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sempre treia temps de sota les pedres per revisar-me la feina (el temps és infinit m’has
dit alguna vegada, es pot allargar tant com es vulgui, com el DTW). A més, voldria
agrair la seva actitud propera, suportant amb paciència les meves xerrades.
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nous amics i companys de pis trobats a Barcelona, que eviten que m’enyori: Mònica,
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Resum

L’anàlisi i reconeixement d’imatges de documents històrics ha guanyat interès durant
els darrers anys. La digitalització massiva juntament amb la interpretació dels doc-
uments digitalitzats permeten la preservació, l’accés i la indexació del llegat art́ıstic,
cultural i tècnic. L’anàlisi dels documents manuscrits és una subàrea d’interés ex-
cepcional. El principal interès consisteix no només en la transcripció del document a
un format estàndard, sinó també en la identificació de l’autor d’un document davant
d’un conjunt d’escriptors (l’anomenada identificació de l’escriptor).

La identificació de l’escriptor en documents manuscrits de text és una àrea activa
d’estudi, i a la literatura és proĺıfica en contribucions significatives. No obstant,
la identificació de l’escriptor en documents gràfics és encara un repte. El principal
objectiu d’aquesta tesi és la identificació de l’escriptor de partitures musicals antigues,
com a exemple de document gràfics. En referència a les partitures antigues, molts
arxius històrics contenen un enorme volum de partitures musicals sense informació
del seu compositor, i la recerca en aquest camp podria ser beneficiosa pels musicòlegs.

El marc de treball per a la identificació de l’escriptor proposat en aquesta tesi
combina tres diferents aproximacions, corresponents a les principals contribucions
cient́ıfiques. La primera es basa en mètodes de reconeixement de śımbols. Per a
aquesta tasca, s’han proposat dos nous mètodes de reconeixement de śımbols per fer
front a les distorsions t́ıpiques del śımbols dibuixats a mà. El primer mètode està
basat en l’alineament de seqüències (Dynamic Time Warping - DTW), on els śımbols
es descriuen emprant seqüències de vectors, i la proximitat entre śımbols es mesura a
partir de l’algoritme DTW. El segon mètode és el Model de Forma Difusa (Blurred
Shape Model - BSM), que descriu els śımbols emprant una funció de densitat de
probabilitat que codifica la probabilitat de les densitats de les regions de la imatge.

La segona aproximació per la identificació de l’escriptor preprocéssa la imatge
per obtenir ĺınies de śımbols musicals, i extreu informació de la inclinació i gruix de
l’escriptura, les regions connexes, contorns i fractals. Finalment, la tercera aproxi-
mació extreu informació global, generant textures musicals a partir de les partitures,
i extraient caracteŕıstiques de textura (filtres de Gabor i matrius de co-incidència).

Els bons resultats obtinguts demostren la idonëıtat de l’arquitectura proposada.
Fins a on arriba el nostre coneixement, aquest treball és la primera contribució en la
identificació de l’escriptor a partir d’imatges que contenen llenguatges gràfics.
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Abstract

The analysis and recognition of historical document images has attracted growing in-
terest in the last years. Mass digitization and document image understanding allows
the preservation, access and indexation of this artistic, cultural and technical her-
itage. The analysis of handwritten documents is an outstanding subfield. The main
interest is not only the transcription of the document to a standard format, but also,
the identification of the author of a document from a set of writers (namely writer
identification).

Writer identification in handwritten text documents is an active area of study,
and the literature is prolific in noteworthy contributions. However, the identification
of the writer of graphical documents is still a challenge. The main objective of this
thesis is the identification of the writer in old music scores, as an example of graphic
documents. Concerning old music scores, many historical archives contain a huge
number of sheets of musical compositions without information about the composer,
and the research on this field could be helpful for musicologists.

The writer identification framework proposed in this thesis combines three differ-
ent writer identification approaches, which are the main scientific contributions. The
first one is based on symbol recognition methods. For this purpose, two novel symbol
recognition methods are proposed for coping with the typical distortions in hand-
drawn symbols. The first one is a Dynamic Time Warping (DTW) based method,
in which symbols are described by vector sequences, and a variation of the DTW-
distance is used for computing the matching distance. The second one is called the
Blurred Shape Model (BSM), in which a symbol is described by a probability density
function that encodes the probability of pixel densities of image regions. The second
writer identification approach preprocesses the music score for obtaining music lines,
and extracts information about the slant, width of the writing, connected compo-
nents, contours and fractals. Then, a k-NN classifier is the used to categorize the
document image. Finally, the third approach extracts global information about the
writing, by generating texture images from the music scores and extracting textural
features (Gabor features and co-occurrence matrices).

The high identification rates obtained in the experimental results demonstrate the
suitability of the proposed ensemble architecture for the identification of the writer
in music scores. To the best of our knowledge, this work is the first contribution on
writer identification from images containing graphical languages.
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Chapter 1

Introduction

This Chapter presents the motivation and objectives of the thesis. We briefly
overview the Document Analysis and Recognition research field, including not only
the analysis of historical documents but also the analysis of graphic documents and
their main associated concepts. Afterwards, we introduce the writer identification
problem, and discuss about its applicability to graphic documents, such as music
scores. We also discuss about the discriminant graphical properties used by musi-
cologists for writer identification. Finally, we overview the main difficulties found in
such a task, and summarize the objectives and contribution of this work.

1.1 Motivation

Document Image Analysis and Recognition (DIAR) is an important field in Pattern
Recognition, whose aim is the analysis of contents of document images. It has three
main research directions: text recognition, graphics recognition and layout analysis.
Document analysis in handwritten historical documents has attracted growing inter-
est in the last years, whose aim is the conversion of these documents into digital
libraries, helping in the diffusion and preservation of artistic and cultural heritage.
In addition to the preservation in digital format, the interest of aplying DIAR to
historical handwritten documents is twofold. The first is the recognition and tran-
scription of the document to a machine readable format, while the second consists in
the classification of the document, such as the identification of the authorship of the
document (namely, writer identification).

Writer identification consists in determining the author of a piece of handwriting
among a set of writers. It is an important task for the automatic processing of
documents, allowing applications such as forensic document examination, in which
the handwriting can be used for identification (such as the signature verification in
bank checks, or the recognition of the voice, face, iris and fingerprints), and the
analysis of digital libraries (e.g. classification of documents, retrieval by content).

Writer identification in handwritten text documents has been an active area of
study since many years (see [STB00], [SB08], [SB04]), whereas the identification of

1
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the writer of graphical documents is still a challenge. Graphic documents make use
of graphical languages (composed by symbols and combination rules) for describing
ideas in a compact way. Referring handwritten ones, writer identification can be
performed analyzing the symbols appearing in these documents, because it has been
shown that the author’s handwriting style that characterizes a piece of text is also
present in a graphic document.

Music scores are an example of hybrid documents (because they contain both
graphics and text) with an important research community. A growing interest has
been the analysis of ancient music scores (see [Car95], [PVS03]), with the purpose
of the preservation of cultural heritage. In fact, after the digitization of historical
documents, an important application is the retrieval of anonymous documents for
their analysis, and the validation of the authorship of some documents. Since many
historical archives contain a huge number of sheets of musical compositions without
information about the composer, musicologists must work hard for identifying the
writer of every sheet. As far as we know, only one project (eNoteHistory 1 [BIM04],
[G0̈3]) has been performed about writer identification in music scores. However, no
quantitative results have been published, and as far as we know, this work has not
been continued. For that reason, a writer identification approach for old music scores
is still required for helping musicologists in such a task, which is time consuming
and prone to errors. In this context, the handwriting style of the hand-drawn music
symbols can be used for determining the authorship of a music score.

As a summary, there is a great interest in identifying the authorship of graphical
documents, and the main motivation of this thesis is to perform writer identification
in old music scores, as an example of graphical documents.

1.2 Context: Recognition and Identification of His-
torical Graphical Documents

In this section a brief review of historical document analysis and graphical documents
is performed. First, an overview of historical documents and digital libraries is per-
formed. Secondly, graphic documents are presented, including an introduction to the
structure and notation of music scores. Finally, the characteristic properties used for
identifying the writer of a music score are discussed.

1.2.1 Historical Document Analysis and Digital Libraries

Document analysis in historical documents has attracted growing interest in the last
years, whose aim is the conversion of documents into digital libraries. It is an unques-
tionable fact that the knowledge contained in books and paper documents carries a
great historical, cultural, scientific and social value, and the research in historical doc-
uments will help in the diffusion, accessibility and preservation of cultural heritage.
In fact, there are some difficulties for accessing to historic documents. Although there
is a huge amount of old documents in Archives and Churches all over Europe, the
access is allowed only to some expert historians, because of safety reasons (documents

1http://www.enotehistory.de
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are very valuable), and also because of the delicate state of the paper (there is an
important degree of paper degradation).

History of Digital Libraries (DL) of documents starts in the sixties when the
evolution of computer science allows considering digitization as a way to provide a
better and wider access to paper archives and preserve them from time degradation
[Les97]. Since then, many projects have been undertaken by many libraries and other
organizations worldwide, such as the Project Gutenberg (1971), the Project Perseus
(1987) and iBiblio (1992). Nowadays, it is a common practice among institutions
to create DLs for storing, organizing and accessing large collections of documents.
Therefore, their use has been widely spread (see [BJFD98], [DL96],[MCF00]) and
some big projects have been undertaken, such as Google Books 2, the Million Book
Project 3 or the European Library 4, the european research projects Debora 5, Impact
6, Europeana 7; or the national research projects iDoc 8, NaviDoMass 9, among others.

Digital content infrastructures will greatly benefit from a digital representation
of the knowledge enclosed in document collections. After the digitization of paper
documents, the extraction of information from the document image is required. It
must be said that historical documents are difficult to process automatically due
to paper degradation, the show-through and bleed-through effect, and the common
lack of a standard notation. In addition, the presence of handwritten text, graphical
illustrations or both in historical documents is common (see an example in Fig.1.1).

Figure 1.1: Examples of old documents.

DIAR covers three main research areas: text recognition, layout understanding
and graphics recognition. In some recent papers reviewing the state-of-the-art of
document analysis techniques for DLs (see [Bai04],[SAP+06]), some of these challenges
are identified, which are mainly the following. There are some problems with the

2http://books.google.com
3http://www.ulib.org
4http://www.theeuropeanlibrary.org/
5http://debora.enssib.fr/
6http://www.impact-project.eu/
7http://www.europeana.eu/
8http://web.iti.upv.es/ prhlt/content.php?page=projects/handwritten/idoc/idoc.php
9http://l3iexp.univ-lr.fr/navidomass
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image capture and digitization, because the degradation of the paper document is
usually important, and also, document enhancement techniques are required for de-
skewing, de-warping, binarizing and removing pepper noise, among others. There is
also a need to improve the existing Document Image Analysis methods for analyzing
the whole document content, as well as methods for improving the presentation,
display, indexing and retrieval.

Recent works include methods that deal with different aspects of the recognition,
such as the layout analysis in documents from the Archive of the Cabinet of the Dutch
Queen [BvKS+07], a language to describe tables in damaged handwritten documents
from the 19th century [MCC08], a description system for military forms of the 19th
century [Coü06], a segmentation approach for old color maps [RBO08], word segmen-
tation in degraded documents [MNG07], an OCR for old documents [VGSP08], an
approach for recognizing broken characters [LSS07], or a word spotting technique for
indexing historical documents [LS07]. We can also remark an approach for the recon-
struction of Don Quixote [Spi04], a recognition system for byzantine chants [DMP08],
the characterization of pictures of old docs based on a texture approach [JME+07],
ancient ornamental letter indexing [KUKO08] and retrieval [DJJ08], the recognition
of korean [KCKK04] and greek [GNP+04] handwritten documents, among others.

1.2.2 Overview of Graphic Document Recognition

In the field of Pattern Recognition and Document Analysis, the recognition of graph-
ical documents has been an area of intensive research, which has been applied to
a large number of domains like engineering, architecture, software modelling, mu-
sic, cartography, etc. [LVSM02]. Some examples of graphic documents can be seen
in Fig.1.2. Each kind of graphic-rich document has associated its specific graphical
language which convey important information.

Graphical languages are expressive and synthetic tools for communicating ideas
in some domains, and allow users to describe complex models with compact diagram-
matic notations. A graphical language consists of an alphabet of symbols (defined
as synthetic visual entities) and rules or productions referring to the relationships
between the symbols. Thanks to the recognition of the alphabet of symbols of these
graphical languages and their relations, combined with domain-dependent knowledge,
the whole document has a meaning, allowing its automatic processing.

Concerning the Symbol Recognition research field, a growing interest in the last
years has been the recognition of hand-drawn symbols appearing in graphical doc-
uments. Some techniques used for shape recognition have been applied to symbol
recognition, and also, some specific symbol recognition methods have been proposed.
There are several wide areas of application of hand drawn symbol recognition: one
corresponds to sketching frameworks, in which the communication between users
and computers is achieved through free hand drawings or gestures (a gesture is a
set of strokes with an associated command); another one includes existing textual
manuscripts, specifically collections of scanned documents in libraries and archives
rich in graphical information where the recognition of symbols can be useful for tran-
scription to modern formats, indexing by graphical content, or even in forensics for
writer identification.
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(a) (b)

Figure 1.2: Examples of graphic documents: (a) Architectural drawing. (b) Old
handwritten music score.

This thesis is focused on the identification of the writer in music scores, a particular
scenario of graphic documents. Since music scores use a particular diagrammatic
notation, let us describe the terminology and structure of a music score and the task
of Optical Music Recognition.

Recognition of Music Scores

Music Scores are a particular kind of graphic document, which include text and
graphic elements. The recognition of these documents has been a very active research
topic field [BB92]. Optical Music Recognition (OMR) consists in the understanding
of information from music scores (see an example in Fig.1.2(b)) and its conversion
into a machine readable format.

Although OMR belongs to graphics recognition because it requires the under-
standing of two-dimensional relationships, OMR has many similarities with Optical
Character Recognition (OCR), because whereas OCR recognizes characters in text,
OMR recognizes musical symbols in scores.

The most common music symbols in a music score are notes, rests, accidentals
and clefs (see Fig.1.3). Some terminology used in music notation is the following:

• Staff: Five equidistant, parallel, horizontal lines on which music symbols are
written. They define the vertical coordinate system for pitches and provide
horizontal direction for the temporal coordinate system.

• Attributive symbols at the beginning: Clef, Time and Key signature.

• Clef. A symbol usually placed at the left-hand end of a staff, indicating the
pitch of the notes written on it.

• Bar lines: Vertical lines which separate every bar unit or measure.

• Notes. Notes are composed of head notes, beams, stems, flags and accidentals.
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• Accidental. A sign indicating a momentary departure from the key signature
by raising or lowering a note.

• Rest (pause). Interval of silence of specified duration.

• Slurs: Curves that join musical symbols.

• Dynamic and Tempo Markings indicate how loud/soft the music should be
played, and the speed of the rhythm of a composition.

• Lyrics: The set of words that will sing the chorus or singers.

Figure 1.3: Common elements of Music Notation.

Similarly to OCR systems (which include the pixel, character, word and seman-
tic level), the levels of the processed information of an OMR system are the image
(pixels), graphical primitive, symbol and context information level (see Fig.1.4(a)).
Context information helps to correct errors, and whereas dictionaries are commonly
used in OCR, the formal music language theory is used in OMR.

For an OMR system, we can consider that a music score has three important
elements: Heading, Bar units and Ending (see Fig.1.4(b)). Heading consists in the
clef (alto, trebble or bass clef), the time signature (usually formed by two numbers that
indicate the measure) and the key signature (flats, sharps or naturals, which indicate
the tonality of the music score). Bar units are the containers of music symbols (the
amount of music symbols depends on the time signature). Finally, the Ending is
usually an ending measure bar and sometimes includes repeating marks.

After a brief overview of the basis of the music notation, let us discuss the main
properties used for musicologists for discriminating the different handwriting styles.
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(a) (b)

Figure 1.4: OMR: (a) Levels of a OMR system, (b) Structure of a music score.

1.2.3 Characterization of the Graphical Properties for Writer
Identification in Music Scores

In order to find the discriminating properties between the different writers in music
scores, the characteristic writing style in music notation must be deeply analysized. In
the eNoteHistory writer identification project in music scores [Lut02],[G0̈3],[BIM04]
the following set of characteristics were proposed: The distance between two staff
lines, the position of the note stem relative to the note head, the length and inclination
of note stems, and the shape of music symbols (such as clefs, flags and rests).

Similarly, scholars in musicology from the Universitat Autònoma de Barcelona
mainly use the following aspects for writer identification: the shape of clefs, rests,
time signatures, ending signatures and lyrics. Figure 1.5 shows some pieces of music
scores (without staffs) extracted from different writers, in which the differences in
the shape of clefs, notes and rests are very discriminant. The personal characteristics
useful to discriminate each writer are described next.

1. Staff lines: In case the staff lines are written by hand, the following information
can be extracted: The width of the staff lines, the distance between them and their
straitness. See Fig.1.6 for an example of a staff drawn by hand. Unfortunately,
an important amount of music scores do not have hand-drawn staffs, and no useful
information can be extracted.

2. Music Notes: The shape of music notes can be very peculiar and can be used for
characterizing the writer style. In this sense, the following properties are important.
First, information about the shape (circular, eliptical...), size and location in the staff
are useful. In case of non-filled headnotes, the shape of the loop can be analyzed,
and also whether the loop is completely closed or not. In Fig.1.5 one can see that
the headnotes of the writer Milans look like triangles, whereas Clausell tends to write
circular headnotes. Concerning the beam, the lenght, slant and straitness of the beam
can be used. Also, in case the beam and the headnote are not connected, the gap
distance to its corresponding headnote is taken into account. Finally, the flag of eight
and sixteenth notes are analyzed, extracting information about the flag orientation,
shape, the distance between flag notes (in case of sixteenth notes), and also the
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(a)

(b)

(c)

(d)

(e)

Figure 1.5: Pieces of music handwritings from different writers (composers): (a)
Andreu, (b) Clausell, (c) Milans, (d) Aleix, (e) Sauri. One can easily notice the
writing style differences in the shape of music notes (the half, quarter and eighth
notes), flags, rests and clefs.

distance to the corresponding beam (in case they are not joined). See Fig.1.5(a),(c),(e)
for noticing the differences in the curvature of the eighth flags.

3. Bar lines: The slant, length and straitness of the bar lines are also used, and also
whether they cover the whole staff lines or not. In Fig.1.5(b),(c),(e) the differences
in the slant of the bar lines are remarkable. It must be noticed that the differences
between the bar lines of the different writers might not be enough important for
ensuring a good discrimination power.

4. Rests: The shape of rests (pauses) is characteristic of the writer (see in Fig.1.5
the differences in the shape of the rests between the writer Clausell and Milans). In

Figure 1.6: Staff lines written by hand.



1.2. Context: Recognition and Identification of Historical Graphical Documents 9

fact, when they appear in a music sheet, they are also very useful for determining the
century of the composition.

5. Accidentals and Key Signature: The shape of accidentals (e.g. sharps, flats
and naturals), the distance between their segments or their location related to the
music note are useful (see in Fig.1.5(a),(b),(d) the differences in the shape of the
sharps). The key signature is a group of accidentals that can appear at the beginning
of a staff, and the distance between the accidentals can also be used for identifying
the writer. Unfortunately, accidentals are not appearing in all the music sheets.

6. Clefs: Clefs are drawn usually at the beginning of each staff, indicating the pitch
of the music notes. They are very useful for characterizing the writer style, because
of the high variability of the music clefs. Notice the high variability of the same alto
clef in Fig.1.5(a),(c),(e). For this reason, it can be seen as a signature of the writer,
being very useful for identifying the writer of a music score.

7. Lyrics, Dynamics, Tempo Markings and Time Signature: Obviously, the
handwritten text (lyrics) that appear in a music score characterizes the writer style,
and lyrics can be treated as text, and consequently, used for writer identification.
Dynamics and tempo markings (which indicate the speed and de strength of the
interpretation) are letters or words (e.g. f, p, mf, allegro, adagio) that can also be
treated as text identification. Also, the time signature (which indicates the measure)
is composed of digits and letters, and can be also used for discriminating the writers.

8. Ending Signatures: In some music sheets, some writers used to draw a pothook
at the end of the music score, as a personal signature (see Fig.1.7). The shape of these
kind of strokes is very particular of a writer, and can distinguish among several writers,
but unfortunately, these signatures are appearing in only a subset of music sheets,
and could not be suitable for writer identification.

(a) (b) (c)

Figure 1.7: Ending signatures (in black) of three different writers.

In must be said that musicologists also perform a musicological analysis of the
composition (melody, harmony, rhythm, etc.), because the music style is important
to characterize a composer. In this field, some interesting research works have been
done, such as the proposal of distinctive pattern features for music audio [CB08]
and the music style identification approaches[CAVRPC+03], [CP06]. Since the audio
analysis is out the scope of this work, we will focus on the image analysis of the music
score for writer identification.
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1.3 Thesis Problem Statement

This thesis addresses the problem of writer identification in graphic documents, con-
cretely, old handwritten music scores. Although writer identification in text docu-
ments has been subject of an intensive research, the identification of the author of
a handwritten graphic document is still an open problem. Although some writer
identification approaches used for logographic languages (such as the Chinese or He-
brew alphabet) could make use of graphic recognition methods, very few works are
performed on graphic documents [BIM04].

Writer identification approaches for text can be classified in text-dependent and
text-independent. In the first ones, a set of model word patterns is collected for
each writer, and the identification is performed by a similarity function between such
models and the unknown image. In the second ones, the meaning of the handwriting
is unknown, increasing the difficulty but obtaining more general approaches. Con-
cerning writer identification in graphic documents, text-dependent approaches can be
renamed as symbol-dependent ones, because instead of recognizing text, they recog-
nize hand-drawn symbols. This kind of symbol-dependent approaches make use of
symbol recognition methods for recognizing the hand-drawn symbols that belong to
the graphical language used in this particular kind of graphic document.

Hand-drawn symbol recognition is a particular case of handwriting recognition,
which must deal with the variability among scripts and writer styles, or even between
different time periods. For these reasons, commercial applications are usually con-
strained to controlled domains (such as bank checks or postal letters) that make use
of contextual or grammatical models and dictionaries. The recognition of graphical
symbols has two added difficulties regarding to handwritten text recognition. First,
graphical symbols are bidimensional shapes appearing in bidimensional layouts, so,
in addition to the distortions and deformations typically found in handwriting, the
1D models used for handwriting text recognition should cope with variations in sizes,
rotation, and translation. Second, unlike text, graphical symbols can not easily ben-
efit from the use of contextual and grammatical models (such as dictionaries used for
text recognition).

Comparing to symbol recognition methods for printed documents, the difficulties
of hand drawn symbol recognition methods increase. Firstly, because of the inherent
distortions present in handwritten symbols (see Fig. 1.8), consisting mainly in inac-
curacy in junctions, hooklets, circlets, elastic and anisotropic deformation in strokes,
over-tracing, overlapping, gaps or missing parts. Secondly, the variability of symbol
appearance is an important problem when the number of writers increases. In such
cases the recognition approach must cope with the variability of symbol appearance
because of the high differences in writer styles, with variations in sizes, shapes and
pressure in strokes. See Fig. 1.9 for an example of the huge variability in music clefs’
appearance. Secondly, the difficulty increases when the number of writers is uncon-
strained. In such cases the recognition approach must cope with the variability of
symbol appearance because of the high differences in writer styles, with variations in
sizes, shapes and pressure in strokes. See Fig. 1.9 for an example of the huge vari-
ability in music clefs’ appearance (one can hardly believe that there are only three
different classes).
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Figure 1.8: Distorted shapes: 1:Distortion on junctions. 2:Distortion on angles.
3:Overlapping. 4:Missing parts. 5:Distortion on junctions and angles. 6:Gaps

(a) (b) (c)

Figure 1.9: High variability of hand drawn musical clefs: (a)Treble, (b)Bass, (c)Alto

Concerning historical documents, we find some added difficulties: First, paper
degradation (see Fig.1.10(a)) requires specialized image-cleaning and enhancement
algorithms. Second, show-through and bleed-through problems can difficult the dis-
tinction between background and foreground (see Fig.1.10(b)). Third, in historical
documents there is usually a lack of a standard notation, because notation differs
from a century to another.

(a) (b)

Figure 1.10: Examples of paper degradation in old music scores: (a)Some sections
of the staff lines are missing, (b)Some show-through problems and wholes provoked
by ink.

Finally, as it has been discussed in Section 1.2, the access to historic music scores
is only allowed to some expert musicologists. Since there is no public database of old
handwritten music scores, the construction of a database of old handwritten music
scores is required.
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1.4 Objectives and Contributions

The main objective of the thesis is to perform writer identification in graphic
documents, concretely music scores. Although some graphic documents con-
tain text and graphics, the objective is to use only the graphic notation to identify
the writer. Concretely, most music compositions in last centuries were sacred music,
containing lyrics (text) for the chorus and the solists. In these scores, some writer
identification methods for handwritten text documents could be applied for lyrics.
However, the aim of this thesis is to use only music symbols to perform writer iden-
tification. Moreover, the methodology will also be useful for writer identification in
those music scores that contain no text, such as music scores for instruments.

The research work above exposed can be divided in several goals and their corre-
sponding contributions:

1. Proposal of a writer identification architecture for music scores.

The first objective consists of a proposal of the architecture for writer iden-
tification in music scores. It must include the review of the state of the art
methods for writer identification. It covers the study of text-dependent and
text-independent methods for writer identification in text documents and also
the study of the existing methods for graphic documents, including music scores.

The main contribution of this thesis is the proposal of a writing identification
architecture for old handwritten music scores. It is an hybrid architecture (see
Fig.1.11), which combines three different writer identification approaches. The
first one is a symbol-dependent approach, based on symbol recognition, which
extracts features from music symbols. The second one is a symbol-independent
approach which extracts features from music lines. The third one is another
symbol-independent approach which extracts features from music texture im-
ages. The integration and ensemble of the different approaches is also performed.
In the architecture proposed, the classification results obtained for each classifier
are combined, so that the overall writer identification rate are increased.

Figure 1.11: Writer identification architecture for music scores: features extracted
from music symbols, music lines, and music texture images are combined for the final
classification.
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2. Study and proposal of symbol recognition methods for hand drawn symbols.

A symbol-dependent writer identification approach requires the use of symbol
recognition methods. A good symbol recognition method should make use of a
symbol descriptor that guarantees intra-class compactness and inter-class sep-
arability. It should be tolerant to noise, degradation, occlusions, distortion and
elastic deformations typically found in handwritten documents. After the study
of the state of the art methods for symbol recognition, the following three sym-
bol recognition methods for hand-drawn symbols have been proposed.

• The first one is a Dynamic Time Warping-based symbol recognition method.
It is a robust approach tolerant to writer style and hand drawn distortions.
This method, which is invariant to scale and rotation, is based on the Dy-
namic Time Warping (DTW) algorithm. The symbols are described by
vector sequences of specific features, and a variation of the DTW-distance
is used for computing the matching distance.

• The second method proposed defines the Blurred Shape Model (BSM)
descriptor. This descriptor encodes the spatial probability of appearance
of the shape pixels and their context information. As a result, a robust
technique in front of noise and elastic deformations is obtained.

• The third one is the Circular Blurred Shape Model (CBSM), which is an
extension of the BSM to a circular grid. As a result, the descriptor can
identify the rotation angles required to align two symbols, rotating the
symbols in case it is necessary. Thus, the descriptor becomes rotation
invariant.

3. Proposal of a writer identification approach based on symbol recognition.

Similarly to the text-dependent approaches used for writer identification in text
documents (which recognize several elements before the identification step), the
goal is to propose a symbol-dependent method based on symbol recognition.
It must include an study of the existing approaches in Optical Music Recog-
nition (OMR), covering the staff detection, segmentation, and music symbol
recognition. Since there are very few approaches in OMR that can cope with
old handwritten music scores (even less approaches concerning old handwrit-
ten ones), a method for removing the staff, segmenting elements and extracting
features from music symbols is required.

The main contribution related to this objective consists in the proposal of the
following methods for removing the staff lines and extracting specific features
from music symbols:

• Staff Removal. Before recognizing the music symbols for extracting fea-
tures, an analysis of the music score is performed. As a contribution, a
method for detecting and removing the staff lines in old handwritten music
scores is proposed, coping with gaps, deformations due to paper degrada-
tion and the warping effect. The method consists in the use of horizontal
projections, median filters and contour tracking.
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• Detection of music clefs. Once the staff is removed, a method for segment-
ing and detecting clefs and music notes is proposed, which uses morpho-
logical operations and a combination of the BSM and DTW-based symbol
recognition methods.

• Specific features for music symbols. Finally, a novel set of features is
proposed for extracting information about the shape of the music clefs.
For this purpose, the BSM descriptor is used for extracting information
about the shape of the symbol.

4. Adaptation of writer identification methods for text to music scores.

The study of the applicability and adaptation of writer identification methods
for graphic documents is required. The adaptation of existing writer identifi-
cation methods applied to text is a difficult task. Since graphical data is bidi-
mensional, preprocessing steps are required to adapt this information before
applying the existing writer identification techniques.

The main contribution related to this goal consists in the adaptation of two
writer identification methods to music scores. Two off-line text-independent
approaches for performing writer identication in musical scores are adapted.
Contrary to the symbol-dependent approach based on symbol recognition, the
following two methods avoid the recognition of the elements in the score:

• Music Lines. For each staff, a normalized music line is obtained. It consists
in removing the staff lines and centering all the music symbols in a reference
line. Afterwards, we extract 98 features based on basic measures, connected
components, contours and fractal features. These features are extracted
from the set of 100 features described by Hertel and Bunke in [HB03].

• Music Textures. Image textures are generated from music symbols before
applying textural features. Several methods for generating texture images
from music symbols are proposed. Every approach uses a different spa-
tial variation when combining the music symbols to generate the textures.
Once the image textures are obtained, textural features such as Gabor
filters and Grey-scale Co-ocurrence matrices [STB00], are computed.

5. Construction of the databases for the evaluation framework.

Since there is no public database of old handwritten music scores available,
the last goal is the construction of a framework for validating the proposed
methodology for music scores.

The main contribution related to this last objective is the construction of the
following databases:

• Old Music Scores. The first dataset consists in the digitization of old
handwritten music scores (from the 17th to 19th centuries) from three
different archives in Catalonia: the archive of the Seminar of Barcelona,
Terrassa and Canet de Mar. It also includes the study of the convenient
resolution and the required operations for allowing the image to be more
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readable. In this sense, the processing of the image will cope with noise,
degradation, transparencies and the warping effect. The database obtained
can help not only in the preservation of these documents, but also in their
diffusion and analysis, including binarization, optical music recognition,
writer identification and style classification.

• Music Symbols. The second dataset consists of segmented music clefs and
accidentals, which have been extracted from modern and old music scores.
It has been constructed in order to validate the different hand-drawn sym-
bol recognition approaches proposed in this thesis.

1.5 Thesis Outline

The structure of the dissertation is the following:

• The state of the art of writer identification, optical music recognition and symbol
recognition methods is reviewed in Chapter 2. First, related work on writer
identification methods in handwritten text documents is overviewed. Due to
the application of writer identification methods to music scores, an overview of
the related work in optical music recognition is also performed. Finally, symbol
recognition methods for printed and hand-drawn symbols are reviewed.

• The Dynamic Time Warping-based symbol recognition method is de-
fined in Chapter 3, which describes the symbols using vector sequences of spe-
cific features and computes the matching distance using a variation of the DTW
algorithm.

• The Blurred Shape Model and the Circular Blurred Shape Model are
defined in Chapter 4. These approaches encode the spatial probability of ap-
pearance of the shape pixels and their context information. The main differ-
ence between them is that the Circular Blurred Shape Model uses a correlogram
structure.

• The three writer identification approaches for music scores are presented in the
following Chapters.

The first writer identification approach based on symbol recogni-
tion methods is proposed and developed in Chapter 5. It consists in detecting
and segmenting the music clefs using a combination of the DTW and BSM sym-
bol recognition approaches. Afterwards, the BSM features are extracted from
every music clef.

The writer identification approach based on features extracted
from music lines is presented in Chapter 6. Firstly, the music sheet is prepro-
cessed and normalized for obtaining a single binarized music line, without the
staff lines. Afterwards, 98 features are extracted for every music line, including
basic measures (such as slant and width of the writing), connected components,
lower and upper contour of the line and fractal features.
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The writer identification approach based on features extracted
from texture images is proposed in Chapter 7. First, several approaches for
generating texture images from music symbols are described. Every approach
uses a different spatial variation when combining the music symbols to generate
the textures. Afterwards, Gabor filters and Grey-scale Co-ocurrence matrices
are computed to obtain the features.

• The ensemble architecture is presented in Chapter 8. First, the generic pre-
processing, consisting in the binarization and staff removal of the music score
is described. Afterwards, the classification and combination of the three writer
identification approaches is fully described. Finally, the global results of the
system are presented.

• Conclusions are presented in Chapter 9. Firstly, a summary of the main con-
tributions is performed. Afterwards, we discuss about the proposed approaches
and their corresponding experimental results. Finally, future work is exposed.

• Finally, the music databases created and the grammar for OMR are described
in the Appendixes.



Chapter 2

State of the Art

In this chapter the main writer identification methods are overviewed. We also review
the optical music recognition methods because we are applying writer identification to
the framework of music scores. Finally, symbol recognition methods are overviewed,
because they are required for recognizing the music symbols in the score.

This chapter covers the state of the art of writer identification, Optical Music
Recognition (OMR) and symbol recognition. Section 1 presents work related to the
identification of the writer in text documents, old documents and music scores. Next,
Section 2 presents the state of the art of Optical Music Recognition approaches,
describing the main techniques used for each stage of the recognition system (pre-
processing, staff removal, symbol classification and validation) and also the main sys-
tems used for ancient and handwritten music scores. Finally, Section 3 addresses the
work related to symbol recognition, which is divided in methods for printed symbols,
hand-drawn symbols and symbols in real environments.

2.1 Writer Identification

Since this thesis focuses on writer identification, let us briefly introduce the handwrit-
ing recognition. Handwriting is a classical area of study, which covers the tasks of
recognition, interpretation, identification and verification of documents. Handwriting
recognition consists in transforming the image in its symbolic representation, whereas
handwriting interpretation is focused on determining the meaning of the input (e.g.
the address of a letter).

There are many works in the literature on the recognition of handwritten languages
based on Roman alphabet (see surveys [PS00], [Bun03]). According to [Bun03], hand-
writing recognition techniques can be divided into the tasks of recognizing isolated
characters (Intelligent Character Recognition - ICR), cursive words, and general text.
The recognition of isolated characters, which is quite similar to symbol recognition,
is a mature area of study [Liu07]. Efforts are nowadays focused in the recognition of
words and full sentences. In word recognition there are three different approaches:

17
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holistic, segmentation based and segmentation free. Holistic methods [MG99] do not
require the segmentation of words, recognizing the whole word, but there must be few
number of classes. Segmentation based methods [LG02] perform a segmentation of
words into characters or graphemes. Segmentation free perform the segmentation and
recognition at the same time, usually using Hidden Markov Models (HMM) [GB04].
Text recognition in a free context is still an open problem [BZB06]. Main existing seg-
mentation based methods use trees for the segmentation of sentences into words, and
then HMM for the recognition of these words [KFK02]. Segmentation free approaches
usually use HMM, and in some cases, also grammars [BB08], [ZCB06].

Handwriting identification and verification are related. Whereas handwriting iden-
tification consists in determining the author of a piece of handwriting from a set of
writers, handwriting verification consists in determining whether the handwriting is
from a given author. In handwriting recognition and interpretation, the idea is to
filter out the variations in handwriting style to determine the meaning, whereas in
handwriting identification and verification, these variations in handwriting style are
fundamental for the purpose.

In writer identification, the are two natural factors in conflict: individual char-
acteristics (within-writer variability) and class characteristics (between-writers vari-
ation). The goal is to find optimal trade-off between intra-class compactness (mini-
mizing individual characteristics) and inter-class separability (maximizing class char-
acteristics). Finally, it must be said that in most of the cases, a writer identification
system performs a search in a database with handwriting samples, returning a list of
candidates for the handwriting query, and a human expert takes the final decision.

The main techniques used for writer identification and verification are briefly com-
mented in next subsections. Afterwards, approaches for dealing with the identification
of the writer in old documents and music scores will be described.

2.1.1 Writer Identification in Text Documents

Writer identification in handwritten text documents is an active area of study (see
the surveys [PL89], [PS00], [Sch07b]). Traditionally, the off-line approaches for writer
identification in text can be divided in text-dependent and text-independent, depend-
ing on whether the writer has to write a predefined text.

In text-dependent approaches [BYBKD07], the system compares the individual
characters/words with the known trancription. Thus, the system requires a hand-
writing recognition step. In these approaches, the relation between writer recognition
and identification is very close. The common elements used for extracting features for
writer identification are: alignment (reference lines), angles, arrangement (margins,
spacing), connecting strokes, curves, form (round, angular...), line quality (smooth,
jerky), movement, pen lifts, pick-up strokes (leading ligatures), proportion, retrace,
skill, slant, spacing, spelling, straight lines, terminal strokes... Notice that some of
these elements (e.g. slant, baseline angle) are also used for handwriting recognition.

In text-independent approaches [BS07b], [HS08], the meaning of the text is un-
known, avoiding the segmentation and recognition of words. Consequently the system
will be faster and more robust, avoiding the dependence on a good recognizer. Some
of the most common approaches are briefly commented next.
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Writer identification by the analysis of words and numerals. Some works
base the identification in the analysis of words or numerals (digits). Zois et al. [ZA00]
process horizontal projection profiles on single words. In this approach, the projec-
tions are partitioned in segments, and features are computed. Leedman et al. [LC03]
extract a set of eleven features from previously segmented digits, such as the height
to width ratio, the number of end points and junctions, number of loops, slant, zero
crossings, pixel densiy, center of gravity, etc. Afterwards, the classification is per-
formed using the Hamming distance.

Writer identification by the analysis of text lines. Hertel and Bunke [HB03]
propose a method for extracting a set of 100 features from text lines, including basic
measurements (such as slant and width of the writing), connected components, en-
closed regions, lower and upper contour of the line and fractal features. This work
is an extension of the system proposed by Marti et al. [MMB01], in which a set
of 12 features (basic measurements and fractals) is used. The inclusion of fractals
as features has been inspired in the writer identification and authentication systems
proposed in [BVSE97] and [SGV03]. In these approaches, fractals are used for distin-
guishing the legibility degree of the handwriting, and for characterizing the ”shape”
of the handwriting.

Schlapbach and Bunke propose two text-independent methods [Sch07a]. The first
one is based on Hidden Markov Models (HMM) [SB07a], developing an individual
recognizer for each writer. In their approach, each recognizer is an expert of the
handwriting of one writer, because it has been trained with text lines from only one
writer. First, the text is normalized, and the following set of features are extracted
by a sliding window: the fraction of black pixels, the center of gravity, the second
moment order, the position and orientation or the upper and lower pixels, the number
of black/white transitions. The method has been tested on a database of 100 writers,
reaching a identification rate of 97% (first ranked author - Top1), and 98% (the five
first ranked authors - Top4). The second proposed approach is based on the use
of Gaussian Mixture Models (GMM) [SB08]. The authors claim that GMM are less
complex than HMM, avoiding the transcription of text lines (required in HMM during
the training step) and the modeling of words or characters. GMM can be seen as a
single-stage HMM, with one output distribution function. Thus, it only requires to
train the parameters of this output function. Authors demonstrate that the GMM
outperform HMM, reaching a identification rate of about 98% (Top1) and 99% (Top4).

Bulacu and Schomaker [SB04] propose the use of connected-component contours
and edge-based directional probability functions, which is performed considering two
edge fragments in the neighborhood of a pixel, and then computing the joint probabil-
ity distribution of the orientations of the two fragments. In [BS07b] the authors add
the allograph features to the above set of features, improving the identification rates.
Their approach has been also successfully applied in arabic handwritings [BSB07].
The use of graphemes has been inspired in the work by Bensefia [BPH03], [BPH05],
in which each handwriting is characterized by a set of invariant features. The au-
thors claim that the probability distribution of grapheme usage is characteristic of
each writer and can be computed using a common codebook of shapes (obtained by
clustering result of segmentation).
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There are also other approaches, such as the ones based in the directional element
features for chinese writer identification [LWD06], the analysis of ink texture of pen
[FBS02], the subdivision of the image in sub-images for searching repeated patterns
[SV07], or the analysis of pixel grey levels for giving information about the speed and
pressure of the writing [WSV03].

Writer Identification by the analysis of text as texture images. Some au-
thors treat writer identification as a texture identification problem, demonstrating
that textural features can be successfully used for writer and script identification
[STB00], [HS08]. The idea is to generate a uniform texture image from text lines,
and then, extracting textural features. The texture image generation method con-
sists in performing a normalization of the text lines, in which orientation and spaces
between words and margins have a predefined size, and completing text lines in case
it is necessary. Then, random non-overlapping blocks are extracted from the image
(see examples in Fig.2.1).

Figure 2.1: Examples of different handwritten images that can be perceptually
classified as different textures (extracted from [STB00]).

Said et al. [STB00] use Gabor filters and Grey-Scale Co-ocurrence Matrices
(GSCM) for extracting features from texture images. The authors have shown that
these kind of features can be successfully applied not only to writer identification,
but also to font identification in chinese and english documents [ZTW01]. They are
inspired by the work by Tan and Peake [Tan96], [PT97] for script and language iden-
tification in printed documents, where seven different scripts (chinese, roman, greek,
russian, korean, persian and malayalam) are identified using these features. In the
experiments, they reach a identification rate of about 95%. In all these works, the
Gabor features outperform the GSCM ones.

Other works have been proposed based on the wavelet transform to obtain features
on the texture images, such as the following. He et al. [HYT+06] propose the use of
a wavelet-based Generalized Gausian Density method. In [GBA07], Gazzah and Ben
Amara propose the use of 2D Discrete Wavelet Transforms for writer identification in
arabic handwritings. Hiremath and Shivashankar [HS08] use co-ocurrence histograms
of wavelets for capturing information about the relationships between high and low
frequency subbands. It is applied to script identification. In all these works, the
authors compare their results with Gabor features, showing that wavelets obtain
better identification rates.
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Online writer identification Online writer identification is not as difficult as
offline writer identification, because there is more information available, such as speed,
order of strokes or pressure of the handwriting. Main approaches combine static
information (offline) with dynamic features. Some works include the use of Gaussian
Mixture Models [SB07b], the correlation between the length and direction of strokes
[CF06], or the analysis of the velocity profile [CF07].

Writer Verification and Signature Verification

Whereas writer identification consists in identifying the authorship of a piece of hand-
writing, writer verification consists in determining whether two handwriting samples
are written by the same person. The main difference is that in writer identification a
list of matching writers is returned by the system, in writer verification, the output
of the system is binary (accepted/rejected). Most of the approaches for writer identi-
fication can be easily used for writer verification, and some authors have also imple-
mented a verification proposal from their identification ones [BPH05], [BS06], [SB08].
It must be said that Srihari et al. have developed some systems for writer identification
[CS00b],[ZS03], they are mainly focused on writer verification systems, proposing the
use of lexeme features [BSSS07], using dichotomy models [CS00a], statistical models
[SBB+05], or even approaches applied to handwritten characters [SCAL02].

Signature verification is a special case of writer verification, whose main applica-
tions are the authentication of bank checks and biometric recognition (see the surveys
[LP94], [PL89]). It has been a very active research field [PS00], appearing a lot of
systems for both off-line [FAT05] and on-line data [CS07]. In a signature verification
system, the scanned signature is compared with a few signature references provided
by the user at the opening of the account. In these applications, the rejection of an
authentic signature must be minimized, but even more important is the rejection of
a forgery.

2.1.2 Writer Identification in Old Documents

There are some writer identification approaches applied to ancient handwritten text
manuscripts, in order to perform historical analysis for classifying and identifying
these documents. There are several techniques, including both text-dependent and
text-independent approaches.

Text-independent approaches Eglin et al. [EBR07], [BEVA06] propose a text-
indepentent and segmentation-free approach for writer identification in french manus-
cripts from the 18th century. First, they perform a binarization and noise reduction
pre-process based on the Hermite tranform. Afterwards, they extract features only
for the piece of handwritings with a minimum of five text lines and whose entropies
(visual complexity/density of the image) are between certain thresholds, in order to
perform a fair comparison between documents. A signature is computed for each
image, which is expressed by a list of significant orientations (salient handwriting
directions) and their corresponding Gabor densities. They obtain a function where
the x-axis corresponds to the angular values and the y-axis corresponds to the Gabor
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quantification. The comparison between signatures is performed using the Dynamic
Time Warping algorithm.

Bulacu and Schomaker [BS07a] test their text-independent writer identification
approach on medieval English documents (from 14th-16th centuries). Due to the
complexity of the images (which also contain graphics), the authors manually select
rectangular regions of homogeneous text. The method combines textural features
(joint directional probability distributions), run-lengths information, and allographic
features (grapheme-emission distributions). The authors are inspired by two previ-
ous works: the writer identification method proposed in [DS82] for ancient Hebrew
writer identification, which uses run-length histograms; and the method proposed in
[BPH03], which uses graphemes for writer identification in french documents of the
19th century. Bulacu and Schomaker use a feature fusion method, in which the dis-
tances are averaged and combined using the Hamming distance, improving the final
classification rate. The method reaches a classification rate of 89% if the first ranked
author (Top-1) is used, and 97% in case the first ten writers (Top-10) are considered.

Text-dependent approaches Yosef et al. [BYBKD07] describe a text-dependent
approach for writer identification in Hebrew calligraphy documents from the 14th to
16th centuries. They also perform a sophisticated binarization technique for coping
with degraded handwritings, which consists in a region growing scheme from the seed
image of the characters. Afterwards, they detect and extract the three pre-specified
letters using the morphological erosion operator. It must be said that in the hebrew
alphabet, letters could be treated as symbols (see Fig.2.2). For all the specified letters
found in the text, they compute a feature vector based on geometric parameters (such
as the normalized central moment, aspect ratios, compactness, etc.). Finally, they
use feature dimension reduction methods for increasing the final classification rate,
reaching a 100% for 34 writers.

Figure 2.2: The three letters (Aleph, Lamed, Ain) used for writer identification in
Hebrew documents (extracted from [BYBKD07]).

2.1.3 Writer Identification in Music Scores

The identification of the writer of music scores is still an open problem. To the
best of our knowledge, only one project, the eNoteHistory 1 (Scribe Identification
in Handwritten Music Scores from the 18th Century), has been performed about

1http://www.enotehistory.de
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writer identification in music scores (see [Lut02], [G0̈3], [BIM04]). In this project,
the researchers also claim that an important problem of the current registration of
old historical music scores lays in the identification of the corresponding writer. The
authors have developed a prototype that analyzes the music score and then extracts
some features about structural information of the music symbols and notes. However
no quantitative results have been published, and as far as we know, this work has not
been continued.

Text-dependent approach The eNoteHistory is a text-dependent proposal for
writer identification in musical scores which is based on the automated analysis of
notation graphic features. The process of automated identification requires a definite
level of handwriting content understanding. To extract a concrete feature of music
objects means at first to recognize these music objects. Only after the recognition
of separate note symbols from the whole note graphics, for instance, it is possible to
describe them using characteristic feature sets.

Every note element (e.g. clefs, notes, rests...) will be represented by its tree
structure, which shows an ideal appearance of the object (see an example of a tree
structure for a half note in Fig.2.3). Each feature value node of the tree is represented
by a textual description of a category, and in most of the cases, also by a pictogram.
They use heuristically created distance matrices to compare two feature values, where
each matrix includes a distance measure for each pair of possible values of a feature.
The special stochastic rule-based method will be developed to handle an uncertain
recognition results. The goal of the recognition problem is to relate the structures
found in the image with the underlying object feature models. Once object features
are given in the form of structural descriptions, the matching algorithm must solve the
following three problems simultaneously: determine which image primitives belong to
the same object feature, determine the identity of the structure and assign the correct
object features to each image primitive.

The authors propose two different approaches to map documents in the feature
space. The first one consists in a semi-authomatic procedure to allow musicologists
to set the value of the features manually. The second one consists in performing an
automatic approach for feature extraction. However, the system deals only with
the manual approach, in which 150 feature sets are extracted. The classification
is performed creating a cluster for each writer using the k-NN, and the Hamming
distance is used for computing the distance between two feature sets. Results show a
writer identification rate of 90% after optimization.

Concerning the automatic approach, only the staff removal and image analysis
has been performed. The staffs are detected applying an edge detection (Sobel opera-
tor), horizontal projections and template matching with a template of five horizontal
lines. Vertical line candidates are found using vertical projection, whereas note head
candidates are found by a morphological closing and opening operator with a circle
as structure element. Afterwards, they perform a template matching search for de-
tecting the true note heads and stems (a stem always has an associated note head).
The next two steps, namely object recognition and writer identification are still not
implemented. For this reason, no results are shown in the papers.
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(a) (b)

Figure 2.3: Example of the structural approach proposed in [Lut02]. (a) Half note,
(b) Structural feature tree of the half note in (a).

2.1.4 Conclusions

In this section, we have presented the main writer identification approaches. Con-
cerning the identification of text documents, there are two main groups, the text-
dependent and the text-independent approaches. There are several text-dependent
approaches that obtain good identication rates, however they involve the use of hand-
writing recognition methods which increases the difficulty. Contrary, text independent
approaches are more flexible because they avoid the dependence of a good recognizer,
keeping the performance in acceptable rate. In this subgroup of methods, there is an
important amount of approaches which make use of different techniques, and none of
them clearly outperforms the rest.

Concerning the identification of the writer in old music scores, we only find one
relevant work in the literature, the eNoteHistory project [BIM04]. The published
information about this project shows that the proposed approach is in a preliminar
stage, and since there is no later publication, we may consider that the work has not
been continued. Although no quantitative results have been published, in our opinion,
the proposed approach shows promising discrimination power. Unfortunately, the
proposed method requires an OMR for recognizing the most part of the music score
in order to compute the features. Since an OMR for old music scores is an extremely
difficult task (see Section 1.3), the proposed approach can not be developed so far.
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2.2 Optical Music Recognition

Optical Music Recognition (OMR) is a classical area of interest of Document Image
Analysis and Recognition (DIAR) that combines textual and graphical information.
Since first works by Prerau and Pruslin in the 1960’s, interest in OMR has grown
in last decades, appearing several complete OMR systems and even an almost real-
time keyboard-playing robot (the Wabot-2 [MSH89], see Fig.2.4). Some interesting
surveys of classical OMR can be found in [BB92] and [Hom05], where several methods
to segment and recognize symbols are reviewed. It must be said that most work
through 1990 has focused on locating staffs and isolating and recognizing symbols.
Nowadays, problems in OMR of printed scores include effective algorithms to interpret
the resulting 2-D arrangement of symbols, and precise formalisms for representing the
results of interpretation. Contrary to printed scores, few works have been done about
the recognition of handwritten scores [Ng01], and ancient ones [CB92],[PVS03].

Figure 2.4: The WABOT-2 robot.

The input of an OMR system is usually a binarized image. Some advice about
digitalization of music scores can be found in [RF03], in which the authors recommend
scanning at a resolution of 600dpi, in at least 24-bit color, and storing images in
PNG or JPEG file formats. Although most authors use an adaptive binarization
technique, some authors [CB92] do not apply a binarization method because the
scanner performs automatic thresholding to obtain a binary image. Others [Pre70]
choose the threshold manually. In the vision system for the Wabot-2 [MSH89] the
image is subdivided and each region is separately thresholded to allow for uneven
illumination. The image is then rotated and normalized to compensate for distortions
introduced in scanning. In [PBF07] some binarization techniques have been compared,
including Otsu, Gatos, Niblack, Bernsen and Sauvola algorithms. Results show that
depending on the degradation of the image, some techniques are better that others,
but no one is the best in all kind of degraded images. Concerning noise reduction,
in [CB92] a horizontal low-pass filter is used to remove short breaks in staff lines
and symbols, whereas in [LC85] a three-by-three mask is used to eliminate isolated
black pixels and to fill in isolated white pixels. Recent works ([Lut02]) use adaptive
binarization techniques to binarize in a more robust way.
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In this Section, a review of the research literature about OMR is presented. The
recognition of a music score usually consists in the application of several functional
stages. For this reason, we firstly review the main techniques used for each stage of the
OMR system, consisting of the preprocessing and staff detection, symbol extraction
and classification, and finally, validation. Secondly, techniques used for handwritten
and ancient scores are reviewed.

2.2.1 Detection and Extraction of Staff Lines

Staff lines play a central role in music notation, because they define the vertical
coordinate system for pitches, and provide a horizontal direction for the temporal
coordinate system. The staff spacing gives a size normalization that is useful both for
symbol recognition and interpretation: the size of musical symbols is linearly related
to the staff space. Most OMR systems detect and remove the staff from the image in
order to isolate musical symbols and facilitate the recognition process. Common staff
removal methods take use of line tracking, runlenght analysis and vectorizations. Let
us describe some of the most common techniques.

The approach proposed in [Pru66] eliminates all thin horizontal and vertical lines,
including many bare staff-line sections and stems. This results in an image of isolated
symbols, such as note heads and beams, which are then recognized using contour
tracking methods. This preprocessing step erases or distorts most music symbols.

Prerau [Pre70] divides the process in fragmentation and assemblage. In the frag-
mentation step, the system scans along the top and bottom edges of staff lines to
identify parts of symbols lying between, above and below the staff lines (a new sym-
bol fragment is begun whenever a significant change in slope is encountered). In the
assemblage step, these symbol fragments are connected if the two symbol fragments
(separated by a staff line) have horizontal overlap. One disadvantage with this tech-
nique is that symbols which merge with staff lines do not always have horizontal
overlap, so with this method, would keep disconnected when it should be connected.

Mahoney (see [Mah82]) uses a strategy similar to the symbol identification method:
staff-line candidates are constructed (including all thin horizontal lines in the image)
and the staff line descriptor (specifying allowable thicknesses, lengths and gap-lengths)
is used to classify staff lines. The method removes only those parts of the line that do
not overlap other symbols. Good extraction of staff lines is achieved, although more
work is needed for dealing with line-region overlap.

Carter and Bacon (see [CB92]) propose a system for segmentation that uses pro-
cessing based on a Line Adjacency Graph (LAG). Because the detection of places
where a thin portion of a symbol tangentially intersects a staff line is difficult, mostly
methods create gaps in symbols. Carter proposes a LAG-based analysis that success-
fully identifies such tangential intersections of symbols with staff lines. In addition,
the system locates staff lines despite the image rotation of up to 10 degrees, copes
with slight bowing of staff lines and with local variations in staff-line thickness. This
method also uses horizontal projections to first locate staff lines.

In [KI91] the detection and extraction of staff lines is performed using histograms,
run-lengths and projections. After determining the spacing of staff lines and their
location (using run-lengths and histograms), the staff is analyzed (tracking from the
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left), eliminating short horizontal runs whose width is under a certain threshold.
In [LC85] and [Dan98], projection methods are used to recognize staff lines, which

are found in a Y projection. A defined threshold is used to select projections strong
enough to be candidate staff lines. These candidates are searched to find groups of
five equally-spaced lines. A score after staff removing is shown in Fig. 2.5.

Figure 2.5: Staff removal image extracted from [LC85].

In [CBM88] the staff lines are located by looking for long horizontal runs of black
pixels. Then the neighborhood of each staff-line pixel is examined to determine
whether a music symbol intersects the staff line at this point. Staves are located
by examination of a single column of pixels near the left end of the system. Large
blank sections indicate gaps between staff lines, and are used to divide the image into
individual staffs. Complete staff separation is no always achievable, because parts of
symbols belonging to the staff above or the staff below may be included.

In [RCF+93] the method proposed consists in a vertical projection, projection fil-
tering, local minima regions finding (those regions correspond probably to the regions
where there are only staff lines), horizontal projection of each local minima regions (to
ensure that that those peaks are certainly lines), and linking different peaks between
them in order to built up the every staff. This technique is very robust because even
if these lines are bowed, skewed of fragmented they are always found. For deleting
staff lines, the thickness of each line is first estimated in according to the width values
of the lines peaks. Then if width is smaller than a threshold (proportional to the
estimated thickness) the line points at this place are erased. The problem of split
symbols will be carried over in recognition stage.

Leplumey et al. [LCL93] present a method based on a prediction-and-check tech-
nique to extract staffs, even detecting lines with some curvature, discontinuities and
inclination. After determining thickness of staff lines and interlines using histograms
and run lengths, some hypotheses on the presence of lines is done grouping compat-
ible observations into lines. Afterwards, an interpretation graph is used for joining
segments to obtain staff lines. This method process allows little discontinuities thanks
to the use of a local predicting function of the staff inclination.
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The method proposed by Fujinaga in [Fuj04] detects staffs by horizontal projec-
tions and deskews each staff in the image. Afterwards, black vertical runs larger than
a threshold are removed, and considers all remaining connected components with a
considering width.

In [RT88] an OMR system for handwritten scores is described. In such scores, only
musical symbols are drawn by hand, because staff lines are printed. The segmentation
stage detects staff lines using measures of line angle and thickness. A window is
passed over the image to compute a line-angle for every black pixel. The line angle is
measured from the center of the window to the furthest black pixel in that window;
this furthest black pixel is chosen so that the path from it to the center does not
cross any white pixels. To detect staff lines, a large window radius is used. This
causes covered staff-line sections to be labelled with a horizontal line-angle despite
the interference of the superimposed musical symbols. Once a line angle has been
determined, a line-thickness can be measured. These two measurements, combined
with adjacency information are used to identify horizontal lines. The OMR system
for handwritten recognition exposed in [RT88] shows acceptable performance results.
Due to the low resolution of digitized images, it is difficult to estimate how this method
would compare to others when applied to higher-resolution input.

An interesting comparative study of different staff removal algorithms can be found
in [DDPF08]. The authors also proposed a new method consisting in the use of the
skeleton of the image and obtaining staff segment candidates. A detection of false
positives is also performed in order to improve the results. The authors have created
distorted images from ground-truth data to compare their approach with existing staff
removal methods. The authors conclude that there is not an algorithm that performs
best in all kind of deformations. In fact, the proposed approach is quite robust in
most deformations, but it is sensible to deformations that emulate historic prints.

2.2.2 Symbol Extraction and Classification

First of all, it must be said that some systems do not remove staff lines. The method
proposed in [Pug06] uses HMM without any segmentation, and will be described
in Section . The Wabot-2 robot [MSH89] performs a template matching without
removing staff lines: staff lines are detected and used to normalize the image, to
determine the score geometry, and also to restrict the search area for music symbols
(then, the recognition of musical symbols must learn symbols which include segments
of staffs). Staff lines are detected in hardware by a horizontal line filter, tolerating
some skew. Where five equally-space lines are found, a staff is deemed to exist.
Normalization parameters include staff location, staff inclination, area covered by
staff and note-head size. Afterwards, the image of each staff is normalized according
to these parameters.

For the classification of music symbols, different techniques have been proposed.
Some of them are described next.

Pruslin [Pru66] uses contour tracking to describe connected binary image regions
which remain after deleting horizontal and vertical lines. Classification depends both
on stroke properties as well as on inter-stroke measurements (a method for template
matching using contour strokes is developed).
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In [Pre70], relative symbol size is used for an initial classification. The bounding-
box dimensions are expressed in staff-space units. Dimensions of the bounding box are
used to look up a list of possible matches (there is a pre-computed table containing the
standard areas of each symbol in a height/width space). Typically there are three to
five possible matches for each symbol, so heuristic tests are used to distinguish symbols
that overlap in the height/width space, taking advantage of the syntax, redundancy,
position and feature properties of each symbol type. Notice that, this classification is
dependant of the publisher, and will not work in handwritten scores.

In [Mah82] pattern primitives (such as note heads, stems beams and flags) are
combined to form music symbols (e.g. notes, chords and beamed note sequences). It
does not use context information for the recognition of primitives, but it is used to infer
musical symbols from the relationships between the various kinds of primitives. After
extracting line primitives, dot primitives are processed and removed. All measures of
distance are normalized on staff-line and staff-space thickness. Sample line parameters
are principal direction, angle, thickness, length and maximum permitted gap. Sample
region parameters are mass, width, height and inclination angle. This process is
initially used in an interactive mode to add or modify object descriptions.

In the Wabot-2 robot [MSH89], musical symbols are recognized according to a
two-level hierarchy: the upper level (in which the recognition of staff lines, note heads
and bar lines is done) is implemented in hardware and the lower level in software.
The search is performed using hardware-implemented template-matching.

Lee and Choi ([LC85]) use projection methods to recognize staff lines, bar lines,
notes and rests. Once an image containing only a staff nucleus is obtained, an X and Y
projections are used to find bar lines. Notes are recognized using X and Y projections
from a small window around the symbol. Characteristic points in the projections
are used for classification; a comparison is made with stored projections for known
symbols. The main disadvantage of this method is that it is rotation-sensitive.

In [CBM88] an initial classification is obtained from the symbol height and width
(as in [Pre70]), and then pixels in few particular rows and columns of the symbol-
image are examined (because complete template matching is too computationally
expensive). Some preliminary work on chord recognition is also present. An important
problem is the noise-sensitivity of the method.

In [MN95] the extraction of heads and stems in printed piano scores is performed
using a neural network: After extracting all regions candidates of stems or heads,
a three-layer neural network is used to identify heads; the weights for the network
are learned by the back propagation method. In the learning, the network learns the
spatial constraints between heads and surroundings rather that the shapes of heads.
Afterwards, this networks are used to identify a number of test head candidates.
Finally, the stem candidates touching the detected heads are extracted as true stems.

In [MRHS93] the recognition system for printed scores is composed of two modules:
the low-level vision module uses morphological algorithms for symbols detection; the
high-level module context information to validate the results. Because morphological
operations can be efficiently implemented in machine vision systems, the recognition
task can be performed in near real-time.

In [RT88] knowledge about music notation is represented in a rule-based system,
which is applied starting with the earliest steps of symbol segmentation and recogni-
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tion. Images are digitalized in low resolution, so it is not clear the effectiveness of the
system. The primitives recognized are: circular blobs, circles, horizontal lines, non-
horizontal line segments and arcs (clefs are not recognized). Primitive identification
is coded as several steps, using context information in the last step. Note-head de-
tection is extremely difficult in these handwritten images, and a general-purpose blob
detector does no work. Thus, note heads are searched for in constrained locations:
first, verticals lines are located, then a thickness measure is used to test for wide spots
at the ends of each potential stem; if there is a wide spot (whose circularity is under
a certain threshold), it is accepted as a note head.

In [BC97] and [CB92] the recognition system is in an early stage. Objects are
classified according to the bounding-box size, and according to the number and orga-
nization of their constituent sections (see an example in Fig. 2.6).

Figure 2.6: Classification of musical symbols performed in [BC97].

In [SD99], a probabilistic framework for recognition of printed scores is presented.
The system uses an explicit descriptive model of the document class to find the most
likely interpretation of a scanned document image, carrying out all stages of the
analysis with a single inference engine (which allows for an end-to-end propagation
of the uncertainty). The global modeling structure is similar to a stochastic attribute
grammar, and local parameters are estimated using Hidden Markov Models (HMM).
The HMM parameters are estimated from a training set using the segmental k-means
algorithm. It also uses The Hough Transform and a low-band filter to locate lines
and note heads of note groups.

In [RCF+93] symbols are isolated by using region growing method and thinning.
After the polygonalization of the object, a parameter defined as a minimum distance
to the contour is attributed to each segment, so spurious segments can be eliminated
and some configuration segments are transformed. Once the skeleton structure is
simplified, the attributed graph is constructed: the graph nodes correspond to the
segments and the graph arcs to the links between segments. After constructing the
graph, symbols are classified in symbols including notes with black heads (there is at
least one segment having a distance to the contour exceeding a certain threshold) and
the others. Half notes are detected if there is a stem with a little loop in its extremes.

In [CR95], a grammar is formalized to work in the image level to produce an
accurate segmentation and thus accurate recognition. Whereas most grammars are
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usually used at a high level to validate the structured document, the system proposed
uses context information (syntax) to control the entire recognition process.

In [KI91] a sophisticated symbol recognition stage with a top-down architecture
is performed. It uses a collection of processing modules which represents information
about the current bar of music at five levels of abstraction: pixel, primitives, music
symbols, meaning (pitch and duration of notes) and context information (interpreta-
tions). The four processing modules (primitive extraction, symbols synthesis, symbol
recognition and semantic analysis) are made up of one or more recognition and veri-
fication units. The primitive extraction module contains units for recognizing stems,
beams and note heads. Hypothesized primitives are removed from the pixel image.
Unacceptable hypotheses are rejected at higher layers, are sent back to lower layers for
further processing. Symbol recognition proceeds one measure at a time, and consists
on pattern processing and semantic analysis (using context information), required for
solving ambiguities of complex notations.

In [RB05] a system based on a fuzzy modeling of symbol classes and music writing
rules is proposed. First, the individual analysis process (based on pattern matching)
performs the segmentation of the objects and the correlation with symbol models
stored in a reference base. Then, the fuzzy modeling part provides for each classifica-
tion hypothesis a possibility degree of membership to the class. It also introduces a
fuzzy representation of the common music writing rules by expressing graphical and
syntactic compatibility degrees between the symbols. The fuzzy modeling of symbol
classes allows to deal with imprecision and variations of symbol shapes.

Homenda and Luckncr [HL06] present a system for recognizing five different classes
of music symbols. They compare methods based on centroids, Zernike moments and
decision trees with split decision. They propose decision trees based on the linear
combination of 278 basic features (e.g. histograms, density, symbol direction). They
use Principal Component Analysis for improving the final recognition rate.

In [TSM06] a symbol recognition method for printed piano music scores with
touching symbols is presented. The symbol candidates are detected by template
matching, and from these candidates, correct symbols are selected by considering
their relative positions and mutual connections. Touching primitives are detected
using coherence check.

2.2.3 Validation

Rules on music notation makes the recognition task easier, because the information of
two-dimensional relationships between musical symbols can be captured in a syntac-
tic description of music. For that reason, most authors define grammars describing
the organization of music notation in terms of music symbols. Some authors [AA82],
[Pre70] use two different grammar levels: lower level grammars for music symbols
(with terminal geometric figures such as dots, circles and lines and adjacency opera-
tiors such as above, below, right of...) and high level grammars for music sentences
(larger units with measures containing music symbols).

In [MSH89] the robot uses a musical grammar to correct errors such as missing
beats or contradictory repeat signs. Examples of constraints applied to three-part
organ music are: a fat double bar appears only at the end of each part, a treble or
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bass clef always appear right at the start of each staff, the number of beats in each
measure should match the time signature, etc.

In [MRHS93] a high-level reasoning module is developed. The system utilizes prior
knowledge of music notation to reason about spatial positions and spatial sequences
of recognized symbols. This module is composed of a connected components analysis
and a reasoning module (that verifies if every musical symbol accomplishes its own
constraints). The high-level module also employs verification procedures to check the
veracity of the output of the morphological symbol recognizer.

In [FB93] a graph grammar for recognizing musical notation is presented, where
the input graph to the grammar is constructed as a set of isolated attributed nodes
representing the musical symbols. The grammar itself forms the edges representing
the significant associations between the primitives that are necessary in determining
the meaning. Although the proposed approach relies on the ability to control the
order of application of the productions, there may be some portions of the grammar
in which the order need not be specified, so, potential parallelism in the grammar is
also made explicit.

2.2.4 OMR for Ancient Music Scores

Bainbridge and Carter’s system In [CB92], [BC97] and [BB96] a system based
on a Line Adjacency Graph (LAG) is exposed. This system is also used to recognize
ancient scores [Car95], consisting in scores of madrigals (see Fig. 2.7(a)) notated in
White Mensual Notation. Symbols are correctly segmented and an early classification
stage has been implemented.

This system successfully identifies tangential intersections of symbols with staff
lines, locates staff lines despite the image rotation of up to 10 degrees, copes with
slight bowing of staff lines and with local variations in staff-line thickness. Region
information, derived from the LAG, is used to determine whether a symbol has merged
with a staff line. The LAG is formed directly from a vertical run-length encoding
of a binary image. A transformed LAG is formed by linking together neighboring
segments to form sections. Junctions occur when a segment in one column overlaps
several segments in an adjacent column; sections are terminated at these junctions. In
the transformed LAG, each section is represented by a node in a graph, and junctions
are represented by edges in the graph. The nodes in the transformed LAG should
correspond to structural components of musical symbols. Then, the transformed
LAG is searched for potential staff-line sections (filaments): sections that satisfy
criteria related to aspect ratio, connectedness and curvature. Collinear filaments
are concatenated together into filament strings. After staff lines are identified, the
transformed LAG is restructured: further merging of non-staff sections takes place,
now that junctions with staff staff-line sections have been specially marked. At this
point, musical symbols are effectively isolated from the staff lines. Connected non-
staff-line sections are combined to form objects, which correspond to music symbols
or to connected components of music symbols.

Concerning the classification stage, the system performs a description of objects
which correspond to music symbols or connected components of music symbols. These
segmentation results are interpreted by a recognition system, where the objects re-



2.2. Optical Music Recognition 33

sulting from the segmentation are classified according to bounding-box size, and the
number and organization of their constituent sections. The author comments that if
there are overlapping or superimposed symbols another algorithm will be required.

(a) (b)

Figure 2.7: Examples of ancient musical scores, extracted from [Car95], [PVS03]

ROMA: Ancient Music Optical Recognition In [PVS03], a OMR method to
recognize ancient musical scores (see Fig. 2.7(b)) is described. This system copes
with specific notation of ancient documents, and is developed under the Portuguese
project ROMA (Ancient Music Optical Recognition).

After the preprocessing stage, the segmentation module divides the music sheet
in staff lines, bars and musical symbols. The staff lines are identified using horizontal
projections and small rotations of the image. Then, segments of line whose thick-
ness is not bigger than a certain threshold are removed. Bar lines are located using
vertical projections, and objects are segmented using morphological operations and
connectivity analysis.

The recognition process is based on a graph structure of classifiers, divided into two
steps: feature extraction and classification. The method includes the construction of a
class hierarchy associated with recognizers that distinguish between clusters of classes
based on selected object features. Then, a method for the search of optimal graph
hierarchy (manual and automated) and for the classification algorithms themselves is
proposed. Finally, the reconstruction stage is needed to relate the recognized symbols
with each other and with its staff lines and bars, creating the final description of the
music. The system proposed obtains high performance results (97% of accuracy).

Pugin et al. method for OMR in old scores An approach for OMR in
printed scores from the 16th-17th is presented in [Pug06]. The system consists in
a segmentation-free approach based on Hidden Markov Models (HMM). They not
remove the staff lines, and they do not perform any segmentation neither. The goal
is to avoid segmentation problems and irregularities. The modeling of symbols on the
staff is based on low-level simple features, which include the staff lines (see Fig.2.8).
For feature extraction, they use a sliding window as in speech recognition, extracting
the following 6 features for each window: the number of connected black zones, the
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gravity centers, the area of the largest black element and the smallest white element,
and the total area of the black elements in the window. Concerning the HMM, the
number of states used matches as closely as possible the width in pixels of the symbol.
The training is performed with the embedded version of he Baum-Welch algorithm.
For every training iteration, each staff is used once to adapt the models corresponding
to the symbols of which the staff is made. The author shows that with the use of
these features and HMM, good recognition rates are obtained.

Figure 2.8: Examples of symbols with staff lines, extracted from [Pug06]

The authors also compare two OMR approaches (Gamut and Aruspix) applied to
ancient scores in [PHBF08]. The authors claim that although Aruspix HMM models
outperform the Gamut kNN classifiers, experiments show that paper degradation
affect to the performance of both systems. The authors also perform an evaluation of
binarization techniques for OMR in [PBF07], which has been already commented in
the subsection of Binarization and Noise Reduction.

2.2.5 OMR for Handwritten Modern Music Scores

Kia Ng exposes in [Ng01] a prototype for printed scores, followed by a prototype for
handwritten ones, discussing the limitations of the first one for handwritten scores
processing. In the printed one, after binarizing and correcting the skew of the image,
staff location is obtained using horizontal projections, and a line tracing algorithm
with a local vertical projection window. Afterwards, a sub-segmentation algorithm
disassemble musical symbols into graphical primitives, and the classification stage be-
gins: first, isolated primitive musical symbols, clef and time signature are recognized.
The recognition of other primitives is performed by interplay between the classifi-
cation and the sub-segmentation modules (symbols not recognized are subdivided
depending on its orientation). The classification module uses the aspect ratio of a
bounding box, using a k-NN classifier. The prototype for printed scores recognizes 12
different sub-symbols with a 95% reliability.

Concerning the prototype for handwritten scores, the skeleton of the binary im-
age is obtained in order to transform musical symbols into a set of interconnected
curved lines. Then, junction and termination points are extracted from the skeleton
representations. In the staff detection phase, all horizontal line segments are parsed
to determine if they belong to part of a staff line using basic notational syntax and
an estimated staff line height.

An additional process using a combination of edges, curvature and variations in
relative thickness and stroke direction is used to perform further sub-segmentation and
segregate the writings into lower-level graphical primitives (lines, curves and ellipses).
Afterwards, primitives are classified using a KNN classifier. Each terminal point is
parsed to search for any other nearby terminal points which are collinear with the
current segment or following a polynomial extrapolation from the terminal points of
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the current segment. The author comments that a tracing routine using a database
of isolated handwritten musical symbols would improve the classification stage.

After the classification phase, these sub-segmented primitives are regrouped (ap-
plying basic syntactic rules) to form musical symbols. Contextual ambiguities are
resolved using relative positions of primitives in the staff, and between primitives.
The reconstruction module offers an intermediate stage where extensive heuristic,
musical syntax and conventions could be introduced to enhance or confirm the prim-
itive recognition and re-groupings. Unfortunately, no recognition rates are shown in
the recognition of handwritten scores.

Online OMR Finally, an online symbol recognition system [MM07] must be also
commented. The authors propose two kind of features for recognizing strokes: time-
series data and hand-drawn image features. Then, features are combined to identify
the music symbol. An eight-direction Freemain Chain Code is used to represent the
time-series data of the stroke, and for matching the codes, string edit distance based
on Dynamic Programming is used. For the computation of the image features, the
image of the stroke is divided into 8x8 regions, and the directional feature of each
region is calculated. Then, a Support Vector Machine is used for the classification.
Results of both classifiers are also combined using a Support Vector Machine. Af-
terwards, the combination of specific strokes for each music symbol is consulted in
a pre-defined table. To allow a stroke distortion, some music symbols have several
possibility combinations of strokes.

2.2.6 Conclusions

In this section, main OMR systems have been described. Table 2.1 shows main
techniques used in staff detection and removal, whereas table 2.2 shows the main
techniques used in classification of musical symbols. The validation phase is performed
basically using rule-based reasoning, i.e. syntactical approaches that model the valid
scores by a grammatical formalism. Finally, results of main systems exposed should
be commented.

The system defined in [Pru66] only recognizes quarter notes, beamed note groups
and chords, whereas Prerau’s approach [Pre70] recognizes a more complete set of
symbols (clefs, accidentals, half quarter and eight notes) with good recognition rates.
Andronico [AA82] describes a system that recognizes clefs, key signatures, notes,
rests and accidentals in simple monophonic music. In [Mah82] a system with human
interaction recognizes simple polyphonic music, whereas Clarke’s system [CBM88]
recognizes single line melodies with a 90% accuracy.

The Wabot-2 can perform fast, accurate recognition of simple three-part organ
scores, recognizing notes, clefs, accidentals, time signatures, bar lines, beams, rests,
staccato and marcato marks, but it does not recognize words, slurs, ties, expression
marks, ornaments and tempo indications.

In [LC85] the system exposed recognizes staff lines, bar lines, notes, chords and
rests. Carter [CB92] has developed a system that segments under difficult imaging
conditions, without an excess of ad hoc rules. It recognizes solo instrument parts,
solo instrument with piano accompaniment and orchestra score with good tolerance
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Staff Detection: Author Techniques
Prerau Contour Tracking

Mahoney Construction of candidates,
Staff line descriptors

Carter and Bainbridge Projections, LAG
Kato, Lee, Dan,

Clarke, Randriamahefa Histograms, Runlengths, Projections
Leplumey Runlengths,

Reconstruction using a Graph
Roach Slide-window, Orientation of line segments
Dalitz Skeleton, Reconstruction using

orientations of segments

Table 2.1: Main Techniques used in Staff Detection

Classification: Author Techniques
Prerau Bounding-box, Matching

Mahoney Features of primitives, Descriptors
Carter and Bainbridge Bounding-box, LAG

Kato Pattern processing, syntax analysis
Lee Projections

Clarke Bounding-box, pixel analysis
Vuilleumier Hidden Markov Models

Randriamahefa Polygonalization, Attributed Graph
Ng Skeletons and Mathematical Morphology Operators

Couasnon Grammars
Toyama Template Matching

Homenda Decision trees

Table 2.2: Main Techniques used in Classification of musical symbols

to noise, limited rotation, broken print and distortion. The system exposed in [KI91]
handles complex music notation (including two voices per staff with chords and shared
note heads, slurs and pedal markings) with high performance rates. The OMR system
for handwritten recognition exposed in [RT88] shows acceptable performance results.
Due to the low resolution of digitized images, it is difficult to estimate how this method
would compare to others when applied to higher-resolution input.

The grammar formalized by Couasnon in [CR95] can recognize notes, rests, chords,
accents, clefs, key and time signature, phrasing slurs, dynamic markings. Abbrevia-
tions, ornaments and lyrics are not included. The classification system for the symbols
and the segmentation and merging of connected components is under development,
and no performance results are shown. Concerning the system proposed in [PVS03]
for old scores, obtains high performance results (ancient scores are recognized with
a 97% of accuracy). The output of the system is a normalized music sheet with the
original staff printed using straight staff lines and normalized symbols.
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The prototype for printed scores described in [Ng01] recognizes 12 different sub-
symbols with a 95% reliability. The output is expMIDI, which is compatible with
the standard MIDI file format, and capable of storing expressive symbols such as
accents and phrase markings. No recognition rates are shown in the recognition of
handwritten scores. The online music recognition system proposed in [MM07] reaches
a recognition rate of 98%.

As a summary, we can note that the recognition of printed music scores is a ma-
ture are of study (in which several approaches obtain very high recognition rates).
Concerning the recognition of old printed ones, there are some existing works ob-
taining good results, although further work should be performed. Contrary, very few
works have been done about the recognition of handwritten ones, being still an open
problem.

2.3 Symbol Recognition

Symbol recognition is one of the main topics of Graphic Recognition, which has been
an intensive research work in the last decades [LVSM02]. Symbols are synthetic
visual entities made by humans to be read by humans. They are a good way to
express ideas, allowing users to describe complex models with compact diagrammatic
notations. The alphabet of symbols that belong to these diagrammatic notations is
identified and interpreted in the context of a domain-dependent graphic notation.

Symbol recognition can be applied both to documents and real images (see exam-
ples in Fig. 2.9). Among the typical applications of document analysis, we can find
the following: the analysis and recognition of logical circuit diagrams, engineering
drawings, maps, architectural drawings, musical scores, or even logo recognition. On
the other hand, detecting symbols from real images involves a large number of appli-
cations: recognizing logos with PDA cameras and smartphones, searching by symbolic
queries anywhere, image retrieval, driving assistance (traffic signs) and blind person
aid systems.

Figure 2.9: Examples of symbols that can appear in documents and real images.

The most typical visual cues for recognizing symbols are texture, color and shape,
being the last one the most widely considered. For that reason, a symbol recognition
system usually requires the definition of expressive and compact shape descriptors.
The research on shape descriptors has been very intensive in last decades, and several
surveys can be found in the literature [ZL04], [RTV07], [MKJ08].

It must be said that most of the symbol recognition methods are defined for pre-
segmented symbols, because the recognition of non-segmented symbols is extremely
difficult. For these reasons, some segmentation methods have been studied ([CW00],
[Suw05]), and even some systems that perform segmentation and recognition in par-
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allel, in other words, they use the recognition phase in order to supervise the resulting
segmentation. As an example, a method for segmenting and recognizing two touch-
ing symbols is presented in [RRC07]. They evaluate several segmentation candidates
produced by grouping elements of an over-segmentation.

The desirable properties of a shape-based approach for symbol recognition can be
divided in two main groups, depending on the descriptor or the classifier. Concerning
to the point of view of shape signature, the descriptor should ideally guarantee intra-
class compactness and inter-class separability.

Symbol recognition descriptors can be classified depending on different taxonomies.
Mehtre [MKL97] proposes a classification based on Boundary-based methods and
Region-based methods. The first one only takes into account the shape boundary
(contour) information, whereas the second one extracts information from the whole
shape region. Contrary, Zhang [ZL04] proposes a division between global/statistical
and structural methods. The first ones represent the image as a n-dimensional fea-
ture vector, whereas the second ones usually represent the image as a set of geometric
primitives and relationships among them.

In this dissertation, we will use the Zhang’s taxonomy but also classified depending
on the kind of input symbol image: printed symbols, hand-drawn symbols and camera-
based symbols (see Fig. 2.10). The main reason is that each kind of input image has
different restrictions, requiring the solution to different problematics.

Figure 2.10: Classification of symbol recognition descriptors.

2.3.1 Recognition of Printed Symbols in Documents

The recognition of printed symbols has been a wide area or research in the last decades.
It is key issue in the interpretation of engineering and architectural drawings, musical
scores, maps, diagrams, etc., covering not only symbol recognition but also symbol
indexing and spotting [TTD06],[FJ03].

A symbol recognition method should be tolerant to noise, degradation, occlusions
and distortion (including shear), and due to isolated symbols which are present in
graphical documents, it must also take into account the variations in rotation, scaling
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and translation. According to Zhang [ZL04], symbol descriptors can be classified into
statistical and structural approaches. These two groups will be commented next.

Statistical Symbol Recognition Methods

Statistical approaches tend to use pixels as the primitives to extract features from.
They are usually few sensitive to noise, and domain independent. The main drawback
is that the rotation and scale invariance is usually more difficult to achieve than
structural methods, and in addition, it is difficult to add context information. Let us
briefly review the most popular approaches:

Geometric features Some approaches [PPR00] use geometric features, such as
centroids (center of gravity), area (number of active pixels), circularity (the ratio of
the area of the shape to the area of a circle), bounding box (the smallest rectangle
that contains the symbol), projection profiles (the distance of the contour pixels to
the boundarys of the bounding box), axes of inertia (which represent the directions of
the symbol) or zoning (after dividing the symbol in regions, it computes the area of
each region) [DLDG+00]. The main advantages are the simplicity and low complexity.
The main disadvantages are that they are not rotation invariant and sensitive to noise
and distortion.

Moment invariants Moment invariants are also applied to symbol recognition,
being regular moments, Zernike moments and Legendre moments the most widely
used. The main advantage is their capability for symbol reconstruction from features.
Regular moments are not orthogonal, suffering from a high degree of information
redundancy. Zernike moments [KH90] are moment-based descriptors, which are
based on the Zernike polynomials and defined over the unitary disk on an orthogonal
basis. They are rotation invariant and also quite robust to noise. They are slow to
compute, thus there are some approaches for a fast computation of Zernike moments
[GSTL02] or even real time computation [KA05]. Legendre moments are defined
over the Legendre polynomials. They are also orthogonal, but are more severely
affected by noise than the rest of the moments. A comparative study of moment
invariants can be seen in [TC88].

Scale Space The main idea of Scale Space approaches are is that the original curve
can be more and more simplified, and so small structures should vanish. The most
representative is the Curvature Scale Space (CSS) [MM86], which was selected as
a standard descriptor of the MPEG-7 [MSS02]. It is a contour approach, suitable for
classifying symbols in data sets where the most important discriminant feature is the
external contour (such as the MPEG-7 data set). It consists in smoothing the shape
by convolving it with a Gaussian kernel. It is a robust contour-shaped descriptor,
which captures the main features of the shape of the symbol. It is fast to compute
and robust to changes in scale and rotation. The main disadvantages are that this
descriptor can only be used for closed curves and it is sensible to noise.
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Spatial relations Spatial interrelation features describe the region or the contour
by the relation of their pixels or curves, such as Shape Context and Pixel-Level Con-
straint. One of the most commonly used in symbol recognition is the Shape context
[BMP02]. Contrary to CSS, it can work with external and internal contour, and also
with non-closed curves. It extracts a global histogram for each corresponding point,
which are concatenated to form the context of the shape. The main drawback is
that it requires point-to-point alignment of the symbols to be compared before their
alignment. It is translation and scaling invariant, but its rotation invariance relies
on the tangent at every pixel, which is unstable in presence of noise. Pixel-Level
Constraint (PLC) [Yan05] is a contour-based descriptor, based on statistical integra-
tion of pixel-level constraint histograms. For each pixel, a histogram is constructed
to figure out the distribution of constraints among other pixels. Then, a veature
vector from these histograms is created. It is of a fixed size, so, alignment (like in
Shape Context) is not necessary. It has quite good performance in front of deformed
symbols, and it is rotation and scale invariant.

Image transforms Image transforms such as Fourier Transforms and their variants
are classic techniques but still used in symbol recognition. The Fourier descriptor
[KSK93] is obtained by applying the Fourier Transform on the shape boundary coordi-
nates. It is rotation, translation and scale, although they have limited discriminatory
power, and are sensible to noise. General Fourier Transform (GFT) [YNGR07]
is based on the modified polar Fourier Transform, applies a 2D Fourier Transform to
the polar representation of the image. The coefficients are conveniently normalized
in order to achieve invariance to rotation and scale. Fourier-Mellin Transform
[AOC+00] computes the fourier transform in the angular parameter, whereas in the
radial parameter is the Mellin-Transform, which is a kind of moment function in a
complex variable. It is invariant to rotation and scale. R-Signature [TWS06] is
based on Radon transform [TW02]. It is translation and scale invariant, and includes
the 1-D Fourier transform to reach invariance to rotation. The Hough Transform has
also been used for detecting symbols in line drawing images [FMKK00], thanks to
its ability to detect lines using a voting scheme. Ridgelets transforms [TV06] are
based on the application of wavelets [ABCdFC97] to the Radon transform [TW02] of
an image. The ridgelets transform will detect singularities in the Radon space, com-
bining advantages from both transforms, the ability to detect lines, from the Radon
transform, and the multiscale property of wavelets to work at several levels of de-
tail. They are rotation invariant (not to translation) and with a good performance
in degraded symbols. Angular Radial Transform (ART) [KK99] decomposes the
shape in an orthogonal basis, taking use of a radial and angular function. It has good
perfomance for general shapes and uses few features by descriptor. Both ART and
CSS are standards of the MPEG7 data set.

There are other descriptors that can not be included in the previous groups, such
as the symbol descriptor based in Kernel Density Estimation presented in [ZLZ06].
Pre-segmented symbols are represented as 2D kernel densities from the shape skeleton,
and for evaluating the similarity between symbols, the Kullback-Leibler divergence is
used. It has very good performance in front of degraded and noisy symbols.
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Structural Symbol Recognition Methods

In structural approaches, straight lines and arcs are usually the basic primitives for
represent the shape. Strings, graphs or trees represent the geometrical and topological
relations (perpendicularity, adjacency, parallel, crossing...) between these primitives.
The similarity measure is therefore performed by string, tree or graph matching. The
rotation and scale invariance is quite easy to achieve using structural descriptors, but
they usually have a high computational cost. In addition, they are sensitive to noise
and distortions in comparison to statistical approaches. They can be classified in
several groups:

Graphs Graphs are a powerful shape representation; by assigning suitable seman-
tic meaning to the vertices and edges, it can form a complete representation of the
shape of the symbol. Usually, nodes correspond to points and lines of the image,
and edges correspond to relations between these primitives. The matching consists
in finding the best subgraph isomorphism between the two symbols to be compared.
They allow segmentation and recognition at the same time. The main drawback is
the high complexity cost. Moreover, they are sensitive to errors and noise. For this
reason, error-tolerant subgraph isomorphism algorithms have been proposed [MB98].
Region Adjacency Graphs (RAG) with an error-tolerant subgraph isomorphism
are proposed for symbol recognition in [LMV01]. In the approach proposed, regions
are represented by polylines and string matching techniques are used to measure their
similarity. The algorithm follows a branch and bound approach driven by the RAG
edit operations, which reduces time complexity. The method shows good performance
in front of distortions. Attributed graph grammars proposed by Bunke in [Bun82]
are a combination of graphs and grammars. The advantage is that a grammar can
store in a compact way all valid instances of a kind of symbols. The recognition
consists in parsing its representation to test whether the symbol can be generated
by the grammar. This approach can cope with partially occluded symbols, and are
applied to domains in which the symbols can be defined by a set of rules, such as tech-
nical drawings, logic diagrams and flowcharts. Structural signatures proposed in
[CGV+08] use topological graphs to describe the spatial organization of the segments.
The graph is computed from segments, which are detected using Hough Transform.
The classification is performed using a Galois Lattice classifier. It is robust to trans-
formations, noise and degradation. The Attributed Relational Graph (ARG) is
proposed in [SW08], which is based on arcs and segments. It is generated from the
skeleton of the symbol, then, RANVEC is used for vectorizing it. The authors use
genetic matching, because it is faster than graph matching. It is rotation, scale and
translation invariant, but it is sensitive to segmentation errors.

Trees A tree is a simple version of graph, so, faster than graphs representation
and manipulation. It discards some features to make the final representation more
manageable. Spatial Division Tree and Directional Division Tree are two common
techniques used for symbol recognition. The Spatial Division Tree (SDT) proposed
in [LWJ04] consists in the following. For each node, a stroke of the drawing symbol
is selected and the remaining strokes are divided into 2 groups: strokes in the left,
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and strokes in the right side. The selection and division procedures are recursively
repeated until there is only one stroke left in a node. It can be used for the recognition
of incomplete graphic objects. The searching can be pruned heuristically, saving time
and it is quite efficient. Contrary, the Directional Division Tree (DDT) proposed
in [HZW08] generates the tree in a different manner. It selects a visually critical
entity, and organize the rest entities according to their locations in 9 regions around
the critical entity. The main drawback is that it is very important the decision of the
critical entity. The main difference between SDT is that DDt performs division in a
2D way whereas SDT performs it in a 1D, becoming more complex.

Strings Strings are another frequently used structure for simplifying graphs, which
provides a simple and compact representation. An example of a these techniques
can be found in [TT89], where the Attributed String matching proposed is based
on the representation of the contour as a Chain Code. The Chain Code [Fre61] is
a contour-based representation which describes an object by a connected sequence
of line segments with specified lengths and directions. The string matching method
applies edit distance to compute the similarity between the chain code of two different
shapes.

Others There are other structural approaches that can not be included in the pre-
vious groups. An example is the vector-based graphic symbol recognition system
proposed in [YZL07], which is based on a mathematical model. The authors de-
scribe the geometric information of a primitive with respect to the whole symbols,
and perform one-to-one matching from primitives of the test and the model shape.
The approach is invariant to rotation and scale. Another example is the Network
of Contraints. In [AST01] a Network of Constraints for recognizing architectural
symbols is proposed, which is an adaptation of Messmer and Bunke’s network ap-
proach [MB96]. The method is based on the description of the model through a
set of constraints on geometrical features, and on propagating the features extracted
from a drawing through the network of constraints. The main advantages are the
possibility to incrementally build and update the model (adding new symbols), the
adaptability and flexibility, and its independence of the geometry and topology of the
symbols. The main drawback is that it requires pre-vectorized symbols, depending on
the qualitiy of vectorization. Deformable models [VM00] are also used for describ-
ing pre-segmented symbols. The description of the symbol is based on a probabilistic
model, consisting of a set of lines described by the mean and the variance of line pa-
rameters (midpoint position, orientation and length). It allows the automatic learning
of shapes. They are invariant to distortions and rotation, but the basic primitives are
lines, thus not being suitable for symbols with arcs and curves. Hidden Markov
Models [CC01] can also be seen as structural methods, because the structure of the
symbol can be described by the sequence of states, and the recognition consists in
finding the sequence of states with higher probability. They are able to segment and
recognize distorted symbols, although they are not usually rotation invariant.
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2.3.2 Hand-drawn Symbol Recognition Methods

The particular case of hand-drawn symbols deserves an special attention. The main
kinds of distortions in this case are: elastic deformation, inaccuracy on junctions or
on the angle between strokes, ambiguity between line and arc, errors like over-tracing,
overlapping, gaps or missing parts (see some examples of the typical distortions in
hand-drawn symbols in Fig.1.8). Moreover, the system must cope with the variability
produced by the different writer styles, with variations in sizes, intensities and the
increase in the number of touching and broken symbols (see Fig.1.9). Some examples
of hand-drawn symbols from architectural drawings and music scores are shown in
Fig.2.11 . In this section, some of the techniques also applied to hand-drawn symbol
recognition are commented.

Figure 2.11: Examples of hand-drawn symbols.

Statistical Hand-drawn Symbol Recognition Methods

There are several approaches for hand-drawn symbol recognition in the literature.
Zernike moments, Angular Radial Transform (ART) [KK99] and R-Signature [TWS06]
are some examples of Region-based statistical approaches. Zernike moments are
widely used for handwritten symbols (even online systems [HN04]), because they
maintain properties of the shape, and are invariant to rotation, scale, and deforma-
tions. Concerning contour-based approaches, Curvature Scale Space [MM86] (CSS)
has also shown quite good performance in case the data set is formed by hand-drawn
symbols with closed curves. Shape Context [BMP02] has very good performance in
hand-drawn symbols, because it is tolerant to deformations. These descriptors have
been described in the previous section.

There are several online statistical approaches for symbol recognition, a few
are briefly mentioned next: Hse and Newton [HN04] propose an online handwritten
symbol recognition methods which uses Zernike moments; Parker et al. [PPR00]
propose a method which is applied to pre-segmented symbols in logic diagrams, and
uses geometric features and template matching. In the method proposed by Wilfong
et al. [WSR96] the symbol is represented as a sequence of coordinates, and the
matching is based in curvature distance. Miyao and Maruyama present in [MM07] a
handwriting music symbol recognition system, consisting in the combination of two
classifiers: the first one uses chain codes for representing the strokes, and string-edit
distance is used for the matching; the second classifier is used for complex strokes,
consisting in the division of the strokes into regions, and the computation of the
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directional feature for each region. Afterwards, a trained Support Vector Machine
(SVM) is used for the classification.

Structural Hand-drawn Symbol Recognition Methods

Some of the most common structural approaches for hand-drawn symbol recogni-
tion found in the literature are the Attributed Graph Grammars, Region Adjacency
Graphs, Attributed Relational Graphs, Deformable Models and also Hidden Markov
Models.

Attributed graph grammars proposed by Bunke in [Bun82] include a distortion
model for allowing hand-drawn diagrams, which can also cope with partially occluded
symbols. Region Adjacency Graphs [LMV01] are well-suited to describe symbols in
hand-drawn architectural documents, showing good performance in front of distor-
tions typically found in these documents. Deformable models [VM00] are also used in
hand-drawn architectural documents. They are invariant to distortions and rotation,
but the restriction is the use of lines (not curves) in the handwriting. Hidden Markov
Models are also widely used in offline [MR00] and online symbol recognition methods
[XCJW02], [ABS04].

Messmer and Bunke [MB96] propose a method for the recognition and the au-
tomatic learning of hand-drawn graphic symbols in engineering drawings. It allows
model pre-compilation through the use of a network, where all model descriptions
are gathered at once. The graphic symbols and the drawings are represented by
attributed relational graphs. The recognition process is formulated as a search pro-
cess for error-tolerant subgraph isomorphisms from the symbol graphs to the drawing
graph.

Concerning online structural approaches, Fonseca et al. [FPJ02] propose a
method for sketched architectural symbols, using fuzzy logic and geometric features;
Peng et al. [PLWH04] propose a constrained partial permutation algorithm which uses
binary and ternary topological spatial relationships for the recognition of symbols;
and Mas et al. [MJSL08] describe a complete system for recognizing architectural
drawings, representing the data in trees and proposing adjacency grammars with
distortions measures for adapting them to sketches. Spectral models [LSL05] are also
used for hand-drawn symbol recognition and retrieval. First, sketches are decomposed
into basic geometric primitives and represented as a topological graph that encodes
both the intrinsic attributes of the primitives and their relationships. The spectral
graph descriptor is then adopted to translate the graph-match into the computation
of vector distances. The method is invariant rotation and scale, and also to arbitrary
drawing orders.

Finally, some approaches for recognizing mathematical symbols are also briefly
mentioned. Mathematical symbol recognition requires a mixed strategy, because it
requires text recognition and graphics (symbols) recognition. It is a very active re-
search field (see [CY00] for a survey), which also includes several online systems:
Shi et al. [SLS07] propose a symbol decoding and graph generation algorithm; and
Garain and Chaudhuri [GC04] develop a full mathematical expression recognizer sys-
tem, which involves symbol recognition (using both online and offline features) and
structural analysis of multistroke characters using context free grammars (CFG).
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2.3.3 Camera-based Symbol Recognition Methods

Camera-based symbol recognition is an emerging area of study in which symbols are
detected from real images using cameras. In this type of applications the system
should cope with a totally different problematic: uncontrolled environments, illumi-
nation changes, and changes in the point of view (perspective). Some examples of
symbols that can appear in real images are shown in Fig. 2.12.

Figure 2.12: Examples of symbols in real environments.

In the cases where symbols are detected from real images, the SIFT descriptors and
its variants are the strategies most frequently applied [Low04]. The SIFT descriptor is
based on determining the significant orientations within a region taking into account
their spatial arrangement.

Other approaches include the combination of one method for detecting symbols
in real images (such as the Stein and Medioni’s method [SM92] for computing the
relevant features) and symbol descriptor methods. In [SG07] a color text recognition
method is proposed, which uses a convolutional neural network architecture. Sun
et al. propose in [SWW07] a printed digit localization and recognition approach,
which uses connected components for detection and an artificial neural network. In
[MTM07] a engraved character recognition method is proposed, using a classifier based
on geometrical features and a multi-layer perceptron. In [RLD07] vector signatures
are used for symbol detection. A vector signature is defined based on accumulated
length and angular information computed from polygonal approximation of contours.
It is not necessary to perform a previous segmentation. It is invariant to rotation,
scale, translation, distortions, slight changes in perspective and blurring.

2.3.4 Conclusion

In this section we have reviewed the main symbol recognition methods, specially for
hand-drawn symbols. Table 2.3 shows a summary of the behavior of some of the
most common approaches described in this section. One can see that the robust-
ness to affine transformations is achieved in all the methods, but some of them (e.g.
Zernike and ART-based approaches) are more sensible to noise (degradation) than
others. Concerning the typical distortions appearing in hand-drawn symbols, some
methods have shown very good performance (e.g. RAG and Shape Context match-
ing). It is important to remark that some methods (e.g. Zernike moments-based
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approach, Shape Context matching) are more suitable than others for describing
complex symbols, such as the symbols composed of several curvilinear strokes (e.g.
the music treble clef). Finally, some methods can be used both for offline and online
symbol recognition (e.g. Zernike moments-based approach), whereas others, are more
suitable for offline recognition.

Reference Method Taxonomy Affine Noise Hw. Primitives Input
Transf. Distort. On./Off.

[BMP02] Shape Region, Rotation, Yes Yes Complex Offline
Context Cont. Scale

[MM86] CSS Silhouette, Rotation, Yes Partial Complex Offline
Cont. Scale

[HN04] Zernike Region, Rotation, Partial No Complex Both
Moments Cont. Scale

[KK99] ART Region, Rotation, Partial No Complex Offline
Cont. Scale

[TWS06] R Region, Rotation, Yes Partial Basic Offline
Signature Cont. Scale

[Low04] SIFT Region, Rotation, Yes No Complex Offline
Cont. Scale

[LSL05] Spectral Region, Rotation, Yes Yes Basic Online
Graphs Struct. Scale

[Bun82] Attr. Graph Region, Rotation, Yes Yes Basic Offline
Grammars Struct. Scale

[LMV01] RAG Region, Rotation, Yes Yes Basic Offline
Struct. Scale

[VM00] Deformable Region, Rotation, Yes Yes Basic Both
Models Struct. Scale

Table 2.3: Symbols Recognition methods: Approach considered, Taxonomy
(Region/Silhouette, Continuous/Structural), Robustness to Affine transformations,
Noise, Typical Distortions in hand-drawn symbols (such as elastic deformations),
Symbols (Basic/Complex), and finally, kind of input image (Online/Offline).

Due to the large different kinds of problems found in symbol recognition appli-
cations, some approaches are better than others depending on the application field,
and it is very difficult to find a symbol recognition method that suits in most fields,
outstanding the rest of approaches. In fact, most methods are defined for coping with
a specific problematic, obtaining very high results in this problem, but reaching dis-
crete results when coping with other problems. For this reason, more research must
be done in this field.

Concretely, symbol recognition methods for hand-drawn symbols must cope with
the high variability in the visual symbols’ shape, which has been produced by the
different writer styles. Since the distortion is an important problem in this field,
rougher descriptors should be researched, for obtaining the general structure of the
symbol, and avoiding the confusing style variations.



Chapter 3

DTW-based Hand-drawn Symbol
Recognition method

The first approach for writer identification in old music scores will use symbol recog-
nition methods. One of the major difficulties of handwriting symbol recognition is
the high variability among symbols because of the different writer styles. In this
chapter we introduce a robust approach for describing and recognizing hand drawn
symbols tolerant to these writer style differences. This method, which is invariant
to scale and rotation, is based on the Dynamic Time Warping (DTW) algorithm.
The symbols are described by vector sequences, a variation of the DTW-distance is
used for computing the matching distance, and K-Nearest Neighbor (k-NN) is used
to classify them. Our approach has been evaluated in two benchmarking scenar-
ios consisting of hand drawn symbols. Compared with state-of-the-art methods for
symbol recognition, our method shows higher tolerance to the irregular deformations
induced by hand drawn strokes.

3.1 Introduction

The first writer identification approach will be based on symbol recognition. For this
purpose, three symbol recognition approaches have been proposed, dealing with the
high variability among symbols. The first symbol recognition method is described in
this Chapter, whereas the other two approaches are described in next Chapter.

Hand-drawn symbol recognition is a particular case of handwriting recognition,
which is one of the most significant topics within the field of Document Image Analy-
sis and Recognition (DIAR). Over the last years, relevant research achievements have
been attained. Simultaneously, commercial products have become available. The
progress has been noticeable in applications like bank check processing, postal sort-
ing, historical document transcription or on-line recognition in calligraphic interfaces.
A parallel use has also been explored in writer identification for forensic sciences and
writer verification in signatures. Handwriting recognition is a difficult problem due to
the variability among scripts and writer styles, or even between different time periods.

47
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Due to that, commercial applications are usually constrained to controlled domains
that make use of contextual or grammatical models and dictionaries. The type of
source data (handwritten separate characters vs cursive script) is also an important
constraint. Focusing on cursive script recognition, the recognition approaches can
roughly be classified into analytical or holistic methods. Analytical methods perform
a segmentation preprocess that divides the word image in sequences of smaller units
which are therefore classified in terms of associated features and lexical information.
Holistic methods, which recognize words as a whole, usually describe the word image
as a unidimensional signal consisting of a sequence of image features at each column.
This allows to use techniques sometimes inspired by the speech recognition domain
such as sequence alignment by dynamic programming [KL83] or Hidden Markov Mod-
els [Rab89].

Although the analysis of textual handwritten documents has an intensive activ-
ity, the analysis of hand-drawn documents with graphical alphabets is an emerging
subfield. Due to the fact that architectural, cartographic and musical documents
use their own alphabets of symbols (corresponding to the domain-dependent graphic
notations used in these documents), the graphics recognition community has devel-
oped specific methods for understanding graphical alphabets. These techniques are
different from the classical methods used for Cursive Script Recognition. Two major
differences between the two problems can be stated. Cursive script recognition has
the context information in one dimensional way, but graphical alphabets usually are
bidimensional. In addition, the use of syntactical knowledge, and lexicons, is more
effective in text recognition than in diagrammatic notations because of the variability
of structures and alphabets of the latter.

As it has been commented in Chapter 1, the particular case of hand-drawn sym-
bols deserves a special attention. A hand-drawn symbol recognition method must cope
with elastic deformations, inaccuracy on junctions or on the angle between strokes,
ambiguity between line and arc, errors like over-tracing, overlapping, gaps, missing
parts (see Fig. 1.8), and the variability produced by the different writer styles (see
Fig. 1.9). Techniques used in the classification of handwritten shapes have been ana-
lyzed and verified in a specific domain: the recognition and classification of symbols
with high variability (i.e. musical clefs) due to the different writer styles. In this case,
we can affirm that there is no clear separability between classes using the common
hand-drawn descriptors. The main reason is that the huge variability present in these
symbols confuses the system, because symbols belonging to the same class are very
different (distortions are very important), so the descriptor obtains quite different
descriptions. In a similar way, symbols that belong to different classes can be very
similar, so their descriptors are also similar. For that reason, other descriptors for
hand-drawn symbols are required, specially rougher descriptors, which can obtain the
general structure of the symbol, avoiding confusing details.

In this Chapter we propose a method inspired by the holistic approaches for un-
constrained handwritten word recognition, but extended to bidimensional shapes ap-
pearing in bidimensional layouts. The proposed method is robust against the elastic
deformations typically found in handwriting and invariant to rotation and scale. The
method proposed is based in the Dynamic Time Warping (DTW) algorithm [KL83]
for signals (one-dimensional data) and it has been extended to graphical symbols
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(two-dimensional data). Among the two major families of methods for handwritting
recognition, namely sequence alignment (e.g. DTW) and Hidden Markov Models
(HMMs), our work is based on the former. The DTW algorithm has been success-
fully used for finding the best match between two time series in a noisy and complex
domain. It has been already used in handwritten text recognition [RM03], coping
with the elastic deformations and distortions in the writing style. For that reason,
we maintain that the DTW algorithm can be adapted for the recognition of hand
drawn symbols. In comparison to HMMs, the DTW approaches are more suitable
for coping with the problem of hand drawn symbol recognition when there is a low
number of instances for each symbol (which is the case of some hand drawn graph-
ical databases), not being enough for a successful training process. In addition, the
adaptation of DTW to a rotation-invariant system is easier than the adaptation of
HMM because HMM requires to train a model for each possible orientation, with the
consequently increment of its time complexity.

To solve the problem of rotational invariance, classical and effective methods exist
in the literature on OCR or Symbol Recognition. Methods like projections in different
orientations or zoning using concentric ring masks are well-known. We have taken into
account these ideas and extended them to a novel DTW-based algorithm. The steps
of the method proposed are the following. First, column sequences of feature vectors
from different orientations of the two input shapes to be compared are computed.
The features comprise the upper and the lower profile and the number of pixels per
region. Once we have the features for all the considered orientations, the DTW
algorithm computes the matching cost between every orientation of the two symbols,
and decides in which orientation these two symbols match with the lowest cost.

The rest of the Chapter is organized as follows. In Section 2 the fundamentals
of the Dynamic Time Warping (DTW) algorithm are presented. Afterwards, our
DTW-based method for the recognition and classification of graphical symbols is
fully described in Section 3, demonstrating its invariance to rotation and scale. In
Section 4, the experimental results are presented. Finally, concluding remarks are
reported in Section 5.

3.2 Fundamentals of the Dynamic Time Warping

Since the approach proposed is based in the Dynamic Time Warping (DTW) algo-
rithm, we will start with a short review of the state of the art and the background of
DTW before detailing our approach.

3.2.1 State of the Art of DTW

The Dynamic Time Warping algorithm (DTW) was first introduced by Kruskal and
Liberman [KL83] for putting signals into correspondence. It is a much more robust
distance measure for time series than Euclidean distance, allowing similar samples to
match even if they are out of phase in the time axis. DTW can distort (or warp)
the time axis, compressing it at some places and expanding it at others, finding the
best matching between two samples. This technique was first used in the context of



50 DTW-BASED HAND-DRAWN SYMBOL RECOGNITION METHOD

speech recognition, a domain in which the time series are notoriously complex and
noisy. The method was used for coping with noise and variations in speech speed.

This technique has been also used in audio analysis. In [HDT03] DTW is used
for aligning polyphonic audio recordings of music to symbolic score information in
standard MIDI files without any polyphonic transcription. Also, Schwarz et al. [OS01]
and [SRS03] propose a methodology based in DTW for the automatic alignment of
music recordings, where the spectral peak structure is used to compute the local
distance, enhanced by a model of attacks and of silences. The authors say that it is
able to cope with polyphonic music, multi-instrument music, vibrato, fast sequences,
and it is even useful as an indicator of interpretation errors.

Besides audio and speech recognition [RJ93], DTW has been widely used in many
other applications: In chemical engineering, it was used for the synchronization and
monitoring of batch processes in polymerization [GP95]. DTW has been successfully
used in gesture recognition to align biometric data [GD95], signatures [MP99], finger-
prints [KV00] and even for managing constant image brightness [CRH95] (matching
two intensity histograms). Many researchers have demonstrated the utility of DTW
for ECG pattern matching [CPB+98]; while in robotics, Schmill et al. demonstrated
a technique that utilizes DTW to cluster an agent’s sensory outputs [SOC99]. DTW
was also introduced into the Data Mining community ([KP99], [RK05]) as an util-
ity for various tasks for time series problems including classification, clustering, and
anomaly detection. In this field, Keogh and Ratanamahatana have defined an exact
indexing of DTW [KR05].

In bioinformatics [AC01],[CSE03],[CS06], DTW has been successfully applied to
genomic expression data. It must be said that both implementations introduce a time-
symmetric version of DTW, modifying the original DTW algorithm. The authors
claim that their version is more efficient and simpler and yields the same time warp
distance when computed left to right as from right to left. This feature allows an
unambiguous computation of the Boltzmann probability that two time points are
aligned in an optimal time warping of genes.

An interesting work done by Oates et al. is the combination of DTW with Hidden
Markov Models (HMM) [OFC99]. Concretely, they present a hybrid time series clus-
tering algorithm that uses DTW and HMM induction. The two methods complement
each other: DTW produces a rough initial clustering (estimating the number of gen-
erating HMMs) and the HMM iteratively removes from these clusters the sequences
that do not belong to them. Finally, the process converges to a final clustering of the
data and a generative model for each of the clusters.

Finally, Rath and Manmatha have applied DTW to the handwritten recognition
field [RM03], [RM02], coping also with the indexation of repositories of handwrit-
ten historical documents. Also Manmatha [KMA04] proposed an algorithm based on
DTW for a word by word alignment of handwritten documents with their (ASCII)
transcripts. DTW has been also used for recognizing greek characters [VGPS07].
The method computes a vector of about 300 features, consisting in horizontal and
vertical density zones (zoning), projections of the upper/lower/left/right profiles, dis-
tances from character boundaries, profiles from the character edges. Afterwards, they
perform dimensionality reduction, and apply the DTW algorithm.

Concerning online handwritting recognition, some work has also been done. It
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has been applied for online tamil and tegulu scripts recognition [PBS+07]. The au-
thors compare the use of different features, such as the x, y coordinates, their deriva-
tives and curvature features; shape context and tangent angle, and the generalised
shape context. Then, they use DTW and k-NN for the final classification. Vuori et
al. [Vuo02],[VLOK01],[VLOK00] have developed an online handwriting recognition
system, which is able to recognize handwritten characters of several different writ-
ing styles and improve its performance by adapting itself to new writing styles. The
recognition system is based on prototype matching using DTW. The classifier is based
on the k-NN rule and it is adapted to a new writing style by adding new prototypes,
inactivating confusing prototypes, and reshaping existing prototypes using a Learning
Vector Quantization (LVQ)-based algorithm. Finally, Niels presents in [Nie04] and
[NV05] some modifications of the DTW technique described by Vuori et al., adding
new constraints and two different averaging techniques for merging members from
the same cluster into a single prototype. Concretely, his goal is to retrieve a set of
best matching allographic prototypes (an allograph is a variant shape of a letter or
phoneme) based on a query input character from an online handwriting system.

3.2.2 Background of the DTW

In this part of the section, the original DTW algorithm for signals is described. After-
wards, some approaches for adapting the DTW for two dimensional shapes are briefly
discussed.

DTW for 1-Dimensional Signals

The DTW algorithm [KL83] is used for comparing signals by matching two one-
dimensional vectors. It is a much more robust distance measure for time series than
Euclidean distance, allowing similar samples to match even if they are out of phase in
the time axis (see Fig. 3.1). DTW can distort (or warp) the time axis, compressing
it at some places and expanding it at others, finding the best matching between two
samples.

Figure 3.1: Normal and DTW alignment, extracted from [RM03].

Let us define the DTW distance of two time series C = x1..xM and Q = y1..yN
in terms of the cost function DTWCost(C,Q) (see Fig. 3.2(a)). For this purpose, a
matrix D(i, j) (where i = 1..M, j = 1..N) of distances is computed using dynamic
programming:
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D(i, j) = min

 D(i, j − 1)
D(i− 1, j)
D(i− 1, j − 1)

+ d2(xi, yj) (3.1)

d2(xi, yj) = xi − yj (3.2)

Performing backtracking along the minimum cost index pairs (i,j) starting from
(M,N) yields the warping path (Fig. 3.2(b)). Finally, the matching cost is normalized
by the length Z of this warping path, otherwise longest time series should have a
higher matching cost than shorter ones. Therefore, the cost function is defined as
follows:

DTWCost(C,Q) = D(M,N)/Z (3.3)

The creation of this path is the most important part of their comparison: it
determines which points match (Fig. 3.2(c)) and are to be used to calculate the
distance between the time series. In addition, DTW is able to handle samples of
unequal length, allowing the comparison without resampling.

Figure 3.2: An example of DTW alignment (extracted from [KR05]) a) Samples
C and Q. b) The matrix D with the optimal warping path in grey color. c) The
resulting alignment.

DTW for 2-Dimensional Shapes

In case of bidimensional data, the DTW computation must be adapted. Some work
has been done in the adaptation of DTW to 2 dimensions (see [LP92],[US98]), but
these approaches are of a very high time complexity, reaching O(N4N ) and O(N39N )
respectively. For this reason, some research work has been focused on the reduction
of the 2D problem. Generally, the reduction of dimensionality can be performed when
2D data can be encoded by 1D signals, such as shapes described by their external
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contours (silhouettes). Specifically, for handwritten text methods, the 2D representa-
tion is typically reduced to 1D based on the assumption that text follows a given text
line [RM03]. In these cases, the DTW computation can be easily applied, reducing
significantly the time complexity of the 2D-DTW computation.

3.3 A DTW-Based Approach for Graphical Symbol
Recognition

The basic dynamic time warping algorithm achieves good results when working with
one-dimensional data and with handwritten words in documents. Concerning the
hand drawn symbol domain, the method must be adapted to cope with the variations
in writing style and rotation. In this section, the architecture for our DTW-based
system is fully described and its benefits for hand drawn symbol recognition are
presented. Comparing to the classical DTW, the proposed method introduces two
main changes: first, different features are used and second, the computation of the
DTW distance has been modified, combining information at certain orientations of
the symbol.

3.3.1 Extraction of Features

The choice of features that better represent shapes is a key decision of the application
of the DTW algorithm. In this work we have been inspired by features representing
series with a view to reduce the dimensionality. Let us first describe the approaches of
Rath and Manmatha [RM03], Marti and Bunke [MB01] and Vinciarelli et al. [VBB04]
on which we have inspired our proposed representation.

Rath and Manmatha In the handwritten text recognition system described by
Rath and Manmatha [RM03], the following four features are computed for every
column of a word image: the number of foreground pixels in every column; the upper
profile (the distance of the upper pixel in the column to the upper boundary of the
word’s bounding box); the lower profile (the distance of the lower pixel in the column
to the lower boundary of the word’s bounding box); and the number of transitions
from background to foreground and viceversa. In this way, two word images A and B
can be easily compared using DTW. If fk(ai) corresponds to the k-th feature of the
column i of the image A, and fk(bj) corresponds to the k-th feature of the column j
of the image B, the matching distance DTWCost(A,B) is calculated using the same
equations (eq. 3.1, 3.3) as in Kruskal’s method, but instead of the equation 3.2, the
computation of d2 will be the sum of the squares of the differences between individual
features:

d2(xi, yj) =
4∑
k=1

(fk(ai)− fk(bj))2 (3.4)

Marti and Bunke Another typical set of column features in the literature is the
one proposed by Marti and Bunke [MB01] for handwritten word recognition. The
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following nine features are obtained per column: the number of foreground pixels, the
center of gravity, the second moment order, the lower and upper profile, the differences
between the lower and upper values with respect to the previous column, the number
of gaps, and the number of pixels between the upper line and baseline of the word.

Vinciarelli et al. Finally, the features described by Vinciarelli et al. [VBB04] are
also very common in the literature, consisting in a sliding window which moves from
left to right. In this case, instead of the single column features, the window comprises
several columns. After adjusting the size of the window to the area which contains
pixels, it is divided into a 4x4 cell grid, and the number of pixels in every cell is
used as a feature. Finally, the 4x4=16 features are concatenated to a 16-dimensional
feature vector.

Our proposal Inspired by the approaches presented above, we propose a novel
set of features for symbol description. In this field, it is important to obtain some
information about the external shape (profiles), but also about the internal shape
(distribution of pixels inside the silhouette). For this reason, in addition to the upper
and the lower profile, our method divides every column in several regions, counting
the number of foreground pixels per region (it can be seen as a column zoning). First,
the image is normalized in terms of its size, and the following features are computed
for every column of the image:

• f1 is the upper profile.

• f2 is the lower profile.

• f3...fS are the number of foreground pixels in every region.

When computing the upper and lower profile, a morphological closing operation
over the image is performed, so that few little gaps in the writing will not affect
the final profile. Finally, all the features are normalized (0≤ fk ≤1, k=1..S) and
the features corresponding to the sum of pixels (f3, ... ,fS) are smoothed over the
symbol’s columns using a gaussian filter for a better matching. Notice that due to
the high variability in the writing style, the number of transitions per column (from
background to foreground and viceversa) can confuse the system, thus, they are not
used as features.

Figure 3.3 shows an example of the features extracted for the marked column of
a music symbol: the pixels of the column are used for extracting the upper and the
lower profile. Then, the column is divided in three equal regions (in this example,
S=5), and for every region the number of pixels is counted.

The reader should notice that the features f3, ..., fs provide an adequate infor-
mation about the distribution of the pixels inside the shape. The number of regions
is a parameter that can be set up to reflect the complexity of the symbols in the
database. These measures will help to classify correctly shapes that have the same
external contour but differences in their inner part. Moreover, it will not get con-
fused when comparing axially symmetrical symbols. In Figure 3.4(b) one can see two
similar images in terms of silhouette (both are squares), but very different inside (a
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Figure 3.3: Example of features extracted from every column of the image, with
s = 5: f1 = upper profile, f2 = lower profile, f3..f5 = sum of pixels of the image of
the three regions defined.

cross or a circle). Notice that the upper/lower profiles and the whole sum of pixels
per column are very similar (see fig. 3.4(a)), whereas the functions of the sum of the
three regions (see Fig. 3.4(c)) are very different, being able to discriminate these two
symbols.

(a) (b) (c)

Figure 3.4: Two architectural symbols with similar external contour (squares) but
with differences inside the contours (circle and cross). The first row corresponds
to the features for the square with a circle, and the second row corresponds to the
features for the square with a cross. a) Functions of the sum of pixels per column. b)
Symbols. The grey horizontal lines divide the image in three regions: upper, lower
and middle c) Functions corresponding to the sum of pixels for the upper, middle
and bottom region. Notice that the functions in (a) are similar whereas functions in
(c) are very different.
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3.3.2 Computation of the DTW Distance

Due to the fact that the slant and the orientation of graphical symbols are frequently
different between each other (see Fig.3.5), symbols can not be directly and easily
compared between them. To cope with rotation invariance and hand drawn distortion,
we define a DTW-based distance in terms of different projections, covering the full
range of possible orientations of the symbol.

(a) (b)

Figure 3.5: a) Clefs: Two treble clefs with different slants. b) Two identical archi-
tectural symbols but in different orientations.

Let us introduce the notation that will be used in this section:

• Aα: Symbol A oriented at α degrees.

• Bβ : Symbol B oriented at β degrees.

• aαi : Column i of the symbol A oriented at α degrees.

• bβj : Column j of the symbol B oriented at β degrees.

• Dα,β(i, j): Matrix which contains the cost of matching the first i columns of Aα
and the first j columns of Bβ .

• MC(α, β): Matrix which contains at the position (α, β) the matching cost be-
tween Aα and Bβ .

• G(α, β): Matrix which contains at the position (α, β) the sum of MC(α, β) and
MC(α+ 90, β + 90).

There are three steps in the procedure: the extraction of features at different
orientations; the computation of the matching distance between all the possible com-
binations of orientations between the two symbols; and the computation of the final
matching cost. In the first step, the two symbols A and B are oriented in certain an-
gles (see Fig.3.6(a)), covering the range from 0 to 180 degrees. For each orientation,
the column sequence of feature vectors (see Fig.3.6(b)) defined in the previous section
is obtained. In the second step, the DTW distance is computed for every combination
of orientations of the two symbols. Thus, every orientation of the symbol A is com-
pared to every orientation of the symbol B. It should be observed that it is necessary
to obtain the features from every orientation of the two symbols, because we do no
know a priori which orientation will give the highest discriminatory power. Finally,
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the third step consists in determining the final matching cost, and the two angle ori-
entations in which the two symbols match with the lowest cost. In fact, we can not
trust in only one matching when working with 2D data, because false matchings could
appear if only one direction is used (see Fig. 3.7). For this reason we also take into
account the perpendicular alignment in respect to the orientation we are considering.
As a summary, we can define the final matching cost DTWCostA,B of the symbol A
and B as the minimum of the results of summing MC(α, β) + MC(α + 90, β + 90)
for each possible α, β angles. These steps are fully described next.

(a) (b)

Figure 3.6: Example of feature extraction. (a) Some of the orientations used for
extracting the features of every symbol. (b) Feature vectors extracted from every
orientation (α1, ...α4).

Extraction of Features Let us denote as Aα = (aα1 , aα2 , ..., aαM ) the symbol A
oriented at α degrees, and Bβ = (bβ1 , bβ2 , ..., bβN ) the symbol B oriented at β degrees.
First, the column sequences of feature vectors F (Aα) and F (Bβ) are computed as it
has been explained in the above section (the upper/lower profile and the sum of pixels
per region):

F (Aα) =


f1(aα1) f1(aα2) ... f1(aαM )
f2(aα1) f2(aα2) ... f2(aαM )
... ... ... ...

fs(aα1) fs(aα2) ... fs(aαM )

 (3.5)

F (Bβ) =


f1(bβ1) f1(bβ2) ... f1(bβN )
f2(bβ1) f2(bβ2) ... f2(bβN )
... ... ... ...

fs(bβ1) fs(bβ2) ... fs(bβN )

 (3.6)

Notice that the length of every column sequence of feature vector depends on the
number of columns (the width) of the projection, and varies from one orientation to
another.
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Computation of the matching distance Once the column sequences of feature
vectors are computed, the matching cost MC(Aα, Bβ) between them must be calcu-
lated. First, the matrix D will be filled in with the classical DTW method:

Dα,β(i, j) = min

 Dα,β(i, j − 1)
Dα,β(i− 1, j)
Dα,β(i− 1, j − 1)

+ d2(aαi , bβj ) (3.7)

The way of computing the distance d2 must take into account that both the
upper/lower profile features and the set of sum of pixels features have to be weighted
equally in the calculation. The goal is to avoid a reduced effect of the upper/lower
profile in the computation of d2 whenever the feature number S is very high (which
means a high number of regions for the zonning) For this reason, the two parts are
weighted by 0.5 in equation 3.8:

d2(aαi , bβj ) = 0.5(
2∑
k=1

(fk(aαi)− fk(bβj ))
2 + 0.5(

s∑
k=3

(fk(aαi)− fk(bβj ))
2 (3.8)

Then, the matching cost of Aα and Bβ is normalized by the length Z of the
warping path (obtained performing backtracking on Dα,β), and this value is stored
in the corresponding cell of the matrix MC :

MC(α, β) = Dα,β(M,N)/Z (3.9)

This process must be repeated for all the orientations α = 1 .. 180 and β = 1 ..
180 (the step is decided ad-hoc), filling all the cells in the matrix MC. Thus, every
cell of the matrix MC(α, β) will contain the matching cost between the two symbols,
the first one with an orientation angle of α degrees, and the second one with an
orientation angle of β degrees. This means that if the two symbols are oriented in W
different angles, the DTW distance is computed W 2 times.

Computation of the Final Matching Cost The next step is the computation of
the final matching cost. It must be noticed that defining the final matching cost as
the minimum of the DTW distances computed is not a good solution. For example,
two symbols, which belong to different classes, could reach the minimum matching
cost if they are oriented in some specific α and β angles, but they could have very high
matching costs in other orientation angles. One way to avoid this problem is to look at
the perpendicular alignment in respect to the orientation we are examining. Another
option could be to have into account the matching cost of all the alignments, but it
has been experimentally shown that it does not increment the discriminatory power
whereas the time complexity is increased. As an example of the problem of using only
one matching, Figure 3.7 shows the feature vectors of two different music symbols:
in Fig.3.7(a) one can see that despite the two symbols being extremely different,
only the upper contour and the middle sum are adequately different functions in the
DTW sense, whereas in Fig.3.7(b) all the five functions of the first symbol are very
different from the ones of the second symbol. For this reason, we should claim that
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two symbols are correctly matched in α and β orientation angles, only if they have a
low matching cost in α and β angles but also a low matching cost in the corresponding
perpendicular alignment ( α + 90 and β + 90 degrees). For this step, let’s define as
G the matrix which stores in position (α, β) the cell MC(α, β) plus its corresponding
perpendicular angle:

G(α, β) = MC(α, β) +MC(α+ 90, β + 90) (3.10)

(a)

(b)

Figure 3.7: Feature vectors of two different music symbols: (a) The first symbol
is an alto clef with a orientation of α degrees, the second one is a bass clef with a
orientation of β degrees. b) The same alto clef with a orientation of α + 90 degrees
and the bass clef with a orientation of β + 90 degrees. Here the functions of the two
symbols are very different.

Thus, the matching cost DTWCostA,B of the symbols A and B will be defined
as the minimum value of the matrix G, where the angles θ and λ correspond to the
orientation angles in which the two symbols are matched:

DTWCostA,B = min(G) (3.11)

The pseudo-code of the algorithm is given in Algorithm 1.
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Algorithm 1 Dynamic Time Warping-based algorithm.
Require: Two symbols A and B
Ensure: The matching cost DTWCostA,B

1: Obtain F (Aα),∀α ∈ {0...180}.
2: Obtain F (Bβ),∀β ∈ {0...180}.
3: Compute the matching cost matrix MC as follows:
4: for each angle α ∈ {0...180} do
5: for each angle β ∈ {0...180} do
6: Compute MC(α, β)
7: end for
8: end for
9: Add the matching cost of every angle+90 degrees as follows:

10: for each angle α ∈ {0...180} do
11: for each angle β ∈ {0...180} do
12: G(α, β) = MC(α, β) +MC(α+ 90, β + 90)
13: end for
14: end for
15: DTWCostA,B = min(G)

Finally, it must be noted that with the proposed descriptor and matching strategy
we obtain a symbol descriptor and classifier methodology which is rotation invariant
and robust against typical elastic deformations present in hand drawn symbols. Con-
cerning the complexity of the algorithm, if W corresponds to the number of angles in
which every symbol is oriented, and N is the number of columns of the widest symbol
image, then the complexity is O(W 2N2), because the DTW matching distance with
order O(N2) is computed W 2 times. In the worst case, W = N , and the complexity
is O(N4). This complexity cost is remarkably lower than O(N4N ) and O(N39N ) of
existing 2D-DTW approaches (see [LP92],[US98]).

3.4 Results

For the evaluation of our approach, we first describe the databases, metrics, compar-
isons and experiments performed.

Benchmarking Data

Two benchmarking databases of hand drawn symbols have been used, namely music
symbols from musical scores, and architectural symbols from a sketching interface
in a CAD framework. The first set is extracted from modern and old music scores,
and it is used because of the high variability of the symbols, with important elastic
deformations produced by the different writer styles. This database is fully described
in the Appendix. The architectural database is used because it contains an important
number of different classes with different appearance, while the inter-class variability
is comparably lower.
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Benchmarking Methods

Some benchmarking methods are chosen to compare our proposed features and our
full DTW approach. The goal is to analyze the performance of our method but also
the suitability of the set of features we propose.

Zernike moments [KH90] and a DTW cyclic method are used for comparing our
DTW approach. Zernike moments are a classical shape method in the literature,
and one of the MPEG-7 standards. They have been used in symbol recognition
methods, because they are robust to deformations and invariant to scale and rotation.
Zernike moments are defined over a set of complex polynomials which form a complete
orthogonal set over the unit disk. In our experiments 7 moments are used.

We have also implemented a variation of our own method, named cyclic DTW.
The idea is to see how the performance changes when using an algorithm with a
lower computational cost. It consists of taking the center of mass of the symbol and
for every orientation (from 0 to 180, with a step of 10 degrees) we only take into
account the column that corresponds to the center of mass of the shape, and for this
”centroid column”, the features used in our approach are computed (the upper and
lower profile, the sum of pixels per region). Thus, only one feature vector describes
the symbol in every orientation. Then, a DTW cyclic approach (similar to a string
matching cyclic) is used to match the matrices of the two symbols.

Concerning feature comparison, [RM03] and [MB01] features are compared against
our features. In these experiments, our DTW approach has been applied using these
features from the literature, which have been described in Section 3. Thus, we compare
the proposed features against the ones defined by Rath and Marti to establish the
suitability of our features.

Referring the method proposed in this paper, we use the upper and lower profiles,
and the sum of pixels of 3, 4 or 5 regions. The features are extracted from every
orientation, from 0 to 180 degrees, also with a step of 10 degrees.

Classification

For the classification of the symbols, one representative per class is usually chosen.
Thus, every input symbol of the database is compared to these n representatives, and
only n comparisons are computed for classifying every input symbol. Notice that with
this approach, no training process is required, saving an important computational
cost. The K-nearest neighbor (in our case, 1-NN) is used as the distance for the
classification. The minimum distance will define the class where the input symbol
belongs to.

3.4.1 Music Symbols Data Set

The data set of music clefs was obtained from a collection of modern and old musi-
cal scores (18th and19th centuries) of the Archive of the Seminar of Barcelona (an
example can be seen in Figure 3.8(a)). This database contains a total of 2128 sam-
ples between the three different types of clefs from 24 different authors. The main
difficulty of this database is the lack of a clear class separability because of the vari-
ation of the writer styles and the lack of a standard notation. The high variability



62 DTW-BASED HAND-DRAWN SYMBOL RECOGNITION METHOD

of clefs’ appearance from different authors can be observed in the segmented clefs of
Figure 3.8(b).

Figure 3.8: (a) Old musical score, (b) High variability of clefs appearance: first row
shows treble clefs, second row shows alto clefs and the third one shows bass clefs.

Under this scenario, the selection of the representative for each class is not easy.
The printed clefs that are shown in Figure 3.9(a),(b),(c) are not similar enough to
the hand drawn ones. For this reason, we have chosen some hand drawn represen-
tative clefs: one treble clef (fig. 3.9(d)), one bass clef (fig. 3.9(e)), and two alto clefs
(fig. 3.9(f)(g)) because of the high variability in alto clefs. The selected representatives
correspond to the set median symbol.

(a) (b) (c) (d) (e) (f) (g)

Figure 3.9: Printed Clefs and Selected representative clefs: (a) Printed Treble clef.
(b) Printed Bass clef. (c) Printed Alto clef. (d) Treble representative clef. (e) Bass
representative clef. (f)(g) Two Alto representative clefs

Concerning the precision, recognition rate (recall) and fall-out (false positive rate)
measures, they are computed using the following equations:

Precision =
TruePositives

(TruePositives+ FalsePositives)
(3.12)

Recognition Rate = Recall =
TruePositives

Positives
(3.13)

Fall − out = false positive rate =
FalsePositives

Negatives
(3.14)

In table 3.1 the recognition rates of the classification of this data set are shown,
where the DTW approach is compared to the Zernike moments, and DTW-cyclic,
using the parameters defined above. One can see that with the method proposed
we reach a recognition rate of 96.9%, significantly improving the Zernike moments
(75.7%) and DTW-cyclic (65.5%) recognition rates.



3.4. Results 63

Method Zernike moments DTW-cyclic DTW-approach
5 zones

RR. Trebble Clef 87.7 % 27.1 % 96.2 %
RR. Bass Clef 63.8 % 91.4 % 96.5 %
RR. Alto Clef 75.7 % 78.0 % 97.1 %
Overall RR. 75.7 % 65.5 % 96.6 %

Overall Precision 80.3 % 68.2 % 96.9 %
Overall Fall-out 11.9 % 19.6 % 1.8 %

Table 3.1: Classification of clefs: Recognition Rate (RR.), Recall and Fall-out of
these 3 music classes using 4 models.

In table 3.2 we show the experimental results with some different features that can
be used for describing the symbols. In this experiment, our DTW approach is always
used, but making use of different features described in the literature, specifically
those proposed by Rath and Marti. In table 3.2 we also show the recognition rates
obtained using different numbers of regions (3, 4 and 5) in the feature extraction
step of our approach. We can observe that Marti’s features perform very well for
the trebble and bass clefs (over 97% of recognition rate), but very poor with alto
clefs (90%). Contrary, Rath’s features achieve a good performance in alto clefs, but
have some problems with trebble clefs. Concerning our features, we can see that the
division of the image in 3 regions does not provide enough discriminatory power for
the high variability in alto clefs (we reach a recognition rate of 94.3%), while the
recognition rate increases when the number of regions is increased, reaching a 97.1%
with 5 regions. In addition, it is shown that the features we have used achieve a better
overall recognition rate and precision (96.6% and 96.9% respectively) in comparison
to both of Marti (95% and 94.6%) and Rath’s ones (96.1% and 96.5%), with a lower
fall-out (1.8% in comparison to 2.6% of Marti and 2% of Rath’s ones).

Features Rath Marti DTW- 3z DTW- 4z DTW- 5z
Number of features

per column 4 8 5 6 7
RR. Trebble Clef 95.8 % 97.3 % 96.7 % 96.3 % 96.2 %

RR. Bass Clef 96.1 % 97.6 % 96.5 % 96.3 % 96.5 %
RR. Alto Clef 96.5 % 90.1 % 94.3 % 96.1 % 97.1 %
Overall RR. 96.1 % 95.0 % 95.8 % 96.2 % 96.6 %

Overall Precission 96.5 % 94.6 % 96.2 % 96.6 % 96.9 %
Overall Fall-out 2.0 % 2.6 % 2.2 % 2.0 % 1.8 %

Table 3.2: Classification of clefs: Recognition Rates (RR.) of these 3 music classes
using 4 models. Overall Recognition Rate (RR.), Precision and Fall-out of Rath’s
features, Marti’s features and our DTW features, using 3, 4 and 5 regions (zones)
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Clefs and Accidentals Data Set

An extension of these experiments has been performed including accidentals (sharps,
naturals, flats and double sharps) in the musical symbol database. They are a total
of 1970 accidentals drawn by 8 different authors. In Figure 3.10(a), one can see that
some of them (such as sharps and naturals) can be easily misclassified due to their
similarity. Contrary to double sharp, a double flat is just two flats drawn together,
and for that reason double flats are not included in the accidentals’ database.

(a)

(b)

Figure 3.10: Accidentals. (a) Printed accidentals appearing in music notation. (b)
Selected representative accidentals: Sharp, Natural, Flat and Double Sharp models.

Similarly to the experiments previously showed, we have chosen one representative
for each class (see Fig. 3.10(b)). The system will have now 8 models (4 clefs and 4 ac-
cidentals), and for every input symbol, 8 comparisons will be made. Results are shown
in Table 3.12, where the DTW-based proposed descriptor reaches a 89.55% classifica-
tion rate, outperforming the results obtained by the Zernike descriptor (43.97%).

3.4.2 Architectural Symbols Data Set

The architectural symbol data set is a benchmark database [SVL+04] comprising on-
line and off-line instances from a set of 50 symbols drawn by a total of 21 users. Each
user has drawn a total of 25 symbols and over 11 instances per symbol. Thus, the
database (see examples in Fig.1.8) consists on 7465 individual instances, consisting
of 50 symbols, each class with an average of 150 samples. It has been created with a
Digital Pen & Paper framework [Log04]. To capture the data the following protocol
has defined: The authors give to each user a set of 25 dot papers, which are paper
containing the special pattern from Anoto. Each paper is divided into 24 different
spaces where the user has to draw in. The first space is filled with the ideal model of
the symbol to guide the users on their draw due to they are not experts on the field
of Architectural design.

In this database the representative selected for each class (Fig. 3.11) corresponds
to the printed symbol of the class, because both the printed and the hand drawn
symbols are quite similar. The architectural symbol data set has been used to test
the scalability of our method. In this experiment we test the performance under
an increasing number of classes. We have started the classification using the first
5 classes. Iteratively, 5 classes have been added at each step and the classification



3.4. Results 65

Figure 3.11: The fifty selected representatives for the architectural database.

Figure 3.12: Classification of architectural hand drawn symbols to measure the
scalability degree: Recognition rates using an increasing number of classes.

has been repeated. The more classes we introduce, the higher the confusion degree
becomes among them. It is because of the elastic deformations inherent to hand drawn
strokes, and the higher number of objects to distinguish. In Fig. 3.12 the recognition
rates are presented, showing that our approach reaches significantly higher results
than Zernike moments and the DTW-cyclic approach (87% in comparison to 26%
and 38% respectively). The performance of the Zernike moments and the DTW-
cyclic decrease dramatically when increasing the confusion in terms of the number of
classes (Zernike momens decreases from 62% to 26% and DTW-cyclic decreases from
61% to 38% with 50 classes), whereas our method is quite robust to the increasing
of the number of different classes participating (from 97% with 5 classes decreases to
87% with 50 classes).
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3.5 Conclusions

We have presented a Dynamic Time Warping based method for the description and
classification of hand drawn symbols. This approach is rotation and scale invariant,
and robust to the deformations typical in hand drawn symbols. The method pro-
posed computes a column sequence of feature vectors for each orientation of the two
symbols and computes the DTW distance, taking also into account their perpendic-
ular alignment. Our method has been tested with two hand drawn symbol databases
(music and architectural) achieving high recognition rates. Comparison against some
state-of-the-art descriptors shows the robustness and better performance of the pro-
posed approach when classifying symbols with high variability in appearance, such
as irregular deformations induced by hand drawn strokes, low inter-class and high
intra-class variabilities.

The main drawback is the high computational cost: even though the method
proposed is O(w2N2), which is remarkably lower than other existing 2D-DTW ap-
proaches (such as O(N4N ) and O(N39N )), it is still not fast enough for performing
symbol recognition in large databases or even real-time symbol recognition systems.
In this sense, further work can be focused on developing DTW-variations for decreas-
ing the time complexity of the algorithm.

In the next Chapter, a second symbol recognition method will be described. Both
approaches will be used for the first writer identification approach proposed for writer
identification in old music scores.



Chapter 4

The Blurred Shape Model
descriptor for Symbol Recognition

Many symbol recognition problems require the use of robust descriptors in order to
obtain rich information of the data. As it has been commented in the previous Chap-
ter, the research of a good descriptor is still an open issue due to noise, deformations,
occlusions and the high variability of symbols appearance. In this Chapter, we intro-
duce another descriptor, namely Blurred Shape Model (BSM). It is a robust symbol
descriptor which deals with most of these problematics. A symbol is described by a
probability density function that encodes the probability of pixel densities of image
regions. Afterwards, the Circular Blurred Shape Model (CBSM) is presented. It is
an evolution of the BSM, which uses a correlogram structure for obtaining a rotation
invariant descriptor. These descriptors have been evaluated on different hand-drawn
and synthetic data sets, showing their robustness comparing it with the state-of-the-
art descriptors.

4.1 Introduction

As it has been explained in Chapter 2, due to the kinds of problems in symbol recog-
nition applications, some descriptors are better than others depending on the appli-
cation field, and it is very common that symbol descriptors robust to some affine
transformations and occlusions are not effective enough dealing with elastic defor-
mations. For this reason, it is difficult to define an universal shape descriptor that
suits in most fields. An ideal descriptor should guarantee intra-class compactness
and inter-class separability, being tolerant to noise, degradation, occlusions, rotation,
scaling, translation and non-uniform distortions appearing in hand-drawn symbols.

In the previous Chapter, a DTW-based symbol recognition method has been pre-
sented, which is specially defined for coping with deformations typically found in
handwritten documents. In this Chapter we propose the Blurred Shape Model, a
general descriptor that can deal with noise, degradation and occlusions. The descrip-
tor encodes the spatial probability of appearance of the shape pixels and their context

67
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information. As a previous step, the method aligns symbols’ shape by means of the
Hotelling transform and an area density adjustment. As a result, a robust technique
in front of noise and elastic deformations is obtained.

Afterwards, the Circular Blurred Shape Model (CBSM) is presented. It is an
evolution of the BSM descriptor, which not only copes with distortions and noise, but
it is also rotation invariant. The CBSM codifies the spatial arrangement of object
characteristics using a correlogram structure. By rotating the correlogram so that the
major descriptor densities are aligned to the x-axis, the descriptor becomes rotation
invariant. The presented methodologies are evaluated on synthetic and hand-drawn
data sets. Different state-of-the-art descriptors are compared, showing the robustness
and better performance of the proposed scheme when classifying large number of
symbol classes with high variability of appearance.

The rest of the Chapter is organized as follows. First, the Blurred Shape Model
(BSM) descriptor is described in Section 2. Secondly, the classification step is pre-
sented in Section 3. Experimental results are shown in Section 4. The Circular
Blurred Shape Model (CBSM) is described in Section 5. Finally, concluding remarks
are exposed in Section 6.

4.2 Blurred Shape Model

To describe a symbol that can suffer from irregular deformations, we propose to
codify its shape by determining its external appearance. Here, we define the external
appearance pixels as those which have high gradient magnitude. Taking into account
those pixels, the Blurred Shape Model descriptor defines spatial regions where some
parts of the symbol can be involved. For this task, the activated pixels (those set to
one) from the input region to describe should belong to the shape of the symbol.

Given a shape image forming the shape S = {x1, .., xm}, we treat each point xi,
called from now SP , as a feature to compute the BSM descriptor of the symbol shape.
The image region is divided in a grid of n×n equal-sized sub-regions (cells) ri. Each
cell receives votes from the SP s in it and also from the SP s in the neighboring sub-
regions. Thus, each SP contributes to a density measure of its cell and its neighboring
ones, and thus, the grid size identifies the blurring level allowed for the shape. This
contribution is weighted according to the distance between the point and the center
of coordinates ci of the region ri. The algorithm is summarized in table 2.

In Fig. 4.1, a shape description is shown for an apple data sample. Figure 4.1(a)
shows the distances di of a SP to the nearest sub-regions centers. To give the same
importance to each SP , all the distances to the neighbor centers are normalized. The
output descriptor is a vector histogram v of length n× n, where each position corre-
sponds to the spatial distribution of SP s in the context of the sub-region and their
neighbors ones. Fig. 4.1(b) shows the vector descriptor updating once the distances of
the first point in Fig. 4.1(a) are computed. Observe that the position of the descriptor
corresponding to the affected sub-region r15, which centroid is nearest to the analyzed
SP , obtains a higher value.

The resulting vector histogram, obtained by processing all SP s, is normalized
in the range [0, 1] to obtain the probability density function (pdf) of n × n bins.
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Algorithm 2 Blurred Shape Model Description Algorithm.
Require: a binary image I, a number of regions r
Ensure: descriptor vector v

1: Obtain the shape S contained in I.
2: Divide I in n × n equal size sub-regions R = {r1, ..., rn2}, with ci the center of

coordinates for each region ri.
3: Define N(ri) as the neighbor regions of region ri, defined as:
4: N(ri) = {rk|rk ∈ R, ||ck − ci|| ≤ 2|g|}, where g is the cell size.
5: for each point x ∈ S do
6: for each ri ∈ N(rx) do
7: di = d(x, ri) = ||x− ci||2
8: end for
9: Update the probability vector v as:

10: v(ri) = v(ri) + 1
diDi

, Di =
∑
ck∈N(ri)

1
||x−ck||2

11: end for
12: Normalize the vector v as:
13: v = v(i)∑n2

j=1
v(j)
∀i ∈ [1, ..., n2]

(a) (b)

Figure 4.1: Shape pixel distances estimation respect to neighbor centroids, and the
vector actualization of the region 15th, where 1∑

distances
= 1.

In this way, the output descriptor represents a distribution of probabilities of the
symbol structure considering spatial distortions, where the distortion level allowed is
determined by the grid size. The BSM descriptors for different grid sizes of an example
of an architectural symbol are shown in Fig. 4.2. Concerning the computational
complexity, for a region of n× n pixels, the k relevant considered SP s to obtain the
BSM descriptor require a cost of O(k) simple operations. In Fig. 4.3(a) four BSM
descriptors of apple samples of length 10 × 10 are shown. Figure 4.3(b) shows the
correlation of the four previous descriptors. Note that though it exists some variations
on the shape of the symbols, the four descriptors remain closely correlated.
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(a) (b) (c) (d) (e)

Figure 4.2: (a) Input image. (b) 48 regions blurred shape. (c) 32 regions blurred
shape. (d) 16 regions blurred shape. (e) 8 regions blurred shape.

(a)

(b)

Figure 4.3: (a) Plots of BSM descriptors of length 10×10 for four apple samples.
(b) Correlation of previous BSM descriptors.
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4.3 Experimental Results

In order to validate the proposed methodology, first, we describe our performance
evaluation protocol in terms of the used data, comparatives, and classification.

Data: To test the multi-class symbol recognition system, we used different sce-
narios: a hand-drawn music symbols data set, which main difficulty consists on the
elastic deformations produced by the different writing styles; an architectural symbol
database extracted from a sketching interface; and the GREC2005 database, a public
printed symbols database with important distortions and noise.

Comparatives: The methods used in the comparative are: SIFT [Low04], Zon-
ing, Zernike, ART and CSS curvature descriptors from the standard MPEG7 [KK99],
[ZL04], [MM86]. The details of the descriptors used for the comparatives are the
followings: The optimum grid size of the BSM descriptors is estimated applying
cross-validation over the training set using a 10% of the samples to validate the dif-
ferent sizes of n ∈ {8, 12, 16, 20, 24, 28, 32}. For a fair comparison among descriptors,
the Zoning descriptor is of the same length. The parameters for ART are radial order
with value 2 and angular order with value 11. Concerning to Zernike, seven moments
are used to estimate the descriptor, and a length of 200 with an initial sigma of one
increasing per one is applied for the curvature space of the CSS descriptor. In order
to deal with rotated symbols, before computing the BSM descriptor, the Hotelling
transform based on principal components [Dun89] is applied to find the main axis of
the object so the shape alignment can be performed.

Classification: To analyze the performance of the descriptors, we use 50 runs
of Gentle Adaboost with decision stumps [FHT00], ten-fold cross-validation, and the
one-versus-one ECOC design with the Euclidean distance decoding [PER08]. Al-
though the focus of this Chapter is the proposal of a symbol descriptor, for the sake
of performance evaluation, we will briefly introduce these two techniques. The Ad-
aboost algorithm is applied to learn the descriptor features that best split classes,
training the classifier from the descriptors. In this way, the Adaboost focuses on the
discriminating regions by selecting the highest splitting features. In particular, we
use the Gentle version of Adaboost since it has been shown to be dominant to the
rest of variants when applied to real categorization problems [FHT00]. The Error
Correcting Output Codes (ECOC) [DB95], [ETP+08] has been applied to deal with
the multi-class categorization problem based on the embedding of binary classifiers.
It is a meta-learning strategy that divides the multi-class problem in a set of binary
problems, solves the individually, and aggregates their responses into a final decision.
For a fair comparison, different base classifiers are used in the ECOC scheme: OSU
implementation of Linear Support Vector Machines with the regularization parameter
C set to 1 [OSU], OSU implementation of Support Vector Machines with Radial Ba-
sis Function kernel with the default values of the regularization parameter C and the
gamma parameter set to 1 [OSU]1, and Linear Discriminant Analysis implementation
of the PR Tools using the default values [PRT].

1The regularization parameter C and the gamma parameter are set to 1 for all the experiments.
We selected this parameter after a preliminary set of experiments. We decided to keep the parameter
fixed for the sake of simplicity and easiness of replication of the experiments, though we are aware
that this parameter might not be optimal for all data sets.
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4.3.1 Music Symbols Data Set

The database of 2128 samples of clefs is obtained from a collection of modern and old
musical scores of the Archive of the Seminar of Barcelona. Some examples of music
clefs can be seen in Figure 3.8(b). This database, which has been described in the
Appendix, has been also used for testing the DTW-based approach of the previous
Chapter. It has been chosen for testing the robustness of the BSM descriptor in front
of the high variability of symbols’ appearance.

The accuracy and confidence ranges results for the old music clefs are shown and
graphically represented in Fig.4.4(a) and Fig.4.4(b), respectively. ART and Zernike
descriptors obtain the minor results, while the Zoning descriptor in the classification
scheme technique offers good results. The BSM strategy is the most robust, obtaining
an accuracy upon 98%.

(a) (b)

Figure 4.4: (a) and (b) Clefs classification results.

Clefs and accidentals data set

An extension of these experiments has been performed including accidentals in the
musical clef database. They are a total of 1970 accidentals drawn by 8 different
authors, which has also been used for testing the DTW-based method. As a result,
we obtain a database of 4098 samples from 7 different music symbols. A pair of
segmented samples for each of the seven classes showing the high variability of clefs
and accidentals appearance from different authors can be observed in Fig. 4.5.

Figure 4.5: Clefs and accidentals data set.
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FLDA Linear SVM RBF SVM G. Adaboost 3NN
BSM 83.53(7.52) 80.51(7.31) 81.54(7.52) 88.99(5.00) 73.92(8.21)

Zoning 78.62(7.28) 79.45(6.30) 80.43(6.17) 83.61(5.24) 69.29(10.12)
SIFT 71.35(9.04) 76.45(6.73) 54.77(9.76) 74.95(9.77) 57.39(9.18)
CSS 68.76(11.02) 66.87(8.19) 69.87(9.18) 71.33(8.44) 61.28(8.92)

Zernike 69.09(6.01) 71.66(8.29) 59.21(9.00) 72.05(7.76) 54.12(9.10)

Table 4.1: Classification accuracy on the clefs and accidentals categories for the
different descriptors and classifiers.

In order to classify this data set, we compare the BSM, Zoning, SIFT, CSS, and
Zernique descriptors using the parameters defined above. Each feature set is learnt
using the one-versus-one scheme with the previous commented base classifiers: FLDA,
Linear SVM, RBF SVM, and Gentle Adaboost. Moreover, we include a comparative
with a 3-Nearest Neighbor classifier to show the reliability of the present classification
system. The performance and confidence interval obtained for each descriptor and
classifier is shown in table 4.1. Looking at table 4.1, one can see that for each column
corresponding to a different classifier, the descriptor that attains the best performance
is the BSM. Moreover, looking the performances of each row corresponding to the
results of each base classifier applied over each feature set, one can see that the base
classifier that attains the best performance is the one-versus-one ECOC design with
Gentle Adaboost as the base classifier, except in the case of the SIFT descriptor, which
obtains its best performance with Linear SVM as the ECOC classifier. Finally, note
that the results obtained by the 3NN classifier correspond to the lowest performance
of each feature space.

4.3.2 Architectural Symbols Data Set

The database of architectural hand-drawn symbols has 2762 total samples organized
in the 14 classes shown in Fig. 4.6. Each class consists of an average of 200 samples
drawn by 13 different authors. This database is a subset of the database used for
testing the DTW-based method, in which the 14 most representative symbols have
been chosen. In this experiment, the architectural symbol database has been used to
test the performance under an increasing number of classes, showing the scalability
of our approach.

Figure 4.6: Architectural handwriting classes.
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The results obtained from BSM are compared with the ART, Zoning, and Zernike
moments. The compared descriptors are also introduced in the classification frame-
work to quantify the robustness of each descriptor at the same conditions. Contrary
to the DTW-based method experiments, we do not use the printed models for the
classification. In this experiment, we use only the hand-drawn symbols for training
and testing.

The classification starts using the first 3 classes. Iteratively, one class was added
at each step and the classification is repeated. The higher number of classes, the
higher confusion degree among them because of the elastic deformations inherent to
hand drawn strokes, and the higher number of objects to distinguish. The results of
accuracy recognition in terms of an increasing number of classes are shown in Fig. 4.7.
The performance of the ART and Zernike descriptors decreases dramatically when we
increase the confusion in terms of the number of classes, while Zoning obtains higher
performance. Finally, the accuracy of the BSM outperforms the other descriptors
results, and its confidence interval only intersects with Zoning in few cases. This
behavior is quite important since the accuracy of the latter descriptors remains stable,
and BSM can distinguish the 14 classes with an accuracy upon 90%.

Figure 4.7: Descriptors classification accuracy increasing the number of architec-
tural symbol classes (from 2 to 14 classes).

Referring the computational complexity, for a region of n × n pixels, the k ≤
n × n skeleton points are considered to obtain the BSM with a cost of O(k) simple
operations, which is faster than the moment estimation of the ART and Zernike
descriptors.
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4.3.3 GREC-2005 Data Set

The GREC2005 database 2 [DV06] is not a hand drawn symbol database, but it has
been chosen in order to evaluate the performance of our method on a standard, public
and big database in front of distorted and noisy symbols. It must be said that our
initial tests are applied on the first level of distortions (see Fig. 4.8). We generated
140 artificial images per model (thus, for each of the 25 classes) applying different
distortions such as morphological operations, noise addition, and partial occlusions.
In this way, the ECOC Adaboost is able to learn a high space of transformations
for each class. The BSM descriptor uses a grid of 30 × 30 bins. In this sense, 900
features are extracted from every image, from which Adaboost selects a maximum of
50. For this experiment, we compare our results with the reported [ZLZ06] using the
kernel density matching method (KDM). The results are shown in Table 4.2. One
can see that the performances obtained with our methodology are very promising,
outperforming for some levels of distortions the KDM results.

Figure 4.8: An example of the distortion levels used in the GREC2005 database.

4.3.4 Discussions

Concerning the suitability of the presented scheme to deal with multi-class symbol
categorization problems, several benefits should be mentioned:

The method is rotation invariant because of the use of the Hottelling transform
and the area density adjustment. The method is also scaling and (x, y) stretching

2http://symbcontestgrec05.loria.fr/formatgd.php
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Method Distort. Distort. Distort. Distort. Distort. Distort.
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

KDM 100 100 100 96 88 76
BSM 100 100 100 100 96 92

Table 4.2: Descriptors classification accuracy increasing the distortion level of
GREC2005 database using 25 models and 50 test images.

invariant because of the use of the n× n BSM grid. Moreover, the BSM descriptor is
robust against symbols with rigid and elastic deformations since the size of the BSM
grid defines the region of activity of the symbol shape points. The use of Adaboost as
base classifier allows to learn difficult classes which may share several symbol features.
Besides, the ECOC framework has the property of correcting possible classification
errors produced by the binary classifiers, and allows the system to deal with multi-
class categorization problems. When the classifiers are trained, only few features are
selected, and when classifying a new test sample, only these features are computed.
This makes the approach very fast and suitable for real-time categorization problems.

An important point of the BSM description is the selection of the grid size. The
optimum size defines the optimum grid encoding the blurring degree based on a par-
ticular data set distortions. Because of this reason, a common way to look for the
optimum grid size is applying cross-validation over the data for different descriptor
parameters. In particular, we applied cross-validation using the 90% of the training
subset samples, and the remaining 10% is used to validate the different possible sizes.
The selected grid is the one which attains the highest performance on the validation
subset, defining the optimum grid encoding the different distortions over each par-
ticular problem, and offering the required tradeoff between inter-class and intra-class
variabilities in a problem-dependent way.

It is important to make clear that though Adaboost has been chosen as the base
classifier in the presented system, depending on the problem we are working on, dif-
ferent alternatives of classifiers could be used instead, basing the selection of the base
classifier on the type of distribution of the data and the behavior of each particular
learning technique. Although at the previous experiments the comparative between
Gentle Adaboost with ECOC and other state-of-the-art classifiers showed higher per-
formance improvements of Adaboost, different results could be obtained over different
data sets or with an exhaustive tuning of the parameters of the classifiers.

Moreover, it is important to mention different applications where the Multi-class
BSM scheme could also be useful. Many description techniques are applied on prob-
lems where a previous region detection is required. As shown at the previous experi-
ments, the BSM descriptor could be applied to this type of problems since it provides
a fast and feasible way to robustly describe regions. In the same way, circular grids
could also be defined to allow the BSM descriptor to be described on this type of
applications, and also, for being rotation invariant without the need of the Hotelling
transform. In this sense, the next section describes the proposed circular version of
the BSM.
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4.4 Circular Blurred Shape Model

In the previous section, the Blurred Shape Model (BSM) was presented. It is a de-
scriptor that can deal with soft, rigid, and elastic deformations, but it is sensible to
rotation. In this section, we present an evolution of the Blurred Shape Model descrip-
tor, which not only copes with distortions and noise, but it is also rotation invariant.
Feature extraction is performed capturing the spatial arrangement of significant ob-
ject characteristics in a correlogram structure. Shape information from objects is
shared among correlogram regions, where a prior blurring degree defines the level of
distortion allowed to the symbol, making the descriptor tolerant to irregular defor-
mations. The descriptor becomes rotation inavirant by rotating the correlogram so
that the major descriptor densities are aligned to the x-axis. Moreover, the origi-
nal BSM descriptor requires to align the object previously to its description, which
considerably increases the computational cost in comparison to the proposed circular
approach.

4.4.1 Circular Blurred-Shape Model

In this section, we present a circular formulation of the Blurred Shape Model de-
scriptor. By defining a correlogram structure from the center of the object region,
spatial arrangement of object parts is shared among regions defined by circles and
sections. The method aims to achieve a rotation invariant description rotating the
correlogram by the predominant region densities, which implies the full redefinition
of the BSM descriptor. We divide the description of the algorithm into three main
steps: the definition of the correlogram parameters, the descriptor computation, and
the rotation invariant procedure.

Correlogram definition: Given a number of concentric circles C, a radius length
R, a number of sections S, and an image region I, a centered correlogram B =
{b{1,1}, .., b{C,S}} is defined as a radial distribution of sub-regions of the image, as
shown in Figure 4.9(a) and (b). Each region b defines a centroid coordinates b∗ (see
Fig. 4.9(c)). Then, the regions around b are defined as the neighbors of b. Note
that depending of the spatial location of the analyzed region, different number of
neighbors can be defined (see Fig. 4.9(d)). Different correlogram structures are shown
in Figure 4.10 for different values of C and S.

Descriptor computation: In order to compute the CBSM descriptor, first, a
pre-processing of the input region I to obtain the shape features is required. For
several symbols, relevant shape information can be obtained by means of a contour
map (although based on the object properties we can define a different pre-processing
step). In this section, we use the Canny edge detector procedure.

Given the object contour map, each point from the image belonging to a con-
tour is taken into account in the description process (see Fig. 4.9(e)). First of all,
the distances from the contour point x to the centroids of its corresponding region
and neighboring regions are computed. The inverse of these distances are computed
and normalized by the sum of total distances. These values are then added to the
corresponding positions of the descriptor vector ν (see Fig. 4.9(f)). This makes the
description tolerant to irregular deformations. Concerning the computational com-
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plexity, note that for a correlogram of C × S sectors and k contour points considered
for obtaining the CBSM descriptor, only O(k) simple operations are required. The
description procedure is detailed in Algorithm 3.

(a) (b) (c)

(d) (e) (f)

Figure 4.9: (a) CBSM correlogram parameters, (b) regions distribution, (c) region
centroid definition, (d) region neighbors, (e) object point analysis, and (f) descriptor
vector update after the analysis of point x.

At this point we have a description ν for an input region I, where the length of ν,
defined by parameters C, S, and R, defines the degree of spatial information taken
into account in the description process. In Figure 4.11, a bat instance from the public
MPEG7 data set [MPE] is described with different C×S correlogram sizes. Note that
when we increase the number of regions, the description becomes more local. Thus,
optimal parameters of C and S should be obtained for each particular problem (e.g.
via cross-validation, splitting the training data into two subsets, one to train and the
remaining one to validate the method parameters).

Rotation invariant descriptor: For obtaining a rotation invariant descriptor,
a second step is included in the description process. We look for the main diagonal Gi
of correlogram B which maximizes the sum of the descriptor values at affected sectors.
This diagonal is then taken as reference to rotate the descriptor. The orientation of
the rotation process, so that Gi is aligned to the x-axis, is that one corresponding to
the highest density of the descriptor at both sides of Gi. This procedure is detailed
in Algorithm 4. A visual result of the rotation invariant process can be observed in
Fig. 4.11, in which two bats with different orientations are rotated and aligned.
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(a) (b) (c)

Figure 4.10: Correlogram structures obtained for different C × S sizes: (a) 4 × 4,
(b) 10× 10, and (c) 16× 16.

The CBSM correlogram is defined by means of a number of sectors S and number
of concentric circles C in a linear correlogram design. It implies that the area of
the external sectors is higher than the area corresponding to inner sectors. Since we
define the same importance to all analyzed shape points, it seems intuitive to define
sectors with the same area. However, in this paper we define a linear concentric
circles definition which implies more local description on the center of the description
meanwhile the distortion degree allowed at the external sectors is increased. We
use this approximation based on the fact that the external appearance of symbols is
usually higher compared to the inner variabilities (i.e. the external strokes in hand-
drawn symbols). We also apply cross-validation in order to estimate the optimum C
and S parameters based on each particular data set. On the other hand, if we want to
define a correlogram structure where all sectors have the same area, we simply need
to change the distance among correlogram sectors to satisfy the new constraints.

Bat1 Bat1 5×5 Bat1 24×24 Bat1 54×54

Bat2 Bat2 5×5 Bat2 24×24 Bat2 54×54

Figure 4.11: Examples of image descriptors at different sizes for two object in-
stances. The two descriptors are correctly rotated and aligned.
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Algorithm 3 Circular Blurred Shape Model Description Algorithm.
Require: a binary image I, a length of radius R, a number of concentric circles C, and a number of

sections S
Ensure: descriptor vector ν

1: Define d = R/C and g = 360/S as the distance between consecutive concentric circles and the degrees
between consecutive sectors, respectively (Figure 4.9(a)).

2: Define B = {b{1,1}, .., b{C,S}} as the set of bins for the circular description of I, where bc,s is the
bin of B between distances [(c − 1)d, c · d) to the origin of coordinates o, and between interval
angles [(s− 1)g, s · g) to the origin of coordinates o and x-axis (Figure 4.9(b)).

3: Define b∗{c,s} = (sinα d, cosα d) the centroid coordinates of bin b{c,s}, and B∗ = {b∗{1,1}, .., b
∗
{C,S}}

the set of centroids in B (Figure 4.9(e)).
4: Define Xb{c,s} = {b1, .., bc·s} as the sorted set of the elements in B∗ so that d(b∗{c,s}, b

∗
i ) ≤

d(b∗{c,s}, b
∗
j ), i < j.

5: Define N(b{c,s}) as the neighbor regions of b{c,s}, defined by the initial elements of Xb{c,s} :

N(b{c,s}) =

{
X′, |X′| = S + 3 if b{c,s} ∈ IN
X′, |X′| = 9 if b{c,s} ∈MI
X′, |X′| = 6 if b{c,s} ∈ EX

6: being IN , MI, and EX, the inner, middle, and extern regions of B, respectively (Figure 4.9(c)).
7: Initialize νi = 0, i ∈ [1, .., C · S], where the order of indexes in ν are:
8: ν = {b{1,1}, .., b{1,S}, b{2,1}, ..b{2,S}, .., b{C,1}, ..b{C,S}}
9: for each point x ∈ I, I( x ) = 1 (Figure 4.9(d)) do

10: D = 0
11: for each bi ∈ N(bx) do
12: di = d(x, bi) = ||x− b∗i ||

2

13: D = D + 1
di

14: end for
15: Update the probabilities vector ν positions as follows (Figure 4.9(f)):
16: ν(bi) = ν(bi) + 1

diD
, ∀i ∈ [1, .., C · S]

17: end for
18: Normalize the vector ν as follows:
19: d′ =

∑C·S
i=1

νi, νi =
νi
d′ , ∀i ∈ [1, .., C · S]

Algorithm 4 Rotation invariant ν description.
Require: ν, S, C
Ensure: Rotation invariant descriptor vector νk

1: Define G = {G1, .., GS/2} the S/2 diagonals of B, where
Gi = {ν(b{1,i}), .., ν(b{C,i}), .., ν(b{1,i+S/2}), .., ν(b{C,i+S/2})}

2: Select Gi so that
∑2C

j=1
Gi(j) ≥

∑2C

j=1
Gk(j), ∀k ∈ [1, .., S/2]

3: Define LG and RG as the left and right areas of the selected Gi as follows:

4: LG =
∑

j,k
ν(b{j,k}, j ∈ [1, .., C], k ∈ [i+ 1, .., i+ S/2− 1]

5: RG =
∑

j,k
ν(b{j,k}, j ∈ [1, .., C], k ∈ [i+ S/2 + 1, .., i+ S − 1]

6:
7: if LG > RG then
8: B is rotated k = i+ S/2− 1 positions to the left:
9: νk = {ν(b{1,k+1}), .., ν(b{1,S}), ν(b{1,1}), .., ν(b{1,k}), ..,

10: , .., ν(b{C,k+1}), .., ν(b{C,S}), ν(b{C,1}), .., ν(b{C,k})}

11: else
12: B is rotated k = i− 1 positions to the right:
13: νk = {ν(b{1,S}), .., ν(b{1,S−k+1}), ν(b{1,1}), .., ν(b{1,S−k}), ..,
14: , .., ν(b{C,S}), .., ν(b{C,S−k+1}), ν(b{C,1}), .., ν(b{C,S−k})}
15: end if
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4.4.2 Experimental Evaluation

In order to present the multi-class categorization results, we discuss the data, methods,
and validation of the experiments:
• Data: For comparing our CBSM multi-class methodology, we have chosen the

public 70-class MPEG73 binary repository data set [MPE], which contains a high
number of classes with different appearance of symbols from a same class, including
rotation.
•Methods: The descriptors considered in the comparative are SIFT [Low04], BSM,

Zoning, Zernike, and CSS descriptors from the standard MPEG7 [KK99], [ZL04],
[MM86]. The details of the descriptors used for the comparatives are the following:
the optimum correlogram size of the CBSM descriptor is estimated applying cross-
validation over the training set using a 10% of the samples to validate the different sizes
of S = {8, 12, 16, 20, 24, 28, 32} and C{8, 12, 16, 20, 24, 28, 32}. For a fair comparison
among descriptors, the Zoning and BSM descriptors are set to the same number
of regions as the CBSM descriptor. Rotation invariance for the BSM descriptor is
achieved by means of principal components alignment (using the Hotelling transform)
before descriptor computation. Concerning the Zernike technique, 7 moments are
used. The length of the curve for the CSS descriptor is normalized to 200, where
the sigma parameter takes an initial value of 1 and increases by 1 unit at each step
(experimentally tested). Gentle Adaboost with 50 decision stumps [FHT00] is used
to train the binary problems of the one-versus-one ECOC design [ETP+08] to solve
the multi-class categorization problems. We also consider a Support Vector Machine
with a Radial Basis Function base classifier for the ECOC design with C = 1 and
γ = 14 and a 3-Nearest Neighbor classifier in the comparative.
• Validation: The classification score is computed by means of stratified ten-fold

cross-validation, testing for the 95% of the confidence interval with a two-tailed t-test.
Next, we describe the experiments performed, comparing our descriptor with state-

of-the-art descriptors over two multi-class categorization problems (with binary and
grey-level symbols).

MPEG7 data set

The MPEG7 data set [MPE] has been chosen since it provides a high intra-class
variability in terms of scale, rotation, rigid and elastic deformations, as well as a low
inter-class variability. It contains 70 different classes, thus it can be used to test the
performance of the methods in front of a high number of classes. A pair of samples
for some categories of the data set are shown in Fig. 4.12. Each of the classes contains
20 instances, which represents a total of 1400 symbol samples for the 70 classes.

In order to classify the data set, we compare the BSM, Zoning, SIFT, CSS, and
Zernike descriptors with the previous defined parameters. Each feature set is learnt
using the one-versus-one scheme with Gentle Adaboost. We include a comparative

3MPEG7 Repository Database: http://www.cis.temple.edu/ latecki/research.html
4As in the BSM experiments, the regularization parameter C and the γ parameter are set to one

for the experiments. We selected this parameter after a preliminary set of evaluations. We decided
to keep the parameter fixed for the sake of simplicity and easiness of replication of the experiments,
though we are aware that this parameter might not be optimal for the analyzed data sets.
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Figure 4.12: MPEG7 data set. Two examples of several classes are shown.

Descriptor 3NN ECOC & Adaboost
CBSM 71.84(6.73) 80.36(7.01)
BSM 65.79(8.03) 77.93(7.25)

Zernike 43.64(7.66) 51.29(5.48)
Zoning 58.64(10.97) 65.50(6.64)

CSS 37.01(10.76) 44.54(7.11)
SIFT 29.14(5.68) 32.57(4.04)

Table 4.3: Classification accuracy on the 70 MPEG7 symbol categories for the
different descriptors using 3-Nearest Neighbor and the one-versus-one ECOC scheme
with Gentle Adaboost.

with a 3-Nearest Neighbor classifier to show reliability of the present classification
system. The performance and confidence interval obtained by the six descriptors and
the two classifiers is shown in table 4.3.

Having a look at the results obtained, one can see that for each descriptor, the
Adaboost with ECOC approach always obtains higher performance than classifying
with a nearest neighbor classifier in this data set. In addition, and for a same classi-
fier, the difference among descriptor performances are more significant. It is produced
because of the high number of classes and the high variability of appearance of the
symbols shape. The best performance is obtained by our CBSM descriptor (about
80%), followed by the BSM descriptor (about 78%). The Zoning and Zernique mo-
ments obtain a recognition rate of 65% and 51% respectively, being remarkably lower
than the CBSM and BSM descriptors. Finally, the CSS and SIFT descriptors ob-
tain the worst recognition rates (under the 45%). The performance of these two last
descriptors is expected since they focus on the points of curvature from the symbols
shape and the degrees of orientation from the image derivatives, which significantly
changes in this data set for the samples of a same class.
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4.5 Conclusions

In this Chapter, we have presented the Blurred Shape Model descriptor and the Cir-
cular Blurred Shape Model, an evolution of the first one. The Blurred Shape Model
is a simple descriptor that in a fast way defines a probability density function of
the shape of a symbol. The shape is parameterized with a set of probabilities that
encode the spatial variability of the symbol, being robust to several symbol distor-
tions. Secondly, the Circular Blurred Shape Model descriptor has been presented.
The descriptor encodes the spatial arrangement of symbol characteristics using a cor-
relogram structure. A prior blurring degree defines the level of degradation allowed
to the symbol. Moreover, the descriptor correlogram is rotated guided by the major
density, becoming rotation invariant.

The approaches have been evaluated on different hand-drawn and synthetic data
sets. Different state-of-the-art descriptors are compared, showing the robustness and
better performance of the proposed scheme when classifying symbols with high vari-
ability of appearance, such as occlusions, rigid or elastic deformations, gaps or noise.
In particular, the performance improvements are more significant when the described
symbols suffer from irregular deformations. Concerning the time complexity, the
BSM and CBSM descriptors are fast to compute, thus, they are suitable for real-time
applications and for symbol detection problems.

Concerning the symbol recognition method described in the previous Chapter, a
comparison with the BSM and CBSM should be performed. It must be said that the
DTW-based method uses the DTW algorithm for computing the distance between two
symbols, and k-NN is used for the classification, avoiding the training step. Contrary,
the BSM and CBSM approaches use the Adaboost and ECOC framework for obtaining
high recognition rates. As an example, for the clefs and accidentals music database,
the BSM obtains a 89% of recognition rate using the Adaboost & ECOC, whereas the
rate decreases to 74% using k-Nearest Neighbour. Notice that this value is remarkably
lower than the DTW-based method, which obtains a 89.5% of recognition rate. In
this sense, the DTW-based method is more suitable for the recognition of hand-drawn
symbols with a high variability because of the different writer styles than the BSM
approach.

The main advantage of the BSM and CBSM descriptors is that they are general
descriptors useful in different scenarios. Whereas the DTW-based approach is focused
on the problematic of high variability appearance (obtaining very good results), the
BSM can reach good performance in front of the most problematics of symbol recog-
nition. As an example, the DTW-based method is sensible to noise and gaps, because
the upper and lower profiles will be very affected. Contrary, the BSM/CBSM can ef-
fectively deal with this kind of problems, reaching very high recognition rates (about
92% of recognition rate on the distortion level 6 of the GREC 2005 database). As a
summary, depending on the problematic of the symbol recognition problem, the user
will choose the DTW-based method or the BSM/CBSM descriptors.
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Chapter 5

A Symbol-Dependent Writer
Identification Approach Based on
Symbol Recognition Methods

Writer identification consists in determining the writer of a piece of handwriting
from a set of writers. Even though an important amount of compositions contains
handwritten text in the music scores, the aim of this thesis is to use only music
notation to determine the author. In this chapter we introduce a symbol-dependent
approach for identifying the writer of a music score, which is based on the symbol
recognition methods described in Chapter 3 and 4. The main idea is to use the BSM
descriptor and the DTW-based method for detecting, recognizing and describing the
music clefs. The proposed approach has been evaluated in a database of old music
scores, achieving very good writer identification rates.

5.1 Introduction

As we stated in the Introduction, there are two major approaches for writer identi-
fication, namely text-dependent and text-independent. When dealing with graphi-
cal information, we referred to the above concepts as symbol-dependent and symbol-
independent. In this Chapter, a symbol-dependent writer identification method is
proposed, which combines the two symbol recognition methods proposed in the pre-
vious Chapters (the DTW-based method and the Blurred Shape Model) for detecting
and extracting features of some specific symbols. The idea is to detect these sym-
bols, and then perform writer identification based on the information extracted of the
symbols’ shape.

In the Introduction, we have described the discriminant properties of the hand-
writing style in music notation. After analyzing the different music elements and
their characteristics, the following points are concluded. First, the properties about
the staff lines have been discarded for our writer identification approach because there

85
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is a big amount of printed staff lines. Second, the discrimination of bar lines is low,
and the probability of existing accidentals, rests and ending signatures in every music
sheet is not high, thus they are not taken into account. Third, the differences between
the writing style of music notes are reduced when increasing the number of writers,
and consequently, the discrimination power becomes low. In any case, they can be
used in combination with other characteristic properties. Concerning lyrics, it must
be said that although the identification of the writer using text in this work has not
been considered, not all the music scores contain text (e.g. music scores for instru-
ments), and in addition, in some cases, the writer of the lyrics and the writer of the
music notation is not the same. There are also some limitations for using information
extracted from dynamics, tempo markings and time signature. Firstly, there is a high
number of different dynamic, tempo markings and time signature, and secondly, the
probability to find the same indication in different music sheets is very low. Referring
music, clefs, they can be seen as a characteristic individual signature of a writer, hav-
ing a high discrimination power. An important advantage is that there are only three
different clefs (alto, bass or trebble clef) to consider. In addition, clefs are usually
appearing in each music sheet, allowing the comparison between music scores.

For these reasons, we have focused on the extraction of properties of music clefs.
A similar idea has been used in the text-dependent approach for writer identification
in Hebrew documents [BYBKD07] reviewed in the state of the art. This method
is based on the detection and extraction of features from three pre-defined Hebrew
characters (Aleph, Lamed, Ain). The rest of the characters are not taken into account
for the classification. Having a look at the Hebrew characters (see Fig.2.2), one can
see that they could be treated as symbols.

Our proposed symbol-dependent method detects and recognizes the music clefs
and then, it performs writer identification based on the shape descriptors computed
from each clef. Two main tasks are addressed here. The first one is related to the
clef detection, whose aim is the localization and segmentation of the music clef in the
image, discarding the other symbols. The second one is related to the clef description,
whose aim is the characterization and description of the clef in order to classify the
symbol to its corresponding true class given a set of possible classes. For this second
task, we require a robust descriptor able to cope with hand-drawn distortions and
also with the inaccuracy on the clef segmentation.

The remainder of the Chapter is structured as follows. In the next section, the
preprocessing steps are presented, in which the music score is binarized and the staff
lines are removed. In Section 3 the clef detection technique is fully described, which
combines the BSM and the DTW-based methods. In Section 4 the description and
classification of music clefs is presented. Experimental results are shown in Section
5. Finally, Section 6 concludes the Chapter.

5.2 Preprocessing

The preprocessing phase consists in binarizing the image, deskewing it and removing
the staff lines. These process is fully described in Chapter 8, where the complete
application scenario is described, and will be briefly commented next.
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In the first step the gray-level scanned image (at a resolution of 300 dpi) is bina-
rized to separate foreground from background. The second step consists in deskewing
the image, so that staff lines would be horizontal and their recognition will be easier.
The Hough Transform method has been used for detecting the staff lines, and for
obtaining the rotation angle (in case the deskewing is necessary).

The third step consists in removing the staff lines. As it has been commented
in Chapter 1, staff lines play a central role in music notation because they define
the vertical coordinate system for pitches and give a size normalization useful for
symbol recognition (size of musical symbols is linearly related to the staff space).
Unfortunately, staff causes distortions in musical symbols (connecting objects that
should be isolated), making difficult the recognition process. For that reason, staff
removal is performed in order to isolate musical symbols. In case of old handwrit-
ten music scores, the staff removal process must cope with paper degradation, the
warping effect, distortions and gaps. The method proposed consists in obtaining a
coarse approximation of the staff lines applying projections and median filters with
a horizontal mask, Then, the staff is reconstructed joining these segments depending
on the orientation, distance and area of each segment. Finally, a contour tracking
process is used for following and removing every staff line, taking into account the
coarse approximation when gaps are appearing. In this stage, the staff lenght (which
corresponds to the size of the five staff lines), the staff line width and the staff line
distance (which corresponds to the distance between two consecutive staff lines) are
computed.

5.3 Clef Detection and Segmentation

The method proposed for writer identification is composed of two tasks, namely, clef
detection and clef description. The first step consists in detecting the music clefs in
the music score. We have formalized it as a symbol detection problem [TTD06]. The
aim of symbol detection is the localization of some important information instead of
analyzing the whole content of the document, because of the following reasons. First,
the recognition of the whole document can be a very complex task (e.g. the analysis
of historical documents); and secondly, a fast symbol detection technique is required
for localizing symbols in large data sets. One can note the chicken & egg problem as
the segmentation-recognition paradox, because we can not decide between segmenting
for recognizing and recognizing for segmenting, being the ideal solution to perform
both tasks at the same time. Symbol detection is related to indexing and retrieval,
and it has been a very emerging topic of interest, applied to graphic documents such
as technical drawings [SM99] or maps [SS96]. The detection techniques can rely
on different pattern recognition methods, such as the geometric features described
in [FJ03], the region-based approach using connected components [RnL08], signatures
with look-up tables [RnLS09], or the structural symbol representation [ZT06].

A symbol detection method requires a good localization strategy and a robust
symbol descriptor. Concerning the localization step, the aim is to localize the target
symbol while discarding the most part of the image. In addition, it is important to
avoid the analysis of the whole image with a sliding window for saving time. Referring
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the detection step, the descriptor should cope with deformation, distortions, noise and
segmentation. It should be said that for obtaining characteristics of the music clefs,
it is not necessary to detect all the clefs of the image. Contrary to Optical Music
Recognition, badly segmented or incomplete music clefs could be left out, in order to
avoid the introduction of noise to the classification step.

For our clef detection method, we use a combination of the BSM descriptor and
the DTW-based symbol recognition method (described in the previous Chapters),
because they have shown to be robust descriptors, able to cope with the irregular
deformations typically found in hand-drawn symbols.

In order to design a symbol detection methodology, we need to define two stages.
A first stage should learn to distinguish among the target symbol and the background
(e.g. learning a binary classifier). A second stage should perform a search over the
whole image using the trained classifier in order to locate those regions containing the
target symbol.

5.3.1 Training Process

For the first step, we propose to learn a hierarchical cascade of 2 classifiers with a set
of positive and negative clef instances, manually extracted from a set of music scores
(an example of the positive clefs and negative examples used can be seen in Fig.5.1).
Initially, the set of positive samples consists in clefs extracted from the music scores,
whereas the negative examples are basically, examples of music notes. In the training
stage, the suitable parameters of the BSM and the DTW-based descriptors are found,
and the set of negative examples can be modified. First, different grid sizes and the
rejection threshold for the BSM descriptor are tested until a minimum accuracy is
achieved. Then, the set of negative examples is modified, adding the images of the
false detections found. Secondly, different number of features (the number of regions)
and the rejection threshold for the DTW-based symbol recognition method are tested.
Finally, the set of false detections can be also increased by adding the images of the
false detections found. This strategy is detailed in Algorithm 5.

5.3.2 Detection Process

Once both classifiers are trained, the different elements must be segmented from the
input image. For this purpose, the graph contraction process is used, which consists
in applying a morphological dilate using disks of different sizes as the structuring
element. Then, the connected components whose size and area are not under certain
restrictions (no clef is smaller than the half of the staff length and bigger than twice
the staff length) are removed. This step is used for discarding the too small or too
big symbols, which consequently, are not music clefs. Afterwards, the BSM descriptor
is computed for each remaining connected component, and compared with the BSM
descriptors of the set of positive and negative examples. The comparison is performed
using the Euclidean distance and the k-NN classifier. If the BSM-based classifier
accepts the candidate connected component as a clef, then, the DTW-based features
are computed for this region, and compared with the DTW-based features of the
set of positive and negative examples. If the DTW-based classifier also accepts the
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(a)

(b)

Figure 5.1: Example of sets of images used in the training step. (a) Positive images
of clefs. (b) Negative images of clefs (music notes).

Algorithm 5 Symbol Detection Training algorithm for the cascade of two classifiers.
Require: A set of positive examples P and a set of negative examples N , a maximum false alarm rate f ,

a minimum accuracy a.
1: Fi ← 1, ni ← 0
2: while Fi > f do
3: ni ← ni + 1
4: Use P and N to train a classifier using the BSM descriptor with ni as the grid size
5: Fi ← Evaluate current classifier on validation set
6: Decrease threshold for the ith classifier until the current cascaded classifier satisfies a detection

rate of a (this also affects Fi)
7: end while
8: N ← 0
9: Evaluate the BSM-based detector on the set of non-symbol images and put any false detections into

the set N .
10: Fi ← 1, ni ← 0
11: while Fi > f do
12: ni ← ni + 1
13: Use P and N to train a classifier using the DTW-based method with ni regions
14: Fi ← Evaluate current classifier on validation set
15: Decrease threshold for the ith classifier until the current cascaded classifier satisfies a detection

rate of a (this also affects Fi)
16: end while
17: Evaluate the DTW-based detector on the set of non-symbol images and put any false detections into

the set N .

Ensure: A cascade h of the BSM and DTW-based classifiers for symbol detection.
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candidate connected component as a clef, then the candidate region is accepted as a
music clef. The method is described in Algorithm 6.

Algorithm 6 Symbol detection using a cascade of two classifiers.
Require: An image I, a cascade of classifiers h, an initial structuring disk element of size DI , a final disk

size DF , and a disk increment i.
1: R ∪ 0
2: Compute the BSM and DTW features of all the set of positive examples P and the negative examples

N.
3: for each structuring element D of size DI , increasing by i, to DF do
4: ImDilated = dilation of I using the disk D
5: for each connected component r in ImDilated of accepted size and area do
6: test cascade h over region r
7:

h(r) =

{
1 if target detection, save region R = R ∪ r
0 if background classification

8: end for
9: end for

10: Remove from R the repeated instances of a same clef.

Ensure: Target symbol regions R

In this way, only those regions that arrive to the last stage of the cascade are
classified as clefs, are then selected as clef regions, and the rest of the regions are
rejected. Each stage analyzes only the candidates accepted by the previous stages,
and thus, the non-clefs are analyzed only until they are rejected by a stage. Notice
that the BSM descriptor is used for the first classifier, because it is very fast to
compute. It must be said that when dilating the image with different disk sizes, it
may occur that several instances of a same clef have been accepted. In this cases,
only one instance of each clef is stored.

5.4 Classification of Clefs

Once we have the clefs extracted from each music sheet of the database, the clas-
sification in terms of the writer is performed. It can be seen as a multi-class clef
classification, in which all the music clefs detected from each page, must be assigned
to the same writer. We propose a non-supervised approach, avoiding the definition
of the clef for each writer in the database. Thus, the idea is to compare the detected
clefs of the test music page with the clefs of the training database. For this purpose,
the BSM descriptors previously computed are used to compute the distance between
each clef (using the Euclidean distance and the k-NN classifier). The BSM features
have been chosen (instead of the DTW-based features) because the segmented clefs
in the symbol detection step usually have important noise and gaps (the DTW-based
features are more sensible than the BSM features to this kind of distortions).

Then, the combination of the classification results of all the clefs (belonging the
same music sheet) is performed so that each clef gives votes to the class of its nearest
neighbor clefs of the training. This process has the following steps. First, each test
clef is compared to the clefs of the training set using the k-NN classifier. For each
clef, a list of the k nearest neighbor clefs is obtained, and sorted so that the first
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candidate is the nearest neighbour of all. Then, the first ranked clef adds k votes to
its corresponding class, the second nearest neighbor clef gives k− 1 votes to its class,
and this process is repeated until the last candidate adds one vote to its corresponding
class. After the voting performed for each clef belonging to the music page, the test
music score will be classified as the class which has received the maximum number of
votes.

It must be said that if an input clef has no nearest neighbors in the database
(the distance to all the BSM descriptors is higher than the value set in the training
step), then, it is discarded, and consequently, it can not vote. In this way, the
symbols that could be wrongly accepted as clefs (false positives), could be detected,
and consequently, rejected from the voting stage.

5.5 Results

We have tested our method in a data set composed of 160 music sheets. They have
been obtained from a collection of music scores of the 17th, 18th and 19th centuries,
from two archives in Catalonia (Spain): the archive of Seminar of Barcelona and the
archive of Canet de Mar. The data set contains 10 pages for each one of 16 different
writers. Although we have performed a database of 10 pages for each one of the 20
different writers (which is described in the Appendix), we have decided to discard 4
writers for this experiment, because they contain music sheets without any clef (see
Fig.5.2) or because they use to write only one clef for each page (not being enough
for a good classification).

Figure 5.2: Example of an old score without any music clef.
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After the preprocessing of each music sheet (in which it is binarized, deskewed
and staff lines are removed), the symbol detection technique above described has
been applied to extract the music clefs. In the learning stage of the detection process,
the parameters for the BSM and the DTW-based method have been trained. As a
result, the grid size for the BSM descriptor has been set to 25, and 7 features are used
( the upper and lower profile, and 5 zones) for the DTW-based method.

The results of the clef-detection method applied to this database are shown in
Table 5.2. The retrieved value corresponds to the number of symbols that have
been detected as clefs using the symbol detection method. The true positive value
indicates the number of retrieved clefs that are real clefs, whereas the false positive
value indicates the wrongly detected clefs. Finally, the false negative value indicates
the number of clefs that are missed. The database has 160 music sheets with a total
of 733 music clefs. The method has correctly detected 592 clefs, has missed 141 clefs
(false negatives), and has wrongly detected 697 regions as clefs (true positives). Thus,
the detection rate is 81.6% (598/733), the false positive rate is 54% (697/1292) and
the false negative rate is 19.2% (141/733). Having a look at this results, we can affirm
that although the detection rate is acceptable, there is an important rate of missed
clefs and false positives.

Concerning the false positive rate (over the 50%), in the classification step, the
most part of these false negatives will find no nearest neighbor, and will not be allowed
to participate in the voting. After examining the missed clefs, we can see that most of
the missed clefs are the result of a bad segmentation, with important noise and gaps.
These segmentation problems are due to the binarization and staff removal stages
applied to documents with an important degree of degradation.

As an example, Figure5.3(a) shows two badly segmented clefs (with gaps) and
the corresponding manually segmented clef (Fig.5.3(b)); and Figure.5.3(c) shows two
badly segmented clefs (with noise from the staff lines) and the corresponding manually
segmented clef (Fig.5.3(d)).

(a) (b) (c) (d)

Figure 5.3: Examples of segmented clefs. (a) Segmented treble clefs with gaps and
the corresponding ideal segmented clef (b). (c) Segmented noisy bass clefs and the
corresponding ideal segmented clef (d).

Concerning the writer identification experiments, we use 5-fold cross validation.
We have used 5 test subsets, randomly chosen, containing one page per writer. For
the BSM descriptor, the grid size with value 25 has been used. For each test subset or
16 images, the remaining 144 images are used for training. The classification has been



5.6. Conclusions 93

Writer # Positives # Retrieved # True Pos. # False Pos. # False Neg.

1 16 36 15 21 1

2 73 145 70 75 3

3 63 78 42 36 21

4 70 87 54 33 16

5 34 29 22 4 12

6 65 68 56 12 9

7 70 96 65 32 5

8 31 37 22 15 9

9 57 70 53 17 4

10 23 83 14 69 9

11 67 103 51 52 16

12 55 114 36 78 19

13 45 79 43 36 2

14 13 47 12 35 1

15 15 54 14 39 1

16 36 166 23 143 13

Total 733 1292 592 697 141

Table 5.1: Symbol Detection Results: For each writer, the number # of retrieved
regions, true positives, false positives and false negatives are shown.

performed using a k-Nearest Neighbor (k-NN) classifier based on Euclidean distance
and cross validation, with the voting step previously described. We have used k = 3
and k = 5 for the k-NN, obtaining the same results. Table 5.2 shows the writer
identification rates of each writer and for each set. Notice that each set contains only
1 page per writer, so the identification values can only be 0% or 100%. One can
see that there are 12 writers with a 100% of identification rate, two writers with one
wrong-classified pages, and 2 writers have two wrong-classified pages.

As a summary, the overall writer identification rate is 92.5% with these 16 writers.
Although the database has a low number of writers, and the detection and segmen-
tation of clefs should be improved, results show that this method is very promising.

5.6 Conclusions

In this Chapter we have analyzed and discussed the characteristic properties of the
handwriting style for music notation, concluding that the music clef is a very good
choice for discriminating the different writers. Afterwards, we have proposed a symbol-
dependent writer identification method based on the shape or music clefs. It has been
performed using a cascade of two classifiers for saving computational cost time. The
classifiers are based on the computation of the BSM descriptor and the DTW-based
features, which are fully described in the previous Chapters. After detecting and
segmenting the clefs, the classification is performed using a non-supervised approach,
in which the clefs belonging to the test music pages are compared to the clefs from
the training music sheets.
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Writer Set 1 Set 2 Set 3 Set 4 Set 5 Average
1 100% 100% 100% 100% 100% 100%
2 0% 0% 100% 100% 100% 60%
3 100% 100% 100% 100% 100% 100%
4 100% 100% 100% 100% 100% 100%
5 100% 100% 100% 100% 0% 80%
6 100% 100% 100% 100% 100% 100%
7 100% 100% 100% 100% 100% 100%
8 100% 100% 100% 0% 100% 80%
9 100% 100% 100% 100% 100% 100%
10 100% 100% 100% 100% 100% 100%
11 100% 100% 100% 100% 100% 100%
12 100% 100% 100% 100% 100% 100%
13 100% 100% 100% 100% 100% 100%
14 100% 100% 100% 100% 100% 100%
15 100% 0% 100% 0% 100% 60%
16 100% 100% 100% 100% 100% 100%

Overall 93.75% 87.5% 100% 87.5% 93.75% 92.5%

Table 5.2: Classification Results: Writer identification rates for the 16 writers.

Concerning the clef-detection technique, results show that although there is an
important amount of false positives, and a small set of false negatives, the retrieval
of clefs is enough accurate for the writer identification method. Results show the
good writer identification rate (92%) in a database of 16 writers and 160 music pages.
Although the method should be applied to a bigger database (in fact, some writers
have been discarded because of the limitations of these small database), the promising
results show that this method has a very high discriminatory power.

As a summary, we can affirm that the method is very promising. It must be said
that the performance of the proposed writer identification method is closely related
to the performance of the detection and segmentation of clefs. Thus, a more accurate
symbol-detection technique, will obviously increase the final writer identification rate.



Chapter 6

A Symbol-Independent Writer
Identification Approach based on
Features of Music Lines

The aim of writer identification is determining the writer of a piece of handwriting
from a set of writers. Contrary to the approach proposed in the previous Chap-
ter, we present here a symbol-independent approach for writer identification in old
handwritten music scores. The steps of the proposed system are the following. The
music sheet is preprocessed and normalized for obtaining single binarized music lines,
without the staff lines. Afterwards, 98 features are extracted for every music line,
which are subsequently used in a k-NN classifier that compares every feature vector
with prototypes stored in a database. The proposed method has been tested on a
database of old music scores from the 17th to 19th centuries, achieving encouraging
identification rates.

6.1 Introduction

Writer identification is focused on the identification of the author of a piece of hand-
writing from a set of writers. Traditionally, the off-line approaches for writer identifi-
cation in text documents can be divided in text-dependent and text-independent. In
the first group of methods, the meaning of the text is known, whereas in the second
one, the writer identification can be performed without recognizing any words. One
of the aims of this work consists in extending the second approach to music scores,
obtaining a symbol-independent method.

As it has been commented in the Introduction, the identification of the author of
a handwritten document in terms of graphical information is still a challenge. In the
previous Chapter, a symbol-dependent method has been proposed, which detects and
recognizes the music clefs and performs writer identification in music scores based
on the shape descriptors computed from each clef. As it has been concluded in the
previous Chapter, the performance of the method is related to the performance of the
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detection and segmentation of clefs. The more accuracy in the clef-spotting technique,
the higher performance of the writer identification method.

In this Chapter and in the following one, we study the adaptability of some existing
writer identification approaches for text documents to music scores. The objective
is to adapt two approaches which have successfully been used for performing writer
identification in text documents. The first one consists in using features extracted
from text lines [HB03], and the second one consists in extracting features from texture
images [STB00].

In this Chapter we present the first off-line symbol-independent proposal for per-
forming writer identification in musical scores, which avoids the recognition of the
elements in the score. Some authors (see [STB00], [BS06], [SB08]) claim that writer
identification in handwritten text documents can be performed without recognizing
any words, i.e., with the meaning of the text being unknown. In the present Chap-
ter, this assumption is extended to music scores. Consequently the system will be
faster and more robust, avoiding the dependence on a good music recognizer. In fact,
we have adapted part of the writer identification approach described by Hertel and
Bunke in [HB03] to old musical scores, where instead of letters of the alphabet, music
symbols are analysed.

The remainder of this Chapter is structured as follows. In the next section the
preprocessing steps are presented, in which the music score is binarized, staffs are
remove and the music line is normalized. In Section 3 the feature extraction approach
is described, in which 98 features are computed from basic measures (such as slant,
width of the writing), compounding primitives, contours and fractals. In Section 4
some feature set search methods are described. Experimental results are presented in
Section 5. Finally, Section 6 concludes the Chapter.

6.2 Preprocessing

The preprocessing phase consists in binarizing the image, removing staff lines and
normalizing the musical lines. Every output file contains the musical notation of one
staff line. The process is described in the following subsections.

6.2.1 Binarization and Staff removal

The input gray-level scanned image (at a resolution of 300 dpi) is first binarized with
the adaptive binarization technique proposed by Niblack [Nib86]. Then, filtering
and morphological operations are applied to reduce noise. Afterwards, the image is
deskewed in order to make the recognition of staff lines easier. For this purpose, the
Hough Transform method is used to detect lines and obtain the orientation of the
music sheet. Then the image is rotated if necessary.

For writer identification, the staff lines are useful only if they are drawn by hand.
In most of the music sheets of our database, however, they are printed. For that
reason, staff lines are removed from the score. The extraction of staff lines (even if
they are printed) is difficult because of paper degradation and the warping effect. For
that reason, a robust system for detecting staffs is required, coping with distortions
and gaps in staff lines. The steps for staff removal are the following. Firstly, a
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coarse staff approximation is obtained using horizontal runs as seeds to detect a
segment of every staff line. This approximation is computed by applying median
filters (with a horizontal mask) to the skeleton of the image. Remaining are only staff
lines and horizontally-shaped symbols. Afterwards, staff lines are reconstructed, and
each segment is discarded or joined with others according to its orientation, distance
and area. Secondly, a contour tracking process is performed from left to right and
right to left, following the best fitting path according to a given direction. In order
to cope with gaps in staff lines and to avoid deviations (wrong paths) in the contour
tracking process, the coarse staff approximation above described is consulted. Finally,
those segments that belong to the staff lines (their width is similar to the average of
the width of staff lines, which has been computed previously) are removed. For further
details, see Chapter 8, in which the application scenario is described.

6.2.2 Normalization

The information about location of staff lines previously obtained is used for segment-
ing the music sheet into lines. Afterwards, the lines must be aligned with respect to
a horizontal reference line. This step will be called normalization.

The normalization typically performed in handwritten text can not be applied
here, because in musical scores, the height of every music line will vary depending
on the melody of the composition. In music notation, notes are located upper or
lower in the staff for reaching higher or lower frequency. Therefore, melodies with
both treble and bass notes will result in a line with a larger height. This fact can be
confusing for the writer identification system, which could wrongly identify heights
of large extend in lines (melodies with bass and treble notes) as a typical feature of a
specific writer. For that reason, the music notes must be rearranged with respect to a
horizontal reference line. Thus, the normalization step computes the centroid of every
connected component of the line, and uses this centroid for aligning the component
with an horizontal reference line (see Fig.6.1).

Figure 6.1: Preprocessing step: Original music line in gray scale, binarized music
line (without staff lines), and normalized line, in which all the music symbols are
aligned in respect to a horizontal line.

For the obtention of the music line that will be used for the computation of fea-
tures, our first option consisted in generating as many music lines as staffs are drawn
in the music sheet. Thus, each music staff line was preprocessed, normalized and
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stored as a music line. Using this option the number of staffs in each music sheet
will indicate the number of music lines that will be generated. But, with this option
one can easily introduce noise to the writer identification classifier, because it has
been noticed that some music sheets contain short staffs. In this cases, each music
line do not contain enough music symbols to compute reliable features, because small
differences usually create outlier values as features, and will consequently confuse the
classifier.

For avoiding this problem, each music page will generate exactly three music lines,
independently of the number of music staff lines that it contains. We have generated
three lines after revising the amount of music symbols that usually appear in the
music sheets. With this option, after the preprocessing and normalization steps, all
the music lines will be joined in one single music line. Afterwards, this long music
line will be split in three equal parts, which will be the three input music lines for the
features extraction stage (see Fig.6.2).

Figure 6.2: Obtention of the three music lines for each page. Once the staff lines
are removed, each music line is normalized and joined in a single music line. Then,
this line is split in three lines which will be stored as the input music lines.
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6.3 Feature Extraction

Once the musical score is transformed into normalized handwritten individual music
lines, 98 features are computed for every line. Previous work by Hertel and Bunke
[HB03] was performed for writer identification in handwritten text documents, in
which 100 features where extracted. These features include basic measures (such as
slant and width of the writing), connected components, enclosed regions, lower and
upper contour of the line and fractal features.

The basic idea is to use 98 of the 100 Hertel’s features, adapting them to music
lines, within the specific normalization described in the previous section. The two
features that have been deleted in our approach are the enclosed regions measures,
which measure the roundness of the loops. These measures are very useful in hand-
written text, because closed loops can be of circular, elliptical or rectangular shape,
depending on the writing style. For this reason, the shape of the loops is useful, thus
the two features are consequently added to the set of features defined for writer identi-
fication in text documents. Contrary, the probability of finding closed loops in music
notation is low. In fact, just a few number of music symbols contain loops (e.g. whole
and half note or accidentals), and in addition, they are not frequent. Consequently,
these symbols appear only in a small subset of music lines, and for this reason, they
can not be used for writer identification in music scores.

A brief description of the features extracted is given below. For a full description
we refer to [HB03] and [MMB01].

6.3.1 Basic Measures

The basic features taken into account are the following: the writing slant, the height
of the main three zones and the width of the writing.

For obtaining the slant angle, the contour of the writing is computed and an angle
histogram is created by accumulating the different angles along the contour. All
angles are weighted by the length of the corresponding line. From the histogram, the
mean and standard deviation are computed.

The three writing zones are called the UpperZone, the MiddleZone and the Low-
erZone. They are determined by the top line, the upper baseline, the lower baseline
and the bottom line. To determine these lines, a horizontal projection of the music
line is computed, and an ideal histogram with variable position of the upper baseline
and the lower baseline is matched against this projection. Then, the following ratios
(for avoiding absolute values) are used as features: U/M , U/L and M/L, where U is
the height of the UpperZone, M is the height of the MiddleZone and L is the height
of the LowerZone.

The width of the writing is obtained by selecting the row with most black-white
and white-black transitions. Here, and for avoiding outliers, the median ml of the
lengths of every run is computed. Finally, this value is used for obtaining the ratio,
M/ml (where M is the height of the Middlezone), which will be used as a feature.
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6.3.2 Connected Components

Some authors write musical notes in a continuous stroke while others break it up
into a number of components. Thus, from every binary image of a line of music,
connected components are extracted. Then, the average distance between two suc-
cessive bounding boxes is computed. The system computes the average distance of
two consecutive connected components and also the average distance between the el-
ements belonging to the same connected component. Moreover, the average, median,
standard deviation of the length of the connected components are used as features.

6.3.3 Lower and Upper Contour

A visual analysis of the upper and lower contours of the music lines reveals that
they differ from one writer to another. Some writings show a rather smooth con-
tour whereas others are pointed with more peaks, being useful information for writer
identification.

For selecting the lower and the upper contour of a line, gaps must be removed,
and discontinuities in the y-axis are eliminated by shifting these elements along the
y-axis. Once the continuous lower and upper contour (called characteristic contours)
are obtained, the following features are extracted: slant of the characteristic contour
(obtained through linear regression analysis), the mean squared error between the
regression line and the original curve, the frequency of the local maxima and minima
on the characteristic contour (if m is the number of local maxima and l is the number
of local minima, then the frequency of local maxima is m/l and the frequency of
local minima is l/m), the local slope of the characteristic contour to the left of a
local maximum within a given distance, and the average value taken over the whole
characteristic contour. The same features are computed for the local slope to the
right of a local maximum, and the same for local minima to the right and to the left.

6.3.4 Fractal Features

The idea proposed in [BVSE97],[BVSE98] is to measure how the area A of a hand-
written line grows when a morphological dilation operation is applied on the binary
image. The line is first thinned, and the dilation is performed using different kernels
(disks of radius η for obtaining information invariant to rotation).

For each of this kernels, the area A(Xη) of the dilated writing Xη is measured.
The fractal dimension D(X) is defined by:

D(X) = lim
η→0

(2− lnA(Xη)
ln η

) (6.1)

Then, we obtain the evolution graph plotting the behaviour of y over x (see
Fig.6.3):

x = ln η; y = lnA(Xη)− ln η (6.2)

Afterwards, this function is approximated by three straight lines (see Fig.6.3).
The points p1, ..., p4 are found by minimizing the square error between the three line
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segments and the points of the evolution graph. Finally, the slopes of these three
characteristic straight line segments are computed and used as features.

In addition to three disks kernels, 18 ellipsoidal kernels are used for getting in-
formation about the rotation in the writting style. These ellipses are defined with
increasing the length of the ellipse’s two main axes and the rotation angle. Thus, a
total of 63 (=21x3) features are extracted.

Figure 6.3: Fractals: Approximation of the evolution graph by three straight lines
(extracted from [MMB01]).

6.4 Feature Selection

In [SKB05] the suitability of the 100 Hertel’s features has been analyzed, because
some of them could be unnecessary or even redundant. The goal of feature selection
is to find the best subset of features that perform better than the original ones, and
also, results in a more efficient classifier.

One very well know technique is the Feature Set Search, which looks for the best
subset of features for classification. In [Kit78] and [PJJ94] four Feature Set Search-
ing techniques are described: Sequential Forward Search (SFS), Sequential Backward
Search (SBS), Sequential Floating Forward Search (SFFS), Sequential Floating Back-
ward Search (SFBS).

SFS starts with an empty set of features, and at each step one single feature is
added to the set. The feature chosen is the best classifying feature from the remaining
set of features. Contrary, SBS starts with the full set of features, and removes one
feature so that the new reduced set of features yields a higher writer identification
rate. SFBS and SFFS are an improvement of SFS and SBS, adding the ability to do
backtracking. The set of features can be incremented or reduced by one feature at
each time, changing dynamically the number of features in the set, thus floating up
and down. SFBS starts with the empty set of features, whereas SBS starts with the
full set of features.
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6.5 Experimental Results

We have tested our method in a data set consisting of 200 music sheets. They have
been obtained from a collection of music scores of the 17th, 18th and 19th centuries,
from two archives in Catalonia (Spain): the archive of Seminar of Barcelona and
the archive of Canet de Mar. This database is fully described in the Appendix. An
example of an old score can be seen in Figure 6.4. The data set contains 10 pages for
each one of 20 different writers. For each page, we generate 3 music lines, obtaining
a database of a total of 600 music lines (3 music lines x 10 pages x 20 writers). The
music lines are obtained through the preprocessing steps described above, and the
vector of 98 features is computed for every music line.

Figure 6.4: Example of an old score of the composer Casanoves.

For the experiments, we have used 5 test subsets, randomly chosen, containing one
page per writer. This means that all the three music lines obtained from every page
are used in the test set. Due to the importance of the obtention of independent test
subsets, all the three lines obtained from one music page belong to the same subset.
For each test subset or 60 images, the remaining 540 images are used for training.
The classification has been performed using a k-Nearest Neighbor (k-NN) classifier
based on Euclidean distance and cross validation.

As it has been said, the three music lines that belong to the same music sheet
should be only assigned to one class. Concerning the combination of the classification
results of these three lines, in the experimental results, the Majority Voting and Borda
Count combination methods are compared to the base one, in which no combination
is performed, and for each page, the three music lines could be assigned to different
writers. The reader is referred to Chapter 8 (the Application scenario), in which these
combination methods are explained.

In Table 6.1 the writer identification results for an increasing set of writers are
shown. From the database, the first 5 writers have been selected, and the classification
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rates have been obtained for different values of k-NN and different combination of
the results obtained from the classification of the three music lines per page (None,
Majority Voting and Borda Count). Iteratively, 5 writers have been added to the
database, and the experiments have been repeated. It can be seen that 3-NN and
5-NN obtain in most cases the better recognition rates. Results using Majority Voting
or Borda Count are better than results using no combination at all. Concerning the
scalability of the method, in the best cases, the recognition rate of 84% for 5 writers
decreases to 76% for 20 writers, showing that the method has a good scalability
degree.

W.I.Rate Combination 1-NN 3-NN 5-NN 7-NN 9-NN
5 writers None 77.3% 77.3% 77.3% 73.3% 74.6%
5 writers Majority Voting 76% 84% 76% 72% 76%
5 writers Borda Count 76% 84% 84% 72% 72%
10 writers None 75.9% 75.3% 72% 68% 66%
10 writers Majority Voting 82% 80% 74% 68% 70%
10 writers Borda Count 82% 80% 76% 72% 70%
15 writers None 71.1% 69.3% 69.7% 69.3% 68.8%
15 writers Majority Voting 76% 78.6% 74.6% 70.6% 73.3%
15 writers Borda Count 76% 77.3% 73.3% 73.3% 73.3%
20 writers None 69.6% 70.6% 68.3% 68.6% 68.6%
20 writers Majority Voting 74% 76% 74% 71% 73%
20 writers Borda Count 74% 75% 75% 73% 73%

Table 6.1: Classification Results: Writer identification rates using 98 line features
for different database sizes and different combination of results.

Concerning the SFS, SBS, SFFS and SFBS experiments, wrappers are used as
objective function, where one of the five subsets is used as the test set and the others
as prototypes in the 5-NN classifier. To evaluate the fitness of a selected feature
subset, iteratively three subsets are used in the classifier and the remaining set is used
to measure the fitness of the feature subset under consideration. Once the algorithm
finds the best feature subset, the fifth subset is used for the final writer identification
rate. In Table 6.2 results of feature selection algorithms are shown for the dataset of
20 writers. The first row shows the baseline rate (with a 76% or identification rate),
where all the features are used for the classification. The next ones show the writer
identification rates using SFS, SBS, SFFS and SFBS feature set search methods.

It is important to remark that results show that they do not improve the baseline.
In fact, the SFS and SBS obtain about 65% of identification rate, which is remarkably
lower that 76%, probably because the methods reach some local minima or maxima
and cannot improve the final identification rate. In fact, in the SFS method, when a
feature Y is selected, it will be for sure in the final solution set. In a similar way, if a
feature Z is removed from the set in the SBS, it will never be considered again. For
this reason, SFFS and SFBS reach higher identification rates (70% and 75%), because
a feature W can be added and removed several times from the set of features during
the training step.
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It must be said that, although they do not reach any improvement over the baseline
(SFBS reaches 75% which is similar than 76% of the baseline rate), the dimensionality
reduction is significant (from the 98 features of the baseline to the 20 features selected
with SFBS). This fact shows that there are many dependent or irrelevant features in
the original feature set, giving us the possibility to select a subset for obtaining similar
results in this database. This is related to the course of dimensionality, showing that in
classification domains, the number of features is not related to the final classification
rate, because there is a moment in which the increasing number of features (and
consequently, an increasing of the dimension), instead of helping in the classification,
they introduce noise and more confusion in the classes.

W.I.Rate Combination N. of Features 3-NN 5-NN
All Features None 98 70.6% 68.3%
All Features Majority Voting 98 76% 74%
All Features Borda Count 98 75% 75%

SFS None 43 60% 58.3%
SFS Majority Voting 43 65% 60%
SFS Borda Count 43 65% 60%
SBS None 54 65% 58.3%
SBS Majority Voting 54 60% 65%
SBS Borda Count 54 65% 60%

SFFS None 35 65% 66.6%
SFFS Majority Voting 35 70% 70%
SFFS Borda Count 35 70% 70%
SFBS None 20 66.6% 68.3%
SFBS Majority Voting 20 70% 75%
SFBS Borda Count 20 75% 75%

Table 6.2: Classification Results: Writer identification rates for 20 writers using
Feature Set Search methods.



6.6. Conclusions 105

6.6 Conclusions

In this Chapter we have presented a symbol-independent method for writer identifica-
tion in musical scores. The steps of the system are the following. In the preprocessing
step, the image is binarized, de-skewed, staffs and removed and the lines of music sym-
bols are normalized. Afterwards, 98 features (slant, connected components, upper and
lower contours, and fractals) are computed. Finally, the classification is performed
using the k-Nearest Neighbour method, and several combinations of results, so that
all the music lines belonging to the same music sheet are classified to the same class.

Experimental results show that the method has obtained promising results, with
a good scalability degree. Concerning the combination methods, the Borda Count
obtains a identification rate of 75%, whereas the Majority Voting obtains a identi-
fication rate of 76%. This results show that there is not a significant improvement,
and both combination methods can be used. In the same way, there is no significant
improvement between the 3-NN and 5-NN classification method, being both values
suitable for this method. Although Feature Set Search methods show that some of the
98 features are redundant or irrelevant. It must be said that these selected features
are specific to this database, and the results could potentially be quite different for
other datasets. In the same way, the use of other feature set search of combination
methods could obtain different results.

A second symbol-independent writer identification method will be described in
next Chapter, based on the extraction of features from music texture images.
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Chapter 7

A Symbol-Independent Writer
Identification Approach Based on
Features from Texture Images

As a continuation of the previous Chapter, we present another blind-approach for
writer identification in old handwritten music scores. It is an adaptation of the
textural approach used for writer identification in text documents described by
Said[STB00]. The steps of the proposed system are the following. First of all, the
music sheet is preprocessed for obtaining a music score without the staff lines. After-
wards, five different methods for generating texture images from music symbols are
applied. Every approach uses a different spatial variation when combining the music
symbols to generate the textures. Finally, Gabor filters and Grey-scale Co-ocurrence
matrices are used to obtain the features. The classification is performed using a k-NN
classifier based on Euclidean distance. The proposed method has been tested on a
database of old music scores, achieving promising identification rates.

7.1 Introduction

In the previous Chapter we presented an approach for writer identification using 98
features extracted from music lines. Those features were derived from connected
components, contours, fractals and basic measurements. The experimental results
using those local features were quite good, but in some cases a single music line has
not enough information to identify the writer correctly. In this Chapter we propose
the use of textural features, because they are able to represent the music score globally
rather than focusing on a set of predefined local features.

Textures provide important characteristics for object identification, playing an
important role in image analysis and pattern classification [TJ98], [Har79]. Tex-
ture classification has been used in applications such as biomedical image processing,
content based image retrieval, the analysis of satellite images, etc. As it has been

107
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commented in Chapter 2, some authors ([STB00], [GBA07], [HS08]) treat writer iden-
tification as a texture identification problem. They first generate a uniform texture
from text lines, and then, they compute textural features. Some works ([ZTW01],
[HS08]) demonstrate that these features can been also used for script and language
identification. Concretely, Peake and Tan [PT97] propose the generation of texture
images from printed text for script and language identification. The method uses
Gabor filters and grey level co-ocurrence matrices as textural features, and classifies
with the k-NN classifier. In [STB00], texture images are generated from handwritten
text for writer identification. These approaches demonstrate that textural features
can be successfully used for writer and script identification.

In the current Chapter we have adapted part of the writer identification approach
described by Said et al. in [STB00] to old musical scores, where instead of words,
music symbols are used for generating textures, and consequently, textural features
can be computed for the identification of the writer. After the preprocessing of the
music sheet, five different approaches have been applied for the generation of image
textures with music symbols. Once we have the music textures, textural features can
be computed. In principle, any textural feature can be applied to texture images. In
this work we propose the computation of Gabor filters and Gray-Scale co-ocurrence
matrices (GSCM). Finally, the classification is performed using the k-NN classifier,
and some feature selection methods are used to increase the writer identification rates.

The remainder of the Chapter is structured as follows. In the next section the
preprocessing and the generation of textures are presented, and in Section 3 the
feature extraction approach is fully described. Experimental results are presented
and discussed in Section 4. Finally, Section 5 concludes the Chapter.

7.2 Preprocessing and Generation of Textures

The preprocessing phase consists in binarizing the image, removing staff lines and
generating the texture images from music notes. The process is described next.

7.2.1 Binarization and Staff Removal

First of all, the input gray-level scanned image (at a resolution of 300 dpi) is bina-
rized (with the adaptive binarization technique proposed by Niblack [Nib86]), and
filtering and morphological operations are applied to reduce noise. Then, the im-
age is deskewed using the Hough Transform. Afterwards, the staff lines are removed,
because they are usually printed, and consequently, they are not useful for writer iden-
tification. The staff removal process must cope with paper degradation, the warping
effect, distortions and gaps. The method proposed consists in obtaining a coarse
approximation of the staff lines applying median filters with a horizontal mask and
then reconstructing the staff joining these segments. Afterwards, a contour tracking
process is used for following and removing every staff line, taking into account the
coarse approximation when gaps are appearing. For further details, see Chapter 8,
where the complete application is described.
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7.2.2 Generation of Music Textures

Once the music symbols have been segmented, the image of music symbols is used for
generating texture images. It must be said that textural features directly applied to
the music score without staff removal are not effective, because the frequency of the
staff lines affects to the values of the textural features.

We have applied five different methods for obtaining the texture images. Each
method is characterized by a different spatial variation when combining the music
symbols to generate the textures. In all cases, the size of the texture image is of
2048x2048 pixels. The following five different methods for obtaining the textures
have been applied:

1. Basic Texture: It consists in taking all the music symbols obtained after the
staff removal step, without any other processing (see Fig. 7.1). In this way, the music
symbols appear in the same order than in the music score, keeping the inter-symbol
distance. It can be seen as a squarish piece of handwriting extracted from the music
sheet.

(a) (b) (c)

Figure 7.1: Basic texture images generated from music lines of three different writ-
ers. (a) Writer 1, (b) Writer 2, (c) Writer 3.

2. TextLine Texture: It consists in taking randomly music symbols and putting
them in a reference line, with the same inter-symbol distance (see Fig. 7.2). In this
way, if the music score contains a group of the same kind of music symbol (i.e. quarters
or rests), they will be randomly distributed over the texture, achieving texture inde-
pendence of the rhythm. In addition, the image texture will contain more symbols,
resulting in a more dense texture.

3. Random Texture: It consists in taking randomly music symbols and putting
them in random locations of the image, (see Fig. 7.3). In this way, not only the music
symbols are randomly chosen, but also they are randomly distributed along the image.
In this way, the high frequencies (the horizontal distribution of symbols) that interfere
in the representation space of the Basic and TextLine textures are avoided.
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(a) (b) (c)

Figure 7.2: TextLine texture images generated from music lines of three different
writers. (a) Writer 1, (b) Writer 2, (c) Writer 3.

(a) (b) (c)

Figure 7.3: Random texture images generated from music lines of three different
writers. (a) Writer 1, (b) Writer 2, (c) Writer 3.

4. AspectRatio Texture: It consists in taking the idea of TextLine texture, but
making all the symbols of equal size (see Fig. 7.4). For every symbol that must be
resized, its aspect ratio will be maintained. The main purpose is to avoid gaps in the
texture, obtaining a higher density of the texture.

5. Resize Texture: It consists in the same idea as AspectRatio Texture, but
without the preservation of the aspect ratio in the resizing process (see Fig. 7.5). In
this way, the appearance of the symbol is distorted (symbols are taller comparing to
the original shape).
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(a) (b) (c)

Figure 7.4: AspectRatio texture images generated from music lines of three different
writers. (a) Writer 1, (b) Writer 2, (c) Writer 3.

(a) (b) (c)

Figure 7.5: Resize texture images generated from music lines of three different
writers. (a) Writer 1, (b) Writer 2, (c) Writer 3.

Notice that the first two approaches generate texture images that look like a music
score, whereas the last three approaches generate more compact and synthetic texture
images. In fact, the AspectRatio texture has the inconvenient of creating some big
black areas, because small compact music symbols (such as dots and half rests) are
extremely enlarged. It is important to remark that in all texture images, the three
writers can be easily distinguished one from each other. Having a look at the resulting
texture images (see Figures 7.1, 7.2, 7.3, 7.4, 7.5), one can see that the writer 1
tends to use more curves than straight lines, writer 2 tends to write in a rectilinear
way (a lot of straight lines), and writer 3 tends to write with an important slant
degree.
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7.3 Feature Extraction from Textures

Once we have the images of music textures, textural features can be computed. In
[STB00] and [PT97], texture images are generated from text, and from these tex-
ture images one can obtain textural features. We have been inspired by this idea,
generating music texture images for being able to extract textural features.

Next we describe the textural features which are computed in our approach: Gabor
features and Gray-Scale co-ocurrence matrices.

7.3.1 Gabor Features

The multi-channel Gabor filtering technique [Tan92] can be seen as a window Fourier
Transform in which the window function is Gaussian. This technique is based on
the psycophysical findings that affirm that the processing of pictorial information
in the human visual cortex involves a set of parallel and quasi-independent cortical
channels. Every cortical channel can be modeled by a pair of Gabor filters he(x, y; f, θ)
and ho(x, y; f, θ). These filters are of opposite symmetry and are computed as:

{
he(x, y; f, θ) = g(x, y)cos(2πf(xcosθ + ysinθ))
ho(x, y; f, θ) = g(x, y)sin(2πf(xcosθ + ysinθ)) (7.1)

where g(x, y) is a 2D Gaussian function, the central frequency is f , and θ corre-
sponds to the orientation which define the location of the channel in the frequency
plane. Afterwards, the Fourier transform (FFT) of the filters are computed as:

{
qe(x, y) = FFT−1 [P (u, v)He(u, v)]
qo(x, y) = FFT−1 [P (u, v)Ho(u, v)] (7.2)

where P (u, v) is the Fourier Transform of the input image p(x, y) and He(u, v)
and Ho(u, v) are the Fourier Transform of the filters he(x, y; f, θ) and ho(x, y; f, θ);
respectively. Finally, we perform a combination of the two filters, and a single value
at each pixel is obtained:

q(x, y) =
√
q2
e(x, y) + q2

o(x, y) (7.3)

For the computation of features, we have to define the angle θ and the central
frequency f , which specify the location of the Gabor filter on the frequency plane. In
[Tan96], it has been shown that for an image of size NxN , the important frequency
components are found within f ≤ N/4 cycles/degree. For this reason, the two param-
eters used are the radial frequency with values f = {4, 8, 16, 32} and the orientation
with values θ = {0o, 45o, 90o, 135o}. The output corresponds to 4x4 = 16 images.
Extracting the mean and the standard deviation we obtain a total of 16x2 = 32
features.
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7.3.2 GSCM features

Some authors [TJ98], [HSD73] maintain that the neighbourhood properties can also
represent a texture. In this sense, the grey level co-occurrence and their distribution
in the pixel neighbourhood reflect the local activities of a texture, being one of the
useful neighbourhood properties used for texture description. They estimate image
properties related to second-order statistics, allowing the discrimination of one texture
from another. Haralick [HSD73] proposes the use of Grey-Scale Co-ocurrence Matrices
(GSCM), which describe the pair of grey levels with special distance and special
orientation. Although this method considers only the spatial distribution of each pair
of grey level pixels, it has become a popular technique for characterizing grey scale
textures (see [PT97]).

If an image contains N grey levels, for every distance d and angle θ we obtain a
matrix NxN defined as GSCMd,θ, where GSCMd,θ(a, b) corresponds to the number
of pairs (P1, P2) where P1 is of grey value a, P2 is of grey value b, and P1 and P2
are separated by distance d and angle θ. Whereas GSCM are of a high computational
cost for grey level images, they are fast to compute for binary images, because there
are only two grey values.

The parameters used in our method are the distance d with values d = {1, 2, 3, 4, 5};
and the orientation θ = {0o, 45o, 90o, 135o}. The output corresponds to 20 matrices
of dimension 2x2, and due to the diagonal symmetry, there are only 3 independent
values in each matrix. In total we obtain 20x3 = 60 features.

7.4 Experimental Results

We have tested our method with 200 music pages from 20 different writers, where
every writer has written 10 pages. The music pages coincide with the ones used
for evaluating the writer identification method based on line features, and are fully
described in the Appendix. Due to the large amount of symbols on every music
page, three different texture images can be generated for each music page, obtaining
a database of 20x10x3 = 600 music textures.

For the experiments, we have used 5 test subsets, randomly chosen, containing one
page per writer. This means that all the three music textures obtained from every
page are used in the test set. Due to the importance of the obtention of independent
test subsets, all the three textures generated from one music page belong to the same
subset. For each test subset or 60 images, the remaining 540 images are used for
training. The classification has been performed using a k-Nearest Neighbor classifier
based on Euclidean distance and cross validation. Due to the fact that every music
page generates three texture images, the three texture images should be assigned to
only one class. For this reason, the experiments show the no combination of results
(the three textures of a same page could be assigned to different classes) and also the
combination of the classification results using the Majority Voting and Borda Count
methods. These combination methods have been described in Chapter 8.

In Table 7.1 the writer identification rates (w.i.r.) for the Basic, Textline, Random,
AspectRatio and Resize textures are shown. We can see the results for different values
of k = 3, 5, 7 for the Nearest Neighbor, and also with the Borda Count method for
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the combination of classification results. Notice that in most of the cases, the Gabor
features obtain lower identification rates than the GSCM features (except for the
AspRatio textures). In addition, the combination of the Gabor and GSCM features
in one single vector (of 92 features) increases the final recognition rates only for the
Random and Resize textures. One can see that the Borda Count method usually
increases the final classification results (excepts in the TextLine textures), and in
most of the cases, the k = 5 value slightly increases the final classification rates.

Concerning the texture images used, Resize textures obtain the highest w.i.r. in
all the cases, reaching a 73% of w.i.r. using the combination of Gabor and GSCM
features. Random, Basic and AspectRatio textures reach lower identification rates
(58% of the Basic textures with GSCM, 59% with Random Features using GSCM and
Gabor features, and the 65% of AspRatio textures using Gabor features). Contrary,
the textures extracted using the TextLine method obtain in all cases the lowest rates
(under 50% or w.i.r).

Features # Combin. Basic TextLine Random A.Ratio Resize

Gabor 3-NN 32 None 46% 34% 44% 54% 59%

Gabor 5-NN 32 None 44% 34% 42% 56% 59%

Gabor 7-NN 32 None 45% 33% 44% 55% 62%

Gabor 3-NN 32 B. Count 53% 34% 54% 62% 67%

Gabor 5-NN 32 B. Count 53% 34% 54% 65% 64%

Gabor 7-NN 32 B. Count 54% 34% 53% 61% 66%

GSCM 3-NN 60 None 54% 47% 48% 46% 64%

GSCM 5-NN 60 None 53% 48% 48% 47% 64%

GSCM 7-NN 60 None 52% 49% 48% 46% 61%

GSCM 3-NN 60 B. Count 55% 45% 53% 58% 64%

GSCM 5-NN 60 B. Count 58% 45% 55% 55% 66%

GSCM 7-NN 60 B. Count 56% 46% 56% 53% 66%

Both 3-NN 92 None 54% 46% 50% 50% 67%

Both 5-NN 92 None 53% 45% 49% 53% 68%

Both 7-NN 92 None 52% 47% 47% 53% 68%

Both 3-NN 92 B. Count 54% 47% 53% 51% 70%

Both 5-NN 92 B. Count 55% 47% 59% 52% 73%

Both 7-NN 92 B. Count 56% 47% 59% 52% 71%

Table 7.1: Writer identification rates using Gabor and GSCM features for the five
methods applied for obtaining texture images. It shows the results with the combi-
nation of features using the Borda Count method, or without any combination.

As a summary, it can be said that the Resize Textures with the combination
of both Gabor ad GSCM features are the best choice, obtaining a 73% of writer
identification rate using Borda Count and the 5-NN classifier. Although this kind of
texture is performed by the distortion of music symbols, it is the most dense texture
image of the all five options. A Resize Texture has the highest number of symbols
for each texture image, and visually, the texture images belonging to the same writer
are very similar. As a consequence, the intra-class distance is reduced, helping in the
classification. In the following experiments, we will only use the Resize Textures.
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Concerning the scalability of the method, Table 7.2 shows the writer identification
rates of Resize Textures with the 92 textural features for different database sizes. It
is important to notice that the writer identification rate decreases significantly when
adding more writers to the database (from 96% with 5 writers to 73% with 20 writers)
because the different writer styles become very close. In fact, the confusion matrices
analyzed show that the disciples of the same musician (or that belong to the same
place and time period) tend to have a very similar writer style (see Figure 7.6).

W.I.Rate Combination 3-NN 5-NN 7-NN
5 writers None 93% 93% 89%
5 writers Majority Voting 96% 92% 88%
5 writers Borda Count 92% 92% 92%
10 writers None 81% 81% 82%
10 writers Majority Voting 86% 82% 80%
10 writers Borda Count 84% 84% 82%
15 writers None 67% 68% 69%
15 writers Majority Voting 71% 75% 71%
15 writers Borda Count 69% 73% 72%
20 writers None 67% 68% 68%
20 writers Majority Voting 73% 72% 71%
20 writers Borda Count 70% 73% 71%

Table 7.2: Classification Results or Resize Textures: Writer identification rates
using the 92 textural features (Gabor and GSCM) for different database sizes and
different combination of results.

(a) (b)

Figure 7.6: Resize texture images from two writers: Both texture images are very
similar although they belong to different classes.
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7.4.1 Results Using Feature Selection Methods

The suitability of the textural features has also been analyzed, because some of them
could be unnecessary or even redundant. The goal of feature selection is to find
the best subset of features that perform better than the original ones. As in the
experiments of the previous Chapter, we have performed the Sequential Forward
Search (SFS), Sequential Backward Search (SBS), Sequential Floating Forward Search
(SFFS), Sequential Floating Backward Search (SFBS) (see [Kit78], [PJJ94]). For the
experiments, wrappers are used as objective function, where one of the five subsets
is used as the test set and the others as the prototypes in the 5-NN classifier. To
evaluate the quality of a selected feature subset, iteratively three subsets are used
in the classifier and the remaining set is used to measure the quality of the feature
subset under consideration. Once the algorithm finds the best feature subset, the fifth
subset is used for the final writer identification rate.

In Table 7.3 results of Resize textures of feature selection algorithms are shown.
The first row again shows the baseline rate, and the next ones show the results using
SFS, SBS, SFFS and SFBS feature set search methods. It is important to remark
that they do not improve the identification results, although Majority Voting and
Borda Count are used to increase the final identification rate. This fact shows that
there are not many dependent or irrelevant features in the original feature set, being
all the features important for the classification. Notice that these selected features
are specific to this database, and the results could potentially be quite different for
other datasets.

W.I.Rate Combination N. of Features 3-NN 5-NN
All Features None 92 67% 68%
All Features Majority Voting 92 73% 72%
All Features Borda Count 92 70% 73%

SFS None 32 61.6% 60%
SFS Majority Voting 32 70% 60%
SFS Borda Count 32 65% 70%
SBS None 18 66.6% 63.3%
SBS Majority Voting 18 65% 65%
SBS Borda Count 18 65% 65%

SFFS None 28 65% 66.6%
SFFS Majority Voting 28 70% 65%
SFFS Borda Count 28 70% 70%
SFBS None 11 68.3% 71.6%
SFBS Majority Voting 11 70% 70%
SFBS Borda Count 11 70% 70%

Table 7.3: Classification Results: Writer identification rates for the 20 writers using
Feature Set Search methods for Resize Textures.
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7.5 Conclusions

In this Chapter we have presented another blind method for writer identification
in musical scores using textural features. It is an adaptation of the text-idenpendent
writer identification approach proposed in [STB00] to music scores. Consequently, the
system is more robust, avoiding the dependence of a good recognizer. The steps of the
system are the following. In the preprocessing step, the image is binarized, de-skewed,
staffs are removed and the music textures are created. Afterwards, GSCM and Gabor
features are computed, and the k-Nearest Neighbour rule is used for classification.

The experimental results show that some methods for generating textures are
better than others. In fact, although Resize textures are the ones with the highest
classification rates (even when the writer styles are very similar), the work could
be extended if the textural features obtained from the five different approaches are
combined in a single vector, so that the feature selection methods could possibly
increase the final classification rate.

After describing the three different approaches for writer identification, in next
Chapter we explain the combination of them, in order to improve the performance.
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Chapter 8

Application Scenario on Writer
Identification in Old Handwritten
Music Scores

In this Chapter we describe the general ensemble architecture which combines the
three writer identification proposed methods. First of all, an overview of the archi-
tecture is presented. Secondly, the preprocessing step applied for the three writer
identification methods described, which consists in the binarization, deskewing and
staff removal. Finally, in the post-processing step, the combination of the three
identification methods is described. Results show that the combination of the three
approaches significantly improve the final writer identification rate.

8.1 Introduction

In the previous Chapters, we have proposed three different methods (based on fea-
tures from music lines, features from textures and symbol recognition features from
clefs) for identifying the writer of a music score. They obtain quite good results, but
a combination of the three methods is desired. In this Chapter, we propose an archi-
tecture for combining the identification results of the three approaches. As a result,
the global identification rates can be improved.

In addition, the preprocessing step of the music score is described. It must be said
that the three proposed approaches require a binarized image, without staff lines. As
it has been commented in Chapter 1, there are some restrictions when working with
old documents, because of paper degradation. Thus, there is an important problem of
low level processing, because one must cope with the show-through and bleed-through
problems, spots, stains, gaps and low contrast. For those reasons, it is necessary to
use image enhancement processes to solve this kind of difficulties, but the research
in this field is out of the scope of this thesis. A good option for dealing with paper
degradation is the use of local binarization techniques, filtering and morphological
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operations, whereas staff detection can be performed using a contour tracking process.
This Chapter is organized as follows. Section 2 presents and overview of the

ensemble architecture, showing how the different approaches are combined. Section 3
describes the preprocessing stage, which is common to the three approaches. Section
4 describes the combination architecture. Experimental results are shown in Section
5. Finally, concluding remarks are exposed in Section 6.

8.2 Overview of the Ensemble Architecture

In order to combine the three writer identification approaches described in the previ-
ous Chapters, an ensemble architecture has been designed (see Fig.8.1). Firstly, the
input image is preprocessed applying the preprocessing stage described in the next
Section. The preprocessing consists in binarizing, deskewing and removing the staff
lines and lyrics. The resulting image is then the input for the three writer identifica-
tion approaches. The symbol-based method performs symbol spotting for detecting
and extracting the music clefs from the image (see Chapter 5), the method based on
music lines performs the specific preprocessing and normalitzation in order to obtain
three music lines (see Chapter 6), and the method based on textures generates the
three texture images (see Chapter 7).

The next step consists in computing the features for the lines, textures and clefs:
the 98 line features are computed from the music lines, the Gabor filters and GSCM
textural features are computed from the textural images, and the BSM descriptor is
computed from each detected clef.

Once we have the extracted features for each approach, the post-processing is
applied for the final classification. For this purpose, the combination of results is
performed using the Borda Count method, so that each element (line, texture or clef)
gives votes to the nearest neighbor classes. Finally, the votes of the three approaches
are taken into account for the final identification of the input image. The reader is
referred to the post-processing Section for further details about this last stage.

Figure 8.1: Stages of the ensemble architecture for combining the three writer
identification approaches.
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8.3 Preprocessing

Old music scores have the important restriction of the paper degradation, requiring
specific techniques for dealing with noise, the show-through problem and the warp-
ing effect. The preprocessing stage consists in the binarization, deskewing, the staff
removal and lyrics removal. Well-known methods have been applied for the first two
tasks, whereas a new method has been proposed to detect and extract the staff lines,
coping with distortions and gaps.

An illustrative example of the whole preprocessing stage applied to a music sheet
is shown in Fig. 8.2 and Fig. 8.3. After binarizing the input image (see Fig. 8.2(a)),
it is deskewed using the Hough Transform (Fig. 8.2(b)). Notice that each staff has
been independently deskewed. Afterwards, the localization and reconstruction of the
hypothetical staff lines is performed (Fig. 8.3(a)), and then, contour tracking is used
for removing the staff lines. Finally, lyrics are removed (Fig. 8.3(b)). The method is
able to detect those pixels belonging to staff lines although there are distortions and
oscillations in the staff lines.

(a) (b)

Figure 8.2: Preprocessing: (a) Original Image; (b) Detected and deskewed staffs

8.3.1 Binarization

First of all, the gray-level scanned image (at a minimum resolution of 300 dpi) must
be binarized to separate foreground from background, but with old scores, global
binarization techniques do not work because of degradation of the scores. Thus,
adaptive binarization techniques are required, such as Niblack binarization method
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(a) (b)

Figure 8.3: Preprocessing: (a) Reconstruction of the staff lines; (b) Image without
staffs nor lyrics

[Nib86]: the threshold used to classify pixels in black or white is set for each image
pixel depending on the neighboring pixels, based on the local mean and local standard
deviation of the neighborhood of every pixel (the size of the neighborhood rectangle
has been experimentally set to 21x21 pixels). Afterwards, filtering and morphological
operations are used to reduce noise.

8.3.2 Deskewing

The second step consists in deskewing the image, so it is rotated so that staff lines are
horizontally aligned. The Hough Transform method [BW97] is used to detect lines,
and whether this technique is applied to the image, several dots (corresponding to
staff lines) will show the orientation of the staff, and consequently, the orientation of
the music sheet. If the orientation of these lines is different from 90 degrees (which
corresponds to horizontal lines in the Hough Transform space, see equation 8.1), the
rotation angle is calculated and the image is rotated.

r = x · cos θ + y · sin θ (8.1)

By rotating the whole image, we can not ensure that all the staffs are horizontal.
In some music sheets, each staff is oriented in a different angle. For this reason, after
deskewing the whole image, projections are used to find the staff sections. Then,
the Hough Transform is applied again in each staff region to rotate it in case it is
necessary. As a result, each staff has been independently deskewed.
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8.3.3 Staff Removal

Although staff lines play a central role in music notation, they cause distortions in
musical symbols (connecting objects that should be isolated), making difficult the
recognition process. For that reason, staff removal must be performed in order to
isolate musical symbols.

The detection of staff lines is difficult due to distortions in staff (lines often present
gaps in between), and contrary to modern scores, staff lines are rarely perfectly hor-
izontal. This is caused by the degradation of old paper, the warping effect and the
inherent distortion of handwritten strokes (in case they are written by hand). For
these reasons, the following process is performed (see Fig. 8.4): After analyzing the
histogram with horizontal projections of the image for detecting the location of the
staff lines, a rough approximation of every staff line is performed using skeletons and
median filters. Afterwards, a contour tracking algorithm is performed to follow ev-
ery staff line and remove segments that do not belong to a musical symbol. Let us
describe the different steps in the following subsections.

Figure 8.4: Stages of the extraction of staff lines.

Detection of five grouped lines

Since there are deviations in the staff, the detection of staff lines can not be done
using horizontal projections (see Fig. 8.5(a)), because sometimes, local maximums do
not correspond to staff lines (e.g. two local maximums correspond to one staff line,
see Fig. 8.5(b)). Thus, the solution proposed consists in the following steps:

1. Perform a horizontal projection (obtaining an histogram) of the entire score.

2. Smooth the histogram until there is only one oscillation (peak), with only one
maximum, for every staff (see the red line in Fig. 8.5(a)).

3. For every oscillation, determine which ones correspond to staffs (a staff has five
peaks, corresponding to the five staff lines):

• If the maximum of a peak is too low, then it is not a staff.
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(a) (b)

Figure 8.5: (a) Histogram of the Horizontal Projection of a musical score: the
waved-like line corresponds to the smoothing process of the histogram; (b)A segment
of the histogram: There are several local maximums corresponding to a staff line,
and the dot corresponds to the staff line.

• Smooth the segment of the histogram (SH ) corresponding to this staff until
there are only five peaks, corresponding to the five staff lines.

• If there are not five peaks, then, it is not a staff.

• If there are five peaks but the distance between them is not constant, then
it is not a staff (a staff has five equidistant staff lines).

4. For every staff detected:

• Obtain five maximums and six minimums in the smoothing histogram (SH )
corresponding to this staff.

• Get the maximum M of the histogram between every two minimums of
the smoothing image. Also, this maximum M must be near every peak of
the peak. Every maximum M correspond to a staff line (see the dots in
Fig. 8.5(b)).

Once we have a rough approximation of the location of every staff line, pixels
belonging to every staff line must be determined. The method described next is
based on the use of horizontal runs as seeds to detect a real segment of every staff
line. Afterwards, a contour tracking process is performed in both directions following
the best fit path according to a given direction. In order to avoid deviations (wrong
paths) in the contour tracking process, a coarse staff approximation needs to be
consulted.
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Reconstruction of the hypothetical staff lines

The steps applied to obtain an image with horizontal segments (which will be candi-
dates to form staff lines) are: first, obtain the skeleton of the image, then use a median
filter with a horizontal mask, and repeat this process until the last two images are
similar.

Thanks to the use of median filters with a horizontal mask, most symbols are
deleted from the skeleton of the image, and only staff lines and those horizontally-
shaped symbols will remain. Median is less sensitive than mean in front of outliers
(extreme values) in the image. Notice that the fact of working with binary images,
simplifies the computation of the filter, because the possible values of the pixel are 0
or 1. For that reason, to compute the output value it is only necessary to count the
number of 0’s (namely N0) and 1’s (namely N1) in the neighborhood and choose the
greater value:

Output(i, j) =
{

0, ifN0 < N1;
1, otherwise; (8.2)

The size of this horizontal mask is constant (experimentally, the best dimensions
in pixels are: 1 width × 9 height), because in the skeletonized image, each line
is one pixel-width, so the width of lines in the original image is irrelevant. The
process applies median filters deleting iteratively segments that are not horizontal
until stability (last two images are similar).

Figure 8.6: Reconstruction of staff lines: Some segments are chosen to be part of
the staff line, while other segments are discarded.

Once the image with horizontal segments is obtained, these segments must be
used to reconstruct staff lines. For every staff line, the following method is applied
for discarding or joining segments, which basically looks the orientation, distance and
area of segments:

1. Chose the initial segment of the staff as the larger one.

2. Calculate the slope and the orientation of the initial segment.

3. Reconstruct the staff line, joining segments that are in the left side of the seg-
ment. Repeat until the staff line is reconstructed:

(a) Obtain the statistical mean of the orientations of segments inside a window
which contains the segments belonging to the staff line: In order to make
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comparisons between orientations of segments, the orientation of the next
segment chosen must be compared to the orientation of the last segments
which belong to the line (see Fig. 8.6). Thus, the orientation of a single
segment will not be so important in order to make comparisons.

(b) Choose the next segment belonging to the staff line, which is the most
similar to the actual segment, in terms of orientation, distance, etc. If no
segment complies these rules, then return ∅.

(c) If there is a segment chosen inside the window, then mark those segment as
belonging to the staff line and paint the line that joins the actual segment
with the chosen one. If there is not a segment inside the window, then,
paint the window with a line according to the mean orientation α.

4. Reconstruct the staff line, joining segments that are in the right side of the
segment: The method is identical to the one described in step 3.

5. Delete those segments discarded that are near the staff line.

The whole process is described in algorithm 7.

(a)

(b)

Figure 8.7: (a) Original Image (b) Line segments of staff lines with gaps and hori-
zontal symbols.

If there are big gaps in staff lines in presence of horizonal symbols this method
could fail and follow a segment of this symbol instead of a segment of the staff line.
Figure 8.7(c) shows a big gap with a crescendo marking and Fig. 8.7(d) shows its
reconstruction. An initial solution to this problem consists in increasing the size of
the slide-window, but it could not work in scores with large deviations in staff lines.

As an example, Fig. 8.8(a) shows the original score suffering from a warping effect
and Fig. 8.8(b) shows horizontal segments obtained using skeletons and median filters.
The reconstruction of staff lines joining segments is shown in Fig. 8.8(c).
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Algorithm 7 Reconstruction of the hypothetical staff lines.
Require: a binary image Z containing only horizontal segments, and the location of the staff lines S
Ensure: binary image with the reconstructed staff lines H

1: Define I = morphological opening of Z.
2: Define C = connected components of I.
3: for each staff line s ∈ S do
4: Define R = the larger connected component C that belongs to the staff line s.
5: Calculate the slope and orientation of the segment A as follows:

y = m · x+ n, α = arctan(m);

6: Reconstruct the staff line, joining segments that are in the left side of the segment.
7: while there are candidate segments at the left side of the segment R do
8: Define α as the statistical mean of the orientations of the n segments inside a window which

contains the segments belonging to the staff line, as follows:

α = [

∑n

i=1
cos(2 · αi)

n
,

∑n

i=1
sin(2 · αi)

n
];

9: Choose the next segment belonging to the staff line:
10: for each candidate segment C in the search window do
11: Calculate the area, distance to the actual segment A, position of their extremes, orientation

of the candidate segment C, and orientation of the line J that joins C with A.
12: Calculate the distance d between orientations of candidates αi and the actual orientation α

of the segment A, as follows:

d = min{abs(α− αi), 180− abs(α− αi)}

13: end for
14: Return a segment R that complies:

{
distance(R→ A) < threshold; and
area(R) > threshold; and
orientation(R) ' orientation(A); and
orientation(J) ' orientation(A);

If no segment complies these rules, then return ∅.
15: If there is a segment chosen inside the window, then mark those segment as belonging to the

staff line and paint the line that joins the actual segment with the chosen one. Otherwise, paint
the window with a line according to the mean orientation α.

16: end while
17: Reconstruct the staff line, joining segments that are in the right side of the segment: The method

is identical to the one described in steps 7 to 16.
18: Delete those segments discarded that are near the staff line.
19: end for
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Contour Tracking

After the obtention of the reconstructed staff lines, the contour tracking process can
be performed following the best fit path according to a given direction. The aim is
to remove pixels belonging to staff once their location is roughly determined. The
main idea of the contour tracking is to select the longer segment of every staff line,
and then perform contour tracking of the staff line. The tracking is performed in
both directions, following the contour of the line, and consulting the image with the
hypothetical staff lines whenever is required (e.g. in presence of gaps, or bifurcations).
The process is described nest.

For every staff line:

1. Take a window that includes the staff line and obtain the width of this staff
line: perform a Run Length Smearing vertical and catch the longer segment.
The width of that staff line W will be the statistical mode of the width of this
segment.

2. Perform a vertical Run Length Smearing with a segment of length = W, and
detect a segment SG longer and closer to the horizontal line detected in the
histogram of horizontal projections.

3. Take the segment SG and perform the contour tracking towards the left direc-
tion. Repeat until the beginning of the image:

(a) Take a little column in the left side of the segment, and detect positions of
the pixels which belong to the contour in that column:

• If there is no pixel in the little column but there are pixels in a section
near it, then determine if there is a change of line or not (depending
on the distance and orientation).
• Chose the connected component in the column with bigger area and

closer to the actual positions of the segment. Then, calculate its ex-
tremes. If those positions are too far from the positions of the actual
segment, or they are too far from the hypothetical reconstructed staff
line, then reject those component.

(b) If points are returned, mark them as belonging to the staff line. If no
points are returned, then mark next points, depending on the hypothetical
reconstructed staff line.

4. Take the segment SG and perform the contour tracking towards the right di-
rection until the end of the image: The method is identical to the one described
in (c).

Notice that whether there is no presence of staff line (a gap), the contour tracking
process is able to continue according to the location of the reconstructed staff line.



8.3. Preprocessing 129

(a)

(b)

(c)

(d)

Figure 8.8: (a) Original Image; (b)Horizontal segments of the score; (c) Recon-
struction of the hypothetical staff lines. (d) Image without staff lines nor lyrics.

Staff Removal

Concerning line removal, we must decide which line segments can be deleted from the
image, because whether we delete staff lines in a carelessly way, most symbols will
become broken. For that reason, only those segments of lines whose width is under
a certain threshold (experimentally set to 1’2 * width of staff lines) will be removed.
As it has been commented, width of staff lines has been calculated in the contour
tracking process, using the statistical mode of line-segments.

Figure 8.9 shows some examples of line removal: Figure 8.9(a) is the original
image, where in Fig. 8.9(b) we can see how in presence of a gap, the process can
detect next segment of staff line to continue; in Fig. 8.9(c) a symbol crossing the line
will keep unbroken, because the width of the segment is over the threshold.

In this level of recognition, it is almost impossible to avoid the deletion of segments
of symbols that overwrite part of a staff line (they are tangent to staff line, see
Fig. 8.9(d)) and whose width is under this threshold, because context information is
not available. Fig. 8.8(d) shows an example of the results of the staff removal module,
which can cope with deviations in staff lines.
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(a) (b) (d)

Figure 8.9: Examples of Line Removal in Contour Tracking process. a) Original
Image, b) Gap in line, c) Symbol crosses the staff line, d) Symbol is tangent to staff
line: Symbol becomes broken.

8.3.4 Text removal

As we have discussed in Chapter 1, text and lyrics are not taken into account for our
writer identification system. For this reason, they must be removed from the image.
Although text-symbol separation can be an extremely difficult problem (e.g. when
text and symbols are touching and overlapping), and thus, an intensive research should
be done, it is out of the scope of this work. We have used the following hypothesis:
each connected component which is not touching a staff line, will be labeled as lyrics
and removed from the image. Notice that this hypothesis is valid in most cases, but
it is not always true. For this reason, the resulting image must be supervised in order
to correct any music symbols wrongly removed, and also, removing any text that is
touching the staff. An example can be seen in Fig 8.8(d), in which the word Requiem
must be manually removed.
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8.4 Combination of Classifiers

Once the staffs and lyrics are removed from the image, the different writer identifi-
cation approaches perform a classification of the input image.They first perform the
specific preprocessing (normalization, texture generation, clef detection), and then
the extraction of features is performed. The first approach will apply the symbol
detection technique (a combination of the BSM and the DTW-based methods) to
detect clefs and extract the BSM features; the second one will generate three music
lines and will apply the 98 local features; and the third one will generate three music
textures and will apply the 92 textural features.

Combination of the results obtained for a single classifier. Due to the fact
that from every music page we obtain three music line images, three texture images
or n music clefs, all these elements belong to the same music sheet, and consequently,
they should be only assigned to one class. This might be performed combining the
classification results of the n elements using the Majority Voting and the Borda count
method. In both methods, each line is classified to the k candidate classes (using
the k-NN classifier). The list with the three candidates is sorted so that the first
candidate has obtained the higher confidence rate. The difference between Majority
Voting and Borda Count is that for the Majority voting, each candidate adds one vote
to the corresponding class. Contrary, in the Borda Count method, the first ranked
candidate adds more votes to the class than the last ranked candidate, which adds
the lower number of votes.

A comparative example can be seen in Fig.8.10. The three input lines (belonging
to the same sheet) are classified. The first line has been classified as classes A, C
and B, the second one has been classified as classes D, B and C, and the third one as
classes E, A and B. In the Majority Voting method, each candidate gives exactly one
vote to each class, so the three lines are classified as class B because class B has the
maximum total amount of 3 votes. Contrary, in Borda Count the first candidate gives
three votes, the second candidate gives two votes, and the third candidate gives only
one vote, so the three lines are classified as class A because it has a total amount of 5
votes. Notice that the three lines should be classified as different classes depending on
the combination method used. It must be said that in this example, if no combination
was used, the first line should be classified as class A, the second one as class D and
the third one as class E.

Combination of the results obtained for the three classifiers. In our ex-
periments, each writer identification approach performs the voting step, using the
Euclidean Distance, with the k-NN classifier [RPD01], and the Majority Voting or
Borda Count method.

The combination is performed as follows. Firstly, for the line-features approach,
the three input lines will give votes to the k nearest neighbor classes. Secondly, the
three input textures will also give votes to the k-NN classes. Thirdly, using the same
procedure, every accepted clef will also perform the voting. Finally, all the votes are
counted, and the input music sheet will be classified as the class which has received
the major number of votes.
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Three input test lines classified as classes:

Majority Voting Borda Count

A B C D E LINES A B C D E

1 1 1 0 0 A,C,B 3 1 2 0 0

0 1 1 1 0 D,B,C 0 2 1 3 0

1 1 0 0 1 E,A,B 2 1 0 0 3

Total 2 3 2 1 1 5 4 3 3 3 Total

Figure 8.10: Majority Voting and Borda Count combination example. The three
input lines are classified as a ranking of candidates. Each candidate gives 3, 2 or
1 votes if Borda Count is applied, whereas they always give exactly one vote when
using Majority Voting. One can see that the three input lines will be classified as
class B using Majority Voting or A using Borda Count.

Notice that, contrary to the first two approaches (in which just 3 lines or 3 textures
can vote), the number of votes from the third approach depends on the number of
detected and accepted clefs. In most of the cases, there are more than three clefs per
page, and consequently, the symbol-dependent method has a greater influence in the
final identification than the line and textural approaches. This greater influence is
obviously desired because the symbol classifier has a more accurate identification rate
than the other two approaches.

8.5 Experimental Results

In this section, we analyze the results obtained applying the staff removal approach.
Then, we compare and discuss the results obtained for each writer identification ap-
proach. Finally, we analyze the classification results obtained for the different com-
binations of approaches. These results are discussed next.

8.5.1 Staff Removal

We have tested the proposed method with 200 images of scores scanned from the
archive of the Seminar of Barcelona and the Archive of Canet de Mar (this database
is fully described in the Appendix). After the binarization and deskewing of the
image, the staff lines are located and the hypothetical staff lines are reconstructed.
Afterwards, the contour tracking process is used for removing the staff lines from the
music score. In Table 8.1 we can see the results of the application of this method
to the database, showing that 76.8% of the staff lines are completely removed, and
10.8% are almost completely removed. Contrary, 12.3% of the staff lines are partially
or not removed, requiring a manual removal.

These results show that the proposed method has several limitations. Firstly, it
must be noticed that in some cases, the author has written lyrics on a staff, and them
some text strokes cause too much distortion in the staff lines. In these cases, the staff
detection module can fail in the search of five maximums in the histogram and could
not be able to detect a staff with text (see Fig. 8.11). Secondly, and concerning staff
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Staff Removal Perfectly Almost Partially Not
of 200 pages Removed Removed Removed Removed

1198 staffs, 5990 staff lines 4602 650 180 558

TOTAL 76.8% 10.8% 3% 9.3%

Table 8.1: Staff removal results of 200 pages: The number and rate of the staff lines
which have been perfectly, partially and not removed are shown.

Figure 8.11: Detected Staff lines: There is one staff missing

lines reconstruction, although most staff lines can be well reconstructed, in some cases,
a horizontal symbol is drawn over a staff line and causes the staff reconstruction to
follow wrongly this symbol. As a consequence, the staff removal method only removes
a section of the staff line. Finally, when applying the method to very degraded music
sheets, the staff line can not be completely removed (see Fig. 8.12). Some examples
are the music scores with show-through (the staff lines of the backpage are disturbing
the detection and reconstruction of the staffs belonging to the actual processed sheet),
those music scores whose staff curvatures are constantly changing (the staff can not
be correctly deskewed, and consequently detected), or the music scores with some
missing sections in the staff lines. In such these cases, the reconstruction of the
hypothetic staff lines can not be correctly performed, and consequently, the staff is
not completely removed.
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(a) (b)

(c) (d)

Figure 8.12: Staff reconstruction: (a) Original Image; (b) Binarized image; (c) Staff
reconstruction: The final part is not correctly reconstructed; (d) Staff Removal: The
end of section is not completely removed

8.5.2 Comparison of the Three Proposed Approaches for Writer
Identification

Before combining the three writer identification approaches proposed in this the-
sis, they will be individually compared. Firstly, we will compare the two symbol-
independent methods. Afterwards, we will compare the symbol-dependent method
versus the two symbol-independent ones.

Comparison of Line Features versus Textural Features

We have compared the two symbol-independent writer identification methods. The
first is based on the extraction of 98 typical features for handwritten text recognition.
The second one is based on the extraction of textural features from texture images.
Table 8.2 shows the writer identification results of both methods. We have decided to
compare the best result for each size of the database and method, independently of
the value of k-NN and the combination method. Thus, for example, in some cases the
best value is obtained using 3-NN with Majority Voting, and in others, the best rate is
obtained using 5-NN with Borda Count. Having a look at the results, one can see that
textural features reach higher performance for a database of few writers (86% of w.i.r.
with 10 writers with textural features versus the 82% with line features), whereas, the
line features get higher results for a database with more 15 or 20 writers (76% versus
73% of w.i.r. with 20 writers for line features and textural features respectively). Due
to the fact that a writer identification rate of 76% is not a significant improvement
of the 73% rate, we can affirm that textural features reach similar identification rates
for this specific database. For this reason, the final decision should be made after
testing the two methods on a big database or writers.
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Number W.I.Rate W.I.Rate
of Writers 98 Line Features 92 Textural Features

5 84% (14.66) 96% (7.84)
10 82% (13) 86%(11.76)
15 78% (8.66) 75% (10.45)
20 76% (8.43) 73% (11)

Table 8.2: Classification Results: Writer identification rates using 98 line features
and 92 textural features for different database sizes. The score is computed by means
of stratified five-fold cross-validation, testing for the 95% of the condence interval with
a two-tailed t-test

Comparison of symbol-independent approaches versus the symbol-dependent
approach

As it has been discussed, the comparison of the results of the two symbol-independent
approaches shows that both approaches reach similar performance (73% and 76% of
writer identification rate) for this specific database. Contrary, the results obtained
by the symbol-independent approach (92.5%) demonstrate that the performance is
significantly increased. It must be noticed, that the 92.5% of identification rate is
obtained using only 16 writers, and should not be compared to the identification
results of the two methods for 20 writers. In any way, the results obtained by the
symbol-dependent approach outperforms the other approaches, even when they are
applied to 10 writers. Unfortunately, the symbol-dependent method can not be always
applied.

As a summary, we can say that although the symbol-dependent approach based
on symbol recognition methods obtains very high identification rates, it can not be
used for all the writers, and for this reason, a combination of the results of these three
approaches should be the optimal choice.

8.5.3 Final Writer Identification Results

The ensemble architecture proposed in this Chapter has been evaluated on the same
set of 200 music sheets (10 pages for each one of the 20 writers) that has been used
for testing the three individual writer identification methods. First of all, the input
image is preprocessed. Then, three music lines and three textures are generated from
the image without staff lines, and the symbol spotting technique is used for detecting
the music clefs. Afterwards, the corresponding features are computed (line, textural
or BSM features). For the classification, the three music lines give votes to the nearest
neighbor classes using the Borda Count method, the Euclidean distance, and the 5-NN
classifier (which has shown to obtain the best results). Similarly, the three textures
and the detected clefs give votes to the neighbor classes. Finally, the votes obtained
for each approach are summed, and the maximum value will indicate the final labeled
class. The Borda Count method has been chosen, because it has usually shown better
results than the Majority Voting method in the individual experiments of the writer
identification approaches.
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Experiment # Test Test Test Test Test Total
1 2 3 4 5 (Average)

Music Lines 20 65% 75% 95% 70% 70% 75% (10.3)
(98 line feat.)

Resize Textures 20 65% 55% 80% 85% 80% 73% (11)
(92 textural feat.)

Symbols (Clefs) 16 93.7% 87.5% 100% 87.5% 93.5% 92.5% (4.6)
(25x25 BSM feat.)

Lines & Textures 20 80% 95% 100% 95% 90% 92% (6.6)

Lines & Clefs 20 75% 85% 95% 90% 85% 86% (6.5)

Textures & Clefs 20 80% 90% 95% 100% 90% 91%(6.5)

Music Lines & 20 85% 95% 100% 100% 95% 95% (5.4)
Textures & Clefs

Table 8.3: Combination of Results of the three writer identification approaches
(Number of writers = #). We use 5-fold cross-validation, a 95% of condence interval,
and the 5-Nearest Neighbor classifier.

For the experiments, we have used 5 test subsets, randomly chosen, containing one
page per writer. For a fair comparison, this sets are the same than have been used
for testing the writer identification methods based on music lines and textures. It
must be noticed that for this experiment, the symbol-dependent writer identification
method has not classified four writers of the database, whereas the other two methods
have results for the whole set of 20 writers. Thus, the symbol-dependent approach
adds no vote to the classes, and the final identification is performed with only the
votes of the other two approaches (lines and textures-based ones).

Table 8.3 shows the writer identification rate (w.i.r.) for each one of the 5 tests,
and the final identification rate. The first two rows show the identification rates when
using line features (75%), textural features (73%). The third row shows the w.i.r.
obtained using BSM features for the detected clefs (92.5%), but this value can not be
compared with the previous ones, because the size of the database is not the same.
Next rows show the results of different combinations of approaches. The combination
of line and textural features reaches similar results (92%) than the combination of
textural features and BSM features from clefs (91%), whereas the combination of line
and BSM features from clefs has lower improvement (86%) when comparing with the
individual classifications.

It must be noticed that the proposed architecture extracts information about the
music symbols, avoiding the dependence of the symbols’ density. The number and the
kind of symbols appearing in the music score is closely related to the rhythm and the
melody of the composition. In our approach, we try to avoid this dependence. In the
first approach, the value of features extracted from music lines is averaged (e.g. we
compute the mean of the distance between connected components, or the mean of the
slant of the music symbols). In the second approach, texture images are generated by
randomly selecting symbols, and then, resizing them. In the third approach, music
clefs are the symbols used for extracting features. Thus, we minimize the effect of the
different number and kind of symbols in the music sheets. As an example, Fig.8.13
shows two music scores written by the same writer, which have been correctly classified
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as belonging to the same class. One can see that although the density and the kind
of symbols is different, the writer style is very similar (compare the shape of notes,
clefs, ending signature).

(a)

(b)

Figure 8.13: Two music scores of the same writer: Although the density of symbols
is different, both music sheets are correctly classified as belonging to the same class.

It is remarkable the high performance of the combination of the three approaches
(the last row of the table), reaching a 95% of writer identification rate. It is the best
w.i.r. of all, higher than the rates obtained from the three individual approaches.
Thanks to the combination of results, when one approach has misclassified a test
image, the other two approaches can compensate this misclassification. In fact, it
might occur that even though the three classifiers had wrongly classified an input test
image, the image could be correctly classified thanks to the combination of results.
For example, for an input image X belonging to the class B, take that the first
classifier gives the following votes [A = 10, B = 8, C = 2], the second classifier votes
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[C = 8, B = 7, A = 5], and the third one votes [C = 9, B = 8, A = 3]. Notice that the
three classifiers have misclassified the test image X (the first approach decides that
A is the first ranked class, and the second and the third ones classify it as class C),
but they three agree that the second ranked class is B. After summing all the votes,
we obtain [B = 23, C = 19, A = 18], and consequently, the input image X has been
correctly classified as belonging to class B.

As a summary, we can affirm that for this specific database, the combination of
the three approaches is the most suitable choice.

8.6 Conclusions

In this Chapter we have presented the preprocessing step, which is common in the
three writer identification approaches proposed in this work. It consists in binarizing,
deskewing and removing the staff lines and lyrics. Results show that it is a good
solution for old handwritten documents, although it has some limitations when work-
ing with very degraded music sheets. Obviously, a more acurate binarization method
should facilitate the staff removal stage.

Afterwards, we have described the ensemble method used for combining the three
writer identification approaches (text lines, textures, and music clefs). The first ap-
proach takes the preprocessed image, detects the music clefs and extracts the BSM
features. The second approach generates the three music lines and extracts 98 line
features, and the third approach generates the three texture images and computes 92
textural features. The next step consists in the ensemble of these three approaches,
which has been performed using the Borda Count combination method. Thus, each
classifier gives votes to the nearest neighbor classes according to the confidence rate
(e.g. the first nearest neighbor obtains more votes than the second nearest neighbor).
Finally, the input music sheet will be classified as the writer which has received more
number of votes.

Concerning the comparison of the individual approaches, the results show that
the results obtained by the two symbol-independent approaches are quite similar
(73% and 76% of writer identification rate), whereas the symbol-dependent approach
obtains the highest identification rates.

The final results demonstrate that the combination of the three approaches out-
perform the individual approaches (95% of writer identification rate), demonstrating
the suitability of the proposed ensemble architecture, being the optimal choice.



Chapter 9

Conclusions and Future Work

In this Chapter, we summarize the contributions of this thesis to the field of writer
identification applied to music scores. Afterwards, we discuss the performance of the
methods proposed and their limitations. Finally, future work is presented.

This thesis has addressed the task of writer identification of music scores, as an ex-
ample of graphic documents. As a result, we have proposed three different approaches
and the ensemble architecture for combining them. The ensemble architecture has
demonstrated to be the best choice, obtaining very high identification rates. As far
as we know, this is a pioneer work addressing the problem of writer identification in
handwritten documents of graphical languages. We believe that we have done a step
forward in the field of graphics recognition.

This last Chapter is organized as follows. In Section 1, the summary and contribu-
tions of this work are described, whereas in Section 2, we discuss about the advantages
and limitations of the proposed methods. Finally, Section 3 proposes future work.

9.1 Summary and Contribution

The main contribution of this thesis has been the proposal of a writer identification
architecture for old handwritten music scores. It consists in a ensemble architecture
that, after the preprocessing of the image (in which it is binarized, desked and staffs
are removed), it combines the results of the three different writer identification ap-
proaches (a symbol-dependent method and two symbol-independent methods) for the
final classification. Let us summarize the main contributions.

Staff Removal The three writer identification approaches require a common pre-
processing step, consisting in the binarization, deskewing and staff removal. In this
stage, a novel method for detecting and removing the staff lines in old handwritten
music scores has been proposed, able to cope with gaps, deformations due to pa-
per degradation and the warping effect. We have proposed a line tracking approach
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combined with projection profiles. The method is able to detect staff lines although
they follow a curvilinear path, and also it is able to reconstruct objects after lines are
removed.

Writer identification based on symbol recognition The first approach consists
in a writer identification method based on symbol recognition, which detects the
music clefs, and extracts features about their shape. It is a non-supervised approach,
which takes use of several novel symbol recognition methods and a symbol-detection
technique.

Referring the symbol recognition methods, they have been specially designed for
hand-drawn symbols, obtaining robust approaches in front of the typical distortions
of handwritten graphical documents. The first one is based on the Dynamic Time
Warping algorithm, which has been adapted to bidimensional data. The proposed
method computes a column sequence of feature vectors for each orientation of the
two symbols and computes the DTW distance taking into account the perpendicular
alignment. In the second one we have proposed the Blurred Shape Model (BSM)
descriptor, which encodes the probability of pixel densities of the image regions. In
addition, an evolution of the BSM has been presented, which uses a correlogram
structure for obtaining a rotation invariant descriptor.

Concerning the detection of clefs, we have proposed a symbol-detection technique,
which uses the combination of the BSM descriptor and the DTW-based method. Fi-
nally, the BSM features computed from the music clefs have been used for identifying
the writer of the music sheet.

Writer identification based on line features The second approach consists
in a writer identification method based on music lines. It is an adaptation of the
text-independent writer identification method for text documents defined by Hertel
and Bunke [HB03]. The main contribution has been the specific preprocessing and
normalization of the music scores, and the adaptation of the features to graphic
documents (such as music scores). Afterwards, line features have been extracted
(consisting in basic measures, connected components, contours and fractal features),
which are consequently used for identifying the writer.

Writer identification based on textural features The third approach consists
in a writer identification method based on textural information. We have adapted the
approach defined by Said et al. [STB00] for text documents to music scores. The main
contribution has been the proposal of several approaches for the generation of music
texture images. Every approach uses a different spatial variation when combining the
music symbols to generate the textures. After the computation of textural features
(consisting in Gabor filters and Grey-scale Co-ocurrence Matrices), the identification
of the writer has been performed.

Validation Framework Finally, the last contribution has been the construction of
a validation framework for writer identification. A database of old music scores has
been obtained by the digitalization of old handwritten scores (from the 17th to 19th
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centuries) from the archive of the Seminar of Barcelona, Terrassa and Canet de Mar.
Although the database has been performed for the task of writer identification, it can
also be used for other tasks, such as binarization, staff removal, symbol recognition
and optical music recognition.

9.2 Discussions

Musicologists identify the writer (or composer) through a deep analysis of the music
score. They perform a recognition and interpretation of the whole music score, taking
into account all the discriminant properties in handwriting music notation which have
been described in the Introduction. In addition, they analyze the rhythm, melody, and
harmony of the composition for obtaining information about the music composition
style. This kind of procedure is classified as symbol-dependent writer identification
method, because they must recognize the different elements in the score in order to
identify the author.

Similarly, an automatic symbol-dependent writer identification approach should
ideally recognize and understand the semantic information of the whole music score.
Unfortunately, this task becomes extremely complex, because an Optical Music Recog-
nition system should recognize the music notation of very complex documents, coping
not only with the variability of the handwriting style, but also with the degradation
of historical documents. For these reasons, we have proposed a symbol-dependent
writer identification method that uses a small part of the methodology used for mu-
sicologists. Moreover, we have proposed two symbol-independent methods, modeling
the global characteristics of the image, avoiding the dependence of a good recognizer.

Referring the preprocessing step, it must be said that although experimental re-
sults show that the staff removal algorithm has good performance, it has some limi-
tations when it is applied to very degraded documents. Obviously, the reconstruction
of the hypothetical staff lines has some problems when there are too many or two few
segments to join. In addition, the staff removal approach strongly depends on the
performance of the binarization technique, because a poor binarization might gener-
ate too much noise, making more difficult the removal of the staff lines. Probably,
better results could be obtained using more accurate binarization techniques.

Concerning the three proposed symbol recognition methods, they have shown very
high recognition rates on different hand-drawn data sets, outperforming the state of
the art approaches. The DTW-based method is the best choice for the recognition
of symbols with a high variability, but it is more sensible to noise than the BSM
descriptors, and requires a good segmentation of the symbol. Contrary, the BSM
descriptors have lower performance when classifying symbols with an important intra-
class variability, but they can be applied to several kind of problems (e.g. symbols
with noise and gaps). In addition, they are very fast to compute, being suitable for
symbol detection problems.

The two symbol-independent approaches (music lines and Resize textures) for
writer identification have shown to obtain similar performance when applied to music
scores. Some feature selection methods have also been applied in order to improve
the performance. Results show that although they reach similar identification rates,
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the dimensionality reduction is very significant, requiring less than a third part of the
set of features.

The symbol-independent approaches are very robust, because a recognizer is not
needed. Contrary, the symbol-dependent approach requires an accurate symbol-
detection and recognition method, otherwise, clefs are not correctly detected nor
segmented. In fact, experimental results show that there is an important amount
of false positives and false negatives. Consequently, although the method has the
highest discriminatory power of the three approaches, the performance of the method
decreases with a poor recognition step.

Finally, it must be concluded that the experimental framework proposed combines
the results of the three approaches, obtaining better results than the individual ones,
and demonstrating the suitability of the proposed ensemble architecture for writer
identification. It must be noticed that the experimental results show the performance
of the methods when applied to this specific data set of 200 music scores, and conse-
quently, the results could potentially be different for other datasets.

9.3 Future Work

Despite the advances performed in the identification of the writer of music scores, the
limitations discussed in the previous Section show that there are still open issues to
be further addressed.

Text and Lyrics

In order to improve the detection of text and lyrics, several possibilities could be
tested:

• Analyzing the size of the bounding box of the connected components: The size
of bounding box for text is different from the size of musical symbols.

• Orientations of strokes in text are changing constantly, so the Structural Tensor
[GL96] could be used to find sections with a lot of changes in orientation in
their strokes.

• Fractal Dimension: As it has been effectively applied for writer identification
approach based on music lines, the fractal features could show that the function
of text is different from the function of symbols.

• Dictionary: There is a finite set of words corresponding to dynamics (e.g. alle-
gro, forte, ritardando...), thus, a dictionary could be used to distinguish musical
words from lyrics and symbols.

Once the text and lyrics are detected, they can be extracted as used as the input
of a writer idenfitivation method for text [SB07a]. Thus, the identification approach
for text could be combined with the identification approach based on music notation.
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Textural Information

Concerning the writer identification method based on textural information, the work
can be extended as follows:

• Other approaches for generating textures could be proposed in order to obtain
more discriminative textural images. A good idea could be a combination of the
AspectRatio and Resize ideas. It has been shown that the Resize textures reach
the highest identification rates. In order to avoid the high frequencies that
interfere in the representation space, the resized symbols could be randomly
distributed along the texture image.

• Other textural features could be applied to improve the final classification rate.
In fact, some works have shown that wavelets obtain better performance than
Gabor features [HS08].

• The combination of the textural features of the five different texture images
(Basic, TextLine, Random, AspectRatio and Resize) could be performed, with
the consequent application of feature selection or combination methods.

Symbol-dependent Methods and OMR

Concerning the writer identification approach based on symbol recognition methods,
more features should be added to the approach in order to do it extensible to scores
with few music clefs. As it has been discussed in Chapter 5, information about music
notes, rests, ending signatures and accidentals could be combined and added to the
information extracted from clefs. For this purpose, instead of a symbol detection
method used for detecting all these music symbols, a full optical music recognition
system should be developed. In this sense, the following options could be tested:

• Grammars have been defined for helping in the recognition, discarding false
detections and helping with ambiguities [CR95]. In this sense, we have proposed
a grammar for the OMR task (see the Appendix B).

• Hidden Markov Models (HMM) have also been used for the task of OMR
[Pug06]. HMM are robust statistical models to model sequence observations,
widely used in handwriting recognition. Therefore, they are able to describe
other types of languaguages such as the musical one.

Symbol Recognition methods

Referring the proposed BSM and Dynamic Time Warping-based symbol recognition
methods, further work could be focused on:

• The development of DTW variations for decreasing the time complexity of the
algorithm, being inspired in the DTW proposals for massive datasets [KP99].

• The addition of more features to the column vector could reduce the sensibil-
ity to noise. A good option could be the combination of the features of the
BSM descriptor with the features of the column vector computed for the DTW
method. As a result, the advantages of the two methods could be obtained.
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Staff Removal

The staff removal step could be improved by performing a better reconstruction of
the hypothetical staff lines. As it has been commented, the contour tracking process
will success wherever the hypothetical staff lines are perfectly reconstructed. Due to
the fact that the reconstruction of horizontal segments into staff lines can fail if there
are big gaps or distortions in the staff, this method could be improved as follows:

• Looking the five parallel staff lines at the same time when reconstructing. Thus,
if there are deviations or ambiguities, the system can look the path that has
been followed by the other four lines, and then choose a path trying to keep
five lines equidistant. This solution will improve the reconstruction module
when working with scores with distortions and warping effect. Contrary, this
constraint must be relaxed with staff lines written by hand, because sometimes,
five lines are not equidistant enough.

• Constructing a graph with horizontal segments as nodes. Then, every recon-
structed staff line will be the output of an algorithm which follows the best fit
path (with backtracking). An example of contour tracking as a best fit path is
described in [BB82].

Classification

The ensemble architecture that combines the different writer identification approaches
uses the Euclidean distance, the k-NN classifier and the Borda Count combination
method. In this sense, the work could be extended by using more sophisticated clas-
sification methods. An interesting option is the combination of the features extracted
by the three approaches in a single set of features, and then, the classification can
be performed using Support Vector Machines, Principal Component Analysis or Ad-
aboost [Kun04].

Framework

Finally, the database used for the experiments should be increased. As it is com-
mented in the Appendix, there are more than 500 music pages obtained from more
than 50 composers. Unluckily, the compositions of the same composer are not writ-
ten by the same writer (scribes and copyists could do it). For this reason, a bigger
database should be obtained in order to perform further experimental results con-
cerning writer identification.



Appendix A

Databases

Due to the lack of public available databases of old handwritten music scores, several
databases have been created for validating the proposed methodology. The first data
set is composed of old handwritten music scores, for validating the proposed architec-
ture for writer identification. The second one is composed of hand-drawn music clefs
and accidentals, and has been used for validating the symbol recognition methods.
The two databases are described next.

A.1 Old Handwritten Music Scores

The data set of old music scores is extracted from a collection of music scores of
the 17th, 18th and 19th centuries. They have been obtained from three archives
in Catalonia (Spain): the archive of Seminar of Barcelona, the archive of Terrassa,
and the archive of Canet de Mar. The data obtained from the archive of Seminar of
Barcelona is composed of 19 music sheets drawn by 3 different writers, whereas 102
music sheets from 6 different writers are obtained from the Seminar of Terrassa. From
the archive if Canet de Mar, 560 music sheets have been scanned from 50 different
composers. In total, we have obtained a database of 681 pages from 59 different
composers.

The music sheets have been scanned using a flatbed scanner, and stored in bitmap
format. They have been captured in gray-scale at a resolution of 300 dpi, which is
enough for capturing the information contained in the image.

Subset used for the Writer Identification experiments

A small subset of the database of music scores has been used for the writer experi-
ments, because although there are a total of 59 composers, there were many scribes
and copyists, and consequently, there are not 59 different writers. For this reason,
a detailed analysis of the music sheets has been performed, in order to detect the
different handwriting styles. In some cases, a few number of music pages was written
by a specific writer, and consequently, they can not be added to the experimental set.

As a result, we have selected 10 pages for each one of 20 writers (19 from the
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Seminar of Canet de Mar, and one from the Seminar of Barcelona), obtaining a
testing set of 200 music pages. In Figures A.1, A.2, A.3, A.4, A.5, two music sheets of
different composers are shown. Notice the important differences in the handwriting
style between different writers (e.g. curvature of the writing, shape of clefs, notes,
rests, etc.).

Figure A.1: Two examples of music scores of the composer Jovenet.
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Figure A.2: Two examples of music scores of the composer Clausell.
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Figure A.3: Two examples of music scores of the composer Milans.
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Figure A.4: Two examples of music scores of the composer Aleix.
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Figure A.5: Two examples of music scores of the composer Albareda.

A.2 Hand-drawn Music Symbols: Clefs and Acci-
dentals

The database of hand-drawn music symbols has been created for validating the symbol
recognition methods described in this work. It is composed of music clefs and acci-
dentals, which have been manually segmented from a collection of modern and old
music scores, and also, from a set of isolated music symbols drawn by different people.
They have been scanned using the same scanner, at grey-scale and a resolution of 300
dpi, and stored as a bitmap file.
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Music Clefs

The data set of music clefs contains 820 treble clefs, 549 bass clefs and 759 alto clefs.
There are a total of 2128 instances from 22 different writers. The main characteristic
of this dataset is that although there are only three different symbols, there is a high
variability in the handwriting style. Figure A.6 shows some examples of treble clefs,
Fig.A.7 shows bass clefs, and Fig.A.8 shows alto clefs. These clefs are written by
different writers. Notice the high variability of the shape and sizes, mainly, alto clefs.

Figure A.6: Examples of treble clefs from different writers.

Figure A.7: Examples of bass clefs from different writers.

Figure A.8: Examples of alto clefs from different writers.
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Music Accidentals

The data set of music accidentals contains 482 sharps, 472 naturals, 518 flats and 498
double sharps. There are a total of 1970 instances from 8 different writers. The main
characteristic of this dataset is that accidentals are quite similar (see Fig.A.9).

(a)

(b)

(c)

(d)

Figure A.9: Examples of accidentals from different writers. (a) Sharps, (b) Natu-
rals, (c) Flats, (d) Double Sharps.



Appendix B

A Formal Grammar for Musical
Scores Description

As it has been discussed in Section 9.2 (the future work) , context information can be
formalized using a grammar to help in the recognition and classification tasks. The
notation used for formalizing the grammar is shown in Table.B.1.

Notation Meaning

| or

[] optional

∗ repeat zero or more times

+ repeat one or more times

Table B.1: Notation used in the proposed grammar.

The proposed grammar for optical music recognition is the following.

<Score =<Heading with time signature><Section> [<Final><Heading><Section>]*
<Conclusive Ending>.

<Section> = <Measure> [<Bar line> <Measure>]*.

<Heading with time signature>=<clef> [<initial key signature>]<time signature>.

<Heading> = <clef> [<key signature>] [<time signature>].

<Final> = <double bar line> | <beggining repeat bar line>| <ending repeat bar
line>.

<Conclusive Ending> = <double bar line> | <ending repeat bar line>.

<Clef> = <Treble> | <Alto> | <Bass>.

<Initial Key signature> = [[]* | []]* .

<Key signature> = [[]* [\]* | []]* [\]* | [\]* [ [[]* | []]* ].

<Time Signature> = 2/4 | 3/4 | 4/4 | C | 2/2 | 3/8 | 6/8 | 9/8 | 12/8 ...
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<Measure> = [<Note> | <Rest>]+.

<Note> = <White headnote> | <Headnote with a beam> | <beamed notes>.

<Rest>=<whole rest> |<half rest> |<quarter rest> |<eighth rest> |<sixteenth
rest>.

<beamed notes> = [<headnote with a beam> <joining bar>]+.

<Headnote with a beam> = <beam> <headnote> | <headnote> <beam>.

<headnote> = [accidental] <circle> <duration dot>.

<beam> = <vertical line> [<flag>]*.

<circle> = <white circle> | <filled circle>.

<accidental> = <[> | <\> | <]> | <[[> | <×>.

<accidental> = <[> | <\> | <]> | <[[> | <×>.

<duration dot> = [<dot>]+.
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of the 8th International Workshop on Document Analysis Systems, pp. 347-353,
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