
Appendix H

Calibrations tests

In this chapter we enumerate the experiments we performed in order to test the
performance and accuracy of the Minibird tracker. The experiments had two goals:

• test in depth the communication and data formats of the device.

• build the software able to model the calibration.

• estimate the real accuracy of the tracker, and its drawbacks for real applications.

We recall the equation which gives final the coordinates Cx as a function of the
pixel coordinates Px, and other transformation matrices:

Cx = Px ·MR
U ·MT

R ·MC
T (H.1)

In all these experiments, Px = (0, 0), but we leave this term in order to keep
the same notation we employed for the ultrasound calibration. MT

R , the receiver to
transmitter matrix, is output by the tracker and gives the position and orientation
at each moment. Now our goal is to combine the other terms of the equations, Cx

and MC
T in order to produce a system with more equations than unknowns which

permits to find the unknown term MR
U .

But now the tracker is not attached to the ecographer. Instead, two configurations
are tested; in the first, the receiver is hand-held freely and thus MR

U is taken as the
identity matrix. For this case, we are interested only in determining the values of
MC

T and estimate the resulting accuracy. In the second configuration the receiver is
rigidly attached to a stylus, and MR

U actually depends only on the coordinates of the
tip of the stylus in the receiver coordinate system.

One possible way to calibrate the system is to restrict the movement of the object
(receiver or stylus) to some know geometrical figure, which could be a plane, line or
point. Then, the final coordinates of the object, Cx, would hold a geometric property
enabling to set a system of equations. For instance, if we restrict the movement of
the stylus to a single point by attaching the tip to a small hole and moving the rest
freely, we can constraint the coordinates of the stylus in the cuberille coordinates to
a constant, e.g.,

Cx = (x′, y′, z′) = (0, 0, 0) (H.2)
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This equation gives a system of three equations per position recorded by the
tracker. Similarly, constraining the movement of the tip to a plane (the flat surface
of a table, for instance) would give a single equation per position, z′ = 0.

The system of equations must then be processed using some numerical algorithm
in order to find the unknown variables. In the appendix G we have already described
the relevant mathematical issues.

Following we list the experiments done; the label will be used for reference in the
text from now on.

RP1 Receiver on plane.

RP2 Receiver on plane, pausing to capture values.

RP3 Receiver attached to a heavy object, moving freely on a plane.

RL Receiver moving on a line.

SP Stylus moving on a plane.

SL Stylus following a linear trajectory.

SS Stylus restricted to a spot.

Each configuration determines a different set of identifiable parameters:

Parameters Receiver only Stylus
Plane line Plane Line Point
RP1–4 RL SP SL SS

MR
U

Tx – – Y Y Y
Ty – – Y Y Y
Tz – – Y Y Y

MC
T

Tx – – – – Y
Ty – Y – Y Y
Tz Y Y Y Y Y
Rx Y – Y – –
Ry Y Y Y Y –
Rz – Y – Y –

Table H.1: Identifiable parameters for each model

H.1 RP1

The first experiment consisted on estimating the coordinates of a flat surface in the
tracking coordinates system. In addition to the accuracy, we were interested in seeing
how reproducible were the results. For this purpose, we took five sets of values in two
different positions. In this configuration, the transmitter was placed slightly below
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the surface. For the second set, the transmitter orientation was changed. The sixth
set of values was the union of the previous sets of values.

For this configuration, as for RP2–4, the matrix MR
U has been taken as identity.

We measure the accuracy with the root mean squared value between the expected
and the real position (see appendix G). The condition number is an indication of how
well defined the system is. Mathematically, it is the ratio between the highest and the
lowest variation in the magnitude of parameters (again see the mentioned appendix).
It is accepted that well posed systems have a condition number lower than 100.

In the mathematical system the condition number can be expected to be high,
since the magnitudes of the variables are very different; see, in table H.1, that while
Tz, the translation, raises up to 90, the rotation variables are very low. There is a
mathematical solution to this problem, which is to scale the variables until all have a
similar magnitude. The alternative set of equations will have lower condition number,
and the optimisation algorithm is expected to present better convergence properties.
Therefore, the solutions for one set and the other are often not the same. For this
experiment and for RP2–4, however, both sets converged to the same solution.

S. # Tz Rx Ry RMS StdDev C.N. C.N.
(mm) (deg) (deg) (mm) (mm) Scaled

1 323 88.29 0.42 1.26 0.53 0.66 967.68 7.53
2 340 88.89 0.26 1.09 0.59 0.73 1066.7 8.07
3 334 88.06 0.15 1.2 0.77 0.97 1100.64 8.84
4 323 89.35 0.43 1.17 0.93 1.22 965.63 7.69
5 338 89.88 0.17 0.93 0.89 1.06 837.14 6.76
6 1658 89. 0.26 1.08 0.85 1.1 953.29 7.49
1 313 81.06 13.81 -1.08 0.56 0.68 1505.27 12.08
2 309 79.91 13.53 -1.07 0.67 0.88 1331.76 10.42
3 353 78.91 13.62 -0.88 0.6 0.88 1449.82 10.67
4 316 80.52 13.65 -1.19 0.43 0.59 1302.64 10.23
5 313 80.02 13.53 -1.09 0.43 0.53 1185.79 9.75
6 1604 80.19 13.62 -1.1 0.57 0.8 1318.63 10.32

Table H.2: Numerical results for experiment RP1. S, set; #, number of collected
points.

Results in table H.1 show an error lower than 1mm, and also the condition number
is good, lower than 100. To further investigate the nature of the error, we present in
the next page several graphical functions. See that the error changes smoothly per
frame.

However, the solutions present relatively high variations for the parameter Tz.
This probably is an indication that the data set is not as well posed as one would
desire, i.e., the profile of the error is low not at a single point but rather in a wider
area. To investigate this hypothesis, we have computed the error for values varying
from solution 1 to 5 of the first dataset, using the full data as input values. In bottom
right graphic in H.1, the rms error at x = 0 is computed for solution 1, x = 10 at
solution 2, etc., while intermediate values are computed at linear values between the
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other solutions.
The resulting graphic demonstrates that the function has a valley-like shape at

the minimum, and that the optimisation algorithm may converge at any point in it.
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H.2 RP2 and RP3

In this experiment we wanted to see the influence of the movement of the receiver for
the final accuracy. The motivation was that when we moved the receiver in a rapid
fashion and then stop it suddenly, the coordinates took some time before becoming
stable. Thus we made the hypothesis that the tracker gave worse accuracy when in
motion.

The settings of the experiments are the same as in the previous: two different
configurations, and five data sets for each.

S. # Tz Rx Ry RMS StdDev C.N. C.N.
(mm) (deg) (deg) (mm) (mm) Scaled

1 22 87.1 -179.72 -1.55 0.19 0.29 1017.08 10.67
2 18 87.58 0.09 1.44 0.31 0.39 855.89 8.11
3 18 86.98 0.21 1.6 0.2 0.25 975.74 9.38
4 20 87.69 0.28 1.53 0.3 0.38 1068.47 10.04
5 15 88.16 0.46 1.52 0.22 0.33 1040.41 10.22
6 93 87.26 0.2 1.54 0.33 0.43 930.8 9.02
1 18 78.9 13.46 -0.98 0.23 0.28 1584.76 15.05
2 18 79.45 13.7 -1.03 0.17 0.24 1777.64 15.02
3 18 78.85 13.44 -0.99 0.24 0.32 1500.59 12.79
4 20 80.16 13.69 -1.14 0.17 0.22 1394.64 12.04
5 20 80.06 13.66 -1.18 0.2 0.28 1347.09 11.44
6 94 79.64 13.62 -1.09 0.24 0.31 1407.56 12.17

RP3 494 116.28 13.57 -0.69 0.22 0.29 2887.58 20.7

Table H.3: Numerical results for experiment RP2

The results confirmed this hypothesis: the rms is clearer lower than the previous
experiment.

We designed a very similar experiment to test graphically the sensitivity to the
movement: we attached the sensor to a heavy object, which could be moved freely
over the table. We acquired the data with intervals of movement and pause, and then
run the optimisation algorithm. Next, we draw the error in a 3−−D graph, where x
and y correspond to the position and z to the error. See in figure H.2, top, that the
error is lower (higher in the graphic) at certain intervals, those when the receiver had
stopped its motion.

RL
Another experiment, this time following the geometry of a line, confirmed the

previous results. To achieve this geometry, we attached a ruler to a table, and slipped
the receiver along the ruler while acquiring the data. See in table H.2 that the
accuracy is similar to that of the previous. Also, see in figure H.2, bottom, that the
error presents some dependency on the position. The shape of the error function is
regular despite the fact that several runs along the ruler were made.
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S. # Tx Ty Rx Ry RMS StdDev C.N.
(mm) (mm) (deg) (deg) (mm) (mm)

1 756 192.84 32.98 7.55 31.17 0.47 0.27 3.58

Table H.4: Numerical results of experiment RL.

H.3 SP, SL and SS

We attached the receiver to a stylus, and made a similar set of experiments. Now
there is a larger set of values to optimise, and the experiment is close to those with
the ecographer. The matrix MR

U is not the identity matrix any longer. Also, now the
orientation of the receiver is included in the equations, thus introducing a new source
of errors.

Tables H.3, H.3 and H.3 report the numerical results for the models of plane, line
and point. For all, the values of the solution are far more irregular the before, and
the RMS error is much higher. The explanation is that the orientation output of
the tracker is much more sensitive to noise, because of the shape of the object. In
effect, the distance between the tip of the stylus to the receiver make small errors of
orientation become higher. Also, there occur a number of glitches, which simply give
wrong data values. While the optimisation algorithm is designed to be robust against
these effects, if they are too numerous the final solution is not reproducible.

In order to see this effect, we have drawn the error in the y scale as function in
time, for experiment SP. See in figure H.3 that the glitches occur in all datasets, but
they are specially important in datasets 1 and 2, which are those presenting highest
rms error in table H.3.

S. # MR
U MC

T RMS StdDev C.N.
Tz Rx Ry Tx Ty Tz

(mm) (deg) (mm) (mm) (mm)
1 357 122.66 0.39 0.5 2.93 1.22 8.64 3.15 4.43 39.55
2 350 95.52 0.12 1.77 30.6 -4.84 8.95 2.56 3.82 30.27
3 373 86.1 -0.29 1.24 40.55 2.41 9.04 0.62 0.94 45.5
4 385 97.75 -0.39 1.06 28.21 1.92 5.77 1.38 1.96 64.78
5 354 100.1 0.5 0.51 28.86 0.4 6.21 1.4 2.29 47.49
6 1819 98.64 -0.19 1.12 27.01 -0.2 8.93 1.99 3.32 31.9

Table H.5: Numerical results for experiment SP

H.4 Remarks

The experiments performed have been useful at giving some idea of the problems to
expect to calibrate the ecographer. The most disturbing effect is the glitches in the
orientation of the receiver, but also the effect of the movement to the accuracy of the
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S. # MR
U MC

T RMS StdDev C.N.
Tx Ty Rx Ry Tx Ty Tz

(mm) (deg) (mm) (mm) (mm)
1 261 153.64 84.65 1.35 26.84 40.93 -0.73 8.6 2.19 1.25 55.17
2 257 153.25 84.16 1.68 26.84 40.89 1.88 9. 1.62 0.93 45.06
3 276 148.92 85.67 1.06 26.62 42.58 0.32 11.16 1.76 0.95 55.47
4 270 154.06 83.84 0.67 26.97 43.95 1.93 8.84 2.08 1.01 37.93
5 259 152.8 87.64 1.01 26.42 38.94 3.54 8.02 1.46 0.82 48.07
6 1323 153.81 84.19 1.43 26.91 41.58 1.5 8.64 1.85 1.2 29.41

Table H.6: Numerical results for experiment SL

S. # MR
U MC

T RMS StdDev C.N.
Tx Ty Tz Tx Ty Tz

(mm) (mm) (mm) (mm)
1 254 247.1 6.37 81.32 44.26 -2.15 5.74 5.98 2.3 17.32
2 261 245.61 7.85 62.33 60.77 -0.86 6.21 7.17 2.93 9.77
3 257 257.54 2.39 118.56 2.12 -7.28 7.98 11.94 5.27 11.1
4 310 246.69 5.31 78.4 46.45 0.47 8.69 5.85 3.23 21.58
5 269 247.88 5.22 78.25 45.84 2.07 10.82 5.53 2.48 20.9
6 1351 256.49 1.62 117.6 3.32 -2.1 9.44 11.87 6.4 6.29

Table H.7: Numerical results for experiment SS

sensor. These problems could be taken into account later, thus making simpler the
design step.

Also, we found the experiments very useful in order to provide programming struc-
tures common to all geometric models. In the Mathematica software package, we
programed the optimisation scheme as a separate module, so for each model we only
needed to specify the equations in a standard format.
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[45] David Lloret, Cástor Mariño, Joan Serrat, Antonio M. López, Manuel G.
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[53] A.M. López Peña, F. Lumbreras, and J. Serrat. Creaseness from level set ex-
trinsic curvature. In Computer Vision-ECCV’98, volume 1407, pages 156–169.
Springer, 1998.

[54] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Mul-
timodality image registration by maximization of mutual information. IEEE
Trans. on Medical Imaging, 16(2):187–198, April 1997.

[55] G.Q. Maguire, M.E. Noz, H. Rusinek, J. Jaeger, et al. Graphics applied to
medical image registration. In IEEE Computer Graphics applied, volume 11,
pages 20–29, 91.

[56] J. Maintz, P. van den Elsen, and M. Viergever. Evaluation of ridge seeking
operators for multimodality medical image matching. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 18(4):353–365, 1996.

[57] J. Maintz, P. van den Elsen, and M.A. Viergever. Comparison of feature-based
matching of ct and mr brain images. In N. Ayache, editor, Computer Vision,
Virtual Reality and Robotics in Medicine, volume 905 of Lecture Notes in Com-
puter Science, pages 219–228. Springer-Verlag, 1995.

[58] J. Maintz, P. van den Elsen, and M.A. Viergever. Comparison of edge-based and
ridge-based registration of CT and MR brain images. Medical image analysis,
1:151–161, 1996.

[59] J. Maintz and M. Viergever. A survey of medical image registration. Medical
Image Analysis, 2(1):1–36, 1998.

[60] G. Malandain, S. Fernández-Vidal, and J.M. Rocchisiani. Improving registra-
tion of 3–d medical images using a mechanical based method. In European
conference on Computer Vision, pages 131–136, 1994.

[61] G. Malandain, S. Fernández-Vidal, and J.M. Rocchisiani. Rigid registration of
3–d objects by motions analysis. In Proceedings 12th International Conference
on Pattern Recognition, pages 579–581, 1994.

[62] G. Malandain, S. Fernández-Vidal, and J.M. Rocchisiani. Physically based rigid
registration of 3–d free-form objects: application to medical imaging. Technical
Report 2453, INRIA, 1995.

[63] P. Marais and J.M. Brady. Detecting the brain surface in sparse mri using
boundary models. Medical Image Analysis, 4:283–302, 2000.
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sound to mr volume registration for brain sinking measurement. IEEE Trans-
actions On Systems, Man and Cybernetics, 2001 (submitted).
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F. Gómez Ulla, and Juan J. Villanueva. Automatic registration of full slo video
sequences. IEEE Transactions On Medical Imaging, 2001 (submitted).
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de Formas y Análisis de Imágenes, 1999.
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