
Appendix C

Specifications and transformations
for the Vanderbilt experiment.

This appendix consists on tables with the numerical results of the transformations of
the Vanderbilt database. The first tables summarises the physical specifications of the
images. The second table shows the values of the transformations obtained with our
method, with two setting: rigid (R), i.e., 3 translation plus 3 rotations parameters,
and including scaling (S), which has 3 extra scale parameters..

The third table gives the initial alignment translations. For some patients the
values are very high in the z–axis, thus indicating the necessity of this alignment.
Corresponding translation values of the transformation table are mostly low, which
indicates that the initial guess if fairly close to the final value.

Patient Pixel size Slice thickness Pixels Slices Modality
(mm) (mm)

1–7 A 0.65 4 512 28-43 CT
1.25 4 256 20-26 T1
1.25 4 256 20-26 T2
1.25 4 256 20-26 PD

1–9 B 0.4 - 0.45 3 512 40-49 CT
0.78 - 0.86 3 256 51-52 T1
0.78 - 0.86 3 256 52 T2
0.78 - 0.86 3 256 52 PD

1 1.25-1.66 256 128 RAGE

Table C.1: Image specifications of the Vandebilt’s database
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210SPECIFICATIONS AND TRANSFORMATIONS FOR THE VANDERBILT EXPERIMENT.

Modality Translation Rotation Scaling Correlation Method
(pixels) (deg)

x y z x y z x y z
Patient 1–A

ct– 0.2 0.1 2.7 2.8 -1.2 0.5 1313 R
mr PD -0.5 -3.8 -3.6 2.8 -0.6 0.7 0.993 0.976 0.946 1568 S

ct– 0.6 2.3 0.1 -1.5 0 0.5 1557 R
mr PDR 1.3 1.9 0.1 -1.5 0 0.5 1.003 0.998 0.997 1569 S

ct– 1 2.7 -2.3 -1.8 0 0 1562 R
mr T1 1 2.4 -2.9 -0.9 0 0 1 0.999 0.991 1575 S

ct– 1 1.8 -2.1 0.7 0 0.8 1688 R
mr T1R 1.2 2.8 -0.4 0 -0.8 0.2 1.003 1.003 1.019 1723 S

ct– 1.6 3.5 -8.2 -2 -1.9 1 1317 R
mr T2 2.9 -0.8 -11 -1.3 -1.6 0.7 1.006 0.977 0.976 1424 S

ct– 2.1 2.8 -3.8 1.7 -0.1 0.1 1270 R
mr T2R 5.1 3 -3.9 0.8 -0.1 0.7 1.016 0.998 0.988 1359 S

Patient 2–A
ct– -5 17.4 1.5 1.4 0 0 1540 R

mr PD -5.8 17.2 -2.6 0.9 -0.2 0 0.996 0.998 0.957 1613 S
ct– -4.9 15.5 1.5 -1.6 0 0 1828 R

mr PDR -4.8 14.4 -1.2 -1.4 0 0 1 0.995 0.968 1940 S
ct– -2.9 17.3 -4 -2.1 0 0 1366 R

mr T1 -2.8 18.6 -6.5 -2 0 0 1 1.007 0.968 1432 S
ct– -2.9 14.9 -3.2 0 -0.3 0 1550 R

mr T1R -2.9 15 -3 0 0 0 1 1 0.999 1578 S
ct– -3 19.5 -7.3 1 0 0 1376 R

mr T2 -1.8 21.2 -6.7 0.9 -0.9 0.2 1.007 1.009 0.996 1464 S
ct– -5.1 24 -32.3 0 5 0 866 R

mr T2R 0 27.6 -38.8 -3.3 0.2 -0.2 1.022 1.017 0.871 1155 S
Patient 3–A

ct– -4.3 -1.4 2.4 0.4 -0.1 -0.7 1331 R
mr PD -5.8 -3.3 -0.2 -0.5 0 0 0.991 0.986 0.986 1536 S

ct– -3.9 -3 1.9 0 0 0 1375 R
mr PDR -4 -3.7 1.7 -0.2 -0.2 -0.1 0.999 0.993 0.998 1382 S

ct– -0.3 -6.6 3.7 4.2 1.4 -1.4 894 R
mr T1 -2.5 -8.5 -1.9 -1.1 -1 0.5 0.991 0.976 0.97 1097 S

ct– -0.3 -4.7 7.6 -2.2 1.4 -0.6 938 R
mr T1R -3.3 -10.6 6.6 -0.7 0.7 -1.2 0.985 0.974 1.002 1058 S

ct– -3 -0.4 -3.6 -2 0 0 1326 R
mr T2 -2.9 -1.4 -4.4 -2.1 0 0 1 0.994 0.994 1351 S

ct– -2.9 -1.6 -5.1 -2.5 0 0 1405 R
mr T2R -1.1 -1.7 -4.5 -2.4 0 -0.1 1.008 0.998 1.004 1427 S

Patient 4–A
ct– -3.2 11 1.5 0 -2.4 0 1157 R



211

Modality Translation Rotation Scaling Correlation Method
(pixels) (deg)

x y z x y z x y z
mr PD -3.9 9.1 0.7 -0.4 -1.2 0 0.994 0.988 0.999 1222 S

ct– -1.9 8.8 2.2 -0.6 0 0 1198 R
mr PDR -2.7 6.6 -0.3 -1.3 0.6 0 0.996 0.986 0.979 1272 S

ct– -0.9 9.6 4.2 5.4 -1.7 0.2 810 R
mr T1 -4.2 8 -15.7 -2.4 1 0 0.978 0.971 0.785 946 S

ct– -1.7 9.6 7.5 -3.8 -0.5 0 929 R
mr T1R -5.7 4.5 7.5 -2.7 2.2 -1.4 0.968 0.978 1.011 1095 S

ct– -1.9 18.7 -2.5 -0.6 0 0 1251 R
mr T2 -1.9 18.6 -2.6 -0.4 0 0 1 0.998 0.998 1263 S

ct– -1.9 9.2 -2.8 -1.1 0 0 1507 R
mr T2R -0.3 10.2 -3.2 -1.6 -0.4 -0.2 1.01 1.003 0.993 1570 S

Patient 5–A
ct– -0.7 0.2 1.1 -3.1 0.2 -0.7 2165 R

mr PD -0.7 -0.7 0.7 -2.9 0.1 -0.7 1 0.995 0.996 2189 S
ct– -0.9 -0.5 1 -3.2 0 0 2348 R

mr PDR -1 -2.3 1.5 -1.9 0 0 0.999 0.992 1.004 2477 S
ct– -1.4 -1.9 1.4 -2.6 0.3 -0.5 2007 R

mr T1 -1.5 -3.4 -2.4 -2.5 0.1 -0.5 0.999 0.992 0.963 2147 S
ct– -2 -3.3 1.5 -2.9 0 0 2123 R

mr T1R -2 -5.6 1 -2.9 0 0 0.999 0.987 0.995 2271 S
ct– -1 -1.8 -17 -4.2 0 0 1627 R

mr T2 1.7 -0.8 -17.1 -3.7 0.1 -0.4 1.018 1.004 0.991 1847 S
ct– -1.4 -1.5 -17 -2.7 -0.6 -0.1 1746 R

mr T2R 1.6 -1.2 -15.2 -2.9 -0.7 -0.4 1.018 0.999 1.011 1961 S
Patient 6–A

ct– 1.5 8.4 3.3 0.8 -0.7 -0.2 1515 R
mr PD 0 7.2 1.3 0.1 -1.2 0 0.991 0.992 0.985 1621 S

ct– 2.5 8.2 4.1 -1.5 -0.4 0.5 1449 R
mr PDR 3.8 4.4 -0.6 -0.5 0 0 1.008 0.981 0.955 1750 S

ct– 4.4 6 -2.6 0.1 -0.6 0 1190 R
mr T1 6.7 9.6 -4.2 -1.3 -1.5 0.5 1.014 1.014 0.974 1365 S

ct– 3.9 8 0 0 0 0 1535 R
mr T2 5 7.4 0.9 0 0 0 1.008 0.995 1.009 1570 S

ct– 4.1 9.6 -0.5 -1.2 -0.1 0 1394 R
mr T2R 8.7 9.2 -1.5 -2.1 -0.4 -0.1 1.025 0.994 0.985 1710 S

Patient 7–A
ct– -0.4 4.7 1.2 -2.3 -1 -0.2 1488 R

mr PD -1.8 1.2 -0.7 -0.5 -1.5 -0.1 0.991 0.983 0.982 1756 S
ct– 0 8.9 1.5 -1.6 0 0 1544 R

mr PDR 1.1 7.8 -0.6 -0.3 -0.8 0.2 1.005 0.995 0.97 1595 S
ct– 3 2.8 -1.5 -0.5 0 0 1322 R
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Modality Translation Rotation Scaling Correlation Method
(pixels) (deg)

x y z x y z x y z
mr T1 4.1 4.3 -4.3 -1.9 0 0 1.005 1.01 0.962 1345 S

ct– 2.1 1.6 -1.2 1 -0.2 0.1 1517 R
mr T1R 4.7 2.2 -1.6 1 -1.1 0.4 1.014 1 0.989 1627 S

ct– 0.5 6 -1.7 -1.3 -0.7 -0.2 1524 R
mr T2 1.8 4.8 -1.2 -1.1 -0.1 0 1.007 0.994 1.003 1559 S

ct– 0.9 8.7 -3.4 -0.5 0.1 0 1538 R
mr T2R 3.6 9.1 -0.2 -1.3 0.3 0.1 1.016 0.998 1.031 1706 S

Patient 1–B
ct– -2 -3.5 -3 1 -8.4 -3.8 2164 R

mr PD -2 -6.6 -6 4.2 -7.7 -3.9 0.997 0.986 0.969 2576 S
ct– -2.9 -3.3 -3.9 3.6 -7.8 -5.2 2204 R

mr T1 -3.2 -4.4 -5.4 3.6 -7.6 -5.1 0.996 0.992 0.984 2391 S
ct– -1.3 2.6 -16.4 1.9 -7.4 -3.1 1724 R

mr T2 0 1.5 -14.5 2.3 -8.2 -3.9 1.015 0.989 1.019 1921 S
mr MP– -1.8 7.2 -20.2 -3.7 -2.8 0.7 1712 R
mr T2 5.1 7.6 -25.7 -5.1 0.1 -0.4 1.041 1.001 0.931 2084 S

Patient 2–B
ct– -8.1 -11.1 -0.2 3.3 0 -7.6 2587 R

mr PD -7.8 -12.9 -3.3 4.5 0.3 -7.4 1.004 0.988 0.976 3017 S
ct– -8.2 -10.9 0 0 0 -7.2 2067 R

mr T1 -8.6 -13.7 -5.4 4.2 0.6 -7.3 0.998 0.984 0.962 2676 S
ct– -9 -9.3 -2.5 4.3 0.3 -7.7 2634 R

mr T2 -7.3 -9.6 -2.7 4.3 0.1 -7.7 1.016 0.998 0.995 2853 S
mr MP– 0 0.6 -1.7 3.2 4.3 2.9 2027 R
mr T2 2.9 2.3 -3.1 -0.8 -0.4 -0.2 1.03 1.006 0.985 2476 S

Patient 3–B
ct– -1.9 8.9 -0.6 -4.2 0 0 2013 R

mr PD -2 8.1 -1.8 -4.3 0 0 0.999 0.997 0.99 2048 S
ct– 0.1 2.3 1.3 -5.7 -0.1 0 1896 R

mr T1 -1.4 -1.9 -5.1 -2.6 -0.4 -0.2 0.984 0.98 0.956 2869 S
Patient 4–B

ct– -5.3 0.5 0.7 -4.2 -5 0.4 2578 R
mr PD -4.9 -2.3 -1.7 -2.2 -5.5 0.4 1.002 0.984 0.981 2862 S

ct– -4.1 -0.1 1.1 -4.4 -5.4 0.5 2145 R
mr T1 -4.4 -4.1 -2.7 -1.3 -5.9 0.2 0.993 0.979 0.973 2711 S

ct– -2.3 3 -3.6 -2.1 -6.7 0 2102 R
mr T2 -0.6 4.5 -2.2 -3.2 -5.5 0.3 1.016 1.005 1.007 2427 S

mr MP– 2.6 6.2 -3.6 2.3 -7.5 -7 1241 R
mr T2 5.9 6.6 -7 0.7 -0.9 -2.6 1.04 0.997 0.982 1497 S

Patient 5–B
ct– 0.9 -4.8 3.9 11.6 2.3 -5.4 1699 R
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Modality Translation Rotation Scaling Correlation Method
(pixels) (deg)

x y z x y z x y z
mr T1 -0.7 -4.8 1.3 11.6 0.6 -4.7 0.983 1 0.98 1809 S

ct– 1 -7.1 -3.6 16.2 -0.8 -4.4 1976 R
mr T2 2.4 -7.6 -0.9 16 -0.3 -4.7 1.014 0.997 1.021 2134 S

mr MP– 1.1 1.1 -1.2 -13.8 13.3 4.5 1810 R
mr T2 4.5 -1.2 -1 -12.6 12.4 4.9 1.029 0.977 1 1958 S

Patient 6–B
ct– 2.1 1.1 -5.9 7.6 -2.7 -1.6 2048 R

mr T1 3.4 0.1 -10.9 8.6 -1.9 -1.3 1.009 0.99 0.96 2245 S
ct– 1.9 4.8 -6.7 5.8 -2 -1.9 2162 R

mr T2 2.5 2.5 -7.8 7.9 -2 -1.4 1.004 0.986 0.994 2217 S
mr MP– 1.1 2.8 -4.8 -2.4 -6.5 1.4 2056 R
mr T2 3.2 2.6 -3.4 -3.2 -3.6 3.3 1.023 0.995 1.003 2276 S

Patient 7–B
ct– -2.1 0 -3.2 0.4 3 6.2 2204 R

mr T1 -2.9 0.6 -3.7 0.1 2.7 6.1 0.993 1.005 0.993 2250 S
ct– -4.1 3.8 -4.1 1.2 2.4 5.5 1692 R

mr T2 -1.9 6.2 -3 -1 3.5 6.2 1.019 1.008 1.004 2059 S
mr MP– 0 4 -5 0 0 0 2266 R
mr T2 1.9 4.3 -4.9 0 0 -0.1 1.019 1.001 1 2403 S

Patient 8–B
ct– 0.3 12.2 6.8 -18.6 -6.2 -4.9 1258 R

mr T1 -2.6 9.1 11.8 -17.8 -1.4 -6.6 0.967 0.964 1.045 1586 S
ct– 1.2 13.6 -1.3 -11.1 -4.6 -6.6 2154 R

mr T2 1.8 12.3 -0.2 -10.9 -4.6 -6.8 1.007 0.99 1.006 2222 S
mr MP– 1.3 3 -3.6 0.8 1.9 0.7 1955 R
mr T2 3.6 1.8 -1.7 0.3 0.8 0 1.025 0.988 1.009 2120 S

Patient 9–B
ct– -5.4 3.7 0.6 -5.8 -4.7 0.6 2055 R

mr T1 -5.6 0.5 -2.2 -3.5 -4.4 1.8 0.99 0.984 0.98 2442 S
ct– -5.3 5.6 -17 -4 -4.1 1.9 2363 R

mr T2 -4.1 5.5 -15.5 -4.6 -3.4 1.5 1.012 0.995 1.011 2561 S
mr MP– 1 2 -4 0 0 0 2484 R
mr T2 3.5 2.3 -3.8 -0.1 0 -0.3 1.024 0.998 1 2817 S
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Modality Translation
x y z

Patient 1–A
ct 8.34003 0.262589 0

mr PD 7.3463 24.3232 4
mr PDR 4.90396 20.0383 1
mr T1 7.17767 19.869 4

mr T1R 5.05547 20.1008 1
mr T2 6.10577 22.7906 13

mr T2R 3.13588 18.5162 2
Patient 2–A

ct 4.39003 -0.370514 0
mr PD 9.1636 15.6139 18

mr PDR 6.92824 15.535 16
mr T1 6.79765 7.42761 19

mr T1R 4.80202 11.6861 17
mr T2 7.01407 13.938 25

mr T2R 4.75209 5.20282 48
Patient 3–A

ct 2.68318 -13.9024 0
mr PD 8.11717 18.0157 36

mr PDR 6.85913 20.1418 36
mr T1 4.69096 22.7863 35

mr T1R 3.52538 22.6158 34
mr T2 6.64104 17.8256 40

mr T2R 5.64468 19.2543 40
Patient 4–A

ct 5.65477 -0.796539 0
mr PD 8.63837 19.3867 35

mr PDR 7.39346 22.0534 34
mr T1 5.89629 18.4892 34

mr T1R 6.54546 23.05 32
mr T2 7.85771 12.3336 37

mr T2R 6.93391 21.4912 36
Patient 5–A

ct 0.979782 -14.1332 0
mr PD 7.82187 18.8854 19

mr PDR 8.00098 21.0758 17
mr T1 8.22556 21.0891 19

mr T1R 8.64044 23.1814 17
mr T2 8.39204 19.8978 36

mr T2R 8.48778 20.9432 34
Patient 6–A

Modality Translation
x y z

ct 3.05191 -0.0773315 0
mr PD 9.64647 24.0595 24

mr PDR 7.09732 23.281 22
mr T1 6.42091 21.7762 24
mr T2 7.31889 24.2898 26

mr T2R 5.00537 21.7055 24
Patient 7–A

ct 1.97609 4.50055 0
mr PD 8.10493 24.1277 8

mr PDR 5.34363 18.4845 5
mr T1 4.52769 23.428 8

mr T1R 3.07294 24.1205 5
mr T2 7.36554 22.4286 10

mr T2R 4.94936 18.1313 8
Patient 1–B

ct 9.8352 -3.01395 0
mr PD -1.42426 4.11234 2
mr T1 0.358932 4.35963 5
mr T2 -1.13695 -4.22468 0
mr MP 23.6522 -5.34918 66

Patient 2–B
ct -5.21332 -7.19392 0

mr PD -5.0509 5.44126 3
mr T1 -4.69702 6.51001 3
mr T2 -4.0221 3.14245 2
mr MP 22.9696 4.69599 48

Patient 3–B
ct 5.72956 1.7956 0

mr PD 9.15237 -0.89769 19
mr T1 6.92894 6.51906 19

Patient 4–B
ct 10.1349 -2.88666 0

mr PD 5.09914 3.28878 4
mr T1 3.49558 4.19601 2
mr T2 1.87157 -0.455582 1
mr MP 18.0773 15.0026 67

Patient 5–B
ct 8.38589 -7.81199 0

mr T1 -3.00654 0.835381 26
mr T2 -2.34953 1.7034 24
mr MP -12.6107 7.82873 67



215

Modality Translation
x y z

Patient 6–B
ct 3.44701 0.145782 0

mr T1 -0.00256348 -0.699112 18
mr T2 0.377914 -3.45106 15
mr MP 2.40002 0.437576 79

Patient 7–B
ct 0.904816 0.621567 0

mr T1 7.97235 2.18253 18
mr T2 9.26294 -2.93028 17
mr MP 8.63542 7.95525 77

Patient 8–B
ct 2.47636 10.9551 0

mr T1 -2.854 6.72024 26
mr T2 -3.1254 1.78926 25
mr MP -5.66479 0.121559 62

Patient 9–B
ct 3.23119 4.97693 0

mr T1 -5.52097 -3.49944 22
mr T2 -4.99231 -7.23582 6
mr MP -4.89862 8.62264 48



Appendix D

Interpolation grids

Following we describe the local deformation model applied to the retinographies (sec-
tion 3.5, page 3.5). It can be found in many image processing references, for instance
[69].

A set of control points defines an output-input mapping function M . This mapping
must be applied to each coordinate in the image, which determines a high computa-
tional cost, specially for complex functions such as high degree polynomials. However,
M is usually a smooth function, i.e. it has small derivative ∂M

∂i , ∂M
∂j values. Therefore,

it can be approximated in a local fashion by other simpler functions.
The explicit computation of M will be done only for the points belonging to a

grid, while interpolating the others. Let t be the interpolation step, and

(k, l) = M(i, j) = (Mx(i, j),My(i, j))

the output-input mapping.
We are searching M(i + u, j + v), 1 ≤ u, v ≤ t − 1 integer, from the values

M(i, j),M(i+t, j),M(i, j+t),M(i+t, j+t). Then we need to interpolate (figureD.1):

Mx(i + u, j + v)fromMx(i, j),Mx(i + t, j),Mx(i, j + t),Mx(i + t, j + t)

and similarly

My(i + u, j + v)fromMy(i, j), My(i + t, j),My(i, j + t),My(i + t, j + t)

The simplest interpolation scheme is the linear, but since Mx and My are function
of two variables, we would have to interpolate a plane from four points, which is an
over-dimensioned problem. The function of two variables next in simplicity to the
plane is called hyperbolic paraboloid:

f(x, y) = ax + by + cxy + d (D.1)

and its interpolation is bilinear, because taking one variable as a constant value,
the other one become linear. Let’s say we want to interpolate the four points f(x0, y0),
f(x0, y1), f(x1, y0) and f(x1, y1). The equations of coefficients a, b, c, d are deduced
from the following algorithm, which finds the value of f(x, y) for some point x0 <
x < x1, y0 < y < y1 (figure D.2) :
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M  (i,j) = k M  (i,j) = l

jl

k

M

i

x y

i j
i j

i+t

j+t
j+t

i+t

input output

Figure D.1: Interpolation grid with step t = 4.

1. interpolate a straight line between f(x0, y0) and f(x1, y0), to obtain:

f(x, y0) = f(x0, y0) + x
[f(x1, y0)− f(x0, y0)

x1 − x0

]

2. again the same step with f(x0, y1) i f(x1, y1) to compute:

f(x, y1) = f(x0, y1) + x
[f(x1, y1)− f(x0, y1)

x1 − x0

]

3. interpolate a straight line between f(x, y0) and f(x, y1) to find

f(x, y) = f(x, y0) + y
[f(x, y1)− f(x, y0)

y1 − y0

]
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f(x, y  )
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f(x, y  )
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Figure D.2: Bilinear interpolation

From the previous, we deduce:

a =
f(x1, y0)− f(x0, y0)

x1 − x0
(D.2)

b =
f(x0, y1)− f(x0, y0)

y1 − y0

c =
f(x1, y1) + f(x0, y0)− f(x0, y1)− f(x1, y0)

(x1 − x0)(y1 − y0)
d = f(x0, y0)

A grid with enough density makes the mapping less computationally expensive,
while losing little accuracy. The grid space depends on the transformation model; for
Landsat MSS, it is 80 pixels wide.



Appendix E

A model of the eye

In this appendix, we will give a numerical model of the acquisition of fundus images by
a camera. We will consider the model shown in figure E.1; a represents the image seen
in flat coordinates at the camera, and S the deformed coordinates at the fundus. We
are interested in the geometric correspondence between the two coordinate systems.

E.1 Translating from camera to fundus coordinates.

Given a, the problem is to find S. Let’s consider a system coordinates with origin in
the centre of the circle. We build a line passing through the point a and the pinhole
centre. Their coordinates are (−a,−G−F ) and (0,−G). The equation of the line is:

{
x = aλ

y = Fλ−G
(E.1)

Let’s find the intersection between the line and the circle, (xc, yc):

x2
c + y2

c = R2 (E.2)

Squaring with E.1, we obtain an equation of λ:

λ2(F 2 + a2)− 2FGλ + G2 −R2 = 0 (E.3)

which solves to

λ1,2 =
FG±√F 2R2 + a2R2 − a2G2

F 2 + a2
(E.4)

Choosing λ1 because it is the largest, corresponding to the furthest of the two
points, {

xc = aλ1

yc = Fλ1 −G
(E.5)

Then
α = arctan

xc

yc
(E.6)
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S

R

G

F

γ

γ

a

α

Xc

Yc

(Xc, Yc)

Figure E.1: Geometric model of the eye

And finally
s = αR (E.7)

E.2 Translating from fundus to camera coordinates

The problem is: given S, find a. The coordinates of (xc, yc) are:

α =
S

R
(E.8)

(xc, yc) = (R sin α, R cosα) (E.9)

The line passing through this point and the pinhole centre is:
{

x = xcλ

y = (yc + G)λ−G
(E.10)
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And its intersection to the line at the bottom, y = −G− F ,

a = −xc
F

yc + G
(E.11)

E.3 Preliminary results

We have not implemented the optimisation scheme proposed in chapter 3. However,
it is interesting to note that the global deformation achieved with this model (figure
E.2) is visually very similar to that we want to model (top). Results so far suggest
this scheme is worth a full development.

1. Translate all the transformation parameters from the standard flat model to the
fundus coordinates.

2. Iterate global geometric parameters until a maximum is achieved.

3. Iterate the registration for each frame until a maximum is achieved

4. Repeat step 2) until successful convergence.



224 A MODEL OF THE EYE

Figure E.2: Top: typical local misregistration. Bottom: deformation achieved using
the model described.



Appendix F

Registration results for pairs of 2D
images

Although in chapter 3 we have worked only with ophthalmologic medical images,
results are valid for any 2-D images showing creaseness-like features. For instance, in
satellite images the roads and coast like would serve this purpose.

We have tried our algorithm for two pairs of pictures from Michelangelo’s Pietà
IBM project [34], gently provided by Dr. Frederic Leymarie. We have run the method
without any modification, using as landmarks the marks of the hammer. Check the
correctness of matching at the overlapping areas.
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Figure F.1: Registration applied to two partially overlapping images of a statue.
The marks of the hammer have been extracted with also with creases, and the stan-
dard registration algorithm has aligned them. The presentation here shows mosaicing
at the common regions.



Appendix G

Levenberg-Marquardt optimisation

The purpose of this appendix is to explain the numerical methods employed in chapter
4, mainly the Levenberg-Marquardt method to estimate parameters of a non-linear
model. Although brief, the explanation should be useful to clarify the terminology
appearing in that chapter, and also to provide some basis for their final conclusions. To
write this appendix I have followed the indication of Sadler’s short but excellent book
[89] and the corresponding Numerical Recipes’ chapter [80], while final improvement
have been taken from Cambridge’s papers [79].

G.1 Introduction to model-based maximisation

The problem to be solved here appears in the context of estimation of model pa-
rameters. The situation is as follows: in an experiment we are able to predict some
measurable value by means of some function of parameters of the experiment. The
function expresses to our knowledge the relationship between the parameters and the
output value. We may be able to measure some of the parameters, and also we must
be able to measure the actual output value, and our aim is to estimate the remaining
set, unknown, parameters.

Written in a mathematical expression,

Y = f(x;a) + ε (G.1)

where x is the vector of M parameters to be estimated
a represents a vector of some measured variables
ε is the unknown random error
Y represents the dependent variable
f the population regression function (PRF), given the functional

relationship between Y, x and a

For the experiment of the ultrasound calibration,

• a, the known parameters, are the coordinates of the object in the ecography
(ux, uy), and the receiver to transmitter matrix, MT

R .
a = {(ux, uy),MT

R }

227



228 LEVENBERG-MARQUARDT OPTIMISATION

• The parameters to be estimated, x, are: the ultrasound-to-receiver matrix, MR
U ,

and, as a by-product, MC
T .

x = {MR
U ,MC

T }
• f provides the position in the cuberille of any pixel coordinates (ux, uy).

For the sake of comprehension, we recall equation 4.1:

(x′, y′, z′) = f(x;a) = (ux, uy, 0, 1) ·MR
U (x) ·MT

R ·MC
T (x)

Suppose that a total of N replicates of the experiment have been made. For each
observation, let yi denote the observed value, Yi the predicted value, and similarly ai

and xi the measured and estimated parameters. The ith residual is defined as the
difference between the actual and expected values:

ei = yi − Yi (G.2)

And the objective function S(x) to be minimised:

S(x) =
N∑

i=1

e2
i =

N∑

i=1

{yi − f(x;ai)}2 (G.3)

For S being a linear function of x, minimising S is known as linear least squares.
Here we will focus on non-linear least squares, since the matrices required for the
calibration include sinusoidal functions.

G.2 Complementary terms

Before proceeding on, we will develop the terms that will be useful to define some
maximisation strategies.

The gradient of S, or Jacobian, point toward the direction of maximum increase.
It is a vector of M components, one for each independent variable:

J = ∇S =
[
∂S(x)
∂x1

, . . . ,
∂S(x)
∂xM

]T

x=xj

(G.4)

Each term can be developed; note the final expression demands explicit calculation
of ∂f

∂S(x)
∂xj

= 2
N∑

i=1

ei
∂ei

∂xj
= −2

N∑

i=1

ei
∂f(x;ai)

∂xj
(G.5)

The Hessian of S is a M×M matrix where each term is a second-order derivative
of S. A usual approximation, the Gaussian, requires only first-order derivatives:

H ' G = 2
N∑

i=1

∇fi∇fT
i (G.6)
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where the gradient of f is:

∇fi =
[
∂f(x;ai)

∂x1
, . . . ,

∂f(x;ai)
∂xM

]T

x=xj

(G.7)

A related measure is the so-called curvature matrix α,

α =
H
2

(G.8)

G.3 Maximisation techniques

Now, we briefly define two search methods, steepest descent and parabolic approxima-
tion, and see how both can be combined into a single and more powerful combination,
the Levenberg-Marquadt method.

Maximisation algorithms seek an iteration of estimating values xj to decrease the
value of the objective function S:

S(xj+1) < S(xj) (G.9)

A plethora of maximisation methods exists; for our purpose, we choose those that:

• make use of the explicit the derivative of S

• the function can be tested for a number of replicates of an experiment.

The ultrasound calibration requirements are somewhat special in the sense that
we suppose Yi to be constant and nil; in our model, f(x;a) = (x′, y′, z′) will be set
to:

• Bottom of the recipient we set the line appearing in the image to be the
bottom place of the cuberille, thus the requirement z′ = 0 will give one equation
to be minimised, fx = 0

• Single point will lead to x′ = y′ = z′ = 0. We must combine the three resulting
equations into a single one, f2

x + f2
y + f2

z = 0.

• Line will lead to x′ = y′ = 0, which, put into a single equation, is: f2
x + f2

y = 0.

Calibration is also at the heart of experimental and autonomous robotics; in
robots, each joint axis needs to be calibrated. It is interesting to review related
problems in papers from this area, specially Hollerbach and other ’s [32, 33, 35]. For
instance, his classification of calibration methods as:

• Open-loop methods, which employ an external metrology to estimate the actual
value yi, this is, the actual position of the end-loop (for robots) or the calibrating
object (for ecographies)

• Closed-loop methods constraint the movements, for instance to the ground, so
yi is set to zero for all cases. Constraints may be of one degree (plane) to three
degrees (point)

Our calibration methods are included in the close-loop category.
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G.3.1 Steepest descent

The steepest descent method exploits the property of the negative gradient to point
at a given point toward the maximum decreasing direction.

xj+1 = xj − h I J (G.10)

where xj is current estimation of parameters
xj+1 is the new estimation to be evaluated
J is the gradient of S, or Jacobian, pointing toward the steepest

ascend.
h determines the length of the step
I is the M×M unity matrix, included to simplify later discussion

Figure G.1 shows graphically that direction chosen at a point is along the gradient.
Although any value of h could be taken, normally a linear search is performed along
the line until the lowest value is reached.

A

B

c

level curves

J

A BC

S(x)

Figure G.1: A labels the point xj , B labels xj+1 The steepest descent maximisation
follows the opposite direction of the gradient or Jacobian J (left). The length of the
step may be taken to the minimum value along the line (right).

G.3.2 Parabolic or Newton maximisation

Another techniques consists of approximating S locally by some other more tractable
function with an analytical minimum. For the one-dimensional case, shown in figure
G.2, the function is approximated by a parabola. The minimum of the approximated
parabola is chosen as the next estimated step.

In M dimensions, the iterative formula which reflects this idea is:

xj+1 = xj −H−1J

' xj −G−1J (G.11)
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Aproximating
parabola

Figure G.2: The parabolic approximation to S permits to compute the new step x2

where a minimum is expected.

G.3.3 Levenberg-Marquardt

The two methods above can be seen as complementary; steepest descent works ro-
bustly, although it has low rate of convergence. Newton method has second-order
convergence property near the minimum, but has poor performance otherwise.

Equations G.10 and G.11 are combined into a single one:

xj+1 = xj − (G + hI)−1J (G.12)

which is usually written equivalently as:

(G + µI) ∆x = −J (G.13)

where ∆x = xj+1 − xj is the correction vector
µ is a positive constant evaluated at every iteration. As convergence

is successful, µ decreases, otherwise it increases.
Equation G.13 is numerically easier to solve than G.12, because does not need

explicit calculation of the inverse matrix and can use that symmetry properties of
(G + µI).

We will not write here the details of the algorithm, such as the adjustment of the
combining parameter µ or the stopping conditions. Simply remarks that:

• for µ → 0, the method becomes Newton’s.

• for µ → ∞, then G in the sum (G + µI) becomes a minor perturbation, and
the method resembles steepest descent.

Figure G.3 shows graphically that the correction vector is a parametric combina-
tion of the two methods.
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Approximating
paraboloid

True level curves
of S(x)

x

−J

parametric combination
Set of Levenberg−Marquardt

Figure G.3: Steepest descend and Newton method may be balanced to achieve the
best of both.

G.4 Further requirements

The optimisation algorithm convergence to a parameter set x∗ may not necessarily
imply the correctness of the solution or, even worse, the suitability of our model to
the experiment. The covariance of the standard errors in the fitter parameters x can
be estimated evaluating the Hessian:

C ≡ α−1 =
(

H
2

)−1

(G.14)

Other measures were first proposed i the field of robot-kinematic calibration; well-
posed problems are identified by rank determination and scaling.

We perform singular value decomposition of the Jacobian matrix at x∗:

J = UΣVT (G.15)

where Σ = diag(µ1, . . . , µM) is the list of ordered decreasing singular values of J. Any
µ too near to zero will imply a non-identifiable parameter. Otherwise, the matrix has
full rank, and the so-called condition number (C.N.)

k =
µ1

µM
(G.16)

A large condition number (higher than 100) indicates that the problem is ill-posed.
You may refer to [39], page 50 for strict mathematical description, or [79] for a plainer
explanation.

The other issue is parameter scaling: the optimisation models described above do
not take into account that parameters have different units and also different range of
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values, which make the search space liable to have an elliptical shape. S may be very
sensitive to variations of one parameter, while the same variations in another produce
no effect. The model then becomes ill-posed. You may refer to [39], page 185 for
strict mathematical descriptions.

The best way to solve this problem is by parameter scaling. In equation G.13,
instead of J we use JH, where H = diag(h1, . . . , hq) is a diagonal matrix such that:

hi =
{ ‖ji‖−1 : ‖ji‖ 6= 0

1 : ‖ji‖ = 0 (G.17)

where ji is the ith column of J evaluated near the solution (thus without scaling).
Finally, the solution x′ of the system with this settings will have to be re-scaled

to obtain the true parameters x:

x′ = H−1x (G.18)




