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aquest temps no ha estat tan sols això. Cercant en la memòria trobo moltes
altres descobertes, que resten llindant amb les matemàtiques. Com ja he
sentit dir a diferents personatges, la ciència no es fa en solitud, es fa ciència
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amics que m’han recolzat durant tot aquest temps. Dedico aquest treball als
meus pares, que sempre he sentit tant a prop. Moltes gràcies.
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Preface

The main purpose of this work has been to learn the most important tools,
facts and problems concerning systems of differential equations in the real
plane and to give some original results and some applications of them in
order to solve some of these problems. We first give the most basic defi-
nitions and results of general type in the introduction, including the main
topics discussed in this thesis. We motivate each problem and we describe
the methods used to tackle it in each chapter.

Since we apply many results due to famous mathematicians, we would
like to make a small chronological review of the biography of these scientists
in order to historically situate the subject of this thesis and to render a trib-
ute to them. This small review does not intend to be exhaustive and we only
want to mention the most important mathematicians who contributed to the
development of the qualitative theory of differential equations and chosen
because they are cited in the text of this thesis.

Joseph Liouville. (1809 Saint-Omer, France – 1882 Paris, France.)

Joseph Liouville entered the École Polytechnique in 1825 and attended
courses from Ampère and Arago. After graduating in 1827 he entered the
École des Ponts et Chaussées, although due to some health problems, he was
obliged to resign. He was appointed to many different posts during all his
life. However, other mathematicians won the post in many occasions. This
fact contributed to make worse his bad character. He had a heavy schedule
of classes (40 hours/week) and some courses would not go particularly well
and it appears that he lectured at too high a level. In 1836 Liouville founded
the Journal de Mathématiques Pures et Appliquées. This journal, sometimes
known as Journal de Liouville, did much for the quality of mathematics in
France throughout the 19th century.
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8 Preface

Another aspect of Liouville’s life was his involvement in politics. Encour-
aged by Arago, Liouville was elected to the Constituting Assembly in 1848
among the moderate republican majority. However he was not elected in 1849
due to the social events. This political defeat made Liouville’s personality
even bitter, also towards his old friends. Although Liouville’s mathemati-
cal output had been greatly reduced while he was involved with politics, it
picked up again in the 1850s.

Liouville’s mathematical work is extremely wide ranging, from mathe-
matical physics to astronomy to pure mathematics. Liouville investigated
criteria for integrals of algebraic functions to be algebraic and he went on
to investigate the general problem of integration of algebraic functions in
finite terms. In particular, in this thesis we use some results on the so-called
Liouvillian functions. He is also remembered for proving the existence of
transcendental numbers. His work on boundary value problems on differen-
tial equations is remembered because of what is called today Sturm-Liouville
theory. He contributed to differential geometry studying conformal trans-
formations. He proved a major theorem concerning the measure preserving
property of Hamiltonian dynamics. He wrote over 400 papers in total during
his life.

Gaston Darboux. (1842 Nı̂mes, France – 1917 Paris, France.)
Gaston Darboux entered the École Polytechnique and then the École

Normale Supérieure in 1861. He awarded his doctorate in 1866 with his
doctoral thesis Sur les surfaces orthogonales. Darboux was appointed to the
Collège de France for the academic year 1866 − 1867, then he taught at the
Lycée Louis le Grand (where Galois was educated) between 1867 and 1872.
In 1872 he was appointed to the École Normale Supérieure where he taught
until 1881. From 1873 to 1878 he was suppléant to Liouville in the chair of
rational mechanics at the Sorbonne. Then, in 1878 he became suppléant to
Chasles in the chair of higher geometry, also at the Sorbonne. Two years later
Chasles died and Darboux succeeded him to the chair of higher geometry,
holding this chair until his death.

Darboux made important contributions to differential geometry and anal-
ysis. He might be best known for the Darboux integral which was introduced
in a paper on differential equations of the second order written in 1870. In
1875 he gave his way of looking at the Riemann integral, defining upper
and lower sums and defining a function to be integrable if the difference be-
tween the upper and lower sums tends to zero as the mesh size gets smaller.
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Moreover, Darboux was also renowned as an exceptional teacher, writer and
administrator. In 1870 he founded the Bulletin des Sciences Mathématiques,
a journal that publishes original articles covering all branches of pure math-
ematics.

In relation with the topics included in this thesis, he studied the integra-
bility problem and he gave a method to give an explicit expression of a first
integral for a planar polynomial differential system in case that sufficient in-
variant algebraic curves are known, as it is explained in Chapter 1 and cited
in [38].

Henri Poincaré (1854 Nancy, France – 1912 Paris, France.)
The importance on Poincaré in the development of the qualitative theory

of dynamical systems and in mathematics in general is so huge that we must
include all of a thesis of his life and research to make these notes coherent.
However, since this is not our aim, we will only remark some of his main
features.

Poincaré entered the École Polytechnique in 1873, graduating in 1875.
He continued his studies at the École des Mines and after that, he was a
mining engineer at Vesoul while completing his doctoral work. As a student
of Charles Hermite, Poincaré received his doctorate in mathematics from the
University of Paris in 1879. His thesis was on differential equations and the
examiners were somewhat critical of the work. Immediately after receiving
his doctorate, Poincaré was appointed to teach mathematical analysis at the
University of Caen. His teaching is referred by his sometimes disorganized
lecturing style. He won a chair in the Faculty of Science in Paris in 1881.
In 1886 Poincaré was nominated for the chair of mathematical physics and
probability at the Sorbonne and he also was appointed to a chair at the
École Polytechnique, due to the intervention of Hermite. Changing his lec-
tures every year, he would review optics, electricity, the equilibrium of fluid
masses, the mathematics of electricity, astronomy, thermodynamics, light,
and probability. Poincaré held these chairs in Paris until his death.

He is considered as one of the great geniuses of all time, surely because of
his way of thinking and working. He was also concerned with the explanation
of thought processes, in particular his own ones, which led to his major
mathematical discoveries. An interesting aspect of Poincaré’s work is that
he tended to carefully develop his results from basic first principles and then
proceed by sudden blows. Poincaré was a scientist concerned with many
aspects of mathematics, physics and philosophy, and he is often described as



10 Preface

the last universalist in mathematics.
His contributions in pure mathematics fall into such different areas such as

topology, homotopy theory, algebra, geometry, analysis, number theory, and
differential equations. In applied mathematics he studied optics, electricity,
telegraphy, capillarity, elasticity, thermodynamics, potential theory, quantum
theory, theory of relativity and cosmology. He is acknowledged as a co-
discoverer, with Albert Einstein and Hendrik Lorentz, of the special theory
of relativity.

His important work on the 3-body problem was consolidated when he
was awarded the prize founded by Oscar II, King of Sweden and Norway, to
celebrate his sixtieth birthday in 1889. In this memoir Poincaré gave the first
description of homoclinic points, gave the first mathematical description of
chaotic motion, and was the first to make major use of the idea of invariant
integrals. However, when the memoir was about to be published in Acta
Mathematica, edited by Mittag-Leffler, Poincaré found an error. They both
discussed the problem concerning the error and it is interesting that this error
is now regarded as marking the birth of chaos theory. A revised version of
Poincaré’s memoir appeared in 1890.

After Poincaré achieved prominence as a mathematician, he wrote several
books describing for the general public the meaning and importance of science
and mathematics. We should note that, despite his great influence on the
mathematics of his time, he never founded his own school since he did not
have any students. Although his contemporaries used his results they seldom
used his techniques. In any case, Poincaré achieved the highest honors for his
contributions of true genius. He was elected to the Académie des Sciences in
1887 and in 1906 was elected President of the Academy. He was honored by
a large number of learned societies around the world and he won numerous
prizes, medals and awards.

We cite Poincaré in this thesis mainly for his contribution to the algebraic
integrability problem, which consists in finding necessary and sufficient con-
ditions for the existence of a rational first integral of a planar polynomial dif-
ferential system. Poincaré studied the memory authored by G. Darboux [38]
and published in 1878, and he gave two main works in this subject [76, 77].
After these works, Poincaré observed how this problem was abandoned until
1890, when the Académie des Sciences de Paris offered the Grand Prix des
Sciences Mathématiques on this subject. The contemporary mathematician
to Poincaré, Paul Painlevé [71] awarded this price and Léon Autonne [9]
awarded an Honor Mention. In [71], Painlevé gives a formula relating the
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gender of the algebraic invariant curves of a planar polynomial system with a
rational first integral with degree of the system. The work of Autonne [9] is
quite difficult to understand due to the author’s personal notation. Another
mathematician, also contemporary to Poincaré, who contributed to the alge-
braic integrability problem is M. N. Lagutinskii. This mathematician wrote
his results in Russian and this is the main reason why he is almost unknown
by the mathematical community. Some historical research on him is done in
the work [39], where the authors found up Lagutinskii’s result on the charac-
terization of systems with a rational first integral by means of the so-called
extactic curves. This result has been recently rediscovered by J. V. Pereira
in [73].

Until the last quarter of the XXth century no other main contribution
to the algebraic theory of integrability is known. This problem was retaken
by J. P. Jouanolou with his work published in 1979, see [61]. Many other
mathematicians, which we do not cite due to their number, have given their
contribution to the problem since then.

Abraham Seidenberg (1916, Washington, USA – 1988, Milan, Italy)
He received his Ph.D. at John Hopkins University in 1943 and he became

a professor in the Department of Mathematics at Berkeley in 1958.
His publications in pure mathematics include some influential work in

commutative algebra and algebraic geometry. His papers on differential al-
gebra contain some remarkable results on the Picard-Vessiot theory of ho-
mogeneous linear differential equations. We use one of his results when he
studies formal differential equations, cf. Chapter 3 and citation [85].

Seidenberg was the author of two textbooks one in projective geometry,
and the other on algebraic curves. He was also the editor of a collection
Studies in Algebraic Geometry published under the auspices of the Mathe-
matical Association of America. Many of his publications are related with
the history of mathematics, in particular on ancient mathematics.

Michael F. Singer (1950, New York, USA)
Michael F. Singer awarded his Ph. D. at the University of California,

Berkeley in 1974 with the thesis Functions satisfying elementary relations.
He is a current professor at the Department of Mathematics in North Carolina
State University.

His works are mainly devoted to differential and difference algebra, sym-
bolic computation and polynomial vector fields. In particular, we mention
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his results on elementary first integrals [79] coauthored with M.J. Prelle and
on Liouvillian first integrals [86] for polynomial vector fields.

These biographies have been extracted from the following web pages.

http://www.biografiasyvidas.com/

http://www.britannica.com/

http://www-gap.dcs.st-and.ac.uk/~history/

http://dynaweb.oac.cdlib.org:8088/dynaweb/uchist/public/

inmemoriam/inmemoriam1989/@Generic−BookTextView/2838

http://www4.ncsu.edu/~singer/



Chapter 1

Introduction

This thesis deals with planar polynomial differential systems of the form

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where P (x, y), Q(x, y) ∈ R[x, y] are coprime polynomials, that is, there is
no non-constant polynomial which divides both P and Q. The dot denotes
derivation with respect to the independent variable t usually called time, that
is ˙ = d

dt
.

We call d the maximum degree of P and Q and we say that system (1.1)
is of degree d. When d = 2, we say that (1.1) is a quadratic system. If p is
a point such that P (p) = Q(p) = 0, then we say that p is a singular point of
system (1.1).

Our interest in each chapter is different. Chapters 2 and 3 are more
related with the integrability problem and we explain in the following sec-
tion of this introduction all the definitions, preliminary results and classical
Darboux theory related to this problem. Chapter 4 is related to the study
of stability of a periodic orbit. In Chapter 5, we consider all the quadratic
systems with an algebraic limit cycle known by the literature and, in order
to exemplify the results obtained in previous chapters, we show two main
features of this family of systems. Firstly, we show that these systems are
not Liouvillian integrable by using the results of Chapter 3. Secondly, we
prove that the algebraic limit cycles of these systems are hyperbolic, using
the results of Chapter 4. Finally, Chapter 6 is about the isochronicity of a
singular point. In Section 1.2 we describe the definitions and known results

13



14 Introduction

when studying stability of either a singular point, to motivate Chapter 6, or
a periodic orbit, to introduce Chapter 4.

A very important definition through almost all the chapters is the notion
of invariant curve. An invariant curve is a curve given by f(x, y) = 0, where
f : U ⊆ R

2 → R is a C1 function in the open set U , non locally constant
and such that there exists a C1 function in U , denoted by k(x, y) and called
cofactor, which satisfies:

P (x, y)
∂f

∂x
(x, y) + Q(x, y)

∂f

∂y
(x, y) = k(x, y) f(x, y), (1.2)

for all (x, y) ∈ U . The notion of invariant curve was first introduced in [51].
In order to simplify notation, we may always represent system (1.1) by

the associated vector field at each point F(x, y) = (P (x, y), Q(x, y)). The
identity (1.2) can be rewritten by ∇f ·F = kf , where, as usual, ∇f denotes
the gradient vector related to f(x, y), that is, ∇f(x, y) = (∂f

∂x
(x, y), ∂f

∂y
(x, y))

and · denotes the scalar product. We will denote by df
dt

or by ḟ the function
∇f · F once evaluated on a solution of system (1.1). In case f(x, y) = 0
defines a curve in the real plane, this definition implies that the function
∇f · F is equal to zero on the points such that f(x, y) = 0. In the article
[51] an invariant curve is defined as a C1 function f(x, y) defined in the
open set U ⊆ R

2, such that, the function ∇f · F is zero in all the points
{(x, y) ∈ U | f(x, y) = 0}. We notice that our definition of invariant curve
is a particular case of the previous one but, for the sake of our results, the
cofactor is very important and that’s why we always assume its existence.

When the cofactor k(x, y) is a polynomial, we say that f(x, y) = 0
is an invariant curve with polynomial cofactor. We only admit invariant
curves with polynomial cofactor of degree lower or equal than d − 1, that is
deg k(x, y) ≤ d − 1, where d is the degree of system (1.1).

The notion of invariant curve appears in almost all the chapters and it
is a generalization of the notion of invariant algebraic curve. An invariant
algebraic curve is an algebraic curve f(x, y) = 0, where f(x, y) ∈ C[x, y],
which is invariant by the flow of system (1.1). This condition equals to
∇f · F = kf , where the cofactor of an invariant algebraic curve is always a
polynomial of degree deg k(x, y) ≤ d − 1.

We cite [64, 83, 84] as compendiums of the results on invariant algebraic
curves. For instance, in [64], it is shown that if f(x, y) = 0 and g(x, y) = 0
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are two invariant algebraic curves of system (1.1) with cofactors kf (x, y) and
kg(x, y), respectively, then the product of the two polynomials gives rise to
the curve (fg)(x, y) = 0 which is also an invariant algebraic curve of system
(1.1) and whose cofactor is kf (x, y) + kg(x, y).

In order to state the known results of integrability using invariant al-
gebraic curves, we need to consider complex algebraic curves f(x, y) = 0,
where f(x, y) ∈ C[x, y]. Since system (1.1) is defined by real polynomials, if
f(x, y) = 0 is an invariant algebraic curve with cofactor k(x, y), then its con-
jugate f̄(x, y) = 0 is also an invariant algebraic curve with cofactor k̄(x, y).
Hence, its product f(x, y)f̄(x, y) ∈ R[x, y] gives rise to a real invariant al-
gebraic curve with a real cofactor k(x, y) + k̄(x, y). For a sake of simplicity,
we consider invariant algebraic curves defined by polynomials in C[x, y], al-
though we always keep in mind the previous observation. In R

2, the curve
given by f(x, y) = 0, although f(x, y) is a real function, may only contain a
finite number of isolated singular points or be the null set.

An algebraic curve f(x, y) = 0 is called irreducible when f(x, y) is an
irreducible polynomial in the ring C[x, y]. We can assume, without loss of
generality, that f(x, y) is an irreducible polynomial in C[x, y], because if
f(x, y) is reducible, then all its proper factors give rise to invariant algebraic
curves. Given an algebraic curve f(x, y) = 0, we can always assume that
the polynomial f(x, y) has no multiple factors, that is, its decomposition
in the ring C[x, y] is of the form f(x, y) = f1(x, y)f2(x, y) . . . f`(x, y), where
fi(x, y) are irreducible polynomials and fi(x, y) 6= cfj(x, y) if i 6= j and for
any c ∈ C. The assumption that given an algebraic curve f(x, y) = 0, the
polynomial f(x, y) has no multiple factors is mainly used to ensure that we
do not consider “false” singular points. If p is a point such that f(p) = 0 and
∇f(p) = 0, and f(x, y) has no multiple factors, then p is a singular point
of the curve f(x, y) = 0. But, if f(x, y) has multiple factors, for instance,
f(x, y) = f1(x, y)2 where f1(x, y) is an irreducible polynomial in C[x, y], then
all the points of the curve {p | f1(p) = 0} satisfy the property that f(p) = 0
and ∇f(p) = 0 although they are not all singular points.

We recall that if p is a singular point of an invariant algebraic curve
f(x, y) = 0 of a system (1.1), then p is a singular point of the system. Given
an algebraic curve f(x, y) = 0, we will always assume that the decomposition
of f(x, y) in the ring C[x, y] has no multiple factors. We want to generalize
this property to invariant curves, that’s why we will always assume that,
given an invariant curve f(x, y) = 0, if p ∈ U is such that f(p) = 0 and
∇f(p) = 0, then p is a singular point of system (1.1). This technical hy-
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pothesis generalizes the notion of not having multiple factors for algebraic
curves.

1.1 The integrability problem

A Cj function H : U → R such that it is constant on each trajectory of (1.1)
and it is not locally constant is called a first integral of system (1.1) of class
j defined on U ⊆ R

2. The equation H(x, y) = c for a fixed c ∈ R gives a
set of trajectories of the system, but in an implicit way. When j ≥ 1, these
conditions are equivalent to P (x, y)∂H

∂x
+ Q(x, y)∂H

∂y
= 0 and H not locally

constant. The problem of finding such a first integral and the functional class
it must belong to is what we call the integrability problem.

To find an integrating factor or an inverse integrating factor for system
(1.1) is closely related to finding a first integral for it. When considering the
integrability problem we are also addressed to study whether an (inverse)
integrating factor belongs to a certain given class of functions.

Given W an open set of R
2, the function µ : W → R of class Cj(W),

j > 1, that satisfies the linear partial differential equation

P (x, y)
∂µ

∂x
+Q(x, y)

∂µ

∂y
= −

(

∂P

∂x
+
∂Q

∂y

)

µ(x, y) (1.3)

is called an integrating factor of system (1.1) defined on W . The expression
∂P
∂x

+ ∂Q
∂y

is called the divergence of system (1.1) and we denote it by div(x, y).
An easier function to find which also gives additional properties for a

differential system (1.1) is the inverse of an integrating factor, that is, V =
1/µ, which is called inverse integrating factor.

We note that {V = 0} is formed by orbits of system (1.1). If V is
defined on W , then the function µ = 1/V defines on W \ {V = 0} an
integrating factor of system (1.1), which allows the computation of a first
integral of the system on W \ {V = 0}. The first integral H associated
to the inverse integrating factor V can be computed through the integral
H(x, y) =

∫

(Q(x, y)dx−P (x, y)dy)/V (x, y), and the condition (1.3) for µ =
1/V ensures that this line integral is well defined.

The inverse integrating factors play an important role in two of the most
difficult open problems of qualitative theory of planar polynomial vector
fields, which are the center problem and the 16th Hilbert problem. The cen-
ter problem is explained in Section 1.2.1 and the statement and history of
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16th Hilbert problem can be found in [59, 89]. In [19], it has been noticed that
for many polynomial differential systems with a center at the origin there is
always an inverse integrating factor V globally defined in all R

2, which is
usually a polynomial. However, the first integral for a polynomial differen-
tial system with a center at the origin can be very complicated. The relation
between the inverse integrating factor and the 16th Hilbert problem is mainly
stated and proved in [54], where it is shown that if there exists an inverse
integrating factor defined in a neighborhood of a limit cycle, then the limit
cycle must be contained in the set {(x, y) |V (x, y) = 0}. A shorter proof of
this result can be found in [65], where it is also shown that any configuration
of limit cycles is realizable in the set of polynomial vector fields.

Invariant algebraic curves are the main objects used in the Darboux the-
ory of integrability. In [38], G. Darboux gives a method for finding an explicit
first integral for a system (1.1) in case that d(d+1)/2+1 different irreducible
invariant algebraic curves are known, where d is the degree of the system.
In this case, a first integral of the form H = fλ1

1 fλ2

2 . . . fλs
s , where each

fi(x, y) = 0 is an invariant algebraic curve for system (1.1) and λi ∈ C not
all of them null, for i = 1, 2, . . . , s, s ∈ N can be constructed. The functions
of this type are called Darboux functions.

As we have already stated, given an invariant algebraic curve f(x, y) = 0
whose imaginary part is not null, then its conjugate is also an invariant
algebraic curve. Moreover, as system (1.1) is real, if f(x, y) appears in the
expression of a first integral of the form given by Darboux with exponent λ,
then f̄(x, y) appears in the same expression with exponent λ̄. We call Ref the
real part of the polynomial f and by Imf its imaginary part. Analogously, let
us call Reλ the real part of the complex number λ and by Imλ its imaginary
part. We call i =

√
−1 and we use the following formula for complex numbers:

arctan(z) = log

[

(

1 − iz

1 + iz

)i/2
]

, z ∈ C,

to show that

fλf̄ λ̄ = (Ref + Imf i)Reλ+Imλ i (Ref − Imf i)Reλ−Imλ i

=
(

(Ref)2 + (Imf)2
)Reλ

exp

{

−2Imλ arctan

(

Imf

Ref

)}

.
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We deduce that the product f(x, y)λf̄(x, y)λ̄ is a real function and so it is
any Darboux function H = fλ1

1 fλ2

2 . . . fλs
s .

We have that the Darboux function H can be defined in the open set
R

2 \ Σ, where Σ = {(x, y) ∈ R
2 | (f1 · f2 · . . . · fr)(x, y) = 0}. We remark

that, particularly, if λi ∈ Z , ∀i = 1, 2, . . . , r, H is a rational first integral
for system (1.1). In this sense J. P. Jouanoulou [61], showed that if at least
d(d + 1) + 2 different irreducible invariant algebraic curves are known, then
there exists a rational first integral.

The main fact used to prove Darboux’s theorem (and Jouanoulou’s im-
provement) is that the cofactor corresponding to each invariant algebraic
curve is a polynomial of degree ≤ d − 1. Invariant curves with polynomial
cofactor can also be used in order to find a first integral for the system. This
observation permits a generalization of the Darboux’s theory which is given
in [50], where, for instance, non-algebraic invariant curves with an algebraic
cofactor for a polynomial system of degree 4 are presented. In Chapter 2
we give other examples of such invariant curves with polynomial cofactor for
some families of systems and the way they are used to construct explicit first
integrals and inverse integrating factors for the corresponding systems.

Some generalizations of the classical Darboux theory of integrability may
be found in the literature. For instance, independent singular points can
be taken into account to reduce the number of invariant algebraic curves
necessary to ensure the Darbouxian integrability of the system, see [28]. A
good summary of many of these generalizations can be found in [72] and
a survey on the integrability of two-dimensional systems can be found in
[19]. One of the most important definitions in this sense is the notion of
exponential factor which is given by C. Christopher in [32], when he studies
the multiplicity of an invariant algebraic curve. The notion of exponential
factor is a particular case of invariant curve for system (1.1). Given two
coprime polynomials h, g ∈ R[x, y], the function eh/g is called an exponential
factor for system (1.1) if for some polynomial k of degree at most d − 1,
where d is the degree of the system, the following relation is fulfilled:

P

(

∂ eh/g

∂x

)

+Q

(

∂ eh/g

∂y

)

= k(x, y) eh/g.

As before, we say that k(x, y) is the cofactor of the exponential factor eh/g.
The next proposition, proved in [32], gives the relationship between the

notion of invariant algebraic curve and exponential factor.
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Proposition 1.1 [32] If F = eh/g is an exponential factor and g is not
a constant, then g = 0 is an invariant algebraic curve, and h satisfies the
equation P ∂h

∂x
+Q∂h

∂y
= h kg +g kF where kg and kF are the cofactors of g and

F , respectively.

The notion of exponential factor is very important in the Darboux theory
of integrability since it not only allows the construction of first integrals
following the same method described by Darboux, but it also explains the
meaning of the multiplicity of an invariant algebraic curve in relation with
the differential system (1.1). A recent and complete work on this subject can
be found in [35].

In the same way as with invariant algebraic curves, given an exponential
factor F = exp{h/g}, since system (1.1) is a real system, there is no lack of
generality in considering that h(x, y), g(x, y) ∈ R[x, y]. If F = exp{h/g} is an
exponential factor with non-null imaginary part, then its complex conjugate,
F̄ = exp{h̄/ḡ} is also an exponential factor, as it can be easily checked by
its defining equation. Moreover, the product F F̄ = exp{h/g+ h̄/ḡ} is a real
exponential factor with a real cofactor.

Since the notion of exponential factor is the most current generalization
in the Darboux theory of integrability, any function of the form:

fλ1

1 fλ2

2 · · · fλr

r

(

exp

(

h1

gn1

1

))µ1
(

exp

(

h2

gn2

2

))µ2

· · ·
(

exp

(

h`

gn`

`

))µ`

, (1.4)

where r, ` ∈ N, fi(x, y) = 0 (1 ≤ i ≤ r) and gj(x, y) = 0 (1 ≤ j ≤ `) are in-
variant algebraic curves of system (1.1), hj(x, y) (1 ≤ j ≤ `) are polynomials
in C[x, y], λi (1 ≤ i ≤ r) and µj = 0 (1 ≤ j ≤ `) are complex numbers and
nj (1 ≤ j ≤ `) are non-negative integers, is called a (generalized) Darbouxian
function .

We recall that the integrability problem consists in finding the class of
functions a first integral of a given system (1.1) must belong to. We have
the system (1.1) defined in a certain class of functions, in this case, the poly-
nomials with real coefficients R[x, y] and we consider the problem whether
there is a first integral in another, possibly larger, class. For instance in [77],
H. Poincaré stated the problem of determining when a system (1.1) has a ra-
tional first integral. The works of M.J. Prelle and M.F. Singer [79] and M.F.
Singer [86] go on this direction since they give a characterization of when
a polynomial system (1.1) has an elementary or a Liouvillian first integral.
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An important fact of their results is that invariant algebraic curves play a
distinguished role in this characterization. Moreover, this characterization is
expressed in terms of the inverse integrating factor.

Roughly speaking, an elementary function is a function constructed from
rational functions by using algebraic operations, composition and exponen-
tials, applied a finite number of times, and a Liouvillian function is a function
constructed from rational functions by using algebraic operations, composi-
tion, exponentials and integration, applied a finite number of times. A precise
definition of these classes of functions is given in [79, 86]. We are mainly con-
cerned with Liouvillian functions but we will state some results related to
integration of a system (1.1) by means of elementary functions.

Theorem 1.2 [79] If the system (1.1) has an elementary first integral, then
there exist w0, w1, . . . , wn algebraic over the field C(x, y) and c1, c2, . . . , cn in
C such that the elementary function

H̃ = w0 +
n
∑

i=1

ci ln(wi) (1.5)

is a first integral of system (1.1).

The existence of an elementary first integral is intimately related to the
existence of an algebraic inverse integrating factor, as the following result
shows.

Theorem 1.3 [79] If the system (1.1) has an elementary first integral, then
there is an inverse integrating factor of the form

V =

(

A(x, y)

B(x, y)

)1/N

,

where A,B ∈ C[x, y] and N is an integer number.

In the work [20], the systems (1.1) with a (generalized) Darboux first integral
of the form (1.4) are studied and the following result is accomplished.

Theorem 1.4 [20] If the system (1.1) has a (generalized) Darboux first
integral of the form (1.4), then there is a rational inverse integrating factor,
that is, an inverse integrating factor of the form:

V =
A(x, y)

B(x, y)
,

where A,B ∈ C[x, y].
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Unfortunately, not all the elementary functions of the form (1.5) are of (gen-
eralized) Darboux type. That’s why, we can find systems with an elementary
first integral and without a rational inverse integrating factor. The following
example is of this type. The system appears in the works of Jean Moulin-
Ollagnier [67, 68], although he does not give an explicit expression for the
first integral. This example corresponds to ` = 1 in the family of systems
(2.10) studied in Section 2.3.2 in Chapter 2, where we give an explicit ex-
pression of the first integral for any value of ` ∈ R − {1

2
(1 − 2r) | r ∈ N}.

The Lotka-Volterra system:

ẋ = x
(

1 − x

2
+ y
)

, ẏ = y
(

−3 +
x

2
− y
)

, (1.6)

has the irreducible invariant algebraic curves x = 0, y = 0 and f(x, y) = 0,
where f(x, y) := (x−2)2−2xy. Applying, for instance, the results described
in Chapter 3, it can be shown that this system has no other irreducible
invariant algebraic curve. The function V (x, y) = x−1/2y1/2f(x, y) is the only
algebraic inverse integrating factor of system (1.6) (modulus multiplication
by non null constants). Since there is no rational inverse integrating factor,
we deduce, by Theorem 1.4, that there is no (generalized) Darboux first
integral. An elementary first for this system, which is of the form (1.5), is
given by:

H(x, y) :=
√

2
√
x
√
y + ln(x− 2 +

√
2
√
x
√
y) − ln(x− 2 −

√
2
√
x
√
y).

We remark that both Theorems 1.3 and 1.4 give a necessary condition to
have an elementary or (generalized) Darbouxian, respectively, first integral.
The reciprocals to the statements of Theorems 1.3 and 1.4 are not true. A
result to clarify the easiest functional class of the first integral once we know
the inverse integrating factor appears in [45], where the following theorem is
stated and proved:

Theorem 1.5 [45] If the system (1.1) has a polynomial inverse integrating
factor, then the system has a (generalized) Darbouxian first integral.

In any case, the following Theorem 1.6 ensures that given an algebraic in-
verse integrating factor, there is a Liouvillian first integral. The Liouvillian
class of functions contains the rational, algebraic, Darbouxian and elemen-
tary classes of functions.



22 Introduction

M.F. Singer shows in [86] the characterization of the existence of a Li-
ouvillian first integral for a system (1.1) by means of its invariant algebraic
curves.

Theorem 1.6 [86] System (1.1) has a Liouvillian first integral if, and only

if, there is an inverse integrating factor of the form V = exp
{

∫ (x,y)

(x0,y0)
η
}

,

where η is a rational 1–form such that dη ≡ 0.

Taking into account Theorem 1.6, C. Christopher in [33] gives the following
result, which makes precise the form of the inverse integrating factor.

Theorem 1.7 [33] If the system (1.1) has an inverse integrating factor of

the form exp
{

∫ (x,y)

(x0,y0)
η
}

, where η is a rational 1–form such that dη ≡ 0, then

there exists an inverse integrating factor of system (1.1) of the form

V = exp{D/E}
∏

C li
i ,

where D, E and the Ci are polynomials in x and y and li ∈ C.

We notice that Ci = 0 are invariant algebraic curves and exp{D/E} is an
exponential factor for system (1.1). In fact, since system (1.1) is a real
system, we can assume, without loss of generality, that V is a real function.

Theorem 1.7 states that the search for Liouvillian first integrals can be
reduced to the search of invariant algebraic curves and exponential factors.
Therefore, if we characterize the possible cofactors, we have the invariant
algebraic curves of a system and, hence, its Liouvillian or non Liouvillian
integrability. In Chapter 3, we give a set of necessary conditions for a system
(1.1) to have an invariant algebraic curve.

1.2 On the stability of singular points and

periodic orbits

The stability of a singular point or a periodic orbit is a local characteristic,
that is, we only need to study the behavior of the solutions of a differential
system in a neighborhood of the singular point or the periodic orbit. This is
the reason why we can state the results in a wider domain than planar poly-
nomial differential systems. We can consider systems defined by functions of
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class C1 in a neighborhood U ⊆ R
2 of the singular point or the periodic orbit.

We will always assume that the singular points of the considered system are
isolated. We state and prove a sharp result for singular points, Theorem
6.8, which is related to the period function. Therefore, when describing the
stability of singular points we need to consider analytic systems, a stronger
hypothesis than to be a C1 system. In any case, polynomial differential sys-
tems as (1.1) are a particular and interesting enough case to be considered.

We take a planar differential system:

ẋ = P (x, y), ẏ = Q(x, y), (1.7)

where P and Q are C1 functions in some open set U ⊆ R
2 and we consider

the flow of system (1.7), which we denote by Φt(p).
The flow Φt(p) represents the unique solution of system (1.7) passing

through the point p ∈ U ⊆ R
2. We notice that for each p ∈ U there exists

an εp > 0 (which may be εp = +∞) such that t ∈ (−εp, εp) is the maximal
symmetric interval of existence of the solution of (1.7) passing through p.
We have that dΦt

dt
(p) = (P (Φt(p)), Q(Φt(p))), for all p ∈ U and t ∈ (−εp, εp),

and Φ0(p) = p. Given p ∈ U , the function Φ(·, p) : (−εp, εp) → R
2, where

Φ(t, p) := Φt(p), defines a solution curve or orbit of (1.7) with initial condition
the point p.

We cite [60, 74, 88] for the definitions, summary of known results and
further reading on the stability of planar differential systems as (1.7).

1.2.1 Singular points

Given a real number ε > 0 and a point p ∈ R
2, we define Bε(p) as the open

ball of center p and radius ε, i.e.,

Bε(p) :=
{

q ∈ R
2 | ‖q − p‖ < ε

}

,

where ‖ · ‖ is the usual Euclidean norm in R
2. We will always assume that ε

is small enough such that Bε(p) ⊆ U .

A singular point p of system (1.7) is said to be stable if for all ε > 0,
there exists a δ(ε) > 0 such that for all q ∈ Bδ(ε)(p) and t ≥ 0 we have
Φt(q) ∈ Bε(p).
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A singular point p of system (1.7) is said to be unstable if it is not stable.
The singular point p is asymptotically stable if it is stable and if there exists
a δ > 0 such that for all q ∈ Bδ(p) we have limt→+∞ Φt(q) = p.

The stability of a singular point p is determined by the behavior of the
solutions of system (1.7) in a neighborhood of p. This behavior is, in general,
determined by the linear approximation of the system at the point. Let A(p)
be the following matrix:

A(p) =









∂P

∂x
(p)

∂P

∂y
(p)

∂Q

∂x
(p)

∂Q

∂y
(p)









, (1.8)

which gives the linear approximation of the system (1.7) at p.
A singular point p is called degenerate if the matrix A(p) is degenerate,

that is, detA(p) = 0. Otherwise, we will say that the singular point p is
non–degenerate. The eigenvalues of the matrix A(p), which we denote by λ
and µ, determine, in general, the stability of the singular point.

We say that the singular point p is hyperbolic if none of the real parts of
its corresponding eigenvalues is null, that is (Reλ)(Reµ) 6= 0. As is it proved
in, for instance, [74, 88], a hyperbolic singular point is either asymptotically
stable if Reλ < 0 and Reµ < 0 or unstable, otherwise. Hence, the stability
of a hyperbolic singular point is completely characterized.

We will be concerned with non-degenerate real singular points which are
not hyperbolic, that is, singular points whose eigenvalues are λ = b i and
µ = −b i, with b 6= 0 and i =

√
−1. Moreover, since we need some additional

properties for the sake of our results, we will assume that the system is
analytic in a neighborhood of the singular point. If system (1.7) has one of
these singular points, by an affine change of variables and a change of the
scale of time, the system may be brought to the form:

ẋ = −y + P2(x, y), ẏ = x+Q2(x, y), (1.9)

where P2(x, y) and Q2(x, y) are analytic functions in a neighborhood U of the
origin of order equal or higher than 2. The origin of system (1.9) may be a
center (stable) or a focus (unstable or asymptotically stable). We recall that
an isolated singular point of (1.7), or the origin of (1.9) which is a particular
case, is said to be a focus if it has a punctured neighborhood where all the
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orbits spiral in forward or backward time. An isolated singular point of (1.7)
is said to be a center if it has a punctured neighborhood filled of periodic
orbits. The center problem consists in determining if the origin of a system
(1.9) is a focus or if it is a center.

In the local study of systems of the form (1.9) we find three problems
closely related to one another: the determination of the origin’s stability,
the existence and the number of local limit cycles around the origin and the
determination of first integrals when they exist.

H. Poincaré [75] developed an important technique for the general solution
of these problems: it consists in finding a formal power series of the form

H(x, y) =
∞
∑

n=2

Hn(x, y), (1.10)

where H2(x, y) = (x2 + y2)/2 and Hn(x, y) are homogeneous polynomials of
degree n, so that

Ḣ =
∂H

∂x
(−y + P2(x, y)) +

∂H

∂y
(x+Q2(x, y)) =

∞
∑

k=1

V2k+1(x
2 + y2)k,

where V2k+1, k ≥ 1, are real numbers called Liapunov constants. The de-
termination of these constants allows the solution of the three mentioned
problems. These constants are determined in a recursive way explained, for
instance, in [57, 87].

The vanishing of all Liapunov constants is a necessary and sufficient con-
dition to have a center at the origin for system (1.9). If for some k we have
V3 = V5 = . . . = V2k−1 = 0 and V2k+1 6= 0 then the origin of system (1.9) is
a focus (stable if V2k+1 < 0 and unstable if V2k+1 > 0). We say that it is a
focus of order k. In case all Liapunov constants are zero, the series H(x, y)
would be a first integral of the system if it was convergent. Poincaré proved
that, if all Liapunov constants vanish, then it is always possible to find a
power series of the form (1.10) convergent in some neighborhood of the ori-
gin. Then, this power series is an analytical first integral defined in some
neighborhood of the origin. However, it is not always possible to express this
first integral (convergent in some neighborhood of the origin) by means of
elementary functions.

Theorem 1.8 [75] System (1.9) has a center at the origin if, and only if,
there exists a local analytical first integral of the form H(x, y) = x2 + y2 +
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F (x, y) defined in a neighborhood of the origin, where F (x, y) is an analytic
function of order greater than 2.

When the Liapunov constants are computed from a family of systems, they
are polynomials on the coefficients of the family. Hilbert’s Nullstellensatz
ensures that there always exists a finite number of independent polynomials
which generates the whole ideal made up with all these Liapunov-Poincaré
polynomials. The zero-set of these independent polynomials gives place to
the center subfamilies. The reader is referred to [83, 84] for a survey on this
subject.

Besides the stability of the origin of system (1.9), which is solved by The-
orem 1.8, a main problem is that of studying the existence and properties of
periodic solutions in a neighborhood of the origin O of (1.9). In this field,
different methods have been used to study isolated periodic solutions, i.e.
limit cycles, or non-isolated ones, i.e. period annulus. The stability of the
singular point O does not imply the stability of the cycles close to the singular
point. In fact, a non-isolated cycle is stable if and only if every neighboring
cycle has the same period. This fact motivates the definition of isochronicity.
We give a precise definition of isochronicity in the forthcoming paragraph.
Isochronicity has been widely studied not only for its physical meaning and
for its role in stability theory, but also for its relationship with bifurcation
problems and to boundary value problems.

An essential tool to study the stability of the origin of system (1.9) is the
Poincaré map, see [74, 78]. Let us consider a neighborhood U of the origin and
let Σ be a section of system (1.9) through the origin, that is, a transversal
curve through the origin for the flow of system (1.9). More precisely, we
define a section through the origin as a simple arc without contact with the
origin O as an endpoint. See the book of Andronov et al. [4], page 55,
for a precise definition of simple arc without contact. We also need some
assumptions on its regularity for technical reasons. Given a section through
the origin Σ ⊂ R

2, we consider a parameterization c : R → R
2 such that

Σ = {c(σ) |σ ∈ R} and limσ→−∞ c(σ) = O. We assume that c(σ) is analytic
for all σ ∈ R.

For each point p ∈ Σ, the flow of system (1.9) through p will cross Σ
again at a point P(p) ∈ Σ near p. The map p 7→ P(p) is called the Poincaré
map. As before, we denote by Φt(p) the flow of system (1.9) with the initial
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condition Φ0(p) = p and we can define the Poincaré map in the following way.
Given p ∈ Σ, there is a unique analytic function τ(p) such that Φτ(p)(p) ∈ Σ
and Φt(p) 6∈ Σ for any 0 < t < τ(p), see [74]. In these terms, we have
P(p) = Φτ(p)(p). We remark that both functions P and τ depend on the
chosen section Σ. The function τ : Σ → R

+ is called the period function. As
usual R

+ denotes the set of positive real numbers. In Chapter 6 we study
the existence of a section Σ such that τ : Σ → R

+ is constant. When such
a Σ exists, we say that the origin O of (1.9) is isochronous and that Σ is an
isochronous section.

1.2.2 Periodic orbits

Analogously to the definition for singular points, a periodic orbit γ of a
system (1.7) is called stable if for each ε > 0 there is a neighborhood Uε of γ
such that for all q ∈ Uε and t ≥ 0, d(Φt(q), γ) < ε, where d is the distance
between Hausdorff sets.

A periodic orbit γ is said to be unstable if it is not stable. And γ is said
to be asymptotically stable if it is stable and if there exists a neighborhood
Uγ of γ such that for all q ∈ Uγ we have limt→+∞ d(Φt(q), γ) = 0.

We distinguish the periodic orbits of a system (1.7) depending on the
behavior of the solutions in a neighborhood of it. A limit cycle of system
(4.1) is an isolated periodic orbit. Let γ be a limit cycle for system (4.1). We
say that γ is stable if there exists a neighborhood Uγ ⊆ U of γ such that for
all p ∈ Uγ, we have limt→+∞ d(Φt(p), γ) = 0. Analogously, we say that γ is
unstable if there exists a neighborhood Uγ ⊆ U of γ such that for all p ∈ Uγ ,
we have limt→−∞ d(Φt(p), γ) = 0.

There might be limit cycles which are neither stable nor unstable. Using
the Jordan curve theorem, which states that any simple closed curve as the
limit cycle γ separates any neighborhood Uγ of γ into two disjoint sets having
γ as a boundary, we can consider Uγ as the disjoint union of Ui∪γ∪Ue, where
Ui and Ue are open sets situated, respectively, in the interior and exterior of
γ. When for any p ∈ Ui we have limt→+∞ d(Φt(p), γ) = 0 whereas for any
q ∈ Ue we have limt→−∞ d(Φt(q), γ) = 0 (or, the other way round, for any
p ∈ Ui we have limt→−∞ d(Φt(p), γ) = 0 whereas for any q ∈ Ue we have
limt→+∞ d(Φt(q), γ) = 0), we say that γ is semi-stable.

Any limit cycle γ of a system (1.7) is either stable, unstable or semi-stable
as it is stated in [74]. For a detailed description of the classical known results
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on limit cycles see also [74].
The following result, which is stated as a corollary in page 214 of [74],

gives a formula to distinguish the stability of a limit cycle.

Theorem 1.9 Let γ(t) be a periodic orbit of system (1.7) of period T . Then,
γ is a stable limit cycle if

∫ T

0

div(γ(t)) dt < 0,

and it is an unstable limit cycle if

∫ T

0

div(γ(t)) dt > 0.

It may be stable, unstable or semi-stable limit cycle or it may belong to a
continuous band of cycles if this quantity is zero.

We recall that div is the divergence of system (1.7), that is, div(x, y) :=
∂P
∂x

+ ∂Q
∂y

. When the quantity
∫ T

0
div(γ(t)) dt is different from zero, we say

that the limit cycle γ is hyperbolic.
Since we are considering differential systems (1.7) in the class of functions

C1, we may have a limit cycle γ belonging to a sequence of periodic orbits
{γn , n ∈ N} with γn+1 in the interior of γn, such that the sequence accumu-
lates to a singular point, a periodic orbit or a graphic and such that every
trajectory between γn and γn+1 spirals towards γn or γn+1 as t→ ±∞. This
kind of phenomena does not exist for analytic systems.

In Chapter 4, we give another quantity which equals to
∫ T

0
div(γ(t)) dt for

a periodic orbit γ. So, we give an alternative method to study its stability.



Chapter 2

Integrability via second order
linear homogeneous ode’s

2.1 Motivation of the method

In this chapter, we consider a system (1.1) but in the form of a rational
ordinary differential equations such as

dy

dx
=

Q(x, y)

P (x, y)
. (2.1)

Our aim is to show a relationship between solutions of a class of systems (1.1),
or equivalently equations (2.1), and linear homogeneous ordinary differential
equations of order 2 of the form:

A2(x)w′′(x) + A1(x)w′(x) + A0(x)w(x) = 0, (2.2)

where x ∈ R, w′(x) = dw(x)/dx and w′′(x) = dw′(x)/dx. We only con-
sider ordinary differential equations (2.2) where A0(x), A1(x) and A2(x) are
polynomials with real coefficients and A2(x) 6≡ 0.

By means of a change of variable we rewrite an equation (2.2) as a poly-
nomial differential system such that it has an invariant curve related to w(x).
In case w(x) is a polynomial we get an invariant algebraic curve.

Moreover, we give an explicit first integral for all the systems built up by
this method by means of two independent solutions of equation (2.2).

We give analogous results for a linear homogeneous ordinary differential
equation of order 1 such as

w′(x) + A(x)w(x) = 0, (2.3)

29
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where x ∈ R, w′(x) = dw(x)/dx and A(x) is a rational function.
We give the explicit expression for the first integral of a certain system

(1.1) by means of invariant curves for it, and applying the Generalized Dar-
boux’s Theory as explained in [50] where a new kind of first integrals, not
only the Liouvillian ones as in classical theories, is described. We exemplify
this result with the families of systems depending on parameters described
in Section 2.3. We remark that the first integrals that we give in Section
2.2 are not, in general, of Liouvillian type. However, these first integrals are
Liouvillian at the values of parameters which correspond to the systems with
algebraic solutions.

All these results are stated in Section 2.2. In order to exemplify them,
we consider the counterexamples to a conjecture stated by A. Lins Neto con-
cerning the integrability problem and the degree of an irreducible invariant
algebraic curve. In order to motivate this conjecture, we must cite the article
[77] in which H. Poincaré stated the following problem concerning the inte-
gration of an equation (2.1): Give conditions on the polynomials P and Q to
recognize when there exists a rational first integral. As the same H. Poincaré
noticed, a sufficient condition to solve this problem consists in finding an up-
per bound for the degree of the invariant algebraic curves for a given system
(1.1). From Darboux and Jouanolou’s results, cf. [38, 61], it is known that
for every polynomial vector field, there exists an upper bound for the pos-
sible degrees of irreducible invariant algebraic curves. However, it is a hard
problem to explicitly determine such an upper bound. Some bounds have
been given under certain conditions on the invariant curves, see D. Cerveau
and A. Lins Neto’s work [15], or on the local behavior of critical points, see
M. Carnicer’s work [13] and S. Walcher’s work [91].

In this sense, A. Lins Neto conjectured in [62] that a polynomial system
(1.1) of degree d with an invariant algebraic curve of degree high enough
(where this bound only depends on d) would have a rational first integral.
This conjecture has been shown to be false by several counterexamples. In
[67], J. Moulin-Ollagnier gives a family of quadratic Lotka-Volterra systems,
each with an invariant algebraic curve of degree 2`, where ` is the parameter
of the family, without rational first integral. A simpler example is given in [34]
by C. Christopher and J. Llibre. In [24] a family of quadratic systems with
an invariant algebraic curve of arbitrarily high degree without a Darboux
first integral nor a Darboux inverse integrating factor is given. However, the
family given in [24] has a (generalized) Darboux inverse integrating factor.
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All these counterexamples exhibit a Liouvillian first integral.
The natural conjecture at this step, also given by A. Lins Neto, see [63],

after the counterexample of J. Moulin-Ollagnier appeared, is that a polyno-
mial system (1.1) of degree d with an invariant algebraic curve of degree high
enough (where this bound only depends on d) has a Liouvillian first integral.

In Section 2.3 we consider all the families of quadratic systems with an
algebraic curve of arbitrarily high degree known by these counterexamples to
A. Lins Neto conjecture and we show that they all belong to the construction
explained in Section 2.2. The families of quadratic systems with an algebraic
curve of arbitrarily high degree studied in this chapter are the ones appearing
in [23, 24, 34, 68] and one example more appearing in Section 2.3. This new
example consists in a biparametrical family of quadratic systems, which we
give an explicit expression of a first integral for, such that when one of the
parameters is a natural number, say n, the system exhibits an irreducible
invariant algebraic curve of degree n.

In Subsection 2.3.4, we give an example of a 3-parameter family of qua-
dratic systems with a center at the origin which can be constructed by the
method appearing in Section 2.2 from an equation (2.3).

A question suggested by these examples is whether there are polynomial
systems which are not reversible nor Liouvillian integrable which have a
center and can be integrated by means of Theorem 2.1, see Section 2.2. The
work [11] is related to this question as it gives an example of an analytic
system, not polynomial, with a center which is not reversible nor Liouvillian
integrable. All the known families of polynomial vector fields with a center
at the origin are either Liouvillian integrable or reversible, see [97, 98] for the
definition of reversibility. In [97, 98], H. Żo la̧dek classifies all the reversible
cubic systems with a center.

Many reversible systems may have a first integral not given by Liouvillian
functions or no explicit form of a first integral may be known. For instance
the reversible system ẋ = −y + x4, ẏ = x has a first integral composed by
Airy functions, see [50], and no Liouvillian first integral exists. The system
ẋ = −y3 +x2y2/2, ẏ = x3 is an example given by Moussu, see [69], which has
a center at the origin since it is a monodromic and reversible singular point
and no explicit first integral is known for this system.

Several authors are working on the problem of finding a polynomial sys-
tem not reversible and without a Liouvillian first integral. In a private com-
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munication with J. Llibre and H. Żo la̧dek, they showed us a polynomial
system with an integrable saddle whose first integral is not of Liouvillian
type and this system may be not reversible. This example is still a work in
progress and we describe it in Subsection 2.3.5 because its first integral can
be constructed by means of the method described in Theorem 2.1.

Since some examples of polynomial systems, which can be integrated by
the method described in Section 2.2, appear after a birrational transforma-
tion, another suggested open question is to determine whether a given poly-
nomial system is birrationally equivalent to one derived from Theorem 2.1 or
from Theorem 2.6. We recall that a birrational transformation is a rational
change of variables whose inverse is also rational. This kind of transforma-
tions brings polynomial systems such (1.1) to polynomial systems and do not
change the Liouvillian or non Liouvillian character of the first integral.

2.2 Homogeneous linear differential equations

of order ≤ 2 and planar polynomial sys-

tems

We consider a homogeneous linear differential equation of order 2:

A2(x)w′′(x) + A1(x)w′(x) + A0(x)w(x) = 0, (2.4)

where w′(x) = dw(x)/dx, w′′(x) = dw′(x)/dx, Ai(x) ∈ R[x], i = 0, 1, 2, and
A2(x) 6≡ 0.

Theorem 2.1 Given g(x, y) = g0(x, y)/g1(x, y) with gi(x, y) ∈ R[x, y], sat-
isfying g1(x, y) 6≡ 0 and ∂g/∂y 6≡ 0, each nonzero solution w(x) of equation
(2.4) is related to a finite number of solutions y = y(x) of the rational equa-
tion

dy

dx
=
A0(x) g2

1 + A1(x) g1 g0 + A2(x) g2
0 + A2(x)

(

g1
∂g0

∂x
− g0

∂g1

∂x

)

A2(x)
(

g0
∂g1

∂y
− g1

∂g0

∂y

) , (2.5)

by the functional change dw/dx = g(x, y)w(x), which implicitly defines y as
a function of x.
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Proof. Let us consider equation (2.4) and the functional change dw/dx =
g(x, y)w(x) where y = y(x), that is, y is implicitly defined as a function of x.
This change may also be written as w(x) = exp(

∫ x

x0
g(s, y(s))ds), where x0

is any constant, and it is injective. We see that it is not necessarily bijective
unless the maximum degree of g1(x, y) and g0(x, y) in the variable y equals
to 1. In any case, it defines a finite number of functions y(x).

By this functional change, equation (2.4) becomes

w(x)

(

A0(x) + g A1(x) + g2A2(x) + A2(x)
dy

dx

∂g

∂y
+ A2(x)

∂g

∂x

)

= 0.

We have that w(x) is a nonzero solution of (2.4) so this equation is equivalent
to the ordinary differential equation of first order (2.5). Therefore, each
non-zero solution w(x) of equation (2.4) corresponds to a finite number of
solutions y = y(x) of the planar polynomial system (2.5).

Theorem 2.2 We consider the vector field F(x, y) = (P (x, y), Q(x, y)) re-
lated to equation (2.5)

P (x, y) = A2(x)

(

g0
∂g1

∂y
− g1

∂g0

∂y

)

,

Q(x, y) =

(

A0(x) g2
1 + A1(x) g1 g0 + A2(x) g2

0 + A2(x)

(

g1
∂g0

∂x
− g0

∂g1

∂x

))

.

Let w(x) be any nonzero solution of equation (2.4). Then the curve defined
by f(x, y) = 0, with f(x, y) := g1(x, y)w′(x) − g0(x, y)w(x) is an invariant
curve for system (2.5) and has the polynomial cofactor

k(x, y) =

(

A0(x)
∂g1

∂y
+ A1(x)

∂g0

∂y

)

g1 + A2(x) g0
∂g0

∂y

+A2(x)

(

∂g1

∂y

∂g0

∂x
− ∂g0

∂y

∂g1

∂x

)

.
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Proof. Let us consider f(x, y) as defined above and let us compute ∇f · F:

∇f · F =

(

∂g1

∂x
w′(x) + g1w

′′(x) − ∂g0

∂x
w(x) − g0w

′(x)

)

A2(x)

(

g0
∂g1

∂y

−g1
∂g0

∂y

)

+

(

∂g1

∂y
w′(x) − ∂g0

∂y
w(x)

)

[

A0(x) g2
1 + A1(x) g1 g0

+A2(x) g2
0 + A2(x)

(

g1
∂g0

∂x
− g0

∂g1

∂x

)]

= g1

(

g0
∂g1

∂y
− g1

∂g0

∂y

)

A2(x)w′′(x)+

g1 (A1(x) g0 + A0(x) g1)

(

∂g1

∂y
w′(x) − ∂g0

∂y
w(x)

)

+

(

A2(x)

(

∂g0

∂x

∂g1

∂y
− ∂g1

∂x

∂g0

∂y

)

+ A2(x) g0
∂g0

∂y

)

(g1w
′(x) − g0w(x))

Since w(x) is a solution of (2.4), we can substituteA2(x)w′′(x) by −A1(x)w′(x)−
A0(x)w(x). Therefore,

∇f · F =

[(

A0(x)
∂g1

∂y
+ A1(x)

∂g0

∂y

)

g1 +

A2(x) g0
∂g0

∂y
+ A2(x)

(

∂g1

∂y

∂g0

∂x
− ∂g0

∂y

∂g1

∂x

)]

f(x, y).

Then, we have that f(x, y) = 0 is an invariant curve for system (2.5) and has
the written polynomial cofactor.

Theorem 2.3 Let {w1(x), w2(x)} be a set of fundamental solutions of equa-
tion (2.4). We define fi(x, y) := g1(x, y)w′

i(x)−g0(x, y)wi(x), i = 1, 2. Then,
system (2.5) has a first integral H(x, y) defined by

H(x, y) :=
f1(x, y)

f2(x, y)
=
g1(x, y)w′

1(x) − g0(x, y)w1(x)

g1(x, y)w′
2(x) − g0(x, y)w2(x)

.

Proof. By Theorem 2.2, we have that fi(x, y) := g1(x, y)w′
i(x)−g0(x, y)wi(x),

i = 1, 2, define invariant curves for system (2.5), both with the same poly-
nomial cofactor k(x, y) which is equal to:
(

A0(x)
∂g1

∂y
+ A1(x)

∂g0

∂y

)

g1 + A2(x) g0
∂g0

∂y
+ A2(x)

(

∂g1

∂y

∂g0

∂x
− ∂g0

∂y

∂g1

∂x

)

.
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We remark that f1/f2 cannot be constant since the two solutions wi(x),
i = 1, 2, are independent. Therefore,

∇H · F =
f2(∇f1 · F) − f1(∇f2 · F)

f 2
2

=
f2kf1 − f1kf2

f 2
2

≡ 0.

So, H(x, y) is a first integral of system (2.5).

Lemma 2.4 The function defined by

q(x) := A2(x) exp

(∫ x

x0

A1(s)

A2(s)
ds

)

gives rise to an invariant curve for system (2.5), with cofactor (A1(x) +

A′
2(x))

(

g0
∂g1

∂y
− g1

∂g0

∂y

)

.

We notice that q(x) is a product of invariant algebraic curves and exponential
factors for system (2.4), with complex exponents.
Proof. We compute ∇q · F and we have

∇q · F = P (x, y)
A1(x) + A′

2(x)

A2(x)
q = (A1(x) + A′

2(x))

(

g0
∂g1

∂y
− g1

∂g0

∂y

)

q.

We notice that this algebraic cofactor has degree ≤ d − 1 provided that
system (2.5) has degree d.

Proposition 2.5 We use the same notation as in Theorem 2.1. Let w(x)
be a nonzero solution of (2.4) and we define f(x, y) := w′(x) − g(x, y)w(x)
and q(x) as in Lemma 2.4. The function V (x, y) = q(x)f(x, y)2 is an inverse
integrating factor of system (2.5).

Proof. We only need to verify that ∇V · F = div(x, y)V , where div(x, y) is
the divergence of system (2.5). We have that

div(x, y) = 2A0(x) g1
∂g1

∂y
+ A1(x)

(

g0
∂g1

∂y
+ g1

∂g0

∂y

)

+ 2A2(x) g0
∂g0

∂y

+2A2(x)

(

∂g1

∂y

∂g0

∂x
− ∂g0

∂y

∂g1

∂x

)

+ A′
2(x)

(

g0
∂g1

∂y
− g1

∂g0

∂y

)

.
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Then,

∇V · F = (∇q(x) · F) f(x, y)2 + 2f(x, y)q(x) (∇f(x, y) · F)

=

[

2A0(x) g1
∂g1

∂y
+ 2A1(x) g1

∂g0

∂y
+ 2A2(x) g0

∂g0

∂y

+2A2(x)

(

∂g1

∂y

∂g0

∂x
− ∂g0

∂y

∂g1

∂x

)

+ A1(x) g0
∂g1

∂y
− A1(x) g1

∂g0

∂y

+A′
2(x)

(

g0
∂g1

∂y
− g1

∂g0

∂y

)]

V

=

[

2A0(x) g1
∂g1

∂y
+ A1(x)

(

g0
∂g1

∂y
+ g1

∂g0

∂y

)

+ 2A2(x) g0
∂g0

∂y

+2A2(x)

(

∂g1

∂y

∂g0

∂x
− ∂g0

∂y

∂g1

∂x

)

+ A′
2(x)

(

g0
∂g1

∂y
− g1

∂g0

∂y

)]

V

= div(x, y)V.

We remark that Theorem 2.3 gives, in general, a non Liouvillian first inte-
gral for the planar polynomial systems (2.5). In Section 2.3 we analyze some
polynomial systems constructed from Theorem 2.3 that have no Liouvillian
first integral.

We consider now a linear homogeneous ordinary differential equation of
order 1 such as

w′(x) + A(x)w(x) = 0, (2.6)

where x ∈ R, w′(x) = dw(x)/dx and A(x) = A0(x)/A1(x) with Ai(x) ∈ R[x]
and A1(x) 6≡ 0. We give analogous results for this case whose proofs are not
given to avoid non useful repetitions.

Theorem 2.6 Given g(x, y) = g0(x, y)/g1(x, y) with gi(x, y) ∈ R[x, y], sat-
isfying g1(x, y) 6≡ 0 and ∂g/∂y 6≡ 0 and h(x) = h0(x)/h1(x) with hi(x) ∈ R[x]
and h1(x) 6≡ 0, each nonzero solution w(x) of equation (2.6) is related to a
finite number of solutions y = y(x) of the rational equation

dy

dx
=

A1(x)h0(x) g2
1 − A0(x)h1(x) g0 g1 − A1(x)h1(x)

(

g1
∂g0

∂x
− g0

∂g1

∂x

)

A1(x)h1(x)
(

g1
∂g0

∂y
− g0

∂g1

∂y

) ,

(2.7)
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by the functional change

w(x) = g(x, y) − exp

(

−
∫ x

0

A(s)ds

)[∫ x

0

exp

(∫ s

0

A(r)dr

)

h(s)ds

]

.

Theorem 2.7 We consider the vector field F(x, y) = (P (x, y), Q(x, y)) re-
lated to equation (2.7):

P (x, y) = A1(x)h1(x)

(

g1
∂g0

∂y
− g0

∂g1

∂y

)

,

Q(x, y) = A1(x)h0(x) g2
1 − A0(x)h1(x) g0 g1 − A1(x)h1(x)

(

g1
∂g0

∂x
− g0

∂g1

∂x

)

.

Let w(x) be any nonzero solution of equation (2.6), that is, for C ∈ R − {0}
we have w(x) = C exp

(

−
∫ x

0
A(s)ds

)

. Then, the function

f(x, y) := g1w(x)−g0+g1 exp

(

−
∫ x

0

A(s)ds

)[∫ x

0

exp

(∫ s

0

A(r)dr

)

h(s)ds

]

gives an invariant curve for the polynomial system (2.7), with the polynomial
cofactor

k(x, y) = −A0(x)h1(x) g1
∂g0

∂y
+ A1(x)h0(x) g1

∂g1

∂y

+A1(x)h1(x)

(

∂g0

∂y

∂g1

∂x
− ∂g1

∂y

∂g0

∂x

)

.

Lemma 2.8 The function q(x, y) = g1(x, y) exp
(∫ x

0
−A(s)ds

)

gives rise to
an invariant curve for system (2.7) with the same polynomial cofactor as
f(x, y).

Theorem 2.9 We use the same notation as in Theorem 2.7 and Lemma 2.8.
The function H(x, y) defined by H(x, y) := f(x, y)/q(x, y) is a first integral
for system (2.7) and the function V (x, y) := A1(x)h1(x) g1(x, y) q(x, y) is an
inverse integrating factor.

We remark that H(x, y) is a Liouvillian function and, therefore, a system
(2.7) has always a Liouvillian first integral.

In Section 2.3 we give an example of a 3-parameter family of quadratic
systems with a center at the origin which can be constructed following The-
orem 2.6.
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2.3 Examples of families of quadratic systems

2.3.1 Quadratic systems with invariant algebraic curves
of arbitrarily high degree linear in one variable

We first consider the examples of families of quadratic systems with algebraic
solutions of arbitrarily high degree appearing in [23]. In that work all the
invariant algebraic curves linear in the variable y, that is, defined by f(x, y) =
p1(x)y + p2(x), where p1 and p2 are polynomials, for quadratic systems, are
determined.

The example appearing in [24] is a further study of an example appearing
in [23] and the example given in [34] is also described in [23]. We show that
all these quadratic systems, with an invariant algebraic curve of arbitrary
degree can be constructed by the method explained in the previous section.
Moreover, we give the explicit expression of a first integral for any value of
the parameter n, even in the case when n is not a natural number. If n is a
natural number, we obtain the invariant algebraic curves of arbitrary degree
and a Liouvillian first integral. However, when n 6∈ N we obtain polynomial
systems with a non Liouvillian first integral.

As it is shown in [23], all these families of systems can be written, after
an affine change of variables if necessary, in the form:

ẋ = Ω1(x),

ẏ = (2n+ 1)L′(x) Ω1(x) − n(n+ 1)

2
Ω1(x) Ω′′

1(x) − L(x)2 + y2,
(2.8)

where Ω1(x) is any quadratic polynomial, L(x) is any linear polynomial and
′ = d/dx. We have that system (2.8) has an invariant curve f(x, y) = 0,
where f(x, y) := p1(x)y + Ω1(x)p′1(x) − L(x)p1(x), with a cofactor y + L(x),
where p1(x) is a solution of the second order linear differential equation

Ω1(x)w′′(x)+(Ω′
1(x)−2L(x))w′(x)+

n

2
(4L′(x)−(n+1)Ω′′

1(x))w(x) = 0. (2.9)

In [23] it is shown that, in case n ∈ N, an irreducible polynomial of degree
n belonging to a family of orthogonal polynomials is a solution of equa-
tion (2.9). For instance, when Ω1(x) = 1, we get the Hermite polynomials,
when Ω1(x) = x, we get the Generalized Laguerre polynomials and when
Ω1(x) = 1 − x2, we get the Jacobi polynomials.
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We consider again the general case in which n ∈ R and we define A2(x) :=
Ω1(x), A1(x) := Ω′

1(x) − 2L(x) and A0(x) := n
2
(4L′(x) − (n + 1)Ω′′

1(x)). We
have the linear differential equation (2.9) in the same notation as in Theorem

2.1 and we consider g(x, y) :=
L(x) − y

A2(x)
.

The system obtained by the method explained in Section 2.2 exactly
coincides with system (2.8). We consider a set of fundamental solutions of
equation (2.9) {w1(x), w2(x)} and applying Theorem 2.3, we have a first
integral for system (2.8) for any value of the parameter n ∈ R.

In case n ∈ N we have that w1(x) degenerates to a polynomial and
w′

1(x) − g(x, y)w1(x) = 0 coincides with the algebraic curve given in the
work [23].

We explicitly give the first integral for each of the families described
in [23] and for n ∈ R. We have that A2(x) is a non-null quadratic poly-
nomial in this case, and depending on its number of roots, we can trans-
form it by a real affine change of variable to one of the following forms:
A2(x) = 1, x, x2, 1 − x2, 1 + x2.

If A2(x) = 1, we can choose L(x) = x by an affine change of coordi-
nates. We denote by Γ(x) the Euler’s–Gamma function defined by Γ(x) =
∫∞
0
tx−1e−tdt and by 1F1(a; b;x) the confluent hypergeometric function de-

fined by the series

1F1(a; b;x) =
∞
∑

k=0

(a)k

(b)k

xk

k!
,

with (a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1), the Pochhammer symbol. See [1]
for further information about these functions.

A set of fundamental solutions {w1(x), w2(x)} for (2.9) with n ∈ R is

w1(x) = 2n
√
π

(

1

Γ
(

1−n
2

) 1F1

(

−n
2

;
1

2
;x2

)

− 2x

Γ
(

−n
2

) 1F1

(

1 − n

2
;
3

2
;x2

)

)

,

w2(x) = 2n
√
π

(

1

Γ
(

1−n
2

) 1F1

(

−n
2

;
1

2
;x2

)

+
2x

Γ
(

−n
2

) 1F1

(

1 − n

2
;
3

2
;x2

)

)

.

So, a first integral for this system is the expression given in Theorem 2.3:
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H(x, y) := f1(x, y)/f2(x, y), where

f1,2(x, y) = ±Γ

(

1 − n

2

)[

6 (xy − x2 + 1) 1F1

(

1 − n

2
;
3

2
;x2

)

− 4 (n− 1)x2
1F1

(

3 − n

2
;
5

2
;x2

)]

+

3 Γ
(

−n
2

)

[

2nx 1F1

(

1 − n

2
;
3

2
;x2

)

+ (x− y) 1F1

(

−n
2

;
1

2
;x2

)]

.

When n ∈ N, we have that (2.9) corresponds to the equation for Hermite
polynomials and w1(x) coincides with the Hermite polynomial of degree n.
The invariant algebraic curve given in [23] corresponds to f1(x, y) = 0.

If A2(x) = x, we choose L(x) = 1
2
(x − α), where α is an arbitrary real

constant, and a set of fundamental solutions for (2.9) is:

w1(x) =
(α + 1)n

Γ(n+ 1)
1F1 (−n;α + 1;x) , w2(x) = x−α

1F1 (−α− n; 1 − α;x) .

The first integral for this system is H(x, y) = xαh1(x, y)/h2(x, y) with:

h1(x, y) = (2y − x+ α) (α + 1) 1F1 (−n;α + 1;x)

−2nx 1F1 (1 − n;α + 2;x) ,

h2(x, y) = (2y − x+ α) (α− 1) 1F1 (−α− n; 1 − α;x)

−2 (α + n)x 1F1 (1 − α− n; 2 − α;x) .

The first integral as given in Theorem 2.3 is f1(x, y)/f2(x, y) and we notice
that H(x, y) = cf1(x, y)/f2(x, y) where c ∈ R − {0}. We do not write c in
terms of the parameters of the system to simplify notation.

When n ∈ N, we have that (2.9) in this case corresponds to the equation
of Generalized Laguerre polynomials and w1(x) coincides with the General-

ized Laguerre polynomial L
(α)
n (x). The invariant algebraic curve given in [23]

corresponds to f1(x, y) = 0, where f1(x, y) := w′
1(x) − g(x, y)w1(x).

If A2(x) = x2, the birrational transformation already given in [23], x =
1/X and y = (1/X)(1/2−Y ), makes this case equivalent to the previous one.
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If A2(x) = 1 − x2, we choose L(x) = 1
2
((α + β)x + (α − β)), where α, β

are two arbitrary real constants, and a set of fundamental solutions for (2.9)
is:

w1(x) =
(α + 1)n

Γ(n+ 1)
2F1

(

−n, 1 + α + β + n;α + 1;
1 − x

2

)

,

w2(x) = (1 − x)−α
2F1

(

−α− n, 1 + β + n; 1 − α;
1 − x

2

)

,

where 2F1 (a1, a2; b;x) is the hypergeometric function defined by

2F1 (a1, a2; b;x) =
∞
∑

k=0

(a1)k(a2)k

(b)k

xk

k!
.

The first integral given in Theorem 2.3 isH(x, y) = (1−x)αh1(x, y)/h2(x, y),
where:

h1 = n (1 + α + β + n) (x2 − 1) 2F1 (1 − n, 2 + α + β + n; 2 + α;u) +

(α + 1) ((α + β)x+ (α− β) − 2y) 2F1 (−n, 1 + α + β + n; 1 + α;u) ,

h2 = (α− 1) ((α− β)x+ (α + b) + 2y) 2F1 (−α− n, 1 + β + n; 1 − α;u) +

(α + n) (1 + β + n) (x2 − 1) 2F1 (1 − α− n, 2 + β + n; 2 − α;u) ,

writing u = (1 − x)/2. The first integral is f1(x, y)/f2(x, y), as given in
Theorem 2.3, and we notice that H(x, y) = cf1(x, y)/f2(x, y) where c ∈
R − {0}. As before, we do not write c in terms of the parameters of the
system to simplify notation.

When n ∈ N, we have that (2.9) corresponds to the equation of Jacobi

polynomials and w1(x) coincides with the Jacobi polynomial P
(α,β)
n (x) and

the invariant algebraic curve given in [23] corresponds to f1(x, y) = 0, where
f1(x, y) := w′

1(x) − g(x, y)w1(x).

If A2(x) = 1 +x2 the complex affine change of variable x = iX, i =
√
−1,

makes this case equivalent to the previous one, as it is shown in [23].

We have re-encountered by this method all the examples appearing in
[23] from a unified point of view. In addition, in this section we have given
an explicit expression of a first integral for each case and for any value of the



42 Integrability via second order linear homogeneous ode’s

parameter n ∈ R. To this end, we have found invariants for the system and
we have applied the generalization of Darboux’s method as explained in [50]
to be able to construct a first integral which is, in general, of non Liouvillian
type.

2.3.2 A Lotka-Volterra system

As it has been explained in Section 2.1, the first counterexample to Lins
Neto conjecture was given by J. Moulin-Ollagnier in [67]. His example is a
quadratic system with two invariant straight lines and an irreducible invariant
algebraic curve f(x, y) = 0 of degree 2` when ` ∈ N. This gives a family
of systems depending on the parameter ` which have a Darboux inverse
integrating factor when ` ∈ N but no rational first integral. The method
used in [67] only shows the existence of such invariant algebraic curve but no
closed formula to compute it is given. We give an explicit expression for an
invariant by means of Bessel functions for any value of ` ∈ R − {1

2
} which,

in the particular case ` ∈ N degenerates to the algebraic curve encountered
in [67].

We show that after a birrational transformation, this example coincides
with a system constructed with the method explained in Section 2.2.

Let us consider the system appearing in [67] but assuming that ` ∈ R−{1
2
}

ẋ = x
(

1 − x

2
+ y
)

, ẏ = y

(

−2`+ 1

2`− 1
+
x

2
− y

)

. (2.10)

We make the birrational transformation

x =
4uv

1 − 2`
, y =

1 − 2`

4v
,

whose inverse is

u = xy, v =
1 − 2`

4y
.

By this transformation, system (2.10) becomes

u̇ =
2u

1 − 2`
, v̇ =

1 − 2`

4
+

2`+ 1

2`− 1
v +

2u

2`− 1
v2. (2.11)

We notice that the equation for the orbits satisfied by the variable v as a
function of u is a Ricatti equation.
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Let us consider g(u, v) := v and the linear differential equation of order
2 given by

uw′′(u) +
1

2
(1 + 2`)w′(u) − 1

8
(1 − 2`)2w(u) = 0. (2.12)

Applying the method given in the previous section, this linear differential
equation gives system (2.11) modulus a change of time.

A set of two fundamental solutions for equation (2.12) is given by

w1(u) = u(1−2`)/4I 1

2
−`

(

(1 − 2`)

√

u

2

)

,

w2(u) = u(1−2`)/4I`− 1

2

(

(1 − 2`)

√

u

2

)

,

(2.13)

provided that ` is not of the form 1
2
(1 − 2r), with r an integer number,

because in this case w1 and w2 are linearly dependent. The function Iν(u)
is the Modified Bessel function defined by the solution of the second order
differential equation

u2w′′(u) + uw′(u) − (u2 + ν2)w(u) = 0, (2.14)

and being bounded when u→ 0 in any bounded range of arg (u) with Re(u) ≥
0. See [1] for further information about this function.

Hence, by Theorem 2.3 we have that H(u, v) = f1(u, v)/f2(u, v), where
fi(u, v) := w′

i(u)−vwi(u) for i = 1, 2, is a first integral for system (2.11). For
a sake of simplicity we consider the following renaming of the independent
variable u = 2z2/(1 − 2`)2. This is not a birrational transformation and
that’s why we only use it to simplify notation. The function H writes as:

H =
(1 − 2`)2I( 1+2`

2 )(z) − 4vzI( 2`−1

2 )(z)

(1 − 2`)2I−( 1+2`
2 )(z) − 4vzI−( 2`−1

2 )(z)
. (2.15)

By Theorem 2.2 we have that fi(u, v) = 0, i = 1, 2 are invariant curves
with the same polynomial cofactor k for system (2.11), therefore the curve
f(u, v) = 0 given by f(u, v) = πz2`+1(f 2

1 (u, v)− f 2
2 (u, v)) is also an invariant

curve. We multiply by π only for esthetic reasons.
Now we assume that ` ∈ N and we show that f = 0 defines an invariant

algebraic curve. To this end we use the following formulas appearing in
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[1, 93]. When ν− 1
2

= n ∈ Z, we define c(n) = −nπ
√
−1/2 and the following

relation is satisfied:

Iν(z) = − 1√
z

ec(n)

√

2

π







sinh (c(n) − z)

b 2|ν|−1

4
c

∑

k=0

(|ν| + 2k − 1
2
)!

(2k)!(|ν| − 2k − 1
2
)!(2z)2k

+ cosh (c(n) − z)

b 2|ν|−3

4
c

∑

k=0

(|ν| + 2k + 1
2
)!

(2k + 1)!(|ν| − 2k − 3
2
)!(2z)2k+1







,

(2.16)
where bxc stands for the greatest integer k such that k ≤ x and |ν| stands
for the absolute value.

From the former equation we obtain the following two equalities, with
ν − 1

2
= n ∈ Z and ` ∈ N,

I2
ν (z) − I2

−ν(z) =
2

πz

n
∑

k=0

(−1)k+1 (2n− k)!(2n− 2k)!

k!((n− k)!)2

(

1

2z

)2(n−k)

,

(2.17)

I`+ 1

2

(z)I`− 1

2

(z) − I−(`+ 1

2
)(z) I−(`− 1

2
)(z) = (−1)` 2

πz








b `
2
c

∑

i=0

(`+ 2i)!

(2i)!(`− 2i)!

(

1

2z

)2i








b `−2

2
c

∑

j=0

(`+ 2j)!

(2j + 1)!(`− 2j − 2)!

(

1

2z

)2j−1


−





b `−1

2
c

∑

i=0

(`+ 2i+ 1)!

(2i+ 1)!(`− 2i− 1)!

(

1

2z

)2i−1








b `−1

2
c

∑

j=0

(`+ 2j − 1)!

(2j)!(`− 2j − 1)!

(

1

2z

)2j






 .

(2.18)
Then, we have that f1(z, v) = (1 − 2`)2 I`+ 1

2

(z) − 4vz I`− 1

2

(z) and f2(z, v) =

(1− 2`)2 I−(`+ 1

2
)(z)− 4vz I−(`− 1

2
)(z), and we write f arranged in powers of v:

f(z, v) = πz2`+1
(

(1 − 2`)4(I2
`+ 1

2

(z) − I2
−(`+ 1

2
)
(z))

− 8vz(1 − 2`)2(I`+ 1

2

(z)I`− 1

2

(z) − I−(`+ 1

2
)(z)I−(`− 1

2
)(z))

+16v2z2(I2
`− 1

2

(z) − I2
−(`− 1

2
)
(z))

)

.

Let us consider each coefficient of v in f(z, v) separately and we will show
that it is an even polynomial in the variable z. The coefficient in f(z, v) of
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v0 is:
πz2`+1(1 − 2`)4(I2

`+ 1

2

(z) − I2
−(`+ 1

2
)
(z)),

which by equation (2.17) is an even polynomial in the variable z of degree
2`. The coefficient in f(z, v) of v2 is:

16πz2`+3(I2
`− 1

2

(z) − I2
−(`− 1

2
)
(z)),

which also by equation (2.17) is an even polynomial in the variable z of degree
2`+ 2. Finally, the coefficient in f(z, v) of v1 is:

8π(1 − 2`)2z2`+2(I`+ 1

2

(z)I`− 1

2

(z) − I−(`+ 1

2
)(z)I−(`− 1

2
)(z)), (2.19)

which by equation (2.18) is an even polynomial in the variable z of degree
2`.

Hence, we have that f(z, v) is an even polynomial in the variable z of
total degree 2`+ 4. When rewriting z = (1−2`)

√
u/

√
2 we have that f(u, v)

is a polynomial of total degree ` + 2 which is irreducible. The fact of being
irreducible is easily seen because it is a polynomial of degree two in v and it
cannot be decomposed in linear factors (the discriminant is not a polynomial
raised to an even power) and the coefficients of v0 and v2 do not have any
root in common.

Undoing the birrational change of variables we get that f(x, y) is an
irreducible polynomial of degree 2` given by:

f(x, y) = x`+ 1

2y`− 1

2

[

2y
(

I2
`+ 1

2

(z) − I2
−(`+ 1

2
)
(z)
)

−

2
√

2
√
xy
(

I`+ 1

2

(z)I`− 1

2

(z) − I−(`+ 1

2
)(z)I−(`− 1

2
)(z)
)

+

x
(

I2
`− 1

2

(z) − I2
−(`− 1

2
)
(z)
)]

,

where z is the same variable as before, that is, z =
(1−2`)

√
xy√

2
.

By equation (2.15) we can write the first integral for system (2.10) for
any value of ` ∈ R − {1

2
(1 − 2r) | r ∈ N}:

H(x, y) =

√
2y I( 1+2`

2 )(z) −√
x I( 2`−1

2 )(z)
√

2y I−( 1+2`
2 )(z) −√

x I−( 2`−1

2 )(z)
.

We have studied system (2.10) for any value of the parameter ` ∈ R −
{1

2
(1 − 2r) | r ∈ N} giving an explicit expression for a first integral using
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Theorem 2.1 and the Generalized Darboux’s theory as explained in [50]. This
first integral is not of Liouvillian type. Moreover, we give one of its invariants
with a polynomial cofactor. In the particular case ` ∈ N, this invariant is the
invariant algebraic curve whose existence was proved in [67].

2.3.3 A new example of a family of quadratic systems
with an invariant algebraic curve of arbitrarily
high degree

We give another example of a family of quadratic systems with an irreducible
invariant algebraic curve of degree 2` when ` ∈ N, where ` is a parameter of
the family. This family also depends on the parameter a ∈ R.

Let us consider the quadratic system

ẋ = (2a− 1)`x− a(2`− 1)y + 2a(a− `)(2`− 1)x2 − 2a2(2`− 1)2xy,

ẏ = y(2(2a− 1)`+ 2a(2a− 2`− 1)(2`− 1)x− 4a2(2`− 1)2y),

(2.20)
where a, ` ∈ R which satisfy a 6= 0, ` 6= 1

2
and (2` − 1)a2 − 2` 6= 0. An

straightforward computation shows that the system (2.20) has y = 0 and
y − x2 = 0 as invariant algebraic curves.

Let us consider the following birrational transformation x = Y , y = XY 2

whose inverse is X = y/x2 and Y = x. In these new variables system (2.20)
becomes

Ẋ = 2a(2`− 1)(X − 1)XY,

Ẏ = ((2a− 1)`+ a(2`− 1)(2a− 2`−X)Y − 2a2(2`− 1)2XY 2)Y.
(2.21)

By a change of the time variable we can divide this system by Y and the
resulting system coincides with the one described in Theorem 2.1 taking
A2(X) := 2X(X − 1)2, A1(X) := (2` − 2a + 3X)(X − 1), A0(X) := `(1 −
2a) and g(X,Y ) := a(2` − 1)Y/(X − 1). The equation A2(X)w′′(X) +
A1(X)w′(X)+A0(X)w(X) = 0 has the following set of fundamental solutions
in this case:

w1(X) = (X − 1)−`
2F1

(

1

2
− `,−`; a− `;X

)

,

w2(X) = (X − 1)−`X1−a+`
2F1

(

1 − a,
3

2
− `; 2 − a+ `;X

)

.
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By Theorem 2.2, fi(X,Y ) = w′
i(X)−g(X,Y )wi(X), i = 1, 2, define invariants

with a polynomial cofactor for system (2.21). Moreover, by Theorem 2.3 we
have a non Liouvillian first integral given by H(X,Y ) = f1(X,Y )/f2(X,Y ).

In the particular case ` ∈ N, we notice that f1(X,Y ) = 0 is a rational
function. It is an easy computation to show that this rational function is a
polynomial when rewritten in coordinates x and y. This polynomial gives
place to an invariant algebraic curve of degree 2` for system (2.20). That is,
by undoing the birrational transformation, we deduce that f1(x, y) = 0 is an
irreducible invariant algebraic curve for system (2.20), given by:

f1(x, y) = 2(a− `)(`+ (2`− 1)ax)x2`−1
2F1

(

1

2
− `,−`; a− `;

y

x2

)

+`(2`− 1)x2`−3(x2 − y) 2F1

(

3

2
− `, 1 − `; 1 + a− `;

y

x2

)

.

It is easy to see that the polynomial f1(x, y) has degree 2` and the cofactor
associated to the invariant algebraic curve f1(x, y) = 0 is `(2`−1)((2a−1)+
4a(a− `)x− 4(2`− 1)a2y).

The first integral for (2.20) is given by H(x, y) = ya−`f1(x, y)/h(x, y),
where

h(x, y) = 2 (a− `− 2)
[

(a− `− 1)x2 +

(1 − a− a(2`− 1)x) y] x7−2a
2F1

(

1 − a,
3

2
− a; 2 − a− `;

y

x2

)

+

(a− 1) (2a− 3)x5−2a (x2 − y) y 2F1

(

2 − a,
5

2
− a; 3 − a+ `;

y

x2

)

.

We notice that when both a and ` belong to the set of natural numbers,
we have that h(x, y) = 0 is an invariant algebraic curve different from the
curve f1(x, y) = 0. Then we have a quadratic system with a rational first
integral H(x, y) with arbitrary degree.

2.3.4 A complete family of quadratic systems with a
center at the origin

In this subsection we give an example of a 3-parameter family of quadratic
systems with a center at the origin which can be constructed using Theorem
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2.6. The family encountered corresponds to the reversible case, see [83]. We
refer to Subsection 1.2.1 for the definition of center and the computation of
the center cases and to [97] for the definition of reversibility.

The family of quadratic systems depends on twelve parameters, but up
to affine transformations and positive time rescaling, we get a family of five
essential parameters. We have taken a system (2.7) and we have chosen
g(x, y) := y2, h(x) := 2x(d x − 1)/(1 + ax) and A(x) := 2b/(1 + ax), where
a, b, d are real parameters. Using Theorem 2.6, we have encountered the 3-
parameter family of quadratic systems next described. We remark that in
spite of the simplicity of the chosen polynomials g(x, y), A(x) and h(x), we
amazingly obtain the complete family of quadratic systems with a reversible
center at the origin. We notice that other choices of the functions g(x, y),
A(x) and h(x) would give place to other families of polynomial systems.

The computation of the center cases for the family of quadratic systems
was done by Dulac [40] for the case of complex systems and a proof for real
systems is given in [66]. We also refer Bautin [10] who showed the existence
of only three independent constants. The computation of the zero set of these
three independent values gives place to four complete families of quadratic
systems with a center at the origin which are described in [84]. These four
complete families are the Hamiltonian case, the reversible case, the Lotka-
Volterra case and the reversible case.

Let us now consider an equation (2.7) such as (1+ax)w′(x)+2bw(x) = 0
and g(x, y) and h(x) as formerly defined. The rational equation as con-
structed in Theorem 2.6 is:

dy

dx
=

−x+ dx2 − by2

y + axy
,

which gives the corresponding quadratic planar system

ẋ = y + axy, ẏ = −x+ dx2 − by2. (2.22)

We suppose that ab(a+b)(a+2b)(a+b+d) 6= 0. In case this value is zero, the
origin of system (2.22) is still a center but with a Darboux integrating factor
instead of a Darboux first integral. This particular case can also be studied
by our method, but we do not write it to avoid giving examples without
essential differences.
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By Theorem 2.7 we have that f(x, y) = 0 is an invariant curve of system
(2.22) with cofactor −2by, where f(x, y) is given by

f(x, y) = b (a+ b) (a+ 2b)w(x) − (a+ b+ d) (1 + ax)−
2b
a

−b (a+ b) (a+ 2b) y2 + b (a+ 2b) d x2

−2 b (a+ b+ d)x + a + b + d ,

(2.23)

with w(x) any non-zero solution of (1 + ax)w′(x) + 2bw(x) = 0, that is,

w(x) = C(1 + ax)−
2b
a .

Choosing C = (a + b + d) (b(a + b)(a + 2b))−1 we get an invariant conic.
System (2.22) has two invariant algebraic curves, the former conic with co-
factor −2by and an invariant straight line given by 1 + ax = 0 with cofactor
y. The Darboux first integral

H(x, y) = (1 + ax)
2b
a f(x, y)

coincides with the first integral described in Theorem 2.9.
The origin of this system is a center since it is a monodromic singular point

with a continuous first integral defined in a neighborhood of it. This example
addresses to the thought that other families of polynomial systems of higher
degree with a center at the origin can be easily obtained by this method,
avoiding the cumbersome computation of Poincaré-Liapunov constants.

2.3.5 An integrable saddle

As described in the first section of this chapter, an open question related to
the integrability of planar polynomial differential systems is whether there
exists a system like (1.1) with a center, not reversible and without a Liouvil-
lian first integral. An example of an analytic system (not polynomial) with a
center, which is not reversible and without a Liouvillian first integral is given
in [11].

There is an analogy between saddle points which are integrable (as cen-
ters) and saddle points which are not (as foci), so an analogous open prob-
lem may be referred to an integrable saddle point. Moreover, center or
focus points and saddle points are not distinguished in the domain of two–
dimensional complex differential systems. J. Llibre and H. Żo la̧dek are work-
ing in this problem and they have found the following system:

ż = −z(1 − z2), ẏ = y + y2 + Lyz2 + kz4, (2.24)
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where k, L ∈ R. By means of the rational change of variables x = z2, this
quartic system is transformed into the following quadratic system:

ẋ = −2x(1 − x), ẏ = y + kx2 + Lxy + y2. (2.25)

If we make the following change of variables to system (2.25):

x =
1 − u

2
, y = v +

L

4
u− L+ 2

4
,

we get the already described system (2.8), with variables u and v, with
A2(u) = 1 − u2, and with parameters given by a = 1/2,

L = −(2b+ 1) − 4n− 8n

3
(b+ n), k =

4

9
n(b+ n)(3 + 2n)(3 + 2b+ 2n).

The integrability of this system is described in page 41. We can, therefore,
construct a first integral for system (2.24).

We have an explicit expression for a first integral for system (2.24), which
is, in general, not a Liouvillian function. It is easy to see that this first in-
tegral is continuous in the saddle point (0, 0). Hence, the origin of system
(2.24) is an integrable saddle point. To solve the stated open problem, it
must be shown that system (2.24) has no Liouvillian first integral and that
it is not reversible. As we have already stated, this is a work in process of J.
Llibre and H. Żo la̧dek, who have kindly shown us this example.

The contents of this chapter, with the exception of Subsection 2.3.5, be-
long to the paper entitled Integrability of planar polynomial differential sys-
tems through linear differential equations, authored by H. Giacomini, J. Giné

and M. Grau and accepted for publication in Rocky Mountain J. Math.

Abstract. In this work, we consider rational ordinary differential equations
dy/dx = Q(x, y)/P (x, y), with Q(x, y) and P (x, y) coprime polynomials
with real coefficients. We give a method to construct equations of this type
for which a first integral can be expressed from two independent solutions of
a second–order homogeneous linear differential equation. This first integral
is, in general, given by a non Liouvillian function.
We show that all the known families of quadratic systems with an irre-
ducible invariant algebraic curve of arbitrarily high degree and without a
rational first integral can be constructed by using this method. We also
present a new example of this kind of families.

We give an analogous method for constructing rational equations but by

means of a linear differential equation of first order.



Chapter 3

Necessary conditions for the
existence of invariant algebraic
curves

3.1 Preliminaries on invariant algebraic curves

We consider a planar polynomial differential system (1.1) and in this chapter
we are mainly concerned with its invariant algebraic curves. We recall that
we define an invariant algebraic curve as an algebraic curve f(x, y) = 0,
where f(x, y) ∈ R[x, y], such that:

P (x, y)
∂f

∂x
(x, y) + Q(x, y)

∂f

∂y
(x, y) = k(x, y) f(x, y) , (3.1)

where k(x, y) is a polynomial called the cofactor of f(x, y). It is easy to see
that if P and Q are polynomials of degree at most d, then the cofactor is of
degree at most d − 1.

In Chapter 1, we have defined an invariant algebraic curve as a polynomial
with complex coefficients but we have noticed that, since the polynomial
system (1.1) is real, then we can assume that any invariant algebraic curve
is real. In this chapter we will only consider real invariant algebraic curves
f(x, y) = 0, where f(x, y) is an irreducible polynomial in R[x, y], unless
otherwise stated.
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The importance of invariant algebraic curves to understand the dynamics
of a system (1.1) has been remarked by several authors. We refer to [83, 84],
and the references therein, for an exhaustive survey on this topic as well as
being two of the initial works on this subject. We also consider exponen-
tial factors due to their relation with the multiplicity of invariant algebraic
curves, see [35], and their role in the Liouvillian integrability, as stated in
Theorems 1.6 and 1.7.

The main goal of this chapter consists in giving a set of necessary condi-
tions for polynomials of degree lower or equal than d − 1 to be the cofactor
of an invariant algebraic curve or an exponential factor for a system (1.1).
These conditions consist in the value of the cofactor at a non-degenerate or
an elementary degenerate singular point whose ratio of eigenvalues does not
equal 1. These results are given in Section 3.2.

A generic system (1.1) of degree d has d2 + d + 1 non-degenerate and
different singular points (finite and infinite) whose ratio of eigenvalues is not
a rational number and which are not all contained in an algebraic curve of
degree ≤ d − 1. The value of the cofactor at one of these points brings forth
a linear equation with d(d + 1)/2 + 1 unknowns, which correspond to the
coefficients of the cofactor and the degree of the curve. Therefore, in general,
we have much more independent linear equations than unknowns. Hence,
this set of necessary conditions is wide enough to, in general, completely
characterize the cofactors and the degree related to invariant algebraic curves
of a given system.

The characterization of the invariant algebraic curves of a system (1.1)
gives, in most cases, its dynamics since these curves are usually made of
graphics. Moreover, the knowledge of invariant algebraic curves is directly
connected with the existence of a Liouvillian first integral as stated in The-
orems 1.6 and 1.7. Hence, we apply the aforementioned result in relation to
the integrability problem.

In Section 3.3, we use these results on Liouvillian integrability of a poly-
nomial system (1.1) to prove the non-existence of a Liouvillian first integral
for a family of quadratic systems. In order to show the power of the method,
we study a family of quadratic Lotka-Volterra systems and we show that no
Liouvillian first integral can exist for this family.

In Chapter 5, we apply the results given in Section 3.2 to some families
of quadratic systems with an algebraic limit cycle of degrees 2 and 4. We
recall that a limit cycle for system (1.1) is an isolated periodic orbit and a
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limit cycle is said to be algebraic when it is contained in one of the ovals of
an invariant algebraic curve. We show that the first integral of these systems
cannot belong to the functional class of Liouvillian functions. To this end
we will first prove that there are no other invariant algebraic curves for each
system but the one which defines the algebraic limit cycle. As a consequence,
and applying Theorem 1.7, we will conclude with the desired result.

3.2 Necessary conditions for a cofactor

We notice that the existence of an invariant algebraic curve depends on the
existence of its corresponding cofactor. Moreover, while the degree of an
invariant algebraic curve is not uniformly bounded for all the systems of
degree d, the degree of its cofactor must be lower or equal than d − 1.

The main result of this chapter is a set of necessary conditions for a
polynomial k(x, y) ∈ R[x, y], of degree lower or equal than d − 1, to be the
cofactor of an invariant algebraic curve or an exponential factor for a planar
polynomial system (1.1) of degree d.

These conditions on the cofactor correspond to its possible values at the
critical points of the considered system. The hypothesis of coprimality be-
tween P and Q implies that all the singular points of a system (1.1) are
isolated, that is, there always exists a neighborhood for each singular point
so that no other singular point belongs to it.

When a singular point (x0, y0) is such that (x0, y0) ∈ R
2, we say that it

is a real singular point. We notice that since both P (x, y) and Q(x, y) have
real coefficients, if (x0, y0) is a singular point with non-null imaginary part,
then its conjugate (x̄0, ȳ0) is also a singular point. A singular point (x0, y0)
with non-null imaginary part will be called a complex singular point, to be
distinguished from a real one.

Real singular points for a system (1.1) are classified in terms of the be-
havior in R

2 of the solutions of the system in their neighborhood, see for
instance [74]. As it has been described in Subsection 1.2.1, the behavior of
the solutions in a neighborhood of the singular point p is given by the matrix
A(p) defined in (1.8). Assume that p is a non–degenerate singular point. Let
λ, µ ∈ C be the eigenvalues of A(p). We have that λµ 6= 0.

If λ, µ ∈ R and λ/µ < 0, the point p is called a saddle. If λ, µ ∈ R and
λ/µ > 0, the point p is called a node.
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As we are considering a real system and a real singular point, the charac-
teristic polynomial of the matrix A(p) is quadratic and with real coefficients.
If one of the eigenvalues is a complex number with non-null imaginary part,
the other eigenvalue is its conjugate. If λ = a + bi and µ = a − bi, where
i =

√
−1 and b 6= 0, then if a 6= 0 the point is called a strong focus and if

a = 0 then it can be a center or a weak focus.
For a degenerate singular point the local study of the solutions in its

neighborhood can be made by using the blow-up technique. If A(p) has
only one eigenvalue equal to zero then p is an elementary degenerate singular
point and its local behavior is studied in [4]. If zero is a double eigenvalue of
A(p) but A(p) is not identically zero then the degenerate singular point p is
called nilpotent and a good characterization of its local behavior is given in
[3]. Finally, for degenerate singular points p with A(p) identically zero, see
[41] for a detailed description of the blow-up technique, which can be rather
complicated.

Complex singular points are also classified in degenerate and non–dege-
nerate in the same manner as real singular points. The local behavior of the
solutions in a neighborhood of a complex singular point has not the same
sense than in the real case. However, the eigenvalues of the matrix A(p)
defined in (1.8) will be of great importance for our results, both for real and
for complex singular points.

We take advantage of the location of each singular point of system (1.1)
and the local behavior of the solutions in its neighborhood. In order to
enlarge the set of conditions on the cofactor k(x, y) at each singular point,
we also consider infinite singular points. That is, we extend an equation
Q(x, y) dx − P (x, y) dy = 0, to the complex projective plane CP(2), and we
consider all the singular points of the extended equation in CP(2). We recall
that considering the equation ω = 0 defined by the 1-form ω := Q(x, y) dx −
P (x, y) dy, is equivalent to consider the differential system (1.1).

The next subsection, numbered 3.2.1, consists in a brief summary of the
process of extending the equation in the affine plane to the projective plane,
as well as its most interesting features like invariant algebraic curves and
exponential factors.

In Subsection 3.2.2 a result due to A. Seidenberg [85], which describes
the local behavior of the analytic solutions in a neighborhood of a singular
point, is given. By using this result, the main contribution of this chapter is
given in Subsection 3.2.3, as well as its proof.
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3.2.1 Critical points at infinity

We first define a polynomial differential equation in CP(2) and the notion of
invariant algebraic curve and critical point for the equation. We describe the
planar polynomial systems obtained when taking local coordinates and we
show the coherence between immersing an equation in the affine plane to the
projective plane and the other way round, that is, submersing the differential
equation of the projective plane in the affine plane by means of taking local
coordinates. We only give an introductory summary of all the facts related
to differential equations in CP(2).

Critical points at infinity may also be studied by submerging our equation
in the Poincaré’s sphere S

2, see [58]. Both ways to study critical points at
infinity are equivalent.

We recall that CP(2) = {C3−{(0, 0, 0)}}/ ∼ with the equivalence relation
[X,Y, Z] ∼ [X ′, Y ′, Z ′] if, and only if, there exists ν ∈ C − {0} such that
[X ′, Y ′, Z ′] = ν[X,Y, Z].

We consider P, Q, R, three homogeneous polynomials of degree d + 1 in
the variables (X,Y, Z) and the 1-form:

Ω := P dX + Q dY + R dZ.

We always assume that P, Q, R are coprime polynomials, that is, that there
is no non–constant polynomial which divides P, Q and R.

We say that the 1-form Ω is projective if

XP + YQ + ZR ≡ 0.

Proposition 3.1 The 1-form Ω = PdX + QdY + RdZ is projective if, and
only if, there exist polynomials L, M , N of degree d such that Ω reads for
Ω = (MZ −NY ) dX + (NX − LZ) dY + (LY −MX) dZ.

Equally, the 1-form Ω = PdX +QdY +RdZ is projective if, and only if,
there exist polynomials L, M , N of degree d such that:

Ω = det





L M N
X Y Z
dX dY dZ



 . (3.2)
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This proposition is proved in [25]. We notice that the polynomials L, M and
N are not uniquely determined by P, Q and R. These polynomials can be
replaced by L′ = L + ∆X, M ′ = M + ∆Y and N ′ = N + ∆Z, where ∆ is
any homogeneous polynomial with variables X, Y , Z and degree d − 1.

The projective 1-form Ω defines a differential equation in CP(2) given by
Ω = 0, which may be written, by Proposition 3.1,

(MZ −NY ) dX + (NX − LZ) dY + (LY −MX) dZ = 0. (3.3)

In this context, an invariant algebraic curve for equation (3.3) is an al-
gebraic curve F (X,Y, Z) = 0, where F is a homogeneous polynomial, such
that:

L
∂F

∂X
+M

∂F

∂Y
+N

∂F

∂Z
= K F ,

for a certain homogeneous polynomial K(X,Y, Z) of degree d− 1, called the
cofactor.

We notice that the cofactor is not uniquely determined since it depends
on L, M , N . By changing (L,M,N) to (L+ ∆X,M + ∆Y,N + ∆Z) with ∆
a homogeneous polynomial of degree d − 1, which define the same differen-
tial equation (3.3), an easy application of Euler’s Theorem on homogeneous
functions shows that K changes to K+n∆ where n is the degree of F . Let us
prove this statement. We apply Euler’s theorem on homogeneous functions
to the polynomial F (X,Y, Z), i.e.,

X
∂F

∂X
+ Y

∂F

∂Y
+ Z

∂F

∂Z
= nF .

So, let K(X,Y, Z) be its cofactor for L, M and N , i.e.,

L
∂F

∂X
+ M

∂F

∂Y
+ N

∂F

∂Z
= K F ,

and we change L, M and N by L+ ∆X, M + ∆Y and N + ∆Z, where ∆ is
a homogeneous polynomial of degree d − 1. Hence,

(L+ ∆X)
∂F

∂X
+ (M + ∆Y )

∂F

∂Y
+ (N + ∆Z)

∂F

∂Z
=

(

L
∂F

∂X
+ M

∂F

∂Y
+ N

∂F

∂Z

)

+ ∆

(

X
∂F

∂X
+ Y

∂F

∂Y
+ Z

∂F

∂Z

)

=

(K + n∆)F.
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A point [X0, Y0, Z0] belonging to CP(2) is a singular point of the projec-
tive equation P dX + Q dY + R dZ = 0 if P(X0, Y0, Z0) = Q(X0, Y0, Z0) =
R(X0, Y0, Z0) = 0.

An equation (3.3) is a planar polynomial system (1.1) when taking local
coordinates in a chart. Let us consider a point p := [X0, Y0, Z0] ∈ CP(2)
and, without loss of generality, we assume that Z0 6= 0. We define the
local coordinates in p by x = X/Z and y = Y/Z. So, in local coordi-
nates, we have p = (x0, y0) with x0 = X0/Z0 and y0 = Y0/Z0. We con-
sider an equation (3.3) and we define P (x, y) := L(x, y, 1) − xN(x, y, 1) and
Q(x, y) := M(x, y, 1) − yN(x, y, 1). We notice that replacing (L,M,N) by
(L + ∆X,M + ∆Y,N + ∆Z), where ∆ is any homogeneous polynomial of
degree d − 1, gives the same polynomials P (x, y) and Q(x, y). We say that
the equation Q(x, y) dx − P (x, y) dy = 0 is the differential equation (3.3)
at the local chart at p. An invariant algebraic curve F (X,Y, Z) = 0 for
equation (3.3) becomes f(x, y) = 0 with f(x, y) := F (x, y, 1). It is easy to
show that if F (X,Y, Z) = 0 is an invariant algebraic curve for (3.3) with
cofactor K(X,Y, Z), then f(x, y) = 0 is an invariant algebraic curve for
Q(x, y)dx − P (x, y)dy = 0 with cofactor k(x, y) = K(x, y, 1) − nN(x, y, 1).
Moreover, if p is a singular point for (3.3), then (x0, y0) is a singular point
for Q(x, y) dx− P (x, y) dy = 0.

We describe now the process of extending an equation in the plane given
by Q(x, y) dx − P (x, y) dy = 0, to the projective space CP(2). We consider
the change to projective coordinates x = X/Z and y = Y/Z, from which
dx = (ZdX − XdZ)/Z2 and dy = (ZdY − Y dZ)/Z2 are deduced. The
coordinates (x, y) are usually called finite coordinates and the set of points
[X,Y, Z] ∈ CP(2) with Z = 0 is called the line at infinity.

Writing P (x, y) = P0 + P1(x, y) + P2(x, y) + . . .+ Pd(x, y) where Pi(x, y)
is a homogeneous polynomial of degree i, and expressing (x, y) in terms of
(X,Y, Z) we have:

P

(

X

Z
,
Y

Z

)

= P0 +
1

Z
P1(X,Y ) +

1

Z2
P2(X,Y ) + . . .+

1

Zd
Pd(X,Y )

=
1

Zd
(ZdP0 + Zd−1P1(X,Y ) + . . .+ Pd(X,Y )).

We define L(X,Y, Z) = ZdP0 + Zd−1P1(X,Y ) + . . . + Pd(X,Y ), which is
a homogeneous polynomial of degree d. Analogously, we define the ho-
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mogeneous polynomial of degree d, M(X,Y, Z), from Q(x, y), such that
M(X,Y, Z) = ZdQ(X/Z, Y/Z). Substituting in Q(x, y)dx − P (x, y)dy = 0
we have L(Y dZ − ZdY ) +M(ZdX −XdZ) = 0, which is an equation (3.3)
with N ≡ 0.

An invariant algebraic curve f(x, y) = 0, with cofactor k(x, y), for an
equation Q(x, y) dx − P (x, y) dy = 0 defines the invariant algebraic curve
F (X,Y, Z) = 0 in CP(2) with F (X,Y, Z) = Znf(X/Z, Y/Z), where n is
the degree of f . We have that the associated cofactor of F (X,Y, Z) = 0 is
K(X,Y, Z) = Zd−1k(X/Z, Y/Z).

3.2.2 Local behavior of solutions

In this subsection we give a brief summary of definitions and results concern-
ing formal differential equations and their solutions. These results concern
the local behavior of solutions in a neighborhood of a critical point of a sys-
tem (1.1). Formal differential equations were studied by Seidenberg in [85].
We explicitly state only the necessary result for our aims. In [91], S. Walcher
states the same result included in his Theorem 2.3. We refer the reader to
[85, 91] for a further description.

Let C[[x, y]] be the ring of formal power series in two variables with co-
efficients in C, that is,

C[[x, y]] =

{

ϕ(x, y) =
∑

i,j≥0

ϕijx
iyj | ϕij ∈ C

}

,

with the usual operations of addition and multiplication. This ring is facto-
rial.

We are also interested in the ring C{x, y} of convergent power series, that
is the subring of C[[x, y]] of elements ϕ with a positive radius of convergence.
When ϕ ∈ C{x, y}, we say that it is analytic.

We describe some properties of the elements of C[[x, y]]. The order of
ϕ(x, y) is mini,j≥0{i+ j | ϕij 6= 0}. The set of units for this ring corresponds
to all the ϕ(x, y) ∈ C[[x, y]] of order 0, that is, such that ϕ00 6= 0. A unit
element of this ring will be denoted by υ(x, y).

Two formal series ϕ(x, y), ψ(x, y) ∈ C[[x, y]] are said to be equal, ϕ = ψ,
when ϕij = ψij for all i, j ≥ 0. A formal power series ϕ(x, y) is said to be
constant if ϕij = 0 for all i, j ≥ 1. We denote the formal power series whose
coefficients are all null by 0.
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We define the partial derivatives of ϕ(x, y) with respect to x and y in the
following way

∂ϕ

∂x
:=
∑

i,j≥0

iϕijx
i−1yj ,

∂ϕ

∂y
:=
∑

i,j≥0

jϕijx
iyj−1 .

Let ϕ(x, y) ∈ C[[x, y]] − {0} be an irreducible non-unit element. An
analytic branch centered at (0, 0) is the equivalence class of ϕ under the
equivalence relation ϕ ∼ ψ if ϕ = υψ. Since ϕ(x, y) is non-unit, we have that
its order is greater or equal than 1.

A branch ϕ(x, y) is said to be linear if its order equals 1 and non-linear
if its order is strictly greater than 1.

Let ϕ(x, y) ∈ C[[x, y]] − {0} a non-unit element of order s. The homoge-
neous polynomial of degree s given by ϕs :=

∑s
i=0 ϕi,s−ix

iys−i is called the
tangents of ϕ at the origin. This homogeneous polynomial ϕs factorizes in
C[x, y] in exactly s linear factors: ϕs = `1 `2 . . . `s. If all these linear factors
are x (resp. y), we say that ϕ has vertical (resp. horizontal) tangent.

Consider the formal differential equation Q(x, y) dx − P (x, y) dy = 0,
where Q(x, y), P (x, y) ∈ C[[x, y]] − {0} are non-unit elements. Equally, this
formal differential equation can be given by

ẋ = P (x, y), ẏ = Q(x, y).

By a solution of this formal differential equation, we mean an analytic
branch ϕ(x, y) centered at the origin such that there exists κ(x, y) ∈ C[[x, y]]
satisfying

P
∂ϕ

∂x
+ Q

∂ϕ

∂y
= κϕ .

Theorem 3.2 [85, 91] Consider the formal differential system

ẋ = λx+X2(x, y), ẏ = µy + Y2(x, y), (3.4)

where X2, Y2 ∈ C[[x, y]] are of order greater or equal than two and with λ 6= 0.

(a) If µ 6= 0 and λ, µ are rationally independent or λ/µ < 0, or µ = 0, then
there are exactly two solutions, a linear branch with horizontal tangent
and a linear branch with vertical tangent.
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(b) If µ 6= 0 and λ, µ are rationally dependent and λ/µ > 0, then

(i) if λ/µ = 1, then for any direction there is a linear solution,

(ii) if λ/µ > 1 and λ/µ ∈ N, then there is a unique linear solution with
horizontal tangent and either there are no solutions with vertical
tangent or there are an infinite number of solutions with vertical
tangent, all of them linear,

(iii) if λ/µ > 1 and λ/µ 6∈ N, we have that λ/µ = p/q with p, q ∈ N and
1 < q < p. Then there is a unique linear solution with horizontal
tangent and there is one solution with vertical tangent, which is
linear. There are an infinite number of solutions with vertical
tangent, all of them are non-linear and their tangents are given
by ϕq = xq.

The expressions X2 and Y2 are formal complex series and λ and µ are complex
numbers which can be real as a particular case.

We remark that except in the case λ/µ = 1, the solutions of system (3.4)
can only have horizontal or vertical tangent.

In [85], the proof of this result is given by means of blowing-up the origin
of system (3.4). In [91] system (3.4) is supposed to be analytic in a neighbor-
hood of the origin and the normal form technique is used to prove Theorem
3.2.

By using the normal form theory, Walcher in [91] also proves the following
result, which lets us distinguish between a unique solution and an infinite
number of solutions in case λ/µ > 1 and λ/µ ∈ N. We do not intend to give
a survey on normal form theory and we only state the following proposition
for the sake of completeness. We refer the reader to [6] for an exhaustive
description of this classical theory due to Poincaré and the proof of the
following proposition.

Proposition 3.3 [6] Let us consider a system (3.4). Let us assume that
λ/µ = m with m ∈ N and m > 1. Then, there is a formal change of variables
which transforms the system to

ẋ = λx+ cym, ẏ = µy, (3.5)

with c ∈ C.
Moreover, if system (3.4) is analytic in a neighborhood of the origin, then

the change of variables is analytic in a neighborhood of the origin.
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When c = 0 in (3.5), we say that system (3.4) is linearizable. If c 6= 0, we
say that it is non linearizable.

The distinction between linearizable and non linearizable systems allows
the distinction between an infinite number of solutions or a unique solution,
as stated and proved in [91].

Proposition 3.4 Consider a system (3.4), analytic in a neighborhood of the
origin, where λ/µ = m with m ∈ N and m > 1.

- If the system is linearizable, then there is a unique solution with hori-
zontal tangent and an infinite number of solutions with vertical tangent,
all of them linear.

- If the system is non linearizable, there is exactly one solution which is
linear and with horizontal tangent.

Let (x0, y0) be a non-degenerate or elementary degenerate singular point
for system (1.1). Let λ and µ be the eigenvalues of the matrix A(x0, y0).
Throughout this chapter we will always assume that λ 6= 0 and λ 6= µ. We
notice that by an affine change of coordinates we can always write system
(1.1) in the form (3.4) with this critical point at the origin. Moreover, the
eigenvectors vλ and vµ of the matrix A(x0, y0) are related to the horizontal
and vertical directions for system (3.4). Therefore, Theorem 3.2 and Propo-
sition 3.4 apply for the critical point (x0, y0) of system (1.1).

3.2.3 Values of the cofactor at singular points

The main result in this section is split up in Theorems 3.8, 3.9 and 3.10,
which are consequences of Theorem 3.2 and Proposition 3.4. These theorems
give necessary conditions for a polynomial of degree lower or equal than d−1
to be a cofactor of an invariant algebraic curve.

Given p0 := (x0, y0) a singular point for equation (1.1) and f(x, y) = 0
an invariant algebraic curve, only two possibilities hold: either f(p0) 6= 0 or
f(p0) = 0. The next lemma deals with the first possibility and Theorems
3.8, 3.9 and 3.10 with the second one.

Lemma 3.5 Let us consider a system (1.1), (x0, y0) one of its critical points
and f(x, y) = 0 an invariant algebraic curve with cofactor k(x, y).
If f(x0, y0) 6= 0, then k(x0, y0) = 0.
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Proof. Assume that f(x, y) = 0 is an invariant algebraic curve for system
(1.1) with cofactor k(x, y). Let (x0, y0) be a singular point of system (1.1).
Since the left hand side of the equality

P (x, y)
∂f

∂x
(x, y) +Q(x, y)

∂f

∂y
(x, y) = k(x, y) f(x, y)

is zero at (x0, y0) and f(x0, y0) 6= 0, we deduce that k(x0, y0) = 0.

We remark that since we can assume that f(x, y) and its cofactor k(x, y)
belong to R[x, y], then if (x0, y0) is a complex singular point such that
f(x0, y0) 6= 0, Lemma 3.5 implies that k(x0, y0) = 0 and k(x̄0, ȳ0) = 0.

Let f(x, y) = 0 be an algebraic curve and (x0, y0) a point such that
f(x0, y0) = 0. We may expand f(x, y) in powers of (x − x0) and (y − y0):
f(x, y) = fs(x, y)+fs+1(x, y)+ . . .+fn(x, y), where fj(x, y) are homogeneous
polynomials of degree j in powers of (x − x0) and (y − y0). Let s be the
lowest degree in this expansion with fs(x, y) 6≡ 0. Since f(x0, y0) = 0, we
have s ≥ 1. As fs(x, y) is a homogeneous polynomial of degree s in powers
of (x − x0) and (y − y0) it factorizes in s linear homogeneous polynomials,
that is, fs(x, y) = `1`2 . . . `s with `i = ai(x − x0) + bi(y − y0), ai, bi ∈ C,
i = 1, 2, . . . , s. We say that fs(x, y) = 0 is the equation of the tangents of
the curve f(x, y) = 0 in (x0, y0).

Given a polynomial f(x, y) we denote by ∇f(x, y) the gradient vector at
the point (x, y), that is ∇f(x, y) := (∂f

∂x
(x, y), ∂f

∂y
(x, y)). As usual, if u,v ∈ C

2

we denote by u · v its Euclidean scalar product.

The following three theorems are a consequence of Theorem 3.2 and deal
with a non-degenerate or an elementary degenerate critical point (x0, y0),
whose ratio of eigenvalues does not equal 1. We provide the tangents of
an invariant algebraic curve f(x, y) = 0 irreducible in C[x, y] such that
f(x0, y0) = 0. Once these tangents are described we deduce the value of
the cofactor k(x, y) at (x0, y0). We also describe the possible existence of an-
other invariant algebraic curve f̃(x, y) = 0 irreducible in C[x, y], with cofactor
k̃(x, y) such that f(x, y) and f̃(x, y) are relatively coprime and f̃(x0, y0) = 0.

As before, we denote by (x0, y0) a singular point of system (1.1) which
is supposed to be non-degenerate or elementary degenerate. Let A be the
matrix of the linear approximation of system (1.1) at (x0, y0). Since we fix
the point (x0, y0) we do not explicit the dependence on it. We denote by λ
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and µ the eigenvalues of the linear approximation at this point and by vλ

and vµ two corresponding eigenvectors. We assume that λ 6= µ and λ 6= 0.

We denote by `λ any non-null homogeneous polynomial of degree 1 such
that ∇`λ ·vλ = 0. An analogous definition stands for `µ. We use this notation
throughout the chapter.

Let us consider an invariant algebraic curve f(x, y) = 0 irreducible in
C[x, y] such that f(x0, y0) = 0. Let us move the point (x0, y0) to the origin
(0, 0). The polynomial f(x, y) is also an element of the ring C{x, y} and,
consequently, of C[[x, y]]. Since, f(0, 0) = 0, it is not a unit element. In
this ring f(x, y) can be a reducible element. The following lemma describes
the decomposition of f(x, y) in the ring C[[x, y]] which coincides with its
decomposition in C{x, y}. The proof of the following lemma makes use of
Newton-Puiseux algorithm which is described, for instance, in Chapter 1 of
[14], see Corollary 1.5.5 (page 25) and Theorem 1.8.3 (page 32).

Lemma 3.6 Let f(x, y) ∈ C[[x, y]] of positive order. Then,

- there are m irreducible elements ϕ1, ϕ2, . . . , ϕm ∈ C[[x, y]], m ≥ 0, such
that f decomposes in the form

f = υxrϕ1 . . . ϕm, (3.6)

where r ∈ N, r ≥ 0, and υ a unit element in C[[x, y]].

- The elements ϕi of (3.6) can be taken in C[[x]][y], that is, they are
polynomials in y.

- Such a decomposition is uniquely determined, up to order, by f .

- If f ∈ C{x, y} then the elements υ, ϕ1, ϕ2, . . . , ϕm of (3.6) belong to
C{x, y}. In fact, ϕi ∈ C{x}[y], i = 1, 2, . . . ,m.

Since we consider algebraic curves given by f(x, y) = 0 with f as an
irreducible element of C[x, y], which is a subring of C{x, y}, we can strengthen
the thesis of the previous lemma.

Lemma 3.7 Let f(x, y) be an irreducible non constant polynomial in C[x, y]
such that f(0, 0) = 0. Then, the decomposition given in (3.6) is square free.
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Proof. Taking into account Lemma 3.6, we only need to prove that there
is no repeated element ϕi neither r > 1 in the decomposition (3.6).

Assume that either there is a repeated element ϕi or x. Then, this element
divides both f and ∂f

∂y
in C{x, y}. Therefore, f and ∂f

∂y
in C{x, y} intersect

in an infinite number of points inside the disk of convergence of this repeated
element.

However, by Bézout’s theorem, if f and ∂f
∂y

have an infinite number of

intersection points, there is a polynomial both dividing f and ∂f
∂y

. Since f
is an irreducible polynomial, this divisor must coincide with f . So f divides
∂f
∂y

, that is, there exists g ∈ C[x, y] such that ∂f
∂y

= gf . Hence, the degree of
∂f
∂y

equals the sum of degrees of f and g. But this is not possible because if

f has degree n, n ≥ 1, then ∂f
∂y

has degree at most n− 1.
We do not give an explicit statement of Bézout’s theorem since it is a

classical and well known result. See, for instance, [48, 92] for a rigorous
statement.

Let us consider f(x, y) = 0 an invariant algebraic curve of system (1.1)
with f(x, y) ∈ C[x, y] as an irreducible polynomial. Let (x0, y0) be a non de-
generate or elementary degenerate critical point of system (1.1) with eigen-
values λ and µ such that λ 6= µ and with f(x0, y0) = 0. Without loss of
generality we can move (x0, y0) to the origin. An easy reasoning, based on
the fact that C[[x, y]] is a factorial ring, shows that each of the irreducible
elements appearing in the decomposition of f(x, y) written in (3.6) is a so-
lution of system (1.1). Therefore, we notice that f(x, y) = 0 defines a finite
number of branches in (x0, y0) corresponding to its irreducible non-unit fac-
tors in C[[x, y]]. The tangents of these branches are given by fs(x, y) = 0 as
defined above. The following theorem describes these tangents and the value
of the cofactor at the singular point.

Theorem 3.8 With the described notation, we have fs(x, y) = (`λ)r (`µ)s−r

with r, s ∈ N and r ≤ s. Moreover, k(x0, y0) = rµ+ (s− r)λ.

Proof. The curve f(x, y) = 0 defines a finite set of branches at (x0, y0)
and the tangents fs(x, y) = 0 at this point correspond to the tangents of each
branch. Since only `λ and `µ are allowed tangents by Seidenberg’s result, the
first thesis of the theorem is easily concluded.

By a move of the point (x0, y0) to the origin and a linear change of vari-
ables, we write system (1.1) in the form (3.4). We have that the hypothesis
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of Theorem 3.2 are satisfied. Since we have moved (x0, y0) to the origin, now
k(x0, y0) is k(0, 0).

We expand the equation of the invariant algebraic curve

P (x, y)
∂f

∂x
(x, y) + Q(x, y)

∂f

∂y
(x, y) = k(x, y) f(x, y)

in powers of x and y and equating the non-null terms of lowest degree,

which corresponds to degree s, we have that ∇fs · A ·
(

x
y

)

= k(0, 0) fs.

Since fs(x, y) = (`λ)r (`µ)s−r, and dividing both members of the equation by
(`λ)r−1 (`µ)s−r−1 we get

r `µ

[

∇`λ · A ·
(

x
y

)]

+ (s− r) `λ

[

∇`µ · A ·
(

x
y

)]

= k(0, 0) `λ `µ. (3.7)

Let us first assume that r 6= 0 and s 6= r, then from equation (3.7) we

deduce that there exists a ∈ C such that ∇`λ · A ·
(

x
y

)

= a `λ. Using the

identity `λ = ∇`λ ·
(

x
y

)

and equating the coefficients of x and y we get

∇`λ ·A = a∇`λ. We multiply both terms of this equality by vµ noticing that
since ∇`λ · vλ = 0 then ∇`λ · vµ 6= 0. Hence, ∇`λ · A · vµ = a∇`λ · vµ and
this gives µ∇`λ · vµ = a∇`λ · vµ from which we obtain a = µ. Analogous

reasonings show that ∇`µ · A ·
(

x
y

)

= λ `µ. Substituting in equation (3.7)

and dividing by `λ `µ we have that k(x0, y0) = rµ+ (s− r)λ.
If r = 0 then s− r = s ≥ 1. From equation (3.7) we get that there exists

b ∈ C such that ∇`µ · A ·
(

x
y

)

= b `µ and k(x0, y0) = (s− r) b. As before,

it is easy to show that b = λ.

If s = r then r ≥ 1 and from equation (3.7) we have again ∇`λ·A·
(

x
y

)

=

a `λ, with a ∈ C and k(x0, y0) = ra. The equality a = µ is achieved as before.

The following theorem precises more accurately the form of the equation
of the tangents fs(x, y) = 0.

Theorem 3.9 Let p0 be a singular point for system (1.1) with associated
eigenvalues λ and µ, with λ 6= 0 and let f(x, y) = 0 be an invariant algebraic
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curve irreducible in C[x, y] such that f(p0) = 0. We assume that fs(x, y) = 0
is the equation of the tangents of f = 0 at p0.

• If either µ 6= 0 and λ and µ are rationally independent or λ/µ < 0, or
µ = 0, then

– either s = 2 and f2 = `λ `µ,

– or s = 1 and f1 = `λ,

– or s = 1 and f1 = `µ.

• If µ 6= 0 and λ and µ are rationally dependent and λ/µ > 0, we assume
that λ/µ > 1.

– If λ/µ = m with m ∈ N, m > 1, and system (1.1) is linearizable
in (x0, y0), then there exists r ∈ N, r ≥ 0 and ε ∈ {0, 1} such that
s = r + ε and fs = (`λ)ε (`µ)r.

– If λ/µ = m with m ∈ N, m > 1, and system (1.1) is non lineariz-
able in (x0, y0), then s = 1 and f1 = `λ.

– If λ/µ = p/q with p, q ∈ N and 1 < q < p, then

∗ either s = 1 and f1 = `λ,

∗ or there exists r ∈ N, r ≥ 0, and ε ∈ {0, 1} such that s = rq+ε
and fs = (`λ)ε (`µ)rq,

∗ or there exists r ∈ N, r ≥ 0, and ε ∈ {0, 1} such that s =
rq + ε+ 1 and fs = (`λ)ε (`µ)rq+1.

In the work [68], J. Moulin-Ollagnier also gives a set of necessary conditions
for a system (1.1) to have an invariant algebraic curve. His set of necessary
conditions correspond to the value of the cofactor at singular points with
eigenvalues λ, µ such that λµ 6= 0 and λ/µ < 0 or λ/µ rationally inde-
pendent. His conditions coincide with the ones we give for these values of
the eigenvalues. However, his proof uses other techniques, such as Levelt’s
method.

Proof. The fact that a unique linear branch is defined in a given direction
depending on the value of the eigenvalues λ and µ plays a fundamental role
in this proof. To simplify notation, we consider the point (x0, y0) moved to
the origin (0, 0). Let us consider the polynomial f(x, y) and factorize it in
linear branches belonging to the ring of formal power series C[[x, y]].
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First we assume that either µ 6= 0 and λ and µ are rationally independent
or λ/µ < 0, or µ = 0, then f(x, y) can factorize at most in two linear
branches because only two linear branches are defined in a neighborhood
of (x0, y0). That is, f(x, y) can be f(x, y) = ϕλ ϕµ υ or f(x, y) = ϕλ υ or
f(x, y) = ϕµ υ with ϕλ, ϕµ, υ ∈ C[[x, y]], υ is a unit element, ϕλ = `λ + h.o.t.
and ϕµ = `µ +h.o.t. where h.o.t. denotes terms of order greater or equal than
two. These factorizations give the form of fs.

Now, we assume that µ 6= 0 and λ and µ are rationally dependent and
λ/µ > 1. In this case non-linear branches can also appear in the factorization
of f(x, y) in C[[x, y]]. However, all the irreducible non-linear branches that
may appear are of the form (`µ)q + h.o.t., where here h.o.t. means terms of
order greater or equal than q+1. Let s be the number of irreducible non-unit
linear branches which appear in the factorization of f(x, y) plus the number
of non-linear branches each one multiplied by its order q at the origin. We
have that s ∈ N and s ≥ 1. Since only one linear branch is defined with
tangent `λ by Theorem 3.2, we have that either f(x, y) = ϕλ ϕµ1

. . . ϕµr
υ,

or f(x, y) = ϕλ ϕµ ϕµ1
. . . ϕµr

υ, or f(x, y) = ϕµ ϕµ1
. . . ϕµr

υ or f(x, y) =
ϕµ1

. . . ϕµr
υ, with ϕλ a linear branch with tangent `λ, ϕµ a linear branch

with tangent `µ, ϕµi
a non linear branch with tangent (`µ)q and υ a unit

element. These factorizations give the described form of fs.
In the following theorem we assume the existence of an invariant alge-

braic curve f(x, y) = 0 irreducible in C[x, y] and such that f(x0, y0) = 0. We
study the possible existence of another invariant algebraic curve f̃(x, y) irre-
ducible in C[x, y], such that f and f̃ are relatively coprime and f̃(x0, y0) = 0.
We assume that this curve f̃(x, y) = 0 exists and we describe the form of
its tangents at (x0, y0), that is f̃s̃(x, y) = 0, depending on the tangents of
f(x, y) = 0 at this point.

Theorem 3.10 Let p0 be a singular point for equation (1.1) with associated
eigenvalues λ and µ, with λ 6= 0 and λ 6= µ. We assume that f = 0 and
f̃ = 0 are two coprime invariant algebraic curves irreducibles in C[x, y] for
system (1.1) such that f(p0) = f̃(p0) = 0. Let fs = 0 and f̃s̃ = 0 be the
equations of the tangents of these curves at p0.

• If either µ 6= 0 and λ and µ are rationally independent or λ/µ < 0, or
µ = 0, then

– if s = 2, then no such f̃(x, y) = 0 can exist.

– If s = 1 and f1 = `λ, then s̃ = 1 and f̃1 = `µ.
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– If s = 1 and f1 = `µ, then s̃ = 1 and f̃1 = `λ.

• If µ 6= 0 and λ and µ are rationally dependent and λ/µ > 0, we assume
that λ/µ > 1. Then there exists s̃ ∈ N, s̃ ≥ 1, such that

– If λ/µ = m with m ∈ N, m > 1, and system (1.1) is linearizable
in (x0, y0), then

∗ if fs = `λ (`µ)s−1, then f̃s̃ = (`µ)s̃.

∗ If fs = (`µ)s, then f̃s̃ = (`λ)ε (`µ)s̃−ε with ε ∈ {0, 1}.
– If λ/µ = m with m ∈ N, m > 1, and system (1.1) is non lineariz-

able in (x0, y0), then no such f̃ can exist.

– If λ/µ = p/q with p, q ∈ N, 1 < q < p, then

∗ if fs = `λ (`µ)s−1, then there exist r̃ ∈ N and ε ∈ {0, 1} such

that s̃ = rq + ε and f̃s̃ = (`µ)s̃.

∗ If fs = (`µ)s, then there exist r̃ ∈ N and ε, ε̃ ∈ {0, 1} such that

s̃ = rq + ε+ ε̃ and f̃s̃ = (`λ)ε̃ (`µ)s̃−ε̃.

Proof. The proof is a straightforward consequence of Theorem 3.2. For
instance, if λ and µ are rationally independent or λ/µ < 0 and s = 2, no
other f̃(x, y) can exist as long as it owns the described features since it would
define another linear branch in (x0, y0). The other cases use exactly the same
reasoning with the addition of the result given in Theorem 3.9.

In case of considering an invariant algebraic curve f(x, y) = 0 irreducible
in R[x, y] and (x0, y0) a real singular point with eigenvalues a±bi with b 6= 0,
we can reduce the number of possibilities.

Lemma 3.11 Let f(x, y) = 0 be an invariant algebraic curve irreducible in
R[x, y] and (x0, y0) a real singular point with eigenvalues a ± bi with b 6= 0,
then s = 2, f2 = `λ `µ, k(x0, y0) = λ + µ and no other invariant algebraic
curve f̃(x, y) = 0 irreducible in R[x, y] with f̃(x0, y0) = 0 can exist.

Proof. Let us consider the singular point (x0, y0) such that the matrix
A(x0, y0), with A(x, y) previously defined, has eigenvalues with non–null real
and imaginary part: λ = a + bi, µ = a− bi with a, b ∈ R and b 6= 0. Let us
consider a real, irreducible in R[x, y], invariant algebraic curve f(x, y) = 0
with cofactor k(x, y) and such that f(x0, y0) = 0. If this polynomial was ir-
reducible in the ring C[[x, y]] by Theorems 3.8 and 3.9 its tangents in (x0, y0)
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would be a0(x − x0) + b0(y − y0) with (−b0, a0) one of the eigenvectors of
A(x0, y0). The eigenvectors of A(x0, y0) have non–null imaginary part be-
cause A(x0, y0) is a matrix with real coefficients and eigenvalues with non–
null imaginary part. Hence, the coefficients of a0(x − x0) + b0(y − y0) have
non–null imaginary part, in contradiction to the fact that f(x, y) ∈ R[x, y].
Therefore, f(x, y) is a reducible element of C[[x, y]] and equals the product
of two complex conjugate branches. Its tangents in (x0, y0) equal the prod-
uct (a0(x − x0) + b0(y − y0))(ā0(x − x0) + b̄0(y − y0)). By the application
of Theorem 3.8, we have that the value of the cofactor in (x0, y0) equals the
sum of the two eigenvalues, that is k(x0, y0) = λ + µ = 2a. Theorem 3.10
shows that no other invariant algebraic curve can pass through (x0, y0).

Lemma 3.5 and Theorems 3.8, 3.9 and 3.10 give the possible values of the
cofactor k(x, y) of an invariant algebraic curve at a non-degenerate or ele-
mentary degenerate singular point (x0, y0) whose ratio of eigenvalues does not
equal one. Given an equation (1.1) of degree d, we can extend this equation
to CP(2). If p0 := [X0, Y0, Z0] is a singular point of the extended equation,
we can take local coordinates at this point and the hypothesis of Lemma
3.5 and Theorems 3.8, 3.9 and 3.10 are satisfied. We obtain, in this way, a
condition on the value at p0 of a polynomial k(x, y) of degree ≤ d−1 to be a
cofactor of an invariant algebraic curve. For an infinite point, the coefficients
of the cofactor also depend on the degree n of the curve. So, we also give
conditions on the degree of the algebraic curve. Therefore, the union of all
these conditions for each non-degenerate or elementary degenerate singular
point, finite or infinite, gives a set of necessary conditions on k(x, y) to be a
possible cofactor, and on the degree of the curve.

The following two lemmas also give conditions on a polynomial of degree
lower or equal than d−1 to be a cofactor, but associated with an exponential
factor instead of an invariant algebraic curve.

Lemma 3.12 Let g = exp{h/f} be an exponential factor for system (1.1)
with cofactor kg(x, y) and let (x0, y0) be a critical point such that f(x0, y0) 6=
0, then kg(x0, y0) = 0.

Proof. The left hand side of the defining equation of the exponential
factor

P (x, y)
∂g

∂x
(x, y) + Q(x, y)

∂g

∂y
(x, y) = kg(x, y) g(x, y)
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equals zero at (x0, y0) and since f(x0, y0) 6= 0, we have that g(x, y) is a non-
null well defined function in a neighborhood of this point. Hence, we deduce
that kg(x0, y0) = 0.

The following lemma is a generalization of Lemma 3.12 and gives the
form of an exponential factor for equation (1.1) in any chart of the extended
differential equation Ω = 0, where Ω = L(Y dZ − ZdY ) + M(ZdX −XdZ)
as formerly defined.

Lemma 3.13 Let g(x, y) = exp{φ(x, y)} be an exponential factor of an equa-
tion ω = 0, where ω = Q(x, y) dx−P (x, y) dy is a 1–form of degree d, where
φ(x, y) is either a polynomial or a rational function. Let

kg(x, y) := P (x, y)
∂φ

∂x
(x, y) + Q(x, y)

∂φ

∂y
(x, y)

be the cofactor of this exponential factor g and we define

KG(X,Y, Z) := Zd−1 kg

(

X

Z
,
Y

Z

)

, Φ(X,Y, Z) := φ

(

X

Z
,
Y

Z

)

.

Let [X0, Y0, Z0] ∈ CP(2) be a critical point of the 1-form Ω such that
Φ(X0, Y0, Z0) is well-defined (it is not a point vanishing its denominator)
then KG(X0, Y0, Z0) = 0.

Proof. We define G(X,Y, Z) := exp{Φ(X,Y, Z)}. We take local coordi-
nates at the point [X0, Y0, Z0]. At least one of X0, Y0 and Z0 is not null. We
first assume that Z0 6= 0 and we show how this result coincides with the one
given in Lemma 3.12. We assume, for instance, that Y0 6= 0 (if it is X0 6= 0
analogous reasonings work).

If Z0 6= 0, we define x0 = X0/Z0 and y0 = Y0/Z0. We have that (x0, y0)
is a critical point for the 1-form ω and g(x, y) = G(x, y, 1) is an exponential
factor with cofactor kg(x, y) = KG(x, y, 1). If Φ(X0, Y0, Z0) is well-defined
then φ(x, y) = Φ(x, y, 1) is well defined in (x0, y0) and the same proof of
Lemma 3.12 shows that kg(x0, y0) = 0 and then, KG(X0, Y0, Z0) = 0.

If Y0 6= 0, we define u0 = X0/Y0, v0 = Z0/Y0, u = X/Y and v = Z/Y .
We consider P̃ (u, v) = L(u, 1, v) − uM(u, 1, v), Q̃(u, v) = −vM(u, 1, v) and
Q̃(u, v) du − P̃ (u, v) dv = 0 is equation Ω = 0 in this local chart. The point
(u0, v0) is a critical point for this equation. We define φ̃(u, v) := Φ(u, 1, v) and
g̃(u, v) := G(u, 1, v), which is an exponential factor of system u̇ = P̃ (u, v),
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v̇ = Q̃(u, v), with cofactor k̃g(u, v) := KG(u, 1, v). Let us prove this state-
ment. We have that:

L(X,Y, Z)
∂Φ

∂X
(X,Y, Z) +M(X,Y, Z)

∂Φ

∂Y
(X,Y, Z) = KG(X,Y, Z),

for the definition of Φ and kg. Since Φ(X,Y, Z) is a homogeneous function
of degree 0, then

(

L(X,Y, Z) − X

Y
M(X,Y, Z)

)

∂Φ

∂X
(X,Y, Z)

−Z
Y
M(X,Y, Z)

∂Φ

∂Z
(X,Y, Z) = KG(X,Y, Z).

Taking local coordinates u = X/Y and v = Z/Y we deduce that

P̃ (u, v)
∂φ̃

∂u
(u, v) + Q̃(u, v)

∂φ̃

∂v
(u, v) = k̃g(u, v),

which implies that g̃(u, v) is an exponential factor for Q̃(u, v) du−P̃ (u, v) dv =
0 with cofactor k̃g(u, v). The same reasoning given in Lemma 3.12 shows that
k̃g(u0, v0) = 0 and then, KG(X0, Y0, Z0) = 0.

3.3 An application of the result: a Lotka-

Volterra system

Let us consider the following Lotka-Volterra system

ẋ = x(ax+ by + 1), ẏ = y(x+ y), (3.8)

with 0 < a < 1 and b > 1. This family of quadratic systems is shown to
have no Liouvillian first integral in [12]. However, once more, we prove this
fact in this section in order to show the power of Theorems 3.8, 3.9 and
3.10. Indeed, in [12] the integrability of the system (3.8) for all a, b ∈ R is
studied. We focus on parameters satisfying 0 < a < 1 and b > 1 because
in this parameter region the nature of the six singular points of the system
does not change and we can directly apply our results without considering
repetitive cases. Our aim is to show how easy computations show that no
other invariant algebraic curve different from x = 0 and y = 0 can exist for
system (3.8) with 0 < a < 1 and b > 1.
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Moreover, we have chosen this example to show that our method and
Levelt’s method do not coincide. All the quadratic Lotka-Volterra systems
are studied by J. Moulin Ollagnier in [68], where the Levelt’s method is
described. In this article, J. Moulin Ollagnier studies the integrability of
all the quadratic Lotka-Volterra systems using the Levelt’s method and he
encounters that system (3.8) with 0 < a < 1 and b > 1 cannot be studied
with this technique.

Theorem 3.14 System (3.8) with 0 < a < 1 and b > 1 has only two invari-
ant algebraic curves which correspond to the invariant straight lines x = 0
and y = 0.

Proof. We denote by kx(x, y) := ax+ by + 1 the cofactor of the invariant
straight line x = 0 and by ky(x, y) := x + y the cofactor of y = 0. Let us
consider the critical points of system (3.8) and its eigenvalues. The following
table also contains for a critical point pi, i = 1, 2, . . . , 6, whether the invariant
straight lines of the system pass through it or not. If an invariant straight
line passes through a critical point, the value of the associated cofactor at
this point is also given. For the infinite singular points we have taken local
coordinates (u1, v1) with u1 = X/Y and v1 = Z/Y for p4 and p5. We denote
by ku1

(u1, v1) := (a − 1)u1 + v1 + b − 1 and by kv1
(u1, v1) := −1 − u1 the

cofactors of the invariant straight lines u1 = 0 and v1 = 0, respectively. For
p6 we take local coordinates (u2, v2) with u2 = Y/X and v2 = Z/X and we
denote by ku2

(u2, v2) := (1−b)u2−v2+1−a and by kv2
(u2, v2) := −bu2−v2−a

the cofactors of the invariant straight lines u2 = 0 and v2 = 0, respectively.

• p1 = [0, 0, 1] has eigenvalues λ1 = 1 and µ1 = 0. Both x and y are null
at this point and kx(p1) = λ1, ky(p1) = µ1.

• p2 = [− 1
a
, 0, 1] has eigenvalues λ2 = − 1

a
and µ2 = −1. The polynomial

x does not vanish at this point but y does and ky(p2) = λ2.

• p3 = [1,−1, b−a] has eigenvalues λ3 = (1−a+
√

(1 + a)2 − 4b)/(2(a−
b)) and µ3 = (1− a−

√

(1 + a)2 − 4b)/(2(a− b)). No x nor y is null at
this point.

• p4 = [0, 1, 0] has eigenvalues λ4 = −1 and µ4 = b − 1. Both u1 and v1

are null at this point, ku1
(p4) = µ4 and kv1

(p4) = λ4.

• p5 = [1− b, a−1, 0] has eigenvalues λ5 = (b−a)/(a−1) and µ5 = 1− b.
Here, u1 is not null at this point but v1 is, and kv1

(p5) = λ5.



3.3 An application of the result: a Lotka-Volterra system 73

• p6 = [1, 0, 0] has eigenvalues λ6 = 1 − a and µ6 = −a. Both u2 and v2

are null at this point, ku2
(p6) = λ6 and kv2

(p6) = µ6.

We notice that these six singular points are always different in the range of
the parameters considered.

Assume that f(x, y) = 0 is an irreducible invariant algebraic curve of
degree n for system (3.8), different from x = 0 and y = 0 and with cofactor
k(x, y) := k00 + k10x + k01y. In local coordinates (u1, v1) this cofactor may
be written k(u1, v1) = (k10 − n)u1 + k00v1 + k01 − n and in local coordinates
(u2, v2) this cofactor becomes k(u2, v2) = (k01−bn)u2 +(k00−n)v2 +k10−an.

Now we apply Theorems 3.8, 3.9 and 3.10. It is clear that the curve
f = 0 must satisfy that f(p1) 6= 0, f(p4) 6= 0 and f(p6) 6= 0. Then k(p1) =
k(p4) = k(p6) = 0. The only polynomial of degree 1 which satisfies these
three conditions is k(x, y) := n(ax+ y).

At the focus point p3 we may have f(p3) 6= 0 or f(p3) = 0. If f(p3) 6= 0,
then k(p3) = 0 by Lemma 3.5. If f(p3) = 0 then k(p3) = µ3 + λ3 = 1−a

a−b
,

by Lemma 3.11. This last dichotomy can be codified by k(p3) = ε3
1−a
a−b

with
ε3 ∈ {0, 1}. This last linear equation gives n = ε3, from which we deduce
that if such f(x, y) = 0 exists, then it is an invariant straight line (n = 1).
Easy calculations show that there is no invariant straight line with cofactor
ax + y. We conclude that no invariant algebraic curve f(x, y) = 0 different
from x = 0 and y = 0 can exist.

At the light of this proof, we give a shorter one using Bézout’s Theorem
and our Theorem 3.10, which can be applied even for a wider range of the
parameters a and b. We only assume that b > 1. The invariant straight line
x = 0 contains the singular points p1, whose eigenvalues are 1 and 0, and
p4, whose eigenvalues are −1 and b − 1, and no other singular points. The
invariant straight line y = 0 also contains the point p1 an no other irreducible
invariant algebraic curve (different from x = 0 and y = 0) can contain this
point by virtue of Theorem 3.10. Analogously, the invariant straight line of
infinity z = 0 also contains p4 and if b > 1 no other irreducible invariant
algebraic curve (different from x = 0 and z = 0) can contain this point
by Theorem 3.10. If there exists an irreducible invariant algebraic curve
f(x, y) = 0 of degree n and different from x = 0 and y = 0, it must cut
the straight line x = 0 in n points of CP(2) by Bézout’s Theorem. These
n points are singular points of system (3.8). Hence, this curve f(x, y) = 0
cannot exist. Therefore, an alternative proof to Theorem 3.14 is completed.
We are grateful to professor C. Christopher who pointed out this proof.
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The following theorem is related to the Liouvillian integrability of system
(3.8).

Theorem 3.15 There is no Liouvillian first integral for system (3.8) with
0 < a < 1 and b > 1.

Proof. Assume that there is a Liouvillian first integral. By applying
Theorem 1.7 and Theorem 3.14, we conclude that there exists an inverse
integrating factor of the form

V (x, y) := exp

{

h(x, y)

xn1yn2

}

xc1yc2 ,

where h(x, y) ∈ R[x, y], n1, n2 ∈ N and c1, c2 ∈ R. We notice that, eventually,
h, n1, n2, c1 or c2 can be null.

Since p3 is a focus point for system (3.8) with 0 < a < 1 and b > 1,
and neither x nor y is null at this point, we have that V (p3) is a non-null
well-defined real number and, by continuity, there is a neighborhood of p3 in
which V has no zeros. So, the first integral computed from V is continuous
in a neighborhood of this focus point p3, which gives a contradiction. Hence,
no such first integral can exist.

The contents of this chapter (and Section 5.1 of Chapter 5) belong to the
paper entitled Necessary conditions for the existence of invariant algebraic
curves for planar polynomial systems, authored by J. Chavarriga, H. Giacomini

and M. Grau and accepted for publication in Bull. Sci. Math.

Abstract. This work deals with planar polynomial differential systems

ẋ = P (x, y), ẏ = Q(x, y) and its invariant algebraic curves. We give a set

of necessary conditions for a system to have an invariant algebraic curve.

These conditions correspond to the value of the cofactor at the singular

points of the system when considered in a compact space. In general, we

completely characterize the invariant algebraic curves for a given system.

We apply these results to determine the non Liouvillian integrability of

several families of quadratic systems.



Chapter 4

On the stability of periodic
orbits

As in the previous chapters, we consider planar polynomial differential sys-
tems, but in this chapter we can state the results in a wider domain, the
planar polynomial differentials systems defined by C1 functions in some open
set U ⊆ R

2. Obviously, planar polynomial differential systems as (1.1) are a
particular case defined over all the plane R

2.

In this chapter we consider a planar differential system:

ẋ = P (x, y), ẏ = Q(x, y), (4.1)

where P and Q are C1 functions in some open set U ⊆ R
2. We assume

that all the singular points of (4.1) are isolated. As for polynomial systems,
given a system (4.1), we can always consider its vector field representation
F(x, y) = (P (x, y), Q(x, y)).

In this chapter, we are concerned with the stability problem for periodic
orbits, which we have described in Subsection 1.2.2, and we give an alter-
native formula to the one given in Theorem 1.9 to study the stability of a
periodic orbit γ defined in an implicit way, as explained below. This is the
main result of this chapter and it is stated in Theorem 4.1 in the following
section. We can, therefore, distinguish the hyperbolicity of a limit cycle using
two different quantities.

We have already defined the notion of invariant curve for a planar poly-
nomial differential system and we can generalize this definition for a C1(U)
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system like (4.1) as a curve f(x, y) = 0 satisfying the same hypothesis and
following the identity (1.2).

Our main result in this chapter, namely Theorem 4.1, can only be applied
when the periodic orbit γ is given in an implicit way, that is, when there exists
an invariant curve f(x, y) = 0 such that γ ⊆ {(x, y) | f(x, y) = 0}.

In order to clarify the type of systems and limit cycles where we can apply
our result, let us consider the following C1 system defined in all R

2:

ẋ = (x+ y) cos(x) − y(x2 + xy + 2y2),

ẏ = (y − x)(cos(x) − y2) +
x2 + y2

2
sin(x),

(4.2)

which has y2−cos(x) = 0 as invariant curve. We define f(x, y) := y2−cos(x)
and we have that f ∈ C1(R2) and that ∇f(x, y) = (sin(x), 2y). Therefore,
there is no p ∈ R

2 such that both f(p) = 0 and ∇f(p) = 0. Moreover,
f(x, y) = 0 satisfies equation (1.2) with k(x, y) = 2y(x− y) − (x+ y) sin(x).
The divergence of this system is div(x, y) = −4y2 + 2 cos(x) − x sin(x) and
V (x, y) = (x2 + y2)f(x, y) is an inverse integrating factor. We denote by γn,
n ∈ Z, the oval of f(x, y) = 0 belonging to the strip −π/2 + 2πn ≤ x ≤
π/2 + 2πn. The oval γ0 is a hyperbolic stable limit cycle for system (4.2),
which can be shown just applying Theorem 1.9. We have, after some easy
computations, that

∮

γn

div = −4 arctan

(

x
√

cos(x)

) x = π/2 + 2πn

x = −π/2 + 2πn

which is zero when n 6= 0 and it is −4π for γ0. Each one of the other ovals
of f(x, y) = 0, γn with n 6= 0, belongs to the period annulus of a center
as it can be shown from the fact that the function H(x, y) = f(x, y)(x2 +
y2) exp{2 arctan(y/x)} is a first integral for system (4.2). Our result can be
applied for any of the periodic orbits γn of this example.

When considering a polynomial system, as far as we know, only algebraic
limit cycles are known in this implicit way.

We apply the result described in Theorem 4.1 for some distinguished
systems, in order to show that all the known algebraic limit cycles of a
quadratic system are hyperbolic. We give the proof the hyperbolicity of
these limit cycles in Section 5.2 of Chapter 5, where we also show another
feature of these systems.
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4.1 Statement and proof of Theorem 4.1

Theorem 4.1 We consider a system (4.1) and γ(t) a periodic orbit of period
T > 0. We assume that f : U ⊆ R

2 → R is an invariant curve with
γ ⊆ {(x, y) | f(x, y) = 0} and that k(x, y) is the C1 function given in (1.2),
that is, the cofactor of the invariant curve f(x, y) = 0. We assume that if
p ∈ U is such that f(p) = 0 and ∇f(p) = 0, then p is a singular point of
system (4.1). Then,

∫ T

0

k(γ(t)) dt =

∫ T

0

div(γ(t)) dt. (4.3)

In order to prove Theorem 4.1, we need to recall the definition and some
properties of the Poincaré map, defined for the periodic orbit γ. Let us
consider γ a periodic orbit with minimal period T > 0 for system (4.1) and
p0 ∈ γ. Let Uγ ⊆ U be a neighborhood of γ not containing any singular point
and Σ = {q ∈ Uγ | (q − p0) · F(p0) = 0}, where · denotes the scalar product
between the vectors q − p0 and F(p0). We have that Σ is a section of the
vector field F in a neighborhood of γ.

As stated and proved in pages 210 and 211 in [74], we have that there
exists a δ > 0 and a unique function τ : Σ → R, which is defined continuously
and differentiable for any q ∈ Σ ∩ Bδ(p0) such that τ(p0) = T and Φτ(q)(q) ∈
Σ. As before, Bδ(p0) is the ball of center p0 and radius δ. Then, for any
q ∈ Σ∩Bδ(p0), the function P(q) = Φτ(q)(q) is called the Poincaré map for γ
at p0. It is clear that fixed points of the Poincaré map, P(q) = q, give rise to
periodic orbits for system (4.1). Moreover, it can be shown that P : Σ → Σ
is a C1 diffeomorphism.

We notice that the derivative of P at p0 can be represented by a 2 × 2
matrix, which we denote by DP(p0). The following theorem, stated and
proved in [5] page 118, is very useful to establish the stability of γ.

Theorem 4.2 Let v be a non-null vector normal to F(p0). Then,

v ·DP(p0) = exp

(∫ T

0

div(γ(t)) dt

)

v. (4.4)



78 On the stability of periodic orbits

In order to show that the stability of γ is determined by the value of
v ·DP(p0), as stated in Theorem 1.9, we consider the displacement function
and we follow the reasoning of page 213 in [74]. For any q ∈ Σ ∩ Bδ(p0), we
have that q = p0 + sv, with s ∈ (−δ/|v|, δ/|v|). Since P(q) ∈ Σ, we have
that given s ∈ (−δ/|v|, δ/|v|), there exists a σ(s) ∈ R such that P(p0+sv) =
p0+σ(s)v. So, we have defined a C1 function σ : (−δ/|v|, δ/|v|) → R and the
displacement function is given by d : (−δ/|v|, δ/|v|) → R with d(s) = σ(s)−
s. It is clear that d(0) = 0, d′(s) = σ′(s) − 1 and v ·DP(p0 + sv) = σ′(s)v.
Since d(s) is C1, we have that the sign of d′(s) coincides with the sign of
d′(0) for |s| sufficiently small as long as d′(0) 6= 0. By mean value theorem,
we have that given |s| sufficiently small there exists a ξ ∈ (0, s) such that
d(s) = d′(ξ)s. Therefore, if d′(0) > 0, we have that d(s) > 0 for s > 0 and
d(s) < 0 for s < 0, which implies that the periodic orbit γ is an unstable
limit cycle. Similar reasonings show that if σ′(0) > 1 then γ is an unstable
limit cycle and if σ′(0) < 1 then γ is a stable limit cycle. Theorem 1.9 clearly
follows from Theorem 4.2 and the fact that σ′(0)v = v ·DP(p0).

Lemma 4.3 We consider a system (4.1), its associated vector field represen-
tation F(x, y) = (P (x, y), Q(x, y)) and f : U ⊆ R

2 → R a non-null C1(U)-
function. There exists a C1 function k(x, y) such that ∇f(q)·F(q) = k(q)f(q)
for any q ∈ U if, and only if, for any q ∈ U and any t ∈ R such that
Φt(q) ∈ U , the following identity is satisfied:

f(Φt(q)) = f(q) exp

(∫ t

0

k(Φs(q)) ds

)

. (4.5)

Proof. Assume that ∇f(q)·F(q) = k(q)f(q) for any q ∈ U . We fix a point
q ∈ U and we define ϕ(t) = f(Φt(q)) for any t ∈ R such that Φt(q) ∈ U . We
have that t belongs to an open interval (−εq, εq) with εq > 0 (and it may be
that εq = +∞). We have, using some of the properties of the flow and the
fact ḟ(Φt(q)) = k(Φt(q)) f(Φt(q)), that:

ϕ̇(t) = ∇f(Φt(q))·
dΦt

dt
(q) = ∇f(Φt(q))·F(Φt(q)) = ḟ(Φt(q)) = k(Φt(q)) ϕ(t).

We have that dϕ
dt

(t) = k(Φt(q)) ϕ(t) and ϕ(0) = f(q). Solving this linear

equation in the function ϕ(t) we get ϕ(t) = f(q) exp
(

∫ t

0
k(Φs(q)) ds

)

. As

we can consider the same reasoning for any q ∈ U , we obtain identity (4.5).
The reciprocal is proved by the same reasoning.
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Lemma 4.4 We consider a system (4.1) and γ(t) a periodic orbit of period
T > 0. We assume that f : U ⊆ R

2 → R is an invariant curve with
γ ⊆ {(x, y) | f(x, y) = 0} and that k(x, y) is the C1 function given in (1.2),
that is, the cofactor of the invariant curve f(x, y) = 0. We take any p0 in γ.
Then,

∇f(p0) ·DP(p0) = exp

(∫ T

0

k(γ(t)) dt

)

∇f(p0). (4.6)

Proof. We consider the Poincaré map defined in an interval of the straight
line Σ containing p0, P(q) = Φτ(q)(q). Since f(x, y) = 0 is an invariant curve
defined in U ⊆ R

2, it is clear that for any q ∈ U and any t ∈ R such that
Φt(q) ∈ U , identity (4.5) is satisfied as proved in Lemma 4.3. Hence,

f(P(q)) = f(q) exp

(

∫ τ(q)

0

k(Φs(q)) ds

)

,

and differentiating this identity with respect to q we get

∇f(P(q)) ·DP(q) = exp

(

∫ τ(q)

0

k(Φs(q)) ds

)

∇f(q) + f(q)

exp

(

∫ τ(q)

0

k(Φs(q))ds

)[

∫ τ(q)

0

(∇k) (Φs(q)) ·DΦs(q) ds+ k(P(q))∇τ(q)

]

,

where DP(q) and DΦs(q) stand for the Jacobian matrix with respect to q of
the functions P and Φs, respectively, in the point q.

We evaluate the previous identity in q = p0, taking into account that
f(p0) = 0 and τ(p0) = T , and we get identity (4.6).

Proof of Theorem 4.1. The vector ∇f(p0) is a non-null vector that is nor-
mal to the vector F(p0) since f(x, y) = 0 is an invariant curve that contains
γ, and p0 ∈ γ. The fact of ∇f(p0) to be a non-null vector is ensured by the
assumption that if p ∈ U is such that f(p) = 0 and ∇f(p) = 0, then p is a
singular point of system (4.1). Since p0 belongs to a periodic orbit, it cannot
be a singular point.
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Therefore, the vector v in the identity (4.4) of Theorem 4.2 can be re-
placed by ∇f(p0). Using the identity (4.6) of Lemma 4.4, we deduce that

exp

(∫ T

0

div(γ(t)) dt

)

= exp

(∫ T

0

k(γ(t)) dt

)

,

from which (4.3) follows.

In this chapter we prove that if γ is a periodic orbit of system (4.1) with
period T > 0 and such that γ ⊆ {(x, y) | f(x, y) = 0} where f(x, y) = 0 is an

invariant curve of the system, then
∫ T

0

(

∂P
∂x

+ ∂Q
∂y

)

(γ(t)) dt =
∫ T

0
k(γ(t)) dt.

We always assume that if p ∈ U is such that f(p) = 0 and ∇f(p) = 0, then
p is a singular point.

We deduce that if γ is hyperbolic, then
∫ T

0
k(γ(t)) dt is different from

zero. In a recent work of C. Christopher, J. Llibre and J.V. Pereira [35], this
integral also appears. In that work, the authors study the meaning of the
multiplicity for invariant algebraic curves in planar polynomial differential
systems. In their Definition 3.2 they say that the invariant algebraic curve
f(x, y) = 0 of a planar polynomial system has integrable multiplicity m with
respect to the system if m is the largest integer for which the following is
true: there are m− 1 exponential factors exp{gj/f

j}, j = 1, . . . ,m− 1, with
deg gj ≤ j deg f such that each gi is not a multiple of f .

In their Proposition 6.7, they consider a planar polynomial differential
system with a regular invariant algebraic curve f(x, y) = 0 with cofactor
kf (x, y) and they show that given any path γ on f = 0, if

∫

γ
kf dt = 0, then

the multiplicity of the curve f(x, y) = 0 is at least two.
Therefore, using our result, in case that we have an algebraic limit cycle

γ given by a regular invariant algebraic curve f(x, y) = 0, we deduce that if
γ is not hyperbolic, then the system has an exponential factor of the form
F = exp{h/f}.
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The major part of the contents of this chapter (and Section 5.2 of Chap-
ter 5) belong to the paper entitled On the stability of limit cycles for planar
differential systems, authored by H. Giacomini and M. Grau and which is a
preprint, 2004.

Abstract. We consider a planar differential system ẋ = P (x, y), ẏ =
Q(x, y), where P and Q are C1 functions in some open set U ⊆ R

2, and ˙=
d
dt . Let γ be a periodic orbit of the system in U . Let f(x, y) : U ⊆ R

2 → R

be a C1 function such that

P (x, y)
∂f

∂x
(x, y) + Q(x, y)

∂f

∂y
(x, y) = k(x, y) f(x, y),

where k(x, y) is a C1 function in U and γ ⊆ {(x, y) | f(x, y) = 0}. We
assume that if p ∈ U is such that f(p) = 0 and ∇f(p) = 0, then p is a
singular point.

We prove that
∫ T
0

(

∂P
∂x + ∂Q

∂y

)

(γ(t)) dt =
∫ T
0 k(γ(t)) dt, where T > 0 is the

period of γ. As an application, we take profit from this equality to show

the hyperbolicity of the known algebraic limit cycles of quadratic systems.
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Chapter 5

Two features of the known
quadratic systems with an
algebraic limit cycle

Our purpose in this chapter is to apply the results given in Chapters 3 and
4 for some distinguished systems, in this case the quadratic systems with an
algebraic limit cycle. By the way, we show two features of these systems which
are interesting by themselves. We will show that none of these quadratic
systems has a Liouvillian first integral and that all these limit cycles are
hyperbolic.

We consider all the families of quadratic systems with an algebraic limit
cycle defined by polynomials of degrees 2 and 4. It is shown in [42, 43, 44]
that there are no algebraic limit cycles of degree 3 for a quadratic system.
For a shorter proof of this fact, see [17, 26]. All the families we consider are
given in [27]. In [36], two examples of quadratic systems with an algebraic
limit cycle of degree 5 and 6 are described. These examples are birrationally
equivalent to one of the examples given in [27] and, since birrational trans-
formations do not change the Liouvillian integrability of a system or the
hyperbolic character of a limit cycle, we are also considering these examples
in our results.

We first describe all the families of quadratic systems with algebraic limit
cycles known by the literature.

The following result is due to Ch’in Yuan-shün [30] and characterizes the
algebraic limit cycles of degree 2 for a quadratic system.
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Theorem 5.1 [30] If a quadratic system has an algebraic limit cycle of
degree 2, then after an affine change of variables, the limit cycle becomes the
circle

Γ := x2 + y2 − 1 = 0. (5.1)

Moreover, Γ is the unique limit cycle of the quadratic system which can be
written in the form

ẋ = −y (ax + by + c) − (x2 + y2 − 1),
ẏ = x (ax + by + c),

(5.2)

with a 6= 0, c2 + 4(b+ 1) > 0 and c2 > a2 + b2.

In [42, 43, 44], Evdokimenko proves that there are no quadratic systems
having limit cycles of degree 3. An easier proof of this fact can be found in
the works [17, 26].

The study of algebraic limit cycles of degree 4 was initiated by A.I.
Yablonskii, who found the first family, see [94] and followed by V.F. Fil-
ipstov, see [46], who found another family affine-independent of the previous
one. A third family was found by J. Chavarriga [16] and in the work by J.
Chavarriga, J. Llibre and J. Sorolla [27] a fourth family is found and it is
proved that any quadratic system with an algebraic limit cycle of degree 4
is affine-equivalent to one of the four encountered families. The fact that
the algebraic limit cycle for these four families of quadratic systems does not
coexist with any other limit cycle is proved by J. Chavarriga, H. Giacomini
and J. Llibre in [22].

We summarize these four families of algebraic limit cycles for quadratic
systems in the following result.

Theorem 5.2 [27] After an affine change of variables the only quadratic
systems having an algebraic limit cycle of degree 4 are

(a) Yablonskii’s system

ẋ = −4abcx− (a + b)y + 3(a + b)cx2 + 4xy,
ẏ = (a + b)abx− 4abcy + (4abc2 − 3

2
(a + b)2 + 4ab)x2

+8(a + b)cxy + 8y2,
(5.3)

with abc 6= 0, a 6= b, ab > 0 and 4c2(a− b)2 + (3a− b)(a−3b) < 0. This
system has the invariant algebraic curve

(y + c x2)2 + x2 (x − a)(x − b) = 0, (5.4)

whose oval is a limit cycle for system (5.3).
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(b) Filipstov’s system

ẋ = 6 (1 + a)x + 2 y − 6 (2 + a)x2 + 12x y,
ẏ = 15 (1 + a) y + 3 a (1 + a)x2 − 2 (9 + 5 a)x y + 16 y2,

(5.5)
with 0 < a < 3

13
. This system has the invariant algebraic curve

3(1 + a)(a x2 + y)2 + 2 y2(2 y − 3(1 + a)x) = 0, (5.6)

whose oval is a limit cycle for system (5.5).

(c) Chavarriga’s system

ẋ = 5x + 6x2 + 4(1 + a)x y + a y2,
ẏ = x + 2 y + 4x y + (2 + 3 a) y2,

(5.7)

with −71+17
√

17
32

< a < 0 has the invariant algebraic curve

x2 + x3 + x2 y + 2 a x y2 + 2 a x y3 + a2 y4 = 0, (5.8)

whose oval is a limit cycle for system (5.7).

(d) Chavarriga, Llibre and Sorolla’s system

ẋ = 2 (1 + 2x − 2 a x2 + 6x y),
ẏ = 8 − 3 a − 14 a x − 2 a x y − 8 y2,

(5.9)

with 0 < a < 1
4

has the invariant algebraic curve

1

4
+ x − x2 + a x3 + x y + x2 y2 = 0, (5.10)

whose oval is a limit cycle for system (5.9).

Furthermore, in [27] it is proved that the curve (5.4) has genus 0 and the
curves (5.6), (5.8) and (5.10) have genus 1. We recall that the genus G of an
algebraic curve is defined by G = 1

2
(n − 1)(n − 2) − (δ + κ) where n is the

degree of the irreducible polynomial which defines the curve, δ is the number
of nodes (ordinary double points) and κ is the number of cusps (double points
such that the tangent vector reverses sign as the curve is transversed). See
[48, 92] for further information on planar algebraic curves.
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In a work due to C. Christopher, J. Llibre and G. Świrszcz [36] two
families of quadratic systems with an algebraic limit cycle of degrees five and
six, respectively, are given. These two families are constructed by means of
a birrational transformation of system (5.9). As defined in the introductory
Chapter 1, a birrational transformation is a rational change of variables such
that its inverse is also rational. Moreover, they prove that there is also a
birrational transformation which converts Yablonskii’s system (5.3) into the
system with a limit cycle of degree 2, (5.2). At the time of the composition of
this thesis, no other algebraic limit cycles for quadratic systems are known.

5.1 The first integral is not Liouvillian

In order to prove that none of the aforementioned quadratic systems with an
algebraic limit cycle has a Liouvillian first integral, we only need to study
the integrability of systems (5.2), (5.5), (5.7) and (5.9). All the other known
cases are birrationally equivalent to one of these ones and if one of them has
a Liouvillian first integral, then the birrational transformation of this first
integral is a Liouvillian first integral for the transformed system. Therefore,
since we will show that the systems (5.2), (5.5), (5.7) and (5.9) do not have
a Liouvillian first integral, we conclude that none of the quadratic systems
with an algebraic limit cycle, known until the moment of composition of this
thesis, has a Liouvillian first integral.

We first state and proof the following theorem, which is a consequence of
the results stated in Chapter 3.

Theorem 5.3 Each one of the systems (5.2), (5.3), (5.5), (5.7) and (5.9)
has only one invariant algebraic curve, when the limit cycle exists.

Theorem 5.3 is proved using analogous reasonings for each system (5.2), (5.5),
(5.7) and (5.9). Since system (5.3) is birrationally equivalent to system (5.2),
then we do not need to study it.

The computation of the coordinates and nature of each singular point
and the study of all the possibilities due to Theorems 3.8, 3.9 and 3.10 is
easy but long. We only explicit these computations for systems (5.2) and
(5.5), which exhaustively show all the encountered tricks.

Proof [for system (5.5)]. We first list all the singular points (finite and
infinite) and the type they belong to, depending on their ratio of eigenvalues.
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The singular point pi has associated eigenvalues λi and µi, i = 1, 2, . . . , 7.
We always assume that the parameter of the system belongs to the interval
in which the limit cycle exists, that is, 0 < a < 3

13
. We also point out that

whether f0(pi) = 0 or not, where f0 = 0 is the algebraic curve given in (5.6).
In case f0(pi) = 0 we give the value of k0(pi), where k0(x, y) is the cofactor of
f0(x, y) = 0. For the singular points at infinity (Z0 = 0), we notice that all of
them have the coordinate Y0 6= 0, so local coordinates (u, v), where u = X/Y
and v = Z/Y , are taken at these points. The system in coordinates (u, v) is:

u̇ = −4u + 2 v + 2 (2a+ 3)u2 − 9(1 + a)uv − 3 a (1 + a)u3,
v̇ = v(−16 + 2 (9 + 5a)u− 15 (1 + a) v − 3 a (1 + a)u2).

(5.11)

We denote by kv(u, v) = −16 + 2 (9 + 5a)u − 15 (1 + a) v − 3 a (1 + a)u2

the cofactor of the invariant straight line v = 0. The curve f0 = 0 in these
coordinates is given by f0(u, v) = 3 a2 (1 + a)u4 + 6 a (1 + a)u2v + 3 (1 +
a) v2 − 6 (1 + a)uv + 4 v and its cofactor is k0(u, v) = −2(8 − 4 (3 + 2a)u+
15 (1 + a) v + 6 a (1 + a)u2).

We list all the singular points of equation (5.5):

- p1 = [0, 0, 1] is a node point with λ1 = 6(1 + a), µ1 = 15(1 + a),
f0(p1) = 0 and k0(p1) = 2µ1.

- p2 = [20(1 + a), 15(1 + a)2, 8(1 − a)] is a focus point with f0(p2) 6= 0.

- p3 = [2(a − w1),−18 − 33a − 16a2 − (3 + 2a)w1, 24(a + 1)] is a node
point with f0(p3) = 0 and k0(p3) = λ3.

- p4 = [2(a + w1),−18 − 33a − 16a2 + (3 + 2a)w1, 24(a + 1)] is a saddle
point with f0(p4) = 0 and k0(p4) = λ4.

- p5 = [0, 1, 0] is a node point with f0(p5) = 0 and k0(p5) = kv(p5) = −16.

- p6 = [3 + 2a + w2, 3a(a + 1), 0] is a saddle point with f0(p6) 6= 0 and
kv(p6) = λ6.

- p7 = [3 + 2a − w2, 3a(a + 1), 0] is a saddle point with f0(p7) 6= 0 and
kv(p7) = λ7.

We have used the notation w1 =
√

36 + 72a+ 37a2 and w2 =
√

9 − 8a2.
Assume that there is another invariant algebraic curve f(x, y) = 0 with

f(x, y) ∈ R[x, y] which we suppose to be irreducible in R[x, y] and the poly-
nomials f0(x, y) and f(x, y) relatively coprime. We denote by k(x, y) :=
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k00 + k10x+ k01y its cofactor. Let n be the degree of the polynomial f(x, y),
then its corresponding cofactor for the system with coordinates (u, v) is
k(u, v) = k01−16n+(k10 +2(9+5a)n)u+(k00−15(1+a)n)v−3a(1+a)nu2.

Let us consider the singular points for which the ratio of the eigenvalues
is either rationally independent or negative, that is, p2, p4, p6 and p7. Let us
consider one of these points, say pi with i = 2, 4, 6, 7. The invariant algebraic
curve f = 0 either satisfies f(pi) 6= 0 or f(pi) = 0. If f(pi) 6= 0 then k(pi) = 0
by Lemma 3.5. On the other hand, if f(p2) = 0 then k(p2) = λ2 + µ2 by
Lemma 3.11. If f(p4) = 0, then k(p4) = µ4 because we have that f0(p4) = 0
and k0(p4) = λ4, and we apply Theorems 3.8, 3.9 and 3.10. Analogously,
if f(p6) = 0 then k(p6) = µ6 because kv(p6) = λ6, and if f(p7) = 0 then
k(p7) = µ7 because kv(p7) = λ7.

We codify these conditions by the following equations k(p2) = ε2(λ2+µ2),
k(p4) = ε4µ4, k(p6) = ε6µ6 and k(p7) = ε7µ7, where εi ∈ {0, 1}, i = 2, 4, 6, 7.
These equations give a total of sixteen cases to study.

We solve these four linear equations for k00, k10, k01 and n and we get:

n =
1

6(a2 − 1)(9 + 11a)

[

(−18 + 48a + 118a2 + 52a3 + (26a2 + 20a

− 6)w1) ε2 + (72 + 72a − 70a2 − 74a3 + (24 + 2a − 26a2)w1) ε4

+ (−27a− 51a2 − 22a3 + (18 + 49a + 33a2)w2 − (9 + 11a)w1

+ (9 + 11a)w1w2) ε6 + (− 27a− 51a2 − 22a3

− (18 + 49a + 33a2)w2 − (9 + 11a)w1 − (9 + 11a)w1w2) ε7
]

.

For each one of the cases εi ∈ {0, 1}, i = 2, 4, 6, 7, we have that n is an
algebraic function of the parameter a. This algebraic function can be studied
numerically without loss of precision, due to its simplicity. This study for
each value of εi gives that there is no natural number in the range of the
function n(a) when 0 < a < 3/13, (except in two cases which will be carefully
remarked) and, hence, no invariant algebraic curve f(x, y) = 0, different from
f0(x, y) = 0, can exist. However, we give a rigorous algebraic proof of this
fact, which can be obtained from the characteristics of the function n(a).

We differentiate the function n(a) with respect to a and we get a rational
function of the form

∂n

∂a
=

α0(a) + α1(a)w1 + α2(a)w2 + α3(a)w1w2

(a2 − 1)2(9 + 11a)2(8a2 − 9)(37a2 + 72a+ 36)
,

where αi(a) are polynomials in a. We notice that the denominator of this
expression is strictly negative for a ∈ (0, 3/13). Let us consider the lowest
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degree polynomial in a which has the numerator as a factor. We denote it
by N(a). We encounter that N(a) is a polynomial of degree 16 in a. We
compute it for any of the possible values εi ∈ {0, 1}, i = 2, 4, 6, 7, and we
prove that N(a) has a strictly defined sign except when εi = 1 for all i or
when εi = 0 for all i.

In the other fourteen cases, N(a) is a polynomial with definite sign in the
interval a ∈ (0, 3/13), which can be easily seen by Sturm’s algorithm. For
instance, when {ε2, ε4, ε6, ε7} = {1, 1, 1, 0}, we get

N(a) = (a− 1)4 (a+ 1)2 (59049 + 389286 a + 1048059 a2

+ 1479654 a3 + 1158795 a4 + 478608 a5 + 81649 a6),

which is obviously strictly positive when a ∈ (0, 3/13).
Therefore, the function n is a strictly increasing or decreasing function

of a. We compute its value in a = 0 and a = 3/13 for the fourteen cases
and we deduce that there is no natural number in the range of this function
except for two cases which correspond to {ε2, ε4, ε6, ε7} = {0, 1, 0, 1} and
{ε2, ε4, ε6, ε7} = {0, 0, 0, 1}. Let us particularly study these cases.

In the case {ε2, ε4, ε6, ε7} = {0, 1, 0, 1}, the function n(a) can be seen to be
strictly increasing in the interval a ∈ (0, 3/13) by the described method. We
have n(0) = 1 and n(3/13) = −73 − 13

√
41 + 7

√
161 + 3

√
6601 ' 2.754985.

So, there is a value a∗ ∈ (0, 3/13) such that n(a∗) = 2. We notice that
we have computed the cofactor for this case. Straightforward computations
show that system (5.5) has no invariant conic. These easy computations
correspond to a linear system of equations on the coefficients of a conic.

In the case {ε2, ε4, ε6, ε7} = {0, 0, 0, 1}, the function n(a) can be seen to
be strictly increasing in the interval a ∈ (0, 3/13), n(0) = 5 and n(3/13) =
(9+13

√
41+7

√
161+3

√
6601)/64 ' 6.6375. So, there is a value a∗1 ∈ (0, 3/13)

such that n(a∗1) = 6. Let us consider the singular point p3 which is a node
point with λ3 < µ3 < 0. We deduce the equation k(p3) = ε3µ3 + (s3 − ε3)λ3,
where ε3 ∈ {0, 1} and s3 is an integer number with s3 ≥ ε3. We notice that
we have the cofactor k(x, y) and, once evaluated in p3, we have a condition
on ε3, s3 and a. When ε3 = 0, we can compute s3(a) from this equation and
we have that for a ∈ (0, 3/13) there is no integer number in the range on this
function. When ε3 = 1, we compute s3(a) from this equation and we have
that there is an a∗2 ∈ (0, 3/13) for which s(a∗2) = 3. An easy computation
using resultants shows that a∗1 6= a∗2.

We consider the case when εi = 1 for i = 2, 4, 6, 7, then N(a) ≡ 0 and
n ≡ −1. So, no invariant algebraic curve f(x, y) = 0 can exist in this case.
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In case εi = 0 for i = 2, 4, 6, 7, we have that N(a) ≡ 0 and n ≡ 0. So, no
invariant algebraic curve f(x, y) = 0 can exist in this case either.

The non-existence of the invariant algebraic curve f(x, y) = 0 has been
shown in the sixteen possible cases given by εi ∈ {0, 1}, i = 2, 4, 6, 7.

Proof [for system (5.2)]. We consider system (5.2) with the invariant
algebraic curve f0(x, y) = 0 defined by f0(x, y) := x2 + y2 − 1 and with
cofactor k0(x, y) = −2x. System (5.2) depends on three parameters a, b and
c which satisfy a 6= 0, c2 + 4(b + 1) > 0 and c2 > a2 + b2 for the existence
of the limit cycle. In order to show that there is no other invariant algebraic
curve, different from f0(x, y) = 0, we study two cases in which the nature of
the singular points changes, that is, b < −1 and b ≥ −1. We do not need
to study all the singular points since only some of them are used. As before,
the singular points at the line of infinity satisfy that Y0 6= 0 so we take local
coordinates u = X/Y and v = Z/Y at these points. System (5.2) with local
coordinates (u, v) is

u̇ = −(1 + b) − au− cv − (1 + b)u2 + v2 − au3 − cu2v,
v̇ = −uv(b+ au+ cv).

(5.12)

The cofactor of the invariant straight line v = 0 is kv(u, v) = −u(b+au+cv).

Assume b < −1 and consider the following three singular points, which
correspond to the three singular points at the line of infinity.

- p5 = [−(1 + b), a, 0], with eigenvalues λ5 = −(1 + b)/a and µ5 =
−(a2 + (1 + b)2)/a, so it is a saddle point. At this point f0(p5) 6= 0 and
kv(p5) = λ5.

- p6 = [i, 1, 0] with eigenvalues λ6 = 2(a−(b+1)i) and µ6 = a−bi, so the
ratio λ6/µ6 is not a real number. At this point f0(p6) = 0, k0(p6) = λ6

and kv(p6) = µ6.

- p7 = [−i, 1, 0] with eigenvalues λ7 = 2(a + (b + 1)i) and µ7 = a + bi,
so the ratio λ7/µ7 is not a real number. At this point f0(p7) = 0,
k0(p7) = λ7 and kv(p7) = µ7.

Let f(x, y) = 0 be an invariant algebraic curve of degree n of system (5.2)
with cofactor k(x, y) := k00 + k10x + k01y such that the polynomials f(x, y)
and f0(x, y) are relatively coprime, with f(x, y) ∈ R[x, y] and irreducible
in R[x, y]. The cofactor of this irreducible curve in local coordinates (u, v)
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is k(u, v) = k01 + (k10 − bn)u + k00v − anu2 − cnuv. By Theorem 3.10 we
have that the only possibility is f(p6) 6= 0 and f(p7) 6= 0. Therefore, by
Lemma 3.5 we have that k(p6) = k(p7) = 0. In addition, the intersection
of the curve f = 0 and the invariant straight line v = 0 must be one of
the singular points, and the only possibility is that f(p5) = 0. Since p5 is
a saddle point and kv(p5) = λ5, by Theorems 3.8, 3.9 and 3.10, we get the
equation k(p5) = µ5. The combination of these three equations gives n = 1
and straightforward computations show that there is no invariant straight
line for this system.

Assume that b ≥ −1 and consider the same three singular points at
infinity. But, p5 is a node point in this case. Let us now consider the
following two finite singular points.

- p3 = [−ac + b
√
a2 + b2 − c2,−bc − a

√
a2 + b2 − c2, a2 + b2] which is a

complex point with eigenvalues λ3 = 2(ac − b
√
a2 + b2 − c2)/(a2 + b2)

and µ3 =
√
a2 + b2 − c2, whose ratio is never a real number. At this

point f0(p3) = 0 and k0(p3) = λ3.

- p4 = [−ac − b
√
a2 + b2 − c2,−bc + a

√
a2 + b2 − c2, a2 + b2] which is a

complex point with eigenvalues λ4 = 2(ac + b
√
a2 + b2 − c2)/(a2 + b2)

and µ4 = −
√
a2 + b2 − c2, whose ratio is never a real number. At this

point f0(p4) = 0 and k0(p4) = λ4.

Assume that there is another invariant algebraic curve f(x, y) = 0 with
cofactor k(x, y) as in the previous case. As before, we have that k(p6) =
k(p7) = 0. Since the polynomial f(x, y) is assumed to be real, the behavior
of the curve f(x, y) = 0 must coincide at the points p3 and p4. So, either
f(p3) 6= 0 and f(p4) 6= 0 and then k(p3) = k(p4) = 0 or f(p3) = f(p4) = 0
and then k(p3) = µ3 and k(p4) = µ4. This condition can be codified by
k(p3) = ε3µ3 and k(p4) = ε3µ4, with ε3 = {0, 1}.

If ε3 = 0, the resolution of these four linear equations on the coefficients
of k(x, y) and on n give that n = 0, so no other invariant algebraic curve
exists in this case.

If ε3 = 1, the resolution of these four linear equations give n = 1 and easy
computations show that there is no invariant straight lines for system (5.2).

Theorem 5.3 is crucial in order to prove the following result. In view
of Theorem 1.7 the information relating a polynomial system with its in-
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variant algebraic curves and exponential factors gives the Liouvillian or non
Liouvillian integrability of the system.

Theorem 5.4 None of the systems (5.2), (5.3), (5.5), (5.7) and (5.9) has a
Liouvillian first integral.

Proof. Theorem 5.3 states that each of these systems only has one invari-
ant algebraic curve, namely f0(x, y) = 0. Assume that there is a Liouvillian
first integral, then, by Theorem 1.7, we have that it has an inverse integrating
factor of the form

V (x, y) = exp

{

h(x, y)

f0(x, y)n

}

f0(x, y)c,

where h(x, y) ∈ R[x, y], n ∈ N and c ∈ R. We eventually may have that
h(x, y) is constant and/or n = 0 and/or c = 0. The form of this inverse
integrating factor is given by Theorem 1.7 and the fact that the only invari-
ant algebraic curve of the system is f0(x, y) = 0. All these systems have a
strong focus point in the region bounded by the limit cycle, namely p. For
any of them it is easy to see that f0(p) 6= 0, for the values of the parameters
in which the limit cycle exists. Then, V (p) 6= 0 and, hence, the first integral
constructed by this inverse integrating factor is continuous in a neighborhood
of this focus point p. But, a first integral cannot be continuous in a neigh-
borhood of a focus point without being constant on all the neighborhood.
We have, then, a contradiction and we deduce that no such Liouvillian first
integral can exist.

5.2 Hyperbolicity of the limit cycles

The fact of the limit cycle of degree 2 being hyperbolic is stated in [95] (see
pages 256–258) following the proof of [30]. As a consequence, and taking into
account the forthcoming Lemma 5.6, one of the limit cycles of degree 4 (the
one due to Yablonskii) is also hyperbolic, because this limit cycle of degree 4
is birrationally equivalent to the one of degree 2, as it is shown in [36]. Our
contribution is the proof of the hyperbolicity of the other known limit cycles
of quadratic systems.

The following lemmas show that the birrational transformations do not
change the hyperbolicity character of a limit cycle. In the same way as in
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Chapter 4, we state the results for planar differential systems defined in the
class of C1(U) functions, where U ⊆ R

2 is some open set, like system (4.1).
Nevertheless, we will use them only for polynomial systems like (1.1), which
are a particular case.

Lemma 5.5 We consider a differential system (4.1) and a change of vari-
ables x = F (u, v) and y = G(u, v), where F,G are C2 functions in U . We
denote by u̇ = R(u, v), v̇ = S(u, v) the transformed differential system. Let

J(u, v) :=
∂F

∂u
(u, v)

∂G

∂v
(u, v) − ∂F

∂v
(u, v)

∂G

∂u
(u, v),

be the jacobian of the transformation. Then,

∂P

∂x
(F (u, v), G(u, v)) +

∂Q

∂y
(F (u, v), G(u, v)) =

∂R

∂u
(u, v) +

∂S

∂v
(u, v) +

+
1

J(u, v)

(

∂J

∂u
(u, v)R(u, v) +

∂J

∂v
(u, v)S(u, v)

)

.

(5.13)

Lemma 5.5 is a computational result whose proof is clear after some easy
manipulations. We use it to prove the following result which states that the
value of the integral of the divergence on the limit cycle does not change
under transformations of dependent variables.

Lemma 5.6 We consider a differential system (4.1) with a periodic orbit γ
of period T > 0 and a change of variables x = F (u, v) and y = G(u, v) which
is well-defined in a neighborhood of γ. We denote by u̇ = R(u, v), v̇ = S(u, v)
the transformed differential system and by ϑ the corresponding periodic orbit.
Then,

∫ T

0

(

∂P

∂x
+
∂Q

∂y

)

(γ(t)) dt =

∫ T

0

(

∂R

∂u
+
∂S

∂v

)

(ϑ(t)) dt.

Proof. Using the same notation as in Lemma 5.5, we have that the inte-

gral
∫ T

0

(

∂P
∂x

+ ∂Q
∂y

)

(γ(t)) dt becomes, under the transformation of dependent

variables x = F (u, v) and y = G(u, v),
∫ T

0

(

∂P

∂x
(F (u, v), G(u, v)) +

∂Q

∂y
(F (u, v), G(u, v))

)

(ϑ(t)) dt
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which, by Lemma 5.5, equals to:

∫ T

0

(

∂R

∂u
(u, v) +

∂S

∂v
(u, v)

)

(ϑ(t)) dt+

+

∫ T

0

1

J(u, v)

(

∂J

∂u
(u, v)R(u, v) +

∂J

∂v
(u, v)S(u, v)

)

(ϑ(t)) dt.

We notice that the integrand of the second integral in the former expres-
sion can be rewritten as d(J(u, v))/J(u, v) and, since the change of variables
is well defined in a neighborhood of γ, we have that this expression is a
well defined, exact 1-form which is integrated over the closed curve ϑ, so
∮

ϑ
d(J(u, v))/J(u, v) = 0.

Therefore, in order to prove that all these families of limit cycles are
hyperbolic, we only need to study the stability of the limit cycles of systems
(5.5), (5.7) and (5.9). The hyperbolicity of the two limit cycles described in
[36] is shown by the fact that they are birrationally equivalent to (5.9).

Theorem 5.7 Each one of the limit cycles of systems (5.5), (5.7) and (5.9)
is hyperbolic.

Proof. In order to prove the hyperbolicity of the limit cycles of systems
(5.5), (5.7) and (5.9) we use the same process for all of them. These systems
depend on a parameter a which belong to a certain open interval when the
limit cycle γ exists. Hence, the integral of the divergence of the system on
the limit cycle is a function of this parameter a, which we denote by D(a).
We denote by T the period of the limit cycle. Moreover, using Theorem 4.1,
we have that:

D(a) =

∫ T

0

div(γ(t)) dt+ w

(∫ T

0

div(γ(t)) dt−
∫ T

0

k(γ(t)) dt

)

,

where k is the cofactor of the invariant algebraic curve containing the limit
cycle and w is any real number.

We show that the function D(a) has no zero when a belongs to the interval
of existence of limit cycle by choosing an adequate w ∈ R and parameterizing
the limit cycle γ. We notice that other parameterizations may make the com-
putations easier or more difficult, but we are not concerned with this fact.
The way of choosing the adequate value of w is purely heuristic, although we
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expect that this choice is related with some geometric property.

Hyperbolicity of the limit cycle given by the algebraic curve (5.10) for
system (5.9).
The stability of the limit cycle γ, as stated in Theorem 1.9, is given by the
following function of the parameter a of the system, D(a) :=

∫ T

0
div(γ(t)) dt,

where div(x, y) = 2(2−5ax−2y) is the divergence of system (5.9) and T > 0
the period of the limit cycle. By Theorem 4.1, we have that

∫ T

0

div(γ(t)) dt =

∫ T

0

k(γ(t)) dt,

where k(x, y) = 4(2 − 3ax + 2y) is the cofactor of the invariant algebraic
curve (5.10). So, given any real number w, we have that:

D(a) =

∫ T

0

div(γ(t)) dt+ w

∫ T

0

(div − k)(γ(t)) dt

=

∫ T

0

((1 + w)div − wk) (γ(t)) dt.

We consider the following parameterization of the oval of the algebraic curve
(5.10):

x(τ) = τ, y±(τ) =
−1 ± 2

√

(−a)τ(τ − τ1)(τ − τ2)

2τ
, (5.14)

where τ1 = 1−
√

1−4a
2a

, τ2 = 1+
√

1−4a
2a

and the parameter τ ∈ (τ1, τ2). The
positive sign y+(τ) gives a half of the oval and the negative sign y−(τ) the
other half. One of the endpoints of both parameterizations is (x1, y1) =

(1−
√

1−4a
2a

,−1+
√

1−4a
4

) and the other endpoint is (x2, y2) = (1+
√

1−4a
2a

, −1+
√

1−4a
4

).

We have that the vector field in (x1, y1) is (0, 6
√

1 − 4a) and in (x2, y2) is
(0,−6

√
1 − 4a), so the flow on the limit cycle is clockwise. The line 2ax = 1

cuts the limit cycle in two points with ordinates ±
√

1−4a
2

− a, which are

given respectively by y±(1/2a). We have the following relation between the
differentials: dτ = P (x(τ), y±(τ)) dt where P (x, y) = 2(1 + 2x− 2ax2 + 6xy).
Then,

D(a) =

∫ T

0

((1 + w) div − wk) (γ(t)) dt
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=

∫ τ2

τ1

(

((1 + w) div − wk)

P

)

(τ, y+(τ)) dτ +

+

∫ τ1

τ2

(

((1 + w) div − wk)

P

)

(τ, y−(τ)) dτ

=

∫ τ2

τ1

[(

((1 + w) div − wk)

P

)

(τ, y+(τ))

−
(

((1 + w) div − wk)

P

)

(τ, y−(τ))

]

dτ.

For w = −3 and substituting by the parameterization, we get,

D(a) = 8

∫ τ2

τ1

√

aτ(τ − τ1)(τ2 − τ)

τ(1 + 8τ + aτ 2)
dτ.

Since τ1 > 0 and τ2 > τ1 for any a ∈ (0, 1/4) and the integrand

√
aτ(τ−τ1)(τ2−τ)

τ(1+8τ+aτ2)

is also strictly positive and well defined for any τ ∈ (τ1, τ2) and a ∈ (0, 1/4),
we have that D(a) > 0 for all a ∈ (0, 1/4), which implies that the limit cycle
in system (5.9) is hyperbolic (and unstable).

Hyperbolicity of the limit cycle given by the algebraic curve (5.8) for sys-
tem (5.7).
As before, in order to determine the stability of the limit cycle γ, we consider
the function D(a) :=

∫ T

0
div(γ(t)) dt, where div(x, y) = 7 + 16x+ 2(4 + 5a)y

is the divergence of system (5.7). Using Theorem 4.1, we get that

D(a) =

∫ T

0

((1 + w)div − wk) (γ(t)) dt

for any w ∈ R and where k(x, y) = 2(5 + 9x + (5 + 6a)y) is the cofactor of
the invariant curve (5.8) for system (5.7). We define g(a, τ) := (1 − τ)2 +
4aτ 2(τ + 1) and the following parameterization for the oval of (5.8):

x±(τ) =
1 − τ + 2aτ 2 ±

√

g(a, τ)

2aτ 3(2 − aτ)
, y±(τ) =

1 − τ + 2aτ 2 ±
√

g(a, τ)

2aτ 2(aτ − 2)
,

where τ ∈ (τ1, τ2) with τ1 < τ2 the two biggest roots of the polynomial
g(a, τ) in τ . We notice that g(a, 0) = 1 > 0, g(a, 1) = 8a < 0, g(a, (3 +√

17)/2) = 4(29 + 7
√

17)(a − −71+17
√

17
32

) > 0 and the coefficient of degree 3



5.2 Hyperbolicity of the limit cycles 97

in τ for g is 4a < 0, when a belongs to the interval (−71+17
√

17
32

, 0) of existence
of limit cycle. Hence, the polynomial g(a, τ) has three distinct real roots

0 < τ0 < 1 < τ1 < (3 +
√

17)/2 < τ2 in τ for any a ∈ (−71+17
√

17
32

, 0).

In Figure 5.1, we show the values of a and τ of existence of limit cycle,
this is, the pointed region R. The curve g(a, τ) = 0 gives the value of both
roots τ1 and τ2.

Figure 5.1: Roots τ1 and τ2 for a ∈ (−71+17
√

17
32

, 0).

When a = α(τ) with α(τ) = − (1−τ)2

4τ2(1+τ)
, we have that g(α(τ), τ) ≡ 0. That

is, the function α(τ) is defined implicitly by g(α(τ), τ) ≡ 0. This function is

the inverse of τ1(a) and τ2(a) for a ∈ (−71+17
√

17
32

, 0).

For this value of a = α(τ), we have x±(τ) = 4(1+τ)
(τ−1)(1+3τ)

, which is strictly

decreasing in τ for τ > 1 and y±(τ) = −4τ(1+τ)
(τ−1)(1+3τ)

, which is strictly increasing

in τ for τ > 1, so, in the endpoints we have that x±(τ1) > x±(τ2) and y±(τ1) <

y±(τ2). Moreover, x+(τ)−x−(τ) =
√

g

aτ3(2−aτ)
< 0, y+(τ)−y−(τ) =

√
g

aτ2(aτ−2)
>

0 for any τ ∈ (τ1, τ2). It is easy to see that the flow in a neighborhood of the
focus point surrounded by the limit cycle is clockwise. We deduce the sense
of the flow and the structure of the parameterization given in Figure 5.2.

In order to compute D(a), we have the following relation between the dif-
ferentials P (x±(τ), y±(τ)) dt = x′±(τ) dτ , where x′±(τ) denotes the derivative
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Figure 5.2: Flow and parameterization on the oval.

of the function x±(τ) with respect to τ . Hence,

D(a) =

∫ τ2

τ1

(1 + w) div − wk

P
(x−(τ), y−(τ)) x′−(τ) dτ

+

∫ τ1

τ2

(1 + w) div − wk

P
(x+(τ), y+(τ)) x′+(τ) dτ

=

∫ τ2

τ1

[

2(w − 8) − 2(13 − 5a+ (1 + a)w)τ + (10 + 23a− 3aw)τ 2

τ(1 + τ)(aτ − 2)
√
g

− a(3w − 7)τ 3

τ(1 + τ)(aτ − 2)
√
g

]

dτ .

(5.15)

This integrand is well-defined for any τ ∈ (τ1, τ2). It is not possible to find a
value of w to make the integrand of definite sign in the interval (τ1, τ2).

As stated in [22], the limit cycle of system (5.7) is born in a Hopf bi-
furcation when a = (−71 + 17

√
17)/32 and when a increases the algebraic

limit cycle grows in size ending asymptotically at the curve x2(1 + x + y).
By the form of (5.15), we have that D(a) is an analytic function in a ∈
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[(−71 + 17
√

17)/32, 0). When a = −71+17
√

17
32

, the two biggest roots of

g(a, τ) = 0 are τ1 = τ2 = (3 +
√

17)/2 (the smallest root is (7 +
√

17)/16).

The integrand in (5.15) for τ = (3 +
√

17)/2 and a = −71+17
√

17
32

equals to

zero, so D
(

−71+17
√

17
32

)

= 0. We are going to prove that D(a) is a strictly

decreasing function of a for a ∈ (−71+17
√

17
32

, 0), from which we deduce that
D(a) < 0 for the values of the parameter considered. Hence, the limit cycle
is hyperbolic (and stable).

We only need to show that D′(a) < 0 for a ∈ (−71+17
√

17
32

, 0) to be done.
We compute the derivative of D(a) with respect to the parameter a as stated
in [7, 8]. In particular we use formula (4) appearing in page 285 of Chapter
10 in [8]. We may consider the integral which gives D(a) as the integral of
the rational function δ(a, τ, v) on the curve v2 − g(a, τ) = 0, where

δ(a, τ, v) =
2(w − 8) − 2(13 − 5a+ (1 + a)w)τ + (10 + 23a− 3aw)τ 2

2τ(1 + τ)(aτ − 2)v

− a(3w − 7)τ 3

2τ(1 + τ)(aτ − 2)v
.

We have that:

D′(a) =

∮

γ

(

∂δ

∂a
(a, τ, v) +

∂δ

∂v
(a, τ, v)

∂v

∂a

)

dτ, (5.16)

where this integral is done over the oval γ of the curve v2 − g(a, τ) = 0. The
formula (4) in page 285 of [8] states that given a 1–form as δ(a, τ, v) dτ and
an oval γ of a curve f(a, τ, v) = 0, where a is a parameter, then

∂

∂a

∮

γ

δ(a, τ, v) dτ =

∮

γ

(

∂δ

∂a
(a, τ, v) dτ − ∂f

∂a
(a, τ, v)

dτ,v(δ(a, τ, v) dτ)

dτ,vf(a, τ, v)

)

,

where dτ,v means the differential with respect to τ and v and dτ,v(δ(a,τ,v) dτ)

dτ,vf(a,τ,v)
is

the Gelfand-Leray form of dτ,v(δ(a, τ, v) dτ) with respect to dτ,vf(a, τ, v). We
remark that the Gelfand-Leray form is not uniquely determined. The quo-
tient dτ,v(δ(a,τ,v) dτ)

dτ,vf(a,τ,v)
reads for the class of 1-forms $ that satisfy dτ,vf(a, τ, v)∧

$ = dτ,v(δ(a, τ, v) dτ). Any representant $ of the class gives rise to the same
value of the integral.
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Since
∂f

∂a
+
∂f

∂v

∂v

∂a
≡ 0,

dτ,v(δ(a, τ, v) dτ) =
∂δ

∂v
(a, τ, v) dv ∧ dτ, dτ,vf =

∂f

∂τ
dτ +

∂f

∂v
dv

and
(

∂f

∂τ
dτ +

∂f

∂v
dv

)

∧
(

∂δ

∂v

∂v

∂a
dτ

)

=
∂δ

∂v

∂v

∂a

∂f

∂v
dv ∧ dτ = −∂f

∂a

∂δ

∂v
dv ∧ dτ,

we deduce that:

−∂f
∂a

(a, τ, v)
dτ,v(δ(a, τ, v) dτ)

dτ,vf(a, τ, v)
=
∂δ

∂v
(a, τ, v)

∂v

∂a
dτ,

and we can write expression (5.16).

From the equation of the curve v2−g(a, τ) = 0, we deduce 2v ∂v
∂a

= ∂g(a,τ)
∂a

,
so ∂v

∂a
= 2τ 2(1 + τ)/v. Hence,

∂δ

∂a
(a, τ, v) +

∂δ

∂v
(a, τ, v)

∂v

∂a
=

=
1

(τ + 1)(aτ − 2)2

[

1

v
(1 + 3τ)(w − 2 + wτ − 4τ) +

q(τ)

v3
(1 + τ)(aτ − 2)τ

]

,

where

q(τ) := 2(w − 8) + 2(13 − 5a+ (a+ 1)w)τ +

+(3aw − 23a− 10)τ 2 + a(3w − 7)τ 3.

We are going to show that, taking w = −9−2
√

17, the integrand of (5.16)
is strictly negative for all (τ, a) ∈ R, where R is the open region where the
limit cycle exists, see Figure 5.1. Since the function (1 + τ)(aτ − 2)2g3/2 is
strictly positive in the region R, we are going to show that the product of
the integrand by this function, denoted by β(a, τ), is strictly negative in the
region R.

In the upper border of the region R, that is a = 0 and τ ≥ 1, we have
that:

β(0, τ) = −[11 + 92τ + 42τ 2 − 36τ 3 + 19τ 4 + 2
√

17(τ 2 − 1)(3τ 2 − 6τ − 1)],
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whose real roots are all negative. We deduce that it is strictly negative for
τ ≥ 1.

In the lower border of the region R, that is g(a, τ) = 0 and τ ≥ 1, we
have that

β(α(τ), τ) = − (1 + 3τ)3

8τ(1 + τ)
(τ 2 − 3τ − 2) [(

√
17 − 1)τ − (

√
17 + 7)].

This expression has a definite negative sign in the region R since its zeroes
are −1/3, (3 −

√
17)/2 < 0 and the double zero (3 +

√
17)/2. This double

zero corresponds to the minimum point in the border of R.

If we show that β(a, τ) has no extremal values in the open region R, we
have that it is strictly negative in this domain. We are going to compute ∂β

∂a

and ensure that the curve ∂β
∂a

= 0 does not contain any point in R. We define
the curve a = µ(τ) by the zero set of

∂β

∂a
= −2τ 2(1 + τ)

[

2τ
(

14 + 25τ + 17τ 2 +
√

17(2 + 3τ + 3τ 2)
)

a

−23 + 38τ + 49τ 2 + 2
√

17(−1 + 6τ + 3τ 2)
]

.

Here, a = µ(τ) is a continuous strictly increasing function of τ for τ ≥ 1, has a
horizontal asymptote to 0 when τ → +∞ and µ(1) = −(4+

√
17)/(7+

√
17) <

0, hence it always takes negative values. It is easy to show that the greatest
root of the equation µ(τ) = α(τ) is (

√
17−1)/8 < 1. Hence, ∂β

∂a
= 0 does not

contain any point in R and there is no extremal point of β(a, τ) in R. We de-
duce that β(a, τ) < 0 in R and hence D′(a) < 0 for the values of a considered.

Hyperbolicity of the limit cycle given by the algebraic curve (5.6) for sys-
tem (5.5).
In order to simplify our computations, we consider the following birrational
change of the parameter, a = 3c/(4 + 5c), with inverse c = 4a/(3 − 5a) and
we have that c ∈ (0, 1/2) is the interval which gives the limit cycle. The
divergence is div(x, y) = 4[21(1 + 2c) − 3(14 + 23c)x+ 11(4 + 5c)y]/(4 + 5c)
and the cofactor related to the invariant algebraic curve (5.6) for system (5.5)
is k(x, y) = 24[5(1 + 2c) − (8 + 13c)x+ 2(4 + 5c)y]/(4 + 5c).

We define g(c, τ) := −τ(c − τ + cτ 2) = cτ(τ − τ1)(τ2 − τ) where τ1 =
1−

√
1−4c2

2c
and τ2 = 1+

√
1−4c2

2c
and we consider the following parameterization
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of the oval of (5.6):

x±(τ) = − 2(1 + 2c)

c2(1 + τ)3
(c− 2τ − 2cτ + cτ 2 ± 2

√

(1 + 2c)g(c, τ)),

y±(τ) =
−12(1 + 2c)2

c2(4 + 5c)(1 + τ)4
(c− 2τ − 2cτ + cτ 2 ± 2

√

(1 + 2c)g(c, τ)),

(5.17)
where τ ∈ (τ1, τ2). It is clear that 0 < τ1 < 1 < τ2 for c ∈ (0, 1/2). We have
that g(c, τ) is strictly positive for all τ ∈ (τ1, τ2). In the two endpoints of the
parameterization:

p1 = (x±(τ1), y±(τ1)) =

(

1 + 2c+
√

1 − 4c2

c
,
6(1 + 2c)(1 +

√
1 − 4c2)

c(4 + 5c)

)

,

p2 = (x±(τ2), y±(τ2)) =

(

1 + 2c−
√

1 − 4c2

c
,
6(1 + 2c)(1 −

√
1 − 4c2)

c(4 + 5c)

)

,

an easy computation shows that P (p1) > 0 and P (p2) < 0, where P (x, y) is
the polynomial defining ẋ in system (5.5). Moreover x+(τ) − x−(τ) < 0 and
y+(τ)−y−(τ) < 0 for τ ∈ (τ1, τ2). Hence, the flow and the parameterizations
are given as in Figure 5.3.

Figure 5.3: Flow and parameterization on the oval.
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In the same way as in the previous cases, we consider

D(c) =

∫ τ2

τ1

(1 + w) div − wk

P
(x−(τ), y−(τ)) x′−(τ) dτ

+

∫ τ1

τ2

(1 + w) div − wk

P
(x+(τ), y+(τ)) x′+(τ) dτ,

(5.18)

where x′±(τ) is the derivative of x±(τ) with respect to τ . We choose w = 37
and we have:

D(c) = 8
√

1 + 2c

∫ τ2

τ1

4 + 18c− (16 + 7c)τ + 7(2c− 1)τ 2 + 13cτ 3

(1 + τ)(4 + 8c+ 8τ + 17cτ + cτ 2)
√

g(c, τ)
dτ.

(5.19)
The roots in τ of (1 + τ)(4 + 8c + 8τ + 17cτ + cτ 2) are always negative for
c ∈ (0, 1/2), so, this product is always positive in the region of definition of
the limit cycle. As stated in [22], the limit cycle of system (5.5) is born in a
Hopf bifurcation when c = 1/2 (that is a = 3/13 and τ1 = τ2 = 1) and when
c decreases the algebraic limit cycle grows in size ending asymptotically at
the curve y2(3 − 6x + 4y) when c = 0. By the form of (5.19), we have that
D(c) is an analytic function in c ∈ (0, 1/2]. Moreover, when c = 1/2, the
integrand in (5.19) is zero for τ = 1, so we deduce D(1/2) = 0.

We are going to compute the derivative of D(c) with respect to c. We
consider the integral which gives D(c) as the integral of the rational function
δ(c, τ, v) on the curve v2 − g(c, τ) = 0, where

δ(c, τ, v) = 4
√

1 + 2c
4 + 18c− (16 + 7c)τ + 7(2c− 1)τ 2 + 13cτ 3

(1 + τ)(4 + 8c+ 8τ + 17cτ + cτ 2)v
.

We define q0(c, τ) := 4 + 18c− (16 + 7c)τ + 7(2c− 1)τ 2 + 13cτ 3. Hence,

D′(c) =

∮

γ

(

∂δ

∂c
(c, τ, v) +

∂δ

∂v
(c, τ, v)

∂v

∂c

)

dτ, (5.20)

where this integral is done over the oval γ of the curve v2 − g = 0. From the
equation of the curve v2 − g = 0, we deduce ∂v

∂c
= −τ(1 + τ 2)/(2v). Hence,

∂δ

∂c
(c, τ, v) +

∂δ

∂v
(c, τ, v)

∂v

∂c
=

2
√

1 + 2c τ (1 + τ 2)q0(c, τ)

(1 + τ) (4 + 8c+ 8τ + 17cτ + cτ 2) v3
+
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+
4√

1 + 2c (1 + τ) (4 + 8c+ 8τ + 17cτ + cτ 2)2 v
[ 8(1 + 2c)(7 + 9c)+

+2(72 + 204c+ 125c2)τ + (168 + 324c+ 11c2)τ 2+

+(243 + 627c+ 335c2)τ 3 + (111 + 319c+ 235c2)τ 4 + 13c2τ 5] .

We are going to show that the integrand of (5.20) is strictly positive
for all (c, τ) belonging to the region where the limit cycle exists, that is
R = {(c, τ) ∈ R

2 | τ1 < τ < τ2, 0 < c < 1/2}.
It is easy to see that R = {(c, τ) ∈ R

2 | 0 < c < τ/(1 + τ 2), τ > 0}. Since
the function

√
1 + 2c (4 + 8c + 8τ + 17cτ + cτ 2)2g(c, τ)3/2/(4τ) is strictly

positive for all (c, τ) ∈ R, we only need to show that the product of the
integrand of (5.20) and the former function is positive. We denote by β(c, τ)
this product. In the lower border of R, that is c = 0 and τ ≥ 0, we have
that:

β(0, τ) = 2(8 + 32τ + 42τ 2 + 82τ 3 + 83τ 4),

which is strictly positive for all τ ≥ 0. In the upper border of R, that is
c = τ/(1 + τ 2) and τ ≥ 0 we have:

β

(

τ

1 + τ 2
, τ

)

=
2(1 − τ)2(1 + τ)3(2 + 3τ)3

(1 + τ 2)2
,

which is strictly positive for all τ ≥ 0. Since β(c, τ) is a C1 function in R
with its border, we only need to see that there are no extreme points in the
region R and we will have that it is strictly positive in R.

The expression of the derivative of β(c, τ) with respect to c is:

∂β

∂c
= 24 + 48τ − 180τ 2 − 37τ 3 + 194τ 4 − 125τ 5

−2c
(

16 + 150τ + 651τ 2 + 642τ 3 + 182τ 4 + 196τ 5 − 13τ 6
)

.

Let us call ζ(τ) the function such that (∂β/∂c)(ζ(τ), τ) = 0. It is easy to see
that ζ(τ) is a continuous function for all τ ≥ 0, except for one point ν where
there is a vertical asymptote. We have that 16 < ν < 17, ζ(τ) is strictly
decreasing for all τ ≥ 0, and it has a horizontal asymptote to 0 when τ tends
to +∞. An easy analysis of the signs of a rational function shows that the
curves ζ(τ) only intersect the border of the region R in two positive points
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0 < ν1 < ν2 < 1, one intersection occurs with the curve τ/(1 + τ 2) and the
other with c = 0. Moreover, β (ζ(τ), τ) is given by the following fraction:

(1 + τ)3 (2 + 3τ)2 (400 + 1600τ + 4476τ 2 + 6040τ 3 + 4757τ 4 + 777τ 5)

4 (16 + 150τ + 651τ 2 + 642τ 3 + 182τ 4 + 196τ 5 − 13τ 6)
,

which is strictly positive for all τ ∈ [0, ν]. Hence, we deduce that if β(c, τ)
has an extreme point inside the region R, then this point would belong to
the curve (ζ(c), c) intersecting R in the region given by τ ∈ (ν1, ν2), but in
this part of the curve the function β(c, τ) is strictly positive. In short, β(c, τ)
is strictly positive in all the region R of existence of the limit cycle.

We deduce that the integrand of (5.20) is strictly positive in all R, from all
these reasonings, and, therefore, D′(c) > 0 for all c ∈ (0, 1/2). Since D(c) is
a strictly increasing continuous function of c for c ∈ (0, 1/2) and D(1/2) = 0,
we have that D(c) < 0 for all c ∈ (0, 1/2). Hence, the limit cycle of system
(5.5) is hyperbolic (and stable).

Relations among elliptic functions

The aim of this subsection is to present the astonishing relations among
elliptic functions which we obtained by using the identity given by Theorem
4.1 for systems (5.5) and (5.9).

Before the presented proof of Theorem 5.7, we got its proof for systems
(5.5) and (5.9) by computing the corresponding integrals which give place to
elliptic integrals. The identity given in Theorem 4.1 was used to encounter
a Fuchs equation for the function D(a). After some thorough analysis of
this Fuchs equation, we deduce the non-vanishing of the function D(a) for
any value of the parameter in which the limit cycle exists. We are not going
to give this proof, but we think that the relations among elliptic integrals
obtained by the former reasoning are interesting by themselves. Hence, we
give the identities obtained which, as far as we know, do not appear in any
book of tables of integrals and relations between classical functions. On the
other hand, we also give the obtention of the Fuchs equation for the function
D(a) in the case of system (5.9).
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Identities among elliptic integrals

The functions involved in this subsubsection are the complete elliptic inte-
grals of first, second and third kinds, denoted by K(ω), E(ω) and Π(κ, ω),
respectively. We recall the definition of these functions:

K(ω) =

∫ π/2

0

dθ
√

1 − ω sin2(θ)
=

∫ 1

0

dt
√

(1 − t2)(1 − ωt2)
,

E(ω) =

∫ π/2

0

√

1 − ω sin2(θ) dθ =

∫ 1

0

√
1 − ωt2

√

(1 − t2)
dt,

Π(κ, ω) =

∫ π/2

0

dθ

(1 − κ sin2(θ))
√

1 − ω sin2(θ)

=

∫ 1

0

dt

(1 − κt2)
√

(1 − t2)(1 − ωt2)
,

and their derivatives:

K′(ω) =
1

2(1 − ω)ω
E(ω) − 1

2ω
K(ω),

E′(ω) =
1

2ω
E(ω) − 1

2ω
K(ω),

∂Π(κ, ω)

∂κ
=

1

2κ(κ− 1)
K(ω) +

1

2(κ− 1)(ω − κ)
E(ω)

+
κ2 − ω

2κ(κ− 1)(ω − κ)
Π(κ, ω),

∂Π(κ, ω)

∂ω
=

1

2(κ− ω)(ω − 1)
E(ω) +

1

2(κ− ω)
Π(κ, ω).

For further information on elliptic integrals, see, for instance, [1, 93].

By explicit computation of the integrals for the system (5.9) using the
parameterization given in (5.14), we get that the identity (4.3) stated in
Theorem 4.1 reads for:

−9 K(ω0) + c+ Π(ω+, ω0) + c− Π(ω−, ω0) ≡ 0, (5.21)

which is valid for a ∈ (0, 1/4), where

ω0 =
2
√

1 − 4a

1 +
√

1 − 4a
, ω± =

2
√

1 − 4a

9 +
√

1 − 4a± 2
√

16 − a
,
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c± =
9 −

√
1 − 4a

2
±

√
16 − a.

The derivative of the expression in (5.21) with respect to a gives place to the
same identity (5.21). In fact, when computing the derivative with respect to
a of the expression given in (5.21), using the described formulas of derivation
for these elliptic integrals, we get −1/(1 − 4a +

√
1 − 4a) times the same

expression (5.21). This simple factor is different from zero when a ∈ (0, 1/4).
In the same way, the explicit computation of the integrals involved in

the identity (4.3) stated in Theorem 4.1 for the system (5.5), via using the
parameterization given in (5.17), gives:

5 K(ς0) + C+ Π(ς+, ς0) + C− Π(ς−, ς0) ≡ 0, (5.22)

which is valid for c ∈ (0, 1/2), where

ς0 =
2
√

1 − 4c2

1 +
√

1 − 4c2
, ς± =

2
√

1 − 4c2

9 + 17c+
√

1 − 4c2 ±
√

64(1 + 2c)2 + c2
,

C± =
−2(24 + 47c± 3

√

64(1 + 2c)2 + c2

9 + 17c+
√

1 − 4c2 ±
√

64(1 + 2c)2 + c2
.

The derivative of the expression (5.22) with respect to c gives place to the
same identity (5.22).

We have not been able to give an analogous identity related to system
(5.7) due to the fact that the corresponding integrals require much more
computations to be identified with the elliptic integrals.

Fuchs equation for D(a) in system (5.9)

In this part of the subsection we develop the way we obtained a Fuchs equa-
tion for the function D(a) in system (5.9), via using the relation (5.21). We
think that the fact of obtaining a Fuchs equation satisfied by this function
is interesting to further understand the stability of algebraic limit cycles for
polynomial systems. We obtained a similar Fuchs equation for system (5.5),
but we do not state it because the equation itself does not give any further in-
formation about the properties of system (5.5) and the way it was obtained is
completely analogous to the way equation (5.23) for system (5.9) is obtained.

Let us consider system (5.9) and we parameterize the oval which contains
the limit cycle by (5.14). Taking the notation described in the previous
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subsection:

ω0 =
2
√

1 − 4a

1 +
√

1 − 4a
, ω± =

2
√

1 − 4a

9 +
√

1 − 4a± 2
√

16 − a
,

c± =
9 −

√
1 − 4a

2
±
√

16 − a,

and

µ =

√

1 +
√

1 − 4a, b± = 2(4 ±
√

16 − a) c±,

we explicitly compute the value of D(a):

D(a) =

∫ T

0

div(γ(t)) dt

=

√
2

µ
√

16 − a

[

−34
√

16 − aK(ω0) + b+ Π(ω+, ω0) − b− Π(ω−, ω0)
]

.

We compute the successive derivatives of D(a):

D′(a) =
−4

√
2

µ (16 − a)3/2

[√
16 − aK(ω0) +

2µ2
√

16 − a

a
E(ω0) +

− c+ Π(ω+, ω0) + c− Π(ω−, ω0)
]

,

D′′(a) =
6
√

2

µ (16 − a)5/2

[

(10a2 + 33a− 64)
√

16 − a

3a(1 − 4a)
K(ω0) +

(73a2 − 420a+ 128)µ2
√

16 − a

6a2(1 − 4a)
E(ω0) +

c+ Π(ω+, ω0) − c− Π(ω−, ω0)

]

,

D′′′(a) =
−
√

2

µ(16 − a)7/2

[

q1(a)
√

16 − a

a2(1 − 4a)2
K(ω0) +

q2(a)µ2
√

16 − a

2a3(1 − 4a)2
E(ω0)

− 15c+ Π(ω+, ω0) + 15c−Π(ω−, ω0)

]

,

where q1(a) := 180a4+1347a3−9685a2+25664a−4096 and q2(a) := 1812a4−
20259a3+102164a2−60544a+8192. By elimination of independent functions
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and using the identity (5.21) we obtain the following third order homogeneous
differential equation of Fuchs type for D(a):

8(a− 16)a(4a− 1)(17a+ 8)D′′′(a) + 4(612a3 − 4119a2 − 2600a
+512)D′′(a) + 6(a− 2)(289a+ 528)D′(a) + 3(17a+ 64)D(a) = 0.

(5.23)
An easy computation shows that D(1/4) = 0, D′(1/4) = −8

√
2π/9 and

D′′(1/4) = 98
√

2π/27. Hence, equation (5.23) univocally determines the
function D(a) defined in a ∈ (0, 1/4]. A thorough analysis of the properties
of D(a) gives that D(a) > 0 for a ∈ (0, 1/4).

We remark that using identity (5.21) we get a Fuchs equation of order 3
for D(a). If we did not have this relation, we would get an equation of order
4, which would make the analysis of properties much more difficult. We
notice that this Fuchs equation is an interesting alternative method to prove
the hyperbolicity of the limit cycle in system (5.9). This kind of equation
may exist for all algebraic limit cycle of a planar polynomial system and may
let distinguish its hyperbolic character.

Section 5.1 belongs to the paper entitled Necessary conditions for the ex-
istence of invariant algebraic curves for planar polynomial systems, authored
by J. Chavarriga, H. Giacomini and M. Grau and accepted for publication in
Bull. Sci. Math.

Section 5.2 belongs to the paper entitled On the stability of limit cycles
for planar differential systems, authored by H. Giacomini and M. Grau and
which is a preprint, 2004.



110 Two features of the known quadratic systems with an algebraic limit cycle



Chapter 6

Isochronous points

In this chapter we are interested in the study of a characteristic of the period
function around a singular point of focus–center type. Since this character-
istic only depends on the behavior of the solutions in a neighborhood of this
singular point, we state the results in a wider domain than planar polynomial
differential systems. We consider planar differential systems defined by ana-
lytic functions in some neighborhood U ⊆ R

2 of the singular point. Without
loss of generality, we always assume that the singular point is the origin of
coordinates O := (0, 0) and the autonomous differential system:

ẋ = λx− y + P2(x, y), ẏ = x+ λy +Q2(x, y), (6.1)

where P2(x, y) and Q2(x, y) are analytic functions in a neighborhood U of
the origin O and of order greater or equal than two. We assume that O is an
isolated singular point of (6.1). We denote by X the equivalent vector field:

X = (λx− y + P2(x, y))
∂

∂x
+ (x+ λy +Q2(x, y))

∂

∂y
.

In order to simplify notation, in this chapter we will call a center an ana-
lytic system of the form (6.1) with λ = 0 and where the origin O is a center,
that is, an isolated singular point with a punctured neighborhood filled of
periodic orbits. Isochronicity has been widely studied for centers, see for
instance [49] and the references therein. We remark that the period function
of a center does not depend on the chosen section Σ . The main methods

111
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used in order to study isochronicity of centers can be roughly classified in
two categories, linearization and commutation.

Finding a linearization for a center X means finding a transformation
φ : U → U analytic in a neighborhood of the origin such that φ(O) = O,
Dφ(O) = I, where I denotes the 2 × 2 identity matrix, and the transformed
system is a linear center, that is φ∗(X ) = −y ∂/∂x + x ∂/∂y. If such a
transformation exists, then all the orbits have the same period, coinciding
with the period of the linear center. So, a center is isochronous if and only
if a linearization can be found.

Finding a commutator for a center X means finding a second vector field
Y analytic in a neighborhood of the origin and of the form

Y = (x+ A(x, y))
∂

∂x
+ (y +B(x, y))

∂

∂y
, (6.2)

with A and B analytic functions of order ≥ 2, such that the Lie bracket
[X ,Y ] of the center X and Y identically vanishes.

An isolated singular point of a real planar analytic autonomous system
is called a star node if the linear part of the vector field at the singular point
has equal non-zero eigenvalues and it is diagonalizable. Clearly, the origin
is a star node for (6.2). By an affine change of coordinates any vector field
with a star node can be brought to the form (6.2).

Given two analytic vector fields defined in an open set U , X and Y , we
say that they are transversal in U at noncritical points when X and Y have
isolated singular points, they both have the same critical points in U , and if
p ∈ U is such that X (p) 6= 0 then the function given by the wedge product
of X and Y is not zero at p. From now on, we always assume that X and
Y are analytic vector fields defined in a neighborhood U of the origin and
transversal at non critical points.

The following result, proved in [2], characterizes centers in terms of Lie
brackets.

Theorem 6.1 [2] System (6.1) with λ = 0 has a center at the origin if,
and only if, there exists an analytic vector field U of the form (6.2) and an
analytic function ν(x, y) with ν(0, 0) = 0 such that [X , U ] = νX .

The most important result on characterization of isochronous centers appears
in [80, 90]. A further study can be found in, for instance, [2, 37, 47] and the
references therein. See [18] for a constructive method of U and ν in special
cases for polynomial vector fields.
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The following theorem, which is stated and proved in [80], gives the equiv-
alence between commutation and isochronicity. It is applied only for centers.

Theorem 6.2 [80] System (6.1), with λ = 0, has an isochronous center at
the origin if, and only if, there exists an analytic vector field Y of the form
(6.2), transversal to X and such that [X ,Y ] ≡ 0.

Another work on commuting systems is [81], where M. Sabatini discusses the
local and global behavior of the orbits of a pair of commuting systems and
he gives several illustrative examples. A wide collection of commutators and
linearizations can be found in [29].

When a center is isochronous, it is possible to construct an isochronous
section Σ, see [82]. However, the existence of an isochronous section is not
strictly dependent on the existence of a center. A system can have a singular
point of focus type with an isochronous section. This implies the existence of
a neighborhood covered with solutions spiralling towards the singular point,
all meeting Σ at equal time intervals. Such a behavior may occur, for in-
stance, in a pendulum with friction, or in an electric circuit with dissipation,
see also [82]. Our main result, Theorem 6.8, characterizes when the origin of
system (6.1) is isochronous, even when the origin is a center, a weak focus or
a strong focus. In this chapter, we adapt the two different techniques usually
used for isochronous centers, in order to study isochronous foci.

In Section 6.1 we summarize the known results on isochronicity for foci.
It is shown that a strong focus of an analytic system is always isochronous.
All the results described in Section 6.1 only apply for systems of the form
(6.1) with λ 6= 0 or for centers.

We will always consider analytic vector fields although many of the stated
results apply also for vector fields with weaker differentiability restrictions.
The results of Sabatini [82] go on this direction.

Section 6.2 contains the main theorem of this chapter which characterizes
isochronicity for the origin of a system (6.1). This result is original when ap-
plied to weak foci and gives known results when applied to strong foci or to
centers. We modify the commutators’ method to study isochronous points.
We prove that system (6.1) has a transversal vector field Y such that the
vector field [X ,Y ] is proportional to Y if, and only if, system (6.1) has an
isochronous point at the origin.
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We give two examples of weak isochronous foci and we give an example
of a family of quadratic systems depending on a parameter w ∈ R which
never has an isochronous point at the origin in Section 6.3. When w = 0
the system is a center and when w 6= 0 the system is a weak focus (stable if
w < 0 and unstable if w > 0). Hence, we show that there is no isochronous
section for any system of this family.

6.1 Summary of known results

We denote by U any open neighborhood of the origin and by ρ : U → R
+×R

the change to polar coordinates, that is, ρ(x, y) = (r, θ) with r =
√

x2 + y2

and θ = arctan(y/x). As usual, ρ∗ is the push-forward defined by ρ and ρ∗

is the corresponding pull-back.
In order to give the definition of isochronous point, we consider the form

of (6.1) in polar coordinates, that is, ρ∗(X ) = rf(r, θ) ∂
∂r

+ g(r, θ) ∂
∂θ

, where f
and g are analytic functions in a neighborhood of ρ(O).

Definition 6.3 The point O of (6.1) is said to be isochronous if there exists
a local analytic change of variables φ with φ(O) = O, Dφ(O) = I and such
that ρ∗φ∗(X ) = rf(r, θ) ∂

∂r
+ g(θ) ∂

∂θ
.

A system (6.1) with an isochronous point at the origin is more easily written

using the arc–length ϕ, defined by ϕ =
∫ θ

0
dθ/g(θ), as new angular variable.

In this formulation we end up to the following definition.

Definition 6.4 The point O of (6.1) is said to be isochronous if there exists
a local analytic change of variables φ with φ(O) = O, Dφ(O) = I and such
that ρ∗φ∗(X ) = rf(r, θ) ∂

∂r
+ k ∂

∂θ
, k ∈ R, k 6= 0.

The existence of an isochronous section is equivalent to the existence of the
local analytic change of variables φ, as we will show in Theorem 6.8. We state
the definition of isochronous point by means of φ since this is its classical
definition which let us give the summary of known results.

Linear foci, (λx − y) ∂/∂x + (x + λy) ∂/∂y, are isochronous since their
angular speed is constant along rays through the origin. For a linear focus,
every ray through the origin is an isochronous section. We say that a vector
field X of the form (6.1) is linearizable when there exists a local change of
variables φ with φ(O) = O, Dφ(O) = I such that φ∗(X ) is a linear focus.
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By the above definition, every analytic linearizable focus is isochronous.
If φ is the linearizing transformation and Σ is a ray, then φ−1(Σ) is an
isochronous section of the analytic linearizable focus. Next theorem, which is
a special case of classical Poincaré’s Theorem, shows that every strong focus
of an analytic system is linearizable and therefore isochronous. For a proof,
see [31, 78].

Theorem 6.5 [78] Let us consider the planar real analytic system

ẋ = αx− βy + g1(x, y), ẏ = βx+ αy + g2(x, y), (6.3)

with αβ 6= 0, and g1 and g2 are of second order in x and y. Then there exists
a real local analytic change of variables φ(x, y) = (u, v) with φ(O) = O and
Dφ(O) = I which transforms system (6.3) into u̇ = αu− βv, v̇ = βu+ αv.

This result can also be stated for a system of the form (6.3) satisfying weaker
differentiability restrictions. Since we are only concerned with analytic vector
fields, we state the result only for the analytic case.

We have seen that every analytic linearizable focus is isochronous, but
finding the linearization, and hence the isochronous sections, is usually too
difficult. Next theorem proved in [82] shows that it is not necessary to find the
explicit form of the linearization, since the orbits of a suitable commutator
are isochronous sections of X .

Theorem 6.6 [82] If the vector field X given by (6.1) has a focus O and
a nontrivial commutator Y with a star node at O, then every orbit of Y
contained in a neighborhood of O is an isochronous section of X .

These result only apply when the vector field X has a strong focus at the
origin or has a center because if the vector field X has a weak focus at
the origin with a nontrivial commutator Y with a star node at O, then
by Theorem 6.1 the vector field has a center at the origin. Next corollary
proved in [82] shows that every system with a strong focus and a nontrivial
commutator has a commutator with a star node.

Corollary 6.7 [82] If the vector field X has eigenvalues with non-zero real
part at a focus O and a nontrivial commutator Y, then it has infinitely many
isochronous sections.

In [55] and [82], different sufficient conditions for an analytic vector field to
have an isochronous weak focus at O are given. In [82], the particular case of
a differential system equivalent to a Liénard equation is taken into account.
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6.2 Characterization of isochronous points

The following theorem characterizes when the origin O of a system (6.1) has
a section Σ such that the period function τ : Σ → R

+ is constant, that is,
it does not depend on the point p ∈ Σ considered. We will see that if such
section exists, then there are an infinite number of them. In particular next
theorem characterizes the existence of isochronous points.

Theorem 6.8 Let us consider an analytic system (6.1). The following state-
ments are equivalent:

(i) There exists an analytic change of variables φ : U → U , where U is a
neighborhood of the origin, with φ(O) = O and Dφ(O) = I, such that
the transformed system reads for ρ∗φ∗(X ) = rf(r, θ) ∂

∂r
+ g(θ) ∂

∂θ
.

(ii) There exists an analytic vector field Y defined in a neighborhood of the
origin of the form

Y = (x+ A(x, y))
∂

∂x
+ (y +B(x, y))

∂

∂y
, (6.4)

with A and B analytic functions of order ≥ 2, such that [X ,Y ] =
µ(x, y)Y, where µ(x, y) is a scalar function with µ(0, 0) = 0.

(iii) There exists a section Σ such that the period function τ : Σ → R
+ is

constant.

Proof of Theorem 6.8. In order to prove the equivalence of the three
statements, it suffices to show (i) ⇒ (ii), (ii) ⇒ (iii) and (iii) ⇒ (i). We also
include the proof of (ii) ⇒ (i) and (iii) ⇒ (ii), due to their simplicity and
completeness.

In the subsequent, we will denote by a subindex a partial derivative, for
instance, if f(r, θ) is a function of (r, θ), ∂f

∂r
is replaced by fr.

(i) ⇒ (ii) We define

Y = φ∗
(

x
∂

∂x
+ y

∂

∂y

)

,
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and we have that Y has the form described since φ is an analytic change such
that φ(O) = O and Dφ(O) = I. Moreover,

[X ,Y ] =

[

φ∗φ∗X , φ∗
(

x
∂

∂x
+ y

∂

∂y

)]

= φ∗ρ∗
([

rf(r, θ)
∂

∂r
+ g(θ)

∂

∂θ
, r
∂

∂r

])

= φ∗ρ∗
(

−r2fr(r, θ)
∂

∂r

)

.

We denote by µ(x, y) = φ∗ρ∗(−rfr(r, θ)). It is obvious that is an analytic
scalar function with µ(0, 0) = 0. We have

[X ,Y ] = µ(x, y)φ∗ρ∗
(

r
∂

∂r

)

= µ(x, y)φ∗
(

x
∂

∂x
+ y

∂

∂y

)

= µ(x, y)Y .

(ii) ⇒ (i) From normal form theory, see [31, 78], we have that there exists
an analytic change of variables φ, defined in a neighborhood U of the origin
and with φ(O) = O and Dφ(O) = I, such that φ∗(Y) = x ∂

∂x
+ y ∂

∂y
.

Since [X ,Y ] = µY , we have [φ∗(X ), φ∗(Y)] = φ∗(µ)φ∗(Y). We introduce
the following notation µ̃(r, θ) := ρ∗φ∗(µ(x, y)) and ρ∗φ∗(X ) := rf(r, θ) ∂

∂r
+

g(r, θ) ∂
∂θ

. Hence,

[

rf(r, θ)
∂

∂r
+ g(r, θ)

∂

∂θ
, r

∂

∂r

]

= µ̃(r, θ) r
∂

∂r
.

We compute the Lie bracket and we have the following equality

−r2fr(r, θ)
∂

∂r
− rgr(r, θ)

∂

∂θ
= µ̃(r, θ) r

∂

∂r
,

which implies gr(r, θ) ≡ 0 and, therefore, g(r, θ) = g(θ). We remark that
since the origin of the system defined by X is a monodromic point, we have
that g(θ) > 0 or g(θ) < 0 for all θ ∈ R. Moreover, as before, we may consider

the arc–length ϕ =
∫ θ

0
dθ/g(θ). This integral is well defined and it gives a

change of variable since g(θ) has a definite sign for all θ ∈ R. Then, after
this change, the angular speed of the corresponding system is constant.

(ii) ⇒ (iii) This statement is a clear corollary of Theorem 6.6. However,
a geometric outline of its proof is easy enough to be given here.

Let, for any p ∈ U , be Φt(p) the flow of X and Ψs(p) that of Y , with
the initial condition Φ0(p) = Ψ0(p) = p. Without lack of generality, we can
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assume that O is the unique singular point for X and Y in U . Let p, q ∈ U ,
p, q 6= O. By classical Lie theory, we have that the relation [X ,Y ] = µ(x, y)Y
implies that if Σ = {Ψs(p) | s ∈ R} is a solution of Y , then for any t ∈ R,
Φt(Σ) is another solution for Y .

It is clear that Σ is a transversal section for X . Let τ,P be the cor-
responding period function and Poincaré map defined on it. We will show
that any two points p, q ∈ Σ have the same period function. We have that
P(p) = Φτ(p)(p). The time τ(p) leaves Σ invariant: Φτ(p)(Σ) ⊆ Σ. Let q ∈ Σ,
then there exists s ∈ R such that q = Ψs(p). The minimal time to meet Σ
again, that is τ(q), must coincide with τ(p) since the time τ(p) brings the
solution Σ into itself. Then τ(p) = τ(q).

(iii) ⇒ (ii) We consider Φt(p) the flow of system X defined in the neigh-
borhood U of the origin and with the initial condition Φ0(p) = p.

Given a section through the origin, Σ ⊂ R
2, we consider its parameter-

ization by its arc-parameter σ, that is, there exists a map c : R → Σ such
that Σ = {c(σ) |σ ∈ R}. We can assume without loss of generality that
limσ→−∞ c(σ) = O and that limσ→−∞ c′(σ) 6= (0, 0). As usual, c′(σ) denotes
the derivative of the parameterization of the curve c : σ 7→ c(σ) at the value
σ. We define the following set of transformations Ψ : R × U → U in the
following way, see Figure 6.1.

If p ∈ Σ, that is p = c(σ0) for a certain σ0 ∈ R, and s ∈ R then
Ψs(p) := c(σ0 + s).

If p 6∈ Σ, there exists t0(p) ∈ R such that Φt0(p)(p) ∈ Σ, that is, there
exists σ0 ∈ R such that c(σ0) = Φt0(p)(p). Assume that t0(p) > 0 is the
lowest positive real with this property. For any s ∈ R we define Ψs(p) =
Φ−t0(p)(c(σ0 + s)).

In the subsequent, for any p ∈ U we denote by t0(p) as the lowest positive
real such that Φt0(p)(p) ∈ Σ. It is clear that t0 : U → [0, T ) where T > 0 is
the period defined by the section Σ. We denote by σ0(p) ∈ R the value of
the parameter such that Φt0(p)(p) = c(σ0(p)).

We are going to prove that the set of transformations defined by Ψs is
a one–parameter Lie group of point transformations. We need to show the
following statements:

(a) For all s ∈ R, Ψs : U → U is bijective.

(b) Ψ0 is the identity map.
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Figure 6.1: Definition of Ψs(p).

(c) For any s1, s2 ∈ R, Ψs1
◦ Ψs2

= Ψs1+s2
.

(d) Ψ ∈ Cω(R) × Cω(U).

(a) Fixed s ∈ R, let us consider any p ∈ U and we have Ψs(p) =
Φ−t0(p)(c(σ0(p) + s)). Let p1, p2 ∈ U . If Ψs(p1) = Ψs(p2), let q be this
point q = Ψs(pi). Then, the points Φt0(p1)(q) = c(σ0(p1) + s) and Φt0(p2)(q) =
c(σ(p2)+s) belong to Σ. Both, t0(p1) and t0(p2) are defined as the minimum
positive time with this property so, t0(p1) = t0(p2). Therefore, c(σ0(p2)+s) =
c(σ0(p1) + s) and this gives σ0(p1) = σ0(p2) which implies p1 = p2. Then, Ψs

is injective.
We are going to see that it is exhaustive. Given q ∈ U we define the

point p = Φ−t0(q)(c(σ0(q) − s)). Then, t0(p) = t0(q), σ0(p) = σ0(q) − s and
Ψs(p) = Φ−t0(q)(c(σ0(q))) = q. The fact that the section Σ is isochronous
ensures the well-definition of this p.

(b) Given p ∈ U we have that Ψ0(p) = Φ−t0(p)(c(σ0(p))) where c(σ0(p)) =
Φt0(p)(p). Then, clearly, Ψ0(p) = p.

(c) Given p ∈ U , it is clear that t0(Φ−t0(p)(c(σ0 + s1))) = t0(Φ−t0(p)(c(σ0 +
s1 + s2))) = t0(p). We have Ψs1

◦ Ψs2
(p) = Ψs1

(Φ−t0(p)(c(σ0 + s1))) =
Φ−t0(p)(c(σ0 + s1 + s2)) = Ψs1+s2

(p).
(d) The regularity of Ψ is clear due to the regularity of Φ and c.
Once we have that Ψ is a one–parameter Lie group of point transfor-

mations, we apply the first fundamental theorem of Lie, see [70], and we
have that there exists an analytic vector field Y whose flow coincides with
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Ψs(p). Moreover, Y is given by ∂Ψs

∂s
(p)|s=0. By the definition Ψs(p) =

Φt0(p)(c(σ0(p) + s)) we have that Y(p) = TΦt0(p)(c(σ0(p) + s)) · c′(σ0(p) +
s)|s=0 = TΦt0(p)(c(σ0(p))) · c′(σ0(p)), where TΦt(q) denotes the jacobian ma-
trix of the analytic change of variables Φt at the point q and, as before, c′(σ)
denotes the derivative of the parameterization of the curve c : σ 7→ c(σ) at
the value σ.

Moreover, by construction, Y has a star node at the origin. This is clear
by the fact that each of its orbits Φt(Σ), t ∈ [0, T ), has a different tangent
at the origin. Let Y = ξ(x, y) ∂

∂x
+ η(x, y) ∂

∂y
. Since Y has a star node at the

origin, by a classical result stated in [96], page 63, we have that ξ(x, y) =
xh(x, y)+h.o.t. and η(x, y) = yh(x, y)+h.o.t., where h(x, y) is a homogeneous
polynomial and h.o.t. denotes higher order terms. Therefore, in order to see
that Y is of the form (6.2), we only need to show that the divergence of
the vector field Y , that is divY , is different from zero at the origin, where
divY(x, y) = ∂ξ

∂x
(x, y) + ∂η

∂y
(x, y). The divergence of the vector field Y is

related to the inverse integrating factor of Y . The inverse integrating factor
of Y is given by V (x, y) = (λx−y+P2(x, y))η(x, y)−(x+λy+Q2(x, y))ξ(x, y)
which is defined in the neighborhood U of the origin. An easy computation
shows that

V (Ψs(x0, y0)) = V (x0, y0) exp

{∫ s

0

divY(Ψu(x0, y0))du

}

(6.5)

for any (x0, y0) ∈ U . It is clear that V (0, 0) = 0. Let p0 := (x0, y0) ∈
U −{(0, 0)} and assume that V (p0) = 0. This implies that the vectors Y(p0)
and X (p0) are parallel. By the definition of Y , we have that

Y(p0) = TΦ−t0(p0)(c(σ0(p0)))·c′(σ0(p0)) = TΦ−t0(p0)(Φt0(p0)(p0))·Y(Φt0(p0)(p0)).

We denote by q0 = Φt0(p0)(p0) and we have TΦt0(p0)(q0) · Y(p0) = Y(q0).
Since Φ is the flow of X , we have TΦt0(p0)(q0) · X (p0) = X (q0). Therefore, if
Y(p0) and X (p0) are parallel, then Y(q0) and X (q0) are parallel. However,
q0 ∈ Σ and the vector Y(q0) is tangent to Σ at q0, so the parallelism between
Y(q0) and X (q0) is a contradiction with Σ being a transversal section for X .
Therefore, we conclude that V (x0, y0) 6= 0 for any (x0, y0) ∈ U − {(0, 0)}.

By using this fact, we prove that divY(0, 0) 6= 0. Let us consider a
point (x0, y0) ∈ U − {(0, 0)} and we have that lims→−∞ Ψs(x0, y0) = (0, 0).
By continuity and the identity (6.5), we have that the integral I(x0, y0) :=
∫ 0

−∞ divY(Ψu(x0, y0))du diverges. I(x0, y0) is continuous, so I(0, 0) also di-

verges. Hence, if divY(0, 0) = 0, then I(0, 0) =
∫ 0

−∞ divY(Ψu(0, 0))du =
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∫ 0

−∞ divY(0, 0)du = 0, in contradiction with being divergent. Therefore,
divY(0, 0) 6= 0.

Moreover, by definition it is clear that the flow of X takes solutions of Y
to solutions of Y . Another classical result on Lie symmetries gives that X
is a Lie symmetry for Y and therefore, there exists an analytic scalar func-
tion µ : U → R such that [X ,Y ] = µY . Moreover, µ(0, 0) = 0 since both
functions defining the vector field [X ,Y ] have order two at the origin and the
vector field Y has order one at the origin.

(i) ⇒ (iii) The ray Σ̃ = {(x, 0) |x > 0} is an isochronous section for
the system φ∗(X ), where ρ∗φ∗(X ) = rf(r, θ) ∂

∂r
+ g(θ) ∂

∂θ
, since τ̃ : Σ̃ → R

+

is given by τ̃(x) =
∫ 2π

0
dθ/g(θ), which is constant for every x ∈ Σ̃. Then,

Σ := φ−1(Σ̃) is an isochronous section for system (6.1) and the period func-
tion is given by τ := φ∗(τ̃). �

Using Theorem 6.1 and Theorem 6.8, we reencounter the following result
which characterizes isochronous centers and which is first stated and proved
in [80].

Theorem 6.9 System (6.1) with λ = 0 has an isochronous center at the
origin if, and only if, there exists an analytic vector field Z of the form (6.2)
such that [X ,Z] = 0.

Proof. Assume that system (6.1), with λ = 0, has an isochronous center at
the origin. Then by Theorems 6.1 and 6.8 there exist analytic vector fields
U ,Y of the form (6.2) and analytic functions ν, µ satisfying [X ,U ] = νX
and [X ,Y ] = µY . Since X and Y are transversal in a neighborhood of the
origin, they define a basis in this neighborhood and therefore, there exist two
analytic functions α, β such that U = αX + βY . Since both U and Y have
the form (6.2), we have that β = 1 + β1 where β1 is an analytic function of
order ≥ 1. We compute

[X ,U ] = [X , αX + β Y ] = X (α)X + α [X ,X ] + X (β)Y + β [X ,Y ]

= X (α)X + (X (β) + βµ)Y .

Since [X ,Y ] = νX , we deduce X (β) = −µβ.
We define Z = βY which is an analytic vector field with the form (6.2)

since β = 1 + β1 where β1 is an analytic function of order ≥ 1. Then,
[X ,Z] = [X , βY ] = β [X ,Y ] + X (β)Y = βµY − µβY = 0. �
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6.3 Examples of application

The methods developed in this chapter can be used to classify isochronous
points for polynomial systems. We give some examples of systems of the
form (6.1) with an isochronous point at the origin. The determination of the
origin being a focus is straightforward by computing Liapunov constants,
see for instance [55]. When the origin is a center, a first integral defined on
a neighborhood of it is provided. We also give an example of a family of
quadratic systems depending on a real parameter w 6= 0 which never has an
isochronous point at the origin. When w = 0, the system has a center, and
when w 6= 0 the system has a weak focus at the origin.

Example 1. The following system has an isochronous point at the origin.

ẋ = −y + λ2x
3 + λ3x

2y + λ4xy
2,

ẏ = x+ λ2x
2y + λ3xy

2 + λ4y
3,

(6.6)

with λ2, λ3, λ4 ∈ R. In polar coordinates, this system reads for

ṙ =
r3

2
(λ2 + λ4 + (λ2 − λ4) cos(2θ) + λ3 sin(2θ)), θ̇ = 1.

Then, by definition, the origin is an isochronous point. A first integral for
system (6.6) is given by

H(x, y) =
x2 + y2

1 − λ3x2 + (λ2 − λ4)xy + (λ2 + λ4)(x2 + y2) arctan( y
x
)
.

When λ2 + λ4 6= 0, the origin is a focus point and when λ2 + λ4 = 0, the
origin is a center point. Let us consider X the corresponding vector field and
Y = x ∂

∂x
+ y ∂

∂y
. We have [X ,Y ] = −2(λ2x

2 + λ3xy + λ4y
2)Y .

Example 2. The following system has an isochronous focus at the origin.

ẋ = −y − 2xy + xy2 − 2y3 + µ2(x
3 − xy2) + µ3x

2y − y4+
µ2(x

2y2 + y4) − µ2xy
4 − µ3y

5 − µ2y
6,

ẏ = x+ y2 + y3 + µ2(x
2y − y3) + µ3xy

2 + 2µ2xy
3 + µ3y

4 + µ2y
5,

(6.7)

where µi are arbitrary real constants for i = 2, 3. This system has no constant
angular speed. An easy computation shows that the first Liapunov constant
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equals −1/2, so the origin of (6.7) is a stable weak focus point. We use
Theorem 6.8 to ensure the property of isochronicity.

Let us consider X the corresponding vector field and Y the following
analytic vector field

Y = (x− y2)
∂

∂x
+ y

∂

∂y
.

The Lie bracket [X ,Y ] gives [X ,Y ] = −2(y2 + µ2(x
2 − y2 + 2xy2 + y4) +

µ3(xy + y3))Y . Therefore, the hypothesis of Theorem 6.8 are satisfied and
the origin of system (6.7) is an isochronous focus.

Example 3. The following family of quadratic systems depending on
the parameter w ∈ R

ẋ = −y, ẏ = x− 4wxy + 2y2, (6.8)

never has an isochronous point at the origin.
It can be shown that w is the first Liapunov constant for this family of

quadratic systems. Hence, when w > 0 the origin is an unstable weak focus
and when w < 0 the origin is a stable weak focus. When w = 0, we have
that H(x, y) = (4x + 8y2 − 1)e4x defines a first integral which is analytic in
a neighborhood of the origin. So, the origin is a center for w = 0.

We will try to construct a vector field Y and a function µ satisfying
Theorem 6.8 and we will get a contradiction. Assume that there exists a
vector field Y with a star node at the origin such that the Lie bracket between
the vector field Xw defined by (6.8) and Y is equal to µ(x, y)Y for a certain
scalar analytic function µ(x, y) with µ(0, 0) = 0. We can write Y = (x +
∑

i>1Ai(x, y)) ∂/∂x + (y +
∑

i>1Bi(x, y)) ∂/∂y, where Ai(x, y), Bi(x, y) are
homogeneous polynomials of degree i and µ(x, y) =

∑

i>0mi(x, y) where
mi(x, y) is a homogeneous polynomial of degree i.

Equating the terms of order 2 in the equation [Xw,Y ] = µY we get the
two following equations:

−y∂A2

∂x
+ x

∂A2

∂y
+B2 = m1x,

−y∂B2

∂x
+ x

∂B2

∂y
+ 4xwy − 2y2 − A2 = m1y.

The solution of these two equations is A2(x, y) = ax2 + bxy − (2/3)y2,
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B2(x, y) = (4w/3)x2 +axy+by2 and m1(x, y) = (b+(4w/3))x− ((4/3)+a)y,
where a, b are any two real numbers.

Equating the terms of order 3 in the equation [Xw,Y ] = µY , we get the
two following equations:

−y∂A3

∂x
+ x

∂A3

∂y
+ (2y2 − 4wxy)

∂A2

∂y
+B3 = m2x+m1A2,

−y∂B3

∂x
+ x

∂B3

∂y
+ (2y2 − 4wxy)

∂B2

∂y
+ 4wyA2 − A3 − 4(y − wx)B2 =

= m2y +m1B2.

Let us write m2(x, y) =
∑

i+j=2mijx
iyj, A3(x, y) =

∑

i+j=3 aijx
iyj and

B3(x, y) =
∑

i+j=3 bijx
iyj. We consider the vector of unknowns

v = {m20,m11,m02, a30, a21, a12, a03, b30, b21, b12, b03}

and we can write the previous two equations as a linear system of eight
equations in these eleven unknowns : Mv = k. The matrix M is

M =

























−1 0 0 0 1 0 0 1 0 0 0
0 −1 0 −3 0 2 0 0 1 0 0
0 0 −1 0 −2 0 3 0 0 1 0
0 0 0 0 0 −1 0 0 0 0 1
0 0 0 −1 0 0 0 0 1 0 0
−1 0 0 0 −1 0 0 −3 0 2 0
0 −1 0 0 0 −1 0 0 −2 0 3
0 0 −1 0 0 0 −1 0 0 −1 0

























which can be seen that it is of rank 7. The vector k is

k =

{

a

3
(3b+ 4w),

1

3
(−4a− 3a2 + 3b2 + 16bw),

1

9
(−36b− 9ab− 56w),

2

9
(16 + 3a),

4

9
(3b− 8w)w,

1

9
(9ab+ 32w − 36aw),

1

3
(2a− 3a2 + 3b2 + 4bw),

1

3
(−4b− 3ab+ 8w)

}

.

The matrix (M|k) has rank 8 as the determinant of one of its 8 × 8 mi-
nors equals 1 + w2. So, the linear system does not satisfy the compatibility
condition and, hence, no such Y nor µ can exist.
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The contents of this chapter belong to the paper entitled Characteriza-
tion of isochronous foci for planar analytic differential systems, authored by
J. Giné and M. Grau and which is a preprint, 2003.

Abstract. Consider the two-dimensional autonomous systems of differen-
tial equations of the form

ẋ = λx − y + P (x, y) , ẏ = x + λy + Q(x, y) ,

where P (x, y) and Q(x, y) are analytic functions of order ≥ 2. These sys-

tems have a focus at the origin if λ 6= 0, and have either a center or a weak

focus if λ = 0. In this work we study necessary and sufficient conditions for

the existence of an isochronous point at the origin. Our result is original

when applied to weak foci and gives known results when applied to strong

foci or to centers.
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[12] L. Cairó, H. Giacomini and J. Llibre, Liouvillian first integrals
for the planar Lotka-Volterra system., Rend. Circ. Mat. Palermo (2) 52
(2003), no. 3, 389–418.
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2003.

[46] V.F. Filiptsov, Algebraic limit cycles, Differential Equations 9
(1973), 983–988.

[47] E. Freire, A. Gasull and A. Guillamon, A characterization of
isochronous centres in terms of symmetries, Rev. Mat. Iberoamericana,
20 (2004), no. 1, 205-222.

[48] W. Fulton, Algebraic curves. An introduction to algebraic geometry.
Notes written with the collaboration of Richard Weiss. Mathematics Lec-
ture Notes Series. W. A. Benjamin, Inc., New York-Amsterdam, 1969.

[49] A. Gasull, A. Guillamon and J. Villadelprat, The period func-
tion for second-order quadratic ODEs is monotone, Qual. Theory Dyn.
Syst. 4 (2004), no. 2, 329–352.
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clides, 11. Instituto de Matemática Pura e Aplicada, Rio de Janeiro,
1979.

[89] S. Smale, Mathematical problems for the next century. Math. Intelli-
gencer 20 (1998), no. 2, 7–15.

[90] M. Villarini, Regularity properties of the period function near a center
of a planar vector field, Nonlinear Anal. 19 (1992), 787–803.
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J. Chavarriga, J. Giné and M. Grau, Integrable systems via polynomial in-
verse integrating factors, Bull. Sci. Math., 126 (2002), 315–331.

Abstract. We study the integrability of two–dimensional autonomous

systems in the plane of the form ẋ = −y + Xs(x, y), ẏ = x + Ys(x, y),

where Xs(x, y) and Ys(x, y) are homogeneous polynomials of degree s with

s ≥ 2. Writing this system in polar coordinates, we study the existence of

polynomial inverse integrating factors and we give some related invariants,

from which we can compute a formal first integral for the system. Finally,

we give a family of systems with s = 4 and with a center at the origin, via

inverse integrating factors, in which radial and angular coefficients do not

independently vanish in Liapunov constants.

J. Chavarriga and M. Grau, Invariant algebraic curves linear in one vari-
able for planar real quadratic systems, Appl. Math. Comput., 138 (2003),
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Abstract. In this paper we study algebraic solutions of the form h(x, y) =

p1(x)y + p2(x), where p1(x) and p2(x) are real coprime polynomials and

p1(x) 6= 0, for a planar real algebraic quadratic system. We analyze the

existence of this kind of solutions depending on the coefficients of the sys-

tem.
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Abstract. We consider a Kukles system of the form ẋ = −y, ẏ = f(x, y)
where f(x, y) is a polynomial with real coefficients of degree d without y as
a divisor. We study the maximum number of small-amplitude limit cycles
for these kind of systems which can coexist with invariant algebraic curves.
We give all the possible distributions of invariant straight lines for a Kukles
system and we give some bounds for the number of limit cycles. We also
give some necessary conditions for the existence of an invariant algebraic
curve of degree ≥ 2 and we study the possible coexistence of this curve and
a limit cycle.

Finally, we give two examples of cubic Kukles systems both with an invari-

ant hyperbola. In the first example the hyperbola coexists with a center

and in the second one it coexists with two small-amplitude limit cycles.

These two examples contradict a previous result given in:

Xin An Yang, A survey of cubic systems. Ann. Differential Equations 7

(1991), no. 3, 323–363.
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problem for analytic differential equations on the plane.

Abstract. In this paper we give a very easy to compute necessary condi-

tion in the monodromy problem for all singular point of analytic differential

systems in the real plane. Our main tool is considering the analytic func-

tion, angular speed, and studying its limit through straight lines to the

singular point.

A copy of this article may be downloaded in:
http://www.udl.es/dept/matematica/ssd/

The following preprint is a work still in process.

H. Giacomini, M. Grau and J. Llibre, Cyclicity of the homoclinic orbit in
the family of Liénard systems of degree 4.

Abstract. We consider the following family of Liénard system in R
2 of

degree 4:

ẋ = y − (a2x
2 + x4) − ε(P1(ε)x + P3(ε)x

3), ẏ = −x,

where P1(ε) and P3(ε) are analytic real functions in ε near ε = 0, P1(0)2 +
P3(0)2 6= 0, and |ε| << 1. When ε = 0, the system has a center at the origin
whose period annulus is bounded by a homoclinic orbit Γ. The saddle of Γ
is situated in the point (0, 1, 0) of the equator of the Poincaré sphere once
the system for ε = 0 has been compactified. We show that one, and only
one, limit cycle bifurcates from Γ when perturbing ε.

Our crucial tool consists in a new technique in the study of bifurcations

of limit cycles from graphs which considers an approximation of an inverse

integrating factor for the system.
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Notation

R denotes the field of real numbers.

C denotes the field of complex numbers.

i denotes
√
−1.

If K is any field, we denote by:

K[x1, x2, . . . , xn] the ring of polynomials in the variables x1, x2, . . . , xn

and coefficients in K,

K(x1, x2, . . . , xn) the quotient field of the ring K[x1, x2, . . . , xn], that is

K(x1, x2, . . . , xn) =

{

A

B

∣

∣

∣

∣

A,B ∈ K[x1, x2, . . . , xn], B 6= 0

}

under the equivalence relation
A

B
∼ Ã

B̃
⇔ A B̃ = B Ã,

K[[x1, x2, . . . , xn]] the ring of formal power series in the variables
x1, x2, . . . , xn and coefficients in K,

K((x1, x2, . . . , xn)) the quotient field of the ring K[[x1, x2, . . . , xn]], i.e.,

K((x1, x2, . . . , xn)) =

{

φ

ψ

∣

∣

∣

∣

φ, ψ ∈ K[[x1, x2, . . . , xn]], ψ 6= 0

}

under the equivalence relation
φ

ψ
∼ φ̃

ψ̃
⇔ φ ψ̃ = ψ φ̃, and

K{x1, x2, . . . , xn} the ring of convergent power series in the vari-
ables x1, x2, . . . , xn and coefficients in K.
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142 Notation

CP(2) denotes the complex projective plane.

ode is the acronym for ordinary differential equation.

Φt(p) is the flow of a differential system with initial condition Φ0(p) = p.

Σ denotes a transversal section to the flow.

P denotes the Poincaré map.

S
2 denotes the Poincaré sphere.

v denotes a non-null vector.

F(x, y) denotes the vector field at each point defined by a system (1.1),
F(x, y) = (P (x, y), Q(x, y)).

∇ denotes the gradient.

div denotes the divergence of a differential system.

K(ω) denotes the elliptic integral of first kind.

E(ω) denotes the elliptic integral of second kind.

Π(κ, ω) denotes the elliptic integral of third kind.
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p. 18, lines 3,4 . . . where Σ = {(x, y) ∈ R2 | (f1 · f2 · . . . · fr)(x, y) = 0}.
We remark that, particularly, if λi ∈ Z , ∀i = 1, 2, . . . , r, . . . must be
substituted with . . . where Σ = {(x, y) ∈ R2 | (f1·f2·. . .·fs)(x, y) = 0}.
We remark that, particularly, if λi ∈ Z , ∀i = 1, 2, . . . , s, . . .

p. 19, line -12 . . . in C[x, y], λi (1 < i < r) and µj = 0 (1 < j < `) are
complex numbers . . . must be substituted with . . . in C[x, y], λi

(1 < i < r) and µj (1 < j < `) are complex numbers . . .

p. 21, line -15 An elementary first for this system . . . must be substituted
with An elementary first integral for this system . . .

p. 21, line -10 The reciprocals of the statements of Theorems 1.3 and 1.4
are not true. must be substituted with The reciprocals of the
statement of Theorem 1.3 is not necessarily true. The reciprocal of the
statement of Theorem 1.4 is proved in [33].

p. 21, line -4 . . . Theorem 1.6 ensures that given an algebraic inverse inte-
grating factor . . . must be substituted with . . . Theorem 1.6 ensures
that given a (generalized) Darboux inverse integrating factor . . .

1



Maria Teresa Grau Contribution to the qualitative study of . . .

p. 24, line 15 As is it proved . . . must be substituted with As it is
proved . . .

p. 48, line -12 . . . the Lotka-Volterra case and the reversible case. must
be substituted with . . . the Lotka-Volterra case and the critical case.

p. 63, line -2 Before Lemma 3.7 it must be written: The following lemma
is also proved in the article:

A. J. Maciejewski, J. Moulin Ollagnier and A. Nowicki,
Generic polynomial vector fields are not integrable. Indag. Math. 15
(2004), no. 1, 55–72.

p. 75, line 4 . . . planar polynomial differentials systems defined by C1 func-
tions . . . must be substituted with . . . planar differential systems
defined by C1 functions . . .

p. 99, line -10 . . . where this integral is done over the oval γ of the curve
v2 − g(a, τ) = 0. must be substituted with . . . where this integral
is done over an homotopic representant of the real oval γ of the curve
v2 − g(a, τ) = 0.

p. 103, line -3 . . . where this integral is done over the oval γ of the curve
v2 − g = 0. must be substituted with . . . where this integral is
done over an homotopic representant of the real oval γ of the curve
v2 − g = 0.

p. 111, line 2 After the first sentence it must be written: We only consider,
in this chapter, non–degenerate singular points.
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