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3.3 Asymptotic behaviour

The present section is devoted to the study of the asymptotic behaviour of the

solution of (3.2). Since the solution of this problem is given, according to the previous

section, by

(u(t), v(t), r(t)) =
(

ψ(t)S̃(t)(u0, v0), r(t)
)

,

in order to simplify the task, we only have to study the dynamics of the autonomous

ordinary differential system which is the limit of System (3.5) as t goes to +∞.

Afterwards, we easily deduce the behaviour of our initial value problem.

3.3.1 The limit of the nonautonomous ordinary differential

system

The goal of this paragraph is to find the limit, at infinity, of the nonautonomous

ordinary differential system (3.5). We will be able to apply Markus’s theorems (see

[59] and [81]), which allows us to determine the dynamics of this nonautonomous

ordinary differential system through the study of the asymptotic behaviour of the

limiting autonomous ordinary differential system. We need the following results:

Theorem 3.4. The C0 linear semigroup {S(t), t ≥ 0} generated by the operator A is

eventually compact. More precisely, S(t) is compact for any t ≥ l.

Proof. For all t ≥ l, we have S(t) = S(t − l)S(l). The operators {S(t), t ≥ 0}
are all bounded, so we only have to prove that S(l) is compact in order to show this

result. We have, using 2.3,

S(l)(u0, v0)(a) =

(

S1(l)(u0, v0)(a)

S2(l)(u0, v0)

)

=







bv0e
−ν(l−a) + b

∫ l−a

0
e−ν(l−a−s)u0(l − s)ds

v0e
−νl +

∫ l

0
e−ν(l−s)u0(l − s)ds






.

Let now F be a bounded subset of L1[0, l]×R, and let us show that S1(l)F and S2(l)F

are precompact. The second set is obviously bounded in R, so S2(l)F is precompact.
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We have, assuming that ω = (η, l − η), 0 < η < l, the following, for h sufficiently

small,
∫ l−η

η
|S1(l)(u0, v0)(a+ h)− S1(l)(u0, v0)(a)| da =

=
∫ l−η

η

∣

∣

∣
bv0e

−ν(l−a−h) + b
∫ l−a−h

0
e−ν(l−a−h−s)u0(l − s)ds −

−bv0e−ν(l−a) − b
∫ l−a

0
e−ν(l−a−s)u0(l − s)ds

∣

∣

∣ da −→ 0

uniformly for (u0, v0) ∈ F as h tends to 0. We also have

∫

[0,l]\ω
|S1(l)(u0, v0)(a)| da =

∫ η

0
|S1(l)(u0, v0)(a)| da+

∫ l

l−η
|S1(l)(u0, v0)(a)| da

=
∫ η

0

∣

∣

∣
bv0e

−ν(l−a) + b
∫ l−a

0
e−ν(l−a−s)u0(l − s)ds

∣

∣

∣
da

+
∫ l

l−η

∣

∣

∣
bv0e

−ν(l−a) + b
∫ l−a

0
e−ν(l−a−s)u0(l − s)ds

∣

∣

∣
da

≤ ηbv0 + b
∫ η

0

∫ l−a

0
|u0(l − s)| dsda

+ηbv0 + b
∫ l

l−η

∫ l−a

0
|u0(l − s)| dsda −→ 0

as η tends to 0 uniformly for (u0, v0) ∈ F . Hence by a standard compactness criterion

in Lp-spaces (see Corollary IV.26, p. 74 in [14]), S(l)F is precompact, i.e. S(l) is

compact. ¤

Remark 3.2. From this theorem, it immediately follows that the α−growth bound of

{S(t), t ≥ 0}, ω1(A) := limt→∞
1
t
log (α[S(t)]), equals −∞, where α is the measure of

noncompactness (see [86]).

Theorem 3.5. Let Φ ∈ L1[0, l]× R, then it follows that

lim
t→∞

e−λ
∗tS(t)Φ = PΦ (3.6)

where

PΦ =
1

2πi

∫

Γ

(λ− A)−1Φdλ =
Φ2 +

∫ l

0
e−λ

∗(l−s)Φ1(s)ds

1 + ble−λ∗l
ϕ =: c(Φ1,Φ2)ϕ

where ϕ(a) =
(

be−λ
∗a, 1

)

is an eigenvector of the operator A associated to λ∗, and Γ

is a positively oriented closed curve in C enclosing λ∗, but no other point of σ(A).

(notice that Pϕ = ϕ and, hence, P is a projection operator)
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Proof. Let Λ := {λ∗} and ω ∈ R such that

sup

λ∈V P (A)

λ6=λ∗

Reλ < ω < λ∗.

Let P0 := I−P , M0 := R(P0), M := R(P ) where R(P0) and R(P ) are respectively

the projection of X by P0 and P , and let Eσ(A) be the essential spectrum of A.

Then
ω2,1 := max

(

ω1(A), supλ∈σ(A)\Eσ(A)\ΛReλ
)

≤ max
(

ω1(A), supλ∈σ(A)\ΛReλ
)

< ω.

Moreover λ∗ is a simple pole of the operator (λI −A)−1. So, we get from the projec-

tion theorem (see [87] or [86], p. 180) that

(1) X =M ⊕M0,

(2) there exists a constant K ≥ 1 such that,

|S(t)P0Φ|X ≤ Keωt |P0Φ|X ∀Φ ∈ X and ∀t ≥ 0

(3) the restriction of the operator A to M denoted by AM is bounded and S(t)/M =

etAM

(4) M = N(λ∗I − A), i.e. Φ ∈M if and only if AΦ = λ∗Φ.

From this it follows that

S(t)Φ = etAMΦ = eλ
∗tΦ, ∀Φ ∈M and ∀t ≥ 0.

Therefore, for any Φ ∈ X,

∣

∣e−λ
∗tS(t)Φ− PΦ

∣

∣

X
=

∣

∣e−λ
∗tS(t)PΦ + e−λ

∗tS(t)P0Φ− PΦ
∣

∣

X

=
∣

∣e−λ
∗tS(t)P0Φ

∣

∣

X
≤ Ke(ω−λ

∗)t|P0Φ|X ,

hence (3.6). Now let us compute PΦ using some results of complex analysis. So

initially we have that

(λI − A)−1Φ =

(

u

v

)

is equivalent to
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(λI − A)

(

u

v

)

= Φ.

That is,































du
da

+ λu = Φ1

λv − u(l) = Φ2

u(0) = bv.

It is clear that the solution of this system is

u(a) = bve−λa +

∫ a

0

e−λ(a−x)Φ1(x)dx

and

v =

Φ2 +

∫ l

0

e−λ(l−x)Φ1(x)dx

λ− be−λl
.

Let P1, P2, Q and R1 be complex functions such that

P1(λ) := be−λa(Φ2 +

∫ l

0

e−λ(l−x)Φ1(x)dx)

P2(λ) := Φ2 +

∫ l

0

e−λ(l−x)Φ1(x)dx

Q(λ) := λ− be−λl

R1(λ) :=

∫ a

0

e−λ(a−x)Φ1(x)dx.

Therefore,

u(a) =
P1(λ)

Q(λ)
+R1(λ)

and
∫

Γ

udλ =

∫

Γ

P1(λ)

Q(λ)
dλ+

∫

Γ

R1(λ)dλ.

Since the function R1 is holomorphic then
∫

Γ

R1(λ)dλ = 0
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and
∫

Γ

udλ =

∫

Γ

P1(λ)

Q(λ)
dλ = 2πiRes

(

P1
Q
, λ∗
)

because Q vanishes only at λ∗. We also have
∫

Γ

vdλ =

∫

Γ

P2(λ)

Q(λ)
dλ = 2πiRes

(

P2
Q
, λ∗
)

.

On the other hand P1(λ
∗) 6= 0, P2(λ

∗) 6= 0 and Q(λ∗) = 0 imply that

Res

(

P1
Q
, λ∗
)

=
P1(λ

∗)

Q′(λ∗)
=

P1(λ
∗)

1 + ble−λ∗l

and

Res

(

P2
Q
, λ∗
)

=
P2(λ

∗)

Q′(λ∗)
=

P2(λ
∗)

1 + ble−λ∗l
.

Then

PΦ =
1

2πi

(∫

Γ

udλ,

∫

Γ

vdλ

)

=
1

1 + ble−λ∗l
(P1(λ

∗), P2(λ
∗))

=
Φ2 +

∫ a

0
e−λ

∗(l−x)Φ1(x)dx

1 + ble−λ∗l
(

be−λ
∗a, 1

)

= c(Φ1,Φ2)ϕ(a)¤.

Now, from this, the following result easily follows

Corollary 3.1. The limit of the asymptotically autonomous ordinary differential sys-

tem (3.5) when t goes to infinity is the following autonomous ordinary differential

system
{

r′ = g(r)r − f(ψ)g̃(r),

ψ′ = (λ∗ −m(r))ψ,
(3.7)

where the real function f is defined as f(ψ) := h (L (ψc(u0, v0)ϕ)) = h (ψc(u0, v0)Lϕ).

Remark 3.3. Notice that, according to the hypotheses satisfied by the functions h and

L, the function f is strictly increasing, unbounded and vanishes at 0 if c(u0, v0) > 0

and this latter fact holds if (u0, v0) is a positive nonvanishing initial condition.

Now let us start the study of the asymptotic behaviour of the autonomous ordinary

differential system (3.7).
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3.3.2 Equilibrium points of the autonomous ordinary differ-

ential system and their stability

In this subsection we first state a result which shows that under a condition

on λ∗, the (positive) solutions of the autonomous ordinary differential system (3.7)

are bounded. After that we determine the equilibrium points of this system and

their stability. When a coexistence equilibrium point exists and the function g̃(r)

is any increasing smooth function it is difficult to determine exactly the dynamics

of the previous system. However, assuming that g̃(r) = r, we will prove that this

coexistence steady state is a global attractor.

We state the following proposition without proof because it is a particular case of

Proposition 3.4 below (in Sect. 3.3.3).

Proposition 3.2. If λ∗ < m(0) then all the (positive) solutions of the autonomous

ordinary differential equations system (3.7) are bounded.

Let us now undertake the study of the asymptotic behaviour of the autonomous

ordinary system differential (3.7). Its steady states are the solutions of the following

system
{

g(r)r − f(ψ)g̃(r) = 0

(λ∗ −m(r))ψ = 0.

It is clear that (0, 0), (rc, 0) and, in the case that λ∗ = m(0), (0, ψ), ∀ψ > 0, are

steady states. The remaining ones satisfy

{

g(r)r = f(ψ)g̃(r)

m(r) = λ∗.

This system has a unique solution (re, ψe) not included among the preceding ones

and such that ψe = f−1 (g(re)re/g̃(re)), if and only if m(re) = λ∗ and 0 < re < rc.

Let now the matrix L(r, ψ) be defined by

L(r, ψ) =







g′(r)r + g(r)− f(ψ)g̃′(r) −f ′(ψ)g̃(r)

−m′(r)ψ λ∗ −m(r)






.

So let λ ∈ C be such that
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det (L(0, 0)− λI) =

∣

∣

∣

∣

∣

∣

∣

g(0)− λ 0

0 λ∗ −m(0)− λ

∣

∣

∣

∣

∣

∣

∣

= (g(0)− λ) (λ∗ −m(0)− λ) = 0

and

det (L(rc, 0)− λI) =

∣

∣

∣

∣

∣

∣

∣

g′(rc)rc − λ −f ′(0)g̃(rc)

0 λ∗ −m(rc)− λ

∣

∣

∣

∣

∣

∣

∣

= (g′(rc)rc − λ) (λ∗ −m(rc)− λ) = 0.

Using the linearization principle and the Poincaré-Bendixson theorem, it is easy

to see that:

• If λ∗ ≤ m(rc) then the asymptotic behaviour is very simple: there are only two

steady states: the saddle point (0, 0), and (rc, 0) which is a stable node. On the

other hand, since all the positive solutions are bounded, this last equilibrium

point is the global attractor except for the half axis r = 0, ψ ≥ 0.

• If λ∗ > m(0), then (0, 0) becomes a source and (rc, 0) becomes a saddle point,

and all the trajectories are unbounded except those contained in the half axis

ψ = 0, r ≥ 0.

• If λ∗ = m(0) then, a simple analysis of the vector field shows that all the

solutions are bounded. Furthermore, any solution with initial condition not

belonging to the half axis r ≥ 0, ψ = 0, tends to an equilibrium point (0, ψ)

where ψ > 0 depends on the initial condition.

Finally, we study the more interesting case where λ∗ = m(re) and 0 < re < rc.

There are, in this case, only three steady states (0, 0), (rc, 0) and (re, ψe); ψe =
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f−1 (g(re)re/g̃(re)). First of all, we immediately see that (0, 0) and (rc, 0) are saddle

points. On the other hand we have that

det (L(re, ψe)− λI) =

∣

∣

∣

∣

∣

∣

∣

g′(re)r + g(re)− f(ψe)g̃
′(re)− λ −f ′(ψe)g̃(re)

−m′(re)ψe −λ

∣

∣

∣

∣

∣

∣

∣

= λ2 − (g′(re)r + g(re)− f(ψe)g̃
′(re))λ

−m′(re)ψef
′(ψe)g̃(re) = 0

implies that

λ =
g′(re)r + g(re)− f(ψe)g̃

′(re)

2

±

√

(g′(re)r + g(re)− f(ψe)g̃′(re))
2 + 4m′(re)ψef ′(ψe)g̃(re)

2
.

Let now G(r) = f−1 (g(r)r/g̃(r)), so

G′(re) = (f−1)′
(

g(re)re
g̃(re)

)

(g′(re)re + g(re))g̃(re)− g̃′(re)g(re)re
(g̃(re))2

= (f−1)′
(

g(re)re
g̃(re)

)

g′(re)re + g(re)− f(ψe)g̃
′(re)

g̃(re)
.

Since the function f is increasing and g̃(re) > 0 then the term K := g̃(re)

(f−1)′( g(re)reg̃(re)
)
is

also positive. So, we can write

λ =
KG′(re)±

√

(KG′(re))2 + 4m′(re)ψef ′(ψe)g̃(re)

2
.

Now it is clear that the stability of the coexistence equilibrium point (re, ψe) de-

pends on the derivative of the function G at re and the proof of the following is

straightforward

Theorem 3.6. If λ∗ = m(re) and 0 < re < rc holds then the coexistence steady state

(re, ψe) of the autonomous two dimensional system (3.7) is asymptotically stable if

G′(re) < 0 and it is unstable if Ḡ′(re) > 0.
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Now, using this last theorem, the Poincaré-Bendixson Theorem yields immedi-

ately the following results which give some ideas about the possible dynamics of the

autonomous two dimensional system (3.7).

Corollary 3.2. Let us assume that λ∗ ∈ (m(rc),m(0)), i.e., that (3.7) has a unique

coexistence equilibrium point (re, ψe) such that 0 < re < rc, λ
∗ = m(re) and ψe =

f−1 (g(re)). Then the two following results hold

i) If G′(re) > 0 then there exists at least a limit cycle surrounding the coexistence

steady state (re, ψe) of System (3.7). Furthermore if the closed orbits of this

system are all isolated then any solution of (3.7), with initial conditions (r0, 1) 6=
(re, ψe) such that r0 > 0, tends to one of these periodic orbits.

ii) Let us assume that G′(re) < 0. If System (3.7) has no periodic orbit then

the coexistence equilibrium point (re, ψe) is a global attractor of the solutions

corresponding to the initial conditions (r0, 1) with r0 > 0. Otherwise, let us

assume that the (existing) closed orbits are all isolated. Then (re, ψe) is the

ω-limit of all the solutions of System (3.7) enclosed by the first closed orbit and

any other solution such that r0 > 0 tends to one of these periodic orbits.

Finally, let us study the stability of the coexistence steady state (re, ψe) of System

(3.7) in a the special case g̃(r) = r. We now consider the following function W :

R+ × R+ −→ R defined by

W (r, ψ) = λ∗ log r −
∫ r

1

m(x)

x
dx− f(ψe) logψ +

∫ ψ

1

f(x)

x
dx.

Taking the time derivative of ω, we get

Ẇ (r, ψ) =
(

λ∗−m(r)
r

, f(ψ)−f(ψe)
ψ

)

· ((g(r)− f(ψ)) r, (λ∗ −m(r))ψ)

= (λ∗ −m(r)) (g(r)− f(ψe)) = (λ∗ −m(r)) (g(r)− g(re)) ≤ 0

because the two factors have opposite signs if r 6= re (and both vanish if r = re). On

the other hand we have

∂W
∂r

(r, ψ) = λ∗−m(r)
r

> 0 if and only if r > re,

∂W
∂ψ

(r, ψ) = f(ψ)−f(ψe)
ψ

> 0 if and only if ψ > ψe.
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Therefore the point (re, ψe) is the absolute minimum of W . Hence W̃ (r, ψ) =

W (r, ψ) − W (re, ψe) is a global Liapunov function and (re, ψe) is a stable equilib-

rium. We note that there are not limit cycles. This follows from [43, Chp. 11]

because W̃ is not constant on any open set.

The following is the phase portrait of (3.7)

Figure 3.1: The phase portrait of (3.7) in the case g̃(r) ≡ r

Now it follows

Proposition 3.3. If λ∗ ∈ (m(re),m(0)), then the steady state (re, ψe) of System

(3.7) with g̃(r) = r is a global attractor for the solutions (r, ψ) such that r > 0 and

ψ > 0.

Proof. Let the open subsets Uα, α > 0 of R+ × R+ be given by:

Uα = {(r, ψ) ∈ R+ × R+ ; W̃ (r, ψ) < α}

such that W̃ is a Liapunov’s function in Uα. Let also

Eα :=
{

x; ˙̃W (x) = 0, x ∈ Uα

}

.
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Firstly, it is easy to see that all the straight lines passing through (re, ψe), cross the

level curve α > 0 of W̃ exactly in two points. Consequently this level curve is a

closed curve surrounding Uα. On the other hand, Uα is positively invariant, moreover

{(re, ψe)} is the unique invariant subset of Eα. Then, according to the theorem of

LaSalle,(see [52]), (re, ψe) is a global attractor in Uα. As for all (x, y) ∈ R+ × R+

there exists α > 0 such that (x, y) ∈ Uα, the statement follows. ¤

3.3.3 The dynamics of the nonautonomous ordinary differ-

ential system

In this section, using the results of the previous subsection, we study the dynam-

ics of the nonautonomous ordinary differential system (3.5) applying the following

Markus theorems (see [59], [62], [81]):

Theorem 3.7. (Markus) The ω-limit set ω of a forward bounded solution x of an

asymptotically autonomous ordinary differential equation is non-empty, compact, and

connected. Moreover, ω attracts x.

Theorem 3.8. (Markus) Let e be a locally asymptotically stable equilibrium of an

autonomous ordinary differential equation which is the limit of a nonautonomous

ordinary differential equation and ω the ω-limit set of a forward bounded solution x

of this last nonautonomous equation. If ω contains a point y0 such that the solution

y of the autonomous ordinary differential equation, with y(0) = y0, converges to e for

t→ +∞, then w = {e}, i.e., x(t)→ e, t→ +∞.

Theorem 3.9. (Markus) Let ω be the ω-limit set of a forward bounded solution of

a nonautonomous ordinary differential equation. Then ω either contains at least one

equilibrium of the limit of this nonautonomous ordinary differential equation or ω is

the union of periodic orbits of this limit equation.

We note that this last Markus theorem generalizes the Poincaré-Bendixson Theo-

rem to asymptotically autonomous planar systems.

First of all, let us prove the important following result

Proposition 3.4. Let us assume λ∗ < m(0). Then all the positive solutions of the

nonautonomous ordinary system (3.5) are bounded.
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Proof. First, the result is obvious if λ∗ < m(r) for all r. Else, let Cr2,p be the convex

envelope of vertices (0, 0), (r2, 0), (re, ψ2) and (0, ψ2), where r2 > re, m(re) = λ∗ and

ψ2 > f−1 (g(0)). Let n be the unitary vector orthogonal to the segment L of extremes

(r2, 0) and (re, ψ2) pointing to the exterior of Cr2,p, and let v(t) be the tangent vector

to the trajectories at time t. We have (r, ψ) ∈ L if and only if ((r, ψ)− (r2, 0)) ·n = 0

and re < r < r2, i.e., if n = (n1, n2) then ψ = (r2 − r)n1/n2 = (r2 − r)p where

p = n1/n2. Now we will prove that for r2 > rc, Cr2,p is positively invariant if p is large

enough. It is sufficient to show that, whenever ψ(t) = (r2 − r(t)) p, r(t) ∈ (re, r2), we

have v(t) · n < 0, i.e., the trajectories do not go out when they touch L. We get

v(t) · n =
(

g(r)r − h
(

L
(

ψS̃(t)(u0, v0)
)))

g̃(r)n1 + (λ∗ −m(r))ψn2,

so v(t) · n < 0 if and only if
(

h
(

L
(

ψS̃(t)(u0, v0)
))

g̃(r)− g(r)r
)

n1 > (λ∗ −m(r))ψn2.

As λ∗ −m(r) > 0 for r ∈ (re, rc), the last equality is equivalent to

(λ∗ −m(r))−1
(

h
(

L
(

ψS̃(t)(u0, v0)
))

g̃(r)− g(r)r
)

n1/ψn2 =

= (λ∗ −m(r))−1 (r2 − r)−1
(

h
(

L
(

p(r2 − r)S̃(t)(u0, v0)
))

g̃(r)− g(r)r
)

> 1.

Notice that if (u0, v0) 6= (0, 0) then Theorem (3.5) implies that there exists k > 0

such that

L
(

S̃(t)(u0, v0)
)

≥ k.

Hence, it suffices to prove that, for r ∈ (re, r2),

F (r, p) :=
h (p(r2 − r)k) g̃(r)− g(r)r

(λ∗ −m(r)) (r2 − r)
> 1.

It is obvious that there exists ε0(r2) > 0 such that for all r ∈ (r2 − ε0, r2) we have

h (p(r2 − r)k) g̃(r)− g(r)r

(λ∗ −m(r)) (r2 − r)
> 1

for any p > 0.

For r ∈ (re, r2 − ε0] we get

h (p(r2 − r)k) g̃(r)− g(r)r ≥ h (p(r2 − r)k) g̃(re)− g(re)re
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because g̃ and g are increasing and decreasing functions respectively. Moreover there

exists a constantM(r2) such that 0 < (λ∗ −m(r)) (r2−r) ≤M(r2), ∀r ∈ (re, r2−ε0].
Therefore

F (r, p) ≥ h (pε0k) g̃(re)− g(re)re
M(r2)

.

Since h is increasing and unbounded, there exists p > 0 such that F (r, p) > 1 for any

r ∈ (re, r2). ¤

Theorem 3.10. i) If λ∗ ≤ m(rc) then (rc, 0) is a global attractor, except for the

half axis r = 0, ψ ≥ 0, of the nonautonomous ordinary differential system (3.5).

ii) If λ∗ > m(0) then all the solutions of this system are unbounded except those

lying on the half axis ψ = 0, r ≥ 0

iii) If m(rc) < λ∗ < m(0), i.e., if System (3.7) has the coexistence equilibrium point

(re, ψe) such that 0 < re < rc, λ
∗ = m(re) and ψe = f−1

(

g(re)re
g̃(re)

)

. Then we

have

a) If G′(re) > 0 and the closed orbits of System (3.7) are all isolated, then

any solution of (3.5), with initial conditions (r0, 1) 6= (re, ψe) such that

r0 > 0, tends to one of these periodic orbits.

b) Let us assume that G′(re) < 0. If System (3.7) has no periodic orbits, then

the coexistence equilibrium point (re, ψe) is a global attractor of the solu-

tions corresponding to the initial condition (r0, 1) with r0 > 0. Otherwise,

if the closed orbits of (3.7) are all isolated then (re, ψe) is the ω-limit of

all the solutions of System (3.5) enclosed by the first closed orbit and any

other solution such that r0 > 0 tends to one of these periodic orbits.

c) Finally, if g̃(r) = r then (re, ψe) is a global attractor except for the solutions

(r, ψ) such that r = 0 or ψ = 0.

Proof. In the case ii) we have that ψ′/ψ is larger than a constant k > 0 and r′ is

negative from rc onward, hence the result.

In the other cases the solutions are all bounded. Furthermore the autonomous
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ordinary differential system (3.7) has the global attractor (rc, 0) in the first case

(see the discussion following Proposition 3.2) and (re, ψe) in the case a) of iii) (see

Proposition 3.3). So, the proof in these cases is now straightforward using Theorem

3.8. Finally in the other cases of iii) the statements follow immediately from Corollary

3.2 and Theorem 3.8 and Theorem 3.9. ¤

3.3.4 Asymptotic behaviour of the age dependent model

Once we have studied the dynamics of the asymptotically autonomous ordinary

differential system (3.5), we will be interested in this section in the study of the

asymptotic behaviour of the age dependent model (3.1). The clue is the form of the

solution corresponding to the consumer population which is expressed as a product

of the solution of the linear part of the first and the second equation of (3.1) and

the scalar function which is the solution of the second equation of (3.5). This special

form allows ourselves to easily determine the dynamics of (3.1) using the results of

the previous section.

Namely, from the proof of Theorem 2.2 we have that b = (ν + λ∗)eλ
∗l and using

Theorem 2.7 it follows that, in the case of the uniform increase of mortality, the

steady states are (0, 0, 0) and (0, 0, rc) and (αϕ, 0),∀α > 0 if λ∗ = m(0) or (c0ϕ, re)

where c0 > 0 and g(re)re
g̃(re)

= h (c0(Lϕ)) in the case that m(re) = λ∗ and 0 < re < rc.

Theorem 3.11. i) If λ∗ ≤ m(rc) and r0 > 0, then (0, 0, rc) is a global attractor

of the initial value problem (3.1)

ii) If λ∗ > m(0) then all the solutions, except those starting from (u0, v0) = (0, 0),

r0 ≥ 0, are unbounded.

iii) If there exists 0 < re < rc such that λ∗ = m(re), then there is c0 > 0 such that
g(re)re
g̃(re)

= h(c0Lϕ). And it follows that

a) If d
dr
f−1

(

g(r)r
g̃(r)

)∣

∣

∣

r=re
> 0 and the closed orbits of System (3.7) are all iso-

lated, then the ω-limit set of a solution of the age-dependent model (3.1)

such that (u0, v0) 6= (0, 0), r0 > 0 and (u0, v0, r0) 6= (c0ϕ, re) is a periodic
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orbit
(

ψ̃p(t)ϕ, r̃p(t)
)

where
(

r̃p(t), ψ̃p(t)
)

is a limit cycle of System (3.7)

and ϕ(a) =
(

be−λ
∗a, 1

)

is an eigenvector of the operator A associated to λ∗.

b) If d
dr
f−1

(

g(r)r
g̃(r)

)∣

∣

∣

r=re
< 0 and System (3.7) has no periodic orbit then the

coexistence equilibrium point (c0ϕ, re) is a global attractor of the solutions

corresponding to the initial condition (u0, v0, r0) with r0 > 0,. If the con-

dition on the derivative holds and the closed orbits of (3.7) are all isolated

then (c0ϕ, re) is the ω-limit of all the solutions of System (3.1) with initial

condition (u0, v0, r0) such that (r0, 1) is surrounded by the first closed orbit,

and any other solution of this model such that (u0, v0) 6= (0, 0) and r0 > 0

tends to a periodic orbit (ψp(t)ϕ, rp(t)) where (rp(t), ψp(t)) is a limit cycle

of System (3.7).

c) Finally, if g̃(r) = r then (c0ϕ, re) is an attractor of the solutions of the

initial value problem with initial conditions (u0, v0, r0) such that (u0, v0) 6=
(0, 0) and r0 > 0.

Proof. We recall that the solutions of the initial value problem are given by the

formula

(u(t), v(t), r(t)) =
(

ψ(t)e−λ
∗tS(t)(u0, v0), r(t)

)

.

Then, in the case b) when there is no closed orbit of (3.7) and in the case c), Theorem

(3.5) implies that the solution tends to (ψec(u0, v0)ϕ, re), as t→ +∞, where

c(u0, v0) =
v0 +

∫ a

0
e−λ

∗(l−s)u0(x)dx

1 + ble−λ∗l
.

Furthermore, using the definition of ψe and f we have g(re)re
g̃(re)

= f(ψe) = h (ψec(u0, v0)L(ϕ)).

As h is monotonous, and c0 is such that g(re)re
g̃(re)

= h (c0Lϕ)) then ψec(u0, v0) = c0,

independently of the initial conditions. Finally, in the other cases, using Theorem

3.10, the proofs are now straightforward. ¤

Remark 3.4. i) The case λ∗ ≤ m(rc), i.e. re ≥ rc, leads to the extinction of the

predator because the carrying capacity rc is less than or equal to the resource

level needed for its persistence.
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i) In the cases where the closed orbits of the autonomous ordinary differential

system (3.7) are not isolated, some ω−limit set of a solution can be an union

of periodic orbits (see [81]).
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Chapter 4

Asymptotic Behaviour of the

Initial Value Problem for a

Semilinear Equation

In the previous chapter, the dynamics of the solutions of Problem (2.1) in the

special case of uniforme increase of mortality was studied. Now, dropping out this

condition, we turn our interest to the general case proposed in (2.1). We exploit the

semilinear formulation of the initial value problem (2.1) to determine the asymptotic

behaviour of the solutions in terms of the birth rate b, taken as a parameter (we note

that in the case of uniform increase of mortality the asymptotic behaviour of the

solutions depends directly on the real number λ∗ which is the dominant eigenvalue

of the operator A).

In the first section the stability/instability and the bifurcation of these equilibria

are studied. The stability of the coexistence equilibrium point is only established

near bifurcation (near the equilibrium (0, 0, rc)). In Sect. 4.2, under slightly more

restrictive hypotheses, the stability properties of the coexistence equilibrium are ana-

lyzed using characteristic equation. The loss of stability via a Hopf bifurcation leads

to the existence of a periodic solution. Sect. 4.3 is devoted to proving existence of a

compact global attractor which contains a coexistence equilibrium.
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4.1 Stability and bifurcation of an equilibrium point

We start by studying instability and local stability of the non-coexistence equilib-

ria. The following theorem deals with these issues. DenotingM1(a, r) :=
∫ a

0
m1(s, r) ds,

we have

Theorem 4.1. The equilibrium point (0, 0, 0) is unstable. Moreover, if b < m2(0)e
M1(l,0),

it is a saddle point with a one dimensional unstable manifold. On the other hand, if

b < m2(rc)e
M1(l,rc) then the equilibrium point (0, 0, rc) is asymptotically stable and it

is unstable if b > m2(rc)e
M1(l,rc).

Proof. Notice that, as System (2.1) is semilinear, the linearization principle holds

(see [86]). Let us start by the linearization of System (2.1) at the point (0, 0, rc). So

let u(a, t) = u(a, t), v(t) = v(t) and r(t) = rc + r(t). Using the Taylor expansion it

follows


































ut + ua = −m1(a, rc + r)u,

= −(m1(a, rc) +
∂m1(a,rc)

∂r
r + . . .)u,

u(0, t) = bv(t),

v′ = u(l, t)− (m2(rc) +m′
2(rc)r + . . .)v,

r′ = (g(rc) + g′(rc)r + . . .)(rc + r) + . . .− (h′(0)L(u, v) + . . .)(g̃(rc)+

g̃′(rc)r + . . .).

So we have the linear system


















ut + ua = −m1(a, rc)u,

u(0, t) = bv(t),

v′ = u(l, t)−m2(rc)v,

r′ = −g̃(rc)h′(0)L(u, v) + g′(rc)rcr.

Now, taking u(a, t) = eλtu(a), v(t) = eλtv and r(t) = eλtr, this last system will be

transformed into






u′(a) +m1(a, rc)u(a) = −λu(a),
u(l)−m2(rc)v = λv,

−g̃(rc)h′(0)L(u, v) + g′(rc)rcr = λr,

with the boundary condition u(0) = bv.

The left hand side of this system defines an operator B̃ with domain D(B). B̃ has
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a compact resolvent because for some λ, (λI−B̃)−1 is a bounded operator from Y into

D(B) endowed with the norm ‖u‖W 1,1(0,l)+ |v|+ |r| and D(B) is compactly embedded

in Y by Rellich’s theorem (see [14]) because l is finite. Therefore the spectrum of B̃

reduces to the set of eigenvalues by the Riesz-Schauder Theory (see [30, VII.4.5]).

From the first equation we get u(a) = bve−λa−M1(a,rc). If v = 0 then u ≡ 0 and

r 6= 0 implies λ = g′(rc)rc < 0. Otherwise, from the second equation we obtain the

characteristic equation be−λl−M1(l,rc) −m2(rc) = λ.

For λ ∈ R let us define f(λ) := be−λl−M1(l,rc)−m2(rc). f(λ) has a unique fixed point

λ(b) which is bigger than −m2(rc) and it is negative if and only if b < m2(rc)e
M1(l,rc)

and it is positive if b > m2(rc)e
M1(l,rc), which gives instability in this case. For

λ = x+ iy, y 6= 0, the real part of the characteristic equation is be−xl−M1(l,rc) cos yl −
m2(rc) = x. So, x ≤ −m2(rc) if cos yl ≤ 0 . If 0 < cos yl < 1 then 0 < b cos yl <

b and it is easy to see that x < λ(b). Finally, cos yl cannot be 1 because then

sin yl = 0, and the imaginary part of the characteristic equation would imply y = 0.

So the hypothesis b < m2(rc)e
M1(l,rc) implies that the equilibrium point (0, 0, rc) is

asymptotically stable.

The linear part at (0, 0, 0) has (0, 0, 1) as an eigenvector corresponding to the

eigenvalue g(0) > 0. A computation similar to the previous one shows that (0, 0, 1)

is the only unstable eigenvector whenever b < m2(0)e
M1(l,0). ¤

Corollary 4.1. If b < m2(0)e
M1(l,0) and r0 = 0 then u(t) and v(t) tend to 0 as t goes

to infinity.

Proof. The linear manifold r0 = 0 is invariant for the solutions of (2.1); Sys-

tem (2.1) becomes linear on this invariant subspace and under the hypothesis b <

m2(0)e
M1(l,0), all the eigenvalues have a negative real part. ¤

Remark 4.1. If b > m2(0)e
M1(l,0) the solutions are unbounded even with r = 0. This

situation is obviously lacking any biological sense.

Now we deal with the global dynamics of the solutions of (2.1), assuming that the

death rate of juveniles, which will be denoted by m1(r), depends only on the amount

of resources. In order to do this, we study the dynamics of the whole consumer

population p(t) + v(t) where p(t) :=
∫ l

0
u(a, t)da is the young population number.

Notice that, integrating the first equation of Problem (2.1), we obtain, assuming
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smoothness of the solutions of (2.1),

p′(t) = u(0, t)− u(l, t)−
∫ l

0

m1(a, r(t))u(a, t) da

. Then

(p+ v)′(t) = −
∫ l

0

m1(a, r(t))u(a, t) da− (m2(r(t))− b) v(t). (4.1)

Let us now prove the same relation for mild solutions of (2.1).

Proposition 4.1. Let (u(t), v(t), r(t)) be a mild solution of Problem (2.1) corre-

sponding to any initial condition (u0, v0, r0) ∈ Y +. Then the function (p+ v)(t) is of

class C1 in [0,∞) and (4.1) holds for its derivative.

Proof. Applying the operatorN defined in Theorem 2.3 to the first two components

of (2.6), we have

N (u(t), v(t)) = N S(t)

(

u0
v0

)

−
∫ t

0

N S(t− s)

(

m1(a, r(s))u(s)

m2(r(s))v(s)

)

ds.

Applying Theorem 2.3, differentiating under the integral and using (2.6) we obtain

(p+ v)′(t) = bS2(t)

(

u0
v0

)

−m1(a, r(t))p(t)−m2(r(t))v(t)

−b
∫ t

0

S2(t− s)

(

m1(a, r(s))u(s)

m2(r(s))v(s)

)

ds

= −m1(a, r(t))p(t)−m2(r(t))v(t)− bv(t). ¤

Now, we state the following technical lemma

Lemma 4.1. Let (u, v, r) be a solution of Problem (2.1) such that u(a, t) ≥ 0, v(t) ≥ 0

and r(t) > 0 for all a ∈ [0, l] and t ≥ 0. Let us assume that the functions u and v

tend to 0 in X as t goes to ∞. If the function r(t) has also a limit at infinity then

limt→∞ r(t) = rc.

Proof. First, the function r(t) satisfies the following integral equation

r(t+ 1)− r(t) =

∫ t+1

t

g(r(s))r(s)− h (L(u(s), v(s))) g̃(r(s))ds.
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It is clear that h (L(u(t), v(t))) −→ 0 as t goes to infinity and from the previous

integral equation it follows that g(r(t))r(t) −→ 0. So as t −→ +∞ we have r(t) −→ 0

or g(r(t)) −→ 0. Let assume that r(t) −→ 0, so for all 0 < ε < rc there exists T > 0

and α > 0 such that if t > T then 0 < r(t) < ε, g̃(r(t)) < αr(t), because g̃ is a smooth

increasing function vanishing at 0, and h (L(u(t), v(t))) < g(ε)/2α. So, for t > T it

follows

r′(t) = g(r(t))r(t)− h (L(u(t), v(t))) g̃(r(t)) >

(

g(ε)− g(ε)

2

)

r(t) > 0.

In conclusion, r(t) does not tend to 0 and, therefore g(r(t)) −→ +∞, i.e. the limit

of r(t) has to be rc. ¤

The following is a first result on global asymptotic behaviour that will be completed

in Section 4.3 using more general methods.

Theorem 4.2. If b ≤ m2(∞) then (0, 0, rc) is a global attractor for Problem (2.1)

except for the solutions with initial value such that r0 = 0, which tend to the origin.

If b ∈ (m2(∞),m2(rc)) then the solutions with initial condition r0 > 0 such that

b < m2(r0) tend to (0, 0, rc), too.

Proof. Assume b ≤ m2(∞). Then, (0, 0, 0) and (0, 0, rc) are the only equilibrium

points of Problem (2.1). From (4.1) and using m1(a, r) > µ > 0 for a ∈ [0, l], r ≥ 0,

(p + v)′(t) ≤ −min (µ,m2(r(t))− b)) (p + v)(t) which implies that (p + v)(t) ≤
(p + v)(0)e−Kt where K := min (µ,m2 (max(r0, rc))− b) > 0. Here we used the

fact that the third equation in (2.1) implies that r(t) ≤ max(r0, rc) and therefore

m2(r(t))− b ≥ m2 (max(r0, rc))− b, which is positive by hypothesis. So p(t) and v(t)

tend to 0 as t −→∞. In particular, u(t) tends to 0 in L1[0, l] as t −→∞.

For u(t) and v(t) given and tending to 0, the third equation in (2.1) is asymptoti-

cally autonomous and its solutions r(t) are bounded. The limit equation r′ = g(r)r

has rc as a global attractor of the positive solutions. Now we use Theorem 3.7 and

Theorem 3.8 (see [59, 81]) and we will have that the ω−limit set of the forward

bounded solution r(t) is ω(r) = {rc} or ω(r) = {0}. By Lemma 4.1, the ω−limit set

of a positive r(t) cannot reduce to 0. So r(t) tends to rc. ¤

We end Section 4.1 with the study of the bifurcation at the equilibrium point

(0, 0, rc) and we start by stating the following perturbation results which will be used
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in the proof of Theorem 4.5. These results are presented respectively as Lemma 1.3

of [20] and as Theorem 3.17 of [48].

Theorem 4.3. (Crandall and Rabinowitz) Let X and Y be Banach spaces such that

X ⊂ Y and the embedding I is continuous. Let T0 be a bounded linear map of X into

Y and assume that r0 is a simple real eigenvalue of T0. Then there exists δ > 0 such

that whenever T is a bounded linear map of X into Y and ‖T − T0‖ < δ, there exists

a unique r(T ) ∈ R satisfying |r(T )− r0| < δ for which T − r(T )I is singular.

Notice also that the following theorem will be the principle result used the study

of the perturbation of (2.1) in the next chapter.

Theorem 4.4. (T. Kato) Let T be a closed operator in a Banach space X and let B

be an operator in X which is T -bounded, i.e., such that D(T ) ⊂ D(B) and

‖Bu‖ ≤ c‖u‖+ d‖Tu‖, u ∈ D(T ),

where c, d are nonnegative constants. If there is a point λ of the resolvent set of T

such that

c‖(T − λ)−1‖+ d‖T (T − λ)−1‖ < 1,

then S = T +B is closed and λ belongs to the resolvent set of S.

Theorem 4.5. There exists ε > 0 such that if

m2(rc)e
M1(l,r) < b < m2(rc)e

M1(l,rc) + ε < m2(0)e
M1(l,0),

where M1(a, r) :=
∫ a

0
m(s, r) ds, then there exists an asymptotically stable equilibrium

branches off from (0, 0, rc) as b = b0 := m2(rc)e
M1(l,rc).

Proof. In order to use the results on bifurcation theory contained in Lemma 1.1,

Corollary 1.13 and Theorem 1.16 by Crandall and Rabinowitz in [20] we translate the

equilibrium point (0, 0, rc) to the origin of coordinates and we rewrite the equilibrium

problem (2.9) as F (b, x) = (0, 0, 0) where F is defined, for b > 0 and x = (u,w, r) ∈
{(u,w) ∈W 1,1[0, l]× R;u(0) = w} × R, as

F (b, x) :=
(

−ua −m1(rc + r)u , u(l)−m2(rc + r)w
b
,
(

g(rc + r)− h
(

L(u, w
b
)
))

(rc + r)
)

,
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taking values in Y .

We have F (b, 0) = (0, 0, 0) for all b > 0 and from the proof of Theorem 4.1 it

follows that 0 is an algebraically simple eigenvalue of T0 := Fx(b0, 0) with associated

eigenvector x0 =
(

e−M1(a,rc), 1, r̃0
)

, where r̃0 = g̃(rc)h
′(0)L

(

e−M1(a,rc), 1/b0
)

/g′(rc)rc.

It is easy to see that

Range(T0) = {(f, α, β) ∈ Y ;

∫ l

0

eM1(s,rc)−M1(a,rc)f(s) ds+ α = 0},

and thus x0 6∈ Range(T0). The codimension of Range(T0) is 1 because it is the kernel

of a nontrivial continuous linear form. Then there exist two continuously differentiable

functions b(s) and ψ(s) defined in a neighbourhood of 0 and taking values in R and

in a complement subspace of span{x0} in the domain of F , respectively, such that

b(0) = b0, ψ(0) = 0 and F (b(s), x(s)) = 0 where x(s) = sx0 + sψ(s). Moreover x(s)

is the only nontrivial equilibrium near 0 for values of the parameter b close to b0 (see

Lemma 1.1 of [20]).

We recall that r denotes r(s) the third component of x(s). Note that r′(0) =

r̃0. Now let φ(r) := m2(rc + r)eM1(l,rc+r). The equilibrium condition implies that

φ(r(s)) = b(s). Taking derivatives at s = 0 we get φ′(r(0))r′(0) = φ′(r(0))r̃0 = b′(0)

and so as φ′(r(0)) < 0 and r̃0 < 0 then b′(0) is positive.

Let us denote λ(b) the dominant eigenvalue of Fx(b, 0), already dealt with in the

proof of Theorem 4.1 as the dominant eigenvalue of the linear part of System (2.1) at

the equilibrium point (0, 0, rc). In particular λ(b) < 0 if b < b0, λ(b0) = 0 and λ(b0) >

0 if b > b0. Moreover, the characteristic equation for λ(b) is λ(b) = be−(λ(b)l+M1(l,rc))−
m2(rc) (see the proof of Theorem 4.1). Taking implicit derivatives we get λ′(b) > 0

for all b > 0.

Let us denote T = Fx(b(s), x(s)). We shall prove that T has a dominant real

eigenvalue µ(s) and µ(s) is negative when s > 0, i.e. when b(s) > b0.

We know that 0 is a simple eigenvalue of T0 and that there exists a number ω > 0

such that Re(σ(T0) \ {0}) ⊂ (−∞,−ω). For any δ ∈ (0, ω/2), (T0 − λI)−1 is an

analytic function on Cδ = {λ ∈ C;Reλ ≥ −ω/2, |λ| ≥ δ}. So ‖(T0 − λI)−1‖ is a

continuous function of λ on this closed set and tends to 0 at infinity. So there exists

a constant kδ such that ‖(T0 − λI)−1‖ < kδ. On the other hand, in view of the

continuity of Fx(b, x), b(s) and x(s), for any δ > 0 there exists ε > 0 such that |s| < ε

implies that ‖T − T0‖ < δ.

Finally, by Theorem 4.3 there exists δ0, 0 < δ0 < ω/2 such that, if ‖T − T0‖ < δ0
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then there is a unique spectral value of T with modulus less than δ0, µ(s), which is

a real simple eigenvalue .

Let |s| be so small that ‖T − T0‖ < min(δ0, 1/kδ0) and let λ belong to Cδ0 and

hence to the resolvent set of T0. As ‖T − T0‖‖ (T0 − λI)−1 ‖ < 1, from Theorem 4.4

(with d = 0) it follows that λ belongs to the resolvent set of T . Therefore, µ(s) is a

dominant eigenvalue of T and by the linear stability principle, the stability of x(s)

depends on the sign of µ(s). From [20, Theorem 1.16 ] we have

lim
s→ 0

µ(s) 6= 0

−sb′(s)λ′(b0)
µ(s)

= 1,

and hence µ(s) < 0 for s positive, sufficiently small.

Remark 4.2. Obviously the bifurcating branch is made up of the equilibrium (ue, ve, re)

given by Theorem 2.7.

4.2 Change of stability of the coexistence equilib-

rium point via Hopf bifurcations

For the sake of simplicity and in order to perform some explicit computations

related to the stability properties of the equilibrium, we will assume in the rest of

Chap. 4 (and Chap. 6) that m1 depends only on the resource level r.

4.2.1 Linearization and characteristic equations

The purpose of this subsection is to study the possible loss of stability of the

coexistence equilibrium solution (ue, ve, re) of (2.1). This occurs only when the first

eigenvalue of the characteristic equation, obtained from the linearization of Problem

(2.1) at this coexistence equilibrium point, crosses the imaginary axis. This can

generate a Hopf bifurcation of periodic solutions (see [25, Chap. X, Theorem 2.7]

and [41]). Our stability analysis will rest on inspection, using linearisation theory,

of the eigenvalues (roots of the characteristic equations of the linearizations). So let

u(a, t) = ue + u(a, t), v(t) = ve + v(t) and r(t) = re + r(t). Using Taylor expansion it
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follows, from Problem (2.1),



























ut + ua +
∂ue
∂a

= −(m1(re) +m′
1(re)r + . . .)(ue + u),

u(0, t) = bv(t),

v′ = ue(l) + u(l, t)− (m2(re) +m′
2(re)r + . . .)(ve + v),

r′ = (g(re) + g′(re)r + . . .− h(L(ue, ve))− h′(L(ue, ve))L(u, v)

− . . .)(re + r).

which leads to the following linear system (dropping the nonlinear terms)


















ut + ua = −m1(re)u(a)−m′
1(re)rue(a),

u(0, t) = bv(t),

v′ = u(l, t)−m2(re)v −m′
2(re)ver,

r′ = g′(re)rer − reh
′(L(ue, ve))L(u, v).

(4.2)

Finally, setting u(a, t) = eλtu(a), v(t) = eλtv and r(t) = eλtr, the eigenvalue problem

associated with (4.2) reads


















−u′(a)−m1(re)u(a)−m′
1(re)rue(a) = λu(a),

u(l)−m2(re)v −m′
2(re)ver = λv,

g′(re)rer − reh
′(L(ue, ve))L(u, v) = λr,

u(0) = bv.

(4.3)

In order to simplify the notations, let us define Mi := mi(re) and M ′
i := m′

i(re)

for i = 1, 2. Let us also remind that for i = 1, 2, M ′
i are assumed to be negative

throughout the work (see 2.2).

For λ ∈ C let us define f(λ) := be−(M1+λ)l − M2 − λ which may be written as

f(λ) =M2(e
−λl − 1)− λ because b =M2e

M1l.

The function f(λ) has a unique real zero, λ = 0, which is not an eigenvalue of the

linear system (4.3). Indeed, for λ = 0, the first and the last equations in (4.3) yield

u(a) = b(v−M ′
1vera)e

−M1a and, then, the second one gives −M ′
1M2velr =M ′

2ver. As

M ′
1 and M ′

2 are both negative, this implies r = 0. Finally, the third equation yields

u ≡ 0 and v = 0 because h is strictly increasing and L is a strictly positive linear

form.

For λ = x+ iy, y 6= 0, the real part of the equation f(λ) = 0 is

M2(e
−xl cos(yl)− 1) = x. (4.4)
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Firstly, for cos yl = 0, (4.4) yields x = −M2. Now, notice that f̃(x) :=M2(e
−xl cos(yl)

− 1) is continuous as a function of x. After, if 0 < cos(yl) < 1 then the function f̃(x)

is strictly decreasing, comes from +∞ when ω = −∞ and goes to −M2 as ω → ∞
and f̃(0) =M2(cos(yl)−1). On the other hand, if cos(yl) < 0 then the function f̃(x)

is strictly increasing, comes from −∞ when ω = −∞ and goes to −M2 as ω → ∞.

So, any x, satisfying (4.4), is strictly negative. Now, notice that cos yl cannot be 1

because then sin(yl) = 0, and the imaginary part of the same equation would imply

y = 0. So the real parts of the nonvanishing zeroes of the function f are strictly

negative. Thus, as we are looking for eigenvalues with nonnegative real parts, we

may assume f(λ) 6= 0 and λ 6= 0. Solving System (4.3) we find that the first equation

and the boundary condition are equivalent to having

u(a) = bve−(M1+λ)a +
M ′
1bver

λ

(

e−(M1+λ)a − e−M1a
)

(4.5)

which yields applying the second equation

v(be−(M1+λ)l −M2 − λ) +
M ′
1bver

λ

(

e−(M1+λ)l − e−M1l
)

= 0.

Hence

v =
ver

f(λ)

(

M ′
1M2

λ
(1− e−λl) +M ′

2

)

=
ver

λf(λ)

(

M ′
1(M2(1− e−λl) + λ) + (M ′

2 −M ′
1)λ
)

=
(M ′

2 −M ′
1)ver

f(λ)
− M ′

1ver

λ
.

(4.6)

After, substituting v in (4.5) by the last term of (4.6) it follows that

u(a) =
b(M ′

2 −M ′
1)ver

f(λ)
e−(M1+λ)a − M ′

1bver

λ
e−M1a. (4.7)

Now if M ′
1 = M ′

2 holds then v =
−M ′

1ver

λ
and u(a) =

−M ′
1ue(a)r

λ
. So from the third

equation of System (4.3) we have

λ2 − g′(re)reλ−M ′
1reh

′(L(ue, ve))L(ue, ve) = 0.

The roots of this characteristic equation are

λ =
g′(re)re

2
±
√

(g′(re)re)2 + 4M ′
1reh

′(L(ue, ve))L(ue, ve)

2
.
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In the right hand of this equality, the first term is always strictly negative and its

absolute value is bigger than the second term. Hence, Reλ < 0. The following result

is now obvious. ¤

Theorem 4.6. If b ∈
(

m2(rc)e
m1(rc)l , m2(0)e

m1(0)l
)

and m′
1(re) = m′

2(re) then the

unique coexistence equilibrium point (ue, ve, re) of System (2.1) is asymptotically sta-

ble.

Now we deal with the case where m′
1(re) 6= m′

2(re). Notice that in this case it is

impossible to extract λ from L(u, v) in the third equation of (4.3). This fact makes

more difficult the analysis of the sign of the real parts of the eigenvalues of System

(4.3). To overcome this difficulty we will assume in the forthcoming a somehow special

form for operator L, namely, L(u, v) :=
∫ l

0
u(a) da+ v. Notice that with this choice,

L(u, v) is the total predator population density. Consequently, we have

L(be−(M1+λ)a, 1) = b
1− e−(M1+λ)l

M1 + λ
+ 1 = bf1(M1 + λ) + 1

and

L(ue, ve) = ve(bf1(M1) + 1)

where f1(λ) :=
1−e−λl

λ
. After, using (4.5) and (4.6), a tedious computation leads to

L(u, v) = −M
′
1r

λ
L(ue, ve) +

(M ′
2 −M ′

1)ver

f(λ)
L(be−(M1+λ)a, 1)

= −M
′
1ver

λ
(bf1(M1) + 1) +

(M ′
2 −M ′

1)ver

−λ(M2f1(λ) + 1)
(bf1(M1 + λ) + 1)

= −ver
λ

((

bf1(M1) + 1− bf1(M1 + λ) + 1

M2f1(λ) + 1

)

M ′
1 +

bf1(M1 + λ) + 1

M2f1(λ) + 1
M ′
2

)

=
−ver
λ

(a1(λ)M
′
1 + a2(λ)M

′
2)

where a2(λ) :=
bf1(M1+λ)+1
M2f1(λ)+1

and a1(λ) := bf1(M1)+ 1− a2(λ). Taking α := g′(re)re(<

0) and β := reh
′(L(ue, ve))(> 0), the third equation of (4.3) yields, for λ 6= 0, the

following characteristic equation

α + β
ver

λ
(a1(λ)M

′
1 + a2(λ)M

′
2) = λ

which may be transformed in

λ = veβ

(

a1(λ)

λ− α
M ′
1 +

a2(λ)

λ− α
M ′
2

)

. (4.8)
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4.2.2 Stability and instability regions

We will use an idea borrowed from [41], in a similar context, namely that Equation

(4.8) is linear in M ′
1 and M

′
2. So, setting λ = γ + iω, it can be written as

(

γ

ω

)

= J(γ, ω)

(

M ′
1

M ′
2

)

(4.9)

where

J(γ, ω) := veβ





Re
(

a1(λ)
λ−α

)

Re
(

a2(λ)
λ−α

)

Im
(

a1(λ)
λ−α

)

Im
(

a2(λ)
λ−α

)





is a 2× 2 real matrix.

As parameters vary, roots of (4.8) may cross the imaginary axis in the complex

plane. The first of the roots of (4.8) (i.e. a root with a largest real part) crosses the

imaginary axis is associated with loss of stability of the coexistence equilibrium point

(ue, ve, re) of (2.1). This corresponds to a Hopf bifurcation of periodic solutions if

the eigenvalue enters into the right half complex plane with nonzero speed (see [25],

Chap. X, Theorem 2.7 and [41]). The imaginary part ω of the first eigenvalue which

crosses the imaginary axis corresponds to the frequency of the periodic cycle near the

bifurcation point, and the period of the cycle is given by 2π/ω.

Let us fix γ = 0 in order to locate the boundaries in the parameter space along

which a Hopf bifurcation may occur. Then Equation (4.9) becomes

J(0, ω)

(

M ′
1

M ′
2

)

=

(

0

ω

)

. (4.10)

With the exception of isolated values of ω for which det(J(0, ω)) = 0, we obtain M ′
1

and M ′
2 as functions of ω by

(

M ′
1

M ′
2

)

= J(0, ω)−1
(

0

ω

)

. (4.11)

This gives curves in the plane (M ′
1,M

′
2), parameterized by ω, along which Hopf bi-

furcations may occur (see [25], Chap. X,Chap. XI and [41]).

Before studying in detail the stability and instability of the coexistence equilibrium

solution (ue, ve, re) of (2.1) we will give a global result, Theorem 4.7, whose proof is

based on the following lemma
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Lemma 4.2. There exists C < 0 such that |a2(λ)| is bounded in the half plane

Re(λ) > C.

Proof. Firstly, it is clear that |bf1(M1 + λ) + 1| = | b(1−e−(M1+λ)l)
M1+λ

+ 1| is bounded

if Re(λ) > −M1/2. For any K ∈ R, if Re(λ) > K, the denominator of a2(λ) tends

to 1 as |λ| −→ ∞. So, it suffices to prove that there exists C ∈ [−M1

2
, 0) such that if

Re(λ) > C then M2f1(λ) + 1 6= 0.

Now notice that limλ→0M2f1(λ)+1 =M2l+1 6= 0. On the other hand, for λ 6= 0,

M2f1(λ) + 1 = 0 is equivalent to e−lλ = 1 + λ
M2

which has no real nonzero solutions.

Moreover, for any nonreal solution λ, e−λl is nonreal too and one has

1 +
Re(λ)

M2

= Re(e−lλ) < |e−lλ| = e−lRe(λ),

which implies Re(λ) < 0. For any solution with real part bigger than −M1

2
one also

has
∣

∣

∣

∣

1 +
λ

M2

∣

∣

∣

∣

= |e−lλ| = e−lRe(λ) < |e−lM1/2|.

So, the nonvanishing solutions with Re(λ) > −M1

2
have negative real parts and form

a finite set because a bounded set of zeros of an analytic function does not have

accumulation points. Therefore, the statement follows taking C bigger than the

maximum of the real parts of these solutions, or simply −M1

2
if the set of solutions

with Re(λ) > −M1

2
is empty. ¤

The characteristic equation (4.8) can also be written in the form

λ(λ− α)− veβ(bf1(M1) + 1)M ′
1 = (M ′

2 −M ′
1)a2(λ). (4.12)

Let us fix all the parameters appearing in (4.12) but M ′
2. As we have already

noted, if M ′
1 =M ′

2 the two solutions of (4.12) have negative real parts.

Let us now show that a solution of (4.12) in the open right half-plane can only

appear by a crossing of the imaginary axis. Indeed, let us assume, for instance, that

(there exists)

x0 := inf{x > M ′
1 : (4.12)with M

′
2 = x has a solution with a positive real part}.

Then there exists a decreasing sequence xn tending to x0 and a sequence λn of so-

lutions of (4.12) corresponding to M ′
2 = xn, all of them with positive real parts. λn
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is a bounded sequence since the half left side of (4.12) is a polynomial whereas the

right hand side is bounded in the right half plane by Lemma 4.2. Hence λn has a

subsequence converging to a solution λ0 of (4.12) corresponding to M ′
2 = x0. Finally,

Re(λ0) has to vanish because, otherwise, Rouché’s theorem implies the existence of

a solution of (4.12) in a neighborhood of λ0 (so, with positive real part) for M ′
2 suffi-

ciently close to and less than x0 (see [22], [56, Chap. 5, Sect. 4] and [74]). This is in

contradiction with the fact that x0 is the infimum. Obviously, analogous arguments

work if we change inf by sup or the roles of M ′
1 and M

′
2.

Let Q be the set of the points in the open third quadrant of the plane (M ′
1,M

′
2)

such that do not belong to the set {(M ′
1(ω),M

′
2(ω)) : ω > 0}, image of the curve

defined by (4.11). Notice that Q contains the half line M ′
1 = M ′

2 < 0 as it has been

shown just above the statement of Theorem 4.6. Applying now Theorem 4.6, the

following result is straightforward

Theorem 4.7. Let us assume L(u, v) :=
∫ l

0
u(a) da + v. Whenever the point

(m′
1(re),m

′
2(re)) belongs to the open connected component of Q containing the half

line M ′
1 = M ′

2 < 0, the coexistence equilibrium solution (ue, ve, re) is asymptotically

stable.

Now we go into a more detailed analysis of the stability curves. Algebraic simpli-

fication in (4.11) yields

(

M ′
1(ω)

M ′
2(ω)

)

=
(ω2 + α2)ω

veβ(bf1(M1) + 1)Im(a2(iω))





−Re
(

a2(iω)
−α+iω

)

Re
(

a1(iω)
−α+iω

)



 .

On the other hand we have

a2(iω)

−α + iω
=

a2(iω)

α2 + ω2
(−α− iω)

and
a1(iω)

−α + iω
=

a1(iω)

α2 + ω2
(−α− iω).

So it follows that

Re

(

a2(iω)

iω − α

)

=
−αRe(a2(iω)) + ωIm(a2(iω))

α2 + ω2
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and

Re

(

a1(iω)

iω − α

)

=
−α(bf1(M1) + 1) + αRe(a2(iω))− ωIm(a2(iω))

α2 + ω2
.

Hence,
(

M ′
1(ω)

M ′
2(ω)

)

=
ω

veβ(bf1(M1) + 1)Im(a2(ωi))
M(ω) (4.13)

where

M(ω) :=

(

αRe(a2(iω))− ωIm(a2(iω))

−α(bf1(M1) + 1) + αRe(a2(iω))− ωIm(a2(iω))

)

.

The signs of M ′
1(ω) and M ′

2(ω) neither depend on ve nor on β, since these are

both positive. Without loss of generality, let us also set l = 1. Now let us calculate

the limit of
(

M ′
1(ω)

M ′
2(ω)

)

as ω goes to 0. Firstly, it is clear that a2(0) =
bf1(M1)+1
M2l+1

. Thus,

Im(a2(0)) = 0. So, applying Hospital rule it follows that

limω→0
ω

Im(a2(ω))
= limω→0

iω

iIm(a2(ω))
=

−i
(Im(a2))′(0)

=
1

Re(a′2(0))
.

Hence,

lim
ω→0

(

M ′
1(ω)

M ′
2(ω)

)

=
1

veβ(bf1(M1) + 1)Re(a′2(0))

(

α bf1(M1)+1
M2l+1

−α(bf1(M1) + 1) + α bf1(M1)+1
M2l+1

)

=
α

veβRe(a′2(0))(M2l + 1)

(

1

−M2l

)

.

After, it is easy to see that

a′2(0) =
b

M2l + 1

(1−M1f1(M1))(1 + lM1)− 1

M2
1

+
(bf1(M1) + 1)M2

(M2l + 1)2
l2

2

=
1

M2l + 1

(

M2(1 + lM1)− b

M2
1

+
bf1(M1)M2 +M2

M2l + 1

l2

2

)

.

Now, a tedious, but not complicated, computation gives

lim
ω→0

(

M ′
1(ω)

M ′
2(ω)

)

=
αM2

1

veβL1(M1,M2)

(

1

−M2

)

(4.14)

where

L1(M1,M2) :=M2

(

1 +M1 +
M2
1

2
− eM1 +

M2M1

2(M2 + 1)
(eM1 − 1−M1)

)

.
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This implies that the curves (M ′
1,M

′
2), parameterized by ω > 0, start in the second or

in the fourth quadrant depending on the sign of L1(M1,M2). On the other hand, let

us remember that they cannot cross the line M ′
1 = M ′

2. As, by biological reasons we

are only admitting negative M ′
i , Hopf bifurcation may occur only when these curves

go into the third quadrant.

As the important parameters are reduced to α,M1 andM2 (besides ofM
′
1 andM

′
2),

whereas ve and β play lesser roles, we denote Φα,M1,M2(ω) := (M ′
1(ω),M

′
2(ω)), ω > 0.

Figure 4.1 gives an idea about where the parameters M1 and M2 lie when System

(2.1) has a biological sense, i.e. if the birth rate b is not extremely large.

Figure 4.1: Level curves of the equilibrium condition b =M2e
M1l

Notice that if we take (M1,M2) such that L1(M1,M2) < 0 then limω→0Φα,M1,M2(ω)

belongs to the fourth quadrant. On the other hand, L1(M1,M2) > 0 implies that

the curve Φα,M1,M2(ω) starts in the second quadrant. Finally, the points (M1,M2)

satisfying L1(M1,M2) = 0 are critical in the sense that the curve Φα,M1,M2(ω) comes

from infinity.

Now we are interested in finding when the curve Φα,M1,M2(ω) goes into the third

quadrant, i.e. to find values of the parameters for which Hopf bifurcation may occur.

M ′
1(ω) = 0 holds if αRe(a2(iω))−ωIm(a2(iω)) = 0, i.e. ϕM1,M2(ω) :=

ωIm(a2(iω))
Re(a2(iω))

= α

since a2(iω) 6= 0 for all ω > 0. We haveM ′
2(ω) = 0 if −α(bf1(M1)+1)+αRe(a2(iω))−
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ωIm(a2(iω)) = 0, i.e. if ψM1,M2(ω) := ωIm(a2(iω))
Re(a2(iω))−bf1(M1)−1

= α(assuming a2(iω) 6=
bf1(M1) + 1 for all ω ≥ 0).

lim
ω→∞

ωIm(a2(iω)) =M2 − b

The following lemmas, used in the proofs of Proposition 4.2 and Proposition 4.3,

give the behaviour of the functions ϕM1,M2 and ψM1,M2 near 0 and near infinity. For

intermediate values of ω the behaviour of these functions depends in a complicated

way on (M1,M2). Numerical computations on this subject are presented in the last

part of this section.

Lemma 4.3. The following hold

lim
ω→0+

a2(iω) = bf1(M1)+1
M2+1

,

lim
ω→0+

ϕM1,M2(ω)

ω2
=

L1(M1,M2)

M2
1 (bf1(M1) + 1)

,

lim
ω→0+

ψM1,M2(ω)

ω2
=

−L1(M1,M2)

M2M2
1 (bf1(M1) + 1)

.

Proof. The first statement is obvious. The remaining ones follows directly from

(4.13) and (4.14). ¤

Lemma 4.4.

limω→∞ a2(iω) = 1,

lim
ω→∞

ϕM1,M2(ω) = M2 − b(< 0),

lim
ω→∞

ψM1,M2(ω) = b−M2

bf1(M1)
.

Proof. It is very easy to show the first statement. For the second one, we have

ωa2(iω) = ω
b1−e

−M1(cosω−i sinω)
M1+iω

+ 1

M2
1−(cosω−i sinω)

iω
+ 1

=
b+M1 −M2 cosω + i(ω + sinω)

M2 −M2 cosω + i(ω + sinω)

iω2

M1 + iω
.
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On the other hand, at infinite, it follows that

b+M1 −M2 cosω + i(ω + sinω)

M2 −M2 cosω + i(ω + sinω)
=

b+M1 −M2 cosω + i(ω + sinω)

(M2 −M2 cosω)2 + (ω + sinω)2

(M2 −M2 cosω − i(ω + sinω))

' ω2 + 2ωM2 sinω

(M2 −M2 cosω)2 + (ω + sinω)2

+i
bω −M2ω −M1ω

(M2 −M2 cosω)2 + (ω + sinω)2
.

and
iω2

M1 + iω
' ω + iM1.

So,

lim
ω→∞

ωIm(a2(iω)) = lim
ω→∞

(b−M2)ω

(M2 −M2 cosω)2 + (ω + sinω)2
=M2 − b.

The rest follows from the definition of ϕM1,M2 and ψM1,M2 . ¤

Remark 4.3. From the lemmas above it follows that the equalities

0 < Re(a2(iω)) < bf1(M1) + 1 (4.15)

hold for ω near 0 and near infinite. On the other hand, if (4.15) holds for all ω > 0

then the functions ϕM1,M2 and ψM1,M2 are continuous.

Proposition 4.2. Let us assume that the hypothesis of Theorem 4.7 holds and that

M1 andM2 be such that (4.15) holds for any ω > 0. Then there exists α0 < M2−b < 0

such that for any α = g′(re)re < α0, the coexistence equilibrium point (ue, ve, re) is

asymptotically stable. In other words, the stability region, in the plane (M ′
1,M

′
2), is

the whole third open quadrant. Moreover, if α > α0 then the instability region is

non-empty.

Proof. First notice that (4.15) implies that if there exists ω0 such that Im(a2(iω0)) =

0 (Φα,M1,M2(ω) is unbounded in ω0) thenM
′
1(ω) changes sign in ω0 if and only ifM ′

2(ω)

changes sign too. So, Φα,M1,M2(ω) goes into the third quadrant if and only if there

exists ω1 such that M ′
1(ω1) = 0 or M ′

2(ω1) = 0. Since ϕM1,M2(ω) and ψM1,M2(ω) are

bounded, it suffices to take

α0 = min

(

inf
ω≥0

ϕM1,M2(ω), inf
ω≥0

ψM1,M2(ω)

)
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to avoid this possibility. ¤

Remark 4.4. Notice that if L1(M1,M2) < 0 then from Lemma 4.3 and Lemma 4.4

it follows that Im(a2(iω)) < 0 for ω near 0 and near infinite. On the other hand,

L1(M1,M2) > 0 implies, using again Lemma 4.3 and Lemma 4.4, that Im(a2(iω)) = 0

for some ω > 0.

Proposition 4.3. Let us assume the hypothesis of Theorem 4.7 and that M1 and

M2 be such that L1(M1,M2) < 0 and Im(a2(iω)) < 0 for any ω > 0.Then for any

α = g′(re)re < 0 there exists ε > 0 such that (M ′
2 =)m′

2(re) > −ε implies that

(ue, ve, re) is asymptotically stable.

Proof. The curve Φα,M1,M2(ω) is continuous since Im(a2(iω)) does not vanish and

it starts in the fourth quadrant because L1(M1,M2) < 0. Moreover, this curve tends

to infinite as ω −→ ∞ and it does not cross the diagonal. So Φα,M1,M2(ω) lies at a

strictly positive distance from the semiaxis M ′
1 ≤ 0. ¤

Remark 4.5. The pairs (M1,M2) biologically meaningful must lie under some level

curve of the function M2e
M1 corresponding to relatively small birth rate b. Some

numerical computations (see Subsect. 4.2.3) indicate that the hypothesis (4.15) of

Proposition (4.2) holds, for instance, if M2e
M1 ≤ 12.5. Besides, in this case, the

same numerical computations show that the first hypothesis of Proposition (4.3) (i.e.,

that L1(M1,M2) < 0) implies the second one.

4.2.3 Numerical results

The following table gives some values of the number α0 appearing in Proposition

(4.2) in function of the parameters M1 and M2
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M1 M2 b α0
0.01 11.5 11.615 -0.35

0.01 12.5 12.625 -0.4

0.01 1.5 1.51 -.027

0.2 1.5 1.832 -0.46

0.2 4 4.885 -1.46

0.2 9.5 11.603 -4

0.5 0.5 0.824 -0.4

1 1 2.718 -1.84

1 4 10.873 -6.6

2 1 7.389 -6.5

3 0.5 10.042 -9.6

These computations indicate that |α0| increases with both Mi.

Finally, we study in detail two particular cases. In the first one we will take

M1 = M2 = 1, i.e. L1(M1,M2) < 0 and b = e and in the second one M1 = 0.5,

M2 = 7, i.e. L1(M1,M2) > 0 and b = 11.54.

Figure 4.2: M1 =M2 = 1

Figure 4.2(a) shows that α0 ' −1.84 and that for any α < α0, ϕM1,M2(ω) 6= α

for ω ≥ 0. So the curve Φα,1,1(ω) does not enter into the third quadrant and the
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coexistence equilibrium point (ue, ve, re) is asymptotically stable for any M ′
1 and M

′
2.

On the other hand, Figure 4.2(a) also shows that if α0 < α then Φα,M1,M2(ω)

crosses the vertical axis at least once. This means that (ue, ve, re) becomes unstable

for some values of (M ′
1,M

′
2). The curves shown in Figure 4.3 bound stability and

instability regions of (ue, ve, re) for α = −1.6 and for α = −0.5, with ve = β = 1

in both cases. Indeed, from (4.13) it follows that changing any of the parameters ve
or β only affects the norm of the curve (M ′

1(ω),M
′
2(ω)) i.e., only causes a change of

scale.

Figure 4.3: Curve Φα,1,1(ω): (a) with α = −1.6; (b) with α = −0.5

Now we deal with the case where M1 = 0.5 and M2 = 7.
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Figure 4.4: M1 = 0.5,M2 = 7

Figure 4.4 shows that we can take α0 ' −6.2. In Figure 4.5 the stability and

instability regions for two choices of α are shown, taking again ve = β = 1.
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Figure 4.5: Function Φα,.5,7(ω): (a) with α = −6.5; (b) with α = −0.2

Remark 4.6. It is very difficult to determine the sign of the derivative of the real

part of the eigenvalues of (4.3) with respect to any parameter at any point of the

curve Φα,M1,M2(ω). So, in the cases of Figure 4.3 and of Figure 4.5 the stability and

instability regions have been determined by Theorem 4.7 and numerical computation

of the roots of the characteristic equation 4.12.

4.3 Existence of a global attractor

Sect. 4.1 and Sect. 4.2 were mainly devoted to local study near equilibrium points.

This section deals with global dynamics when the mortality of the juveniles does not

depend on the age, and although the complete asymptotic behaviour of the solutions

of (2.1) cannot be elucidated by analytical means, the existence of a compact global

attractor, and its description in some cases, is proven for most biologically significant

situations.

As usual, the proof of the existence of such an attractor relies on two rather

independent features of the nonlinear semigroup defined by the solutions of (2.1),

namely, the property of asymptotic compactness and the existence of a fixed bounded

set attracting every trajectory (i.e. the dissipativeness property).


