (35)

MD Mean distance between two transformations (59)

mi Mutual information (61)

NC Normalized correlation (95)

NC Normalized matching (96)

ROI Region of interest of an image

S Static image: for the registration algorithm, the image which is not transformed
during the optimization. (39)

SLO Scanning laser opthalmoscope (76)

TRE Target Registration Error (67)

US Ultrasound or ecographic image

B Ecographic image. (172)

VOI Volume Of Interest (67)
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Appendix A

Specifications of the
transformations

Many valid definitions of transformation matrices exist, each employing different nota-
tion and models. In the following pages we specify for completeness the transformation
models employed throughout the thesis.

Given the coordinates of a pixel in the output image, Ox,y,z and in the input
image, Ix,y,z, and the transformation matrix M , they are related by the following
equation:

O = I ∗M (A.1)

We define the following transformation primitives:

Rot(x, y, z) :=




CyCz Cz ∗ Sx ∗ Sy − Cx ∗ Sz Cx ∗ Cz ∗ Sy + Sx ∗ Sz 0
Cy ∗ Sz Cx ∗ Cz + Sx ∗ Sy ∗ Sz −Cz ∗ Sx + Cx ∗ Sy ∗ Sz 0
−Sy Cy ∗ Sx Cx ∗ Cy 0

0 0 0 1




(A.2)
with Cx = cos x, Sx = sin x etc.

Tras(x, y, z) :=




1 0 0 0
0 1 0 0
0 0 1 0
−x −y −z 1


 (A.3)

Sca(x, y, z) :=




x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1


 (A.4)

Given an image of m columns and n rows, we define translation from the origin to
the centre, and viceversa:

Moc(m,n) := Tras(−m,−n, 0) (A.5)
Mco(m,n) := Tras(m,n, 0) (A.6)
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202 SPECIFICATIONS OF THE TRANSFORMATIONS

In terms of these primitives we define more complex transformations:

Rigid

MR(Tx, Ty, φz) := Tras(−Tx,−Ty, 0)MocRot(0, 0, φz)Mco

(A.7)

Scaled centred

MR(Tx, Ty, φz, Sx, Sy) :=Tras(−Tx,−Ty, 0)MocRot(0, 0, φz)Sca(Sx, Sy, 0)Mco

(A.8)

Scaled non centred

MR(Tx, Ty, φz, Sx, Sy) :=Tras(−Tx,−Ty, 0)MocRot(0, 0, φz)McoSca(Sx, Sy, 0)
(A.9)



Appendix B

Graphical results for the Vanderbilt
database.
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204 GRAPHICAL RESULTS FOR THE VANDERBILT DATABASE.

Figure B.1: Visual registration for patient 1
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Figure B.2: Visual registration for patient 7–A



206 GRAPHICAL RESULTS FOR THE VANDERBILT DATABASE.

Figure B.3: Visual registration for patient 2–B



207

Figure B.4: Visual registration for patient 1–B, 2–B, 4–B, 5–B, 6–B and 7–B,
modalities MR RAGE to MR T2




