Chapter 4

CC-ICA Feature Selection

4.1 Introduction

The problem of feature selection for classification can be stated as, given a set of
features used to represent our data, select a subset of these features such that working
with the reduced set proves advantageous for our task. Selecting a feature subset can
be seen as a linear transform. If the original number of features is D and we select a
subset of M features, this is equivalent to multiplying the data with an M x D matrix
with its rows formed by D-dimensional canonical vectors with the M ones pointing
to each of the selected features. As with any linear transformation, the Bayes error of
the resulting dataset will be, in the best case, equal to the original Bayes error [83]:
if class-conditional densities can be accurately estimated in domain space, feature
selection will negatively affect classification. Of course, this situation is unfrequent
and if a good feature subset is chosen this fact, together with the dimensionality
reduction, can benefit estimation and thus, classification.

First of all we must define what a good feature subset is. This requires a criterion
stating the goodness of any subset. Once a decision has been made over the criterion,
selecting the best subset might imply evaluating it on all available subsets, a problem
that grows combinatorially on the dimension. Probably being this the most delicate
issue concerning feature selection. One way of avoiding the exhaustive search for
feature subsets is to use iterative algorithms that successively reduce search space.
Examples of these algorithms are backward and forward selection which do not guar-
antee the selection of the best subset [78], or branch and bound algorithms which
optimize combinatorial problems and do guarantee a global optimum [106, 48, 140].
Another possibility is to use a criterion that does not require an exhaustive search at
all. While this converges to the global optimum, such criterions are difficult to find.

In classification, feature selection criterions are based on class separability and,
sometimes, directly on classification accuracy. The first approach states that a good
feature subset should preserve or enhance the separation among classes, the second
one simply uses as feature selection criterion the objective of the feature selection.
Using classification accuracy as criterion is a very delicate issue since much care has to
be taken in order to give statistical significance to the results. Among all, it requires
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careful training and test set selection procedures to avoid overlearning and allow gen-
eralization. A major drawback with this criterion is that in most cases an exhaustive
search is required. Moreover, each feature subset also requires costly and completely
new calculations for each possible subset. On the other hand, class separability mea-
sures are generally simpler and, in some cases as ours, can be linked with the classifier
of choice. These measures can be made from straightforward metric considerations
such as the distance between class elements or using more complex statistical or even
information theoretic approaches. Statistical class separability measures take into
account the distance among distributions. Since distribution estimation is not always
possible, parametric approximations (for instance, assuming the classes are Gaussian)
are frequently introduced. Some of the most used class separability measures will be
enumerated in the next section. We will then focus on the measure of divergence,
which can be interpreted from both a statistical and information theoretic approach.
Divergence has a strong theoretical basis and does not make any assumption on the
class-conditional distributions which also turns out to be its main drawback, since
accuracy of divergence is related with the accuracy of the conditional density estima-
tion. But we have just presented an algorithm which greatly simplifies this estimation
by allowing the independence assumption to hold, so densities can be estimated in
projected space. Divergence can be calculated using this, hopefully accurate, approx-
imation. More important, we will show through a simple property of order that if
conditional independence is true, the class separability measure of divergence does not
require an exhaustive search for selecting the best feature subset of any cardinality.

CC-ICA has a particularity that should be contemplated when focusing on fea-
ture selection. Since representations are class dependent, the feature subsets will also
depend on the class label. Feature, for instance, number 1 on the ICA representation
corresponding to a certain class, has no relationship with the same feature number in
any of the other representations. This can give place to situations in which certain
features are good for separating their corresponding class from the others, and com-
pletely different features are necessary for other classes. Fortunately, by interpreting
divergence in terms of expected log-likelihood ratios we can formulate a divergence-
based criterion good for evaluating local features and obtaining class-dependent opti-
mal feature subsets. So divergence can be naturally be introduced within the CC-ICA
framework.

The point now is why should we select features within CC-ICA if, as we hold until
now, conditional density estimation is quite accurate thanks to the independence
assumption. Reducing dimensionality preserving discriminability can give us more
than improved accuracy. The computational load of our CC-ICA scheme is high since
we need to perform as many projections as classes there are, before evaluating all the
marginal densities. Strongly reducing the number of features will very likely improve
the speed of our algorithm. So there are cases in which we will accept to sacrifice small
variations in the accuracy for a greater speed and efficiency. The experiments will
show that, being CC-ICA with naive Bayes a Bayesian classifier, it is very difficult to
select features and improve the accuracy, though this happens in more than one case.
But they will also show that the accuracy is preserved for even feature subsets with
very low cardinality. In some cases, it is enough to keep a couple of filters from each
of the class-conditional projections matrices to obtain the same accuracy as using the
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whole CC-ICA spaces. This turns CC-ICA into a very fast method.

4.2 Class Separability Measures

Class separability measures (noted by S) provide simple and efficient criterions for
measuring the goodness of feature subsets. In this section we will expose some of
the most spread out measures, and consider their expression for the two class case
(K = 2). The most frequently used feature selection criterions, for their simplicity, are
those based on statistics of the distributions instead of the distributions themselves.
In almost all cases, only up to second order statistics are used. A very simple criterion
is to use the Mahalanobis distance (section 1.2) between the two class means, S =
(u' — p)TS (' — p?) with ¥ the common covariance matrix. We mentioned
that class separability measures can be frequently linked to the classifier. In this
case, under Gaussian class-conditional densities, the probability of error is inversely
proportional to the Mahalanobis distance [38], so we observe that this criterion ensures
optimal features for the quadratic classifier.

The Mahalanobis distance only takes into account the global distribution and a
rough approximation of the intra-class distances through the difference between the
means. Slightly more complex approaches consider intra- and extra-class properties:
desirable features should have compactly represented and widely separated classes.
Most of these techniques result from variations of the classical Fisher ratio [41, 38].
In its most common version it is defined in terms of within- and between-class scatter
matrices (¥ and ¥,,). The within class scatter matrix can be defined as the weighted
sum of the class covariance matrices, where the weights correspond to the class priors.
The between class scatter matrix can be defined as the scatter of the class mean around
the common mean, also weighted with the prior class probabilities. The Fisher type
class separability measures are then statistics obtained from these matrices. For
instance, S = trace(X,'%};). For details and variations of this approach refer to [48].
In the next chapter, we will also observe that this criterion has been more spread out
as an objective function for extracting features than for selecting features: instead
of selecting feature subsets that maximize this measure of class separability, use it
to analytically find the linear transform such that projected features optimize the
criterion.

Another criterion is the Bhattacharyya distance or bound [73], a popular measure
of similarity between two distributions which arises from the problem of finding an
upper bound for the Bayes error for normally distributed classes,
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where p* and ¥ correspond to the class mean and covariance with k& = 1,2. Notice

that the second term of this equation considers the distance between the class means
in a Mahalanobis fashion, while the first term only involves second order information.
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The exposed criterions all have the same inconvenient we exposed for PCA, in sec-
tion (2.2.1), they are blind beyond second order statistics. While it might not be true
to say they assume conditional Gaussian distributions, it is certainly true that they
are unable to tell the difference. Attempts have been made to generalize these crite-
rion to more general class-conditional distributions. For instance, a generalized Fisher
ratio can be obtained by considering Gaussian mixtures to model the conditional den-
sities [80]. If the above approaches could be regarded as parametric criterions, this
last one would clearly be a semiparametric criterion. A nonparametric and more
general alternative is to consider objective functions which make direct use of the
conditional densities and charge the complexity to the density estimation method.
These approaches directly measure the distances between a pair of distributions.

The Jeffries-Matusita (JM) distance between a pair of probability distributions
[158] is defined as,

Soan = / (Vo(@ICT) - /p(|C?)) dz (4.2)

and can be seen as a measure of the average distance between the two class densities.
For normally distributed classes, the JM distance becomes

Sqm =2(1 — e 5F) (4.3)

so it is directly related with the Bhattacharyya bound. Moreover, we observe an
exponentially decreasing weight as the class separation increases. This is because
the JM distance is asymptotic to 2. This saturating behaviour is a highly desirable
property because a value of 2 for the JM distance already ensures 100% classification
accuracy, a consequence of the fact that (4.2) is equivalent to

Sy =2(1— / VPE@IO (|0 da) (4.4)

Divergence is another measure of distribution separability that has its basis in their
degree of overlap. Divergence is based on the Kullback-Leibler (2.46) divergence
between the class-conditional distributions. To avoid confusion with the version of
divergence we are now introducing we will refer to (2.46) as the Kullback-Leibler
distance. Adapted to class-conditional densities, this distance can be expressed as,
: p(x|Ch)
KL(ct,c?) = / p(x|CY) log == —Ldz (4.5)
o P18 o)
The asymmetry of Kullback-Leibler motivates the symmetric measure of divergence,
long ago used for feature selection [96], defined as

D(C*,C?) = KL(CY,C?) + KL(C?, CY) (4.6)

Besides being symmetric, divergence is zero between a distribution and itself, always
positive, monotonic on the number of features and, for the monotonic two class case,
divergence provides an upper bound for the classification error [73] since,

1
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The two main drawbacks of divergence are that it requires density estimation and has
a nonlinear relationship with classification accuracy. The first drawback is specially
problematic in high dimensional spaces, precisely where we would require feature
selection techniques. The second one is related with the fact divergence increases
without bound as class separability increases. Swain and Davis [146] heuristically
solved this inconvenient by introducing the following transformed divergence,

D(C,C?) =21 — exp(—%)] (4.7)
As the JM distance, transformed divergence has a saturating behaviour asymptotic
to 2. It has also been shown that transformed divergence is computationally more
economical, comparably as effective as the JM distance and considerably better than
simple divergence or than the Bhattacharyya distance [146, 147, 99].

Divergence, as the JM distance, also has an analytic expression for Gaussian
classes. This expression shares with the Bhattacharyya bound the property of having
one term which only involves covariances and a second term which is the square of a
covariance normalized distance between the means of the distributions,

D(CY,C?) = %trace((El e [ i) s
+ %tmce((zl_1 + 22T (b - p?) (- p?)T)

An additional property of divergence, straightforward to see from (4.8), is invariance
for invertible linear transformations. So if we should find an invertible transformation
that simplifies the density estimation, calculating the divergence in transformed space
is equivalent to the calculation in domain space.

Since sparse data is of special interest for our work, we have chosen to illustrate
the properties of divergence through an example with this kind of data. For this
purpose, we considered two classes represented by a single feature with the same
generalized Gaussian distribution (2.41)on each class, except for the means, located
in —0.5 and 0.5 respectively. The standard deviation of the conditional densities
was fixed to 1, such that the only free parameter is the Gaussian exponent a. We
made this exponent take values ranging from 0.4 (highly supergaussian distribution)
to 2 (Gaussian distribution). Then we calculated the JM distance, the divergence,
and the normalized divergence between these two distributions as a function of the
exponent. Results are exposed in fig. (4.1). In (4.1.a), (4.1.b) and (4.1.c) we can see
the artificial situation for three different choices of a: 0.5, 1 (Laplacian densities) and
2 (Gaussian densities). From these figures we can already notice that as the value of
a approximates 2, the degree of overlap between the distributions increases, so the
distribution distances decrease. The overlap is not as large as the figures suggest at
a first glance, since the y-axis is different for each figure. In fig. (4.1.d) the values of
the class-separability measures are plotted as a function of a. Here we confirm that
class separability is inversely proportional to the exponent value. We can also observe
the unbounded nature of divergence, and the close relationship between normalized
divergence and the JM distance. Notice that, for this particular problem, any class
separability measure solely based on second order statistics of the classes would be
useless since these statistics are constant for all chosen exponents.
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Figure 4.1: Class separability measures for two unidimensional classes with super-
gaussian distributions. In (a), (b) and (c) the distribution for three sample Gaussian
exponents: 0.5, 1 and 2. In (d) the separability measures as a function of the Gaussian
exponent.

4.2.1 Divergence and Independence

For simplicity, we will note divergence between classes C* and C7 as D% e D(CY,CY)

and marginal divergences will be noted by Dfij with d = 1,..., D, being D the data
dimensionality. The most important consequence upon divergence derived from as-
suming class-conditional independence is that this expression results additive in the
features,

D
D2 =Y "D} (4.9)
d=1

Since divergence is defined as a linear combination of terms of the form A(x) =
J f(z)logg(z)dx with f and g probabilities, proving (4.9) is equivalent to proving
that it holds for A. Also, we restrict ourselves to D = 2 noting = (x,y) since exten-
sion to more dimensions is straightforward. By using the definition of independence
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(3.3) and the fact the marginal probabilities integrate to 1, we have

A@w)z/’ﬂayﬂ%gmw)
=/nmm@m%%m%@
/ fo(@) £y (y) (log 9. (z) + log g, (y))

/n /@ ) log g, (y @+/@ /n )log g2 ()

= / fy(y) log g, (v)dy + / fz(2)log g ()
= A(z) + A(y).

This additivity property does not hold for transformed divergence so, if we choose
to work with this alternative expression, we should take care of calculating it after
the marginal divergences have been added or directly using the fact that in this case

D pl2
=201-JJe ). (4.10)
d=1

From (4.9) and the fact divergence is nonnegative it is clear that divergence in-
creases with dimensionality. It is also straightforward to calculate the divergence of
any feature subset S C {1,..., D}, which we note by D& since we simply need to
add the marginal divergences pointed out by S. We can also observe the following
property of monotonicity in divergence

(di ¢ S,d> ¢ S) A (Dg < Dgz) = (Dsya, < Dsyay)- (4.11)

This property of order suggests that, at least for the two class case, the global best fea-
ture subset is the one that contains the features with maximum marginal divergence,
and thus provides a very simple rule for feature selection using the divergence crite-
rion under the assumption of conditional independence without involving any search
procedure: given a feature subset size, preserve only those features with maximal
marginal divergence.

4.2.2 Divergence in the Multiclass Case

Although, divergence only provides a measure for the distance between two classes
there are several ways of extending it to the multiclass case, providing an effective
feature selection criterion. The most common is taking the average over all class pairs

K-1
2
A Zj
DY = K& =T Z Z D (4.12)
i=1 j=i+1l
Dj? represents the average divergence present in feature d, with d = 1,...,D. This

approach (noted by D4) is simple and preserves the exposed property of order for
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feature subsets, but it is not reliable as the variance of the pairwise divergences
increases.

A more robust approach is to sort features by their maximum minimum (two-class)
divergence,

Pi' = s i D (.13
This works fine when the number of features we wish to select is small, but soon
decays as the size of the subset increases: sorting features by maximum minimum
divergence is a very conservative election.

We introduce an additional criterion, that attempts to rank the features maximiz-
ing the divergence in all classes, minimizing the influence of already well separated
classes over the choice of features. To express this in a clearer way, if a certain subset
of features already separates certain class or classes, why should these classes influence
the choice of subsequent features? Let ¥* be an ordering of {1, ..., D} in descending
order of Dy, and note by ¥; = ¥} the matrix where each element contains the
features that best discriminate C* from C7. We first select those features within ¥,
sorted by frequency in descending order. The first features to appear in this listing
are those that best discriminate the larger amount of classes. If the number of fea-
tures present in this ordering is larger or equal than the size of the subset we are
searching for, we stop. This will not be the general case since it is common to find
single features good for separating many classes. If this is the case, we place those
features within ¥, (second best discriminative features) that have not been already
included, also in descending frequency order. We repeat this process on ¥; until all
features are ranked. By this simple algorithm we ensure that all two-class separations
are considered, and the best discriminant features placed at the beginning of the rank.
Also, features adequate for separating several classes are emphasized. We will call
this criterion DX and in many cases it outperforms D4 and DM

4.3 Divergence and CC-ICA

If we are able to ensure class-conditional independence of our data then divergence,
as exposed in the last section, should prove an effective criterion for feature selection.
Usually this is not the case so, as we have seen in the last chapter, one option is
to take advantage of the CC-ICA representation. In this case we have K linear
representations, one per class, each one making the variables in random vector x|Cj,
independent. With this class-conditional approach, it is not possible, or at least not
optimal, to select the same feature subset for all classes. We are forced to consider
each class in turn in order to determine which feature subset best separates this class
from the others. An insight on the definition of divergence will allow us to adapt this
concept to this class-conditional situation
The log-likelihood ratio (L) is defined as,

£(2) = log p(x|C") — log p(2|C?) (4.14)

L;j(z) is not symmetric and punctually measures the overlap of the class-conditional
densities in . Notice that the Kullback-Leibler distance is nothing but the class-
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conditional expectation of the log-likelihood ratio so (4.6) can be rewritten as,
D = B'{L(x)} + B (L7 (2)), (4.15)

where E? is the expectancy operator conditional on class C?. We can replace by (4.14)
and rearrange the terms in this last equation to obtain,

DY =E{log p(z|C")} — E/{log p(x|C") }+ (4.16)
Ei{logp(z|C?)} — E'{logp(z|C?)} ‘

We can now replace the estimate for the logarithm of the class conditional probabilities
provided by the CC-ICA model (3.12),

Mi

o

D = B logpt (wh, (& — &) + v’} — B Y logp'(wi,” (& — &) + v}
m=1 m=1
M M

+ BN logp (wi, (@ — %) + 17} — B Y logp! (wl,” (& — 7)) + v}
m=1 m=1

(4.17)

Where wF, is the m-th row of the filter matrix learnt for class C*, and Z* the estimated
class mean. Normalization constants are cancelled and the sum can be taken out of
the expectation operators,

Mi

D=7 (Ei{logp%w:;f(w — 7))} — B {logp! (w}, ' (x — fi))}) +
m=t (4.18)
M . . . T . . . . T .
3 (Ef{logpf (w, T (@ — 7))} — B {log? (w, (& — ff))})

This equation can be simplified defining

B = (E"{logpi(wﬂm — 7))} — B {log p'(w}, " (@ — mi))}) (4.19)
such that
.. Mz .. M] ..
DY =>"Bi+> B (4.20)
m=1 m=1

Observe that BY is the result of projecting all available samples from C¢ and C7
into the m-th filter of the class-conditional representation obtained for C* and then
subtracting their respective expected log-likelihood values. So BY measures the sep-
arability of the m-th independent component of the representation obtained for C,
between classes C? and C7. We have reexpressed the divergence between two classes
in terms of two summands such that each summand only affects projections on one of
the class-conditional representations. Divergence is maximized by maximizing both
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terms in (4.20) and each of the terms is maximized by selecting adequate features for
its corresponding representation. Maximization of each of the terms, independently,
as with divergence under class-conditional independence, is the result of preserving
only those features with maximum marginal divergences. Also maximization of each
of the terms will provide different feature subsets on each class representation, mean-
ing that, while certain features might be appropriate for separating class C? from class
C7 in the it" representation, possibly distinct features will separate class C7 from class
C' in the j** representation. In practice, the empirical expectation operator can be
used. So we can use the following approximation

#10. Z logpj(wﬁ'nT(a: — ). (4.21)

v zeC;

E'{logp’ (wi, (z — 7))} ~

From this scheme we have obtained a divergence-based measure of discriminability
between two classes for each class-conditional component. As with divergence, we have
to decide how we combine these pairwise separability measures into a single measure
of separability for this component. This can be done in exactly the same way as with
divergence but for the value B%. That is, using the average (B), the maximum
minimum (BM) or the proposed criterion (B).

4.3.1 CC-ICA Feature Selection Algorithm

Table (4.1) includes the results obtained in the last section in a learning algorithm
(CC-ICA-FS) that, given a fixed number of features we wish to select, outputs the
most discriminative features for each class. This algorithm should be applied after
training our CC-ICA representation (CC-ICA-Train). After obtaining the set of fea-
tures for each of the representations, CC-ICA-Test should be applied using only the
selected features.

4.4 Experiments

As in the last chapter, experiments were performed over artificial, benchmark and
real-world data.

4.4.1 Artificial Data

A first experiment is performed on the artificial two-class example Trunk used to
illustrate the curse of dimensionality [151]. In this experiment, Trunk considered two
classes in a D-dimensional space with class-conditional densities,

p(|CY) ~ N(p,I) , p(x|C?) ~ N(—p,I) (4.22)

where .
1 1

1
l’l’ - \/I’ \/57 cre \/E
For this data, Trunk showed that, if the mean vector g is known in advance the
probability of classification error decreases while dimensionality increases, and if u

(4.23)
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1. given F', the number of features we wish to select per class
2. foreachclassi=1... K

(a) foreachclass j=1...K,j#1i

i. foreachm=1...M¢
A. Obtain the m-th component value for the n = 1,..., N available samples in C*

Ty = w;ﬂ (2 —Ei)

B. Obtain the m-th component value for the n = 1, ..., N7 available samples in C?

yn = w), " (@n — ')

C. Calculate DZ,]L using the empirical expectation and the marginal probabilities p’fn learnt in
CC-ICA-Train,

1 1 ¥

g k k

D= Qi Eﬁllogpm(wn) - N7 Eﬁllogpm(yn)
D. end loop

ii. end loop

(b) Generalize the pairwise class separability measures to multiclass separability measures using D4, DM or
DX . For instance, if we use D we have

,Dz — 1 f: 17
™ K-—-14&~ "
J#i

(c) Select the F features with the highest values of D’ . These features are the F' most discriminant features
for the i-th representation (class C'*) of the CC-ICA model. Forming set DiscFeat’ = {m1,...,mp}

(d) end loop

3. end loop

Table 4.1: Class-conditional ICA feature selection training algorithm (CC-ICA-FS).

is unknown and estimated from a fixed number of samples the probability of error
shows a peaking behaviour converging to the worst case error 1/2. From a different
perspective, in a recent survey on feature selection [66], Jain and Zongker propose this
example to investigate the quality of certain feature subsets considering that for this
dataset the optimal F-feature subset is known in advance: since it has equal dispersion
on every direction and the distance from the means decreases for each consecutive
dimension, the first F' features are always the best subset. Their research was aimed
towards evaluating the effect of training set size on feature selection, so dimensionality
was fixed to D = 20. In order to perform this comparison a measure of quality for
a given feature subset is required. Their proposed measure takes the number of
commonalities between the proposed subset and the optimal subset: features that
were included in both subsets, and features that were excluded from both subsets.
This count is divided by the number of dimensions and that value averaged over
values of F', from 1 to 19 inclusive to give a final quality value for the feature set. The
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maximum possible value for this average quality is one, meaning that the 19 possible
feature subsets were the optimal subset for the five data sets. The authors remark
that this is not a measure of the classification error, but rather a measure of the
difference between the subset produced by a feature selection method and the ideal
feature subset. Data sets of different training sizes were produced, ranging from 10
to 5000 samples. For each sample number, 5 datasets were artificially generated and
the results averaged. The feature selection criterion employed by the author is the
Mahalanobis distance between the two class means, and the features were selected
using branch and bound and sequential forward search [78].

Notice that this data set is actually an ICA space: the class-conditional densities
are uncorrelated Gaussians, thus independent. So there is no need to transform the
data and the equation of divergence for class-conditional independent data (4.9) can
be used directly. Also considering the data is Gaussian, each marginal divergence
can be calculated using (4.8). In Fig. (4.2) we reproduce the results in [66] using
the optimal branch and bound feature subset selection algorithm. We also plot the
results of our method, estimating the marginal densities with a 2-Gaussian Mixture
Model (no prior knowledge of the data assumed) and with a Gaussian with unknown
mean and covariance (Gaussian data assumed).
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Figure 4.2: Quality of selected feature subsets as a function of the size of the training
data.

From fig. (4.2) we observe divergence is a fairly robust criterion with performance
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above Jain’s criterion, even though both make use of only first and second order
statistics. Gaussian Mixture Models do not perform well when the number of samples
is similar to the dimensionality but soon recovers, meaning that we can do without
the prior knowledge on the data distribution without seriously affecting the results.

4.4.2 Benchmark Data

For illustrating the performance of our feature selection algorithm, we chose the same
benchmark databases detailed in section (3.5.2): LETTER, IMAGE, PENDIGITS
and PIMA. For each of these databases, the classification accuracy against the number
of selected features is plotted in fig. (4.3). The straight line with dots is the result of
using the CC-ICA-FS algorithm. Since, in the last chapter we already observed that
CC-ICA was in all cases the Bayesian classifier with highest accuracy, and the Bayes
error decreases with dimensionality we can fairly assume that it is very unlikely that
any other of the proposed schemes would significantly improve their performance for
a reduced number of features. Actually, we can already observe in the figure, that
for our Bayesian scheme (CC-ICA) maximum accuracy is always achieved in high-
dimensional subsets. For this reason, no comparison is made between our scheme
and feature selection for other statistical classifiers. Instead, we chose to compare the
effectiveness of our feature selection criterion with an alternative criterion requiring an
exhaustive search. As with divergence the main inconvenient is adapting the chosen
criterion to work with class-conditional representations.

If the class-conditional independence assumption is dropped we are forced to eval-
uate divergence on multivariate probabilities. This gives unstable results and, as
we mentioned parametric approaches are advised. So we decided to use the Bhat-
tacharyya bound (4.1) and the version of divergence for Gaussian variables (4.8) as
criterions. Class-conditional feature subsets were then obtained by maximizing the
criterion on each of the representations. In this case, we cannot avoid the exhaus-
tive search on each class and this is how we selected the best feature subsets. The
Bhattacharyya bound yielded nonsignificant but slightly better results than Gaus-
sian divergence. In fig. (4.3), the accuracy obtained using Bhattacharyya feature
selection with exhaustive search for feature subsets is illustrated with a straight line
interpolated with circles.

Though we still have to evaluate our feature selection on high dimensional data,
some conclusions can be already extracted from this experiment. We first observe that,
in all cases and for all choices of subset size, the divergence criterion outperforms the
Bhattacharyya criterion. Though an exhaustive search has been performed, the cause
of these poor results is probably related with the false assumption of Gaussianity of
the projected data. We also observe that the accuracy using divergence, except for
PIMA, increases almost monotonically, generally reaching the highest accuracy before
reaching full dimensionality. This has to do with the Bayesian nature of our classifier.
In the case of PIMA, a single feature per representation already yields an accuracy of
75.6%, almost the best reported result for this database. In all databases except for
LETTER, there existed a subset with higher accuracy than the full dimensional case,
but these accuracies were clearly nonsignificant. Never more than a 0.5% difference.

Even though an exhaustive search was performed to select features using the
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Figure 4.3: Comparison, on benchmark databases, of divergence-based indepen-
dent feature selection without an exhaustive search (interpolated dots) with Bhat-
tacharyya exhaustive feature selection (interpolated circles).

Bhattacharyya criterion, this cannot be considered a full exhaustive search. This is
because, class-conditional features were chosen independently of the other classes. A
complete exhaustive search should consider all possible feature combinations for all
possible classes. This requires a huge number of operations. For instance, consider
selecting 5 features for each of the 26 16-dimensional classes in the LETTER database.
For this case, we have (156) = 4368 possible feature subsets for each class, so we have a
total 436826 ~ 2312 possible combinations of feature subsets. There is no way we can
evaluate all these combinations. Nevertheless a simple experiment can be made in
order to heuristically check the almost global nature of the solution provided by our
algorithm. For this same dataset (LETTER) and feature subset size (5) our method
yields an accuracy of 72.7%. Randomly generating 100000 sets of possibly different
features for each class the maximum accuracy obtained was 66.3% and the mean
accuracy 58.7%. The mean accuracy value already stabilized to 5 decimal places after
1000 tries, so we can predict that this value is close to the mean after evaluating all
possible feature subsets. The maximum accuracy can still improve but it is still far
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from our obtained accuracy. Similar results were obtained when this experiment was
repeated for a number of feature subset sizes and for the different databases. In no

case a randomly generated feature subset improved the accuracy of the feature subset
obtained by CC-ICA-FS.

4.4.3 Real-world Data

As in section 3.5.3 we will attempt to classify from images using the high dimensional
color signature as a descriptor. Once again, the samples consist in 512-dimensional
vectors made from the three 8-bin histograms that correspond to each color spec-
trum. These histograms were extracted from different representative regions of 948
images belonging to the Corel Database [28]. The regions belong to ten different
classes corresponding to clouds, grass, ice, leaves, rocky mountains, sand, sky, snow
mountains, trees and water. Some of these representative regions, for all ten classes,
are illustrated on fig. (4.4). In this figure we can already predict the high confusion
between classes derived from only using color signature. Grass, trees and leaves can
all present similar green patterns; sky, ice and water have strong blue distributions;
rock and sand are also similar, at least visually. In addition, there are portions of
the clouds which are only sky, or portions of the snow mountains which are mainly
rock. Of course, additional information such as textural information would aid dis-
criminability, but we will choose not to avoid the overlap among classes to evaluate

CC-ICA and CC-ICA-FS performance.

Clouds | B--- . | 15
cass | L O
| - Pl
e T | WD
L O [T
eI ol
Sky ----- = | .
Snow Mount, h@ﬁ@?‘ . - %h
Trees ----------

Water

Ice

Figure 4.4: Sample image regions and their corresponding class labels.
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Finally a total of 40000 possibly overlapped regions were extracted and the his-
tograms calculated. The number of samples per class was equal for all classes: 4000.
Of these class samples, 3000 were randomly selected for training our classifiers and
feature selectors and 1000 were used for evaluation. For all classes, the true class
dimensionality was considerably below 512, 150 in average. This means that classes
have very restricted color variation since there are many colors that do not appear in
any of the class samples. CC-ICA was performed after PCA dimensionality reduction
and whitening. In this case we chose to preserve 98.5% of the class variation. Preserv-
ing different percentages of variance does not have a strong impact on performance,
except for the 100% case, where accuracy drops: directions of extremely low varia-
tion do not contain discriminability information and can be regarded as noise. For
instance, a single red flower in one of the 4000 images of leaves. An interesting point
is that all CC-ICA representations have different dimensionality, a fact that does not
prevents us from still applying the Bayesian scheme for classification. The lowest
dimension corresponded to the ice class (42) and the highest dimension corresponded
to the leaves class (85). Feature selection was performed using CC-ICA-FS and com-
ponent densities were estimated using a mixture of 3 Gaussians. We also tried some
other methods for comparison. Our main interest is comparing the performance of
CC-ICA with the naive Bayes classifier applied to different representations. Results
with a global ICA were bad as we could have already predicted from the results over
artificial data on the last chapter. So we applied naive Bayes to a PCA representa-
tion using a forward search feature selection scheme and the Bhattacharyya bound as
separability criterion (PCA-SFS). We also applied a Gaussian maximum likelihood
classifier on PCA using the hierarchy PCA itself imposes on the features (PCA). Re-
sults with this classifier drop to zero once the covariance matrix for a certain class
becomes rank-deficient. We also applied a 1-NN classifier on the original representa-
tion using the mean Bhattacharyya distance as feature selection criterion. All these
results are illustrated in (4.5). We observe that CC-ICA outperforms all the other
evaluated methods for all feature subset sizes. It is also interesting to see very few
class-conditional features already yield results close to the optimum, achieved for 31
features per class.

Nevertheless, accuracy results in fig. (4.5) are not impressive: below 70% in
the best case. In the color indexing literature, it is not unfrequent to use the average
match percentile (AMP) to evaluate the results [145], where a rank in the classification
proves sufficient. The match percentile for a certain sample is defined as [145],

_K-R
TK-1

MP (4.24)

Where R stands for rank in which the sample was classified (in our case, obtained
from the value of the posterior probability). From (4.24) that the match percentile
ranges from zero (the correct sample label is considered the least probable label) to
one (the correct sample label is the most probable label). The AMP is the average of
match percentiles for all evaluated samples. For instance, an average match percentile
of 95, informs us that, on average, the correct match scored higher than 95% of the
other models. The AMP for our best case (31 features) is 92.64%. Results using AMP
instead of accuracy are exposed in fig. (4.6).
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Figure 4.5: Classification accuracy against the feature subset size for a color index-
ing problem.

A distinctive characteristic of CC-ICA-FS applied to this problem is that selecting
a single feature per class already provides an accuracy (or AMP) close to the maximum
achieved accuracy. This means that we have quite a lot discriminative information in a
single (class-conditional) feature or, equivalently, in a single ICA basis. Visualization
of this basis as a color histogram is not straightforward since it might have negative
values. But we can have an idea of the colors affected by the basis by considering
its absolute value as a histogram. In fig. (4.6) we have artificially generated colored
squares with the distributions of the most discriminative basis of each class. The
proceeding was similar to that performed in section (2.3.2), except for the fact that
the basis in that section could be considered histograms because they were obtained
through an NMF representation and in consequence had only nonnegative values.
It is not strange that in the figure we observe only colors belonging to particular
classes, since each basis was obtained exclusively from its corresponding class samples.
The interesting point is that the colors observed are those less repeated from class
to class. For instance, consider the grass, trees and leaves classes. Their CC-ICA
representations probably had highly correlated basis vectors, mainly greenish. But
these bases precisely correspond to components with no discriminative information.
Instead, our single feature selection procedure chose mainly yellows for grass, green
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Figure 4.6: Average Match Percentile against the feature subset size for a color
indexing problem.

for leaves and brown for trees, which is the distribution that probably will allow
discriminating the highest amount of images belonging to these three classes. A
similar phenomenon can be observed in sky, ice and water. Observe that water in
this basis is more represented by the colors of rocks or sand present underneath or by
the water then by the blue tones that might also be present. Comparison of fig. (4.7)
with fig. (4.4) might result helpful for understanding these facts.

4.5 Conclusions

In this and the previous chapter we have introduced a statistical approach which
covers the different stages of a general pattern classification scheme: feature extrac-
tion, feature selection and classifier. More importantly, the proposed theory attempts
to integrate these phases within a unified framework. Once the initial assumptions
are made, feature extraction, selection and finally classification are naturally associ-
ated among each other. This is opposed to the usual approach where no relationship
among the stages is assumed and where, the common procedure is to fix any one
of the stages and than evaluating results on another stage. For instance, test near-
est neighbor performance on different representations such as PCA, ICA, LDA etc.
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Figure 4.7: Artificial images with color distribution given by the normalized abso-
lute values of the most discriminant class-conditional bases.

Or evaluate distance metrics on a given representation. Our unifying assumption
has been that each class is a linear mixture of statistically independent sources. If
this is true, CC-ICA will effectively separate the sources and working in this new
(class-conditional) representation will greatly simplify density estimation. Bayesian
classification can take advantage of this simplification and, always under the inde-
pendence assumption, the classifier under this hypothesis is the naive Bayes classifier.
Moreover, independence also has a positive effect which facilitates the selection of
discriminative features without the need for an exhaustive search. This can be done
using the statistical and information theoretic class separability measure of diver-
gence. This measure can also be adapted to the situation in which class-conditional
representations are found.

This unified framework requires the estimation of a number of parameters (mainly
the ICA parameters and densities) so, besides fulfillment of the assumptions, the
amount of available data should be adequate for the estimation of these parameters.
We can then pose the two major drawbacks of our method. If the assumptions
hold, we have to count on a proper amount of data (number of samples per class)
to estimate our parameters. This dataset size is closely related to dimensionality.
If the assumptions do not hold, the whole process is invalidated. In practice, if we
have reasons to think that the available data is sufficient but still, results are not
satisfactory, it is highly unprobable that we will be able to improve performance by
taking a different approach on any single stage. For instance, changing the classifier
while preserving the CC-ICA features will probably worsen the situation since the
proposed classifier is actually the natural classifier for this kind of features. The same
situation arises when using other criterions for feature selection or, as we have seen in
the experiments, when applying the proposed classifier to different representations.

Beneath the particularities of our method underlies a general line of reasoning
which holds that the different stages of a pattern recognition scheme should be consid-
ered as a whole. That a particular choice on any of these stages involves assumptions
that should affect all other steps of the process. The next chapter extends this line
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of reasoning to a completely nonparametric framework.



Chapter 5

Nonparametric Discriminant
Analysis and Classification

5.1 Introduction

In section (4.5) we observed that the statistical approach exposed in the last two
chapters covers almost all the stages of a general pattern classification scheme except,
possibly, for data preprocessing. These phases are integrated under the umbrella of a
set, of initial hypotheses based on independence which, once accepted, gives place to a
unified and interrelated framework for feature selection, extraction and classification.
Two drawbacks which negatively affect performance of the proposed approach were
mentioned: sample size and unmet assumptions.

Parametric methods normally restrict data to a particular model based on the
chosen parameters and then attempt to fit the model to a given set of observations
using one among many possible parameter estimation techniques. In general, restrict-
ing data to a model involves making more or less specific assumptions on the data.
General assumptions usually require more information for robust parameter estima-
tion. Nonparametric methods, instead, make no assumption on the data distribution
and solely make use of the available set of observations for making their predictions.
Though their performance improves with a larger number of samples, they still are
the only option when this is not the case. In this chapter, we extend the line of
reasoning held in the previous chapters to a nonparametric context. That is, consider
the pattern recognition scheme as a whole and try to answer the following question:
in the same way CC-ICA provides naive Bayes with features that adapted to meet
its assumptions, given a nonparametric classifier, can we also find a (nonparametric)
representation which results optimal for the classifier?

The family of nonparametric classifiers is huge so in the first place we will restrict
our analysis to the family of nearest neighbor classifiers [42, 29]. This rule, besides
being very intuitive and of straightforward application, has very desirable convergence
properties with an asymptotic error rate of at most twice the Bayes error [29]. The
simplest and most well known version of this classifier is the 1-nearest neighbor (1-
NN) provided with the Euclidean distance. Since its introduction many modifications

133
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and improvements have been suggested to enhance this rule and make it suitable for
a wide range of problems [30]. More neighbors can be considered giving rise to the
K-NN rule when K neighbors are considered; any other distance than the Euclidean
can be used, or local distances adapted, for example, to the distribution of the data
can be considered [135, 148]; other neighborhood definitions can be used [128]; data
editing can frequently enhance performance [34]; etc.

On the other side, Fukunaga’s Nonparametric Discriminant Analysis (NDA) [49] is
a linear discriminant feature extraction technique based on nonparametric extensions
of commonly used scatter matrices. In contrast to parametric discriminant analysis
these matrices are generally full rank so the extracted number of features can exceed
the number of classes and no assumption on the class distributions is made. The
procedure can work with high dimensional data and does not necessarily require a
high number of samples per class. We explore the link between NDA and the NN
classifier, observing that a slight modification of NDA results in a representation very
likely to improve NN performance. Feature selection is not necessary in this stage
since NDA sorts features according to their discrimination, and usually the first F’
features will be those that yield best results.

The resulting method proves to be a possible alternative to CC-ICA as a coherent
pattern recognition scheme since it should work in many occasions where CC-ICA
fails. It makes absolutely no assumption on the distribution of the data and can be
implemented even in those cases small sample sets do not allow robust parameter
estimation. Figure (5.1) is a diagram which illustrates both approaches and their
relationship with a standard pattern classification training process.

First, a general framework for discriminant analysis is introduced following the
structure proposed by Fukunaga in [48]. Both parametric and nonparametric ap-
proaches are detailed and placed within this framework. We then analyse the non-
parametric algorithm from within the nearest neighbor perspective showing that a
slight modification of NDA yields a maximum of a criterion function good for pre-
dicting nearest neighbor performance. The resulting method, which we call NDA-NN,
is evaluated on artificial, benchmark and real-world databases. The artificial database
provides an insight on the nature of our representation and compares results with the
classical NDA approach. Experiments on benchmark databases compare our approach
with classical NDA, parametric discriminant analysis and with the CC-ICA frame-
work of previous chapters. We have already observed, in chapter 3 that NN performs
well in at least two of the tested benchmark databases. We will see that NDA en-
hances NN performance to an unprecedented extent in these cases. We will also see
that, in those cases where initial NN performance is far from acceptable, improvement
is not significant. Finally, we test the performance of NDA-NN to real-world data
where CC-ICA is unable to work properly due to unmet assumptions or small sample
sizes.

5.2 Discriminant Analysis

Discriminant analysis is a feature extraction tool based on a criterion .J and two square
matrices S, and S,,. These matrices generally represent the scatter of sample vectors
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Figure 5.1: A standard pattern classification training process and its adapted ver-
sion to the CC-ICA and NDA-NN frameworks.

between different classes for Sy, and within a class (or sometimes class independent
scatter information) for S,,. The most frequently used criterion, is to choose J =
trace(S;'S).

It can be seen that, maximization of J is equivalent to finding the D x M linear
transformation W such that

A

W =arg max

Itrace(WTSbW) (5.1)

w =

where I is the identity matrix. It can be proven that, given N samples of D dimen-
sional data X and discriminant space dimensionality M, the algorithm in table (5.1)
solves the optimization problem given in equation (5.1) [48].

We can now turn to the definition of the within and between class scatter matrices.
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1. Given X the matrix containing data samples placed as N D-dimensional columns, S, the within class scatter
matrix, and M maximum dimension of discriminant space,

2. Compute eigenvectors and eigenvalues for S,, and make ® the matrix with the eigenvectors placed as
columns and A the diagonal matrix with only the nonzero eigenvalues in the diagonal. Let M, =

{number of non-zero eigenvalues}.

3. Whiten the data with respect to S,,, to obtain M,, dimensional whitened data,

Z=A"1"%0TXx.

4. Compute S, on the whitened data.

5. Compute eigenvectors and eigenvalues for S, and make W the matrix with the eigenvectors placed as columns
and sorted by decreasing eigenvalue value.

6. Preserve only the first My = min{M,,, M, rank(S3)} columns, ¥as = {91, ..., % } (those corresponding
to the M, largest eigenvalues).

7. The resulting optimal transformation is W = W2 A=1/2&T and the projected data, Y = WX = vT 7

Table 5.1: Given a method for calculating within and between class scatter matrices
Sw and Sp, general algorithm for solving maximum discriminability optimization
problem stated in equation (5.1).

5.2.1 Fisher Discriminant Analysis

As usual, the first and most widely spread approach is the one that makes use of only
up to second order statistics of the data. This was done in a classic paper by Fisher
[41]. The popularity of the technique introduced by Fisher has caused that this feature
extraction method has become known as discriminant analysis or linear discriminant
analysis. This is not exact because since Fisher several other techniques that can
fairly be regarded as discriminant analysis have arisen and many of them, including
the nonparametric version we are introducing, are linear. To avoid confusion, we
will call this technique Fisher Discriminant Analysis (FDA). In FDA the within class
scatter matrix is usually computed as a weighted sum of the class-conditional sample
covariance matrices where the weights are given by the class prior probabilities,

K

Sw=)» P(CH)z* (5.2)
k=1

where 3* is the class-conditional covariance matrix, estimated from the sample set.
On the other side, the most common way of defining the between class-scatter matrix
is as,

K
Sy =Y P(CH) (" — pO)(uh — p®)" (5.3)
k=1

where p* is the class-conditional sample mean and p° is the unconditional (global)
sample mean. Many other less spread out forms, always based on sample means and
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class-conditional covariance matrices are also available for these two scatter matrices
[48].

Without further experiments some observations can be readily made from these
definitions. For classes tightly grouped about their means, the objective value should
be sufficiently high. This is not the case when the means are close among each
other, negatively affecting the between class scatter matrix. Another problem arises
when the class-conditional covariances are very different from each other, each one
contributing with scatter in different directions. Also observe that the rank of S} is
K — 1, so the number of extracted features is, at most, one less than the number
of classes. Some solutions have been proposed for solving this problem [44]. A first
solution is to artificially increase the number of classes by, for instance, clustering
within the classes. For those cases where multimodal behavior is present, and a
clustering algorithm can be found that properly identifies the clusters, this might work
well. A second possibility is, after determining the first K — 1 features, remove them
leaving a subspace orthogonal to the extracted features and repeat the algorithm.

A more fundamental problem with these scatter matrices is their parametric na-
ture. Once again, given a certain problem, we run into a solution that results blind
for nongaussian classes. If the class-conditional distributions are highly nongaussian
(subgaussian, supergaussian or even multimodal), applying the algorithm (5.1) to the
data will give equivalent results to applying the algorithm to Gaussian data with the
same means and covariances as the original data. So, for this particular case, we
cannot expect our method to accurately indicate which features should be extracted
to preserve any complex classification structure.

In fig. (5.2) we illustrate the potential and limitations of FDA to extract a single
feature from a couple of artificial 2-dimensional examples. In both plots the condi-
tional and unconditional means are shown with circles and the straight line corre-
sponds to the direction of the projection subspace. The extracted feature is the result
of projecting the data in this direction. The extracted feature for the first example
where Gaussian conditional densities are found is in effect optimal for discrimination.
In this case, classes are well separated in projection space. This is not the case in the
second example, where multimodality is shown to negatively affect the estimation. If
a vertical direction was chosen instead, the classes would be perfectly separated.

5.2.2 Nonparametric Discriminant Analysis

In [49] Fukunaga and Mantock present a linear and nonparametric method for dis-
criminant analysis in an attempt to overcome the limitations present in (FDA) [41],
and name the technique Nonparametric Discriminant Analysis (NDA). Basically, the
fact that FDA’s resulting dimensionality is upper bounded by the number of classes
and its parametric nature. Nonparametric Discriminant Analysis also makes use of
a Fisher-like objective function but in this case the between-class scatter matrix is
of nonparametric nature. This scatter matrix is generally full rank, thus loosening
the bound on extracted feature dimensionality. Also, the nonparametric structure of
this matrix inherently leads to extracted features that preserve relevant structures for
classification. We briefly expose this technique, extensively detailed in [48].

In FDA the between-class scatter matrix is constructed from the differences among
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Figure 5.2: First and only direction of Fisher Discriminant projection space on two
artificial datasets. Observe in (b) the problems caused by unfulfilled assumptions.

the class means. In NDA we define a between-class matrix as the scatter matrix
obtained from vectors locally pointing to another class. This is done as follows.
Given a norm |||| in the metric space where the samples live, the extraclass nearest
neighbor for a sample € C* is defined as

2" = {a' € CF/|la’ — al| < |l — @, Vz € CF} (5.4)

where Ck notes the complement set of C*. In the same fashion we can define the
intraclass nearest neighbor as

! = {x' € O%/||z’' — z|| < ||z — z|,Vz € C*} (5.5)

Both definitions (5.4) and (5.5) can be extended to the K nearest neighbors case by

defining ¥ and x! as the mean of the K nearest extra or intra-class samples. From
these neighbors or neighbor averages, the extraclass differences are defined as

AP =g — P (5.6)
and the intraclass differences as

Al =z — 2’ (5.7

Notice that A¥ points locally to the nearest class (or classes) that does not contain
the sample. The nonparametric between-class scatter matrix is then defined as

N
Si= w.(A)AL)T (5.8)

n=1
where A is the extraclass distance for sample z,,, w, a sample weight defined as

_ min{[|A")", A"}
AZ]" + AT

(5.9)
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and « is a control parameter between zero and infinity. This sample weight is intro-
duced in order to de emphasize samples away from class boundaries. These samples
generally have a larger extraclass difference magnitude exercising an undesirable in-
fluence on the scatter matrix: Precisely these samples are those that less information
carry on nearest class direction. The sample weights in (5.9) take values close to 0.5
on class boundaries and drop to zero as we move away. The control parameter «
adjusts how fast this happens. In the experiments we have not observed a uniform
impact on performance of the sample weights. To facilitate comparison and, unless
stated otherwise, uniform weights will be considered.

Unlike the between-class scatter matrix, the within-class scatter matrix is para-
metrically estimated in exactly the same fashion as in FDA (eq. 5.2). This choice
is heuristically based on the observation that normalization (the first step of the de-
tailed algorithm) should be as global as possible. Intuitively, whitened data can be
naturally associated to the Euclidean distance so a global whitening matrix should
benefit distance-based classifiers that make use of this metric.

In the calculation of both scatter matrices, for theoretical integrity, Fukunaga
includes the class prior probabilities P(C*). In practice, when no such information
is available uniform priors are assumed and the resulting formulas for between and
within-class scatter matrices are (5.8) and (5.2). In order to show that NDA is
actually a natural nonparametric extension of FDA, the behaviour of S, when the
number of neighbors considered reaches the total number of available class samples is
also studied. It is observed that, for this particular case and restricting the problem
to two classes, the features extracted are the same as in FDA.

Figure (5.3) shows the NDA solution to the same artificial datasets where we
tested FDA. For this example a single nearest neighbor was used in the computation
of the between-class scatter matrix and uniform sample weights were considered.
Particularly interesting is the case illustrated in fig. (5.3.b). Though both within-
class scatter matrices are equal, the bimodality of one of the classes displaces the
estimate of the class mean used in the computation of the parametric between-class
scatter matrix. This is the main source of error for FDA.

5.3 NDA and Nearest Neighbors

Making use of the introduced notation we will first examine the relationship between
NN and NDA. Given a training sample x, the accuracy of the 1-NN rule can be directly
computed by examining the ratio ||A||/||A||. If this ratio is more than one, & will
be correctly classified. The fact this affirmation does not generalize for the K-NN rule,
is due to our definition of intra and extra class nearest neighbor for this particular
case, coherent with Fukunaga’s approach. This situation, if problematic, can be easily
overcomed by using the median according to the distance norm in the definitions. In
the experiments, we have observed that this choice does not affect results significantly
so the definition using the mean was preserved for proper of comparison.
Given the M x D linear transform W, the projected distances are defined as

Ay =wa - wab! (5.10)

Notice that this definition does not exactly agree with the extra and intraclass dis-
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Figure 5.3: First direction of nonparametric discriminant projection space on two
artificial datasets. In dashes the FDA direction. Compare in (b) where the FDA
assumptions are not met.

tances in projection space since, except for the orthonormal transformation case, we
have no warranty on distance preservation. Equivalence of both definitions is asymp-
totically true on the number of samples. By the above remarks it is expected, that
optimization of the following objective function should improve or, at least not down-
grade NN performance,

3 E{||Aw |}
W =argmax ——f> (5.11)
w B{|Aag [}
Considering that [4§],
E{|AW 17} = trace(WT S, , W) (5.12)

where, in this case, S} (the between-class scatter matrix) agrees with (5.8), but the
within-class scatter matrix is now defined in a nonparametric fashion,

N
1 T
w=—9Y AIA! 1
S N,Zl ral (5.13)

From (5.12) we have that the algorithm in table (5.1) can also be applied to the
optimization of our proposed objective function (5.11).

Considerations on sample weights and class priors can be plugged in the same
fashion as with NDA. Theoretical considerations also hold: it can be seen that, if
the all the class members are used and the mean nearest neighbor criterion used for
defining the intra-class distances, (5.13) turns out to be (5.2). This is simply because,
if all class members are considered, the nearest neighbor mean becomes the class mean

uk

We have already seen in figures (5.2) and (5.3) the difference that taking a non-
parametric approach on the between-class scatter matrix can make on the estimated
projection space. In that example, the within-class scatter matrix was considered
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Figure 5.4: On each row a toy dataset. (a) original data. (b) Whitened data using
the usual covariance-based within-class scatter matrix. (c) Whitened data using
nonparametric within-class scatter matrix.

equal. Through another artificial with two simple toy datasets example we will com-
pare the effect of whitening using a nonparametric within-class scatter matrix (5.13)
or a parametric approach (5.2). The first choice whitens our data respect to combina-
tions of class-dependent covariance matrices. This second-order statistic, measuring
the mean distance to the mean, fails to represent classes with more complex distri-
butions. The interpretation of (5.13) is quite straightforward. In the whitened data,
the distribution of the intraclass nearest-neighbor distances are normalized, with the
favourable consequences this has on the NN-rule. This can be observed in the two
examples in fig. (5.4).

5.3.1 Related Works

A close approach to ours was introduced in [19]. In this article, the concept of intra-
and extra-class differences is also used, but to obtain a Bayesian measure of face
similarity through subspace analysis (PCA) of both difference spaces. The NN rule is
then applied to this measure. The main differences with respect to NDA are mainly
the parametric nature of the approach (Gaussian or Gaussian mixture assumption
on the reduced spaces) and a dual analysis of the data within a Bayesian framework
instead of a joint discriminant analysis. The main similarity, besides the use of class
differences, lays on the dual eigenspaces, obtained from covariance matrices from
which our scatter matrices are a particular case: the case in which only the nearest
neighbors are used in the calculation.

Another close approach which uses local discriminant information is Discrimi-
nant Adaptive approach introduced by Hastie and Tibshirani [148]. In this case, the
authors focus on an iterative scheme to obtain a local metric modifying the local
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neighborhoods.

5.4 Experiments

In all the experiments NDA and modified NDA (NDA2) were learnt using a single
nearest neighbor and no sample weights. Nevertheless, we have observed that a
proper adjustment of these parameters to each dataset can generally enhance results.
Counsidering the results are illustrative enough and for the sake of comparison, we
choose not to touch these settings.

5.4.1 Artificial Data

In previous sections we have already set up two very simple artificial experiments. The
first one, illustrated in fig. (5.3) compares classical NDA with FDA. This experiment
shows how NDA’s nonparametric approach to the estimation of the between-class
scatter matrix can prove advantageous in certain situations where the assumptions
made by FDA are not met. The second toy dataset, illustrated in (5.4) compares
classical NDA with our modified NDA (NDA2). In this case, the difference results
from different approaches to estimating the within-class scatter matrix. In this case,
the completely nonparametric nature of NDA2 allows preservation of the intra-class
distances with the benefit this brings to NN classification. We will now further com-
pare the two approaches reproducing an artificial experiment proposed by Fukunaga
and Mantock in their original work on NDA [49]. The object of this comparison is to
evaluate the robustness of both algorithms to the number of samples.

For this experiment, two groups of three-dimensional data were generated. The
first two measurements were generated using random number with the uniform distri-
bution as shown in fig. (5.5). The third dimension has zero mean and unit variance
Gaussian distribution.

Notice that, for this dataset, the third dimension is irrelevant for classification.
In their experiment, for which 100 samples were generated, Fukunaga and Mantock
observed that the resulting eigenvalues (obtained in step 6 of the algorithm given in
table 5.1) clearly indicate that only two features are needed and that first two rows
of the filter matrix (obtained in step 7 of the same algorithm) practically exclude
the third variable. In this experiment, the eigenvalues were normalized to add 1 so
the third eigenvalue was 0.04 or equivalently, accounted for 4% of the between class
scatter. From this, the authors reasonably conclude that NDA in effect learns that
all discriminative information is in the first two variables, disregarding any structure
present in the third variable. Fukunaga and Mantock used 3 nearest-neighbors and
sample weights with o = 2 in (5.9). We reproduced the experiment with a single
nearest-neighbor and equal sample weights and results were very similar. We also ap-
plied NDA2 to this dataset with a single nearest-neighbor and equal weights. Results
were slightly better when considering only the third eigenvalue but hard to interpre-
tate due to the difficult in comparing the filters by their values. So we tried to generate
a unique statistic to measure the goodness of the two first filters or projection vectors.
While the third eigenvalue measures the relevance of the third projection vector and
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Figure 5.5: Distribution of the two classes along the first two dimensions in the

artificial experiment [49].

consequently third feature, this statistic should measure the precision of the first two
features.

The statistic we use is based on the distance of the optimal 2-dimensional subspace
to the obtained subspace. In this case, the optimal subspace is well known: the
hyperplane spanned by the two first canonical vectors. So, if w; and w- are the first
two filter vectors estimated by NDA, this distance can be estimated, for instance,
using the angle between the hyperplanes. A simple expression of this angle can be
obtained if we use 7, the unit norm vector orthogonal to the obtained hyperplane,

T

w;T=0
wlit=0
fr=1

Considering that the orthogonal vector to the optimal subspace is [0, 0, 1], the angle
between hyperplanes is obtained by,

6 = argcos |73] (5.14)

Since the object of this experiment is to evaluate the robustness of both algorithms
with respect to the sample size we have generated datasets for different number of
samples per class. This number ranged from 4 through 100 in steps of 2. For each
sample size, we generated 20 artificial datasets, estimated NDA (classical approach)
and NDA2 (our modified approach) and averaged the resulting eigenvalues and angles
obtained from each representation. For the resulting representations, we computed
both statistics: the value of the third eigenvalue and the angle given by (5.14). No-
tice that the maximum value for this angle is 7/2 = 1.571. Results are shown in fig.
(5.6). In fig. (5.6.a) the obtained eigenvalues for the third direction of projection are
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plotted against the number of samples. Notice that, for a low number of samples, the
nonparametric estimation of the within-class scatter matrix (NDA2) results in consid-
erably better estimation of the degree of relevance of the third feature. The angles are
plotted in fig. (5.6.b) in this case, and except for a very low number of samples, dif-
ferences are not significative. An interesting point to observe is the unstable response
of NDA2. This is because the distance to the nearest neighbor might have strong
variations for different randomly generated datasets. We can see that the situation
stabilizes after 50 samples are considered, NDA2 yielding slightly better angles than
NDA. From the plots we also notice that interpreting the results exclusively from the
third eigenvalue might be misleading. For NDA2 very low eigenvalues are obtained
for small number of samples. But for the same number of samples a high angle was
computed. This means that while NDA2 considers the third feature irrelevant, still
the first two feature are not properly estimated.

Figure 5.6: Results on the Fukunaga dataset. As a function of the sample size:
in (a) the eigenvalues; in (b) the angle between the obtained hyperplane and the
optimal hyperplane. For both plots, the straight line indicates NDA2 and the dotted
line NDA.

5.4.2 Benchmark Data

Once again, for illustrating the performance of our nonparametric approach to global
classifier design, we chose the benchmark databases detailed in section (3.5.2): LET-
TER, IMAGE, PENDIGITS and PIMA. In this case, the (1)-NN classifier with NDA2
(NDA2-NN) was compared with the following classifiers: NN with classical NDA
(NDA-NN), NN with FDA (FDA-NN), NN with PCA (PCA-NN) and, as a reference,
the CC-ICA-FS results are also included.

Classification accuracy results are shown in (5.7). Training and test sets were
the same than the sets used in all other experiments made with these benchmark
databases, and are detailed in section (3.5.2). Plots are slightly confusing due to
similar accuracies when higher dimensionalities are considered. In all cases, NDA2
achieved the highest classification accuracy, sometimes together with other methods.
In the letter database, this occurs for all possible dimensionalities except the lower
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two. In general, NDA2 outperforms NDA and when this is not the case, both tech-
niques yield very similar results. Nonparametric methods outperform CC-ICA-FS.
The exception is the PIMA database, where the statistical approach clearly outper-
forms the metric approach. This could have been anticipated from table (3.5.2) in
chapter 3. In table (5.4.2) we resume the maximum accuracies achieved for each
benchmark database, the dimensionality where this accuracy was obtained, and the
method that achieved this value. Most accuracies are very close to the maximum
reported accuracy for the corresponding database. Notably, in the letter database,
where the accuracy we obtained outperforms the highest reported accuracy for this
dataset (95.7%).

LETTER

5~ NDAZ-NN 5~ NDAZ-NN

+ CCICA-FS + CCICA-FS

] 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 18 20

o NDA2-NN || 065 ~~ NDA2-NN H

+ CCICA-FS + CCICA-FS

] 2 4 6 8 10 12 14 16 1 2 3 4 5 6 7 8

Figure 5.7: Comparison of NDA2-NN classification with other representations and
with CC-ICA-FS on benchmark databases.

In all cases, performing nonparametric discriminant analysis prior to classification
with nearest neighbors enhances the results. In general nearest neighbor performance
over the original measurements is achieved at low dimensionalities of the NDA space.
For instance, in the LETTER database, nearest neighbor accuracy (95.7%) is already
achieved when making use of only 11 out of 16 NDA components. For the IMAGE
database this occurs when using 4 out of the 19 components. We can conclude that
NDA ensures an improvement in nearest neighbor performance, even after strong
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reductions of dimensionality. We have also observed, that modifications in NDA
estimation such as using a different number of neighbors, choosing a metric different
than the Euclidean or including sample weights can further improve these results.
Nevertheless, this improvement was generally problem specific in the sense that the
same choice of parameters does not have equal effect on all databases.

LETTER | IMAGE | PENDIGITS PIMA
MAX ACC 97.1 97.8 97.9 76.2
DIM 16 10 14 6
CLASSIFIER | NDA2-NN | NDA-NN | NDA2-NN | CC-ICA-FS

Table 5.2: Maximum predictive accuracy for each benchmark database, together
with the dimensionality where this accuracy was obtained and the classifier that
achieved the result.

5.4.3 Real-world Data

For evaluating NDA on real-world data we chose a problem where high dimensional
data is present but the number of available samples per class is low. Statistical meth-
ods, and in particular our CC-ICA method, are not applicable in this case since the
number of samples is insufficient for robustly learning the necessary parameters. The
problems we chose both come from the classical field of face recognition. Experiments
were performed on the AR Face Database [97]. A first experiment on recognition sub-
ject to strong light variations and a second experiment on gender recognition.

Figure 5.8: Training (top row) and test images chosen from the AR face database.

For the subject recognition experiment 5 training and 5 test images were chosen
for each of the 115 subjects. Test and training were taken over different period of time
and, as can be observed in fig.(5.8), the images are subject to strong light changes on
each one of these sets. Images were subsampled to 24 x 24 pixels. We expect NDA to
learn these light changes in the within-class whitening stage and reflect this normal-
ization in the classification. Results are shown in Fig.(5.9). Here, NDA2 achieves the
best results for practically all dimensions, being 87.7% the highest achieved accuracy.
PCA instead, performs worse than any other discriminant technique. Classical NDA
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and FDA have very similar performance, below our modified NDA. This difference
can only be blamed on the computation of the within-class scatter matrix and the
normalization with respect to within-class variations. Actually, NDA and FDA share
the same within-class scatter matrix, so it is the nonparametric approach NDA2 uses
for computing this matrix what improves performance.

AR Face Database - no normalization

Classification Accuracy

o 15 2 @ % s & 70 8 s w0
Subspace dimensionality

Figure 5.9: (a) Recognition accuracy on the AR face database with different sub-

space dimensionalities and no light normalization.

PCA performs considerably worse than all discriminant analysis techniques. Re-
member that PCA searches for directions of maximum variance and, as we noticed in
section (2.2.2), illumination changes were frequently associated with maximum vari-
ance. In this case, where no normalization is performed this situation will be present
with a negative effect in classification: for these principal components a subject will
be closer to other subjects with similar illumination than to himself. Figure (5.10)
illustrates this situation. For this figure, four evaluation subjects were chosen, with 5
samples per subjects. These samples were projected into each of the representations
we used in the experiment: PCA, LDA, NDA and NDA2. We then plot the values
for the first two components of each representation as dots in two dimensional space.
Each dot corresponds to a subject and each of the subjects is identified with a unique
color. Figure (5.10.a) shows the distribution for the first two principal components.
As expected, subjects are clustered according to their illumination. Instead, the three
discriminant techniques shown in figs. (5.10.a), (5.10.b) and (5.10.c) attempt to nor-
malize this situation making use of the within-class scatter matrix. It can be seen
that, at least visually, NDA2 is highly successful with this normalization. The pro-
jected samples are nearly clustered according to their class labels and these clusters
have a positive effect on nearest neighbor classification.

For the second experiment, on gender recognition, images with strong light vari-
ation were discarded and both training and test sets merged in a single dataset that
results in 256 male samples and 204 female samples taken from 115 subjects. In this
particular case, a leave-one-out procedure was employed each time leaving out all
the samples for a given subject. We chose this approach because we noticed that,
in many cases, correct classification was achieved only thanks to the fact the same
subject was found on the training set. Results shown in Fig.(5.9.b) obey the same
procedure employed in the previous experiment, with subspace dimensionality con-
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(a) (b)

NDA NDA2

(c) (d)

Figure 5.10: First two components of the tested representations, corresponding to
four different subjects on the evaluation set. There are five samples per subject, and
each subject is identified with a unique color. Notice the positive effect of NDA on
nearest neighbors, and the sensibility of PCA to illumination changes.

sidered from 1 to 100. In this case, images were normalized in variance. Once again,
NDA2 outperforms the three other evaluated techniques, being 95.61% the highest
achieved accuracy. It is quite surprising that using a single basis on this projection,
accuracy already stands above 92%. Once again NDA and FDA perform similarly
due to the limitations imposed by a parametric within-class scatter matrix. Learning
gender was recently tested in [103], concluding support vectors were superior to any
other traditional classifier in this task. So we applied this technique to our particular
problem in order to compare results. After extensive testing, the best results were
achieved with a RBF kernel with v = 3: 93.86%.

5.5 Conclusions

The contribution in this chapter is related with the previous chapters in the sense we
also search for a representation optimal for a given classifier. In this case, we focus on
the nearest neighbor classifier. Searching a linear feature extraction technique that
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Figure 5.11: Gender recognition accuracy on the same database and using a ”leave
subject samples out” procedure.

preserves nearest neighbor discriminability, results in a slight modification of nonpara-
metric discriminant analysis. This modification affects only the within-class scatter
matrix. The resulting technique has several advantages. The fact it works with intra
and extra-class distances allows small class sample sizes (a minimum of two samples
per class) and high dimensionality on the sample space. As all linear discriminant
analysis techniques it provides a hierarchy on the features. Unlike Fisher discrim-
inant analysis, the number of classes does not affect performance. More generally,
its completely nonparametric nature implies no assumption on the class-conditional
distributions, making it applicable to a wide range of situations.

Experiments with the obtained technique were performed on artificial, benchmark
and real-world data. Artificial experiments allow comparison with the classical ap-
proach to nonparametric discriminant analysis and illustrate the difference with para-
metric discriminant analysis techniques such as Fisher discriminant analysis. Tests
with benchmark databases show that our technique can in effect enhance nearest-
neighbor estimation or, in the worst case, leave it unaltered. This improvement can
be observed even when the projection is done on lower dimensional spaces. For one
of the databases, unprecedented results were obtained.

The real-world experiments were made on the classical problems of face recogni-
tion robust to illumination variation and gender recognition. In the first experiment,
we expect the nonparametric within-class scatter matrix to absorb the intra-class vari-
ations, unsupervisedly correcting the illumination. This seems to be the case and our
approach performs considerably better than any other technique, particularly at low
dimensions. Through this experiment, we can also observe the actual effect the pro-
jection has on the evaluation samples. Our approach to nonparametric discriminant
analysis generates class clusters which are very convenient to the nearest neighbor
classifier. Results are also satisfactory in the second experiment, gender recognition,
where we have also compared our approach with a common choice of classifier in this
problem: support vector machines.
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Chapter 6

Concluding Remarks

6.1 Conclusions

This thesis is focused on the problem of linear feature extraction for the task of
statistical classification of visual data, usually a particular case of classification of
high-dimensional data. The main inconvenient faced by statistical classification when
dealing with this kind of data is proper density estimation due to dimensionality
concerns. Additionaly the data can be contaminated by noise, and not necessarily all
measurements contribute to classification.

Linear feature extraction techniques are helpful for modeling low dimensional pat-
tern structures present in high dimensional data. In our case these pattern structures,
will only be useful if they benefit classification. It is a well known fact that, the Bayes
error of the extracted features will be equal or higher than the Bayes error of the orig-
inal data. From this fact, a highly relevant premise that drives this whole thesis is
derived: a statistical classifier will only benefit from a linear transformation if the pro-
jection improves the estimation of the conditional densities. Linear transformations
can provide this benefit, for instance, by reducing dimensionality preserving relevant
information. This approach can be seen as a particular case of noise reduction, where
anything not contributing to classification is considered noise. Discriminant Analysis
or Principal Component techniques usually take this approach. A more direct method
can result from considering linear transformations exclusively from the simplification
they might provide on density estimation.

Independent component analysis can provide this simplicity in terms of density
marginalization: density estimation in feature space is reduced to a number of unidi-
mensional estimations. Additionally, higher-order dependencies between the features
are removed allowing single feature interpretations. Our first contribution, in the
field of shape analysis, is focused on these properties using independent component
analysis for representing point distribution models. Towards this end,
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e We have noticed that independent component analysis can provide unique shape
descriptors with desirable predictive and intuitive properties based on the sim-
plicity this technique provides to the density estimation and the statistical in-
dependence of the extracted features. These features were named independent
modes of variation.

e By making use of the statistical model associated to independent component
analysis we provide a robust solution for the problems of analysing shape fea-
sibility and searching for the nearest feasible shape. Additional properties of
our model for non-rigid shape variation can also unsupervisedly provide a set
of shape prototypes useful for shape database querying.

We then propose to take advantage of independent component analysis in the
context of statistical pattern classification. Since Bayesian classification makes use
of the conditional densities, the choice of any representation oriented to simplifying
density estimation necessarily implies the use of class-conditional representations.
In this case, and under certain assumptions, independent component analysis can
provide a framework where conditional independence can be assumed. Naive Bayes
appears as the naturally associated classifier for this situation. Inversely, we can claim
an optimal representation for naive Bayes classification. In this sense, the following
contributions have been made,

e We have formalized the theory for linear class-conditional representations, adapt-
ing Bayesian decision to this scheme.

e When independent component analysis is introduced as a representation, we ob-
tain the context we named as class-conditional independent component analysis
(CC-ICA). Adapting the classifier to CC-ICA results in a modified naive Bayes
classifier. These results are summarized in two algorithms, called CC-ICA-Train
and CC-ICA-Test.

e Highly redundant data usually yields sparse independent components. If spar-
sity can be safely assumed, our classifier can make use of this prior knowledge
through specific density functions. Classification can be also understood in
terms of the sparse coding principle, as can be observed in the experiments.

The main disadvantage of class-conditional representations is that they fail to learn
the relationship among classes. Some of this information, such as discriminability, is
of particular importance for the task of classification. The ability of an extracted fea-
ture to discriminate among classes can be used as a criterion for feature selection. So
we considered the problem of selecting discriminative features under the assumption
of class-conditional independence, which is the situation within a CC-ICA represen-
tation. Feature selection can, in some situations, enhance classification. In most of
the cases it can greatly reduce the computational load of our algorithm at small or
no costs in classification accuracy. In this sense,
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e The class separability measure of divergence has been introduced as a feature
subset selection criterion adequate for our model. Our model assumes nongaus-
sian data, and divergence makes no prior assumption on the data distribution.
Our model assumes independence and divergence greatly benefits from this as-
sumption becoming a sum of unidimensional divergences.

e It has been shown that, when the conditional independence assumption holds,
feature subset selection using divergence can be performed without the need for
an exhaustive search.

e Moreover, divergence can be understood in terms of log-likelihood ratios and
adapted to class-conditional representations yielding a class separability mea-
sure adapted to this case. This measure contemplates the possibility of selecting
different features for different classes.

Behind these contributions is the attempt to provide a unified framework for the
design of a statistical pattern classifier, opposed to the alternative where each stage
in a pattern classification process is considered independently from the other stages.
In our case, once the initial assumptions are made, feature extraction, selection and
finally classification are naturally associated among each other. For our proposed
scheme we have the following initial assumptions

- The ICA assumptions should hold for each class. Mainly that each class is a
linear mixture of independent components and of these components, at most
one is Gaussian.

- We count with enough samples per class in order to perform a robust ICA
estimation. The number of required samples is closely related to domain space
dimensionality.

If these assumptions hold we have shown that each of the stages of the process is
theoretically justified and intimately linked with the other stages. Actually if there
is no dimensionality reduction, the error of our classifier is the Bayes error. If the
assumptions do not hold, the whole process is invalidated. Nevertheless, there are
ways of relaxing these assumptions, some of them we will mention in the next section.

The line of reasoning we used to relate independence with classification can also
be stated as finding a representation optimal for a classifier and can be extended to
the nonparametric case,

e We have shown that searching a linear feature extraction technique that pre-
serves nearest neighbor discriminability results in a slight modification of non-
parametric discriminant analysis. This modified algorithm joins the advantages
of being a completely nonparametric approach (no assumption on the data dis-
tribution, the number of classes does not limit the maximum number of ex-
tracted features, it can work on reduced sample sets with any dimensionality)
with the property of having a simple naturally associated classifier.
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6.2 Future Work

The work covered in this thesis provides a number of areas of interest that may be
worth further investigation. Among others, it may be interesting to consider the
following lines for further research:

Independent Modes of Variation

Even though we presented a model for the analysis of shape feasibility through in-
dependent modes of variation, this model has yet to be validated. This can be done
through experiments that evaluate performance in indexing shape databases, or by
including our model into a more general framework for unsupervised classification of
non-rigid shape deformations. Any new results on unsupervised generation of point
distribution models from object images would surely impulse this line of research.

Extensions of Independent Component Analysis

When working with visual data, binary representations arise as a simple and economic
way of extracting information from the image, and several computer vision and image
processing algorithms have a binary response. This results in binary high-dimensional
data. We believe that adapting the estimation of independent component analysis to
this kind of data can be of utility. From our perspective, statistical classification on
statistically independent binary data is straightforward. Moreover, data with binary
or strong binary nature can arise from many other applications. A particularly inter-
esting application is the problem of classifier combination, where it has been shown
that the combination of statistically independent classifiers yields better results than
the combination of classifiers with strong dependencies among each other. Given
D classifiers and different training datasets, classifier response can be modeled as a
binary vector indicating correct or incorrect decisions. In this case, binary indepen-
dent component analysis could unsupervisedly learn a way of linearly combining these
classifiers into a subset of statistically independent classifiers.

Another interesting extension for independent component analysis can result from
its supervised implementation. In this case a direct modification of the objective
function could be used to contemplate higher-order discriminability among classes.
Consider, for instance, the problem of deciding between two classes with identical
mean and covariance. An objective function based on measures of nongaussianity
similar to those used in independent component analysis could provide a discrimina-
tive representation based on high-order information.

Relaxing the CC-ICA Assumptions

In general, relaxing the assumptions of class-conditional independent component anal-
ysis involves using a representation other than ICA for each class. A natural exten-
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sion, would be to make use of mixtures of independent component analysers. This is
comparable to extending the Gaussian maximum likelihood classifier to mixtures of
Gaussians, but in the nongaussian case. Other similar extensions could contemplate
nonlinear independent component analysis.

The close link between sparsity and independence could allow to hold the inde-
pendence assumption in the presence of sparse data not necessarily obtained through
independent component analysis. Prior assumptions on the model for nonnegative
matrix factorization can force sparsity in the encodings. In this case, if an adequate
density model is considered for the sparse and nonnegative data, statistical classifica-
tion could be simply extended to the nonnegativity context. This would combine the
advantages of NMF as a representation with the advantages characteristic of statisti-
cal classifiers.

In general class-conditional representations can be used under any linear feature
extraction technique other than ICA, given that we have reasons to think that the
technique can simplify or improve the estimation of the conditional densities. An
example of this was given in the experiments when working with class-conditional
PCA, which showed improved performance with respect to global PCA.

Modifying the Naive Bayes Classifier

Instead of relaxing the assumptions we could focus on modifying the classifier. If
CC-ICA is used, this is a delicate issue since choosing a classifier other than naive
Bayes is very likely to degrade all the simplicity we might have gained in terms of
density estimation. Nevertheless, the independence assumption can still be of utility
without using the maximum a posteriori decision scheme. An example of this can
be found on pairwise classifiers. The main idea of this approach is to replace the
global maximum on the posterior probabilities by pairwise class comparisons. In this
case, after comparing the likelihood on all classes among each other, classification is
performed through some kind of voting scheme. It can be seen that CC-ICA, and
even CC-ICA-FS can be easily adapted to this framework.

Class Separability Criterions

Other class separability criterions such as the Jeffries Matusita distance or modified
Fisher Ratio can also benefit from the independence assumption. In particular, the
Jeffries Matusita distance, has desirable properties which are not present in diver-
gence: its bounded nature. A thorough comparison of these criteria has still to be
done.

There are also limitations derived from extending divergence to the multiclass
case. Features selected according to their average discriminability among all classes
are not necessarily the best features for distinguishing between two classes. But the
CC-ICA context already contemplates the possibility of using different features per
class. In this case, using a pairwise classifier would allow direct use of the pairwise
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divergence definition, obtaining optimal discrimination among any two classes.

Extensions to Nonparametric Discriminant Analysis

Natural extensions to NDA involve the evaluation of different distances, the actual
effectivity of the proposed sample weights and robustness to dimensionality and sam-
ple set size. Also, there have been proposed several boosting algorithms which make
use of discriminant directions in the construction of weak classifiers. To our knowl-
edge none of these algorithms make use of nonparametric discriminant analysis. We
believe that boosted nonparametric discriminant analysis is an interesting line of re-
search that could eventually combine the advantages of a nonparametric approach
with the advantages of boosting.



Appendix A

Notation

In general, boldface fonts indicate vectors and matrices, superscripts are used for
specifying class attributes, and subscripts unambiguously indicate sample number or
component number (for a vector). For instance, if our working data for class C*
is formed by N* D-dimensional samples and a matricial notation is used, we might
represent, this data as a matrix X* = {z*};, where z; stands for the i-th component
of the j-th sample for class C*. Unless specifically indicated otherwise, table (A.1)
indicates the chosen variable names or general notation principles used throughout
this thesis.
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Kk number of classes and class iterator (also used for number of nearest neighbors)
ol class k

N,n number of samples and sample iterator

Nk number of class k samples

D.,d dimensionality and dimensionality iterator

Mm feature dimensionality (after a linear projection)
MF class-conditional feature dimensionality

T random vector

z white random vector

Y general extracted features

s independent components

w M x D projection or filter matrix

Wy, mt"* row of projection matrix

A D x M basis or mixture matrix

\'4 M x D matrix with covariance eigenvectors as rows
D M x M matrix with M largest covariance eigenvalues on the diagonal
Am m!" covariance eigenvalue, in descending order

¥, Xk global and class k covariance

w, pF global and class k& mean

z, " global and class k sample mean

p(z|C*) class-conditional density

p*(s) class-conditional density for k* CC-ICA representation
€W Bayes error and Bayes error for projected data
E*{} class-conditional expectation operator

|W| matrix determinant (absolute value)

wT transpose operator

L(0) likelihood, dependent on parameter vector

g(x) score function

H(x) differential entropy

J(x) negentropy

I(x) mutual information

KL(p1,p2) Kullback-Leibler distance or divergence between probability distributions
D(p1,p2) divergence between probability distributions

DY divergence between class-conditional densities for classes C? and C7
f)(pl, D2) transformed divergence

kurt(z) kurtosis for random variable x

S separability measure

Si bhattacharyya bound

Sgm jeffries-Matusita distance

Sy between-class scatter matrix

Sw within-class scatter matrix

xlF intra- and extra- class nearest neighbor or nearest neighbor average
ALE intra- and extra- class differences

A{,&,E projected intra- and extra- class differences

Table A.1: Variable name convention and notation used throughout the thesis.
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Multispectral Images
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Figure B.1: False color composite of the region of study in the land use classifica-
tion experiment from chapter 3. Training and test regions are overlapped and have
themsleves a particular color coding.
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Figure B.2: Reference hand-made land use map from year 1998.
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Figure B.3: Land use map obtained using the CC-ICA algorithm on multispectral
images gathered in 1999 and 2000.
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Appendix C

Publications

Independent component analysis is first related with point distribution models in the
master’s thesis,

e M. Bressan Linear point distribution models by independent component analysis.

MsD Thesis, CVC Tech. Rep. 48, Centre de Visié per Computador, September

2000.

This research results in the introduction of independent modes of variation as
shape descriptors. This contribution, explained in section (2.4.6), is presented as a
book chapter in

e M. Bressan and J. Vitria. Independent modes of variation in point distribution
models. In L.P. Cordella and G. Sanniti di Baja, editors, Visual Form 2001, 4th
International Workshop on Visual Form, LNCS 2059, pages 123-134. Springer Verlag,
[taly, May 2001.

Further research on nonsupervised representations leads to nonnegative matrix
factorization. The technique of weighted nonnegative matrix factorization (WNMF),
detailed in section (2.3.1) appears in

e D. Guillamet, M. Bressan, and J. Vitria. A weighted nonnegative matrix fac-
torization for local representations. In IEEE CSC in Computer Vision and Pattern
Recognition (CVPR 2001), volume 1, pages 942-947, USA, December 2001.

The first results of pattern classification using an ICA representation applied to
the problem of object recognition through local color histograms

e M. Bressan, D. Guillamet, and J. Vitria. Using an ICA representation of local
color histograms for object recognition. In 3rd Catalonian Conference on Artificial
Intelligence, pages 300-307, Spain, October 2000.

A formal exposition of these results, detailed in section (3.5.3), is published in

e M. Bressan, D. Guillamet, and J. Vitria. Using an ICA representation of local
color histograms for object recognition. Pattern Recognition, 36(3):691-701, March
2003.
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The extension of ICA classification to the general case of high dimensional data and
beyond the specific problem of object recognition gives rise to additional experiments
on benchmark databases. Results are exposed in

e M. Bressan, D. Guillamet, and J. Vitria. Using an ICA representation of high
dimensional data for object recognition and classification. In /[EEE CSC in Computer
Vision and Pattern Recognition (CVPR 2001), volume 1, pages 1004-1009, USA,
December 2001.
A more applied perspective on ICA and classification and the first general remarks
on class-conditional representations, and more specifically class-conditional indepen-
dent component analysis (CC-ICA) are published in

e M. Bressan, D. Guillamet, and J. Vitria. Multiclass object recognition using class-

conditional independent component analysis. Cybernetics and Systems, 2003. IN

PRESS.

Comparative analyses that state CC-ICA as a way of improving the naive Bayes
classifier appear in

e M. Bressan and J. Vitria. Independent component analysis and naive bayes
classification. In J.J. Villanueva, editor, 2nd IASTED International Conference on
Visualization, Imaging and Image Processing (VIIP 2002), volume 1, pages 496-501,
Spain, September 2002.

and in the book chapter

e M. Bressan and J. Vitria. Improving naive Bayes using class-conditional I1CA.
In F. Garijo, J. Riquelme, and M.Toro, editors, Advances in Artificial Intelligence,
VIl Iberoamerican conference on Artificial Intelligence (Iberamia 2002), LNAI 2527,
pages 1-10. Springer Verlag, Spain, November 2002.

These last six publications form the theoretical core of CC-ICA, detailed in chapter
3 of this thesis. The experiment on the performance of this technique on multispectral
data, detailed in section (3.5.3), is exposed in

e M. Bressan, P. Radeva, and J. Vitria. Feasibility analysis for the nonsupervised
generation of a land use map of Catalonia Tech. Report 58, Centre de Visid per
Computador, November 2001.

The experiments and comparisons on CC-ICA applied to the visual inspection of
cork stoppers, detailed in section (3.5.3) appear in

¢ P. Radeva, M. Bressan, A. Tobar, and J. Vitria. Real-time inspection of cork stop-
pers using parametric methods in high dimensional spaces. In IASTED International
Conference on Signal and Image Processing (SIP 2002), volume 1, pages 480484,
USA, August 2002.

and in the book chapter,

e P. Radeva, M. Bressan, A. Tobar, and J. Vitria. Bayesian classification for inspec-
tion of industrial products. In M.T. Escrig, F. Toledo, and E. Golobardes, editors,
5th Catalonian Conference on Artificial Intelligence, Topics on Artificial Intelligence,
LNAI 2504, pages 399-407. Springer Verlag, Spain, October 2002.

The first approach to feature selection in a space where class-conditional indepen-
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dence is met appears in the book chapter

e M. Bressan and J. Vitria. Feature subset selection in an ICA space. In M.T.

Escrig, F. Toledo, and E. Golobardes, editors, 5th Catalonian Conference on Artificial

Intelligence, Topics on Artificial Intelligence, LNAI 2504, pages 196-206. Springer

Verlag, Spain, October 2002.

The theory and results in chapter 4 are an extension of the publication

e M. Bressan and J. Vitria. On the selection and classification of independent
features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003. IN

PRESS.

This contribution explores the proposed feature selection technique, its relation-
ship with CC-ICA and provides the feature selection algorithm CC-ICA-FS, found in
section (4.3.1).

Finally, results from chapter 5, on finding the optimal representation for the near-
est neighbor classifier are published in

e M. Bressan and J. Vitria. Nonparametric discriminant analysis and nearest neighbor
classification. Pattern Recognition Letters, 2003. ACCEPTED - UNDER REVIEW.
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