
Chapter 4

Linear stability of homographic

solutions

4.1 Introduction

In this chapter we study the stability parameters of the homographic solutions of

the Planar Three Body Problem with homogeneous potential of order −α, 0 <
α < 2.

In chapter 1 we have seen that the system that gives us the non–trivial char-

acteristic multipliers for the homographic solutions (see (1.56)) is

ẋ = A(f, e)x,

where x ∈ R4, ˙ =
d

df
and

A(f, e) =











0 0 1 0

0 0 0 1

gα−2λ1 0 0 −2
0 gα−2λ2 2 0











. (4.1)

The parameters λ1, λ2 are defined in table 1.1 for the triangular and collinear case,

respectively, g is the periodic solution of the potential equation

z̈ = −dU
dz

(z) with U(z) =
z2

2
− zα

α
, (4.2)

on the energy level E = −1

2
ω

2α
2−α being 0 < ω ≤ ωc, ωc =

(

2− α
α

)
2−α
2α

(see (1.34))

and f is defined in (1.11).
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118 4. Linear stability of homographic solutions

Notice that λ1 and λ2 depend on a unique mass parameter, βc or βt (see

table 1.1). Moreover, (4.1) depends on ω. So the system (4.1) depends on two

parameters, ω and β being β = βc in the collinear case and β = βt in the triangular

case. In the following we shall denote by β the parameters βc or βt. When talking

about collinear configurations, we will take β = βc. In the triangular case, we shall

take β = βt. If we are talking about the both cases, we shall write β.

We also recall that once the configuration, triangular or collinear, is fixed

we can characterize an homographic solution using ω ∈ (0, ωc] or the generalized

eccentricity e ∈ [0, 1) defined in (1.57), that is, e =

√

1− α

2− αω
2α

2−α . Our purpose

is to study the linear stability for e ∈ [0, 1) and the range of β defined in the table

1.1.

If e = 0 or equivalently ω = ωc, the homographic solution is a relative equi-

librium. In that case, (4.1) is a constant linear system and some resonant points

on the λ1, λ2 plane are obtained. Therefore, it is expected that some resonant

’tongues’ will appear for e & 0 in the plane of parameters β, e, giving rise to

regions with a different stability character. These kind of bifurcations as well as

the width of the respective tongues can be studied using the results of chapter 2.

When e . 1, that is ω & 0, (4.1) is near the singular case. Notice that (see

(4.2)) U(z) = zα
(

− 1

α
+
z2−α

2

)

satisfies the hypothesis (A1) and (A2) in chapter

3 with

γ = − 1

α
, s = 2− α, V1(z) =

1

2
. (4.3)

Moreover we recall that in chapter 3, g is taken as a periodic solution of the

conservative system (3.2) on the energy level −δ. In the homographic case g is

a periodic solution of (4.2) on the energy level E = −1

2
ω

2α
2−α . Therefore, the

hypothesis (B) holds by taking δ =
1

2
ω

2α
2−α , or, using the generalized eccentricity,

δ =
2− α
2α

(1− e2). (4.4)

For intermediate values of the eccentricity e ∈ (0, 1) the bifurcation diagram is

computed numerically. In section 4.2 we consider small eccentricity and, section

4.3 is devoted to the near singular case, e . 1.

4.2 Stability parameters near the constant case

First (section 4.2.1) we determine resonances when the generalized eccentricity, e,

equals zero. Then we study the stability parameters for small positive e. In section
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4.2.2 we consider the Newtonian case. We shall apply the Normal Form technique

developed in chapter 2 in order to obtain the boundaries of the resonant regions.

Section 4.2.3 is devoted to the general case.

4.2.1 Eccentricity equal to zero

For the triangular configuration λ1 and λ2 are the zeroes of the polynomial

p(λ) = λ2 − (α+ 2)λ+
βt
4
,

(see table 1.1). Then, for βt ∈ (0, (α + 2)2], (λ1, λ2) describes a segment on the

plane with endpoints

(α+ 2, 0),

(

α+ 2

2
,
α+ 2

2

)

. (4.5)

This segment goes from region R2 to R3 (see figure 4.1) using the notation intro-

duced in chapter 2. The change from R2 to R3 takes place when (λ1 + λ2 − 4)2 −
4λ1λ2 = 0, that is,

(α− 2)2 − βt = 0.

For 0 < βt ≤ (α − 2)2 the characteristic exponents are ±iω1, ±iω2 and for

(α− 2)2 < βt ≤ (α+ 2)2 they are complex, ±a± ib.

Assume 0 < βt < (α − 2)2. In this case, ω1 6= ω2. To look for resonant points

we compute ω1, ω2 as

ω2
1 =

2− α+
√

(2− α)2 − βt
2

, ω2
2 =

2− α−
√

(2− α)2 − βt
2

.

Resonances are obtained when ω1 or ω2 satisfy ωT = nπ for some n ∈ N where

T =
2π√
2− α or, equivalently when

4ω2

2− α = n2. Moreover, if 0 < βt < (α − 2)2

then

2 <
4ω2

1

2− α < 4, 0 <
4ω2

2

2− α < 2.

Therefore, we get a unique resonance when ω2T = π for βt =
3

4
(2− α)2.

Let us assume (α − 2)2 < βt ≤ (α + 2)2, that is, (λ1, λ2) belongs to the

region R3. The characteristic exponents are ±a ± ib with b2 =
1

4
(2− α+

√

βt).
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Figure 4.1: Segments corresponding to the collinear and triangular Newtonian case in

the plane (λ1, λ2)

A resonance is attained if Tb = nπ for some n ∈ N or equivalently
4b2

2− α = n2.

However for the allowed range of βt we get

2 <
4b2

2− α ≤
4

2− α,

that is, in order to have a resonance with Tb = nπ we need

2 ≤ n ≤ 2√
2− α. (4.6)

In that case, a simple computation shows that βt = (2 − α)2(n2 − 1)2. We note

that (4.6) has no solution if α < 1. Then, there is no resonance for (α − 2)2 <

βt < (α + 2)2 if α < 1. Moreover, we have that
2√

2− α → +∞ when α → 2−.

Then, as α ≥ 1 increases we get more resonant points.

Table 4.1 summarizes the critical values of βt, such that bifurcations are ex-

pected for e > 0 small enough.

Let us consider now the collinear case. From table 1.1 we get easily that as βc
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β∗t characteristic exponents transition

±iωj, j = 1, 2
3

4
(2− α)2 ω1T 6= nπ, n ∈ N, EE↔EH

ω2T = π

±iωj, j = 1, 2

(2− α)2 ω1 = ω2 =

√

2− α

2
EE↔CS

(2− α)2(n2 − 1)2 for n ∈ N ±a± ib

2 ≤ n ≤ 2√
2− α

bT = nπ CS↔HH

Table 4.1: Resonances for e = 0 in the triangular case and expected transitions for small

e

ranges from 0 to 2α+2 − 1, the point (λ1, λ2) moves on a segment with endpoints

(α+ 2, 0) ((α+ 1)2α+2 + 1, 1− 2α+2). (4.7)

For βc 6= 0 this segment is contained in the region R1 (see figure 4.1). So, the

characteristic exponents are ±λ, ±iω. Only single resonances can be attained

when ωT = nπ for some n ∈ N.

To get the resonant points we write ω2 as

ω2 =
2− α(βc + 1) +

√

β2
c (α+ 2)2 + 2βc(α2 + 4) + (α− 2)2

2
.

It is easy to check that ω2 is an increasing function of βc. Then, ω ∈ (
√
2− α, ωM )

being

ωM =

√

1− 2α+1α+ 2
α
2

√

2α+2(α+ 2)2 − 8α. (4.8)

In terms of n, we have that

2 < n <
2ωM√
2− α.
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We note that ω2
M → −15 + 8

√
15 > 0 and then

2ωM√
2− α → +∞ when α → 2−.

Then, as α approaches 2, the number of resonances increase.

4.2.2 The Newtonian case

We shall assume α = 1, that is Newtonian potential. System (4.1) can be written

as (2.1) by taking G1 = G2 = g−1. The periodic solution of (4.2) is g = 1+e cos f ,

where e is the eccentricity of the orbit and f the true anomaly. Then, g−1 =

1 − F (f, e) being F (f, e) an even 2π–periodic function on f which satisfies the

d’Alembert property. That is, the hypothesis assumed in chapter 2 holds for (4.1).

We begin with the triangular homographic solutions. From table 4.1 we get

the following resonant points for e = 0.

β∗t characteristic exponents

3

4
±iω1, ±iω2, ω1 =

√
3

2
, ω2 =

1

2

1 ±iω1, ±iω2, ω1 = ω2 =

√
2

2
9 ±a± i

Table 4.2: Resonances for e = 0 in the triangular case for Newtonian potential

We can apply the theory of chapter 2 to the case β∗t =
3

4
, that is, near the point

(a1, a2) =

(

3

2
+

1

4

√
33,

3

2
− 1

4

√
33

)

in the plane λ1, λ2. From (2.6), the resonant

curve for ω1 =
1

2
is given by

γt(λ1, λ2) :=

(

λ1 +
1

4

)(

λ2 +
1

4

)

− 1 = 0. (4.9)

Figure 4.2 shows the intersection of the resonant curve (4.9) with the segment with

endpoints (4.5).

We take λ1 = a1 + δ1 and λ2 = a2 + δ2 with |δ1|, |δ2| small enough. As

(a1, a2) ∈ R2, using Proposition 2.3.4, we know that the Normal Form up to a
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Figure 4.2: Left: Some resonant curves and the segments corresponding to the triangular

and collinear case in the plane (λ1, λ2). Right: Magnification of the triangular case (color

codes are the same as in figure 2.2)

given order in δ1, δ2 and e is

NF = K + iω1z2z4 +
1

2
iz2z4 + iσ1z1z3 + iσ2z2z4 +

+σ4z
2
2e
−it − σ4z

2
4e

it,

where σj ∈ R, j = 1, 2, 4, depend on δ1, δ2 and e. Here, ω1 =

√
3

2
. Then, one of the

traces satisfies |tr2| < 2 if δ1, δ2, e are small enough, giving an elliptic component.

A region EH is created, and their boundaries are defined by the equation

σ2
2 − 4σ2

4 = 0. (4.10)

As we are in a single resonance case and the function F satisfies d’Alembert prop-

erty, we can use the theory in section 2.5.1. In particular, we can compute the

dominant terms in the contribution of δ1 and δ2 to σ1. Using lemma 2.5.1, a simple

computation shows that

σ1 =

(

7

2
− 1

2

√
33

)

δ1 +

(

7

2
+

1

2

√
33

)

δ2 +O2.

Now we introduce the parameter δ as in (2.60), that is,

(

δ1
δ2

)

= δ∇γt(a1, a2),
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where γ is given in (4.9) and (a1, a2) is the resonant point for e = 0. Then,

δ1 =
δ

4
(7−

√
33), δ2 =

δ

4
(7 +

√
33).

We can write σ1 in terms of δ as

σ1 =
41

2
δ +O2,

We have implemented an algebraic manipulator that computes the Normal Form

up to a given order in δ1, δ2 and e. In this case, we obtain that

σ4 = −0.035903516541 . . . e+O2.

Let us consider δ+(e) and δ−(e) the solutions of the two equations given by (4.10),

that is, σ2−2σ4 = 0 and σ2+2σ4 = 0, respectively. We write δ±(e) = d±e+O(e2).

By proposition 2.5.3, the width of δ+(e) − δ−(e) is of order 1 in e. Moreover, we

can compute explicitly the values of δ±. We have that

δ± = ∓0.0350278210155 . . . e+O(e2).

In the plane (λ1, λ2) the boundaries of the region EH are given by

λ1 = a1 − d1e+O(e2), λ2 = a2 − d2e+O(e2),

λ1 = a1 + d1e+O(e2), λ2 = a2 + d2e+O(e2),

where d1 = 0.0109938087283 . . . and d2 = 0.1116035648259 . . .. Taking into ac-

count that βt = 4λ1λ2 the equations above defines the following curves in the

plane (βt, e)

β−t =
3

4
− de+O(e2), β+

t =
3

4
+ de+O(e2),

where d = 0.4903894921666 . . ..

We conclude that a resonant tongue T is born at the point (βt, e) =

(

3

4
, 0

)

and the width of T is of order O(e).

Remark 4.2.1. The existence of this tongue was proved by G.Roberts in [R.] using

a different method.

Figure 4.3 shows the bifurcation diagram on the plane (βt, e) computed nu-

merically. On the range βt ∈ (0, 9) we distinguish the tongue T born at β∗t =
3

4
.

The behaviour for e . 1 will be described in section 4.3.

Now we study the collinear case. For e = 0, the characteristic exponents are

±λ, ±iω, where ω ∈ (1, ωM ), ωM = 2.88335022 . . . (see (4.8)) as βc ∈ (0, 7).
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0

0.5

1

0 3 6 9

Figure 4.3: Bifurcation diagram of the triangular Newtonian homographic solutions in

the plane (βt, e). Color codes: Red for EE, Green for EH, Magenta for CS and Blue for

HH

Resonances ω =
3

2
, 2,

5

2
are found on that range of βc. The corresponding critical

values of βc are given in table 4.3. We expect resonant tongues T 3
2
, T2 and , T 5

2

associated to that resonances. Our purpose now is to compute the width of T 3
2

and T 5
2
using the Normal Form method.

Using the data in tables 4.3 and 1.1, we compute the following resonant points

on the plane λ1, λ2,

(a1, a2) =

(

3

8
(
√
41 + 7),

3

16
(1−

√
41)

)

,

(a1, a2) =

(

1

8
(37 +

√
4369),− 1

16
(13 +

√
4369)

)

,

for ω =
3

2
and ω =

5

2
, respectively. The corresponding resonant curves are

γ1(λ1, λ2) =

(

λ1 +
9

4

)(

λ2 +
9

4

)

− 9 = 0,

γ2(λ1, λ2) =

(

λ1 +
25

4

)(

λ2 +
25

4

)

− 25 = 0,
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β∗c characteristic width of Tω transition

exponents ±iω

3

16
(
√
41− 1) ω =

3

2
O(e3) HE←→HH

1

4
(1 +

√
97) ω = 2 no bifurcation

1

16
(13 +

√
4369) ω =

5

2
O(e5) HE←→HH

Table 4.3: Resonances for e = 0 in the collinear case for Newtonian potential

respectively. Figure 4.2 shows the intersection of the resonant curves with the

segment defined by the collinear homographic solutions.

We take λ1 = a1 + δ1 and λ2 = a2 + δ2 with |δ1|, |δ2| small enough. As

(a1, a2) ∈ R1 the Normal Form up to a given order of δ1, δ2, e is

NF = K + λz1z3 + iωz2z4 + σ1z1z3 + iσ2z2z4 +

σ3z
2
2e

it − σ3z
2
4e

it,

where σ1, σ2, σ3 ∈ R depend on δ1, δ2 and e, and (λ, ω) =

(

1

4

√

3
√
41 + 17,

3

2

)

or

(

1

4

√

97 +
√
4369,

5

2

)

. We have that |tr1| > 2. A region HH is created. Its

boundaries are defined by the equation

σ2
2 − 4σ2

3 = 0.

We take βc = β∗c + δ. Then, δ1 = 2δ and δ2 = −δ. We are in a single resonance

case. Moreover, function F satisfies d’Alembert property. Then, using lemma

2.5.1 we obtain that

σ2 =
53
√
41− 123

610
δ +O2 if ω =

3

2
,

σ2 =
197
√
4369− 4369

43050
δ +O2 if ω =

5

2
.
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Using the algebraic manipulator we obtain that

σ3 = −5.9623466927 . . . · 10−3e3 +O4 if ω =
3

2
,

σ3 = −3.3038513137 . . . · 10−5e5 +O6 if ω =
5

2
.

Let us consider δ+(e), δ−(e) the solutions of σ2 − 2σ3 = 0 and σ2 + 2σ3 = 0,

respectively. If we write δ±(e) = d±1 e + d±2 e
2 + d±3 e

3 + d±4 e
4 + d±5 e

5 + O(e6) and

taking into account the expression up to order 3 and 5 in the case ω =
3

2
and

ω =
5

2
, given by the algebraic manipulator, we obtain that the boundaries of the

resonant tongues in the plane (βc, e) are given by

βc − β∗c = −0.4208699384 . . . e2 ± 0.03361931602 . . . e3 +O(e5) if ω =
3

2
,

βc − β∗c = −1.9578203867 . . . e2 − 0.5109418802 . . . e4

±0.00032876661 . . . e5 +O(e6) if ω =
5

2
,

where we recall that βc − β∗c = δ.

Therefore, two resonant tongues T 3
2
and T 5

2
are born at e = 0 being their width

of order e3, e5, respectively (see table 4.3).

In the case ω = 2 the computations up to a given order using the algebraic

manipulator shows that the two boundaries coincide up to that order. We prove

now that, in fact, if ω = 2 there is no bifurcation. To this end, we consider the

system (4.1) in the Newtonian case for arbitrary (λ1, λ2) ∈ R1 ∪R2.

Lemma 4.2.2. Let us consider the system (4.1) in the Newtonian case and assume

that for e = 0, (λ1, λ2) = (a1, a2) ∈ R1 ∪ R2, we get a single resonance frequency

ω = n with n ∈ N. Then, the two boundaries of the resonant region coincide.

There is no bifurcation in this case.

Proof

For ω = n, n ∈ N, one stability parameter, tr2, is equal to 2 for e = 0. Then the

boundaries of the resonant region are defined by tr2 = 2. Furthermore, if (λ1, λ2, e)

belongs to the boundary, the linear system (4.1) has a 2π–periodic solution. To

finish the proof we need the following lemma.

Lemma 4.2.3. Assume that (4.1) has a 2π–periodic solution, ϕ, for a fixed value

of e ∈ (0, 1) and λj 6= 0, j = 1, 2. Then, there exists a second periodic solution

with the same period which is independent of ϕ.
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Now we prove Lemma 4.2.2.

Let us define Φ(2π) the monodromy matrix of (4.1). After lemma 4.2.3, if

(λ1, λ2, e) belongs to the boundary of the resonant region then Φ(2π) can be written

(in a suitable basis) as

Φ(2π) =

(

Q 0

0 I2

)

,

for some 2 × 2 matrix Q. Using the Normal Form we can compute Φ(2π) up

to a given order in δ1, δ2, e. As we are in a single resonance case we know that

the reduced system becomes uncoupled. Assume that (a1, a2) ∈ R1. Then the

subsystem that defines tr2 is (2.39), that is,

u̇ = iσ2u− 2σ3v,

v̇ = −2σ3u− iσ2v.

(In the case (a1, a2) ∈ R2 a similar subsystem is obtained). We define for this

system the symplectic change of coordinates
(

η1

η2

)

=

√
2

2

(

1 i

i 1

)(

u

v

)

.

Then the new system is
(

η̇1

η̇2

)

= S1

(

η1

η2

)

,

where S1 =

(

0 σ2 − 2σ3

−(σ2 + 2σ3) 0

)

. The corresponding monodromy matrix

is exp(2πS1).

Let us assume that (λ1, λ2, e) belongs to the boundary such that σ2− 2σ3 = 0.

Then, S1 =

(

0 0

−(σ2 + 2σ3) 0

)

and exp(2πS1) =

(

1 0

−2π(σ2 + 2σ3) 1

)

.

If for these values of the parameters, σ2 + 2σ3 6= 0, then system (4.1) would

have a unique 2π–periodic solution. This gives a contradiction with lemma (4.2.3).

In this way we have proved that the two boundaries coincide up to arbitrary order

in e, once δ1 = δ1(e) and δ2 = δ2(e). Using the analycity they coincide for any

value of the eccentricity. 2

Proof of Lemma 4.2.3

System (4.1) can be written as the following system of second order equations

(1 + e cos f)ẍ1 = λ1x1 − 2ẋ2(1 + e cos f),

(1 + e cos f)ẍ2 = λ2x2 + 2ẋ1(1 + e cos f). (4.11)



4.2. Stability parameters near the constant case 129

A 2π–periodic solution of the system above can be written as

x1(f) = a0 +
∑

n≥1

an cos(nf) +
∑

n≥1

bn sin(nf),

x2(f) = c0 +
∑

n≥1

cn cos(nf) +
∑

n≥1

dn sin(nf). (4.12)

Then, the coefficients must satisfy the following uncoupled sets of recurrences

λ1a0 = e
(

d1 −
a1

2

)

,

eA2u2 = B1u1, (4.13)

eAn+1un+1 = Bnun − eAn−1un−1, n ≥ 2, u = (an, dn)
T ,

λ2c0 = −e
(

b1 +
c1
2

)

,

eA2Sv2 = B1Sv1, (4.14)

eAn+1Svn+1 = BnSvn − eAn−1Svn−1, n ≥ 2, v = (bn, cn)
T ,

where An = −n
2

(

n −2
−2 n

)

, Bn =

(

λ1 + n2 −2n
−2n λ2 + n2

)

and S = diag(1,−1).

We note that if un, n ≥ 1 is a non trivial solution of the last two equations in

(4.13) then vn = Sun = (an,−dn)T , n ≥ 1, is a non trivial solution of the second

and third equations in (4.14). Moreover, An is a non singular matrix for n > 2.

However, det(A2) = 0. But if det(B1) = (λ1 + 1)(λ2 + 1) − 4 6= 0, given u2 we

can compute u1 from the second equality in (4.13), and from the last equation we

obtain un for n ≥ 3.

We assume that (4.12) is a non trivial 2π–periodic solution of (4.11). Then,

both (4.13) and (4.14) have a solution. We assume that (4.13) admits a non trivial

solution. Then,
∑

n≥1 an cos (nf) and
∑

n≥1 dn sin(nf) are convergent. Therefore

vn = Sun, that is, bn = an and cn = −dn, for n ≥ 1, is a solution of (4.14). Then,

we can built two independent periodic solutions of (4.11) as

x
(1)
1 (f) = a0 +

∑

n≥1 an cos (nf), x
(1)
2 (f) =

∑

n≥1 dn sin (nf),

x
(2)
1 (f) =

∑

n≥1 an sin (nf), x
(2)
2 (f) = c0 −

∑

n≥1 dn cos (nf),
(4.15)

where a0 =
e

λ1

(

d1 −
a1

2

)

and c0 =
e

λ2

(

d1

2
− a1

)

. 2

Figure 4.4 shows the bifurcation diagram on the plane (βc, e) computed nu-

merically for βc ∈ (0, 7), e ∈ [0, 1). The first tongue borns at β∗c =
3

16
(
√
41− 1) =

1.013 . . .. We recall that the width of T 3
2
is of order e3. So, to distinguish the two
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boundaries we have to look at big values of the eccentricity. In figure 4.4 the line

inside the resonant tongue corresponds to a minimum of the stability parameter.

The second ’tongue’, T2, is only a curve defined by points (βc, e) for which the

second stability parameter is equal to 2, as predicted by lemma 4.2.2. For the

third tongue T 5
2
the width is of order e5. We can distinguish the two boundaries

in figure 4.5 which is a magnification of 4.4 for big values of e. Other curves in

figures 4.4 and 4.5 are resonant tongues Tω for ω =
m

2
, m ∈ N, m > 5. They are

born at values β∗c > 7. The behaviour of Tω as e goes to 1 will be described in

section 4.3.
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Figure 4.4: Bifurcation diagram of the collinear Newtonian homographic solutions in

the plane (βc, e)

4.2.3 The general case

For the general case we do not know explicitly the expression of gα−2. In this

section we shall see that system (4.1) satisfies the properties of system (2.1). Then,

the theory in this chapter can be applied for the homographic solutions in the

general case. Moreover, we will see that gα−2 satisfies d’Alembert property, and

then we can compute as in 2.5 the boundaries of the resonant regions.

Let g(f) be the solution of (4.2) such that ġ(0) = 0 and g(0) is the minimum of

g(f). We introduce a new variable v = gα−2− 1. Then, the second order equation
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Figure 4.5: Magnification of the bifurcation diagram of the collinear Newtonian homo-

graphic solutions in the plane (βc, e)

of v is

v̈ = 2(α− 2)(α− 3)E(v + 1)
4−α
2−α + (α− 2)2(v + 1)

(

3

α
(v + 1)− 1

)

, (4.16)

where E denotes the energy of (4.2), that is, E =
ż

2
+ U(z).

Let e > 0 be small enough. We look for a solution of (4.16) which satisfies

initial conditions v(0) = e and v̇(0) = 0. We shall write

v(f) = v1(f)e+ v2(f)e
2 + v3(f)e

3 + . . . , (4.17)

where v1(0) = 1, vj(0) = 0 for j ≥ 2 and v̇j(0) = 0 for j ≥ 1. We remark that

writing the energy of (4.2) in terms of v we have that

E =
1

2
(e+ 1)

2
α−2 − 1

α
(e+ 1)

α
α−2 = E1 +∆, E1 = −2− α

2α
, (4.18)

and ∆ = α2e
2 + α3e

3 + α4e
2 +O(e5) with

α2 =
1

2(2− α) , α3 = − 4− α
3(2− α)2 , α4 =

(4− α)(3− α)
4(2− α)2 , . . .

To get v(f) we use a Lindstedt–Poincaré method. So, we introduce a new inde-

pendent variable τ = νf with

ν = ν0 + ν1e+ ν2e
2 + . . . .
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The coefficients νj , j ≥ 0 will be determined in order to eliminate resonant terms.

Using (4.18) the equation (4.16) can be written as

ν2 d
2v

dτ2
= f(v) + g(v)∆, (4.19)

where

f(v) = E1g(v) + (α− 2)2(v + 1)

(

3

α
(v + 1)− 1

)

,

g(v) = 2(2− α)(3− α)(v + 1)
4−α
2−α .

By substituting (4.17) in (4.19) we get

ν2
0

d2v1
dτ2

= −(2− α)v1, v1(0) = 1,
dv1
dτ

(0) = 0.

We choose ν2
0 = (2− α) and then trivially v1(τ) = cos τ . In a similar way we get

v2(τ) =
1

2(2− α) +
α− 4

3(2− α) cos τ −
2α− 5

6(2− α) cos (2τ),

v3(τ) =
α− 4

3(α− 2)2
+

(

(α− 4)(7− α)
9(2− α)2 − 9α2 − 47α+ 62

96(2− α)2
)

cos τ

−(2α− 5)(α− 4)

9(2− α)2 cos (2τ) +
9α2 − 47α+ 62

96(2− α)2 cos (3τ),

ν1 = 0 and

ν2 = −
√
2− α

2(2− α)2
(

1

6
(2α− 5)(11− 2α)− 3

4
(α− 3)(4− α)

)

.

In this way we can obtain g2−α = 1 + v(τ) up to a given order. Then, g2−α =

1 + v(νf) is a periodic function of f with period T =
2π

ν
.

Now we shall see that g2−α is an even function of f and satisfies the d’Alembert

property.

Lemma 4.2.4. Let v(τ) =
∑

m≥1 vm(τ)em be the solution of (4.19) such that

v1(0) = 1, vj(0) = 0 for j ≥ 2 and v̇j(0) = 0 for j ≥ 1. Then, vm(τ), m ∈ N, is an

even function on τ which satisfies the d’Alembert condition, that is, for m ∈ N,

vm(τ) =
m
∑

l=0

aml cos (lτ). (4.20)
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Proof

We know that g(f) is an even periodic function of f . So, v(τ) is also an even

function. Moreover v1(τ) = cos τ . Assume that vm(τ) for m = 1, 2, . . . , k − 1 are

known and satisfy the (4.20). If we define w = eiτ then vm(τ) contains terms wl

with l ≤ m.

The equation for vk(τ) is obtained by equating in (4.19) terms of order k in e.

It is clear that v1(τ), . . . , vk−1(τ) give terms with wl, with l ≤ k − 1, in v̈.

Concerning the right part of (4.19) to get the terms of order k in e from f(v)

it is sufficient to consider

f(v) = f ′(0)vk(τ) +
k
∑

j=2

f (j)(0)

j!
(v(k))j ,

where v(k)(τ) = v1(τ)e+ . . .+ vk(τ)e
k.

The terms of order k in e which come from (v(k))j can be written as

(v(k))j =
∑

l1 + . . .+ lk = j,

l1 + 2l2 + . . .+ klk = k

vl11 v
l2
1 · · · vlkk ek. (4.21)

In (4.21) we consider j ≥ 2. This implies lk = 0 in the summatory (4.21). Using the

hypothesis on v1(τ), . . . , vk−1(τ) we get that the highest term in w which appears

in vl11 v
l2
2 · · · vlkk is wl1+2l2+...+(k−1)lk−1 = wk. In a similar way it can be proved that

g(v)∆ contributes to the equation of vk with terms wl, l ≤ k − 2. Therefore we

can write the equation for vk(τ) as a linear non homogeneous differential equation

ν2
0 v̈k = f ′(0)vk + F (τ),

where F (τ) depends on v1(τ), . . . , vk−1(τ). The terms of F (τ) contain wl with

l ≤ k. This proves the lemma. 2

4.3 Stability parameters near the singular case

Our purpose in this section is to apply the theorem 3.3.1 to the system (4.1).

First we note that using (4.3) we obtain λ̂ = −(2− α)2
8α

. Moreover we recall that

the parameter δ in theorem 3.3.1 is related to the generalized eccentricity through

(4.4). So, we are interested now in small δ > 0. We shall assume that the non

degeneracy conditions of theorem 3.3.1 are satisfied.

We begin with the collinear case. Using table 1.1 we see that in the collinear

case λ1 > 0 and λ2 < 0. Therefore, theorem 3.3.1 can be applied if λ2 6= λ̂, that
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is, βc 6=
(2− α)2

2α
. The parameters β1, β2 in the theorem are easily computed (see

table 4.4).

α ∈ (0, 2) α = 1

β1
1

2− α

√

8α(α + 1)βc + (3α + 2)2
√
25 + 16βc

β2

√

1− 8αβc

(2− α)2
√
1− 8βc

Table 4.4: The parameters β1, β2 in theorem 3.3.1 for the collinear case

We remark that in the case α = 1 the values of βj , j = 1, 2, are related to the

eigenvalues of the equilibrium points on the triple collision manifold (see [Mo.2]).

We note that β1 > 0. Then tr1 > 2 if δ > 0 is small enough. Furthermore if

βc <
(2− α)2

8α
, β2 ∈ R and the second stability parameter is greater than 2. In

this case, the system is hyperbolic–hyperbolic for δ > 0 small enough. On the

other hand, if βc >
(2− α)2

8α
then β2 is pure imaginary. From (3.14) we know that

tr2 oscillates as δ tends to 0.

In the Newtonian case the behaviour of tr2 changes at βc =
(2− α)2

8α
=

1

8
=

0.125. We have computed numerically tr2 as a function of the eccentricity for

several values of βc. Their plots are represented in figure 4.6 by taking− log10(1−e)
on the x axis. The computations shows that if βc <

1

8
, tr2 goes to −∞. However, if

βc >
1

8
, tr2 oscillates between 2 and a negative value k < −2. Moreover numerically

we see that k decreases as βc →
(

1

8

)+

. As tr2 goes beyond −2, several intervals
on e of hyperbolic–hyperbolic (HH) type are created. Therefore, for a fixed βc =

b with b >
1

8
we must have on the bifurcation diagram a sequence of infinite

intervals of type HH which accumulate at e = 1. These HH intervals are in fact

the intersections of the infinitely many resonant tongues Tω with the line βc = b

(see figure 4.5). This implies that Tω with ω =
m

2
, m ≥ 4 tends to βc =

1

8
as e

tends to 1.

Figure 4.7 shows the typical behaviour of the stability parameter tr2 as a
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Figure 4.6: Stability parameter tr2 in the collinear Newtonian case for several values of

βc. − log10(1− e) is taken on the x axis

function of βc when e is near 1. The plot corresponds to e = 1 − 10−4. We

distinguish clearly the first interval with tr2 < −2 when βc is small. This interval

corresponds to the first tongue T 3
2
. In the following oscillations the parameter

goes under −2 by a small quantity defining the successive tongues. The numerical

computations show that the first minimum goes to infinity as e goes to 1.

It is also interesting to point out that figures 4.6 and 4.7 show that tr2 does not

cross the horizontal line tr2 = 2, which corresponds to resonances ω = n, n ∈ N.

This means that there is no bifurcation when ω = n (the two boundaries of Tn
coincide) as it was predicted by lemma 4.2.2.

Now we consider the triangular case. From table 1.1 we get λ1 > λ2 > 0 and

theorem 3.3.1 holds. The parameters β1, β2 in the theorem are given in the table

4.5.

Now, β1 ∈ R, β2 ∈ R. Then, if δ > 0 is sufficiently small the system is HH

provided that the coefficient d1 in theorem 3.3.1 is different from 0. From lemma

3.3.5 we know that d1 = dndg where dn 6= 0 and dg depends on the potential and

on λ1, λ2.
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Figure 4.7: Behaviour of tr2 for e = 0.9999 in the plane (βc, tr2)

Figure 4.3 shows the bifurcation diagram for the triangular Newtonian homo-

graphic solutions in the parameter space βt, e. We see that for e . 1, the system

is HH for any βt except in a neighbourdhood of some critical value β̃t near 6.

Numerical computations of dg seems to indicate that it is equal to zero. However

we do not have a proof of this fact.

Figure 4.8 shows the bifurcation diagram for the triangular homographic so-

lutions for different values of α. Concerning the behaviour for e near 1 we see

numerically that as α increases more critical values β̃t appear.
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Figure 4.8: Bifurcation diagram for the triangular homographic solutions. The values

of α are: top file α = 0.01, α = 0.1; center file α = 0.5, α = 0.9; bottom file α = 1.1,

α = 1.5. The color codes are the same as in figure 4.3
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α ∈ (0, 2) α = 1

β1

√

1 +
4α(2 + α)

(2− α)2
(1 + γ̃)

√
13 + 12γ̃

β2

√

1 +
4α(2 + α)

(2− α)2
(1− γ̃)

√
13− 12γ̃

Table 4.5: The parameters β1, β2 in theorem 3.3.1 for the triangular case where γ̃ =√
1− 3κ ∈ R



Chapter 5

Some heteroclinic connections

in the Spatial RTBP

In this chapter we study analytically the existence of homoclinic orbits to the

centre manifold of the Spatial Restricted Three Body Problem (SRTBP).

The SRTBP has five relative equilibrium points, two triangular and three

collinear. The collinear relative equilibrium points are of centre–centre–saddle

type and then have 1–dimensional stable and unstable invariant manifolds and a

4–dimensional centre manifold.

In a neighbourhood of the collinear equilibrium points there are two families

of Lyapunov periodic orbits, the planar and the vertical families. A Lyapunov

periodic orbit has 2–dimensional stable and unstable invariant manifolds. There

also exist 2–dimensional invariant tori with 3–dimensional stable and unstable

invariant manifolds.

We shall study the existence of homoclinic orbits to the centre manifold of

one of the relative equilibrium points. To this end, we consider the SRTBP as a

perturbation of the three dimensional Hill’s problem and also as a perturbation of

the spatial synodic two body problem.

For the existence of homoclinic orbits on small perturbations of integrable

system under generic assumptions see [L.], [K.L.1], [K.L.2].

5.1 The Spatial Restricted Three Body Prob-

lem

Let us consider two bodies, called primaries, describing circular orbits in the plane

(x, y) around their center of masses that we assume located at the origin. If we

139
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consider a system of coordinates that rotates with the primaries and suitable units,

the bodies can assumed to have masses m1 = 1− µ and m2 = µ, with µ ∈
(

0, 1
2

]

,

and to be fixed located at coordinates (µ, 0, 0) and (µ − 1, 0, 0), respectively. It

can also be assumed that they complete one inertial revolution in 2π time units.

It is well known that the equations of motion of a massless particle under the

gravitational action of the primaries are

ẍ− 2ẏ = Ωx,

ÿ + 2ẋ = Ωy, (5.1)

z̈ = Ωz,

where

Ω(x, y, z) =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2
+

1

2
µ(1− µ), (5.2)

r21 = (x− µ)2 + y2 + z2, r22 = (x− µ+ 1)2 + y2 + z2. (5.3)

Equations (5.1) are called the equations of the spatial restricted three body prob-

lem.

Equations (5.1) have a first integral , called the Jacobi integral, given by

F (x, y, z, ẋ, ẏ, ż) = −(ẋ2 + ẏ2 + ż2) + 2Ω(x, y, z). (5.4)

They also have the following symmetry

S(x, y, z, ẋ, ẏ, ż, t) = (x,−y, z,−ẋ, ẏ,−ż,−t), (5.5)

It is well known that system (5.1) has five equilibrium points, three collinear

points L1, L2, L3, located on the x axis, and two triangular points, L4, L5 forming

an equilateral triangle with the masses and located at the x, y plane. Figure 5.1

shows the equilibrium points of the SRTBP in the plane (x, y). If we denote by

Ci the value of (5.4) on the Li points, i = 1, . . . , 5, we have that 3 = C4 = C5 ≤
C3 < C1 < C2 < 4.25 for all µ ∈

(

0, 1
2

)

.

Let us denote by M(µ,C) the hypersurface given by

M(µ,C) = {(x, y, z, ẋ, ẏ, ż) ∈ R6| F (x, y, z, ẋ, ẏ, ż) = C}. (5.6)

Due to the existence of the Jacobi integral, we can restrict to study the behaviour

of the orbits in M(µ,C). The projection of M(µ,C) in the position space (x, y, z)

is called Hill’s region. We shall denote it by

R(µ,C) = {(x, y, z) ∈ R3| 2Ω(x, y, z) ≥ C}. (5.7)
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Figure 5.1: Equilibrium points of the SRTBP in the plane (x, y)

The boundary of R(µ,C) is the surface of zero velocity. For C > C2 Hill’s region

consists in two ovoids enclosing the two primaris and a cilindrical surface outside

the ovoids. We denote by Rb(µ,C) the bounded components of the Hill’s region.

In this case, Rb(µ,C) is formed by the two ovoids. As the value of C decreases

the ovoids in Rb(µ,C) meet at L2 (see figure 5.2). The three dimensional picture

Figure 5.2: Intersections of Rb(µ,C) for C = C2 in the planes (x, y) and (x, z), respec-

tively, for µ = 0.2

corresponding to this fact is formed by two ovoids that have a contact in L2. For

values of C1 < C < C2 the two ovoids converts in a surface homeomorphic to
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a sphere. In this case Rb(µ,C) has a unique connected component and so, it is

possible that the massless particle travels from a neighbourhood of a primary to a

neighbourhood of the other primary (see figure 5.3). We denote by Mb(µ,C) the

Figure 5.3: Intersections of Rb(µ,C) for C . C2 in the planes (x, y) and (x, z), respec-

tively, for µ = 0.2

component of M(µ,C) that projects in Rb(µ,C). We shall study the behaviour of

the orbits in Mb(µ,C) for C . C2.

5.1.1 Qualitative description of a neighbourhood of L2

As we are interested in the orbits near L2, we shall give a qualitative description

of a neighbourhood of this point. For details see [Sz.]. In fact, the same arguments

hold for the other collinear equilibrium points.

By introducing momenta as px = ẋ − y, py = ẏ + x and pz = ż, the SRTBP

can be written in Hamiltonian form, and the Hamiltonian function is

H(x, y, z, px, py, pz) =
1

2
(p2

x + p2
y + p2

z)− xpy + ypx −
1− µ
r1

− µ

r2
, (5.8)

where r1 and r2 are defined in (5.3). The relation between the energy h and the

Jacobi constant of an orbit is given by

C = −2h− µ(1− µ).

L2 is located between the two primaries (see figure 5.1). We introduce ρ by

r2 = ρ. Then, r1 = 1− ρ and x = µ− 1 + ρ for this equilibrium point. Figure 5.4

shows the situation.

ρ is the solution of Euler’s quintic equation

ρ5 − (3− µ)ρ4 + (3− 2µ)ρ3 − µρ2 + 2µρ− µ = 0, (5.9)
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Figure 5.4: Coordinates of L2

The linearized equations around the collinear equilibrium point are given by the

second order terms of the Hamiltonian. These terms can be written as

H2 =
1

2
(p2

x + p2
y)− xpy + ypx − c2x2 +

c2
2
y2 +

1

2
p2
z +

c2
2
z2, (5.10)

where c2 =
1− µ

(1− ρ)2 +
µ

ρ3
. Figure 5.5 shows the values of c2 depending on the

parameter µ.

Figure 5.5: Values of c2 depending on µ

From the expression of H2 it is clear that, linearly, the direction z is uncoupled

from the planar directions. The linearized system for z, ż is an harmonic oscillator

with frequency ωv =
√
c2. It is well–known that ωv ∈ (2, 3) (see figure 5.6). For

the planar directions, x, y, the characteristic polynomial of the linearized system
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is

p(λ) = λ4 + (2− c2)λ2 + (1 + c2 − 2c22).

Then, if we denote by η = λ2, the zeroes of p(λ) are given by

η1,2 =
c2 − 2±

√

9c22 − 8c2
2

,

where, according to the values of c2, η1 > 0 and η2 < 0. Then, L2 is a centre–

centre–saddle point. The frequency ωp =
√−η2 is known as planar frequency. It

is easy to see that ωp ∈ (2, 3). Figure 5.6 shows the graphic of ωp in terms of µ.

Figure 5.6: Frequencies ωp and ωv in terms of µ ∈
(

0,
1

2

)

As L2 is of centre–centre–saddle type, it has 1–dimensional stable and unstable

manifolds and a 4–dimensional centre manifold. Fixed an energy level C of the

Jacobi constant, W c
L2
∩M(µ,C) is homeomorphic to S3, where W c

L2
denotes the

centre manifold of L2 (see appendix D).

It is well–known that there exists two families of periodic orbits in a neigh-

bourhood of L2, the planar and the vertical Lyapunov periodic orbits. The first

family is associated to the frequency ωp and the second one to the frequency ωv.
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These families are hyperbolic, and they have 2–dimensional stable and unstable

invariant manifolds. We remark that the planar family of periodic orbits also exists

in the Planar Restricted Three–Body Problem. Therefore, the stable and unstable

invariant manifolds of the planar periodic orbits lie on z = 0, ż = 0.

For the linearized SRTBP and fixed C, the centre manifold, W c
L2
∩M(µ,C)

is foliated by a one parameter family of 2–dimensional invariant tori. Generically,

using KAM theory most of these tori subsist for the general SRTBP. Moreover,

the tori have 3–dimensional stable and unstable invariant manifolds.

5.2 Homoclinic connections in the planar case

The Planar Restricted Three Body Problem is obtained from the equations of the

SRTBP by taking (z, ż) = (0, 0). In this case, on a neighbourhood of L2 and for

values of C ≤ C2 there also exist the planar family of Lyapunov periodic orbits.

In this case, they have two–dimensional stable and unstable invariant manifolds,

that we shall denote by W s
p.o. and W

u
p.o., respectively. The existence of transversal

homoclinic orbits in the planar problem for µ & 0 and C . C2 has been studied

in [L.M.S.]. In this section we shall summarize some of the results obtained in

[L.M.S.].

In this case, we consider the hypersurface defined by

M̃(µ,C) =M(µ,C)|(x,ẋ,y,ẏ,0,0).

The Hill’s region R̃(µ,C) is the projection of M̃(µ,C) in the position space. Let us

consider R̃b(µ,C) the bounded components of R(µ,C). We have that for C = C2,

R̃(µ,C) is formed by two connected components that have a contact point in L2

(see the left figure in 5.2). We shall denote by S the connected component that

contains the larger primary. For C ≤ C2 we can take two segments in R̃b(µ,C)

joining points in the zero velocity curve (see figure 5.7) that divides the region in

three components. One of the components contains the projection of the periodic

orbit near L2, and the other components contain one of the primaries each one.

Naming M̃b(µ,C) the component of M̃(µ,C) that projects on R̃b(µ,C), we shall

denote again the component that contains the large primary as S.

The main result in [L.M.S.] is the following.

Theorem 5.2.1. 1. For values of µ & 0 of the form µk =
1

N3
∞k

3
(1 + o(1)),

where N∞ is a suitable constant and o(1) denotes terms that go to zero when

µ does, there exists an homoclinic orbit to L2.

2. If µ and ∆C = C2 − C > 0 are small enough, the branch W u,S
p.o. of W u

p.o.

contained initially in the region S intersects y = 0 and x > 0 in a curve
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Figure 5.7: Hill’s region in the Planar Restricted Three Body Problem for C . C2 and

region S

diffeomorphic to a circle. In particular, for the points in the µ,C plane such

that there exists µk satisfying ∆C > Lµ
4
3
k (µ−µk)

2, being L a constant, there

exist transversal symmetric homoclinic orbits to the periodic orbit.

5.3 Statement of the results in the Spatial

case

Fixed a value C of the Jacobi constant, from (5.4) we have that

C = F (x, y, z, ẋ, ẏ, ż). (5.11)

This is equivalent to fix a level hypersurface of the form (5.6). We shall denote as

Cp the constant that one obtains from (5.11) by taking z = 0, ż = 0, that is,

Cp = F (x, y, 0, ẋ, ẏ, 0). (5.12)

Then, Cp is the Jacobi constant of the Planar problem. We shall refer to it as

planar component of the Jacobi constant. We define Cv by

Cv = C − Cp, (5.13)

and when talking about this constant we shall say vertical component of the

Jacobi constant. Then, we have written the Jacobi constant as the sum of a

planar component and a vertical one.

Let be ∆C = C2 − Cp and define

∆Cp = C2 − Cp, ∆Cv = −Cv,

We introduce constants α, β by

µ = µk + αµ
4
3
k ,

∆C = βµ
4
3
k , (5.14)
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where µk is defined in Theorem 5.2.1 and α, β = O(1) depend on µk. Once µ is

fixed we can take µk as the value of the sequence given by Theorem 5.2.1 which is

at minimum distance to µ. We define ψ ∈
[

0,
π

2

]

by

∆Cp = β cos2 (ψ) · µ
4
3
k , ∆Cv = β sin2 (ψ) · µ

4
3
k . (5.15)

We note that once ∆C > 0 is fixed, if ψ = 0 then ∆C = ∆Cp which corresponds

to the planar problem. For ψ =
π

2
then ∆C = ∆Cv.

Given α and β, a torus in the centre manifold of L2 is characterized by ψ.

The following theorem gives the existence of heteroclinic orbits between two

tori provided some inequalities are satisfied. Some non degeneracy conditions

will be required in the sense that A 6= 1 and C1 6= 0 for some coefficients to be

introduced in section 5.4. The geometrical meaning is that some ellipse in the

(z, ż) plane taken in the initial conditions of W u,µ
T does not degenerate into a

cercle and its axes do not coincide with the z, ż axes. Here, W u,µ
T denotes the

unstable manifold of an invariant torus T in the centre manifold of L2 once the

Jacobi constant C . C2 is fixed.

Theorem 5.3.1. Let us consider α, β fixed and µk sufficiently small. Assume non

degeneracy conditions. Let be ψ,ψ′ ∈
(

0,
π

2

)

\ E, being E a set of small measure,

such that

cosψ, cosψ′ >
K√
β
|α̂− k|, (5.16)

for some integer k, where K > 0 is a constant and |α̂| =
∣

∣

∣

∣

α

3N∞

∣

∣

∣

∣

≤ 1

2
. Let be m

the number of integers k such that (5.16) is satisfied and assume

sinψ

sinψ′
∈ (κ−1, κ), (5.17)

where κ > 1 is a constant. Then there exist 16m transversal heteroclinic orbits

between the tori characterized by ψ and ψ′.

In particular, there exist at least 16m homoclinic orbits to the centre manifold.

In order to prove the theorem, we shall consider the intersection of invariant

manifolds of the tori characterized by ψ and ψ′ with y = 0. The hypothesis (5.16)

is needed in order to get points in the invariant manifolds for which the components

x, ẋ coincide. The condition (5.17) is required in order that z and ż also coincide.
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Remark 5.3.2. The constants K and κ are effectively computed in section 5.4. They

depend on the parameters of some ellipses in the planes x, ẋ and z, ż, respectively.

Assume
K|α̂|√
β
< 1. Let be ψmax = arccos

( K√
β
|α̂|
)

. If ψ,ψ′ ∈ (0, ψmax) then

(5.16) holds at least for k = 0. This situation is represented in figure 5.8.

Figure 5.8: Admissible values of ψ

Furthermore, if ψ and ψ′ satisfy (5.17), then there exists an heteroclinic orbit

from the torus characterized by ψ to the one characterized by ψ ′.

Notice that if α̂ = 0 then µ = µk. In this case (5.16) is satisfied trivially for

k = 0. Moreover as β increases, (5.16) holds for other values of k. This is in

agreement with the previous results in the Planar RTBP ([L.M.S.]).

Notation 5.3.3. For ψ,ψ′ ∈
(

0,
π

2

)

we shall denote by

ψ −→ ψ′

the existence of an heteroclinic orbit between the tori characterized by ψ and ψ ′.

Corollary 5.3.4. We fix α, β such that
K|α̂|√
β
< 1. If ψ1, . . . , ψn, . . . ∈

(

0, π2
)

is a

sequence of values such that

ψn ∈ (0, ψmax) ,

and
sinψn

sinψn−1
∈ (κ−1, κ),

then

ψ1 −→ ψ2 −→ ψ3 −→ . . . .

Corollary 5.3.5. If Kβ |α̂| is sufficiently small then there exist some orbits that go

from a small neighbourhood of a planar periodic orbit to a small neighbourhood of

a vertical periodic orbit. The orbit is close to a heteroclinic chain, whose length

goes to infinity when κ approaches 1.
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5.4 Proof of Theorem 5.3.1

In order to obtain homoclinic connections to the centre manifold of L2 we follow

the same ideas given in [L.M.S.].

Let us denote by W u,µ
T the unstable manifold of an invariant torus T on a level

manifold M(µ,C) with C . C2(µ) of the SRTBP. In order to prove theorem 5.3.1

we shall obtain an analytic expression for this invariant manifold when µ & 0 to

obtain later heteroclinic and homoclinic orbits to the torus. Our purpose is to

obtain the first intersection of W u,µ
T with Σ = {y = 0, x > 0}. We shall assume

that Σ is a Poincaré section for any orbit of W u,µ
T . Due to the transversality of

W u,µ
L2

with Σ, this assumption holds if ∆C is sufficiently small. In order to obtain

this intersection, we shall approximate the SRTBP by the spatial Hill’s problem in

a neighbourhood of the equilibrium point. Then, as outside of a neighbourhood of

L2 the SRTBP can be seen as a perturbation of the Spatial Two Body Problem,

we shall use it in order to obtain the expression ofW u,µ
T ∩Σ. Once this intersection

is obtained, we shall use the symmetries of the equations in order to obtain the

stable manifold. Then, studying the intersections of the unstable manifold of one

torus and the stable manifold of another torus, we shall obtain heteroclinic orbits.

By taking the unstable and stable manifolds of the same torus we will obtain

homoclinic orbits to that torus.

This section is structurated as follows. In section 5.4.1 we study the geometry

ofW u,µ
T ∩{y = −kµ 1

3 } in a neighbourhood of L2, that is, we shall take k and µ such

that kµ
1
3 is sufficiently small but k is large. To this end we shall approximate the

SRTBP by the Spatial Hill’s Problem. Using the geometry of W u,µ
T ∩{y = −kµ 1

3 },
in section 5.4.2 we obtain an analytic expression of the first cut of this manifold

with y = 0, x > 0. To do that we shall approximate the SRTBP by the Spatial

Synodic Two Body Problem (SSTBP) outside of a neighbourhood of L2. In section

5.4.3 we shall compute the stable manifold of a torus from its unstable manifold

using the symmetries given in (5.5). Then, once we have obtained both stable and

unstable manifold of a torus, in section 5.4.4 we will compute the intersections of

these manifolds in order to obtain homoclinic orbits to the torus. Taking the stable

manifold of one torus and the unstable manifold of another torus, the intersections

of these manifolds will give heteroclinic orbits from one torus to the other. All these

homoclinic and heteroclinic orbits are homoclinic orbits to the centre manifold of

L2. The proofs of some lemmas are given in the section 5.5.
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5.4.1 Geometry in a neighbourhood of the equilibrium

point

In order to study the geometry of the unstable manifold in a small neighbourhood

of the equilibrium point, we shall consider the intersection of this manifold with

the section y = −kµ 1
3 , where k is large enough amb µ sufficiently small, in such a

way that kµ
1
3 is small enough. To this end we shall approximate the equations of

the SRTBP by the Spatial Hill’s problem in a neighbourhood of the equilibrium

point. If (X,Y, Z) denotes the coordinates of the Spatial Hill’s problem, then we

need to study the geometry of the invariant manifold in the section Y = −k, with
k large enough. The analysis of the Poincaré map between two sections Y = −k̃
and Y = −˜̃k, 0 < k̃ <

˜̃
k, with k̃ large enough, will give us the geometry of the

manifold intersected with different hyperplanes.

Near the small mass µ, in suitable coordinates the SRTBP can be seen as a

µ
1
3 order perturbation of the Spatial Hill’s problem. The three–dimensional Hill’s

problem studies the behaviour of the small mass for the SRTBP in the limit case

when µ → 0. To obtain the limit equations we translate the small mass to the

origin and we perform a scaling of the variables by the change of coordinates

(x, y, z) −→ (X,Y, Z) defined by

X = µ−
1
3 (x+ 1− µ), Y = µ−

1
3 y, Z = µ−

1
3 z. (5.18)

Then, equations (5.1) can be written as the second order system

Ẍ − 2Ẏ = 3X −X(X2 + Y 2 + Z2)−
3
2 + µ

1
3

(

3X2 − 3

2
Y 2 − 3

2
Z2

)

+O(µ
2
3 ),

Ÿ + 2Ẋ = −Y (X2 + Y 2 + Z2)−
3
2 − 3µ

1
3XY +O(µ

2
3 ),

Z̈ = −Z − Z(X2 + Y 2 + Z2)−
3
2 − 3µ

1
3XZ +O(µ

2
3 ).

If we take µ = 0 we obtain the equations for the 3–dimensional Hill’s problem

Ẍ − 2Ẏ = 3X −X(X2 + Y 2 + Z2)−
3
2 ,

Ÿ + 2Ẋ = −Y (X2 + Y 2 + Z2)−
3
2 , (5.19)

Z̈ = −Z − Z(X2 + Y 2 + Z2)−
3
2 .

We note that equations (5.19) can be written as

Ẍ − 2Ẏ = ΩH
X ,

Ÿ + 2Ẋ = ΩH
Y , (5.20)

Z̈ = ΩH
Z ,
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with

ΩH(X,Y, Z) =
1

2

[

3X2 − Z2 + 2(X2 + Y 2 + Z2)−
1
2

]

.

Equations (5.19) have a first integral

FH(X,Y, Z, Ẋ, Ẏ , Ż) = 2ΩH(X,Y, Z)− (Ẋ2 + Ẏ 2 + Ż2) = CH . (5.21)

As we have done with the Jacobi constant for the SRTBP, we can consider the

value of the integral, CH , as a sum of a planar and a vertical component. We shall

write

CH = CH
p + CH

v , (5.22)

being CH
p = FH(X,Y, 0, Ẋ, Ẏ , 0) the planar component and CH

v the vertical one.

The only two equilibrium points of the 3–dimensional Hill’s problem are collinear.

If we denote by L1 and L2 these equilibrium points, we have that L1 = (−3− 1
3 , 0, 0)

and L2 = (3−
1
3 , 0, 0). The use of this notation is due to the fact that Lj for the

Spatial Hill’s problem corresponds to Lj for the SRTBP. Using (5.21) we obtain

CH
Lj

= 3
4
3 for the collinear equilibrium points. We shall consider L2. The eigen-

values for the linerized system at L2 are ±λ, ±iω, ±2i where λ =
√

1 + 2
√
7,

ω =
√

2
√
7− 1. Then it is a centre–centre–saddle point.

We denote by W u,H
L2

the one–dimensional unstable manifold of L2. It is known

(see [L.M.S.], [McG.1]) that one of the branches of W u,H
L2

crosses the line Y = −k,
for any value k > 0 going down forwards, near the surface of velocity zero. More-

over, as in the SRTBP, there exist two families of periodic orbits in a neighbour-

hood of LH
2 , the planar and the vertical families. Furthermore using the KAM the-

orem, generically there exist invariant tori in the centre manifold of the collinear

points.

For a fixed CH ≤ CH
L2

= 3
4
3 we take ∆CH = CH

L2
− CH . Let us consider a

solution of the linearized Spatial Hill’s Problem on the centre manifold of L2. It

can be written as

X(t) = 2ωa cos (ωt) + 3−
1
3 ,

Y (t) = −(ω2 + 9)a sin (ωt), (5.23)

Z(t) = b cos (2t) + c sin (2t),

where ∆CH
p := CH

L2
− CH

p = 8a2(5ω2 + 54), ∆CH
v := −CH

v = 4(b2 + c2). In an

equivalent way, instead of using b, c we can write Z(t) = av cos (2t+ ϕ) for some

phase ϕ. We note that a = O((∆CH
p )

1
2 ) and b, c, av = O((∆CH

v )
1
2 ). Once a is

fixed we get a two dimensional torus, T , on the centre manifold for the linearized
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Spatial Hill’s Problem. Of course, a must be taken on a Cantor set of almost full

measure. That torus is hyperbolic and has a three dimensional unstable invariant

manifold to be denoted by W u,H
T . The linear part is

X̃(t) = X(t) + 2λc̃eλt,

Ỹ (t) = Y (t) + (λ2 − 9)c̃eλt, (5.24)

Z̃(t) = Z(t),

for some c̃ > 0 where X(t), Y (t) and Z(t) are given in (5.23).

Let us consider a section Y = −k0. If k0 > 0 is small, orbits inW u,H
T has many

intersections with Y = −k0 unless ∆C is small enough. In fact, using the linear

approximation (5.24) we get

˙̃Y = −(ω2 + 9)aω cos (ωt) + (λ2 − 9)λc̃eλt ≤
≤ (ω2 + 9)aω + (λ2 − 9)λc̃eλt < 0,

if a is small enough and c̃eλt not too small. Therefore, if a is small enough all

the orbits in W u,H
T cut transversally the section Y = −k0. For the moment being

we shall take the origin of time at Y = −k0. Moreover, the intersection of W u,H
T

with Y = −k0 is a torus close to the product of two curves close to ellipses which

live on the planes (X, Ẋ) and (Z, Ż), approximately centered at (3−
1
2 +2λc̃, 2λ2c̃)

and (0, 0), respectively. The semiaxes are proportional to (∆CH
p )

1
2 and (∆CH

v )
1
2

respectively. The following lemma says that this structure is preserved for W u,H
T ∩

{Y = −k̃} with k̃ > 0 large if we take ∆CH > 0 small enough. The proof is

postposed to section 5.5.

Lemma 5.4.1. Let be k̃ ∈ R+. If ∆CH > 0 is small enough, then W u,H
T ∩ {Y =

−k̃} is roughly a torus obtained as the product of two closed curves close to ellipses

in the planes (X, Ẋ), (Z, Ż) centered at (XL2(k̃), ẊL2(k̃)) and (0, 0) and semiaxes

proportional to (∆CH
p )

1
2 and (∆CH

v )
1
2 , respectively. Here, XL2(k̃) and ẊL2(k̃)

denote the coordinates X, Ẋ for W u,H
L2

∩ {Y = −k̃}.

The same is true for the SRTBP due to the fact that it is an arbitrarily small

perturbation of the Spatial Hill’s problem if µ is small enough. We study the

geometry of W u,µ
T ∩ {y = −k̃µ 1

3 }. The relations between the Jacobi constant for

the SRTBP and the spatial Hill’s problem is the following

C = 3 + µ
2
3CH +O(µ).

Moreover,

Cp = 3 + µ
2
3CH

p +O(µ), Cv = µ
2
3CH

v +O(µ).
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From lemma 5.4.1, if k̃ ∈ R+, then W u,µ
T ∩ {y = −k̃µ 1

3 } can be written approxi-

mately as E1×E2, where E1, E2 are ellipses living in the planes (x, ẋ), (z, ż), with

semiaxes proportional to µ
1
3∆CH

p and µ
1
3∆CH

v and centered at (xL2(k), ẋL2(k))

and (0, 0), respectively. Here, xL2(k), ẋL2(k) denote the coordinates x, ẋ for W u,µ
L2

.

Now we study the geometry of W u,H
T from section {Y = −k̃} to {Y = −˜̃k}

being
˜̃
k > k̃ > 0.

If −Y is large enough, equations (5.19) are well approximated by the linear

equations

Ẍ − 2Ẏ = 3X,

Ÿ + 2Ẋ = 0, (5.25)

Z̈ = −Z.

The solution of this system is

X(t) =
2

3
N +M cos (t− t0),

Y (t) = B −Nt− 2M sin (t− t0),
Z(t) = A cos (t− t0) +D sin (t− t0).

We note that the constants M,N,B, t0, A and D can be computed through

M2 = Ẋ2 + Ẍ2, N = 3(2X + Ẏ ),

B = Y + 3(2X + Ẏ )t− 2Ẋ, t0 = t− arctan

(

− Ÿ

2Ẍ

)

,

A2 +D2 = Z2 + Ż2.

Now we want to estimate the effect of the neglected terms. We take the above

constants as functions of t. Then, we have that

˙(M2) = 2Ẍ[−2Y r−3 − Ẋr−3 + 3X(XẊ + Y Ẏ + ZŻ)r−5],

Ṅ = −3Y r−3,

Ḃ = (2X − 3Y t)r−3,

ṫ0 = [−2r−3(2Ẏ 2 + 2Ẋ2 + 3XẎ + 3ẊY ) + 6r−5(2Y Ẏ + 3XY + 2XẊ)(XẊ +

Y Ẏ + ZŻ) + r−6(2XẎ − 3Y 2 − 2ẊY )][4M2 + 4r−3ẊY + r−6Y 2]−1,

˙(A2) + ˙(D2) = −2ZŻr−3,

where r2 = X2 + Y 2 + Z2.
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Therefore, the contribution of the terms containing the factor (X2+Y 2+Z2)−
3
2

to the coefficientsM,N, t0, B and A2+D2 when Y goes from −k̃ to −˜̃k, 0 < k̃ <
˜̃
k,

k̃ large, is O(k̃−2), O(k̃−1), O

(

ln

(

˜̃
k

k̃

))

and O(k̃−3), respectively.

If we choose a value of k̃ such that W u,H
L2

has a maximum of X when this

manifold intersects Y = −k̃, we have that W u,H
L2

is expressed by

X(t) =
2

3
N∞ +M∞ cos t,

Y (t) = −k̃ −N∞t− 2M∞ sin t, (5.26)

Z(t) = 0,

where N∞,M∞ stands for the values of N,M for this solution. These constants

have been computed numerically, N∞ = 5.1604325 . . . and M∞ = 2.1320587 . . .

(see [L.M.S.]).

It is easy to identify (5.26) with a Kepler orbit in synodical coordinates. Let

ω = 1 be the angular velocity of the rotating axes and consider a Kepler orbit

(

x

y

)

=

(

−a(cosE − e)
−a
√
1− e2 sinE

)

,

M = nt = E − e sinE, n = 1 + γ, n2a3 = 1 with γ, e small. Skipping all terms

O2(e, γ) we obtain

a = 1− 2

3
γ, E =M + e sinM, cosE = cosM − e sin2M,

sinE = sinM + e sinM cosM.

We shall assume t large but bounded. Then, in rotating coordinates

(

x̃

ỹ

)

= a

(

cos t sin t

− sin t cos t

)(

− cosM + e sin2M + e

− sinM − e sinM cosM

)

=





−γ +
2

3
γ + e cos t

−γt− 2e sin t



 .

With respect to the point

(

−1
0

)

we have

(

x̃− 1

ỹ

)

=





2

3
γ + e cos t

−γt− 2e sin t



 .
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Hence M∞µ
1
3 can be identified as e and N∞µ

1
3 as γ (or a = 1− 2

3
N∞µ

1
3 + o(µ

1
3 )).

Let us consider rectangular coordinates ξ1, ξ̇1, ξ2, ξ̇2 in the hyperplane Y = −k̃,
with k̃ ≤ k ≤ ˜̃

k and k̃ sufficiently large, where ξi, ξ̇i, i = 1, 2 defined by

ξ1 = X −XL2(k), ξ̇1 = Ẋ − ẊL2(k), ξ2 = Z, ξ̇2 = Ż, (5.27)

and XL2(k), ẊL2(k), denotes the X, Ẋ coordinates respectively, of W u,H
L2

∩ {Y =

−k}. We want to study the variation of this invariant object close to a torus

defined by W u,H
T ∩ {Y = −k} when we change the value of k > 0 large enough.

Lemma 5.4.2. The Poincaré map for the approximated Hill’s problem (5.25)

which sends (ξ1, ξ̇1, ξ2, ξ̇2) on the plane Y = −k̃ to (ξ∗1 , ξ̇
∗
1 , ξ

∗
2 , ξ̇

∗
2) on the plane

Y = −˜̃k is given by

T ∗t =

(

Tp,t∗ 0

0 Tv,t∗

)

,

where

Tp,t∗ =









4M∞N∞ + (4M2
∞ +N2

∞) cos t∗ + 3M2
∞t
∗ sin t∗

(N∞ + 2M∞ cos t∗)(N∞ + 2M∞)

(2M∞ +N∞) sin t∗

(N∞ + 2M∞ cos t∗)
−N2

∞ sin t∗ + 3M2
∞t
∗ cos t∗

(N∞ + 2M∞ cos t∗)(N∞ + 2M∞)

(2M∞ +N∞) cos t∗

(N∞ + 2M∞ cos t∗)









,

Tv,t∗ =

(

cos t∗ sin t∗

− sin t∗ cos t∗

)

,

being t∗ the time required for W u,H
L2

by going from Y = −k̃ to Y = −˜̃k.

The proof of this Lemma is given in section 5.5

Using the lemma above, if we write T̃ = Ẽ1 × Ẽ2, where Ẽ1, Ẽ2 are closed

curves close to ellipses that live in the planes (X, Ẋ) and (Z, Ż), respectively,

when k increases Ẽ1 rotates and one of the axes increases and Ẽ2 only rotates.

The standard symplectic form is preserved by Tt∗ and the area enclosed by Ẽ1 and

Ẽ2 is approximately preserved under Tt∗ .

Now we study the behavior ofW u,H
T for the SRTBP. To this end, we take k > 0

large and µ small such that −kµ 1
3 is small enough. Then, on y = −kµ 1

3 , W u,µ
T

is roughly a torus in (x, ẋ, z, ż) variables, obtained as the product of two closed

curves near ellipses. One of these curves lives in the plane (x, ẋ), it is centered
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approximately at (xL2(k), ẋL2(k)), where xL2(k), ẋL2(k) denote the values of x, ẋ

of W u,µ
L2
∩ {y = −kµ 1

3 }, and with semiaxes proportional to µ
1
3 (∆CH

p )
1
2 ≈ (∆Cp)

1
2 .

The other curve lies in the plane (z, ż), it is centered approximately at (0, 0) and

its semiaxes are proportional to µ
1
3 (∆CH

v )1
2 ≈ (∆Cv)

1
2 . The major axes of the

ellipse in (x, ẋ) rotates and increases when k does, while the ellipse close to (z, ż)

only rotates.

5.4.2 Analytic expression of the unstable manifold

In this section we shall obtain an analytic expression of the first cut of W u,µ
T with

y = 0, x > 0 when µ is small enough. To this end, taking into account the geometry

of W u,µ
T on the sections y = −kµ 1

3 for different values of k, we will take suitable

initial conditions with y ≈ 0 and, then we shall compute the first cut γ of W u,µ
T

with y = 0, x > 0. To this end we shall approximate the SRTBP by the SS2BP.

Next lemma give us the initial conditions on W u,µ
T ∩ {y = 0}. Its proof is given in

section 5.5.

Lemma 5.4.3. It is not restrictive to assume that the axes of the ellipse living in

the plane (x, ẋ) are parallel to these axes. Then, we can take as initial condition

x = −1 + µ+

(

2

3
N∞ +M∞ cos τ

)

µ
1
3 + k1∆C

1
2
p cosσ1,

ẋ = −M∞ sin τ · µ 1
3 + k2∆C

1
2
p sinσ1,

y = 0,

ẏ = −(N∞ + 2M∞ cos τ)µ
1
3 − (N∞ + 2M∞ cos τ)−1[(2N∞ +

3M∞ cos τ)k1 cosσ1 +M∞k2 sin τ sinσ1]∆C
1
2
p ,

(

z

ż

)

= Ω(τ)K

(

cosσ2

sinσ2

)

∆C
1
2
v ,

where ẏ is obtained by the Jacobi relation, Ω(τ) =

(

cos τ sin τ

− sin τ cos τ

)

, K =

ρ̃

(

cos γ −A sin γ

sin γ A cos γ

)

, ki, i = 1, 2 and γ, ρ̃ and A (assumed to be A 6= 1) are

finite quantities related to the axis of the ellipses in (x, ẋ) and (z, ż) in the torus,

σ1, σ2 are the parameters for a point in the ellipse in (x, ẋ), (z, ż), respectively,

and τ is related to the time for which W u,H
L2

reaches again y = 0, x < 0 when we

start at y = −kµ 1
3 .



5.4. Proof of Theorem 5.3.1 157

The assumption A 6= 1 means that the ellipse in z, ż is not a perfect circle.

Numerically it has been checked that this is the case.

Let us consider the constants α, β, ψ introduced in (5.14) and (5.15).

If we expand in power series in µk the initial condition given in Lemma 5.4.3

up to order µ
2
3
k we obtain

x0 = −1 +
(

2

3
N∞ +M∞ cos τ

)

µ
1
3
k +

[

α

3

(

2

3
N∞ +M∞ cos τ

)

+

k1β̃1 cosσ1

]

µ
2
3
k +O(µk),

ẋ0 = −M∞ sin τµ
1
3
k +

[

−α
3
M∞ sin τ + k2β̃1 sinσ1

]

µ
2
3
k +O(µk),

y0 = 0, (5.28)

ẏ0 = −(N∞ + 2M∞ cos τ)µ
1
3
k −

{α

3
(N∞ + 2M∞ cos τ)+

+ (N∞ + 2M∞ cos τ)−1[(2N∞ + 3M∞ cos τ)k1 cosσ1+

M∞k2 sin τ sinσ1]}µ
2
3
k β̃1 +

+O(µk),
(

z0
ż0

)

= β̃2Ω(τ)K

(

cosσ2

sinσ2

)

µ
2
3
k +O(µk),

where β̃1 = β̃ cosψ, β̃2 = β̃ sinψ, β̃ =
√
β.

We note that if α = β = 0 then we have an initial condition for a homoclinic

orbit to L2. We also note that if β̃2 = 0 then we are on the unstable manifold of

a planar periodic orbit and if β̃1 = 0 then we obtain an initial condition for the

unstable manifold of a vertical periodic orbit.

Now, our purpose is to compute the first cut with y = 0, x > 0 of the solution

with initial condition (5.28). To this end, we compute the image under the Spatial

Synodic two body problem (SSTBP) with initial condition (5.28). The solution of

this problem is an ellipse in syderal system. We shall take into account the relations

between the parameters of an orbit for the SSTBP. We shall use the mean anomaly

M of an elliptic orbit in order to obtain these expression. It is known (see [L.M.S.])

that the first cut of W u,µk
L2

with y = 0, x > 0 is given for Mw = 0 or Mw = π where

Mw denotes the mean anomaly for this intersection. The following lemma give

us the first cut of this solution with y = 0, x > 0 assuming that Mw = 0. An

analogous result is obtained assuming that Mw = π. The proof is given in 5.5.

Lemma 5.4.4. The first cut of a solution with the initial conditions given in
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(5.28) with y = 0, x > 0 is

x(Mf )− xw = M∞(1− cosMf )µ
1
3
k +

{

β̃1

c2
(2M∞ +N∞ cosMf )(c3 sinσ1−

c4 cosσ1)−
α

3

(

2

3
N∞ +M∞ cosMf

)

+M2
∞ sin2Mf+

c1(cosMf − 1)}µ
2
3
k +O(µk),

ẋ(Mf ) = M∞ sinMfµ
1
3
k + sinMf

{

M∞

3
α− β̃1

N∞
c2

(c3 sinσ1 − c4 cosσ1)+

2M2
∞ cosMf −c1 +N∞M∞}µ

2
3
k +O(µk),

(

z(Mf )

ż(Mf )

)

= β̃2Ω(Mf )K

(

cosσ2

sinσ2

)

µ
2
3
k +O(µk),

where Ω(Mf ) =

(

cosMf sinMf

− sinMf cosMf

)

, xw is the value of x for the first cut

of W u,µ
L2

with y = 0, x > 0, c1 = N∞M∞ + cos τ [N∞(α2 − α1) + M2
∞ cos2 τ ],

c3 = k2 sin τ , c4 = k1 cos τ , α1 =
2

3
N∞ +M∞ cos τ , α2 = N∞ + 2M∞ cos τ .

Moreover, Mf satisfies the following equation

µ
1
3
k

{

−
(

1

3
N∞α+ 3

β̃1

α2
M∞(c4 cosσ1 − c3 sinσ1)

)

π

N∞
+N∞Mf+

2M∞ sinMf}+O(µ
2
3
k ) = 0. (5.29)

The proof of this lemma is given in section 5.5.

5.4.3 The stable manifold via the symmetries of the

problem

We consider an invariant torus T in the centre manifold of L2. We want to study

the conditions in order to obtain homoclinic or heteroclinic orbits to invariant tori.

The following lemma give us a relation between the invariant manifolds of two tori.

Lemma 5.4.5. Let us denote by W u,µ
T the unstable manifold of an invariant torus

T on the centre manifold of L2. Then, S(W u,µ
T , t) is the stable manifold of T .

Proof

We have that W u,µ
T = {ϕ solution of 5.1 such that ϕ(t)→ T when t→ −∞},

where ϕ(t) = (ϕ1(t), ϕ2(t), ϕ3(t), ϕ̇1(t), ϕ̇2(t), ϕ̇3(t))
T . Then,

S(ϕ, t)→ S(T, t) when t→ −∞⇔ ϕ̃(t)→ S(T,−t) when t→ +∞,
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where ϕ̃(t) = (ϕ̃1(−t),−ϕ̃2(−t), ϕ̃3(−t),−ϕ̇1(−t), ϕ̇2(−t), ϕ̇3(−t)). Therefore ϕ̃ ∈
W s,µ

T . Here, W s,µ
T denotes the stable manifold of the torus on the same energy

level that W u,µ
T .

Analogously one proves that if ϕ ∈W s,µ
T then S(ϕ, t) ∈W u,µ

T . 2

Lemma 5.4.6. Let us consider ϕ ∈W u,µ
T such that ϕ∩{y = 0, z = 0, ẋ = 0} 6= ∅.

Then there exists an homoclinic orbit to T .

Proof

This lemma is easily proved by computing the fixed points of the symmetry S
and using lemma 5.4.5. 2

In order to obtain an analytic expression of the stable manifold we only need

to take into account the symmetry S. Then, the first cut of the stable manifold of

a torus T , W s,µ
T , up to terms of order µ

2
3
k is given by the following expression

xs(Mf )− xsw = x(Mf )− xw,
ẋs(Mf ) = −ẋ(Mf ),

(

z(Mf )

ż(Mf )

)

= β̃2JΩ(Mf )K

(

cosσ2

sinσ2

)

µ
2
3
k +O(µk), (5.30)

where J =

(

1 0

0 −1

)

.

5.4.4 Some homoclinic and heteroclinic orbits

In this section we study the intersections of the unstable manifold of one torus and

the stable manifold of another torus in order to obtain heteroclinic orbits. The

tori should live in the same level of energy. The parameter ψ describes one of the

tori and ψ′ the other one. These parameters belong to a Cantor set of relative

large measure if β is small enough.

We fix µ and ∆C. This is equivalent to fix α and β. We take ψ,ψ′ ∈
(

0,
π

2

)

.

Let us denote by T1 and T2 the tori characterized by ψ and ψ′, respectively.

Let us denote by

f(α, β;σ1, σ2,Mf , ψ) = (f1, f2, f3, f4)
T ,

and by

g(α, β;σ′1, σ
′
2,M

′
f , ψ

′) = (g1, g2, g3, g4)
T ,



160 5. Some heteroclinic connections in the Spatial RTBP

the expression of the first cut of the invariant manifolds W u,µ
T1

and W s,µ
T2

, respec-

tively, with y = 0, x > 0, being

fi = fi(α, β;σ1,Mf , ψ), i = 1, 2,

fi = fi(α, β;σ2,Mf , ψ), i = 3, 4,

gi = gi(α, β;σ
′
1,M

′
f , ψ

′), i = 1, 2,

gi = gi(α, β;σ
′
2,M

′
f , ψ

′), i = 3, 4.

Then, f1 = x(Mf ), f2 = ẋ(Mf ), f3 = z(Mf ), f4 = ż(Mf ) where x(Mf ), ẋ(Mf ),

z(Mf ), ż(Mf ) are defined in Lemma 5.4.4. Moreover, as we have seen in the last

section, g1 = x(M ′
f ), g2 = −ẋ(M ′

f ), g3 = z(M ′
f ) and g4 = −ż(M ′

f ).

We recall that Mf is the solution of the equation (5.29). Rearranging terms in

this expression it can be written as

p(Mf ) =
β̃1

α2
(c3 sinσ1 − c4 cosσ1), (5.31)

where

p(Mf ) =
N∞

3M∞π

{πα

3
− [N∞Mf + 2M∞ sinMf ]

}

+O(µ
1
3
k ). (5.32)

In order to obtain heteroclinic orbits we need to solve the system of equations

f1(σ1, ψ,Mf ) = g1(σ
′
1, ψ

′,M ′
f ),

f2(σ1, ψ,Mf ) = g2(σ
′
1, ψ

′,M ′
f ),

f3(σ2, ψ,Mf ) = g3(σ
′
2, ψ

′,M ′
f ),

f4(σ3, ψ,Mf ) = g4(σ
′
2, ψ

′,M ′
f ), (5.33)

under the restriction given by (5.31).

Using the relation (5.31) we have that f1, f2, g1, g2 can be written independent



5.4. Proof of Theorem 5.3.1 161

of σ1, σ
′
1 and ψ,ψ′. In fact, we can write

f1(Mf ) = M∞(1− cosMf )µ
1
3
k + {(2M∞ +N∞ cosMf )p(Mf )−

α

3

(

2

3
N∞ +M∞ cosMf

)

+M2
∞ sin2Mf + c1(cosMf − 1)

}

µ
2
3
k +

O(µk),

f2(Mf ) = M∞µ
1
3
k sinMf + sinMf

{

M∞

3
α−N∞p(Mf ) + 2M2

∞ cosMf+

N∞M∞ − c1}µ
2
3
k +O(µk),

g1(M
′
f ) = M∞(1− cosM ′

f )µ
1
3
k +

{

(2M∞ +N∞ cosM ′
f )p(M

′
f )−

α

3

(

2

3
N∞ +M∞ cosM ′

f

)

+M2
∞ sin2M ′

f + c1(cosM
′
f − 1)

}

µ
2
3
k +

O(µk),

g2(M
′
f ) = −M∞µ

1
3
k sinM ′

f − sinM ′
f

{

M∞

3
α−N∞p(M ′

f ) + 2M2
∞ cosM ′

f+

N∞M∞ − c1}µ
2
3
k +O(µk),

where fj(Mf ), gj(M
′
f ) denotes fj , gj , j = 1, 2, respectively.

We look for the relation between Mf and M ′
f in order to satisfy the first two

equations in (5.33) up to order µ
2
3
k . A computation shows that

f1(Mf )− g1(M ′
f ) = M∞(cosM ′

f − cosMf )µ
1
3
k +

{

2M∞(p(Mf )− p(M ′
f ))+

N∞(p(Mf ) cosMf − p(M ′
f ) cosM

′
f ) +N∞(p(Mf ) cosMf−

p(M ′
f ) cosM

′
f ) +

αM∞

3
(cosMf − cosM ′

f )+

M2
∞(sin2(Mf )− sin2(M ′

f )) + c1(cosMf − cosM ′
f )
}

µ
2
3
k +

O(µk),

f2(Mf )− g2(M ′
f ) = M∞(sinMf + sinM ′

f )µ
1
3
k +

[

(sinMf + sinM ′
f )

(

M∞α

3
+

N∞M∞ − c1)−N∞(p(Mf ) sinMf + p(M ′
f ) sinM

′
f )+

2M2
∞(sinMf cosMf + sinM ′

f cosM
′
f )
]

µ
2
3
k +O(µk).

We take

Mf = a0 + a1µ
1
3
k +O(µ

2
3
k ),

M ′
f = b0 + b1µ

1
3
k +O(µ

2
3
k ),

where a0, b0, a1, b1 are real constants that we need to determine. In order that the

two first equations in (5.33) are satisfied up to terms of order µ
2
3
k it is necessary
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that the following conditions hold

Mf = a0 + a1µ
1
3
k +O(µ

2
3
k ),

M ′
f = 2kπ − a0 + b1µ

1
3
k +O(µ

2
3
k ),

M∞(a1 + b1) cos a0 +
2N2

∞

3M∞π
sin a0[N∞(a0 − kπ) + 2M∞ sin a0] = 0, (5.34)

M∞(a1 + b1) sin a0 −
4N∞M∞

3M∞π
[N∞(a0 − kπ) + 2M∞ sin a0]−

2N2
∞

3M∞π
cos a0[N∞(a0 − kπ) + 2M∞ sin a0] = 0. (5.35)

Next lemma give us the solutions of the equations (5.34) and (5.35). Its proof is

given in section 5.5.

Lemma 5.4.7. The system formed for the equations (5.34) and (5.35) only has

a0 = mπ, m ∈ Z, b1 = −a1 as solution.

Then,

Mf = kπ + a1µ
1
3
k +O(µ

2
3
k ),

M ′
f = kπ − a1µ

1
3
k +O(µ

2
3
k ),

where k ∈ Z

Once we know the expression of Mf up to terms of order µ
1
3
k , we want to know

for which values of α and β equation (5.31) has solution σ1.

We denote by w = cosσ1. Then, sinσ1 = s̃
√
1− w2 where s̃ = ±1. Therefore,

(5.31) can be written as

β̃1c3s̃
√

1− w2 = α2p(Mf ) + β̃1c4w.

If we consider the equation obtained from the above by raising up to square in

both sides of the equality, the equation transforms in

b1w
2 + b2w + b3 = 0, (5.36)

where b1 = β̃2
1(c

2
3 + c24), b2 = 2β̃1α2p(Mf )c4, b3 = α2

2p(Mf )
2 − β̃2

1c
2
3. We assume

that b1 6= 0. Due to the fact that c23 + c24 = 0 if and only if k1 = k2 = 0, and that

in this case we are on an initial condition for the invariant manifold of a vertical

periodic orbit, it is only necessary to suppose that β̃1 6= 0. We are interested in

the solutions of (5.36) such that w ∈ [−1, 1]. This is accomplished if and only if

b22 ≤ 4b21 and b22 − 4b1b3.
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It is easy to see that b22 − 4b1b3 ≥ 0 if and only if

α2
2p(Mf )

2 ≤ β̃2
1(c

2
3 + c24). (5.37)

Under this condition, the inequality b2 ≤ 4b21 holds.

Using lemma 5.4.7, if µk is sufficiently small we have that the condition (5.37)

transforms in

cos2 ψ ≥ K2

β
(α̂− k)2, (5.38)

where K =
α2N

2
∞

3M∞

√

c23 + c24
and α̂ =

α

3N∞
.

From Theorem 5.2.1 we get µk+1−µk = 3N∞µ
4
3
k (1+o(1)). We recall that for a

fixed µ we consider the value µk which is at minimum distance from µ. Therefore

we can assume |α̂| ≤ 1

2
. Then if ψ satisfies the condition (5.38), the equation

(5.31) has two solutions.

The same analysis can be done by changing Mf , σ1 and β1 by M ′
f , σ

′
1 and β′1.

Now, for the values of Mf and M ′
f given in Lemma (5.4.7) we look for the

relations between σ2, σ
′
2, ψ, ψ

′ in order to obtain intersections of the vertical com-

ponents of the invariant manifolds up to terms of order µ
2
3
k .

A simple check shows that last two equations in (5.33) can be written as

β̃2

(

cosσ2

sinσ2

)

= β̃′2

(

a1 −Aa2

−a2

A
−a1

)(

cosσ′2
sinσ′2

)

, (5.39)

where a1 = cos (2γ), a2 = sin (2γ). We note that if β̃′2 = 0 then β̃2 = 0. In fact,

we are on the invariant manifolds of some planar periodic orbits. We assume that

β̃′2 6= 0 and we define γ̃ :=
β̃2

β̃′2
. Therefore, (5.39) is written as

γ̃

(

cosσ2

sinσ2

)

=

(

a1 −Aa2

−a2

A
−a1

)(

cosσ′2
sinσ′2

)

.

A solution of the equation above must satisfy

γ̃2 = [a1 cosσ
′
2 −Aa2 sinσ

′
2]

2 +
[

−a2

A
cosσ′2 − a1 sinσ

′
2

]2
=

a2
1 +

a2
2

2

(

1

A2
+A2

)

+
a2

2

2

(

1

A2
−A2

)

cos (2σ′2) +

a1a2

(

1

A
−A

)

sin (2σ′2). (5.40)
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We want to write the last equation as

c̃1 + c̃2w = c̃3s̃
√

1− w2,

where w = cos (2σ′2), sin (2σ
′
2) = s̃

√
1− w2, s̃ = ±1, c̃1 = γ̃2−a1−

a2
2

2

(

1

A2
+A2

)

,

c̃2 = −a
2
2

2

(

1

A2
−A2

)

, c̃3 = s̃a1a2

(

1

A
−A

)

. Then, we need to solve

C1w
2 + C2w + C3 = 0, (5.41)

where C1 = c̃22 + c̃23, C2 = 2c̃1c̃2, C3 = c̃21 − c̃23. We assume that C1 6= 0. Note that

C1 = 0 if and only if a1 = 0 or a2 = 0. We are interested in the solutions of the

above equation that satisfies w ∈ [−1, 1]. A simple computation shows that this

fact occurs if and only if

c̃22 + c̃23 − c̃21 ≥ 0.

We have that

c̃22 + c̃23 − c̃21 = −γ̃4 + 2γ̃2d− 1,

where d = 1+
a2

2

2A2
(1−A2)2. We note that d ≥ 1. Therefore, γ̃2 ∈ [d−

√
d2 − 1, d+

√
d2 − 1]. We define κ = d−

√
d2 − 1.

If γ̃2 ∈ (d−
√
d2 − 1, d+

√
d2 − 1) then we obtain two solutions of the equation

(5.41). If γ̃2 is in the boundary of this interval then we only have one solution.

Using the transversality of the solution obtained considering only the dominant

terms in the equations, the Implicit Function Theorem assures the preservation of

that solution if µk is sufficiently small.

This ends the proof of Theorem 5.3.1.

5.5 Proof of Lemmas

Proof of Lemma 5.4.1

We introduce coordinates PX = Ẋ, PY = Ẏ , PZ = Ż in the equations of the

Spatial Hill’s Problem. Then, (5.19) can be written as the following system of

differential equations of order one

Ẋ = PX ,

Ẏ = PY ,

Ż = PZ ,

ṖX = 2PY +ΩH
X ,

ṖY = −2PX +ΩH
Y ,

ṖZ = ΩH
Z , (5.42)



5.5. Proof of Lemmas 165

where ΩH
X ,Ω

H
Y ,Ω

H
Z denotes the partial derivatives respect to X,Y and Z, respec-

tively, of the function ΩH(X,Y, Z) =
1

2
[3X2 − Z2 + 2(X2 + Y 2 + Z2)−

1
2 ].

Let us denote by ϕ(t,W0) the solution of (5.42) such that ϕ(t0,W0) = W0.

Let us consider W∗
0 an initial condition for W u,H

L2
. Then, W u,H

L2
is given by

ϕ(t,W∗
0). We denote ϕ(t,W∗

0) by (X∗, Y ∗, Z∗, P ∗X , P
∗
Y , P

∗
Z)

T . We take W0 =

W∗
0 +∆W0 an initial condition for a solution on W u,H

T . We assume that W0,W
∗
0

are on Y = −k0 with k0 > 0 small, and we take t0 = 0. Then,

X0 = X∗0 +∆X0, Y0 = Y ∗0 = −k0, Z0 = Z∗0 +∆Z0,

PX,0 = P ∗X,0 +∆PX,0, PY,0 = P ∗Y,0 +∆PY,0, PZ,0 = P ∗Z,0 +∆PZ,0,

with

∆X0,∆PX,0 = O((∆CH
p )

1
2 ), ∆Z0,∆PZ,0 = O((∆CH

v )
1
2 ),

whereW∗
0 = (X∗0 , Y

∗
0 , Z

∗
0 , P

∗
X,0, P

∗
Z,0, P

∗
Z,0)

T andW0 = (X0, Y0, Z0, PX,0, PZ,0, PZ,0)
T .

We fix k̃ ∈ R+. Let us define t∗(k̃) the time for which ϕ(t,W∗
0) cuts Y = −k̃.

Let us denote by t(k̃) the time used for ϕ(t,W0) to attain Y = −k̃. Then,

t(k̃) = t∗(k̃) + ∆t with ∆t small.

Therefore, we have that

ϕ(t(k̃),W0) = ϕ(t∗(k̃),W∗
0) + ∆tϕ̇(t∗(k̃),W∗

0) +

∂ϕ

∂W0
(t∗(k̃),W∗

0)∆W0 +O2, (5.43)

where O2 denotes terms of order two in ∆t and ∆W0.

Asϕ(t,W∗
0) stands forW

u,H
L2

, we know that Z∗ = P ∗Z = 0. Then, ϕ̇(t∗(k),W∗
0))

is uncoupled in variables (X, Ẋ, Y, Ẏ ) and (Z, Ż).

Now we compute
∂ϕ

∂W0
(t∗(k),W∗

0). We know that it is the solution of

Ẇ = AW,

W(t0) = I6, (5.44)

where A = D2G(t,ϕ(t
∗(k),W∗

0)) being G = (PX , PY , PZ , 2PY + ΩH
X ,−2PX +

ΩH
Y ,Ω

H
Z )T the vector field defined by (5.42). Then,

D2G =



















0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ΩH
XX ΩH

XY ΩH
XZ 0 2 0

ΩH
XY ΩH

Y Y ΩH
Y Z −2 0 0

ΩH
XZ ΩH

XY ΩH
ZZ 0 0 0



















.



166 5. Some heteroclinic connections in the Spatial RTBP

A simple computation shows that

ΩXZ(X
∗, Y ∗, Z∗) = ΩY Z(X

∗, Y ∗, Z∗) = ΩZZ(X
∗, Y ∗, Z∗) = 0.

Then,
∂ϕ

∂W0
(t∗(k),W∗

0) uncouples the variables (X, Ẋ, Y, Ẏ ) and (Z, Ż).

If we approximate the coordinates X,Y, PX , PY of ϕ(t∗(k),W∗
0) by its linear

part we have that

X∗(t∗(k̃)) = 3−
1
3 + 2λc1e

λt∗(k̃),

Y ∗(t∗(k̃)) = (λ2 − 9)c1e
λt∗(k̃),

P ∗X(t∗(k̃)) = 2λ2c1e
λt∗(k̃),

P ∗Y (t
∗(k̃)) = λ(λ2 − 9)c1e

λt∗(k̃),

for some c1 > 0. Then the linear part of
∂ϕ

∂W0
(t∗(k̃),W∗

0) has the form



















∗ ∗ 0 ∗ ∗ 0

∗ ∗ 0 ∗ ∗ 0

0 0 ∗ 0 0 ∗
∗ ∗ 0 ∗ ∗ 0

∗ ∗ 0 ∗ ∗ 0

0 0 ∗ 0 0 ∗



















,

where ∗ denotes some expressions that depend on t∗(k̃). We recall that t∗(k̃) is

the time for which W u,H
L2

cuts Y = −k̃.
As from (5.43) we have that

ϕ(t(k̃),W0)−ϕ(t∗(k̃),W∗
0)−∆tϕ̇(t∗(k̃),W∗

0) =
∂ϕ

∂W0
(t∗(k̃),W∗

0)∆W0 +O2,

this finishes the proof of the Lemma. 2

Proof of Lemma 5.4.2

In order to compute the Poincaré map we will find the images Tt∗Pi where

Pi ∈ T̃ , i = 1, . . . , 4, being T̃ = W u,H
T ∩ {Y = −k̃} and P1 is such that ξ1 > 0,

ξ̇1 = 0, ξ2 = 0, ξ̇2 = 0, P2 is such that ξ1 = 0, ξ̇1 > 0, ξ2 = 0, ξ̇2 = 0, P3 is such

that ξ1 = 0, ξ̇1 = 0, ξ2 > 0, ξ̇2 = 0 and P4 is such that ξ1 = 0, ξ̇1 = 0, ξ2 = 0,

ξ̇2 > 0. We remark that from the geometry of T̃ we have that ξ1, ξ̇1 = O((∆CH
p )

1
2 )

and ξ2, ξ̇2 = O((∆CH
v )

1
2 ).

As k̃ > 0 is large enough, the solutions can be approximated by the linear

system (5.25). By taking t = 0 the time for which a solution is on Y = −k̃, the
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general solution of this system can be written as

X(t) =
2

3
N +M cos (t− t0),

Y (t) = B −Nt− 2M sin (t− t0), (5.45)

Z(t) = A cos (t− t0) +D sin (t− t0),

and their derivatives with respect to t.

We begin with P1. We denote by ϕ1 = (X1, Y1, Z1, Ẋ1, Ẏ1, Ż1) its coordinates

in the space (X,Y, Z, Ẋ, Ẏ , Ż). Then, we have that

X1 = XL2(0) + ∆X, Y1 = −k̃, Z1 = 0,

Ẋ1 = 0, Ẏ1 = ẎL2(0) + ∆Ẏ , Ż1 = 0. (5.46)

First we compute the expression of ∆Ẏ in terms of ∆X. To this end we shall

use the Jacobi integral (5.21). We note that this integral can be approximate for

Y = −k, with k large enough, by

CH ≈ −(Ẋ2 + Ẏ 2 + Ż2) + 3X2 − Z2.

From (5.22) we can uncouple this integral in two as

CH
p ≈ 3X2 − Ẋ2 − Ẏ 2, (5.47)

CH
v ≈ −Z2 − Ż2. (5.48)

Using (5.47) we obtain that

Ẏ 2 ≈ ∆CH
p − 3

4
3 − Ẋ2 + 3X2, (5.49)

where ∆CH
p = CH

L2
− CH

p . Then, using (5.46), on P1 we have that

ẎL2(0)
2 + 2ẎL2(0)∆Ẏ + (∆Ẏ )2 ≈ ∆CH

p − 3
4
3 + 3[XL2(0)

2 + 2XL2(0)∆X +

(∆X)2].

On W u,H
L2

the value of the Jacobi constant is the same as on the equilibrium point.

Moreover, ∆X,∆Ẋ = O((∆CH
p )

1
2 ). Then, we obtain that

∆Ẏ ≈ 3XL2(0)∆X

ẎL2(0)
+O(∆CH

p ). (5.50)

Therefore, (5.46) can be written as

X1 = XL2(0) + ∆X, Y1 = −k̃, Z1 = 0,

Ẋ1 = 0, Ẏ1 = ẎL2(0) +
3XL2(0)

ẎL2(0)
∆X +O(∆CH

p ), Ż1 = 0.
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Now we determine the constants t0, B,M,N,A,D in (5.45) for this point. It is

clear that A = D = 0. We take M =M∞ +∆M and N = N∞ +∆N . As Ẋ1 = 0

we can take t0 = 0. Then, from the equation for Y , we have that B = −k̃. We

compute ∆M and ∆N . The equations for X and Ẏ give us the following system

of linear algebraic equations for ∆M and ∆N .

2

3
∆N +∆M = ∆X,

∆N + 2∆M = −∆Ẏ .

Solving the system above and using (5.50) we obtain

∆M =
N∞

N∞ + 2M∞
∆X,

∆N =
3M∞

N∞ + 2M∞
∆X. (5.51)

We denote by P∗1 the end point, that is, P∗1 is the intersection of W u,H
L2

with

the hyperplane Y = −˜̃k in coordinates ξ1, ξ̇1, ξ2, ξ̇2. We shall denote by ϕ∗1 the

coordinates ofP∗1 in the variables (X,Y, Z, Ẋ, Ẏ , Ż). We can write ϕ∗1 = ϕL2+∆ϕ1,

where ϕL2
is the final point for W u,H

L2
. From (5.26) we have that the coordinates

of ϕL2
are given by

X∗L2
=

2

3
N∞ +M∞ cos t∗, Y ∗L2

= −˜̃k, Z∗L2
= 0,

Ẋ∗L2
= −M∞ sin t∗, Ẏ ∗L2

= −N∞ − 2M∞ cos t∗, Ż∗L2
= 0.

From the definition of t∗ and using (5.26) we have that

−k̃ −N∞t∗ − 2M∞ sin t∗ = −˜̃k. (5.52)

As

−˜̃k = Y (t∗ +∆t) = −k̃ −Nt∗ +N∆t− 2M(sin(t∗ +∆t cos t∗)) +O((∆t)2),

from (5.52) we have that

∆t = − t
∗∆N + 2∆M sin t∗

N∞ + 2M∞ cos t∗
+O(∆CH

p ). (5.53)

A simple computation shows that

X∗1 = X1(t
∗ +∆t) = XL2 +∆X∗,
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where ∆X∗ =
2

3
∆N +∆M cos t∗ −M∞∆t sin t∗ +O((∆t)2). Using (5.51) and

(5.53) we obtain that

∆X∗ =
∆X[4N∞M∞ + (4M2

∞ +N2
∞) cos t∗ + 3M2

∞t
∗ sin t∗]

(N∞ + 2M∞)(N∞ + 2M∞ cos t∗)
.

Similar computations can be done in order to obtain Ẋ∗1 . We obtain that

Ẋ∗1 = ẊL2 +∆Ẋ,

where

∆Ẋ =
∆X

(N∞ + 2M∞)(N∞ + 2M∞ cos t∗)
(−N2

∞ sin t∗ + 3M2
∞t
∗ cos t∗).

The computation of Z∗1 and Ż∗1 is easiest due to the fact that A = D = 0. We

obtain that Z∗1 = Ż∗1 = 0. With all this, we have obtained the first column in Tt∗ .

Analogously, by computing the images of P2, P3 and P4 on W u,H
T ∩{Y = −˜̃k}

one can obtain the complete first order terms of the Poincaré map Tt∗ . 2

Proof of Lemma 5.4.3

We begin by taking an initial condition onW u,µ
T ∩{y = −kµ 1

3 } with k > 0 large

enough. From the geometry of W u,µ
T ∩ {y = −kµ 1

3 } we can take initial conditions

of the form

x0 = xL2 +∆x, , y0 = −kµ 1
3 z0 = zL2 +∆z,

ẋ0 = ẋL2 +∆ẋ, ẏ0 = ẏL2 +∆ẏ, ż0 = żL2 +∆ż, (5.54)

being (xL2 , yL2 , zL2 , ẋL2 , ẏL2 , żL2) the coordinates of W u,µ
L2

and

∆x,∆y,∆ẋ = O((∆Cp)
1
2 ), ∆z,∆ż = O((∆Cv)

1
2 ).

In terms of the Hill’s coordinates (5.18) we have that

X0 = XL2 +∆X, Y = −k, Z = ZL2 +∆Z,

where XL2 = µ−
1
3 (xL2 + 1 − µ), ZL2 = µ−

1
3 zL2 , ∆X = µ−

1
3∆x and ∆Z = µ−

1
3 .

Moreover, ∆X = O((∆CH
p )

1
2 ) and ∆Z = O((∆CH

v )
1
2 ). As k is large enough, we

can approximate CH
p and CH

v by (5.47) and (5.48), respectively. Then, ẎL2 ≈
3X2− Ẋ2 +∆CH

p −CLH
2
where CLH

2
= 3X2

L2
− Ẋ2

L2
− Ẏ 2

L2
. As Ẏ = ẎL2 +∆Ẏ , we

obtain that

∆Ẏ ≈ 1

ẎL2

(3XL2∆X − ẊL2∆Ẋ) +O(∆CH
p ).



170 5. Some heteroclinic connections in the Spatial RTBP

From the expression of WH
L2

given in (5.26) we have that

∆Ẏ ≈ − 1

N∞ + 2M∞ cos t
[(2N∞ + 3M∞ cos t)∆X +M∞ sin t∆Ẋ],

and so,

∆ẏ ≈ − 1

N∞ + 2M∞ cos t
[(2N∞ + 3M∞ cos t)∆x+M∞ sin t∆ẋ].

A simple computation shows that

xL2 = −1 + µ+

(

2

3
N∞ +M∞ cos t

)

µ
1
3 ,

ẋL2 = −µ 1
3M∞ sin t,

ẏL2 = −(N∞ + 2M∞ cos t)µ
1
3 ,

zL2 = żL2 = 0.

Then, the initial condition (5.54) can be written as

x0 = −1 + µ+

(

2

3
N∞ +M∞ cos t

)

µ
1
3 +∆x,

ẋ = −M∞ sin tµ
1
3 +∆ẋ,

y = −kµ 1
3 ,

ẏ = −(N∞ + 2M∞ cos t)µ
1
3 − (N∞ + 2M∞ cos t)−1[(2N∞ +

3M∞ cos t)∆x+M∞ sin t∆ẋ],

z = ∆z,

ż = ∆ż.

We assume that W u,µ
L2

needs a time τ in order to attain y = 0, x < 0 when we

start at y = −k and go back, and that for this value of τ the ellipse near (x, ẋ) has

the axes parallel to x and ẋ, respectively. In fact, y is not exactly zero because we

select τ with the smallest y such that the ellipse in (x, ẋ) is in suitable position.

As the ellipse near (x, ẋ) is centered approximately at (xL2 , ẋL2) and has semi-

axes proportional to (∆Cp)
1
2 , we can write

∆x = k1(∆Cp)
1
2 cosσ1,

∆ẋ = k2(∆Cv)
1
2 sinσ1,

where k1, k2 are suitable constants and σ1 is a parameter on the ellipse. For the

ellipse near the (z, ż) plane we can write

∆z = ρ̃(cos γ cosσ2 −A sin γ sinσ2)(∆Cv)
1
2 ,

∆ż = ρ̃(cos γ sinσ2 +A sin γ cosσ2)(∆Cv)
1
2 ,
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being , γ, ρ̃, A suitable constants and σ2 a parameter on the ellipse.

We shall denote by (ξ̃1,
˜̇
ξ1, ξ̃2,

˜̇
ξ2) a point with minimum |y| and the ellipse near

(x, ẋ) in suitable position, and (ξ1, ξ̇1, ξ2, ξ̇2) its image on Y = −k. We recall that

the coordinates ξj are defined in (5.27) and they are expressed in Hill’s coordinates.

From Lemma 5.4.2 we have that
(

ξ̃2
˙̃
ξ2

)

= T−1
v,−τ

(

ξ2
ξ̇2

)

=

(

cos τ sin τ

− sin τ cos τ

)(

∆Z

∆Ż

)

.

Then, we can take as initial condition the one given in the statement of the Lemma.

2

Proof of Lemma 5.4.4

Let us consider (x, y, z) synodic coordinates for the spatial two body problem.

In these variables, the equations of motion are given by

ẍ− 2ẏ = x

(

1− 1

r3

)

,

ÿ + 2ẋ = y

(

1− 1

r3

)

, (5.55)

z̈ = − z

r3
,

where r2 = x2 + y2 + z2.

We want to perform a change of variables in order to reduce the system above

to the planar Kepler problem. To this end, we begin performing the change of

variables (x, y, z) −→ (q1, q2, q3) given by







q1
q2
q3






=







cos t − sin t 0

sin t cos t 0

0 0 1













x

y

z






. (5.56)

Then, system (5.55) is written in sideral coordinates by

q̈i = − qi
r3
, i = 1, 2, 3,

with r2 = q21 + q22 + q23. Then, we obtain the Spatial Kepler’s problem with µ = 1,

q̈ = − q

r3
, q = (q1, q2, q3), r = ‖q‖. (5.57)

This problem has ω = q ∧ q̇ as first integral, and if ω 6= 0 then the movement

takes place in the ortogonal plane to ω. That is, if ω = (ω1, ω2, ω3) with ω 6= 0,

then, given an initial condition q0 = (q01, q
0
2, q

0
3), q̇0 = (q̇01, q̇

0
2, q̇

0
3), the movement
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takes place in the plane ω1q1 + ω2q2 + ω3q3 = 0, where ω = q0 ∧ q̇0.

To reduce (5.57) to the Planar Kepler’s problem, we introduce new variables r =

(r1, r2, r3) defined by

q = Ar, A =







ω3
ω̃ −ω1ω2

ωω̃
ω1
ω

0 ω̃
ω

ω2
ω

−ω1
ω̃ −ω2ω3

ωω̃
ω3
ω






, (5.58)

where ω = ‖ω‖, ω̃ =
√

ω2
1 + ω2

3. We note that A is an orthogonal matrix. Then,

equations (5.57) are reduced to the equations of the Planar Kepler’s problem

r̈ = − r

r3
, with r = (r1, r2), r = ‖r‖. (5.59)

We note that the motion takes place in the plane r3 = 0 and then, we do not

consider this coordinate.

We take initial conditions (5.28). We can write these as

x0 = −1 + α1µ
1
3
k +

(α

3
α1 + α3

)

µ
2
3
k +O(µk),

ẋ0 = −M∞ sin τµ
1
3
k +

(

−α
3
M∞ + α4

)

µ
2
3
k +O(µk),

y0 = 0, (5.60)

ẏ0 = −α2µ
1
3
k −

(

α

3
α2 +

3α1α3 +M∞α4 sin τ

α2

)

µ
2
3
k +O(µk),

z0 = z̃0µ
2
3
k +O(µk),

ż0 = ˙̃z0µ
2
3
k +O(µk),

where α1 =
2

3
N∞ + M∞ cos τ , α2 = N∞ + 2M∞ cos τ , α3 = k1β̃1 cosσ1, α4 =

k2β̃1 sinσ2, z̃0 = β̃2(k3 cosσ2+k4 sinσ2), ˙̃z0 = β̃2(k5 cosσ2+k6 sinσ2), k6 = Ak3 =

Aρ̃ cos γ, k4 = −Ak5 = −Aρ̃ sin γ.
We want to obtain the first cut of the solution of SSTBP with initial conditions

(5.60) with y = 0, x > 0. Let us denote by tf the time in which this fact occurs.

Let us assume that we know the expressions of r1 and r2. Then, we also know r

and ṙ. Let us see how to obtain the expressions of x(tf ), z(tf ), ẋ(tf ), ż(tf ) from

these terms.

First, we recall that

r2 = x2 + y2 + z2, (5.61)

where r2 = r21 + r22 and r1, r2 is the solution of the Planar Kepler problem. Then,

r2(tf ) = x2(tf ) + z2(tf ). (5.62)
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Moreover, from the changes of coordinates (5.56) and (5.58), we can write

z = −ω1

ω̃
r1 −

ω2ω3

ωω̃
r2. (5.63)

From these two relations we obtain x(tf ) and z(tf ).

Now we want to see how to obtain ẋ(tf ) and ż(tf ). From (5.61) we have that

xẋ+ yẏ + zż = rṙ.

If we evaluate on tf we obtain

x(tf )ẋ(tf ) + z(tf )ż(tf ) = r(tf )ṙ(tf ). (5.64)

x(tf ), z(tf ), r(tf ) and ṙ(tf ) are known. Moreover, from (5.56) and (5.58) we have

that

ż = −ω1

ω̃
ṙ1 −

ω2ω3

ωω̃
ṙ2.

Then, we can compute ż(tf ) and after ẋ(tf ) from (5.64).

Now we will explain how to compute r1, r2 and so, r and ṙ. Let us consider

(r1, r2) an elliptic solution of (5.59). It is well–known that

(

r1
r2

)

= Ω(δ)

(

r̃1
r̃2

)

, (5.65)

where r̃1 = a(cosE − e), r̃2 = a
√
1− e2 sinE, Ω(δ) =

(

cos δ − sin δ

sin δ cos δ

)

, and a

is the major axis of the ellipse, e the eccentricity, E the eccentric anomaly and δ

denotes the argument of the pericenter.

These orbital parameters satisfy the following relations (see [S.S.])

1

a
=

2

r0
− v2

0,

e cosE0 = r0v
2
0 − 1,

e sinE0 = r0ṙ0a
− 1

2 , (5.66)

V0 + δ = Arg r0,

where E0, V0 denotes the initial eccentric and true anomalies, r0 = ‖r0‖, v0 = ‖ṙ0‖
and r0ṙ0 =< r0, ṙ0 >.

Now we want to express these orbital parameters in synodic coordinates. To

this end, we only need to take into account that ω1 = y0ż0 − z0(x0 + ẏ0), ω2 =

z0(ẋ0 − y0)− x0ż0, ω3 = x0(x0 + ẏ0)− y0(ẋ0 − y0). We note that ω1, ω2 = O(µ
2
3
k ),

ω3, ω, ω̃ = O1.
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Then,

r0 =

(

ω3
ω̃ x0 − ω1

ω̃ z0
−ω1ω2

ωω̃ x0 +
ω̃
ωy0 − ω2ω3

ωω̃ z0

)

.

Using this expression for r0 we can compute all the orbital parameters in terms of

the initial condition for a solution in synodic coordinates.

A straight forward computation shows that

r0 = 1− α1µ
1
3
k −

(α

3
α1 + α3

)

µ
2
3
k +O(µk),

v2
0 = 1 + 2(α2 − α1)µ

1
3
k +

[

N∞
3

(3α2 − 4α1) +
2α

3
(α2 − α1)+

2
M∞α4 sin τ − α3(α2 − 3α1)

α2
+M2

∞

]

µ
2
3
k +O(µk),

r0ṙ0 = M∞ sin τµ
1
3
k +

[

−α4 +M∞ sin τ
(α

3
− α1

)]

µ
2
3
k +O(µk),

a = 1− 2N∞
3

µ
1
3
k +

[

4

9
N2
∞ − 2α2

1 +
N∞
3

(3α2 − 4α1) +
2α

3
(α2 − 2α1)+

2M∞

α2
(α4 sin τ − α3 cos τ) +M2

∞

]

µ
2
3
k +O(µk),

e = M∞µ
1
3
k +

{

M∞

3
(α−N∞) +

N∞
α2

(α3 cos τ − α4 sin τ)+

cos τ [N∞(α1 − α2)−M2
∞ cos2 τ ]

}

µ
2
3
k +O(µk),

Arg(r0) = π +O(µ
4
3
k ).

Now, in order to compute E0 it is only necessary to take into account that from

(5.66) we have that tanE0 =
r0ṙ0a

− 1
2

r0v2
0 − 1

. Then, we obtain

E0 = τ + 2kπ +
1

M∞

{

sin τ
[

N∞(α2 − α1)−M2
∞ sin2 τ−

2M∞α4 sin τ +N∞α3

α2

]

− α4 cos τ

}

µ
1
3
k +O(µ

2
3
k ).

We want to know the expression of V0 and δ. In order to obtain the expression of

V0, we need the relation between the eccentric anomaly E and the true anomaly

V . We have that

V = E + e sinE +
e2

2
sinE cosE +O(e3). (5.67)
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Using (5.67) we obtain that

V0 = τ + 2kπ +
1

M∞

{

sin τ
[

N∞(α2 − α1) +M2
∞ cos2 τ−

2M∞α4 sin τ +N∞α3

α2

]

− α4 cos τ

}

µ
1
3
k +O(µ

2
3
k ),

and then, from the equality V0 + δ = Arg(r0) given in (5.66) we have that

δ = π − τ − 2kπ − 1

M∞

{

sin τ
[

N∞(α2 − α1) +M2
∞ cos2 τ−

2M∞α4 sin τ +N∞α3

α2

]

− α4 cos τ

}

µ
1
3
k +O(µ

2
3
k ).

We are interested in to express the solution in terms of the mean anomaly M . To

this end, it will be useful the relation between the eccentric anomaly E and M ,

that it is given by

E = M + e sinM + e2 sinM cosM +O(e3). (5.68)

Now we compute r1 and r2. From the relation (5.65) first we need to compute r̃1
and r̃2. We have that

r̃1 = cosM +O(µ
1
3
k ) and r̃2 = sinM +O(µ

1
3
k ).

Then,

r1 = cos (M + π − τ) +O(µ
1
3
k ) and r2 = sin (M + π − τ) +O(µ

1
3
k ).

From (5.63) we have that

z = [z̃0 cos (M − τ) + ˙̃z0 sin (M − τ)]µ
2
3
k +O(µk).

We denote by Mf the mean anomaly at physic time tf . From (5.62) we have that

x(Mf ) = r(Mf )+O(µk). Therefore, in order to obtain x(Mf ) we need to compute

r = a(1− e cosE). We have that

r = 1−
(

2

3
N∞ +M∞ cosM

)

µ
1
3
k +

{

(2M∞ +N∞ cosM)(α4 sin τ − α3 cos τ)α
−1
2 −

α

3

(

2

3
N∞ +M∞ cosM

)

+M2
∞ sin2M + (cosM cos τ − 2)

(

1

3
N2
∞+

N∞M∞ cos τ +M2
∞ cos2 τ

)

+
1

3
N2
∞ +N∞M∞ cosM +M2

∞

}

µ
2
3
k +O(µk).
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For W u,µk
L2

is known (see [L.M.S.]) that the mean anomaly of the first cut of this

manifold with y = 0, x > 0 is Mw = 0 or π. If xw denotes the value of x for W u,µk
L2

with Mw = 0 we have that

xw = 1−
(

2

3
N∞ +M∞

)

µ
1
3
k +

{

1

3
N2
∞ cos τ +N∞M∞ cos2 τ +M2

∞ cos3 τ−

1

3
N2
∞ − 2N∞M∞ cos τ − 2M2

∞ cos2 τ +N∞M∞ +M2
∞

}

µ
2
3
k +O(µk).

Then, we obtain the value of x(Mf ) and z(Mf ) in the lemma.

Now we will obtain ẋ(Mf ) and ż(Mf ). We have that

˙̃r1 = −a
1
2

r
sinE and ˙̃r2 =

a
1
2

r

√

1− e2 cosE.

Then, ˙̃r1 = − sinM + O(µ
1
3
k ) and ˙̃r2 = cosM + O(µ

1
3
k ). A simple computation

shows that

ż = [−z̃0 sin (M − τ) + ˙̃z0 cos (M − τ)]µ
2
3
k +O(µk).

Then, using that ẋ = (a
1
2 e sinE − zż)x−1, we obtain the value of ẋ(Mf ) given in

the lemma.

Last step is to obtain the equation for Mf . We take Mf = M0 + n(Vf + δ)

where n is obtained from the relation n2a3 = 1. After some computations, one

obtains the equation given in the statement of the Lemma.

2

Proof of Lemma 5.4.7

We assume that cos a0 = 0. Then a0 =
π

2
+ nπ with n ∈ N and equation (5.34)

transforms in

N∞
2
π(1 + 2n− 2k)± 2M∞ = 0,

and then 1 + 2n − 2k = ∓4M∞

N∞π
, where we recall that N∞ = 5.1604325 . . . and

M∞ = 2.1320587 . . . and then

∣

∣

∣

∣

4M∞

N∞π

∣

∣

∣

∣

< 1. Therefore, it is no possible this value

of a0.

Now we assume that sin a0 = 0. So, a0 = nπ with n ∈ N. Equation (5.35) can

be written as

2sN2
∞

3π
π(n− k)

(

2 +
N∞
M∞

)

= 0.
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Then, k = n. Moreover, equation (5.34) transforms in M∞(a1 + b1) = 0 and

therefore b1 = −a1.

Now we consider the general case in which cos a0, sin a0 6= 0. If we multiply

(5.34) by sin a0 and (5.35) by cos a0 and we substract the resultant equations,

rearranging terms yields

2sN∞
3π

(

N∞
M∞

+ 2 cos a0

)

[N∞(a0 − kπ) + 2M∞ sin a0].

We note that the equation
N∞
M∞

+ 2 cos a0 = 0 gives no solution due to the fact that

N∞
M∞

> 2. From the other hand, N∞(a0− kπ)+ 2M∞ sin a0 has a unique solution,

located at a0 = kπ. But this give a contradiction because we have assumed that

sin a0 6= 0. This ends the proof of the lemma. 2
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Chapter 6

Invariant tori in the centre

manifold of collinear points in

the Planar TBP

In this chapter we study the orbits in a neighbourhood of the collinear points of

the Planar Three Body Problem with Newtonian potential for all positive values of

the masses. Given admissible masses m1,m2,m3, the collinear equilibrium points

are centre–centre–saddle points. As in chapter 1 we shall consider the collinear

equilibrium with the body of mass m2 in the middle. Denote by ±λ,±i,±iω the

eigenvalues of the linear part. So, in a neighbourhood of the equilibrium point the

quadratic part of the Hamiltonian can be written as

H2(ξ,η) = λξ1η1 +
1

2
(ξ22 + η2

2) +
ω

2
(ξ23 + η2

3).

The equilibrium point has an one–dimensional unstable manifold, an one–dimensio-

nal stable one and a four–dimensional centre manifold. Two families of periodic

orbits which are born at the equilibrium point live on the centre manifold: the

Lyapunov family with a period approaching
2π

ω
when the periodic orbits tend to

the point, and the homographic family of periodic orbits with a period tending to

2π. However, for the quadratic part H2(ξ,η), these periodic orbits are surrounded

by two–dimensional invariant tori. The preservation of these invariant tori for the

complete Hamiltonian is guaranteed by KAM theorem under some nondegeneracy

conditions.

The purpose of this chapter is to study the applicability of KAM theorem in

a neighbourhood of the collinear points for any values of the masses. To this end

we do the following steps. First, we perform some canonical transformations to

write the Hamiltonian in Normal Form. Then we reduce the Hamiltonian to the

179
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centre manifold. After that, we check, by numerical evaluation of the coefficients

of the Normal Form, the nondegeneracy conditions of KAM theorem. The results

presented in section 6.4 show that both conditions (either isoenergetic or not) are

satisfied for any values of the masses in the triangle of masses.

However, we remark that for some values of the masses the eigenvalues at

the collinear points are ±λ,±i,±2i and a resonance 2 : 1 takes place. In fact,

1 < ω <
√

8
√
2− 3 ≈ 2.88335022... So, up to order 4, we only need to take into

account the resonance 2 : 1. The corresponding resonant masses describe a curve

in the triangle of masses. Therefore, for resonant masses it is expected to get

resonant monomials of order three in the Normal Form of the Hamiltonian. We

prove in section 6.3 that this is not the case. In fact, we prove that the coefficients

of these monomials are different from zero for general masses but they become zero

for resonant masses, and also in the symmetrical case m1 = m3. The existence

of the homographic solutions allows us to compute analytically, in an easy way,

the coefficients of the resonant monomials of order three. These coefficients have

(ω − 2) as a factor.

6.1 Reduction of the order

We consider the equations of the Planar Three Body Problem with Newtonian

potential (PTBPN). We know that the equations of this problem can be written

as a Hamiltonian system with six degrees of freedom with Hamiltonian function

H(q,p) =
1

2
pTM−1p− U(q), (6.1)

where q = (q1,q2,q3)
T , p = (p1,p2,p3)

T , qi,pi ∈ R2,

M = diag(m1,m1,m2,m2,m3,m3)

and

U(q) =
∑

1≤i<j≤3

mimj

‖qi − qj‖
.

We recall that we have assumed that m1 +m2 +m3 = 1.

We are interested in the solutions near the collinear equilibrium points.

In section 1.3 we have seen that the homographic solutions are equilibrium

points of the system once a suitable rotating and pulsating coordinate system is

introduced. Moreover, using the integrals of the centre of masses we have reduced

the Hamiltonian to one with four degrees of freedom. As we are interested in the
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equilibrium points we have that the equations of motion (1.16) can be written as

u̇i =
1

mi
vi +

1

m3
(v1 + v2) + J2ui, i = 1, 2,

v̇i =
∂U

∂ui
+ J2vi, i = 1, 2,

where, as we did before, J2 =

(

0 1

−1 0

)

and the Hamiltonian function is

H(u,v) = T (v)− U(u)−Q(u,v),

where

T (v) =
1

2m3
‖v1 + v2‖2 +

2
∑

i=1

1

2mi
‖vi‖2,

U(u) =
m1m2

‖u1 − u2‖
+
m1m3

‖u1‖
+
m2m3

‖u2‖

and

Q(u,v) =
2
∑

i=1

uT
i J2vi,

is the angular momentum.

Now we want to perform a change of coordinates in order to reduce by two

the order of the system. To this end, we shall use the integral of the angular

momentum. We consider the canonical transformation (u,v) −→ (ξ,η) defined

by

u1 = ξ1w,

u2 = L

(

ξ2
ξ3

)

,

η1 = vT
1 w,

v2 = L

(

η2

η3

)

,

η4 = −Q,

where L =

(

cos ξ4 sin ξ4
− sin ξ4 cos ξ4

)

, w =

(

cos ξ4
− sin ξ4

)

and ξ = (ξ1, ξ2, ξ3, ξ4)
T , η =

(η1, η2, η3, η4)
T (see [S.M.]).

Figure 6.1 shows geometrically the changes of coordinates performed to (6.1).
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Figure 6.1: The change of variables of the centre of masses and the angular momentum

The new Hamiltonian can be written as

H(ξ,η) = T (ξ,η)− U(ξ) + η4, (6.2)

where

T (ξ,η) =
1

2m3

[

(η1 + η2)
2 +

(

η3 +
A

ξ1

)2
]

+
1

2m1ξ21
(ξ21η

2
1 +A2) +

1

2m2
(η2

2 + η2
3),

U(ξ) =
m1m2

r12
+
m1m3

r13
+
m2m3

r23
, (6.3)

A = −η4 + ξ3η2 − ξ2η3,

r12 =
[

(ξ1 − ξ2)2 + ξ23
] 1

2 , r13 = |ξ1|, r23 = (ξ22 + ξ23)
1
2 ,

and the equations of motion are

ξ̇1 = α1η1 +
1

m3
η2

ξ̇2 =
1

m3
η1 + α2η2 + ξ3Z

ξ̇3 = α2η3 +
1

m3ξ1
A− ξ2Z

ξ̇4 = 1− Z
η̇1 = −m1m2

r312
(ξ1 − ξ2)−

m1m3

|ξ1|3
ξ1 +

A

ξ1
Z
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η̇2 =
m1m2

r312
(ξ1 − ξ2)−

m2m3

r323
ξ2 + η3Z

η̇3 = −
(

m1m2

r312
+
m2m3

r323

)

ξ3 − η2Z

η̇4 = 0

where Z =
1

ξ21

(

α1A+
ξ1η3

m3

)

, α1 =
m1 +m3

m1m3
, α2 =

m2 +m3

m2m3
. We note that the

Hamiltonian (6.2) does not depend on ξ4. So, this is an ignorable variable and

fixing the value of η4, that is, the angular momentum, we can restrict ourselves to

consider a Hamiltonian system with three degrees of freedom

ξ̇i = Hηi ,

η̇i = −Hξi . (6.4)

From now on we will take ξ = (ξ1, ξ2, ξ3)
T and η = (η1, η2, η3)

T .

Hamiltonian (6.2) admits some symmetries.

Lemma 6.1.1. Let H(ξ,η) the Hamiltonian defined in (6.2). Then

(i) For any value of the masses H(S1(ξ,η)) = H(ξ,η) where

S1 = diag(1, 1,−1,−1,−1, 1).

(ii) For values of the masses such that m1 = m3, H(S2(ξ,η)) = H(ξ,η) holds,

where

S2 =

(

S11 0

0 S22

)

,

with S11 =







1 0 0

1 −1 0

0 0 1






and S22 = diag(1, 1,−1).

6.2 Expansion of the Hamiltonian in power

series in a neighbourhood of L2

In this section we shall expand the Hamiltonian of the PTBPN in a neighbourhood

of L2. Moreover, some properties of the eigenvalues and eigenvectors of the linear

part of system (6.4) on the equilibrium point are proved. The eigenvalues can

not be obtained, in general, explicitly due to the fact that the equilibrium points

depend on the solution of an equation of degree five. However, we shall prove the
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necessary properties for our purposes. These properties will be useful in section

6.3 in order to obtain the Normal Form of the Hamiltonian up to order 4.

We consider the point L2, that is, we take the collinear equilibrium point with

the masses ordered from left to right as m3,m2,m1. We recall that the other

collinear points are obtained from L2 by changing the values of the masses. In

section 1.4 we have seen that for L2, u1 = a(ρ + 1), u2 = a, being u1 = (u1, 0)

and u2 = (u2, 0) the coordinates of these point, where ρ is the solution of Euler’s

quintic equation

ρ5(m2 +m3) + ρ4(2m2 + 3m3) + ρ3(m2 + 3m3)− ρ2(3m1 +m2)−
−ρ(3m1 + 2m2)− (m1 +m2) = 0, (6.5)

and a3 = −m1

ρ2
+

m1

(ρ+ 1)2
+m2 +m3. An easy computation shows that if (ξp,ηp) =

(ξp1 , ξ
p
2 , ξ

p
3 , η

p
1 , η

p
2 , η

p
3) denotes the coordinates of the point L2 in variables (ξ,η) then

ξp1 = a(ρ+ 1), ξp2 = a, ξp3 = 0,

ηp1 = 0, ηp2 = 0, ηp3 = m2a(m3 −m1ρ).

We also get

ηp4 = −a2
[

m1m3(ρ+ 1)2 +m2(m1ρ
2 +m3)

]

. (6.6)

We note that if m1 = m3 then ρ = 1. In this case, the equilibrium point is

(ξp,ηp) = (2a, a, 0, 0, 0, 0) where a3 =
1

4
(4m2 +m1) and the angular momentum

is given by ηp4 = −2m1a
2.

From now on we fix the angular momentum equal to ηp4 , that is, the angular

momentum at the equilibrium point, and we shall consider different values of the

energy.

In order to expand the Hamiltonian in a neighbourhood of L2 we translate the

equilibrium point to the origin introducing new variables as

x =
1

aρ
(ξ − ξp),

y = η − ηp.

This change of variables defines a canonical transformation with multiplier
1

aρ
.

Then, the new Hamiltonian is

H(x,y) =
1

aρ
H(ξ,η). (6.7)

The following step consists in to expand the Hamiltonian (6.7) in power series in

the variables x,y in a neighbourhood of the origin. Then, it is only necessary to
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expand the Hamiltonian (6.2) in variables x,y around the origin and to multiply

the result by the factor
1

aρ
.

Using (6.3) we have that

T (x,y) =
1

2
α1y

2
1 +

1

m3
y1y2 +

1

2
α2y

2
2 +

1

2
α2y

2
3 + α2η

p
3y3 +

1

2
α2(η

p
3)+

+
(y3 + ηp3)A(x, y)

m3a(ρ+ 1)

∑

n≥0

( −ρ
ρ+ 1

x1

)n

+
α1(A(x, y))

2

2a2(ρ+ 1)2

∑

n≥0

(n+ 1)

( −ρ
ρ+ 1

x1

)n

,

U(x) =
m1m2

aρ

∑

n≥0

cn1Pn

(

x2 − x1

c1

)

+
m1m3

a(ρ+ 1)

∑

n≥0

( −ρ
ρ+ 1

x1

)n

+

+
m2m3

a

∑

n≥0

cn2Pn

(−ρx2

c2

)

where c21 = (x1 − x2)
2 + x2

3, c
2
2 = ρ2(x2

2 + x2
3), A(x,y) = −ηp4 − aηp3 − a(y3 +

ρηp3x2) + aρ(x3y2 − x2y3) and Pn is the nth Legendre polynomial. We recall that

the Legendre polynomials Pn(x) are defined by

P0(x) = 1, Pn(x) =
1

2nn!

dn

dxn
[

(x2 − 1)n
]

, n ≥ 1.

These polynomials satisfy Pn(−x) = (−1)nPn(x) and the recurrence

P0(x) = 1, P1(x) = x,

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x), n ≥ 1.

Moreover, the generating function of the Legendre polynomials is
1√

1− 2tx+ t2
,

that is,

1√
1− 2tx+ t2

=
∞
∑

n=0

Pn(x)t
n.

Therefore, we can write the Hamiltonian (6.7) as

H(x,y) = H0 +
∞
∑

k=2

Hk(x,y),

where Hk(x,y) is an homogeneous polynomial of degree k. In appendix E we give

explicitly H0, H2, H3 and H4. Once the energy h is fixed we can consider H0

added to the energy. Then, we have the Hamiltonian

H(x,y) =
∞
∑

k=2

Hk(x,y). (6.8)
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Now we diagonalize the linear part of the system associated to this Hamiltonian.

In order to write the quadratic part of the Hamiltonian in a canonical form we

perform the following transformation

(

x

y

)

= D
(

x̃

ỹ

)

, (6.9)

where D is a 6× 6 matrix defined by column vectors as

D = (k0z1, k1e1, k2e2, k0z4, k1f1, k2f2). (6.10)

In D, z denotes the eigenvector of DF̃ (0, 0) where F̃ is the vector field defined by

H according to the following convention: z1 and z4 are eigenvectors corresponding

to the real eigenvalues λ and −λ, respectively, and z2 = e1 + if1 and z3 = e2 + if2
with ej , fj ∈ R6, j = 1, 2, are eigenvectors for i and iω, respectively. In (6.10),

k2
0 =

1

zTJ6z4
, k2

1 =
1

eT1 J6f1
, k2

2 =
1

eT2 J6f2
.

Due to the Hamiltonian character of the matrix DF̃ (0, 0), if za and zb are eigenvec-

tors corresponding to eigenvalues λa and λb such that λa+λb 6= 0, then zTa J6zb = 0

(see [M.H.]). From this orthogonality property we have that the transformation

(6.9) is canonical.

If we denote by H(x̃, ỹ) the Hamiltonian in the new variables, the quadratic

part is

H2(x̃, ỹ) = λx̃1ỹ1 +
1

2
(x̃2

2 + ỹ2
2) +

1

2
ω(x̃2

3 + ỹ2
3). (6.11)

In order to simplify the computations needed to get the Normal Form it is conve-

nient to introduce new complex variables Q,P by

Q1 = k0x̃1, x̃j =
1

kj−1

(

Qj + i
kj−1

2
Pj

)

,

P1 =
1

k0
ỹ1 ỹj = i

1

kj−1

(

Qj − i
kj−1

2
Pj

)

, j = 2, 3,
(6.12)

where Q = (Q1, Q2, Q3), P = (P1, P2, P3). This transformation is canonical and

the Hamiltonian in Q,P is written as

H(Q,P) = λQ1P1 + iQ2P2 + iωQ3P3 +
∑

k≥3

Hk(Q,P). (6.13)

We note that one can define a canonical transformation from (x,y) to (Q,P).

Anyhow we shall use the intermediate Hamiltonian H(x̃, ỹ) in order to get some
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properties of the homographic solutions that will be useful to compute the Normal

Form.

Now we study qualitatively a neighbourhood of L2. We consider the Hamilto-

nian H(x̃, ỹ) =
∑

k≥2Hk(x̃, ỹ) with H2(x̃, ỹ) given in (6.11). The solutions of the

linear system of equations given by H2(x̃, ỹ) can be written as

x̃1(t) = x̃0
1e

λt, z1(t) = x̃2(t) + iỹ2(t) = z0
1e
−it, (6.14)

ỹ1(t) = ỹ0
1e
−λt, z2(t) = x̃3(t) + iỹ3(t) = z0

2e
−iωt,

where x̃0
1, ỹ

0
1 are real constants and z0

1 , z
0
2 complex ones. In (6.14) we distinguish

two families of periodic orbits F1 and F2, with periods 2π and
2π

ω
, respectively.

These orbits can be parametrized by the energy h. Moreover, there exist a family

of 2–dimensional invariant tori.

Now we consider the full Hamiltonian H(x̃, ỹ). We fix a value of the energy

h > 0. Then, the intersection of the centre manifold of the equilibrium point with

the corresponding energy level is homeomorphic to a three–dimensional sphere S3

(see appendix D). The preservation of the family of periodic orbits F2 associated

to the eigenvalue iω is obtained by using the Lyapunov theorem ([S.M.]). We know

that ω > 1 for all masses. Therefore 1/ω is not an integer and we get a family of

periodic solutions of H(Q,P) with limit period 2π/ω. We shall denote again by

F2 the family of periodic orbits of the full Hamiltonian H(Q,P). However, from

section 4.2 we have 1 < ω < 3, then if ω 6= 2, the Lyapunov theorem gives the

existence of a second family, F1, of periodic solutions with limit period 2π. In spite

that Lyapunov theorem does not apply in the case ω = 2, these periodic solutions

exist for arbitrary masses because it is the family of homographic solutions. The

preservation of the 2–dimensional invariant tori will be studied in section 6.4.

The rest of the section is devoted to study some properties of the eigenvalues

and eigenvectors of the transformations described above. These properties will be

used in section 6.3.

The characteristic polynomial of the linearized system of (6.4) at the point L2

is

p(x) = (x2 + 1)(x4 + (1− βc)x2 − βc(2βc + 3)), (6.15)

βc is given in (1.53).

We have that the polynomial (6.15) has two real zeroes ±λ and two pairs of

imaginary ones, ±i, ±iω. Therefore, L2 is a centre–centre–saddle point. We note

that the characteristic exponents±λ, ±iω have been in chapter 4 from system (4.1).

Moreover, in chapter 4 we have seen that ω ∈ (1, ωM ) where ωM =
√

8
√
2− 3 ≈
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2.88335022 . . .. Figure 6.2 shows the level sets of ω and λ in the triangle of masses.

They look similar because these curves are, in particular, level curves of βc.

m1 m2

m3

m1 m2

m3

Figure 6.2: Level sets of ω and λ. In the first figure from left to right the values of ω are:
j

4
, j = 11, . . . , 5. In the second figure from left to right the values of λ are:

j

2
, j = 7, . . . , 1.

Now, we are interested in the eigenvectors of DF̃ (0, 0) . These vectors will be

easily obtained from DF (ξp,ηp), where F denotes the vector field of the system

(6.4). After some computations we get

DF (ξp,ηp) =

(

A1 A2

A3 −AT
1

)

, (6.16)

where

A1 =







0 0 0

0 0 1

k1 k2 0






, A2 =











α1
1

m3
0

1

m3
α2 0

0 0 k3











,

A3 =







k4 k5 0

k5 k6 0

0 0 k7






, (6.17)

with α1 =
m1 +m3

m1m3
, α2 =

m2 +m3

m2m3
and ki, i = 1, . . . , 7, are constants that depend

on the masses and ρ. They are given in appendix F. A simple computation shows

that k3 6= 0 and so, A2 is nonsingular for positive masses.

We denote by ν = (ξ1, ξ2, ξ3, η1, η2, η3)
T an eigenvector of DF (ξp,ηp) associ-

ated to the eigenvalue µ. It is easy to check that ξ = (ξ1, ξ2, ξ3)
T is a non–trivial

solution of the system

(µ2I3 + µN − L)ξ = 0, (6.18)
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where N = A2A
T
1A

−1
2 − A1, L = A2(A3 + AT

1A
−1
2 A1), and then η = (η1, η2, η3)

T

is obtained by

η = −A−1
2 (A1 − µI3)η. (6.19)

In appendix F we give the expressions of

D(µ) = µ2I3 + µN − L and E(µ) = −A−1
2 (A1 − µI3). (6.20)

We can obtain some trivial properties for these eigenvectors. We have that

A1DF (ξ
p,ηp)S−1

1 = −DF (ξp,ηp) where S1 is the symmetry given in lemma 6.1.1.

Therefore, if ν is an eigenvector of DF (ξp,ηp) corresponding to an eigenvalue µ,

S1ν is an eigenvector for the eigenvalue −µ. It is easy to see that if µ ∈ C \ R

then we can take an eigenvector corresponding to eigenvalue µ such that ξ1, ξ2, η3

are real and ξ3, η1, η2 imaginary.

For arbitrary masses we get the following eigenvector for the eigenvalue i

ν2 = (1, ρ2, 0, σ1i, σ2i,−σ2)
T ,

where σ1 = m1(m2ρρ2 +m3), σ2 = m2(m3 −m1ρ)ρ2 and ρ2 =
1

ρ+ 1
(see (1.54)).

The eigenvectors corresponding to eigenvalues λ and iω do not have an easy ex-

pression. However, they satisfy a relation that will be used in section 6.3.

Lemma 6.2.1. Let ν = (ξ1, ξ2, ξ3, η1, η2, η3)
T be an eigenvector of DF (ξp,ηp)

corresponding to one of the eigenvalues λ or iω. Then

ξ1m1[m3 + ρ(1−m1)] + ξ2m2(m3 −m1ρ) = 0. (6.21)

Proof

We consider the eigenvector corresponding to the eigenvalue i. We can write

it as ν2 = e1 + if1 with e1 = (1, ρ2, 0, 0, 0,−σ2)
T and f1 = (0, 0, 0, σ1, σ2, 0)

T . We

complete e1, f1 to a base of R6 taking vectors r ∈ R6 skew–orthogonal to e1 and

f1, that is, eT1 J3r = 0 and fT1 J3r = 0, being J3 =

(

0 I3
−I3 0

)

. From all these

vectors we choose

r1 = (σ2,−σ1, 0, 0, 0, 0)
T , r3 = (0, 0, 0,−σ2, 1, 0)

T

r2 = (0, 0, 1,−σ2, 0, 0)
T , r4 = (0, 0, 0, 0, 0, 1)T

.

We define the matrix

Mv =



















1 0 σ2 0 0 0

ρ2 0 −σ1 0 0 0

0 0 0 1 0 0

0 σ1 0 −σ2 −ρ2 0

0 σ2 0 0 1 0

−σ2 0 0 0 0 1



















.
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It is easy to check that

M−1
v =

1

σ1 + ρ2σ2



















σ1 σ2 0 0 0 0

0 0 σ2 1 ρ2 0

ρ2 −1 0 0 0 0

0 0 σ1 + ρ2σ2 0 0 0

0 0 −σ2
2 −σ2 σ1 0

σ1σ2 σ2
2 0 0 0 σ1 + ρ2σ2



















,

and then

M−1
v DF (ξp,ηp)Mv =







0 1 0

−1 0 0

0 0 L̃






, with L̃ =











0 a1 a2 0

a3 0 0 a4

a5 0 0 a6

0 a7 a8 0











,

where a1, . . . , a8 are some constants depending on the masses and ρ. It is clear

that L̃ has eigenvalues ±λ and ±iω. Moreover, if (l1, l2, l3, l4)
T is an eigenvector or

L̃ then l = (0, 0, l1, l2, l3, l4)
T is an eigenvector of the matrix M−1

v DF (ξp,ηp)Mv.

Then, Mvl is an eigenvector of DF (ξp,ηp). A simple check shows that these

eigenvectors have the following expression

Mvl = (σ2l1,−σ1l1, l2,−σ2l2 − ρ2l3, l3, l4)
T .

Therefore, ξ1 = σ2l1 and ξ2 = −σ1l1. After an easy computation (6.21) follows. 2

In the symmetric case in which m1 = m3 the eigenvectors have a simplest

expression due to the fact that the solution of the quintic equation (6.5) is ρ = 1.

We have that

N =







0 0 0

0 0 −2
−1 2 0






and L =







−1 0 0

l21 l22 0

0 0 l33






,

where

l21 = − 1

4a3
(8m2 + 9m1), l22 =

1

4a3
(12m2 + 17m1), l33 = −7m1

4a3
.

Solving (6.18) for these matrices N and L and computing η from (6.19), we obtain

the following lemma.



6.2. Expansion of the Hamiltonian in power series in a neighbourhood of L2 191

Lemma 6.2.2. For positive masses such that m1 = m3 it is satisfied that

ν1 = (ξT ,ηT )T with ξT = (0, 1, vλ),

ηT = m1m2(−λ+ vλ, 2(λ− vλ), 2(1 + λvλ)), vλ =
λ2 − l22

2λ
,

ν2 = (ξT ,ηT )T with ξT =

(

1,
1

2
, 0

)

,

ηT =
(m1

2
i, 0, 0

)

,

ν3 = (ξT ,ηT )T with ξT = (0, 1, vωi),

ηT = am1m2((vω − ω)i, 2(ω − vω)i, 2(1− ωvω)), vω =
ω2 + l22

2ω
,

Now we study the eigenvectors of DF̃ (0, 0). We have that

DF̃ (0, 0) =





A1
1

aρ
A2

aρA3 −AT
1



 ,

where A1, A2 and A3 are the matrices defined in (6.17). It is easy to check that if

ν = (ξT ,ηT ) is an eigenvector of DF (ξp,ηp) for an eigenvalue µ then (ξT , aρηT )

is the corresponding eigenvector of DF̃ (0, 0). So, the matrix D in (6.10) can be

written as

D =



















v11 e11 e21 v11 0 0

v12 e12 e22 v12 0 0

v13 0 0 −v13 0 f23

v14 0 0 −v14 f14 f24

v15 0 0 −v15 f15 f25

v16 e16 e16 v16 0 0



















.

We are interested in the monomials that appear in H(x̃, ỹ). The non existence

of certain monomials will be useful in section 6.3 in order to obtain the Normal

Form of the Hamiltonian.

In H(x,y) the monomials of degree 3 are the following:

x3
1, x

2
1x2, x

2
1y3, x1x

2
2, x1x2y3, x1x

2
3, x1x3y2, x1y

2
3, x

3
2, x

2
2y2, x2x

2
3, x2x3y2,

x2y
2
3, x3y2y3.

Using the particular form of D and the variables x̃, ỹ defined in (6.9) the following

lemma follows easily.

Lemma 6.2.3. H3(x̃, ỹ) does not contain the monomials x̃2
2ỹ3, x̃3ỹ

2
2, ỹ

2
2 ỹ3 and

x̃2ỹ2ỹ3.
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6.3 The Normal Form

In this section we compute the Normal Form of the Hamiltonian reduced to the

centre manifold of L2. First of all we explain the method used in order to reduce

the Hamiltonian to the centre manifold of the equilibrium point. Then, in section

6.3.2 we give some properties of the Normal Form that will be useful in section 6.4

in order to apply the KAM theorem to the Hamiltonian.

6.3.1 Reduction to the centre manifold

In this section we give a brief description of the method used in order to obtain

the Hamiltonian reduced to the centre manifold of L2.

In order to simplify we shall denote by z = (Q1, P1),w = (Q2, P2, Q3, P3). We

can write the Hamiltonian system associated to (6.13) as

ż = Λ1z+ f1(z,w),

ẇ = Λ2w + f2(z,w), (6.22)

where Λ1 = diag(λ,−λ),Λ2 = diag(i,−i, iω,−iω). From the Centre Manifold

Theorem we know that in a neighbourhood U1×U2 of the origin small enough there

exists a function h(w) with h(0) = 0, Dwh(0) = 0 such thatMc = {(h(w),w) |w ∈
U2} is a centre manifold for the system (6.22). Mc is a local invariant manifold.

Moreover, in a neighbourhood of the origin all bounded solution for all t of (6.22)

is completely contained in Mc. The reduced equation to the centre manifold is

given by

ẇ = Λ2w + f2(h(w),w).

It is well known ([Mi.]) that, for Hamiltonian systems, if the centre manifold of an

equilibrium point is C2, then the reduced equation is also Hamiltonian.

In order to obtain the reduced equation on a neighbourhood of a collinear

equilibrium point of the PTBPN we shall use the flattening method of this man-

ifold ([Mi.],[Si.],[J.M.]) that allow us to obtain an approximation of the reduced

Hamiltonian up to a given order.

We note that for the linearized system of (6.22) the centre manifold is trivially

obtained as z = 0. The idea of the flattening method consists in to perform

successives canonical transformations to (6.22) in such a way that to the obtained

Hamiltonian, H̃(z,w), the centre manifold is determined by z = h(w) = O(|w|n)
for a given n. Then, the reduced Hamiltonian is obtained as H̃(0,w)+O(|w|n+1).

We assume that performing several canonical transformations we can write the

Hamiltonian (6.13) as

H(z,w) = Hn(Q1P1,w) +Rn+1(z,w) (6.23)
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for n ≥ 4, where Hn =
∑n

k=2Hk(Q1P1,w) in such a way that H2 = λQ1P1 +

iQ2P2 + iωQ3P3 and Hk is an homogeneous polynomial of order k in Q1P1,w.

Rn+1 contains terms of order greater that n. We note that in (6.23), Hn only

depends on the product Q1P1, but not on Q1 nor P1. We remark that for the

Hamiltonian Hn(Q1P1,w) the centre manifold is trivially obtained as Q1 = 0,

P1 = 0.

We assume that the centre manifold of the origin for the Hamiltonian system

associated to (6.23) is locally defined by two functions h1(w), h2(w) in such a

way that Q1 = h1(w), P1 = h2(w). As h1(w), h2(w) need to define an invariant

manifold we have that

3
∑

j=2

(

∂h1

∂Qj
(λjQj +O2) +

∂h1

∂Pj
(−λjPj +O2)

)

= h1(w)(λ+O1) +On. (6.24)

where λ2 = i, λ3 = iω.

For h2, a similar equation is obtained. We assume that the terms of h1 of

minimal order are of order k for some 1 ≤ k < n. We consider a term in h1

of order k of the form QlPs = Ql2
2 Q

l3
3 P

s2
2 P s3

3 with l2 + l3 + s2 + s3 = k. On

the left hand of the equality (6.24), this term will give rise to one of the form

(lj − sj)λjQ
lPs. On the other hand, on the right hand of (6.24) we have λQlPs

with λ ∈ R. Then, h1(w) can not contain terms of order 1 ≤ k < n. The same

occurs for h2(w). Therefore, if H(z,w) can be expressed in the form (6.23) then

h1(w) and h2(w) are of order n. Now, the reduced system is obtained by taking

Q1 = 0, P1 = 0 on (6.23).

The form (6.23) for the initial Hamiltonian is obtained by performing succes-

sives canonical transformations that eliminate the terms of the form Ql1
1 P

s1
1 with

l1 6= s1 at the different orders. This process can be done to any order due to the

fact that does not have small divisors. As we will see in section 6.3.2 for a term

of the form Ql1
1 Q

l2
2 Q

l3
3 P

s1
1 P s2

2 P s3
3 the divisor is λ(s1 − l1) + i(s2 − l2) + iω(s3 − l3)

that is different from zero if l1 6= s1.

6.3.2 The Normal Form in a neighbourhood of L2

To get the form (6.23) for the Hamiltonian we perform successive canonical trans-

formations which eliminate the terms Ql1
1 P

s1
1 with l1 6= s1 to different orders. This

process can be formally done up to any order because it does not have small divi-

sors even if the two central frequencies are resonant. But this does not mean that

the complete process is convergent.

As we are interested in the applicability of KAM theorem we shall write the

reduced Hamiltonian in action–angle variables. The canonical transformations will
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be chosen in order to cancel all the possible terms in the Hamiltonian. In particular

the terms Ql1
1 P

s1
1 with l1 6= s1 will be eliminated. We will see that for our purpose

it is only necessary to simplify the Hamiltonian up to order 4. To this end we shall

use the Giorgilli–Galgani algorithm (see appendix C) up to order 4.

We write the generating function asG = G3+G4 withG3 ∈ Π3, G4 ∈ Π4, where

Πk stands for the space of homogeneous polynomials in the variables (Q,P) ∈ C6.

We consider the canonical transformation TG defined by the time one flow for the

Hamiltonian G (see appendix C). The new Hamiltonian is H̃ = H̃2+H̃3+H̃4+ . . .

where

H̃2 = H2, H̃3 = H3 + LH2G3,

H̃4 = H4 + LH2G4 + LH3G3 −
1

2
LG3LH2G3, (6.25)

where Lfg stands for the Poisson bracket. We take G3 and G4 such that

LH2G3 = N(F3), where N(F3) = −H3,

LH2G4 = N(F4), where N(F4) = −H4 − LH3G3 +
1

2
LG3LH2G3.

In order to solve the homological equation LH2Gk = N(Fk) for k = 3, 4, we write

Gk =
∑

‖l+s‖=k gl,sQ
lPs and N(Fk) =

∑

‖l+s‖=k nl,sQ
lPs, where l = (l1, l2, l3),

s = (s1, s2, s3) and QlPs = Ql1
1 Q

l2
2 Q

l3
3 P

s1
1 P s2

2 P s3
3 . Then

LH2Gk =
∑

‖l+s‖=k

λ · (s− l)gl,sQ
lPs,

where λ · (s− l) := λ(s1 − l1) + i(s2 − l2) + iω(s3 − l3). If λ · (s− l) 6= 0 we define

gl,s =
nl,s

λ · (s− l)
.

If there exist l, s ∈ Z3, l, s 6= 0 satisfying λ · (s− l) = 0, then the Normal Form will

contain a resonant monomial QlPs. Next lemma give us these monomials.

Lemma 6.3.1. (a) For arbitrary values of the masses,

(Q1P1)
s1(Q2P2)

s2(Q3P3)
s3

with s1+s2+s3 = 2k, k ≥ 2, are resonant monomial of order 2k. Moreover,

if k = 2, these are the unique resonant monomials of order 4.

(b) Q2k
2 P

k
3 and Qk

3P
2k
2 , k ∈ N, are resonant monomials of order 3k associated

to the resonant frequency vector (λ̂, i, 2i), λ̂ =
1

2

√

13 +
√
97. Moreover, if

k = 1, these are the unique resonant monomials of order 3.



6.3. The Normal Form 195

Proof

First we consider the resonant monomials of order 3 or 4.

We takeQl1
1 Q

l2
2 Q

l3
3 P

s1
1 P s2

2 P s3
3 , li, si ∈ N∪{0}, i = 1, 2, 3, a resonant monomial

or order 3 or 4 associated to the frequency vector (λ, i, iω) for some ω ∈ (1, ωM ).

We have that |l + s| = 3 or |l + s| = 4, respectively, and (l, s) is solution of the

equation

λ(s1 − l1) + i(s2 − l2) + iω(s3 − l3) = 0. (6.26)

Then, s1 = l1 i s2 − l2 + ω(s3 − l3) = 0.

If s2 − l2 6= 0, and then s3 − l3 6= 0, we have that

ω =
l2 − s2
s3 − l3

⇒ ω ∈ Q ∩ (1, 3).

In this case, if |s3 − l3| > 1 then |l+ s| > 4. As we are not interested in this case,

if s2 − l2 6= 0, we only need to take into account the case in which |s3 − l3| = 1(⇒
ω = 2).

(a) We assume that |l+ s| = 4. We distinguish two cases.

(i) If s2 = l2 then s3 = l3 and (s, s) is solution of the equation (6.26).

Therefore, for all ω ∈ (1, ωM ), (Q1P1)
s1 (Q2P2)

s2 (Q3P3)
s3 , with s1 +

s2 + s3 = 2, is a resonant monomial of order 4 associated to the fre-

quency vector (λ, i, iω). In fact, if s1 + s2 + s3 = k, with k ∈ N, then

one obtains a resonant monomial of order 2k.

(ii) If s2 6= l2, we have seen that ω = 2 and |s3−l3| = 1. Then, |s2−l2| = 2.

From this, s3 and l3 have different parity. We note that s1 and l1, s2
and l2, have the same parity. So, in this case |l + s| is odd, that give

us a contradiction with the fact that |l+ s| = 4.

(b) We assume that |l+ s| = 3. We distinguish two cases.

(i) If s2 = l2, then s3 = l3 and |l+ s| is even, giving a contradiction with

the fact that |l+ s| = 3.

(ii) If s2 6= l2 then ω = 2 and |s3 − l3| = 1.

First we consider the case in which s3− l3 = 1. In this case, l2−s2 = 2

and, as |l + s| = 3, we have that l1 = 0, l2 = 2, l3 = 0, s1 = 0, s2 =

0, s3 = 1. Then, Q2
2P3 is a resonant monomial of order 3 associated to

the frequency vector (λ̂, i, 2i).

Now, if s3 − l3 = −1 then s2 − l2 = 2 and, as |l + s| = 3, we obtain

l1 = 0, l2 = 0, l3 = 1, s1 = 0, s2 = 2, s3 = 0, which corresponds to the

resonant monomial of order 3 Q3P
2
2 .
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We note that Q2k
2 P

k
3 and Qk

3P
2k
2 with k ∈ N are resonant monomials

of order 3k associated to the frequency vector (λ̂, i, 2i).

2

Corollary 6.3.2. The minimum Z–modulus that contains the resonant terms as-

sociated to H2(Q,P) = λQ1P1+iQ2P2+iωQ3P3 up to order 4 is the one generated

by (s1, s2, s3, s1, s2, s3) ∈ Z6 with s1 + s2 + s3 = 1 in the case ω 6= 2. If ω = 2 there

are also (0, 2, 0, 0, 0, 1) and (0, 0, 1, 0, 2, 0) as generators.

The masses m1,m2,m3 for which the frequency vector is (λ̂, i, 2i) determine a

curve in the triangle of masses. The following lemma gives this curve in an implicit

form.

Lemma 6.3.3. The resonant curve is defined implicitly by

f(ν1, ν2) = 0, where ν1 =
m1 −m3

2
, ν2 =

m1 +m3

2
, (6.27)

where f is a polynomial in ν1, ν9 of degree 9, even in ν1 and such that f(ν1, 0) = 0.

Moreover, f can be written as f(ν1, ν2) =
∑

(j,k)∈J(aj,k +
√
97bj,k)ν

j
1ν

k
2 , J ⊂ Z2,

where the coefficients aj,k, bj,k are given in Table 6.1.

Figure 6.3 shows the resonant curve in the triangle of masses.

Figure 6.3: Gràfic de la corba ressonant sobre el triangle de masses.

Proof
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j k aj,k bj,k 32aj,k 32bj,k bjk

√
97

0 2 146.00000 50.00000 4672 1600 0.638442890090E+3

2 1 1384.87500 142.87500 44316 4572 0.279203055843E+4

0 3 –463.50000 –679.50000 –14832 –21744 –0.715579887632E+4

2 2 –8871.87500 –765.87500 –283900 –24508 –0.164148689690E+5

0 4 –2843.62500 3618.37500 –90996 115788 0.327932358486E+5

4 1 7124.34375 711.84375 227979 22779 0.141351916208E+5

2 3 4145.56250 734.56250 132658 23506 0.113801641090E+5

0 5 13019.59375 –8780.90625 416627 –280989 –0.734623032772E+5

4 2 –32015.50000 –3559.50000 –1024496 –113904 –0.670725093455E+5

2 4 67611.00000 2763.00000 2163552 88416 0.948233941064E+5

0 6 –28851.50000 9972.50000 –923248 319120 0.693662344284E+5

6 1 2973.50000 317.50000 95152 10160 0.610051235207E+4

4 3 45344.50000 4496.50000 1451024 143888 0.896298891058E+5

2 5 –143849.50000 –8489.50000 –4603184 –271664 –0.227461378308E+6

0 7 45755.50000 –3860.50000 1464176 –123536 0.773398445617E+4

6 2 –6916.00000 –532.00000 –221312 –17024 –0.121555923506E+5

4 4 –21140.00000 28.00000 –676480 896 –0.208642319815E+5

2 6 96628.00000 8260.00000 3092096 264320 0.177979565443E+6

0 8 –32732.00000 –588.00000 –1047424 –18816 –0.385231283875E+5

8 1 –70.00000 –14.00000 –2240 –448 –0.207884009225E+3

6 3 1400.00000 280.00000 44800 8960 0.415768018450E+4

4 5 –6020.00000 –1204.00000 –192640 –38528 –0.178780247934E+5

2 7 –9800.00000 –1960.00000 –313600 –62720 –0.291037612915E+5

0 9 –3430.00000 –686.00000 –109760 –21952 –0.101863164520E+5

Table 6.1: Coefficients of the resonant curve
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Using (1.53) we can write βc in terms of ν1 and ν2 as

βc =
(ν1 + ν2)(3ρ

2 + 3ρ+ 1) + (ν2 − ν1)(ρ
4 + 3ρ3 + 3ρ2)

2ν2ρ2 + (1− 2ν2)(ρ4 + 2ρ3 + 2ρ2 + 2ρ+ 1)
, (6.28)

where ρ is the solution of the Euler’s quintic equation. We impose 2i to be a zero of

the characteristic polynomial. Then, βc =
1 +

√
97

2
. We fix this value of βc. Then,

(6.28) can be written as P1(ρ, ν1, ν2) = 0 where P1 is a polynomial in ρ, ν1, ν2.

On the other hand, we can write Euler’s quintic equation in terms of ν1 and

ν2. We obtain

P2(ρ, ν1, ν2) = ρ5(1− ν1 − ν2) + ρ4(1− ν2 − 3ν1) + ρ3(1− 3ν1 + ν2)

−ρ2(1 + 3ν1 + ν2)− ρ(2 + 3ν1 − ν2)− (1− ν2 + ν1) = 0.

The function f(ν1, ν2) is the resultant of these polynomials. f has been computed

using a specific algebraic manipulator built for this purpose. We note that the

coefficients aj,k, bj,k given in the table are rational numbers. The properties of f

are obtained from the table. 2

Remark 6.3.4. From the expression of the resonant curve given in (6.27) it can be

seen that this curve is symmetrical with respect to the line m1 = m3. In fact, this

is a consequence of the symmetry of the function βc(m1,m3) given in (1.53) (see

chapter 1).

If m1 = 0 then ν1 = −ν2 = −m3

2
and from Lemma 6.3.3

f(−ν2, ν2) =
∑

(j,k)∈J

(aj,k +
√
97bj,k)ν

j+k
2 .

Analogously, if m3 = 0, ν1 = ν2 =
m1

2
and

f(ν1, ν1) =
∑

(j,k)∈J

(aj,k +
√
97bj,k)ν

j+k
1 .

Solving the equation f(ν1, ν1) = 0 with ν1 =
m1

2
we get two solutions m1 = 1

and m∗1 = 0.9995998 . . . (zeroes of a polynomial of degree 6 with coefficients in

Q[
√
97]). These points correspond to intersections of the resonant curve with the

sidem3 = 0 of the triangle of masses. In fact, the arc of the resonant curve between

m1 = 1 and m∗1 is outside the triangle of masses and it will not be considered.

From the symmetry of the resonant curve with respect to the line m1 = m3,

this curve intersects the side m1 = 0 at m∗3 = 0.9995998 . . . and for m3 = 1.

We are only interested in the arc of the resonant curve located inside the

triangle of masses. We have that this arc does not cross the vertex of the triangle.
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Assume we take non resonant masses, that is, ω 6= 2. Then all the terms of

degree 3 in H3(Q,P) can be eliminated by the transformation TG. The Normal

Form for the Hamiltonian is the following

H(X,Y) = λX1Y1 + iX2Y2 + iωX3Y3 +
∑

j1, j2, j3 ∈ N ∪ {0}
j1 + j2 + j3 = 2

aj1j2j3(XY)j +

∑

k≥5

Hk(X,Y). (6.29)

For resonant masses, that is, if ω = 2, one could expect that the Hamiltonian

H(Q,P) contains resonant monomials of order 3, Q2
2P3 and Q3P

2
2 , which give rise

to the corresponding terms of order 3 in the transformed Hamiltonian H(X,Y).

We will prove that this is not the case.

First we denote the resonant monomials of order 3 in H(Q,P) by HR(Q,P) =

cQ2
2P3 + gQ3P

2
2 for some complex constants c and g. Using (6.12) we see that

HR(Q,P) is obtained from the following terms of H3(x̃, ỹ)

a1x̃
2
2x̃3 + a2x̃

2
2ỹ3 + a3ỹ

2
2x̃3 + a4ỹ

2
2 ỹ3 + b1x̃2ỹ2x̃3 + b2x̃2ỹ2ỹ3.

The coefficients are related through

c =
k̃2

2k̃2
1

C, C = a2 − a4 − b1 + i(a1 − a3 + b2),

g =
k̃2

1

4k̃2

G, G = −a1 + a3 − b2 + i(−a2 + a4 + b1).

We recall that k̃1 and k̃2 are constants defined in section 6.2. Note that G = −iC̄.
Moreover, from lemma 6.2.3 we have a2 = a3 = a4 = b1 = 0 and then C = i(a1+b2).

Proposition 6.3.5. If m1,m2,m3 are resonant masses, then the Hamiltonian

H(Q,P) does not contain resonant monomials of order 3.

Proof

To prove that C = 0 we will obtain some expressions for the coefficients a1 and

b2. To compute these expressions directly is a hard work. But using the existence

of the homographic solutions we can get a1 and b2 in a rather simple way.

First we consider arbitrary values of the masses m1,m2 and m3 such that

m1 +m2 +m3 = 1. We denote by γ(t) = (Q(t),P(t)) an homographic solution

with eccentricity e. We recall that, identifying R2 with the complex plane, the

homographic solutions can be written as q(t) = r(t)eif(t) where z(t) is a solution

of the Kepler problem

z̈ = − z

|z|3 , (6.30)
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(see appendix A). Let EK =
1

2
|ż|2 − 1

|z| the energy of the Kepler problem (6.30).

It turns out that on the homographic solutions, we get for the total angular

momentum ‖c‖ = ωηp4 where ηp4 is given in (6.6). As we consider fix angular

momentum equal to ηp4 we have ω = 1 and so we characterize the homographic

solutions by their eccentricity e. Then E =
1

2
(ω2 − 1) and the period is P =

2π(1−e2)−3/2. It is not difficult to write the homographic solutions in the variables

x̃, ỹ defined in section 6.2. We obtain

x̃1(t) = k̃0(A−B), ỹ1(t) = k̃0(A+B),

x̃2(t) = − k̃1η
p
4

a2ρ(ρ+ 1)
(r(t)− 1), ỹ2(t) = −

k̃1η
p
4

a2ρ(ρ+ 1)
ṙ(t), (6.31)

x̃3(t) = k̃2

{

f24(ρ+ 1) + f25

ρ
(r(t)− 1)− f23m2a(m3 −m1ρ)(r(t)ḟ(t)− 1)

}

,

ỹ3(t) = k̃2aṙ(t) {e21m1(m3 + ρ(1−m1)) + e22m2(m3 −m1ρ)} ,

where

A = −v14(ρ+ 1) + v15

ρ
(r(t)− 1) + v13m2a(m3 −m1ρ)(r(t)ḟ(t)− 1),

B = [v11m1a(m3 + ρ(1−m1)) + v12m2a(m3 −m1ρ)]ṙ(t).

In (6.31) z1 = (v11, v12, v13, v14, v15, v16)
T and z3 = e2 + if2 with

e2 = (e21, e22, 0, 0, 0, e26)
T , f2 = (0, 0, f23, f24, f25, 0)

T

are the eigenvectors of DF̃ (0, 0), introduced in section 6.2, corresponding to eigen-

values λ and iω respectively. We recall that a, ρ, k̃0, k̃1 and k̃2 have been introduced

in section 6.2. In (6.31) ḟ means the derivative of the true anomaly, f, with respect

t.

We write

x̃j(t) =
∑

n≥1

ajn(t)e
n
k , ỹj(t) =

∑

n≥1

bjn(t)e
n
k , j = 1, 2, 3.

In order to finish the prove of the lemma we need the following result.

Lemma 6.3.6. For any massesm1,m2,m3, if (x̃1(t), x̃2(t), x̃3(t), ỹ1(t), ỹ2(t), ỹ3(t))

is a collinear homographic solution then x̃1(t) = ỹ1(t), ỹ2(t) = ˙̃x2(t) and ỹ3(t) = 0.

Moreover, if m1 = m3, then x̃1(t) = 0, ỹ1(t) = 0 and x̃3(t) = 0.

Now we prove the proposition 6.3.5.
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From lemma 6.3.6 we know that x̃1(t) = ỹ1(t) and so ˙̃x1(t) = ˙̃y1(t). As γ(t) is

a solution of the differential equations associated to the Hamiltonian H(x̃, ỹ), we

get

λx̃1(t) +
∂Ĥ
∂ỹ1

(γ(t)) = −λỹ1(t)−
∂Ĥ
∂x̃1

(γ(t)),

where Ĥ stands for the terms of H(x̃, ỹ) of order greater than 2. Therefore

2λx̃1(t) = −
∂Ĥ
∂ỹ1

(γ(t))− ∂Ĥ
∂x̃1

(γ(t)).

The right hand part of the equality above contain terms of order greater than or

equal to 2 in e. Then x̃1(t) = O(e2) and ỹ1(t) = O(e2). From (6.31) we get

x̃2(t) =
k̃1η

p
4

a2ρ(ρ+ 1)
e cos f +O(e2),

ỹ2(t) = − k̃1η
p
4

a2ρ(ρ+ 1)
e sin f,

x̃3(t) = k̃2[−f23m2a(m3 −m1ρ)e
2 cos2 f ] +O(e3),

By derivating x̃3(t) and using ḟ = (1 + e cos f)2

˙̃x3(t) = k̃2[2f23m2a(m3 −m1ρ)e
2 cos f sin f ] +O(e3).

Now consider the differential equations for x̃3 and ỹ3. Using that x̃3(t) = 0 we get

˙̃x3 =
∂Ĥ
∂ỹ3

(γ(t)), (6.32)

0 = −ωx̃3(t)−
∂Ĥ
∂x̃3

(γ(t)). (6.33)

By inspection of H̃ one can see that in the right hand part of the equations (6.32)

and (6.33) the only terms of order 2 in e come from the monomials x̃2
2, ỹ

2
2 and

x̃2ỹ2. In fact, in (6.32) there is only the contribution due to the term b2x̃2ỹ2, and

in (6.33), only a1x̃
2
2 contributes to terms of order e2 in

∂Ĥ
∂x̃3

(γ(t)). So, we get

2k̃2f23m2a(m3 −m1ρ) cos f sin f = −b2
(

k̃1η
p
4

a2ρ(ρ+ 1)

)2

cos f sin f,

−k̃2ωf23m2a(m3 −m1ρ) cos
2 f = −a1

(

k̄1η
p
4

a2ρ(ρ+ 1)

)2

cos2 f.
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Then

b2 = −2k̃2f23m2a
5(m3 −m1ρ)ρ

2(ρ+ 1)2

k̃2
1(η

p
4)

2
,

a1 =
ωk̃2f23m2a

5(m3 −m1ρ)ρ
2(ρ+ 1)2

k̃2
1(η

p
4)

2
.

Now,

C = i(a1 + b2) = i(ω − 2)(m3 −m1ρ)
k̃2f23m2a

5ρ2(ρ+ 1)2

k̃2
1(η

p
4)

2
. (6.34)

Therefore, in the resonant case, ω = 2 and c = 0.

2

Proof of Lemma 6.3.6

The equality ỹ2(t) = ˙̃x2(t) follows directly from (6.31). Lemma 6.2.1 implies

x̃1(t) = ỹ1(t) and x̃3(t) ≡ 0. The corresponding relations in the case m1 = m3 are

obtained using the exact expressions of the eigenvectors given by lemma 6.2.2.

2

Remark 6.3.7. In the symmetrical case m1 = m3 we have ρ = 1 and then using

(6.34) C = 0 independently of the value of ω. Moreover for masses m1,m2,m3

such that m1 6= m3 and ω 6= 2 we have C 6= 0.

We have implemented an algebraic manipulator to compute the Normal Form

up to order 4 for given values of the masses. In Table 6.2 we give the coefficients of

the monomials Q3P
2
2 and Q2

2P3 for some values of the masses. We note that these

monomials are ’numerically zero’ in the symmetrical case, m1 = m3, in agreement

with Remark 6.3.7. The same agreement between numerical and analytical results

has also been checked for resonant masses.

Consider the term cQ2
2P3 in H(Q,P). Using (6.34) and (6.6) we get

c =
k̃2

2k̃2
1

C =
k̃2

2

2k̃4
1

i(ω − 2)(m3 −m1ρ)
f23m2aρ

2(ρ+ 1)2

[m1m3(ρ+ 1)2 +m2(m1ρ2 +m3)]2
.

If we consider non resonant masses we can define a generating functionG = G3+G4

where G3 contains the monomial g1Q
2
2P3 with g1 =

c

i(−2 + ω)
. Therefore for

positive values of m1,m2,m3, g1 is a continuous function of the masses. In a

similar way and due to the monomial P3Q
2
2, G3 contains the term g2Q3P

2
2 where

g2 is a continuous function of the masses. So, we can define a function G3 on the

triangle of masses taking the limit of g1 and g2 in the case of resonant masses.

We remark that for ω = 2, the terms Q2
2P3 and Q3P

2
2 belong to the kernel of the

linear operator LH2 . This means that they do not contribute to H̃3 (see (6.25)) .

Therefore we get the following proposition.
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m1 m3 coefficient of Q3P
2
2 coefficient of Q2

2P3i

0.1 0.8 –1.179419348112622E-002 6.875177379696579E-003

0.1 0.7 –9.319371384346949E-002 7.758543543388584E-002

0.1 0.6 –1.413142569551888E-001 1.548904537008628E-001

0.1 0.5 –1.749179227510806E-001 2.286007158007460E-001

0.1 0.4 –2.011008770853154E-001 2.858515079866209E-001

0.1 0.3 –2.177563331662531E-001 3.070251869558777E-001

0.1 0.2 –2.007104469104191E-001 2.536095880359161E-001

0.1 0.1 9.235014541892594E-015 –1.183014251097389E-014

0.2 0.7 1.029366603579695E-002 –1.491208746569150E-002

0.2 0.6 –1.966944788903897E-002 2.895185423930213E-002

0.2 0.5 –4.152197150460450E-002 6.647693015509877E-002

0.2 0.4 –5.221842494622244E-002 8.869746541104991E-002

0.2 0.3 –4.586674997804073E-002 7.933390003814744E-002

0.2 0.2 6.940183773499024E-016 –8.210080641681364E-016

0.2 0.1 1.765861018277782E-001 –3.073164843015664E-001

0.3 0.6 6.238037823992740E-003 –1.768228493842869E-002

0.3 0.5 –4.438682094330806E-003 1.083995060532376E-002

0.3 0.4 –9.191599656495861E-003 2.207101058566123E-002

0.3 0.3 2.022770770177911E-016 3.132560016105415E-016

0.3 0.2 4.000070097083308E-002 –9.741018176772076E-002

0.3 0.1 1.668996116082525E-001 –4.575591110691087E-001

0.4 0.5 1.798577883741621E-003 –8.485012379500253E-003

0.4 0.4 –1.827228383071727E-017 7.311853698924998E-016

0.4 0.3 7.935569740810064E-003 –2.751323770250442E-002

0.4 0.2 3.926071923919142E-002 –1.360534267829678E-001

0.4 0.1 1.325417655797161E-001 –5.342349636043282E-001

0.5 0.4 –1.534726145643662E-003 1.076465252598653E-002

0.5 0.3 3.263655003503015E-003 –1.719301330985832E-002

0.5 0.2 2.649617500229235E-002 –1.304106710601642E-001

0.5 0.1 9.738989522637230E-002 –5.502476606321277E-001

0.6 0.3 –3.831843227559372E-003 3.672812785621461E-002

0.6 0.2 1.041828802723820E-002 –7.510521579183546E-002

0.6 0.1 6.478871988992192E-002 –4.989471222532697E-001

0.7 0.2 –4.374349135738403E-003 5.382987717642781E-002

0.7 0.1 3.381097753148919E-002 –3.550369383481710E-001

0.8 0.1 3.156516816489582E-003 –4.965627280827153E-002

Table 6.2: Coefficients of the monomials Q3P
2
2 for several values of the masses
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Proposition 6.3.8. Consider m1,m2,m3 ∈ (0, 1) such that m1 +m2 +m3 = 1.

Then there exists a generating function G = G(m1,m2,m3) which depends analyt-

ically on the masses such that after the transformation TG, the new Hamiltonian

is of the form (6.29).

6.4 Existence of invariant tori

The study of the behaviour of the orbits of a non integrable Hamiltonian system is

quite difficult. To this end, the idea it to associate to such a system an integrable

Hamiltonian system. For this kind of system we know the dynamic of the orbits.

KAM theorem give us information about the non integrable system depending

on the associated integrable system (see [A.A.]). In this section we study the

applicability of KAM theorem to the Hamiltonian reduced to the centre manifold

of the equilibrium point L2.

We write the Normal Form (6.29) as

H(X,Y) = λX1Y1 + iX2Y2 + iωX3Y3 − a020(X2Y2)
2 − a002(X3Y3)

2 −
a011X2Y2X3Y3 − a200(X1Y1)

2 − a110iX1Y1X2Y2 −
a101iX1Y1X3Y3 +

∑

k≥5

Hk(X,Y). (6.35)

To get action–angle variables we introduce a canonical transformation (X,Y) 7→
(X1,ϕ, Y1, I) where

Xk =
√

Ike
iϕk , Yk = −i

√

Ike
iϕk , k = 2, 3.

The new Hamiltonian is

H(X1,ϕ, Y1, I) = H2(X1Y1, I) +H4(X1Y1, I) +R5(X1,ϕ, Y1, I),

where

H2(X1Y1, I) = λX1Y1 + I2 + ωI3,

H4(X1Y1, I) = −a020I
2
2 − a011I2I3 − a002I

2
3 − a200(X1Y1)

2 − a110iX1Y1I2 −
a101iX1Y1I3.

To obtain the Hamiltonian reduced to the centre manifold, Hc, we take X1 = 0

and Y1 = 0. Then we get Hc(I,ϕ) = Hc0(I) +Hc1(I,ϕ) where

Hc0(I) = I2 + ωI3 − a020I
2
2 − a011I2I3 − a002I

2
3 . (6.36)
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The Hamiltonian system associated to Hc0 is

İ2 = 0, ϕ̇2 = −(1− 2a020I2 − a011I3),

İ3 = 0, ϕ̇3 = −(ω − a011I2 − 2a002I3). (6.37)

Clearly (6.37) is an integrable system. So, we look at Hc(I,ϕ) as a perturbation

of Hc0(I).

The nondegeneracy conditions of KAM theorem are the following

(a) D1 = det

(

∂2Hc0

∂I2

)

6= 0,

(b) D2 = det









∂2Hc0

∂I2
∂Hc0

∂I
(

∂Hc0

∂I

)T

0









6= 0.

If the condition (a) is satisfied the theorem says that for almost every frequency

vector there exists a 2–dimensional invariant torus near the unperturbed one. The

condition (b) or isoenergetic condition gives the existence of invariant tori on every

energy level.

From (6.36) we have that D1 = 4a020a002 − a2
011 is constant. D2 depends on

I2 and I3. Anyhow it is sufficient to check the condition (b) at the origin, that is,

D2 = 2a020ω
2 − 2a011ω + 2a002 6= 0.

We have evaluated D1 and D2 numerically for different values of the masses in

the triangle of masses. Using a specific manipulator we compute the coefficients of

the Normal Form up to order 4 for given values of the masses m1,m2,m3. Once

the Normal Form is known, D1 and D2 are obtained immediately. The values

of D1 and D2 for a set of masses are given in table 6.3. Figures 6.4 and 6.5

show, respectively, D1 and D2 as functions of m2. In figure 6.4 every continuous

line corresponds to D1(m2) for a fixed value of m1. Note that once m1 is fixed,

m2 ∈ (0, 1 −m1) and m3 = 1 −m1 −m2. The same holds for figure 6.5. These

results show that D1 > 0 and D2 > 0 for positive masses. Then KAM theorem

ensures the existence of 2–dimensional invariant tori in a neighbourhood of L2 for

any energy level.
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m1 m2 D1 D2

0.1 0.1 123.192444126190900 17.788785832091770

0.1 0.2 57.981216051192120 9.276140574712066

0.1 0.3 40.728298686281160 6.589952363214971

0.1 0.4 34.682311867438230 5.341187287868248

0.1 0.5 33.684503156474210 4.677695909919546

0.1 0.6 36.745287504522810 4.332526838718575

0.1 0.7 45.813213441577230 4.225259225545290

0.1 0.8 71.089285311101490 4.457041208199403

0.2 0.1 103.393517316096200 18.218294888530650

0.2 0.2 50.824193245420020 9.300570286444902

0.2 0.3 36.743296393792050 6.516670411071603

0.2 0.4 32.138454012679390 5.240962280420760

0.2 0.5 32.257632210686840 4.589675857720991

0.2 0.6 37.081352918128770 4.316558741864279

0.2 0.7 52.071994619538740 4.504639989181360

0.3 0.1 102.073743778695200 19.298538564906000

0.3 0.2 51.744613621402370 9.781560417457513

0.3 0.3 38.491722199751520 6.832744606754595

0.3 0.4 34.883295985464800 5.515028693081639

0.3 0.5 36.988170596588670 4.914702092384127

0.3 0.6 47.942107180607540 4.948789669577259

0.4 0.1 110.485328727285100 20.671363273493780

0.4 0.2 57.759778937352510 10.473316682437390

0.4 0.3 44.584133478133890 7.353628431238850

0.4 0.4 42.745509539056030 6.044269112305969

0.4 0.5 51.108291030540560 5.761858546700239

0.5 0.1 129.480083003787500 22.377846871814720

0.5 0.2 70.374438999527100 11.407304656778590

0.5 0.3 57.580164145066870 8.157801766505628

0.5 0.4 62.291451633215250 7.158104149041286

0.6 0.1 166.170648618560100 24.623203692516640

0.6 0.2 95.954711362321600 12.779312315293600

0.6 0.3 88.834742771266920 9.732525836537608

0.7 0.1 243.304387577001600 27.947054572142850

0.7 0.2 159.814511483404300 15.400391716639330

0.8 0.1 460.303431252741100 34.385581785583930

Table 6.3: Determinants D1 and D2 for several values of the masses.
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Figure 6.4: Representation of D1. Every continuous line is the plot of

log10(m1m2D1) as a function of m2 for a fixed value of m1.
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Figure 6.5: Representation of D2. Every continuous line is the plot of

log10(m1m2D2) as a function of m2 for a fixed value of m1.



Appendix A

The planar Kepler problem

with homogeneous potential

In this appendix we discuss the solutions of the planar Kepler problem with some

homogeneous potential. For details, see [A.].

We consider the equations of the planar Kepler problem with homogeneous

potential of order −α, 0 < α < 2

z′′ = −dŨ
dz
, where Ũ(z) = − λ

α‖z‖α . (A.1)

with z = (z1, z2)
T ∈ R2 and λ > 0. (A.1) corresponds to the motion of an unitary

mass moving under a homogeneous potential due to a mass λ located in the origin.

This system has first integrals the energy and the angular momentum. Then,

once the energy h is and the angular momentum ω are fixed, we have

h =
1

2
‖ż‖2 − λ

α‖z‖α ,

ω = z ∧ ż.

We introduce polar coordinates

z1 = r cos f, z2 = r sin f.

Using the integral of the angular momentum one can see that

f ′r2 = ω, (A.2)

where ω = ‖ω‖. Then, f ′r2 is constant over the solutions of (A.1).

209
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From (A.1) we obtain






r′′ − (f ′)2r = − λ

rα+1
,

2r′θ′ + f ′r = 0

Second equation always holds due to the fact that f ′r2 is constant. First equation

can be written as

r′′ = −∂V
∂r

(r), (A.3)

where

V (r) = − λ

αrα
+
ω2

2r2
. (A.4)

From (A.2) we obtain

f(t) =

∫ t

0

ω

r(s)2
ds. (A.5)

In order to study the solutions of system (A.1) we begin studying the potential

equation (A.3).

Function V has a zero in

(

αω2

2λ

)
1

2−α

and a minimum in r∗ =

(

ω2

λ

)
1

2−α

.

We have that V (r∗) =
ω2(α− 2)

2α

(

ω2

λ

)
−2
2−α

. Figure A.1 shows the plot of V for

0 < α < 2.

Let us define

EK =
(r′)2

2
+ V (r), (A.6)

the energy of (A.3). If EK = V (r∗) we get a constant solution of (A.3). If

0 > EK > V (r∗) then we obtain a periodic solution and if EK > 0 the solutions

are not periodic and unbounded. For the case 0 > EK > V (r∗) let us define rmin

and rmax the minimum and the maximum value of r, respectively, of the periodic

solution obtained. The points such that r = rmin are known as pericenters and if

r = rmax then are called apocenters.

If rmin = rmax, that is, EK = V (r∗), then the associated solution for (A.1) is

circular and
2π√
2− α–periodic. If we consider a periodic orbit of (A.3), then the

orbit for (A.1) is not necessary closed. An orbit is closed if the angle of successives

pericenter and apocenter is commensurable with 2π. It is well known ([A.]) that

all the bounded solutions of (A.1) are periodic if and only if α = 1 or α = −2.
Other values of α give, in general, quasiperiodic solutions.
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Figure A.1: Graphic of V (r) for α = ω = 1.
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Appendix B

Constants on the computation

of the linearized system on a

triangular solution of the

Planar Three Body Problem

with homogeneous potential

In this appendix we give the expression of the constants aj , j = 1, . . . , 8, that

appears in (1.45). These constants depend on the masses and on % as

a1 =
αm1

%α+2

[

m2(α+ 1) +
1

4
m3(α− 2)

]

,

a2 =

√
3α(α+ 2)m1m3

4%α+2
,

a3 = −α(α+ 1)m1m3

ρα+2
,

a4 =
αm1

%α+2

[

1

4
m3(3α+ 2)−m2

]

,

a5 =
αm1m2

%α+2
,

a6 =
αm2

%α+2

[

m1(α+ 1) +
1

4
m3(α− 2)

]

,

a7 = −
√
3α(α+ 2)m2m3

4%α+2
,

213



214

B. Constants on the computation of the linearized system on a triangular
solution of the Planar Three Body Problem with homogeneous potential

a8 =
αm2

%α+2

[

−m1 +
1

4
m3(3α+ 2)

]

.



Appendix C

The Giorgilli–Galgani

algorithm for the Normal Form

The global idea of the Normal Form consists in to transform the Hamiltonian in a

neighbourhood of the origin in a simpler one performing changes of coordinates. In

this appendix we shall describe briefly the algorithm of A.Giorgilli and L.Galgani

(see [G.G.]) that we have used in chapters 2 and 6.

We consider a Hamiltonian system with n degrees of freedom defined by the

Hamiltonian function

H(ξ,η) =
∑

k≥2

Hk(ξ,η), (C.1)

where ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) and Hk is an homogeneous polynomial of

order k, k ≥ 2, in the variables ξ1, . . . , ξn, η1, . . . , ηn. We note that the origin is

an equilibrium point for the system. We assume that the second order terms are

given by H2(ξ,η) =
∑n

i=1 λjξjηj , being ±λj , j = 1, . . . , n the eigenvalues of the

linearized system on the equilibrium point.

We begin with some definitions.

If l = (l1, . . . , ln) ∈ Zn and λ = (λ1, . . . , λn) ∈ Cn we shall denote by l · λ =

l1λ1 + . . .+ lnλn.

Definition C.1. We say that the vector of eigenvalues λ = (λ1, . . . , λn) is non

resonant if the equation

l · λ = l1λ1 + l2λ2 + . . .+ lnλn = 0,

with l1, l2, . . . , ln integers, only has the trivial solution, that is, if l1 = . . . = ln = 0

is the unique solution.

In other case, we say that λ is resonant.
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Definition C.2. We define the resonant Z-modulus associated to H2 as

Mλ = {ν ∈ Zn : ν · λ = 0} .

We note that if λ = (λ1, . . . , λn) is non resonant, then Mλ = {0}.
Notation C.3. We shall denote by Πk the space of all the homogeneous polynomials

in the variables (ξ,η) ∈ C2n and by Π = ⊕k∈NΠk the vector space of the formal

series in ξ1, . . . , ξn, η1, . . . , ηn. Given f ∈ Π, we write f =
∑

k≥1 fk with fk ∈
Πk. If f ∈ Πk, we shall write f =

∑

|l+s|=k fl,sξ
lηs, where l = (l1, . . . , ln), s =

(s1, . . . , sn) ∈ (N ∪ {0})n, |l+s| = l1+s1+l2+s2+. . .+ln+sn i ξl = ξl11 · · · ξln ,ηs =

ηs11 · · · ηsnn .

Definition C.4. Given a vector of resonant eigenvalues λ, ξlηs is a resonant

monomial associated to λ if (s− l) · λ = 0.

In this case, the order of the monomial is |l+ s| = |l|+ |s|.

Definition C.5. Given G ∈ Π, G = G3 +G4 + . . . , Gk ∈ Πk we define the map

TG : Π −→ Π by

TGg = g0 + g1 + . . . ,

where g ∈ Π and

g0 = g, gk =
k
∑

m=1

m

k
LG2+m

gk−m.

Here, Lgf = {g, f} =∑n
j=1

(

∂g
∂ξj

∂f
∂ηj
− ∂g

∂ηj
∂f
∂ξj

)

és el parèntesi de Poison.

In general, g is not of a given order s, and the same for gk. However, if g has

order s, then gk is of order k + s. By this result, we can express the map TG in a

practice way for our purpose.

Remark C.6. Let us consider f ∈ Π. We write f =
∑

k≥1 fk where fk ∈ Πk, and

TGf =
∑

k≥1 Fk with Fk ∈ Πk. Then, by an application of the above definition to

TGf , we obtain Fk =
∑k

l=1 fl,k−l on

fl,0 = fl, fl,k =
k
∑

m=1

m

k
LG2+m

fl,k−m,

and fl,k−l ∈ Πk for all l = 1, . . . , k.

Lemma C.7. The map TG is linear and invertible; moreover, if f, g ∈ Π, then

TG {f, g} = {TGf, TGg} .

In particular, TG is a canonical map.
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We define a tranformation from (X,Y) ∈ C2n to (ξ,η) ∈ C2n given by ξj =

TGXj , ηj = TGYj , j = 1, . . . , n. From the above lemma, this change of coordinates

is canonic. Moreover, if f ∈ Π, f = f(ξ,η) and we take TGf as in the remark C.6,

we have that

TGf(X,Y) = F (X,Y) = f(TGξ, TGη).

We are interested in to compute the Normal Form of the Hamiltonian (C.1).

To this end we give a definition of Normal Form of a Hamiltonian function.

Definition C.8. Given a Z-modulus M ⊃ Mλ, H
(r) is in Normal Form up to

order r, respect to the modulusM , if H (r) is of the form H(r) = Z(r)+R(r), where

Z(r) =
∑

|l+s|≤r, l−s∈M

al,sξ
lηs, R(r) =

∑

|l+s|>r

al,sξ
lηs.

The idea is that Z(r) contains the terms of the Hamiltonian (C.1) that can not

be eliminated by the change of variables. In particular, if l = s with 2|l| = r, the

corresponding monomial ξlηl is in the expression of Z(r).

We want to apply a transformation TG, for some G, in such a way that TGH

is in Normal Form up to order r. Therefore, G is the function that transforms the

Hamiltonian (C.1) to Normal Form H (r).

We take G(r) =
∑r

k=3Gk with Gk ∈ Πk. As we want that TG(r)H = H(r)

holds, then TG(r)H = Z(r) +R(r). The idea is to determine Gk, Zk recurrently. In

order to do that we shall use the Giorgilli–Galgani algorithm (see [G.G.]).

Proposition C.9. Let be H =
∑

k≥2Hk, H2(ξ,η) =
∑n

j=1 λjξjηj and M ⊃ Mλ.

Then, there exists a generating function G(r) =
∑r

k=3Gk such that TG(r)H is

in Normal Form up to order r respect to M . If we write the Normal Form as

TG(r)H = Z(r) +R(r) where Z(r) =
∑r

k=2 Zk then

Z2 = H2, and LH2Gk + Zk = Fk for k ≥ 3, where

F3 = H3 and

Fk =
k−3
∑

m=1

m

k − 2
LG2+m

Zk−m +
k−2
∑

m=1

m

k − 2
H2+m,k−m−2 for k ≥ 4

where Hl,0 = Hl, Hl,k =
∑k

m=1
m
k LG2+m

Hl,k−m.

Moreover, TG(r)H =
∑r

m=1 H̄m +R(r) where H̄k =
∑k

l=1Hl,k−l.

For a proof see [Si.].
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Appendix D

Qualitative description of a

centre–centre–saddle point

In this appendix we describe the behaviour of the solutions in a neighbourhood of a

centre–centre–saddle point. We give this description following the ideas introduced

by Conley in [Co.2] for the restricted three body problem.

We consider the Hamiltonian

H(Q,P) =
∑

k≥2

Hk(Q,P), (D.1)

where Q = (Q1, Q2, Q3) ∈ R3, P = (P1, P2, P3) ∈ R3, Hk is an homogeneous

polynomial of order k in the variables Qj , Pj , j = 1, . . . , 3, andH2 has the following

form

H2(Q,P) = λQ1P1 +
1

2
ω1(Q

2
2 + P 2

2 ) +
1

2
ω2(Q

2
3 + P 2

3 ), (D.2)

being λ, ω1, ω2 positive real constants.

We note that the origin is an equilibrium point of centre–centre–saddle type.

From H2(Q,P) one can describe qualitatively the solutions in the neighbourhood

of the equilibrium point.

We consider the solutions of the linear system of equations given by H2(Q,P).

They can be written as

Q1(t) = Q0
1e

λt, z1(t) = Q2(t) + iP2(t) = z0
1e
−iω1t, (D.3)

P1(t) = P 0
1 e
−λt, z2(t) = Q3(t) + iP3(t) = z0

2e
−iω2t,

where Q0
1, P

0
1 are real constants and z0

1 , z
0
2 complex ones. Clearly for the linearized

system, the stable and unstable manifolds of the origin are obtained asQ0
1 = 0, z0

1 =

219
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z0
2 = 0 and P 0

1 = 0, z0
1 = z0

2 = 0 respectively. The centre manifold corresponds to

Q0
1 = P 0

1 = 0.

In (D.3) we distinguish two families of periodic orbits F1 and F2 which are

obtained by taking Q0
1 = P 0

1 = z0
2 = 0 and Q0

1 = P 0
1 = z0

1 = 0 respectively. The

period is
2π

ω1
for the periodic orbits in the family F1 and

2π

ω2
in family F2. These

families can be parametrised by the energy h.

We fix some value of the energy h ∈ R and some constant c > 0 and we consider

the set

L(h, c) = {(Q,P) ∈ R6 |H2(Q,P) = h, |Q1 − P1| ≤ c}.

From H2(Q,P) = h we get

τ :=
1

2
ω1(Q

2
2 + P 2

2 ) +
1

2
ω2(Q

2
3 + P 2

3 ) = h− λQ1P1 (D.4)

and, hence, the motion is restricted to the region of the phase space such that

h− λQ1P1 ≥ 0.

We define in L(h, c) the following sets

Se = {(Q,P) ∈ L(h, c)|Q1 − P1 = c}

and

Sm = {(Q,P) ∈ L(h, c)|Q1 − P1 = −c}.

If (Q,P) ∈ L(h, c) using Q1P1 =
1

4
[(Q1 + P1)

2 − (Q1 − P1)
2] we get

λ

4
(Q1 + P1)

2 +
1

2
ω1(Q

2
2 + P 2

2 ) +
1

2
ω2(Q

2
3 + P 2

3 ) ≤ h+
λc2

4
.

Therefore, if h +
λc2

4
> 0, Se is homeomorphic to a sphere S4. In a similar

way, Sm is homeomorphic to S4. This is the case if h ≥ 0. Note that for a

fixed value of h, these spheres separate the constant energy submanifold which is

5–dimensional. Figure D.1 shows the projection of the linear flow on the plane

Q1, P1 in a neighbourhood of the origin. We note that the orbits enter in L(h, c)

through one of the spheres Se or Sm. Only in the case h > 0 there are orbits which

go out of L(h, c) through the other sphere.

We note also that for h > 0 if we take Q1 = P1 = 0, (D.4) defines a three–

dimensional sphere S3. In fact, this sphere is the intersection of the centre manifold

of the equilibrium point with the corresponding energy level. The linear flow

restricted to this sphere is given by the product of two harmonic oscillators with

frequencies ω1 and ω2. So, for any h > 0, the sphere contains two periodic orbits,
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Figure D.1: Projection of the linear flow on the plane (Q1, P1) in a neighbourhood of

the origin. The dashed area corresponds to the forbidden region.

corresponding to families F1 and F2 respectively, each one surrounded by two–

dimensional invariant tori ([M.H.]). The invariant unstable and stable manifolds

of this centre manifold reduced to the level h, are the objects which decide which

one of the transitions Se → Se, Se → Sm, Sm → Se, Sm → Sm occurs. To see the

relevant role of these codimension one manifolds see [G.J.M.S.], [Si.2].

Now we consider the full Hamiltonian H(Q,P). In order to study the preserva-

tion of the families of periodic orbits we shall use the Lyapunov theorem ([S.M.]).

Theorem D.1 (Lyapunov). Let us consider the Hamiltonian system

Q̇k = HPk
,

Ṗk = −HQk
, k = 1, . . . , n.

Let us assume that the origin is an equilibrium point.

Let us denote by λ1, . . . λn,−λ1, . . . ,−λn the eigenvalues of the linearized sys-

tem on (0,0).

We assume that λ1 = is1, where s1 ∈ R+, and λ2
λ1
, . . . , λnλ1

are not integer. Then,

there exists a family of real periodic solutions of the Hamiltonian system that

depends analytically on a real parameter ε, in such a way that ε = 0 corresponds

to the equilibrium point. Moreover, the period τ(ε) is an analytic function on ε,

and τ(ε) tends to 2π
|λ1|

as ε→ 0.

We consider H in (D.1). The quadratic part is given by H2 in (D.2). If
ω2

ω1
/∈ N,

the preservation of the family of periodic orbits F1 associated to the eigenvalue

iω1 is obtained by using the Lyapunov theorem. If
ω1

ω2
/∈ Z we get a family of

periodic solutions of H(Q,P) with limit period
2π

ω2
.
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Appendix E

Expansion of the Hamiltonian

of the Planar Three Body

Problem with Newtonian

potential

In order to perform the change of variables to compute the Normal Form of the

Hamiltonian (6.13) it is necessary to know the expression of the terms of order

3 and 4 for these Hamiltonian. This terms can be obtained from the expression

of the terms of order 3 and 4 of the Hamiltonian (6.7) applying the change of

variables (6.9) and (6.12).

In this appendix we give the expression of the terms of order 0, 2, 3, 4 of the

Hamiltonian (6.7) in the variables (x,y). Then, if Hi denote the terms of order

i, i = 0, 2, 3, 4 of (6.7), we have that Hi =
1

aρ
Hi, i = 0, 2, 3, 4 where

H0(x,y) =
α2 (η

p
3)

2

2
+

Aηp3
m3a (ρ+ 1)

+
α1 (A)

2

2a2 (ρ+ 1)2
− m1m2

aρ
− m1m3

a (ρ+ 1)
−

m2m3

a
+ ηp4

H2(x,y) =
1

a

[

−m1m2

ρ
− m1m3ρ

2

(ρ+ 1)3
+

Aηp3ρ
2

m3 (ρ+ 1)3
+

3α1 (A)
2 ρ2

2a (ρ+ 1)4

]

x2
1 +

+

(

ρ2 (ηp3)
2

m3 (ρ+ 1)2
+

2α1ρ
2ηp3A

a (ρ+ 1)3
+

2m1m2

aρ

)

x1x2 +

+
ρ

(ρ+ 1)2

(

− A

m3a
+
ηp3
m3

+
2α1A

a (ρ+ 1)

)

x1y3+
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Newtonian potential

+

(

α1ρ
2 (ηp3)

2

2 (ρ+ 1)2
− m1m2

aρ
− m2m3ρ

2

a

)

x2
2 +

+
ρ

ρ+ 1

(−2ηp3
m3

− α1A

a (ρ+ 1)
+
α1η

p
3

ρ+ 1

)

x2y3 +
m2

2a

(

m1

ρ
+m3ρ

2

)

x2
3 +

+
ρ

ρ+ 1

(

α1A

a (ρ+ 1)
+
ηp3
m3

)

x3y2 +
α1

2
y2
1 +

α2

2
y2
2 +

1

m3
y1y2 +

+

(

α2

2
− 1

m3 (ρ+ 1)
+

α1

2 (ρ+ 1)2

)

y2
3

H3(x,y) =
1

a

(

−Aηp3ρ3

m3 (ρ+ 1)4
− 2α1ρ

3 (A)2

a (ρ+ 1)5
+
m1m2

ρ
+
m1m3ρ

3

(ρ+ 1)4

)

x3
1 +

+

(

−ρ3 (ηp3)
2

m3 (ρ+ 1)3
− 3α1ρ

3ηp3A

a (ρ+ 1)4
− 3m1m2

aρ

)

x2
1x2 +

+
ρ2

(ρ+ 1)3

(

A

m3a
− ηp3
m3

− 3α1A

a (ρ+ 1)

)

x2
1y3 +

+
ρ2

(ρ+ 1)2

(

2ηp3
m3

+
2α1A

a (ρ+ 1)
− 2α1η

p
3

ρ+ 1

)

x1x2y3 +

ρ

(ρ+ 1)2

(

1

m3
− α1

ρ+ 1

)

x1y
2
3 +

+
ρ2

(ρ+ 1)2

(−ηp3
m3

− 2α1A

a (ρ+ 1)

)

x1x3y2 +

(

−α1ρ
3 (ηp3)

2

(ρ+ 1)3
+

3m1m2

aρ

)

x1x
2
2 +

+
α1ρ

2ηp3
(ρ+ 1)2

x2
2y3 −

3m1m2

2aρ
x1x

2
3 +

m2

a

(

ρ3m3 −
m1

ρ

)

x3
2 +

ρ

ρ+ 1

(

1

m3
− α1

ρ+ 1

)

x3y2y3 +

+
ρ

ρ+ 1

(

α1

ρ+ 1
− 1

m3

)

x2y
2
3 −

α1ρ
2ηp3

(ρ+ 1)2
x2x3y2 +

3m2

2a

(

m1

ρ
−m3ρ

3

)

x2x
2
3

H4(x,y) =
1

a

(

Aηp3ρ
4

m3 (ρ+ 1)5
+

5α1 (A)
2 ρ4

2a (ρ+ 1)6
− m1m2

ρ
− m1m3ρ

4

(ρ+ 1)5

)

x4
1 +

+
ρ3

(ρ+ 1)4

( −A
m3a

+
ηp3
m3

+
4α1A

a (ρ+ 1)

)

x3
1y3+
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+
ρ3

(ρ+ 1)3

(−2ηp3
m3

− 3α1A

a (ρ+ 1)
+

3α1η
p
3

ρ+ 1

)

x2
1x2y3 +

+
ρ2

(ρ+ 1)3

(−1
m3

+
3α1

2 (ρ+ 1)

)

x2
1y

2
3 +

ρ2

(ρ+ 1)2

(−1
m3

+
2α1

ρ+ 1

)

x1x3y2y3 +

+
ρ2

(ρ+ 1)2

(

1

m3
− 2α1

ρ+ 1

)

x1x2y
2
3 +

(

(ηp3)
2
ρ4

m3 (ρ+ 1)4
+

4α1Aρ
4ηp3

a (ρ+ 1)5
+

4m1m2

aρ

)

x3
1x2 +

+
ρ3

(ρ+ 1)3

(

ηp3
m3

+
3α1A

a (ρ+ 1)

)

x2
1x3y2 + 3

(

α1ρ
4 (ηp3)

2

2 (ρ+ 1)4
− 2m1m2

aρ

)

x2
1x

2
2 +

+
2α1ρ

3ηp3
(ρ+ 1)3

x1x2x3y2 −
2α1ρ

3ηp3
(ρ+ 1)3

x1x
2
2y3 +

α1ρ
2

2 (ρ+ 1)2
x2

3y
2
2 −

α1ρ
2

(ρ+ 1)2
x2x3y2y3 +

+
α1ρ

2

2 (ρ+ 1)2
x2

2y
2
3 −

m2

a

(

m1

ρ
+ ρ4m3

)

x4
2 −

3m2

8a

(

m1

ρ
+ ρ4m3

)

x4
3 +

4m1m2

aρ
x1x

3
2 ++

3m2

a

(

m1

ρ
+ ρ4m3

)

x2
2x

2
3 −

6m1m2

aρ
x1x2x

2
3 +

3m1m2

aρ
x2

1x
2
3,

where the constants a, ρ, ηp3 , η
p
4 , A, α1, α2 have been introduced in chapter 6.

In the symmetric case in which the masses satisfy m1 = m3 the expressions for

H2 and H3 are reduced to

H2(x,y) =
1

m1
y2
1 +

α2

2
y2
2 +

1

m1
y1y2 +

1

4m1m2
y2
3 +

a

2
x1y3 + ax3y2 −

−ax2y3 +
m1

16a
(m1 − 4m2)x

2
1 −

2m1m2

a
x2

2 +
2m1m2

a
x1x2 +

m1m2

a
x2

3,

H3(x,y) =
m1

16a
(8m2 −m1)x

3
1 +

3m1m2

a
x1x

2
2 −

3m1m2

a
x2

1x2 −
3m1m2

2a
x1x

2
3 −

−a
2
x2

1y3 − ax1x3y2 + ax1x2y3.
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Newtonian potential



Appendix F

Constants of the linear part of

the system on L2 of the Planar

Three Body Problem with

Newtonian potential

In this appendix we give the expression of the constants ki, i = 1, . . . , 7, that define

the matrix DF (ξp,ηp) in (6.16) in both general and symmetric case m1 = m3.

For any positive masses these constants are

k1 =
ηp4

m3a2(ρ+ 1)2
+

2

ρ+ 1
,

k2 =
ηp3

a(ρ+ 1)

(

α1

ρ+ 1
− 1

m3

)

− 1,

k3 = α2 −
2

m3(ρ+ 1)
+

α1

(ρ+ 1)2
,

k4 =
2m1m2

a3ρ3
+

2m1m3

a3(ρ+ 1)3
+

Apη
p
3

m3a3(ρ+ 1)3
− 3Ap

a2(ρ+ 1)2
,

k5 = −2m1m2

a3ρ3
+

(ηp3)
2

m3a2(ρ+ 1)2
− 2ηp3
a(ρ+ 1)

,

k6 =
2m1m2

a3ρ3
+

2m2m3

a3
− (ηp3)

2α1

a2(ρ+ 1)2
,

k7 = −m1m2

a3ρ3
− m2m3

a3
,

where Ap = −ηp4−aηp3 , ηp3 = m2a(−m1ρ+m3), η
p
4 = −a2[m1m3(ρ+1)2+m2(m1ρ

2+

m3)], a
3 = −m1

ρ2
+

m1

(ρ+ 1)2
+m2 +m3, ρ is the solution of the Euler quintic equa-
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F. Constants of the linear part of the system on L2 of the Planar Three
Body Problem with Newtonian potential

tion (1.52) and αi =
mi +m3

mim3
, i = 1, 2.

The matrices D(µ) and E(µ) defined in (6.20) can be expressed as

D(µ) =











µ2 − α1c̃1 − 1
m3

c̃2 −α1c̃2 − 1
m3

c̃3
µ(α1k1+

1

m3
k2)

k3

− 1
m3

c̃1 − α2c̃2 µ̃2 − 1
m3

c̃2 − α2c̃3 µ

(

1

m3
k1+α2k2

k3

− 1

)

µ(−m1m2k3 − k1) µ(m1m2m3α1k3 − k2) µ2 − k3(m1m2m3α1 + k7)











and

E(µ) =







m1m2m3α2µ −m1m2µ m1m2

−m1m2µ m1m2m3α1µ −m1m2m3α1

−k1

k3

−k2

k3

µ
k3






,

where c̃1 =
k2

1

k3
+ k4, c̃2 =

k1k2

k3
+ k5 and c̃3 =

k2
2

k3
+ k6.

In the symmetric case m1 = m3 we have

k1 =
1

2
, k5 = −2m1m2

a3
,

k2 = −1, k6 =
4m1m2

a3
,

k3 =
1

2m1m2
, k7 = −2m1m2

a3
, k4 =

m1

8a3
(4m2 −m1),

where a3 = 1
4(4m2 +m1).
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Introducció

La Mecànica Celeste s’ocupa de l’estudi del moviment dels astres. El seu punt

d’inici pot situar-se al segle XVII, quan Johannes Kepler va formular les lleis

del moviment dels planetes a Astronomia Nova (1609). L’any 1687 Newton va

donar a la seva obra Philosophiae Naturalis Principia Mathematica la formulació

del principal objecte d’estudi de la Mecànica Celeste: el problema de n–cossos.

Aquest problema estudia el moviment d’un sistema de n part́ıcules que s’atrauen

mútuament d’acord amb la Llei de Gravitació Universal de Newton. Tot i que

la formulació de les equacions que descriuen el problema de n–cossos és senzilla,

no ho és la seva resolució. De fet, l’únic cas completament resolt és el problema

de 2–cossos. Tots els esforços per resoldre expĺıcitament les equacions per n ≥
3 han estat fallits. Poincaré va demostrar que la principal dificultat prové de

l’existència de petits divisors. En el seu famós treball Méthodes Nouvelles de la

Mécanique Céleste (1899), Poincaré inicia l’estudi del problema des d’un punt

de vista qualitatiu. En realitat, els mètodes qualitatius juguen un paper molt

important en l’estudi de les equacions diferencials.

Tot i això, es coneixen algunes solucions especials del problema de n–cossos: les

solucions homogràfiques. Per a aquestes solucions la configuració de les part́ıcules

es preserva en el temps. Això només s’aconsegueix en les anomenades configura-

cions centrals. És ben sabut que per al Problema Pla de Tres Cossos existeixen tres

configuracions centrals col·lineals, on les masses estan situades sobre una recta, i

dos de triangulars, en les que les masses es troben sobre els vèrtexs d’un triangle

equilàter. Pel que fa a la quantitat i tipus de les configuracions centrals per n ≥ 4

només es coneixen resultats parcials.

D’altra banda, per moltes aplicacions es poden fer diverses suposicions que sim-

plifiquen el problema matemàtic. El Problema Restringit de Tres Cossos (RTBP)

és un dels models més utilitzats com a una primera aproximació a moltes aplica-

cions. En aquest problema la principal suposició és que un dels cossos té massa

infinitesimal, de forma que no influeix en el moviment dels altres dos cossos, anom-

enats primaris. Aix́ı es pot suposar que els primaris es mouen sobre una solució

del problema de Kepler. El Problema Restringit de Tres Cossos prova d’explicar
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el moviment de la massa infinitesimal inflüıda per les forces gravitatòries exer-

cides pels primaris. Els casos més interessants per les aplicacions es corresponen

amb òrbites el·ĺıptiques dels primaris. Si l’excentricitat, e, d’aquestes òrbites és

zero obtenim el Problema Restringit de Tres Cossos Circular, i per e ∈ (0, 1) el

Problema Restringit de Tres Cossos El·ĺıptic.
En un sistema de coordenades giratori el Problema Restringit de Tres Cossos

Circular queda descrit per un sistema Hamiltonià amb dos graus de llibertat ([Sz.]).

És ben sabut que en aquest problema hi ha tres punts d’equilibri col·lineals L1,2,3

i dos de triangulars L4,5. Els punts d’equilibri col·lineals són de tipus centre–sella.

Sigui CLi
el valor de la constant de Jacobi en l’equilibri Li. El teorema de Lyapunov

([S.M.],[Ms.]) assegura l’existència d’una famı́lia d’òrbites periòdiques que neixen

de l’equilibri. Aquesta famı́lia es pot parametritzar per la constant de Jacobi de tal

manera que per a un nivell d’energia fixat de la constant de Jacobi tal que CLi
−C és

prou petit, l’òrbita periòdica és l’única òrbita acotada que per a tot temps es manté

en un petit entorn del punt d’equilibri. A més, aquestes òrbites són hiperbòliques.

Tenen varietats invariants 2–dimensionals estables i inestables de codimensió 1

un cop fixada la constant de Jacobi. Fent servir aquestes varietats invariants és

possible donar una classificació de les òrbites que passen per un petit entorn dels

punts d’equilibri col·lineals ([Co.2],[McG.1]). L’existència d’òrbites homocĺıniques

transversals a l’òrbita periòdica de Lyapunov s’ha estudiat a [L.M.S.] per a diversos

valors del paràmetre de masses i la constant de Jacobi. Això permet presentar una

dinàmica simbòlica ([L.M.S.],[Ms.2]) que dóna l’existència d’òrbites que passen per

diferents regions de l’espai de fase. L’aplicabilitat d’aquestes òrbites a les missions

espacials s’ha estudiat a [K.L.M.R.].

En aquest treball distingim tres parts principals. A la primera estudiem algunes

qüestions relacionades amb l’estabilitat de les solucions homogràfiques. La segona

part es dedica al RTBP Espacial. Per a aquest problema estudiem l’existència de

connexions heterocĺıniques/homocĺıniques als tors invariants continguts en la va-

rietat central del RTBP Espacial. Finalment, estudiem l’aplicabilitat del teorema

KAM a la varietat central dels punts d’equilibri col·lineals en el Problema Pla de

Tres Cossos. A continuació presentem els tres temes.

Solucions homogràfiques

Considerem el Problema Pla de Tres Cossos amb potencial homogeni de grau −α,
0 < α < 2, del següent tipus

U(q1,q2,q3) =
m1m2

‖q1 − q2‖α
+

m1m3

‖q1 − q3‖α
+

m2m3

‖q2 − q3‖α
.
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Notem que si α = 1 obtenim el potencial Newtonià. Es poden generalitzar les

solucions homogràfiques introdüıdes per al potencial Newtonià al cas general (0 <

α < 2). Aquestes solucions es poden escriure com punts d’equilibri d’un sistema

Hamiltonià periòdic amb 6 graus de llibertat. Per a aconseguir-ho s’ha d’introduir

un canvi de variables que depèn de manera quasiperiòdica (periòdica amb α = 1)

del temps.

Com ens interessa l’estabilitat d’aquestes solucions serà necessari calcular els

valors propis de la matriu de monodromia. Per reduir 2 graus de llibertat primer

fem servir les integrals del centre de masses. En aquest punt el sistema linealitzat

per les solucions homogràfiques té ordre 8. Aleshores demostrem que es pot escriure

el sistema com dos sistemes de dimensió 4 desacoblats. La matriu de monodromia

d’un dels sistemes té 1 com a valor propi amb multiplicitat 4. Per tant, per a

obtenir els multiplicadors caracteŕıstics no trivials ens cal estudiar l’altre sistema

de dimensió 4,

ẋ = A(t)x (1)

on t és l’anomalia veritable en el cas Newtonià. A més del grau d’homogenëıtat

−α, el sistema depèn de dos paràmetres: β, que depèn de les masses, i e, una

excentricitat generalitzada. Notem que el paràmetre β és diferent en els casos

col·lineal i triangular.
Quan e val zero, el sistema (1) té coeficients constants i els exponents carac-

teŕıstics, o equivalentment els paràmetres d’estabilitat, es calculen trivialment. A

mesura que e creix poden aparèixer algunes bifurcacions. A més, a mesura que e

s’acosta a 1, en el cas ĺımit tenim una matriu A(t) en (1) amb una singularitat a

t = 0.

El nostre objectiu és estudiar l’estabilitat de sistemes que generalitzen en algun

sentit el comportament del cas homogràfic linealitzat per a e proper a 0 i e proper

a 1. Aix́ı, considerem sistemes lineals del següent tipus

ẋ = A(t, e)x, A(t, e) =











0 0 1 0

0 0 0 1

λ1G1(t, e) 0 0 −2
0 λ2G2(t, e) 2 0











, (2)

on x ∈ R4, λ1, λ2 són paràmetres reals, e ∈ [0, 1), i G1, G2 són funcions periòdiques

en t, depenent de e. Estudiarem l’estabilitat per a e & 0 i e . 1. En tot cas,

formularem diverses hipòtesis sobre G1 and G2 que es satisfaran en particular en

el cas homogràfic.

Un sistema com (2) té diverses aplicacions. Una d’elles es l’estudi de l’estabilitat

per als equilibris d’alguns sistemes Mecànics. A més, el sistema (2) pot obtenir-se
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com a primer sistema de variació d’una solució periòdica d’un sistema autònom.

Els caṕıtols 2 i 3 es dediquen a l’estudi dels paràmetres d’estabilitat de (2) per a

e > 0 prou petit i per e . 1, respectivament.

Al caṕıtol 2 estudiem l’estabilitat del sistema (2) per e & 0 en el cas que

G1, G2 siguin funcions periòdiques parelles de t i anaĺıtiques en e. En primer

lloc, a la secció 2.2 estudiem el cas trivial e = 0 on es troben alguns punts resso-

nants. A mesura que e creix poden aparèixer bifurcacions donant lloc a regions

en els espais de paràmetres amb diferent caràcter d’estabilitat. Per estudiar les

superf́ıcies frontera d’aquestes regions fem servir la tècnica de la Forma Normal. A

[B.S.1] es va usar aquest mètode per estudiar les llengües ressonants per a l’equació

de Hill quasiperiòdica, depenent de dos paràmetres, i a [B.S.2] per a l’unfolding

d’equacions de tipus Mathieu en el cas periòdic.

En aquest treball, per a estudiar les superf́ıcies frontera ens concentrem prin-

cipalment en el cas de d’Alembert, és a dir, suposem que per a G1 i G2 el kèssim

harmònic té una amplitud al menys d’ordre k en e. De fet, és una situació molt

comú en els sistemes mecànics. Per exemple, es dóna en l’estudi de l’estabilitat

de famı́lies d’òrbites periòdiques amb origen un punt equilibri amb valors propis

imaginaris purs. Suposant la propietat de d’Alembert distingim entre ressonàncies

simples i dobles. El cas més interessant és el segon. Sota condicions de no de-

generació en un entorn d’una ressonància doble, canviant els paràmetres es poden

obtenir regions de qualsevol tipus per e & 0.

Al caṕıtol 3 estudiem l’estabilitat del sistema (2) per a e . 1. Suposem G1 =

G2 amb alguna singularitat per a e = 1 en t = 0. El principal resultat del caṕıtol és

una fórmula asimptòtica per als paràmetres d’estabilitat. Fem servir una espècie

de tècnica de blow up per veure el cas ĺımit com una connexió heterocĺınica.

Al caṕıtol 4 fem servir els resultats dels caṕıtols 2 i 3 per a estudiar l’estabilitat

de les solucions homogràfiques del Problema Pla de Tres Cossos. En aquest cas, els

paràmetres λ1, λ2 depenen d’un únic paràmetre de massa β. Per tant, el diagrama

de bifurcació es representa en el pla (β, e) per a α fixat. Calculem els paràmetres

ressonants en e = 0 per a qualsevol α. Ara bé, ens concentrem principalment en el

cas Newtonià. Fent servir el Mètode de la Forma Normal desenvolupat al caṕıtol

2, obtenim les llengües ressonants que neixen a e = 0 fins a un cert ordre.

En el cas col·lineal, β ∈ (0, 7) per al problema f́ısic. Tot i això, matemàticament

es pot considerar β > 0. S’obtenen ressonàncies en e = 0 per a les freqüències
k

2
,

k ≥ 3. Si k = 2n no hi ha bifurcació per a e > 0. Si k = 2n + 1 les llengües

ressonants T 2n+1
2

tenen origen en e = 0. Malgrat que T 3
2
, T 5

2
són les úniques

llengües que emanen de e = 0 per a β ∈ (0, 7), totes les altres llengües T 2n+1
2

entren en aquest rang de β per a valors de e en (0, 1). L’amplada de T 3
2
, T 5

2
és

d’ordre 3 i 5 en e, respectivament. A més, la fórmula asimptòtica per a e proper a
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1 prediu que totes aquestes llengües s’acumulen en β =
1

8
a mesura que e s’acosta

a 1. Aquest comportament concorda amb els càlculs numèrics fets per a qualsevol

e ∈ (0, 1).

Pel que fa al cas triangular, per a 0 < β < 1 i e = 0 el sistema és el·ĺıptic–
el·ĺıptic i només es troba una llengua ressonant T que neix per β =

3

4
. Aquesta

defineix una regió el·ĺıptica–hiperbòlica en el pla (β, e). L’amplada és d’ordre 1 en

e. El comportament per a β =
3

4
i e & 0 fou estudiat per G. Roberts (veure [R.]).

En aquest treball, desenvolupant la matriu de monodromia en sèrie de potències

en e, demostra l’existència d’una regió el·ĺıptica–hiperbòlica per a aquest valor de

β i per a e prou petit. El mètode utilitzat a [R.] no és útil en el cas col·lineal
perquè els càlculs són durs. Això es deu al fet que en el cas col·lineal l’amplada de

les llengües és de major ordre en e i, per tant, fa falta calcular els termes com a

mı́nim d’ordre 3 en e de la matriu de monodromia del sistema linealitzat sobre la

solució col·lineal.

El RTBP Espacial

En el caṕıtol 5 ens dediquem a l’estudi de les òrbites homocĺıniques a la varietat

central de L2 en el Problema Restringit de Tres Cossos Espacial. És ben sabut

que L2 és un punt d’equilibri de tipus centre–centre–sella. Per tant, té varietats

invariants estable i inestable unidimensionals, i una varietat central de dimensió 4.

En un entorn de L2 existeixen les ben conegudes famı́lies d’òrbites periòdiques de

Lyapunov plana i vertical. Aquestes famı́lies d’òrbites periòdiques tenen varietats

estable i inestable bidimensionals. A més, a la varietat central existeixen tors in-

variants, amb varietats estable i inestable tridimensionals. Sobre la dinàmica en

la varietat central consulteu [J.M.], [G.M.]. La intersecció de la varietat inestable

d’un tor en la varietat central i la varietat estable d’un altre tor dóna òrbites het-

erocĺıniques del primer tor al segon. Si considerem les varietat estable i inestable

del mateix tor, obtenim òrbites homocĺıniques al tor. Totes aquestes òrbites ho-

mocĺıniques i heterocĺıniques son òrbites homocĺıniques a la varietat central de L2.

Per a obtenir òrbites heterocĺıniques (o homocĺıniques) seguim les idees principals

desenvolupades a [L.M.S.] per al RTBP Pla. Calculem fins a un cert ordre la inter-

secció de la varietat invariant inestable d’un tor donat amb la secció y = 0 a l’altre

costat del primari més gran. Per fer-ho considerem el RTBP Espacial com una

perturbació de problema de Hill tridimensional en un entorn del punt d’equilibri

i després com una perturbació del Problema Sinòdic de Dos Cossos Espacial. La

varietat estable s’obté de la inestable fent servir les simetries del problema.

També donem algunes estimacions de la diferència en l’espai d’acció per dos
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tors per tal de tenir una connexió heterocĺınica. Això ens permet construir cadenes

heterocĺıniques. En particular, des de tors invariants propers a l’òrbita periòdica

plana a tors invariants propers a la vertical en entorn del punt L2.

El Problema Pla de Tres Cossos

Finalment, al caṕıtol 6 estudiem l’existència de tors invariants a la varietat central

dels punts d’equilibri col·lineals en el Problema Pla de Tres Cossos amb potencial

Newtonià. Per a fer-ho seguim els següents passos. Primer, fem algunes transfor-

macions canòniques per escriure el Hamiltonià en forma normal. Aleshores redüım

el Hamiltonià a la varietat central. Després comprovem, per avaluació numèrica

dels coeficients de la forma normal fins a ordre 4, les condicions de no degeneració

del teorema KAM. Els resultats presentats a la secció 6.4 mostren que les dues

condicions (tant isoenergètica com no) es satisfan per a valors qualssevol de les

masses en el triangle de masses.

El sistema linealitzat en un punt d’equilibri col·lineal te valors propis ±λ, ±i,
±iω, λ, ω ∈ R+. Per tant els punts d’equilibri col·lineals són de tipus centre–

centre–sella. Està demostrat que fins a ordre 4 només cal tenir en compte la

ressonància 2 : 1. Les corresponents masses ressonants descriuen una corba en

el triangle de masses. Per tant, per a masses ressonants seria d’esperar obtenir

monomis ressonants d’ordre tres en la forma normal del Hamiltonià. Demostrem

a la secció 6.3 que aquest no és el cas. De fet, demostrem que els coeficients

dels monomis són diferents de zero per a masses generals, però esdevenen zero

per a masses ressonants, i també en el cas simètric m1 = m3. L’existència de les

solucions homogràfiques ens permet calcular anaĺıticament, de manera senzilla, els

coeficients dels monomis ressonants d’ordre tres. Aquests coeficients tenen (ω−2)

com a factor. Els resultats donats al caṕıtol 6 estan publicats a [M.S.].




