
Set of periods, topological entropy

and combinatorial dynamics

for tree and graph maps

David Juher Barrot

Set of periods, topological entropy

and combinatorial dynamics

for tree and graph maps

David Juher Barrot

Mem�oria presentada per aspirar

al grau de doctor en ci�encies

matem�atiques.

Departament de matem�atiques

de la Universitat Aut�onoma

De Barcelona.

Bellaterra, abril del 2003.

Els Drs. Llu��s Alsed�a Soler

i Pere Mumbr�u Rodr��guez

CERTIFIQUEM que aquesta

mem�oria ha estat realitzada per

David Juher Barrot sota la nostra

direcci�o, al departament de

matem�atiques de la Universitat

Aut�onoma de Barcelona.

Bellaterra, abril del 2003.

Per l'Esteve,
des de la Terra

Contents

Introduction 3

1 Sets of periods for piecewise monotone tree maps 7

1.1 Introduction . 7

1.2 Basic De�nitions and Statement of the Main Results 11

1.3 Markov Graphs and Periodic Orbits 19

1.4 Periodic Orbits in y-expansive Monotone Models 21

1.5 Canonical and Monotone Models 26

1.6 Reduction of Monotone Models 30

1.7 Proof of Theorem A . 41

1.8 Upper bounds for the type and the rotation index 42

1.9 Some Examples. Proof of Theorem B 45

2 The set of periods for tree maps 58

2.1 Introduction. How to compute the set of periods of a tree map 58

2.2 Minimality of the dynamics of monotone models. Preliminary

results . 65

2.3 Step 1. A reduction process 67

2.4 Step 2. Computing sets of periods of non-twist canonical models 73

2.5 Step 3 and inclusion of periods 75

2.6 Step 4. Proof of Theorem C 78

2.7 Proof of Theorem 2.5.1. Large periods 82

2.8 Proof of Theorem 2.5.1. Small periods 88

2.8.1 General de�nitions and preliminary results 89

2.8.2 Strategy of the proof of Theorem 2.5.1 93

2.8.3 Stage 1: reduction to a Markov case 96

2.8.4 Stage 2: completion to graph models 100

2.8.5 Stage 3: n is a period of the completion of (S; P ; g) . . 105

2.8.6 Proof of Theorem 2.5.1 108

2.9 Proof of Theorem D . 111

1

3 Computer experiments 115

3.1 Introduction . 115

3.2 The program \TREES" . 117

3.2.1 Aims and source code of the main program 117

3.2.2 Global data structures 118

3.2.3 Algebraic representation of a pattern 119

3.2.4 Pattern input . 120

3.2.5 Construction of the canonical model 123

3.2.6 The function \treeDC" 130

3.2.7 Calculus of the A-monotone map f 154

3.2.8 Output results . 159

3.3 Extraction of simple loops from Markov transition matrices.

Symbolic manipulation of chains 161

3.4 Calculus of the Markov transition matrix 166

3.5 Tests of period-forcing . 169

4 A note on the periodic orbits and topological entropy of

graph maps 176

4.1 Introduction . 176

4.2 Proof of Theorem E . 178

Appendix 182

A.1 Dynamic memory management 182

A.2 Calculus of the path transition matrix 185

A.3 Sorting functions . 189

A.4 Data input and output . 190

A.5 Other functions . 192

Bibliography 195

2

Introduction

This memoir deals with one-dimensional discrete dynamical systems, from

both a topological and a combinatorial point of view. More precisely, we

are interested in the periodic orbits and topological entropy of continuous

self-maps de�ned on trees and graphs.

The central problem of our work is the characterization of the possible set

of periods of all periodic orbits exhibited by a tree map (any continuous map

from a tree into itself). The widely known Sharkovskii's Theorem (1964)

concerning interval maps was the �rst remarkable result in this setting. This

beautiful theorem states that the set of periods of any interval map is an

initial segment of the following linear ordering D in the set N [f21g (the

so-called Sharkovskii ordering):

3 D 5 D 7 D : : : D 2 � 3 D 2 � 5 D 2 � 7 D : : : D 4 � 3 D 4 � 5 D 4 � 7 D : : : D : : : D

2n � 3 D 2n � 5 D 2n � 7 D : : : D 21 D : : : D 2n D : : : D 16 D 8 D 4 D 2 D 1:

Conversely, given any initial segment I of the ordering D there exists an

interval map whose set of periods coincides with I.

During the last three decades there have been several attempts to �nd

results similar to that of Sharkovskii for one-dimensional spaces other than

the interval (the 3-star and the circle, among them). More recently, the case

of maps de�ned on more general trees has been specially treated. Baldwin's

Theorem (1991), which solves the problem in the case of n-stars for any n � 1,

has been one of the most signi�cant advances in this direction. This result

states that the set of periods of any n-star map is a �nite union of initial

segments of n-many partial orderings (Baldwin orderings). Conversely, given

such a union I there exists an n-star map whose set of periods is I.

A more detailed chronology of related works, as well as citations to other

partial results on this matter, can be found in the Introductions to Chapters

1 and 2.

The main purpose of our research is to describe the generic structure of the

set of periods of any tree map g : S �! S in terms of the combinatorial and

3

topological properties of the tree S: amount and arrangement of endpoints,

vertices and edges. In Chapter 1 we make a detailed discussion about which

is the more natural approach to this problem, and we propose a strategy

consisting on three consecutive stages which can be summarized as follows:

1. For each periodic orbit P of g, calculate the set �P of periods of the

corresponding canonical (or P -minimal) model fP : TP �! TP .

2. Prove that �P is contained in the set of periods of each tree map

exhibiting an orbit with the pattern of P . In particular, �P � Per(g).

3. Consider each orbit P of g and its associated �P , and then obtain (by

purely number-theoretical arguments) a �nite structure of the set of

periods of g by arranging adequately the (perhaps uncountable) union

of all sets �P .

Observe that this approach depends strongly on the notions of pattern (of

a �nite invariant set) and minimal model associated to it. These notions

were developed in the context of interval maps and widely used in a number

of papers during the last two decades. However, equivalent operative de�-

nitions for tree maps were not available until 1997, when Alsed�a, Guaschi,

Los, Ma~nosas and Mumbr�u proposed to de�ne the pattern of a �nite invari-

ant set P essentially as a homotopy class of maps relative to the points of

P , and proved (constructively) that there always exists a P -minimal model

fP : TP �! TP , that is, a representative of the class displaying several dy-

namic minimality properties. It is important to remark that the trees S and

TP are not necessarily homeomorphic. This complicates considerably the

implementation of the second stage of the above programme, since the only

features which are preserved when one compares the maps g : S �! S and

fP : TP �! TP are the relative positions of the points of P and the way g

and fP act on these points.

In Chapter 1 we carry out the �rst stage of the above programme. That

is, given a periodic orbit P and a P -minimal tree map f : T �! T , we calcu-

late (as large as possible) subsets of the set of periods of f . This task, which

has been done by studying the loops of the Markov P -graph of f , is rela-

tively simple when P does not exhibit a certain rotational (or twist) behavior

around a �xed point of f . When P is twist, we perform a reduction process

consisting of what we have called a sequence of partial reductions leading up

to a periodic orbit P 0 and a P
0-minimal tree map f

0 : T 0 �! T
0 such that

T
0 � T , jP j = kjP 0j for some k > 1, the set of periods of f is essentially the

set of periods of f 0 multiplied by k, and P
0 is non-twist. By means of this

strategy we prove Theorem A, which states that the set of periods of f is, up

to an explicitly bounded �nite set, the initial segment of a Baldwin ordering

starting at jP j. We also prove a converse result (Theorem B) which states

4

that, given any set I of that form, there exists a piecewise monotone tree

map whose set of periods coincides with I.

The goal of Chapter 2 is to implement in full the above programme by

completing stages 2 and 3. In June 2001 we submitted the work of Chap-

ter 1 to be considered for publication as a paper in International Journal

of Bifurcation and Chaos ([5]). Later on, while writing a part of Chapter 2

of this memoir, we realized that using a new simple and powerful argument

would allow us to shorten considerably the proofs and improve the obtained

results. In particular, with this new approach all the lengthy technical work

associated to the construction of a sequence of partial reductions is unneces-

sary. This gave rise to a revised version of the above strategy (with a slightly

modi�ed stage 1) which we perform completely in Chapter 2. Despite this

new approach overcomes a part of the material of Chapter 1, we have chosen

to leave intact the published work.

The main result of Chapter 2 is Theorem C, which tells us that for each

tree map g : S �! S there exists a �nite set of sequences s = (p1; p2; : : : ; pm)

of positive integers such that the set of periods of g is (up to an explicitly

bounded �nite set) a �nite union of sets of the form

fp1; p1p2; : : : ; p1p2 � � � pm�1g [(Is n p1p2 � � � pmf2; 3; : : : ; �sg);

where �s is a nonnegative integer and Is is an initial segment of the Baldwin

ordering p1p2���pm�. The �nite set of sequences which characterizes the set of

periods of g depends entirely on the combinatorial properties of the tree S.

We also prove a converse result (Theorem D) which asserts that given any

�nite union I of sets of the above form there exists a tree map whose set of

periods is I.

In Chapter 3 we report some computer experiments on the minimality of

the dynamics of canonical models. Chronologically, this work is contempora-

neous to Chapter 1. While researching about the set of periods of canonical

models, we constructed some computer software to explore how the dynamic

minimality translates into some forcing properties of patterns and periods. In

a spirit of modular programming, we designed lots of self-contained functions

which can be used to implement a wide variety of several-purpose software.

Among other, we have functions that:

1. Compute the canonical model of a pattern provided by the user.

2. Calculate the Markov transition matrix associated to a piecewise mono-

tone tree map.

3. Extract all the simple loops of a given length from a Markov transition

matrix.

4. Calculate the pattern of a periodic orbit associated to a Markov loop.

5

The eÆcient programming of a part of this machinery needs an important

theoretical background. In Chapter 3 we list and explain the source code

(written in language C) of the most important functions. When required, we

also state and prove some results which have been used either to construct

the algorithms or to optimize the execution time. The code of other minor

routines, which are not interesting from a mathematical point of view, has

been listed in the Appendix.

Finally, in Chapter 4 we generalize some results of Block & Coven, Misi-

urewicz & Nitecki and Takahashi, where the topological entropy of an interval

map was approximated by the entropies of its periodic orbits (the entropy of

a periodic orbit P , denoted by h(P), is the entropy of a P -minimalmodel). In

Theorem E we show that if f : G �! G is a graph map then the entropy of f

equals supfh(P) : P periodic orbit of f and jP j > mg, for each non-negative

integer m. This chapter has been published as a paper in Proceedings of the

American Mathematical Society ([4]).

Agra��ments.

En aquest m�on que els mitjans de comunicaci�o quali�quen (amb grans dosis

d'humor negre o de mala fe) de globalitzat i multicultural, �es un aut�entic

luxe poder escriure en catal�a l'�unic fragment d'aquesta tesi que ser�a llegit

per tothom.

Primer de tot he de donar les gr�acies als doctors Llu��s Alsed�a i Pere

Mumbr�u. D'aquests dos grans generadors d'energia positiva n'he admirat el

rigor extrem i la �na ironia, la feina ben feta i el bon humor, la disciplina de

treball f�erria i la immensa humanitat. Penseu-hi: aquests parells d'atributs

sovint s'exclouen m�utuament. Aplegar-los tots alhora �es una qualitat nom�es

atribu��ble als genis.

Totes aquestes persones, sovint sense ser-ne conscients, m'han ajudat a

escriure la tesi: Rupert i Carme, Cristina i Jordi, Jaume, Nat�alia, Clara, Es-

teve, Isolda i avi Esteve (Girona), Francesc (Creixell de Mar), Martha �Alvarez

(M�exico D.F.), Ricard i Georgina (Barcelona), Prat, Luiiiiis, Maria, Enric,

M�onica V�asquez, Argi, Narc��s, JR, Marta i Mante (Girona), El Exorcista

III (Georgetown), Jordi i Anna (Sant Cugat-Santa Coloma-Cerdanyola),

V��ctor i Anna (Sant Quirze-Cass�a-Sabadell), Fina (Torroella-Ull�a), N�uria

Flores (Cerdanyola), Carina (Girona), Pipo i Eli (Canet-Barcelona), Marta

Fraiz (Barcelona), F�elix Gurucharri (Barcelona), Anna Montany�a (Terrassa),

Montse Vilardell (Girona), Sergio Crespo (Lleida), Jaume Soler (La Garriga),

Joaquim Gelabert�o (Girona), Joan Mir�o (Girona), Pepus, Mei, Gl�oria, Santi,

Martin, Robert, Esther, Jaume Romero, Carles, Vera, Jordi, Raimon, Joan,

Marta, �Angel, Marc, Roel, Maria (UdG).

6

Chapter 1

Sets of periods for piecewise

monotone tree maps

1.1 Introduction

In this chapter we deal with the problem of determining which are the possible

sizes of the periodic orbits that appear by iterating a continuous map de�ned

on a tree. For some particular cases (interval and star), several well known

results establish that if a continuous map exhibits a periodic orbit which

veri�es some combinatorial properties then we can determine a set which is

a lower bound of the set of periods of the map.

The widely known Sharkovskii's Theorem (see [42]) studying the set of

periods of any continuous map from an interval of the real line into itself was

the �rst remarkable result in this setting. In order to state it, we introduce

the Sharkovskii ordering D (the symbols E, C and B will be understood in

the natural way) in the set N [f21g:

3 D 5 D 7 D : : : D 2 � 3 D 2 � 5 D 2 � 7 D : : : D 4 � 3 D 4 � 5 D 4 � 7 D : : : D : : : D

2n � 3 D 2n � 5 D 2n � 7 D : : : D 21 D : : : D 2n D : : : D 16 D 8 D 4 D 2 D 1:

The Sharkovskii's theorem states that if an interval map f has a periodic

orbit of period m then f has periodic orbits of period k for each m D k.

As a consequence, it can be shown that for each interval map f there exists

some n 2 N [f21g verifying that the set of periods of f is exactly the set of

integers k such that n D k. Conversely, given any n 2 N [f21g there exists

an interval map g whose set of periods is the set of all integers k such that

n D k.

During the last three decades there have been several attempts to �nd

results similar to that of Sharkovskii for 1-dimensional spaces other than the

interval (see for instance [7] about maps on Y or [28], [21], [19] and [37]

7

about circle maps). More recently, the case of maps de�ned on trees has

been specially treated.

In [16] the characterization of the set of periods of any continuous map

de�ned on an r-star (a tree with r edges and r endpoints) is given in terms of

�nitely many partial orderings. Let us de�ne the Baldwin partial orderings

p� for all p 2 N (the symbols <p, �p and p> will be understood in the

natural way). If p = 1 then p� is the Sharkovskii ordering. For p > 1 and

k;m 2 N [fp21g, we write m p� k if one of the following cases holds:

(i) k = 1 or k = m

(ii) k;m 2 pN [fp21g and m=p B k=p

(iii) k 2 pN [fp21g and m =2 f1g [pN [fp21g

(iv) k;m =2 f1g [pN [fp21g and k = im + jp with i; j 2 N

where the arithmetic rule p21=p = 21 is assumed and pN stands for fpn :

n 2 Ng. It is not diÆcult to see that 2� also coincides with the Sharkovskii

ordering.

In Baldwin's paper, a positive integer is associated to each periodic orbit

P of an r-star map f . This integer is called the type of P and depends only

on the combinatorics of f j
P
(in Section 1.4 a precise de�nition is given for a

general tree map). Baldwin proves that if f has a periodic orbit of period m

and type p then f has periodic orbits of period k for each m p� k.

An initial segment of the ordering p� is de�ned to be any set S such that

if m 2 S and m p> k then k 2 S. Baldwin proves that the set of periods of

any r-star map is a union of �nitely many initial segments of the orderings

p� for 1 � p � r. Conversely, given such a union A there exists an r-star

map whose set of periods is A.

In what follows, any continuous map from a tree into itself will be called

a tree map.

The characterization of the set of periods for any tree map f : T �! T

in terms of some constants which depend on the topological structure of T

(such as the amount of vertices or endpoints of T) is yet an open problem.

However, there are some partial results in this direction (see, for instance,

[31], [14], [36] and [23]).

A natural strategy to obtain this kind of characterization for interval

and star maps, that already has been used in the proofs of Sharkovskii and

Baldwin theorems, is the following one. Assume that f is an interval map

or an r-star map and let P be a periodic orbit of f . The �rst stage of the

strategy consists of studying the subset �P of periods of f which are forced

by the pattern of P . That is, one wants to know which other orbits the map

f will necessarily have, depending only on the combinatorics of f j
P
. To solve

this problem one replaces f by another map g such that gj
P
= f j

P
and g is

8

monotone between any two consecutive points of P . It can be seen that such

a map is the dynamically simplest model which exhibits an orbit having the

pattern of P . This means that each pattern exhibited by g is also exhibited

by f and that the set �P coincides with the set of periods of g. Therefore,

the set �P can be computed just by studying the loops of the Markov graph

of g. The last step of the proof consists in considering each orbit P of f and

its associated �P . Then one gets the structure of the set of periods of f by

obtaining the structure of the (uncountable) union of all sets �P . This is

done by purely number-theoretical arguments.

As it has been said before, an important intermediate step in getting

the periodic structure of interval and star maps is the study of the set of

periods of these (piecewise monotone) \dynamically simplest models". Since,

in addition, piecewise monotone maps provide all the necessary examples in

the \converse part" of the theorems of Sharkovskii and Baldwin, the proofs

of these results are strongly based on the study of this class of maps.

To study the set of periods of tree maps we have chosen to follow a

strategy similar to the one described above (as we shall see, this is a natural

strategy also in the case of tree maps). However, it turns out that the

straightforward implementation of this strategy to tree maps does not work.

Indeed, let f : T �! T be a tree map, let P be a periodic orbit of f

and let V denote the set of vertices of T . Then we want to consider a

P -weakly monotone map g which is de�ned to coincide with f on V [P

and is monotone (injective) on the closure of each connected component of

T n (V [P). The problem is that a P -weakly monotone map can have (even

in�nitely many) periods which are not periods of f , and thus it cannot be

our desired \minimal model". To illustrate this phenomenon consider the

following simple example in the case of interval maps.

Example 1.1.1. Let g : [0; 1] �! [0; 1] denote the tent map such that the

point 1=2 is a periodic point of period 3. That is:

g(x) =

(
�x when x 2 [0; 1=2];

�(1� x) when x 2 [1=2; 1];

with � = 1+
p
5

2
. This map has periodic points of all periods. Set p =

g(1=2) = 1+
p
5

4
and let f : [0; 1] �! [0; 1] be the continuous map such that

f(0) = f(1) = 0, f(x) = p for each x 2 [1� p; p] and f is aÆne on [0; 1� p]

and [p; 1]. Clearly, p is a �xed point of f and 1 is the only period of f . Now

consider T = [0; 1] as a 2-star with vertices V = f0; 1=2; 1g and suppose that

we are given the map f with P = f0g. The map g coincides with f on V [P

and is monotone (injective) on the closure of each connected component of

9

�
�
�
�

����

�
�
�
�

��

�
�
�
�

����

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��

���
���
���

���
���
���

�
�
�
�
�

�
�
�
�
�������

���
���
���
������

���
���

���
���
���

����
����
����
����

����
����
����
�����

�
�
�

�
�
�
�

����

��
��
��
��

��

�
�
�
�

����

y1

y3

y5

y4

v

v
0

y2

y6

v
00

x1
x4

x6

x5x2

x3

z

Figure 1.1: Left �gure: A tree T and a map f : T �! T which exhibits an

orbit P = fx1; x2; : : : ; x6g with f(xi) = xi+1 for 1 � i � 5 and f(x6) = x1.

This map can be made P -weakly monotone by setting f(z) 2 P [fzg but it

cannot be made P -monotone.

Right �gure: A tree S and a map g : S �! S having an orbit Q =

fy1; y2; : : : ; y6g with g(yi) = yi+1 for 1 � i � 5 and g(y6) = y1. If in ad-

dition we take g(v) = v
0, g(v0) = v

00 and g(v00) = y5 then g can be made

Q-monotone (and thus Q-weakly monotone).

T n (V [P) (so, g is P -weakly monotone). However the map g has periodic

points of all periods whereas the map f only has �xed points.

The above example tells us that it is not straightforward to extend the

notion of \minimal model" (or \P -minimalmap") to the setting of tree maps.

However, in [3] the authors give a de�nition of pattern of P and prove that

there always exists a tree SP and a map g
P
: SP �! SP exhibiting a periodic

orbit Q with the same pattern as P and displaying dynamic minimality

properties similar to the known ones for the interval case. The crucial point is

that the map g
P
is Q-monotone which means that it is monotone between any

two consecutive points of Q (two points a; b of Q are said to be consecutive

if there are no other points of Q in the convex hull of fa; bg). We also

remark that the tree SP , which may be di�erent from T , is unique up to

homeomorphisms and collapse of invariant forests. The map g
P
, which is

the crucial tool in our strategy, is called a P -minimal model. As an example

consider the maps f and g de�ned in Figure 1.1: It turns out that the orbits

P and Q have the same pattern (even living in two di�erent trees) and that

the map g is the minimal model corresponding to this pattern. Observe

also that the notion of Q-monotonicity is stronger than the notion of Q-weak

monotonicity. To see it, consider the map f de�ned in Figure 1.1 and observe

that there does not exist any P -monotone map ' : T �! T which coincides

with f on the set P . Such a map ' would have to satisfy '([x1; x2]) = [x2; x3]

and '([x3; x5]) = [x4; x6]. Thus '(z) 2 [x2; x3] \ [x4; x6]; a contradiction.

10

Now we are ready to describe the implementation of the strategy we use

to study the set of periods of tree maps:

(1) For each periodic orbit P of f calculate �
P
, the set of periods of the

corresponding P -minimalmodel g
P
: SP �! SP or, if this is not possible,

estimate the largest possible subset of �
P
.

(2) Prove that the set of periods of the P -minimal model g
P
is contained

in the set of periods of each tree map which exhibits an orbit with the

pattern of P . In particular, �P is a subset of the set of periods of f .

(3) Consider each orbit P of f and its associated �P . Then one can obtain

the structure of the set of periods of f by describing the structure of the

(uncountable) union of all sets �P .

In this chapter we perform step (1) of the above programme by means of

the study of the Markov graph of g
P
. Indeed, given any tree map g : S �! S

having a periodic orbit Q and such that g is Q-monotone, we use information

from the combinatorics of gj
Q
and the topological structure of S in order to

study the Markov graph of g and compute as large as possible subsets of

the set of periods of g. Moreover, examples are given where the di�erence

between the whole set of periods and these subsets is �nite and explicitly

bounded.

Since in general T and SP di�er (unless T is an interval or a star) it is

not easy to carry out steps (2) and (3) of the above programme. This work

is the matter of Chapter 2.

1.2 Basic De�nitions and Statement of the

Main Results

Let X be a topological space and let f : X �! X be a map. As usual,

f
0 = Id and fk = f Æ f Æ � � �Æ f (k times) for k 2 N. For a �nite set A we will

denote its cardinality by jAj. Given a point x 2 X we de�ne its orbit, denoted

by Orbf(x) (or simply by Orb(x)), to be the set ffk(x) : k = 0; 1; 2; : : :g. If

jOrb(x)j = n, then f
k(x) 6= x for 0 < k < n and f

n(x) = x. In this case we

say that x is a periodic point of f of period n (or an n-periodic point of f)

and that Orbf (x) is a periodic orbit of f of period n (or an n-periodic orbit

of f). A point of period 1 is called a �xed point, and the set of �xed points

of f will be denoted by Fix(f). The set of periods of f , denoted by Per(f),

is the set of periods of all periodic orbits of f . Given a point x 2 X, we

say that x is eventually periodic if it is not periodic but fn(x) is periodic for

some n > 0. If A � N and m;n 2 N , nA stands for fnk : k 2 Ag and m+nA

stands for fm+ nk : k 2 Ag.

11

A tree is a compact uniquely arcwise connected space which is a point

or a union of a �nite number of intervals (from now on, by an interval we

mean any space homeomorphic to [0; 1]). Any continuous map from a tree

into itself will be called a tree map. If T is a tree and x 2 T , we de�ne the

valence of x to be the number of connected components of T n fxg. Each

point of valence 1 will be called an endpoint of T and the set of such points

will be denoted by En(T). Each point of valence di�erent from 2 will be

called a vertex of T and the set of vertices of T will be denoted by V (T). As

usual, the closure of each connected component of T nV (T) will be called an

edge of T . Any tree which is a union of r > 1 intervals whose intersection

is a unique point x of valence r will be called an r-star, and x will be called

the central point.

If X is a topological space and f : X �! X is a map, we will say that

a set A � X is f -invariant if f(A) � A. A triplet (T;A; f) will be called

a model if f : T �! T is a tree map and A is a �nite f -invariant set. In

particular, if A is a periodic orbit of f then (T;A; f) will be called a periodic

model. For a set B � X we will denote by Int(B) and Cl(B) the interior and

the closure of B respectively. Let S be a tree. Given P � S we will de�ne the

convex hull of P , denoted by hP iS or simply by hP i, as the smallest closed

connected subset of S containing P . When P = fx; yg we will write hx; yi or

[x; y] to denote hP i. The notations (a; b), (a; b] and [a; b) will be understood

in the natural way.

Let g : S �! S be a tree map. Given a; b 2 S we say that gj[a;b] is

monotone if either g([a; b]) is a point or it is an interval and, given two

homeomorphisms � : [0; 1] �! [a; b] and ' : g([a; b]) �! [0; 1], then ' Æ

g Æ � : [0; 1] �! [0; 1] is monotone (as a real function). If P � S is a

�nite g-invariant set which contains En(S), we say that g is P -monotone if

g([a; b]) = [g(a); g(b)] and gj[a;b] is monotone whenever [a; b] \ P = fa; bg.

In this case we will say that the model (S; P; g) is monotone. If in addition

P contains a unique periodic orbit and this orbit consists of a �xed point,

then we will say that (S; P; g) is a trivial model. Observe that if (S; P; g) is

a trivial monotone model and P consists of a �xed point then S reduces to

the unique point of P since En(S) � P .

Remark 1.2.1. If (S; P; g) is a monotone model, it is shown in Proposition

4.2 of [3] that the image of each vertex z is uniquely determined and is

either a vertex or belongs to P . In fact, if a; b; c 2 P in such a way that

z 2 [a; b]\ [a; c]\ [b; c] and hfa; b; cgiS nP is connected, then it can be easily

seen that g(z) is the only point contained in g([a; b])\ g([a; c])\ g([b; c]).

Let (S; P; g) be a monotone model and let Q = P [V (T). Observe that

each connected component of T n Q is an interval. By Remark 1.2.1, Q is

12

g-invariant. It is not diÆcult to see that g is monotone on each connected

component of T n Q. In this situation, we can consider the usual notion of

the Markov graph of g, whose vertices are closures of connected components

of T nQ and there is an arrow from K to L if and only if g(K) � L. It is folk

knowledge that there is a certain correspondence between periodic orbits of

g and loops of its Markov graph (see Section 1.3).

Now we informally sketch the strategy that we use in order to calculate the

set of periods of a monotone model. Let (S; P; g) be a non-trivial periodic

monotone model. The basic tool we use to obtain periodic points of g is

the existence of a special kind of loops in the Markov graph of g, which

we call external loops (see Section 1.4). The set of external loops in the

Markov graph of g which in addition verify certain technical properties will

be denoted by ~E(S; P; g). If ~E(S; P; g) 6= ; then Per(g) is directly calculable

(see Lemma 1.4.6 and Theorem 1.4.7).

If ~E(S; P; g) = ; then we proceed as follows. Set (S1; P1; g1) = (S; P; g).

We prove that there exist p1 2 N and a monotone model (S2; P2; g2) such

that S2 � S1, g2 = g
p1

1 jS2 and Per(g1) � p1 Per(g2). Such a monotone model

is called a partial p1-reduction of (S1; P1; g1). If we are able to compute

Per(g2), then the estimation p1 Per(g2) for the set of periods of g1 is optimal,

since we know examples verifying Per(g1) = p1 Per(g2). So the problem of

estimating Per(g1) is reduced to compute Per(g2). If ~E(S2; P2; g2) = ;, we

can iterate this procedure. In Section 1.6 it is shown that we can proceed in

this way as many times as necessary in order to obtain a �nite sequence of

monotone models f(Si; Pi; gi)g
m

i=1 such that:

(i) (S1; P1; g1) = (S; P; g).

(ii) (Si+1; Pi+1; gi+1) is a pi-partial reduction of (Si; Pi; gi) for 1 � i < m.

(iii) Pi contains a unique periodic orbit Pi
Æ and jP Æ

i
j = pijP

Æ
i+1j for 1 � i <

m. Moreover, Pi
Æ � Pi+1 Pi when pi = 1.

(iv) ~E(Si; Pi; gi) = ; for 1 � i < m.

(v) Either (Sm; Pm; gm) is a trivial model or it veri�es ~E(Sm; Pm; gm) 6= ;.

Since Per(gi) � f1g[pi Per(gi+1), we easily get that Per(g) � f1; p1; p1p2; : : : ;

p1p2 � � � pm�1g [p1p2 � � � pm�1 Per(gm). Furthermore, since P = P1 = P
Æ
1 , we

have that jP j = p1p2 � � � pm�1jP
Æ
m
j. We remark that such a sequence of partial

reductions of (S; P; g) is not unique.

By means of the above construction, a complete reduction of (S; P; g) is

de�ned to be the pair fR; Kg where K = f1; p1; p1p2; : : : ; p1p2 � � �pm�1g and

R = (Sm; Pm; gm). Note that if ~E(S; P; g) 6= ; then m = 1 and thus K

reduces to f1g. The model R will be called a completely reduced model of

(S; P; g). It satis�es:

(i) gm = g
maxK j

Sm
.

13

(ii) Pm contains a unique periodic orbit Pm
Æ and jP j = jPm

Æ
j �maxK.

(iii) Per(g) � K [(maxK) � Per(gm).

Since there exist many sequences of partial reductions, a complete reduction

of (S; P; g) is not uniquely determined.

By (iii), the study of the set of periods of a monotone model can be

reduced to the study of the set of periods of its completely reduced models.

This is the strategy we use and it gives rise to our main result. In order to

state it, we need to introduce some more notation.

Let R = (S; P ; g) be a non-trivial completely reduced model of a given

monotone model (S; P; g). We will prove that Per(g) depends on three non-

negative constants (besides jP
Æ
j, of course). These constants can be directly

calculated from the combinatorics induced by g on the g-invariant set P [

V (S). Since these numbers strongly depend on the topological structure of

the tree S and the behavior of g on P , we denote them by n(R), p(R) and

q(R) in order to stress their dependence from the model. The constant n(R)

is the minimum integer n such that gn(P) = P
Æ
. On the other hand, p(R)

is called a type of the model, and essentially is a generalization of the notion

of type of a periodic orbit introduced in [16] for star maps. Finally q(R) will

be called the rotation index of the model. The precise de�nition of these

constants is given in Section 1.4.

Next we introduce a notation to deal with a special type of initial segments

of the p� orderings. If p 2 N and r 2 N [fp21g, we de�ne Sp(r) = fk 2 N :

r p� kg. Note that if r 2 pN then Sp(r) = f1g [p fk 2 N : r=p D kg and

if r =2 pN then Sp(r) = f1; rg [fri + pj : i � 0; j � 1g. Given p; r 2 N , we

de�ne

S�
p
(r) =

�
Sp(r) if r =2 pN

Sp(3p) if r 2 pN

Observe that if r 2 pN then S�
p
(r) = pN [f1g � Sp(r).

Remark 1.2.2. Let k; p; r be natural numbers. Then we have that f1g [

kS�
p
(r) = fkg [S�

kp
(kr). Indeed, if r =2 pN then f1g [kS�

p
(r) = f1g [

k(f1; rg [fri + pj : i � 0; j � 1g) = f1; k; krg [fkri + kpj : i � 0; j �

1g = fkg [S�
kp
(kr). On the other hand, when r 2 pN we get f1g [kS�

p
(r) =

f1g [k(pN [f1g) = f1; kg [kpN = fkg [S�
kp
(kr).

From now on, we take f1; 2; : : : ; ng as the representatives of the classes

of Z=nZ.

Now we are ready to state the main results of this chapter.

Theorem A. Let (S; P; g) be a periodic monotone model. If P consists of a

�xed point of g then Per(g) = f1g. Otherwise, there exist complete reductions

14

of (S; P; g). For any complete reduction fR; Kg of (S; P; g), we have that

Per(g) � K. If, in addition, R is non-trivial and we denote p(R), q(R),

n(R) and maxK by p, q, n and k respectively, then

Per(g) � K [S�
kp
(jP j+ lkp) n f2kp; 3kp; : : : ; �kpg

for some 0 � �p �
jP j
k
+ p + q + n + 1 and some 0 � l �

jP j
k
+ q + 1.

Furthermore, if n = 0 then lp � p+ q � (q mod p).

The periods computed in the proof of Theorem A correspond to periodic

orbits which do not intersect the set V (S) of vertices of S. We additionally

prove (see Corollary 1.6.8) that Per(g) contains a �nite set V whose ele-

ments divide the least common multiple of the periods of all periodic orbits

contained in V (S).

Remark 1.2.3. When jP j 2 kpN the upper bound for l in Theorem A is

irrelevant, since S�
kp
(jP j + lkp) = kpN for any l. On the other hand, when

jP j =2 kpN the upper bound for l controls how far S�
kp
(jP j + lkp) is from

S�
kp
(jP j). Indeed, one can prove that S�

kp
(jP j) n S�

kp
(jP j + lkp) = fjP jg [

(fijP j+ jkp : 1 � i < p=g:c:d:(p; n); 1 � j � ilg n fjP j+ lkpg).

Sometimes a continuous self{map of a compact space is called chaotic if

it has positive topological entropy (see [27] for a de�nition). Then it can be

derived from Theorem E of [36] and Theorem A that if R is a non-trivial

model then g is chaotic. And conversely, it is not diÆcult to see that if

g is not chaotic then Per(g) must be �nite (this is true only for monotone

models). Thus the monotone models with a trivial (respectively non-trivial)

completely reduced model correspond to zero entropy (resp. chaotic) maps.

We must stress the fact that there are some known results which de-

scribe the set of periods of some kinds of tree maps except for a �nite set

of periods (see for instance [22] and [14]). Nevertheless, nothing is said

usually about this �nite set. Theorem A states that the set of periods of

a (chaotic) monotone model contains a set C which is S�
kp
(jP j) except for

an explicitly bounded �nite set of periods. In fact, from Remark 1.2.3 it

follows that S�
kp
(jP j) n C is exactly f2kp; 3kp; : : : ; �kpg if jP j 2 kpN and

f2kp; 3kp; : : : ; �kpg [fjP jg [(fijP j + jkp : 1 � i < p=g:c:d:(p; n); 1 � j �

ilg n fjP j + lkpg) otherwise. Thus the di�erence between C and S�
kp
(jP j)

depends on the constants � and l, which depend on combinatorial data ex-

tracted from the model by means of the constants q and n. The smaller q

and n are, the bigger (and closer to S�
kp
(jP j)) C is.

A natural question arises: how accurate is the estimation of Per(g) given

by Theorem A in relation to Sharkovskii and Baldwin theorems when S is

15

Table 1.1: Some examples of sets of periods given by Theorem A and Theo-

rems of Sharkovskii and Baldwin.

Model
Complete

reduction

Sharkovskii's

or Baldwin's

Theorem

Theorem A

S interval,

jP j = t � 2s,

t odd, s > 1,

no division

R = (S; P; g),

K = f1g,

q = n = l = 0,

p 2 f1; 2g

Sh(t � 2s)
pN n f2p; 3p;

: : : ; �pg

S r-star,

jP j = r � 2s,

P primary

R trivial,

K = f1; r; 2r;

22r; : : : ; 2srg

Sr(r � 2
s) Sr(r � 2

s)

S r-star,

jP j = rt � 2s,

t > 1 odd,

P primary

R non-trivial,

K = f1; r; 2r;

22r; : : : ; 2srg,

q = n = l = 0,

p = 2, � = t�1
2

Sr(rt � 2
s)

Sr(rt � 2
s)n

r2s+1 � f2; 3;

: : : ;
t�1
2
g

S r-star,

jP j = s =2 rN ,

(s; r)-spiral

map

R non-trivial,

K = f1g,

q = n = l = 0,

p = r,

� =
s�(s mod r)

r

Sr(s)
Sr(s) n f2r; 3r; : : : ;

s� (s mod r)g

an interval or a star? Given r 2 N, let us write Sh(r) for the initial segment

of Sharkovskii's ordering starting at r. That is, Sh(r) = fs 2 N : r D sg.

Suppose that S is an interval and jP j = t � 2s with t odd and s > 1.

Assume in addition that P has no division (see for instance [35]). Then from

the proof of Theorem A one gets that (S; P; g) admits a complete reduction

fR; Kg with R = (S; P; g), K = f1g, q = n = l = 0 and p 2 f1; 2g. If p = 1

then Theorem A states that Per(g) � N n f2; 3; : : : ; �g. When p = 2, we get

16

Per(g) � 2N nf4; 6; : : : ; 2�g. In both cases, these sets contain in�nitely many

periods which are not in Sh(t �2s). Theorem A can provide more information

than Sharkovskii's theorem, since in our result other combinatorial features

of the orbit P , besides its period, are taken into account. This goes in the

direction of the main result of [35], Baldwin's theorem and other several

results in the same spirit (see [38] or [14]).

Assume that S is an interval and P is a primary orbit (see [15] or [7]) of

period t � 2s with t odd and s � 0. Then Per(g) = Sh(t � 2s), and it is not

diÆcult to see that (S; P; g) admits a complete reduction fR; Kg such that

K = f1; 2; 22; : : : ; 2sg and R is a trivial model if and only if t = 1. If R is

trivial then Theorem A states that Per(g) � K = f1; 2; 22; : : : ; 2sg = Sh(2s).

On the other hand, when R is not trivial from the proof of Theorem A one

gets that q = n = l = 0, k = 2s, p = 2 and � = t�1
2
. Hence Theorem A states

that

Per(g) � K [S�2s+1(t � 2
s)n

f2 � 2s+1; 3 � 2s+1; : : : ;
t� 1

2
� 2s+1g

= f1; 2; 22; : : : ; 2sg [ft � 2sg[

2sfti+ 2j; i � 0; j � 1g n

f2 � 2s+1; 3 � 2s+1; : : : ;
t� 1

2
� 2s+1g:

It is not diÆcult to show that this set is exactly

Sh(t � 2s) n f2 � 2s+1; 3 � 2s+1; : : : ;
t� 1

2
� 2s+1g:

A similar calculus can be done when S is an r-star (with r � 3) and P is

a primary orbit. Some of these computations are shown in Table 1.1. When

jP j =2 rN then g is the (jP j; r)-spiral map (see [16]).

Thus, when S is an interval or a star, in some cases Theorem A misses

out the subset of periods f2kp; 3kp; : : : ; �kpg. Nevertheless, in these cases

it can be shown that gkp exhibits a horseshoe. Then it easily follows that

Per(g) � kpN . In particular, Per(g) � f2kp; 3kp; : : : ; �kpg. The existence

of this horseshoe is due to the (geometric) fact that there are no vertices of

S between consecutive points of P . For a general tree map it is not true that

g
kp has a horseshoe, and thus Per(g) does not necessarily contain kpN .

Also the following natural question arises: do there exist monotone mod-

els whose set of periods contains exactly the periods of Theorem A and no

other? Before answering this question, we must give the range of possible

values of the constants p, q, n and k in Theorem A. We have that p � 1,

17

q � 0 and n 2 f0; 1; 2g. Set r = jP j=k. In Corollary 1.8.2 we show that the

values of p and q are bounded in terms of r. In particular, when n = 0 we

have that
p � r � 1;

q + 4 � r when p = 1 and

2p+ q + 1 � r when q > 0:

(1.1)

The answer to the above question is given by the following converse of

Theorem A:

Theorem B. Let K � N be a set of the form f1; k1; k2; : : : ; kmg such that

k1 > 1 and ki strictly divides ki+1 for 1 � i < m. Set k = km. Then:

(a) There exists a periodic monotone model (R;B; h) with jBj = k and

Per(h) = K.

(b) Given any r > 1, p � 1 and q � 0 verifying (1.1), there exists a peri-

odic monotone model (S; P; g) and a complete reduction f(S; P ; g); Kg of

(S; P; g) such that jP
Æ
j = r, p(S; P ; g) = p, q(S; P ; g) = q, n(S; P ; g) = 0

and Per(g) = K [C, where C is a set such that

S�
kp
(jP j+ lkp) n f2kp; 3kp; : : : ; �kpg � C � S�

kp
(jP j)

with lp = p+ q� (q mod p) and �p being the largest multiple of p smaller

than r + p+ q + 1.

In order to simplify the proof of Theorem B, we have considered only

models for which n = 0. In fact, according to Theorem A, if one looks for

a characterization of Per(g) up to a �nite set then the values of q and n are

irrelevant.

This chapter is organized as follows. In Section 1.3 we introduce the usual

f -covering tools which relate the periodic orbits of a map and the loops of

its associated Markov graph. In Section 1.4 we de�ne a particular class

of monotone models, which we call y-expansive, and we compute periodic

orbits associated to the loops of the Markov graph of y-expansive models. In

Section 1.5 we use the notion of a canonical model introduced in [3]. From

each monotone model (S; P; g) we construct a canonical model (S 0
; P

0
; g

0)

and �nd a relation between Per(g) and Per(g0). Moreover, we prove that

every canonical model is, in particular, y-expansive. This allows us to use

the results of Section 1.4 for canonical models. In Section 1.7 we prove

Theorem A for a monotone model (S; P; g). The complexity of the arguments

of the proof depends strongly on the combinatorics of the g-invariant set P [

V (S) around a �xed point y of g. This combinatorics is studied in Section 1.6,

where we de�ne the notion of a twist model around a �xed point and we

remark that if (S; P; g) is not a twist model around y then the theorems of

18

Section 1.4 can be directly used. The sets of periods of the twist models are

studied in Section 1.6. In Section 1.8 we prove the inequalities (1.1). Finally

Section 1.9 is devoted to prove Theorem B.

1.3 Markov Graphs and Periodic Orbits

Let T be a tree and let Q � T be a �nite set containing V (T). An interval

of T will be called Q-basic if it is the closure of a connected component of

T n Q. Given f : T �! T and K;L � T , we will say that K f -covers L

if f(K) � L. We will use the notation K ! L (or K
f

! L if we want to

specify the map) to denote that K f -covers L. In this setting, it makes sense

to consider the (Markov) f -graph of Q, whose vertices are Q-basic intervals

and, if I; J are Q-basic intervals, there is an arrow I ! J if and only if I

f -covers J .

A monotone model (T;Q; f) will be called a Markov model if V (T) � Q.

The results of this section are well known for interval and star maps and

extend straightforwardly to the case of tree maps. However, we include some

proofs for completeness.

Lemma 1.3.1. Let (T;Q; f) be a Markov model. Let K � T be a connected

union of Q-basic intervals. Then for each Q-basic interval J � f(K) there

exists a Q-basic interval I � K such that I f -covers J.

Proof. Note that Int(J) \ V (T) = ; because J is a Q-basic interval and

V (T) � Q. Since f is continuous and T is a tree, it follows that there exists

an interval I 0 � K such that f(I 0) = J . Furthermore, since f is Q-monotone

we can assume Int(I 0) \ V (T) = ;. Thus the lemma follows by taking a

Q-basic interval I such that I 0 � I � K.

Let (T;Q; f) be a Markov model. There is a certain correspondence

between periodic points of f and loops in the f -graph of Q. We will use the

usual notions (see Chapter 1 of [8] or [21]): the concatenation of two loops

� and � will be denoted by ��, and �
n = �� : : : � (n times) will be called

an n-repetition of �. A loop will be called elementary if it cannot be formed

by concatenating two loops. A loop � is simple if it is not an n-repetition of

any other loop with n � 2. The length of a loop � will be denoted by j�j. If

J0 ! J1 ! : : :! Jn�1 ! J0 is a loop � in the f -graph of Q and x 2 Fix(fn)

we say that x and � are associated if f i(x) 2 Ji for 0 � i < n. In this case

we also will say that Orb(x) and � are associated. We note that when x and

� are associated the period of x can be a strict divisor of j�j. As usual, to

every arrow I ! J in the f -graph of Q we associate a sign which is +1 if f j
I

19

is non-decreasing and -1 if it is non-increasing. Then we say that the loop

J0 ! J1 ! : : : ! Jn�1 ! J0 is positive if the product of the signs of the

arrows J0 ! J1; J1 ! J2; : : : ; Jn�1 ! J0 is +1 and negative if it is -1.

Lemma 1.3.2. Let (T;Q; f) be a Markov model. If P is a periodic orbit of

f such that P \Q = ;, then there exists a unique loop � of length jP j in the

f -graph of Q such that P and � are associated.

Proof. Let x 2 P . For each 0 � i < jP j, there exists a unique Q-basic

interval Ji such that f i(x) 2 Int(Ji). Since f is Q-monotone and V (T) � Q,

it follows that Ji f -covers Ji+1 for 0 � i < jP j � 1 and JjP j�1 f -covers J0.

The next result follows easily from the ideas of Lemma 1.4 of [21]. See

also Lemma 4.2.1.

Lemma 1.3.3. Let (T;Q; f) be a Markov model. Let � be a loop J0 ! J1 !

: : : ! Jn�1 ! J0 in the f -graph of Q. Then there exist closed intervals

Ki � Ji for 0 � i < n such that f(Ki) = Ki+1 for 0 � i < n � 1 and

f(Kn�1) = J0. Moreover, there exists x 2 Fix(fn) such that f i(x) 2 Ki for

0 � i < n. In particular, x and � are associated.

Remark 1.3.4. With the notation of Lemma 1.3.3, it is not diÆcult to see

that fn is monotone on K0, and the loop is positive (respectively negative)

if and only if fnjK0
is non-decreasing (respectively non-increasing).

Under the hypotheses of Lemma 1.3.3, there exists a periodic point x

associated to �. Therefore, the loops of the f -graph of Q are useful to

obtain periodic orbits of the map f . When doing this, the basic problem

is to determine the exact period of the periodic point that one gets. The

following result imposes some conditions on � in order to assure that the

period of x coincides with the length of �.

Lemma 1.3.5. Let (T;Q; f) be a Markov model. Let � be a simple loop

[a; b] ! J1 ! J2 ! : : : ! Jn�1 ! [a; b] in the f -graph of Q. Let x be the

periodic point given by Lemma 1.3.3. If x 2 (a; b) then the period of x is n.

This happens, in particular, when any of the following statements holds:

(a) a and b are not �xed points of fn.

(b) � is negative.

Proof. We use the notation of Lemma 1.3.3. A standard argument (see for

instance the �rst part of the proof of Lemma 1.2.11 of [8]) assures that, since

x 2 Int(J0) and � is simple, the period of x coincides with j�j = n. Now we

will see that x 2 Int(J0) when either (a) or (b) is satis�ed.

20

When (a) holds, obviously x =2 fa; bg since x is a �xed point of fn.

Assume that (b) holds. Set K0 = [y; z] � J0. Then x 2 [y; z] and

f
n([y; z]) = J0. Since � is negative, by Remark 1.3.4 f

n is monotone and

non-increasing on [y; z]. Since x 2 Fix(fn), it follows that x 6= y and x 6= z.

Thus x 2 (y; z) � Int(J0).

In view of Lemma 1.3.5, simple loops are specially useful to calculate

periodic orbits. The following lemma gives a tool to obtain a simple loop

from a given one.

Lemma 1.3.6. For each loop which is not a repetition of an elementary

loop there exists a simple loop which can be obtained by permuting the ele-

ments of .

Proof. Clearly can be written as �l� for some l 2 N , a non-empty elemen-

tary loop � and j�j > 0. If � = �
0
��

00 (where either � 0 or � 00 can be empty)

then the loop 0 = �
l+1

�
0
�
00 is obtained by permuting the elements of . By

iterating this procedure, if necessary, we obtain a loop ~ = �
r ~� which is a

permutation of the elements of such that r 2 N , j~�j > 0 and ~� does not

contain �. Clearly ~ is simple.

1.4 Periodic Orbits in y-expansive Monotone

Models

In this section we introduce a particular class of monotone models, which

will be called y-expansive. This kind of models satisfy certain properties

of expansivity around a �xed point y. We study the Markov graph of y-

expansive models and derive the structure of the set of periods.

Let T be a tree. Given a point y 2 T , a (partial) ordering among the

points of T may be de�ned: for z; z0 2 T , we write z �y z
0 if and only if

z 2 [y; z0). We remark that if (z; z0) \ (V (T) [fyg) = ; then either z �y z
0

or z0 �y z. The notations y�, �y and y� will be understood in the natural

way, and for simplicity we will omit the subindex y when no confusion seems

possible. If I; J are subsets of T , we will write I �y J if z �y z
0 for each

z 2 Int(I) and z
0 2 Int(J).

Given a �nite set Q � T and a point y 2 T , we shall denote by Z?(Q) the

connected component of (T nQ)[fyg which contains y. Let n be the number

of connected components of T nZ?(Q). These connected components will be

denoted by Z(Q)i for 1 � i � n and we will call them y-branches. The set

Cl(Z?(Q))\Z(Q)i consists of a single point which belongs to Q. This point

21

will be denoted by x(Q)i. We remark that, for each z 2 T , z 2 Z(Q)i if and

only if x(Q)i �y z. Finally we set X(Q) = fx(Q)ig
n

i=1.

Let f : T �! T be a tree map, y 2 Fix(f) and let Q � T be a �nite

f -invariant set. We will say that Q is y-typi�able if f(X(Q)) \ Z
?(Q) = ;.

Remark 1.4.1. If y =2 Q then Q is y-typi�able. If y 2 Q then Q is y-

typi�able if and only if f(x(Q)i) 6= y for 1 � i � jX(Q)j. Moreover, it

follows that Q is y-typi�able if and only if Q [fyg is y-typi�able.

IfQ is y-typi�able then we consider the map �Q : X(Q) �! X(Q) de�ned

by �Q(x(Q)i) = x(Q)j if and only if f(x(Q)i) 2 Z(Q)j. Observe that �Q

is well de�ned and, since it acts on a �nite set, it has periodic orbits. The

period p of a periodic orbit of �Q will be called a type of Q (note that the

type of a y-typi�able set is not necessarily unique).

Given a type p of Q, in what follows we will assume that the y-branches

are indexed in such a way that f(x(Q)i) 2 Z(Q)i+1 mod p for 1 � i � p.

Observe that all the de�nitions introduced up to now in this section de-

pend on the chosen point y. For simplicity, this dependence is not made

explicit in the notation.

Lemma 1.4.2. Let f : T �! T be a tree map. Let y 2 Fix(f) and let Q � T

be a y-typi�able set. If p is a type of Q then p 2 Per(f).

Proof. Let r : T �! Cl(Z?) be the natural retraction. Then r(f(x(Q)i)) =

x(Q)i+1 mod p for i = 1; 2; : : : ; p. Then x(Q)1 is a p-periodic point of rÆf and

thus p 2 Per(r Æ f). The lemma follows because Per(r Æ f) � Per(f) (see, for

instance, Corollary 4.2 of [16]).

Let (T;A; f) be a monotone model. It is not diÆcult to prove that if

B � T is �nite and f -invariant then f is (A [B)-monotone. Thus, since

A[V (T) is an f -invariant set by Remark 1.2.1, f is also (A[V (T))-monotone.

We will say that a monotone model (T;A; f) is y-expansive for y 2 Fix(f)nA

if Orbf (v) is not contained in Z
?(A) for every v 2 V (T) n fyg. This sort of

models will play an important role in this chapter. Lemma 1.4.3 states that

on y-expansive models it is possible to de�ne the type of some \natural"

invariant sets.

Lemma 1.4.3. Let (T;A; f) be a y-expansive model. Let P � T be a �nite

(or empty) f -invariant set such that y =2 P . Then the sets A, A [fyg, P ,

P [fyg, A [V (T) [P and A [V (T) [P [fyg are y-typi�able.

Proof. Let Q = A[V (T)[P . By Remark 1.4.1, to prove the lemma it suÆces

to show that the sets A, P and Q are y-typi�able. Since y =2 A and y =2 P , it

22

a7

a3
a8

a2

a6

a9

a5

y

a4

x3

a1

x1

x2

Figure 1.2: A y-expansive model (T;A; f) with A = faig
9
i=1 and f(ai) =

ai+1 mod 9. For this model, Cl(Z?) = hfx1; x2; x3gi, A
y has a unique type

p = 3 and q1 = 5, q2 = 4, q3 = 3. Therefore, the rotation index associated to

the type is 3.

follows that A and P are y-typi�able. If in addition y =2 V (T) then y =2 Q and

we are done. Assume that y 2 V (T). Then y 2 Q and we must prove that if

i 2 f1; 2; : : : ; jX(Q)jg then f(x(Q)i) 6= y. This is obvious if x(Q)i 2 A [P .

Assume that x(Q)i 2 V (T)n(A[P). We note that (y; x(Q)i)\Q = ; and, in

particular, (y; x(Q)i)\A = ;. Then, as an immediate consequence of the fact

that En(T) � A, we have that x(Q)i � x(A)j for some j 2 f1; 2; : : : ; jX(A)jg.

This is equivalent to x(Q)i 2 Z
?(A), and then f(x(Q)i) 6= y since (T;A; f)

is y-expansive.

Let (T;A; f) be a y-expansive model. The set A [V (T) [fyg will be

denoted by A
y, and jX(Ay)j will be denoted by n

?. Furthermore, from now

on we will write Z?, Zi and xi instead of Z?(Ay), Z(Ay)i and x(Ay)i, for

1 � i � n
?.

By Lemma 1.4.3, Ay is y-typi�able. Let p be a type of Ay. For each

i 2 f1; 2; : : : ; pg there exists a non-negative number, which we will denote

by qi, such that [y; f j(xi)] \ A = ; for 0 � j < qi and [y; f qi(xi)] \ A 6= ;

(recall that Z? = Z
?(Ay) � Z

?(A)). Note that xi 2 A if and only if qi = 0.

The non-negative integer minfq1; q2; : : : ; qpg will be called a rotation index of

(T;A; f) associated to the type p. Observe that the rotation index associated

to a type p of Ay is not unique, since it depends on the chosen p-periodic

orbit of �Ay .

23

The following technical lemma concerns the dynamical behavior of a y-

expansive model near the �xed point y. See Figure 1.2 for an example.

Lemma 1.4.4. Let (T;A; f) be a y-expansive model and let p be a type of

A
y. Let k 2 f1; 2; : : : ; pg be such that qk > 0. Then xk+i mod p �y f

i(xk) for

1 � i � qk and f
i�p(xk) �y f

i(xk) for p < i � qk.

Proof. In the whole proof, the subindexes will be considered modulo p.

We will prove the �rst statement by induction on i. From the de�nition

of type, it follows that xk+1 �y f(xk). Hence, the �rst statement holds for

i = 1. Now take 1 < i � qk and assume that y �y xk+i�1 �y f
i�1(xk). Since

i� 1 < qk, the de�nition of qk implies that [y; f
i�1(xk)]\A = ;. Thus, from

the A-monotonicity of f it follows that f(xk+i�1) �y f(f
i�1(xk)) = f

i(xk).

Since from the de�nition of type xk+i �y f(xk+i�1), the �rst statement is

proved.

Let us prove the second statement also by induction on i. Since qk > 0, we

have that xk 2 V (T). We assume that p < qk since otherwise there is nothing

to prove. For i = p+ 1 we must show that f(xk) �y f
p+1(xk). Since p < qk,

we know from the �rst statement that y �y xk �y f
p(xk). The fact that f is

A-motonone implies, as above, that f(xk) �y f
p+1(xk). If f(xk) = f

p+1(xk),

since p < qk it follows that Orb(xk) is a �nite f -invariant set contained in

(Z?(A)\ V (T)) n fyg. This contradicts the fact that (T;A; f) is y-expansive

and proves that f(xk) �y f
p+1(xk).

Now take p + 1 < i � qk and assume that f i�1�p(xk) �y f
i�1(xk). Then

we obtain that f i�p(xk) �y f
i(xk) in the same way as above.

Let (T;A; f) be a y-expansive model. Let p be a type of Ay. For i 2

f1; 2; : : : ; pg, we write Ii for [y; xi]. We note that these sets are A
y-basic

intervals, and they are contained in Cl(Z?). Moreover, by the de�nition of p,

the f -graph of Ay contains the loops Ii mod p ! Ii+1 mod p ! : : :! Ii+p mod p,

which will be called typical loops. The intervals I1; I2; : : : ; Ip will be called

typical intervals.

Remark 1.4.5. Assume that a typical interval Ii f -covers an interval J

which is not typical. Since f(y) = y and f j
Ii

is monotone, it follows that

Ii+1 mod p �y J .

The periods of f obtained in this section (see Lemma 1.4.6 and Theo-

rem 1.4.7) will be computed by linking the typical loops with some special

loops of the Markov f -graph of Ay. A loop in the f -graph of Ay will be called

external if it starts and ends at a typical interval and it contains an element

which is not a typical interval. We denote by E(T;A; f) the set of external

loops in the f -graph of Ay. Observe that the notions of typical interval and

24

external loop depend on the point y, the type p and the chosen p-periodic

orbit of �Ay . For simplicity, the notations do not take it into account.

Next we state and prove two results that allow us to obtain periodic orbits

in the context of y-expansive models.

Lemma 1.4.6. Let (T;A; f) be a y-expansive model and let p be a type of

A
y. If � 2 E(T;A; f) then fj�ji+ pj : i; j � 1g � Per(f).

Proof. Since � is external, � starts and ends at a typical interval It. Let �

be the typical loop starting and ending at It. Set k = j�ji+ pj with i; j � 1.

We consider the loop �
j
�
i, whose length is k. Since � is external, �j�i is

not a repetition of �. So, Lemma 1.3.6 gives us a simple loop obtained by

permuting the elements of �j�i. By Lemma 1.3.3, there is a point x 2 T

associated to such that fk(x) = x. Since j � 1, we can assume that x 2 It

and f
n(x) 2 It+n mod p for 1 � n � p.

By Lemma 1.3.5, it is enough to prove that x 2 Int(It). First we show

that x 6= y. Since � is external, contains an arrow Ir ! J for some r 2

f1; 2; : : : ; pg and some J which is not a typical interval. Then by Remark 1.4.5

Ir+1 mod p �y J and thus y =2 J . Since some iterate of x belongs to J , it

follows that x 6= y. To end the proof of the claim we must show that x 6= xt.

Suppose that x = xt. Then clearly f
n(x) = xt+n mod p for 1 � n � p and

thus f p(x) = x. Since f is monotone on each typical interval, it follows that

for each 1 � n � p, In+1 mod p is the only A
y-basic interval f -covered by In.

This contradicts the existence of the arrow Ir ! J .

Let (T;A; f) be a monotone model. We say that (T;A; f) is orbital if A

contains a unique periodic orbit which is not a �xed point and there is at

most one endpoint of T that does not belong to this periodic orbit. Observe

that there exists n � 0 such that, for each x 2 A, fn(x) belongs to the

periodic orbit. Then we will also say that (T;A; f) is n-orbital. We note that

an n-orbital model is also (n + k)-orbital for all k � 0. Obviously if A is a

periodic orbit then (T;A; f) is 0-orbital.

Given a map f and an f -invariant set A containing a unique periodic

orbit, we will denote this periodic orbit by AÆ.

Theorem 1.4.7. Let (T;A; f) be a y-expansive n-orbital model. Let p be a

type of Ay and let q be a rotation index associated to the type p. If jAÆj =2 pN

then E(T;A; f) 6= ; and Per(f) � f(jAÆj + lp)i + pj : i; j � 1g for some

0 � l � jAÆj+ q + n� 1. Furthermore, if n = 0 then lp � p+ q� (q mod p).

Proof. In the whole proof, the subindexes will be considered modulo p. Let

� be the typical loop starting at Ip. We can assume without loss of generality

25

(by reindexing, if necessary) that q = qp. Note that the assumption jA
Æj =2 pN

implies, in particular, that p > 1.

Since (T;A; f) is y-expansive and n-orbital, there exists z 2 f
r([y; xp]) \

A
Æ for some r � q + n. Furthermore, jEn(T) n AÆj � 1 and thus each y-

branch Z1; Z2; : : : ; Zp (except, at most, one of them) contains at least one

endpoint of T which belongs to AÆ. Since z 2 A
Æ and A

Æ is a periodic orbit,

it follows easily that there exists s � jAÆj � p such that f s(z) � xj for some

j 2 f1; 2; : : : ; pg.

Since y � xj � f
s(z), we have that Ij = [y; xj] � [y; f s(z)] and therefore

f([y; f s(z)]) � f(Ij) � Ij+1. In other words, [y; f
s(z)] f -covers Ij+1. Further-

more, Ip f
r-covers [y; z], [y; z] f s-covers [y; f s(z)] and [y; f s(z)] f jA

Æj-covers

itself. Therefore we have the following sequence of coverings:

Ip
f
r

�! [y; z]
f
s

�! [y; f s(z)]
f
jA

Æ
j

�! [y; f s(z)]! Ij+1 ! Ij+2 ! : : :! Ip:

Then, by using Lemma 1.3.1 by backwards induction, we obtain a loop in

the f -graph of Ay such that jj = r + s + jAÆj + p � j. On the other hand,

we can also consider the following sequence of coverings:

Ip
f
r

�! [y; z]
f
s

�! [y; f s(z)]! Ij+1 ! Ij+2 ! : : :! Ip:

Again by using Lemma 1.3.1 by backwards induction we obtain a loop � in

the f -graph of Ay such that j�j = r+s+p�j. Let � be the loop �p�1, whose

length is jAÆj+lp with l = r+s+p�j. Note that l � q+n+jAÆj�p+p�j �

q + n + jAÆj � 1. We claim that � is external. Indeed, if all the intervals

of � were typical, by Remark 1.4.5, � would be a repetition of � and then

j�j 2 pN , in contradiction with the fact that jAÆj =2 pN . This proves the

claim. By Lemma 1.4.6 we obtain that Per(f) � f(jAÆj+ lp)i+pj : i; j � 1g.

Finally note that, when n = 0, A = A
Æ. Moreover, it is not diÆcult to see

that Lemma 1.4.4 gives r = q, s = 0, z = xr and j = r mod p in the above

construction of the loop �. Hence j�j = jAÆj+lp = jAÆj+q+p�(q mod p).

1.5 Canonical and Monotone Models

In this section we use the notion of a canonical model introduced in [3].

From a monotone model (S;B; g), a canonical model (T;A; f) can be con-

structed, essentially, by collapsing the V (S)-basic intervals whose orbit does

not intersect B. We prove that Per(f) � Per(g) and that Per(g) n Per(f) is

�nite.

We start by recalling the de�nition of a canonical model. Let (S;B; g) be

a monotone model. We will say that v1; v2 2 V (S) n B are g-identi�able if

either:

26

(i) [gi(v1); g
i(v2)] \ B = ; for all i � 0, or

(ii) if [gn(v1); g
n(v2)] \ B 6= ; for some n � 0 then g

n(v1) = g
n(v2).

Since g is B-monotone, it is easy to check that the g-identi�ability is an

equivalence relation. Moreover, since V (S) is �nite, there are �nitely many

equivalence classes.

Remark 1.5.1. From Remark 1.2.1 it follows that:

(i) If v1, v2 are g-identi�able then g
i(v1); g

i(v2) are g-identi�able for each

i � 0 such that gi(v1); g
i(v2) 2 V (S) nB.

(ii) If v1 and v2 are g-identi�able and v3 2 [v1; v2]\ V (S) then v1; v2; v3 are

pairwise g-identi�able.

A monotone model (T;A; f) such that every class of the f -identi�ability

relation contains exactly one point will be called a canonical model.

The following technical lemma is used in the proof of Theorem 1.5.3.

Lemma 1.5.2. Let (S;B; g) be a monotone model and let [v; v0] be a V (S)-

basic interval such that v; v0 2 V (S) n B are g-identi�able. Let x 2 (v; v0).

Then either x is not periodic or there exist k; n; n0 such that gk(v) is n-

periodic, gk(v0) is n0-periodic and x 2 Fix(gm), where m is the least common

multiple of n and n
0.

Proof. Since v and v
0 are g-identi�able, [v; v0] \ B = ;. Furthermore, the

B-monotonicity of g implies that gi is monotone on [v; v0] for every i � 0

such that [gi(v); gi(v0)] \ B = ;. In particular, gi([v; v0]) = [gi(v); gi(v0)] and

thus gi(x) 2 [gi(v); gi(v0)]. Hence, if there exists n � 1 such that gn(v) =

g
n(v0) 2 B then g

n([v; v0]) reduces to a point of B. Therefore, there are no

periodic points in (v; v0) and we are done.

Assume now that [gi(v); gi(v0)]\B = ; for all i � 0. Since V (S) is �nite,

there exist r; r0 � 0 such that gr(v) and g
r0(v0) are periodic points. Take

k = maxfr; r0g. Then g
k(v) and g

k(v0) are periodic points. Let n and n
0

be their respective periods, and let m be the least common multiple of n

and n
0. Then g

k(v) and g
k(v0) are �xed points of gm. Since gm is monotone

on [gk(v); gk(v0)], it follows that Per(gmj[fk(v);fk(v0)]) = f1g. Therefore, either

g
k(x) is not periodic or gk(x) is a �xed point of gm. Observe that if x is

periodic then the periods of x and g
k(x) are the same. Thus either x is not

periodic or it is a �xed point of gm. This ends the proof.

Theorem 1.5.3. Let (S;B; g) be a monotone model. There exists a canonical

model (T;A; f) and a (possibly empty) �nite set V such that

Per(g) = Per(f) [V

27

and each element of V divides the least common multiple of the periods of all

periodic orbits of g contained in V (S). Moreover, jAj = jBj and if (S;B; g)

is k-orbital then (T;A; f) is k-orbital.

Proof. Let K be the union of the convex hulls of all the classes of the g-

identi�ability relation. We remark that K has �nitely many connected com-

ponents, each of them contained in a connected component of S n B. Let

T be the tree obtained by contracting each connected component of K to a

point and let � : S �! T be the standard projection. That is, � is injective

in a neighborhood of each point which does not belong to K, and the image

of each point in a connected component C of K is the point to which C is

contracted.

De�ne f : T �! T by f(x) = �(g(x0)) where x
0 2 �

�1(x). By Re-

mark 1.5.1, f is well de�ned. Set A = �(B). Then jAj = jBj and the

fact that g is B-monotone implies that f is A-monotone. Furthermore, if

v; v
0 2 V (T) nA are f -identi�able then v = v

0. Hence (T;A; f) is a canonical

model. Moreover, since En(T) = �(En(S)) and f Æ � = � Æ g, we easily get

that if (S;B; g) is k-orbital then (T;A; f) is k-orbital.

To end the proof of the theorem, it remains to show that Per(g) = Per(f)[

V for a �nite set V verifying the prescribed properties. To do it, we claim

that B [K is g-invariant. Let us prove the claim. Since B is g-invariant,

it is enough to show that the orbit of each point of K lies in B [K. Let

x 2 K. Assume �rst that x 2 V (S). Then f
i(x) 2 V (S) [B for all i � 0.

Since each vertex of S belongs either to B or to its own g-identi�ability class,

we have that V (S) � B [K. Thus the claim follows in this case. Assume

now that x =2 V (S). Then there exist v; v0 2 V (S) n B such that v and v
0

are f -identi�able and x 2 (v; v0). By Remark 1.5.1, gi(v) and g
i(v0) are f -

identi�able for each i � 0 such that [gi(v); gi(v0)]\B = ;. So, [gi(v); gi(v0)] �

K. Furthermore, since g is B-monotone, gi(x) 2 [gi(v); gi(v0)]. Then it is

clear that gi(x) 2 K [B for all i � 0. Thus the claim is proved.

Since B [K is g-invariant and f Æ � = � Æ g, �(B [K) is f -invariant.

Clearly, if x 2 S n (K [B) is a periodic point of g then Orbg(x) � S n

(B [K). Furthermore, �(x) is a periodic point of f of the same period, and

Orbf(�(x)) � T n �(K [B). Conversely, if x 2 T n �(K [B) is a periodic

point of f then Orbf (x) � T n �(K [B), ��1(x) is a periodic point of g of

the same period and Orbg(�
�1(x)) � S n (K [B). Therefore, in order to

complete the proof it is enough to show that

Per(gj
K[B

) = Per(f j
�(K[B)

) [V

for some �nite (or empty) set V satisfying the prescribed properties. From

Lemma 1.5.2 and the fact that V (S) is �nite, we easily get that Per(gj
K[B

) is

28

�nite. Furthermore, for each n-periodic orbit of gj
K[B

there exist two periodic

orbits of g contained in V (S) in such a way that n divides the least com-

mon multiple of their periods. Thus it suÆces to show that Per(f j
�(K[B)

) �

Per(gj
K[B

).

Since f Æ�jB = gjB, it is enough to show that for each n-periodic point of

f in �(K) there exists an n-periodic point of g in K. Let x 2 �(K) be an n-

periodic point of f . Let Ki = �
�1(f i(x)) for i = 1; 2; : : : ; n. By the de�nition

of �, each Ki is the convex hull of a class of g-identi�ability and contains

points of V (S)nB. Furthermore,Ki 6= Kj if i 6= j since f i(x) 6= f
j(x). By the

de�nition of f , for i = 1; 2; : : : ; n we have that f i+1(x) = f(f i(x)) = �(g(xi))

for some xi 2 �
�1(f i(x)) = Ki. We choose xi 2 V (Ki) for each i. Take i 2

f1; 2; : : : ; ng. Then we have that �(g(xi)) = f(�(xi)) = f(f i(x)) = f
i+1(x).

Therefore, g(xi) 2 Ki+1 mod n. Moreover, g(Ki) � Ki+1 mod n. Indeed, for

each z 2 Ki there exists v 2 En(Ki) such that z 2 [v; xi] and g is monotone

on [v; xi]. Since g(xi) 2 Ki+1 mod n and g(v) and g(xi) are g-identi�able,

g(v) 2 Ki+1 mod n and thus g(z) 2 Ki+1 mod n.

From above we have gi(K1) � Ki+1 mod n for i � 0, and hence gn(K1) �

K1. Then there exists a �xed point of gn in K1, which is obviously a point

of period n of g.

Let (S; P; g) be a monotone model and let (T;A; f) be the canonical

model constructed from (S; P; g) as in the proof of Theorem 1.5.3. We will

say that (S; P; g) and (T;A; f) are associated to each other. With this notion,

Theorem 1.5.3 can be restated as follows: each monotone model admits an

associated canonical model. This theorem allows us to restrict our attention

to the study of the set of periods of canonical models rather than to generic

monotone models.

The following proposition says that a canonical model is y-expansive, and

therefore all the results of Section 1.4 can be applied to canonical models.

This fact will be used in the rest of the chapter.

Proposition 1.5.4. If (T;A; f) is an orbital canonical model, then there

exists a �xed point y of f such that (T;A; f) is y-expansive.

Proof. Since (T;A; f) is orbital, A does not contain �xed points and therefore

Fix(f) nA 6= ;. If V (T)\Fix(f) 6= ;, we take y 2 V (T)\Fix(f). Otherwise

we take any y 2 Fix(f). Let v 2 (V (T)\Z?(A))nfyg (if v does not exist then

(T;A; f) is obviously y-expansive). By Remark 1.2.1, Orb(v) � A [V (T).

Assume that Orb(v) � Z
?(A) (in particular, Orb(v) \ A = ; and hence

Orb(v) � V (T)) and we will arrive to a contradiction. If v 2 Fix(f) then the

choice of y implies that y 2 V (T). Since f is A-monotone and [y; v]\A = ;,

29

[y; v] = [f i(y); f i(v)] for each i � 0. Thus y and v are f -identi�able, a

contradiction with the fact that (T;A; f) is a canonical model.

Assume now that there exist z; z0 2 Orb(v) � V (T) such that z 6= z
0.

Then, as above, the A-monotonicity of f implies that [f i(z); f i(z0)] \ A = ;

for each i � 0. So z and z
0 are f -identi�able, a contradiction with the fact

that (T;A; f) is a canonical model.

1.6 Reduction of Monotone Models

When the Markov graph of a canonical model (T;A; f) contains external

loops, we can calculate the set of periods of f by means of Lemma 1.4.6 and

Theorem 1.4.7. If the Markov graph of (T;A; f) has no external loops, we will

perform the strategy described in Section 1.2. This is done in Theorem 1.6.7,

where we construct a sequence of partial reductions associated to the model

(T;A; f). The proof of this theorem depends strongly on the notion of twist

model and makes use of Propositions 1.6.4 and 1.6.5.

Let (T;A; f) be a y-expansive model. We will say that (T;A; f) is twist

around y if f(Zi) \ Z
? = ; for i 2 f1; 2; : : : ; n?g. Otherwise we will say that

(T;A; f) is non-twist around y.

Note that if (T;A; f) is twist around y and p is a type of Ay then, from

the de�nition of a type and the Ay-monotonicity of f , it follows that f(Zi) �

Zi+1 mod p for each 1 � i � p. Since Ay contains the set of vertices of T ,

Cl(Z?) is a star whose set of endpoints contains fx1; x2; : : : ; xpg, and a unique

y-branch hangs from each of these endpoints. This rotational behavior of f

around the �xed point y justi�es the terminology of a twist model around y.

Remark 1.6.1. When (T;A; f) is twist around a �xed point y, each A
y-

basic interval contained in a y-branch does not f -cover any typical interval.

Consequently, there cannot exist external loops in the Markov f -graph of Ay.

That is, E(T;A; f) = ;.

Given an orbital y-expansive model (T;A; f), by de�nition, there is at

most one y-branch containing no points of AÆ. Such a y-branch (if it exists)

contains exactly one endpoint of T and so it is an interval. We will call it the

residual branch. From now on, the number of y-branches containing points

of AÆ will be denoted by nÆ.

Remark 1.6.2. Let (T;A; f) be an orbital y-expansive model. By de�nition,

A does not contain �xed points and thus y =2 A. Furthermore, since (T;A; f)

is a monotone model, En(T) � A. Therefore, y =2 En(T) and it follows that

n
? � 2. On the other hand, from the fact that (T;A; f) is orbital we have

30

that n? is either nÆ or nÆ + 1, and n
? = n

Æ + 1 if and only if there exists a

residual branch. In summary, we have:

(i) n? � 2.

(ii) n? 2 fnÆ; nÆ + 1g, and there exists a residual branch if and only if

n
? = n

Æ + 1.

The next lemma establishes some properties of the type of Ay when

(T;A; f) is a twist model around y.

Lemma 1.6.3. Let (T;A; f) be a y-expansive orbital model which is twist

around y. Then A
y has a unique type and it coincides with n

Æ.

Proof. Assume that X(Ay) contains two di�erent periodic orbits of �Ay of

periods p and q. Then, since (T;A; f) is twist around y, there exist two

subsets Z = fZ1; Z2; : : : ; Zpg and W = fW1;W2; : : : ;Wqg of the set of y-

branches such that Z \ W = ;, f(Zi) � Zi+1 mod p for i = 1; 2; : : : ; p and

f(Wi) � Wi+1 mod q for i = 1; 2; : : : ; q. Furthermore, by the de�nition of the

y-branches we have that Zi \Wj = ; for 1 � i � p and 1 � j � q. Let z 2

A\Zp. Then f
i(z) 2 Zi mod p for every i � 0. Since (T;A; f) is orbital, there

is a k � 0 such that fk(z) 2 A
Æ. Consequently, AÆ � Z1 [Z2 [: : :[Zp. But

analogously, by taking some w 2 A\Wq, we get that A
Æ � W1[W2[: : :[Wq,

a contradiction.

Let P be the the unique periodic orbit of �Ay and let p = jP j. Then

p � n
?. By Remark 1.6.2, n? 2 fnÆ; nÆ + 1g. Now we claim that p � n

Æ.

Indeed, assume that p = n
? = n

Æ + 1. Then there is one residual branch S

and the unique point z of X(Ay)\ S belongs to P . By Remark 1.6.2, p � 2.

Therefore, there exists another y-branch S
0 such that if z0 is the only point

of X(Ay) \ S
0 then �Ay(z

0) = z. In other words, f(z0) 2 S. Therefore, since

(T;A; f) is twist around y, f(S 0) � S. In particular, f(AÆ \ S
0) � S, in

contradiction with the fact that S is the residual branch. This proves the

claim.

To prove nÆ = p we must see that nÆ � p. It is enough to show that,

given a y-branch S such that S \ A
Æ 6= ;, then z 2 P where z is the unique

point of X(Ay) \ S. On the contrary, since P is the unique periodic orbit of

�Ay , �
i

Ay
(z) 6= z for all i > 0. Since (T;A; f) is twist around y, it follows

that f i(S) \ S = ; for all i > 0. Take z0 2 A
Æ \ S. Then f

jAÆj(z0) = z
0 2 S,

a contradiction.

Proposition 1.6.4. Let (T;A; f) be an n-orbital canonical model which is

twist around a �xed point y and let p be the type of Ay. Then there exist a

y-branch S and a �nite set B � S such that the following properties hold for

g = f
pjS:

31

(a) (S;B; g) is a canonical model.

(b) B contains a unique periodic orbit of g. Furthermore, BÆ = A
Æ \ S and

jBÆj = jAÆj=p.

(c) If jBÆj > 1 then (S;B; g) is (n + 1)-orbital if n 2 f0; 1g and n-orbital if

n � 2.

(d) Per(f) � p � Per(g).

(e) If p = 1 then A
Æ � B A.

Proof. By Lemma 1.6.3 and Remark 1.6.2 we have p = n
Æ, n? � 2 and

n
? 2 fnÆ; nÆ + 1g. Since jEn(T) n AÆj � 1 and n

? � 2, we can choose S to

be a y-branch such that En(T)\ S � A
Æ. Without loss of generality, we can

assume that S = Z1.

In order to prove (d) it is enough to see that each k-periodic point of

g is a kp-periodic point of f . This is a direct consequence of the fact that

(T;A; f) is twist around y and the de�nitions of g and S.

Now we prove the other statements when p = n
Æ = 1. In this case,

there are two y-branches: S and the residual one. Moreover, AÆ � S. Since

(T;A; f) is twist around y, f(S) � S. We take B = A\S. Thus AÆ is the only

periodic orbit contained in B, and (b) and (e) hold. Since En(T) \ S � A
Æ,

the only endpoint of S which possibly does not belong to A
Æ is x1. Hence

jEn(S) n AÆj � 1. It is obvious that (S;B; g) is n-orbital and thus (c) is

satis�ed. Finally, it is not diÆcult to prove that (S;B; g) is a canonical

model. Thus (a) holds and we are done in this case.

Now we consider the case p = n
Æ � 2. Observe that the set f�p(A)\S is

not necessarily �nite, but the A-monotonicity of f implies that it has �nitely

many connected components, each of them being either a point or a subtree

on which f
p is constant. Note that A \ S � f

�p(A) \ S. Then we construct

the set B by taking all the points of A \ S and all vertices V (K) for each

connected component K of f�p(A) \ S. Thus B is �nite and A \ S � B.

Since AÆ is a periodic orbit and (T;A; f) is twist around y, we get that

jAÆ \ Zij = jAÆj=p for i 2 f1; 2; : : : ; pg. Moreover, g(S) � S, AÆ \ S is a

periodic orbit of g of period jAÆj=p and B � f
�p(A \ S) \ S = g

�1(A \ S).

Thus g(B) � A \ S � B and hence B is g-invariant. On the other hand,

A
Æ\S is the only periodic orbit of g contained in B. Therefore, BÆ = A

Æ\S

and (b) holds.

Next we prove (c). Assume that jBÆj > 1. Since En(T) \ S � A
Æ, the

only element of En(S) which possibly does not belong to BÆ is x1, and so we

have that jEn(S) nBÆj � 1. To �nish the proof of (c) we claim that for each

x 2 B, gn+1(x) 2 B
Æ if n 2 f0; 1g and g

n(x) 2 B
Æ if n � 2. To prove the

claim, set n = pq+ r with q � 0 and 0 � r < p. Since x 2 B, f p(x) 2 A\S.

Therefore, since S = Z1 and (T;A; f) is n-orbital and twist, we have that

32

f
n(f p(x)) = f

n+p(x) = f
(q+1)p+r(x) 2 A

Æ \ Zr+1. Hence, for i � 0 we have

f
n+p+i(x) 2 A

Æ \ Zr+1+i mod p : (1.2)

When n = 0 we have r = 0, and by taking i = 0 in (1.2) we get that

g(x) = f
p(x) 2 A

Æ \Z1 = B
Æ. If n = 1, since p > 1 we have q = 0 and r = 1.

Then, by taking i = p�1 in (1.2) we get that g2(x) = f
2p(x) 2 A

Æ\Z1 = B
Æ.

Finally, when n � 2 we take i = pn � n � p. Since p � 2 and n � 2,

it follows that i � 0. Then from (1.2) we obtain that gn(x) = f
pn(x) 2

A
Æ \ Zr+1+(pn�pq�r�p) mod p = A

Æ \ Z1 = B
Æ. This ends the proof of the

claim, and hence (c) follows.

Finally we must prove (a), i.e. that (S;B; g) is a canonical model. First

we will show that g is B-monotone. Let [x; z] be an interval such that [x; z]\

B = fx; zg. Since g = f
p, we must see that f p([x; z]) = [f p(x); f p(z)] and

f
pj[x;z] is monotone. From the de�nition of B, we have that either [x; z]

is contained in a connected component of f�p(A) \ S and thus f p([x; z])

reduces to a point of A, or (x; z)\ f�p(A) = ;. In the �rst case it is obvious

that f p([x; z]) = [f p(x); f p(z)] and f
pj[x;z] is monotone. Now assume that

(x; z)\ f�p(A) = ;. Since A is f -invariant, (x; z)\ f�i(A) = ; for 0 � i < p.

Since (x; z) \ A = ; and En(T) � A, there exists a minimal interval in

T (with respect to the inclusion relation) containing [x; z] whose endpoints

belong to A. Since f is A-monotone we have that f j[x;z] is monotone. In

particular, f([x; z]) = [f(x); f(z)]. Moreover, (f(x); f(z)) \ A = ;, since

otherwise (x; z) \ f
�1(A) 6= ;, a contradiction. In the same way, it can be

proved inductively that f ij[x;z] is monotone for each 1 < i � p. Therefore, g

is B-monotone.

To complete the proof we must show that there are no g-identi�able

vertices. On the contrary, assume that there exist v1; v2 2 V (S) n B that

are g-identi�able. Since the only possible point of V (S) nV (T) is the unique

point of X(Ay) \ S, which belongs to B, we have that v1; v2 2 V (T). We

consider two cases.

In the �rst case we assume that [gi(v1); g
i(v2)] \ B = ; for i � 0. In

other words, [f ip(v1); f
ip(v2)] \ B = ; for i � 0. Moreover, since g is B-

monotone, we have [gi(v1); g
i(v2)] = g

i([v1; v2]) for i � 0. Since (T;A; f) is

a canonical model, v1 and v2 are not f -identi�able. Therefore, there exists

j � 1 (which we take as small as possible) such that [f j(v1); f
j(v2)] \ A 6= ;

and f
j(v1) 6= f

j(v2). Since f is A-monotone, [f j(v1); f
j(v2)] = f

j([v1; v2]).

Take k 2 N such that kp > j. Since A is f -invariant, fkp([v1; v2]) \ A 6= ;.

Then ; 6= A \ g
k([v1; v2]) = A \ [gk(v1); g

k(v2)] � B \ [gk(v1); g
k(v2)], a

contradiction. This ends the proof of the proposition in this case.

Secondly, assume that there is a j � 1 such that [gi(v1); g
i(v2)]\B = ; for

0 � i < j and g
j(v1) = g

j(v2) 2 B. In other words, [f ip(v1); f
ip(v2)] \ B = ;

33

for 0 � i < j and f
jp(v1) = f

jp(v2) 2 B. Moreover, since g is B-monotone,

we have that [f ip(v1); f
ip(v2)] = f

ip([v1; v2]) for 0 � i � j. In particular,

f
jp([v1; v2]) = ff jp(v1)g = ff jp(v2)g: (1.3)

Since [f jp�p(v1); f
jp�p(v2)] \ B = ;, from the de�nition of B it follows that

[f jp�p(v1); f
jp�p(v2)] does not intersect any connected component of f

�p(A)\

S. Thus

f
jp(v1) = f

jp(v2) 2 B n A: (1.4)

Since (T;A; f) is a canonical model, v1 and v2 are not f -identi�able. There-

fore, there exists some k � 1 (which we take as small as possible) such that

[fk(v1); f
k(v2)] \ A 6= ; and f

k(v1) 6= f
k(v2). From (1.4) it follows that

k < jp. Since f is A-monotone, [fk(v1); f
k(v2)] = f

k([v1; v2]). Then, since

[fk(v1); f
k(v2)] \ A 6= ;, we have that ; 6= f

jp�k([fk(v1); f
k(v2)]) \ A =

f
jp([v1; v2]) \ A. Therefore, (1.4) and (1.3) are in contradiction to each

other.

To compute the set of periods of a canonical model we will use a sub-

class of the external loops whose length satis�es certain properties. Now we

establish a notation for this kind of loops. Let (T;A; f) be a a y-expansive n-

orbital model. Let p be a type of Ay and let q be a rotation index associated

to p. Then we de�ne

~E(T;A; f) = f� 2 E(T;A; f) : j�j 2 pN ; j�j � jAÆj+ p+ q + n + 1g:

Proposition 1.6.5. Let (T;A; f) be an n-orbital canonical model which is

non-twist around a �xed point y. Let p be a type of Ay and let q be a ro-

tation index of (T;A; f) associated to p. Then at least one of the following

statements hold:

(a) There exist a tree S � T and a �nite set B � S such that AÆ � B A

and (S;B; f jS) is an n-orbital canonical model;

(b) ~E(T;A; f) 6= ;.

In particular, (b) holds if En(T) � A
Æ

Proof. Let W be the set of points z 2 A
y that satisfy the following two

properties:

(i) There exists N 2 f1; 2; : : : ; pg such that z 2 ZN but f(z) =2 ZN+1 mod p;

(ii) There exist z0 2 A
y n fzg and w 2 A

Æ such that z0 � w and z � f(z0).

A suÆcient condition for (ii) is the following property:

(ii') There exists z00 2 A
Æ such that z � z

00.

34

To see it, take w = z
0 as the unique point of f�1(z00) \ A

Æ when fzg 6=

f
�1(z00) \ A

Æ, and take w = z
0 as the unique point of f�1(z) \ A

Æ otherwise.

We start by claiming that if En(T) � A
Æ then W 6= ;. To prove the

claim assume that W = ;. Since in this case (ii') holds for every z 2 A
y, we

see that (i) does not hold for any z 2 Z(Ay). Thus f(Ay \ Zi) � Zi+1 mod p

for i = 1; 2; : : : ; p. Then, by the A
y-monotonicity of f , we have f(Zi) �

Zi+1 mod p for i = 1; 2; : : : ; p. Since AÆ is a periodic orbit and En(T) � A
Æ,

we easily get that n? = n
Æ = p. Therefore f(Zi) \ Z

? = ; for i = 1; 2; : : : ; n?

and so (T;A; f) is twist around y, in contradiction with the hypotheses. This

proves the claim.

To prove the proposition we consider two cases. First we assume that

W 6= ; and we prove that (b) holds. In the proof of this case, the subindexes

will be considered modulo p. Let k 2 f1; 2; : : : ; pg be such that q = qk. By

the A-monotonicity of f and the de�nition of q, f([y; f i�1(xk)]) = [y; f i(xk)]

for 1 � i � q and [y; f q(xk)]\A 6= ;. We have f q(xk) 2 Zk+q. This is obvious

if q = 0 and it follows from Lemma 1.4.4 if q > 0.

Let a 2 [y; f q(xk)] \ A. Take z 2 W and let N 2 f1; 2; : : : ; pg, w 2 A
Æ

and z
0 2 A

y n fzg be such that z 2 ZN , f(z) =2 ZN+1, z
0 � w and z � f(z0).

Since (T;A; f) is n-orbital and w 2 A
Æ, there exists s � n + jAÆj � 1 such

that f s(a) = w. Thus z0 � f
s(a). If

f
i([y; f q(xk)]) � [y; xk+q+i] [Zk+q+i (1.5)

is satis�ed for each 0 � i � s + 1, then we have that z0 2 f
s([y; f q(xk)]),

z 2 f
s+1([y; f q(xk)]), ZN = Zk+q+s+1 and f(z) =2 Zk+q+s+2. Summarizing,

there exists a minimum non-negative integer t � s + 1 � n + jAÆj such that

(1.5) holds for each 0 � i � t and f
t([y; f q(xk)]) contains a point u whose

image does not belong to Zk+q+t+1.

Since f(xk+q+t) 2 Zk+q+t+1, there exists a A
y-basic interval L = [b; c] �

[xk+q+t; u] such that f(b) 2 Zk+q+t+1 and f(c) =2 Zk+q+t+1. Then L f -covers

[y; xk+q+t+1] = Ik+q+t+1. By using q + t times Lemma 1.3.1 by backwards

induction we obtain the following loop � in the f -graph of Ay:

Ik ! J
1 ! J

2 ! : : :! J
q+t�1 ! L! Ik+q+t+1 ! Ik+q+t+2 ! : : :! Ik

where J i is a Ay-basic interval contained in f i(Ik) for each 1 � i � q+ t� 1.

Since L is not a typical interval, � is an external loop, and j�j = q+t+1+p�

(q+t+1 mod p) 2 pN . Observe that j�j � q+t+1+p � q+n+ jAÆj+1+p.

Hence, (b) holds when W 6= ; and, in particular, when En(T) � A
Æ.

From now on we assume thatW = ;. From the above claim, En(T) 6� A
Æ

and thus jEn(T) n AÆj = 1. Hence, there is a unique y-branch containing

some endpoint which does not belong to AÆ. By Remark 1.6.2, n? � 2 and

35

n
? 2 fnÆ; nÆ+1g. We also recall that the y-branches are labeled in such a way

that f(xi) 2 Zi+1 mod p for i = 1; 2; : : : ; p. We shall consider the following

cases:

Case 1. p = 1.

Assume that Z1 \ A
Æ 6= ;. Each z 2 Z1 \ A

Æ veri�es (ii') and, since W = ;,

it does not verify (i). In consequence, AÆ � Z1 and n
Æ = 1. Since n? 2

fnÆ; nÆ + 1g and n
? � 2, it follows that n? = 2. Therefore Z2 is the residual

branch and En(T) \ Z1 � A
Æ. In particular, each point in Z1 veri�es (ii').

Since W = ;, no point in Z1 \ A
y veri�es (i) and thus f(Z1 \ A

y) � Z1.

Since f is Ay-monotone, it follows that f(Z1) � Z1. We set S = Z1 and

B = A \ S. Then B A. It is not diÆcult to prove that (S;B; f jS) is an

n-orbital canonical model. Therefore (a) holds and we are done in this case.

Now suppose that Z1 \ A
Æ = ;. Then, from the fact that (T;A; f) is

n-orbital, it follows that f r(x1) =2 Z1 for some r � n (which we take as

small as possible). By the de�nition of type, f(x1) 2 Z1 and hence I1 f -

covers [x1; f(x1)]. Also [f i�1(x1); f
i(x1)] f -covers [f

i(x1); f
i+1(x1)] for 1 �

i � r � 2 and [f r�2(x1); f
r�1(x1)] f -covers I1 � [f r�1(x1); f

r(x1)]. By using

Lemma 1.3.1 by backwards induction, as above we obtain a loop in the f -

graph of Ay of length r � n. Since [x1; f(x1)] does not contain typical

intervals, this loop is external. Hence (b) holds in this case.

Case 2. p > 1 and n? = n
Æ + 1.

In this case there is a residual branch Zi for some i 2 f1; 2; : : : ; n
?g. We claim

that i > p. Indeed, if i � p then, since p > 1, it follows that i�1 (mod p) 6= i.

Hence, Zi�1 mod p is not residual. Since jEn(T) n AÆj = 1, it follows that

Zi�1 mod p\En(T) � A
Æ. Thus each point in Ay\Zi�1 mod p veri�es (ii') from

the de�nition of W . On the other hand, each point z 2 A
Æ \ Zi�1 mod p �

A
y \ Zi�1 mod p veri�es f(z) =2 Zi mod p. That is, it veri�es (i). This implies

W 6= ;, a contradiction. This proves the claim.

From above, it follows that En(T)\Zi � A
Æ for i = 1; 2; : : : ; p. Therefore,

each z 2 A
y \ Zi satis�es (ii') from the de�nition of W and, since W = ;,

these points do not satisfy (i). Consequently, f(Ay\Zi) � Zi+1 mod p, n
Æ = p

and Zn? = ZnÆ+1 is the residual branch. By the Ay-monotonicity, f(Zi) �

Zi+1 mod p and f([y; xi]) � [y; xi+1 mod p][Zi+1 mod p for i = 1; 2; : : : ; p. Thus,

if we de�ne S = hAÆiT = T n (Zn? [(y; xn?]), then f(S) � S. Finally, if we

de�ne B = A\ S then B A and it is not diÆcult to prove that (S;B; f jS)

is an n-orbital canonical model. Hence (a) holds and we are done.

Case 3. p > 1 and n? = n
Æ.

36

In this case, AÆ \ Zi 6= ; for each 1 � i � n
?. We claim that, for some

N 2 f1; 2; : : : ; pg, there exists a 2 A
y \ ZN such that f(a) =2 ZN+1 mod p.

Indeed, when p = n
? the claim follows since (T;A; f) is non-twist around

y. To end the proof of the claim we assume that p < n
? and f(Ay \ Zi) �

Zi+1 mod p for i = 1; 2; : : : ; p. Then AÆ � Z1 [Z2 [: : :[Zp and Zn? \A
Æ = ;,

a contradiction. Thus the claim follows.

Since a satis�es (i) from the de�nition of W and W = ; we have:

fx 2 A
Æ : x � ag = ;: (1.6)

Therefore, since jEn(T) nAÆj = 1, the unique point e in En(T) nAÆ must

satisfy a � e, [a; e] \ V (T) = feg and [a; e] \ A
Æ = ;. Since ZN \ A

Æ 6= ;,

there exists v 2 (V (T) [A
Æ) \ ZN such that v � a and

(v; e) \ (V (T) [A
Æ) = ;: (1.7)

Since y =2 ZN , we get that x 2 (v; e)\Ay implies x 2 AnAÆ. Let z be the

minimum (with respect to the � ordering) of the points of (v; a] \ A
y such

that f(z) =2 ZN+1 mod p (this point exists since f(a) =2 ZN+1 mod p). We have

xN � v � z � a � e and

f

�
(v; z) \ A

y

�
� ZN+1 mod p: (1.8)

Set R = T n (v; e]. Observe that R = hAÆiT � ZN+1 mod p. Clearly, for

each point z0 2 R there exists w 2 En(T) \ A
Æ such that z0 � w. Conse-

quently, if there exists z0 2 R\Ay such that f(z0) 2 [z; e] (that is, z � f(z0)),

it follows that z veri�es (i) and (ii) from the de�nition of W ; a contradiction

since W = ;. Therefore,

f(R \ A
y) \ [z; e] = ;: (1.9)

Furthermore, if the image of some x 2 R \ A
y belongs to (v; z), then

by (1.8) we have that f 2(x) 2 R \ A
y and hence f 2(x) =2 [z; e]. This fact,

together with (1.9), gives us that f i(R \ A
y) \ [z; e] = ; for all i � 0. Since

f is Ay-monotone, it follows that

f
i(R) \ [z; e] = ; for i � 0: (1.10)

We de�ne S = Cl(
S
i�0

f
i(R)). Since f(R) � R, S is connected. That is,

S is a subtree of T . Clearly, f(S) � S and R � S. Moreover, by (1.10),

S � T n (z; e]. Thus there exists v0 2 En(S) such that v � v
0 � z and

S = T n (v0; e]. From the de�nition of S and from the A
y-monotonicity

37

of f we deduce immediately that v0 2 A
y (in fact, S = f

jAyj(R)). Hence,

v
0 2 A nAÆ. We de�ne B = A \ S. Observe that AÆ � B A, since at least

e does not belong to B. Clearly, f(B) � B. Moreover, it is not diÆcult to

show that (S;B; f jS) is a canonical model. This model is n-orbital, since A
Æ

is the unique periodic orbit contained in B, and En(S) n fv0g � A
Æ.

In the rest of this section, we use recursively the above theorem to study

the set of periods of a canonical model. To do it, we introduce the following

notions.

Let (T;A; f) be a canonical model and let p 2 N . We say that a canonical

model (T 0
; A

0
; f

0) is a partial p-reduction of (T;A; f) if T 0 � T , f 0 = f
pj
T 0

and Per(f) � pPer(f 0). Let (T;A; f) be a 2-orbital canonical model. A

sequence f(Ti; Ai; fi); yi; pig
m

i=1 will be called a sequence of partial reductions

of (T;A; f) if and only if:

(i) (T1; A1; f1) = (T;A; f)

(ii) (Ti; Ai; fi) is a yi-expansive 2-orbital canonical model for 1 � i < m.

(iii) (Ti+1; Ai+1; fi+1) is a partial pi-reduction of (Ti; Ai; fi) for 1 � i < m.

(iv) jAi
Æj = pijAi+1

Æj for 1 � i < m. Moreover, Ai
Æ � Ai+1 Ai when

pi = 1.

(v) ~E(Ti; Ai; fi) = ; for 1 � i < m.

(vi) (Tm; Am; fm) is a canonical model such that Am contains a unique pe-

riodic orbit and either

(vi.1) jAm
Æj = 1 and thus (Tm; Am; fm) is a trivial model

or

(vi.2) (Tm; Am; fm) is a ym-expansive 2-orbital canonical model, pm is a

type of Aym
m

and ~E(Tm; Am; fm) 6= ;.

Observe that if m = 1 then, by (i) and (vi.2), (T;A; f) is a y1-expansive

2-orbital canonical model, p1 is a type of A
y1 and ~E(T;A; f) 6= ;.

Remark 1.6.6. Given a sequence of partial reductions f(Ti; Ai; fi); yi; pig
m

i=1

of (T;A; f), from (iv) it follows that jAj = p1p2 � � � pm�1jA
Æ
m
j. Moreover,

since Per(fi) � pi Per(fi+1) [f1g for 1 � i < m, it follows that Per(f) �

f1; p1; p1p2; : : : ; p1p2 � � � pm�1g [p1p2 : : : pm�1 Per(fm).

The next theorem and corollary are the main results of this section.

Theorem 1.6.7. Each 2-orbital canonical model admits a sequence of partial

reductions.

Proof. Let (T;A; f) be a 2-orbital canonical model. During this proof, we will

use the notation from the de�nition of a sequence of partial reductions. In

38

particular, the roman numerals (i{vi) refer to the properties of that de�nition.

We formally denote f(Ti; Ai; fi); yi; pig
k

i=1 by Sk for any k � 0 (note that

S0 = ;).

We start by setting (T1; A1; f1) = (T;A; f). Therefore (T1; A1; f1) is a

2-orbital canonical model. Moreover, (i{v) hold (with 1 instead of m). Now

we proceed by induction on k.

Let k � 1 and assume that we have constructed a sequence Sk�1 and a

canonical model (Tk; Ak; fk) such that:

(a) Ak contains a unique periodic orbit of fk and (Tk; Ak; fk) is 2-orbital if

jAk
Æj > 1.

(b) (i{v) hold (with k instead of m).

Observe that if, in addition, there exist yk and pk such that (vi) holds (with

k instead of m) then Sk is a sequence of partial reductions.

Now we must de�ne yk and pk and then decide whether Sk is a sequence

of partial reductions (in this case we stop by settingm = k) or we construct a

canonical model (Tk+1; Ak+1; fk+1) such that Sk and (Tk+1; Ak+1; fk+1) verify

(a) and (b) (with k + 1 instead of k).

Assume that jAk
Æj = 1. We set pk = 1 and de�ne yk to be the unique

element of Ak
Æ. Then Sk veri�es (vi.1) and thus Sk is a sequence of partial

reductions. In this case we are done by setting m = k.

Assume that jAk
Æj > 1. Then (Tk; Ak; fk) is 2-orbital since (a) holds.

By Proposition 1.5.4, there exists yk 2 Fix(fk) such that (Tk; Ak; fk) is yk-

expansive.

Let p be a type of A
yk

k
. If ~E(Tk; Ak; fk) 6= ; then we de�ne pk = p

and (vi.2) holds (with k instead of m). Hence Sk is a sequence of partial

reductions and we are done by setting m = k.

From now on we assume that ~E(Tk; Ak; fk) = ;. Since jAk
Æj > 1, the

model (Tk; Ak; fk) does not verify neither (vi.1) nor (vi.2) and Sk is not a

sequence of partial reductions. In order to iterate the argument we will de�ne

a model (Tk+1; Ak+1; fk+1) such that Sk and (Tk+1; Ak+1; fk+1) verify (a) and

(b) with k + 1 instead of k. We consider two cases.

Case 1. (Tk; Ak; fk) is twist around yk.

We de�ne pk = p. By Proposition 1.6.4, there exists a yk-branch Tk+1

and a �nite set Ak+1 � Tk+1 such that if we de�ne fk+1 = (fk)
pkj

T
k+1

then (Tk+1; Ak+1; fk+1) is a canonical model and Per(fk) � pk Per(fk+1).

Hence, (Tk+1; Ak+1; fk+1) is a partial pk-reduction of (Tk; Ak; fk). Further-

more, Ak+1 contains a unique periodic orbit and (Tk+1; Ak+1; fk+1) is 2-orbital

39

if jAk+1
Æ
j > 1. Finally,

jAk
Æj = pkjAk+1

Æj and

if pk = 1 then Ak
Æ � Ak+1 Ak:

(1.11)

Summarizing, we have constructed a canonical model (Tk+1; Ak+1; fk+1) in

such a way that Sk and (Tk+1; Ak+1; fk+1) verify (a) and (b) (with k + 1

instead of k).

Case 2. (Tk; Ak; fk) is non-twist around yk.

Since ~E(Tk; Ak; fk) = ;, by Proposition 1.6.5 there exists a tree Tk+1 � Tk

and a �nite set Ak+1 � Tk+1 such that (Tk+1; Ak+1; fkjT
k+1

) is a 2-orbital

canonical model and

Ak
Æ � Ak+1 Ak: (1.12)

Then we set pk = 1 and fk+1 = fkjT
k+1

. Therefore, Per(fk) � pk Per(fk+1)

and (Tk+1; Ak+1; fk+1) is a partial pk-reduction of (Tk; Ak; fk). As above,

we have constructed a canonical model (Tk+1; Ak+1; fk+1) such that Sk and

(Tk+1; Ak+1; fk+1) verify (a) and (b) (with k + 1 instead of k).

Finally we must prove that this iterative construction stops after a �-

nite number of steps. This is a direct consequence of (1.11), (1.12) and the

�niteness of A1.

Next we will use the notion of a sequence of partial reductions to estimate

the set of periods of a canonical model. A serious drawback of this notion

is that it is only de�ned for canonical models, whereas we are interested in

studying the set of periods of the more general monotone models. How-

ever, by means of Theorem 1.5.3, for each monotone model (S; P; g) we can

construct a canonical model (T;A; f) associated to it (see page 29). Then

we can use a sequence of partial reductions to get an estimation of Per(f),

which di�ers from Per(g) only in �nitely many periods. This motivates the

following de�nition.

Let (S; P; g) be non-trivial periodic monotone model. A pair fR; Kg,

whereR is a canonical model andK � N , is said to be a complete reduction of

(S; P; g) if there exists a sequence of partial reductions f(Ti; Ai; fi); yi; pig
m

i=1

with K = f1; p1; p1p2; : : : ; p1p2 � � � pm�1g, R = (Tm; Am; fm) and (T1; A1; f1)

is a canonical model associated to (S; P; g). When R is non-trivial, we de�ne

the three non-negative numbers which play the central role in the characteri-

zation of Per(g) given by Theorem A. In this case, p(R) will denote the type

pm of Aym
m
, q(R) will denote a rotation index of R associated to the type

pm, and n(R) will denote the least n such that R is n-orbital. Observe that

n(R) 2 f0; 1; 2g since R is 2-orbital.

From this de�nition and Theorem 1.6.7 we obtain the following corollary.

40

Corollary 1.6.8. Assume that (S; P; g) is a non-trivial periodic monotone

model. Then (S; P; g) admits a complete reduction. For each complete re-

duction f(S; P ; g); Kg of (S; P; g), there exists a (possibly empty) �nite set

V such that

Per(g) � V [K [(maxK) Per(g)

and each element of V divides the least common multiple of the periods of all

periodic orbits of g contained in V (S). Moreover, jP j = (maxK)jP
Æ
j.

Proof. Since (S; P; g) is 0-orbital, by Theorem 1.5.3 there is a 0-orbital (and

thus 2-orbital) canonical model (T;A; f) associated to (S; P; g). By Theo-

rem 1.6.7, (T;A; f) admits a sequence f (Ti; Ai; fi); yi; pi g
m

i=1 of partial reduc-

tions. So f (Tm; Am; fm); f1; p1; p1p2; : : : ; p1p2 � � �pm�1g g = f (S; P ; g); K g is

a complete reduction of (S; P; g).

Since (T;A; f) and (S; P; g) are associated, A is a periodic orbit of f , jAj =

jP j and there exists a (possibly empty) �nite set V verifying the prescribed

properties and such that Per(g) = Per(f) [V. By Remark 1.6.6, Per(f) �

K [(maxK) Per(g) and jAj = (maxK)jP
Æ
j.

1.7 Proof of Theorem A

The main results used in the proof of Theorem A are: Corollary 1.6.8, which

allows us to work with a complete reduction instead of the original model,

and both Lemma 1.4.6 and Theorem 1.4.7 which are used to calculate the

set of periods of the reduced model.

Proof of Theorem A. By the de�nition of a monotone model, En(S) � P .

Therefore, S reduces to a point when P consists of a �xed point, and in this

case the theorem follows obviously.

Assume that jP j > 1. The fact that there exist complete reductions of

(S; P; g) follows from Corollary 1.6.8. Moreover, given a complete reduction

fR; Kg, we have Per(g) � K. If R is trivial, we are done.

Assume that R is non-trivial and set R = (S; P ; g). By the de�nition of

a complete reduction we have ~E(R) 6= ;. Thus there exists � 2 E(R) such

that j�j 2 pN and j�j � jP
Æ
j+ p + q + n + 1. We de�ne � = j�j=p. Since �

is external, by Lemma 1.4.6 we get Per(g) � f�pi+ pj : i; j � 1g. Moreover,

by Lemma 1.4.2, p 2 Per(g). Consequently, from Corollary 1.6.8 we have

Per(g) � K [fkpg [f�kpi+ kpj : i; j � 1g

= K [kpN n f2kp; 3kp; : : : ; �kpg;
(1.13)

41

and jP j = kjP
Æ
j. Hence, when jP

Æ
j 2 pN it follows that for each l � 0

(see Remark 1.2.3) we have jP j + lkp = k(jP
Æ
j + lp) 2 kpN and therefore

S�
kp
(jP j+ lkp) = Skp(3kp) = f1g [kpN . Hence, from (1.13) we have

Per(g) � K [S�
kp
(jP j+ lkp) n f2kp; 3kp; : : : ; �kpg

and the theorem follows in this case.

Assume now that jP
Æ
j =2 pN . By Theorem 1.4.7 we have Per(g) � f(jP

Æ
j+

lp)i+pj : i; j � 1g for some 0 � l � jP
Æ
j+ q+n�1. Then, l � jP j=k+ q+1

because n 2 f0; 1; 2g. Furthermore, if n = 0 then, again by Theorem 1.4.7,

lp � p+ q � (q mod p). Thus, from Corollary 1.6.8 it follows that

Per(g) � f(jP j+ lkp)i + kpj : i; j � 1g: (1.14)

Since jP j+ lkp = jP
Æ
jk + lkp =2 kpN n f1g, we have

S
�
kp
(jP j+ lkp) = Skp(jP j+ lkp)

= f1; jP j+ lkpg [f(jP j+ lkp)i+ kpj : i � 0; j � 1g

= f1g [kpN [f(jP j+ lkp)i+ kpj : i; j � 1g:

Hence, from (1.13) and (1.14) we have

Per(g) � K [S�
kp
(jP j+ lkp) n f2kp; 3kp; : : : ; �kpg:

1.8 Upper bounds for the type and the rota-

tion index

This section is devoted to prove the inequalities (1.1), from Section 1.2. In

the proof of Proposition 1.8.1 we use Lemma 1.4.4.

Proposition 1.8.1. Let (T;A; f) be a y-expansive n-orbital model such that

E(T;A; f) 6= ;. Let p be a type of Ay and let q be a rotation index of (T;A; f)

associated to p. Then:

(a) p � jAÆj+ 1.

(b) If q > 0 then 2p+ q � 2 � jAÆj.

If, in addition, n = 0 then:

(c) p � jAj � 1.

(d) If p = 1 then q + 4 � jAj.

42

(e) If q > 0 then 2p+ q + 1 � jAj.

Proof. Until the end of the proof, the subindexes will be considered modulo

p. Since p is a type of Ay we have p � jEn(T)j and, since (T;A; f) is orbital,

there is at most 1 endpoint which does not belong to AÆ. Therefore,

jEn(T)j � jAÆj+ 1; (1.15)

which proves (a). If n = 0 then A = A
Æ. Moreover, if En(T) = A then from

the fact that (T;A; f) is a canonical model and the uniqueness of canonical

models (see Theorem B of [3]) we get that T is a jAj-star whose central

point is y and f([y; x]) = [y; f(x)] for each x 2 A. Then E(T;A; f) = ;, a

contradiction. Consequently, En(T) A and

jEn(T)j � jAj � 1 when n = 0; (1.16)

which proves (c).

Next we prove (b). By assumption we have q > 0. So, xi 2 V (T) for

1 � i � p and, hence, for each 1 � i � p there are at least 2 points of X(A)

in Zi (we recall that Zi stands for Z(A
y)i). Therefore,

��X(A) \

p[
i=1

Zi

�� � 2p: (1.17)

Let k 2 f1; 2; : : : ; pg be such that q = qk and set Q = ff i(xk)g
q�1
i=0 . Clearly

Q � V (T) nA. By Lemma 1.4.4, f i(xk) 2 Zk+i for 0 � i � q � 1. Moreover,

since (T;A; f) is y-expansive we have that Q does not contain periodic orbits

and thus jQj = q.

We claim that Q\ fxig
p

i=1 = fxkg. Indeed, assume that f
j(xk) 2 fxig

p

i=1

for some 1 � j � q � 1. Then f
j(xk) = xk+j. Since Q does not contain

periodic orbits, xk+j 6= xk and then we easily get that qk+j = qk � j, in

contradiction with the fact that qk = q = minfq1; q2; : : : ; qpg. Thus the claim

follows.

Given v 2 Qnfxkg, we have that v 2 V (T)\Zi for some 1 � i � p, v 6= xi

and [xi; v] \ A = ;. Since v 2 V (T), there exists some point w 2 X(A) \ Zi

with v � w which has not been taken into account in (1.17). Therefore,

��X(A) \

p[
i=1

Zi

�� � 2p+ q � 1 when q > 0: (1.18)

Since jEn(T)j � jX(A)j, (b) follows from (1.15) and (1.18).

To prove (d), assume that p = 1. Let a 2 X(A)\Z1. Then f(a) 6= a since

(T;A; f) is orbital. Since x1 � f(x1) and x1 belongs to the (A [fyg)-basic

43

interval [y; a], the (A [fyg)-monotonicity of f implies that f(a) 2 Z1. By

Remark 1.6.2, there is at least one y-branch di�erent from Z1. Therefore,

since En(T) � A there exists b 2 X(A) n Z1.

Now we claim that f(b) =2 Z1. Indeed, if f(b) 2 Z1 then the fact that

(a; b) \ A = ; and the A-monotonicity of f imply that f([a; b]) � Z1, in

contradiction with the fact that y 2 [a; b] and hence y 2 f([a; b]). Thus the

claim follows.

Observe that f(b) 6= b since (T;A; f) is orbital. Also, by the previous

claim, f(b) =2 fa; f(a)g, and thus a, b, f(a) and f(b) are 4 di�erent points

contained in A. In consequence, jAj � 4. Then, (d) holds when q = 0.

When q > 0 we have q = q1 since p = 1. So, by Lemma 1.4.4, f i(x1) 2

(V (T) \ Z1) n A for 0 � i < q. Let S be the closure of the connected

component of Z1nX(A) which contains x1. Then S is a tree whose endpoints

are the elements of X(A) \ Z1. From the de�nition of q it follows that, for

0 < i < q, f i(x1) are vertices of S which are not endpoints of S. Since any

tree with n vertices has at least n + 2 endpoints, we get jEn(S)j � q + 1.

As we noticed above, f(a) 2 Z1 and f(a) 6= a for any a 2 X(A) \ Z1. Thus

jA \ Z1j > jX(A) \ Z1j and, hence, jA \ Z1j � q + 2. Therefore, taking into

account b and f(b), which are in A but not in Z1, we have jAj � q + 4 and

(d) holds.

To end the proof of the proposition we must show that (e) holds. So we

assume that n = 0, that is, A is a periodic orbit. By (d), it is enough to

consider the case p > 1. Since jEn(T)j � jX(A)j, from (1.16) and (1.18) it

follows that jAj � 2p+ q. So, we must show that jAj 6= 2p+ q.

In the rest of the proof we assume that jAj = 2p + q (and q > 0 and

p > 1) and we will arrive to a contradiction. If A = X(A), as in the proof of

(c) we get that f is a rigid rotation of a jAj-star and since E(T;A; f) 6= ; we

get that X(A) A. From (1.18) we have

2p+ q � 1 �
��X(A) \

p[
i=1

Zi

�� � jX(A)j < jAj = 2p+ q:

Hence, there is exactly one point w in A n X(A) and jX(A) \ [
p

i=1Zij =

2p+ q � 1.

Now we claim that n? = p. Indeed, assume that there exists some y-

branch W di�erent from Z1; Z2; : : : ; Zp. Since En(T) � A, we have W \A 6=

;. Since jX(A) \ [
p

i=1Zij = 2p + q � 1 and jAj = 2p + q, it follows that

W \ A = fwg. Thus w 2 X(A), a contradiction. So the claim follows.

Let j 2 f1; 2; : : : ; pg be such that w 2 Zj. We have that Zj \ A is the

disjoint union of fwg and Zj \X(A), while Zi \A = Zi \X(A) when i 6= j.

44

Since q > 0, xi =2 X(A) for 1 � i � p. For each point z 2 X(A) \ Zi, we

have that [y; z] is a (A [fyg)-basic interval containing xi. Therefore, since

f(xi) 2 Zi+1 and f is (A [fyg)-monotone, we get f(X(A) \ Zi) � Zi+1

for 1 � i � p. Moreover, f(X(A) \ Zi) = X(A) \ Zi+1 when i 6� j and

i 6� j + 1 (mod p). We set Ni = jX(A) \ Zij for 1 � i � p. Since X(A) � A

and A is a periodic orbit, it follows that Ni+1 = Ni when i 6� j and i 6�

j + 1 (mod p). Consequently, we have

Nj�1 = Nj�2 = : : : = Nj+2 = Nj+1: (1.19)

If f(w) 2 Zj+1 then (T;A; f) is twist around y and, by Remark 1.6.1,

E(T;A; f) = ;, a contradiction. Therefore, f(w) =2 Zj+1. Then X(A) \

Zj+1 = f(X(A) \ Zj) and it follows that Nj+1 = Nj. Thus from (1.19) we

get that Nj�1 = Nj. On the other hand, since A is a periodic orbit, there

exists a unique point w0 2 A \ Zj�1 = X(A) \ Zj�1 such that f(w0) = w.

Since w 2 Zj nX(A), we get Nj = Nj�1 � 1, a contradiction.

The following result states that the inequalities (1.1) hold for complete

reductions of monotone models.

Corollary 1.8.2. Let (S; P; g) be a non-trivial periodic monotone model. Let

fR; Kg be a complete reduction of (S; P; g) such that R is non-trivial and

n(R) = 0. Then

p � r � 1;

q + 4 � r when p = 1 and

2p+ q + 1 � r when q > 0;

where we denote p(R), q(R), n(R) and
jP j

maxK
by p, q, n and r respectively.

Proof. Set (T;A; f) = R. Since n = 0, we have AÆ = A. By Corollary 1.6.8,

jAj = r. Since R is non-trivial, by the de�nition of a complete reduction we

have that R is a y-expansive 0-orbital model for some y 2 Fix(f), p is a type

of Ay, q is a rotation index of R associated to p and ~E(R) 6= ;. In particular,

E(R) 6= ;. Therefore R veri�es the hypotheses of Proposition 1.8.1 and the

corollary follows.

1.9 Some Examples. Proof of Theorem B

This section is devoted to prove Theorem B. In fact, we prove the follow-

ing stronger result from which Theorem B can be obviously derived. Since

any tree can be imbedded in R2 , in what follows we will consider each tree

endowed with the topology induced by the topology of R2 .

45

a2 a3 a1a4
y

a
0
2

a
0
1

a
0
3

a
0
4

a
0
7

a
0
8

a
0
5

a
0
9

a
0
6

(T 0
; A

0
; f

0)

a
0
10

a
0
11

a
0
12

(T;A; f)

Figure 1.3: An example of the construction made in Proposition 1.9.2, with

jAj = 4 and s = 3. We assume f(ai) = ai+1 mod 4 and f
0(a0

i
) = a

0
i+1 mod 12.

Theorem 1.9.1. Let K � N be a set of the form f1; k1; k2; : : : ; kmg such

that k1 > 1 and ki strictly divides ki+1 for 1 � i < m. Set k = km. Then:

(a) There exists a canonical model (R;B; h) with jBj = k and Per(h) = K.

(b) Let r > 1, p � 1 and q � 0 verifying

p � r � 1;

q + 4 � r when p = 1 and

2p+ q + 1 � r when q > 0:

Then there exist a canonical model (S; P; g) and a complete reduction

f(S; P ; g); Kg of (S; P; g) with jP
Æ
j = r, p(S; P ; g) = p, q(S; P ; g) = q,

n(S; P ; g) = 0 and Per(g) = K [C, where C is a set such that

S
�
kp
(jP j+ lkp) n f2kp; 3kp; : : : ; �kpg � C � S

�
kp
(jP j)

with lp = p+ q� (q mod p) and �p being the largest multiple of p smaller

than r + p+ q + 1.

In order to prove Theorem 1.9.1 we will use the following two technical

results. For Proposition 1.9.2 see Figure 1.3, which shows an example of the

construction made in that proposition.

Proposition 1.9.2. Let (T;A; f) be a periodic canonical model and let s � 2

be an integer. Then there exists a canonical model (T 0
; A

0
; f

0) such that:

(a) There exists y 2 Fix(f 0) such that s is a type of A0y around y and

(T 0
; A

0
; f

0) is y-expansive and twist around y.

46

(b) A
0 is a periodic orbit with jA0j = sjAj.

(c) (T;A; f) is a partial s-reduction of (T 0
; A

0
; f

0).

(d) Per(f 0) = f1g [s � Per(f).

Proof. Set t = jA[V (T)j and Q1 = A[V (T) = fv11; v
1
2; : : : ; v

1
t
g in such a way

that v11 2 En(T) and A = fv1
i
g
jAj
i=1. Next we will construct T 0 by attaching

one copy of T to each endpoint of an s-star.

For 2 � i � s we consider a tree T i, a �nite set Qi = fvi1; v
i

2; : : : ; v
i

t
g � T

i

and a homeomorphism hi : T
i �! T such that hi(v

i

j
) = v

1
j
for each 1 �

j � t. We also set T 1 = T and h1 = Idj
T1
. Now we de�ne T 0 to be a tree

which consists of the union of T i for 1 � i � s and an s-star R such that

En(R) = fv11; v
2
1; : : : ; v

s

1g. Thus T 0 consists of an s-star with one copy of T

attached to each endpoint. Let y be the central point of R.

Now we are going to de�ne the map f 0. First we de�ne it on each T i. We

set f 0j
Ti
= h

�1
i+1 Æ hi for each 1 � i < s and f

0j
Ts

= f Æ hs. Note that f
0 is a

homeomorphism between T
i and T

i+1 and f
0(vi1) = v

i+1
1 for each 1 � i < s.

Moreover, f 0(vs1) = f(v11) 2 A \ T
1.

Now we de�ne f 0 on R n En(R). We set f 0(y) = y and take f 0 to be an

aÆne homeomorphism between [y; vi1] and [y; f(vi1)] for each 1 � i � s.

Finally set A0 = [s
i=1fv

i

1; v
i

2; : : : ; v
i

jAjg. Since f 0j
Ti

is a homeomorphism

for each 1 � i < s and f is A-monotone, we easily get that (T 0
; A

0
; f

0) is

a monotone model. Moreover, since (T;A; f) is canonical, there are no f -

identi�able vertices in T . Then there are no f 0-identi�able vertices in T 0 and

(T 0
; A

0
; f

0) is a canonical model.

Now we prove (a). Set Q = fyg [s
i=1 Q

i. Clearly A
0y = Q and for

1 � i � s we have Z(Q)i = T
i and x(Q)i = zi. Since f

0(x(Q)i) = x(Q)i+1 for

1 � i < s and f 0(x(Q)s) 2 Z(Q)1, it follows that s is a type of A
0y. Moreover,

f
0(Z(Q)i) � Z(Q)i+1 mod s for 1 � i � s and so (S 0

; P
0
; g

0) is twist around

y. Since there are no vertices of T 0 in Z
?(A0) n fyg, obviously (T 0

; A
0
; f

0) is

y-expansive and (a) holds.

To prove the rest of the statements �rst we consider the case jAj = 1.

Then T reduces to the unique point of A, that is v11. Moreover, T 0 coincides

with R and A0 = fv11; v
2
1; : : : ; v

s

1g. Therefore f
0 is a rigid rotation of an s-star

and (b), (c) and (d) follows obviously in this case.

Now we assume that jAj > 1. We claim that

f
0s(z) = f(z) for each z 2 T : (1.20)

Indeed, take z 2 T . We have that f 0s�1(z) = h
�1
s
Æ hs�1 Æ h

�1
s�1 Æ hs�2 Æ : : : Æ

h2 Æ h
�1
2 Æ h1(z). Since h1 = Id, we get f 0s�1(z) = h

�1
s
(z) 2 T

s. Therefore

f
0s(z) = f

0(f 0s�1(z)) = f(hs(h
�1
s
(z))) = f(z) and the claim follows.

47

Now we prove (b) and (c). Let x 2 T be an n-periodic point of f . Since

f
0i(x) 2 T

i+1 for 1 � i < s, from (1.20) it follows that ff 0i(x)gsn
i=0 is an sn-

periodic orbit of f 0. In particular, (b) holds. Thus we have f1g [sPer(f) �

Per(f 0). This inclusion, together with (1.20) and the fact that T � T
0, proves

that (T;A; f) is a partial s-reduction of (T 0
; A

0
; f

0) and (c) holds.

Finally we prove (d). It is enough to show that Per(f 0) � f1g [sPer(f).

Let P be an n-periodic orbit of f 0 with n > 1. The de�nition of f 0 on R

implies that y is a repelling �xed point of f 0s on each edge ofR. It follows that

the unique periodic orbit of f 0 on R is fyg. Therefore, P � T
0nR. Moreover,

since (T 0
; A

0
; f

0) is twist we have that n = rs for some r � 1 and there exists

x 2 P \ T such that f 0i(x) 2 T
i+1 mod s for all 1 � i � rs. From (1.20) we

get that ff 0is(x)gr�1
i=0 is an r-periodic orbit of f . Thus n 2 sPer(f).

By convention, a tree T will be a 1-star if T reduces to a single point,

which in addition will be called the central point of T .

In the next proposition we will construct canonical models which exhibit

prescribed sets of periods. It is the main tool for the proof of Theorem 1.9.1.

Proposition 1.9.3. Given integers r > 1, p � 1 and q � 0 verifying

p � r � 1;

q + 4 � r when p = 1 and

2p+ q + 1 � r when q > 0;

there exists a monotone model (T;A; f) satisfying:

(a) (T;A; f) is a canonical model and A is a periodic orbit with jAj = r.

(b) There exists y 2 Fix(f) such that (T;A; f) is y-expansive and non-twist

around y.

(c) p is a type of Ay around y and q is a rotation index of (T;A; f) associated

to p.

(d) S�
p
(r+ lp)nf2p; 3p; : : : ; �pg � Per(f) � S�

p
(r) with lp = p+q�(q mod p)

and �p being the largest multiple of p smaller than r + p+ q + 1.

A canonical model which satis�es the properties (a{d) stated in Proposi-

tion 1.9.3 will be called an (r; p; q)-model.

Proof of Proposition 1.9.3. We will make the construction of (T;A; f) ac-

cording to four cases. In all cases, we set A = fa1; a2; : : : ; arg and f(ai) =

ai+1 mod r for i = 1; 2; : : : ; r. Thus A is a periodic orbit and jAj = r. In each

case the construction will consist of two steps. First we will choose T to be a

tree whose endpoints are contained in A. We will describe T by enumerating

all its vertices and edges. Secondly, we will choose a point y 2 T to be a

�xed point of f and will de�ne f on each vertex of T .

48

a4 a3

a2

a7
y a1

a8a6a5

v1 v2

Figure 1.4: A (8,1,2)-model

In all cases, it is assumed that we de�ne f on the whole tree by taking

an A
y-extension (recall that Ay = A [V (T) [fyg). It is not diÆcult to

check that the images of the vertices of T will be chosen in such a way that

f is monotone on each A-basic interval. Therefore, by construction f is

A-monotone and (T;A; f) is a monotone model.

Case 1. p = 1.

De�nition of T . Assume �rst that q = 0. By assumption, r � 4. If r = 4

we take T as a closed interval [a4; a2] with a4 < a3 < a1 < a2. If r > 4 then

we choose T to be a closed interval [a4; ar] with a4 < a3 < a1 < a2 < a5 <

a6 : : : < ar. We also choose a point y 2 (a3; a1).

Now assume that q > 0. By assumption, r � q + 4. We choose T and a

point y 2 T such that there are two y-branches and:

(i) Cl(Z?(A)) has q + 2 endpoints and contains the edges: [y; a3], [y; v1],

[vi; vi+1] for 1 � i � q � 1, [vq; a1] and [vj; a4+j] for 1 � j � q.

(ii) Z(A)1 is a star containing the edges [a1; a2] and [a1; ai] for q+5 � i � r.

(iii) Z(A)2 = [a3; a4].

See Figure 1.4 for an example with r = 8 and q = 2.

Images of the vertices. We de�ne f(y) = y. Since V (T) n A = ; when

q = 0, we only have to consider the case q > 0. We de�ne f(vi) = vi+1 for

1 � i < q and f(vq) = a1.

(a) In both cases, the orbit of each vertex of T nfyg intersects A. Therefore,

there are no f -identi�able vertices in T and (T;A; f) is a canonical model.

(b) There exists y 2 Fix(f)\(a3; a1) and a y-branch S such that a1; a2 2 S

and a3 =2 S. Therefore f(a1) 2 S, f(a2) =2 S and (T;A; f) is non-twist around

49

y. Moreover, there are no periodic orbits of vertices contained in Z?(A) and

thus (T;A; f) is y-expansive.

(c) In the case q = 0, we have x(Ay)1 = a1. When q > 0, we have

x(Ay)1 = v1. In both cases, f(x(Ay)1) � x(Ay)1 and thus 1 is a type of Ay.

Moreover, since f(vi) = vi+1 for 1 � i < q and f(vq) = a1, it follows that q

is a rotation index of the type 1.

(d) Assume �rst that q = 0. In this case, the f -graph of Ay contains the

loop [y; a1] ! [a1; a2] ! [y; a1], which is external. Thus from Lemma 1.4.6

we get Per(f) � N n f2g. Moreover, the loop [a1; a2] ! [y; a1] ! [a1; a2] is

simple and a1 and a2 are not �xed points of f 2. Thus, by Lemma 1.3.5(a),

f has a point of period 2. Therefore, Per(f) = N = S�
p
(r) and (d) holds.

Assume now that q > 0. The f -graph of Ay contains the loops [y; v1]!

[y; v1], which we take as the typical loop �, and

[vi; vi+1]! [vi+1; vi+2]! : : :! [vq; a1]! [a1; a2]! [vi; vi+1];

which we call �i for 0 � i � q (where v0 stands for y). Note that �i is

negative and j�ij = q+2� i for each 0 � i � q. Since y 2 Fix(f) and each �i
satis�es (b) of Lemma 1.3.5, we get Per(f) � f1; 2; 3; : : : ; q + 2g. Moreover,

�0 is an external loop of length q + 2 and thus, from Lemma 1.4.6, we get

Per(f) � fq + 3; q + 4; : : :g. Therefore, Per(f) = N = S�
p
(r) and (d) holds.

Case 2. p > 1 and q = 0.

De�nition of T . Since p < r, we can write r = sp+ k for some s � 1 and

0 < k � p. We choose T and a point y 2 T such that there are p y-branches

and:

(i) Cl(Z?(A)) is a (p + k � 1)-star whose endpoints are a1; a2; : : : ; ap and

asp+2; asp+3; : : : ; asp+k and whose central point is y.

(ii) Z(A)1 is the union of (a1; asp+1] and an s-star whose endpoints are

a1; a1+p; : : : ; a1+(s�1)p.

(iii) For each 2 � i � s, Z(A)i is an s-star whose endpoints are ai; ai+p; : : : ;

ai+(s�1)p.

Observe that, when s = 1, Z(A)i reduces to the point ai for each 2 � i � p.

When s > 1, we denote the central point of Z(A)i by yi, and the central

point of Z(A)1 n (a1; asp+1] by y1. See Figure 1.5 for an example with r = 14

and p = 4.

50

����

����

����

����

����

����

����

���� ����

����

����

���� ����

����

a1

a13

a12

a8

a14

a11

a7

a10

a6 a9

a2

a4

a5

y

y2

y3

y1

y4

a3

Figure 1.5: A (14,4,0)-model

Images of the vertices. We de�ne f(y) = y and f(yi) = yi+1 mod p for

each 1 � i � p.

(a) Since there are no Ay-basic intervals with both endpoints contained in

V (T)nA, there are no f -identi�able vertices and thus (T;A; f) is a canonical

model.

(b) Since a1 and asp+1 belong to Z(A)1 and Z
?(A)\[f(a1); f(asp+1)] 6= ;, it

follows that (T;A; f) is non-twist around y. Moreover, (T;A; f) is obviously

y-expansive since there are no vertices of T in Z
?(A) n fyg.

(c) Observe that (y; ai)\A
y = ; for 1 � i � p. Therefore, faig

p

i=1 = X(Ay).

Since f(ap) = ap+1 � a1, it follows that p is a type of Ay and the rotation

index of (T;A; f) associated to this type is 0.

(d) We set Ii = [y; ai] and Ki = [ai; yi] for 1 � i � p (recall that Ki reduces

to a single point when s = 1). We also set Ii = [yi mod p; ai] for p+1 � i � sp,

Ij = [y; aj] for sp + 2 � j � r and Isp+1 = [a1; asp+1]. All these intervals

are A
y-basic intervals. Moreover, the f -graph of Ay contains exactly the

following paths:

I1 ! I2 ! : : :! Ip ! I1;

I1 ! I2 ! : : :! Ir ! I1;

I2 ! I3 ! : : :! Ips+1 ! I2;

51

which we call �, � and , respectively, and

K1 ! K2 ! : : :! Kp ! Ip+1; Ip ! K1; Ips ! K1:

We take � as the typical loop. Hence, � and are external loops. Since

j�j = r and jj = sp, from Lemma 1.4.6 it follows that Per(f) � fir + jp :

i; j � 1g [fisp + jp : i; j � 1g. On the other hand, is negative. Thus

it veri�es (b) of Lemma 1.3.5 and, consequently, sp 2 Per(f). Moreover,

p 2 Per(f) by Lemma 1.4.2. Summarizing, we have

Per(f) � fir + jp : i; j � 1g [pN n f2p; 3p; : : : ; (s� 1)pg:

It is not diÆcult to check that there are no loops of other lengths. Since, by

Lemma 1.3.2, each periodic orbit which does not intersect Ay is associated

to a loop in the f -graph of Ay, it follows that

Per(f) = f1; rg [fir + jp : i; j � 1g [pN n f2p; 3p; : : : ; (s� 1)pg: (1.21)

Since q = 0, by assumption l = 0 and �p is the largest multiple of p smaller

than r+ p+ 1. Since (s� 1)p < r < r + p+ 1, it follows that (s� 1)p � �p.

When r =2 pN , from (1.21) we get

Per(f) = S�
p
(r) n f2p; 3p; : : : ; (s� 1)pg (1.22)

and thus (d) holds. On the other hand, if r 2 pN then fir + jp : i; j � 1g =

fm 2 pN : m > rg � fm 2 pN : m > (s� 1)pg. Therefore (1.22) holds and

(d) follows.

Case 3. p > 1, q > 0 and r =2 pN.

De�nition of T . By assumption, r � 2p+ q + 1. Set r = 2p+ q + sp+ k

with 0 � k < p. For simplicity, we assume s > 0. The same construction

(even simpler) can be done in the case s = 0. The details are left to the

reader (see Figure 1.6 for an example with r = 11, p = 3 and q = 4, for

which s = 0). Under this assumption, we choose T and a point y 2 T such

that there are p y-branches and:

(i) Cl(Z?(A)) has 2p+ q � 1 endpoints.

(ii) For 1 � i � p, Z(A)i contains an (s + 1)-star whose endpoints are

ai; ai+p; : : : ; ai+sp. When s > 1, we denote the central point of this star

by yi.

(iii) Z?(A)nfyg contains p+q�1 vertices of T , that we call v1; v2; : : : ; vp+q�1.

52

a11

a2

a8 a5 a7 a10

a1
a4

a6

a9

a3

y

v1 v4v2v5

v3

v6

Figure 1.6: An (11,3,4)-model

(iv) Set t = q mod p. Now we de�ne r + p+ q � t A
y-basic intervals, which

are also edges of T :

Ii = [y; vi] for 1 � i � p;

Ip+i = [vi; vp+i] for 1 � i � q � 1;

Ip+q+i = [vq+i; at+i] for 0 � i � p� t;

I2p+q�t+i = [yi mod p; ap+i] for 1 � i � sp;

I2p+q�t+sp+i = [vi; ap+sp+i] for 1 � i � p+ q � 1 and

I3p+2q�t+sp+i = [a2p+sp+q+i; at+i] for 0 � i � k:

Finally, T contains also the following edges: Ki = [ai; yi] for 1 � i � p (recall

that Ki is not de�ned when s < 2) and [vi; ai mod p] for p + q � t + 1 � i �

p+ q � 1. See Figure 1.7 for an example with r = 19, p = 3 and q = 2.

Images of the vertices. We de�ne f(y) = y, f(vi) = vi+1 for each 1 �

i < p+ q � 1, f(vp+q�1) = at and f(yi) = yi+1 mod p for each 1 � i � p.

(a) There is a unique periodic orbit P = fyig
p

i=1 of vertices in T n fyg.

Moreover, for each A
y-basic interval [v; v0] such that v 2 P we have that

v
0 2 A. Thus there are no f -identi�able vertices and (T;A; f) is a canonical

model.

53

a5

a11 a17 a14

v1 v4

a13 a16 a10

a7

a19

a4a15

a12a6

a9

y1

y3

a8 a2 v2 y a1

a3
a18

v3

y2

Figure 1.7: A (19,3,2)-model

(b) Observe that ai 2 Z(Ay)i mod p for every 1 � i � r. In particular,

the edge Ir+p+q�t = [ar; at+k] is contained in the y-branch Z(Ay)r mod p ,

which is di�erent from Zp since, by assumption, r =2 pN . Then f(at+k) 2

Z(Ay)r+1 mod p 6= Z(Ay)1 and f(ar) = a1 2 Z(Ay)1. Consequently, (T;A; f)

is non-twist around y. Moreover, since the orbit of each vertex of Z?(A)nfyg

contains at 2 A, it follows that (T;A; f) is y-expansive.

(c) Since x(Ay)i = vi and f(vi) = vi+1 for 1 � i � p, we get that p is a

type of Ay. Furthermore, minfq1; q2; : : : ; qpg = qp. Since [y; f i(vp)] \ A =

[y; vp+i] \ A = ; for 1 � i � q � 1 and [y; f(vp+q�1)] \ A = fatg, it follows

that q is the rotation index of the type p.

(d) The f -graph of Ay contains exactly the following elementary loops:

(i) I1 ! I2 ! : : : ! Ip ! I1, which we denote by � and we take as the

typical loop.

(ii) Ii ! Ii+1 ! : : : ! Ir+p+q�t ! Ii for each 1 � i � 2p + q � t such

that i � 1 (modp), which we denote by �i. Each �i is positive and

j�ij = r+ p+ q� t� i+1 2 r+ pN [frg. Note that �i is external only

when i = 1.

(iii) Ii ! Ii+1 ! : : : ! Ir+p+q�t ! Ii for each 1 � i < 3p + q � t such

that i � r + 1 (modp), which we denote by i. Each i is negative

54

and jij = r + p + q � t � i + 1 2 pN . The maximum of the lengths

of i is jr+1 mod pj = r + p + q � t � (r mod p) and the minimum is

r� (r mod p)� p. Note that i is external only when i = r + 1 mod p.

(iv) K1 ! K2 ! : : : ! Kp ! I2p+q�t+1 ! : : : ! I2p+q�t+sp ! K1, which

we denote by Æ. Note that Æ is negative and jÆj = (s+ 1)p.

(v) Kr+1 mod p ! Kr+1 mod p+1 ! : : :! Kp ! I2p+q�t+1 ! : : :! Ir+p+q�t
! Kr+1 mod p, which we denote by �. Note that � is positive and j�j =

r + 1� (r + 1 mod p) 2 pN .

(vi) Ii ! Ii+1 ! : : :! I2p+q�t+sp ! Ii for each p + 1 � i < 2p+ q � t such

that i � 1 (modp), which we denote by �i. Note that �i is negative

and j�ij = 2p+ q � t+ sp� i+ 1 2 pN .

(vii) I2p+q�t ! K1 ! K2 ! : : : ! Kp ! I2p+q�t+1 ! : : : ! Ir+p+q�t !

I1 ! : : :! I2p+q�t, which we denote by � . Note that � is negative and

j� j = r + 2p+ q � t 2 r + pN.

Since p + q � t = lp, we have j�1j = r + lp. By Lemma 1.3.3, there is a

�xed point x 2 I1 = [y; v1] of f
r+lp associated to �1. Since v1 is not periodic,

x 6= v1. Moreover, x 6= y since y 2 Fix(f) and some iterate of x belongs to

Ir+lp, which does not contain y. Therefore, x 2 (y; v1). Since �1 is simple,

from Lemma 1.3.5 it follows that the period of x is r + lp. On the other

hand, y 2 Fix(f) and p 2 Per(f) by Lemma 1.4.2. Therefore,

Per(f) � f1; p; r + lpg: (1.23)

Since �1 and r+1 mod p are external, by Lemma 1.4.6 we get Per(g) � f(r +

lp)i + pj : i; j � 1g [f(r � (r mod p) + lp)i + pj : i; j � 1g. Furthermore,

since each i is simple and negative it satis�es (b) of Lemma 1.3.5 and, hence,

f has periodic orbits of periods fr � (r mod p) � p; r � (r mod p); : : : ; r �

(r mod p) + lpg. So we have

Per(f) � f(r + lp)i+ pj : i; j � 1g [pN n f2p; 3p; : : : ; r � (r mod p)� 2pg:

From this and (1.23) it follows that

Per(f) � S�
p
(r + lp) n f2p; 3p; : : : ; r � (r mod p)� 2pg: (1.24)

Since �p is de�ned to be the larger multiple of p smaller than r + p+ q + 1,

we have �p > r � (r mod p)� 2p and from (1.24) we get

Per(f) � S�
p
(r + lp) n f2p; 3p; : : : ; �pg:

To end the proof we must show that Per(f) � S�
p
(r). The only periodic

orbits contained in Ay are fyg, A and fy1; y2; : : : ; ypg. On the other hand, by

55

a6

a2

a18 a17

a9

a16

a4

a8

a12

a15

a19

a7

v1v2

y1y2a10

a11

a3

a14 a13

a1

a20

a5

y3 y4

v3 v4

Figure 1.8: A (20,4,1)-model

Lemma 1.3.2 each periodic orbit which does not intersect Ay is associated to a

loop. Each loop in the f -graph of Ay is either elementary or a concatenation

of some elementary loops, which are �, �i, i, Æ, �, �i, � and their respective

shifts. The length of each of these elementary loops belongs to pN [(r+pN).

Given i; j 2 N and m;n 2 pN [(r +pN), we have im+ jn 2 S�
p
(r). It follows

that the length of each loop in the f -graph of Ay belongs to S�
p
(r) and thus

(d) holds.

Case 4. p > 1, q > 0 and r 2 pN.

The construction is very similar to that of the previous case. We have ai 2

Z(Ay)i mod p for 1 � i < r, but in this case we replace the edge [ar; at+k] by

an edge [y; ar] contained in Cl(Z
�(A)). The details are left to the reader. See

Figure 1.8 for an example with r = 20, p = 4 and q = 1.

Proof of Theorem 1.9.1. In order to prove (a) we use Proposition 1.9.2 iter-

atively. Set ki = p1p2 � � � pi with pi > 1 for 1 � i � m. Let us consider

a tree R0 consisting of a single point x and the map h0(x) = x. Then

(R0; fxg; h0) is a canonical model such that Per(h0) = f1g. We use Proposi-

tion 1.9.2 with s = pm and obtain a canonical model (R1; B1; h1) such that

Per(h1) = f1g[pm Per(h0) = f1; pmg and jB1j = pm. We use again Proposi-

tion 1.9.2 with s = pm�1 and obtain a canonical model (R2; B2; h2) such that

Per(h2) = f1g [pm�1 Per(h1) = f1; pm�1; pm�1pmg and jB2j = pmpm�1. We

can iterate this argument m � 1 times and �nally obtain a canonical model

56

(Rm�1; Bm�1; hm�1), which we denote as (R;B; h). Then jBj = p1p2 � � � pm�1
and Per(h) = fp1; p1p2; : : : ; p1p2 � � � pmg = K. Thus (a) is proved.

Now we prove (b) analogously. We must construct a canonical model

(S; P; g) with all the prescribed properties. By Proposition 1.9.3, we can

consider an (r; p; q)-model, which we denote by (Tm; Am; fm). Since Am is

a periodic orbit, (Tm; Am; fm) is 0-orbital. As above, we use m � 1 times

Proposition 1.9.2 to obtain a sequence of canonical models (Ti; Ai; fi) for

1 � i < m such that

(i) For 1 � i < m there exists yi 2 Fix(fi) such that (Ti; Ai; fi) is a

yi-expansive 0-orbital canonical model.

(ii) (Ti+1; Ai+1; fi+1) is a partial pi-reduction of (Ti; Ai; fi) for each 1 � i <

m. Furthermore, Per(fi) = f1g [pi Per(fi+1).

(iii) jAij = pijAi+1j for 1 � i < m.

(iv) (Ti; Ai; fi) is twist around yi for 1 � i < m. Thus, by Remark 1.6.1,

E(Ti; Ai; fi) = ;. In particular, ~E(Ti; Ai; fi) = ;.

By Proposition 1.9.3(a{c), jAmj = r, there exists ym 2 Fix(fm) such that

(Tm; Am; fm) is non-twist around ym and p is a type of Aym
m
. Furthermore,

since En(Tm) � Am, from Proposition 1.6.5 we get ~E(Tm; Am; fm) 6= ;.

So if we set pm = p then f(Ti; Ai; fi); yi; pig
m

i=1 is a sequence of partial

reductions of (T1; A1; f1). Therefore, if we de�ne (S; P; g) = (T1; A1; f1)

and (S; P ; g) = (Tm; Am; fm) then f(S; P ; g); Kg is a complete reduction

of (S; P; g).

From the properties of an (r; p; q)-model listed in Proposition 1.9.3 we

get that jP j = jP
Æ
j = r and q is a rotation index associated to the type p.

It follows that p(S; P ; g) = p and q(S; P ; g) = q. Moreover, n(S; P ; g) = 0

since (S; P ; g) is 0-orbital. Finally,

S�
p
(r + lp) n f2p; 3p; : : : ; �pg � Per(g) � S�

p
(r); (1.25)

where lp = p+ q� (q mod p) and �p is the largest multiple of p smaller than

r + p+ q + 1. From (ii) it follows that

Per(g) = K [k Per(g): (1.26)

By Remark 1.2.2, the theorem follows from (1.25) and (1.26) by taking C =

k Per(g).

57

Chapter 2

The set of periods for tree maps

2.1 Introduction. How to compute the set of

periods of a tree map

The aim of this chapter is to characterize the set of periods of a tree map

g : S �! S. In the Introduction to Chapter 1 we made a detailed discussion

about which is the more natural approach to this problem, and we proposed

a strategy consisting of three consecutive stages. Let us briey recall that

programme:

1. For each periodic orbit P of g, calculate the set �P of periods of the cor-

responding P -monotone model fP : TP �! TP or, if it is not possible,

estimate the largest possible subset of �P .

2. Prove that �P is contained in the set of periods of each tree map

exhibiting an orbit with the pattern of P . In particular, �P � Per(g).

3. Consider each orbit P of g and its associated �P , and then obtain the

structure of the set of periods of g by describing the structure of the

(perhaps uncountable) union of all sets �P .

Chapter 1 has been devoted to perform Step 1 of the above programme

in the case of piecewise monotone tree maps. That is, given a monotone

model (T; P; f), we have calculated (as large as possible) subsets of Per(f).

This estimation has been done by studying the loops of the Markov P -graph

of f . This task is relatively simple (Lemma 1.4.6 and Theorem 1.4.7) when

the Markov P -graph of f contains a special kind of loops, which we called

external in Section 1.4. However, when the orbit P is twist (that is, when

it presents certain rotational behavior around a �xed point according to the

de�nition in page 30), the Markov P -graph of f lacks this kind of loops,

and thus the results of Section 1.4 cannot be directly used. This gave rise

58

to all the work of Section 1.6, where the sets of periods of twist models

were studied. In particular, the notion of a sequence of partial reductions

f(Ti; Pi; fi); yi; pig
m

i=1 was introduced in order to relate the set of periods of

a monotone twist model (T1; P1; f1) to the set of periods of its associated

(non-twist) reduced model (Tm; Pm; fm). The construction of a sequence of

partial reductions was the most complicated part of Chapter 1, involving

many results with lengthy technical proofs.

The goal of this chapter is to implement the above strategy in full. In

particular we perform again Step 1 but, in doing it, we use a new simple and

powerful argument which allows us to simplify the proofs at the same time

that we improve the results we obtain. This will give rise to a revised version

of the above strategy that will be implemented below. Next we briey outline

this slightly modi�ed version of Step 1. Its detailed implementation is the

matter of Section 2.3.

Let g : S �! S be a tree map and let P be a periodic orbit of g. We

want to know which other orbits the map g will necessarily have, depending

only on the combinatorics of gj
P
. The set of periods of all these orbits will

be called the set of periods forced by P , and will be denoted by �P . To

estimate it we proceed as follows. First we consider the model (S1; P1; g1)

with S1 = hP iS, P1 = P and g1 = r Æ g, where r : S �! hP iS is the

natural retraction. It is easy to see that Per(g1) � Per(g). Next we carry

out a reduction process to obtain what we have called a sequence of block

reductions f(Si; Pi; gi); yi; pig
m

i=1, such that:

(i) (Si; Pi; gi) is a periodic model with jPij = pijPi+1j for 1 � i � m.

(ii) Pi is twist around yi for 1 � i < m.

(iii) Per(gi) � pi Per(gi+1) for 1 � i < m.

(iv) Pm is non-twist.

Observe that no additional assumptions of monotonicity or y-expansivity

are made on each model (Si; Pi; gi). In particular, we are making use of a

generalized notion of a twist orbit (see Section 2.3) which does not impose

that the model is y-expansive as in Chapter 1.

From the de�nition of a sequence of block reductions it easily follows that

Per(g) � f1; p1; p1p2; : : : ; p1p2 � � � pm�1g [p1p2 : : : pm�1 Per(gm). To complete

Step 1 of our new strategy we consider a Pm-monotone model (T; Pm; f)

associated to (having the same pattern of) (Sm; Pm; gm) and we estimate the

set of periods of f . We prove that, since (Sm; Pm; gm) is non-twist, (T; Pm; f)

is also non-twist. Therefore, it is unnecessary to construct a sequence of

partial reductions of (T; Pm; f), and we can directly use Lemma 1.4.6 and

Theorem 1.4.7 to calculate Per(f).

59

In this new approach, we can forget about all the complicated and techni-

cal work of Section 1.6, which was necessary in order to construct a sequence

of partial reductions of a twist monotone model. The key point of this im-

provement is that a sequence of block reductions is much easier to construct.

As an extra advantage, in this new approach it is easier to relate the set of

periods of g to that of (Sm; Pm; gm).

In view of what has been said above, we propose a revised strategy in

order to estimate the set of periods of a tree map g : S �! S, which can be

arranged according to the following scheme:

Step 1. Given a model (S; P; g), construct a sequence of block reductions

f(Si; Pi; gi); yi; pig
m

i=1 of (S; P; g). Then,

Per(g) � f1; p1; p1p2; : : : ; p1p2 � � � pm�1g [p1p2 : : : pm�1 Per(gm):

Step 2. Suppose that (Sm; Pm; gm) is a non-twist model and let (T; Pm; f)

be a monotone model with the same pattern of (Sm; Pm; gm). We

want to estimate a subset �Pm of the set of periods of (T; Pm; f);

which is as large as possible. Since (Sm; Pm; gm) is non-twist, as we

shall see, (T; Pm; f) is also non-twist. Therefore, the set �Pm can

be estimated directly by using Lemma 1.4.6 and Theorem 1.4.7.

Step 3. Prove that �Pm is contained in the set of periods of each model

having the pattern of (T; Pm; f). In particular, �Pm � Per(gm).

Thus, from Step 1,

Per(g) � �P := f1; p1; p1p2; : : : ; p1p2 � � � pm�1g [p1p2 : : : pm�1�Pm

(observe that the set �P depends on the sequence of block reduc-

tions f(Si; Pi; gi); yi; pig
m

i=1 and, therefore, it is not uniquely de-

�ned).

Step 4. Consider each orbit P of g and its associated �P . Then we obtain

the structure of the set Per(g) by describing the structure of the

(perhaps uncountable) union of all sets

�P = f1; p1; p1p2; : : : ; p1p2 � � � pm�1g [p1p2 : : : pm�1�Pm :

To state the main result of this chapter, which gives a characterization of

the sets of periods of tree maps, we need to introduce some notation. The

basic tool in giving the structure of these sets of periods are the Baldwin's

orderings p�, which were de�ned in Chapter 1 (see page 8). We also recall

that an initial segment of the ordering p� is de�ned to be any set I such

60

5

9

13

17

21

2

6

10

14

18

3

7

11

15

19

...
...

...

3 � 4

5 � 4

7 � 4

(Sharkovskii � 4)
...

4 � 4

2 � 4

...

1

4

Figure 2.1: The 4� ordering. The symbol ! stands for 4>.

that if m 2 I and m p> k then k 2 I. It is not diÆcult to see that I has at

most maxf1; p� 1g p�-maximal elements.

Let p 2 N . For each 1 � j < p, the set fn 2 N n f1g : n � j (mod p)g

will be denoted by N j
p
. Given an initial segment I of the p� ordering, the

set of all 1 � j < p such that I \ N j
p
6= ; will be denoted by B(I).

To understand how the set B(I) relates to the structure of the p� or-

dering, it may be useful to visualize p� as a diagram where 1 is the least

element, above it there are all the multiples of p arranged in the order induced

by Sharkovskii ordering, and �nally above there are all the nonmultiples of

p arranged as p � 1 branches according to their congruence class modulo p,

in reverse ordering with respect to the usual ordering on the integers (see

61

Figure 2.1 for an example where p = 4).

Observe that, in the diagram of the p� ordering proposed above, B(I)

can be thought as the set of branches of nonmultiples of p which intersect I.

Let S and eS be trees and let p � 2 be an integer. We will write S A peS
to denote that S contains a subtree W with p endpoints such that eS is

homeomorphic to a connected component of S n Int(W), and each connected

component of S n Int(W) has at least jEn(eS)j endpoints. Observe that, since
there are p connected components of S n Int(W) and each of them has at

most one endpoint which is not an endpoint of S (the common point with

W), it follows that jEn(S)j � p(jEn(eS)j � 1).

We will denote by � the set of all �nite non-empty sequences of positive

integers (p1; p2; : : : ; pm) such that pi � 2 for 1 � i < m. Given a tree S we

will denote by �S the set of all (p1; p2; : : : ; pm) 2 � for which there exists a

sequence of trees (S1; S2; : : : ; Sm) verifying the following conditions:

(S 1) S � S1, Si A piSi+1 for 1 � i < m and jEn(Sm)j � pm.

(S 2) Si is not a star for 1 � i < m.

In Lemma 2.6.1 we show that conditions (S 1{2) imply the following ones:

(S 3) m � 1 + log2(jEn(S)j � 2) whenever m � 3.

(S 4) p1 � E1 := jEn(S)j and pi � Ei :=
Ei�1

pi�1
+ 1 for 2 � i � m.

Observe that, by (S 3{4), �S is �nite for each tree S.

For any �nite non-empty sequence of positive integers s = (p1; p2; : : : ; pm)

we set Ks = fp1; p1p2; : : : ; p1p2 � � � pm�1g (which is empty whenever m = 1)

and dse = p1p2 � � � pm 2 N .

Theorem C (Characterization of the sets of periods of tree maps).

For each tree map g : S �! S there exists a �nite set S � �S such that

Per(g) =
[
s2S

(Ks [Fs [(Is n dsef2; 3; : : : ; �sg))

where, for each s = (p1; p2; : : : ; pm) 2 S, �s is a non-negative integer (when

�s < 2 we understand that dsef2; 3; : : : ; �sg = ;) and

(a) Is is an initial segment of the dse� ordering such that each dse�-maximal

element of Is belongs to f1g [p1p2 � � �pm�1(N [21).

(b) If Is (f1g [dseN then �s = 0 and Fs = ;.

(c) Fs is disjoint from Ks[Isndsef2; 3; : : : ; �sg and FsndseN �
S

j2B(Is)
N jdse.

(d) Fs is �nite (or empty). When Fs 6= ;, we have minFs � �sdse=2 and

jFsj < jB(Is)jjEn(S)j+ (�s + 2)=2.

62

x17x20

v2

x5

x8

x11

x14

x1 x10

x22

x15

x18

x21

x6
x12

x9

y3

x24

v8 v5 y1

x4

x25

v1 v4 v7 v10
y2

x2

x23
v3

v6

v9

x3

x13 x16 x19

x7

y

Figure 2.2: A (25; 3; 8)-model. We have g(xi) = xi+1 mod 25 for 1 � i � 25,

g(y) = y, g(vi) = vi+1 for 1 � i � 9, g(v10) = x2 and g(yi) = yi+1 mod 3 for

1 � i � 3.

Let us see some examples. Assume that g : S �! S is an (r; p; q)-model

according to the de�nition given at page 48, and take r = 14, p = 4 and

q = 0 (see Figure 1.5). By checking the loops of the Markov graph of g one

easily gets (see also Case 2 of Proposition 1.9.3) that Per(g) = S4(14) n f8g.

Therefore, Theorem C holds with s = (4), S = fsg, Fs = ;, Is = S4(14) and

�s = 2.

Assume now that g : S �! S is a (25; 3; 8)-model, which corresponds to

Case 3 of Proposition 1.9.3 (see Figure 2.2). As above, it is not diÆcult to

check that Per(g) = f25; 28; 31; 62; 65; 68g[S3(34)nf6; 9g. Hence, Theorem C

holds by taking s = (3), S = fsg, Fs = f25; 28; 31; 62; 65; 68g, Is = S3(34)

and �s = 3.

Theorem C tells us that (up to an explicitly bounded �nite set) the set

of periods of any tree map is a �nite union of initial segments of Baldwin's

orderings p� and the possible values of p are given in terms of the set of

sequences �S. This set, by de�nition, depends entirely on the combinato-

rial properties of the tree S. Let us see some examples (we use the above

notations).

Assume that S is an n-star for some n � 2. Let us see that �S =

f(1); (2); : : : ; (n)g. Indeed, let s = (p1; p2 : : : ; pm) 2 �S . By (S 1), S contains

a tree S1 which, by (S 2), is not a star when m > 1. Hence, m = 1 and

Ks = ; for each s 2 �S. On the other hand, p1 � n by (S 4). Therefore,

by Theorem C, the set of periods of any continuous map from an n-star into

itself is

63

[
1�p�n

(Fp [(Ip n pf2; 3; : : : ; �pg))

where Ip is an initial segment of the p� ordering and Fp and �p satisfy (b{

d). Although this statement di�ers (in a �nite set) from that of Baldwin's

theorem, in fact from the proof of Theorem C one gets that �p = 0 and

Fp = ; for all 1 � p � n. This is due to the very special fact that if a

star map g has a k-periodic orbit of type p with k =2 pN , then g
p exhibits a

horseshoe and thus Per(g) � pN . This is not true for a general tree map.

Assume now that S is the tree obtained as a union of a k-star T and

k-many disjoint n-stars (with k; n � 3), each attached to T by identifying

one of its endpoints with an endpoint of T . Observe that jEn(S)j = k(n�1).

In this case, by using (S 1{4), it is not diÆcult to check that

�S = f (p) : 1 � p � k(n� 1)g [f (p1; p2) : 2 � p1 � k ; 1 � p2 � ng

[f (p1; p2) : k < p1 � k(n� 1) ; 1 � p2 � 2g:

Thus, by Theorem C the set of periods of each tree map from S into itself

is (up to a �nite set) a union of initial segments of the orderings p�, for

1 � p � 2k(n� 1) = 2jEn(S)j.

Although it is relatively simple (for a �xed tree S) to compute the set

of sequences �S in terms of the combinatorial properties of S, Theorem C

does not tell us how to compute the subset S of �S corresponding to a given

tree map g : S �! S. This set (as it can be easily inferred from the proof of

the theorem) depends strongly on the map g. Therefore, Theorem C can be

viewed as a \structure theorem", that is, a generic description of the set of

periods of a tree map in terms of the combinatorics of the tree. Moving in

this direction, the accuracy of that description arises as a natural question.

In this sense, we have the following converse of Theorem C:

Theorem D. Given a �nite set S � � and a family fFs; Is; �sgs2S such

that, for each s = (p1; p2; : : : ; pm) 2 S, Fs is a �nite subset of N , Is is an

initial segment of the dse� ordering whose dse�-maximal elements belong to

f1g[p1p2 � � � pm�1(N [2
1), and �s is a non-negative integer such that �s = 0

when Is (f1g [dseN , there exist a tree S and a tree map g : S �! S such

that S � �S and

Per(g) =
[
s2S

(Ks [Fs [(Is n dsef2; 3; : : : ; �sg)) :

From the proof of Theorem D, one can easily compute an upper bound for

the number of endpoints of the tree S in terms of the family fFs; Is; �sgs2S.

64

However, in the spirit proposed above, this estimate for the size of S is

unnecessary and has not been made explicit in the statement of the theorem.

In fact, this is the reason why no additional assumptions on the �nite sets Fs

are made. Indeed: given any tree map f : T �! T and any �nite set F � N ,

it is not diÆcult to construct a tree S � T and a tree map g : S �! S such

that Per(g) = Per(f) [F (see Lemma 2.9.1).

Theorems C and D give a characterization of the tree-realizable sets of

periods. That is, they describe which sort of subsets of N can be sets of

periods of tree maps. This goes in the direction of Theorem 3.1 of [22],

which states that a subset of N is a graph-realizable set of periods if and only

if it coincides, up to a �nite set, with a �nite union of sets of the form lN

and f2nk : n � 0g. An analogous result for tree maps can be found in [14]

(Theorem E). However, both characterizations depend on a �nite set which

is not described.

This chapter is organized as follows. In Section 2.2 we recall the notions

and results from [3] concerning the minimality properties of monotone mod-

els, which will be strongly used in the rest of the chapter. In Sections 2.3, 2.4

and 2.5 we carry out respectively Steps 1, 2 and 3 of the strategy proposed

above. In Section 2.6 we perform Step 4 and prove Theorem C. The full im-

plementation of Step 3 depends on Theorem 2.5.1, a crucial result which we

state (without proof) and use in Section 2.5. The proof of Theorem 2.5.1 has

been separated into two cases. The �rst one is treated in Section 2.7. The

proof of the second case, which we carry out in Section 2.8, is complicated

and requires a variety of results and techniques borrowed from [2] (Nielsen

�xed point classes, index theory, graph patterns). Due to the complexity of

the proof, Section 2.8 has been divided into several subsections. Finally in

Section 2.9 we prove Theorem D.

2.2 Minimality of the dynamics of monotone

models. Preliminary results

The aim of this section is to recall the minimality properties of the dynamics

of monotone models given in [3].

Let T be a tree and let A � T be a �nite subset of T . The pair (T;A)

will be called a pointed tree. A nonempty set Q � A is said to be a discrete

component of (T;A) if either jQj > 1 and there exists a connected component

C of T n A such that Q = Cl(C) \ A, or jQj = 1 and Q = A. We say that

two pointed trees (T;A) and (T 0
; A

0) are equivalent if there exists a bijection

� : A �! A
0 which preserves discrete components. The equivalence class of

65

a pointed tree (T;A) will be denoted by [T;A].

Let (T;A) and (T 0
; A

0) be equivalent pointed trees, and let � : A �!

A and �
0 : A0 �! A

0 be maps. We will say that � and �
0 are equivalent

if �0 = ' Æ � Æ '�1 for a bijection ' : A �! A
0 which preserves discrete

components. The equivalence class of � by this relation will be denoted by

[�]. If [T;A] is an equivalence class of pointed trees and [�] is an equivalence

class of maps then the pair ([T;A]; [�]) will be called a pattern. We say that

a model (T;A; f) exhibits a pattern (T ;�) if T = [T;A] and � = [f j
A
]. This

pattern will be denoted by [T;A; f].

A well known quantitative measure of the dynamical complexity of a

model which is widely used is the topological entropy (see [1]). It is an impor-

tant topological invariant which is de�ned for continuous maps on compact

metric spaces. The next theorem tells us that each pattern has a minimal

model both from the point of view of its combinatorial simplicity (monotonic-

ity) and its dynamical complexity (minimization of topological entropy).

Theorem 2.2.1 (Theorem A of [3]). Let (T ;�) be a pattern. Then the

following statements hold.

(a) There exists a monotone model (T;A; f) exhibiting the pattern (T ;�).

(b) The topological entropy of f is the minimum within the class of models

exhibiting the pattern (T ;�).

The dynamics of monotone models is also minimal in a sense di�erent

from the one given by Theorem 2.2.1(b). To precise this, we recall some

more notions and results from [3].

Let f : T �! T be a tree map, and let x; y 2 T be �xed points of fn for

some n 2 N . We say that x and y are f -monotone equivalent if either x = y

or fnjhx;yi is monotone. Given a model (T;A; f), we say that a periodic point

of f is A-signi�cant if it is not f -monotone equivalent to any element of

A[V (T) and its period is minimal within its f -monotone equivalence class.

Remark 2.2.2. It is easy to see that if x and y are f -monotone equivalent

then f
i(x) and f

i(y) are also f -monotone equivalent, for each i � 0.

Let (T;A; f) be a model exhibiting a pattern (T ; [�]). Any (unordered)

binary subset of a discrete component will be called a basic path of (T;A).

The (T ; [�])-path graph is the oriented graph whose vertices are in one-to-one

correspondence with the basic paths of (T;A) and there is an arrow from the

vertex i to the vertex j if and only if the corresponding basic paths satisfy

�j � h�(�i)i. We will say that a loop �0 ! �1 ! : : : ! �n�1 ! �0 of the

(T ; [�])-path graph and a point x 2 T are associated if f i(x) 2 h�i mod ni for

each i � 0. We recall that a loop is called simple if it is not an n-repetition

of any other loop with n � 2 (see page 19).

66

Theorem 2.2.3 (Theorem C of [3]). Let (T;A; f) be a monotone model

exhibiting a pattern (T ;�). Then the following statements hold.

(a) For each A-signi�cant point x of f of period n there exists a unique

simple loop � of length n of the (T ;�)-path graph such that x and � are

associated.

(b) Each simple loop � of length n of the (T ;�)-path graph is associated

either to an A-signi�cant point of f of period n or to a periodic point

which is f -monotone equivalent to a point of A[V (T) and whose period

is a divisor of n. In both cases, the point associated to � is unique up to

f -monotone equivalence.

Theorem 2.2.4 (Theorem D of [3]). Let (T;A; f) be a model exhibiting a

pattern (T ;�). Let � be a simple loop of length n of the (T ;�)-path graph.

Then there exists a �xed point x of f 2n such that � and x are associated.

Note that the (T ;�)-path graph is a combinatorial object uniquely as-

sociated to the pattern (T ;�). That is, it can be constructed by using only

combinatorial data of the pattern, independently from the particular choice

of the representatives of T and �. This fact is crucial to understand why

Theorems 2.2.3 and 2.2.4 imply that the dynamics of monotone models are

minimal from the point of view of the set of periods. Indeed, by Theo-

rem 2.2.3, essentially there is a one-to-one correspondence between the loops

of the (T ;�)-path graph and the signi�cant periodic points of a monotone

model exhibiting (T ;�). On the other hand, Theorem 2.2.4 tells us that

each loop of length n in the (T ;�)-path graph gives rise to a periodic point

(whose period is a divisor of 2n) on each model exhibiting the pattern (T ;�).

Therefore, the set of periods of a monotone model is essentially contained

(up to f -monotone equivalence and period-doubling) on the set of periods of

each model of the same pattern.

2.3 Step 1. A reduction process

The aim of this section is to perform Step 1 of the strategy described in

Section 2.1.

We start by introducing the notion of p-block reduction and studying its

properties. This will be the key tool of the reduction process.

Let S be a tree and let eS be a subtree of S (note that, for each connected

component K of S n eS, the set Cl(K) \ eS consists of a single point). The

natural retraction r : S �! eS is de�ned as follows. For each x 2 eS we set

r(x) = x, and for each x 2 S n eS we de�ne r(x) to be the unique point of

67

Cl(K)\ eS, where K is the connected component of S n eS containing x. It is

not diÆcult to see that r is well de�ned and continuous.

Let (S; P; g) be a periodic model. We will say that (S; P; g) has a p-

block structure (or simply a block structure) if there exists a partition P =

P1 [P2 [: : : [Pp with p � 2 such that hPiiS \ hPjiS = ; for i 6= j and

f(Pi) = Pi+1 mod p for 1 � i � p. Let ri : S �! hPiiS be the natural

retraction from S onto hPiiS for each 1 � i � p. A model (eS; eP; eg) is said
to be a p-block reduction of (S; P; g) if and only if (S; P; g) admits a p-block

structure and:

(i) There exists 1 � i � p such that eS = hPiiS, eP = Pi and jEn(eS)j =
minfjEn(hPjiS)jg

p

j=1.

(ii) eg = r1 Æ gjKp
Æ rp Æ gjKp�1

Æ : : : Æ r3 Æ gjK2
Æ r2 Æ gjK1

, where Kj stands for

hPi�j+1 mod piS for each 1 � j � p.

Observe that for a �xed partition P = P1[P2[: : :[Pp there are possibly

several di�erent p-block reductions of (S; P; g), since there can be several

choices for eS.
The notion of p-block reduction is de�ned only for p � 2. In order to unify

the notation and simplify the writing, given a monotone model (S; P; g) we

will say that the model (hP iS; P; r Æ g), where r : S �! hP iS is the natural

retraction, is a 1-block reduction of (S; P; g).

In the literature one can �nd several kinds of block structures and re-

lated notions for periodic orbits. In the interval case, Sharkovskii's square

root construction (see [42] or [8]) is an earlier example of a block structure.

Also the notion of extension, �rst appeared in [18], gives rise to some par-

ticular cases of block structures for interval periodic orbits. This notion was

subsequently used by several authors to characterize the cyclic permutations

exhibiting some kind of minimality property (the terms simple, minimal and

primary are used depending on that property: see for instance [26], [30] or

[10]). Finally, the notion of division, introduced in [35] for interval periodic

orbits and generalized in [13], [12] and [14] to 3-star, n-star and tree maps

respectively, has been used in a number of papers to study the set of periods

and the topological entropy.

The next lemma studies some basic properties of a p-block reduction.

Lemma 2.3.1. Let (eS; eP; eg) be a p-block reduction of a model (S; P; g), given

by a partition P = P1 [P2 [: : : [Pp. The following statements hold:

(a) En(eS) � eP .
(b) (eS; eP; eg) is a periodic model and j eP j = jP j=p.

(c) Let Q be the set of periodic points x of g such that gi(x) 2 hPi+1 mod piS
for i � 0. If x 2 Q then x is an n-periodic point of eg and an np-periodic

68

point of g, for some n 2 N . Therefore, Per(g) = pPer(eg) [R, where R

is the set of periods of all periodic points of g which do not belong to Q.

Proof. By assumption, hPiiS \hPjiS = ; for i 6= j and f(Pi) = Pi+1 mod p for

1 � i � p. Set Ki = hPiiS. Without loss of generality we can assume thateS = K1 and eP = P1. Statement (a) follows directly from the de�nition ofeS and eP . Since P is a periodic orbit and f(Pi) = Pi+1 mod p for 1 � i � p,

statement (b) follows from the fact that the sets hPiiS are pairwise disjoint.

Now we prove (c). Let ri : S �! Ki be the natural retraction from S onto

Ki for each 1 � i � p (we recall that eg = r1 Æ gjKp
Æ rp Æ gjKp�1

Æ : : : Æ r3 Æ

gjK2
Æ r2 Æ gjK1

). From the de�nition of a natural retraction and the fact that

En(Ki) � P for 1 � i � p, it follows that for each z 2 eS we have�
Orbgp(z) = Orb

eg(z) if gi(z) 2 Ki+1 mod p for i � 0; oregj(z) 2 eP for some j � 0 otherwise.
(2.1)

Now let x 2 Q. In particular, x is a periodic point of g and x 2 K1 = eS.
Since gi(x) 2 Ki+1 mod p for i � 0 and Ki \Kj = ; for i 6= j, it follows that

jOrbg(x)j = np for some n 2 N . Moreover, from (2.1) we get that Orbgp(x) =

Orb
eg(x). Therefore, x is also a periodic point of eg, and jOrb

eg(x)j = n.

Note that when p = 1, Lemma 2.3.1(c) states that Per(r Æ g) � Per(g),

where r : S �! hP iS is the natural retraction. This is well known even when

one replaces hP iS by any subtree of S (Corollary 4.2 of [16]).

When we are able to calculate the set of periods of a p-block reductioneg, Lemma 2.3.1(c) gives pPer(eg) as an estimate of Per(g), the set of periods

of the non-reduced model (S; P; g). However, this estimate can be very bad.

In fact, as the following example shows, the set R of Lemma 2.3.1(c) can

be in�nite even when (S; P; g) is monotone. Let S = [0; 1] � R and set

P = fxig
6
i=1 with x1 < x4 < x2 < x5 < x3 < x6. Let g be a P -monotone

map verifying g(xi) = xi+1 mod 6 for 1 � i � 6 (in the terminology of [8], the

orbit P is a 2-extension of the pattern (1; 2; 3)). It is not diÆcult to see that

g has a 3-periodic orbit. Thus, from Sharkovskii's Theorem it follows that

Per(g) = N . On the other hand, (S; P; g) has a 3-block structure de�ned

by the partition P = P1 [P2 [P3 where P1 = fx1; x4g, P2 = fx2; x5g

and P3 = fx3; x6g. Thus (S; P; g) admits a 3-block reduction (eS; eP; eg) witheP = P1 and eS = [x1; x4]. Moreover eP is a 2-periodic orbit of eg and eg iseP -monotone. It follows that Per(eg) = f1; 2g and, hence, pPer(eg) = f3; 6g.

To overcome the problem pointed out in the above example, we introduce

the notion of a twist orbit. A twist orbit is a particular class of block structure

for which it can be shown that, with the notation of Lemma 2.3.1, if (S; P; g)

69

is monotone and P is a twist orbit then R reduces to f1g and thus Per(g) =

pPer(eg) [f1g. The notion of a twist orbit is closely related to the idea of a

division (see [14]). In fact, the name twist orbit was used in [14] to denote a

notion that is very similar to the one we propose here.

In the rest of this chapter we will freely use the following notations and

notions introduced in Chapter 1: S�
p
(page 14), y-branches (page 21), type

and y-typi�able set (page 22), Ay, y-expansive model and rotation index

associated to a type (page 23), typical loop and E(T;A; f) (page 24), AÆ and

n-orbital (page 25) and, �nally, eE(T;A; f) (page 34).
Let (S; P; g) be a periodic model, let y 2 hP i n P and let Z1; Z2; : : : ; Zp

be the y-branches. We will say that (S; P; g) and P are twist around y (or

simply twist) if either jP j = 1 or (S; P; g) has a p-block structure de�ned by

the partition P = [
p

i=1(P \ Zi). If jP j > 1 and there is no point y such that

(S; P; g) is twist around y then (S; P; g) and P will be called non-twist.

We remark that if (S; P; g) is a twist model then P has a division (ac-

cording to the de�nition given in [14]), but the converse is true only when S

is an interval.

Remark 2.3.2. Let (S; P; g) be twist around y with jP j > 1 and let p be

the number of y-branches. Since y =2 P , P is y-typi�able by Remark 1.4.1.

Moreover, it is not diÆcult to see that the type of the set P is unique and

it coincides with p. If in addition (S; P; g) is a y-expansive monotone model

then it is twist around y according to the de�nition in page 30. Therefore,

this new de�nition of a twist model is a generalization of the analogue concept

introduced at the beginning of Section 1.6 for y-expansive models.

The next lemma shows that a twist model always admits a p-block re-

duction. Hence, in view of Lemma 2.3.1(c) the computation of its set of

periods can be reduced to the computation of the (simpler) set of periods of

the reduced model. This is what motivates the use of a reduction process of

a model performed by a sequence of block reductions, as a �rst stage in the

study of its set of periods. We recall that the notation S A peS (where S andeS are trees and p � 2 is an integer) has been introduced at page 62.

Lemma 2.3.3. Let (S; P; g) be a twist model such that jP j > 1 and En(S) �

P . Then there exist an integer p > 1 and a p-block reduction (eS; eP; eg) of

(S; P; g) such that S A peS (hence, jEn(eS)j � jEn(S)j=p+ 1).

Proof. Let y 2 hP i nP = S nP be a point such that (S; P; g) is twist around

y. Let Z1; Z2; : : : ; Zp be the y-branches and let W be the closure of the

connected component of S n P containing y. Since jP j > 1 and En(S) � P ,

it follows that p > 1 and jEn(W)j = p.

70

Since (S; P; g) is twist around y, the partition [
p

i=1(P \ Zi) de�nes a

block structure for (S; P; g). Thus there exists a p-block reduction (eS; eP; eg)
of (S; P; g). In particular, jEn(eS)j = minfjEn(Zi)jg

p

i=1. Hence, S A peS
holds since Zi are the connected components of S n Int(W), jEn(W)j = p

and Zi has at least jEn(eS)j endpoints for 1 � i � p.

Before de�ning the notion of a sequence of block reductions, we need to re-

mark that until the end of this chapter we will deal frequently with monotone

models (see for instance Step 2 of the strategy described in Section 2.1, where

a monotone model of a given pattern has to be chosen). We stress the fact

that, from now on, all the considered monotone models will be in addition

canonical models (see page 26 for a de�nition). The notion of a canoni-

cal model was �rst introduced in [3] to be a special kind of \ultra-reduced"

monotone model. In Theorem 1.5.3 we showed that, given a monotone model

(S;B; g), a canonical model (T;A; f) can be constructed from (S;B; g) es-

sentially by collapsing invariant forests which do not intersect B. It easily

follows that the patterns [T;A; f] and [S;B; g] coincide. Thus from Theo-

rem 2.2.1(a) it follows that each pattern admits a canonical model (compare

with Theorem B of [3]).

Also we need to recall (see Proposition 1.5.4) that for each periodic (and

thus 0-orbital) canonical model (T;A; f) there exists y 2 Fix(f) such that

(T;A; f) is y-expansive. This property will be frequently used for the rest

of this chapter. We will simply say that (T;A; f) is a y-expansive canonical

model, and this phrase will mean that y is a �xed point of f and that we

have chosen it in such a way that (T;A; f) is y-expansive.

Now we are ready to de�ne in detail the notion of a sequence of block

reductions, that will allow us to perform the reduction of a twist model to a

model whose set of periods can be computed in an easier way. This notion

is similar in some sense to the notions z-tower and snowake introduced by

Blokh in [24].

Let (S; P; g) be a periodic model. A sequence f(Si; Pi; gi); yi; pig
m

i=1 will

be called a sequence of block reductions of (S; P; g) if and only if:

(SBR 1) (S1; P1; g1) is a 1-block reduction of (S; P; g).

(SBR 2) (Si+1; Pi+1; gi+1) is a pi-block reduction of (Si; Pi; gi) such that Si A

piSi+1 (thus jEn(Si+1)j � jEn(Si)j=pi+1) and pi � 2 for 1 � i < m.

(SBR 3) Pi is twist around yi and Si is not a star (in particular, 3 <

jEn(Si)j � jPij) for 1 � i < m.

(SBR 4) Either Pm is non-twist or Sm is a star. In both cases, one of the

following two statements holds:

(SBR 4.1) jPmj = 1, pm = 1 and ym is the unique element of Pm

71

or

(SBR 4.2) (T;A; f) is ym-expansive and pm is a type of Aym , for some

canonical model (T;A; f) of the pattern [Sm; Pm; gm].

Remark 2.3.4. Given a sequence of block reductions f(Si; Pi; gi); yi; pig
m

i=1

of (S; P; g), from (SBR 1{2) and Lemma 2.3.1 it follows that En(Si) � Pi

and Pi is a periodic orbit of gi for each 1 � i � m. Moreover, jP j =

p1p2 � � � pm�1jPmj, Per(g) � Per(g1) and Per(gi) � pi Per(gi+1) [f1g for 1 �

i < m. Thus Per(g) � f1; p1; p1p2; : : : ; p1p2 � � � pm�1g [p1p2 : : : pm�1 Per(gm).

The next proposition tells us that the reduction process consisting of a

sequence of block reductions is always possible, thus completing Step 1 of

the programme described in Section 2.1.

Proposition 2.3.5. Each periodic model (S; P; g) admits a sequence of block

reductions.

Proof. Let us formally denote f(Si; Pi; gi); yi; pig
k

i=1 by B
k for any k � 0 (by

convention we set B0 = ;).

We start by de�ning (S1; P1; g1) to be a 1-block reduction of (S; P; g). By

Lemma 2.3.1(a), En(S1) � P1. Moreover, (SBR 1{3) trivially hold with 1

instead of m. Now we proceed by induction on k.

Let k � 1 and assume that we have constructed a sequence Bk�1 and a

model (Sk; Pk; gk) such that:

(a) Pk is a periodic orbit with En(Sk) � Pk.

(b) (SBR 1{3) hold with k instead of m.

If, in addition, there exist yk and pk such that (SBR 4) holds with k instead

of m then Bk is a sequence of block reductions and we are done. So, we

must de�ne yk and pk and then decide whether Bk is a sequence of block

reductions (in this case we stop by setting m = k), or we construct a model

(Sk+1; Pk+1; gk+1) such that Bk and (Sk+1; Pk+1; gk+1) verify (a) and (b) with

k + 1 instead of k and we continue the induction procedure.

Assume that jPkj = 1. In this case we set pk = 1 and de�ne yk to be the

unique element of Pk. Then B
k veri�es (SBR 4.1) and thus it is a sequence

of block reductions.

When jPkj > 1 we consider two cases.

Case 1. Either Pk is non-twist or Sk is a star.

Let (T;A; f) be a canonical model of [Sk; Pk; gk]. Therefore, (T;A; f) is

orbital, because jAj = jPkj > 1 and A is a periodic orbit by (a). Then, by

72

Proposition 1.5.4, there exists yk 2 Fix(f) such that (T;A; f) is yk-expansive.

Let pk be a type of A
yk . Then Bk veri�es (SBR 4.2) and thus it is a sequence

of block reductions.

Case 2. Pk is twist and Sk is not a star.

Clearly, jPkj > 1. We take yk so that Pk is twist around yk. Since (a)

holds, by Lemma 2.3.3 there exist a model (Sk+1; Pk+1; gk+1) and an integer

pk � 2 such that (Sk+1; Pk+1; gk+1) is a pk-block reduction of (Sk; Pk; gk) and

Sk A pkSk+1. By Lemma 2.3.1, En(Sk+1) � Pk+1 and Pk+1 is a periodic

orbit of gk+1. Therefore, Bk and (Sk+1; Pk+1; gk+1) verify (a) and (b) with

k + 1 instead of k. Moreover, from Lemma 2.3.1(b) we have that jPk+1j =

jPkj=pk < jPkj. Therefore, by the �niteness of P , this iterative construction

stops after �nitely many steps.

2.4 Step 2. Computing sets of periods of non-

twist canonical models

The aim of this section is to perform Step 2 of the strategy described in

Section 2.1 by estimating the set of periods of a canonical model exhibiting

the pattern of a given non-twist periodic model. The following lemma ensures

that such a canonical model is also non-twist.

Lemma 2.4.1. Let (S; P; g) be a periodic model and let (T;A; f) be a canon-

ical model of [S; P; g]. Then (T;A; f) is non-twist if and only if (S; P; g) is

non-twist.

Proof. Assume that (T;A; f) is twist around a point y 2 T nA. Since (T;A; f)

is a canonical model, En(T) � A. Set Z = Z(A)y and let Z1; Z2; : : : ; Zp be

the y-branches. We have f(A \ Zi) = A \ Zi+1 mod p for 1 � i � p. Note

that there exists a discrete component X of (T;A) such that X = Cl(Z) nZ.

Moreover, A \ Zi is a union of discrete components of (T;A) for 1 � i � p.

Let � : A �! P be a bijection which preserves discrete components and

gj
P
= � Æ f Æ ��1j

P
(such a bijection exists because (T;A; f) exhibits the

pattern [S; P; g]). Set Pi = �(A \ Zi) � P and let Wi be the closure of the

connected component of Snh�(X)iS which contains Pi for 1 � i � p. Observe

that W1;W2; : : : ;Wp are the w-branches for each point w 2 Int(h�(X)iS).

We have g(P \Wi) = �(f(��1(P \Wi))) = �(f(��1(Pi))) = �(f(A \ Zi)) �

�(A \ Zi+1 mod p) = Pi+1 mod p = P \Wi+1 mod p for 1 � i � p. Therefore,

(S; P; g) is twist around any point from Int(h�(X)iS).

The proof of the \only if" part of the lemma is analogous.

73

We recall that each periodic canonical model (T;A; f) is y-expansive for

some �xed point y of f . If in addition (T;A; f) is non-twist, then the set

of periods of f can be estimated by using the results of Chapter 1. This

has already been done in the proof of Theorem A by using Lemma 1.4.6 and

Theorem 1.4.7, which allowed us to compute periodic orbits of f by means

of the Markov f -graph of Ay. It turns out that all orbits obtained in this

manner satisfy the following property, which will be essential for the rest of

this chapter.

(?)-property. Let (T;A; f) be a y-expansive canonical model and let x be a

periodic point of f . We say that x satis�es the (?)-property if Orb(x)\Ay = ;

and x is associated to a unique simple loop in the Markov f -graph of Ay which

strictly contains a typical loop.

The next theorem, which is the main result of this section, is a particu-

lar instance of Theorem A for non-twist y-expansive canonical models. It

completes Step 2.

Theorem 2.4.2. Let (T;A; f) be a non-twist y-expansive canonical model

and let p be a type of Ay. Then Per(f) � S�
p
(jAj+ lp)nfp; 2p; 3p; : : : ; �pg for

some integers �; l � 0 such that lp � jEn(T)j � p and �p � 2jAj. Moreover,

each of these periods (except 1) corresponds to a periodic point which satis�es

the (?)-property.

Proof. Since A is a periodic orbit, (T;A; f) is 0-orbital (and thus 2-orbital)

and A
Æ = A. Hence, En(T) � A

Æ. Then, by Proposition 1.6.5, eE(T;A; f) 6=
;. Since in addition (T;A; f) is y-expansive, in the terminology of Chapter 1

we have that f(T;A; f); y; pg is a sequence of partial reductions of (T;A; f)

(see page 38). Therefore, if we take a rotation index q associated to the type

p, from the proof of Theorem A (see Section 1.7) by taking K = f1g and

k = 1, it follows that Per(f) � S�
p
(jAj + lp) n fp; 2p; 3p; : : : ; �pg for some

integers �; l � 0 such that lp � p+ q � (q mod p) and �p � jAj+ p + q + 1.

The fact that the periodic orbits which we obtain in this manner satisfy the

(?)-property follows from the proofs of Lemma 1.4.6 and Theorem 1.4.7.

Let us see that lp � jEn(T)j � p. Since lp � p + q � (q mod p) and

p + q � (q mod p) = 0 when q = 0 (recall that we are taking f1; 2; : : : ; pg

as the representatives of the classes of Z=pZ), it follows that lp = 0 �

jEn(T)j�p when q = 0. Assume that q > 0 and observe that the hypotheses

of Proposition 1.8.1 hold. From the proof of Proposition 1.8.1(b) (see, in

particular, (1.18), and recall that jX(A)j � jEn(T)j) it follows that 2p+ q�

1 � jEn(T)j. Therefore, lp � p+ q � (q mod p) � p + q � 1 � jEn(T)j � p.

74

Finally, �p � 2jAj follows from �p � jAj+ p+ q+1, Proposition 1.8.1(c)

when q = 0 and Proposition 1.8.1(e) when q > 0.

2.5 Step 3 and inclusion of periods

We start this section by stating Theorem 2.5.1 that allows us to compare

the periods of the models (Sm; Pm; gm) and (T; Pm; f) (which exhibits the

pattern [Sm; Pm; gm] by the assumptions of Step 2). This result, that will be

proved later, tells us that when (T; Pm; f) is a non-twist y-expansive canonical

model and it satis�es a piecewise linearity condition, then all the periods of

f computed in Theorem 2.4.2 are also periods of gm. In the second part of

this section we will prove Theorem 2.5.2 which, given a sequence of block

reductions, describes the set of periods forced by a periodic orbit of a tree

map. Theorem 2.5.2, whose proof uses Theorems 2.4.2 and 2.5.1, is the �nal

outcome of Steps 1, 2 and 3.

Next we introduce the piecewise linearity condition mentioned above. It

is well known that a tree T admits a taxicab metric d : T �! T which, by

de�nition, satis�es d(x; y) = d(x; z)+ d(z; y) for each x; y 2 T and z 2 [x; y].

Let I be a closed interval and let f : I �! T be continuous. We say

that f is linear if either f(I) reduces to a point, or there exist isometries

� : [0; 1] �! I and � : f(I) �! [0; 1] given by a taxicab metric on T and the

Lebesgue measure on [0; 1] such that �Æf Æ� is an aÆne map. A y-expansive

canonical model (T;A; f) will be called linear if f is linear on each A
y-basic

interval. Without loss of generality, every y-expansive canonical model can

be assumed to be linear.

Theorem 2.5.1. Let (S; P; g) be a non-twist model and let (T;A; f) be a

y-expansive linear canonical model of [S; P; g]. For each n 2 N such that

f has a periodic point of period n satisfying the (?)-property it follows that

n 2 Per(g).

In Section 2.7 we prove Theorem 2.5.1 when n is larger than a constant

M(S) which only depends on the number of endpoints and the number of

vertices of the tree S. The proof in the case n �M(S) is much more involved

and requires some strong machinery. It is performed in Section 2.8.

The next goal of this section is to summarize Steps 1, 2 and 3 by describing

the set of periods forced by a periodic orbit of a tree map. To this end we

need to introduce some more notation.

Let B = f(Si; Pi; gi); yi; pig
m

i=1 be a sequence of block reductions of a

model (S; P; g), where g : S �! S is a tree map and P is a periodic orbit

of g. To such a sequence of block reductions we will associate a 4-tuple

75

(s; �; l; �) = (s(B); �(B); l(B); �(B)), called a characteristic of B, which is

de�ned as follows:

� s = s(B) denotes the sequence (p1; p2; : : : ; pm);

� � = �(B) denotes the formal symbol Æj if (Sm; Pm; gm) is twist around

ym, and the symbol � otherwise;

� the non-negative integers l = l(B) and � = �(B) are set to 0 when

� = Æj. In the case � = �, let (T;A; f) be the ym-expansive canonical

model of [Sm; Pm; gm] given by (SBR 4.2) (note that, since � = �, Pm is

non-twist; in particular, jPmj > 1 and thus (SBR 4.1) does not hold).

Then, the numbers l and � are the ones provided by Theorem 2.4.2 for

the model (T;A; f): Observe that the assumptions of Theorem 2.4.2

hold (with p = pm) because, by Lemma 2.4.1, we know that (T;A; f)

is non-twist.

Note that, given a sequence of block reductions B, the sequence s(B) and

the symbol �(B) are uniquely determined, while the numbers l(B) and �(B)

depend on the election of a rotation index associated to the type pm (see the

proof of Theorem 2.4.2). Therefore, a characteristic of a sequence of block

reductions is not uniquely determined.

In what follows, S�

p
(n) denotes S�

p
(n) when � = � and Sp(n) when � = Æj.

Then, given a characteristic (s; �; l; �) of a sequence of block reductions of a

periodic model (S; P; g) we set:

�(s; �; l; �) := fjP jg [Ks [
�
S�

dse(jP j+ ldse) n dsef2; 3; : : : ; �g
�
:

Theorem 2.5.2 (The set of periods forced by a periodic orbit). Let

g : S �! S be a tree map, let P be a periodic orbit of g and let (s; �; l; �) be a

characteristic of a sequence of block reductions of (S; P; g). Then, Per(g) �

�(s; �; l; �).

Proof. Let f(Si; Pi; gi); yi; pig
m

i=1 be a sequence of block reductions of (S; P; g)

which has (s; �; l; �) as characteristic and set p = pm and k = maxKs = dse=p.

By Remark 2.3.4,

jP j = kjPmj and Per(g) � fjP j; 1g [Ks [k Per(gm): (2.2)

Now we consider the case � = Æj (that is, Pm is twist). Then, Sm is a star

by (SBR 4) and, by Baldwin's theorem (Theorem 2.12 of [16]), Per(gm) �

Sp(jPmj): From the de�nitions it is not diÆcult to see that f1g[kSp(jPmj) =

fkg[Skp(kjPmj) (in fact this already follows from Remark 1.2.2 when jPmj =2

pN). Therefore, from (2.2) it follows that

Per(g) � fjP j; 1g [Ks [kSp(jPmj) = fjP jg [Ks [Skp(kjPmj)

= fjP jg [Ks [
�
S�

dse(jP j+ ldse) n dsef2; 3; : : : ; �g
�
:

76

Now we consider the case � = �. Observe that, since Pm is non-twist,

jPmj > 1. Let (T;A; f), ym and p be given by (SBR 4.2). Then, (T;A; f)

is a ym-expansive canonical model of [Sm; Pm; gm] and p is a type of Aym .

Moreover, as it has been said before, the model (T;A; f) can be assumed to

be linear without loss of generality, and it is non-twist by Lemma 2.4.1.

By Theorem 2.4.2, Per(f) � S�
p
(jPmj + lp) n pf1; 2; 3; : : : ; �g. Moreover,

each of these periods corresponds to a periodic point which satis�es the (?)-

property. Thus, by Theorem 2.5.1, all these periods are also periods of gm. In

consequence, Per(gm) � S�
p
(jPmj+lp)npf1; 2; 3; : : : ; �g. Assume that we have

proved also that p 2 Per(gm). Then, Per(gm) � S�
p
(jPmj+ lp) n pf2; 3; : : : ; �g

and the theorem follows as above by using (2.2) and Remark 1.2.2.

To end the proof of the theorem it is enough to show that p 2 Per(gm).

To do it, we claim that A has type p. Let us prove the claim. To simplify the

writing, until the end of this proof xi will stand for x(Aym)i mod p for each

i � 0 (see page 22 for this notation and the ones used below; in particular,

we recall that the points xi are indexed according to the type p). Take

j 2 f1; 2; : : : ; pg and z 2 X(A) with xj � z (recall thatX(A) � A � A
ym and

that, since (T;A; f) is a canonical model, En(T) � A). Since f is (A[fymg)-

monotone and (ym; z)\A = ;, it follows that there exists z0 2 X(A) such that

ym � xj+1 � z
0 � f(z). In particular we have �A(z) = z

0. Since A is �nite,

by iterating this argument we obtain a periodic orbit fa0; a1; : : : ; apr�1g �

X(A) of �A with r � 1 such that ai � xk+i for some k 2 f1; 2; : : : ; pg and

0 � i � pr � 1. In particular, A has type pr.

Suppose that ai = xk+i for some 0 � i � pr� 1. Since p is a type of Aym ,

it follows that ai+p�1 mod pr � xk+i+p�1 = xk+i�1. Therefore, since f is (A [

fymg)-monotone, it follows that a
i = xk+i � f(xk+i�1) � f(ai+p�1 mod pr).

That is, ai+p mod pr = �A(a
i+p�1 mod pr) = a

i and, hence, A has type p. This

ends the proof of the claim in this case.

Now consider the case xk+i � a
i for all 0 � i � pr�1 and suppose that r >

1. Then xk � a
0, xk � a

p and T
0 = hfym; a

0
; a

pgi is a 3-star whose central

point is xk. Since f is (A [fymg)-monotone, f(T
0) = hfym; f(a

0); f(ap)gi.

Furthermore, from Remark 1.2.1 it follows that f(xk) = xk+1. Since a1 �

f(a0) and a
p+1 � f(ap), we have that T 1 = hfym; a

1
; a

p+1gi is a 3-star con-

tained in f(T 0) whose central point is xk+1. By iterating p times this ar-

gument we get that fx1; x2; : : : ; xpg is a periodic orbit of f contained in

V (T) \ Z
?(A), in contradiction with the fact that (T;A; f) is ym-expansive.

This ends the proof of the claim.

Finally we prove that p 2 Per(gm). Observe that X(A) is a discrete

component of (T;A). Since [T;A; f] = [Sm; Pm; gm], there exists a bijec-

tion � : A �! Pm which sends discrete components of (T;A) to discrete com-

ponents of (Sm; Pm). Let Z = Int(h�(X(A))iSm) and let w 2 Z. Since

77

gm Æ �jA = � Æ f j
A
and, by the claim above, A has type p, it easily follows

that gm(�(a
i)) �w �(ai+1) for 0 � i < p� 1 and gm(�(a

p�1)) �w �(a0).

Let r : Sm �! Cl(Z) be the natural retraction. Then r Æ gm(�(a
i)) =

�(ai+1) for 0 � i < p � 1 and r Æ gm(�(a
p�1)) = �(a0). Hence �(a0) is a p-

periodic point of r Æ gm and thus p 2 Per(r Æ gm). Then, the theorem follows

because Per(r Æ gm) � Per(gm) (see, for instance, Corollary 4.2 of [16]).

2.6 Step 4. Proof of Theorem C

The goal of this section is to perform Step 4 of the strategy described in

Section 2.1, while proving Theorem C. In doing this we will use two technical

lemmas. The �rst one shows that the �rst element of any characteristic of a

model (S; P; g) belongs to �S, and the second one studies the unions of the

sets �(s; �; l; �) corresponding to a �xed sequence s.

Lemma 2.6.1. Let g : S �! S be a tree map, let P be a periodic orbit of

g and let (s; �; l; �) be a characteristic of a sequence of block reductions of

(S; P; g). Then,

(a) s 2 �S

(b) (S 3{4) hold

(c) �dse � 2jP j when � = �

(d) l < jEn(S)j.

Proof. We will use the notation from properties (SBR 1{4) and from the

de�nition of a characteristic. In particular, s = (p1; p2; : : : ; pm).

Let us prove (a). From (SBR 2) it follows that all numbers pi are positive

integers such that pi � 2 for 1 � i < m. Moreover, pm is also positive by

(SBR 4). Therefore, s 2 �. On the other hand, (S 2) follows from (SBR 3),

and by (SBR 2) we have S � S1 and Si A piSi+1 for 1 � i < m. Thus to

prove (S 1) we only have to see that pm � jEn(Sm)j. This inequality trivially

holds when pm = 1. Hence, by (SBR 4), we may assume that pm is a type

of Aym , where (T;A; f) is a ym-expansive canonical model of [Sm; Pm; gm].

Therefore, pm � jEn(T)j. On the other hand, En(T) � A because (T;A; f)

is a canonical model. Since En(Sm) � Pm by Remark 2.3.4 and (T;A; f) and

(Sm; Pm; gm) have the same pattern, it follows that jEn(T)j = jEn(Sm)j.

Let us prove (b). Set ei = jEn(Si)j for 1 � i � m. Since (S 1) holds,

ei+1 � ei=pi + 1 for 1 � i � m� 1. Consequently, when m � 3 we have:

78

em�1 �
e1

p1p2 � � � pm�2
+

1

p2p3 � � � pm�2
+ � � �+

1

pm�2
+ 1

�
e1

2m�2 +
1

2m�3 + � � �+
1

2
+ 1

=
e1

2m�2 + 2(1�
1

2m�2) �
1

2m�2 (jEn(S)j � 2) + 2:

Thus, (S 3) follows from the fact that em�1 � 4 by (S 2).

Now we prove (S 4). Since e1 � E1, it follows from the de�nition of Ei

and a simple inductive argument that ei � Ei for 1 � i � m. Consequently,

we only have to show that pi � ei for 1 � i � m. For 1 � i � m � 1 this

follows directly from the fact that (Si+1; Pi+1; gi+1) is a pi-block reduction of

(Si; Pi; gi) (see (SBR 2)). And pm � em holds by (S 1). This ends the proof

of (S 4) and (b).

Now let us prove (c). When � = �, the model (Sm; Pm; gm) is non-twist.

Hence, by Lemma 2.4.1 (T;A; f) is also non-twist. From Theorem 2.4.2

we get that �pm � 2jPmj. By multiplying this inequality on both sides by

p1p2 � � � pm�1, we have that �dse � 2p1p2 � � � pm�1jPmj. Then (c) holds since,

by Remark 2.3.4, jP j = p1p2 � � � pm�1jPmj.

Finally we prove (d), which obviously holds when l = 0. Assume that

l > 0 (in particular, � = �). As above, this implies that (T;A; f) is a

non-twist model and from Theorem 2.4.2 we get that lpm � jEn(T)j � pm =

jEn(Sm)j�pm � jEn(S)j�pm. By multiplying on both sides by p1p2 � � � pm�1,

we get ldse � jEn(S)jp1p2 � � � pm�1 � dse. Since p1p2 � � � pm�1 � dse, we get

ldse � jEn(S)jdse � dse and thus (d) follows.

Lemma 2.6.2. Let g : S �! S be a tree map and let f(s; �i; li; �i)gi2R
with s = (p1; p2; : : : ; pm) be a family of characteristics of sequences of block

reductions of periodic models (S; Pi; g). Then,[
i2R

�(s; �i; li; �i) = Ks [Fs [(Is n dsef2; 3; : : : ; �sg)

where �s is a nonnegative integer and

(a) Is is an initial segment of the dse� ordering such that each dse�-maximal

element of Is belongs to f1g [p1p2 � � � pm�1(N [21).

(b) If Is (f1g [dseN then �s = 0 and Fs = ;.

(c) Fs is disjoint from Ks[Isndsef2; 3; : : : ; �sg and FsndseN �
S

j2B(Is)
N jdse.

(d) Fs is �nite (or empty). When Fs 6= ;, we have minFs � �sdse=2 and

jFsj < jB(Is)jjEn(S)j+ (�s + 2)=2.

Proof. Set

Is :=
[
i2R

S
�i

dse(jPij+ lidse):

79

Observe that S�i

dse(jPij + lidse) is an initial segment of the ordering dse� for

each i 2 R, and recall that, by de�nition, the union of initial segments of

a given ordering is an initial segment of the same ordering. By de�nition,

dse 2 p1p2 � � � pm�1N . Moreover, by Remark 2.3.4, jPij 2 p1p2 � � � pm�1N

for each i 2 R. Consequently, each dse�-maximal element of I belongs to

f1g [p1p2 � � � pm�1(N [21) and (a) holds.

Let us prove (b). Set

�s := minf�i : i 2 Rg and

R
� := fi 2 R : �i = �g:

For each i 2 R nR�, li = �i = 0 by de�nition. Moreover, since �i = Æj, in this

case we have

S
�i

dse(jPij+ lidse) n dsef2; 3; : : : ; �ig = Sdse(jPij) 3 jPij:

Consequently,[
i2R

�(s; �i; li; �i) =
[
i2R

�
fjPijg [Ks [

�
S
�i

dse(jPij+ lidse) n dsef2; 3; : : : ; �ig
��

= Ks [

 [
i2R�

fjPijg

!
[(Is n dsef2; 3; : : : ; �sg)

= Ks [Fs [(Is n dsef2; 3; : : : ; �sg) ;

where

Fs :=

 [
i2R�

fjPijg

!
n (Ks [(Is n dsef2; 3; : : : ; �sg)) � N :

Now observe that, since f1g [dseN � S�dse(jPij + lidse), when i 2 R
� it

follows that f1g[dseN � S
�i

dse(jPij+ lidse) � Is. Therefore, if Is (f1g[dseN

then R
� = ;. Hence, (b) follows from the de�nitions of �s and Fs.

Now we prove (c). The set Fs is disjoint from Is n dsef2; 3; : : : ; �sg and

Ks by de�nition. Since Fs n dseN �
Sdse�1

j=1 Njdse, it is enough to show that if

(Fs n dseN) \ N
j

dse 6= ; for some 1 � j < dse, then j 2 B(Is). Assume that

there is some i 2 R
� such that jPij 2 N

j

dse for some 1 � j < dse. From the

de�nitions we obtain

Is � S
�i

dse(jPij+ lidse) = Sdse(jPij+ lidse) � fjPij+ tdse : t � lig:

80

Consequently, Is \ N
j

dse 6= ; because (jPij + tdse) � j (mod dse) for all t.

Thus j 2 B(Is) and (c) follows.

Finally we prove (d). Assume that Fs 6= ;. By de�nition, we have

Fs � N n (Ks [(Is n dsef2; 3; : : : ; �sg)) � (N n Is) [dsef2; 3; : : : ; �sg:

By Lemma 2.6.1(c), for each i 2 R
� we have jPij � �idse=2 � �sdse=2. Hence,

minFs � �sdse=2 and

Fs � (N n Is) [fndse : n � 2 and �s=2 � n � �sg:

Since Fs 6= ;, from (b) it follows that Is � f1g[dseN . From this and (c) we

get that

Fs �
[

j2B(Is)

(Fs \ N
j

dse) [fndse : n � 2 and �s=2 � n � �sg:

Since jfndse : n � 2 and �s=2 � n � �sgj � (�s + 2)=2, to end the proof of

(d) it is enough to show that jFs \ N
j

dsej � jEn(S)j for each j 2 B(Is).

Fix j 2 B(Is). Observe that Fs \ N
j

dse � N
j

dse n Is. Set

sj = max
dse�

�
Is \ N

j

dse

�
:

Since Is is an initial segment of the ordering dse�, it follows that

Is \ N
j

dse = fsj + tdse : t � 0g:

Consequently, fj; j + dse; j + 2dse; : : : ; sj � dseg � N
j

dse n Is � Fs \ N
j

dse.

On the other hand, take i 2 R such that jPij 2 Fs \ N
j

dse and

jPij = max
dse�

�
Fs \ N

j

dse

�
:

Then jPij dse� sj and Fs \ N
j

dse � Aj := fjPij; jPij+ dse; jPij+ 2dse; : : : ; sj �

dseg. Since jPij+ lidse 2 Is, it follows that sj � dse dse> jPij+ lidse. Hence,

Aj � fjPij; jPij+ dse; jPij+ 2dse; : : : ; jPij+ (li � 1)dseg:

Consequently, jFs \ N
j

dsej � jAjj � li. The lemma follows since li < jEn(S)j

by Lemma 2.6.1(d).

81

Proof of Theorem C. Let f(s
i
; �i; li; �i)gi2R be the family of all characteristics

of sequences of block reductions of periodic orbits of g. For each i 2 R,

denote by Pi the orbit which has generated the characteristic (s
i
; �i; li; �i).

By de�nition, jPij 2 �(s
i
; �i; li; �i) for each i. Therefore,

Per(g) �
[
i2R

�(s
i
; �i; li; �i) � Per(g)

by Theorem 2.5.2.

Set S =
S

i2R s
i
. By Lemma 2.6.1 it follows that S � �S. Also, for each

s 2 S, we set Rs = fi 2 R : s
i
= sg. Thus,

Per(g) =
[
i2R

�(s
i
; �i; li; �i) =

[
s2S

0@[
i2Rs

�(s; �i; li; �i)

1A ;

and the theorem holds by Lemma 2.6.2.

2.7 Proof of Theorem 2.5.1. Large periods

In this section we are going to prove Theorem 2.5.1 when n is larger than a

constant M(S) (de�ned in page 87) which depends only on the number of

endpoints and vertices of the tree S.

We start by outlining the main ideas that we will use in the proof of this

fact. Let (S; P; g), (T;A; f) and x be as in the statement of Theorem 2.5.1.

If x is an A-signi�cant periodic point of f then, by Theorem 2.2.3(a), there

is a unique simple loop � in the [S; P; g]-path graph such that x and � are

associated. By Theorem 2.2.4, there exists a �xed point z of g2n such that z

and � are associated. However, nothing is said about the period of z, which in

general can be any divisor of 2n. In Lemma 2.7.1 we prove that if z is a �xed

point of gn then its period is precisely n. We remark that this is true only

when x is A-signi�cant. Therefore, it will be important to check whether the

periodic points of f which satisfy the (?)-property correspond to A-signi�cant

points. This is done in Proposition 2.7.5, whose proof needs three previous

technical lemmas. Proposition 2.7.5 will be also used in Section 2.8.

Lemma 2.7.1. Let (S; P; g) be a periodic model, and let (T;A; f) be a canon-

ical model of [S; P; g]. Let x 2 T be an A-signi�cant n-periodic point of f

and let � be a simple loop of length n in the [S; P; g]-path graph such that x

and � are associated. If there exists a point z 2 S associated to � such that

g
n(z) = z, then z is an n-periodic point of g.

82

Proof. Unlike in the rest of the chapter, in this proof the subindexes will

be considered modulo n and, given k 2 N , we take f0; 1; : : : ; k � 1g as the

representatives of the classes of Z=kZ.

We start by proving that, given a loop �0 ! �1 ! : : : ! �n�1 ! �0 in

the [S; P; g]-path graph such that �i = �j for some 0 � i; j < n, the following

statement holds:

If Int(h�i+1iT) \ Int(h�j+1iT) 6= ; or, equivalently,

Int(h�i+1iS) \ Int(h�j+1iS) 6= ; , then �i+1 = �j+1:
(2.3)

By the de�nition of the path graph, hf(�i)iT � h�i+1iT and hf(�i)iT �

h�j+1iT . Moreover, if Int(h�i+1iT) \ Int(h�j+1iT) 6= ; then �i+1 and �j+1

belong to the same discrete component. Then (2.3) follows immediately

from the fact that hf(�i)iT is an interval (since f is A-monotone).

Now let �0 ! �1 ! : : : ! �n�1 ! �0 be the loop �. Without loss of

generality we may assume that z 2 h�0iS. Let us show that z 2 Int(h�0iS).

Indeed: on the contrary, Orb(z) = P and, given a bijection � : P �! A which

preserves discrete components, �(z) is a point of A associated to �. Since �

is simple and x is also associated to �, from Theorem 2.2.3(b) it follows that

x and �(z) are f -monotone equivalent, a contradiction with the fact that x is

A-signi�cant. In a similar way one can show that Orbg(z) � [n�1
i=0 Int(h�iiS).

In order to prove the lemma we assume that n = lk for some l > 1

and that jOrbg(z)j = k. This will lead us to a contradiction. We have

g
i(z) 2 Int(h�iiS) for i � 0. Since gi(z) = g

i+k(z) for each i � 0, it follows

that

Int(h�iiS) \ Int(h�i+kiS) 6= ; for each i � 0:

Equivalently, Int(h�iiT) \ Int(h�i+kiT) 6= ; for each i � 0:
(2.4)

For s = 0; 1; : : : ; k � 1 set �s = f�s; �s+k; : : : ; �s+(l�1)kg (observe that, for a

�xed s, all the basic paths of �s belong to the same discrete component).

Now we claim that j�sj = l for each 0 � s < k. Let us prove it. By

considering (if necessary) a shift of � instead of � itself, we may assume that

s = 0. Thus we must prove that if i; j 2 f0; 1; : : : ; l � 1g and i 6= j then

�ik 6= �jk. By considering again a shift of �, we can assume that i = 0 and

1 � j < l. We proceed by induction on j. For j = 1, we must see that

�0 6= �k. If �0 = �k then from (2.3) and (2.4) it follows that �1 = �k+1,

�2 = �k+2; : : : ; �(l�1)k = �n. Thus � = �
l with � = �0 ! �1 ! : : : ! �k,

contrary to the fact that � is simple. Now assume that we have proved that

no basic path �k; �2k; : : : ; �(j�1)k is �0 for some j < l�1. If �0 = �jk, then we

write l = qj + r for some q 2 N and 0 � r < j. As above, by using j(q� 1)k

times (2.3) and (2.4) we get � = �
q
, where � is the loop �0 ! �1 ! : : :!

83

�jk = �0 and is �qjk ! �qjk+1 ! �qjk+2 ! : : : ! �qjk+rk = �n = �0.

If r = 0 then � = �
q, a contradiction with the fact that � is simple. If

0 < r < j, since �0 = �qjk we can use again rk times (2.3) and (2.4) in order

to obtain �1 = �qjk+1; �2 = �qjk+2; : : : ; �rk = �jqk+rk = �n = �0, contrary to

the induction hypotheses. Therefore, �0 6= �jk and the claim is proved.

For s 2 f0; 1; : : : ; k � 1g, we de�ne Cs =
T

�2�s
h�iT . Since �s consists of l

basic paths which belong to the same discrete component and l � 2, we have

(Cs n A) \ V (T) 6= ; for 0 � s < k. We claim that if v 2 (Cs n A) \ V (T)

then f(v) 2 (Cs+1 mod k�1 nA)\V (T). To see it, choose three di�erent points

a; b; c 2 A \ Cs such that v 2 hfa; b; cgiT . Then hfa; b; cgiT is a 3-star with

central point v. Since the images of a; b; c belong to Cs+1 mod k�1 and A is

a periodic orbit, we have that f(a), f(b) and f(c) are three di�erent points

contained in a single discrete component and, hence, hff(a); f(b); f(c)giT is

a 3-star. By Remark 1.2.1, f(v) is the central point of hff(a); f(b); f(c)giT
and therefore f(v) 2 V (T).

Since V (T) is �nite there is a periodic point w of f in C0\V (T) such that

f
i(w) 2 Ci mod k�1 \ V (T) for each i � 0. It is clear that w is associated to �

and, by Theorem 2.2.3, x and w belong to the same f -monotone equivalence

class. Since w 2 V (T), this is a contradiction with the fact that x is A-

signi�cant.

The following three technical lemmas are used in the proof of Proposi-

tion 2.7.5.

Lemma 2.7.2. Let (T;A; f) be a model and let x be a periodic point of f

whose f -monotone equivalence class contains no points of A [V (T). Then,

for each i � 0, the f -monotone equivalence class of f i(x) contains no points

of A [V (T). Moreover, if z 2 T is f -monotone equivalent to x then

[f i(x); f i(z)] \ (A [V (T)) = ; for each i � 0.

Proof. Assume that there exist y 2 A [V (T) and i � 0 such that f i(x)

and y are f -monotone equivalent. Let n 2 N be such that fn(x) = x.

Then x = f
n(x) = f

n�(i mod n)(f i mod n(x)) = f
n�(i mod n)(f i(x)). Thus, by

Remark 2.2.2, x is f -monotone equivalent to f
n�(i mod n)(y) which, by Re-

mark 1.2.1, belongs to A[V (T). This contradiction proves the �rst assertion

of the lemma. In particular, f i(x) does not belong to A[V (T) for each i � 0.

Now we must prove that [f i(x); f i(z)] \ (A [V (T)) = ; for each i � 0.

This is obvious when x = z. So we assume that x 6= z. Let i � 0. By

Remark 2.2.2, f i(x) and f i(z) are f -monotone equivalent. Hence, there exists

m 2 N such that fm(f i(x)) = f
i(x), fm(f i(z)) = f

i(z) and f
mj[f i(x);f i(z)]

is monotone. Assume that there exists w 2 (f i(x); f i(z)) \ (A [V (T)).

84

Let < be the orientation of [f i(x); f i(z)] such that f i(x) < f
i(z). Since

f
mj[f i(x);f i(z)] is monotone and f

i(x) and f
i(z) are �xed points of fm, it

follows that fm([f i(x); f i(z)]) = [f i(x); f i(z)] and f
m is increasing (with

respect to the ordering chosen above). Therefore, Orbfm(w) � [f i(x); f i(z)].

By Remark 1.2.1, Orbfm(w) � A [V (T). Then, from the �niteness of

A[V (T) and the monotonicity of fm it follows that there is a �xed point w0 2

(A [V (T)) \ (f i(x); f i(z)) of fm. Therefore, w0 and f
i(x) are f -monotone

equivalent, in contradiction with the �rst assertion of the lemma.

Lemma 2.7.3. Let (T;Q; f) be a Markov model and let x be a periodic point

associated to a simple loop � in the Markov f -graph of Q. If there are no

points of Q in the f -monotone equivalence class of x then x is Q-signi�cant.

Proof. We only have to prove that the period of x is minimal within this

f -monotone equivalence class. In fact, we will see that the period of any

point in the class coincides with the period of x. Let z 2 T be f -monotone

equivalent to x. By assumption, x; z =2 Q and, by Lemma 2.7.2, for each k � 0

there exists a Q-basic interval Jk such that fk(x); fk(z) 2 Int(Jk). Hence,

x and z are associated to the same loop, �. By Lemma 1.3.5, jOrb(x)j =

jOrb(z)j = j�j.

Lemma 2.7.4. Let (T;A; f) be a y-expansive model and let p be a type of

A
y. If 1 � i � p then for each n 2 N there exists w 2 (y; xi] such that

f
n(w) = xn+i mod p and (y; w) \ f

�n(Ay) = ;.

Proof. We proceed by induction on n. Since f(y) = y, f(xi) � xi+1 mod p and

f j[y;xi] is monotone, the lemma holds for n = 1.

Let n > 1 and assume that the lemma holds for n � 1. Let w
0 2

(y; xi] be such that fn�1(w0) = xn�1+i mod p and (y; w0) \ f
�(n�1)(Ay) = ;.

Since fn(y) = y, fn(w0) = f(fn�1(w0)) = f(xn�1+i mod p) � xn+i mod p and

f j[y;xn�1+i mod p] is monotone, it follows that there exists w 2 (y; w0] � (y; xi]

such that fn(w) = xn+i mod p and (y; w) \ f
�n(Ay) = ;. This completes the

induction.

Proposition 2.7.5. Let (T;A; f) be a non-twist y-expansive linear canonical

model. If x is a periodic point of f satisfying the (?)-property then x is A-

signi�cant.

Proof. Let p by a type of Ay. Since A is a periodic orbit, (T;A; f) is 0-orbital,

and, since (T;A; f) is a canonical model, En(T) � A = A
Æ. Therefore, by

Proposition 1.6.5, eE(T;A; f) 6= ;. In particular, E(T;A; f) 6= ;.

Since x satis�es the (?)-property, there exists a simple loop � in the

Markov f -graph of Ay which strictly contains a typical loop I1 ! I2 !

85

: : :! Ip ! I1. For each k 2 N we de�ne C�k = f
�k(Ay). Note that C�k has

�nitely many connected components and C
�k � A

y � V (T). Since x =2 A
y

and x is periodic, x =2 C
�k for k � 1. Observe that if (a; b) \ C

�k = ;

then f
kj[a;b] is linear. By Remark 2.2.2, it is enough to prove that some

point in the orbit of x is A-signi�cant. Since I1 2 �, we can choose a point

of Orbf(x) which belongs to (y; x1). Moreover, we can take it to be the

point of Orbf(x) \ (y; x1) closest to y. Thus from now on we assume that

x 2 (y; x1) and (y; x) \ Orbf(x) = ;. Since � is simple, by Lemma 2.7.3

we only must prove that the f -monotone equivalence class of x does not

contain points of Ay. Assume the contrary and let z 2 A
y be f -monotone

equivalent to x. Thus there exists n 2 N such that fn(x) = x, fn(z) = z

and fnj[x;z] is monotone (in fact, piecewise linear). By Lemma 2.7.4, there is

w 2 (y; x1] such that fn(w) = xn+1 mod p (so w 2 Q
�n) and Q�n \ (y; w) = ;.

Since V (T)\ (y; x1) = ;, it follows that T n (y; x1) consists of two connected

components and z belongs to one of them because z 2 A
y and Ay\(y; x1) = ;.

We consider two cases.

Case z � y < x < x1.

Since f
nj

[y;x]
is monotone and y and x are �xed points of fn, we have

f
n([y; x]) = [y; x]. Since f

n(w) = xn+1 mod p =2 [y; x], it follows that w =2

[y; x]. Thus we have z � y < x < w � x1. Since Q�n \ (y; w) = ;, fn

is linear on [y; w]. Moreover, since y and x are �xed points of fn on [y; w],

f
n is the identity map on [y; w]. In particular, fn(w) = w. This implies

that w = x1, and this is equivalent to the fact that f i(x1) = x1+i mod p for

each i � 0. Therefore, the only interval f -covered by a typical interval Ii is

Ii+1 mod p. Then E(T;A; f) = ;, a contradiction.

Case y < x < x1 � z.

Since f
nj

[x;z]
is monotone and x and z are �xed points of fn, we have

f
n([x; z]) = [x; z]. We claim that w =2 [x; z]. Otherwise, y < x < w,

Q
�n \ (y; w) = ;, fn is linear on [y; w] and y and w are �xed points of fn.

Hence, fn is the identity map on [y; w]. In particular, fn(w) = w. As above,

this is equivalent to E(T;A; f) = ;, a contradiction. This proves the claim.

Since x =2 Q
�n, there exist a; b 2 Q

�n such that (a; b) \ Q
�n = ; and

w � a < x < b. Hence, fn is linear on [a; b]. Since � is simple and strictly

contains the typical loop, it contains a path of the form I1 ! I2 ! : : : !

Ip ! I1 ! J , where J is not typical. By Remark 1.4.5, Int(J) \ I2 = ;.

Therefore, (y; x1) contains at least two points of the orbit of x. Let x0 be a

point of Orbf (x) \ (y; x1) di�erent from x. Then x < x
0
< x1 � z by our

choice of x. It is clear that x0 is a �xed point of fn. Since fnj[x;x0] is monotone

and x and x
0 are �xed points of fn, it follows that fn([x; x0]) = [x; x0]. Thus

86

x
0
< b, because if x < b < x

0 then f
n(b) 2 [x; x0] \ A

y = ;, a contradiction.

Hence, we have a < x < x
0
< b � x1 � z. But fn is linear on [a; b],

and x and x
0 are �xed points of fn. It follows that fn is the identity map

on [a; b]. In particular, fn(a) = a, a contradiction since f
n(a) 2 A

y and

A
y \ (y; x1) = ;.

Lemma 2.7.6 will be used in the proof of Theorem 2.5.1 and also in the

next section.

Lemma 2.7.6. Let (S; P; g) be a non-twist model and let (T;A; f) be a y-

expansive linear canonical model of [S; P; g]. Let x be a periodic point of f

satisfying the (?)-property, and let � be a simple loop in the Markov f -graph

of Ay associated to x and containing strictly a typical loop. If � is positive

then n 2 Per(g).

Proof. By Lemma 2.4.1, (T;A; f) is non-twist. Then by Proposition 2.7.5 x

is A-signi�cant. From Theorem 2.2.3 it follows that there is a unique simple

loop � = �0 ! �1 ! : : : ! �n�1 ! �n = �0 in the [S; P; g]-path graph,

which we call � 0, such that x and �
0 are associated. It is not diÆcult to see

that � and �
0 have the same sign. Thus � 0 is positive. By Lemma 7.4 of

[3], there exists a �nite union J =
S

m

i=1[ai; bi] � S of intervals with pairwise

disjoint interiors such that, if h�0iS = [a; b], then:

(i) a � a1 < b1 � a2 < b2 � : : : � am < bm � b (where < is an orientation

on [a; b]).

(ii) gj(J) � h�ji for j = 1; : : : ; n� 1 and g
n(J) = [a; b].

(iii) gnjfa1;b1;:::;am;bmg is monotone.

(iv) g
n(bi) = g

n(ai+1) for i = 1; 2; : : : ; m� 1.

(v) g
n([ai; bi]) � [gn(ai); g

n(bi)].

Since � 0 is positive, gnjfa1;b1;:::;am;bmg is increasing. An easy argument, analo-

gous to the one used in Lemma 3 of [9], shows that there exists z 2 J such

that gn(z) = z, and z and � are associated. By Lemma 2.7.1 the period of z

is n, and hence n 2 Per(g).

For any tree S, we de�ne

M(S) :=
1

2
jEn(S)j � (jEn(S)j � 1) � jV (S)j2:

Theorem 2.7.7. Theorem 2.5.1 holds whenever n > M(S).

Proof. Let K be the number of basic paths � of the pattern [S; P; g] such

that Int(h�i) \ V (S) 6= ;. Let L be the maximum number of vertices of S

87

contained in the interior of a basic path. Set e = jEn(S)j. Since a vertex

of S belongs at most to
�
e

2

�
basic paths, it follows that K � jV (S)j

�
e

2

�
.

Obviously, L � jV (S)j. Therefore, KL � M(S). By Lemma 2.4.1, (T;A; f)

is non-twist. Thus from Proposition 2.7.5 it follows that x is A-signi�cant.

By Theorem 2.2.3 there is a simple loop �0 ! �1 ! : : : ! �n�1 ! �0 in

the [S; P; g]-path graph, which we call �, such that x and � are associated.

Since x satis�es the (?)-property, there exists a simple loop � 0 in the Markov

f -graph of Ay which strictly contains a typical loop and such that x and �
0

are associated. It is not diÆcult to see that � and �
0 have the same sign. If

�
0 is positive, then n 2 Per(g) follows from Lemma 2.7.6 and we are done.

Assume that � 0 (and thus �) is negative. If there is some 0 � i < n such

that Int(h�ii) \ V (S) = ;, then there exists z 2 Int(h�ii) with g
n(z) = z.

Then, by Lemma 2.7.1, n 2 Per(g) and we are done.

From now on we assume that the interior of each basic path in the loop

� contains at least one point of V (S). From the de�nition of M(S), K

and L and the fact that n > M(S) � KL, it follows that there is a basic

path � in the loop � satisfying the following property: if s is the number

of occurrences of � in the loop �, and r = j Int(h�i) \ V (S)j � L, then

s > r. Assume without loss of generality that � = �0. By considering the s

shifts of � starting at �0, we have s loops �0 ! �
j

1 ! : : : ! �
j

n�1 ! �0 for

1 � j � s. Since � is simple, it can be seen (see Lemma 3.3.2) that these

loops are pairwise di�erent. Then, by Lemma 3.2 of [3], there exist subsets

J
1
; J

2
; : : : ; J

s of h�0i which consist of �nite unions of closed intervals such

that for each j = 1; 2; : : : ; s we have J j � h�0i, g
i(J j) � h�

j

i
i for 1 � i < n,

and gn(J j) = h�0i. Moreover, Int(hJki)\Int(hJ ji) = ; for j; k 2 f1; 2; : : : ; sg

with j 6= k.

Choose an orientation for h�0i. Without loss of generality, assume that

the sets J j for 1 � j < s are labeled in such a way that x � y for each

pair of points x; y such that x 2 hJ ji and y 2 hJ j+1i. Observe that, given

j 2 f1; 2; : : : ; sg, if there are no �xed points of gn in J
j then there exist

w 2 hJ ji \ V (S) and a; b 2 J
j such that a < w < b, gn(a) = g

n(b) = w

and g
n((a; b)) \ h�0i = ;. In particular, w 2 Int(hJ ji). Since there are r

vertices in Int(h�0i) and s > r, necessarily there exists k 2 f1; 2; : : : ; sg such

that Int(hJki) \ V (S) = ;. Then there is a �xed point z of gn in J
k. By

Lemma 2.7.1, z is an n-periodic point of g and thus we are done.

2.8 Proof of Theorem 2.5.1. Small periods

The aim of this section is to prove Theorem 2.5.1 when n � M(S) (thus

completing Step 3 of the strategy de�ned in Section 2.1). The method and

88

the tools used in the proof of this case will be completely di�erent from the

ones used previously. Essentially they will come from the theory of patterns

and minimal dynamics for graph maps. More exactly, we will use Theorem

A of [2], which studies the persistence of patterns among all the graph maps

being topological representatives of a �xed free group endomorphism.

2.8.1 General de�nitions and preliminary results

This subsection is devoted to recall some notions which are necessary in order

to state and use Theorem A of [2]. It is organized into three sub-subsections.

Graphs, models and homotopies of pointed graphs

A graph is a connected Hausdor� space G which is the union of �nitely many

subspaces Gi, each being homeomorphic to a non-degenerate closed interval

of the real line, and Gi \Gj is �nite for each i 6= j. It is not diÆcult to see

that any tree is a graph. Next we extend some basic notions (vertex, edge and

endpoint) from trees to graphs. The points of G which have no neighborhood

homeomorphic to an open interval of the real line will be called vertices, and

the set of vertices of G will be denoted by V (G). This set is obviously �nite

(or empty). The closure of each connected component of GnV (G) is called an

edge of G. A graph has �nitely many edges, each of which is homeomorphic

either to a closed interval or to the circle. If v 2 V (G) and there is exactly

one edge of G containing v, then v will be called an endpoint of G. The set of

endpoints of G will be denoted by En(G). Every subset of G homeomorphic

to a non-empty closed (respectively open) interval of the real line will be

called a closed (respectively open) interval. A continuous map from a graph

into itself will be called a graph map.

Let G and G
0 be graphs and let I � G be an open interval. Let

f : Cl(I) �! G
0 be continuous and let x 2 I. We will say that f is

locally monotone at x if there is a neighborhood U of the connected com-

ponent of f�1(f(x)) containing x such that f(U) is homeomorphic to an

interval of the real line and f j
U
is monotone as an interval map. We will

say that f is monotone if it is locally monotone at each point of Cl(I). Ob-

serve that, even when the connected component of f�1(f(x)) containing x

reduces to fxg for all x 2 I, f is not necessarily injective on I, since the

image of f can turn several times around a circle. If I and f(Cl(I)) are

oriented, then we will say that f is increasing (respectively decreasing) when

f is orientation-preserving (respectively orientation-reversing).

A pointed graph is a couple (G;P) where G is a graph and P is a �nite

subset of G. A triplet (G;P; f) will be called a graph model if f : G �! G is

89

a graph map and P is a �nite f -invariant set. Note that if G is a tree then

(G;P; f) is a model according to the de�nition given in Section 1.2. A graph

model (G;P; f) will be called Markov if the orbit of each vertex of G is �nite

and f restricted to any connected component of Gn (P [V (G)) is monotone.

We remark that if G is a tree then (G;P; f) is a Markov model according to

the de�nition given in Section 1.3.

As usual, we will write f ' g to indicate that two maps f and g are

homotopic.

Given pointed graphs (G;P) and (G0
; Q), we say that f : G �! G

0 is

a pointed graph map, written f : (G;P) �! (G0
; Q), if f is continuous and

f(P) � Q. Let f; g : (G;P) �! (G0
; Q) be pointed graph maps. We re-

call that f is homotopic to g relative to P , written f 'P g, if there exists

a continuous family of pointed graph maps ht : (G;P) �! (G0
; Q) with pa-

rameter t ranging over [0; 1], and satisfying h0 = f and h1 = g. In particular,

f j
P
= htjP = gj

P
for all t 2 [0; 1].

The pointed graphs (G;P) and (G0
; Q) will be said to have the same homo-

topy type if there exist maps r : (G;P) �! (G0
; Q) and s : (G0

; Q) �! (G;P)

such that r Æ s 'Q IdG0 and s Æ r 'P IdG. The maps r and s will be called

homotopy equivalences of pointed graphs. Notice that if (G;P) and (G0
; Q)

have the same homotopy type then jP j = jQj and the ranks of the fundamen-

tal groups of G and G0 coincide. In fact it can be shown that the converse is

also true.

Paths and groupoids

Given a graph G and x; y 2 G, a path from x to y will be a continuous

map � : [0; 1] �! G such that �(0) = x and �(1) = y. The points x and

y will be called the endpoints of �. The path �(1 � t) from y to x will be

denoted by �
�1. A path which begins and ends at the same point will be

called a loop. Given two paths � and � such that �(1) = �(0), we denote

their concatenation by �� .

Let (G;P) be a pointed graph. Let � and � be two paths in G whose

endpoints belong to P . We say that � and � are equivalent if � is homotopic

to � relative to the endpoints. This de�nes an equivalence relation on the

set of all paths in G whose endpoints belong to P . Let �(G;P) denote the

resulting quotient space, and let [�] denote the equivalence class of �. The

concatenation of paths induces a well-de�ned natural product on �(G;P),

de�ned by [�] � [�] = [��]. We also set [�]�1 = [��1]. This equips �(G;P)

with a groupoid structure (see subsection 2.2 of [2] for further details). We

remark that �(G;P) has jP j trivial elements which are the classes of the

trivial loops based at the points of P . Moreover, there exists a �nite subset

90

P of �(G;P) with the property that any element of �(G;P) may be written

in a unique way (without cancellation) as a product of elements of P (and

their inverses). This set is called a free system of generators of �(G;P). Any

groupoid morphism is determined by its e�ect on a free system of generators.

Moreover, a morphism � : �(G;P) �! �(G0
; P

0) is an isomorphism if and

only if it induces a bijective map from a free system of generators of �(G;P)

to a free system of generators of �(G0
; P

0).

Any pointed graph map f : (G;P) �! (G0
; Q) induces a groupoid mor-

phism f
� : �(G;P) �! �(G0

; Q), de�ned by f
�([�]) = [f Æ �] for all [�] 2

�(G;P). It is not diÆcult to see that if there exist two homotopy equiva-

lences r : (G;P) �! (G0
; Q) and s : (G0

; Q) �! (G;P) such that rÆs 'Q IdG0

and s Æ r 'P IdG (that is, (G;P) and (G0
; Q) have the same type of homo-

topy), then r
� and s

� are isomorphisms and (r�)�1 = s
�.

Graph patterns, Nielsen �xed point classes and Theorem A of [2]

Two graph models (G;P; f) and (G0
; Q; g) will be said to have the same graph

pattern if there exists a homotopy equivalence r : G �! G
0 such that r maps

P bijectively onto Q and the following diagram:

(G;P)
r

���! (G0
; Q)

f

??y ??yg
(G;P)

r
���! (G0

; Q)

commutes up to homotopy relative to P . In other words, g Ær 'P r Æf . This

de�nes an equivalence relation on the set of graph models. The resulting

equivalence class, or graph pattern, of (G;P; f) will be denoted by [G;P; f].

Observe that if (G;P; f); (G0
; Q; g) have the same graph pattern then jP j =

jQj and the ranks of the fundamental groups of G and G
0 coincide.

Remark 2.8.1. Let T; S be trees and let (T; P; f), (S;Q; g) be periodic

models. From the fact that the fundamental group of any tree is trivial, it

can be shown that (T; P; f) and (S;Q; g) have the same graph pattern if and

only if jP j = jQj. Therefore, the notion of graph pattern di�ers greatly from

the notion of pattern which was de�ned at Section 2.2 for tree maps. In

fact, in order to recover the di�erent speci�c notions of pattern which can

be found in the literature, it suÆces to specify the hypotheses on the map r

in such a way that the desired properties are preserved. In our framework,

the homotopy type of the space will be preserved and the hypothesis is just

that r be a homotopy equivalence. If one wants to preserve the space itself,

r must be a homeomorphism, as in the case of the interval [38] or of �xed

91

graphs [11]. We recall that for patterns of trees one wants to preserve the

discrete components of the pointed tree, and this is the condition that must

be satis�ed by r in that setting.

Let (G;P; f) and (G0
; Q; g) be graph models such that P and Q are peri-

odic orbits. We will say that [G0
; Q; g] is a reduction of [G;P; f] if jP j > jQj

and there exists a homotopy equivalence r : G �! G
0 such that r(P) = Q

and the following diagram:

(G;P)
r

���! (G0
; Q)

f

??y ??yg
(G;P)

r
���! (G0

; Q)

commutes up to homotopy relative to P . This de�nition does not depend on

the choice of representative of the patterns. Observe also that it di�ers from

the de�nition of pattern since rj
P
need not be injective here. A pattern which

admits a reduction will be called reducible, and irreducible otherwise. It can

be shown (see Proposition 3.3 of [2]) that a pattern [G;P; f] is reducible if

and only if there exists m < jP j with jP j = qm, for some q > 1, such that

for any x 2 P there exists a path from x to fm(x) satisfying:

[(fm Æ) : : : (f (q�1)m Æ)] = [�x];

where �x denotes a trivial loop based at x.

Remark 2.8.2. Let T; S be trees and let (T; P; f), (S;Q; g) be periodic

models. In view of Remark 2.8.1, one easily gets that [S;Q; g] is a reduction

of [T; P; f] (as graph patterns) if and only if jQj strictly divides jP j.

Let G be a graph, and let x and y be �xed points of a graph map

f : G �! G. We say that x and y are equivalent if there exists a path

from x to y such that f Æ is equivalent to (recall that this means that

f Æ is homotopic to keeping endpoints �xed). This de�nes an equivalence

relation on the set of �xed points of f , and the corresponding equivalence

classes are called (Nielsen) �xed point classes. The �xed point class of x will

be denoted by [x; f], and ind[x; f] will denote the index of [x; f] with respect

to f . That is, ind[x; f] := ind([x; f]; f) (see [33] for further details). If this

index is di�erent from 0 then [x; f] will be called an essential �xed point

class. If P is a periodic orbit of f and n is a multiple of jP j, then we de�ne

the index of P with respect to fn, denoted by ind[P ; fn], to be the integer

ind[x; fn] for each x 2 P . It can be shown that this number does not depend

on the chosen point x 2 P and thus the index of a periodic orbit is well de-

�ned. Finally P will be called an essential periodic orbit if ind[P ; f jP j] 6= 0.

Now we are ready to state Theorem A of [2].

92

Theorem 2.8.3 (Theorem A of [2]). Let f : G �! G and g : G0 �! G
0

be graph maps such that there exist homotopy equivalences r : G �! G
0 and

s : G0 �! G satisfying r Æ s ' IdG0, s Æ r ' IdG and f ' s Æ g Æ r. Then:

(a) there exists an index-preserving bijection � that, for each n 2 N , sends

essential �xed point classes of fn to essential �xed point classes of gn.

(b) let P be an essential periodic orbit of f , let C be the �xed point class for

f
jP j of a point of P , and let Q be the g-orbit of a point of �(C). Then

either [G0
; Q; g] = [G;P; f], or [G0

; Q; g] is a reduction of [G;P; f].

Remark 2.8.4 (The case of tree maps). Since any tree has a trivial

homotopy, it easily follows that for each pair of tree maps f : T �! T and

g : S �! S we have f ' g. Moreover, for any n 2 N , all �xed points of

f
n are pairwise equivalent. Thus for any n 2 N there is only one Nielsen

class of �xed points of fn. Recall also (Remark 2.8.1 and Remark 2.8.2)

that if (T; P; f) and (S;Q; g) are periodic models then [S;Q; g] is a reduction

of [T; P; f] if and only if jQj strictly divides jP j, and [T; P; f] = [S;Q; g] if

and only if jP j = jQj. Taking it all into account, we easily get the following

particular instance of Theorem 2.8.3 for tree maps: Let f : G �! G and

g : G0 �! G
0 be tree maps. Then:

(a) Let n 2 N, let C be the unique Nielsen class of �xed points of fn and let C 0

be the unique Nielsen class of �xed points of gn. Then ind(C) = ind(C 0).

(b) Let P be a periodic orbit of f and let C be the unique Nielsen class of

�xed points of f jP j. If C is essential and Q is the g-orbit of a �xed point

of gjP j, then jQj divides jP j.

Observe that statement (b) in the case of trees does not provide any

information. However, from statement (a) it follows that for each tree map

f and each n 2 N, the index of the unique Nielsen �xed point class of fn

is �1. Indeed, consider a tree consisting of a single point, and let f be the

identity map on it. Then, for each n 2 N the index of the unique Nielsen

class of �xed points of fn is �1 (see Chapter 1 of [33] on how to compute

the index of a �xed point; here we follow [2], where the considered index is

minus that de�ned in [33]).

2.8.2 Strategy of the proof of Theorem 2.5.1

In order to motivate the need of the introduction of further technical notions

and partial results, next we are going to sketch the proof of Theorem 2.5.1.

In sake of clarity, we �rst recall the hypotheses of the theorem: Let (S; P; g)

be a non-twist model and let (T;A; f) be a y-expansive linear canonical model

of [S; P; g]. Let n 2 N be such that f has an n-periodic point x satisfying

93

the (?)-property (that is, Orb(x) \ A
y = ; and x is associated to a unique

simple loop in the Markov f -graph of Ay which strictly contains a typical

loop). We must prove that n 2 Per(g). By Lemma 2.7.6 and Theorem 2.7.7,

it is enough to prove this fact when the loop associated to x is negative and

n �M(S).

We will divide the proof into four stages. To carry out Stages 1, 2 and

3 we shall need some partial results, which will be stated and proved into

three respective subsections.

Stage 1 (reduction to a Markov case). We will prove (Proposition 2.8.5)

that for each N � jP j there exists a Markov linear model (S; P ; g) such

that P [V (S) � P , Per(g) \ f1; 2; : : : ; Ng = Per(g) \ f1; 2; : : : ; Ng and

gj
P
= gj

P
. Thus, the patterns [S; P; g] and [S; P; g] coincide and (T;A; f) is

also a canonical model of [S; P; g]. By taking N > M(S) we have that n � N

and, hence, it is enough to show that n 2 Per(g). The advantage of working

with (S; P; g) instead of (S; P; g) is obvious, since we can use the loops of the

Markov g-graph of P to calculate periodic orbits of g and, in addition, g is

piecewise linear.

Stage 2 (completion to graph models). As explained in Remark 2.8.4,

the fact that the fundamental group of any tree is trivial implies that we can-

not use directly Theorem 2.8.3 to obtain signi�cant results of persistence of

(graph) patterns (and thus of periods) for tree maps. To overcome this prob-

lem, we will proceed as follows. Consider pointed graphs (TG
; A) and (SG

; P)

obtained by attaching jAj-many pairwise disjoint circles to T (respectively

S), each circle being attached at a point of A (respectively P {see Figure 2.4

for an example). Then we will construct (Proposition 2.8.11) graph maps

f : TG �! T
G and g : SG �! S

G and homotopy equivalences r : TG �! S
G

and s : SG �! T
G such that:

(i) r Æ s ' IdSG , s Æ r ' IdTG and f ' s Æ g Æ r. Thus f and g satisfy the

hypotheses of Theorem 2.8.3.

(ii) (TG
; A

y
; f) is a Markov model with f jAy = f jAy . Therefore, the Markov

f -graph of Ay is a subgraph of the Markov f -graph of Ay.

(iii) (SG
; P ; g) is a Markov model with gj

P
= gj

P
. Therefore, the Markov

g-graph of P is a subgraph of the Markov g-graph of P .

Stage 3 (n is a period of the completion of (S; P ; g)). By hypothe-

ses, there is a unique simple negative loop � in the Markov f -graph of Ay

associated to Orbf(x). By (ii), � is also a loop of the Markov f -graph of Ay.

In Proposition 2.8.15 we will show that this loop gives rise to an essential

94

(TG
; A)

(SG
; P)

f

Stage 2:

homotopy-commutative

diagram

(SG
; P)

(T;A; f)

canonical model Stage 3

(S; P ; g)

Markov model

Stage 4

sr

(TG
; A)

Stage 1

Stage 3

g

(S; P; g) original model

construction of the

Figure 2.3: The strategy of the proof of Theorem 2.5.1.

periodic orbit Q of f such that jQj = jOrbf(x)j = n and the graph pat-

tern [TG
; Q; f] is irreducible. Therefore, by (i) we can use Theorem 2.8.3(b)

and we obtain a periodic orbit R of g such that [SG
; R; g] = [TG

; Q; f]. In

particular, jRj = jQj = n.

Stage 4 (comparing periodic orbits of (S; P ; g) and its completion).

We will show that R is associated to a simple negative loop of the Markov

g-graph of P which is also a loop of the Markov g-graph of P . Finally we

will prove that this loop gives rise to an n-periodic orbit of g.

In Figure 2.3 a scheme of the proof of Theorem 2.5.1 is shown. In this

�gure the symbol f 9 9 K g, where f and g are maps, stands for \we know

that f has an n-periodic orbit and we prove that, in consequence, g has an

n-periodic orbit".

95

2.8.3 Stage 1: reduction to a Markov case

The following proposition is the main tool used in Stage 1.

Proposition 2.8.5. Let (T;D; f) be a model and let N � jDj; N 2 N.

Then there exists a Markov linear model (T;D; f) with D � D such that

Per(f) \ f1; 2; : : : ; Ng = Per(f) \ f1; 2; : : : ; Ng and f jD[V (T) = f jD[V (T).

Proof. Let m � N be an integer larger than

maxfjOrbf (x)j : Orbf (x) is �nite and x 2 D [V (T)g:

For each j 2 Per(f) \ f1; 2; : : : ; mg take a j-periodic point xj and set

D
0 = D [

�
[j2Per(f)\f1;2;:::;mgOrbf(xj)

�
:

Assume that there exists a tree map g : T �! T verifying:

(g.1) Every element of V (T) has a �nite orbit,

(g.2) Per(g) \ f1; 2; : : : ; mg = Per(f) \ f1; 2; : : : ; mg and

(g.3) gjD0[V (T) = f jD0[V (T).

Then we take D = D
0[([v2V (T)Orbg(v)) and de�ne f : T �! T to coincide

with g on D and being linear on each D-basic interval. It is not diÆcult

to see that Per(f) � Per(g). Then, from (g.2), (g.3) and the way D
0 was

de�ned, it easily follows that Per(f)\ f1; 2; : : : ; mg = Per(f)\ f1; 2; : : : ; mg

and f jD0[V (T) = f jD0[V (T). Then the proposition follows since m � N . The

rest of the proof is devoted to show that such a map g exists. To this end

we introduce the following notation. Given a point x 2 T we shall denote

by Kf(x) the connected component of f�1(f(x)) containing x. Then we set

Cf =
S

x2D0[V (T)Kf(x) and C
n

f
=
S

n

i=0 f
i(Cf) for each n � 0. Observe that

Cf has �nitely many connected components and the f -image of each of them

is degenerate to a point. Hence, Cn

f
n Cf is �nite (thus Cn

f
has also �nitely

many connected components) and C
n

f
is closed.

We start by proving that if there exists some v 2 V (T) such that Orbf(v)

is not �nite, then there exists some w 2 V (T) such that Orbf(w) is not �nite

and f
k(w) =2 C

m

f
for all k > m: If fk(v) =2 C

m

f
for all k > m then we are

done by taking w = v. Otherwise, there exists j0 > m with f
j0(v) 2 C

m

f

and f
k(v) =2 C

m

f
for all k > j0. Since D

0 is a �nite f -invariant set, f j0(v) 2

f
m(V (T)) and thus, there exists w 2 V (T) with f

j0(v) = f
m(w): Hence

Orbf(f
m(w)) = Orbf(f

j0(v)) and f
k(w) =2 C

m

f
for all k > m.

Set df = jfv 2 V (T) : Orbf(v) is in�nitegj: If df = 0 then we set g = f

and we are done. Assume that df > 0. Then, there exists v 2 V (T) such

that Orbf(v) is not �nite and f
k(v) =2 C

m

f
for all k > m: We shall prove that

there exists a map f1 : T �! T which veri�es:

96

(g.1') Orbf1(v) is �nite,

(g.2') Per(f1) \ f1; 2; : : : ; mg � Per(f) \ f1; 2; : : : ; mg and

(g.3') f1jCm
f
= f jCm

f
.

Notice that df1 < df . Indeed, let w 2 V (T) have �nite f -orbit. Since

jOrbf (w)j < m, Orbf(w) � C
m

f
and hence Orbf(w) = Orbf1(w) by (g.3').

Thus df1 � df . Since Orbf1(v) is �nite while Orbf (v) is not, it follows

that df1 < df . On the other hand, since D0 � C
m

f
, as above we easily get

that Per(f1) \ f1; 2; : : : ; mg = Per(f) \ f1; 2; : : : ; mg. Therefore, by using

iteratively this argument at most df times, one can obtain the desired map

g satisfying (g.1{3).

Let M be a connected component of T n Cm

f
containing in�nitely many

points from Orbf (v). Since V (T) � C
m

f
, M must be an interval. Let c 2

Cl(M) be an accumulation point of Orbf(v) \M . In the rest of the proof

we consider four cases. The simplest one is the case when c is not a periodic

point of period smaller than or equal to m. The other three cases deal with

this possibility.

Case 1. c =2 ff(c); f 2(c); : : : ; fm(c)g.

There exists an open interval I � M having c as endpoint, containing in-

�nitely many elements of Orbf(v) accumulating at c and f
i(I) \ I = ; for

1 � i � m. We set

r = minfi 2 N : f i(v) 2 Ig; and

s = minfi 2 N : i > r and f
i(v) 2 (c; f r(v))g;

and we de�ne the map f1 : T ! T by:

(1.i) f1jTn(c;fr(v)) = f jTn(c;fr(v)) (in particular it follows that f i1(v) = f
i(v)

for i = 0; 1; : : : ; s).

(1.ii) f1(x) = f1(f
r(v)) for all x 2 [f s(v); f r(v)] (in particular, f s+11 (v) =

f1(f
s(v)) = f1(f

r(v)) = f
r+1
1 (v)).

(1.iii) f1j[c;fs(v)] is linear.

Observe that f1 is well de�ned and continuous. Moreover, (g.3') follows from

(1.i) and (g.1') follows from (1.i) and (1.ii). Let Q be a periodic orbit of f1
of period j =2 Per(f). Since f1jTnI = f jTnI it follows that Q \ I 6= ;. But,

since f i(I) \ I = ; for 1 � i � m, it follows that j > m. This proves (g.2').

In the rest of the proof we assume that c is a periodic point of f of period

n � m (in particular, c 2 ff(c); f 2(c); : : : ; fm(c)g).

For each i 2 f0; 1; : : : ; ng we choose an open ball Bi of f i(c) (in T) such

that

97

� B
0 � B

n,

� Cl(Bi)\(Orbf (c)[V (T)) = ff i(c)g (in particular Cl(Bi) is a star with

f
i(c) as the central point),

� f(Bi) � B
i+1 whenever i < n,

� if Bi intersects Cm

f
then it intersects a unique connected component of

C
m

f
and this component contains f i(c) (recall that Cm

f
is closed and

has �nitely many connected components).

A connected component of Bi n ff i(c)g will be called a branch of Bi. Any

branch of Bi will be called proper if it contains in�nitely many points from

Orbf(v) accumulating at f i(c). We can take the balls Bi small enough so

that, in addition to the above properties, they satisfy

� each branch is either proper or does not intersect Orbf(v).

We claim that

any proper branch is disjoint from C
m

f
. (2.5)

To see this observe that, by the de�nition of Cm

f
and the choice of the balls

B
i, if a branch I of Bi intersects Cm

f
then it must intersect a component with

non-empty interior which has the form Kf(x) 3 f
i(c) with x 2 D

0[V (T) (in

particular, I\Kf (x) is an interval having f
i(c) as an endpoint). If I is proper,

I \ Kf(x) contains an iterate of v, f l(v). Then, f(f l(v)) = f(f i(c)) and,

hence, f l+1(v) is periodic (consequently, Orbf (v) is �nite); a contradiction.

This proves the claim.

Case 2. For some 0 � i � n, there exist a proper branch B
i and z 2 B

i

such that f(z) = f
i+1(c).

Let I denote the open interval having f
i(c) and z as endpoints. Since z is

contained in a proper branch there exist points of Orbf (v) in I. Now we

take the map f1 : T ! T such that f1jTnI = f jTnI and f1(x) = f
i+1(c) for all

x 2 I. As above f1 is continuous and veri�es (g.1') by construction. Also,

(g.2') holds because Per(f1) � Per(f). On the other hand, I is disjoint from

C
m

f
by (2.5). Hence, (g.3') holds. This ends the construction of the map f1

in this case.

From Case 2 we see that, in addition to the above hypotheses, in the

rest of the proof we may assume that the image of any proper branch does

not intersect Orbf (c). In this situation, a branch intersecting the image of a

proper branch is also proper and hence, each Bi has a proper branch because

so does B0. Moreover, since there are �nitely many proper branches, there

exist an open interval J with a point of Orbf (c) as an endpoint and a positive

integer k such that f i(J) is contained in a proper branch for i = 0; 1; : : : ; kn,

98

f
i(J) \ J = ; for i = 0; 1; : : : ; kn � 1 and f

kn(J) \ J 6= ;. Relabeling,

if necessary, we may assume that J is contained in B
0 (so, J has c as an

endpoint). Recall that fkn(c) = c because c is a periodic point of f of period

n.

Case 3. There exists a point b 2 J such that fkn(b) 2 (c; b].

We set Wi = (f i(c); f i(b)) � f
i(J) for i = 0; 1; : : : ; kn� 1 and W = [kn�1

i=0 Wi

(observe that in our situation Orbf(c) is disjoint from W). Also, choose a

point z 2 (c; b). Then, we de�ne our map f1 : T �! T by:

(3.i) f1jTnW = f jTnW ,

(3.ii) f1(x) = f(c) for all x 2 [c; z],

(3.iii) f1 is linear on [z; b] and Cl(Wi) for i = 1; 2; : : : ; kn� 1.

It is not diÆcult to see that f1 is well de�ned and continuous, and satis�es

(g.3') by (2.5). Moreover, f1jOrbf (c) = f jOrbf (c), f1(W0) = ff1(c)g [W1,

f1(Wi) = Wi+1 for i = 1; 2; : : : ; kn � 2 and f1(Wkn�1) � W0. Therefore, in

view of (3.ii) and (3.iii), any point from W is eventually mapped by f1 to

Orbf1(c). Consequently, Per(f1) � Per(f) and Orbf1(v) is �nite because W

contains points from Orbf (v). This proves (g.2') and (g.1').

Case 4. fkn(x) =2 [c; x] for each x 2 J.

Let l 2 N be such that lkn > m. Since fkn(c) = c, by continuity we can

choose an open intervalK0 having c as an endpoint and satisfying f
ikn(K0) (

f
(i+1)kn(K0) for 0 � i < l. Set Ki = f

ikn(K0) for i = 1; : : : ; l. To de�ne the

map f1 in this case we follow a procedure similar to the one used in Case 1.

We set

r = minfi 2 N : f i(v) 2 K0g; and

s = minfi 2 N : i > r and f
i(v) 2 (c; f r(v))g:

By construction we have s > r + lkn > r +m.

In the rest of the proof we will have to consider two more situations and

de�ne our map f1 : T ! T in a di�erent way in each of these situations.

However, in both cases f1 will be continuous and well de�ned and, for a cer-

tain point u 2 (c; f s(v)], it will satisfy f1jTn(u;fr(v)) = f jTn(u;fr(v)) and f1(x) =

f(f r(v)) for all x 2 [f s(v); f r(v)] (in particular f1(f
s(v)) = f(f r(v)) =

f1(f
r(v))). Such a map f1 veri�es (g.3') by (2.5). Moreover, by de�nition,

f
i

1(v) = f
i(v) for i = 0; 1; : : : ; s, and Q = ff r+1(v); f r+2(v); : : : ; f s(v)g is a

periodic orbit of f1 of period larger than m. Then, f r+11 (v) = f
r+1(v) 2 Q

and (g.1') holds. We have f1([f
s(v); f r(v)]) = ff r+1(v)g � Q. Thus, any pe-

riodic point of f1 of period smaller than or equal to m which is not a periodic

99

point of f must be in (u; f s(v)). So, to prove (g.2') we have to choose the

point u and de�ne f1 on (u; f s(v)) so that such a periodic point of f1 does

not exist.

First we assume that there exists u 2 (c; f s(v)] such that f(u) = f(f r(v)).

We take a map f1 that veri�es the above conditions and f1(x) = f(f r(v)) for

all x 2 (u; f s(v)). Since f1((u; f
s(v))) = ff r+1(v)g � Q and Q\ (u; f s(v)) =

;, there is no periodic point of f1 in [u; f s(v)]. This proves (g.2').

Finally we assume that there exists a point b 2 [f(c); f r+1(v)) such that

f([c; f s(v)]) = [f(c); b]. Let u 2 [c; f s(v)] be an f -preimage of b, and notice

that f([f s(v); f r(v)]) � [b; f r+1(v)]. In this situation we take our map f1

to verify the above assumptions and to be linear on [u; f s(v)]. From the

de�niton of f1 it follows that

f1([u; f
s(v)]) = [f(u); f(f r(v))] = [b; f r+1(v)] � f([f s(v); f r(v)]):

Hence,

f
kn

1 ([u; f s(v)]) � f
kn�1
1 (f([f s(v); f r(v)])) = f

kn([f s(v); f r(v)])

� K1 n [c; f
s(v)];

f
2kn
1 ([u; f s(v)]) � f

kn

1 (K1 n [c; f
s(v)])

= f
kn�1
1 (f1([f

s(v); f r(v)) [K1 n [c; f
r(v))))

= f
kn�1
1 (f(K1 n [c; f

r(v)))) = f
kn(K1 n [c; f

r(v)))

� K2 n [c; f
r(v)]; and

f
ikn

1 ([u; f s(v)]) � f
(i�2)kn
1 (K2 n [c; f

r(v)])

� f
(i�3)kn
1 (f(K2 n [c; f

r(v)]))

� f
(i�3)kn
1 (K3 n [c; f

r(v)]) � � � � � Kl n [c; f
r(v)]

for 3 � i � l. Therefore, f i1(x) =2 [u; f s(v)] for each x 2 [u; f s(v)] and

i = 1; 2; : : : ; lkn. This means that if there is a periodic point of f1 in [u; f
s(v)]

it has period larger than lkn > m. This ends the proof of the proposition.

Remark 2.8.6. From the proof of Proposition 2.8.5 it follows that f and f

not only coincide on D [V (T) but also on
S

N

i=0 f
i(D [V (T)).

2.8.4 Stage 2: completion to graph models

We start by introducing the notion of a completion. Given a pointed tree

(T;A) we will denote by (TG
; A) a pointed graph obtained by attaching an

oriented edge Bx for each x 2 A such that Bx is homeomorphic to a circle

and x is the unique vertex of TG which belongs to Bx. Observe that T � T
G,

100

V (TG) = V (T)[A and Bx\T = fxg. Any monotone loop based at x whose

image turns once around Bx will be denoted by �x. Given x; y 2 T , any

monotone path from x to y will be denoted by �xy, and the trivial loop based

at x will be denoted by �x.

Let (T;A) be a pointed tree. We choose one point from each discrete

component of (T;A), which will be called the base point of the discrete com-

ponent (note that we do not assume that the base points are pairwise dif-

ferent). This choice of base points will be called an orientation for (T;A),

which will be called an oriented pointed tree. Orienting (T;A) allows us to

�x a free system of generators of �(TG
; A). Indeed, let K1; K2; : : : ; Kn be

the discrete components of (T;A), with respective base points z1; z2; : : : ; zn.

We de�ne

L(T;A) =

n[
i=1

[
x2Kinfzig

[�zix] ; T (T;A) =
[
x2A

[�x] ; C(T;A) =
[
x2A

[�x];

where [] denotes the equivalence class of a path on the quotient space

�(TG
; A). Then, from Proposition 2.3 of [2] and its proof, it follows that

T (T;A) [L(T;A) [C(T;A) is a free system of generators of �(TG
; A).

Let (T;A) and (S; P) be oriented pointed trees such that there exists a

bijection � : A �! P which preserves discrete components. We will say that

the orientations of (T;A) and (S; P) are �-compatible if, for each discrete

component K of (T;A), z is the base point of K if and only if �(z) is the

base point of �(K). In this case a natural isomorphism

�
? : �(TG

; A) �! �(SG
; P)

is de�ned as follows (on the generators of �(TG
; A)). If [�x] 2 T (T;A) then

�
?([�x]) = [��(x)] 2 T (S; P). If [�xy] 2 L(T;A) then �

?([�xy]) = [��(x)�(y)] 2

L(S; P). Finally, if [�x] 2 C(T;A) then �
?([�x]) = [��(x)] 2 C(S; P).

Lemma 2.8.7. Let (T;A; f) and (S; P; g) be two models with the same pat-

tern and let � : A �! P be a bijection which preserves discrete components.

Then there are homotopy equivalences (TG
; A)

r
�! (SG

; P)
s
�! (TG

; A) such

that r? = �
? and s? = (�?)�1.

Proof. We choose �-compatible orientations for (T;A) and (S; P). It is

enough to take r and s in such a way that rj
A
= �, sj

P
= �

�1, r is a

homeomorphism between Bz and B�(z) for each z 2 A, and, for each discrete

component K of (T;A), r and s are homotopy equivalences between hKiT
and h�(K)iS.

The notion of a completion is accompanied by the following notation,

which will be used in the rest of this section:

101

Standing notation. Let (T;A; f) be a periodic y-expansive canonical

model and let Ki = fzi1; z
i

2; : : : ; z
i

ki
g with i = 1; 2; : : : ; n be the discrete

components of (T;A) (for convenience we also set k0 = 0). For 1 � i � n

and 1 � j � ki, we de�ne t
i

j
, xi

j
and a

i

j
as follows:

� t
i

j
=
P

i�1
m=0 km + j.

� x
i

j
is the unique point from A

y \ hKiiT such that (zi
j
; x

i

j
) \ A

y = ;.

� a
i

j
is any point from (zi

j
; x

i

j
) (when jKij = 2 then hKiiT = [zi1; z

i

2] and

we additionally impose zi1 < a
i

1 < a
i

2 < z
i

2).

We also set BA = [x2ABx, LA = [i;j[a
i

j
; z

i

j
] and MA = LA [BA.

A graph model (TG
; A; f) will be called a completion of (T;A; f) if the

following conditions hold:

(C 1) f jAy = f jAy , and if x; z 2 A with [x; z]\A = fx; zg then f is monotone

on [x; z].

(C 2) f(ai
j
) = f(zi

j
) and f Æ �ai

j
zi
j

is a monotone increasing loop which turns

t
i

j
times around Bf(zi

j
).

(C 3) Let t = maxfti
j
g + 1. Given any z 2 A, f is monotone on Bz and the

f -image of Bz turns t times around Bf(z).

(C 4) f coincides with f on T n [i;j(z
i

j
; x

i

j
) and, for each 1 � i � n and

1 � j � ki, f maps linearly [a
i

j
; x

i

j
] onto [f(zi

j
); f(xi

j
)].

Sometimes we will simply speak about a completion (TG
; A; f), without spec-

ifying the original canonical model.

The next lemma, which states some basic properties of a completion, fol-

lows immediately from the de�nitions.

Lemma 2.8.8. Let (TG
; A; f) be a completion of a y-expansive canonical

model. Then the following statements hold:

(a) If fx; zg � T nMA and [x; y] \ A = ; then [x; y] � T nMA.

(b) If [x; z] � T and (x; z) \ A = ; then f is monotone on [x; z]. If in

addition (x; z) � T nMA then [f(x); f(z)] � T .

(c) f(BA) � BA and f(LA) � BA. Thus MA is f-invariant.

(d) There are no periodic orbits of f in LA n A. Therefore, all the periodic

orbits of f contained in MA n A are contained in BA.

(e) (TG
; A

y
; f) is a Markov model.

The following remark and example tell us why properties (C 2{3) of the

de�nition of a completion have been chosen in such a particular way.

102

Remark 2.8.9. The exact values of the numbers ti
j
and t of the de�nition

of a completion are not important. They have been chosen to satisfy the

following properties: t > maxfti
j
gi;j and t

i

j
6= t

l

m
when (i; j) and (l; m) are

two di�erent ordered couples. In this case it follows that ti
j
+nt� t

l

m
6= 0 for

each n 2 Z. This fact has a consequence which will be crucial in the proof of

Proposition 2.8.15 (and thus in the Stage 3 of the proof of Theorem 2.5.1):

let x 2 A which belongs to two di�erent discrete components Ki and Kl.

Then x = z
i

j
= z

l

m
for some j 2 f1; 2; : : : ; kig and m 2 f1; 2; : : : ; klg. Now

let a 2 Ki n fxg and b 2 Kl n fxg, and let be a monotone path from a to

b. The path can be written as �ax(�x)
n
�xb for some n 2 Z. Then f() =

��
t
i

j
+nt�tlm

f(x)
�
0 for some paths � and �

0 whose images contain [f(a); f(x)] and

[f(x); f(b)] respectively. Since ti
j
+ nt � t

l

m
6= 0, we have proved that given

any monotone path which passes through a point x 2 A it follows that f Æ

turns at least once around Bf(x).

Example 2.8.10. Consider the model (T;A; f) shown in the left side of

Figure 2.4. The pointed tree (T;A) has 2 discrete components K1 = fa; b; cg

and K2 = fc; dg, and A is a 4-periodic orbit of f with f(a) = b, f(b) = c,

f(c) = d and f(d) = a. Set a = z
1
1 , b = z

1
2 , c = z

1
3 = z

2
1 and d = z

2
2 . We have

t
1
1 = 1, t12 = 2, t13 = 3, t21 = 4, t22 = 5 and t = 6. Then f acts as follows on the

next monotone paths:

� f Æ �ab = (�b)
�1
�bc(�c)

2.

� f Æ �ac = (�b)
�1
�bd(�d)

3.

� f Æ �cd = (�d)
�4
�da(�a)

5.

� f Æ �a = (�b)
6, f Æ �b = (�c)

6, f Æ �c = (�d)
6, f Æ �d = (�a)

6.

Therefore, if we consider the path = �ad, which passes through the point

c, we get f Æ = f Æ �ac Æ f Æ �cd = (�d)
�1
�bd(�d)

3�4
�da(�a)

5, a path which

passes through the point d turning once around Bd.

Now we are ready to state and prove Proposition 2.8.11, which is the

main result of this subsection.

Proposition 2.8.11. Let (S;D; h) be a Markov linear model such that D

contains a periodic orbit P with En(S) � P . Let (T;A; f) be a y-expansive

canonical model of [S; P; h]. Then there exist graph models (TG
; A; f) and

(SG
; D;h) verifying:

(a) (TG
; A; f) is a completion of (T;A; f).

(b) (SG
; D;h) is Markov and hj

D
= hj

D
. Moreover, h is linear on each

interval I � S nD such that h(I) � S.

(c) f wA s Æ h Æ r, where (TG
; A)

r
�! (SG

; P)
s
�! (TG

; A) are the homotopy

equivalences given by Lemma 2.8.7.

103

a
1
1

a
1
2

(T;A) (TG
; A)

a
1
3 a

2
1 a

2
2

a = z
1
1

b = z
1
2

c = z
1
3 = z

2
1

d = z
2
2

Figure 2.4: The model (T;A; f) of Example 2.8.10 and a completion.

Proof. Since (T;A; f) and (S; P; h) have the same pattern, there exists a

bijection � : A �! P which preserves discrete components. Then by

Lemma 2.8.7 there exist homotopy equivalences (TG
; A)

r
�! (SG

; P)
s
�!

(TG
; A) such that r? = �

? and s
? = (�?)�1.

Statement (a) holds simply by choosing appropriate points ai
j
in the def-

inition of a completion.

Next we de�ne the model (SG
; D;h) in order that (b) and (c) hold. To

this end, we essentially repeat the construction of a completion (which is

de�ned only for canonical models) in this setting (Markov models). Note

that �(K1); �(K2); : : : ; �(Kn) are the discrete components of (S; P) and D �

V (S) [P = V (S) [([n
i=1�(Ki). For each 1 � i � n and 1 � j � ki, we

take yi
j
2 D \ h�(Ki)iS such that (�(zi

j
); yi

j
)\D = ; and bi

j
2 (�(zi

j
); yi

j
). We

de�ne h to coincide with h on S n [i;j(�(z
i

j
); yi

j
). Also, for each 1 � i � n

and 1 � j � ki, we de�ne h to map linearly [bi
j
; y

i

j
] onto [h(�(zi

j
)); h(yi

j
)].

Moreover, h is de�ned to be monotone increasing on (bi
j
; �(zi

j
)), its image

turning t
i

j
times around Bh(�(zi

j
)). Finally, if z 2 A then h is de�ned to

be monotone increasing on B�(z), its image turning t times around Bh(�(z)).

Then, it is not diÆcult to see that (b) and (c) hold by construction.

The following remarks, which concern Proposition 2.8.11, will be used in

Stage 4 of the proof of Theorem 2.5.1.

Remark 2.8.12. In the hypotheses of Proposition 2.8.11, since h(Ba) =

Bh(a) for each a 2 P , it easily follows that the period of each h-periodic

point contained in Ba is a multiple of jP j. Moreover, since the h-image of

Ba turns increasingly t times around Bh(a) for each a 2 P , it follows that for

each k 2 N there are exactly t
kjP j isolated �xed points of hkjP j contained in

Ba, and h
kjP j is monotone increasing on each of these points.

104

Let (G;Q; F) be a Markov graph model. As usual we can consider the

Markov F -graph of Q, whose vertices are the closures of the connected com-

ponents of GnQ and there is an arrow from the vertex I to the vertex J if and

only if there is a subinterval K of I such that F (K) = J . Let (TG
; A; f) and

(SG
; D;h) be the Markov graph models given by Proposition 2.8.11. Con-

sider the set K of all the closures of the connected components of TG n Ay

which are contained in T . This set coincides with the set of all the Ay-basic

intervals of the tree T . By identifying both sets and using the properties

of f , it is not diÆcult to see that the subgraph G of the Markov f -graph of

A
y whose set of vertices is K is isomorphic to the Markov f -graph of Ay.

From now on, G will be called the Markov f-subgraph of Ay. Analogously, we

construct the Markov h-subgraph of D, which is isomorphic to the Markov

h-graph of D.

Remark 2.8.13. It can be seen that Lemmas 1.3.2, 1.3.3 and 1.3.5 (and

their proofs) remain valid in this setting.

2.8.5 Stage 3: n is a period of the completion of (S; P ; g)

In this subsection we state and prove Proposition 2.8.15, which is the main

result used in Stage 3 of the proof of Theorem 2.5.1. To do it, we �rst

introduce the notion of a simpli�cation of paths and prove a technical result

on this notion (Lemma 2.8.14).

Let (TG
; A; f) be a completion. Given points w 2 T nLA and z 2 T

G, and

a path in TG from w to z, a simpli�cation of is any monotone path which

is equivalent to . If z 2 T and [w; z]\A = ; then we de�ne the A-length of

, denoted by l(), to be 0. Otherwise, any simpli�cation of can be written

as a product of paths �0�
n1

1 �1�
n2

2 �2 : : : �k�1�
nk

k
�k, where k � 1 and:

(PS 1) ni 2 Z for 1 � i � k.

(PS 2) For each 1 � i � k, there exist xi 2 A such that �i = �xi .

(PS 3) Set x0 = w. Then �i = �xixi+1 and �i((0; 1)) \ A = ; for each

0 � i < k. Note that �i([0; 1]) � T .

(PS 4) �k is a trivial path if and only if z 2 A. If z 2 T
G n T (equivalently,

if z 2 Bxk
n fxkg), then �k((0; 1)) is one of the two connected com-

ponents of Bxk
nfxk; zg (determined by the fact that a simpli�cation

of is equivalent to).

(PS 5) No subexpression of the simpli�cation corresponds to a path being

equivalent to a trivial path (except, perhaps, �0, �k, and �
ni

i
when

ni = 0).

In this case we de�ne the A-length of to be l() = k.

105

As a consequence of (PS 5), the expression of a simpli�cation of as a

product of paths is essentially unique (up to equivalence classes of paths).

Observe that two equivalent paths have a common simpli�cation and thus

the same A-length.

Lemma 2.8.14. Let (TG
; A; f) be a completion and let be a path from w

to z, with z 2 T
G and Orb(w) � T nLA. Then the following statements hold:

(a) l(fn Æ) � l() for each n � 0.

(b) If l() > 0 and �0�
n1

1 �1 : : : �k�1�
nk

k
�k is a simpli�cation of , then

�i(0) 6= �i+1(0) for each 1 � i < k. Moreover, for each n � 0 we have

l(fn Æ) = l() if and only if fn(�i([0; 1])) \ A = ffn(�i(0)); f
n(�i(1))g

for each 1 � i < k and fn(�0([0; 1])) \ A = ff(�0(1))g.

Proof. Since when l() = 0 there is nothing to prove, from now on we assume

that l() > 0. Let �0�
n1

1 �1 : : : �k�1�
nk

k
�k be a simpli�cation of .

First we claim that �i(0) 6= �i+1(0) for each 1 � i < k. Indeed, assume

that there exists 1 � j < k such that �j(0) = �j+1(0). Then, from (PS 3)

it follows that �j is a path whose image is contained in a tree and does not

intersect A except at �j(0), which in addition coincides with �j(1). Therefore

�j is a path with a trivial homotopy. This contradicts (PS 5), and thus the

claim follows.

Now we prove (a) and (b). Observe that l(fn Æ) is well de�ned for

each n � 0 because Orb(w) � T n LA by assumption. In order to reduce

the number of cases to be considered, we will assume that z 2 T
G n T

(equivalently, z 2 Bxk
n fxkg). The case z 2 T is analogous, even simpler.

Observe that, since (TG
; A; f) is a completion, it satis�es the properties (C

1{4) (see page 102). For each 1 � i � k, let xi 2 A be such that �i = �xi. Set

x0 = w and e�i = �f(xi)f(xi+1) for 0 � i < k. Then the following statements

hold:

1. For 1 � i � k, from (C 1{2) it follows that f Æ �i = �
pi

f(xi)
e�i�li+1f(xi+1)

for

some integers pi < 0 and li+1 > 0, and f Æ�0 = e�0�
l1

f(x1)
for some integer

l1 > 0.

2. Set pk = 0. For each 1 � i � k, from (C 3) it follows that f Æ�ni
i
= �

tni

f(xi)

for an integer t such that jtj > maxfjlij; jpijg. Since li > 0 and pi < 0,

it follows that jtj � jli + pij.

3. f Æ �k = �
m

f(xk)
e�k for some integer m with jmj � t and a path e�k such

that either f(z) = f(xk) and e�k is trivial, or f(z) 6= f(xk) and e�k((0; 1))
is one of the two connected components of Bf(xk) n ff(z); f(xk)g.

Summarizing, we have that

f Æ = e�0�
l1+tn1+p1
f(x1)

e�1�
l2+tn2+p2
f(x2)

e�2 : : : e�k�1�lk+tnk+pk+mf(xk)
e�k (2.6)

106

and li + tni + pi 6= 0 holds for each 1 � i < k. Moreover, e�i is injective
and, by the claim above, �f(xi)(0) 6= �f(xi+1)(0). Finally, e�k�1 6= e��1

k
sincee�k�1((0; 1)) � T and e�k((0; 1)) � T

G n T . Therefore, no subexpression of

(2.6) is equivalent to a trivial path. If f(�i([0; 1]))\A = ff(�i(0)); f(�i(1))g

for 1 � i < k and f(�0([0; 1])) \ A = ff(�0(1))g then e�i((0; 1)) \ A = ; for

0 � i < k. Hence, (2.6) is the expression of a simpli�cation of f Æ and

consequently l(f Æ) = l(). Otherwise, l(f Æ) > l(). Thus (a) and (b)

hold for n = 1.

Observe that f Æ is a path starting at f(w), which belongs to T n LA

by assumption. Moreover, when l(f Æ) = l() the right hand side of (2.6)

is a simpli�cation of f Æ . Thus we can repeat the above arguments with

f Æ instead of , and hence the proof for any n > 1 follows analogously by

induction.

Now we are ready to state and prove Proposition 2.8.15.

Proposition 2.8.15. Let (T;A; f) be a non-twist y-expansive canonical

model and let (TG
; A; f) be a completion of (T;A; f). Let x 2 T n Ay be

an n-periodic point of f associated to a unique simple negative loop � in the

Markov f -graph of Ay, with jAj 6= n = j�j. Then there exists a periodic orbit

Q of f such that:

(a) Q is associated to � and jQj = n.

(b) Q \ (MA [V (T)) = ;.

(c) For each w 2 Q we have [w; fn] = fwg and ind[w; fn] = �1.

(d) The graph pattern [TG
; Q; f] is irreducible.

Proof. � is also a loop in the Markov f -subgraph of Ay (which is isomorphic

to the Markov f -graph of Ay). By Lemma 1.3.3, there exists a periodic

orbit Q � T of f such that Q and � are associated. Since � is simple and

negative, from Lemma 1.3.5(b) it follows that Q is an n-periodic orbit and

Q \ A
y = ;. In particular, Q \ BA = ;. Thus, by Lemma 2.8.8(d) we have

that Q \ (MA [V (T)) = ;. Therefore, (a) and (b) hold.

Now we prove (c). Let w 2 Q. Since (b) holds, w =2 MA[V (T) � V (TG).

Hence, w belongs to the interior of a V (TG)-basic interval I. Since � is

negative, by Remark 1.3.4 there is a closed interval K � I such that fnjK is

monotone decreasing and w is the unique �xed point of fn in K. Thus fn is

decreasing at w. It follows that the index of w as a �xed point of fn equals

�1 (see Chapter 1 of [33] on how to compute the index of a �xed point; as it

has been said before, we follow [2], where the considered index is minus that

de�ned in [33]).

To end the proof of (c) we must show that w is the unique element of its

class of �xed points of fn. Assume the contrary: let z 2 Fix(fn) with w 6= z

107

and let be a path from w to z such that fnÆ v . Note that, for each i � 0,

f i Æ is a path from f i(w) to f i(z). Since, by (b), f i(w) =2 MA, the A-length

l(f iÆ) is de�ned for each i � 0. Since l(fnÆ) = l(), from Lemma 2.8.14(a)

it follows that l(f i Æ) = l() for each 1 � i � n. Indeed, if l(f j Æ) > l()

for some 1 � j < n then l() = l(fn Æ) � l(fn�1 Æ) � : : : � l(f j Æ) > l(),

a contradiction.

Assume that l() = 0. Thus [w; z]\A = ;. In particular, since w 2 Q � T

then z =2 BA. Moreover, z 2 T nMA by Lemma 2.8.8(d). From (a) and (b)

of Lemma 2.8.8, it follows that [w; z] � T nMA and f is monotone on [w; z].

Observe that, since l(f Æ) = 0, we can repeat this argument with f Æ, f(w)

and f(z) instead of , w and z, to obtain that f is monotone on [f(w); f(z)],

and thus f2 is monotone on [w; z]. By using iteratively this argument we

�nally get that fn is monotone on [w; z], in contradiction with the fact that

fn is decreasing at w and fn(w) = w. This proves (c) in the case l() = 0.

Assume now that l() � 1. Set k = l() and let �0�
n1

1 �1 : : : �k�1�
nk

k
�k

be a simpli�cation of . Let x0 2 A be such that �0(1) = x
0. Since l(fn Æ

) = l(), by Lemma 2.8.14(b) we have fn(�0([0; 1])) \ A = ffn(�0(1))g =

ffn(x0)g. Since fn Æ v , it easily follows that fn(x0) = x
0. Therefore, fn is

monotone on [w; x0], in contradiction with the fact that fn is decreasing at w

and fn(w) = w. This proves (c) in the case l() > 0.

Finally we prove (d). Let w 2 Q. Assume that [TG
; Q; f] is reducible.

Then there exist m < jQj and q > 1 with jQj = qm and a path from w to

fm(w) such that

[Æ fm Æ � � � f (q�1)m Æ] = [�w]:

It follows that []�1 = [fm Æ � � � f (q�1)m Æ]. Also, by mapping m times f?

on both sides of the equality, it follows that [fm Æ � � � f (q�1)m Æ Æ f qm Æ] =

[�fm(w)]. Thus, []
�1[f qmÆ] = [�fm(w)]. In other words, [f

qmÆ] = []. Hence

w and fm(w) are Nielsen equivalent �xed points of f qm, in contradiction with

(c). Thus (d) is proved.

2.8.6 Proof of Theorem 2.5.1

Now we are ready to perform the four Stages of the programme proposed in

subsection 2.8.2 in order to prove Theorem 2.5.1.

Proof of Theorem 2.5.1. Set N = maxfM(S); jP jg. By Theorem 2.7.7, the

statement holds when n > N � M(S). So, from now on we assume that

n � N .

Let � be a simple loop in the Markov f -graph of Ay associated to x

(this loop exists and contains strictly a typical loop, since x satis�es the (?)-

108

property). By Lemma 2.7.6, we are done if � is positive. So, we assume that

� is negative.

Let r : S �! hP iS be the natural retraction. Consider the map r Æ g :

hP iS �! hP iS. It is well known (see Corollary 4.2 of [16]) that Per(r Æ g) �

Per(g). Thus it is enough to prove that n 2 Per(r Æ g). This holds trivially

when n = jAj because P is a periodic orbit of r Æ g and jP j = jAj. From now

on we assume that n 6= jAj.

Observe that (hP iS; P; r Æ g) is a non-twist model and M(hP iS) �M(S).

Hence, without loss of generality, from now on we will use S and g to denote

hP iS and r Æ g respectively.

Summarizing, we have to prove that n 2 Per(g) when � is negative,

En(S) � P , n 6= jP j and n � N .

(Stage 1) Since jP j � N , by Proposition 2.8.5 there exists a Markov linear

model (S; P ; g) such that Per(g) \ f1; 2; : : : ; Ng = Per(g) \ f1; 2; : : : ; Ng,

P � P and gjP[V (S) = gjP[V (S). Since n � N , it is enough to show that

n 2 Per(g).

(Stage 2) Since En(S) � P and the patterns [S; P; g] and [S; P; g] coincide,

(T;A; f) is a y-expansive canonical model of the pattern [S; P; g]. Since

(S; P ; g) is a Markov linear model, Proposition 2.8.11 (withD and h replaced,

respectively, by P and g) gives us a completion (TG
; A; f) of (T;A; f) and a

Markov graph model (SG
; P ; g) such that g and g coincide on P and f wA

s Æg Æ r, where (TG
; A)

r
�! (SG

; P)
s
�! (TG

; A) are homotopy equivalences.

(Stage 3) Since P is non-twist, from Lemma 2.4.1 it follows that (T;A; f)

is also non-twist. Then, by Proposition 2.8.15, there exists a periodic orbit

Q of f with index �1 and period n. Thus, Q is an essential periodic orbit.

Since f wA sÆgÆr, from Theorem 2.8.3 it follows that there exists a periodic

orbit R of g with index �1 such that jRj divides jQj and the graph pattern

[SG
; R; g] either coincides with [TG

; Q; f] or it is a reduction of [TG
; Q; f].

By (d) of Proposition 2.8.15, [TG
; Q; f] is irreducible. Hence, [SG

; R; g] =

[TG
; Q; f] and, in particular, jRj = jQj = n.

(Stage 4) Let H be the Nielsen class of a point from R with respect to

gn. Observe that if z 2 H then z is a point of period n of g. Otherwise,

by Theorem 3.4 of [2] the graph pattern [SG
;Orb(z); g] is a reduction of

[SG
; R; g], in contradiction with the fact that [SG

; R; g] = [TG
; Q; f] and

[TG
; Q; f] is irreducible.

109

Finally we prove that there exists an n-periodic orbit of g. We consider

two cases.

Case 1. Orbg(z) \ P 6= ; for some z 2 H.

Then Orbg(z) � P . Since gj
P
= gj

P
, then Orbg(z) is also a periodic orbit

of g. Therefore, jOrbg(z)j = n. This ends the proof of the theorem in this

case.

Case 2. Orbg(z) \ P = ; for each z 2 H.

Since V (T) � P , it follows that z =2 V (T) and thus the index of any point

in the class H is 0,1 or �1. Since ind[H; gn] = �1, there exists some z 2 H

whose index is �1. As stated above, z is an n-periodic point of g.

Let us see that z 2 S. On the contrary, z 2 Ba for some a 2 P . By

Remark 2.8.12, gn is monotone increasing on z. Since z =2 V (T), it follows

that the index of z as a �xed point of gn is either 0 or 1, a contradiction.

Hence, z 2 S and therefore Orbg(z) � S.

Let I0 be the P -basic interval such that z 2 Int(I0). By Lemma 1.3.2,

there is a unique loop I0 ! I1 ! : : : ! In�1 ! In = I0 in the Markov

g-subgraph of P (see page 105), which we call �, such that Orbg(z) and �

are associated.

Now we claim that � is simple and negative. Since the index of z as

a �xed point of gn is �1, gn is decreasing on a neighborhood of z and,

thus, � is negative. It is not diÆcult (see Lemma 1.3.3 or Lemma 1.2.6 of

[8]) to construct inductively closed intervals Kn � Kn�1 � : : : � K1 � I0

satisfying gi(Kj) � Ii for each 1 � i < j, and gj(Kj) = Ij. Moreover, gjjKj

is a homeomorphism, which is linear by Proposition 2.8.11(b). Since � is

negative, gnjKn
is decreasing and z is the unique point of Fix(gn)\Kn. Now

suppose that � is the k-repetition (with k > 1 odd) of a simple negative loop

I0 ! I1 ! : : :! In=k�1 ! I0, which we call Æ. By Lemma 1.3.3, there exists

a �xed point w of gn=k inKn=k. In fact, w is unique because gn=k is decreasing

and linear on Kn=k. Since Æ is simple and negative, from Lemma 1.3.5(b) it

follows that the period of w is n=k. Since gn=k is linear and decreasing, w is

a repelling �xed point of gn=k. Therefore, there are no points w0 2 Kn=k nfyg

satisfying (gn=k)i(w0) 2 I0 for 2 � i < k and gn(w0) = w
0. Since Kn � Kn=k,

z = w. But z is n-periodic and w is n=k-periodic, a contradiction which ends

the proof of the claim.

Since Orbg(z) � S, it follows that � is also a simple and negative loop in

the Markov g-subgraph of P (see page 105). By Remark 2.8.13 we can use

Lemmas 1.3.3 and 1.3.5 and obtain an n-periodic orbit of g associated to �.

This completes the proof.

110

2.9 Proof of Theorem D

This section is devoted to prove Theorem D. Before doing it, we will state

and prove four technical lemmas, which will be used to construct tree maps

with a prescribed set of periods.

Lemma 2.9.1. Let f : T �! T be a tree map and let F � N be �nite. Then

there exist a tree S � T and a tree map g : S �! S such that Per(g) =

Per(f) [F .

Proof. It is enough to prove that, for any n 2 F , there exists a tree S � T

and a tree map g : S �! S such that Per(g) = Per(f) [fng.

Let n 2 F and let y 2 Fix(f). Consider a tree X containing T such that

Cl(X n T) is an n-star whose central point is y, and denote its branches by

[y; bi] for 1 � i � n. Now consider a map g : S �! S such that gj
T
= f ,

g(bi) = bi+1 mod n and g maps linearly [y; bi] onto [y; bi+1 mod n] for each 1 �

i � n. It easily follows that Per(g) = Per(f) [fng.

Lemma 2.9.2. Let p 2 N, � 2 N [f0g and n 2 N [fp21g such that � = 0

when Sp(n) (f1g[pN. Then there exist a tree S with jEn(S)j � maxf3; pg

and a tree map g : S �! S such that Per(g) = Sp(n) n pf2; 3; : : : ; �g.

Proof. Assume �rst that � � 1. In this case, pf2; 3; : : : ; �g = ;. By Bald-

win's theorem, there exists a (maxf3; pg)-star map such that Per(g) = Sp(n).

Hence, the lemma follows in this case.

From now on we assume that � > 1. Then, since Sp(n) is an initial

segment, from the hypotheses we get that one of the following cases occurs:

(i) either Sp(n) = f1g [pN (then n = 3p)

(ii) or pN (Sp(n) (then n =2 pN).

Assume that p = 1. In this case, (ii) does not hold and thus (i) occurs.

Therefore, we must construct a tree map g : S �! S such that Per(g) =

S1(3) n f2; 3; : : : ; �g = N n f2; 3; : : : ; �g. From the de�nition of Baldwin's

orderings, it is not diÆcult to see that N n f2; 3; : : : ; �g coincides with the

following �nite union of initial segments of the �+1� ordering:

N n f2; 3; : : : ; �g =
[

1�n��

S�+1(�+ 1 + n):

Then we choose S to be a (� + 1)-star and, by Baldwin's theorem, there

exists a tree map g : S �! S such that Per(g) = N n f2; 3; : : : ; �g. Moreover,

since � > 1 we have jEn(S)j � 3 = maxf3; pg and the lemma follows in this

case.

111

From now on we assume that p > 1. Let l be the least nonnegative integer

such that n+ lp > (�+1)p. Set r = n+ lp. We claim that there exist a tree

T and a tree map f : T �! T such that Per(f) = S�
p
(r) n f2; 3; : : : ; �g.

Let us prove the claim. Let (T;A; f) be an (r; p; q)-model (see page 48

for a de�nition) with q = 0. The construction of this model corresponds

to Case 2 of Proposition 1.9.3. In the notation used there (see paragraph

\De�nition of T") we have r = sp+ k, with s = �+ 1 and 0 < k � p (recall

that (� + 1)p < r � (� + 1)p + p). From the construction of the tree T it

follows that jEn(T)j = �p + k. Therefore, jEn(T)j � 2p + 1 � maxf3; pg.

Moreover, from (1.22) we easily get (see paragraph \Images of the vertices

(d)") that Per(f) = S�
p
(r) n f2; 3; : : : ; �g and thus the claim follows.

Set F = Sp(n) n S
�
p
(r). When (i) occurs, r = 3p + lp 2 pN and therefore

S�
p
(r) = f1g[pN = Sp(n). On the other hand, if (ii) holds then S

�
p
(r) = Sp(r)

and, by Remark 1.2.3, F = fng [(fin + jp : 1 � i < p=g:c:d(p; n); 1 � j �

lig n frg). In any case, F is either empty or �nite. Then by Lemma 2.9.1

there exist a tree S � T and a tree map g : S �! S such that Per(g) =

Per(f) [F = S�
p
(r) [F = Sp(n).

Lemma 2.9.3. Let g : S �! S be a tree map and let p � 2 be an integer.

Then there exist a tree T such that T A pS and a tree map f : T �! T such

that Per(f) = f1g [pPer(g).

Proof. Let X be a p-star and let y be the central point of X. Choose one

endpoint e of S. Let T be the tree obtained by attaching p-many disjoint

copies of S to X, each copy attached by identifying e with an endpoint of

X. It follows that T A pS. It is easy to de�ne a map f : T �! T such

that f(y) = y and Per(f) = f1g [pPer(g). The detailed construction has

been done {when g is monotone{ in the proof of Proposition 1.9.2 (see also

Figure 1.3), and it can be directly extended to the case of a continuous

map.

Lemma 2.9.4. Let ffi : Ti �! Tigi2R be a �nite set of tree maps such that

Ti \ Tj = ; for i 6= j. Then there exist a tree T such that T � Ti for each

i 2 R and a tree map f : T �! T such that Per(f) =
S

i2R Per(fi).

Proof. For each i 2 R, we choose yi 2 Fix(fi). Set X =
S

i2R Ti. Consider

the following equivalence relation s on X: for w; z 2 X, we let w s z if

either w = z or there exist i; j 2 R such that w = yi and z = yj. Let T

be the resulting quotient space. Observe that T can be thought as the tree

obtained by gluing together all Ti at the points yi. Thus we can assume that

Ti � T for each i 2 R.

Let us denote by y the only point of T which corresponds to the s-class

of all yi. Now let f : T �! T be the only map such that f j
Ti

= fi for each

112

i 2 R. Observe that f is continuous and well de�ned. Moreover, f(y) = y

and Per(f) =
S

i2R Per(fi).

Now we are ready to prove Theorem D.

Proof of Theorem D. We claim that there exist a family fTsgs2S of pairwise

disjoint trees and, for each s 2 S, a tree map fs : Ts �! Ts verifying:

(I) s 2 �Ts

(II) Per(fs) = Ks [(Is n dsef2; 3; : : : ; �sg).

Let us see that the theorem follows from the above claim. Indeed: since

S is �nite, by Lemma 2.9.4 there exists a tree map g : S �! S such that

Per(g) =
[
s2S

Per(fs) =
[
s2S

(Ks [(Is n dsef2; 3; : : : ; �sg))

and S � Ts for each s 2 S. By (I), s veri�es (S 1{2) (with Ts instead of S)

for each s 2 S. And, since S � Ts, (S 1) (and obviously (S 2)) remains true

when one replaces Ts by S. Therefore, s 2 �S for each s 2 S and the theorem

follows.

Let us prove the above claim. Fix s = (p1; p2; : : : ; pm) 2 S. We have pi � 2

for 1 � i < m and Ks = fp1; p1p2; : : : ; p1p2 � � � pm�1g. Set k = p1p2 � � � pm�1
(or k = 1 when m = 1) and p = pm. Let M be the set of dse�-maximal

elements n of Is such that n 6= 1. Observe that M is either empty or �nite,

and M = ; if and only if Is = f1g. We have

Is = f1g [
[
n2M

Sdse(n): (2.7)

Moreover, from the hypotheses and the de�nition of the dse� ordering, we

easily get that

(i) n 2 k(N [21) for each n 2M

(ii) for each n 2M it follows that if Sdse(n) (f1g [dseN then �s = 0.

Since Sdse(n) = f1g [kSp(n=k) for each n 2 kN (see, for instance, Re-

mark 1.2.2, where this fact is proved when n=k =2 pN), from (ii) we get

(ii') for each n 2M it follows that if Sp(n=k) (f1g [pN then �s = 0.

Moreover, from (2.7) we easily get that

Ks [(Is n dsef2; 3; : : : ; �sg) =

f1g [Ks [k

[
n2M

(Sp(n=k) n pf2; 3; : : : ; �sg) : (2.8)

113

Fix n 2 M . Since n 6= 1 and (ii') holds, we can use Lemma 2.9.2 to

obtain a tree Kn with jEn(Kn)j � maxf3; pg and a tree map hn : Kn �! Kn

such that Per(hn) = Sp(n=k) n pf2; 3; : : : ; �sg. Thus from (2.8) we get that

Ks [(Is n dsef2; 3; : : : ; �sg) = f1g [Ks [k

[
n2M

Per(hn): (2.9)

Without loss of generality we can assume that Kn \Kl = ; when n 6= l.

Since M is �nite, by Lemma 2.9.4 there exist a tree, which we denote by Sm,

such that Kn � Sm for each n 2 M , and a tree map gm : Sm �! Sm such

that Per(gm) =
S

n2M Per(hn). Therefore, from (2.9) we have

Ks [(Is n dsef2; 3; : : : ; �sg) = f1g [Ks [k Per(gm): (2.10)

Note that Sm is not an interval, since Kn is not an interval for n 2 M .

Moreover, since p � maxf3; pg � jEn(Kn)j for each n 2M , then

(1) p � jEn(Sm)j.

Since pi � 2 for 1 � i < m, by using m � 1 times Lemma 2.9.3 by

backwards induction we obtain, for 1 � i < m, tree maps gi : Si �! Si such

that

(2) Si A piSi+1

(3) Per(gi) = f1g [pi Per(gi+1).

Since Sm is not an interval, from (2) it easily follows that

(4) Si is not a star for 1 � i < m.

We de�ne Ts = S1 and fs = g1. From (3) we easily get that Per(fs) =

f1g [Ks [k Per(gm). Consequently, (II) follows from (2.10). On the other

hand, (I) holds by (1{2) and (4). This ends the proof of the claim.

114

Chapter 3

Computer experiments

3.1 Introduction

In Section 2.2 we have summarized the dynamic minimality properties of

canonical models studied in [3]. If P is a pattern and (T;A; f) is a canonical

model of P (which is essentially unique), then f minimizes the topological

entropy within the class of maps exhibiting P (Theorem 2.2.1). Moreover,

if g is any map which exhibits P then the set of periods of f is essentially

contained (up to f -monotone equivalence and period-doubling) on the set of

periods of g (see comments on Theorems 2.2.3 and 2.2.4 in page 67). In this

setting, several important problems remain open. Among them:

1. Is it always true that Per(f) � Per(g)? In the negative, the periods

of what sort of orbits of f can fail to be inherited by g? (for instance,

orbits necessarily contained in V (T)).

2. In the theory of interval maps, a pattern P is said to force a pattern

Q if and only if each interval map exhibiting P also exhibits Q. It is a

known fact (Theorem 2.6.13 of [8]) that P forces Q if and only if the

minimal (or \connect-the-dots") map fP corresponding to the pattern

P exhibits an invariant set whose pattern is Q. This is not true in the

setting of tree maps (see [6]), as the following example shows. Consider

a pattern ([T;A]; [�]) with A = fx1; x2; x3; x4g and �(xi) = xi+1 mod 4

for 1 � i � 4 such that (T;A) consists of two discrete components

fx1; x2g and fx2; x3; x4g. On the left side of Figure 3.1 the canonical

model (T;A; f) of this pattern is shown. On the right side, a Markov

model (T;A; g) exhibiting the same pattern with g(v) = x1 is shown.

Both f and g are monotone on each (A[V (T))-basic interval. Note that

f has a periodic orbit R of period 3 contained in [x1; x2][[v; x3][[v; x4],

while each periodic orbit of g is contained in [x1; x3]. Thus if R0 is a

115

x1 x2 x3

v

x2 x3

x4

x1 v

x4

Figure 3.1: Two models exhibiting the pattern ([T;A]; [�]) with A =

fx1; x2; x3; x4g and �(xi) = xi+1 mod 4 for 1 � i � 4. On the left �gure,

the canonical model (T;A; f), for which f(v) = v. On the right �gure, a

Markov model (T;A; g) with g(v) = x1.

3-periodic orbit of g then the patterns ([T;R]; [f j
R
]) and ([T;R0]; [gj

R0
])

do not coincide.

Thus the following question arises: what is the appropriate de�nition

of forcing for patterns of tree maps in order that the same property as

in the interval case holds?

Partial answers to these questions, as well as potential counterexamples,

can be suggested by computer exploration. In this spirit, our main inter-

est have been focused on question 1. We have constructed some computer

software in order to explore a wide range of patterns and �nd potential coun-

terexamples to the relation Per(f) � Per(g) (in the notation introduced at

the beginning of the chapter).

In a spirit of modular programming, we have constructed a lot of self-

contained functions which can be used to design a wide variety of several-

purpose software. The eÆcient programming of a part of this machinery

needs an important theoretical background. In this chapter we list and ex-

plain the source code (written in language C) of the most important func-

tions. When required, we also state and prove some results which have been

used either to construct the algorithms or to optimize the execution time.

The code of other minor functions, which are not interesting from a mathe-

matical point of view, has been listed in the Appendix.

This chapter is organized as follows. In Section 3.2 we analyze in detail

the kernel and the auxiliary tree-managing functions which take part in the

algorithm of construction of the canonical model of an arbitrary pattern

provided by a user. In Section 3.3 we describe the functions for extracting

all the simple loops of a given length from a Markov transition matrix, and

we also establish and prove some theoretical tools for the eÆcient symbolic

manipulation of chains and loops. In Section 3.4 we describe the calculus of

the Markov transition matrix of a given Markov model. Finally in Section 3.5

116

we report some experimental results.

3.2 The program \TREES"

3.2.1 Aims and source code of the main program

The input of the program \TREES" is a pattern (T ; [�]) provided by the

user, either from the keyboard or from a disk �le. The program calculates

a pointed tree (T;A) and an A-monotone tree map f : T �! T exhibiting

the pattern (T ; [�]). This notation is �xed from now on until the end of

Section 3.2. The output can either be shown or stored on a disk �le. The

main algorithm implements the recursive construction of the pointed tree

(T;A) and the map f given by Theorem 5.1 of [3]. The main source code of

the program is listed below:

#include "head.h" /* HEAD FILE */

/* GLOBAL VARIABLES: */

/* INPUT (variables containing the user-defined pattern): */

unsigned int **c,ndc,endpat;

struct pair **orb;

/* OUTPUT (variables containing the calculus of T and f): */

unsigned int *im;

struct pair *namechange;

struct tree MZ;

void main(int argc,char *argv[])

{

void user(void);

void ReadPattern(char *);

void Megazero(void);

void results(void);

if(argc>1) ReadPattern(argv[1]); else user();

Megazero();

results();

}

The function user is described in Subsection 3.2.4 and it allows to enter

the pattern according to the conventions established in Subsection 3.2.3. Al-

117

ternatively, the input can be read from a disk �le by means of the function

ReadPattern, which is described in Section A.4 in the Appendix. Next the

function Megazero computes the pointed tree (T;A) and the map f . This

function is described in Subsections 3.2.5 and 3.2.7. Finally the function re-

sults, described in Subsection 3.2.8, prints out these results or, alternatively,

stores them in a disk �le.

3.2.2 Global data structures

The head �le contains the following source code:

#include "stdlib.h"

#include "stdio.h"

#include "alloc.h"

#include "math.h"

struct pair {

unsigned int e1;

unsigned int e2;

};

struct tree {

unsigned int nedges;

struct pair *edges;

};

void error(int,char**);

The pair structure consists of a couple of unsigned integers. Variables

of type struct pair have been used mainly to store two sorts of di�erent

objects:

� an edge of a tree whose vertices are labeled by unsigned integers.

� the binary representation of a point of the pattern P (see Subsec-

tion 3.2.3).

The main structure is tree, which consists of two �elds: an unsigned

integer which can be thought as the number of edges of the tree, and a

pointer to (or a vector of) pair structures, which stores the set of edges of the

tree. Observe that no �eld of the structure is reserved to store the number of

vertices. Since the Euler characteristic of a tree is 1, the amount of vertices

of any tree equals the amount of edges plus 1. Therefore, we establish the

following basic convention: the vertices of each tree will be numbered from

1 to the amount of edges plus 1.

118

The function error is an error message management function, which is

frequently called from other functions. It is described in Section A.5 in the

Appendix.

3.2.3 Algebraic representation of a pattern

A point of the pattern can be thought as an ordered pair of unsigned inte-

gers fn; kg, where n is a discrete component which contains the point and

k is the number of the point inside the n-th component. Obviously this

representation, which will be called binary representation, is not unique.

The representation of the pattern (T ; [�]) uses three global variables: ndc,

**c and **orb. The unsigned integer ndc contains the number of discrete

components of the pattern. These discrete components are numbered from

1 to ndc. The global variable **c is an array of unsigned integers of size

(ndc + 1)� (ndc + 1). For each 1 � n � ndc, c[0][n] stores the number of

points of the n-th discrete component. The points of this discrete component

are numbered from 1 to c[0][n]. Given 1 � m;n � ndc (n 6= m), we have

c[n][m] = k (1 � k � c[0][n]) if and only if the n-th component intersects the

m-th component at the k-th point (of the n-th component). And c[n][m] = 0

if and only if the n-th and m-th components have no intersection. Moreover,

c[0][0] = maxfc[0][1]; c[0][2]; : : : ; c[0][ndc]g and c[n][0] stores the number

of discrete components intersecting the n-th component. Finally, the diago-

nal of **c does not store any information relative to the pattern: positions

c[n][n] (1 � n � ndc) are used as auxiliary variables in some processes, as

the one performed by the function reduction (see page 140).

The �-image of each point of the pattern is codi�ed by means of the

global variable **orb, which is an array of pair structures. It consists of

(ndc + 1){many vectors �orb[n] (0 � n � ndc). The length of the vector

�orb[n] (1 � n � ndc) is c[0][n] + 1, while �orb[0] = NULL. The coding is:

orb[n][k] = fm; lg if and only if the �-image of the point fn; kg is the point

fm; lg. Positions orb[n][0] are free.

The global variable endpat, an unsigned integer, stores the amount of

points of the pattern (T ; [�]) plus 1. Note that this number is computed a

posteriori, since the user does not specify the number of points of the pattern.

The global variable MZ is a tree structure which contains the output of the

calculus of the tree T . Its vertices will be labeled from 1 to MZ:nedges + 1,

with the additional assumption that the vertices corresponding to the set A

are the ones labeled from 1 to endpat � 1.

Finally, the global variable *namechange is a vector of pair structures in

such a way that if 1 � p < endpat then namechange[p] = fn; kg means that

the p-th vertex corresponds to the point fn; kg in the binary representation

119

of the pattern (the k-th point inside the n-th discrete component).

3.2.4 Pattern input

The function user gets the pattern either from the keyboard or from a disk

�le. It uses extensively all the functions described in Section A.4 in the

Apendix. If keyboard input is chosen, it must be taken into account that

ndc = 1 is not accepted (trivial case: T is a star). The function performs

several checks of data input coherency (see the comments inside code list).

If succeed, then a short function named reduction is called in order to test

whether the input data correspond to a pattern embedded on a tree (see

page 141).

#include "conio.h"

#include "io.h"

#include "string.h"

#define INFINIT 32767 /* Upper bound for integers. */

static char *errors[] = {"Inconsistent data",

"This is not a tree"};

void user(void)

{

unsigned int i,j,k,n; char r,fitxer[81];

int reserve_matrix(unsigned int ***,

unsigned int,unsigned int);

int reserve_pointers_sp(struct pair ***,unsigned int);

int reserve_vector_sp(struct pair **,unsigned int);

unsigned int reduction(void);

int getnum(int,int);

void ReadPattern(char *);

void WritePattern(char *);

char getanswer(char *, char *);

clrscr();

r = getanswer("MTP","Manual input (M), read tree (T)

or pattern (P)");

if(r != 'M'){

printf("\nFile name: "); scanf("%s",fitxer);

ReadPattern(fitxer);

if(r=='P') return;

else goto IMAGES;

}

120

printf("Amount of discrete components ? ");

ndc=getnum(2,INFINIT);

if(!reserve_matrix(&c,ndc+1,ndc+1)

|| !reserve_pointers_sp(&orb,ndc+1)) error(3,NULL);

c[0][0]=0;

for(i=1;i<=ndc;i++) {

printf("\nAmount of points of the %hu-th component ? ",i);

c[0][i] = getnum(2,INFINIT);

if(c[0][i]>c[0][0]) c[0][0]=c[0][i]; /* Refreshing c[0][0] */

}

/* Right now, c[0][0]=maximum number of points in a component. */

printf("\nMATRIX OF COMPONENTS PAIRWISE CONNECTION\n");

for(i=1;i<=ndc;i++) {

c[i][0]=0;

printf("\n");

for(j=1;j<=ndc;j++) { int cc;

/* We set c[i][i]=1 because of the conventions assumed by the

function REDUCTION, which will be called later: */

if(i==j) {c[i][j]=1;continue;};

/* If we know that the j-th component does not intersect the

i-th component, it is unnecessary to ask for c[i][j]: */

if((i>j)&&(!c[j][i])) {c[i][j]=0;continue;};

printf("Point of the %hu-th d.c. contained in the %hu-th c.d. ?

(0=do not intersect,-1=jump) ",i,j);

cc = getnum(-1,c[0][i]);

if(cc == -1){ int s,ss;

printf(" Jump to: %hu-%hu ? ",j+1,ndc+1);

s = getnum(j+1,ndc+1);

for(ss=j;ss<s;ss++){c[i][ss] = 0; if(i>ss && c[ss][i])

error(1,errors); }

j = s-1;

} else if(!cc) { c[i][j] = 0; if(i>j && c[j][i])

error(1,errors); }

else { c[i][j] = cc; if(cc) c[i][0]++;

121

/* Refreshing c[i][0] */

/* We check whether the input matrix is symmetric with

respect the property for the elements of "being either

zero or different from zero": */

if((i>j)&&(!((c[i][j]&&c[j][i])||((!c[i][j])&&(!c[j][i])))))

error(1,errors);

}

}

/* We check whether some row of the input matrix equals zero

(a discrete component which does not intersect anything): */

if(!c[i][0]) error(2,errors);

}

/* We check the following pathology ("some discrete component

contains a point with two different names"): if the i-th and

j-th components do not intersect, there cannot be a component

k such that c[k][i] = c[k][j]: */

for(i=1;i<=ndc-1;i++) {

for(j=i+1;j<=ndc;j++) {

if(c[i][j]) continue;

for(k=1;k<=ndc;k++) if(c[k][i]&&(c[k][i]==c[k][j]))

error(1,errors);

}

}

/* Now we call REDUCTION, which returns the amount of components

of the tree after retracting. If there is no such components,

it follows that the input matrix **c actually corresponds to

a tree rather than a graph. */

if (reduction()) error(2,errors);

for(i=1;i<=ndc;i++) {

if(!reserve_vector_sp(&(orb[i]),c[0][i]+1)) error(3,NULL);

}

IMAGES:;

printf("\nIMAGES OF THE POINTS OF THE PATTERN:\n");

122

for(i=1;i<=ndc;i++) {

for(j=1;j<=c[0][i];j++) {

/* If the point {i,j} has another binary representation

{k,c[k][i]} with k<i, the image of this point is already

known and it is unnecessary to get it: */

n=0;

for(k=1;k<i;k++) {

if(c[i][k]==j) {n=1;orb[i][j].e1=orb[k][c[k][i]].e1;

orb[i][j].e2=orb[k][c[k][i]].e2; break;}

}

/* Otherwise, we proceed prompting {i,j}: */

if(!n) {

printf("\nOn which component is mapped {%hu,%hu} ? ",i,j);

orb[i][j].e1=getnum(1,ndc);

printf("On which point inside %hu ? ",orb[i][j].e1);

orb[i][j].e2=getnum(1,c[0][orb[i][j].e1]);

}

}

}

r = getanswer("YN","Do you want to save the pattern on a

disk file? (Y/N)");

if(r != 'Y') return;

printf("\nFile name (extension .PAT recommended) : ");

scanf("%s",fitxer);

WritePattern(fitxer);

}

The function ReadPattern, whose source code can be found in Sec-

tion A.4 in the Appendix, reads a pattern from a �le using the above con-

ventions. It is assumed that the pattern �le was created by the function

WritePattern inside of user, and thus the pattern contained in the �lemust

be correct. Hence, ReadPattern does not perform any checking among the

ones performed by user.

3.2.5 Construction of the canonical model

In this subsection we explain in detail how the function Megazero works in

order to construct the canonical model (T;A; f) of the pattern P provided

by the user. The key point of the construction of the tree T is a function

123

called treeDC, which is important enough to be analyzed in a special sub-

section (see Subsection 3.2.6). Megazero computes also the A-monotone

map f . This task is performed by TranslateAndImages (which is called

from Megazero). This function is described in Subsection 3.2.7.

This subsection is organized in three separated sub-subsections. In Sup-

port functions we briey list and explain some short several-purpose routines.

In Nomenclature and description of the procedure we recall the de�nitions and

results from Section 5.1 of [3]. Finally in The function \Megazero" we list

the main source code and comment the general purpose of Megazero.

Support functions

Here we list the source code of some short functions which are extensively

used from all the tree-managing functions described in the sequel.

The function SamePoints returns 1 when the binary representations

fi1,i2g and fi3,i4g correspond to the same point of the pattern, and 0

otherwise:

char SamePoints(unsigned int i1,unsigned int i2,

unsigned int i3,unsigned int i4)

{

if((!i1)||(!i2)||(!i3)||(!i4)) return 0;

if(i1==i3) return (i2==i4);

return ((c[i1][i3]==i2)&&(c[i3][i1]==i4));

}

The function val returns the valence of the vertex n in tree, with respect

to the subtree given by the set of edges m such that eactiu[m] 6= 0:

unsigned int val(unsigned int n,struct tree arbre,int *eactiu) {

unsigned int i,j=0;

for(i=1;i<=arbre.nedges;i++) {

if(!eactiu[i]) continue;

if(n==arbre.edges[i].e1 || n==arbre.edges[i].e2) j++;

}

return j;

}

The function IsRelativeEnd admits the following parameters: an inte-

ger v, a vector of pair structures *edges, an integer nedges and two vec-

tors of integers *nactiu, *eactiu. The couple nedges,*edges represents

a tree (amount of edges and the set of edges, respectively). The couple

*nactiu, *eactiu indicates that we are considering a subtree of the tree

124

fnedges; �edgesg, in such a way that: the vertex n (1 � n � nedges + 1)

is deleted if and only if nactiu[n] = 0; and the edge n (1 � n � nedges) is

deleted if and only if eactiu[n] = 0. The function returns 0 either when v

is not an endpoint relative to the considered subtree, or when it is already

deleted (nactiu[v] = 0). If v is a relative endpoint, then the function returns

an integer e, where e is the edge containing v.

int IsRelativeEnd(int v,struct pair *edges,int nedges,

int *nactiu,int *eactiu)

{

int e=0,m;

if(!nactiu[v]) return 0; /* Output 0 if v is deleted. */

for(m=1;m<=nedges;m++) {

if(!eactiu[m]) continue;

if((edges[m].e1==v)||(edges[m].e2==v)) { if(e) return 0; e=m; }

}

return e;

} /* IsRelativeEnd */

The function ConvexHull computes the convex hull of a �nite set Q =

P [E, where P is a subset of A [V (T) and E is a subset of the set of

(A[V (T))-basic intervals (which here we informally call edges). The points

of P and the edges of E are called unerasable. The rest of edges and the rest

of points of A[V (T) are called erasable. The parameter tree stores the tree

T on which the function works. There are two possible input con�gurations

for the rest of the parameters:

1. If n[0]>0 then the unerasable points of tree are exactly n[1], n[2],

: : :, n[n[0]]. And, by convention, all the edges are erasable.

2. If n[0]= 0 then a point k is unerasable if nactiu[k]= 1, and erasable

if nactiu[k]= �1 (analogously with eactiu and the set of edges).

In both cases, the function deletes all the erasable vertices and edges

which are not contained in the convex hull of the unerasable ones. The vectors

*nactiu and *eactiu are returned, updated according to the following code:

nactiu[k]= 0 if and only if the k-th vertex is deleted (that is, it does not

belong to the convex hull of Q), and analogously with *eactiu and the set

of edges.

The function iteratively uses IsRelativeEnd to search an erasable point

x which is an endpoint relative to the tree de�ned by non-deleted points

and edges. When found, x and the unique edge containing x are deleted by

updating *eactiu and *eactiu. The iterative procedure stops when a cycle

is completed without deleting anything.

125

void ConvexHull(struct tree arbre,

int *nactiu,int *eactiu,unsigned int *n)

{

int IsRelativeEnd(int,struct pair *,int,int *,int *);

int m,npoints,v,va,e;

npoints=arbre.nedges+1;

/* npoints = number of points. Note that it is > 1. */

/* Initializing vectors nactiu and eactiu.

Code: 1: Unerasable node or edge

0: Deleted node or edge (non active)

-1: Erasable node or edge */

if(n[0]) {

for(m=1;m<=npoints;m++) nactiu[m]=eactiu[m]=-1;

for(m=1;m<=n[0];m++) nactiu[n[m]]=1;

}

/* Reduction process. We delete all the relative ends (and

their edges) until a cycle is completed without deleting

anything. */

v = va = 1;

do {

if(nactiu[v]==-1) {

e=IsRelativeEnd(v,arbre.edges,arbre.nedges,nactiu,eactiu);

if(e) { nactiu[v]=eactiu[e]=0; va=v; }

}

if(++v > npoints) v=1;

} while(v!=va); /* End of "do" */

} /* ConvexHull */

Nomenclature and description of the procedure

The key point of the calculus of the tree T is an iterative procedure that

associates, to each discrete component Q of the pattern (T ; [�]), a tree T (Q)

such that Q = En(T (Q)). This tree will be called the minimal tree associated

to the discrete component Q. Finally, we will obtain T by gluing together

all the trees T (Q) by the corresponding intersection points of the discrete

components. To describe the algorithm which computes the minimal tree

T (Q) we need some notions and results from Section 5.1 of [3] in order to

126

construct the tree T . We start by summarizing them.

Let g : B �! S be a map from a �nite set B to a tree S. Let S 0 be the

tree obtained from S by adding a new edge hg(a); eai for each point a 2 B

so that if a 6= b but g(a) = g(b) then ea 6= eb. We de�ne a map g
0 : B �! S

0

such that g0(a) = ea. Finally, let Sg be the tree hg
0(B)iS0. Note that there is

a bijection from the elements of B to the endpoints of the tree Sg. In fact,

in order to simplify the notation, we will consider that B = En(Sg). This

procedure to obtaining Sg is uniquely determined up to homeomorphisms,

and will be called g-extension.

Let (S;B) be a pointed tree. From now on, we will not necessarily as-

sume that B � S, and (S;B) will stand for (S;B \ S). The set of discrete

components of (S;B) will be denoted by D(S;B). A subset Q of a discrete

component of (S;B) such that either jQj = jB \ Sj = 1 or jQj � 2 will be

called discrete subcomponent of (S;B).

Let ([S;B]; [�]) be a pattern and let Q be a discrete subcomponent of

(S;B). The set of discrete components of (h�(Q)iS; B) will be denoted by

S(Q). Note that this de�nition is independent from the chosen representative

(S;B). If there exists Q0 2 S(Q) such that jQ0j = 1 then S(Q) = fQ0g.

Moreover, for each Q
0 2 S(Q) with jQ0j > 1 there is a unique P 2 D(S;B)

such that Q0 = h�(Q)iS \ P . In particular, Q0 is a discrete subcomponent of

(S;B). We de�ne a Q-sequence of the pattern ([S;B]; [�]) to be an in�nite

sequence Q0Q1Q2 : : : such that:

a) Q0 = Q is a discrete subcomponent of (S;B)

b) Qn 2 S(Qn�1) for each n 2 N .

Now we list the main properties of Q-sequences, extracted from Lemma 5.5

of [3]:

Lemma 3.2.1. Let Q0Q1Q2 : : : be a Q-sequence of a pattern. Then

a) jQn�1j � jQnj for each n 2 N.

b) There is m 2 N [f0g such that jQmj = jQkj for all k � m.

c) If jQn�1j = jQnj for some n 2 N and Q0Q1Q2 : : : Qn�1Q
0
n
: : : is another

Q-sequence such that Q0
n
6= Qn then jQ0

n
j = 2.

Let Q = Q0Q1Q2 : : : be a Q-sequence of a pattern. We de�ne the depth

Æ(Q) of Q to be the least n 2 N [f0g such that there exists a Q-sequence

Q0Q1Q2 : : : QnQ
0
n+1Q

0
n+2 : : : with jQ

0
j
j = jQnj for all j > n. It is well de�ned

by Lemma 3.2.1 (b). The next result corresponds to Lemma 5.6 of [3]:

Lemma 3.2.2. The following statements hold:

a) Let Q = Q0Q1Q2 : : : and Q0 = Q0Q1Q2 : : : QÆ(Q)�1Q
0
Æ(Q) : : : be two

Q-sequences. Then Æ(Q0) � Æ(Q).

127

b) The set fÆ(Q) : Q is a Q-sequenceg is �nite.

Let Q = Q0Q1 : : : Qn and P = P0P1 : : : Pm be sequences of discrete sub-

components. The sequence Q0Q1 : : : QnP0P1 : : : Pm will be denoted by QP .

The number n will be called the length of Q, and will be denoted by jjQjj.

We say that Q is admissible if there exists a Q0-sequence starting with Q

whose depth is larger or equal to jjQjj � 1. If Q is admissible then the num-

ber Æ(Q) = maxfÆ(Q) : Q = Q : : :g will be called the depth of Q. It is well

de�ned by Lemma 3.2.2(b). By de�nition, Æ(Q) � jjQjj � 1.

Let Q be a discrete component of the pattern (T ; [�]). We construct the

minimal tree T (Q) by induction as follows:

Step 0: For each admissible sequence of discrete subcomponents Q =

QQ1Q2 : : : Qn for which Æ(Q) = jjQjj � 1, we de�ne T (Q) to be a jQnj-star

whose endpoints are Qn (recall that in page 48 a 1-star was de�ned to be a

point).

Step k: Let k � 0. Assume by induction that, for all admissible se-

quences Q = QQ1Q2 : : : Qm with Æ(Q) � jjQjj � 1 + k, we have de�ned a

tree T (Q) such that En(T (Q)) = Qm. By Step 0, this induction hypothesis

is satis�ed for k = 0. Let Q0 = QQ1Q2 : : : Qn be an admissible sequence

such that Æ(Q0) = jjQ0jj + k. For each Q
� 2 S(Qn), the sequence Q

0
Q
� is

admissible and it satis�es Æ(Q0
Q
�) � Æ(Q0) = jjQ0jj+k = jjQ0

Q
�jj�1+k. By

the induction hypothesis, the tree T (Q0
Q
�) is de�ned and En(T (Q0

Q
�)) = Q

�

holds.

Let R(Q0) = [Q�2S(Qn)T (Q
0
Q
�), where the union is obtained as the dis-

joint union of the trees T (Q0
Q
�) under identi�cation of the common points

of the elements of S(Qn). Then (R(Q0); B) is a pointed tree whose dis-

crete components are S(Qn). Now we apply the g-extension construction on

g : Qn �! R(Q0), where g = �jQn
, and we de�ne T (Q0) = Sg, which is a tree

whose endpoints are Qn (after doing the corresponding identi�cation). This

completes Step k of the induction process.

Remark 3.2.3. If for some admissible sequence Q = QQ1 : : : Qn we have

jQnj < 4, then T (Q) is a jQnj-star. This follows from the fact that each tree

with less than 4 endpoints is a star.

The function \Megazero"

A variable *mz of type pointer to tree structures is declared locally for all

functions described in Subsection 3.2.5. For each 1 � n � ndc, the tree mz[n]

is the minimal tree constructed according to the above inductive process,

corresponding to the n-th discrete component of the pattern (T ; [�]) (see

comments after the function code):

128

static struct tree *mz

void Megazero(void)

{

unsigned int *dc,i;

struct tree treeDC(unsigned int);

void Sort2(unsigned int, unsigned int *, unsigned int *);

void TranslateAndImages(void);

/* Reserve memory space: */

mz = malloc(sizeof(struct tree)*(ndc+1));if(!mz)

error(2,NULL);

dc = malloc((ndc+1)*sizeof(unsigned int));if(!dc)

error(2,NULL);

{

/* The vectors dc and npdc ("discrete component" and "number

of points per discrete component", resp.) are send to the

function "Sort2" to sort dc with respect to npdc: */

unsigned int *npdc;

npdc = malloc((ndc+1)*sizeof(unsigned int));if(!npdc)

error(2,NULL);

for(i=1;i<=ndc;i++) { dc[i]=i;npdc[i]=c[0][i];

mz[i].nedges=0; };

/* initialization */

Sort2(ndc,npdc,dc);

free(npdc);

}

/* We successively call "treeDC" in the order

induced by dc[i] (0 < i < ndc+1)

(see comments below): */

for(i=1;i<=ndc;i++) mz[dc[i]] = treeDC(dc[i]);

free(dc);

/* We compute an upper bound for the amount of edges

which belong to the convex hull of any pair of

vertices of the minimal tree T, and we store it on

c[1][1]. This value will be stored on a disk file

together with the tree T and the map f. It relates

to the optimization of the row length of the Markov

129

matrix (to be used in further programs). */

c[1][1]=0;

for(i=1;i<=ndc;i++) c[1][1]+=mz[i].nedges-c[0][i]+2;

TranslateAndImages();

free(mz);

} /* Megazero */

The function which calculates the minimal tree associated to a discrete

component is called treeDC, and it is described in the next subsection. The

function Sort2 (see Section A.3) is used to �lter the calls to treeDC in

increasing order of amount of points per component, since we consider it

more eÆcient. This is due to:

� Essentially, the execution time for the calculus of the minimal tree T (Q)

associated to a discrete component Q is a decreasing function of the

size of Q.

� The execution time for the calculus of T (Q) can be optimized by us-

ing certain information about the previously calculated minimal trees

associated to other discrete components di�erent fromQ (the exact pro-

cedure is given by the criterion 3 of the function Stop, see page 140).

Therefore, the execution time for the calculus of T (Q) is a decreasing

function of the number of minimal trees previously calculated associ-

ated to other components di�erent from Q.

Remark 3.2.4. First of all, a value 0 is given to mz[n].nedges for all 1 �

n � ndc. After calling the function treeDC with argument n, the tree mz[n]

is de�ned and in particular mz[n]:nedges > 0. Hence, mz[n]:nedges = 0 if

and only if mz[n] has not been calculated yet.

After �lling the vector *mz, the function TranslateAndImages (see Sec-

tion 3.2.7) glues together all the trees mz[n] (1 � n � ndc) to obtain the

minimal tree T , which is stored on the global variable MZ.

3.2.6 The function \treeDC"

This function is the key point of Megazero. It uses three important routines,

named Stop, NextNodes and MakeTree, which are analyzed in three

respective so-called sub-subsections.

Let Q be a discrete component of the pattern (T ; [�]). We can consider

that the set of all Q-sequences is arranged according to a tree of Q-sequences.

It is an abstract tree, whose vertices, which will be called nodes, are discrete

130

subcomponents of the pattern (T ; [�]). The root node (or \�rst node") of

the tree of Q-sequences is the discrete component Q. Finitely many arrows

(or directed edges) start at Q, each of them ending at a node which is an

element of S(Q). Given one of these nodes Q0, �nitely many arrows start at

Q
0, each of them ending at a node which is an element of S(Q0). And so on.

Proceeding in this way we obtain an \in�nite tree" which expands from the

root node Q. Then any Q-sequence is an in�nite sequence Q0Q1Q2 : : : such

that Qn is a node of the tree of Q-sequences for all n � 0, Q0 = Q and, for

each n � 0, there is an arrow from Qn to Qn+1 in the tree of Q-sequences.

With these de�nitions, we can do a complete description of the computer

implementation of the algorithm introduced in page 128. Previously to all

the functions of Subsection 3.2.5, we have this piece of code:

struct node {

unsigned int dc;

unsigned int *points;

struct node **arrows;

unsigned int narrows;

int arrow;

struct tree local;

struct node *back;

} *start, *actual;

It is the declaration of a structure node, which is local to the set of all

the functions of Subsection 3.2.5. This structure is suitable for the computer

representation of a node of the tree of Q-sequences. Next we analyze in detail

the contents of each �eld.

Let Q0 be a node of the tree of Q-sequences. In particular, Q0 is a discrete

subcomponent of the pattern (T ; [�]).

1. dc is an integer between 1 and ndc, which stores the discrete component

of which Q
0 is a discrete subcomponent.

2. *points is a vector of integers such that Q0 = fpoints[1]; points[2];

: : : ; points[points[0]]g. That is, it stores the subset of points of the

discrete component dc conforming the subcomponent Q0, labeled in

terms of the internal ordering of the points of the discrete component

dc. In particular, 1 � points[n] � c[0][dc] for 0 � n � points[0] (see

Subsection 3.2.3).

3. narrows is an unsigned integer which equals the amount of arrows

starting from the node Q0 in the tree of Q-sequences.

4. **arrows is a vector of pointers to node structures, of length narrows

(from *arrows[0] to *arrows[narrows-1]), which can be thought as

131

the set of arrows starting from the node Q0 in the tree of Q-sequences.

Each of these pointers stores the memory address which allocates a

node structure corresponding to an element of S(Q0).

5. arrow is an integer in the range [0,narrows] which, during the con-

struction of the tree of Q-sequences, marks our situation on the node

Q
0. A value NULL for arrows indicates that we arrive to Q

0 for the

�rst time and, if it is possible, we must generate the Q-subsequent

nodes and then move to the node whose address is arrows[0]. A value

0 � arrow < narrows� 1 indicates that we already have moved to the

node whose address is arrows[arrow] and that the next \open prob-

lem" is to compute the minimal tree corresponding to the node whose

address is arrows[arrow+1]. Finally, a value arrow = narrows�1 in-

dicates that we have completed the generation of all the subtree whose

root node is Q0. The generation of the tree of Q-sequences is described

in detail at page 133.

6. local is a tree structure containing (when it is known) the minimal

tree T (Q) (de�ned at page 128) associated to the admissible sequence

Q = Q : : :Q
0 formed by all predecessors ofQ0 in the tree ofQ-sequences.

We recall that the set of endpoints of this tree is exactly Q
0. By con-

struction, the tree local will be consistent. This means that: the

vertices will be numbered from 1 to local:nedges + 1, the vertices

between 1 and points[0] will be exactly the endpoints and they will

we sorted in such a way that, if 1 � n � points[0], then the vertex n

represents the point points[n] of the discrete component dc.

7. *back is a pointer to a node structure containing the address of the

node Q00 of the tree of Q-sequences such that there is an arrow from

Q
00 to Q0.

Also a pair of variables of type pointer to node structure, *start and

*actual, are declared. They are local to all the functions of Subsection 3.2.5

and they are the key point of the computer version of the algorithm of

page 128. The purpose of the algorithm is to generate the tree ofQ-sequences,

that is: given a node Q0, we want to calculate the tree T (Q : : :Q
0). The ad-

dress of the root node of the tree of Q-sequences is stored at *start, while

the address of the node Q0 is stored at *actual. The problem of computing

the tree T (Q : : :Q
0) may be:

� Already solvable if and only if the trees T (Q : : :Q
0
Q
00) are calculated for

each node Q00 2 S(Q0). In this case, we compute the tree T (Q : : :Q
0)

and next we free the memory space used by the nodes of S(Q0), which

are not yet necessary.

� Unsolvable yet if:

132

{ either the nodes of S(Q0) are still unknown. In this case, we must

generate them.

{ or the nodes of S(Q0) are known but we do not know the trees

T (Q : : :Q
0
Q
00) for each Q00 2 S(Q0). In this case, we must compute

them.

This is a general idea about the \local" decisions the function TreeDC

must take to calculate the tree T (Q : : :Q
0). Each decision implies a further

movement to a node di�erent from Q
0. This is why we speak of an \algorithm

of generation and wandering on the tree of Q-sequences". These movements

are detailed in the sequel.

The function treeDC implements the algorithm of generation and wan-

dering on the tree of Q-sequences associated to a 1 � component � ndc

which will be called Q. It returns a tree structure containing the minimal

tree T (Q). The key lines have been numbered:

struct tree treeDC(unsigned int component) {

int Stop(struct node **),i;

void MakeTree(struct node **);

void NextNodes(struct node *);

void Star(unsigned int, struct tree *);

struct tree auxiliar;

/* Trivial case: if Q has less than 4 points,

T(Q) is a star: */

if(c[0][component] < 4) {

Star(c[0][component],&auxiliar);

return auxiliar;

}

/* Initializations corresponding to the root node: */

start = malloc(sizeof(struct node *)); if(!start)

error(1,NULL);

start->dc = component;

start->points = malloc((c[0][component]+1)

*sizeof(unsigned int)); if(!start->points)

error(2,NULL);

start->points[0] = c[0][component];

start->arrows = NULL;

start->back = NULL;

start->local.edges = NULL;

for(i=1;i<=start->points[0];i++) start->points[i] = i;

133

/* We move to the root node: */

actual = start;

/* And we start the generation and wandering on the

tree of Q-sequences: */

while(actual) { /*1*/

if(actual->arrows) { /*2*/

(actual->arrow)++; /*3*/

if(actual->arrow < actual->narrows)

actual = actual->arrows[actual->arrow]; /*4*/

else {MakeTree(&actual); actual=actual->back;} /*5*/

}

else { /*6*/

if(Stop(&actual)) actual = actual->back; /*7*/

else { /*8*/

NextNodes(actual); /*9*/

actual->arrow = 0; actual = actual->arrows[0]; /*10*/

}

}

}

/* Tree T(Q) computed. We copy it into auxiliar and clean: */

auxiliar.nedges = start->local.nedges;

auxiliar.edges = start->local.edges;

free(start->points); free(start);

return auxiliar;

} /* treeDC */

A variable auxiliar of type tree structure is declared. Its value will be re-

turned as the output of the function. First of all we check that the component

Q has more than 3 points. Otherwise, by Remark 3.2.3 the calculus is trivial:

the function Star (see page 137) loads a jQj-star on auxiliar and we are

done.

Next the function initializes the values of the �elds of the node struc-

ture whose address is contained in the variable start, corresponding to the

root node of the tree of Q-sequences. Observe that start->arrows and

start->back are given a NULL value. This is essential, as we shall see. The

variable actual contains the address of the node on which we are placed at

each step of the wandering on the tree of Q-sequences. At the beginning,

actual = start.

Assume that we are placed in a node Q0 of the tree of Q-sequences (that

134

is, the variable actual points to the node describing Q). We de�ne mov-

ing forward as doing actual=actual->arrows[narrow]. We de�ne moving

backward as doing actual=actual->back. Then:

i) Case actual->arrows=NULL (line 6 of code). In this case, the nodes

subsequent to the node actual have not been yet generated. If the

function Stop detects that the tree T (Q : : :Q
0) can be directly calcu-

lated and it is unnecessary to compute the nodes (see page 137), then

it constructs the tree and stores it at actual->local. Then we move

backward (line 7 of code). Otherwise (line 8), NextNodes generates

the nodes, then we set actual->arrow to 0 and move forward to the

�rst node successor of the current one (line 10).

ii) Case actual->arrows 6=NULL (line 2). In this case, the nodes 0; 1; : : : ;

narrows-1 subsequent to the node actual have already been gener-

ated. We increment the counter actual->arrow (line 3). If it is smaller

than the number of arrows starting at node actual, then we move

forward to the node actual->arrows[actual->arrow] (line 4). Oth-

erwise (line 5), the local trees of all the nodes subsequent to actual

are de�ned and thus the function MakeTree can generate the tree

T (Q : : :Q
0). Next we move back.

We repeat this procedure until actual=NULL (line 1). Note that this will

eventually happen since start->back=NULL and this value is no longer mod-

i�ed. This algorithm works (i.e., calculates the tree T (Q) spending a �nite

time) due essentially to two facts:

1. The function NextNodes (see page 140) sets the �eld arrows of all

generated node structures to NULL.

2. The function Stop detects, in particular, admissible (�nite) sequences

whose depth equals its length minus 1 (see Step 0 of the inductive

process described at page 128). Then Lemma 3.2.2(b) warrants the

�niteness of the process.

To have a full view of the algorithm we still need to describe the key

functions Stop,NextNodes andMaketree. This is the aim of the following

three sub-subsections.

The function \Stop"

Before analyzing the source code of Stop, we describe the utility function

OptimizeIfStar which allows us to minimize the used memory space and

optimize the execution time. This function is called from most of the func-

tions invoked during the process of generation and wandering on the tree of

135

Q-sequences. It is based on Lemma 3.2.1(c). Let Q0 and Q
00 be nodes such

that Q00 2 S(Q0). Assume that the tree T (Q : : :Q
0
Q
00) is known to be a jQ00j-

star, and that jQ0j = jQ00j. Then from Lemma 3.2.1(c) it follows that the

other elements of S(Q0) have cardinality 2. Therefore, when constructing the

tree T (Q : : :Q
0) by a process of g-extension and identi�cation of endpoints,

we obtain a tree which is homeomorphic to T (Q : : :Q
0
Q
00), and so a jQ00j-star.

The function OptimizeIfStar uses iteratively this procedure in order to

move as back as possible in the tree of Q-sequences. First of all it checks

whether *actual->local is a star (note that the used criterion is that the

amount of edges of the tree (*actual)->local equals jQ00j). If this is not

the case we abandon the optimization. Otherwise, the value of *actual is

updated until the subcomponent associated to the node (*actual)->back

has not the same number of points as the one associated to the node *actual

(observe the extra level of indirection). Before returning, the function Star

loads a star on the tree (*actual)->local, and �nally frees the memory

space used by the subtree of sequences starting at node *actual.

We note that, in particular, the function OptimizeIfStar detects admis-

sible sequences whose depth equals the length minus 1. In fact, it translates

the node actual to the node R of the sequence Q : : :R : : : Q
00 such that

Æ(Q : : :R) = jjQ : : :Rjj � 1.

void OptimizeIfStar(struct node **actual) {

if((*actual)->local.nedges != (*actual)->points[0]) return;

/* We know it is an n-star. Can we continue going back

by using Lemma 3.2.1 ? : */

while(((*actual)->back)->points[0] == (*actual)->points[0])

(*actual) = (*actual)->back;

/* Here we "prune" from node *actual : */

if((*actual)->arrows){ struct node *aux;

aux=*actual; aux->arrow=0;

for(;;) {

while(aux->arrow < aux->narrows){

while(aux->arrows){

aux = aux->arrows[aux->arrow];

free(aux->points);

aux->arrow = 0;

} /* Here the forward "while" ends */

if(aux->local.edges) free(aux->local.edges);

aux = aux->back;

136

free(aux->arrows[aux->arrow]);

(aux->arrow)++;

} /* Here the number-of-arrows "while" ends.

All the successors of *actual have bee pruned. */

free(aux->arrows); aux->arrows = NULL;

if(aux == *actual) break;

aux = aux->back;

free(aux->arrows[aux->arrow]);

(aux->arrow)++;

} /* Here the "for" ends */

} /* End of "if" */

/* Now we hang the n-star if it is not there from actual node

and return: */

if((*actual)->local.edges) return;

Star((*actual)->points[0],&((*actual)->local));

return;

} /* OptimizeIfStar */

Star admits two parameters: an unsigned integer np and a pointer to

tree structure *tree. It loads an np-star on the tree structure starting at

memory address *tree, doing it with a consistent numbering of edges and

vertices (recall the de�nition of consistency given in page 132):

void Star(unsigned int np, struct tree *arbre) {

int i,b;

arbre->nedges = np - (np == 2);

arbre->edges = malloc((arbre->nedges+1)*sizeof(struct pair));

b=arbre->nedges+1;

for(i=1;i<=arbre->nedges;i++) {

(arbre->edges[i]).e1 = i;

(arbre->edges[i]).e2 = b;

}

} /* Star */

The function Stop is called if and only if the nodes subsequent to the

node actual (we call it Q0) are not de�ned yet. It uses four criteria in

order to determine whether it is possible to halt the generation of the tree

of Q-sequences because the tree T (Q : : :Q
0) can be easily calculated. If one

of the four criteria holds, the function calculates T (Q : : :Q
0) and returns 1.

137

Otherwise it returns 0. This functions allows us to save time and it warrants

the �niteness of the algorithm of generation and wandering on the tree of

Q-sequences. Stop assumes the parameter **actual with an extra level of

indirection, since the value of *actual can be updated to a previous node.

int Stop(struct node **actual) {

void OptimizeIfStar(struct node **);

void Star(unsigned int,struct tree *);

void Subtree(struct node *);

char SamePoints(unsigned int,unsigned int,

unsigned int,unsigned int);

int i,m,n;

struct node *aux;

/******** CRITERION 1: AMOUNT OF POINTS ********/

if((*actual)->points[0] < 4) {

Star((*actual)->points[0],&((*actual)->local));

return 1;

}

/***** CRITERION 2: THE IMAGE CONSISTS OF ONE POINT *****/

m=orb[(*actual)->dc][(*actual)->points[1]].e1;

n=orb[(*actual)->dc][(*actual)->points[1]].e2;

for(i=2;i<=(*actual)->points[0];i++) {

if(SamePoints(m,n,

orb[(*actual)->dc][(*actual)->points[i]].e1,

orb[(*actual)->dc][(*actual)->points[i]].e2))

goto Criteri3;

}

(*actual)->local.nedges = (*actual)->points[0];

OptimizeIfStar(actual);

return 1;

/******** CRITERION 3: THE COMPATIBILITY ********/

Criteri3:;

if(mz[(*actual)->dc].nedges) {

Subtree(*actual);

OptimizeIfStar(actual);

return 1;

138

}

/******** CRITERION 4: THE STABILITY ********/

/* Fist of all we look for a cicle */

aux = *actual;

n = (*actual)->dc;

m = (*actual)->points[0];

while((aux->back)->points[0] == m)

/* (the number of points in back is not smaller

than the number of points in actual) */

{

aux = aux->back;

if(aux->dc != n) continue;

for(i=1;i<=m;i++) if(aux->points[i] !=

(*actual)->points[i]) goto AnemProvant;

/* Start of a cycle found. We optimize

(and hang an n-star) and return */

*actual = aux;

(*actual)->local.nedges = (*actual)->points[0];

OptimizeIfStar(actual);

return 1;

AnemProvant:;

} /* Here "while" ends */

/* No halt detected */

return 0;

} /* Stop */

� Criterion 1 detects that jQ0j < 4 and, by using Remark 3.2.3, equals

the tree T (Q : : :Q
0) to a star. Let Q00 be the node previous to Q0. Note

that we do not spend time calling the function OptimizeIfStar, since

the condition checked by this function (jQ00j = jQ0j) is not satis�ed.

Indeed, the construction of the algorithm implies that the node Q
00

does not hold any criteria of the function Stop. In particular, it does

not hold criterion 1, and hence jQ00j � 4.

� Criterion 2 detects that the image of all points in Q0 is a unique point.

In this case T (Q : : :Q
0) is clearly a star. Then the amount of edges

139

of the tree (*actual)->local is set to jQ0j and OptimizeIfStar is

called.

� Let P be the discrete component of the pattern (T ; [�]) such that Q0 �

P . By using Remark 3.2.4, criterion 3 determines whether the tree

T (P) have been already calculated. In the aÆrmative, Section 5.3 of [3]

shows that T (Q : : :Q
0) is exactly the convex hull of the points ofQ0 � P

inside the tree T (P) (up to homeomorphisms). The convex hull is

generated by calling Subtree (see page 151). FinallyOptimizeIfStar

is called.

� Criterion 4, in particular, detects admissible sequences whose depth

equals the length minus 1. If the sequence ending at the node actual

is denoted by QQ1Q2 : : : QnQ
0, then the criterion looks for some 1 �

k � n such that Qk = Q
0. If found, it moves to Qk and loads a star on

it. Finally OptimizeIfStar is called.

Observe that there are two classes of criteria in the function Stop: criteria

1 and 4 are necessary in order to warrant the �niteness of the calculus, and

thus are not dispensable. On the other hand, criteria 2 and 3 are purely

optimizing.

The function \NextNodes"

NextNodes generates the nodes subsequent to the node *actual, which

is sent as a parameter. From the construction of the algorithm it follows

that this function is called with the input condition actual->arrows=NULL,

and the node actual does not hold any criteria of the function Stop (see

page 133).

Let Q be the discrete subcomponent loaded at node *actual. The sub-

sequent nodes are discrete subcomponents of the convex hull of the image

�(Q). The �rst stage of the procedure carried out in NextNodes consists of

marking the discrete components contained in the convex hull of the discrete

components which contain points of �(Q). This task is carried out by a short

function called reduction. Now we list its source code and briey explain

how it works.

unsigned int reduction(void) {

unsigned int i=1,p,j,l,ii=1;

l=ndc-1; /* (Amount of non-deleted components)-1;

output parameter */

do {

140

if(c[i][i]==1) { /* We only work with erasable components */

p=0; /* Contact point with the rest of the tree */

for(j=1;j<=ndc;j++) { /* For each discrete component */

if(i==j) continue;

if(c[j][j]&&c[i][j]) { /* non-deleted we search contact */

if(p) {if(p!=c[i][j]) goto noui;} else p=c[i][j]; /* unique */

}

} if(!p) return l; /* Component with no contact */

c[i][i]=0;l--;ii=i; /* The contact was unique. We delete

and update ii */

}

noui: if(++i>ndc) i=1; /* Next component */

} while (l && (i!=ii)); /* Stop */

return l;

}

This function assumes that the diagonal of the matrix **c is marked

according to the following code: c[n][n] 2 f0; 1; 2g for each 1 � n � ndc.

We say that a discrete component n is erasable if c[n][n] = 1, and we call it

unerasable if c[n][n] = 2. The discrete component n is deleted if c[n][n] = 0.

The exact purpose of reduction is to delete all the erasable components

which are not contained in the convex hull of the unerasable components.

The function iteratively searches erasable components which are con-

nected to the rest of the tree by exactly one point (terminal components)

and it deletes them. The iterative procedure stops when either there is only

one remaining non-deleted component (l = 1 in the source code) or when a

complete checking of all components does not detect any component to be

deleted (i = ii in the source code).

The function, of type unsigned integer, returns the amount of components

which have not been deleted yet, minus 1. Moreover it modi�es the contents

of the diagonal of the matrix **c, in such a way that: if it has been called

with some components marked as unerasable, then c[n][n] 6= 0 if and only if

the n-th component belongs to the convex hull of the unerasable components;

otherwise, the contents of the diagonal of **c are not determined.

Incidentally, note that if we call reduction with all the components

marked as erasable, then it returns 0 if and only if the pattern can be re-

tracted to a point. This fact is used by the function user in order to test

whether the pattern de�ned by the user is embedded in a tree.

void NextNodes(struct node *actual) {

unsigned int i,j,m=0,**image,*ord;

int reserve_matrix(unsigned int ***,

141

unsigned int,unsigned int);

void free_matrix(unsigned int ***,unsigned int);

void Sort1(unsigned int,unsigned int *);

unsigned int belongs(unsigned int,unsigned int *);

unsigned int reduction(void);

if(!reserve_matrix(&image,ndc+1,c[0][0]+1))

error(3,NULL);

/* image[i][0] = amount of image points which belong

to the i-th component. These points are image[i][1],...,

,...,image[i][image[i][0]]. We mark all components with

1, and with 2 (unerasable) the ones containing some image

point of the starting subcomponent. Note that the image

contains more than one point by Criterion 2 of Stop. */

for(i=1;i<=ndc;i++) { c[i][i]=1; image[i][0]=0; }

for(i=1;i<=actual->points[0];i++) { int k,l;

k=orb[actual->dc][actual->points[i]].e1;

l=orb[actual->dc][actual->points[i]].e2;

c[k][k]=2; if(!image[k][0]) m++;

if(!belongs(l,image[k])) { image[k][++image[k][0]]=l; }

}

/* We cannot call REDUCTION with exactly one marked component: */

if(m==1) { actual->narrows=1; goto FILL; }

reduction();

/* Note that after REDUCTION there can be non-relevant components

(i.e., containing a unique image point that in addition is a

contact point with other components of the convex hull of the

image). Now we detect and delete them (labeled with 0). Note

also that the remaining components contain an image point if

and only if they are marked with 2. Thus, if a component is

non-relevant then it is marked with 2. */

for(i=1;i<=ndc;i++) { int jj=0;

if(c[i][i]!=2 || image[i][0]>1) continue;

for(j=1;j<=ndc;j++) { /* i = possible non-relevant component */

if(c[j][j] && j!=i && c[i][j]) {

jj=j; if(c[i][j]!=image[i][1]) goto DONOT_DELETE;

}

142

} if(!jj) error(4,NULL); /* i-th component is, indeed,

non-relevant. */

/* Now we must write the only image point of the i-th

component on the list of image points of the jj-th

component (which is known to intersect i-th) and

finally delete i-th */

if(!belongs(c[jj][i],image[jj]))

image[jj][++image[jj][0]]=c[jj][i];

c[i][i]=image[i][0]=0;

DONOT_DELETE:;

}

/* Finally, for each component we add to the list of image

points the set of connection points (with components of

type 1 or 2) which are not yet in the list because are

not image of anything. In addition we calculate the amount

of arrows starting from actual. Thus image[i] becomes the

set of all points in the i-th discrete component belonging

to the convex hull of the image \theta(actual) */

actual->narrows=0;

for(i=1;i<=ndc;i++) { if(!c[i][i]) continue;

actual->narrows++;

for(j=1;j<=ndc;j++) {

if(!c[j][j] || j==i || !c[i][j]) continue;

if(!belongs(c[i][j],image[i]))

image[i][++image[i][0]]=c[i][j];

}

}

FILL:;

/* We sort increasingly image[i] for each i: */

for(i=1;i<=ndc;i++) if(image[i][0])

{c[i][i]=1;Sort1(image[i][0],image[i]);}

/* We fill the arrows starting at actual SORTED IN A SUITABLE

WAY: i.e., in such a way that the discrete subcomponent

associated to a node arrow[i] intersects the subcomponent

associated to a node arrow[j] for some j<i (convention of

"MakeTree"). This order is stored in the vector ord: */

143

ord=malloc((actual->narrows)*sizeof(unsigned int));

if(!ord) error(2,NULL);

/* The first component, i, containing image points is joined

to the vector ord, and marked with c[i][i]=3: */

for(i=1;i<=ndc;i++) if(image[i][0])

{ord[0]=i;c[i][i]=3;break;}

/* As above, the first component, j, containing image points

and intersecting component ord[0] is sent to ord[1], and

marked with c[j][j]=3. And successively... */

j=0;i=1;

while(i<(actual->narrows)) {

if(++j>ndc) j=1;

if(c[j][j]&&(c[j][j]!=3)) { int k;

for(k=0;k<i;k++) if(c[j][ord[k]])

{ord[i]=j;c[j][j]=3;i++;break;}

}

};

/* Reserve memory space and fill: */

actual->arrows=malloc(actual->narrows*sizeof(struct node *));

if(!actual->arrows) error(3,NULL);

for(i=0;i<actual->narrows;i++) {

actual->arrows[i]=malloc(sizeof(struct node));

if(!actual->arrows[i]) error(1,NULL);

if(!reserve_vector(&actual->arrows[i]->points,

image[ord[i]][0]+1))

error(2,NULL);

actual->arrows[i]->dc=ord[i];

for(j=0;j<=image[ord[i]][0];j++)

actual->arrows[i]->points[j]=image[ord[i]][j];

actual->arrows[i]->back=actual;

actual->arrows[i]->arrows=NULL;

actual->arrows[i]->local.edges = NULL;

}

free_matrix(&image,ndc+1);

free(ord);

} /* NextNodes */

144

The function\MakeTree"

This function assumes some input conventions: the parameter **actual

corresponds to a node Q0 of the tree of Q-sequences which does not satis-

�es the four criteria of the function Stop (see page 139) and such that the

trees T (Q : : :Q
0
Q
00) are de�ned for each Q

00 2 S(Q0). MakeTree calculates

the tree T (Q : : :Q
0) and loads it on the tree structure (*actual)->local.

The extra level of reference is necessary because before returning we call

the function OptimizeIfStar, which can modify the value of *actual (see

page 135).

The functionMakeTree reserves room for a vector *edgesl of pair struc-

tures with an upper bound of memory necessary to contain T (Q : : :Q
0). This

bound is obtained by adding the amount of edges of all trees T (Q : : :Q
0
Q
00)

(since these trees will be glued together) and adding jQ0j + 2 (each point of

the subcomponent Q0 will give rise to a new edge as a consequence of the

process of g-extension, and 2 edges are added for safety).

In the function MakeTree (as well as in its utility functions glue and

gExtension) a tree is represented by two pairs fnedgesl,*edgeslg and

fnends,*endsg, with the following conventions: the vertices of the tree

fnedgesl,*edgeslg are labeled from 1 to nedgesl+1; *ends is a vector of

pair structures containing nends points of the pattern (T ; [�]) (from ends[1]

to ends[nends]). Both vectors are compatible, that is, nends < nedges+ 1

and, for each 1 � n � nends, the n-th vertex of the tree fnedgesl,*edgeslg

coincides with the ends[n]-th point of the pattern.

The tree fnedgesl,*edgeslg is initially set to (*actual)->arrows[0],

and glue is called (*actual)->narrows-1 times, with parameters fnedgesl,

*edgeslg and (*actual)->arrows[n] for 1 � n <(*actual)->narrows.

Note that between two consecutive calls it is not necessary to update the

parameters, since glue gives an updated output which can be immediately

used as a new input (see page 146). Finally we call gExtension (described

at page 148) and free the memory space of the �elds of the node structures

(*actual)->arrows[n], which are no long used.

void MakeTree(struct node **actual) {

int i,j=0,k=0,nends,nedgesl;

struct pair *ends,*edgesl;

void glue(int *,struct pair *,int *,

struct pair *,struct node *);

void gExtension(struct node *,int,struct pair *,

int,struct pair *);

void OptimizeIfStar(struct node **);

145

for(i=0;i<(*actual)->narrows;i++) {

j += (*actual)->arrows[i]->points[0];

k += (*actual)->arrows[i]->local.nedges;

}

k += (*actual)->points[0]+2;j++;

ends=malloc(j*sizeof(struct pair));

if(!ends) error(2,NULL);

edgesl=malloc(k*sizeof(struct pair));

if(!edgesl) error(2,NULL);

nends=(*actual)->arrows[0]->points[0];

for(i=1;i<=nends;i++) {

ends[i].e1=(*actual)->arrows[0]->dc;

ends[i].e2=(*actual)->arrows[0]->points[i];

}

nedgesl=(*actual)->arrows[0]->local.nedges;

for(i=1;i<=nedgesl;i++) {

edgesl[i].e1=(*actual)->arrows[0]->local.edges[i].e1;

edgesl[i].e2=(*actual)->arrows[0]->local.edges[i].e2;

}

for(i=1;i<(*actual)->narrows;i++)

glue(&nends,ends,&nedgesl,edgesl,(*actual)->arrows[i]);

/* Cleaning : */

for(i=0;i<(*actual)->narrows;i++) {

free((*actual)->arrows[i]->points);

free((*actual)->arrows[i]->local.edges);

free((*actual)->arrows[i]);

}

free((*actual)->arrows); (*actual)->arrows = NULL;

gExtension(*actual,nends,ends,nedgesl,edgesl);

free(ends); free(edgesl);

OptimizeIfStar(actual);

} /*MakeTree /*

Next we describe the tree-management routines which are called from

MakeTree.

The function glue uses fnedgesl,*edgeslg and fnends,*endsg as pa-

rameters, with the conventions described in page 145. Moreover, *nod is the

146

address of a node (we call it Q00) which has the tree nod->local consistently

de�ned (recall the de�nition in page 132). In particular, its endpoints are

the vertices labeled from 1 to nod->points[0]. It is assumed that there

is exactly one point of the vector *ends which is also a point of Q00. The

purpose is to glue together both trees fnedgesl,*edgeslg and nod->local

by this common point, storing the resulting tree at fnedgesl,*edgeslg and

updating the vector *ends in such a way that it is still compatible with the

obtained tree.

Remark 3.2.5. After calling the function glue, one of the points of the

vector *ends is not an endpoint of the obtained tree fnedgesl,*edgeslg

(inside the source code this point corresponds to ends[i]).

void glue(int *nends,struct pair *ends,int *nedgesl,

struct pair *edgesl,struct node *nod)

{

unsigned int i,j,l,m,n;

char SamePoints(unsigned int,unsigned int,

unsigned int,unsigned int);

/* We look for i,j such that ends[i] = nod->points[j]

(i,j are unique by hypothesis): */

for(i=1;i<=*nends;i++) {

for(j=1;j<=nod->points[0];j++)

if(SamePoints(ends[i].e1,ends[i].e2,nod->dc,nod->points[j]))

goto OK;

} error(4,NULL);

OK:;

/* We look for the only edge l of nod->local containing j; If

necessary we re-arrange it in such a way that edges[l].e2=j: */

for(l=1;l<=nod->local.nedges;l++) {

if(nod->local.edges[l].e1==j) {

nod->local.edges[l].e1=nod->local.edges[l].e2;

nod->local.edges[l].e1=j;

break;

}

if(nod->local.edges[l].e2==j) break;

}

/* Updating ends (one of them is not an endpoint...): */

147

for(m=1;m<j;m++) {

ends[*nends+m].e1=nod->dc;ends[*nends+m].e2=nod->points[m];

}

n=*nends-1;

for(m=j+1;m<=nod->points[0];m++) {

ends[n+m].e1=nod->dc;ends[n+m].e2=nod->points[m];

}

/* We re-label the vertices of *edgesl so that the first *nends

vertices still correspond to the points of the discrete

component: */

for(m=1;m<=*nedgesl;m++) {

if(edgesl[m].e1>*nends) edgesl[m].e1+=(nod->local.nedges);

if(edgesl[m].e2>*nends) edgesl[m].e2+=(nod->local.nedges);

}

/* We define the new edges *edgesl. */

for(m=1;m<=nod->local.nedges;m++) {

n=nod->local.edges[m].e1;

edgesl[*nedgesl+m].e1=n+*nends-(n>j);

n=nod->local.edges[m].e2;

edgesl[*nedgesl+m].e2=n+*nends-(n>j);

}

edgesl[*nedgesl+l].e2=i;

/* Updating sizes: */

*nends += nod->points[0]-1;

*nedgesl += nod->local.nedges;

} /* glue */

The function gExtension will be called if and only if the tree obtained by

gluing together all the trees T (Q : : :Q
0
Q
00) forQ00 2 S(Q0) has been calculated

and loaded on the variables fnedgesl,*edgeslg. We assume that this has

been done in such a way that (see page 145) when calling gExtension we

have:

� The vector *ends contains nends points of the pattern (T ; [�]).

� The n-th vertex of the tree fnedgesl,*edgeslg is, as a point of the

pattern, ends[n], for 1 � n � nends.

148

� The set of endpoints of the tree fnedgesl,*edgeslg is contained in

the set of vertices f1; 2; : : : ; nendsg. Note that the inclusion is strict:

some points of *ends are not endpoints of the tree, since T (Q : : :Q
0
Q
00)

have been glued by identifying some points of *ends: see Remark 3.2.5

(those unwanted vertices will be �nally removed by the functionClean-

Valence2).

gExtension calculates the g-extension of the tree fnedgesl,*edgeslg, with

g = � and B = Q
0 (here we are using the notation of page 127). The points

of Q0 are the points of the vector actual->points. During the process of g-

extension we work with the tree fnedgesl,*edgeslg, which, externally (see

function MakeTree in page 145), has been given enough memory space to

contain the new edges. Finally, we allocate the vector actual->local.edges

and store on it the obtained g-extension fnedgesl,*edgeslg.

void gExtension(struct node *actual,int nends,struct pair *ends,

int nedgesl,struct pair *edgesl)

{

int i,j,l,m;

char SamePoints(unsigned int,unsigned int,

unsigned int,unsigned int);

void CleanValence2(struct pair *,int *,int,int);

/* Reserve room for the points[0]-many points of actual: */

for(m=1;m<=nedgesl;m++) {

edgesl[m].e1 += actual->points[0];

edgesl[m].e2 += actual->points[0];

}

/* Define the points[0]-many new edges: */

for(m=1;m<=actual->points[0];m++) {

i=orb[actual->dc][actual->points[m]].e1;

j=orb[actual->dc][actual->points[m]].e2;

for(l=1;l<=nends;l++) {

if(SamePoints(ends[l].e1,ends[l].e2,i,j)) break;

}

edgesl[nedgesl+m].e1=m;edgesl[nedgesl+m].e2=l+actual->points[0];

}

nedgesl += actual->points[0];

/* We clean the vertices of valence 2 (note that it is not

necessary to update ends: now ends is actual->points[0]). */

CleanValence2(edgesl,&nedgesl,actual->points[0],

149

nends+actual->points[0]);

/* The g-extension is done. We load it on actual->local : */

actual->local.nedges=nedgesl;

actual->local.edges=malloc((nedgesl+1)*sizeof(struct pair));

if(!actual->local.edges) error(2,NULL);

for(m=1;m<=nedgesl;m++) {

actual->local.edges[m].e1=edgesl[m].e1;

actual->local.edges[m].e2=edgesl[m].e2;

}

} /* gExtension */

The function CleanValence2 assumes the following input parameters:

f*edgesl,*nedgeslg represent a tree with consistent numbering, in such a

way that the vertices are labeled from 1 to *nedgesl+1, the ones numbered

from 1 to nends being exactly the endpoints. Moreover, it is assumed that

each vertex labeled from final+1 to *nedgesl+1 belongs to at least 3 edges

of the edge vector *edgesl. From nends+1 to final, there can be vertices of

valence 2. The function delete these vertices, modifying at the same time the

contents of *edgesl and *nedgesl to assure the consistence of the returned

tree.

void CleanValence2(struct pair *edgesl,int *nedgesl,

int nends,int final)

{

int n;

for(n=nends+1;n<=final;n++) { /* n = vertex to process */

int v,m,l[2]; /* local variables:

v is the valence of n;

m is the edge counter;

l[0],l[1] are the edges containing n

if indeed it has valence 2. */

v=0;

for(m=1;m<=*nedgesl;m++) {

if(edgesl[m].e1==n) {

if(v==2) goto NEXTVERTEX;

l[v]=m;v++;continue;

}

if(edgesl[m].e2==n) {

if(v==2) goto NEXTVERTEX;

150

l[v]=m;v++;

/* By convention, if the edge containing n is

{n',n}, we reverse it and set {n,n'}: */

edgesl[m].e2=edgesl[m].e1;edgesl[m].e1=n;

}

} /* Here we have found a vertex of valence 2. */

/* We glue together edges l[0], l[1] obtaining one edge l[0]:

by the convention, l[0]={n,n'} and l[1]={n,n''} for some

vertices n' and n''. Then we set l[0]={n'',n'}: */

edgesl[l[0]].e1=edgesl[l[1]].e2;

/* Finally we delete edge l[1], updating the names of the

vertices (subtracting 1 to the indices greater than n): */

for(m=l[1];m<*nedgesl;m++) {

edgesl[m].e1=edgesl[m+1].e1-(edgesl[m+1].e1>n);

edgesl[m].e2=edgesl[m+1].e2-(edgesl[m+1].e2>n);

}

/* and update the names of the vertices (with indices greater

than n) of the remaining edges (from edge 1 to l[1]): */

for(m=1;m<l[1];m++) {

if(edgesl[m].e1>n) (edgesl[m].e1)--;

if(edgesl[m].e2>n) (edgesl[m].e2)--;

}

(*nedgesl)--;n--;final--; */ Updating to make 'for' */

NEXTVERTEX:; */ working again */

} /* End of the initial "for" */

} /* CleanValence2 */

We call the function Subtree when criterion 3 in the function Stop

holds (see page 139). In this case, the tree T (Q : : :Q
0) corresponding to the

node Q0 (address actual) can be directly extracted from the minimal tree

corresponding to the discrete component P such that Q0 � P , which we

assume to be de�ned. More precisely, T (Q : : :Q
0) will be the convex hull of

the points of Q0 inside the tree contained in mz[actual->dc]. The function

Subtree performs this calculus. The process is the same as in ConvexHull

(described in page 125), and the source code of both functions is almost

identical, except that here we can use the fact that mz[actual->dc] is a

consistent tree: before starting the reduction process, the vertices labeled

from 1 to jP j (which are exactly the endpoints) and the edges containing them

are marked (\unerasable" when belong to the subcomponent Q0, \erasable"

151

otherwise). Thus, during the process of reduction it is not necessary to revise

the vertices numbered from 1 to jP j, which are automatically updated.

void Subtree(struct node *actual) {

void CleanValence2(struct pair *,int *,int,int);

int IsRelativeEnd(int,struct pair *,int,int *,int *);

int *nactiu,*eactiu,m,k,npoints,v,va,e,kk;

struct tree inici;

struct pair *edgesl;

/* Easy case: the subtree is all the tree */

if(actual->points[0]==c[0][actual->dc]) {

actual->local.nedges=mz[actual->dc].nedges;

actual->local.edges=malloc(sizeof(struct pair)*

(actual->local.nedges+1));

if(!actual->local.edges) error(2,NULL);

for(m=1;m<=actual->local.nedges;m++){

actual->local.edges[m].e1=mz[actual->dc].edges[m].e1;

actual->local.edges[m].e2=mz[actual->dc].edges[m].e2;

}

return;

}

/* initializing and memory allocation */

inici=mz[actual->dc]; npoints=inici.nedges+1;

nactiu=malloc(sizeof(int)*(inici.nedges+2));

eactiu=malloc(sizeof(int)*(inici.nedges+2));

/* Initializing nactiu and eactiu.

Codi: 1: Unerasable node or edge

0: Deleted node or edge (non active)

-1: Erasable node or edge */

for(m=1;m<=c[0][actual->dc];m++) { nactiu[m]=0;eactiu[m]=-1; }

for(;m<=npoints;m++) { nactiu[m]=-1;eactiu[m]=-1; }

for(m=1;m<=actual->points[0];m++) nactiu[actual->points[m]]=1;

/* Here we mark the edges containing endpoints, as its

endpoints: */

for(m=1;m<=c[0][actual->dc];m++) {

152

for(k=1;k<=inici.nedges;k++) {

if((inici.edges[k].e1==m)||(inici.edges[k].e2==m)) {

eactiu[k]=nactiu[m];

break; /* An endpoint belongs to a unique edge */

}

}

}

/* Process of reduction. We delete the relative endpoints

(and the edges containing them) until a cycle is

completed without deleting anything. */

v = va = c[0][actual->dc]+1;

do {

if(nactiu[v]==-1) {

e=IsRelativeEnd(v,inici.edges,inici.nedges,nactiu,eactiu);

if(e) { nactiu[v]=0; eactiu[e]=0; va=v; }

}

if(++v > npoints) v=c[0][actual->dc]+1;

} while(v!=va); /* Final of "do" */

/* Extracting the subtree:

Step 1: Labeling non deleted nodes. At the end k = amount of

non deleted nodes. We reserve memory to store the subtree. */

k=0; for(m=1;m<=npoints;m++) { if(nactiu[m]) {nactiu[m]=++k;} }

/* Step 2: Loading the subtree on edgesl. */

edgesl=malloc(sizeof(struct pair)*(k+1));

if(!edgesl) error(2,NULL);

kk=k; k=0;

for(m=1;m<=inici.nedges;m++) {

if(eactiu[m]) {

edgesl[++k].e1=nactiu[inici.edges[m].e1];

edgesl[k].e2=nactiu[inici.edges[m].e2];

}

} if(kk != k+1) error(4,NULL);

/* Step 3: Cleaning vertices of valence 2. */

CleanValence2(edgesl,&k,actual->points[0],k+1);

153

/* Step 4: Loading the tree on actual->local. */

actual->local.nedges=k;

actual->local.edges=malloc(sizeof(struct pair)*(k+1));

if(!actual->local.edges) error(2,NULL);

for(m=1;m<=k;m++) {

actual->local.edges[m].e1=edgesl[m].e1;

actual->local.edges[m].e2=edgesl[m].e2;

}

free(edgesl);free(nactiu);free(eactiu);

} /* Subtree */

3.2.7 Calculus of the A-monotone map f

The function TranslateAndImages performs two tasks. First it translates

the vector of trees *mz ([mz[n] is the minimal tree corresponding to the

n-th discrete component of the pattern) into a unique tree structure (global

variable MZ), in such a way that, if the pattern has k-many points, then the

vertices of MZ labeled from 1 to k are exactly the points of the pattern. The

global variable endpat is given the value k + 1. Thus, inside the tree MZ the

vertices which belong to A are the ones labeled from 1 to endpat� 1. To do

this, the following intermediate variables are de�ned and memory-allocated:

a matrix of pair structures **name1 and three vectors of unsigned integers

*w, *ww and *vector. Then the process of translation and re-labeling is

performed in two steps:

1. Given a point x of the pattern with binary representation fi; jg (which

is not unique), then name1[i][j]=fk,lg, where k is the least discrete

component containing x, and l is the label of x in terms of the (inter-

nal) order of points in the k-th component. Note that name1[i][j] is

another binary representation of the point x.

2. w[j] is the accumulated sum of the amount of points of the i-th discrete

component, from 1 � i � j � 1; ww[j] is the accumulated sum of the

amount of vertices of the minimal tree corresponding to the i-th discrete

component, from 1 � i � j � 1. Then we �ll *vector with 0's and

use a short technical function called name2 which, by using w, ww and

name1, transforms the binary representation of a point fi; jg into a

positive integer which marks in which position of *vector we will put

a 1. The listing of name2 is

unsigned int name2(unsigned int dc,unsigned int p,

unsigned int *w,unsigned int *ww,

154

struct pair **name1)

{

return (p<=c[0][dc]) ? (w[name1[dc][p].e1]+name1[dc][p].e2) :

(w[ndc+1]+ww[dc]+p);

}

Next we do a drag sum of *vector (i.e. vector[i]+=vector[i-1])

and the label �nally assigned to a point with binary representation

fi; jg is vector[name2(i,j,w,ww,name1)].

Also the global variable *namechange is reserved and �lled, in such a way

that namechange[m] = fn; lg if and only if m is the label, as a vertex of

the new tree MZ, of a point whose binary representation was fn; lg (that is,

*namechange gives the inverse of the above assignment).

The second purpose of this function is to calculate the f -image of all the

vertices of the tree MZ for an A-monotone map f . The function �lls the vector

of integers *im in such a way that im[n]=m if and only if the f -image of the n-

th vertex is the m-th vertex (1 � n;m � MZ:nedges + 1). The images of the

vertices labeled from 1 to endpat-1 are a part of the information provided

by the user (see Subsection 3.2.3), and we only have to translate the binary

representations of the matrix **orb into the new numbering. The function

uses Remark 1.2.1 in order to calculate the images of the remaining vertices.

Now we list the source code of the function TranslateAndImages.

void TranslateAndImages(void) {

extern struct pair *namechange;

unsigned int belongs(unsigned int,unsigned int *);

struct pair **name1;

unsigned int i,j,k,l,*w,*ww,*vector;

unsigned int val(unsigned int,struct tree,int *);

unsigned int name2(unsigned int,unsigned int,unsigned int *,

unsigned int *,struct pair **);

int *nactiu,*eactiu,

reserve_vector(unsigned int **,unsigned int);

void ConvexHull(struct tree,int *,int *,unsigned int *);

/* Allocating the tree we want to create, MZ : */

MZ.nedges=0;for(i=1;i<=ndc;i++) MZ.nedges+=mz[i].nedges;

MZ.edges=malloc(sizeof(struct pair)*(MZ.nedges+1));

if(!MZ.edges) error(2,NULL);

/* Table of pairs **name1: ndc-many rows. k-th row has

length = amount of points of k-th component.

155

name1[i][j].e1 = least component containing the point {i,j}.

name1[i][j].e2 = point inside that component. */

name1=malloc(sizeof(struct pair *)*(ndc+1));

if(!name1) error(3,NULL);

for(i=1;i<=ndc;i++) {

name1[i]=malloc(sizeof(struct pair)*(c[0][i]+1));

if(!name1[i]) error(2,NULL);

}

/* We check wheter it is necessary to change the name of

the point {i,j} (component i,point j). How?: if component

i intersects any other component l (with l<i) by the point

j, we rename it {l,c[l][i]}. Otherwise we keep the name. */

for(j=1;j<=c[0][1];j++) {name1[1][j].e1=1;

name1[1][j].e2=j;} /* obvious. */

for(i=2;i<=ndc;i++) {

for(j=1;j<=c[0][i];j++) {

c[i][0]=i-1; /* length of the vector sent to BELONGS */

l=belongs(j,c[i]);

if(!l) {name1[i][j].e1=i; name1[i][j].e2=j; continue;}

name1[i][j].e1=l; name1[i][j].e2=c[l][i];

}

}

/* w[i]=accumulated sum of the points of the pattern until

component i-1.

ww[i]=accumulated sum of vertices of the tree until

component i-1.

*vector=translation vector, initially filled with 0's.

name2(i,j,w,ww,name1) = function which, by using w,ww,name1,

transforms the name of a point {i,j} into an integer which

marks in which position of *vector we will put a 1 (see

function NAME2). */

if(!reserve_vector(&w,ndc+2)) error(2,NULL);

if(!reserve_vector(&ww,ndc+2)) error(2,NULL);

w[1]=ww[1]=0;

for(i=2;i<=ndc+1;i++) { w[i]=w[i-1]+c[0][i-1];

ww[i]=ww[i-1]+mz[i-1].nedges+1; }

k=w[ndc+1]+ww[ndc+1]+1;

if(!reserve_vector(&vector,k)) error(2,NULL);

156

for(j=1;j<=k;j++) vector[j]=0;

for(i=1;i<=ndc;i++) {

for(j=1;j<=mz[i].nedges+1;j++) vector[name2(i,j,w,ww,name1)]=1;

}

/* Finally, we do a drag sum of *vector : */

for(i=2;i<=k;i++) vector[i]+=vector[i-1];

/* We want vector[name2(point)] to be the final

name of a point: */

k=endpat=0;

for(i=1;i<=ndc;i++) {

for(j=1;j<=mz[i].nedges;j++) {

MZ.edges[++k].e1=l=vector[name2(i,mz[i].edges[j].e1,

w,ww,name1)];

if(mz[i].edges[j].e1<=c[0][i] && l>endpat) endpat=l;

MZ.edges[k].e2=l=vector[name2(i,mz[i].edges[j].e2,

w,ww,name1)];

if(mz[i].edges[j].e2<=c[0][i] && l>endpat) endpat=l;

}

}

endpat++;

/* Allocate and fill *namechange: */

namechange=malloc(sizeof(struct pair)*(endpat));

if(!namechange) error(2,NULL);

for(i=1;i<=ndc;i++) {

for(j=1;j<=c[0][i];j++) {

k=vector[name2(i,j,w,ww,name1)];

namechange[k].e1=i; namechange[k].e2=j;

}

}

/* Allocate *im and translate the images of the points

of the pattern: */

if(!reserve_vector(&im,MZ.nedges+2)) error(2,NULL);

for(i=1;i<=ndc;i++) {

for(j=1;j<=c[0][i];j++) {

if(name1[i][j].e1==i) im[vector[name2(i,j,w,ww,name1)]]=

157

vector[name2(orb[i][j].e1,orb[i][j].e2,w,ww,name1)];

}

}

free(w);free(ww);free(vector);

for(i=1;i<=ndc;i++) free(name1[i]); free(name1);

/* Calculate the images of the remaining points

by using Remark 1.2.1 */

nactiu=malloc(sizeof(int)*(MZ.nedges+2));

if(!nactiu) error(2,NULL);

eactiu=malloc(sizeof(int)*(MZ.nedges+2));

if(!eactiu) error(2,NULL);

for(i=endpat;i<=MZ.nedges+1;i++) { unsigned int v[4];

/* v[1], v[2] and v[3] will be the images of the 3 points of the

pattern which determine the image of our point i. */

/* k = initial edge (the first one we find contains our point

of input to do/while.

kk = edge during do/while

jj = point during do/while */

v[0]=0;

for(k=1;k<=MZ.nedges;k++) { int kk,jj;

if(MZ.edges[k].e1!=i && MZ.edges[k].e2!=i) continue;

jj = (MZ.edges[k].e1==i) ? MZ.edges[k].e2 : MZ.edges[k].e1;

kk=k;

do {

if(MZ.edges[kk].e1==jj || MZ.edges[kk].e2==jj)

jj=(MZ.edges[kk].e1==jj)?MZ.edges[kk].e2:MZ.edges[kk].e1;

if(++kk>MZ.nedges) kk=1;

} while(jj>=endpat);

v[++v[0]]=im[jj];

if(v[0]==3) break;

} /* Points v[1], v[2], v[3] found. */

/* If two points coincide, the intersection of the convex hulls

is trivially determined (see Remark 1.2.1): */

if(v[1]==v[2] || v[1]==v[3]) { im[i]=v[1]; continue; }

if(v[2]==v[3]) { im[i]=v[2]; continue; }

158

/* Now we can assume the 3 points are different. If one of

them has valence 2 in the convex hull, it is the desired

intersection point. Otherwise, the intersection point

consists of the unique point of valence 3 in the

convex hull. */

ConvexHull(MZ,nactiu,eactiu,v);

for(j=1;j<4;j++) if(val(v[j],MZ,eactiu)==2)

{im[i]=v[j]; continue;}

for(j=1;j<4;j++) nactiu[v[j]]=0;

for(j=1;j<=MZ.nedges+1;j++) {

if(!nactiu[j]) continue;

if(val(j,MZ,eactiu)==3) { im[i]=j; break; }

}

}

free(nactiu);free(eactiu);

} /* TranslateAndImages */

3.2.8 Output results

The function results is the ending function of the program: it prints the con-

tents of the global variables MZ and *im (i.e., the tree T and the A-monotone

map f respectively), and it reports the name change of the points of the set A

(as vertices of the tree MZ) with respect to the binary representation provided

by the user, by exhibiting the contents of the global variable namechange.

All this information (except the contents of namechange) can be saved on a

disk �le, for further purposes.

#include "conio.h"

#include "io.h"

#include "string.h"

char *err_mgz[]={

"opening write file of the tree",

"of tree writing",

};

void results(void) {

int getnum(int,int),reserve_vector(unsigned int **,

unsigned int);

159

char getanswer(char *,char *),fitxer[81];

int i,pos(int,int *);

if(getanswer("YN","\nDo you want to see the tree T?

(Y/N)")=='Y') {

printf("\n");

for(i=1;i<=MZ.nedges;i++) printf("%d: {%d,%d} /

",i,MZ.edges[i].e1,MZ.edges[i].e2);

if(getanswer("YN","\nDo you want translation to the original

numbering? (Y/N)")=='Y') {

printf("\n");

for(i=1;i<endpat;i++) printf("%d -> {%d,%d} /

",i,namechange[i].e1,namechange[i].e2);

}

if(getanswer("YN","\nDo you want the images of the points of A?

(Y/N)")=='Y') {

printf("\n");

for(i=1;i<=MZ.nedges+1;i++) printf("f(%d)=%d,",i,im[i]);

}

}

free(namechange); /* Purely informative variable:

not written on the disk file. */

/* Order of writing of the information in the disk file:

- MZ.nedges

- Edges ((MZ.nedges)-many pair structures)

- endpat (unsigned int indicating that the first endpat-1

vertices of T belong to the original pattern).

- Images of the vertices of T (MZ.nedges+1 unsigned int).

- c[1][1] (unsigned int which has been computed in the function

MEGAZERO, containing an upper bound for the length of a row

of the further Markov matrix). Since this value depends on

variables which are local on Phase 1 (and thus unknown on

Phase 2), we must write it on disk. */

if(getanswer("YN","\nDo you want to save it on a disk file ?

(Y/N)")=='Y') {

FILE *fp;

printf("\nFile name (extension .MGZ recommended) :");

scanf("%s",fitxer);

if(!access(fitxer,0) &&

(getanswer("YN","The file already exists. Proceed? (Y/N)")

!= 'Y')) exit(0);

160

if((fp=fopen(fitxer,"wb")) == NULL) error(1,err_mgz);

if(fwrite(&MZ.nedges,sizeof(unsigned int),1,fp)!=1)

error(2,err_mgz);

for(i=1;i<=MZ.nedges;i++) {

if(fwrite(&MZ.edges[i],sizeof(struct pair),1,fp)!=1)

error(2,err_mgz);

}

if(fwrite(&endpat,sizeof(unsigned int),1,fp)!=1)

error(2,err_mgz);

for(i=1;i<=MZ.nedges+1;i++) {

if(fwrite(&im[i],sizeof(unsigned int),1,fp)!=1)

error(2,err_mgz);

}

if(fwrite(&c[1][1],sizeof(unsigned int),1,fp)!=1)

error(2,err_mgz);

fclose(fp);

}

}

3.3 Extraction of simple loops from Markov

transition matrices. Symbolic manipula-

tion of chains

Let (T;Q; f) be a Markov model (that is, f is Q-monotone and V (T) � Q).

Let K = fK1; K2; : : : ; Klg be the set of Q-basic intervals. Given n 2 N , we

want to construct all the simple loops in the Markov f -graph of Q having

length n. The aim of this section is to explain the algorithms we have used

to perform this task. Before discussing the computer implementation of the

algorithms, we proceed to establish some concepts and theoretic tools. From

now on, Markov loop will stand for \loop in the Markov f -graph of Q".

To the Markov f -graph of Q we associate an \equivalent" object, the

Markov transition matrix of (T;Q; f), which is a matrix A of non-negative

integers, with l-many variable-length rows, such that:

1. A[i][0] is the number of Q-basic intervals which are f -covered by Ki.

2. The Q-basic intervals f -covered by a Q-basic interval Ki are Kj, where

j=A[i][k] for 1 � k �A[i][0].

We say that a Q-basic interval K is relevant if there is some simple

Markov loop starting at K. Otherwise we say that K is irrelevant. Observe

that K is irrelevant if and only if no Markov loop passes through K. Let

K0 = fL1; L2; : : : ; Lmg be the set of relevant Q-basic intervals. Obviously

161

m � l. This notation is �xed for the rest of this section. We de�ne the

reduced Markov matrix of (T;Q; f) as a matrix A of positive integers, with

m-many variable-length rows, such that:

1. A[i][0] is the number of relevantQ-basic intervals which are f -covered

by Li.

2. The relevant Q-basic intervals f -covered by a relevant Q-basic interval

Li are Lj, where j=A[i][k] for 1 � k �A[i][0].

3. A[i][j]<A[i][k] when j < k.

In fact, the algorithm of extraction of simple Markov loops works using

the reduced Markov matrix rather than the Markov transition matrix.

We de�ne a chain of length n > 1 to be an ordered set of n natural

numbers. We consider the set of chains of length n endowed with a natural

lexicographic order. That is, (I0; I1; : : : ; In�1) < (J0; J1; : : : ; Jn�1) if and only

if:

(i) either I0 < J0

(ii) or there exists 0 < j < n with Ii = Ji for 0 � i � j � 1 and Ij < Jj.

For any chain � = (I0; I1; : : : ; In�1) we de�ne �(�) to be the chain

(I1; I2; : : : ; In�1; I0). The concatenation of two chains � = (I0; I1; : : : ; In�1)

and � = (J0; J1; : : : ; Jk�1) is de�ned to be the chain �� = (I0; I1; : : : ; In�1; J0;

J1; : : : ; Jk�1), of length n+k. The length of a chain � will be denoted by j�j.

If k 2 N then the concatenation �� : : : � (k times) will be denoted by �
k.

We will say that a chain � is repetitive if there is a chain � and an integer

k > 1 such that � = �
k. Otherwise we will say that � is simple.

Lemma 3.3.1. Let � and � be chains such that �� = �� and j�j < j�j.

Then there exist two chains �0 and � 0 such that:

a) � = �
0
�
0 = �

0
�
0

b) � 2 f�0; � 0g

c) j�0j � j� 0j and maxfj�0j; j� 0jg < maxfj�j; j�jg

Proof. By comparing each element of the chains �� and ��, since j�j < j�j

it follows that � = � for a chain of length j�j � j�j. Moreover, �� =

�� = �� = ��, and thus � = � = �. Consider two chains �0 and � 0 such

that f�0; � 0g = f�; g and j�0j � j� 0j. Clearly, (a), (b) and the �rst part of

(c) hold. Moreover, maxfj�0j; j� 0jg = maxfj�j; jjg = maxfj�j; j�j � j�jg <

maxfj�j; j�jg.

Lemma 3.3.2. Let � be a chain of length n. Then � is repetitive if and only

if there exists 0 < k < n such that � = �
k(�).

162

Proof. It is obvious that if � is repetitive then there exists such a k. Assume

that there is 0 < k < n with � = �
k(�). Now we prove that � is repetitive.

Consider two chains �0 and �0 such that j�0j = minfk; n � kg, j�0j =

maxfk; n � kg and either � = �0�0 (when j�0j = k) or � = �0�0 (when

j�0j = n� k). In both cases, by using the fact that � = �
k(�), we have that

�0�0 = �0�0.

If j�0j = j�0j then we are done. Assume that j�0j 6= j�0j. By Lemma 3.3.1,

there exist two chains �1 and �1 such that

a) �0 = �1�1 = �1�1

b) �0 2 f�1; �1g

c) j�1j � j�1j and maxfj�1j; j�1jg < maxfj�0j; j�0jg.

Since (a) and (c) hold, we can use again Lemma 3.3.1. By repeating this

procedure we obtain a sequence of pairs of chains �i; �i such that:

a) �i = �i+1�i+1 = �i+1�i+1

b) �i 2 f�i+1; �i+1g

c) j�i+1j � j�i+1j and maxfj�i+1j; j�i+1jg < maxfj�ij; j�ijg

for each 0 � i < l, where l is a natural such that j�lj = j�lj. Since �l�l =

�l�l, we have that �l = �l and hence �l�1 = �l�l. From (b) we get that

�l�1 = �l. Therefore, �l�2 = �l�1�l�1 = �
3
l
. Proceeding in this way, we can

use properties (a{c) by backwards induction and we obtain � = �
k

l
for some

k > 1.

We say that a chain � of length n is minimal if and only if � � �
k(�)

for k = 1; 2; : : : ; n � 1. And we will say that � is strongly minimal if � <

�
k(�) for k = 1; 2; : : : ; n� 1. The following result is a direct consequence of

Lemma 3.3.2.

Lemma 3.3.3. A chain � is strongly minimal if and only if it is minimal

and simple.

Finally, a chain � = (I0; I1; : : : ; In�1) will be called minimal of �rst order

if and only if I0 � Ii for i = 0; 1; : : : ; n � 1. Observe that if a chain is not

minimal of �rst order then it is not minimal.

The following function tests whether a chain loop of length n, assumed

to be minimal of �rst order, is in addition strongly minimal. Thus, by

Lemma 3.3.3, this function is a test of both minimality and simplicity.

int is_strongly_minimal(unsigned int length,unsigned int *loop) {

unsigned int i,j,v;

for(i=2;i<=length;i++) {

163

if(loop[i]>loop[1]) continue;

for(j=1;j<=length-i;j++) {

if(loop[i+j]<loop[j+1]) return 0;

if(loop[i+j]>loop[j+1]) goto NEWI;

}

v=length-i+1;

for(j=1;j<i;j++) {

if(loop[j]<loop[v+j]) return 0;

if(loop[j]>loop[v+j]) goto NEWI;

}

return 0;

NEWI:;

}

return 1;

} /* is_strongly_minimal */

To each Markov loop we can uniquely associate a chain as follows. Ob-

serve that there is a natural one-to-one correspondence � between the set

K0 = fL1; L2; : : : ; Lmg of relevant Q-basic intervals and the set f1; 2; : : : ; mg

(we simply set �(Li) = i for 1 � i � m). From now on, given a Markov

loop I0 ! I1 ! : : : ! In�1 ! I0 we will identify it with the chain

(�(I0); �(I1); : : : ; �(In�1)). Therefore, in the computer implementation of the

algorithms each Markov loop will be represented as a vector of unsigned inte-

gers. Note that a Markov loop is repetitive (respectively simple) if and only

if the corresponding chain is repetitive (respectively simple). Note also that

a Markov loop has length n if and only if the corresponding chain has length

n.

We want to generate all simple Markov loops of a given length which

can be extracted from the data contained in a reduced Markov matrix. Now

we explain the general strategy we use to do it. All these loops will be

successively generated in the natural lexicographical order of chains. For

each simple loop �, we will generate a representative �0 = �
i(�). We will

choose i in such a way that �0 is strongly minimal. Since it is very easy to test

minimality of �rst order, for a given candidate �i(�) we �rst test whether it

is minimal of �rst order. In the aÆrmative, strong minimality is then tested

by using the previously described function is strongly minimal.

First we de�ne a \�rst object" which in fact is not a loop, by setting all

the components to zero:

void first_object(unsigned int length,unsigned int *loop)

{

unsigned int i;

164

for(i=1;i<=length;i++) loop[i]=0;

} /* first_object */

Next, an external program calls iteratively the function next loop, which

produces the following (in the natural lexicographic order of chains) strongly

minimal loop from a given one. If such a loop does not exist then the func-

tion returns 0. Observe that, incidentally, when we call next loop and the

parameter loop is the \�rst object", this function produces the lowest (in

the lexicographic order) strongly minimal loop.

int next_loop(unsigned int length,unsigned int *loop,

unsigned int **matrix,unsigned int size)

{

unsigned int v,s,p;

s=belongs(loop[length],matrix[loop[length-1]]);

for(;;) {

while(matrix[loop[length-1]][0] &&

s<matrix[loop[length-1]][0]) {

v=matrix[loop[length-1]][++s];

if(belongs(loop[1],matrix[v])) {

loop[length]=v;

if(is_strongly_minimal(length,loop)) return 1;

}

} /* end of "while" */

p=length-2;

BACKWARD:;

while((s=belongs(loop[p+1],matrix[loop[p]]))==

matrix[loop[p]][0]) {

if(p==1) {

if(loop[1]==size) return 0;

loop[1]++; goto FORWARD;

}

p--;

}

loop[p+1]=matrix[loop[p]][++s]; p++;

FORWARD:;

while(p<length-1) {

165

v=matrix[loop[p]][matrix[loop[p]][0]];

if(v<loop[1]) {

if(p>1) {p--; goto BACKWARD;}

if(loop[1]==size) return 0;

loop[1]++; continue;

}

s=1;

while((loop[p+1]=matrix[loop[p]][s])<loop[1]) s++;

p++;

} /* end of "while (p<length-1)" */

s=0;

} /* end of "for" */

} /* next_loop */

3.4 Calculus of the Markov transition matrix

This section is devoted to describe the function Markov, which calculates

the Markov transition matrix and the reduced Markov matrix (the de�nition

of both matrices can be found at page 161) of a Markov model (T;A[V (T); g)

such that (T;A; f) is a canonical model and gj
A
= f j

A
. Several variables are

assumed to be externally memory-allocated:

/* INHERITED FROM THE PROGRAM "TREES": */

extern struct arbre MZ;

extern unsigned int *im;

/* NEW VARIABLES: */

extern int **markov,*Vertex,*Edge;

extern unsigned int nn,**markov2,*inv;

Note that MZ and *im are variables inherited from the program \TREES"

and they codify the canonical model (T;A; f) according to the conventions

of Section 3.2. The g-images of all points of A [V (T) are stored on the

vector *im. Since gj
A
= f j

A
, the positions im[i] for 1 � i � jAj have

been calculated by the program \TREES". The rest of the vector may have

been �lled by another external program. The Markov transition matrix and

the reduced Markov matrix will be stored, respectively, on **markov and

**markov2.

Note that **markov is an array of integers rather than unsigned integers.

The sign of the elements of **markov allows us to codify the behavior of the

166

(A [V (T))-monotone map g according to the following conventions (for the

rest of this section, edge will stand for \(A [V (T))-basic interval":

1. We assume an (arbitrary) orientation for every edge n. Since the

program \TREES" have stored the edges as ordered pairs of integers

fn.e1,n.e2g, we take an orientation < such that n.e1<n.e2.

2. Let n and m be edges such that n g-covers m. Let p and q be points

of n such that q < p (with respect to the orientation of n) and g(p)

and g(q) belong to m. Then we say that g is increasing from n to

m if g(q) < g(p) (with respect the orientation of m), and decreasing

otherwise.

3. Let n= fn.e1,n.e2g be an edge. Since g is (A [V (T))-monotone,

it makes sense to sort consecutively the set of edges g-covered by n:

the �rst edge being the one containing the point g(n:e1), the last one

containing the point g(n:e2).

In order to codify (2), we multiply by -1 the element markov[n][m] if

and only if g is decreasing from n to markov[n][m]. Moreover, we sort the

elements of markov[n] with respect to the order de�ned by (3).

Note that (2) is equivalent to associate a sign to each arrow of the Markov

graph of g. This will allow us to associate a sign to each generated Markov

loop.

The function constructs the reduced matrix **markov2 by discarding the

edges which cannot belong to any Markov loop because either they are not

g-covered by any edge or they do not g-cover any edge, and then proceeding

iteratively by discarding edges which either g-cover or are g-covered by pre-

viously discarded edges. Recall that, by de�nition, the edges of the reduced

matrix **markov2 are unsigned and each row is sorted in increasing order

(see page 161). The number of rows of the matrix **markov2, which equals

the amount of relevant edges, is stored in the variable nn. This reduced

matrix is the one which is used by the functions of Section 3.3 in order to

generate simple loops.

The names of the edges in the reduced matrix are not the original ones.

The re-labeling is codi�ed using the vector *inv: inv[m]=n if and only if

the n-th original edge is the m-th one after the reduction process.

void Markov(void) {

unsigned int i,j,k;

for(i=1;i<=MZ.nedges;i++) { markov[i][0]=0; markov2[i][0]=0;}

for(i=1;i<=MZ.nedges;i++) { unsigned int vector[3],point,edg;

vector[0]=2;

167

vector[1]=im[MZ.edges[i].e1]; vector[2]=im[MZ.edges[i].e2];

if(vector[1]==vector[2]) continue;

convex_hull(MZ,Vertex,Edge,vector);

point=vector[1];

edg=0;

do {

if(++edg>MZ.nedges) edg=1;

if(!Edge[edg]) continue;

if(point==MZ.edges[edg].e1) {

markov[i][++markov[i][0]]=edg;

Edge[edg]=0; point=MZ.edges[edg].e2;

continue;

}

if(point==MZ.edges[edg].e2) {

markov[i][++markov[i][0]]=-edg;

Edge[edg]=0; point=MZ.edges[edg].e1;

continue;

}

} while(punt!=vector[2]);

} /* Markov transition matrix (**markov) computed. */

/* Now we compute the reduced matrix **markov2 : */

/* Deleting irrelevant edges (we temporary use

*Edge as edge-renumbering vector: */

for(i=1;i<=MZ.nedges;i++) Edge[i]=1;

do { k=0;

for(i=1;i<=MZ.nedges;i++) {

if(!Edge[i]) continue;

for(j=1;j<=markov[i][0];j++)

if(Edge[abs(markov[i][j])]) goto MORE;

Edge[i]=0; k=1; goto NEWI; /* i-th edge doesn't

cover anything */

MORE:;

for(j=1;j<=MZ.nedges;j++) {

if(!Edge[j]) continue;

if(pos(i,markov[j])) goto NEWI;

}

Edge[i]=0; k=1; /* i-th edge is not covered

by anything */

NEWI:;

}

} while(k);

168

/* change of names (direct and inverse), and

nn = amount of relevant edges: */

nn=0;

for(i=1;i<=MZ.nedges;i++) {

if(!Edge[i]) continue;

Edge[i]=(++nn); inv[nn]=i;

}

/* translating into **markov2: */

for(i=1;i<=MZ.nedges;i++) {

if(!Edge[i]) continue;

for(j=1;j<=markov[i][0];j++) { int l;

if(!(l=Edge[abs(markov[i][j])])) continue;

markov2[Edge[i]][++markov2[Edge[i]][0]]=l;

}

}

/* sorting each row: */

for(i=1;i<=nn;i++) if(markov2[i][0]>1)

Sort1(markov2[i][0],markov2[i]);

} /* Markov */

3.5 Tests of period-forcing

As we explained at the beginning of the chapter, we are mainly interested in

testing the following statement:

Conjecture 3.5.1. Let P be a pattern. Let (T;A; f) be a canonical model

of P. If g is a tree map exhibiting P, then Per(f) � Per(g).

A simple example shows that Conjecture 3.5.1 is false. Consider a pattern

([T;A]; [�]) with A = fx1; x2; x3; x4; yg, �(xi) = xi+1 mod 4 for 1 � i � 4 and

�(y) = y, such that (T;A) consists of two discrete components fx1; x3; yg

and fx2; x4; yg. On the left side of Figure 3.2 the linear canonical model

(T;A; f) of this pattern is shown. On the right side, a linear Markov model

(T;A; g) exhibiting the same pattern with g(v) = g(v0) = y is shown. Observe

that Per(f) = f1; 2; 4g, while Per(g) = f1; 4g. Hence these maps provide a

counterexample to Conjecture 3.5.1. However, it is not diÆcult to see that

169

x1 x2 x1 x2

x3 x4 x3 x4

v v
0 v

yy
v
0

Figure 3.2: Two models which exhibit a pattern ([T;A]; [�]) with A =

fx1; x2; x3; x4; yg, �(xi) = xi+1 mod 4 for 1 � i � 4 and �(y) = y. On the

left �gure, the canonical model (T;A; f), for which fv; v0g is a 2-periodic

orbit. On the right �gure, a Markov model (T;A; g) with g(v) = g(v0) = y.

all 2-periodic points of f are not A-signi�cant. In fact, there is only one

f -monotone equivalence class, and each periodic point of f belongs to this

class.

This example shows us that we have to restrict our attention to signi�cant

periodic points, and suggests the following

Conjecture 3.5.2. Let P be a pattern. Let (T;A; f) be a canonical model

of P. If there is an A-signi�cant n-periodic point of f then n 2 Per(g) holds

for each tree map g exhibiting P.

In order to simplify the computer search we can consider also several

slightly weaker versions:

Conjecture 3.5.3. Let P be a pattern. Let (T;A; f) be a canonical model

of P. If there is an A-signi�cant n-periodic point of f then n 2 Per(g) holds

for each linear Markov model (S;B [V (S); g) exhibiting P over B.

Conjecture 3.5.4. Let P be a pattern. Let (T;A; f) be a canonical model

of P. If there is an A-signi�cant n-periodic point of f then n 2 Per(g) holds

for each linear Markov model (T;A [V (T); g) exhibiting P over A.

If \)" stands for \implies" then obviously Conjecture 3.5.2) Conjec-

ture 3.5.3) Conjecture 3.5.4. On the other hand, it is not diÆcult to see

that Conjecture 3.5.3) Conjecture 3.5.2. For us, it is an open problem

whether Conjecture 3.5.4 implies Conjecture 3.5.3.

Next we discuss some possible strategies of testing those conjectures from

a numerical point of view. Let P be a pattern. Let (T;A; f) be a canonical

model of P. Let (T;A [V (T); g) be a Markov model exhibiting P over A.

170

In particular, gj
A
= f j

A
holds. Consequently, the Markov transition matrix

(and thus the set of periods) of g depends only on the images of g over

the (�nite) set V (T) n A. On the other hand, since (T;A [V (T); g) is a

Markov model it follows that g(V (T)) � A [V (T). Therefore, if we set

k = jV (T)nAj and m = jA[V (T)j, for a �xed pattern P there are km-many

essentially di�erent Markov models to be tested in order to �nd a potential

counterexample to Conjecture 3.5.4. In other words, Conjecture 3.5.4 is

appropriate for computer exploration. Furthermore, a counterexample to

Conjecture 3.5.4 is also a counterexample to Conjectures 3.5.3 and 3.5.2.

On the other hand, consider a Markov model (S;B[V (S); g) exhibiting P

over B. In particular, jAj = jBj and the sets of discrete components of (T;A)

and (S;B) are exactly the same. Consider a discrete component K. Since

there are only �nitely many trees with jEn(hKi)j endpoints (up to home-

omorphisms), for a �xed pattern P there are also �nitely many essentially

di�erent Markov models to be tested in order to �nd a potential counterex-

ample to Conjecture 3.5.3. Hence Conjecture 3.5.3 is also appropriate for

computer exploration.

In a �rst step, we have chosen to test the validity of Conjecture 3.5.4.

To do it, we have constructed a program which uses almost all the functions

described in this chapter. In particular, we need a function to calculate the

set of periods of a given linear Markov model. This function will be based on

the following result, whose proof we only outline since the involved ideas are

folk knowledge for interval maps and can be easily extended to tree maps.

Proposition 3.5.5. Let (T;Q; g) be a linear Markov model. Let x be a

periodic point of g. Then, either Orb(x) � Q or Orb(x) \Q = ; and in this

case there is a unique simple loop � in the Markov g-graph of Q satisfying

that x and � are associated and j�j = jOrb(x)j.

Proof. Assume that Orb(x) \ Q = ;. Set n = jOrb(x)j. By Lemma 1.3.2

there exists a unique loop I0 ! I1 ! : : : ! In�1 ! I0, which we denote

by �, such that x and � are associated. We have to see that � is simple.

By Lemma 1.3.3 and Remark 1.3.4, there exists a closed interval K � I0

containing x such that gn is monotone on K and g
n(K) = I0. If � is not a

thin loop (� is said to be thin if Ii+1 is the only Q-basic interval g-covered by

Ii for 0 � i < n�1 and I0 is the only Q-basic interval g-covered by In�1), the

fact that � is simple follows analogously as in the proof of Stage 4, Case 2 of

Theorem 2.5.1. On the other hand, when � is thin the fact that � is simple

easily follows from Corollary 2.2.7 and Proposition 2.2.8 of [34].

Let (T;A [V (T); g) be a linear Markov model. We have used Proposi-

tion 3.5.5 to construct a function isperiod which admits an integer n and

171

a map g and tests whether n 2 Per(g). The function returns an integer

according to the following convention:

1. isperiod(n,g)=0 if n =2 Per(g).

2. isperiod(n,g)=1 if there is some simple positive loop of length n in

the Markov g-graph of A [V (T).

3. isperiod(n,g)=2 if all simple loops of length n in the Markov g-graph

of A [V (T) are negative.

4. isperiod(n,g)=3 if there are no simple loops of length n in the Markov

g-graph of A [V (T) but there is an n-periodic orbit of g contained in

A [V (T).

Besides all the loop-managing routines of Sections 3.3 and 3.4, isperiod

needs another function, which we have called OrbitOfVertices, in order

to test whether A [V (T) contains an n-periodic orbit of g. Next we list

its source code. OrbitOfVertices assumes all the conventions and global

variables of this chapter. In particular, the g-images of the points of V (T)nA

are stored on the vector *im, and endpat equals jAj+1. The function returns

1 if A [V (T) contains an n-periodic orbit, 0 otherwise.

int OrbitOfVertices(unsigned int n) {

unsigned int i,j,k;

/* Deleting eventually periodic points:

(vector pupe externally memory-allocated) */

for(i=endpat;i<=MZ.nedges+1;i++) if(im[i]<endpat) pupe[i]=0;

else pupe[i]=1;

do {

k=0;

for(i=endpat;i<=MZ.nedges+1;i++) {

/* Can we delete the i-th point ? */

if(!pupe[i]) continue; /* point already deleted */

for(j=endpat;j<=MZ.nedges+1;j++)

if(pupe[j] && im[j]==i) goto DONOTDELETE;

k=1; pupe[i]=0;

DONOTDELETE:;

} /* k=0 if no point has been deleted */

} while(k);

/* Each non-deleted point is periodic. Now we go through

its images and compute the orbit size: */

for(i=endpat;i<=MZ.nedges+1;i++) {

172

if(!pupe[i]) continue;

j=0; k=i; pupe[i]=0;

do pupe[(k=im[k])]=0; while(++j<n && k!=i);

if(j<n) continue; /* period < n */

if(k!=i) continue; /* period > n */

return 1;

}

return 0;

}

Finally, next we state a result which has been used to optimize the period-

forcing exploration. The proof of (a) is not diÆcult, and (b) and (c) follow

easily from the ideas of the proof of Proposition 2.7.6.

Proposition 3.5.6. Let P be a pattern and let (T;A; f) be a canonical model

of P having an A-signi�cant n-periodic point x. Let � be a simple loop

�0 ! �1 ! : : : ! �0 in the P-graph path such that x and � are associated,

and let � be a simple loop in the Markov (A [V (T))-graph of f such that x

and � are associated. Then the following statements hold:

(a) � and � have the same sign.

(b) If � (or �) is positive then n 2 Per(g) for each tree map g which exhibits

P.

(c) If Int(h�0i) \ V (T) = ; then n 2 Per(g) for each tree map g which

exhibits P.

A period-forcing explorer program has been designed with the aim of

�nding counterexamples to Conjecture 3.5.4. Next we describe its underlying

algorithm (we do not list the source code since it is simply composed of calls

to some known functions and, in consequence, it lacks interest).

Period-forcing explorer algorithm:

1. Consider a �xed pattern P.

2. Compute a canonical model (T;A; f) of P.

3. Compute the Markov f -graph of A [V (T).

4. Consider a �xed integer k > 1 (\period-exploring depth").

5. For each 2 � n � k, now we test the period n:

(a) If isperiod(n,f)=0 then n =2 Per(f) and we stop the test for n.

(b) If isperiod(n,f)=1 then n 2 Per(f) and there is some simple

positive loop of length n in the Markov f -graph of A [V (T). If

the n-periodic point associated to this loop is A-signi�cant, then

173

by Proposition 3.5.6 (b) we have that n 2 Per(g) for each tree

map g exhibiting P. This is not necessarily true when the point

is not A-signi�cant. In any case, we stop the test for n (below we

discuss which periods we possibly overlook by proceeding in this

way).

(c) If isperiod(n,f)=2 then n 2 Per(f). If there exists some sim-

ple loop � ! : : : ! � of length n in the P-path graph such

that Int(h�i) \ V (T) = ;, then we stop the test for n (Proposi-

tion 3.5.6 (c)). Otherwise, for each Markov model (T;A[V (T); g)

exhibiting P over A we test whether isperiod(n,g) 6= 0. If

isperiod(n,g)= 0 for some g then we have found a counterex-

ample to Conjecture 3.5.4.

(d) If isperiod(n,f)=3 then n 2 Per(f) but the n-periodic orbits of

f are contained in A [V (T). In this case we stop the test for n.

Let P be a pattern and let (T;A; f) be a canonical model of P. We say

that a positive integer n is special for P if n 2 Per(f) and each n-periodic

point x of f satis�es the following conditions:

1. there is a simple positive Markov loop associated to x

2. x is not A-signi�cant.

We say that a pattern P is special if there exists some n 2 N such that n is

special for P.

If a period n is special for a pattern P, our algorithm overlooks the period

n (the test for n stops because isperiod(n,f)= 1), while we cannot assure

that n 2 Per(g) for each Markov map g exhibiting P. In order to avoid this

circumstance, we can execute the algorithm only over non-special patterns.

Alternatively, it is not diÆcult to manually check the existence of special

periods for a given pattern, and test these periods apart.

The program has been linked using the standard gcc compiler on a UNIX

Workstation. It has been running for several months on an Origin-2000

machine of Silicon Graphics with 8 processors. A wide variety of patterns

have been tested. The results con�rm Conjecture 3.5.4 in the aÆrmative:

no counterexample has been found. Next we display a list of some tested

patterns. In any case, (T;A; f) is a periodic model, with A = fxig
jAj
i=1 and

f(xi) = xi+1 mod jAj for 1 � i � jAj. For each pattern we show the set of

discrete components and the periods n for which isperiod(n,f)=2 (tested

periods):

� fx1; x3; x10; x11g, fx1; x2; x4; x7; x8g, fx1; x5; x6; x9g, period 4.

� fx1; x4; x6; x10g, fx1; x2; x3; x7g, fx1; x5; x8; x9g, period 6.

� fx1; x5; x6; x7g, fx1; x2; x3; x4g, period 8.

174

� fx1; x2; x4; x5; x7; x8g, fx5; x6g, fx3; x6; x9g, period 4.

� fx1; x2; x3; x4g, fx1; x5; x8g, fx3; x6; x9g, fx4; x7; x10g, fx1; x11; x12g, pe-

riod 8.

� fx1; x3; x6g, fx1; x2; x4g, fx2; x5; x7g, period 4.

� fx1; x3; x6; x9g, fx1; x2; x4; x7g, fx2; x5; x8; x10g, period 4.

� fx20; x21; x22g, fx2; x11; x20g, fx2; x5; x8g, fx5; x14; x23g, fx8; x17; x26g,

fx1; x10; x22g, fx1; x4; x7g, fx4; x13; x25g, fx7; x16; x19g, fx3; x12; x21g,

fx3; x6; x9g, fx6; x15; x24g, fx9; x18; x27g, period 24.

� fx1; x2; x3g, fx1; x4; x8g, fx2; x5; x9g, fx3; x6; x7g, periods 6 and 8.

� fx1; x2; x3g, fx1; x4; x5g, fx2; x6; x8g, fx3; x7; x9g, period 8.

� fx1; x2; x3; x7g, fx1; x4; x5; x6g, period 6.

175

Chapter 4

A note on the periodic orbits

and topological entropy of

graph maps

4.1 Introduction

The notion of topological entropy appeared early in the sixties (see [1]). It

is de�ned for continuous maps on compact metric spaces and is a quantita-

tive measure of the dynamical complexity of the map. It is an important

topological invariant.

There are some properties of the dynamical behavior of the maps which

are controlled by the topological entropy. For instance, it measures the ex-

ponential growth rate, when n tends to in�nity, of the number of di�erent

orbits of length n if we use certain precision to distinguish two orbits (see

[25]). For a piecewise monotone map f of the interval, it measures also the

exponential rate of increase with n of the number of maximal intervals of

monotonicity of fn (see [39]).

We are interested in relating periodic orbits and topological entropy. For

continuous maps on the interval, to every periodic orbit P of f we can as-

sociate a number h(P) which is the topological entropy of the \connect-

the-dots" map corresponding to P or the \linearization" of P . In fact, this

entropy corresponds to the in�mum of the entropies of all maps exhibiting

orbits with the same combinatorics as P (see Corollary 4.4.7 of [8]).

In the interval case it is possible to show that the entropy of any map f

is the supremum of the values h(P) corresponding to all the periodic orbits

P of f . Furthermore, for each n, we can take this supremum only over the

orbits of period k > n. This result was stated by Takahashi [43] and proved

176

with the assumption that f is piecewise monotone. In the general case it also

was proved in an independent way by Block and Coven [20] and Misiurewicz

and Nitecki [38].

Since the topological entropy is usually considered as a measure of the

degree of chaos, a natural problem is developing algorithms for calculating it

(see [29], [40] or [17]). These algorithms are based on di�erent properties of

the entropy and some of them take into account the existence of periodic or-

bits (see, for instance, [20]) and, in particular, properties like the Takahashi's

result.

In this chapter we show that an analogous relation between periodic be-

havior and topological entropy is satis�ed for continuous maps on graphs

(see [4]). Our work has been motivated by a question posed by S. Kolyada

and N. Snoha to Ll. Alsed�a. To this end we introduce some basic notation

and state in detail the main result of the chapter. We recall that the basic

de�nitions on graphs has been introduced in subsection 2.8.1.

Let G be a graph. Given a point x 2 V (G), the number of edges contain-

ing x (with the edges homeomorphic to a circle counted twice) will be called

the valence of x. Since any graph can be embedded in R3 , in what follows we

will consider each graph endowed with the topology induced by the topology

of R3 .

Now we extend the notion of interval introduced in subsection 2.8.1. We

shall call a set J � G an interval if there is a homeomorphism � : I �! J ,

where I is [0; 1], (0; 1], [0; 1) or (0; 1), and there are no vertices in J except

perhaps �(0) and �(1). The set �((0; 1)) will be called the interior of J and

will be denoted Int(J). If I = [0; 1], the interval J will be called closed and

if I = (0; 1), the interval J will be called open. Notice that it may happen

that Int(J) 6= J for an interval J being an open set in the topology of G.

For example, let G be a graph with two vertices and one edge. Then G is an

interval and an open set as a topological space but Int(G) does not contain

the vertices. As usual, a subinterval of an interval J will be an interval

contained in J .

Now we de�ne an equivalence relation among graph models as follows: we

say that (G;A; f) and (G0
; A

0
; f

0) are equivalent if there exists a homeomor-

phism � : G �! G
0 with �(A) = A

0 such that f and ��1Æf 0Æ� are homotopic

relative to A. Notice that then �
�1 Æ f 0 Æ �jA = f jA. Each equivalence class

of this relation, denoted by [G;A; f], will be called an action. Note that if

two graph models are equivalent then they have the same graph pattern.

We de�ne the entropy of [G;A; f], denoted h([G;A; f]), as

h([G;A; f]) = inffh(f 0) : (G0
; A

0
; f

0) 2 [G;A; f]g:

Given an action [G;A; f], from [11] it follows that there exists a representative

177

(G;A; g) of [G;A; f] that gives the entropy of the action, i.e., such that

h(g) = h([G;A; f]). We shall use this fact to obtain lower bounds of the

topological entropy of a graph map. The main result of this chapter is the

following.

Theorem E. Let f : G �! G be a graph map. For each nonnegative integer

m we have

h(f) = supfh([G;P; f]) : P periodic orbit of f and jP j > mg:

Our proof of this result is based in the main ideas used in the proof of

the analogous result for interval maps (see, for instance, theorem 4.4.10 of

[8]) and in some properties of graph maps pointed out in [36].

4.2 Proof of Theorem E

We shall need a simple property which is well known for interval and circle

maps (see, for instance, [8]).

Lemma 4.2.1. Let f : G �! G be a graph map. Let fJi � G : i =

1; 2; : : : ; ng be a family of closed intervals such that f(Ji) � Ji+1 for i =

1; 2; : : : ; n � 1, and f(Jn) � J1. Then there exists a point x = f
n(x) such

that f i(x) 2 Ji+1 for all 0 � i � n� 1.

Proof. Since f(Jn) � J1 and there are no vertices in the interior of an interval,

there exists a closed subinterval Kn � Jn with f(Kn) = J1. Analogously,

since f(Jn�1) � Jn, there is a closed subintervalKn�1 � Jn�1 with f(Kn�1) �

Jn and f
2(Kn�1) = J1.

Inductively, there is a closed subinterval K1 � J1 with f
i(K1) � Ji+1, for

i = 1; 2; : : : ; n � 1, and f
n(K1) = J1. Then, since fn is a continuous map

and there are no vertices in Int(J1), the intermediate value theorem ensures

the existence of a point x 2 K1 such that fn(x) = x. By the election of K1

it follows that f i(x) 2 Ji+1 for all 0 � i � n� 1 and the lemma follows.

As for interval and circle maps, an important notion for obtaining minimal

models of an action is the notion of local monotonicity. We recall that this

notion has been introduced in subsection 2.8.1.

Let (G;A; f) be a representative of an action. We say that (G;A; f) is

monotone if f restricted to any interval I without points of A [V (G) in

its interior is monotone. If in addition f(V (G)) � A [V (G) then (G;A; f)

is called simplicial. Given an action, as we noticed above, there is a repre-

sentative such that its entropy coincides with the topological entropy of the

178

action. Moreover, in [11] it is shown that this representative can be taken

simplicial. We shall use this fact in order to prove that the existence of a

horseshoe gives a lower bound of the topological entropy of the map. To this

end we introduce the notion of horseshoe.

Let s � 2. An s-horseshoe for f is a closed interval I � G and closed

subintervals J1; J2; : : : ; Js of I with pairwise disjoint interiors, such that

f(Ji) = I for j = 1; 2; : : : ; s. An s-horseshoe is strong if in addition the

intervals J1; J2; : : : ; Js are contained in Int(I) and are pairwise disjoint.

Proposition 4.2.2. Let f : G �! G be a graph map. Assume that fk has a

strong s-horseshoe for some k � 1 and s � 3. Then there is a periodic orbit

P of f with period jP j � 2(s� 2) such that h([G;P; f]) � 1
k
log(s� 2).

Proof. From the de�nition of a strong horseshoe there exist a closed interval

I � G and pairwise disjoint subintervals J1; J2; : : : ; Js contained in the inte-

rior of I, such that fk(Ji) = I for i = 1; 2; : : : ; s. Thus we have fk(J1) � Ji,

f
k(Ji) � J1, f

k(Js) � Ji and f
k(Ji) � Js for i = 2; 3; : : : ; s� 1.

Then we consider the sequence of intervals fIi : i = 1; 2; : : : ; 4(s � 2)g

de�ned by

Ii =

8>><>>:
Jj+1 if i = 2j � 1 for j = 1; 2; : : : ; s� 2

J1 if i = 2j for j = 1; 2; : : : ; s� 2

Jj+1�(s�2) if i = 2j � 1 for j = s� 1; s; : : : ; 2(s� 2)

Js if i = 2j for j = s� 1; s; : : : ; 2(s� 2).

Actually, this sequence is

J2; J1; J3; J1; : : : ; J1; Js�1; J1; J2; Js; J3; Js; : : : ; Js; Js�1; Js :

It satis�es the hypothesis of Lemma 4.2.1 for fk. Thus, there exists a periodic

orbit Q = fx; fk(x); f 2k(x); : : :g of fk with f
ik(x) 2 Ii+1. Let P be the

periodic orbit of f containing Q. Obviously jP j � jQj. Furthermore jQj �

2(s � 2). Indeed, if jQj < 2(s � 2) then there exists i 2 f1; 3; 4; : : : ; s � 1g

with x 2 Ji \ J2, which gives a contradiction.

Given (G;P ; f) 2 [G;P; f], if � is the homeomorphism given by the equiv-

alence between (G;P ; f) and (G;P; f), then the subset �(Q) of P satis�es

(G; �(Q); f
k

) 2 [G;Q; fk]. Since 1
k
h(f

k

) = h(f) we have

h([G;P; f]) = inffh(f) : (G;P ; f) 2 [G;P; f]g

= inff
1

k
h(f

k

) : (G;P ; f) 2 [G;P; f]g

� inff
1

k
h(f) : (G;Q; f) 2 [G;Q; fk]g =

1

k
h([G;Q; fk]):

179

Now we prove that h([G;Q; fk]) � log(s � 2) and we are done. From

[11] there exists a simplicial representative (G;Q; g) of [G;Q; fk] such that

f
kjQ = gjQ and h([G;Q; fk]) = h(g). Notice that g has a strong (s � 2)-

horseshoe. Indeed, for each i 2 f2; 3; : : : ; s � 1g there is an element from

Q \ Ji mapped to J1 and an element from Q \ Ji mapped to Js. Thus,

since g is Q-monotone and Ji � I, every g(Ji) contains all the intervals

J2; J3; : : : ; Js�1. Thus g also has a strong (s � 2)-horseshoe as we claimed

because J1; J2; : : : ; Js is a strong s-horseshoe of f
k.

From this fact and Lemma 3.4 of [36] it follows that h(g) � log(s � 2)

and

h([G;P; f]) �
1

k
h([G;Q; fk]) =

1

k
h(g) �

1

k
log(s� 2):

This ends the proof.

Lastly we prove Theorem E.

Proof of Theorem E. From the de�nition of h([G;P; f]) it follows that

h(f) � supfh([G;P; f]) : P periodic orbit of f and jP j > mg:

So, we shall prove the other inequality.

If h(f) = 0 we are done. So we assume that h(f) > 0. From Theorem

B of [36], there are sequences of natural numbers (kn)
1
n=1 and (sn)

1
n=1 such

that fkn has an sn-horseshoe for each n � 1 and h(f) = lim supn!1
1
kn
log sn.

Furthermore, from Lemma 3.3 of [36], it follows that fkn has a strong (sn�2)-

horseshoe for each n � 1.

Now we distinguish two cases.

Case 1. h(f) =1.

Then the natural numbers sn take in�nitely many di�erent values. So we

can choose them in such a way that (sn)
1
n=1 is an increasing sequence.

From Proposition 4.2.2 (with s = sn � 2) it follows that for each n 2

N there exists a periodic orbit Pn of f such that jPnj � 2(sn � 4) and

h([G;Pn; f]) �
1
kn
log(sn�4). Given anyM > 0, since lim supn!1

1
kn
log sn =

1, we can choose an n such that 1
kn
log(sn � 4) > M and 2(sn � 4) > m.

Then we have jPnj > m and

h([G;Pn; f]) �
1

kn
log(sn � 4) > M:

Since M is arbitrary, it follows that

h(f) =1 = supfh([G;P; f]) : P periodic orbit of f and jP j > mg;

as we claimed.

180

Case 2. 0 < h(f) <1.

Since (kn)
1
n=1 and (sn)

1
n=1 are sequences of natural numbers and 0 <

lim sup
n!1

1
kn
log sn < 1, then either both sequences (kn)

1
n=1 and (sn)

1
n=1

take in�nitely many di�erent values or both sequences take �nitely many

values.

If (kn)
1
n=1 and (sn)

1
n=1 take in�nitely many di�erent values, we can choose

the sequence (sn)
1
n=1 in such a way that it is an increasing sequence. As in

Case 1, for each n 2 N there exists a periodic orbit Pn of f such that jPnj �

2(sn�4) and h([G;Pn; f]) �
1
kn
log(sn�4). Now lim supn!1

1
kn
log(sn�4) =

h(f). Thus, given any � > 0, there exists an n such that 1
kn
log(sn � 4) >

h(f)� � and 2(sn � 4) > m. Then we have jPnj > m and

h([G;Pn; f]) �
1

kn
log(sn � 4) > h(f)� �:

Since � is arbitrary, it follows that supfh([G;P; f]) : jP j > mg � h(f), as we

claimed.

If (kn)
1
n=1 and (sn)

1
n=1 take �nitely many di�erent values, then there ex-

ist natural numbers k and s such that h(f) = 1
k
log s and f

k has an s-

horseshoe. Then we can take kn = nk and sn = s
n for all n � 1 and we have

lim sup
n!1

1
kn
log sn = h(f). Also, from Lemmas 3.2 and 3.3 of [36], it follows

that fnk has an s
n-horseshoe and consequently a strong (sn � 2)-horseshoe,

for each n � 1. The rest of the proof follows as above.

181

Appendix: Source code of some

general purpose functions

A.1 Dynamic memory management

Here we list the source code of some functions which allow us to allocate and

release memory space for vectors and matrices of types unsigned int and

struct pair:

int reserve_matrix(unsigned int ***mat,unsigned int f,

unsigned int c)

{

unsigned int i;

int reserve_vector(unsigned int **,unsigned int);

void free_matrix(unsigned int ***,unsigned int);

*mat = (unsigned int **) malloc(f*sizeof(*(*mat)));

if(!(*mat)) return 0;

if(!c) {for(i=0;i<f;i++){ (*mat)[i] = NULL; } return 1;}

for(i=0;i<f;i++){

if(!reserve_vector(&((*mat)[i]),c)) {

free_matrix(mat,i); return 0;

}

}

return 1;

}

void free_matrix(unsigned int ***mat,unsigned int f)

{ unsigned int i; void free_vector(unsigned int **);

for(i=0;i<f;i++){free_vector(&((*mat)[i]));} free(*mat);}

182

The function reserve matrix reserves memory for an array **mat of f

rows and c columns. If the parameter c is given the value 0, then memory is

reserved for f-many non initialized pointers for which a value NULL is given

(that is, f-many vectors of undetermined size). For each of these vectors,

further calls to the function reserve vector allows variable row-size for the

matrix **mat.

We remark that in all functions performing dynamic memory manage-

ment the variable for which we want to reserve memory appears with an

extra level of reference (we have, for instance, ***mat instead of **mat).

Therefore, it is necessary to send as a parameter the address of the variable

which we want to allocate, instead of its value. The function modi�es this

address to be the starting address of the reserved memory space.

The rest of functions of dynamic memory management work analogously

as the function reserve matrix:

int reserve_vector(unsigned int **v,unsigned int n)

{ *v = (unsigned int *) malloc(n*sizeof(unsigned int));

if(*v) return 1; else return 0;}

void free_vector(unsigned int **v) {if(*v) free(*v);}

The next functions are just the \huge" version of the previous ones.

int reserve_matrix_H(unsigned int huge *(huge *(*mat)),

unsigned int f,unsigned int c)

{

unsigned int i;

int reserve_vector_HH(unsigned int huge *(huge *),

unsigned int);

void free_matrix_H(unsigned int huge *(huge *(*)),

unsigned int);

*mat=(unsigned int huge *(huge *)) farmalloc(f*sizeof(*(*mat)));

if(!(*mat)) return 0;

if(!c) {for(i=0;i<f;i++){ (*mat)[i] = NULL; } return 1;}

for(i=0;i<f;i++){

if(!reserve_vector_HH(&((*mat)[i]),c)){

free_matrix_H(mat,i); return 0;

}

}

183

return 1;

}

void free_matrix_H(unsigned int huge *(huge *(*mat)),

unsigned int f)

{ int i; void free_vector_HH(unsigned int huge *(huge *));

for(i=0;i<f;i++) free_vector_HH(&((*mat)[i]));

farfree((unsigned int far *) (*mat));

}

int reserve_vector_HH(unsigned int huge *(huge *v),

unsigned int n)

{ *v=(unsigned int huge *) farmalloc(n*sizeof(unsigned int));

if(*v) return 1; else return 0;}

void free_vector_HH(unsigned int huge *(huge *v))

{if(*v) farfree((unsigned int far *) (*v));}

int reserve_vector_H(unsigned int huge *(*v),

unsigned int n)

{ *v=(unsigned int huge *) farmalloc(n*sizeof(unsigned int));

if(*v) return 1; else return 0;}

void free_vector_H(unsigned int huge *(*v))

{if(*v) farfree((unsigned int far *) (*v));}

int reserve_pointers_sp(struct pair ***mat,

unsigned int f)

{

unsigned int i;

*mat = (struct pair **) malloc(f*sizeof(*(*mat)));

if(!(*mat)) return 0;

for(i=0;i<f;i++) (*mat)[i] = NULL;

return 1;

}

int reserve_vector_sp(struct pair **v,unsigned int n)

184

{ *v = (struct pair *) malloc(n*sizeof(struct pair));

if(*v) return 1; else return 0;}

A.2 Calculus of the path transition matrix

The aim of the function �llpaths is the calculus of the path transition matrix

associated to a pattern P. Recall that the algebraic representation of P

described in Subsection 3.2.3 is stored using **c, npunts and **orb. In

addition, some new external variables are assumed to be memory-allocated:

extern unsigned int **c,npoints,*asbp,ndc,

**paths2,*inv_paths,nnpaths;

extern int **paths; extern struct parell **orb,*bp;

The path transition matrix is stored at **paths, and the reduced path

transition matrix obtained by erasing non-relevant paths (see Subsection 3.4)

is stored at **paths2. The amount of relevant basic paths is stored at

nnpaths. The amount of di�erent basic paths contained in the discrete com-

ponents from 1 to n, for 1 � n �ndc, is stored at asbp[n] (\accumulated

sum of basic paths"). Thus the total amount of basic paths is asbp[ndc].

This function uses a little function, nbp, (\number of basic path"), which

has three unsigned integers com, p1, p2 as parameters, and returns the num-

bering which corresponds to the basic path de�ned by points p1 and p2 of

the com-th discrete component.

The conventions and procedures are very similar to that of Markov func-

tion. In particular, note that each element of the matrix **paths has a sign.

As in Subsection 3.4, this is equivalent to associate a sign to each arrow in

the P-path graph. This will allow us to associate a sign to each loop of the

P-path graph.

void fillpaths(void) {

unsigned int i,j,k,r,s;

for(i=0;i<=asbp[ndc];i++) paths[i][0]=paths2[i][0]=0;

asbp[0]=0;

for(i=1;i<=ndc;i++) {

for(j=asbp[i-1]+1;j<=asbp[i];j++) {

unsigned int patologic=0,comp,point;

r=orb[i][bp[j].e1].e1;s=orb[i][bp[j].e2].e1;

185

/* We cannot call REDUCTION with exactly one component

marked as unerasable. Thus now we detect whether the

images of the two points of the j-th basic path belong

to the same discrete component. */

/* case 1: There is 1 \leq a \leq ndc such that the images

of the two points of the j-th basic path have binary

representations {a,b} and {a,c} respectively. */

if(r==s) {

paths[j][0]=1;

paths[j][1]=nbp(r,orb[i][bp[j].e1].e2,orb[i][bp[j].e2].e2);

continue;

}

/* case 2: case 1 does not hold: */

/* case 2.1 */

for(k=1;k<=ndc;k++) {

if((k==r)||(k==s)) continue;

if((c[r][k]==orb[i][bp[j].e1].e2)&&

(c[s][k]==orb[i][bp[j].e2].e2)) {

patologic=1;

break;

}

}

if(patologic){

paths[j][0]=1; paths[j][1]=nbp(k,c[k][r],c[k][s]);

continue;

}

/* case 2.2: */

if(c[r][s]==orb[i][bp[j].e1].e2) {

paths[j][0]=1; paths[j][1]=nbp(s,c[s][r],orb[i][bp[j].e2].e2);

continue;

}

if(c[s][r]==orb[i][bp[j].e2].e2) {

paths[j][0]=1; paths[j][1]=nbp(r,orb[i][bp[j].e1].e2,c[r][s]);

continue;

}

/* The convex hull of the images of the two points of the

j-th basic path intersects more than one component. Thus we

can call REDUCTION. */

for(k=1;k<=ndc;k++) c[k][k]=1;

c[r][r]=c[s][s]=2;

186

reduction();

comp=r;

point=orb[i][bp[j].e1].e2;

/* is r irrelevant?: */

for(k=1;k<=ndc;k++) {

if((k==r)||(!c[k][k])) continue;

if(c[r][k]==point) {

c[r][r]=0;

comp=k;

point=c[k][r];

break;

}

}

do {

for(k=1;k<=ndc;k++) if((k!=comp)&&(c[k][k])&&

(c[comp][k])) break;

paths[j][++paths[j][0]]=nbp(comp,point,c[comp][k]);

c[comp][comp]=0;

point=c[k][comp];

comp=k;

} while(c[comp][comp]!=2);

if(point!=orb[i][bp[j].e2].e2) {

paths[j][++paths[j][0]]=nbp(comp,point,orb[i][bp[j].e2].e2);

}

}

}

/* Now we compute the reduced matrix **paths2. */

/* Deleting unnecessary paths: */

for(i=1;i<=asbp[ndc];i++) paths[0][i]=1;

do {

k=0;

for(i=1;i<=asbp[ndc];i++) {

if(!paths[0][i]) continue;

for(j=1;j<=paths[i][0];j++)

if(paths[0][abs(paths[i][j])]) goto MORE;

paths[0][i]=0; k=1; goto NEWI;

/* i-th edge doesn't cover anything */

MORE:;

for(j=1;j<=asbp[ndc];j++) {

if(!paths[0][j]) continue;

if(pos(i,paths[j])) goto NEWI;

187

}

paths[0][i]=0; k=1; /* i-th edge non-covered by anything */

NEWI:;

}

} while(k);

/* change of names (direct and inverse), and nnpaths =

amount of significant paths: */

nnpaths=0;

for(i=1;i<=asbp[ndc];i++) {

if(!paths[0][i]) continue;

paths[0][i]=(++nnpaths); inv_paths[nnpaths]=i;

}

/* translate into **paths2: */

for(i=1;i<=asbp[ndc];i++) {

if(!paths[0][i]) continue;

for(j=1;j<=paths[i][0];j++) { int l;

if(!(l=paths[0][abs(paths[i][j])])) continue;

paths2[paths[0][i]][++paths2[paths[0][i]][0]]=l;

}

}

/* sort each row: */

for(i=1;i<=nnpaths;i++) if(paths2[i][0]>1)

Sort1(paths2[i][0],paths2[i]);

return;

}

int nbp(unsigned int com,unsigned int p1,unsigned int p2) {

unsigned int a,b,x,y,z;

if((p1==p2)||(!p1)||(!p2)) error(5,NULL);

if((p1>c[0][com])||(p2>c[0][com])) error(5,NULL);

x=p1;y=p2;if(p2<p1) {x=p2;y=p1;};

z=asbp[com-1]+c[0][com]*(x-1)-x*(x-1)/2+y-x;

if (p1<p2) return z; else return -z;

}

188

A.3 Sorting functions

We have used two functions for sorting vectors of integers. The algorithms

have been extracted from [41]. The function Sort1 sorts a vector of positive

integers *ra between positions ra[1] and ra[n] in increasing order.

void Sort1(unsigned n, unsigned int *ra)

{

int l,j,ir,i;

unsigned int rra;

l=(n >> 1)+1;

ir=n;

for (;;) {

if (l > 1)

rra=ra[--l];

else {

rra=ra[ir];

ra[ir]=ra[1];

if (--ir == 1) {

ra[1]=rra;

return;

}

}

i=l;

j=l << 1;

while (j <= ir) {

if (j < ir && ra[j] < ra[j+1]) ++j;

if (rra < ra[j]) {

ra[i]=ra[j];

j += (i=j);

}

else j=ir+1;

}

ra[i]=rra;

}

}

The function Sort2 sorts a vector of positive integers *ra between ra[1]

and ra[n] according to the values of a vector *rb of positive integers. That

is, positions 1 to n of of *rb are sorted in increasing order, carrying the

changes to the vector *ra.

void Sort2(unsigned int n, unsigned int *ra, unsigned int *rb)

189

{

int l,j,ir,i;

unsigned int rrb,rra;

l=(n >> 1)+1;

ir=n;

for (;;) {

if (l > 1) {

rra=ra[--l];

rrb=rb[l];

} else {

rra=ra[ir];

rrb=rb[ir];

ra[ir]=ra[1];

rb[ir]=rb[1];

if (--ir == 1) {

ra[1]=rra;

rb[1]=rrb;

return;

}

}

i=l;

j=l << 1;

while (j <= ir) {

if (j < ir && ra[j] < ra[j+1]) ++j;

if (rra < ra[j]) {

ra[i]=ra[j];

rb[i]=rb[j];

j += (i=j);

}

else j=ir+1;

}

ra[i]=rra;

rb[i]=rrb;

}

}

A.4 Data input and output

Here we list the source code of some functions which either get data from

the keyboard or read/write data from/to disk �les:

int getnum(int min, int max)

190

{

/* This function waits for an input from the keyboard. The

input must be an integer inside the rang [min,max]. */

int n; int x,y;

x = wherex(); y = wherey();

while (!scanf("%u",&n) || n < min || n > max){

putch(7); gotoxy(x,y); clreol(); fflush(stdin); }

return n;

}

char *err_pat[]={

"opening the pattern write file",

"of pattern writing",

"the pattern file does not exist",

"of pattern reading"

};

void WritePattern(char *fitxer)

{

int l,n;

FILE *fp;

if(!access(fitxer,0) &&

(getanswer("YN","This file already exists. Continue? (Y/N)")

!= 'Y')) exit(0);

if((fp=fopen(fitxer,"wb")) == NULL) error(1,err_pat);

n=ndc+1;

if(!fwrite(&ndc,sizeof(unsigned int),1,fp) ||

fwrite(c[0],sizeof(unsigned int),n,fp) != n)

error(2,err_pat);

for(l=1;l<=ndc;l++){

if(fwrite(c[l],sizeof(unsigned int),n,fp) != n ||

fwrite(&(orb[l][1]),sizeof(struct pair),

c[0][l],fp) != c[0][l]) error(2,err_pat);

}

fclose(fp);

}

void ReadPattern(char *fitxer)

{

int l,n;

FILE *fp;

if((fp=fopen(fitxer,"rb")) == NULL) error(3,err_pat);

if(!fread(&ndc,sizeof(unsigned int),1,fp)) error(4,err_pat);

191

n=ndc+1;

if(!reserve_matrix(&c,n,n)

|| !reserve_pointers_sp(&orb,n)) error(3,NULL);

if(fread(c[0],sizeof(unsigned int),n,fp) != n)

error(4,err_pat);

for(l=1;l<=ndc;l++){

if(fread(c[l],sizeof(unsigned int),n,fp) != n)

error(4,err_pat);

if(!reserve_vector_sp(&(orb[l]),c[0][l]+1))

error(3,NULL);

if(fread(&(orb[l][1]),sizeof(struct pair),c[0][l],fp)

!= c[0][l]) error(4,err_pat);

}

fclose(fp);

}

#include "ctype.h"

char getanswer(char *answers, char *prompt)

/* Prints a prompt and gets an allowed answer

pressed. */

{ char a; int x,y;

printf("\n%s: ",prompt); x=wherex(); y=wherey();

do { gotoxy(x,y); clreol(); a = toupper(getchar());

} while (strchr(answers,a) == NULL);

return(a);

} /* getanswer */

A.5 Other functions

The following function error, of type void, is declared in the head �le:

void error(int,char**);

A vector of strings containing 4 error messages is declared before any

function declaration. These messages can occur during the execution of any

function. If one sends NULL as the value of the parameter *buff[], then

error prints out the general error message number num (1 � num � 4).

Otherwise, error assumes that *buff[] is a vector of local error messages

and then num-th message is printed out.

char *err_gen[]={

"General of memory",

"Non allocated vector",

192

"Non allocated matrix",

"Impossible structural error"

};

void error(int num, char *buff[])

{ if(buff) printf("\nERROR: %s.\n\n",buff[num-1]);

else printf("\ngeneral ERROR: %s.\n\n",err_gen[num-1]);

exit(1);}

The following functions are self-commented:

unsigned int belongs(unsigned int m,unsigned int *n)

{

/* If m belongs to the positive integer vector n,

returns its lowest occurrence position. Otherwise

returns 0. */

unsigned int i;

for(i=1;i<=n[0];i++) { /* n[0] = length of n. */

if(m==n[i]) return i; /* If n[0]=0 then 'for' does not act */

} /* and 0 is returned. */

return 0;

}

int pos(int m,int *n)

{

/* If the positive integer m coincides with the absolute value

of some component of the vector n then returns the lowest

occurrence position. Otherwise returns 0. */

int i;

for(i=1;i<=n[0];i++) { /* n[0] = length of n. */

if(m==abs(n[i])) return i;/* If n[0]=0 then 'for' does not act */

} /* and 0 is returned. */

return 0;

}

int sgn(int n)

{

/* Returns the sign of n. */

if(n>0) return 1;

193

if(n<0) return -1;

return 0;

}

194

Bibliography

[1] Adler, R., Konheim, A., McAndrew, M. [1965] \Topological entropy",

Trans. Am. Math. Soc. 114, 309{319.

[2] Alsed�a, Ll., Gautero, F., Guaschi, J., Los, J., Ma~nosas, F., Mumbr�u, P.

[2002] \Patterns and minimal dynamics for graph maps", Prepublica-

cions UAB.

[3] Alsed�a, Ll., Guaschi, J., Los, J., Ma~nosas, F., Mumbr�u, P. [1997]

\Canonical representatives for patterns of tree maps", Topology 36,

1123{1153.

[4] Alsed�a, Ll., Juher, D., Mumbr�u, P. [2001] \A note on the periodic orbits

and topological entropy of graph maps", Proc. Amer. Math. Soc. 129,

no. 10, 2941{2946.

[5] Alsed�a, Ll., Juher, D., Mumbr�u, P. [2003] \Sets of periods of piecewise

monotone tree maps", to appear in Int. J. of Bif. and Chaos

[6] Alsed�a, Ll., Juher, D., Mumbr�u, P. [2003] \On the minimal models for

graph maps", to appear in Int. J. of Bif. and Chaos

[7] Alsed�a, Ll., Llibre, J., Misiurewicz, M. [1989] \Periodic orbits of maps

of Y", Trans. Amer. Math. Soc. 313, 475{538.

[8] Alsed�a, Ll., Llibre, J., Misiurewicz, M. [2000] Combinatorial dynamics

and entropy in dimension one, Advanced Series in Nonlinear Dynamics

5, World Scienti�c, second edition.

[9] Alsed�a, Ll., Llibre, J., Misiurewicz, M., Sim�o, C. [1985] Twist periodic

orbits and topological entropy for continuous maps of the circle of degree

one which have a �xed point, Ergodic Theory Dynam. Systems 5, 501{

517.

[10] Alsed�a, Ll., Llibre, J., Serra, R. [1984] \Minimal periodic orbits for

continuous maps of the interval", Trans. Am. Math. Soc. 286, 595{

627.

[11] Alsed�a, Ll., Ma~nosas, F., Mumbr�u, P. [2000] \Minimizing topological

entropy for continuous maps on graphs", Ergod. Th. & Dynam. Sys. 20,

no. 6, 1559{1576.

195

[12] Alsed�a, Ll., Ye, X. [1993] \Division for star maps with the branching

point �xed", Acta Math. Univ. Comenianae LXII, 237{248.

[13] Alsed�a, Ll., Ye, X. [1994] \Minimal sets of maps of Y ", J. Math. Anal.

Appl. 187, 324{338.

[14] Alsed�a, Ll., Ye, X. [1995] \No division and the set of periods for tree

maps", Ergod. Th. & Dynam. Sys. 15, 221{237.

[15] Baldwin, S. [1987] \Generalizations of a theorem of Sharkovskii on orbits

of continuous real-valued functions", Discrete Math. 67, 111{127.

[16] Baldwin, S. [1991] \An extension of Sharkovskii's Theorem to the n-od",

Ergod. Th. & Dynam. Sys. 11, 249{271.

[17] Baldwin, S., Slaminka, E. [1997] \Calculating topological entropy", J.

Stat. Phys. 89, 1017{1033.

[18] Block, L. [1979] \Simple periodic orbits of mappings of the interval",

Trans. Amer. Math. Soc., 254, 391{398.

[19] Block, L. [1981] \Periods of periodic points of maps of the circle which

have a �xed point", Proc. Amer. Math. Soc. 82, 481{486.

[20] Block, L., Coven, E. [1989] \Approximating entropy of maps of the

interval", Proceedings of the semester on Ergodic Theory and Dynamical

Systems, 237{241, Banach Center Pub. 23, PWN, Warsaw.

[21] Block, L., Guckenheimer, J., Misiurewicz, M., Young, L.S. [1980] \Pe-

riodic points and topological entropy of one-dimensional maps", Global

theory of dynamical systems, pp. 18{34, SLNM 819, Springer, Berlin.

[22] Blokh, A.M. [1991] \On some properties of graph maps: spectral decom-

position, Misiurewicz conjecture and abstract sets of periods", preprint,

Max Planck Institut f�ur Mathematik, Bonn.

[23] Blokh, A.M. [1992] \Periods implying almost all periods for tree maps",

Nonlinearity 5, 1375{1382.

[24] Blokh, A.M. [1994] \Trees with snowakes and zero entropy maps",

Topology 33, 379{396.

[25] Bowen, R. [1973] \Entropy for group endomorphisms and homogeneous

spaces", Trans. Am. Math. Soc. 153, 401{414; erratum: Trans. Am.

Math. Soc. 181, 509{510.

[26] Coppel, W.A. [1983] \Sharkovskii-minimal orbits", Math. Proc. Cambr.

Philos. Soc. 93, 397{408.

[27] Denker, M., Grillenberger, C., Sigmund, K. [1976] Ergodic theory on

compact spaces, SLNM 527, Springer, Berlin.

[28] Efremova, L.S. [1978] \Periodic orbits and a degree of a continuous map

of a circle" (in Russian), Di�. and Integr. Equations (Gor'kii) 2, 109{

115.

196

[29] G�ora, P., Boyarsky, A. [1991] \Computing the topological entropy of

general one-dimensional maps", Trans. Am. Math. Soc. 323, 39{49.

[30] Ho, C.-W. [1984] \On Block's condition for simple periodic orbits of

functions on an interval", Trans. Am. Math. Soc. 281, 827{832.

[31] Imrich, W., Kalinowski, R. [1985 a] \Periodic points of small periods of

continuous mappings of trees", Ann. Discrete Math. 27, 443{446.

[32] Imrich, W., Kalinowski, R. [1985 b] \Periodic points of continuous map-

pings of trees", Ann. Discrete Math. 27, 447{460.

[33] Jiang, B. [1983] Lectures on Nielsen �xed point theory, American Math-

ematical Society, Providence, R.I.

[34] Juher, D. [1998] Estudi del conjunt de per��odes en models can�onics

d'aplicacions d'arbres, Treball de Recerca, Universitat Aut�onoma de

Barcelona.

[35] Li, T.-Y., Misiurewicz, M., Pianigiani, G., Yorke, J.A [1982] \No division

implies chaos", Trans. Amer. Math. Soc. 273 191{199.

[36] Llibre, J., Misiurewicz, M. [1993] \Horseshoes, entropy and periods for

graph maps", Topology 32, 649{664.

[37] Misiurewicz, M [1982] \Periodic points of maps of degree one of a circle",

Ergod. Th. & Dynam. Sys. 2, 221{227.

[38] Misiurewicz, M., Nitecki, Z. [1991] \Combinatorial patterns for maps of

the interval", Mem. Amer. Math. Soc. 94, no. 456, vi+112 pp.

[39] Misiurewicz, M., Szlenk, W. [1980] \Entropy of piecewise monotone

mappings", Studia Math. 67, 45{63.

[40] Newhouse, S., Pignataro, T. [1993] \On the estimation of topological

entropy", J. Stat. Phys. 72, 1331{1351.

[41] Press, W.H. et al. Numerical Recipes in C: the art of scienti�c comput-

ing, Cambridge University Press, 1988

[42] Sharkovskii, A.N. [1964] \Co{existence of the cycles of a continuous

mapping of the line into itself" (in russian), Ukrain. Math. Zh. 16 (1),

61{71. English translation in Proceedings of the Conference \Thirty

Years after Sharkovskii's Theorem: New Perspectives" (Murcia, 1994),

Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1263{1273.

[43] Takahashi, Y. [1980] \A formula for the topological entropy of one-

dimensional dynamics", Sci. Papers College Gen. Ed. Univ. Tokyo 30,

11{22.

197

