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Medical imaging feeds research in many computer vision and image processing fields:
image filtering, segmentation, shape recovery, registration, retrieval and pattern
matching. Because of their low contrast changes and large variety of artifacts and
noise, medical imaging processing techniques relying on an analysis of the geometry
of image level sets rather than on intensity values result in more robust treatment.
From the starting point of treatment of intravascular images, this PhD thesis ad-
dresses the design of differential image operators based on geometric principles for a
robust shape modelling and restoration. Among all fields applying shape recovery,
we approach filtering and segmentation of image objects.
For a successful use in real images, the segmentation process should go through three
stages: noise removing, shape modelling and shape recovery. This PhD addresses all
three topics, but for the sake of algorithms as automated as possible, techniques for
image processing will be designed to satisfy three main principles: a) convergence of
the iterative schemes to non-trivial states avoiding image degeneration to a constant
image and representing smooth models of the originals; b) smooth asymptotic behav-
ior ensuring stabilization of the iterative process; c) fixed parameter values ensuring
equal (domain free) performance of the algorithms whatever initial images/shapes.
Our geometric approach to the generic equations that model the different processes
approached enables defining techniques satisfying all the former requirements. First,
we introduce a new curvature-based geometric flow for image filtering achieving a
good compromise between noise removing and resemblance to original images. Sec-
ond, we describe a new family of diffusion operators that restrict their scope to
image level curves and serve to restore smooth closed models from unconnected sets
of points. Finally, we design a regularization of snake (distance) maps that ensures its
smooth convergence towards any closed shape. Experiments show that performance
of the techniques proposed overpasses that of state-of-the-art algorithms.
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Introduction

The Goal of this Work

A main topic in image processing is the obtention of smooth accurate representations
of image objects. There are two main steps related to the former image segmentation
problem, extraction of points lying on the objects of interest and computation of a
smooth model of such (possibly unconnected) set of points. This PhD focus on the
following three points involved in a robust shape modelling:

1. Image Smoothing.

Image feature extraction algorithms [6], [28] mainly use the mechanisms of hu-
man perception that base on the detection of abrupt changes. Therefore some
sort of image filtering is a compulsory step to remove noise and artifacts that
hinder performance of the extractors in real images.

2. Contour Closing.

After image filtering the set of points conforming to the characteristics (edges,
ridges) defining image objects are prone to be uncompleted. Line continuation
is a possible approach [50], [55] in order to restore a closed model of the shape.

3. Shape Recovery and Distance Maps.

The final step in object segmentation is shape recovery, that is, the computation
of a representation of the shape boundary as compact as possible. Because B-
spline snakes are the ideal tools for such shape encoding, the definition of a map
ensuring their convergence is crucial.

The Approach

The novelty of our work is that the operators performing any of the above tasks are
designed to achieve an applicability to real automated procedures as efficient and
reliable as possible. To such purpose, we consider that the algorithms should satisfy
the following principles:

1. Meaningful Convergence

The above tasks imply the evolution of an initial function in time (either the
image to be filtered or the snake modelling objects), which is computed using

1



2 INTRODUCTION

an iterative scheme. The first requirement is that any operator converges to
an image/shape yielding smooth accurate representations of the original images
and objects.

2. Smooth Asymptotic Behavior

In real applications stabilization of the numeric scheme by means of the charac-
teristics of the evolving function should be as important as its theoretic conver-
gence. As if stopping of the iterative algorithm was dependent on the number of
iterations, its applicability to real automated procedures would be very limited.
A smooth asymptotic behavior ensures such process stabilization.

3. Robust Parameter Setting

The ideal automated-oriented algorithm should be parameter free. Because this
is an utopian situation difficult to achieve, we will use the following relaxation.
We require that the parameter values making the technique fulfill the first two
points is invariant whatever the nature and degree of noise and the geometry of
shapes.

The Tools

The mathematical tools to handle deformation/evolution processes lie in the frame-
work of Partial Differential Equations (PDE’s for short). Although any phenomena
formulated in PDE terms is of analytic nature, the geometry of the underlying space
where it takes place completely determines and characterizes it. In this work, we will
see that an analysis of the PDE’s related to image processing techniques from a geo-
metric point of view, provides with the necessary tools to design operators satisfying
the former requirements.

State-of-the-Art Overview

Image Filtering and Shape Restoration

Noise removal for an improving of image quality is an issue that has been addressed
since the early years of image processing. The most common approach [1], [64] consists
in filtering the initial image by means of a parabolic (time dependant) PDE. From this
point of view, current image filtering operators can be split into two distinct families:
the ones arising from heat diffusion processes and the ones based on geometric flows.

The first group filters an image by means of a PDE that describes the physical
process of heat diffusion and admit a divergence-like formulation. Linear filtering by
convolution with a Gaussian kernel is the classic low-pass image smoothing. Although,
it enjoys from an efficient image regularization, it must, by its own design, tackle
with blurring of the image descriptive features such as edges or ridges. This need of a
selective image filtering has been frequently addressed in the last few years and leads
to designing equations able to remove noise and preserve, as much as possible, image
contrast changes.
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A usual way of achieving this compromise in the filtering technique consists in
including a term preventing diffusion across edges. Treating edges as insulators was
first introduced in the Perona-Malik model [60] that adds an edge enhancing factor
inside the image gradient divergence that describes the classic heat diffusion. In
an ideal continuous setting, such factor would evolve images towards a piece-wise
constant representation of regions of uniform gray-level separated by the original
image edges. In practice, the scheme depends upon the choice of a threshold value
determining what magnitude of the image gradient is to be considered an edge and
constitutes a main problem when dealing with highly noisy images [53], [74], [81].
Since noise affects image contrast changes, it punches the theoretic closed edges,
letting the heat out. This phenomena, known as the Pinhole Effect [53], blurs edge
and yields constant final images. The other drawback comes from the backwards edge-
enhancement diffusion of the model that might amplify noise and produces false step
edges (the Stair-Casing Effects, [80], [81]). Anisotropic diffusion [72] provides with an
efficient robust-to-noise model by using a regularized version of the gradient in the
Perona-Malik equation, so that the heat diffusion is described by means of a diffusion
tensor with the eigenvector of minimum eigenvalue oriented along the direction of the
image features to be preserved. The well-posedness of the former formulation has
been exploited hereinafter by other authors [8], [9].

Another approach to image feature preservation relies on adding a reaction term
to the diffusion equation, the close-to-data constrain [62], forcing similarity to original
images [43], [2], [7]. The trade-off between smoothing and similarity is controlled with
an extra parameter that needs to be determined for every image as it strongly depends
on the amount of noise.

Geometric flows base on shape/curve regularization ruled by deformations that
depend exclusively on the geometry of the evolving curve. By their independence from
the curve parameter, they admit an implicit formulation, which serves to apply them
to image filtering through a level sets [57], [48] approach. As the latter smoothing
bases on the image level curves geometry rather than on its intensity values, it does
not produce any edge blurring [1], [64] as it alters edges shapes but not the contrast
change defining them.

Current geometric flows derive from the mean curvature flow ([32], [33], [34] or
[40]), which is considered the geometric equivalent to the heat equation [1] as in the
curve arc length parameter the curvature corresponds to the curve second derivative.
Curves evolving under their mean curvature reduce their number of oscillations, so
that the flow enjoys from the same regularizing properties than heat diffusion. Unfor-
tunately, as in the case of heat-based filtering, smoothing is indiscriminate and shapes
converge to circles [32] [33] before collapsing to a point. Up to our knowledge there
are two different solutions to prevent curve collapsing [49], [79].

The min-Max flow of [49] exploits that evolution under negative curvature stops as
soon as the curve becomes convex. Assuming that the curve is embedded in the plane
as a level set of a given image, the average gray level in a window centered at each point
serves as a switch between positive and negative curvature. The target curve evolves
until this average equals its own gray level, which it is satisfied for polygonal shapes
of a side length depending on the window size. It follows that the stencil size used
to compute averages must reach a compromise between resemblance to the original
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curve and shape simplification (noise removing). The stochastic based geometric flow
introduced in [79] suggests adding a stopping factor to the mean curvature equation.
Such term penalizes given orientations of the curve unit tangent, so that the initial
shape converges to a pre-given polygon.

A common drawback of most of current image filtering techniques is that their
steady-state is trivial, that is a constant image for diffusion processes [72] and either a
point or a straight line for curvature based ones [32], [33], [40]. This property, although
desirable for a scale-space analysis of images/shapes [1], [41], is a main nuisance when
using these techniques for segmenting purposes, as they require a stopping time to
recover shapes of interest. The simplest way to avoid this feature-damaging effect is
to rely on a given (image-dependant) number of iterations to stop the evolution ([60],
[72], [32]). Another solution ([46], [9], [2], [43]) is to add a new term, the close-to-
data constraint [62], that controls resemblance to the original data. A third option
consists in including some previous knowledge about the geometry of the shape to be
smoothed [79].

We conclude that current filtering techniques converge to trivial images (which,
usually, achieve the minimum of a particular energy) unless we either admit an irreg-
ular image close to the original one ( [2], [7], [43], [49]), rely on an image-dependant
number of iterations ([60], [72], [32]), or prefer a (previously given) model of shapes
[79]. In any case, some sort of user intervention is essential in order to stabilize the
iterative process at images useful for a latter recognition or segmenting task.

Our Contribution

The first method we propose is a curvature based shape evolution with a factor
preventing the flow from converging to a trivial curve. Selective smoothing by means
of a stopping factor is not original, as other techniques such as the edge enhancement
of [60] or the geometric flow of [79] also exploit this idea. The novelty of our work
lies on the fact that the stopping factor relies on a roughness function, that measures
the local irregularity of a curve in terms of the smoothness of its tangent direction
along the curve, instead of basing on a threshold value [60] or a pre-given model of the
shape [79]. Such roughness measure does not penalize the curve curvature magnitude
but high variation and cancels on infinitely smooth curves. As a consequence, by
adding it to the mean curvature flow, we obtain a regularized curvature flow (RCF)
that converges to smooth curves preserving significant enough features as to identify
the original noisy shape. The associated image filtering admits integration with a
finite difference Euler scheme presenting a smooth enough asymptotic behavior as to
stabilize by means of standard numeric criteria.

Another contribution is to handle the study of geometric flows by means of the
curve unit tangent angle and curvature in the arc-length parameterization of the curve,
which brings our work closer to [32], [33], [34] than to the viscosity solutions implicit
parameterization approach of [15], [20], [57]. The new formulations developed turn
into an ideal tool to detect the source of pathologies in curve evolution and distance
maps.
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Shape Restoration

Smooth line connection arises in so different image processing areas as segmentation,
image in-painting, splines interpolation or object disocclusion. Most techniques [4],
[12], [50] base on variational principles that lead to a diffusion-like equation that serves
to smoothly evolve an image/curve until the completion is achieved.

Object disocclusion and image in-painting focus on filling in gaps in an image in
such a way that level lines arriving at gaps boundaries are smoothly prolonged inside.
Following the Gestalt principle of good continuation, recent techniques ([4], [13], [50],
[55]) base on the way humans join unconnected curves to reconstruct the underlying
shape. According to psychophysicist studies [37], the curves that reconstruct objects
should minimize an energy functional involving length and curvature (Euler’s elastica
[54]). In the case of (the one dimensional) line continuation for object disocclusion
([55], [50]), curve gaps are interpolated (joint) by line segments minimizing the func-
tional, for image in-painting ([4],[13]) one seeks for the function, which corresponds
to the reconstructed image, that achieves a simultaneous minimum for all its level
sets. The fact that the curvature term is of second order, introduces a non-linear
fourth order term in the associated variational problem that troubles the numeric
implementation. Although there are some numeric approaches to a weak formulation
of the curvature term [14], the most common solution is either implementing a sim-
plified version of the functional or introducing of an extra function to be minimized.
Dropping the curvature term in the elastica functional ([50], [13]) in disocclusion al-
gorithms results in a linear interpolation of curve gaps. This geodesic approach is
easy to handle, but the reconstructed contours are prone to present corners at joint
points, thus, violating the Gestalt principle. The image restoration of [4] bases on
the computation of a vector field that smoothly extents the image unit gradient at
gaps boundary to the whole gap to be filled-in. The restored image is the function
of minimum variation which level sets are given by the vector extension. In analytic
terms, the functional uses the angle of the vector to compute the curvature term in
the Euler elastica, so that, a system of second order PDE’s replaces the forth order
original equation.

A completely different approach to contour closing comes from mathematical mor-
phology [1] [64], which basing on set operators achieves contour completion by a di-
lation at a suitable scale. Although the complexity of the computational algorithm is
minimum compared to the iterative schemes of variational techniques, morphological
closings might not achieve so high quality in restorations. First, as there is not any
explicit control on curve smoothness, restorations do not need to satisfy the Gestalt
principle. Second, the fact that the associated structural elements (typically, lineal or
circular) are constant is a main drawback, since it may imply that the closed shapes
differ significantly from the incomplete contours.

Our Contribution

Our second contribution consists in embedding contour closing into the framework of
functional extension described by means of a diffusion tensor that prevents (degener-
ates) any diffusion in the normal space to the uncomplete contours. This natural re-
quirement for operators designed to extend image level sets implies loosing the strong
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ellipticity of the differential operator that ensures [22], [23] existence of a unique so-
lution. We propose approaching diffusion processes from the point of Riemmanian
geometry by means of the diffusion tensor that describes the mechanism. In this con-
text, degeneracy implies restricting diffusion to the manifolds generated by the vector
fields of positive eigenvalues, provided that they exist. A classic result (Frobenius
theorem [67]) on differential geometry yields sufficient conditions on the vector fields
for the unique existence of solutions to a restricted anisotropic extension/diffusion
process.

The restricted diffusion applied to extending the characteristic function of the
open curve results in our Anisotropic Contour Completion (ACC for short). The fact
that a smooth vector field automatically satisfies the Frobenius conditions reduces
contour completion to the definition of a vector field representing the tangent space
of the contours to be closed. Instead of using a, computational expensive, iterative
extension ([75], [4]) of vector fields we suggest using the Structure Tensor [36]. This
matrix, commonly used for analyzing the direction of maximum contrast change [74]
and texture orientation [5], [36], yields smooth extensions/regularizations of the image
gradient direction. It follows that applied to images having the uncomplete contour
as level set, the Structure Tensor produces smooth vector field representing a reliable
model of the open curve. This strategy gives rise to Linear Vector Fields, if a mask of
the open contour is used, and Distance Vector Fields in the case of using its distance
map.

Shape Recovery

The preferred tool to detect and smoothly model image objects are active contours
or snakes ([11], [12], [38], [47], [58]). Snakes are evolving curves that deform under
the gradient descent of an energy that characterizes a smooth approach of the target
contour as a minimal curve. Resemblance to the curve is guaranteed by means of
an external potential, while internal constraints involving the norm of the snake first
derivatives control its continuity and smoothness and determine the snake at parts
where no information is available.

There are two different frameworks in current snakes formulations: the parametric
[38] and the geometric [11], [12], depending on the way the energy is formulated. In
classic snakes [38], the external energy splits from an internal constrains given in terms
of minimum variation of the snake first and second derivatives. Minimization of the
first derivative variation makes the snake linearly interpolate contours, meanwhile
the second derivative term forces it to smoothly approach them. The former internal
constrains are not intrinsic to the geometry of the curve and their values depend
upon an explicit parameterization of the curve, which limits parametric snakes to
segmentation of a single object. Geodesic snakes [11], [12], fuse both energies into
a geometrically intrinsic potential that seeks for the curve of minimal length in a
Riemmanian manifold with the external energy as metric. Since their formulation
does not depend on the snake parameter, they admit a level set approach [48] able to
detect more than one object. However as they only take into account the snake first
derivatives (length) they are limited to contour linear interpolation.

In any case, poor convergence to concave shapes is a main limitation of snakes as a
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standard segmentation and shape modelling technique. The external energy is crucial
in order to ensure the snake convergence because it is the only force that pushes the
snake into concave regions, as its internal energy increases when new inflexion points
are created. The usual external potentials used in snake formulations are (Euclidean)
distance and gradient maps for the parametric case and just gradient maps for the
geodesic one. Curves of level zero correspond to the contour of interest and the
snake moves in the direction opposite to the gradient of the distance/gradient map.
Unfortunately, the geometry of the curve of level zero may produce maps with null
gradients along some curves. Because the snake gets caught in these local minima
and produces a wrong model of the shape, several ways of addressing this problem
have been developed in the last years. The first naif solution is initializing the snake
close to the final shape so that we make sure that it is far away from these local
minima, which is certainly not a very elegant approach for automated procedures.
Some authors [17], [68] suggest searching for the global minimum of the energy, but
global minimums of real images are hard to find in an efficient way without manual
intervention.

The most efficient solutions are given by the gradient vector flow technique [75],
in the case of a parametric formulation, or [16] area minimizing balloon forces, in
the case of a geodesic approach. Gradient vector flow techniques ([75], [77], [59])
use a vector value heat equation to compute a regularized version of the gradient of
the external energy. By means of a reaction term weighted by the external potential
gradient they yield a smooth approximation that only admits isolated zeros. The
technique succeeds in producing smooth gradients in the whole image that guide the
snake to the final contour for a large variety of geometries. However the vector field
obtained with GVF may have saddle points which also trap the snake. Balloon-like
forces [16] are added to the geodesic formulation in the form of a constant shrinking
force that pushes the snake into concavities and helps the snake adapting to any
geometry. However, in order to ensure that the scheme will stop at the boundary
of interest, an equilibrium between the constant shrinking velocity and the static
vector field given by the image object must be achieved. It follows that, should this
condition be satisfied, incorporating the curvature term into the convergence scheme
constitutes a significant drawback. For the balloon force must overpass the magnitude
of the curvature to enter into concave regions but, at the same time, it must be kept
under the minimum of magnitude of the external force gradient to guarantee non
trivial steady states. This dichotomy, makes geodesic snake convergence to depend
on parameters which values are case sensitive.

Our Contribution

Our last contribution concerns the development of a new external energy based on
the geometry of the curve to be modelled that ensures a robust snake convergence
whatever the concavity of the curve is. The first important novelty of our contribu-
tion is a geometric characterization of convex functionals in terms of smoothness of
their level sets. Convexity of the external energy guarantees [23] the existence of a
unique minimum that can be reached following the functional gradient descent. Un-
fortunately, the analytic formulation of convexity in terms of the functional second
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derivatives is not robust to noise and irregularities and leads to ambiguities in real
images. Our geometric criterion is a simple and robust way of detecting what makes
current external energies fail to attract the snake. The usual external potentials used
in parametric snake formulations may be regarded as a propagation of either the
target curve (Euclidean) or a function defined on it (GVF). In any case their main
source of error is due to shock formation during the evolution process that introduces
singular level curves and inflexion points. Our second proposal is to use a smooth
curve deformation to propagate the initial shape. By tracking back the deformation
of a curve that evolves by minimum curvature flow, we construct a distance map
that encapsulates the natural way of adapting to non convex shapes. The gradient of
this map, which we call curvature vector flow (CVF), is a smooth external force that
guides the snake towards any contour, whatever its geometry.



Chapter 1

Partial Differential Equations in
Image Processing

All techniques discussed in this work handle evolution and transformation of images
and curves. Because images and curves are represented by functions defined on a given
domain, Ω of R or R

2 with values in either R
2 (curves) or R (images), in this first

chapter we briefly introduce the general equation that describes evolution of a given
initial function in time. We will discuss the different processes that such equation
models as well as the special cases that arise in image processing techniques. We
will give intuitive interpretations of each of the formulations, a suitable classification
according to the issues we will address and examples of techniques fitting into the
latter categories. An overview on general theory on PDE’s may be found in [22], [23]
or [71].

The general model for the evolution of an initial function u0(x), x ∈ R
n, in time

is formulated with a PDE of parabolic type:

ut(x, t) = Lu with u(x, 0) = u0(x) (1.1)

The nature of the particular process that is modelled is determined by the values that
the function u takes on the boundary, ∂Ω, of the domain Ω holding the evolution
process. The right-hand side of the equation, L, denotes a partial differential oper-
ator and it represents/describes the mechanisms that rule the transformation of the
function. Let us classify the different phenomena governed by (1.1) and describe the
mechanism itself.

Let uxI
be the partial derivative with respect to the coordinates specified by the

index set I = (i1, . . . , ik) and define the order of the derivative to be the cardinal of
the index set |I| = k. An operator of order N is given by:

Lu =
k=N∑
k=0

∑
|I|=k

aIuI

where the coefficients aI are smooth functions depending on x and, eventually, on
the function u and its derivatives. In this general setting, PDE’s can be classified

9
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according to either the nature of the differential operator or the domain of definition
of the function:

OPERATOR TYPES

1. Domain Types. Depending on the dimensions of the spaces the function takes
its values we can differentiate two cases:

(a) Image Evolutions. This is the usual case where u : R
n → R represents

mass density, heat, a chemical concentration or an image.

(b) Curve Deformations. In the case that the function u is a curve parame-
terization γ : [0, 1] → R

n, equation (1.1) represents its deformation. Snakes
and geometric flows are some of the examples found in image processing.

2. Operator Types. The differential operator, L, can be:

(a) Linear. If for any two functions, u1, u2, it satisfies additivity:

L(u1 + u2) = Lu1 + Lu2

This is a desirable property, both, in practical applications (signal pro-
cessing) and from a theoretic (mathematical) point of view. On one hand,
it implies that given the response for two different signals the response
for their addition is the sum of responses. On the other one, the oper-
ator can be computed by means of convolution with a kernel (a filter in
Fourier domain) [22] which is fast computational operation. Finally, from a
mathematical point of view, linearity simplifies the study of the solution to
(1.1) as there are some general rules to design operators yielding uniquely
solvable problems [23].
It is not difficult to check that the condition is satisfied only if the co-
efficients in (1.2) depend exclusively on x. Furthermore, one can talk of
homogeneous operators if they are constant and inhomogeneous oth-
erwise. One way of understanding this last case is by thinking that the
domain/space where the process takes place is not an Euclidean R

n but a
manifold/surface [21].
However, most of the techniques used in image processing depend upon
operators whose nature is:

(b) Non-Linear. In many cases the mechanisms of the deformation/evolution
(1.1) depend on the values of the function u and its derivatives. We may
interpret that the deformation process is not always taking place in the
same manifold/space but on a space that also changes/transforms in time.
Anisotropic diffusions and curvature flows fit into this category.

Any of the above operators describes 2 main phenomena depending on the bound-
ary conditions used in equation (1.1):

PROCESSES MODELLED
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1. Extension Processes. Dirichlet boundary conditions:

u(x, t)|∂Ω = f(x)

mean that the solution u(x, t) converges to a function (the equilibrium point of
(1.1) given by Lu ≡ 0) that extends the boundary function f .
Periodic boundary conditions can also be included, as, in this case, the function
u represents a surface/curve and equation (1.1) its deformation. In some sense,
we may regard such deformation as a propagation of the original shape in the
space R

n.

2. Diffusion Processes. Neumman boundary conditions are given in terms of
the scalar product of the function gradient, ∇u, and the unit normal, −→n , to the
boundary domain:

〈∇u(x, t),−→n 〉|∂Ω = 0

Since the above condition means that the flow of mass/heat across the boundary
∂Ω is zero, it implies that the values of the original function u0 are re-distributed
(diffused) in Ω.

We will give a more precise description of the former processes in the next Sections,
which restrict to PDE’s given by second order operators:

Lu =
∑

aijuxixj︸ ︷︷ ︸ +
∑

biuxi︸ ︷︷ ︸ + cu︸︷︷︸
Second Order F irst Order Zero Order

(1.2)

A second order operator is called elliptic if for any vector ξ = (ξ1, . . . , ξn) the
quadratic form given by

∑
aijξiξj is positive-definite. Under this condition it is

guaranteed ([23]) that a unique solution to (1.1) exists. Besides, evolution equations
governed by such operators enjoy from convenient properties for image processing
purposes:
PROPERTIES OF ELLIPTIC OPERATORS

1. Smoothness. Solutions to (1.1) are infinitely smooth functions, so that the
equation is a good noise removing tool. We remit the reader to Example 1.1.1
for an illustrative case where solutions fail to be smooth.

2. Maximum Principle. The extrema values are attained at time zero, which
ensures simplification of shapes and images.

In the particular framework of Image Processing, we have split the general PDE
(1.1) into heat-like equations and those ones that minimize an energy functional.

1.1 Heat Equations

In this context a heat equation will be any second order PDE (1.2) with its second
order term given in divergence form:

ut = div(J∇u)︸ ︷︷ ︸ + F1(ux, uy)︸ ︷︷ ︸ + F0(u)︸ ︷︷ ︸
Diffusion Transport Reaction

(1.3)
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where J is a symmetric semi positive definite tensor (i.e. for each point, (x, y),
J = J(x, y) is a 2 × 2 matrix), F1, F0 are the first and zero order terms and the
divergence of a vector j = (j1, . . . , jn) is given by div(j) = ∂x1(j1) + · · · + ∂xn(jn).

In this case we can provide with a more accurate description of the mechanisms
that govern the evolution of the initial function, as each of the summands in (1.3) has
a specific role:

1. Diffusion Term

The second order term, div(J∇u), is the main descriptor as it determines the
way information/mass distributes (diffuses). For a better understanding, let
us consider our function u to be a mass distribution and let us represent it
as mass particles which density/concentration depends on the values of u, the
higher they are the more mass density. Under this model, we have that the
vector field j = J∇u locally describes the direction towards the initial mass
particles move, as the scheme drawn in fig.1.1(a) represents. The amount of
mass that a given enclosed area, Ω, looses or gains only depends on how much
mass escapes through its boundary. If j was tangent to the area boundary, ∂Ω,
the effect of the diffusion would be redistributing the mass particles along it
(fig.1.1 (b)). This intuitive reasoning is mathematically formulated by means of
the generalized version of integration by parts given by the divergence formula:

Divergence Formula
∫

Ω

v div(j) = −
∫

Ω

〈∇v, j〉 +
∫

∂Ω

v〈j,−→n 〉 (1.4)

for −→n the outward normal vector to ∂Ω. If we apply the latter equality to v = 1
we obtain that, in the absence of other terms, the evolution (1.3) fulfils:

∫
Ω

ut =
∫

Ω

div(j) =
∫

∂Ω

〈j,−→n 〉

It follows that only the normal component of the flow affects the total amount of
mass enclosed by the area Ω. The fact that tangent components do not change
the shape of the boundary of the area enclosing mass will be especially relevant
in the analysis of geometric flows.

Apart from the above physical interpretation, the diffusion term has a geometric
meaning that will be useful at some parts of the foregoing discussion. The mass
flow,

−→
j , is univocally determined by the diffusion tensor, J . The scalar product

that it defines corresponds to the metric of the (Riemmanian) surface where the
diffusion process takes place. Geometrically, a metric is described by means of
an ellipse with principal axes of lengths equal to the eigenvalues of J ( λ1, λ2)
oriented by its corresponding eigenvectors ξ and η. The ellipse associated to this
metric locally describes the way mass distributes in the plane: an amount λ1

of mass travels along ξ and an amount λ2, in the direction η. In the context of
metrics, diffusion processes are classified into isotropic, when the eigenvalues
of J are equal and anisotropic, in the case of different eigenvalues.



1.1. Heat Equations 13

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

°°° °
° °

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(a) (b)

Figure 1.1: Mass diffusion across (a) and along (b) boundary domain

2. Transport Term

The transport first order term:

F1(ux, uy) = A(x, y, u)ux + B(x, y, u)uy

dues its name to the way solutions to a pure first order PDE:

ut = A(x, y, u)ux + B(x, y, u)uy

are computed. The classic way of solving the above equation is by finding
the level curves (characteristic curves) of the solution, u(t, x, y), in the space-
time domain. Since the values of the initial function u0(x, y) travel along such
curves, the whole process may we interpret as moving/transporting the initial
quantities. This way of propagating the initial function may lead to ambiguous
(i.e. discontinuous solutions) situations each time two characteristic lines of
different levels cross, since at such points the function takes more than one
value. This pathology arises in the non-linear case:

Example 1.1.1 Example of a discontinuous solution

Consider the transport equation given by:

ut = uux with u(x, 0) = x2

The level curves, γ(s) = (x(s), t(s)), of the solution satisfy:

0 =
d

ds
(u(γ(s))) = uxxs + utts = uxxs + utsux = (xs + tsx

2
0)ux
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It follows that:
xs = −x2

0

ts = 1

}

and that the solution is constant and equal to x2
0 along the straight lines x =

−x2
0t + x0. Since non-parallel lines always cross, the potential solution, u(x, t),

is discontinuous for all times. This does not contradict the properties given at
the beginning of the chapter as the equation lacks of the second order term. The
effect of adding such a diffusion term is that the solution is not constant along
characteristic lines, but follows a differential equation. In other words the level
curves are not straight lines as diffusion bends them. The drawing in fig.1.2 (b)
represents the jump discontinuity of the solution to the transport equation at
a point where two characteristic curves (red lines in the x-t plane) meet. The
regularizing effect of a diffusion term is illustrated in the surface mesh of fig.1.2
(a) representing the solution to ut = uux +uxx. Note that its level curves (lines
on the surface and on the x-t plane) are not straight lines.
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Figure 1.2: Regularizing effect of diffusion (a) in a transport equation (b)

3. Reaction Term

One of its usual roles is to include Dirichlet boundary conditions into the model,
instead of imposing them at each step of the evolution. The name Reaction
Term comes from the early days of diffusion theory, when as such processes
were approach from a point of view of Newton mechanics, Dirichlet conditions
were interpreted in terms of a reaction (response/force) of the boundary domain
to diffusion.

1.1.1 Image Diffusions

Diffusion is the natural physical way of distributing information. The dynamic process
of the evolution of an initial heat distribution, u0, in time is governed by a heat
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equation in pure divergence form:

ut(x, y, t) = div(J∇u) with u(x, y, 0) = u0(x, y) (1.5)

with Neumman conditions in the boundary domain. The solution represents the heat
or mass distribution in the plane at each time t. Concerning the final heat distribution,
steady states of (1.5) can be described by means of their level sets. If we denote by Ω
the region enclosed by a level curve γ then, the Divergence formula yields that final
states must satisfy the following integral equation:

0 =
∫

Ω

ut =
∫

Ω

div(J∇u) =
∫

γ

∇utJ∇u

|∇u| (1.6)

Therefore the final heat distribution will be constant unless the metric given by J de-
generates (i.e. cancels) on some closed curves. In this case, the final heat distribution
will consist of closed regions of uniformly distributed heat separated by these curves.
In thermodynamic terms we may think that these curves behave like insulators.

This property is commonly used in image processing. The original image is set
to be the initial heat distribution and the metric is chosen in such a way that it
degenerates on points that satisfy some conditions. In this manner the final state
that we achieve is an image so that features of interest in the original image are easier
to identify. Some filtering techniques conforming to equation (1.5) are the following:

Example 1.1.2 Gaussian Filtering

The heat equation in Euclidean space:

ut = div(∇u) = uxx + uyy = ∆u

is the classic low-pass filter image smoothing. It is the only technique with an explicit
solution given by convolution of the initial function with a Gaussian kernel Gt:

u(x, y, t) = Gt ∗ u0 =
1

2πt

∫
e−(x̃2+ỹ2)/(2t)u0(x̃ − x, ỹ − y)dx̃dỹ

Its indiscriminate smoothing (blurring) of edges constitutes one of its main draw-
backs.

Example 1.1.3 Edge Enhancement Diffusion of Perona-Malik

This method, introduced by Perona and Malik [60], was designed to avoid edge
blurring and profit the smoothing effects of the Gaussian filtering at image areas
where contrast changes are not significant enough. It is defined as:

ut = div(g(|∇u|)∇u) (1.7)

with the edge enhancing function defined as g(s) = λ2

λ2+s2 , for a constant λ.
In physical terms, one can interpret the function g as a stopping diffusion factor

that prevents diffusion across edges, as by (1.6), steady states are characterized by:∫
{u≥α}

ut =
∫
{u≡α}

g(|∇u|)|∇u|ds =
∫
{u≡α}

λ2|∇u|
λ2 + |∇u|2 ds
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It follows that there is not any diffusion across those curves where |∇u| → ∞, that
is, at ideal edges. For a different interpretation in image processing, let us develop
the divergence term and write equation (1.7) in the form:

ut = guξξ + (g + g′|∇u|)uηη

where uξξ and uηη denote, respectively, the second derivatives in the tangent , (ξ =
∇u⊥
|∇u| ), and normal, (η = ∇u

|∇u| ), directions. At those points, where g + g′|∇u| < 0
not only edges are preserved but even enhanced. This gives an interpretation to the
parameter λ as a threshold value for |∇u| since for |∇u| < λ, the edge is blurred and
enhanced, otherwise.

However, the above properties constitute the main drawbacks of the technique.
On one hand, as edges in real images are prone to be incomplete, some diffusion
occurs at these places, producing the so known Pinhole Effect [53]. On the other
one, backwards diffusion at significant edges makes the method potentially ill-posed
[74],[81], [56] and prone to yield step images ( Staircasing Effects, [80], [81]).

Example 1.1.4 Anisotropic Diffusion of Weickert

One solution to the problem consists in using a regularized version of the gradient
in the formulation of the Perona-Malik method:

ut = div (J(Stρ(∇uσ))∇u) (1.8)

where the diffusion tensor J(Stρ(∇uσ)) has the same eigenvectors as the Structure
Tensor [36], Stρ, with eigenvalues depending on the structures to be enhanced. In [72],
[74] two different models are proposed to enhance edges and linear structures. Let λ1,
λ2 denote the biggest and the smallest eigenvalues of Jρ and v1, v2 the corresponding
eigenvectors, then the formulations are:

1. Edge Enhancement

For edge enhancing the eigenvalues of the diffusion tensor are set to:

µ1 := g(λ1), µ2 := 1

with stopping diffusion function, g, defined as follows:

g(s) :=
{

1 (s ≤ 0)
1 − exp −C

(s/λ)4 (s ≥ 0)

where C and λ are constants. Like the case of the Perona Malik model, the
magnitude of λ determines which edges are to be smoothed. Weickert deter-
mines [72] the optimal values for C and λ to be: C = 3.31488 and λ = 3. The
Structure Tensor is over a regularized version of the gradient ∇uσ := Gσ ∗ ∇u,
with σ = 3 and integration scale ρ = 0.

2. Line Enhancement

The variant for enhancement of linear structures profits that the eigenvector v1

is oriented in the direction of maximum contrast change and that the difference
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of the eigenvalues (λ1−λ2)2 (coherence) measures the reliability of the potential
edge, being minimum in the isotropic case. Taking into account all these facts
a diffusion tensor with eigenvalues:

µ1 := α, µ2 := α + (1 − α) ∗ exp
−C

(λ1 − λ2)2
;

will preferably diffuse along linear structures, so that their gray level uni-
formizes.

General arguments on non-linear parabolic PDE’s [7], [72] yield that, as the dif-
fusivity tensor is positive defined, the initial boundary problem has a unique smooth
solution which continuously depends, in L2, on the initial data [74]. Besides, the
existence of Lyapunov functionals provided a description of the asymptotic behavior
as a constant function equal to the integral of the initial image. This is, indeed, the
main drawback of the method, since it implies the need of a stopping time if one is
to use it either to segment images or for shape recognition.

Still the generic good properties of the model (1.8) have inspired other methods
[8], [9] aimed at enhancing other image structures:

Example 1.1.5 Adaptive Smoothing

In [9], the authors propose a variant formulation of divergence-like equations better
suited for selective smoothing of image structures. If η = ∇u

|∇u| denotes the unit

gradient and ξ = ∇u⊥
|∇u| the tangent to the image level curves, then the general evolution

equation:
ut = c(|∇u|)(auηη + buξξ) with a, b ∈ [0, 1] (1.9)

comprises the Perona-Malik and the anisotropic models and allows smoothing along
other preferred directions different from edges. In particular, they suggest using
directional derivatives in the principal directions of the function Hessian:(

uxx uxy

uxy uyy

)

in order to enhance ridges and valleys.

1.1.2 Information Extension

Heat diffusion has another mathematical and physical use hardly exploited in image
analysis. Heat diffusion (second order elliptic operators, in general) has the property
of smoothly extending a function defined on a curve in the plane. If L denotes an
elliptic operator, then the function that solves the PDE:

Lu = 0 with u|γ = f (1.10)

is the unique smooth extension [23] of the function f which was defined only on
the curve γ. The equation is solved by seeking the steady states of the associated
parabolic PDE:

ut = Lu
u|γ = f

(1.11)
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From the point of view of thermodynamics, we may think that the heat distribution
on γ given by f never puts out. Boundary conditions can either be imposed at each
iteration or added to the model as a reaction term by means of the characteristic
function, χγ :

ut = Lu + χγ(u − f)

where:

χ|γ =
{

1 if x ∈ γ
0 otherwise

We will restrict to elliptic operators admitting a divergence form given in equation
(1.5). The ellipse describing the metric given by J corresponds to the structural
element of the associated dilation, so that isotropy leads to circular structural element
and anisotropy to elliptic ones. In the case of classic mathematical morphology, the
extension is based on the Laplacian operator and the function to be extended is
the characteristic function of a set of points. The scale or radius of the dilation
corresponds to time in equation (1.11). Some of the image processing fields and
techniques handling functional extension are:

Example 1.1.6 Image In-Painting and Contour Completion

Image gap filling and curve completion can be viewed as particular cases of a
functional extension process. In the case of multiple level sets completion (image gap
filling shown in fig.1.3 (a),(c)), γ corresponds to the gap boundary and f to the image
to be restored. For contour completion (fig.1.3(b)), γ is the unconnected curve to be
closed and f its characteristic function. As example we have the image in-painting
developed in [4] that uses high order extension to compute a vector field interpolating
the image gradient at gap boundaries. In Chapter 4 we will also address contour
closing and gap filling.

(a) (b) (c)

Figure 1.3: Examples of Extension Processes: level lines continuation or gap filling
(a), single contour completion (b) and image in-painting (c)

Example 1.1.7 Gradient Vector Flow

These techniques [75], [77] serve to smoothly extend a vector field, (fx, fy), defined
on a curve of interest. The vector extensions, (u, v) are the steady-points of the
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following diffusion-reaction equations:

ut = ∆u − (f2
x + f2

y )(u − fx)
vt = ∆v − (f2

x + f2
y )(v − fy)

As GVF arises from energy minimization principles, we will describe it in detail in
next Section.

1.1.3 Geometric Flows

Geometric flows encode shape evolutions, that is, those curve deformations that are
independent of the parameterization. If γ(v, 0) := γ0(v) = (x(v), y(v)) is the initial
curve, then its evolution in time is given by:

γt(v, t) = α(v, t)
−→
t (v, t) + β(v, t)−→n (v, t)

with
−→
t , −→n the curve tangent and normal vectors, respectively, and α, β smooth

functions depending on the local geometry of the curve. This last requirement limits
both functions to depend on the curve unit tangent, θ, and the curve curvature, κ.

Since a change of parameter in a curve does not alter its shape but only the speed
we are travelling on the curve, we have infinitely many formulations representing the
same curve evolution (although the function of the embedding, γ, may change). In
fact, since tangent motion just redistributes (mass) points along the curve, we have
that [29], up to a change of parameter, any geometric flow is given by:

γt(u, t) = β−→n
Thanks to their independence upon the curve parameter, geometric flows can be
applied to image filtering through an implicit level-set formulation [48], [65]:

ut = |∇u|β(θ, κ) = |∇u|β
( ∇u

|∇u| ,div
( ∇u

|∇u|
))

Although in their implicit formulation they are highly non-linear equations, geometric
flows adjust to the heat-like model in a proper curve parameter. In [24] it is proved
that, in the arc-length parameter, the angle of the curve unit tangent, θ, and the
curve curvature, κ, follow PDE’s:

θt(s, t) = ∂s(β) +
(∫ s

0

βθsds

)
θs

κt(s, t) = βκ2 + βss + (
∫ s

0

βκds)κs

which are of heat diffusion type as β = β(θ, κ).
In order to guarantee that the original shape γ0 will be smoothed, the total Gaus-

sian curvature, κ(t) =
∫ 1

0
|κ|

√
ẋ2 + ẏ2du, and the number of inflexion points must

decrease in time. A main advantage of curvature based image filtering techniques
over diffusion processes [48], [39] is that, as they are contrast preserving [1], they
modify the shapes of edges without blurring. The most popular curvature based
techniques are:
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Example 1.1.8 Mean Curvature Flow

This flow, also known as Geometric Heat Equation, is one of the most widely
studied geometric flows ([32], [33], [34] or [40]). Its formulation for curves is given by:

γt(u, t) = κ−→n (1.12)

The word Geometric Heat Equation applies because in arc length parameter, we have
that the diffusion term of the PDE that the angle follows is the Laplacian:

θt(s, t) = ∂s(θs) +
(∫ s

0

θ2
sds

)
θs = θss +

(∫ s

0

θ2
sds

)
θs

General arguments on non-linear PDE’s [32] yield that, as far as the curvature (θs)
remains bounded, a unique solution fulfilling the necessary conditions to smooth irreg-
ularities exists. Besides, we have a complete description of the asymptotic behavior
of the mean curvature flow:

Proposition 1.1.1 [32] [33] Let γ(t, u) be the solution to the geometric heat equation:

γt = κ−→n

with initial condition a closed simple smooth curve. Then, γ(t, u) becomes a circle
and finally collapses to a point.

This Proposition supplies images and curves evolving under the curvature flow with
a desirable property for a scale-space analysis [1], [41], which studies images/shapes
at different level of detail by means of a progressive simplification of their shapes
and features. However, as in the case of diffusion processes, this property represents
a main drawback if one is to use such equation just to smooth irregularities, as it
requires a stopping time in order to preserve enough features as to recognize the
original shapes in the image. Up to this moment, techniques developed to cope with
trivial final curves focus on converging to a particular geometric model of shapes:

Example 1.1.9 Stochastic Geometric Flows

Basing on the stochastic process that models evolution of a pixel, this geometric
flow [79] adds a factor to the mean curvature flow that cancels on polygons of N-
vertices:

cos2(Nθ)κ−→n or sin2(Nθ)κ−→n
The resulting image filtering drives all level sets to a polygon given a priori, which
limits the technique applicability to images presenting different geometric designs.

Although, strictly speaking, it can not be considered a geometric flow (it depends
on the embedding image), the next curvature based evolution achieves more accurate
shape models:

Example 1.1.10 Min/Max Flow
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In [49] Malladi and Sethian introduced the following curvature-based image evo-
lution:

ut =
{

min(κ, 0) if Φ(x, y) < υ
max(κ, 0) if Φ(x, y) ≥ υ

where Φ(x, y) is the average of all pixel values in a window centered at (x, y) and υ
is the mean value in the window on the level curve to be smoothed. In the case of
real images, the authors suggest using the image gradient to switch between evolution
under positive and negative curvature:

ut =
{

min(κ, 0) if Φ(|∇u|) < υ
max(κ, 0) if Φ(|∇u|) ≥ υ

for Φ(|∇u|) an average of the norm |∇u| and υ a threshold value determining whether
the curve is considered an edge or not.

In any case, the steady state of the equation is a polygonal curve that approaches
the original shape.

Selective shape smoothing based on the curve regularity rather than on its geom-
etry will be addressed in Chapter 2

1.2 Minimization Processes

Most of the former techniques minimize an energy functional and its formulation de-
rives from the gradient descent of such energy. In fact, energy minimization flows are
the main sources of PDE’s that do not conform to the model of a heat-like equation.

Let us review the variational principles that rule functional minimization. For any
function/curve, v, a functional, E, is defined as the integral:

E(v) =
∫ 1

0

L(v(x),∇u(x), x)dx =
∫

L(z, p, x)dx

where L is commonly known as Lagrangian.
As in the case of functions in R

n, cancellation of E first derivative characterizes
its minima/maxima. The functional first derivative or first variation is obtained as
follows. For any function ν and any real number δ, we will call a perturbation of u any
function of the form ũ = u + δν. It should be clear that the derivative with respect
to δ evaluated at δ = 0 yields the functional first variation at a point u provided that
L is smooth in all its arguments (z, p, x). Hence, if we denote:

E(δ) =
∫

L(ua + δν,∇u + δ∇ν, x)

Then the first variation of E at a point u is given by:

E′(0) := ∂δ

(∫
L(u(x) + δν(x),∇u(x) + δ∇ν(x), x)dx

)
=

∫
(〈Lz(u,∇u, x), ν〉 + 〈Lp(u,∇u, x),∇ν〉)dx (1.13)
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The functional E has a critical point if the above integral cancels for any ν. Assuming
the usual boundary conditions (Dirichlet, Neumman or periodic), integration by parts
yields:

E′(0) =
∫
〈Lz − (Lp)x, ν〉dx =

∫
〈Lz − div(Lp), ν〉dx = 0 (1.14)

which implies that extremal curves of E solve:
Euler-Lagrange equations

0 = Lz − (Lp)x (1.15)

or equivalently, that they correspond to the stationary points of the dynamical system,
which is analogous to the gradient descent [30], given by:

ut(x, t) = −Lz + (Lp)x (1.16)

Unfortunately, the converse does not always hold, that is, not all points cancelling
(1.16) are extreme points of the functional. As in the case of functions in R

n, an
analysis of the functional second variation determines the false minima. This second
derivative, E

′′
(0), is found by means of differentiating once again the expression (1.13)

with respect to δ and evaluating at δ = 0:

E
′′
(0) :=

∫
(νtLzz(u,∇u, x)ν + (∇ν)tLpp(u,∇u, x)∇ν + 2νtLzp(u,∇u, x)∇ν)du

where second derivatives should be understood in the context of symmetric 2-forms.
In this framework we will use the notation E

′′
(ν1, ν2) to denote the former symmetric

form applied to the functions ν1 and ν2. If the second variation is (strictly) positive
definite, the functional is called (strictly) convex. In this case, we can ensure [23]
that any function cancelling (1.13) is a stable stationary point (if convexity is strict)
and, further, a minima of E. In fact, convexity of the functional is equivalent to the
ellipticity condition for second order operators:

Example 1.2.1 Convexity and Ellipticity for Minimizing Diffusions

Let J(x) be an n × n symmetric matrix and, for each integrable smooth function
u : Ω ⊂ R

n → R consider the energy functional given by:

E(u) :=
∫

Ω

|∇u|Jdx =
∫

Ω

∇utJ∇udx =
∫

L(∇u, x)dx =
∫

L(p, x)dx

On one hand, the gradient descent of the former functional is:

ut = div(J∇u) = div(Lp)

On the other hand, the ellipticity condition that guarantees uniqueness of a weak
solution reads: ∫

(∇v)tJ∇v ≥ C

∫
|∇v|2
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which is exactly the condition that E is uniformly convex:

E
′′
(v, v) =

∫
(∇v)tLpp∇v =

∫
(∇v)tJ∇v ≥ C

∫
|∇v|2

Apart from the Gaussian filtering, image in-painting and mean curvature flow de-
scribed in the previous Section, there are some other techniques developed from vari-
ational principles:

1.2.1 Close-to-Data Constrains

This family of operators arise as a solution to avoid the convergence to trivial steady
states that mares efficiency of diffusion processes. The idea is to constrain the solu-
tions to a diffusion equation (1.5) to take equal values than the original function at
the function descriptive curves (edges, ridges). Such (Dirichlet-like) restrictions easily
are easily modelled in terms of energy minimization and result in adding a reaction
term to the diffusion equation.

1. Half-Quadratic minimization

These approaches ([2], [43]) base on the minimization of the functional:

E(u) =
∫ ∫

α

2
(u − u0)2 + Φ(|∇u|)dxdy

where u0 is the image to be filtered. The corresponding Euler-Lagrange equa-
tions correspond to a gradient descent flow:

ut = div(g(|∇u|2)∇u) + 2α(u0 − u) for g =
Φ′(|∇u|)
|∇u| (1.17)

that is a diffusion equation with a reaction term weighted by α. Since this
parameter weights the influence of the close-to-data constrain [62], it determines
the similarity between the original noisy image, u0, and its filtered version.
Although it prevents the flow from having a trivial (i.e. constant image) steady
state, an inappropriate (high) value for α troubles the denoising process.

2. Gradient Vector Flow

As already mentioned in Section 1.11 these methods ([75], [76], [77]) regularize
and extend vector fields. The smoothing diffusion term and the value constrain
extension term arise from the minimization of the energy functional:

E(u(x, y), v(x, y)) = E(V ) =
∫

|V |2 +
∫

|f |2|V − f |2 =

=
∫

(u2
x + u2

y + v2
x + v2

y) +
∫

(f2
x + f2

y )((u − fx)2 + (v − fy)2)

(1.18)

for f = (fx, fy) the vector field to be extended and regularized. Using calculus
of variations, it follows that GVF is the steady state of:

ut = ∆u − (f2
x + f2

y )(u − fx)
vt = ∆v − (f2

x + f2
y )(v − fy)
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The functional version (1.18) provides a simple interpretation of each of the
terms. Because each diffusion ∆u, ∆v corresponds to minimizing the total
variation,

∫
(u2

x + u2
y),

∫
(v2

x + v2
y) of the functions, it yields regularity to the

solution. Meanwhile the reaction terms (f2
x + f2

y )(u − fx), (f2
x + f2

y )(v − fy)
impose a restriction on GVF values, as at those points where the norm of the
original vector field is large, GVF must minimize

∫
(f2

x+f2
y )((u−fx)2+(v−fy)2),

which is minimum when (u, v) coincides with the original vector field.

In most cases, the vector field to be extended/regularized is the gradient of
an external potential that serves to guide a deformable curve to a given image
curve:

1.2.2 Snakes

Snakes constitute another important family of techniques based on calculus of varia-
tions principles. Snakes are curves that serve to segment image objects whose bound-
aries are characterized by a lack of differentiability of the image (edges, ridges). A
measure of such irregularity serves as an attractor external energy, Eext, that it is
minimum at the target object. The snake is, then, the curve that achieves a compro-
mise between minimizing this energy and conforming to a given degree of regularity.
Different ways of imposing the latter internal energy give rise to two main snake
models:

1. Parametric Snakes

Parametric deformable models [38], [47] use Newton mechanics laws to define
their internal constrains, which are given in terms of elasticity and stretching
of the curve. In mathematical terms, the snake is the curve γ(u) = (x(u), y(u))
that minimizes the energy functional:

E(γ) =
∫

γ

(Eint + Eext)du =
∫

γ

(α||γ̇||2 + β||γ̈||2 + Eext)du ,

where α, β ∈ [0, 1] determine the trade-off between length and curvature min-
imization. The usual external potentials, Eext, are either the gradient map,
g = 1

1+|∇u|2 , or the distance map to image edges. In the general case, the curves
minimizing such potentials are unconnected, so that the snake uses its internal
energy to obtain a close model. The α-term (elasticity) linearly interpolates
object contours producing a piece wise linear model of the curve. A higher reg-
ularity is achieve thanks to the β-curvature minimizing term (rigidity) because
it penalizes curves corners and undulations. This makes the snake smoothly
approach the unconnected set of points and allows it swallowing isolated set of
points (outliers) product of image noise.

A main inconvenience of physics-based snakes is that they handle an explicit
curve parameterization (sampling), which difficulties modelling more than one
object and requires dynamic updating during the snake evolution.

2. Geodesic Deformable Models
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Geodesic snakes [11], [12] are an alternative to physics-based snakes based on
the theory of curve evolution and level sets methods [57]. In particular, the
solution to the problem is the curve (γ) of minimum length in a Riemannian
surface with a metric (g) depending on the image contrast changes. It follows
that if we note by u the image to be segmented, the geodesic functional is given
by:

Egeod =
∫

Γ

g ds with g =
1

1 + |∇u|2 (1.19)

The normal component of the Euler-Lagrange formulation characterizes geodesic
snakes as the steady curve of

∂γ

∂t
= (g · κ− < ∇g, �n >) · �n (1.20)

We can give the following interpretation to each of the terms involved in the
above formula. The role of < ∇g, �n > �n is pretty clear: it is a vector field point-
ing to the region of interest that attracts the snake to its boundary. Notice that
in the standard formulation (1.19) the scope of this static term reduces to a nar-
row environ of the boundaries of interest. The curvature term, g ·κ�n, influences
different aspects of the snake evolution. On one hand, it defines its motion when
it is located far away from the object boundaries. On the other one, it serves
as a curve regularizing term, ensuring continuity of the final segmenting snake
in a similar fashion [78] the α-term of parametric snakes does. Finally, it gives
the process a smooth behavior and ensures continuity during the deformation,
in the sense that it prevents shock formation [23]. However, incorporating the
curvature term into the convergence scheme difficulties the snake convergence to
concave areas. In order to increase convergence to concavities and to speed up
the evolution a constant velocity term in the direction of the normal component
is usually added to the evolution equation giving rise to ’balloon’-like snakes
[16]. The new term corresponds to area minimization and results in a constant
dynamic speed in the gradient descent:

∂γ

∂t
= (g · κ + gV0− < ∇g, �n >) · �n (1.21)

The behavior of the above techniques will be discussed in deeper detail in Chap-
ters 3 and 5.3 where we will describe a new external energy ensuring convergence of
parametric snakes whatever the geometry of the set of points to be approached.
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Chapter 2

Regularized Curvature Flow: The
Geometric Perona-Malik Approach

A theoretical analysis of recent filtering techniques [24] points out that if an image
smoothing operator is to be robust against strong noisy images, it should be inde-
pendent of image intensity. Essential advantage in this context is represented by
geometric flows [32], [49]. As image smoothing relies exclusively on the geometry of
its level curves, geometric flows do not produce any edge blurring [1], [39], which
makes these techniques more robust in very noisy images. However, the fact that
they reduce high curvature values and the number of inflexion points whatever the
regularity of the curve, limits their applicability to shape recovery. We argue that
any filtering technique to be used within a shape recovery algorithm, should take into
account differentiability of the curve. Smoothing should only be applied to those arc
of the curve presenting a given degree of irregularity. This need of a selective shape
filtering leads to the formulation of a function measuring lack of smoothness in a
shape.

We propose a novel geometric flow that penalizes irregularity in the curvature
rather than its magnitude. To this purpose we develop a simple criterion to measure
the degree of local irregularity present in the curve, which is added as stopping factor
in the mean curvature flow. The resulting evolution equation profits the smoothing
effects of the mean curvature flow to smooth those curve arcs that have a significant
irregular shape. We will call this geometric flow as Regularized Curvature Flow,
denoted by RCF for short.

The first relevant property of RCF is that the evolution converges to a smooth
curve that keeps high resemblance to the original noisy shape. This fact is one of
RCF main advantages over other geometric flows yielding non-trivial curves. First
because RCF final state is smoother than the polygonal shapes that [49], [79] produce.
Second, because RCF formulation is simpler and faster than the 4th order [46] or level-
sets decomposition techniques [11], [52]. Another significant improvement is that RCF
parameters are independent of the geometry of the initial curve our method is applied
to. In this fashion, the image operator, obtained through the level sets formulation
[57], is suitable for shape recovery in non-user intervention applications. Furthermore,

27
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(a) (b)

Figure 2.1: Measure of shape irregularity in a regular, (a), and irregular, (b), arc .

RCF smooth evolution makes the iterative scheme used in its implementation to stop
by means of standard numeric stop criteria [18], [70], [30]. This also constitutes an
advantage over most PDE based techniques that either present an irregular evolution
speed [49], [79] or rapidly converge to constant images [60], [72], [32]. Consequently,
in practice, they must rely on a given image-dependant number of iterations to stop
the evolution, meanwhile RCF admits equal stop parameters for any image. We take
special care in studying the error made in RCF numeric implementation and the way
this error affects the values of the parameters that rule RCF stabilization. Indeed we
propose a new way of setting parametric values in terms of the maximum accuracy
in the implementation.

2.1 A Selective Curvature Flow

Let us begin with introducing a roughness function that measures the degree of noise
of a plane curve.

2.1.1 Definition of a Local Measure of Shape Irregularity

A plane curve is determined (up to rotations and translations) by the angular orien-
tation, θ, of its unit tangent. Therefore, a reasonable approach for a stopping motion
term is to consider a measure of θ smoothness. It should be clear that lack of differ-
entiability in the angle θ corresponds to the variability of the normal unit vector −→n
around each point. We argue that this rate of variability can be computed by means
of the projection of −→n onto a robust mean of −→n in a neighborhood of each point.
That is, it suffices to compare −→n to a smooth approximation, −→v 1, of the vector. At
regular/differential arcs, the former vectors should agree, meanwhile, in the presence
of noise/irregularity, they will significantly differ (as the irregular shape of figure 2.1
illustrates).
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We will make use of the structure tensor, Jρ [36], computed over the unit normal
in order to obtain the vector −→v 1. We recall the reader that, given a regularization
scale ρ, the structure tensor is defined as the convolution of the projection matrices
onto −→n = (− sin(θ), cos(θ)) with a gaussian Gρ, of variance ρ and zero mean:

Jρ = Gρ ∗
[( − sin(θ)

cos(θ)

)
(− sin(θ), cos(θ))

]
=

=
(

Gρ ∗ cos2(θ) Gρ ∗ cos(θ) sin(θ)
Gρ ∗ cos(θ) sin(θ) Gρ ∗ sin2(θ)

)
=

(
a11(u) a12(u)
a12(u) a22(u)

)

We assert that the eigenvector of Jρ of maximum eigenvalue suits our purposes.
We define v1 = (cos ψ, sin ψ), in terms of the coefficients of Jρ as:

A := tan 2ψ =
2a12

a11 − a22
(2.1)

The square norm of the vector product −→v 1 ×−→n is the measure of curve irregularity
we propose:

g(θ) = ||−→v 1 ×−→n ||2 = sin2(ψ − θ) (2.2)

We will refer to the function g as Roughness Measure.
Remark: First notice that the discrete numeric implementation of a convolution
with a gaussian is approximated by means of a windowed (squared) kernel or mask.
This implies that discrete gaussians are functions of compact support. Second, even
in the continuous domain, gaussian kernels are approximations of the identity for
the convolution product. That is they converge to the dirac delta as the variance
tends to zero. For this (among others) reason they are commonly used in the area of
Fourier analysis as a tool to study the ”local” behavior of functions [?], [?]. Based on
the above considerations, we will refer to the Roughness Measure as local measure of
irregularity, in spite of being just an approximation to the local behavior of a function
in the continuous domain.

Let us intuitively explain why the function g conforms to the idea of a curve
irregularity measure. The statement follows easily if one realizes that the function A
is, in fact, equal to:

A =
2a12

a11 − a22
=

2Gρ ∗ cos(θ) sin(θ)
Gρ ∗ cos2(θ) − Gρ ∗ sin2(θ)

=
Gρ ∗ sin(2θ)
Gρ ∗ cos(2θ)

That is, the factors of the quotient are the solutions to the heat equation at time t = ρ
with initial conditions sin(2θ) and cos(2θ). The function g compares, in a particular
way, these quantities to the original functions sin(2θ) and cos(2θ). Therefore it is
rather sensible to expect that those functions that cancel g will be smooth. For a
rigorous mathematical justification we remit the reader to [24].

Properties of the Roughness Measure

These are the properties that make g suitable to our purposes:



30REGULARIZED CURVATURE FLOW: THE GEOMETRIC PERONA-MALIK APPROACH

1. Locally, it measures the degree of symmetry around each point, in particular it
cancels on arcs of circles. This property makes our RCF stabilize finite unions
of arcs of circles and straight lines.

2. Those curves that cancel g are C∞ curves, i.e. they are infinitely smooth. This is
convenient for a latter image processing procedure, since it ensures that higher
order operators applied to the image level curves will be accurate.

The above considerations turn our roughness measure into the perfect candidate
for a stopping evolution term in a mean curvature flow motion.

2.1.2 Formulation of the Regularized Curvature Flow

The Regularized Geometric Heat Equation we suggest is the geometric flow
defined as:

γt(u, t) = g(θ)κ−→n with γ(u, 0) = γ0(u) (2.3)

where the function g(θ) is given by formula (2.2) and κ denotes the curvature. The
numeric implementation through level sets formulation [65] is detailed in Section 2.2.1.

Properties of RCF

Let us enumerate those properties of RCF that ensure shape simplification and con-
vergence to non trivial steady curves.

1. No new inflexion points (i.e. zeros of the curvature) are created.

2. The total Gaussian curvature, κ(t) =
∫ 1

0
|κ|

√
ẋ2 + ẏ2du, decreases over the

orbits of (2.3).

These two properties guarantee that the evolution under RCF will simplify
shapes. Their geometric interpretation is that the curve oscillation, i.e. its total
variation, reduces in time. This fact ensures that, given an initial curve γ0, its
evolution will neither become more irregular (property 1), nor stretch (property
2): its only possible evolution is a progressive reduction of oscillations This
does not constitute a great novelty, since RCF shares this behavior with the
other geometric flows [40], [32], [49], [79]. The differential feature that makes
RCF more suitable for shape reconstruction purposes is its different asymptotic
behavior, which is described by means of the following properties:

3. Whatever initial shape, its evolution under RCF converges, in time, to the
steady states of (2.3) given by gκ ≡ 0.

First, notice that the above statement is not a triviality since the limit set of an
orbit could, perfectly, be a periodic orbit. The existence of Lyapunov functionals
for RCF (i.e. functions that decrease along the orbits) excludes this possibility.
Second, observe that the former property guarantees that the numeric iterative
implementation admits a stop criterion in terms of the magnitude of the speed
gκ ≡ 0.



2.2. Numerical Issues 31

This final state will never be a single round point like in the evolution by mean
curvature flow [32], [33]. This follows from the fact that the roughness measure
cancels on circles, which prevents the evolution from collapsing to a point.

4. Steady states of (2.3) are simple closed curves.

Finally, we have that the amount of shape irregularity, according to our rough-
ness measure, of the final state of (2.3) is smaller than the one of the initial
curve. In fact, it can be shown (Section2.3) that:

5. The roughness measure g tends to zero over the solutions to (2.3).

Therefore, by virtue of the second property of g, solutions to RCF tend asymp-
totically to a C∞ curve, which is the fixed point of equation (2.3) given by g ≡ 0.
Indeed, we have empirically checked that evolution under RCF converges to a
smooth curve that conserves features significant enough to identify the origi-
nal noisy shape. This already constitutes an advantage over other PDE-based
techniques. Firstly, it ensures a higher order smoothness of final curves than
the polygonal shapes yielded by [49], [79]. Secondly, the value of RCF unique
parameter (ρ) is set according to the desired degree of differentiability. Differ-
entiability is a property which is not linked to either resemblance to the original
image/shape [46], [9], [62], geometry of its level sets [79] or level of detail [11],
[52]. It follows that with a fixed set of parametric values RCF converges, by its
own design, to smooth curves resembling the original ones. Finally, property 5
provides the technique with a natural stop criterion in terms of the magnitude
of the roughness measure.

2.2 Numerical Issues

2.2.1 Level Sets Approximation

The level sets implicit formulation of RCF is given by:

ut = g

( ∇u

|∇u|
)
|∇u|div

( ∇u

|∇u|
)

= g

( ∇u

|∇u|
)

uxxu2
y − 2uxyuxuy + uyyu2

x

|∇u|2
The exact implementation would imply tracking, for each image pixel, its level curve
in order to perform the convolution with a one dimensional gaussian kernel along
the level-line. Since this is computationally unfeasible we propose an approximate
algorithm, which consists in computing the roughness measure using a gaussian in
two variables, Gρ(x, y) = 1

2πρ2 e−(x2/2ρ2)−(y2/2ρ2). That is, the structure tensor is
computed by means of the formula:

J̃ρ(x, y) =
∫

Gρ(x̃ − x, ỹ − y) ·
[( ∇u

|∇u|
)
⊗

( ∇u

|∇u|
)]

dx̃dỹ

Notice that in the discrete implementation the above integral is computed over a
window centered at each image pixel of size 2ε × 2ε.
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Figure 2.2: Normal vectors in a tubular neighborhood (a) and tube parameter
domain (b)

Let γ0 denote the target curve and δ the distance from an image pixel (x, y) to
γ0. Then, the relation between J̃(x, y) and the true structure tensor, J(x), computed
along γ0 is given by:

J̃ = J + δ

∫
G(x) · (κIm − κ0 tan(θ))(t0 ⊗ n0)dx + O(δ2) (2.4)

where κ0 stands for the curvature of γ0 and κIm for the flow lines curvature. It follows
that the error made is bounded by:

Error = |Jρ − J̃ρ| ≤ ε

(
C

∫
|κ0| +

∫
|κIm|

)
||−→t 0 ⊗−→n 0||+

+O(ε2) = E(γ0) + E(Im) + O(ε2) (2.5)

We remit the reader to the Appendix for the mathematical argumentation that leads
to the above formula. Let us analyze the meaning of each of the terms involved in
(2.5) and the way the error affects in the numeric implementation of RCF.

Two are the main sources of error in formula (2.5). The term E(Im), proportional
to the rate of variation of the unit normal to γ0 along the flow lines, comes from the
initial embedding function. First notice that, in the particular ideal case of the signed
distance map, this term cancels. This follows because distance maps are, locally, the
embedding of a tubular neighborhood of γ0. Hence, normal vectors to the level
curves in a band around γ0 are constant in the gradient direction as the drawing of
fig.2.2(a) shows. Also notice that for images with uniform areas bounded by edges,
E(Im) is nearly negligible because border curves correspond to inflexion points in the
image gradient direction and, hence, κIm = 0. Only images with regular level curves
on a textured or noisy background may evolve in a way such that motion of level
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curves differs from RCF due to an arbitrary huge E(Im). In the first stages of the
evolution, the roughness measure could cancel on the regular curve but not in the noisy
neighborhood. However, as the image evolves, since background variation decreases,
E(Im) asymptotically decreases to a small positive value and the evolution tends to
agree to that of the ideal signed distance map. We observe that some curvature based
techniques successfully used in image processing (such as the image average based
min/max flow [49]) present a similar pathology. Moreover our numerical experiments
show that the dependency upon the initial embedding function does not significantly
affect the final shapes achieved with RCF.

The first summand in (2.5), E(γ0), measures the error made in using the image
cartesian coordinates, (x, y), instead of the tubular coordinates given by the curve
parameter, u, and the parameter, δ, of the normal line n0(u) (fig.2.2(b)). Because
it corresponds to the term −κ0 tan(θ)(t0 ⊗ n0) of formula (2.4) it vanishes when the
curve is symmetric around the point. It follows that for finite unions of circles and
straight lines the only source of error is the one introduced by the embedding function.
For other curves, first notice that E(γ0) is bounded by the total gaussian curvature
of the target curve γ0. Second that, in the case of a positive g, RCF level sets
formulation agrees with the mean curvature flow. Curves evolving under the mean
curvature flow [32], [33] converge to a circle of radius namely R, and then collapse to
a point. Furthermore, their total gaussian curvature, before reaching the limit circle,
is a decreasing function of time. The latter implies that E(γ0) only blows when a
level curve collapses (which happens a finite number of times) and keeps bounded for
the remains of the evolution:

2πR ≤ E(γ0) =
∫

|κ0(u, t)| ≤
∫

|κ0(u, 0)|

The former analysis of the level sets formulation of RCF points the following. Evo-
lution of distance maps perfectly matches the curve formulation of RCF in the sense
that all properties given in Section 2.1 are preserved and, hence, stabilization can be
detected by means of the magnitude of g. In the general case, the roughness measure
does not tend to zero but to the positive value that depends on the initial embed-
ding image. The length of the time intervals where the former behavior holds hinges
upon the level sets topology. This numerical error introduced in the computation of
RCF difficulties using an evolution stop criterion in terms of the magnitude of g and
motivates searching for an alternate.

2.2.2 RCF Best Parametric Values

Parameters involved in any numeric implementation can be split into the ones that
are inherent to the method implemented and those concerning the numeric algorithm.
In the case of RCF, these two sets reduce to:

• RCF Parameters: ρ

This parameter controls smoothness of the final curves and, by virtue of (2.5),
it also influences in the error made in RCF implicit approximation. This fact
limits, for the sake of error minimization, the magnitude of ρ to values less or
equal to 1. Indeed we always use ρ = 0.5 in our experiments.
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• Numeric Parameters

1. Stop Parameters: {ε, T}
The value of ε determines the maximum amplitude of the roughness mea-
sure oscillations. Because g decreases smoothly on the orbits of RCF, ε
can be arbitrarily small (ε = 10−3, 10−4).
In (real) images presenting a rich level set topology, the length of the
time interval T influences on the level of detail of the longest level curves
(we remit the reader to Section 5.1.3 for examples on the impact of this
parameter). Because these curves are usually descriptive of image features
we recommend using T < 50.
Experiments in Sections 5.1.2 and 5.1.3 show that the set {ε = 10−3, T =
50} guarantees noise removal and geometry preservation.

2. Gray-Level of Target Curve: α0

Since geometric flows are designed for curves rather than for images, the
proper way to apply them to image denoising is through a level set decom-
position ([11], [52]). Because such decomposition adds an extra computa-
tional cost, we suggest filtering the image itself and computing any stop
quantity over a curve (manually chosen) describing the image features. In
this manner, stopping quantities are smoother in time (see Section 5.1.3)
so that standard stabilization criteria work fine.

2.3 Mathematical Issues

2.3.1 Properties of the roughness measure

In this section, we will prove the local and global properties of the roughness function
g (given in Section 2.1.1) which describe the curves that cancel this function. On
one hand, we will show that, locally, our roughness measure g measures the degree
of symmetry of the curve. And on the other, we will see that the function g really
measures the amount of irregularity on the curve, as those curves that cancel g are
C∞ curves.

In order to analyze the local properties, we first notice that g cancels at those
points such that ψ − θ = 0. The latter quantity is nothing but the angle of v1

with respect to the unit normal at each point. This fact motivates, for the sake
of notational simplicity, using ’gauge’ coordinates. That is, in order to determine
what characterizes points γ(u0) such that g(θ(u0), u0) = 0, we can take as coordinate
system in R

2 the one given by
−→
t (u0), −→n (u0). Notice that taking angles with respect

the axis given by −→n (u0), the roughness measure equals sin2(arctan(A)). Thus if one
is to prove that g cancels in symmetric situations it suffices to check that at a point
u = u0, such that g = 0, A computed with respect to −→n (u0) cancels.

Proposition 2.3.1 If the angle of the tangent does not turn more that π/2, the
function g measures the degree of symmetry of the curve around each point.
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Proof. Using ’gauge’ coordinates, it suffices to check that A(u0) = 0. We assert
that the latter equality is satisfied if and only if a12(u0) = 0. This follows because,
by hypothesis, θ does not turn more that π/2 and we can assure that a11 − a22 =∫ ∞
−∞ Gρ(u) cos(2θ(u)) �= 0. If we further take u0 = 0, the coefficient a12 equals:

a12(0) =
1
2

∫ ∞

−∞
Gρ(u) sin(2θ(u))du =

1
2

∫ 0

−∞
Gρ(u) sin(2θ(u))du+

+
1
2

∫ ∞

0

Gρ(u) sin(2θ(u))du

By changing the integration variable of the second integral by −u, we obtain:

a12(0) =
1
2

∫ 0

−∞
Gρ(u) sin(2θ(u))du +

1
2

∫ 0

−∞
Gρ(−u) sin(2θ(−u))du

Now, by assumption, the curve is symmetric around zero (i.e. θ(−u) = −θ(u)), so
that by symmetry of the gaussian we obtain:

a12(0) =
1
2

∫ 0

−∞
Gρ(u) sin(2θ(u))du − 1

2

∫ 0

−∞
Gρ(u) sin(2θ(u))du = 0

�
In the discrete version of RCF, since gaussian kernels are of compact support, the

above result implies that g measures the local degree of symmetry in a curve. That is,
for a given scale ρ, it cancels at those points, u = u0 where the curve is symmetric in a
neighborhood of length 2ρ+1 centered at u0. The former Proposition and symmetry
of circles yields:

Corollary 2.3.1 At whatever scale, ρ, the function (2.2) cancels on circles.

Concerning those curves having null roughness measure, we have the following
global result:

Theorem 2.3.1 Let γ be a curve such that g ≡ 0. Then the angle of the tangent θ
is a C∞ function

Proof. Notice that the roughness measure cancels if and only if:

0 ≡ tan(arctan(A) − 2θ) =
tan(arctan(A)) − tan(2θ)

1 + tan(arctan(A)) tan(2θ)
=

A − tan(θ)
1 + A tan(2θ)

Hence, it cancels on those functions such that:

Gρ ∗ sin(2θ)
Gρ ∗ cos(2θ)

=
sin(2θ)
cos(2θ)

Or equivalently:
Gρ ∗ sin(2θ)

sin(2θ)
=

Gρ ∗ cos(2θ)
cos(2θ)

= f(ρ, s)
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That means that we have the following two equalities:

Gρ ∗ sin(2θ) = f(ρ, s) sin(2θ) and Gρ ∗ cos(2θ) = f(ρ, s) cos(2θ) (2.6)

Now, as noticed at the beginning of the section, the functions S̃ := Gρ ∗ sin(2θ) and
C̃ := Gρ ∗ cos(2θ) are solutions to the heat equation at time t = ρ, so they are C∞.
We will show that this fact makes the functions f and θ belong to the Sobolev spaces
Hk for any k. General theory on Sobolev spaces [23] yields that f , θ ∈ C∞. We will
begin with proving that they belong to H1 and, then, proceed by induction. In order
to prove the assertion it suffices to check [23] that the L2-norm of the incremental
quotients of f and θ is uniformly bounded. By definition, the incremental quotient of
a function v is defined as:

Dh(v) :=
v(s) − v(s + h)

h

Taking difference quotients in equations (2.6), we obtain:

Dh(S̃) = Dh(f) sin(φ) + Dh(φ)f cos(φ)
Dh(C̃) = Dh(f) cos(φ) − Dh(φ)f sin(φ)

}

Therefore we have that:∫
Dh(f)2 + Dh(φ)2f2 =

∫
Dh(S̃)2 + Dh(C̃)2 ≤

∫
S̃2

s + C̃2
s < M < ∞

If f2 > ε > 0, then the above inequality yields that f , φ ∈ H1. Taking difference
quotients over first derivatives, we get:

Dh(S̃s) = Dh(fs) sin(φ) + 2φsfs cos(φ) + Dh(φs)f cos(φ) − φ2
sf sin(φ)

Dh(C̃s) = Dh(fs) cos(φ) − 2φsfs sin(φ) − Dh(φs)f sin(φ) − φ2
sf cos(φ)

}

Taking the sum of squares and integrating, we get that:

∞ > M >

∫
S̃2

ss + C̃2
ss ≥

∫
Dh(fs)2 − 2φ2

sfDh(fs) + 4φ2
sf

2
s + 4Dh(φs)φsffs+

+ Dh(φs)2f2 + φ4
sf

2 =
∫

Dh(fs)2 +
∫

Dh(φ2
s)∂s(f2) + 2

∫
φ2

sf
2
s +

+ 4
∫

φ2
sf

2
s +

∫
Dh(φ2

s)∂s(f2) +
∫

Dh(φs)2f2 +
∫

φ4
sf

2 >

∫
Dh(fs)2+

+
∫

Dh(φs)2f2 + 2
∫

Dh(φ2
s)∂s(f2) =

∫
Dh(fs)2 +

∫
Dh(φs)2f2−

− 2
∫

φ2
sD

h(∂s(f2))

(2.7)
Now, developing derivatives, the last integral equals:

−2
∫

φ2
sD

h(∂s(f2)) = −4
∫

φ2
sD

h(ffs) = −4
∫

φ2f2
s − 4

∫
fφ2

sD
h(fs) ≥

≥ −4
∫

φ2f2
s − 4ε

∫
Dh(fs)2 − 4

4ε

∫
f2φ4

s
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Where we obtain the last inequality by applying Cauchy. Replacing this expression
into (2.7) we get the following bound on the second incremental differences:

(1 − 4ε)
∫

Dh(fs)2 +
∫

Dh(φs)2f2 < M + 4
∫

φ2f2
s +

4
ε

∫
f2φ4

s < C < ∞

The last inequality follows from the bound on
∫

f2φ4
s obtained from:

M >

∫
(cos(φ)S̃ − sin(φ)C̃)4 =

∫
f4φ4

s > ε

∫
f2φ4

s

Hence, if f2 > 0, we get that f and φ belong to H2. Taking higher order incremental
differences, we have that:∫

Dh(fn))2 +
∫

f2Dh(φn))2 + Previously bounded terms ≤ M < ∞

So both functions, f and φ belong to Hk for any k and, thus, they are smooth
functions.

The last thing to prove is that f2 �= 0. But this follows from the fact that the
curve γ does not have self-intersections. �

2.3.2 Existence of Solutions to RCF

First notice that since a change of parameter in a curve does not alter its shape but
only the speed we are travelling on the curve, we have infinitely many formulations
representing the same curve evolution (although the function of the embedding, γ,
may change). Secondly, since a curve in the plane is determined by its curvature,
by means of the properties of the PDE associated to the curvature we can infer
properties of the family of curves solving (2.3). We will derive equations for the
curvature associated to the arc-length parameter, s, and the angle θ since they will
be useful to prove existence of solutions and to describe their properties.

Equivalent formulations for RCF

Proposition 2.3.2 The curvature of the solution to (2.3) parameterized by the angle
θ satisfies:

κT = gκ + ∂θθ(gκ) with
dT

dτ
= κ2

Proof. The change to the angular parameter induces a coordinate change in the
domain of definition of the equation, (u, t) �→ (θ(u, t), τ(t)), given by the partial
derivatives ∂u = θu∂θ and ∂t = θt∂θ + τt∂τ . Now, following [32] and [33], we have
that the angle, θ, and the curvature satisfy:

θt(u, t) = ∂s(gκ) and κt(u, t) = gκ3 + ∂ss(gκ)

Since, without loss of generality we can take τt = 1, differentiating with respect to
the new time variable, we have that the curvature fulfills:

κτ = −θtκθ + κt = −κθ∂s(gκ) + gκ3 + ∂ss(gκ)
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Using the relation between partial derivatives ∂s = κ∂θ, we get that:

κτ = gκ3 + κ2∂θθ(gκ)

Finally, consider a new time derivative, dT defined by dT
dτ = κ2 to obtain:

κT = ∂T (κ(θ, t(T ))) = κt
dt

dT
= gκ + ∂θθ(gκ)

�

Proposition 2.3.3 Let θ0(s, t) be the angle between the tangent to the initial curve
γ0(s, t) and a fixed axis. Then the problem given by (2.3) is equivalent to:

θτ (s, τ) = ∂s(gθs) + (
∫ s

0

gθ2
sds)θs (2.8)

with initial condition θ(s, 0) = θ0(s) and periodic boundary conditions θ(0, τ) =
θ(L, τ)

Proof. In the case of the arc-length parameter and also taking τt = 1, the coordinate
change ([32], [33]) in the domain of definition of the solutions to (2.3) is given by
∂u = ||γu||∂s and ∂t = −(

∫ s

0
gθ2

sds)∂s + ∂τ . Therefore, we have that:

θτ (s, τ) = θt + (
∫ s

0

gθ2
sds)θs = ∂s(gθs) + (

∫ s

0

gθ2
sds)θs

where the last equality follows from the expression of θt ([32], [33]). This yields that
angles of solutions to (2.3) satisfy (2.8). Conversely, for any solution to (2.8) the
curves:

γ(s, t) = (
∫ s

0

cos(θ)ds̃,

∫ s

0

sin(θ)ds̃)

are closed curves that satisfy an equation that, up to a change of parameter, equals
(2.3). �

We will prove existence of solutions to RCF by showing that the equivalent problem
given in Proposition 2.3.3 has a weak solution provided that θ0 is C2. Under this
assumption on the differentiability of the initial function we will construct a sequence
of weak solutions to the associated linear problem:

θτ (s, τ) = ∂s(g(ψ)θs) + (
∫ s

0

g(ψ)ψ2
sds)θs (2.9)

uniformly bounded in H1. Then, as the space is reflexive, it exists a subsequence that
weakly converges to a function θ ∈ H1, which is a weak solution to 2.8.

Notice that since the roughness measure can cancel at some points, the differen-
tial operator is not elliptic at every point. We recall that this condition guarantees
existence of weak solutions to (2.9) in the space C([0, T ),H1) by means of Galerkin’s
method. The key point lies on having a uniform bound on the first derivative that can
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be obtained if one applies the elliptic condition to the integral version of the equation.
Hence the lack of ellipticity forces to consider the partial differential equation that the
first derivative, θs = κ, satisfies in order to obtain a uniform bound for its L2-norm.
This forces the initial function, θ0 to belong to H1 and ψ ∈ C1.

We will begin with proving that the linear problem (2.9) has weak solutions. Next
we will deduce that, in spite of the lack of ellipticity, these solutions are at least C2

almost everywhere, provided that the second derivative of the roughness measure, gss,
stays bounded almost everywhere. Finally we will address existence of weak solutions
to the non linear problem given in Proposition 2.3.3.

Existence of Solutions to the Linear Problem

We will show that the linear problem (2.9) has weak solutions by means of its ap-
proximations in certain finite dimensional spaces (Galerkin’s method). Let {ωk(s)}k

be a smooth periodic basis of H1, orthonormal in L2. We could take, for instance,
the eigenfunctions of the Laplacian operator with a time dependent period, L, given
by:

dL

dt
= −g(ψ)ψ2

sL ⇒ L(t, s) = L0(s)e−g(ψ)ψ2
st

which implies that the domain of integration (s, t) is not a rectangle, [0, L0] × [0, T ],
but a trapezoid of basis L0 at time 0 and L(T ) at time T .

The projection of equation (2.9) onto the finite dimensional spaces, Ωm, spanned
by {ω1, . . . , ωm} is given by:

∫ L

0

θm
t ω = −

∫ L

0

g(ψ)θm
s ωs +

∫ L

0

(
∫ s

0

g(ψ)ψ2
sds)θm

s ω (2.10)

for ω ∈ Ωm and initial condition the projection of ψ onto Ωm, ψm =
∑

(
∫

ψωk)ωk.
We assert that the former equation has a unique weak solution, θm, of the form:

θm =
∑

k

dk
m(t)ωk(s)

This follows from the fact that the coefficients, dk
m, satisfy the system of ordinary

differential equations obtained by requiring that the functions θm satisfy (2.10) for
each of the generators, ωk, k = 1, . . . , m. We claim that θm are uniformly bounded
in L2([0, T ), H1), provided that ψ is C1. Because the operator is not elliptic, we need
first a bound on θm

s :

Lemma 2.3.1 Let κ0(s) be a periodic function on R. For each ψ ∈ C1(I, R), consider
the initial boundary problem:

κt(s, t) = g(ψ)ψ2
sκ + ∂ss(g(ψ)κ) + (

∫ s

0

g(ψ)ψ2
sds)κs (2.11)

with κ(s, 0) = κ0. If κ ∈ H1 is a weak solution and gss is uniformly bounded by M ,
then the solution is unique and satisfies:

max
0<t<T

||κ||2L2 ≤ eT (||ψ2
s ||∞+M)||κ0||2L2
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where ||ψs||∞ = maxs |ψs|2.
Proof. Let κ ∈ H1 be a weak solution of the initial boundary problem (2.11), that is,
a function satisfying the integral equation:

∫
κtω =

∫
g(ψ)ψ2

sκω +
∫

(
∫ s

0

g(ψ)ψ2
sds)κsω −

∫
∂s(g(ψ)κ)ωs

for all ω ∈ H1. Denote by η the square of the L2-norm of κ. If κs �= 0 almost every
where, then η fulfills:

ηt =
∫

κtκ =
∫

g(ψ)ψ2
sκ2 +

∫
(
∫ s

0

g(ψ)ψ2
sds)κsκ −

∫
∂s(g(ψ)κ)κs =

∫
g(ψ)ψ2

sκ2+

+
1
2

∫
(
∫ s

0

g(ψ)ψ2
sds)∂s(κ2) −

∫
g(ψ)κ2

s −
∫

gs(ψ)∂s(κ2) ≤ −
∫

gs(ψ)∂s(κ2)+

=
1
2

∫
ψ2

sκ2

The last inequality obtained through integration by parts of
∫

(
∫ s

0
g(ψ)ψ2

sds)∂s(κ2).
Integrating once again by parts, we get that:

ηt ≤
∫

(gss + ψ2
s)κ2 ≤ (M + ||ψ2

s ||∞)η

For M a bound on gss. Finally Gronwall’s Lemma yields that:

||κ||2L2 ≤ et(M+||ψ2
s ||∞)||κ0||2L2

On one hand, since the PDE is linear, this inequality implies uniqueness of the so-
lutions. On the other hand, taking maximums over time we obtain the bound on
||κ||2L2 . In the case κs ≡ 0, the equation for the L2-norm yields:

ηt =
∫

g(ψ)ψ2
sκ2 ≤ ||ψ2

s ||∞η

Thus, in this case we also have:

||κ||2L2 ≤ et||ψ2
s ||∞ ||κ0||2L2

Splitting the domain of integration into the set {κs ≡ 0} and its complementary, we
get the result in the general case. �

The above bound on the solutions to the equation associated to the first derivatives
of a function solving (2.9) and standard arguments on linear PDE’s gives existence
to the linear problem:

Proposition 2.3.4 Let ψ ∈ C1 be a function such that gss is uniformly bounded
almost everywhere. Then it exists a unique weak solution to:

θτ (s, τ) = ∂s(g(ψ)θs) + (
∫ s

0

g(ψ)ψ2
sds)θs
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with initial condition θ(s, 0) = θ0 a periodic function in the Sobolev space H1 . Besides
we have the following bound on the L2 norm of the solutions:

max0≤t<T ||θ||L2 ≤ ||θ0||L2

Proof. See [24]. �

Existence of Solutions to RCF

We recall that we will prove existence by means of a suitable sequence of weak solutions
to the linear problem (2.9). Since the operator is not everywhere elliptic, we need
solutions to (2.9) to be, at least C2, in order to explicitly derive a bound on θs = κ.

Proposition 2.3.5 Let ψ, θ0 be C2 functions. Then the weak solution to :

θt = ∂s(g(ψ)θs) + (
∫ s

0

g(ψ)ψ2
sds)θs

with initial condition θ(s, 0) = θ0 is C2 as well.

Proof.
If g > ε almost everywhere, we can assure that the solutions belong at least to H4,

since the coefficients of (2.9) belong to C2, the initial function is C2 and the second
order operator is of elliptic type. Hence, on that set, by virtue of Morrey’s inequality,
we have that θ is C3. We may only have problems in a neighborhood of those points
where g is continuous and cancels, as the equation resembles a transport one (i.e. a
1st order PDE):

θt = gs(ψ)θs (2.12)

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

ε

g(ψ(s))

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

ε

(a) (b)

Figure 2.3: Behavior at a point of cancelling g, (a), and level lines of θ, (b)

By general theory of first order PDE’s, we know that solutions, whatever the
differentiability of the initial function, may develop singularities (shocks) either if
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the equation is non linear or if its coefficients are not C∞. Our equation fits into
the second group as we can only assure that gs is continuous. We recall that shock
formation is essentially due to crossing of two characteristics, that is, when two level
curves of the function solving (2.12) cross. If we show characteristics do not cross
for any positive time, then we can assure that the function will be as smooth as the
initial function θ0. The key point lies on noticing that the function g is as smooth as
ψ. Since g = 0 is a minimum and ψ is C2, we have that the graph of g, locally, is like
the one shown in figure 2.3(a). Now, the characteristics of equation (2.12) are given
by α(t) = (s(t), t) with st = −gs(ψ), that is, they correspond to the flux given by
the normal vector to the graph (s, g(ψ(s))), as it illustrates figure 2.3(a). Hence they
correspond to the flux drawn in figure 2.3(b). The real equation can be viewed as a
perturbation of (2.12), which not only does not alter the flux of figure 2.3(b) but also
adds the regularizing effect of the diffusion gθss. This proves the statement. �

Differentiability of solutions to (2.9), yields that their first derivative satisfies:

Proposition 2.3.6 Let θ be a solution to the linear problem (2.9), with initial con-
dition a C2 periodic function. Then the L2 norm of its first derivative κ is bounded
by:

max
0≤t<T

||κ(t)||L2 ≤ eT ||κ(0)||L2

where κ0 = ∂(θ0)/∂s

Proof. We remit the reader to Proposition 2.3.8 for the idea of the proof and to [24]
for the details. �

Equipped with the above results, we are ready to prove the main result of this
section:

Theorem 2.3.2 For any C2 periodic function θ0(s), there exists a unique periodic
weak solution to:

θτ (s, τ) = ∂s(gθs) + (
∫ s

0

gθ2
sds)θs with θ(s, 0) = θ0(s)

Proof. Let X = C([0, T ],H1(I, R)) be the space of continuous functions from [0, T ] to
the Sobolev space of periodic real functions with first derivatives square integrable.
Each function, ψ ∈ X, defines the linear parabolic PDE:

θt(s, t) = ∂s(a(s, t)θs) + b(s, t)θs with initial condition θ(s, 0) = θ0(s)

with b(s, t) := (
∫ s

0
g(ψ)ψ2

sds) and a(s, t) := g(ψ). By Proposition 2.3.4, we know
that, at least, a C2 solution satisfying the maximum principle exists. Furthermore,
by virtue of the equation associated to its first derivative, θs = κ, we have that

max
0<t<T

||κ||L2 ≤ eT max ||κ0|| (2.13)

Consider the sequence in H1 defined as:

θ1 := A(θ0) ; θk := A(θk−1) k > 1
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We claim that the sequences θk and θk
t are bounded in L2([0, T ], H1(I, R)) and

L2([0, T ],H(I, R)−1), respectively, where H(I, R)−1 denotes the topological dual space
of H1(I, R). Then, since the spaces are reflexive, there exists subsequences, θkm and
θkm

t and a function θ ∈ L2([0, T ],H1(I, R)), with θt ∈ L2([0, T ],H(I, R)−1) such that:

θkm ⇀ θ weakly L2([0, T ],H1(I, R)) and θkm
t ⇀ θt weakly L2([0, T ],H1(I, R)∗)

This function θ is a weak solution [23] (by virtue of Lipschitzity of g) to the initial
boundary problem of Proposition 2.3.3 and produces a piece wise smooth curve that
solves equation (2.3).

The maximum principle for solutions to (2.8) and the inequality (2.13), gives a
bound for ||θk||2L2([0,T ],H1(I,R)). For a bound on θk

t in H−1, consider, for each ω ∈ H1,
the following:

|
∫

θk
t ω| = | −

∫
a(s, t)θsωs +

∫
b(s, t)θsω| ≤ ||θs||L2 ||ωs||L2 + C||θs||L2 ||ω||L2 ≤

≤ (eT ||κ0||L2 + C||κ0||L2)||ω||H1

Where we have applied Holder to obtain the first inequality. It follows that ||θk
t )||H−1 ≤

eT ||κ0||L2 + C||κ0||L2 . Weakly convergence for bounded sequences in reflexive spaces
yields existence of weak solutions for finite time. �

2.3.3 Differentiability and Uniqueness

Differentiability

Let us see that the weak solutions to (2.8) are as smooth as the initial function θ0.
This fact will ensure uniqueness of solutions if θ0 is C2. Notice how lack of ellipticity
forces a certain degree of differentiability in the initial condition in order to guarantee
existence and uniqueness of weak solutions.

Proposition 2.3.7 Consider the initial boundary problem:

θt = ∂s(g(θ)θs) +
(∫

g(θ)θ2
s

)
θs

with initial condition a periodic Ck function θ0 and periodic boundary conditions.
Then any weak solution θ ∈ H1 is Ck as well.

Proof. As in the case of differentiability of the solutions to the linear problem (Propo-
sition 2.3.5), we must only bother in a neighborhood of those points that cancel g. In
the open set where g > ε, as the operator is elliptic, we have that the solutions are
Cn for t > tn, thus improving the differentiability of the original function.

We will follow the arguments given in Proposition 2.3.5 and show that the char-
acteristic lines of the non-linear transport equation:

θt = gs(θ)θs
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are smooth and well defined (that is, curves of different levels do not cross). The level
lines, α(t), are given by the normal vector to the graph of g: (−gs(θ(s, t)), 1). The
only difference with respect to the linear case is that the roughness measure depends
on time. We will see that for small times, t < δ, the flux is well defined. For larger
times just apply the same argument to the problem with initial condition θ(s, t − δ).
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Figure 2.4: Flux given by the normal vector when g decreases and level lines when
g

Since by assumption the initial function is C2, in a small enough neighborhood of a
point cancelling the roughness measure, the graph of g at time zero is like a parabola.
Now, by continuity of g with respect to time, for times t < δ, g either increases or
decreases uniformly in a neighborhood of the zero of g(s, 0). If g increases uniformly,
we are in the situation of figure 2.4 and the level curves (shown in figure ??) are as
in Proposition 2.3.5. In the case of an increasing g, the second order term of the
equation increases its weight with time. Since it is bounded by its value for time zero,
g(s0, 0), we are diffusing the function along the curves given by (−gs(θ(s, t)), 1). Thus
we are adding some curvature to the level curves of the solutions producing a well
defined flux as well. In fact, as g → 0 over the solutions to RCF (Theorem 2.3.4 in
Section 2.3.4), this last situation never occurs. �

Uniqueness

In order to show uniqueness we will consider the curve in cartesian coordinates and re-
quire that points move to fix their x-coordinate, that is, locally, γ = γ(x) = (x, y(x)).
Using this parameterization, the flow is given [32] by:

yt =
gyxx

1 + y2
x

where g = g(arctan(yx)). We will see that if the functions solving (2.8) are C2, then
the solution to the above equation is unique. Since we can cover the curve with a
finite number of cartesian maps, we obtain uniqueness for the RCF.
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Theorem 2.3.3 It exists a unique C2 solution to the PDE:

yt =
gyxx

1 + y2
x

= g∂x(arctan(yx)) (2.14)

Proof. Gronwall’s Lemma applied to the L2-norm of the difference of two solutions
yields the result. We remit the reader to [24] for the computational details. �

Since the initial function must be C2 in order to guarantee existence and uniqueness
of solutions, solutions to (2.8) are at least C2. This fact gives sense to the maximum
principles and energy bounds for the curvature that we will derive in next section.

2.3.4 Properties of RCF

We devote this part to the analysis of the solutions to the RCF. Firstly, we will show
that the RCF has the same shape simplification properties as the MCF. Secondly, we
will prove the main advantage of RCF over MCF: convergence of the orbits to a non
trivial C∞ curve that keeps significant inflexion points of the initial curve. This facts
makes our flow suitable for shape recognition analysis and image filtering. We will
begin with some bounds on the solutions to RCF and, then, analyze RCF asymptotic
properties.

Energy Bounds

Proposition 2.3.8 Let γ(u, t) be a family of curves solving (2.3), for (u, t) ∈ [0, 1]×
[0, T ). Then the energy of the curvature ||κ(t)||L2 :=

∫ 1

0
κ2

√
ẋ2 + ẏ2du =

∫ 1

0
κ2νdu is

a decreasing function of time,

||κ(t)||L2 ≤ ||κ(0)||L2

Proof. We will see that the inequality is fulfilled between two consecutive inflexion
points, θi, θi+1. Since κ belongs to the Sobolev space H1

0 (R) of functions with compact
supports with first derivatives in L2, it can be expressed as κ =

∑
dn(t)ωn, where the

functions ωn are the eigenvectors of the Laplacian operator −∆ and we may assume
they are positive. We will prove that the coefficients dn(t) =

∫ θi+1

θi
ωnκ decrease in

time. Let η denote dn for an arbitrary n. If we differentiate with respect to time and
integrate by parts, as κ = 0 at θi, θi+1, by Proposition 2.3.2, we obtain:

ηt =
∫ θi+1

θi

ωn∂θθ(gκ)dθ +
∫ θi+1

θi

ωngκdθ

If ∂θθ(gκ) �= 0, integrating again by parts the first integral we get

ηt =
∫ θi+1

θi

∂θθ(ωn)(gκ)dθ +
∫ θi+1

θi

ωngκdθ = (1 − λn)
∫ θi+1

θi

ωngκdθ

where λn = (nπ)2 are the eigenvalues of the Laplacian operator −∆. Since (1−λn) < 0
and ωngκ is positive, if κ > 0, and negative otherwise, we have that ηt < 0 when
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κ > 0 and ηt > 0 when κ < 0. This fact implies that |η(t)| decreases in time, which
proves the result if ∂θθ(gκ) �= 0.

In the case that ∂θθ(gκ) ≡ 0 we are going to show that either the arc remains
steady or we have a circle. In any case, since circles are steady curves we have that
η(t) ≡ η(0). The fact that ∂θθ(gκ) ≡ 0 implies that ∂θ(gκ) = f(t). Now, since at
the boundary points, we have that gκ(t, θi) = gκ(t, θi+1) = 0, there exists an interior
extremum, that is the first derivative ∂θ(gκ) cancels at some point. This implies that,
indeed, ∂θ(gκ) ≡ 0 on the whole arc, hence we have that is gκ is constant and equal to
zero, by virtue of the cancellation of κ at the boundary points. So let us assume that
we have a convex curve and check that it necessarily must be a circle. Since in this
case θi = θi+1 the first derivative ∂θ(gκ) must cancel in the whole curve. Developing
the derivative, we obtain that −gθ

g = κθ

κ . Integrating this equation, we can write the
curvature in the form κ = F (t)e1/g. Substituting this expression in the PDE for the
curvature, we get:

κt = F ′e
1
g − F

gt

g2
e

1
g = gFe

1
g

Now, because θt = ∂s(gκ) = κ∂θ(gκ), we have that the derivative with respect to
time of the factors of the function A given by (2.1) cancel:

∂t(a12) = Gρ ∗ (2θt cos(2θ)) and ∂t(a11 − a22) = Gρ ∗ (2θt sin(2θ)))

It follows that gt ∼ sin(0.5 ∗ arctan(A)− θ)(At/(1 + A2)− θt) = 0 and F ′e
1
g = gFe

1
g .

Hence F satisfies the differential equation F ′
F = g. Finally, since g is independent of

time, this last equality implies that, indeed, g = C1 is constant. Thus κ = F (t)e1/C1

and the curve is a circle. �
Remarks:

1. It can be proved that the length, L(t), of a curve satisfying (2.3) decreases
in time at the rate Lt = − ∫

gκ2νdu. It follows that the total curvature also
decreases in time:

κ(t) =
∫

|κ|
√

ẋ2 + ẏ2du ≤ L(t)||κ(t)||L2 ≤ L(0)||κ(t)||L2

which is one of the requirements for curve simplification.

2. The above Proposition ensures existence of weak solutions of the curvature
equation for all time, hence we can assure that C∞ piece-wise curves exist for
all time.

Besides this bound on the L2-energy of κ, we have that κ grows at most exponen-
tially.

Lemma 2.3.2 Let κ(θ, t), t ∈ [0, T ), be the solution to (??) with initial condition
κ0(θ) and assume that gθθ is bounded by a constant M . Then, the following inequality
holds:

max
0<t<T

|κ(θ, t)| ≤ eT (M+1) max |κ0|
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Proof. The function v = e−(M+1)tκ fulfills the PDE:

vt = −(M + 1)v + e−(M+1)tκt = −(M + 1)v + gv + ∂θθ(gv)

If the function v had an interior extremum at the set where κ is positive, then:

0 = (g − (M + 1) + gθθ)v + g∂θθ(v) ≤ g∂θθ(v)

Since g ≥ 0, we get that the extremum is, indeed, a minimum. A similar argu-
ment at points with negative κ, yields that |v(θ, t)| ≤ max |v(θ, 0)| = max |κ0|. We
conclude that |κ| ≤ e(M+1)t|v| and, thus, max0≤t<T |κ| ≤ e(M+1)T max0≤t<T |v| =
e(M+1)T max |κ0|. �

This maximum principle for the curvature yields that no new inflexion points are
created.

Asymptotic Behavior

Proposition 2.3.9 The number of inflexion points (i.e. zeros of the curvature) of a
family of curves, γ(u, t), satisfying (2.3) for t ∈ [0, T ) is a non-increasing function of
time.

Proof. We will prove that between two consecutive inflexion points the curvature does
not change its sign. In an arc joining two consecutive inflexion points Lemma 2.3.2
holds and, so, we have that:

eT (M+1) min κ0 ≤ κ ≤ eT (M+1) max κ0

It follows that κ keeps the sign of κ0 between consecutive inflexion points. �
The former Propositions yield that, as all geometric flow, RCF ensures shape

simplification. What turns RCF into a preferable tool for image filtering and shape
recovery tasks is the fact that solutions tend asymptotically to a C∞ curve, which is
the fixed point of equation (2.3) given by g ≡ 0. We can summarize this asymptotic
behavior in the following results:

Proposition 2.3.10 Steady states of (2.3) are simple closed curves.

Proof. First notice that existence of a Lyapunov functional (the length functional,
for instance) ensures that RCF has not periodic orbits. It follows that the limit of
any orbit γ(u, t) must be a steady point of equation (2.3). The inclusion principle
[32] and stability of circles for RCF yield the statement as follows. Let C1 be a circle
containing γ0 and C2 a circle included in γ0. By the inclusion principle, we have that
evolutions of these curves under RCF fulfill C2(u, t) ⊂ γ(u, t) ⊂ C1(u, t). The fact
that any circle is a steady point yields the result. �

Before proceeding to the proof of the main property of RCF concerning conver-
gence to zero of the roughness measure (Theorem 2.3.4), let us begin with some
notations and considerations. The norm of the first derivative of a curve solving (2.3)
will be noted by ν =

√
ẋ2 + ẏ2. Following [32], [33] it is easy to check that ν solves:

νt = −gκ2ν with initial condition ν(u, 0) = ν0(u) (2.15)
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since ν is a decreasing function of time, it is bounded above by ν0. Furthermore, non
triviality of steady states of curves following RCF (Proposition 2.3.10) yield that ν is
also bounded from below by the minimum, νmin > 0, of the norms corresponding to
the limit curve. Also by Proposition 2.3.10, we know that the orbits of (2.3) converge
to a curve fulfilling gκ ≡ 0. Since the latter quantity is continuous (g is Lipschitz
[24]) with respect the L2-norm, it follows that:

∫
gκ2 =

∫
gκ · κ ≤ ||gκ||L2 ||κ||L2 ≤ ||gκ||L2 ||κ(s, 0)||L2

t→∞−→ 0

We will note t0 a time such that
∫

gκ2 < ε. The lower bound νmin and the former
asymptotic behavior will be used in the proof of Theorem 2.3.4. Let us begin with a
preliminary Lemma:

Lemma 2.3.3 The norm, ν, satisfies:

max
t≤T

|∂u(ν2)| ≤ TMν2(u, 0) + ν2
u(u, 0)

Proof. Recall that solutions to (2.3.3) are C2 classic solutions that converge to a
smooth function θlim by existence of Lyapunov functionals. It follows that ∂u(gκ2) →
∂u(glimκ2

lim) and, hence, ∂u(gκ2) is uniformly bounded by a constant M/2. Integrat-
ing (2.15) and noting I =

∫
gκ2dt, we get that ν = e−Iν(u, 0), so that the first

derivative:

|∂u(ν2)| = | − 2ν2

∫
∂u(gκ2)dt| + |e−2Iν2

u(u, 0)| ≤ Mtν2(u, 0) + ν2
u(u, 0)

�

Theorem 2.3.4 The roughness measure g tends to zero over the solutions to RCF.

Proof. We recall that one of the definitions of the roughness measure is the square
norm of the vector product:

g(θ) = ||−→v 1 ×−→n ||2

where the vector −→v 1 = (cos ψ, sin ψ) is given by the quantity:

A := tan 2ψ =
2a12

a11 − a22
=

Gρ ∗ sin(2θ)
Gρ ∗ cos(2θ)

Therefore, by the above definition of A, g is close to zero in the measure that the
vectors −→v1 = T̃ρ = (Gρ ∗ sin(2θ), Gρ ∗ cos(2θ)) and T = (sin(2θ), cos(2θ)) coincide.
We will check that in the limit, when t goes to infinity, T converges to T̃ρ. To such
purpose we will study the asymptotic behavior of the PDE’s that the former vectors
follow.

For a given parameter u for a curve following (2.3), we have that T solves the
PDE:

Tt(u, t) = ∂s(gTs(u, t)) =
1
ν

∂u(g
Tu

ν
) with T (s, 0) = T0 (2.16)



2.3. Mathematical Issues 49

where ν =
√

ẋ2 + ẏ2. On the other hand, T̃ρ corresponds to the solution at time
t = ρ of:

T̃t = T̃uu with T̃ (u, 0) = T (u, t) (2.17)

If we change to the arc length parameter of γ(u, t), the above PDE’s convert to:

Tt = ∂s(gTs) +
(∫

gκ2

)
Ts with T (s, 0) = T0 (2.18)

T̃t = ν∂s(νT̃s) +
(∫

gκ2

)
T̃s with T̃ (s, 0) = T (s, t) (2.19)

where ν = 1/us = ν(s) denotes the derivative of the inverse change from parameter u
to parameter s. First, notice that in (2.19) s does not need to correspond to the arc
length of T̃ . Second, the quantity gκ2 is computed over the solution to RCF with the
function g given by the parameter u. For a better handling of (2.19), we will develop
the term of the second derivative and use the formulation:

T̃t = ν2T̃ss +
1
2
∂s(ν2)T̃s +

(∫
gκ2

)
T̃s (2.20)

Let t0 be a time such that
∫

gκ2 < ε, and consider the solutions to (2.18), (2.20) with
initial condition T (s, t0). Let (T − T̃ )2 be the square of the norm of the difference
vector and define η(t) to be:

η(t) =
∫

(T − T̃ )2ds for times t > t0 (2.21)

If we note Ig =
∫

gκ2, differentiate (2.21) with respect to time and integrate by parts
we get:

ηt =
∫

(∂s(gTs) − ν2∂s(T̃s))(T − T̃ ) +
∫

Ig(Ts − T̃s)(T − T̃ ) − 1
2

∫
∂s(ν2)T̃s(T − T̃ ) =

=
∫

∂s(gTs − T̃s)(T − T̃ ) +
∫

(1 − ν2)T̃ss(T − T̃ ) +
1
2

∫
Ig∂s((T − T̃ )2)−

− 1
2

∫
∂s(ν2)T̃s(T − T̃ ) = −

∫
(gTs − T̃s)(Ts − T̃s) −

∫
∂s(1 − ν2)T̃s(T − T̃ )−

−
∫

(1 − ν2)T̃s(Ts − T̃s) − 1
2

∫
gκ2(T − T̃ )2 − 1

2

∫
∂s(ν2)T̃s(T − T̃ ) ≤ −

∫
g(Ts − T̃s)2−

−
∫

(g − 1)T̃s(Ts − T̃s) −
∫

(1 − ν2)T̃s(Ts − T̃s) +
1
2

∫
∂s(ν2)T̃s(T − T̃ ) ≤

≤
∫

(ν2 − g)T̃s(Ts − T̃s) +
1
2

∫
∂s(ν2)T̃s(T − T̃ ) = −

∫
(ν2 − g)T̃ 2

s +

+
∫

(ν2 − g)T̃sTs +
1
2

∫
∂s(ν2)T̃s(T − T̃ ) ≤

∫
|ν2 − g|T̃ 2

s +
∫

(ν2 − g)T̃sTs+

+
1
2

∫
∂s(ν2)T̃s(T − T̃ ) ≤

∫
|ν2 − g|T̃ 2

s +
∫

(ν2 − g)T̃sTs +
1
4
P2(t)

∫
T̃ 2

s +
1
4
η
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The last inequality follows from Cauchy’s inequality combined with Lemma 2.3.3,
provided that P2(t) denotes the polynomial of degree 2 given by the bound on
(∂s(ν2))2 = (∂u(ν2)/ν)2. Since s is the arc length, we have that Ts = κT⊥, where
κ is the curvature of the underlying solution to RCF. Thus, by Proposition 2.3.8,
its L2-norm is bounded by ||Ts||2L2 = ||κ||2L2 ≤ ||κ(s, 0)||2L2 = ||κ0||2L2 . Applying
Cauchy-Schwarz to

∫
(ν2 − g)T̃sTs, it follows that ηt fulfills:

ηt ≤
∫

|ν2 − g|T̃ 2
s + ||(ν2 − g)T̃s||L2 ||Ts||L2 ≤

≤ K||T̃s||2L2 + K||κ0||L2 ||T̃s||L2 +
1
4
P2(t)||T̃s||2L2 +

1
4
η

where K is a bound on (g − ν2)2. Further, because equation (2.19) is of elliptic type
with initial condition T (s, t0) it can be shown [23] that:

ν2
min max

t
||T̃s||2L2 ≤ max

t
||gκ2||2L1 ≤ ε2

These considerations yield that ηt ≤ ε(C1||κ0||2L2 +C2ε+C3εP2(t))+C4η for suitable
constants C1 . . . C4. Finally, applying Gronwalls’s Lemma we obtain that η is bounded
by:

η(t) ≤ eC4t

(
η(0) + ε

∫ t

0

C1||κ0||2L2 + C2ε + C3εP2(t)dt

)
≤

≤ εT (C1||κ0||2L2 + C2ε + C3εP2(T ))eC4T

That is, it exists a time t0 ensuring that solutions to (2.18) and (2.20) with initial
condition T (s, t0) differ less than ε in L2, for finite times 0 ≤ t ≤ T . Finally, Proposi-
tion 2.3.10 ensures that solutions to (2.16) and (2.17) computed over the parameter
u also converge to each other in the latter sense since:

η(s, t) =
∫

(T (s, t) − T̃ (s, t))2ds =
∫

(T (u, t) − T̃ (u, t))2ν(u, t)du ≥ νminη(u, t)

This asymptotic behavior, yields the following:

||T̃ρ − T ||L2 = ||T̃ (ρ) − T (t)||L2 ≤ ||T̃ (ρ) − T (ρ + t)||L2 + ||T (ρ + t) − T (t)||L2
t→∞−→ 0

The first summand converges to zero because T (ρ + t) is the solution to (2.18) for
initial condition T0 = T (s, t) at time t = ρ. Hence, ||T̃ (ρ) − T (ρ + t)||L2 = η(ρ) ≤ ε,
if t is large enough. The second, because solutions to equation (2.18) are Cauchy, as
they converge to a curve in time. �

2.3.5 Error in RCF Level Sets Formulation

Let us deduce the formula for the error in RCF level sets formulation given in Section
2.2.1. We recall the reader that the difference between the two dimensional structure
tensor , J̃ , and the exact value, J , computed along the level line was given in terms of
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the curve curvature, κ0, and the curvature, κIm, of the image gradient integral curves
by the formula:

|Jρ − J̃ρ| ≤ ε

(
C

∫
|κ0| +

∫
|κIm|

)
|−→t 0 ⊗−→n 0| + O(ε2) (2.22)

where ε is the size of the window used to compute 2D-convolutions. For the sake
of notational simplicity the scale ρ will be dropped, the projection matrix onto a
vector v will be noted by Pv and convolutions will be evaluated at the origin. In
a level sets formulation, the parameterization of a curve is the implicit one. Since
this coordinate change is local, formula (2.22) only holds for bounded domains of
integration. We recall that this is the case in the discrete numeric implementation, so
that there is no loss of generality in assuming that the x-coordinate is the parameter
and γ0(x) = (x, y0(x)).

For each image point (x, y), denote by (x̄, y0(x̄)) = (x̄, ȳ) the point achieving
the distance, δ, from the image pixel to γ0. Notice that it coincides with the pixel
projection onto γ0 along the normal direction −→n 0(x̄). The Taylor development of Pn

at (x̄, ȳ) yields that:

Pn(x, y) = Pn(x̄, ȳ) + 〈∇Pn, (x − x̄, y − ȳ)〉 + O(δ2) = Pn(x̄, ȳ) + δ〈∇Pn, n0(x̄)〉+
+ O(δ2) = Pn(x̄, ȳ) + δ(∂n0Pn)|x=x̄

+ O(δ2) (2.23)

Trigonometric arguments (see fig.2.5 (b) for a graphical representation) yield that:

|x̄ − x| = δ sin(θ(x̄)) ⇒ x̄ = x ± δ sin(θ(x̄))

Using the Taylor development of sin(θ(x̄)) and cos(θ(x̄)) it follows that:

x̄ = x + δ[sin(θ(x)) + cos(θ(x))θx(x)(x − x̄) + O((x − x̄)2]

Further, since |x−x̄| = δ sin(θ(x̄)) = O(δ), we conclude that the change of coordinates
x̄ is given by:

x̄ = x + δ sin(θ(x)) + O(δ2) = x + δ sin(θ) + O(δ2)

This bounds the first summand of (2.23) as:

Pn(x̄, ȳ) = Pn0(x̄) = Pn0(x + δ sin(θ) + O(δ2)) = Pn0(x) + δ sin(θ)∂x(Pn0) + O(δ2)
(2.24)

Taking into account that in an implicit parameterization the norm of the curve first
derivative equals |γ′

0|2 = 1 + (y′
0)

2 = 1/ cos(θ)2, we have that the partial with respect
to the arc length, s, is given by:

∂s = cos(θ)∂x

Then by the Frenet formulae, it follows that the first derivative in equation (2.24)
equals:

sin(θ)∂x(Pn0) = tan(θ)∂s(Pn0) = tan(θ)∂s(−→n 0 ⊗−→n 0) = −κ0 tan(θ)(
−→
t 0 ⊗−→n 0)
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Figure 2.5: Tube parameterization versus implicit (a) and coordinate change (b).

For the second term of (2.23), because ∂n corresponds to the unit tangent of the flow
lines, again the Frenet yield:

(∂n0Pn)|x=x̄
= (∂nPn)|x=x̄

= ∂n(n ⊗ n)|x=x̄
= κIm(x̄)(t0 ⊗ n0) = κIm(x)(t0 ⊗ n0) + O(δ)

(2.25)

where κIm stands for the flow lines curvature. Blending together (2.24) and (2.25),
we conclude that the tensor J̃ computed with a 2-D gaussian kernel G defined in a
window of size ε equals:

J̃ =
∫ ε

−ε

∫ ε

−ε

G(x, y)Pn(x, y) =
∫ ∫

G(x, y)Pn0(x)dxdy+

+ δ

∫ ∫
G(x, y)κIm(x)(t0(x) ⊗ n0(x))dxdy − κ0(x) tan(θ(x))(t0(x) ⊗ n0(x))dxdy+

+ O(δ2) = J + δ

∫ ε

−ε

G(x)(κIm − κ0 tan(θ))(t0 ⊗ n0)dx + O(ε2)

which proves the formula for the error because:

|J̃ − J | ≤ ε

∫
(|κIm| + |κ0 tan(θ)|)||t0 ⊗ n0|| + O(ε2) =

= ε||t0 ⊗ n0||
(∫

|κIm| + C

∫
|κ0|

)
+ O(ε2)

provided that the angle of the unit tangent, θ does not turn around more than π in
a neighborhood of each point in the target curve, so that we can ensure that | tan(θ)|
is bounded by a constant C.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



2.3. Mathematical Issues 53

In this chapter, we have defined a novel geometric flow which is well suited for
image filtering and shape recovery tasks. The latter are the usual applications of
geometric flows. Still, because they model shape propagation/deformation, geometric
flows and, in particular, curvature based ones can be used in image segmentation and
shape modelling. In the next section we will use the mean curvature flow to design a
new external energy for snakes that ensures their convergence, independently of the
particular geometric features (concavity) of the contour to be approached.
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Chapter 3

Curvature Vector Flow. Heading
towards an efficient Shape Modeling

Shape modelling arises in many fields of computer vision and graphics [35], [31], [82],
to mention just a few. The most efficient way of producing smooth models of shapes
is by means of a snake [38], [11], [12]. Snakes are curves that minimize an energy
functional by means of its gradient descent. The definition of the external energy
characterizing the target object is crucial for a successful model of the shape. In
spite of the improvement of the external energy given by the gradient vector flow
technique [75] or [16] area minimizing balloon forces, highly non convex shapes can
not be obtained, yet.

A study of distance maps from a geometric point of view clearly shows the lim-
itations of the current external forces. Standard tools of calculus of variations link
convergence to the minimum of the external potential to differentiability of its level
sets. A back-tracking of the evolution of the contour of level zero by minimum curva-
ture flow [49] is the natural geometric way of converging to non-convex regions. Since
the PDE associated to this evolution is of elliptic type, we can assure that propaga-
tion of non convex regions will not develop shocks during the process. In this manner
we build a distance map having the contour of level zero as unique local minimum.
The gradient of the map, called Curvature Vector Flow, is capable of attracting any
initial interior or exterior curve towards the contour of interest, independently of its
geometric features.

3.1 Snake Convergence and Smoothness of the Ex-
ternal Energy

A common feature to all existent snake techniques is that they deform until a mini-
mum of an energy functional is achieved. Since cancellation of the first variation of
this functional (Euler-Lagrange equation) is the criterion used to characterize local
minima, snakes are ruled by calculus of variations principles. In this section we will
use standard results of variational techniques to establish conditions on the external

55
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energy that prevent snakes reaching concave regions. Such conditions are in terms
of the convexity/ellipticity [23] of the functional second variation. Further, we will
relate, in the case of parametric snakes, the former analytical requirements to the ge-
ometry of the external energy level sets. This will provide us with a criterion in terms
of existence of singular points of the level curves easier to verify than the convexity
condition.

3.1.1 Convexity and Smoothness of Level Sets

Before giving the main result of the section concerning convexity, let us establish what
snake functionals ensure convexity exclusively by means of the external energy term.
We must treat separately the case of parametric and geodesic snakes.

We recall the reader that the functional associated to a parametric snake [38], γ,
splits energy into the following two terms:

E(γ, γ̇, γ̈) = Eint + Eext = E1 + E2 + Eext =
∫

γ

α||γ̇||2 +
∫

γ

β||γ̈||2 + Eext =

=
∫

γ

α||γ̇||2 +
∫

γ

β||γ̈||2 +
∫

γ

F (γ))du =
∫

L1(γ̇)du +
∫

L2(γ̇)du +
∫

γ

F (γ)) =

=
∫

L1(p)du +
∫

L2(P )du +
∫

F (z)du

where the potential F = F (x, y) is positive, depends on the object to be detected and,
in the ideal case, should cancel on curves segmenting the target objects. Our first
remark is that convexity of this functional relies exclusively on the external energy
convexity. This fact follows from the convexity of the snake internal energy:

E
′′
1 (q, q) =

∫
qtL1

ppqdu =
∫

qt

(
2 0
0 2

)
qdu

E
′′
2 (Q,Q) =

∫
QtL2

PP Qdu =
∫

Qt

(
2 0
0 2

)
Qdu

Therefore convexity of E is ensured provided that for any curve ν the following in-
equality holds:

E
′′
ext(ν, ν) =

∫
νtFzzνdu ≥ 0

That is, the snake energy is convex if and only if the Hessian of the potential F is
positive defined. This situation significantly differs from the convexity conditions of
the functional guiding geodesic snakes. In this case, the functional to be minimized
[11], [12] fuses the external potential F and the length minimizing term, L1:

Egeod(γ) =
∫

F (γ)
√

ẋ2 + ẏ2du =
∫

F (γ)||γ̇||du =
∫

FL1du

This fact difficulties studying convexity of Egeod by means of the convexity of each of
the factors, since its first variation is:

E′
geod =

∫
〈Fz, ν〉 · L1du +

∫
F · 〈L1

p, ν̇〉du



3.1. Snake Convergence and Smoothness of the External Energy 57

and, differentiating the above expression, its second equals:

E
′′
(ν, ν) =

∫ (
ν̇tFppν̇

)
L1du +

∫ (
νtL1

zzν
)
Fdu + 2

∫
〈Fz, ν〉〈L1

p, ν̇〉du

Hence even in the case that both F and L1 were convex, this will not suffice to guaran-
tee convexity of Egeod as the second variation involves F and L1 first derivatives. This
constitutes a main inconvenience and motivates using the classic parametric snakes
formulation and search for a computational robust way of detecting non-convex ex-
ternal potentials.

Convexity is a property not easy to detect analytically in a robust way as it
requires precise high (second) order derivatives. In this Section we give a simple
convexity criterion in terms of the geometry of the external energy level sets. Notice
that because we are interested in avoiding false minima its suffices to guarantee that
F is convex at all points in the image such that ∇F = 0, that is, that there are not
saddle points.

Theorem 3.1.1 A function F (x, y) has no saddle points such that ∇F = 0 if and
only if F level sets are smooth curves.

Proof. Let us assume that there exists a point p such that ∇F (p) = 0 and the Hessian:

HessF (p) =
(

Fxx Fxy

Fxy Fyy

)
p

is not positive defined. We will prove that this holds if and only if the level curve
through p, namely γ, is singular at the point p. Via a translation we can take p = (0, 0)
and F (0, 0) = 0. Under the latter assumptions, we have that any function E can be
written as:

E(x, y) =
∫ 1

0

dE(tx, ty)
dt

dt = x

∫ 1

0

Ex(tx, ty)dt + y

∫ 1

0

Ey(tx, ty)dt =

= xf(x, y) + yg(x, y)

Applying the above decomposition to the external energy F , we have that:

F (x, y) =x2

∫ 1

0

Fxx(tx, ty)dt + 2xy

∫ 1

0

Fxy(tx, ty)dt + y2

∫ 1

0

Fyy(tx, ty)dt =

= a(x, y)x2 + 2b(x, y)xy + c(x, y)y2 (3.1)

Furthermore, by differentiating the above equality with respect to (x, y), we have that
a(0, 0) = Exx(0, 0), 2b(0, 0) = Exy(0, 0) and c(0, 0) = Eyy(0, 0). The origin p = (0, 0)
is a saddle point, if and only if the determinant Exx(0, 0) ∗ Eyy(0, 0) − E2

xy(0, 0) =
ac − 4b2 is negative, which implies that the curve given by:

0 = a(x, y)x2 + 2b(x, y)xy + c(x, y)y2 (3.2)

is singular at the origin in the algebraic sense (i.e. there are more than one tangent
lines). This follows because if y = λx is a line through the origin, then the polynomial
in λ:

0 = a(x, y)x2 + 2b(x, y)λx + c(x, y)λ2x2 = x2(a(x, y) + 2b(x, y)λ + c(x, y)λ2)
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has real roots for (x, y) = (0, 0). This values of λ correspond to the slopes of a line
that cuts the curve given by (3.2) at the origin with contact order at least two. This
proves the result since the curve of level zero of F is given by equation (3.2). �

In figure 3.1 we have an illustrative example of the above theorem. The level set
(fig.3.1 (a)) through the saddle point inside the red square of fig.3.1 (a) presents a
singularity located at the latter, meanwhile the remaining level curves are smooth.

(a) (b)

Figure 3.1: Inflexion point (a) and Singular Curve (b)

The above theorem is a valuable tool to analyze whether an external force guar-
antees snake convergence. We will use the above theorem to characterize, for each
external energy, its particular pathology and define a new external potential ensuring
convergence whatever the geometry of the target curve.

3.2 Shape Propagation

Distance maps encode the evolution of the curve of level zero, γ0, under a geometric
flow defined, generically, by a parabolic PDE:

γt(u, t) = β(u, t)−→n . (3.3)

with initial condition γ(u, 0) = γ0(u) a closed curve and −→n denoting the unit
inward normal. Each level curve of a given distance, d, corresponds to the solution
to (3.3) at time t = d. This point of view, reduces the study of distance maps to the
analysis of the propagation of the zero level curve governed by means of a geometric
flow. We will use the machinery developed in [24] in order to study the drawbacks
of the Euclidean distance map and define a more natural way of propagating shapes
that will produce distance maps capable of guiding a snake to any closed curve. Since
a plane curve is defined, up to rigid transformations, by its unit tangent, a pleasant
way of handling geometric flows is by means of the equation of the angle of the unit
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tangent, θ, in the arc length, s, parameterization. The advantage of this formulation is
that we reduce the study of the properties of (3.3) to the analysis of a single equation,
so that standard results on PDE’s can be applied. The parabolic PDE for θ when the
curve solves (3.3) is given by:

θt(s, t) = ∂s(β) +
(∫ s

0

βθsds

)
θs . (3.4)

with initial condition the angle of the unit tangent, θ0, of the initial curve. An
important remark is that the first order term arises due to the change of parameter,
and, hence, it is present in any geometric flow.

3.2.1 Euclidean Distance Maps

In Euclidean distance maps, propagation of the initial curve, γ0, is equivalent to
mathematical morphology with a circle of radius 1 as structural element. Erosion
corresponds to the inward propagation and dilation to the outward one. Hence the
geometric flow associated [1] [64] is given by:

γt = ±−→n .

The minus sign corresponds to the dilation and the plus to the erosion. Since, in
this case, β = ±1 is constant, the corresponding equation (3.4) for θ is simply:

θt(s, t) = ±(
∫ s

0

θsds)θs . (3.5)

This equation is a first order non-linear PDE that is solved [23] by means of the
computation of the characteristic curves, that is, those curves in the s-t plane, α(u),
such that the function solving (3.5) keeps constant, that is θ(α(u)) ≡ const. Assuming
this last condition for α(u) = (s(u), t(u)), we obtain that:

0 =
d

du
(θ(s(u), t(u)) = tuθt + suθs = tu(±(

∫ s

0

θsds)θs) + suθs = (±tuθ + su)θs .

Since the equality holds for all points in the characteristic, we have that α solves
the first order PDE:

±tuθ + su = 0

And, consequently, its tangent vector fulfils the following system of ODE’s:

tu = 1
su = ±θ

}

Therefore, the characteristics through a point (s0, 0) are parameterized as:

α(u) = (±θ0u + s0, u) .

where θ0 equals θ0(s0, 0) and is constant along the characteristics.
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(a) (b)

Figure 3.2: Highly non-convex curve (a) and gradient of Euclidean distance map
(b).

This means that we have straight lines in a plane which slopes, θ0(s0), do not need
to be a monotonous function of the curve parameter. Variation of the characteristics
slope along the initial curve is given by the derivative of the angle θ′0. Since the
initial curve is parameterized by its arc length, we have that the sign of the curvature
of the initial curve determines whether the slopes increase or decrease. For convex
curves, characteristics slope are either increasing (inward propagation) or decreasing
(outward propagation) along the curve. Hence, two different characteristics never
cross during the curve propagation and the distance map is a smooth map. However,
for non-convex shapes, changes in the monotonicity of the slopes induced by the
curve inflexion points make characteristics meet each other in finite positive time
(squared region of fig. 3.2(b)) . At this time, the evolution of the angle develops a
discontinuity or shock and the corresponding curve is not smooth any more. Indeed
shocks in the angle domain translate into points or, even, curves where the gradient
of the distance map cancels, that is, they correspond to crests and valleys of the
distance map. Although this property is used in computer vision for extraction of
shape skeletons [66], [69], it constitutes a main hindrance for shape modelling with
snakes. Highly non-convex shapes (see fig. 3.2(a)) with the angle turning around
more than π between two consecutive inflexion points produce distance maps with
crests of positive slope (fig. 3.4(a)). These crests and valleys induce local minima in
the snake energy functional that our deformable model, which seeks for zeros of the
energy gradient, will never cross.

The best approach up to our knowledge to overcome the null gradient problem
along curves is by means of the use of a regularized gradient (that only cancels at
isolated points) as external force. Such regularization is obtained by means of the
GVF [75] or its generalized faster version GGVF [77].
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3.2.2 Gradient Vector Flow and Saddle Points

The GVF/GGVF technique [75], [77] consists in substituting the gradient of the
external energy, ∇Ee, by the vector field v(x) that is the steady-state of the reaction-
diffusion vector equation:

ut = g(|∇Ee|)∆u − h(|∇Ee|)(u −∇Ee) with u(x, 0) = ∇Ee (3.6)

The weighting functions, g(·) and h(·) are monotonically non-increasing and non-
decreasing functions of the norm |∇Ee|, respectively. An important remark is that
h(0) = 0. In this manner, the equilibrium vector field smoothly extends ∇Ee, thanks
to the Laplacian, keeping close to the original gradient when the latter is significant
enough. It can be used either to extend the edge map to the whole image or to
regularize a gradient of a distance map. The main difference between GVF and
GGVF is that the latter field keeps enough force as to drive the snake until the edge.

Notice that, in any of the two cases (GVF or GGVF), at parts of null gradient
the equilibrium point is an harmonic function. Harmonic functions [61] do not admit
accumulation of zeros and, thus, our vector field v will only have isolated points with
|v| = 0. This important feature solves the problem of the distance map null gradient
along curves (fig. 3.3 (b)). However, in both cases the geometry of the contours
introduces saddle points in the vector field v, as the close up in fig. 3.3 (c) illustrates.
These false minima of the snake energy trap, once again, the snake and prevent the
deformable contour from entering into concave regions where the angle of the unit
tangent, θ, turns around more than π.

(a) (b) (c)

Figure 3.3: Gradient of Euclidean distance map to non-convex curve (a), GGVF
(b) and saddle point of GGVF (c).

For regularization of gradients of Euclidean distance maps, saddle points appear
because of shock formation during the propagation of the curve of level zero. In the
case of extension of image gradients we find a similar problem. The Laplacian is
an isotropic linear constant way of extending information. Therefore in every image
region such that the contour/edge of interest is concave and the angle of the image
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gradient (parallel to the unit normal of the curve) turns more than π, two opposite
directions meet (fig. 3.3 (c)) and we have a saddle point.

In order to eliminate saddle points we need changing the propagation of shapes,
so that the geometry of the contour to be extended is taken into account.

3.2.3 Curvature Vector Flow

Let us analyze the problem of the Euclidean distance map. From an analytic point
of view, we see that equation (3.5) is a non-linear first order PDE, prone to develop
shocks during the evolution. From a geometric one, it lies on the fact that we are
propagating the curve at constant speed whatever its geometric features. In other
words, the structural element used in the mathematical morphology is a circle of
constant radius, which means that all points in the curve travel equal distance at the
same time. We argue that the evolution should consider different metrics depending
on the local geometry around each point so that structural circular elements of non
constant radius are used. And what characterizes the local geometry of a curve
better than curvature?. We propose a distance map based on the Mean Curvature
Flow (MCF), that is, the evolution of the curve of level zero under the PDE given by:

γt = κ−→n . (3.7)

This equation makes points on the curve travel a distance that depends on the
magnitude of the curvature, the higher its absolute value, the faster and further the
point will move. From the mathematical morphology point of view we make the radius
of the structural circle depend on the absolute value of the curvature. Now, can we
assure, analytically speaking, that our evolution will stay smooth for all times?. On
one hand we have that the equation (3.5) associated to θ in arc length parameter has
turned into a PDE of parabolic elliptic type:

θt = θss + (
∫ s

0

θ2
sds)θs . (3.8)

Hence by general theory on PDE’s [23], we already know that our Curvature
Distance Map (CDM) will be infinitely differentiable. Intuitively, the Laplacian that
equation (3.8) contains introduces curvature into the characteristic lines, so that two
characteristics do not intersect any more. Besides, the large amount of literature [32],
[33], [34] on MCF, states that any initial curve evolves smoothly towards a convex
shape, circular in the limit, before collapsing to a point. This is the key point to the
definition of CDM.

Evolution by negative curvature Evolution by positive curvature
γt = min((κ, 0))−→n γt = max((κ, 0))−→n

(3.9)
We will define separately the outward and inward propagation in order to ensure

maximal accuracy in the position of the snake. The analysis of Section 3.2.1 points
out that convex shapes do not develop shocks during their propagation. An evolution
of a non convex shape by negative curvature [49] stops as soon as the curve becomes
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Figure 3.4: Detail of Euclidean distance map, showing a crest of positive slope (a)
and detail of Elliptic Distance Map (b) .

convex. Therefore, for the outward propagation, we will evolve the initial shape
under the flow given by (3.9) until it stabilizes. The tracking of the curve for each
time produces the level sets of the outward CDM for the non convex regions. To
complete the outward CDM, we use an outward Euclidean distance map to the stable
state of the flow by negative curvature. For the inward propagation we use evolution
under positive curvature (3.9) until the curve becomes circular and then we use the
Euclidean distance map to this circle to complete the inward propagation.

(a) (b) (c)

Figure 3.5: Gradient of the Elliptic Distance Map (a) and close-ups from the interior
(b) and exterior (c).

Since there are not any self intersections between the level curves of CDM, by
virtue of Theorem 3.1.1 we obtain maps (fig. 3.4 (b)) without curves of null gradient
or saddle points (fig. 3.5 (a)). The gradient of this map, CVF, drives the snake to
the zero level curve of CDM whatever its geometry. Details of CVF shown in figure
3.5 illustrate the absence of either saddle points or null gradients in both, the interior
(fig. 3.5 (b)) and exterior (fig. 3.5 (c)) regions of a highly non-convex curve.
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The vector flow introduced in this chapter is an ideal tool for shape modelling, as
far as shape contours are closed curves. Unfortunately, curves describing image main
features, such as edges and ridges, are prone to be uncompleted, which difficulties
applying CVF to object segmentation. It follows that in order to successfully use
CVF in image segmentation, we need to be able to produce reliable closed models of
unconnected sets of points. Once again, we will make use of the geometry of image
level sets to define a new family of diffusion operators that uniformize the gray level
of image characteristic curves, when applied to a gray level image, and complete
unconnected curves if applied to their mask image.




