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Chapter 1

Introduction

1.1 History of the problem

Obviously, there exists a mutual relation between the human being and the Uni-

verse which is characterized by its diversity. On the other hand, we can see that each

one is affected and influenced by the others. So, it is extremely interesting to study

systematically, from the biological or ecological point of view, the Universe. Thus,

we are urged to look for the natural laws and the evolution that govern all vegetable

and animal creatures living in our universe. Despite the fact that mathematics are

used as a language by any science in general and by the biology in particular, there

is no doubt that the quantitative aspects of the latter are the most easily expressable

by means of mathematical concepts.

In this respect, in 1798 [58], Malthus proposed a model of population dynamics.

The solution of this problem is an exponential function. This is called the exponential

growth of a malthusian population. Later on, in 1838 Verhulst [82] proposed a more

realistic model of population growth for the study of the dynamics of a unique pop-

ulation. This model is known as the logistic equation and it improves the Malthus

model by including competition for resources. A system of two equations, for the

study of the prey-predator interaction, was proposed independently by Lotka in 1925

[54] and Volterra in 1926 [83].

The dynamics of the different vegetable or animal populations is affected by the

structure ot those populations with respect to some internal variables (age, size, so-
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cial rank, etc). Many authors have extensively developed the theory of continuous

structured populations dynamics. The density and the birth and death rates, for

example, of one population may change according to the different life cycle stages it

passes. This means that the characteristics of organisms usually vary as they age.

The age-structured population models have been one of the most important theo-

ries in this development. Continuous time formulations of age-structured population

models lead to partial differential equations for the population density, u(a, t), the

density of individuals of age a at time t. The study of these continuous models incor-

porating age effects was initiated by Sharpe and Lotka (see [75]) in 1911 and pursued

by McKendrick [60] in 1926. In these models, birth and mortality rates are linear

functions of the population densities because they depend only on the age. This

implies the linearity of the equations, i.e. they are malthusian in some sense, but the

age-structure implies that the individuals are not considered identical. In 1959 [84]

Von Foerster was the first author to express these by means of partial differential

equations














ut + ua = −m(a)u,

u(0, t) =
∞
∫

0

β(a)u(a, t)da,

u(a, 0) = u0(a),

(1.1)

where a ∈ [0,∞), t > 0,m(a) is a nonnegative function of age known as the age

specific mortality modulus and β(a) is a nonnegative function of age called the age

specific fertility modulus (see [86]).

From the physical point of view the first equation of (1.1) gives the balance-law

of the members of the population (or aging process of the population). In the case

m(a) = 0, it reduces to an equation of conservation (in this case mass conservation).

The second equation gives an idea about the birth process of the population, i.e., it

satisfies the so-called birth law (see [86]). Moreover, the expression u(0, t) may be

interpreted as the birth rate at time t. The third equation gives the initial age dis-

tribution of the population. Finally, u0(a) is a nonnegative function of age a, which

yields the initial state of the population.

In 1974, a first nonlinear version of Problem (1.1) was introduced by Gurtin and

MacCamy in [33], incorporating the density dependence in the fertility coefficient
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and the mortality coefficients of the population. Thus, β(a, P ) and m(a, P ) are now

nonnegative functions of two independent variables a and P , where P stands for

the total population at a given time P = P (t) =
∫∞

0
u(a, t)dt which is the total

population. This means that there exists a competition for resources between the

individuals of the population via the birth and death rates. The model as reads











ut + ua +m(a, P (t))u = 0,

u(0, t) =
∫ l

0
β(a, P (t))u(a, t)da,

u(a, 0) = u0(a),

(1.2)

where a ∈ [0,∞] and t > 0. The boundary condition is also nonlinear which causes

difficulties in solving this problem (see [76]). This model and similar nonlinear models

have been investigated by many researchers who used the method of lines to reduce

the model to a system of Volterra integral equations. Via a fixed point argument

applied to the problem along the characteristics Chipot (see [19]) proved in 1983

existence and uniqueness of solution to a problem like (1.2) in which P (t) had been

substituted more general formulation of the population state,

Q(t) =

∫ ∞

0

k(a, t)u(a, t) da

where k is such that |k(a, t)| ≤ |C(T )| a.e. and (a, t) ∈ R+ × [0, T ].

Along these lines many authors have proposed age-dependent population models

of two interacting biological species (two species in competition or two species as

predator and prey). For instance, in 1931 Bailey proposed the first prey-predator

model, namely a model of a interaction between hosts and parasites, with an age

structure (see [11]).

In 1975 Hoppensteadt [45] formulated a genetic age-dependent population model.

He considered the case of one locus on a chromosome at which the gene has two or

more different alleles. A similar model was studied by Webb in [86]. Thus, conditions

under which such a population is driven to extinction were determined.

The age structure is an important consideration in the design of the models which

describe the evolution of infectious diseases since several factors as exposure, suscep-
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tibility immunity, inoculation and quarantine are frequently affected by this contin-

uous variable (see [86]). Thus, Hoppensteadt in [44] and Dietz in [27] are among

the first authors who proposed continuous deterministic epidemic models incorporat-

ing age effects. In [28] Dietz and Schenzle proposed an age-dependent model with

proportionate mixing, constant population size and complete immunization. In this

context, Hadeler and Müller studied in 1995 a vaccination model in an age-structured

population (see [36, 37]). They considered a situation where the population is in de-

mographic equilibrium and the vaccination strategy is stationary.

Age and size dependent population systems have been also used to model cell

proliferation and tumor growth (see the works of Arino and Kimmel [6, 7] and more

recently by Arino et al. [10])

Age effects have also been considered in several optimal harvesting models (see

[3, 12, 34, 35, 63, 69, 71, 72]).

The dynamics of the populations depend frequently on the environment where they

move. Thus, many researchers generalized the model (1.1) introducing a spatial dif-

fusion term. They take u(a, x, t) as the distribution of individuals having age a > 0 at

time t > 0 and position x in a bounded domain (see ([13, 32, 50, 55]). Mathematically,

the solution of (1.1) is in the phase space C([0, T ], L1(0, l)). However, considering the

spatial diffusion the natural phase space would be C([0, T ], L1((0, l), L2(Ω))).

1.2 Motivation of the problem

Some mathematical models in ecology have the form

{

x′ = A(l, r)x

r′ = F (l, r, x)
(1.3)

where ′ stands for the derivative with respect to time and x stands for the popula-

tion density or population vector of a predator (or consumer) species feeding on a

resource or a collection of resources whose amount is given by the vector r. Often

x takes values in an infinite dimensional space X; this is so when x represents the

density of a population structured by a continuous variable as age or size whereas one

assumes that r is an n−dimensional vector, each component being the total quantity
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of a given resource.

A(l, r) is a linear operator which is assumed to generate a positive semigroup and

to have a “dominant ”simple real eigenvalue λ(l, r) in the sense that any other spec-

tral value of A(l, r) has a real part less than some number ω < λ(l, r). The number

λ(l, r) is sometimes called the population growth rate or the malthusian parameter.

Typically, λ(l, r) is an increasing function of each component of r. Moreover we as-

sume that the corresponding eigenvector ϕ(λ, r) is the only nonnegative eigenvector

of A(l, r). The real parameter l characterizes the individuals of the population and

summarizes the relevant features under study from an evolutionary point of view. In

general it is what is sometimes called an evolutionary continuous variable, say for

instance a physical measure (body) size or a physiological feature or a life-history

strategy (like maturation age), genetically fixed and submitted to evolution by mu-

tation and selection (see [64]).

On the other hand, the value of r, which for a given l determines the population

growth rate, is often called the environment observed (felt) by the predator popula-

tion.

We are mainly interested in nonzero predator population steady states. Biologi-

cal meaning (nonnegativity of densities) obviously imposes that these steady states

are scalar multiples of the nonnegative eigenvector corresponding to 0 eigenvalue of

A(l, r). So the equilibrium equations reduce to the (n+ 1)−dimensional system

{

λ(l, r) = 0,

F (l, r, cϕ(l, r)) = 0,
(1.4)

for the n+ 1 unknowns c(l), r1(l), ..., rn(l).

In this context, a value l̂ of the evolutionary variable l is called a (local) E.S.S.

(evolutionary stable strategy or evolutionary unbeatable strategy, see [64]) if there

is a solution of (1.4) with l = l̂ (a steady state of (1.3) when l = l̂ ) such that

λ(l, r(l̂)) < 0 for all l 6= l̂ (for all l 6= l̂ in a neighborhood of l). So, l̂ is an E.S.S. if

the population growth rate of a “mutant ” of type l is negative (it becomes extinct)

when the environmental conditions are the ones of the steady state of the “resident”
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population of type l̂. This is quoted by saying that the l̂ strategy can not be invaded

but this assumes a dynamics for the enlarged system obtained for the populations of

types l̂ and l and for the resources and an initial condition with small population of

type l.

It is worth noting that it seems reasonable to require additionally asymptotic sta-

bility of
(

c(l̂)ϕ(l̂, r(l̂)) , r(l̂)
)

as a steady state of the “ecological” system (1.3) with

l = l̂ . On the other hand, some authors have extended the definition of E.S.S. to

the case of systems with more complicated attractors such as periodic orbits or even

strange attractors (see [68, 29]).

A special case of system (1.3) which we will consider in the forthcoming is obtained

assuming that environmental conditions modify the growth rate of the predator pop-

ulation in a uniform way. A mathematical formulation of this assumption consists in

assuming the following special form of the operator A(l, r):

A(l, r) = A(l)−m(r)I, (1.5)

where m(r) is a scalar function and I is the identity operator. Then we have for the

population growth rate, λ(l, r) = λ(l)−m(r) where λ(l) is the dominant eigenvalue

of A(l) and (1.4) reduces to

{

λ(l)−m(r) = 0,

F (l, r, cϕ(l)) = 0.
(1.6)

Now the E.S.S. condition for l can be written as

λ(l)−m(r(l̂)) < 0(= λ(l̂)−m(r(l̂)))

if l 6= l̂ (in a neighborhood of l̂ in the local case). Equivalently, λ(l) < λ(l̂) if l 6= l̂.

So, l̂ is an E.S.S. if there is a (asymptotically stable with respect to system (1.3) when

l = l̂) solution of ((1.6); l = l̂) and moreover, l̂ is a (local) strict maximum point of

the real function λ(l). This is Corollary 2 in [26] or Result 2 in [64].

On the other hand,the assumption (1.5) has another important advantage related

with the dynamics of Problem (1.3) , namely, it provides the solution of the initial
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value problem for (1.3) (x(0) = x0 , r(0) = r0) in the form
(

ψ(t)S̃(t)x0, r(t)
)

where

S̃(t) is the linear semigroup generated by the operator Ã(l) = A(l) − λ(l)I whereas

(ψ(t), r(t)) is the solution of the following system of ordinary differential equations

(cf [61], Part A, chap. IV. 5.2)

{

ψ′ = (λ(l)−m(r))ψ , ψ(0) = 1,

r′ = F
(

l, r, ψS̃(t)x0

)

, r(0) = r0.
(1.7)

Moreover, the hypotheses on Ã(l) imply that (1.7) is an asymptotically autonomous

system and so, the asymptotic behaviour of the solutions of (1.3) can be easily stud-

ied at least when r is one dimensional.

Mylius and Diekmann consider in [64] an example where x(t) is a population

distributed into two groups: the juveniles, with a population structured by age, and

the adults. The evolutionary variable in this example is the maturation age which

we call l and we assume to take values in [0,∞). The juveniles have a death rate

m(r), which can be assumed to decrease with r, and adults have a fertility modulus

b(l), assumed to increase with the maturation age and a death rate ν+m(r) where ν

is a constant larger than −m(∞) (m(∞) > 0 is the limit of m(r) when the amount

of resources tends to infinity, i.e., in the virgin environment, see [64]). The model

equations read as follows:


























ut + ua = −m(r)u(a, t),

v′ = u(l, t)− (ν +m(r))v,

r′ = (g(r)− h[L(u, v)])r,

u(0, t) = b(l)v(t),

u(a, 0) = u0(a), v(0) = v0, r(0) = r0,

for a density of juveniles u(a, t), a ∈ [0, l] and an adult population number v(t).

Moreover, we will assume in the following sections that g(r) decreases and vanishes

for some rc (which gives a logistic like behaviour of the resources population in the

absence of predators) and an increasing and unbounded function h, vanishing at 0,

and L being a positive continuous linear functional (which gives a simple predation

term). In this situation λ(l) is the unique real solution of the equation

b(l)− (λ+ ν)eλl = 0. (1.8)
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Let us further assume some hypotheses on the function b(l), namely b(0) = 0, b(l) ≥ 0

and that (ln b(l))′ is a strictly decreasing function with limit 0 when l tends to infinity

(notice that this last hypothesis despite its technical appearance, is not so much

restrictive and it implies b′(l) > 0 and it allows polynomial but not exponential

growth). Under the previous hypotheses, we can state

Proposition 1.1. There is an E.S.S. l̂ if and only if b(l) > ν for some l and λ(l̂)

belongs to the interval (m(rc),m(0)). Furthermore, the E.S.S. is unique whenever it

exists and it is a solution of equation (1.8) with λ substituted by b′(l)/b(l).

Proof. About equation (1.8), first notice that λ(0) = −ν and that λ(l) > −ν for

l > 0. (1.8) clearly implies that λ(l) is positive if and only if b(l) > ν. So there

is no solution of system (1.6) (i.e., there is no non-trivial steady state) when b(l) is

bounded above by (a necessarily positive) ν. So in this case there is no place to talk

about equilibrium E.S.S.

Now taking the implicit derivative with respect to l in (1.8) we obtain, for l > 0,

b(l)

(

b′(l)

b(l)
− λ(l)

)

− λ′(l)
(

lb(l) + elλ(l)
)

= 0. (1.9)

If b(l) takes values larger than ν (so λ(l) becomes positive), then the function f(l) :=

b′(l)/b(l) − λ(l), which is positive for small l, necessarily changes signs (because

b′(l)/b(l) = (ln b(l))′ −→ 0 as l −→ ∞ and f and λ′ have the same sign) and it can

not vanish again because f(l) = 0 implies λ′(l) = 0 and so f ′(l) < 0 due to the hy-

pothesis about b′(l)/b(l) being decreasing. So λ(l) has a unique critical point l̂ which

is a strict absolute maximum (here the log−concavity of the function b(l) plays an

essential role and the elimination of this hypothesis allows the existence of several lo-

cal E.S.S.’s). Finally, l̂ is the (unique) E.S.S. if m(0) > λ̂ := λ(l̂) = b′(l̂)/b(l̂) > m(rc)

and if λ̂ < m(∞) there is no non-trivial steady state for any l (and, a fortiori, there

is no E.S.S.). If λ(l̂) > m(0) the existence of non-trivial steady states is possible for

some values of l 6= l̂ (see, Sec. 3.3) but there is no E.S.S. and the system has little

biological sense. ¤

Up to now we have assumed a fixed “ intrinsic adult death rate” ν. Nevertheless,

the above analysis allows us to consider the function l̂ = l̂(ν) for ν ∈ (−m(∞), b(∞)),
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where b(∞), possibly equal to +∞, means the limit of b(l) as l tends to ∞. Let us

compute l̂′. Taking the implicit derivative in (1.8) and (1.9) with respect to ν (now

thinking of λ as a function λ(ν, l)), and using ∂λ(ν,l̂)
∂l

= 0 gives

∂2λ(ν, l̂)

∂ν∂l
=
(

1 + l̂(λ̂+ ν)
)−2

(λ̂+ ν)

which is always positive. So, as ∂2λ(ν, l̂)/∂l2 ≤ 0 because l̂(ν) is a maximum point

of the function l −→ λ(ν, l), we conclude that l̂(ν) is an increasing function, i.e. an

increase in the “intrinsic” mortality of adults causes a larger value of the evolutionary

stable maturation age l̂. This fact could for instance be related to an evolutionary

explanation of the extremely short adult life of some insect species with a compara-

tively long life as larvae.

On the other hand, as λ(ν, l) < 0 if b(l) < ν, ν tending to b(∞) obviously implies

l̂(ν) −→ ∞ and λ̂(ν) = λ(l̂(ν)) = b′(l̂(ν))/b(l̂(ν)) −→ 0. That is a larger intrinsic

adult mortality is only compatible with a small m(rc) (because λ̂ has to be larger than

m(rc))and causes a very large optimal maturation age.

As particular although illustrative examples, we can consider two specific fertility

functions: b(l) = cl for some constant c (unbounded birth as l tends to infinite) and

b(l) = l/(1 + l) (bounded birth rate). In the first case one explicitly obtains

lESS =
eν

2c
+

√

(eν

2c

)2

+
e

c
.

(notice λ̂ = b′(l̂)/b(l̂) = 1/cl̂ and use (1.8)) whereas in the second one (assuming, for

simplicity ν = 0) l̂ satisfies the equation l2 = e
1

1+l which has an approximate solution

1.25 (λ̂ = b′(l̂)/b(l̂) = 1/l̂(1 + l̂) and use (1.8)). Taking ν = 0 and c = 1 in the first

case, allows a comparison with the second one that gives larger value of the E.S.S.

(
√
e > 1.25) as could be expected from the unboundedness of b(l) in the first case.

1.3 Main results

In this thesis, a continuous age-structured population model with two population

groups, juveniles and adults, and with a dynamics for a one dimensional resource, is
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considered.

In Chap. 2, the initial value problem (2.1) is studied without the assumption of

the uniform increase of mortality case. This is of course biologically relevant when

modelling biological species with, for instance, metamorphosis.

Nevertheless, since the nonlinearities do not affect the birth rate, the model fits in

the standard theory of semilinear equations in Banach spaces (see [65], for instance)

from the point of view of existence and uniqueness of solutions. This avoids the need

to use the much more general setting involving the theory of dual semigroups as de-

veloped in [25].

Firstly, we show that the operator B, which represents the linear part of Problem

(2.1), is the infinitesimal generator of a positive C0 semigroup {T (t), t ≥ 0}. This as-
serts that the initial value problem (2.1) generates a dynamical system. We also prove

that the operator B has a dominant real eigenvalue. After that, we deal with the semi-

linear formulation of the initial value problem and we give a result on local existence

and uniqueness. We also show continuous dependence of mild solutions of Problem

(2.1) on initial age distributions. Later, using the positivity of the solutions, global

existence is proved. Let us also remark that Theorem 2.3 establishes smoothness with

respect to time of the total population in the linear problem, even for only integrable

initial conditions. Finally, a rather explicit description of the set of equilibria, depend-

ing on the (constant) birth rate is given. And we prove that there is a unique non-

trivial equilibrium (ue, ve, re), whenever b ∈
(

m2(rc)e
∫ l
0 m1(a,rc) da , m2(0)e

∫ l
0 m1(a,0) da

)

.

Moreover 0 < re < rc.

In Chap. 3, the only density dependence is through a uniform increase of the

death rates. We describe the complete “ecological” dynamics of this model for given

values of the maturation age l. Section 3.2 is devoted to reducing Problem (2.1) to

a nonautonomous ordinary differential system. Here, in Theorem 3.5, an important

role is played by the fact that the semigroup has asynchronous exponential growth,

i.e., there exists a strictly dominant eigenvalue and a rank one spectral projection (see

[86] and, for a cell population dynamics application, [8]). So, the problem is related

to System (3.5) and the solution is obtained in the form mentioned in Section 1.2. In

Section 3.3 we analyze the asymptotic behaviour of the solutions. The special form

of the solutions reduces the problem to the study of an asymptotically autonomous
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system of two ordinary differential equations (see System 3.5). This is done using

results by Markus (see [59], [81], [62]), which, under some hypotheses, relate the

asymptotic behaviour of the solutions to that of the limit system. An important goal

in this respect is to prove that the solutions are bounded forward (see Prop. 3.4).

The limit system behaviour is established by means of a standard application of the

Poincaré-Bendixson theorem and a Lyapunov function. More recently [81] and [62]

generalize Markus results to the case of asymptotically autonomous semiflows in in-

finite dimensional spaces.

The main result of Section 3.3 is Theorem 3.11 where the existence of a global

attractor reduced to a coexistence equilibrium point is proved if g̃(r) = r and the

adult fertility b belongs to the interval
(

m2(rc)e
m1(rc)l,m2(0)e

m1(0)l
)

; here, m1 and

m2 stand for the juvenile and adult death rates, respectively. Notice that the left

endpoint of this interval is small if the death rates are small when the amount of

resources equals the environmental capacity rc, and that the right endpoint is large

if the death rates are large when there is no resource. The first condition is needed

in order to avoid extinction of the consumer species whereas the second one has an

obvious biological meaning.

In Chap. 4, model (2.1) is undertaken without the assumption of uniform increase

of mortality. In this chapter, the reduction of (2.1) to a nonautonomous ordinary dif-

ferential system is no longer possible and more general methods are needed. We take

advantage of the semilinear formulation through the variation of constants formula

to obtain some asymptotic results and, mainly, to show smoothing properties of the

system, already known for similar equations (see [86] for the age dependent case, and

[18] for the size dependent one) but always obtained with more difficult proofs.

The chapter is organized as follows. In Section 4.1 a study of the neighbourhood

of the non-coexistence equilibria is also done, and a local result on stability of the

coexistence equilibrium is performed via bifurcation theory. Let us remark also that

Theorem 4.1 proves smoothness of the total population which is used later in Section

4.3.

Section 4.2 deals local stability and instability of the existence equilibrium. It

contains analytical results on the stability region of this equilibrium in the param-

eter space, including Theorem 4.7, which in particular states that the coexistence

equilibrium is stable whenever the death rates of young and adult populations have
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equal derivatives at the coexistence equilibrium. This agrees with the results of The-

orem 3.11 and it is a generalization of these results with respect to the local stability

analysis. On the other hand, loss of stability arises by the crossing of the imagi-

nary axis by a conjugate pair of eigenvalues. This can generate a Hopf bifurcation

of periodic solutions close to the equilibrium. Some numerical computations on the

stability curves (i.e., on the boundary of the stability region) for particular values of

the parameters are also presented in Subsection 4.2.3.

Finally, since a complete analytical description of the dynamics does not seem

possible in this case, we use the smoothing action of the nonlinear semigroup and

its dissipativeness properties under suitable and not much more restrictive extra hy-

potheses, to prove the existence of a compact global attractor in the sense of ([39]).

The description of this attractor is also given in some cases. The idea behind the

proof of dissipativeness is borrowed from [15] (see also Section 3.3), namely, the con-

struction of a collection of bounded positively invariant regions based on the total

population numbers of consumers and resources. As we have already said, the model

in [15] (see also Chap. 3) is asymptotically reduced to a two dimensional dynamical

system whereas here only a system of two differential inequalities is obtained (see

(4.18)). This explains why the conclusions on global dynamics are now weaker than

in ([15]).

Recall that removing, in Chap. 4, the hypothesis of the uniform increase of mor-

tality destroys the algebraic structure

x′ = Ax−m(r)x,

and it is not possible to give a complete analytical description of the dynamics of

Problem (2.1). The goal of Chap. 5 is the study of the stability of the coexis-

tence equilibrium point of Problem (2.1) perturbing the death rate of the juveniles,

m1(r) = m2(r) + constant, by a function ε(a, r) which depends on the age and the

amount of the resources. We first prove that the dominant real eigenvalue λ∗ of the

operator A is simple and the coexistence equilibrium point (ue, ve, re) of the initial

value problem (2.1) is hyperbolic. Later, we give a condition which guarantees exis-

tence of the coexistence equilibrium point of the perturbed problem (5.5). Theorem

5.3 is the main result of this chapter. It gives an explicit condition, depending only

on the parameter functions of the problem, about the norm of the function ε(a, r),
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so achieving the objective of this chapter. In order to prove this result we write the

linearization of (5.5) at its coexistence equilibrium point (uε, vε, rε) as the sum of the

linearization of (2.1) at (ue, ve, re) and another term. This allows us to apply [48,

Theorem 3.17].

In the last chapter we use a numerical implicit method to study the stability of

the coexistence equilibrium point of Problem (2.1). Subsect. 6.2.1 illustrates the

adaptation of an implicit method, which is presented in [79], to our problem in order

to study numerically the asymptotic behaviour of the solutions of (2.1). In Subsect.

6.2.2, we study two examples and we present numerical results. This work requires to

assume in the forthcoming somehow special forms for some functions of our problem.

Both examples illustrate that the linear implicit scheme and the Fortran program

work a satisfactory way. The numerical results obtained are coherent with all results

given in the other chapters studying the stability of the coexistence equilibrium point

of Problem (2.1). We give some remarks about these results and about the Fortran

program which we use.

Finally, we give conclusions and discuss some remarks.
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Chapter 2

Initial Value Problem for a

Semilinear Equation

2.1 Introduction

The purpose of this chapter is to investigate the initial value problem (2.1) without the

assumption of the uniform increase of mortality. We first set the age-dependent model

which is a nonlinear partial differential equation coupled to two ordinary differential

equations. We analyze the linear part of the model and we show that it generates

a positive C0−semigroup. The semilinear formulation in the treatment of an age-

structured population dynamics model is exploited from the view point of existence

and uniqueness of a positive solution. Finally, an explicit description of the set of

equilibria is given in terms of the birth rate b taken as a parameter.

2.2 Setting for the age-dependent model

We consider a mathematical model of a population subdivided into two groups:

the juveniles, with density u(a, t), where a ∈ [0, l] denotes the age and l denotes

maturation age, and the adults with a population number v(t). The juveniles have

a death rate m1(a, r) which is assumed to be continuous with respect to a and to

strictly decrease with respect to the amount of available resources r(t) at time t. The

adults have a fertility rate b and a strictly decreasing death rate m2(r). The model
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system reads as follows:



























ut + ua = −m1(a, r)u,

v′ = u(l, t)−m2(r)v,

r′ = g(r)r − h(L(u, v))g̃(r),

u(0, t) = bv(t),

u(a, 0) = u0(a), v(0) = v0, r(0) = r0.

(2.1)

Furthermore, we assume that both death rates are smooth and have positive lower

bounds and that they are bounded above. We also assume that g(r) is a smooth de-

creasing function which vanishes at some rc > 0, that g̃(r) is a increasing and smooth

function which vanishes at 0, h is a smooth increasing and unbounded function van-

ishing at 0 and L is a positive continuous linear functional i.e L(u, v) > 0 if u ≥ 0,

v ≥ 0 and moreover (u, v) 6= (0, 0). Also, h(L(u, v)) is the amount of the resources

consumed by the predator population per unit of time and resources.

The theory of semilinear equations will be used to resolve Problem (2.1). So we

write it in the following abstract form:



















(u

v

r

)′

= B

(u

v

r

)

+ f(u, v, r),

u(a, 0) = u0(a), v(0) = v0, r(0) = r0,

(2.2)

where

B :=





− d
da

0 0

El 0 0

0 0 0





is an operator on the Banach space Y := L1[0, l]×R×R endowed with the norm | |Y :=

| |L1[0,l]+| |+| |. The domain ofB isD(B) = {(u, v, r) ∈W 1,1[0, l]× R× R;u(0) = bv}.
Elu := u(l) is the evaluation of u at age l and f is a nonlinear function on Y given

by f(u, v, r) := (−m1(a, r)u , −m2(r)v , g(r)r − h(L(u, v))g̃(r)).
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2.3 The linear problem

In this subsection and in the forthcoming one, let ν ∈ R and let

A :=







− d
da

0

El −ν







be an operator on the Banach space X := L1[0, l] × R with the norm | |X :=

| |L1[0,l] + | | and with domain D(A) = {(u, v) ∈W 1,1[0, l]× R : u(0) = bv} .
Next we show that for any ν ∈ R, A is the infinitesimal generator of a positive

C0−semigroup {S(t), t ≥ 0}, and therefore the operator B, defined at the end of Sec.

2.2, generates, as ν = 0, the positive C0−semigroup

(

S(t) 0

0 I

)

:= T (t) where I is

the real identity function. That is, the initial value problem generates a dynamical

system. This result is showed here for any ν ∈ R because we will need it in Sec. 3.2.

Below, we give a characterization of the spectrum of the operator A and we will

show that it has a dominant simple real eigenvalue.

Finally, we will get a result concerning the growth rate of the predator population

for the linear problem associated to (2.1).

We will use then the bound ‖T (t)‖ ≤ Meωt for some M ≥ 1, ω ∈ R and for any

t ≥ 0.

The proof of the first result is based on the following lemmas:

Lemma 2.1. Let {S0(t), 0 ≤ t ≤ l} be a family of bounded linear operators from

X into X satisfying the properties of a C0−semigroup on [0, l]. Then the operators

{S(t), t ≥ 0} defined by

S(t) =

{

S0(t) ; 0 ≤ t ≤ l

S0(l)
nS0(r) ; t = nl + r

where n ≥ 1 is a natural number and 0 ≤ r < l is a real number, form a C0−semigroup.

Proof. Initially it is obvious that

S(0) = S0(0) = I,
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lim
t→ 0

t > 0

S(t)u = lim
t→ 0

t > 0

S0(t)u = u

and, for t1 + t2 ≤ l, S(t1 + t2) = S(t1)S(t2). Consequently it remains to prove this

last equality for any t1, t2 ≥ 0 such that t1 + t2 ≥ l.

i) t1, t2 ≤ l and t1 + t2 ≥ l.

If t1 = t2 = l then S(t1 + t2) = S(2l) = S0(l)
2 = S(t1)S(t2). Else, we have

t1 + t2 = l + r, r < l and

S(t1 + t2) = S0(l)S0(r)

= S0(l)S0(t1 + t2 − l)

= S0(t1)S0(l − t1)S0(t2 − (l − t1))

= S0(t1)S0(t2).

ii) t1 < l and t2 > l.

Then there exist n ∈ N and r ∈ R such that t2 = nl + r and r < l. Therefore

it follows that t1 + t2 = nl + t1 + r and

S(t1 + t2) =

{

S0(l)
nS0(t1 + r) ; t1 + r < l

S0(l)
n+1S0(t1 + r − l) ; t1 + r ≥ l

=

{

S0(l)
nS0(t1)S0(r) ; t1 + r < l

S0(l)
nS0(l)S0(t1 + r − l) ; t1 + r ≥ l

= S0(l)
nS0(t1)S0(r)

= S0(t1)S0(l)
nS0(r)

= S(t1)S(t2).

iii) t1, t2 > l.

It is obvious that there exist n1, n2 ∈ N and r1, r2 ∈ R such that

t1 = n1l + r1 with r1 < l,

t2 = n2l + r2 with r2 < l,

that is t1 + t2 = (n1 + n2)l + r1 + r2 and therefore

S(t1 + t2) =











S0(l)
n1+n2S0(r1 + r2) ; r1 + r2 < l

S0(l)
n1+n2+1S0(r1 + r2 − l) ; r1 + r2 ≥ l.
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Finally, using the first case, it follows that

S(t1 + t2) =











S0(l)
n1S0(r1)S0(l)

n2S0(r2) ; r1 + r2 < l

S0(l)
n1+n2S0(l)S0(r1 + r2 − l) ; r1 + r2 ≥ l

= S0(l)
n1S0(r1)S0(l)

n2S0(r2)

= S(t1)S(t2)¤

Lemma 2.2. Let p ∈ N such that 1 ≤ p <∞. Then for any u ∈ Lp([a, b]) it follows
that

lim
|h|→0

∫ b

a

|u(x+ h)− u(x)|pdx = 0.

Proof. If u ∈ C∞0 ([a, b]) the proof is straightforward, else u can be approached by a

sequence of functions of C∞0 ([a, b]). ¤

Theorem 2.1. The linear operator A is the infinitesimal generator of a C0−semigroup.

Proof. A formal solution of the linear part of System (2.1) by the method of

characteristics gives rise to the family of bounded linear operators on X, {S0(t), 0 ≤
t ≤ l}, such that

S0(t)(u0, v0)(a)

:=







S1(t)(u0, v0)

S2(t)(u0, v0)






(a)

=









































u0(a− t) ; a > t

bv0e
−ν(t−a) + b

∫ t−a

0

e−ν(t−a−s)u0(l − s)ds ; a ≤ t

v0e
−νt +

∫ t

0

e−ν(t−s)u0(l − s)ds























.

(2.3)



22 2. Initial Value Problem for a Semilinear Equation

Firstly let us show that this family has the properties of a C0−semigroup on [0, l].

Namely, for any t1, t2 ≥ 0 such that t1 + t2 ≤ l,

S0(t1)S0(t2)(u0, v0) =







S1(t1)S0(t2)(u0, v0)

S2(t1)S0(t2)(u0, v0)







holds, let us prove then that

S0(t1 + t2)(u0, v0) = S0(t1)S0(t2)(u0, v0). (2.4)

It follows that

S1(t1)S0(t2)(u0, v0)(a) =

=







S1(t2)(u0, v0)(a− t1) ; a > t1

bS2(t2)(u0, v0)e
−ν(t1−a) + b

∫ t1−a

0

e−ν(t1−a−s)S1(t2)(u0, v0)(l − s)ds ; a ≤ t1

=













































u0(a− t1 − t2) ; a > t1 + t2

bv0e
−ν(t1+t2−a) + b

∫ t1+t2−a

0

e−ν(t1+t2−a−s)u0(l − s)ds ; t1 < a ≤ t1 + t2

bv0e
−ν(t1+t2−a) + b

∫ t2

0

e−ν(t1+t2−a−s)u0(l − s)ds

+b

∫ t1−a

0

e−ν(t1−a−s)u0(l − t2 − s)ds ; a ≤ t1

=







u0(a− t1 − t2) ; a > t1 + t2

bv0e
−ν(t1+t2−a) + b

∫ t1+t2−a

0

e−ν(t1+t2−a−s)u0(l − s)ds ; a ≤ t1 + t2

= S1(t1 + t2)(u0, v0)(a),

and

S2(t1)S0(t2)(u0, v0) =

= v0e
−ν(t1+t2) + e−ν(t1)

∫ t2

0

e−ν(t2−s)u0(l − s)ds+

∫ t1

0

e−ν(t1−s)u0(l − s− t2)ds

= v0e
−ν(t1+t2) +

∫ t2

0

e−ν(t1+t2−s)u0(l − s)ds+

∫ t1+t2

t2

e−ν(t1+t2−τ)u0(l − τ)dτ

= v0e
−ν(t1+t2) +

∫ t1+t2

0

e−ν(t1+t2−s)u0(l − s)ds = S2(t1 + t2)(u0, v0).
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Then the equality (2.4) holds.

On the other hand, for h sufficiently small, we have

|S0(h)(u0, v0)− (u0, v0)|X =

∣

∣

∣

∣

∣

∣

∣







S1(h)(u0, v0)− u0

S2(h)(u0, v0)− v0







∣

∣

∣

∣

∣

∣

∣

X

≤
∫ h

0

∣

∣bv0e
−ν(h−a)

+b

∫ h−a

0

e−ν(h−a−s)u0(l − s)ds− u0(a)

∣

∣

∣

∣

da

+

∫ l

h

|u0(a− h)− u0(a)|da+ |e−νt − 1|v0

+

∫ h

0

e−ν(h−s)|u0(l − s)|ds −→ 0

as h −→ 0+, i.e, limh→0+ S0(h)(u0, v0) = (u0, v0). Furthermore S0(0) = I, so the op-

erators {S0(t), 0 ≤ t ≤ l} satisfy all the properties of a C0−semigroup on the interval

[0, l].

Now we define the operators {S(t), t ≥ 0} in the form given by Lemma 2.1. The

result is that this family of operators forms a C0−semigroup.

We still have to compute the infinitesimal generator of the C0−semigroup {S(t), t ≥
0}. So for h > 0 small enough, and applying theorem VIII.2 in [14] and Fubini’s the-

orem we obtain

1

h
(S(h)(u0, v0)− (u0, v0)) =







1
h
(S1(h)(u0, v0)− u0)

1
h
(S2(h)(u0, v0)− v0)






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and, assuming u0 ∈ W 1,1,
∣

∣

1
h
(S2(h)(u0, v0)− v0)− u0(l) + νv0

∣

∣ =

=

∣

∣

∣

∣

1
h

(

v0e
−νh − v0

)

+ νv0 +
1
h

∫ h

0

(

e−ν(h−s)u0(l − s)− u0(l)
)

ds

∣

∣

∣

∣

≤
∣

∣

1
h

(

v0e
−νh − v0

)

+ νv0
∣

∣+

∣

∣

∣

∣

1
h

∫ h

0

(u0(l − s)− u0(l))ds

∣

∣

∣

∣

−→ 0

as h −→ 0+, i.e.

lim
h→0+

1

h
(S2(h)(u0, v0)− v0) = u0(l)− νv0.

Furthermore, a similar computation gives, in L1[0, l],

lim
h→0+

1

h
(S1(h)(u0, v0)− u0) = −

du0
da

.

Indeed, using the compatibility condition, u0(0) = bv0, it follows that
∫ l

0

∣

∣

∣

∣

1

h
[S1(h)(u0, v0)(a)− u0(a)] + u′0(a)

∣

∣

∣

∣

da =

=

∫ h

0

∣

∣

∣

∣

1

h

[

bv0e
−ν(h−a) + b

∫ h−a

0

e−ν(h−a−s)u0(l − s)ds− u0(a)

]

+ u′0(a)

∣

∣

∣

∣

da

+

∫ l

h

∣

∣

∣

∣

1

h
[u0(a− h)− u0(a)] + u′0(a)

∣

∣

∣

∣

da

≤ bv0
h

∫ h

0

∣

∣e−ν(h−a) − 1
∣

∣ da+

∫ h

0

∣

∣

∣

∣

1

h
[bv0 − u0(a)]

∣

∣

∣

∣

da+

∣

∣

∣

∣

b

h

∣

∣

∣

∣

∫ h

0

∫ h−a

0

|u0(l − s)| dsda

+

∫ h

0

|u′0(a)| da+
1

|h|

∫ l

h

∫ a

a−h

|u′0(a)− u′0(s)| dsda

≤ bv0νh+

∫ h

0

∣

∣

∣

∣

1

h

∣

∣

∣

∣

∫ h

t

|u′0(t)| dadt+
∫ h

0

∣

∣

∣

∣

b

h

∣

∣

∣

∣

|h− s| |u0(l − s)| ds −→ 0

as h −→ 0+. Hence, if (u0, v0) ∈W 1,1[0, l]× R and u0(0) = bv0 we will have

lim
h→0+

1

h
(S(h)(u0, v0)− (u0, v0)) = A

(

u0
v0

)

.

On the other hand, assuming the existence of the limit of (S(h)(u0, v0)− (u0, v0)) /h

as h −→ 0+ implies that u0 ∈ W 1,1 and u0(0) = bv0 (see the proof of Theorem 3.2 in
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[87], p. 83 or [42], p. 535). ¤

Remark 2.1. Theorem 2.1 is in fact a direct consequence of a theorem due to Phillips

and can be derived without computation from that theorem (see [67] or Theorem 1.2 in

[4, Chap. C-II]). We chose a direct method involving explicit representation because

we will use this the forthcoming.

Let σ(A) denote the spectrum of the operator A and σp(A) be the set of its

eigenvalues. The following theorem gives some properties of the spectrum of the

operator A. This operator has a dominant simple real eigenvalue which represents

the population growth rate.

Theorem 2.2. A has a unique real eigenvalue λ∗, and there exists a real number

ω < λ∗ such that any other spectral value of A has a real part less than ω. Moreover,

σ(A) = σp(A).

Proof. λ is an eigenvalue of A if there exists a nonzero vector (u, v) in the domain

of A such that

A

(

u

v

)

= λ

(

u

v

)

,

i.e.






−u′ = λu,

u(l) = (ν + λ)v,

u(0) = bv.

From the first equation and the initial condition of this system, it follows that u(a) =

bve−λa and u and v are both different from 0. Hence, using the second equation,

b = (ν + λ)eλl =: f(λ) (2.5)

holds. Notice that f(−ν) = 0 and that for λ > −ν, f is monotonously increasing and

unbounded. So there is a unique real number λ∗ (which is larger than −ν) such that

f(λ∗) = b. On the other hand, let λ be any complex (not real) solution of (2.5). As

the real part of ν + λ is strictly less than its modulus, we have

Reλ+ ν = Re(be−lλ) <
∣

∣be−lλ
∣

∣ = be−lReλ
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and therefore f(Reλ) < b which implies Reλ < λ∗.

More precisely, Reλ is bounded above by a constant, independent on λ, ω < λ∗.

Otherwise, there exists a sequence (λn)n≥0 of eigenvalues of A such that Reλn −→
λ∗. But the λn are the zeros of an analytic function and therefore |λn| −→ ∞.

Nevertheless, |λn + ν| = be−lReλn −→ be−lλ
∗

, a contradiction. Finally, it is easy

to show that if λ is not an eigenvalue of A, then the operator A − λI is surjective

then the rang of the operator A− λI is X and and (A− λI)−1 is continuous, hence

σp(A) = σ(A). ¤

The next result, which will be used when dealing with the asymptotic behaviour of

the solutions of (2.1) (see Sect. 3.3.4), shows that, for the linear problem, the growth

rate of the consumer population depends only on the adults population number (and

on its fertility rate).

Theorem 2.3. Let N : X −→ R be the bounded linear operator defined as N(u, v) =
∫ l

0

u da + v. Let S(t) the semigroup defined in the proof of Theorem 2.1. Then

t −→ NS(t)(u0, v0) is a C1 function of t ≥ 0 for any (u0, v0) ∈ X. Moreover,
d
dt
NS(t)(u0, v0) = (b− ν)S2(t)(u0, v0).

Proof. In view of the semigroup property we can restrict ourselves to the case

t ∈ [0, l]. So we have, using (2.3),

NS(t)(u0, v0) =

∫ t

0

S1(t)(u0, v0)(a) da+

∫ l

t

S1(t)(u0, v0)(a) da+ S2(t)(u0, v0)

= b

∫ t

0

S2(t− a)(u0, v0) da+

∫ l

t

u0(a− t) da+ v0e
−νt

+

∫ t

0

e−ν(t−s)u0(l − s) ds

= b

∫ t

0

S2(t− a)(u0, v0) da+

∫ l

0

u0(s) ds+ v0 + (e−νt − 1)v0

+

∫ t

0

(e−ν(t−s) − 1)u0(l − s) ds

= b

∫ t

0

S2(t− a)(u0, v0) da+N(u0, v0)

−ν
∫ t

0

[

v0e
−νs +

∫ s

0

e−ν(s−σ)u0(l − σ) dσ

]

ds

= N(u0, v0) + (b− ν)

∫ t

0

S2(s)(u0, v0) ds,
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where we have used Fubini’s theorem in the next to the last but one equality. Finally,

the statement follows from the continuity of the integrand. ¤

2.4 Local existence and uniqueness

The initial value problem (2.1) does not necessarily have a solution of any kind.

However, if it has a classical solution, i.e., a function (u, v, r) ∈ C1 ([0, τ), X × R)

such that (u(t), v(t)) ∈ D(A) for any t ∈ [0, τ) and (2.1) is satisfied on [0, τ), then

it is easy, see for instance [65, Sect. 4.2], to show that this solution satisfies the

following integral equation





u

v

r



 (t) = T (t)





u0
v0
r0



+

∫ t

0

T (t− s)f(u(s), v(s), r(s))ds. (2.6)

But in general, existence of a classical solution is not necessary to have a solution of

the last equation.

Notice that, technically, it is not easy to study directly existence of a classical

solution of (2.1), i.e., we cannot deal with it without using other technics. Then in

order to solve System (2.1) we will use the variation of constants formula (2.6) as in

[65] and we start with

Definition 2.1. A continuous solution of the integral equation (2.6) will be called a

mild solution of the initial value problem (2.2), or a mild solution of Problem (2.1).

The following result ensures the local existence and uniqueness of mild solutions

of (2.1) for a Lipschitz function f .

Theorem 2.4. Let us assume that m1(a, r) is a locally Lipschitzian function of r,

uniformly with respect to a ∈ R+, and let us assume that m2, g, g̃ and h are locally

Lipschitzian functions. Then, for every initial condition w0 = (u0, v0, r0) ∈ Y , there

exists 0 < tmax(w0) ≤ ∞ such that Problem (2.1) has a unique mild solution (u, v, r)

on the interval [0, tmax). Moreover, if tmax <∞ then limt→tmax sup |w(t)|Y =∞.

Proof. It suffices to prove that the function f is locally Lipschitzian on Y , which

implies the proof according to the theory of semilinear equations (see Theorem 1.4 in

[65, Chap. 6 ]).
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Let m1,m2, g, g̃ and h be respectively M1,M2, G, G̃ and H Lipschitzian. Let then

(u1, v1, r1) and (u2, v2, r2) belong to the Banach space Y such that |(u1, v1, r1)|Y ≤ R0
and |(u2, v2, r2)|Y ≤ R0 for some constant R0 ∈ R. Therefore there exists a real

number C > 0 such that |f(u1, v1, r1)|Y ≤ C and |f(u2, v2, r2)|Y ≤ C. So we have

|f(u1, v1, r1)− f(u2, v2, r2)|Y ≤ |m1(a, r1)u1 −m1(a, r2)u2|L1[0,l]

+ |m2(r1)v1 −m2(r2)v2|
+|g(r1)r1 − g(r2)r2|
+|h(L(u1, v1))g̃(r1)− h(L(u2, v2))g̃(r2)|.

On the other hand, it follows that

|m1(a, r1)u1 −m1(a, r2)u2|L1[0,l] = |m1(a, r1)[u1 − u2]

+[m1(a, r1)−m1(a, r2)]u2|L1[0,l]

≤ |m1(a, r1)||u1 − u2|L1[0,l] +M1R0|r1 − r2|
≤ C|u1 − u2|L1[0,l] +M1R0|r1 − r2|,

|m2(r1)v1 −m2(r2)v2| = |m2(r1)[v1 − v2] + [m2(r1)−m2(r2)]v2|
≤ |m2(r1)||v1 − v2|+M2R0|r1 − r2|
≤ C|v1 − v2|+M2R0|r1 − r2|,

|g(r1)r1 − g(r2)r2| = |g(r1)[r1 − r2] + [g(r1)− g(r2)]r2|
≤ |g(r1)||r1 − r2|+GR0|r1 − r2|

and

|h(L(u1, v1))g̃(r1)− h(L(u2, v2))g̃(r2)| = |h(L(u1, v1))[g̃(r1)− g̃(r2)]

+[h(L(u1, v1))− h(L(u2, v2))]g̃(r2)|
≤ CG̃|r1 − r2|

+HR0||L||
(

|u1 − u2|L1[0,l] + |v1 − v2|
)

.

Finally, we have

|f(u1, v1, r1)− f(u2, v2, r2)|Y ≤
≤

(

C(1 + G̃) +R0(M1 +M2 +G)
)

|r1 − r2|+ (C +HR0||L||)|v1 − v2|
+(C +HR0||L||)|u1 − u2|L1[0,l]

≤ max
(

C(1 + G̃) +R0(M1 +M2 +G), C +HR0||L||
)

|(u1, u1, r1)− (u2, v2, r2)|Y .
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2.5 Continuous dependence on initial age distri-

butions

After we have shown that the initial value problem (2.1) has a unique local mild

solution, the goal of this subsection is to show that the local solutions depend con-

tinuously on the initial age distributions. That is, given two close initial conditions,

the corresponding mild solutions remain close to each other.

Notice also that a similar proof of the following proposition can be found in the

proof of [40, Theorem 3.4.1] for the analytic semigroup case.

Proposition 2.1. Let w0 ∈ Y . For any t1 ∈ [0, tmax(w0)) and for any ε > 0 there

exists δ > 0 such that if |w̃0 − w0|Y < δ then tmax(w̃0) > t1 and |w̃(t) − w(t)|Y < ε

for t ∈ [0, t1] where w(t) and w̃(t) are the two local mild solutions of Problem (2.1)

corresponding respectively to initial conditions w0 and w̃0.

Proof. Let R be a real number such that |w(t) − w0|Y < R
2
for t ∈ [0, t1] and let

L̃ := L̃(w0, R) be such that |f(w1) − f(w2)| < L̃|w1 − w2|Y whenever |wi − w0|Y <

R, i = 1, 2.

Let us assume that |w̃0−w0|Y < R. Let us recall the bound ‖T (t)‖ ≤Meωt. First,

we shall prove that if |w̃0−w0|Y is sufficiently small, explicitly if |w̃0−w0|Y < R
4M
e−kt1

where k := max(L̃M + ω, 0), then |w̃(s) − w0|Y < R for 0 ≤ s ≤ t1. Otherwise, let

us assume that the claim does not hold and let t0 = infs∈[0,t1]{s : |w̃(s)−w0|Y ≥ R}.
So |w̃(s)− w0|Y < R for 0 ≤ s < t0 and |w̃(t0)− w0|Y = R by continuity.

From the integral equations

w(t) = T (t)w0 +

∫ t

0

T (t− s)f(w(s))ds

and

w̃(t) = T (t)w̃0 +

∫ t

0

T (t− s)f(w̃(s))ds,

we will have

|w(t)− w̃(t)|Y ≤Meωt|w0 − w̃0|Y +ML̃

∫ t

0

eω(t−s)|w(s)− w̃(s)|Y ds

for 0 ≤ t < t0. By Gronwall’s inequality it readily follows that

|w(t)− w̃(t)|Y ≤Me(L̃M+ω)t|w0 − w̃0|Y ≤Mekt1|w0 − w̃0|Y <
R

4
(2.7)
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and therefore,

|w̃(t)− w0|Y ≤ |w̃(t)− w(t)|Y + |w(t)− w0|Y <
3

4
R

for t ≤ t0, a contradiction.

Moreover, (2.7) holds whenever |w̃(t) − w0|Y < R, i.e. for t ∈ [0, t1]. So the

statement of this proposition follows with δ = min(R
4
, ε) e

−kt1

M
. ¤

2.6 Positivity of solutions and global existence

The first aim of this subsection is to study the positivity of the solutions in order

the initial value problem to have a biological sense. We start with the positivity also

because this is a necessary condition to have global existence.

Theorem 2.5. If the initial condition w0 := (u0, v0, r0) ∈ Y is positive then the mild

solution (u, v, r) of Problem (2.1) defined on [0, tmax(w0)) is also positive.

Proof. First notice that if r0 is strictly positive then r(t) cannot become negative.

Indeed, if there exists some T such that r(T ) = 0 then r(t) is a solution of the

following ordinary differential equation

{

r′ = (g(r)− h̃(t))r

r(T ) = 0,

where h̃(t) := h(L(u(t), v(t))). As the function r̃(t) ≡ 0 is also a solution of this

problem, this contradicts the uniqueness of solution of the initial value problem for

ordinary differential equations.

Let us add and subtract κu and κv, where κ is a constant larger than the two

functions m1(a, r) and m2(r), respectively to the right hand side of the first and

the second equations of Problem (2.1). We can think of these two first equations

as a semilinear nonautonomous equation (here r(t) is a given function of t) with a

uniformly Lipschitz continuous nonlinearity. From the proof of Theorem 1.2 of [65,

Chap.6] it follows that the mild solution (u(t), v(t)) is the limit, on [0, T ] for all

T < tmax(w0), of the sequence (un(t), vn(t))n≥0 where (un, vn) is given by

(

un+1
vn+1

)

(t) = Sκ(t)

(

u0
v0

)

+

∫ t

0

Sκ(t− s)

(

(κ−m1(a, r(s)))un(s)

(κ−m2(r(s)))vn(s)

)

ds
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and where Sκ(t) := e−κtS(t) is the semigroup generated by the operator (A − κI).

Now, using the positivity of the semigroup Sκ(t) and the positivity of the two func-

tions κ − m1(a, r) and κ − m2(r) and induction on n it readily follows that the

sequence (un, vn)n≥0 is positive in the Banach space X whenever the initial condi-

tion (u0, v0) is positive. Therefore, its limit (u, v) is also in the positive cone of X. ¤

In general a global Lipschitz condition on the nonlinearities ensures the existence

of global mild solutions of (2.1). But the next theorem shows, assuming only a local

Lipschitz condition on the functions m1,m2, g, g̃ and h, the global existence of mild

solutions which will automatically be positive if the initial condition belongs to the

positive cone of the state space Y .

Theorem 2.6. Let us assume the same hypotheses as in Theorem 2.4. For any pos-

itive initial condition in Y , the initial value problem (2.1) has a unique mild solution

in the whole interval [0,∞).

Proof. From Theorem 2.4 there exists some tmax > 0 such that Problem (2.1)

has a unique mild solution (u, v, r) on the interval [0, tmax) corresponding to the

initial condition (u0, v0, r0). So, in order to show the statement of the theorem,

it suffices (see Theorem 1.4 in [65, Chap. 6]) to prove that tmax < ∞ implies

limt→tmax sup |(u(t), v(t), r(t))|Y < ∞. As r′(t) is negative for r > rc, it is clear that

r(t) is bounded above and it is bounded below by 0 by Theorem 2.5. As above let us

denote by κ an upper bound of m1(a, r) and m2(r) and notice that ‖S(t)‖ ≤ Meωt.

We have, for every t ∈ [0, tmax),

(

u(t)

v(t)

)

= S(t)

(

u0
v0

)

−
∫ t

0

S(t− s)

(

m1(a, r(s))u(s)

m2(r(s))v(s)

)

ds, (2.8)

so

|(u(t), v(t))|X ≤Meωt|(u0, v0)|X +Mκeωt
∫ t

0

e−ωs|(u(s), v(s))|Xds,

i.e.,

|(u(t), v(t))|Xe−ωt ≤M |(u0, v0)|X +Mκ

∫ t

0

e−ωs|(u(s), v(s))|Xds.

Applying Gronwall’s inequality, it follows from the last inequality that

|(u(t), v(t))|X ≤M |(u0, v0)|Xe(ω+Mκ)t
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and therefore if tmax <∞ then

lim
t→tmax

sup |u(t), v(t), r(t)|Y <∞. ¤

Remark 2.2. Initial conditions belonging to the domain of B and smoothness of the

nonlinear functions m1,m2, g and h imply that the mild solution of Problem (2.1) is

a classical one (see Theorem 1.5 in [65, Chap.6 ]).

2.7 Existence of equilibrium solutions

To end this chapter we study in this section the equilibrium solutions belonging

to the positive cone of Y . The following results will be used when dealing with the

study of the asymptotic behaviour of solutions of the initial value problem (2.1).

Theorem 2.7. If b ∈
[

0,m2(rc)e
∫ l
0 m1(a,rc) da

]

or b > m2(0)e
∫ l
0 m1(a,0) da, the only equi-

librium points of System (2.1) are (0, 0, 0) and (0, 0, rc).

If b ∈
(

m2(rc)e
∫ l
0 m1(a,rc) da , m2(0)e

∫ l
0 m1(a,0) da

)

then there exists also a unique co-

existence equilibrium point (ue, ve, re). Moreover 0 < re < rc.

Finally, if b = m2(0)e
∫ l
0 m1(a,0) da the equilibria are (0, 0, 0), (0, 0, rc) and, for any

v > 0,
(

bve−
∫ a
0 m1(a′,0) da′ , v, 0

)

.

Proof. The equilibrium points are the solutions of the following system:



















u′(a) +m1(a, r)u(a) = 0,

u(l)−m2(r)v = 0,

[g(r)− h(L(u, v))] r = 0,

u(0)− bv = 0.

(2.9)

First notice that the first and last equations are equivalent to having

u(a) = bve−
∫ a
0 m1(a′,r) da′ .

So if v = 0 then u ≡ 0 and g(r)r = 0, that is, r = 0 or r = rc. Then (0, 0, 0) and

(0, 0, rc) are the only equilibrium solutions with v = 0. Otherwise, i.e. if v 6= 0, the

second equation reduces to b = m2(r)e
∫ l
0 m1(a,r) da.
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As the functionsm1 andm2 are strictly decreasing with respect to the amount of re-

sources, then the function r −→ m2(r)e
∫ l
0 m1(a,r) da is strictly decreasing too. So, in the

assumption of the first statement, there exists no solution r of b = m2(r)e
∫ l
0 m1(a,r) da

smaller than rc. Then, by the third equation, there is no equilibrium with v > 0.

If b ∈
(

m2(rc)e
∫ l
0 m1(a,rc) da , m2(0)e

∫ l
0 m1(a,0) da

)

, there exists a unique re ∈ (0, rc)

such that b = m2(re)e
∫ l
0 m1(a,re) da. On the other hand, as h is a strictly increas-

ing unbounded function vanishing at 0 then there exists a unique ve such that

ue(a) = bvee
−
∫ l
0 m1(a,re) da and g(re) = h(L(ue, ve)). That is, (ue, ve, re) is the only

coexistence equilibrium solution.

In the third assumption, r = 0 solves the second and the third equations and so

the statement follows. ¤
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Chapter 3

Asymptotic Behaviour in the

Uniform Increase of Mortality Case

3.1 Introduction

In this chapter we find out the asymptotic behaviour of System (2.1) in the case

of uniform increase of mortality, i.e. when the death rates of juveniles and adults

differ by a constant: m2(r) = ν +m1(r). That is, both consumer populations react

in the same way to the amount of resources. This allows to write (2.1) in an abstract

form in such a way that the infinite dimensional part of it (the equations for u and

v) take the form:

x′ = Ax−m(r)x.

This permits a reduction to a nonautonomous two dimensional system, which in its

turn is studied analyzing its limit system by classical methods (using Theorem 3.7,

Theorem 3.8 and Theorem 3.9).

The results depend on the number λ∗ which is the dominant eigenvalue of the

operator A (see Theorem 2.2). In other words, the dynamics of (2.1) depends on the

fertility of the adults b since λ∗ is the only solution of the equation b = (ν + λ∗)eλ
∗l

(see the proof of Theorem 2.2).

In the case where g̃(r) = r we will determine completely the dynamics of our

system and we will show the existence of an attractor, but in the case where g̃(r) is

any increasing C1−function globally bounded from above (to take into account the

”satiation” of the consumers), the asymptotic behaviour of (2.1) is complicated and
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the existence of a global attractor requires more conditions.

Let us now assume m1(r) = ν1+m(r) and m2(r) = ν2+m(r) where ν1 and ν2 are

two constants. Denote m(r) := ν1 +m(r) and ν := ν2 − ν1. Then m2(r) = ν +m(r).

Consequently, we can write system (2.1) in the following abstract form:



















(

u

v

)′

= A

(

u

v

)

−m(r)

(

u

v

)

,

r′ = g(r)r − h(L(u, v))g̃(r),

u(., 0) = u0(.), v(0) = v0, r(0) = r0,

(3.1)

where the operator

A :=







− d
da

0

El −ν







is defined in the previous chapter.

3.2 Reduction to a nonautonomous ordinary dif-

ferential system

In order to deal with this section, firstly we will use a technique based on the

translation of the eigenvalues of the operator A to the left so that 0 will be an

eigenvalue of another operator Ã which will generate the C0−semigroup
{

S̃(t), t ≥ 0
}

such that

S̃(t) := e−λ
∗tS(t).

Thus, we will prove using the method of “variation of constants” that in the case

of uniform increase mortality the mild solutions (or the classical solutions) have the

following form
(

ψ(t)S̃(t)(u0, v0), r(t)
)

,

where ψ is a real function. So, this will result in a nonautonomous system of two

ordinary differential equations.
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Adding and subtracting λ∗
(

u
v

)

to the second member of the first equation of (3.1),

the initial value problem becomes:



















(

u

v

)′

= Ã

(

u

v

)

− (m(r)− λ∗)

(

u

v

)

,

r′ = g(r)r − h(L(u, v))g̃(r),

u(a, 0) = u0(a), v(0) = v0, r(0) = r0,

(3.2)

where

Ã :=







− d
da
− λ∗ 0

El −ν − λ∗







is an operator in the Banach space X with D(Ã) = D(A).

Theorem 3.1. The operator Ã is the infinitesimal generator of the C0−semigroup

{S̃(t), t ≥ 0}.

Proof. Notice that in order to prove this statement it suffices to show that if

(u, v) ∈ D(A) satisfies

{

(

u
v

)′
= A

(

u
v

)

u(0, t) = bv(t)
(3.3)

then, e−λ
∗t(u, v) is the solution of the following system

{

(

u
v

)′
= Ã

(

u
v

)

u(0, t) = bv(t).
(3.4)
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Let then w = e−λ
∗tu and z = e−λ

∗tv, therefore

(

w

z

)′

=







−λ∗e−λ∗tu+ e−λ
∗tu′

−λ∗e−λ∗tv + e−λ
∗tv′







=







−λ∗e−λ∗tu− eλ
∗t du
da

−λ∗e−λ∗tv + e−λ
∗tu(l, t)







=







(

− d
da
− λ∗

)

w

Elw − λ∗z







= Ã

(

w

z

)

.

On the other hand we have

w(0, t) = e−λ
∗tu(0, t)

= e−λ
∗tbv(t)

= bz.

Then the statement holds. ¤

Considering now the function

t −→ ψ(t)S̃(t)(u0, v0)

for fixed (u0, v0) belonging to the domain of Ã, and substituting it into the equation

(3.2)1, we obtain

ψ′S̃(t)

(

u0
v0

)

+ ψÃS̃(t)

(

u0
v0

)

= ψÃS̃(t)

(

u0
v0

)

− (m(r)− λ∗)ψS̃(t)

(

u0
v0

)

,
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which implies that

ψ′ = (λ∗ −m(r))ψ

with ψ(0) = 1. Therefore, we get the following nonautonomous ordinary differential

system
{

r′ = g(r)r − h
(

L
(

ψS̃(t)(u0, v0)
))

g̃(r),

ψ′ = (λ∗ −m(r))ψ,
(3.5)

supplemented with the initial condition. Next, we consider this system with the initial

condition (u0, v0) ∈ X. We will show that the nonautonomous ordinary differential

system (3.5) has a unique positive solution if (u0, v0, r0) ∈ Y +.

So, let F : [0,∞)× R2 −→ R2 be the function defined by

F (t, (r, ψ)) :=

(

g(r)r − h̃(t, ψ)g̃(r)

(λ∗ −m(r))ψ

)

where

h̃(t, ψ) := h

(

L

(

ψS̃(t)

(

u0
v0

)))

.

Lemma 3.1. If m, g, g̃ and h are locally Lipschitzian functions then the function F

is also locally Lipschitzian in (r, ψ), uniformly in t on bounded intervals.

Proof. Firstly, it is easy to see that the function h̃ is locally Lipschitzian uniformly

on bounded intervals (with constant H̃) because the function h is locally Lipschitzian.

Let R be any positive number and let M,G and G̃ be the Lipschitz constants of m, g

and g̃ in the closed ball of center the origin and radius R of R2. There exists a positive

number K such that g(r), g̃(r),m(r) and h̃(t, ψ) are small than K if |(r, ψ)| ≤ R. So

we get for |(r1, ψ1)| ≤ R and |(r2, ψ2)| ≤ R,

|F (t, (r1, ψ1))− F (t, (r2, ψ2))|R2 =

=

∣

∣

∣

∣

(

g(r1)r1 − h̃(t, ψ1)g̃(r1)− g(r2)r2 − h̃(t, ψ2)g(r2)

(λ∗ −m(r1))ψ1 − (λ∗ −m(r2))ψ2

)∣

∣

∣

∣

R2

=
∣

∣

∣
g(r1)r1 − h̃(t, ψ1)g̃(r1)− g(r2)r2 − h̃(t, ψ2)g̃(r2)

∣

∣

∣

+ |(λ∗ −m(r1))ψ1 − (λ∗ −m(r2))ψ2| .
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After it follows that
∣

∣

∣
g(r1)r1 − h̃(t, ψ1)g̃(r1)− g(r2)r2 − h̃(t, ψ2)g̃(r2)

∣

∣

∣
≤

≤ |g(r1)r1 − g(r2)r2|+
∣

∣

∣
h̃(t, ψ1)g̃(r1)− h̃(t, ψ2)g̃(r2)

∣

∣

∣

= |(g(r1)− g(r2)) r1 + g(r2)(r1 − r2)|
+
∣

∣

∣

(

h̃(t, ψ1)− h̃(t, ψ2)
)

g̃(r1) + h̃(t, ψ2) (g̃(r1)− g̃(r2))
∣

∣

∣

≤ GR |r1 − r2|+K |r1 − r2|+ H̃K |ψ1 − ψ2|+KG̃ |r1 − r2|
= (GR +K +KG̃) |r1 − r2|+ H̃K |ψ1 − ψ2)| .

on the other hand we have

|(λ∗ −m(r1))ψ1 − (λ∗ −m(r2))ψ2| = |λ∗(ψ1 − ψ2)

−(m(r1)−m(r2))ψ1 −m(r2)(ψ1 − ψ2)|
≤ (λ∗ +K)|ψ1 − ψ2|+MR|r1 − r2|.

Finally

|F (t, (r1, ψ1))− F (t, (r2, ψ2))| ≤ C|r1, ψ1)− (r2, ψ2)|R2

where C := max(GR + K + KG̃ +MR , H̃K + λ∗ + K). Therefore, F is locally

Lipschitzian. ¤

Theorem 3.2. For any (u0, v0, r0) ∈ Y +, if m, g, g̃ and h are locally Lipschitzian

functions then the ordinary differential system (3.5) has a unique global solution

(r(t), ψ(t)).

Proof. First, from the previous lemma the function F is a locally Lipschitz

continuous function, so that there exists tmax > 0 such that system (3.5) has a

unique solution (r, ψ) on the interval [0, tmax). If furthermore, tmax < ∞, then

limt→tmax sup |(r, ψ)|R2 = ∞. But it is clear that the function r(t) is bounded above

since the function g is negative from rc onward and furthermore we have

ψ(t) = eλ
∗t−

∫ t
0 m(r(s))ds.

So sup |(r, ψ)| does not tend to infinite as t tends to tmax <∞. From this, it follows

that tmax =∞. ¤

Proposition 3.1. If (u0, v0, r0) ∈ Y + then the solution (r(t), ψ(t)) of the ordinary

differential system (3.5) is positive.
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Proof. Firstly, from the proof of the previous theorem it is clear that the function

ψ is always positive. On the other hand the positivity of the function r was proved

in the proof of Theorem 2.5. ¤

Theorem 3.3. For any (u0, v0, r0) ∈ Y +, let (r(t), ψ(t)) be the global solution of the

ordinary differential system (3.5). Then the initial value problem (3.1) has a unique

positive global mild solution which is of the form
(

ψ(t)S̃(t)(u0, v0), r(t)
)

.

Furthermore, it is classical if (u0, v0) is in the domain of the operator A.

Proof. In order to prove this result it suffices to show that ψ(t)S̃(t)(u0, v0) is the

mild solution of the first equation of (3.2). On the other hand notice that the function

ψ satisfies

ψ(t) = 1 +

∫ t

0

(λ∗ −m(r(s)))ψ(s) ds.

So it follows that

S̃(t)(u0, v0) +

∫ t

0

S̃(t− s)(λ∗ −m(r(s)))ψ(s)S̃(s)(u0, v0) ds =

= S̃(t)(u0, v0) +

∫ t

0

(λ∗ −m(r(s)))ψ(s)S̃(t− s)S̃(s)(u0, v0) ds

= S̃(t)(u0, v0) +

∫ t

0

(λ∗ −m(r(s)))ψ(s)S̃(t)(u0, v0) ds

=

(

1 +

∫ t

0

(λ∗ −m(r(s)))ψ(s) ds

)

S̃(t)(u0, v0)

= ψ(t)S̃(t)(u0, v0).¤

Remark 3.1. Notice that, for the initial value problem (3.1) global existence, unique-

ness and positivity of the solution had been already proved in the previous chapter,

using the theory of a semilinear equation (see Sect. 2.4 and Sect. 2.6). The advan-

tage of proof undertaken in Theorem 3.3 is that in the case of the uniform increase

of mortality, we prove that the solution of (3.1) can be written in the following form

(u(t), v(t), r(t)) = (ψ(t)S̃(t)(u0, v0), r(t))

which permits to determine completely the dynamics of (3.1) in some cases. We also

note that in this special case uniqueness can be proved separately as in [15] and a

similar proof, in a slightly different case, can be found in [17].


