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Chapter 1

Introduction and statements of the
results

Christian Huygens is credited with being one of the first scholars to investigate isochronous
systems in the XVII century. He studied the cycloidal pendulum, which has isochronous
oscillations, in opposition to the monotonicity of the period of the usual pendulum. It is
probably the first example of a nonlinear isochronous center. For more details see [24].

Isochronicity appears in a wide variety of physical phenomena. Furthermore it is
important in stability theory, since a periodic solution in the region surrounding the center
type singular point is Liapunov stable if and only if the neighboring periodic solutions
have the same period. For more details on these topics see [16].

We say that p € R? is a center if it is a singular point of a planar differential system
such that there is a neighborhood U of p where all the orbits of U\{p} are periodic. For
every ¢ € U\{p} let T'(q¢) denote the period of the periodic orbit through ¢q. When T'(q)
is constant for all ¢ € U\{p} we say that p is an isochronous center. The fact that p
is isochronous does not imply that the angular velocity of the vector @ is the same for
all periodic orbits in U\{p}. When this happens we say that p is a uniform isochronous
center or a rigid center.

The study of polynomial differential systems in R? with a uniform isochronous center
has increased in the last decades, see for instance [1, 12, 19, 21, 30] and the bibliography
therein. The relevance of investigating these systems is due, on the one hand, to their
importance in the general problem of isochronicity. Indeed, any analytic system with
linear part (—y,z)" has an isochronous center at the origin if and only if it is possible
to be transformed, by applying an analytic change of coordinates of the form (z,y) —
(z + P(y*),y + Q(x,y)) into the system

where H is an analytic function and H(0,0) = 0, for more details see [51, 2]. On the
other hand, system (1.1) in polar coordinates x = rcosf,y = rsin@ is

7= Z Hp(cos @, sin 6)r*, 6 =1,

k>1
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where each Hy, is the homogeneous part of degree k of the function H. These systems can
be written under the form of a generalized Abel differential equation

% = ZHk(COSQ,SiHQ)T’k+1. (1.2)

k>1

Equation (1.2) provides information about system (1.1), and vice versa, since the constant
solution 7 = 0 of (1.2) corresponds to the origin of (1.1), and the periodic solutions of
(1.2) with r > 0 correspond to periodic orbits of (1.1), see [5, 2].

In this work we study the planar polynomial differential systems of degree 3 and 4 with
a uniform isochronous center. We provide a classification for these systems with respect
to the topological equivalence of their global phase portraits in the Poincaré disc. We
also investigate the bifurcation of limit cycles from the uniform isochronous centers and
from the periodic orbits surrounding these centers, both for continuous and discontinuous
polynomial perturbations.

1.1 Preliminaries on the global phase portraits

The next result characterizes when a center is a uniform isochronous center.

Proposition 1.1. Assume that a planar polynomial differential system & = P(x,y),
g = Q(x,y) of degree n has a center at the origin of coordinates. Then this center is
uniform isochronous if and only if by doing a linear change of variables and a rescaling
of time it can be written as

with f(x,y) a polynomial in x and y of degree n — 1, f(0,0) = 0.

Proposition 1.1 is proved in section 2.2.

The classification of the global phase portraits in the Poincaré disc for the uniform
isochronous centers of the polynomial differential systems of degrees 1 and 2, and some
results regarding the uniform isochronous centers of degrees 3 and 4 are summarized in
what follows. Without loss of generality we assume that the uniform isochronous center
is at the origin of coordinates.

1.1.1 Uniform isochronous centers of degree 1

A linear differential system with a uniform isochronous center after a linear change of
variables and a rescaling of time becomes © = —y, y = z. In this case the uniform
isochronous center is global. The corresponding phase portrait is shown in Figure 1.1.

1.1.2 Uniform isochronous centers of degree 2

The quadratic polynomial differential system with a uniform isochronous center after a
linear change of coordinates and a rescaling of time can be written into the form = =
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\*/
Figure 1.1: Phase portrait of the Figure 1.2: Phase portraits of the
uniform isochronous center of degree 1. uniform isochronous center of degree 2.

—y + 2%, 9 = x + xy. The respective phase portrait for this system is shown in Figure
1.2.

This result was provided by Loud [45] in 1964. In his work Loud studied all the families
of quadratic isochronous systems.

1.1.3 Uniform isochronous centers of degree 3

The following result, due to Collins [18] in 1997, also obtained by Devlin et al [20] in
1998, and by Gasull et al [25] in 2005, provides a characterization of the planar cubic
polynomial differential systems with a uniform isochronous center.

Theorem 1.2. A planar cubic polynomial differential system has a uniform isochronous
center at the origin if and only if it can be written as

&= —y + x(a1x + ayy + asr® + agxry — azy?), (1.4)
= x+ylair + ayy + asr® + agry — azy?), '
and satisfies aaz — asas + ajasas =0, a; ER, i =1,...,4.

The next result is due to Collins [18].

Proposition 1.3. System (1.4) satisfying a®as — a3as + ajazas = 0, may be reduced to
one of the following forms

i=—y(l—2%), 9=az(1+y?), (1.5)
b= —y+a®+ Ar’y, =z +azy+ Azy’ (1.6)
where A € R.

Collins provided the phase portraits and the first integrals of the cubic uniform
isochronous centers using (1.5) and (1.6) which present at most one parameter.

1.1.4 Uniform isochronous centers of degree 4

Algaba et al [4] in 1999, and Chavarriga et al [13] in 2001 independently provided
the following characterization of quartic polynomial systems with a uniform isochronous
center at the origin.
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Theorem 1.4. Consider f(x,y) = Z?Zl filz,y) with fi(x,y), i = 1,2,3 homogeneous
polynomials of degree i, and f2 + f2 # 0, f3 # 0 such that (1.3) is a quartic polynomial
differential system with a non—-homogeneous nonlinear part. Then the only case of local
analytic integrability in a small open neighborhood of the origin of system (1.3) is given,
modulo a rotation, by

& =—y+x(Ax + By + Cia® + Cgl'y2>,

1.7
y= x+y(Aix+ Boxy + Ciz® + Cyzy?). 4o

where Ay, By, C1,C5 € R.

1.2 Results on global phase portraits and on first
integrals

We provide the global phase portraits in the Poincaré disc of all uniform isochronous
centers of degree 3 and 4. We also provide the explicit expressions of the first integrals in
the case of the uniform isochronous centers of degree 3.

1.2.1 Uniform isochronous centers of degree 3 and their first
integrals

Collins [18] presented the global phase portraits and the first integrals for the uniform
isochronous centers of degree 3 using systems (1.5) and (1.6). Therefore one needs to
change the differential system (1.4) to these normal forms before applying Collins’ results.
Our results present the first integrals and the global phase portraits in the Poincaré disc
for the uniform isochronous cubic centers in terms of all the parameters of system (1.4).
These results have been published in [31].

In the next theorem, we present the first integrals for the uniform isochronous centers
of degree 3 described by systems (1.4).

Theorem 1.5. The first integrals H of system (1.4) in polar coordinates x = rcosf, y =
rsin@ are described in what follows.

Case 1: a3 —a3 # 0.

Subcase 1.1: a4 # 0.

Subcase 1.1.1: 4a, # a3 — a3.

R+2a4r(—ag cos f+aq sinh)
RS

—2 arctan [
H=e¢

S
aqr?

Y

R+ r(azcos — ay sinf)(azsayr cos @ — ajaysinf — R)

where R = a; — a3, S = \/4a,/R — 1.

In case of a negative square root, we have a complex first integral and therefore both
its real and imaginary parts are also first integrals, if not null.

4
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Subcase 1.1.2: 4a, = a3 — a3.

2
re2—agrcosftayrsind

H = .
2 — asrcost + ayrsinf
Subcase 1.2: a4 = 0.
- r
1 —agrcosf + ayrsinf’
Case 2: a3 —a3 =0.
Subcase 2.1: a; = a;.
Subcase 2.1.1: a; = 0.
2
"o r

1 —a4r?cos? 6 + agr?sin(20)’

Subcase 2.1.2: a; #0, a; =0.
Subcase 2.1.2.1: az(a? + 4a3) # 0.

+2agr(cos 0 —sin 0)
f[ -2 t [—al 3 :|
arctan a R

azr?(sin(20) — 1)
(cos @ — sin0)?[1 + ayr(sinf — cos 0) + azr?(sin(20) — 1)] | ’

where R = /—1 — 4az/a?.

Subcase 2.1.2.2: az3 = 0.

-
H = .
1 — ayr(cos — sin @)

Subcase 2.1.2.8: ag = —a?/4.

2
re 2—aqr(cos@—sin0)

H =

2 —ayr(cos —sinf)’
Subcase 2.2: a; = —a;.
Subcase 2.2.1: a; = 0. This case becomes the subcase 2.1.1.

Subcase 2.2.2: a; #0, a; = 0.
Subcase 2.2.2.1: az(4az —a3) # 0.

e % [—2 arctan (W) + R arctanh(tan 9)]

azr?(sec(26) + tan(26))
1 4 ayr(sinf + cos ) + asr?(1 + sin(26))

Y

where R = \/4az/a? — 1.
Subcase 2.2.2.2: az = 0.
-
H = :
1 —ayr(cosf — sinf)

Subcase 2.2.2.3: ag = a3 /4.
-

H = - '
61+%a1r(cose+sln9) (1 + %alT(COSG + sin (9))
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Theorem 1.5 is Theorem 3.3 presented in chapter 3, and it is proved in section 3.3.1
of that chapter.

In the next result, we classify the global phase portraits in the Poincaré disc of the
uniform isochronous centers of degree 3 described by systems (1.4) in terms of all their
parameters.

Theorem 1.6. The global phase portrait in the Poincaré disc of the differential system
(1.4) s topologically equivalent to one of the three phase portraits presented in Figure 1.3.

(a)

Figure 1.3: Phase portraits of cubic uniform isochronous centers.

More precisely, the global phase portrait of (1.4) is topologically equivalent to the phase
portrait (a) of Figure 1.3 if one of the following conditions holds

. a1ay # 0, and ay(a? — a3) > 0, and ay < (a2 — a3)/4;
cay=—a1#0, and 0 < a3 < aj/4, and ay = 0;
cas=a; #0, and —a2/4 < a3z <0, and ay = 0;
«a; =0, and ay #0, and —a3/4 < ay < 0;
a1 #0, and ay =0, and 0 < a4 < a3 /4;

to the phase portrait (b) if one of the following conditions holds
. aras # 0, and ay(a? —a3) > 0, and ay > (a? — a3)/4;
«ay=—ay; #0, and a3 > a?/4, and ay = 0;
cay=a; #0, and az < —a?/4, and ay = 0;
. a1 =0, and ay # 0 and ay < —a/4;
«ay #0, and ay =0 and ay > a3 /4;

to the phase portrait (c) if one of the following conditions holds
. ajas # 0, and ayg(a? — a3) < 0;
. ay =—ay #0, and az <0, and ay = 0;

«ag=a1 #0, and az >0, and ay = 0;
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a1 =0, and ay # 0, and a4 > 0;
a1 #0, and ay =0, and a4 < 0;
. a1:a2:O.

The cases where az = a4 = 0 are omitted in Theorem 1.6 because in such cases system
(1.4) is a quadratic polynomial differential system, which has already been studied.
Theorem 1.6 corresponds to Theorem 3.4, and it is proved in section 3.3.2.

1.2.2 Uniform isochronous centers of degree 4

We provide a topological classification of the global phase portraits in the Poincaré
disc of all quartic uniform isochronous centers. We split our study into two cases,
distinguishing when the nonlinear part of the planar quartic polynomial differential system
is homogeneous or not.

Non—homogeneous nonlinear part

In this case the quartic uniform isochronous centers are of the form (1.7), according to
Theorem 1.4.

Theorem 1.7. Consider a quartic polynomial differential system X : R? — R? and
assume that X has a uniform isochronous center at the origin such that their nonlinear
part is not homogeneous. Then the global phase portrait of X is topologically equivalent
to one of the 11 phase portraits of Figure 1.4.

More precisely, since X can always be written as system (1.7), the global phase portrait
of X 1s topologically equivalent to the phase portrait

(a) of Figure 1.4 if either C1C3 > 0, or if C3 =0, By <0, orif C; =0, C3 # 0 and if
either rs = ro =11, Vry,m9,73 € R*, orifry # 0 and ro3 = atbi, Vr,0 € R*,a € R;

(b) of Figure 1.4 if C; = 0, C5 # 0 and if either r1,r9,73 > 0, or ri,re,r3 < 0, or
T7re > 0,173 =179, 0r 79 = 11,7173 > 0;

(¢) of Figure 1.4 if C1 =0, C3 # 0 and if either r1 < 0,719,753 >0, orry,re < 0,73 > 0,
orry < 0,79 > 0,13 =19, o779 =11, < 0,73 > 0;

(d) of Figure 1.4 if C3 =0, Cy #0, By >0, Cy # —A; By
(e) of Figure 1.4 if either C3 =0, C; #0, By >0, C; = —A1 By, or By = C5 = 0;
(f) or (g) or (h) of Figure 1.4 if C1C5 < 0, By = 0;

(i) or (j) or (k) of Figure 1.4 if C1C5 < 0, By # 0;

where in the cases with C; = 0, we have that ry,r9,73 are the roots of the polynomial
—C3 — Box — Ay2? — 2% and we assume that r, < ry < rs when these roots are real.

Theorem 1.7 corresponds to Theorem 4.3, and it is proved in section 4.3.1. This result
has been published in [32].
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Figure 1.4: Phase portraits of the uniform isochronous centers (1.7).
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Homogeneous nonlinear part
In this case we have the following result.

Theorem 1.8. Let

be a polynomial differential system of degree 4, such that f(x,y) is a cubic homogeneous
polynomial. Then any quartic polynomial differential system which can be written into the
form (1.8) has a uniform isochronous center at the origin and its global phase portrait is
topologically equivalent to one of the 8 phase portraits of Figure 1.5.

(@)

Figure 1.5: Phase portraits of (1.8) with quartic homogeneous polynomial nonlinearities.

We remark that the phase portraits (a) in Theorems 1.7 and 1.8 are topologically
equivalent.

Theorem 1.8 is Theorem 4.4, and it is proved in section 4.3.2. This result has been
submitted for publication, see [35].

1.3 Preliminaries on the bifurcation of limit cycles

Let O be an open subset of R? and let X : © — R? be a vector field. A periodic orbit v
of X is a limit cycle if there exists a neighborhood of v such that it is the only periodic
orbit contained in this neighborhood. The biggest set of continuous periodic solutions
surrounding a center and having in its inner boundary the center itself is called the period
annulus of the center.

A classical way to investigate limit cycles is perturbing a differential system which
has a center. In this case the perturbed system can exhibit limit cycles that bifurcate,
either from the center equilibrium point (having the so-called Hopf bifurcation), or from
some of the periodic orbits surrounding the center, see for instance Pontrjagin [50], the
second part of the book [17], and the hundreds of references quoted there. The problem
of studying the limit cycles bifurcating from a center, or from its periodic solutions has
been exhaustively studied in the last century and is closely related to the Hilbert’s 16
Problem. Nevertheless, in spite of all efforts, there is no general method to solve this
problem.

Essentially there are four methods for determining the number of limit cycles which
bifurcate from the periodic orbits of a period annulus of a center. The first method is based
on studying the fixed points of the Poincaré return map, see for instance [10, 14]. The

9
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second method uses the Poincaré-Pontrjagin-Melnikov integrals or the Abelian integrals,
which are also related with the Poincaré return map. These two integrals are equivalent
in the plane, see section 6 of chapter 4 of [29], and section 5 of chapter 6 of [7]. The third
method is based on the inverse integrating factor, see section 6 of [26] or [27]. The last
method is based on the averaging theory, see for example [11, 53], and it is also related
with the Poincaré map. From [11] one can check that in the plane the averaging method
of first order is equivalent to the method of the Abelian integrals. Moreover the first two
methods only give information on the number of periodic orbits of the unperturbed system
that become limit cycles after the perturbation. The last two methods can also provide
the shape of the bifurcated limit cycle up to some order of the perturbation parameter,
see [27, 38].

The theory of averaging has a long history that starts with the classical works of
Lagrange and Laplace, who provided an intuitive justification of the method. The first
formalization of this theory was done in 1928 by Fatou [23]. For a more modern exposition
of the averaging theory see the book of Sanders, Verhulst and Murdock [53].

Bifurcation of limit cycles in continuous planar differential systems are still largely
studied. Nonetheless due to the considerable number of discontinuous phenomena in the
real world, see for example [9, 54] and the references therein, a significant interest in the
investigation of limit cycles of discontinuous piecewise differential systems has arisen. For
instance in [44], applying the theory of regularization, the averaging theory is extended
up to order 1 for studying the periodic solutions of systems of the form 2’ = e(F (t,z,e)+
sign(h(z))G(t,z,€)). In [41] there is a version of the averaging theorem up to order 2 for
a bigger class of discontinuous piecewise differential equations z’ = eF}(t, z, ¢). Finally in
[42] it is stated averaging theorems for studying the periodic solutions of discontinuous
piecewise differential equations of the form 2/ = Fy(t,z) + eFi(t, z) + 2 Fy(t, x, €).

1.4 Result on averaging theory

We develop the averaging theory at any order for computing the periodic solutions of
discontinuous piecewise differential systems of the form

r/_{FJF(Q,T,a) if 0<6<a,

F=(0,r,e) if a<6<2nm, (1.9)

where

k
FE(0,r,e) = Zé?iFf(Q, r)+e" R0, r,€).
=1

The set of discontinuity of system (1.9) is ¥ = {6 = 0} U {0 = o} with 0 < o < 27. Here
F*:S'xD —=Rfori=0,1,...,n,and R : S' x D x (—¢&p,50) — R are C**! functions,
where D is an open and bounded interval of (0,00), and S* = R/(27).

We remark that for a = 27 system (1.9) becomes continuous. So the averaging theory
developed here can also be applied to continuous differential systems.

The averaging function f; : D — R of order ¢, for i = 1,2, ... k, is defined as

o —vy. (o — 27

Y

10
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where y;t :Stx D =R, fori=1,2,...,k— 1, are defined recurrently as

9 i 1
(0, p) = i!/ F* (¢, p) + :
yi (6, p) o\ (&) 121; byl by12102 . 1[I0

l
0"FE, (6,0) [ [ v (o, p)b") do,
j=1

where S is the set of all [-tuples of non—negative integers (b, by, - - ,b;) satisfying by +
200 +--- 41l =1,and L =by + by + --- + 1;.
The explicit expressions of y* up to order 7 are given in Appendix C.

Our result on the periodic solutions of system (1.9) is the following.

Theorem 1.9. Assume that, for some ¢ € {1,2,... k}, fi =0 fori =1,2,...,0—1
and fo # 0. If there exists p* € D such that fi(p*) = 0 and f)(p*) # 0, then for |e| >
0 sufficiently small there exists a 2m—periodic solution r(0,¢) of system (1.9) such that
r(0,e) — p* when e — 0.

Theorem 1.9 corresponds to Theorem 5.4, and it is proved in section 5.3.1. This result
has been submitted for publication, see [34].

1.5 Results on limit cycles

We define a small limit cycle as a limit cycle which bifurcates from a center equilibrium
point, whereas a medium limit cycle is one which bifurcates from a periodic orbit of the
period annulus of a center. A singular point p is a weak focus if it is a center for the
linearized system at p and p is not a center.

We study the bifurcation of limit cycles in planar polynomial differential systems of
degrees 3 and 4 with a uniform isochronous center at the origin, both for continuous and
discontinuous polynomial perturbations.

1.5.1 Bifurcation of limit cycles from the uniform isochronous
centers of degree 3

We consider the following continuous systems

6
b= —y+af(ry) + ZE%(% Y),
i=1 (1.10)

6
g= x+yfley)+ > Lalx,y),
=1

where f(z,y) is as in Theorem 1.2, and the system
& =—y+a’y+epr(r,y), §= v+ay’+eqr(r,y), (1.11)

11
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where
p; = adx + ady + ada’ + dday + aly? + oz + adaty + alzy® + ady?,
q; = Blz + By + Bla® + Blzy + BLy® + Bia® + By + Blay® + By,
PKr = Qg + p1, gx = Po+ q1-

Moreover we consider the discontinuous systems
T\ ] Xi(z,y) if y>0;
( j > =*@y) ‘{ Xo(r,y) if y<0. (1.12)

T\ ~f Yi(z,y) if y>0;
(y)‘m’y)‘{lé(x,y) if y<0, (1.13)
where
y+:vfxy)+2 1€p2(x y))
r+yfle,y) + X fauly) )’

0=
< y+xfxy)+2 _ ez, y)),

4+ yf(r,y)+ Yo, ez, y)

( —y+z y+€pK(33>y>
Yi(w,y) = ( x+g:y2+8QK(l’ay) 7

B _y_l_g;Qy—I—EUK(xay)
Ya(z,y) = ( T+ xy? +evg(z,y) )

=7z + 1y + 1B’ + ey + 3y’ + g’ + gty + ey’ + gy’
U]:5x+(5y+6a:2+5ixy+5y2+(5 6$x2y~|—(5§xy2+(59y,
Ug = Yo + U, Vg = 0o + V1.

We state our results in what follows.

Theorem 1.10. For |e| # 0 sufficiently small the mazimum number of small limit cycles
of the differential system (1.10) is 3 using the averaging theory of order 6, and this number
can be reached.

Theorem 1.10 corresponds to Theorem 5.5, and it is proved in section 5.3.2.

Theorem 1.11. For |e| # 0 sufficiently small the mazimum number of medium limit
cycles of the differential system (1.11) is 8 using the first order averaging theory and this
number can be reached.

Theorem 1.11 is Theorem 5.6, and its proof is presented in section 5.3.3.

Theorem 1.12. For |e| # 0 sufficiently small the mazimum number of small limit cycles
of the discontinuous differential system (1.12) is 5 using the averaging method of order 6
and this number can be reached.

Theorem 1.12 corresponds to Theorem 5.7, and it is proved in section 5.3.4.

12
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Theorem 1.13. For |e| # 0 sufficiently small the mazimum number of medium limit
cycles of the discontinuous differential system (1.13) is 7 using the averaging method of
first order and this number can be reached.

Theorem 1.13 corresponds to Theorem 5.8, and its proof is presented in section 5.3.5.

These results on the bifurcation of limit cycles from the uniform isochronous centers
of degree 3 have been published in [31].

1.5.2 Bifurcation of limit cycles from the uniform isochronous
centers of degree 4
Let H.(n) denote the maximum number of limit cycles that bifurcate from the origin of
system (1.3), when it is perturbed inside the class of all continuous polynomial differential
systems of degree n, and Hy(n) denotes the maximum number of limit cycles that bifurcate
from the origin of system (1.3), when it is perturbed inside the class of all discontinuous
piecewise polynomial differential systems of degree n with two zones separated by the
straight line y = 0.
We consider the following family of continuous differential systems
4

= —y+ap(z,y)+ Y e'pilz,y),

=1
’ (1.14)

g= z+yp(z,y) + Y falzy),
=1

where
D; :aé + oz{x + agy + agxz + ozf@y + oz%'y2 + ozéa:?’ + a?:fy + oz%:z:y2 + agy?’
+ ooz’ + g2’y + g2’y + aqery’ + aquy’
q; =5 + Bla + Boy + B2’ + Blay + Bly? + B§a® + Braty + Ray® + Boy’
+Blox’ + AL’y + Blaa®y’ + Blsry’ + Blay’,

and of the discontinuous differential systems
T\ | Xi(z,y) if y>0,
( y ) =@y = { Xo(z,y) if y <0, (1.15)

k .
-y -+ ) + 1 & AT
X, () = ( yo+ap(@y) + 3o il y) )
r+yp(z,y) + > ez, y)
k .
-y + ) =+ = ! P\
X y) ( Yot ap(@,y) + Y el ) )
r+yp(x,y) + D v, y)

where

wj =7+ T+ By + 12’ + vizy + 9y + e + ety + ey’ + 1y’
+ ozt + 4128y + vy + sy’ + vy’

v; =6 + 6w + 03y + a4+ lay + ly* + 5t + Sty + day® + &y
+ 04{01’4 + 5{1533/ + 5{2523/2 + 5{35’31/3 + 5{4y4,

13
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with £ = 4 or kK = 7 depending on the order of the averaging theory that we can compute.
For the continuous and the discontinuous cases we have to consider either

p(z,y) =tz + tory + tao® + t1ay + toay? + taox® + tor 2y + tiowy® +tesy®,  (1.16)
with t;; ER, i+ 7 =1,2,3, t3, + 15, + 3, + 253 # 0, or
p(z,y) = tix + tywy + tser® + tipry?, (1.17)
with 3, + t1, # 0, or
p(x,y) = t32” + tn 2%y + tioxy® + tosy®. (1.18)

We remark that the polynomials p(x,y) in (1.17) and (1.18) are used to study the
cases of quartic polynomial differential systems with a uniform isochronous center at the
origin, either having a non-homogeneous nonlinear part (using (1.7) of Theorem 1.4), or
a homogeneous nonlinear part, respectively. On the other hand, since (1.16) is a general
cubic polynomial in z and y without constant term, it is used to study the bifurcation of
limit cycles in both cases when the origin can be either a uniform isochronous center or
a weak focus.

In the following we state our results.

Theorem 1.14. Using averaging theory of order j we obtain, for |e| # 0 sufficiently
small, Hy(4) > 6 for the differential system (1.15) with p(x,y) of the form (1.16) (i.e.
system (1.15) has a weak focus or a uniform isochronous center at the origin).

Theorem 1.14 is Theorem 6.2, and it is proved in section 6.3.1.

Theorem 1.15. Using averaging theory of order 4 we obtain, for |e| # 0 sufficiently
small, Hq(4) > 5 for the differential system (1.15) with p(x,y) either of the form (1.17)
or (1.18) (i.e. system (1.15) has a uniform isochronous center at the origin).

Theorem 1.15 corresponds to Theorem 6.3, and its proof is presented in section 6.3.2.

Theorem 1.16. Using the averaging theory of order 7 we obtain, for || # 0 sufficiently
small, Hy(4) > 6 for the differential system (1.15) with p(x,y) of the form (1.17) and
aa=0==06=0,j=1,...,7.

Theorem 1.16 is Theorem 6.4, and is proved in section 6.3.3.

Theorem 1.17. Using the averaging theory of order 4 we obtain, for || # 0 sufficiently
small, H.(4) > 2 for the differential system (1.14) with p(x,y) of the form (1.16).

Theorem 1.18. Using the averaging theory of order 4 we obtain, for || # 0 sufficiently
small, H.(4) > 1 for the differential system (1.14) with p(z,y) either of the form (1.17)
or (1.18).

Theorems 1.17 and 1.18 correspond to Theorems 6.5 and 6.6, respectively. They are
proved in section 6.3.4.

14
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We remark that all these results were obtained studying only the Hopf bifurcation,
that is, we studied the number of small limit cycles that can bifurcate from the uniform
isochronous center

We also remark that to prove Theorems 1.14 and 1.15 (respectively Theorems 1.17
and 1.18) we shall use the averaging theory of order 4 for discontinuous (respectively
continuous) differential systems, together with a rescaling of the variables. In these proofs
we can see, using Descartes Theorem (see Theorem 6.1 in this work), that the lower bounds
which appear in the theorems are actually upper bounds for the averaging theory of order
4. From Theorems 1.14 and 1.15 (respectively Theorems 1.17 and 1.18) it follows that
if applying the averaging theory of order 4 to the differential system (1.15) (respectively
(1.14)) we obtain 6 (respectively 2) limit cycles, the origin of the differential system (1.15)
(respectively (1.14)) is a weak focus.

These results on the bifurcation of limit cycles from the uniform isochronous centers
of degree 4 have been submitted for publication, see [34].

1.5.3 Application of the averaging theory in a concrete planar
polynomial differential system of degree 4

In this section we apply the averaging theory to study the bifurcation of limit cycles
from the period annulus of the uniform isochronous center of a given planar polynomial
differential system of degree 4.

Peng and Feng studied in [48] the following quartic polynomial differential system with
a uniform isochronous center at the origin
& =—y+ay(@® +y7), y=x+y’(@®+y°). (1.19)
They show that under any quartic homogeneous polynomial perturbations, at most 2
limit cycles bifurcate from the period annulus of system (1.19) using averaging theory of
first order, and this upper bound can be reached. In addition these authors prove that
for the family of perturbed quartic polynomial differential systems
i =—y+ay(z® + y*) + e(awr + any + anry + anx®y + agsy’
+ agpa’ + ana’y + axnar®y’ + azzy’ + auy?),
y =z + y*(2® + y°) + £(brox + b1y + baox® + bosy® + bsoa®
+ b12$y2 -+ b401}4 —+ bglx?’y —+ b22x2y2 —+ blga;y3 -+ b04y4),

(1.20)

there are at most 3 limit cycles bifurcating from the period annulus of (1.19) using
averaging theory of first order, and this upper bound is sharp.

We remark that the perturbed system (1.20) studied by Peng and Feng do not consider
all the quartic polynomial differential systems because they omit the coefficients aqg, as,

a2, a30, @12, boo, b1, ba, bos.
We consider the polynomial differential systems

4
b= —y+ay® +y°) +e ) pilx,y),
1=0
- (1.21)
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where p; = Z ajkxjyk and ¢; = Z bjkxjyk are real homogeneous polynomials of
k=i k=i
degree 1.
The following result completes the preliminary study presented in [48] using averaging
theory of first order.

Theorem 1.19. For |e| # 0 sufficiently small there are quartic polynomial differential
systems (1.21) having at least 8 limit cycles bifurcating from the periodic orbits of the
uniform isochronous center (7.1).

Theorem 1.19 is Theorem 7.1. The proof is presented in section 7.3. This result has
been submitted for publication, see [33].

Note that in Theorem 1.19 we study medium limit cycles, i.e. limit cycles bifurcating
from the periodic orbits surrounding the uniform isochronous center of the differential
system (1.19), whereas in the previous subsection we have studied the small limit cycles
of all quartic uniform isochronous centers, i.e. the limit cycles bifurcating from the center
equilibrium point.
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Chapter 2

Preliminaries

In this chapter we present some preliminary concepts, definitions and results that we shall
use throughout this work.

2.1 Definitions and concepts

Let O be an open subset of R2. A wector field of class C" on O is a C" map X : O —
R?, where X () represents a vector attached at the point x € 0. We can associate a
differential equation to the vector field X as the following

&= X(z), (2.1)

where x € O and the dot denotes the derivative with respect to the variable . The
variables x and ¢ are called the dependent variable and the independent variable of (2.1),
respectively.

Let p € O and J an open interval containing the origin. Then ¢, : J — O denotes
the solution of (2.1) (i.e. ¥,(t) = X (p,(t)) such that ¢,(0) = p. The solution ¢, is called
mazimal if for every solution &, : K — O such that J C K and ¢, = fp‘J then J = K
and, consequently ¢, = &,. The orbit v, of a vector field X through the point p is the
image of the maximal solution ¢, : J — O endowed with an orientation if the solution
is regular. The phase portrait of the vector field X : O — R? is the description of O as
union of all orbits of X.

A point p € O such that X(p) = 0 (respectively # 0) is called a singular point
(respectively regular point) of X. If a singular point has a neighborhood that does not
contain any other singular point, than such singular point is called an isolated singular
point.

The linear part of X at the point p is the Jacobian matrix of X calculated at that
point. A singular point p is non-degenerate if zero is not an eigenvalue of the linear part of
the vector field at p. If both eigenvalues of the linear part of the vector field at that point
have nonzero real part, the singular point p is called hyperbolic. The singular point p is
called semi-hyperbolic if exactly one eigenvalue of the linear part of the vector field at p is
equal to zero. Hyperbolic and semi-hyperbolic singularities are also known as elementary
singular points. If the linear part of the vector field at p is not identically zero but both

17
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eigenvalues are zero, then p is a nilpotent singular point. The singular point p is called
linearly zero if the linear part of the vector field at this point is identically zero.

Polynomial differential systems can be extended to infinity, compactifying the plane
by adding a circle at the infinity, and analytically extending the flow to this boundary
circle. This is done by the so called Poincaré compactification, which allows to study the
behavior of the orbits near infinity. The singular points that are on the circle at infinity
are the infinite singular points of the initial polynomial differential system, and the other
singular points are called finite singular points. For further details about the Poincaré
compactification, see Appendix A.

The concepts of node, cusp, saddle and node are the usual ones found in the literature,
for more details see for instance pp. 7 and 110 of [22].

The singular point p is called a center if there exists an open neighborhood consisting,
besides the singularity, only of the periodic orbits.

Let p € R? be a singular point of an analytic differential system in R?, and assume that
p is a center. Without loss of generality we can assume that p is the origin of coordinates
(if necessary we do a translation of coordinates sending p at the origin). Then, after a
linear change of variables and a rescaling of the time variable (if necessary), the system
can be written in one of the following three forms

& =—y+ Fi(z,y), y =z + Fy(z,y); (2.2)
i':y"i_Fl(xay)? QIFQ(.CE,ZJ); (23>

where Fi(x,y) and Fy(z,y) are real analytic functions without constant and linear terms,
defined in a neighborhood of the origin.

A center of an analytic differential system in R? is called linear type, nilpotent or
degenerate if after an affine change of variables and a rescaling of the time it can be
written as system (2.2), (2.3) or (2.4), respectively.

The period annulus of a center is the biggest set of continuous periodic solutions
surrounding a center and having in its inner boundary the center itself. Compactifying
R? to the Poincaré disc (see Appendix A), the boundary of the period annulus of a center
has two connected components: the center itself and a graphic, except perhaps in the
case of a global center, where the two connected components are the center itself and the
boundary of the Poincaré disc, which can be a periodic orbit or a graphic.

We say that p is a weak focus if it is a center for the linearized system at p and p is
not a center.

An orbit y(t) is a periodic orbit if there exists a constant k& > 0 such that y(t+k) = y(¢),
for all t € R. A periodic orbit v is called a limit cycle if there exists a neighborhood of
~ such that v is the only periodic orbit contained in this neighborhood. In this work a
small limit cycle is one which bifurcates from either a focus or a center, and a medium
limat cycle is one which bifurcates from a periodic orbit of the period annulus of a center.

Let p be a center of a polynomial differential system in R?. Without loss of generality
we can assume that p is the origin of coordinates. We say that p is an isochronous center if
it is a center having a neighborhood such that all the periodic orbits in this neighborhood
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have the same period. We say that p is a uniform isochronous center, also known in the
literature as a rigid center if the system, in polar coordinates x = rcosf, y = rsin6,

takes the form 7 = G(r,0), 0 = k, k € R\ {0}. For more details, see Conti [19].
Let
& =P(r,y), y=0CQ(ry), (2.5)
be a real polynomial differential system. The vector field associated to the differential

system (2.5) is defined by
0 0
X=P— —.
ox + Qay
The polynomial differential system (2.5) is integrable on an open subset O € R? if there
exists a nonconstant function H : O — R, called a first integral of the system on O, which

is constant on all solution curves (z(t),y(t)) of (2.5) contained in O. Clearly H is a first
0H OH
integral of (2.5) on the open subset O if and only if XH = Pa— - Qa— =0on O.
€z Y
Let O be an open subset R? and let R : O — R be an analytic function which is not
identically zero on O. The function R is an integrating factor of the differential system

(2.5) on O if one of the following three equivalent conditions holds on O.

d(RP)  A(RQ)

div(RP,RQ) =0, XR=—Rdiv(P,Q).

Ox oy
The divergence of the vector field X is defined, as usual, by
P
div(X) = div(P, Q) = aﬁ_x + %

The first integral H associated to the integrating factor R is given by

H(z,y) = / Rl y)Ple.y)dy + hiz),

where h is chosen such that 0H/0r = —RQ, and we suppose that the domain of
integration O is well adapted to the specific expression.

In Appendices A and B we discuss about the Poincaré compactification and the
topological equivalence, respectively.

2.2 Some results on the uniform isochronous centers

In this section we present some results about uniform isochronous centers for polynomial
differential systems in R2.

The next result characterizes when a center is a uniform isochronous one.

Proposition 2.1. Assume that a planar polynomial differential system & = P(x,y),
y = Q(x,y) of degree n has a center at the origin of coordinates. Then this center is
uniform isochronous if and only if by doing a linear change of variables and a rescaling
of time it can be written as

with f(x,y) a polynomial in x and y of degree n — 1, f(0,0) = 0.
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In what follows we provide a proof for this proposition.

Proof: Using blow up techniques we know that neither nilpotent nor degenerate centers
can have uniform isochronous centers. This is due to the fact that, after the blow up,
nilpotent and degenerate centers become a graphic, and the periodic orbits of those
centers tending to the graphic have period tending to the infinity, and thus, the period
cannot be constant. Hence, only systems having linear-type centers can present a uniform
isochronous center
J'}:—y—i—p(%,y)? y:I+Q(‘rvy>7
where p(z,y) and ¢(x,y) are polynomials starting with at least terms of second order.

By doing a polar change of coordinates in this system, we have

_xp(r,y) +yqle,y)

"= [02 1 02 ’
Y (z,y)=(r cos B,rsin H)
. xqlr,y) — x,
o142 yg y2p( y)
ety (z,y)=(r cos,rsin )

But by hypothesis, such system has a uniform isochronous center at the origin, that is,
0 = 1. Hence, z q(z,y) — y p(x,y) = 0, and thus

plz,y) =2 f(v,y), qlz,y) =y f(z,9),

where f(x,y) is a polynomial.

Reciprocally, if a polynomial differential system is of the form (2.6), then by doing a
polar change of coordinates we obtain

i =1 f(rcosf,rsinf), 6=1.
Hence, it has a uniform isochronous center at the origin. ]

The assumption of the existence of a center in proposition 2.1 cannot be removed.
There are polynomial differential systems in R? under the form (2.6) which do not have a
uniform isochronous center at the origin. In what follows we present an example provided
by Conti [19]. Consider the system

i =—y—a(@®+y*), §=x—y@’+y?)
In polar coordinates this system is written as 7 = —r3, 0 = 1 and therefore the origin of

the coordinates is a “uniform isochronous” stable focus.

Proposition 2.2. If a planar polynomaial differential system has a uniform isochronous
center, then this center is the unique finite singular point of the differential system.

Proof: Without loss of generality we can assume that the uniform isochronous center is
the origin of coordinates.

The result follows by Proposition 2.1, since (—y + xf(x,y))* + (x + yf(z,y))*= (2% +
v (1 + f2(z,y)) > 0, for 22 + y* > 0, and therefore the origin of coordinates is the only
finite singular point of the differential system. [
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In short, no planar polynomial differential system can have more than one uniform
isochronous center. On the other hand, there are differential systems with more than one
isochronous center, as illustrated by the following example (see [45])

2

. . xr
P=—ytwy, y=r— o2

which has isochronous centers at the origin and at (2,0).

Proposition 2.3. The global phase portrait in the Poincaré disc of any planar polynomial
differential system of degree n > 2 with a uniform isochronous center has the infinity filled
of singular points.

Proof: Consider a planar polynomial differential system & = Y P, v = > .. Q;
where each P;, (); is a homogeneous polynomial of degree ¢, for 1 = 0,...,n. It is well
known that the infinite singular points in the Poincaré disc of this system are given by
the end points of the real linear factors of the homogeneous polynomial x@Q,, — yP,. For
system (2.6) we have that 2@, — yP, = xyf(x,y) — yzf(z,y) = 0. Therefore every point
at the boundary of the Poincaré disc is an infinite singular point for system (2.6). ]

The following result can be found in Theorem 3.1 of [19].

Proposition 2.4. Consider the polynomial differential system (2.6) of degree n. Ifn > 1
and the origin is a uniform isochronous center then it cannot be a global center.

n—1

Proof: Under the hypotheses of the proposition we can write f(z,y) Z fn(z,y), with

each f;(z,y) a homogeneous polynomial of degree h. The trajectories of System (2.6) in
polar coordinates correspond to the solutions 6 — 7(6) of

n—1
d_g = th(cos 0, sin 0)r" . (2.7)
h=1

Each periodic solution of (2.6) has associated a positive 2r—periodic solution of (2.7)
and vice-versa. Then the origin of (2.6) is a global center if and only if all the positive
solutions of (2.7) are 2w —periodic. In order to prove that this is not possible, unless in
the case of f, = 0, for h = 1,...,n — 1, we replace r by ¢ = =1, r > 0, sending the
solutions r of (2.7) into the solutions ¢ of

da = th (cos®,sin f)o? (2.8)

So the periodic orbits of (2.6) correspond to the positive 2r—periodic solutions of (2.8).
Now if the origin is a uniform isochronous center of (2.6) the family F of the periodic
solutions of system (2.8) is non-empty. We shall show that there exist solutions that
actually do not belong to F.

If the uniform isochronous center is global, let o, for k£ € N be the periodic solutions
of system (2.8) such that o4 (0) = 1/k. So 041(0) < ox(#), 0 < § < 271 because by the
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Ezistence and Uniqueness Theorem of solutions of a differential system (see, for example,
Theorem 1.2.4 of [53]), the orbits of o and oj1; cannot intersect and by hypothesis
0k+1(0) < 04(0). Then from (2.8) we have

0
02‘1(6’) = knl_l —(n— 1)/0 fi(cos p, sin g0)02_2(g0)d<p -
0
—(n—1) / fn—a(cos @, sin )oy(p)dy (2.9)
09
—(n— 1)/0 fa-1(cos p, sin p)dep.

On the other hand, since {04 (0)}ren is a decreasing sequence converging to the function
zero, it follows by Dini’s Theorem (see for instance [52] for further details) that oy (6) — 0
uniformly. Therefore from (2.9) we have

0
/ fa—1(cosp,sinp)dp =0, for 0<6 <2,
0
that is,
fa—1(cosp,sing) =0, for 0<6<2rm

which is a contradiction. n

Recall that a polynomial differential system is Hamiltonian if there exist a map H
defined in R?, such that the differential system can be written as

t=0H/0y, y=—0H/0x.

Proposition 2.5. If a planar polynomial differential system of degree n > 2 has a uniform
1sochronous center than this system is not Hamiltonian.

Proof: A polynomial differential system & = —y+P(z,y), ¥y = x+Q(x,y) is Hamiltonian
if and only if
OP(z,y)  0Q(x,y)
ox Jy

= 0. (2.10)

n—1

In the case of the differential system (2.6), we write f(z,y) = Zfi(a:,y) where each
i=1

filz,y) = Z a;x7'y* and then we have

J+k=i
Oxflz,y)) | Oyflz.y)) _
ox Jy
n—1 n—1
0 (Z Z a; kxj+1yk> 0 (Z Z a k:ﬂy’““)
=1 j+k=i + 1=1 j+k=i .
ox dy B
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n—1

(7 + Dajpx’y® + Z Z (k+ Dajprly* =

=1 j+k=i i=1 j+k=i
1

i
L

S

3

(J+Fk+ 2)aj,k$jyk-

k=i

7

T

1

The only way to vanish this expression in order to satisfy condition (2.10) is that a;; =0
forall j,k=0,1,...,n—1such that 1 < j+k < n—1. But this implies that f(z,y) =0,
which is a contradiction. Therefore, system (2.6) is not Hamiltonian. ]

A planar polynomial differential system & = P(z,y), vy = Q(x,y) is complex if
after performing the change of coordinates z = = + iy the resulting differential system
2 =wu(z,y) + 1v(x,y) satisfies the Cauchy-Riemann equations

ou(x,y)  Ov(x,y) ou(z,y) ov(z,y)

= - 2.11
ox oy oy Ox (2.11)

Proposition 2.6. If a planar polynomial differential system of degree n > 2 has a uniform
1sochronous center than this system is not complez.

Proof: According to Theorem 2.1 a planar polynomial differential system with a uniform
isochronous center can always be written as (2.6). We show that if the polynomial
differential system (2.6) has degree n > 2, then it does not satisfy (2.11) unless f(z,y) is
a constant polynomial, and therefore system (2.6) is not a complex system.

Let 2 = u(x,y) +iv(x,y) be the resulting differential system from (2.6) by the change

of variables z = = 4+ 1y. Since u(x,y) = —y+zf(x,y), v(z,y) =z +yf(z,y) with f(z,y)
a polynomial of degree n — 1, for n > 2 we have

ou(z, of (, dv(x, of (x,

) _ gy 20000 ) _ i O0C00)

ou(xz,y) of (z,y) ov(z,y) of (x,y)
oy -1+ x—ay , o - 1+ y—8$ )

In order to fulfill (2.11) the following equations must hold

LOf(@y) yaf(at,y) LOf(@y) yaf(a%y)

Ox oy oy Ox

and consequently we must have (z? + yQ)M =0 and (2 + yZ)M

ox Jy
is, 8f(8x,y) = 8f(ax,y) = 0 for (z,y) # (0,0). Thus to satisfy the Cauchy-Riemann
Z Y

equations (2.11), f(x,y) needs to be constant, which is a contradiction, because by
hypothesis it is a polynomial of degree at least 1. [ |

)

= (. That

In the case of homogeneous uniform isochronous centers, Conti provided the following
result in Theorem 2.1 of [19]. For the sake of completeness we provide a proof in what
follows.
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Theorem 2.7. Let f(x,y) = Z pi,jx"yj be a homogeneous polynomial of degree n—1.
itj=n—1

Then system (2.6) has a uniform isochronous center at the origin if either n is even, or

if n is odd and

2T
[pn_l_w/ cos” 17V O sin” 0 d@] =0.
0

n—1
v=0

Proof: Let n > 2 and f(z,y) = Z pivjxiyj be a homogeneous polynomial of degree
it+j=n—1

n—1, f(0,0) = 0 in system (2.6). Then system (2.6) has either a center or a focus at the

origin and in polar coordinates it is written as

7 =r"f(cosf,sinb), 6=1,

n—1
where f(cosf,sinf) = an—l—v,v cos" 17" @ sin” A. Then
v=0
% =r" f(cosf,sin ).
and therefore o
H=H(r0) = r (2.12)

0
1+ (n— 1)7“”1/ f(cosp,sinp) dp
0

is a first integral for the differential system if H(r,0) = H(r,27). Thus in order to
determine the conditions for a center at the origin we have to consider two cases.

If n is even, then

2m n—1 2
/ f(cos,sinp) dp = an—l—w/ cos" 1 psin” pdyp = 0, because f(cos(p +
0 = 0

7),sin(¢ + 7)) = — f(cos ¢, sir?go). Therefore H(r,0) = H(r,2m).
If n is odd, then it is required that

n—1

27
Z [pn_l_y,y/ cos" 17 fsin” 0 dﬁ} = 0, in order to satisfy H(r,0) = H(r,27). =
0

v=0

In what follows we present results on the uniform isochronous centers in planar
polynomial differential systems of degrees 1 and 2. Without loss of generality, we assume
that the uniform isochronous center is at the origin of coordinates (if necessary, we do a
translation of coordinates sending the singular point to the origin).

2.2.1 Uniform isochronous centers of degree 1

A linear differential system with a uniform isochronous center after a linear change of
variables and a rescaling of time becomes

i‘:_y7 ?]:%

and its phase portrait is presented in Figure 2.1.
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Figure 2.1: Phase portrait of the uniform isochronous center of degree 1.

2.2.2 Uniform isochronous centers of degree 2

The quadratic polynomial differential systems with a uniform isochronous center after a
linear change of coordinates and a rescaling of time can be written into the form

it=—-y+2 y=2x+ay.

This is part of a more general result provided by Loud [45] in 1964, which covers not only
the uniform isochronous systems, but the family of all quadratic isochronous systems.
The following theorem summarizes these results.

Theorem 2.8. Consider a system of the form

i‘:—y+P2($,y) y':x+Q2(x,y), (213)

where Py and Q3 are homogeneous quadratic polynomials and at least one of them is
non-vanishing. Assume that system (2.13) has a center at the origin.

Then the origin is an isochronous center of the system (2.13) if and only if this system
can be brought to one of the following systems Sy, So, S3, Sy through a linear change of
coordinates and rescaling of time. The first integral for each system is provided in table
2.1.

Name System First integral
22 P 22 4y
S P=—y+ — — =—
! =TT Ty 1+y
y=z(1+y)
2?4 y?
S. &= —y+a’
i ! (1+y)?
y=2z(1+y)
z? (2% + 4y + 8)?
S, = —y+ —
3 T Y+ 1 T+
y=z(1+y)
2 2 2
Yy 4o —=2(y+1)°+1
S. i=—y+22°— =
! Y 2 (1+y)*
y=a(l+y)

Table 2.1: First integrals of the uniform isochronous centers of degree 2.
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The respective phase portraits for systems Si, Sz, S3 and Sy are shown in Figure 2.2.

Figure 2.2: Phase portraits of isochronous quadratic systems.

Clearly, Ss is the only one having a uniform isochronous center according to Theorem
2.1.
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Chapter 3

Global phase portraits and first
integrals of the uniform isochronous
centers of degree 3

We provide a topological classification of the global phase portraits in the Poincaré disc
of all uniform isochronous centers of degree 3. We also provide the explicit expressions of
the first integrals for these systems.

3.1 Background

The uniform isochronous centers of degree 3 has been studied since at least the last decade
of the past century. The following result, due to Collins [18] in 1997, also obtained by
Devlin et al [20] in 1998, and by Gasull et al [25] in 2005, characterizes these differential

systems.

Theorem 3.1. A planar cubic polynomial differential system has a uniform isochronous
center at the origin if and only if it can be written as

&= —y + x(a1x + agy + asx® + asxy — asy?), (3.1)
= z+ylmz+ ay + azz® + aszy — asy®), ‘
and satisfies ataz — a3asz + ajasas =0, a; ER, i =1,...,4.

The following result is due to Collins [18].

Proposition 3.2. System (3.1) satisfying a®as — a3as + ajazas = 0, may be reduced to
either one of the following forms

i=—y(1—a%), y= a(l+p>), (3.2)

i=—y+a2+ A%y, y= x+zy+ Axy’, (3.3)
where A € R.
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Using (3.2) and (3.3), which present at most one parameter, Collins was able to provide
the phase portraits and the first integrals of the cubic uniform isochronous centers. For
the sake of completeness we present these first integrals in table 3.1.

System Condition First integral
2,2
7 +y
3.2 -
(3.2) 1+ y?

_1_q 1 _q
1—K} K [ l—i-K}K
Y

2 2
0#£A<1/4 (x +y)[y—|—2A + 51
x2+y2 2 2 arctan s2—
(3.3) A 1/4 ;yg = +) 16[L ——
2 4 2)eTty
A=1/4 (@t y)erty

(2+y)?

where K =+v/1 —4A and L = 4A — 1.

Table 3.1: First integrals of the uniform isochronous centers of degree 3.

3.2 Main results

Collins [18] presented the phase portraits and first integrals for systems (3.2) and (3.3)
and therefore one needs to change the differential systems (3.1) to such normal forms
before applying Collins’ results. Our theorems present the first integrals and the global
phase portraits in the Poincaré disc for the uniform isochronous cubic centers in terms of

all the parameters of system (3.1) for the uniform isochronous centers. These results are
published in [31].

3.2.1 First integrals

In the next theorem, we present the first integrals for the uniform isochronous centers of
degree 3, in terms of all their parameters.

Theorem 3.3. The first integrals H of system (3.1) in polar coordinates x = rcosf, y =
rsin @ are described in what follows.

Case 1: a2 — a3 #0.

Subcase 1.1: a4 # 0.

Subcase 1.1.1: 4a, # a2 — a3.

R+2ayr(—ag cos f+aq sin )
RS

—2 arctan [
H=e¢

S
CL47’2

R+ r(azcos — ay sinf)(azsayr cos @ — ajaysinf — R)

Y
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Chapter 3. Global phase portraits and first integrals

where R = a3 — a3, S = \/4a,/R — 1.

In case of a negative square root, we have a complex first integral and therefore both
its real and imaginary parts are also first integrals, if not null.

Subcase 1.1.2: 4a, = a3 — a3.

2
re 2—agrcosf+aqrsinb

H= )
2 — aprcos + ayrsinf
Subcase 1.2: a4 = 0.
r
H= )
1 —asrcosf + ayrsinf
Case 2: a3 —a3 =0.
Subcase 2.1: a5 = a;.
Subcase 2.1.1: a; = 0.
2
i r

T 1 asr? cos? 0 + azr? sin(26)

Subcase 2.1.2: a; #0, a; = 0.
Subcase 2.1.2.1: ag(a2 + 4a3) # 0.

0—sin 6)
—9arct [a1+2a r(cos ]
] —g2arctan 4%%1%

azr?(sin(20) — 1)
(cosf — sin0)?[1 + air(sin @ — cos 0) + azr?(sin(26) — 1)] |

where R = /—1 — 4ag/a3.

Subcase 2.1.2.2: az = 0.

r
H = .
1 —ayr(cos® — sinf)

Subcase 2.1.2.3: ag = —a?/4.

2 @
re2—air(cosf—sinb)

H

T2 ar(cosf —sinf)’

Subcase 2.2: a; = —a;.

Subcase 2.2.1: a; = 0. This case becomes the subcase 2.1.1.
Subcase 2.2.2: a; #0, a; = 0.
Subcase 2.2.2.1: az(4az —a3) # 0.

1[_ r n aq+2agr(sin O+4cos 0) r n n
o T [2arctan (R ) +Rasctanhtano)] azr?(sec(260) + tan(26))

H pu—
1+ ayr(sinf + cos @) + asr?(1 + sin(26))

)
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where R = y/4az/a? — 1.

Subcase 2.2.2.2: azg = 0.

r
H = .
1 — ayr(cos — sin @)

Subcase 2.2.2.3: az = aj/4.

r

H= : '
61+%a1r(cose+sln9) (1 + %alT(COSG + sin (9))

Theorem 3.3 is proved in section 3.3.1.

3.2.2 Global phase portraits

We classify the global phase portraits in the Poincaré disc of the uniform isochronous
centers of degree 3, in terms of all their parameters.

Theorem 3.4. The global phase portrait in the Poincaré disc of the differential system
(3.1) is topologically equivalent to one of the three phase portraits presented in Figure 3.1.

(@)

Figure 3.1: Phase portraits of cubic uniform isochronous centers.

More precisely, the global phase portrait of (3.1) is topologically equivalent to the phase
portrait (a) of Figure 3.1 if one of the following conditions holds

. a1ay # 0, and ay(a? — a3) >0, and ay < (a2 — a3)/4;
cay=—a1 #0, and 0 < a3 < a3 /4, and ay = 0;
cas=a; #0, and —a2/4 < a3 <0, and ay = 0;
«a; =0, and ay # 0, and —a3/4 < ay < 0;
a1 #0, and ay =0, and 0 < ay < a3 /4;
to the phase portrait (b) if one of the following conditions holds
. aras # 0, and ay(a? — a3) > 0, and ay > (a? — a3)/4;
. ay=—ay; #0, and a3 > a?/4, and ay = 0;

cag=a; #0, and a3 < —a?/4, and a4 = 0;
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«a; =0, and ay # 0 and ay < —a3/4;
« a1 #0, and ay = 0 and ay > a3 /4;
to the phase portrait (c) if one of the following conditions holds
. a1ay # 0, and ay(a? — a3) < 0;
. ay =—ay #0, and az <0, and ay = 0;
«ag=a1 #0, and az >0, and ay = 0;
a1 =0, and ay # 0, and aq > 0;
a1 #0, and ay =0, and aq < 0;

-CLl:CLQ:O.

The cases where a3 = a4 = 0 are omitted in Theorem 3.4 because in such cases system
(3.1) is a quadratic polynomial differential system, which has already been exhaustively

studied, see for instance system S, at p.38 of [12].
Theorem 3.4 is proved in section 3.3.2.

Our results have been checked with the software P/, see for more details on this

software the chapters 9 and 10 of [22].

3.3 Proofs of the results

3.3.1 Proof of Theorem 3.3

We analyze each distinct case in order to compute the first integrals, considering the

condition
alasz — asaz + ajazay =0

for the equation
i=-y+af(z,y), y=z+yf(zy),
where f(x,y) = a1z + asy + azx® + ayzy — asy?, presented in Theorem 3.1.

Case 1: a3 — a3 # 0. The condition (3.4) can be expressed as

10204
ag = ———5
aj — a3’

and in polar coordinates the system can be written as

dr asr3(—as cos O + ay sin ) (ay cos 0 + ay sin 0)

i = 1%(a; cos + aysin ) + 2= a2
Subcase 1.1: a4 # 0.
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Subcase 1.1.1: 4a4 # a3 — a2. It is easy to verify that

—9arctan |:a%7a%+2a4r(fa2 cos f+aq sin 9)]

H —e (affa%)R
R
CL47’2

[a% — a3 +r(azcosf — ay sinf)(a3 — a? + agayr cos @ — ajay sin b))

is a first integral of system (3.6), where R = \/4a4/(a% —a3) — 1. This first integral is
defined at r = 0. Therefore, the origin is a center.

We note that, in case of a negative square root, we have a complex first integral and
therefore both its real and imaginary parts are also first integrals, if not null.

Subcase 1.1.2: 4a4 = aj — a3. In polar coordinates system (3.5) is written as

dr
— = Ar® + Br.
7 r° + Br
where A = 1/4(ayay sin® 0 + (a? — a2) sin 0 cos @ — ayay cos? ), B = ay cos 0+ ay sin@. This
is an Abel differential equation satisfying
dA() dB(0) 5
——=B(0) — A())——= = aB(0
19 pio) - a0) 2 — oy

with @ = 1/4. Applying the results presented in [37], the equation is integrable with the
first integral

2
re 2+r(aq sin 0—ag cos 0)

H =

2+ r(aysinf — aycosh)’
Since it is defined at » = 0, we have a center.

Subcase 1.2: a; = 0. System (3.6) is reduced to

dr :
i r%(ay cos 0 + aysin 0),
and .
H—

1 — asrcosf + ayrsinb
is a first integral for this system, and thus, the origin is a center.
Case 2: a? —a2 =0
Subcase 2.1: a; = a;. The expression (3.4) is reduced to a?a; = 0. Therefore we have

the following possibilities.

Subcase 2.1.1: a; = 0. Applying the condition a; = ay = 0 in system (3.5), we obtain
in polar coordinates

dr_
b~

The following expression is a first integral of this system

73 (as cos? 0 + ay sin f cos 6 — azsin®f).

7,2

H = )
1 — ayr? cos? 0 + azr? sin(260)
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Subcase 2.1.2: a4 = 0. Under this condition, system (3.5) has in polar coordinates the
following expression

% = r?a;(cos § + sin ) + r*[az(cos® @ — sin® §)].

Subcase 2.1.2.1: ag(af + 4az) # 0. The following expression is a first integral of the
system

s @ —sin 0)
_9 " |:a1+2a3r(co< ]
[ —p 2avctan | T

azr?(sin(20) — 1)
(cosf — sin0)?[1 + air(sin @ — cos 0) + azr?(sin(26) — 1)] |

where R = \/—1 — 4ag/a?.

Subcase 2.1.2.2: ag = 0. In this case system (3.5) becomes in polar coordinates

R

dr .
i r%a;(cos 0 + sin 6).

A first integral for this system is

-
H = .
1 —ayr(cosf — sinf)
Subcase 2.1.2.3: ag = —a?/4. In polar coordinates system (3.5) is written as
d 1
d_g = _Za1r2 [ay cos(20)r — 4(cos 0 + sin 0)].

This is an Abel differential equation satisfying

dA(0) dB(0) 3
WB(G) — A(@)T = (IB(G) , a € R,
1 1
where A(f) = —Za% cos(20), B(#) = ai(cos® + sinf) and a = 7 Using the results

presented in [37], the equation is integrable with the first integral

2
27n€ 2—aqr(cos —sin 0)

H

" 2—arr(cosf —sinf)’
Since it is defined at » = 0, we have a center.

Subcase 2.2: a, = —a;.

Subcase 2.2.1: a; = 0. This case becomes the subcase 2.1.1.

Subcase 2.2.2: ay = 0. System (3.5) becomes in polar coordinates

dr

i r?a;(cos O — sin §) + r*[az(cos® § — sin® 6)].
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Subcase 2.2.2.1: ag(—a? + 4ag) # 0. The following expression is a first integral of the
system

a1 +2agr(sin f4cos )

a R >+Rarctanh(tan9)] CL37“2 (880(20) + tan(29))
1+ ayr(sinf + cos 0) + azr?(1 + sin(20))

6% [72 arctan (

H =

Where R = \/4a3/a? — 1.

Subcase 2.2.2.2: ag = 0. System (3.5) becomes in in polar coordinates

)

dr .
i r2a;(cos @ — sin 0).

A first integral of this system is the following

r

H = .
1 —ayr(cos® — sinf)

Subcase 2.2.2.3: ag = a7/4. In polar coordinates system (3.5) can be written as

dr

1
_ 2 o L3
05 = ar (cos @ — sinf) + 4[@17’ cos(20)].

This is an Abel differential equation satisfying

dA(0) dB(0) 3
1, : .
where A(0) = e cos(26), B(0) = ay(cos@—sinf) and a = 7 Using the results presented
in [37], we conclude that a first integral for the system is

r

e1+%a1r(cosé+sin€) (1 + %alr(cos 6 + sin (9)) .

3.3.2 Proof of Theorem 3.4

We provide all the possible phase portraits for the planar cubic differential systems with
a uniform isochronous center at the origin in the Poincaré disc, by studying the finite and
infinite singular points of such systems. Consider the condition

alas — asas + ajazay = 0 (3.7)

for the equation

i=-y+af(zr,y), y=z+yflzy), (3.8)
where f(x,y) = a1z + asy + azz? + ayry — azy?, presented in Theorem 3.1.
Finite singular points

By proposition 2.2 (see section 2.2) the differential system (3.8) has no finite singular
points except the origin.
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Proposition 2.4 (see section 2.2) together with the fact that the origin is the unique
finite singular point in system (3.8) imply that the boundary of the period annulus of the
uniform isochronous center at the origin is a graphic formed by infinite singular points
and their separatrices.

Infinite singular points
For studying the infinite singular points in the Poincaré disc, we use the concepts and
formulae provided in the Appendix A.

We perform the analysis of the vector field at infinity. In the chart U; the differential
system (3.8) becomes

= (1+u*)?, = (—az— asu+ azu® — a;v — auv + uv?)v. (3.9)

We remark that (u,0) for all u € R is an infinite singular point of the differential system
(3.8) in Uy, and this result was expected due to proposition 2.3. In order to obtain the
phase portraits, we perform a change of coordinates of the form dt = vds, and system
(3.9) becomes

u' = (1+u*v, v =—az— agu+ azu’® — ayv — aguv + uv?, (3.10)

where the prime denotes derivative with respect to s.
In the chart U, system (3.8) becomes

i=—1+u?)? 0= (a3 — agu — asu® — a0 — ayuv — uv?).

We only need to study the point (0,0) of U,. By performing a change of coordinates of
the form dt = vds we obtain the system

u=—(1+ UQ)Ua V' = a3 — agu — azu® — agv — ajuv — wv’. (3.11)

In order to study the singular points at infinity of systems (3.10) and (3.11), we have to
consider several cases. We shall apply Theorems 2.15, 2.19 and 3.15 of [22] to obtain the
local phase portraits at each singular point.

Case I: a2 — a2 # 0. The condition (3.7) is written as a3 = —ajasay/(a? —a3). If ay = 0,
then a3 = 0, and hence system (3.8) degenerates to a quadratic differential system, which

has already been studied, as previously mentioned in this article. Therefore, we are going
to omit the cases in which a4 = 0.

Subcase I.1: ajas # 0. The expression (3.10) for our system in U; becomes

u' = (1+u?),
a1QA20a4 a1a20y 3.12
= = —au— — 2u2—alv—a2uv+uv2. (3.12)
ay — ap ay — ap

The singular points at the infinity are p; = (—ay/az,0) and ps = (a2/a1,0). The linear
parts of system (3.12) at p; and p, are, respectively

a 2 a 2
(@) (1)
ao a1

2, 2 ; 2, 2 2 2
(a7 + a3)ay (a7 + a3)ay aj + a;
a? — a? 0 a2 —a a
1 2 1 2 1
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These singularities are studied later on. For U, the expression (3.11) becomes

u' = —(14u?)v,
’ a1a20a4 10204 o 2
V= — — AU U° — a9V — LUV — UV,
a? — a2 a? — a?
1 2 1 2

Since we are assuming ajas # 0, the origin of U, is not a singular point.
Subcase 1.1.1: a4(a? — a3) > 0.
a? — A2
4
Subcase 1.1.1.1.1: a; > 0. p; is a saddle and p, is a stable node.

Subcase 1.1.1.1: a; <

Subcase 1.1.1.1.2: a; < 0. p; is a saddle and ps is an unstable node.

a2 _ AZ
Subcase 1.1.1.2: a4 > IT p1 is a saddle and p, is a focus.

Subcase 1.1.2: as(a — A?) < 0. p; is a focus/center and p, is saddle.
Subcase 1.2: a; = 0. In chart U;, we have

u' = (1+uH)v, v =—au— ayuv + uv?, (3.13)

and therefore the only infinite singular point is the origin, which we will designate by Oy,
Similarly, in chart Uy we have the origin Oy, as the unique infinite singular point, since
the expression of the vector field becomes

v =—(1+u*)v, v =—au— aw—uv (3.14)

The linear parts of systems (3.13) and (3.14) at the origin are respectively

0 1 0 -1
—as 0 )7 —a4 —ao )

Hence we have the following cases.

Subcase 1.2.1: a4 > 0. Oy, is a focus/center and Oy, is a saddle.

2
a
Subcase 1.2.2: _Zz <ay <0.

Subcase 1.2.2.1: a; > 0. Oy, is a saddle and Oy, is a stable node.

Subcase 1.2.2.2: a; < 0. Oy, is a saddle and Oy, is an unstable node.
2
Subcase 1.2.3: a4 < —%. Oy, is a saddle and Oy, is a focus.

Subcase 1.3: a; = 0. In chart U;, we have
u = (1+u*), v =—au—aw+uw’ (3.15)

and therefore the only infinite singular point is the origin, which we will designate by Oy,
Similarly, in chart Uy we have the origin Oy, as the unique infinite singular point, since
the expression of the vector field becomes

u = —(1+v*)v, v =—au— auv—uv’ (3.16)
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The linear parts of systems (3.15) and (3.16) at the origin are respectively

0 1 0 -1
—Q4 —Qa1 ’ —Qy 0 '

Hence we have the following cases.

Subcase 1.3.1: a4 < 0. Oy, is a saddle and Oy, is a focus/center.

2
Subcase 1.3.2: 0 < a4 < %.

Subcase 1.3.2.1: a; > 0. Oy, is a stable node and Oy, is a saddle.

Subcase 1.3.2.2: a; < 0. Oy, is an unstable node and Oy, is a saddle.

2
Subcase 1.3.3: a4 > %. Oy, is a focus and Oy, is a saddle.

Case II: a2 — a2 = 0. The condition (3.7) is simplified to ajasas; = 0 and therefore the
following cases might occur.

Subcase I1.1: a; = a; =0 and a4 # 0.
Subcase I1.1.1: ag # 0. p; is a focus/center and ps is a saddle. In fact the expression
(3.10) for our system in U; becomes

u' = (1+u*)v, v = —az— agu+ azu® + uv’. (3.17)

The singular points at the infinity are p; > = ((as F v/4a3 + a3)/2a3,0). The linear parts
of system (3.17) at p; and p, are, respectively

0 94 as(ay — \/4a3 + a3)
2&% )

—\/4a3 + a3 0
0 5t as(ag + +/4a3 + a3)

2
2a3

\4a3 + a3 0

It is easy to see that p; is a focus/center and p, is a saddle.

For U, the expression (3.11) becomes
u' = —(1+u*)v, v =az—au— azu® —uv’.
The singular points at the infinity are p34 = ((—as F \/4a3 + a3)/2as3, 0). Since —ay F

V4a2 + a2 # 0 for all az,aq € R\{0}, the origin of U, is not a singular point and hence,
the only infinite singular points are p; and ps.

Subcase I1.1.2: ag = 0. The expression (3.10) for our system in U; becomes
v =(1+uP, v =—au+ur’ (3.18)
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and therefore the origin Oy, is the unique infinite singular point in U;. Similarly, in the
chart U, the origin Oy, is an infinite singular point because system (3.11) becomes

U =—(1+u*)v, v =—au—u (3.19)

The linear parts of systems (3.18) and (3.19) at the origin are respectively

(20 (53

Hence we have the following cases.
Subcase I1.1.2.1: a4 < 0. Oy, is a saddle and Oy, is a focus/center.
Subcase I1.1.2.2: a4 > 0. Oy, is a focus/center and Oy, is a saddle.

Subcase I1.2: a; = —a; # 0 and a; = 0. We are only interested in the cases that az # 0,
because as previously mentioned, when az = a4 = 0 system (3.8) becomes a quadratic
differential system, which has already been exhaustively studied.

The expression (3.10) for our system in U; becomes
u'=(1+u*)v, v =—a3—a+ azu® + ayuv + uv’.

The singular points at the infinity are p; o = (F1,0). The linear parts this system at

p1 and po are, respectively
0 2 0 2
—2613 —2&1 ’ 2(13 0 '

For U, the expression (3.11) becomes
u'=—(1+u*)v, v =a3+aw—asu’ —ayuv —uw’.

The singular points at infinity are p34 = (F1,0). The origin of U, is not a singular point
and hence, the only infinite singular points are p; and ps. These singularities are studied
in what follows.

Subcase I1.2.1: ag < 0. p; is a saddle and p, is a focus/center.
Subcase I1.2.2: 0 < a3z < aj/4.

Subcase 11.2.2.1: a; > 0. p; is a stable node and p, is a saddle.
Subcase 11.2.2.2: a; < 0. p; is an unstable node and ps is a saddle.

Subcase I1.2.3: ag > a?/4. p; is a focus and p, is a saddle.

Subcase I1.3: a; = a; # 0 and a4 = 0. Again we are only interested in the cases that
as # 0.
The expression (3.10) for our system in U; becomes

/
u'=(1+u), v =—a3—aw+asu® — ayuv + uv?,
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The singular points at infinity are p; » = (F1,0). The linear parts of the system at p; and

po are, respectively
0 2 0 2
—2a3 0 )’ 2a3 —2a; )

These singularities are studied later on.

For U the expression (3.11) becomes
' =—(1+v*v, v =a3+av— azu® — ajuv — uv’. (3.20)
The singular points at infinity for (3.20) are ps4 = (F1,0). The origin of U, is not a
singular point.
Subcase I1.3.1: ag > 0. p; is a focus/center and p, is a saddle.
Subcase I1.3.2: —a?/4 < a3 < 0.

Subcase 11.3.2.1: a; > 0. p; is a saddle and p, is a stable node.
Subcase 11.3.2.2: a; < 0. p; is a saddle and p, is an unstable node.

Subcase I1.3.3: ag < —aj/4. p; is a saddle and p, is a focus.

Subcase 11.4: a; = a5 = a4 = 0. Again we are only interested in the cases that az # 0.
In this case system (3.8) has the particular form

i =—y+ass’ —azwy’, §=x+ a3z’ — azzy’
The expression (3.10) for our system in U; becomes
u' = (1+u), v = —az+ asu® + uv? (3.21)

The singular points at the infinity are p; » = (F1,0). The linear parts of system (3.21) at

p1 and py are, respectively
0 2 0 2
—2G3 0 ’ 2@3 0 '

These singularities are studied in the next subcases.

For U the expression (3.11) becomes

' =—(1+u*)v, v =az—azu® —uv’.

The singular points at infinity are p3 4 = (F1,0). The origin of Us is not a singular point.
Subcase I1.4.1: ag > 0. p; is a focus/center and p; is a saddle.
Subcase I1.4.2: ag < 0. p; is a saddle and p, is a focus/center.

Finally, the global phase portraits in the Poincaré disc for the planar cubic polynomial
differential systems with a uniform isochronous center at the origin are obtained using the
study of the finite and infinite singular points in the local phase portraits and the first
integrals calculated in Theorem 3.3. Hence Theorem 3.4 is proved.
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Chapter 4

Global phase portraits of the
uniform isochronous centers of
degree 4

We provide a topological classification of the global phase portraits in the Poincaré disc
of all planar quartic polynomial differential systems with a uniform isochronous center at
the origin.

4.1 Background

Algaba et al [4] in 1999, and Chavarriga et al [13] in 2001, independently provided
the following characterization of quartic polynomial systems with a uniform isochronous
center at the origin.

Theorem 4.1. Consider f(z,y) = Z?:l filz,y) with fi(x,y), fori=1,2,3 homogeneous
polynomials of degree i, f2 + f2 # 0 and fs3 # 0. Then (2.6) is a quartic polynomial
differential system having a non-homogeneous nonlinear part. Then the only case of local
analytic integrability in a small open neighborhood of the origin of system (2.6) is given,
modulo a rotation, by the time-reversible system.

i = —y+ 2(A1x + By + C12° + Cizy?),

4.1
§= x+y(Awx+ Byry + Cra’ + Caxy?). .

where Al, BQ, Cl, Cg € R.

By the following classical result due to Poincaré [49] and Liapunov [46] Theorem
4.1 characterizes the quartic uniform isochronous centers, except the ones for which the
polynomial f(z,y) is a homogeneous polynomial of degree 3.

Theorem 4.2. An analytic differential system © = —y + Fi(x,y), y =+ Fy(z,y), with
Fi(z,y) and Fy(x,y) real analytic functions without constant and linear terms defined in
a neighborhood of the origin, has a center at the origin if and only if there exists a local
analytic first integral of the form H = 2* + y* + G(x,y) defined in a neighborhood of the
origin, where G starts with terms of order higher than two.
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The proof of Theorem 4.1 by Chavarriga et al is made by calculating the Liapunov
constants to find necessary conditions and by applying time-reversibility for sufficiency.
For a complete proof of Theorem 4.1, see [13] or [4].

In the case Cy = 0, Algaba et al [4], and Chavarriga et al [12] provided the first integral
for system (4.1).

Aq +B2y+C3y2

H(x,y) = (¢ + y2)€_2fmdy‘

In the first paper, polynomial commutators were used to prove the result, and in the
latter it considers that system (4.1) presents the invariant algebraic curve ho(x,y) =
1+ Ay + Boy? + Csy® = 0. Algaba et al [4] also provided the phase portraits for (4.1)
for the case C; = 0. In such case system (4.1) has a polynomial commutator, allowing to
get the bifurcation diagram of the system.

4.2 Main results

The classification of the global phase portraits in the Poincaré disc of the quartic uniform
isochronous centers consists of 13 topologically different phase portraits. Our investigation
consider two cases, distinguishing when the nonlinear part of the differential system is
homogeneous or not.

4.2.1 Non—homogeneous nonlinear part

In this case our result is

Theorem 4.3. Consider a quartic polynomial differential system X : R?* — R? and
assume that X has a uniform isochronous center at the origin such that their nonlinear
part is not homogeneous. Then the global phase portrait of X is topologically equivalent
to one of the 11 phase portraits of Figure 4.1.

More precisely, since X can always be written as system (4.1), the global phase portrait
of X is topologically equivalent to the phase portrait

(a) of Figure 4.1 if either C1C3 > 0, or if C3 =0, By <0, orif C; =0, C3 # 0 and if
either rs = ro =11, Vry, 19,73 € R*, orifry # 0 and ro3 = a=£bi, Vri,b € R*,a € R;

(b) of Figure 1.4 if C1y = 0, C3 # 0 and if either ry,r9,73 > 0, or ri,r9,73 < 0, or
T > 0,73 =179, 0r 79 = 11,7173 > 0;

(c) of Figure 1.4 if C; =0, C3 # 0 and if either ry < 0,r9,73 >0, or ri,79 < 0,73 > 0,
orr; < 0,79 >0,713=179, orreo =11, < 0,73 >0/

(d) of Figure 4.1 if C3 =0, C; #0, By >0, Cy # —A1By;
(e) of Figure 4.1 if either C3 =0, Cy #0, By >0, C;y = —A1 By, or By = (C5 =0;

(f) or (g) or (h) of Figure 4.1 if C1C5 < 0, By = 0;
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Figure 4.1: Phase portraits of the uniform isochronous centers (4.1).
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(i) or (j) or (k) of Figure 4.1 if C1C5 < 0, By # 0;

where in the cases with C7 = 0, we have that r1,79,73 are the roots of the polynomial
—C5 — Byx — Ay2% — 2% and we assume that 1 < r9 < 15 when these roots are real.

Theorem 4.3 is proved in section 4.3.1 and it has been published in [32].

4.2.2 Homogeneous nonlinear part

Our result is the following.

Theorem 4.4. Let

be a polynomial differential system of degree 4, such that f(x,y) is a cubic homogeneous
polynomial. Then any quartic polynomial differential system which can be written into the
form (4.2) has a uniform isochronous center at the origin and its global phase portrait is
topologically equivalent to one of the 3 phase portraits of Figure 4.2.

(a)

Figure 4.2: Phase portraits of (4.2) with quartic homogeneous polynomial nonlinearities.

Note that the phase portraits (a) in Theorems 4.3 and 4.4 are topologically equivalent.

Theorem 4.4 is proved in section 4.3.2. This result has been submitted for publication,
see [35].

Our results have been checked with the software P4, see the chapters 9 and 10 of [22]
for more details on this software.

4.3 Proofs of the results

4.3.1 Proof of Theorem 4.3

For providing all the possible global phase portraits in the Poincaré disc for the planar
quartic polynomial differential systems with a uniform isochronous center at the origin
such that their nonlinear part is not homogeneous, we shall start studying all the finite and
infinite singular points of such systems. We remark that in this proof we never consider
the quartic polynomial differential systems (4.2) with a uniform isochronous center such
that f(z,y) is a homogeneous polynomial.
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Every planar quartic polynomial differential system with a uniform isochronous center
at the origin such that their nonlinear part is not homogeneous can always be written as

T =—y+x(Ax + By + Ciz2 + C’gny),

4.3
= x+y(Ax+ Bywy + Cr1a® + Cszy?). (43)

where Ay, By, C1,C3 € R, see Theorem 4.1. These systems are invariant under the
transformation (z,y,t) — (—z,y, —t), so all their phase portraits are symmetric with
respect to the y—axis.

Finite singular points
By proposition 2.2 (see section 2.2) the differential system (4.3) has no finite singular
points except the origin.

The fact that the origin is the unique finite singular point in system (4.2) together
with proposition 2.4 (see section 2.2) imply that the boundary of the period annulus of
the uniform isochronous center at the origin is a graphic formed by infinite singular points
and their separatrices.

Infinite singular points
In the chart U; the differential system (4.3) becomes

i = (1+u*)?,

4.4
0 = (=01 — C3u® — Bouv — Av* + uv®)v, (44)

and therefore the points (u,0) for all u € R are infinite singular points of the differential
system (4.3) in U;. Due to proposition 2.3 this result was already expected. In order
to obtain the local phase portraits at these points, after the rescaling of time ds = vdt
system (4.4) becomes

u = (1+u?)v?,

4.5
v' = —C) — Cau’ + v(=Bou — Ao + uv?), (45)
where the prime denotes derivative with respect to s.
In chart Us, system (4.3) becomes
= —(1+u*)d,
AR . (1.6
0 = (—Csu — Ciu” — Bouv — Ajuv® — uv®)v.

We only need to study the point (0,0) of U,. Doing the rescaling of time ds = vdt, we
obtain the system
u' = — (14 u?)v?,

4.7
v = —Cyu — Ciu® — Byuv — Ajuv? — wvd. (47)

We shall apply the well known results for the hyperbolic, semi-hyperbolic and nilpotent
singular points for the characterization of the local phase portraits at each singular point
of systems (4.5) and (4.7), for further information see for instance Theorems 2.15, 2.19
and 3.15 of [22].

Case I: C; = 0. We remark that if ) = C3 = 0 system (4.3) degenerates to a cubic
polynomial differential system, which their first integrals and phase portraits are given
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in Theorems 3.3 and 3.4, respectively in this work. Therefore in Case I we shall assume
Cs # 0.

We first analyze the chart Us. We denote by Oy, the origin of the chart U,. The
corresponding linear part of system (4.7) at O, is

()

Therefore Oy, is a nilpotent singularity and applying Theorem 3.5 of [22] we conclude
that it is a cusp, whose behavior depends on the sign of the coefficient C5. Hence, the
local phase portrait at the origin for system (4.7) might be one of the two shown in Figure
4.3.

C,>0 C,<0

Figure 4.3: Local phase portrait at the origin of system (4.6). The horizontal axis is filled of
singular points.

We now perform the study for the chart U;. Clearly the only singular point at infinity
in the chart U; is the origin, which we denote by Oy, .

The corresponding linear part of system (4.5) at Oy, is identically zero. So it is
necessary to apply a directional blow up (u,v) — (u,w) where v = ww, and we obtain

the system

u' = (1 + u®)uw?,

w = u(—Cs — Bow — Ajw? — w?).
Performing a change of the independent variable of the form d7" = uds in system (4.8),
we get the system

(4.8)

u' = (1 +u*)uw?, L9

w' = —C5 — Bow — Ayw® — w?, (4.9)
where the prime now denotes derivative with respect to T. The singular points of system
(4.9) are of the form (0,r;), i = 1,2,3, where 71,79, 73 are the roots of the polynomial
—03—.82’(1)—141’1,(}2—’[1)3, that iS, Al = —(Tl +7’2+T’3)7 B2 = T1T2+T’1T3+T27’3, Cg = —T1TaT3.
We observe that, since we are assuming C3 # 0, we have ryryr3 # 0. Hence, we have the
following cases. Of course, of these roots we only need to take into account the real ones.

Subcase 1.1: Three simple real roots. Without loss of generality we assume that
ri < ry < rs. The singular points at the infinity are p; = (0,r1), p2 = (0,r2), and
ps = (0,73). The corresponding linear part of system (4.9) at each of these points is

respectively
0 (re —ra)(ry—m3) )’ 0 (ri—r2)(ro—rs3) )’
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(7;)% —(7“1—7“:3(7"2—7”3))'

Applying Theorem 2.15 of [22] and the hypotheses 11 < ry < rg, rirorg # 0 in the
above expressions we conclude that p; and ps are saddles, and p, is an unstable node.
The resulting singularity obtained from the blow down of pi,ps and p3 depends on the
position of these singular points with respect to the origin of the u—axis. Hence we have
the following subcases.

Subcase I.1.1: 0 <r; <rs <rz. The local phase portraits at the singularities p;,7 =
1,2, 3 for system (4.9) and system (4.8) are shown in Figures 4.4 and 4.5, respectively.

1A,
NS
%

Figure 4.5: Phase portrait of system (4.8)
for 0 < r1 < r9 < r3. The vertical axis is
filled of singular points.

Figure 4.4: Phase portrait of system (4.9)
for 0 <r; <rg <rs.

Going back through the blow up we get the local phase portrait at the origin of system
(4.5), see Figure 4.6. Finally, taking into account the rescaling of time ds = vdt, we obtain
that the phase portrait at the origin of system (4.4) is topologically equivalent to the one
of Figure 4.7.

=
// u - ;

Figure 4.7: Phase portrait of system (4.4)
for 0 < 71 < r9 < r3. The horizontal axis is
filled of singular points.

Figure 4.6: Phase portrait of system (4.5)
for 0 <r; <rg<rs.

For the chart Us, since 11,175,173 > 0 then C3 = —rirer3 < 0, and we obtain a local
phase portrait as the one in Figure 4.3(C3 < 0).

In short, the global phase portrait in this case is obtained taking into account all the
local phase portraits of the finite and infinite singular points, the Fzxistence and Uniqueness
Theorem of solutions (see, for example, Theorem 1.2.4 of [53]), the fact that all the phase
portraits of planar quartic polynomial differential systems with a uniform isochronous
center at the origin are symmetric with respect to the y—axis, and that the graphic at the
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boundary of the period annulus of the uniform isochronous center at the origin is formed
by separatrices of infinite singular points. We conclude that the global phase portrait for
Subcase 1.1.1 is topologically equivalent to the one of Figure 4.1(b) of Theorem 4.3.

Subcase 1.1.2: r; <0 <rs <rs. The resulting local phase portrait at the origin of
system (4.4) is given in Figure 4.8. This local phase portrait is obtained proceeding in a
similar way to Case I.1.1.

For the chart U,, since 1 < 0 and ro,73 > 0 then C3 = —riryrs > 0 and we have a
local phase portrait topologically equivalent to the one of Figure 4.3(C3 > 0). Therefore
the global phase portrait for Subcase 1.1.2 is shown in Figure 4.1(c) of Theorem 4.3.

Subcase I.1.3: r; <rs <0 <rz. The phase portrait at the origin of system (4.4) is

given in Figure 4.9. This local phase portrait is obtained proceeding in a similar way to
Case 1.1.1.

For the chart Us, since C's = —rirors < 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C5 < 0). Then the global phase portrait for Subcase
1.1.3 is shown in Figure 4.1(c) of Theorem 4.3.

NS N

7N i

Figure 4.8: Phase portrait of system (4.4) Figure 4.9: Phase portrait of system (4.4)
forri <0< rg <rs. for ri <re <0< rs.

Subcase 1.1.4: r; < rs <rg < 0. The resulting phase portrait at the origin of system
(4.4) is given in Figure 4.10, obtained as in case 1.1.1.

Figure 4.10: Phase portrait of system (4.4) for r; < re <13 <0.

For the chart Us, since C's = —rirorg > 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C3 > 0). So the global phase portrait for Subcase 1.1.3
is shown in Figure 4.1(b) of Theorem 4.3.

Subcase 1.2: One simple real root and one double real root. Without loss of
generality we consider two distinct cases depending on the relative position of the simple
and the double real roots: vy < ry = r3 and r{ = ry < r3. We start with the first case.

48



Chapter 4. Global phase portraits

The singular points at infinity are p; = (0,71) and ps = (0,r3). The corresponding linear
part of system (4.9) at each of these points is respectively

2 2
T 0 ry 0
(o —(7"1—7’2)2) and (o 0)'

Now we assume r; < rp =r3, and r1,r7, # 0 in the above expressions and applying
Theorems 2.15 and 2.19 of [22], we conclude that p; is a saddle and p, is a saddle-node.
The resulting singularity obtained from the blow down of p; and ps depends on the position
of such singular points with respect to the horizontal axis. Hence we have the following
cases.

Subcase 1.2.1: 0 < r; < ry. In this case the local phase portrait at the origin of system
(4.4) is given in Figure 4.11, obtained as in case 1.1.1.

For the chart Uy, since C3 = —ryr3 < 0, we have a local phase portrait similar to the
one in Figure 4.3(C5 < 0). Consequently the global phase portrait for Subcase 1.2.1 is
shown in Figure 4.1(b) of Theorem 4.3.

Subcase 1.2.2: r; < 0 <rys. The local phase portrait at the origin of system (4.4) is
given in Figure 4.12, obtained as in case I.1.1.

For the chart Us, since C3 = —ry7r5 > 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C5 > 0), and the global phase portrait for Subcase
1.2.2 is shown in Figure 4.1(c) of Theorem 4.3.

\\J
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Figure 4.11: Phase portrait of system (4.4) Figure 4.12: Phase portrait of system (4.4)
for0<r; <rg=rs. forr; <0< ry =r3.

Subcase 1.2.3: r; <rz < 0. The resulting phase portrait at the origin of system (4.4)
is given in Figure 4.13. This local phase portrait is obtained proceeding in a similar way
to the case [.1.1.

For the chart Us, since C3 = —rir2 > 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C5 > 0).

The resulting global phase portrait for Subcase 1.2.3 is shown in Figure 4.1(b) of
Theorem 4.3.

Now we analyze the case r; =ry < rz. The singular points at the infinity are p; =
(0,71), p2 = (0,73). The corresponding linear part of system (4.9) at each of these points

is respectively
r? 0 3 0
0 0 ’ 0 —('1“1 — 7'3)2 ’

Considering that we assume r; < r3, and r,73 # 0 in the above expressions and
applying Theorems 2.15 and 2.19 of [22], we conclude that p; is a saddle-node, and p, is a
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saddle. The resulting singularity obtained from the blow down of p;, and py depends on
the position of such singular points to the horizontal axis. Hence, we have the following
cases.
Subcase 1.2.4: 0 < r; < rs. In this case the local phase portrait at the origin of system
(4.4) is given in Figure 4.14, obtained as in case 1.1.1.

We remark that the dynamics in the above phase portrait is almost topologically
equivalent to the one of Case 1.2.1, except between the two separatrices.

For the chart Us, since C3 = —r?r; < 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C5 < 0). Then the global phase portrait for Subcase
1.2.4 is shown in Figure 4.1(b) of Theorem 4.3.

Figure 4.13: Phase portrait of system (4.4) Figure 4.14: Phase portrait of system (4.4)
for ri <r9 =13 <0. for 0 < ri =ry <rs.

Subcase 1.2.5: r; < 0 < r3. In this case the local phase portrait at the origin of system
(4.4) is given in Figure 4.15.

For the chart Us, since C3 = —r?rs < 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C3 < 0). Hence the global phase portrait for Subcase
1.2.5 is shown in Figure 4.1(c) of Theorem 4.3.

Subcase 1.2.6: r; < rz < 0. In this case the local phase portrait at the origin of system
(4.4) is given in Figure 4.16.

We remark that the dynamics in the above phase portrait is almost topologically
equivalent to the one of Case 1.2.1, except between the two separatrices.

For the chart Us, since C3 = —r?r; > 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C3 > 0). Therefore the global phase portrait for
Subcase 1.2.6 is shown in Figure 4.1(b) of Theorem 4.3

N7
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Figure 4.15: Phase portrait of system (4.4) Figure 4.16: Phase portrait of system (4.4)
for ri =719 <0 < 7rs. forri =7r9 <rg3 <O0.

Subcase 1.3: One triple real root. In this case we have r; = ro = r3. Hence the only
singular point at infinity is p; = (0,71). The corresponding linear part of system (4.9) at
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p1is
r? 0
(V1)

Since r; # 0 from Theorem 2.19 of [22], it follows that p; is a saddle. Then the resulting
singularity obtained from the blow down of p; depends on the position of such singular
point with respect to the horizontal axis. So we distinguish the following cases.
Subcase 1.3.1: r; > 0. In this case the local phase portrait at the origin of system (4.4)
is given in Figure 4.17.

For the chart Uy, since C3 = —r$ < 0, we have a local phase portrait topologically

equivalent to the one of Figure 4.3(C3 < 0). So the global phase portrait for Subcase 1.3.1
is shown in Figure 4.1(a) of Theorem 4.3.

Subcase 1.3.2: r; < 0. In this case the local phase portrait at the origin of system (4.4)
is given in Figure 4.18.

For the chart Us,, since C5 = —r? > 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C5 > 0). Then the global phase portrait for Subcase
1.3.2 is shown in Figure 4.1(a) of Theorem 4.3.

Figure 4.17: Phase portrait of system (4.4) Figure 4.18: Phase portrait of system (4.4)
for 0 <r;y =ry =rs. for r3 =7r9 =1r1 <O0.

Subcase 1.4: One simple real root and two complex conjugate roots. We denote
the real root as r; and the two complex conjugate roots as rg 3 = a £ ib. Note that, if at
least one of the roots r;,i = 1,2, 3 is zero, we have C3 = —ry(a® + b*) = 0 and as already
commented, the case C; = C3 = 0 leads to a cubic polynomial differential system, which
has already been studied. Since we are only interested in analyzing the quartic systems,
we assume C3 # 0, which leads to r1,b # 0.

The unique real singular point at infinity is p; = (0,71). The linear part of system

(4.9) at p; is 2
( 78 —(0* + (%—T1)2> ) '

Since r1,b # 0 by Theorem 2.15 of [22], we get that p; is a saddle. Then the singularity
obtained from the blow down of p; depends on the position of such singular point with
respect to the horizontal axis. So we have the following cases.

Subcase 1.4.1: ry > 0. In this case the local phase portrait at the origin of system (4.4)
is given in Figure 4.19.

For the chart Us, since C3 = —r(a* + b*) < 0, we have a local phase portrait
topologically equivalent to the one of Figure 4.3(C3 < 0). Therefore the resulting global
phase portrait for Subcase 1.4.1 is shown in Figure 4.1(a) of Theorem 4.3.
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Chapter 4. Global phase portraits

Subcase 1.4.2: r; < 0. In this case the local phase portrait at the origin of system (4.4)
is given in Figure 4.20.

» N
Y/ N

Figure 4.19: Phase portrait of system (4.4) Figure 4.20: Phase portrait of system (4.4)
for r1 > 0,723 = a = ib. for r1 < 0,723 = a £ 1b.
For the chart U,, since C3 = —r(a* + b*) > 0, we have a local phase portrait

topologically equivalent to the one of Figure 4.3(C5 > 0), and the global phase portrait
for Subcase 1.4.2 is shown in Figure 4.1(a) of Theorem 4.3.

Case II: C3 =0. We assume C; # 0 since otherwise system (4.3) becomes a cubic
differential system.

We first study the chart U;. Then system (4.5) in this chart becomes

u' = (1 +u*)?

4.10
V' = —C} — Bouv — Ajv® + uv’. (4.10)

Analyzing system (4.10) we obtain that there is no singular point at infinity in the chart
Us.
For the chart Us we only need to study the origin Op,. The system (4.7) in that chart

writes ) o o
u = —(14u")v”,
, ( 3 ) 9 3 (4.11)
v = —Chu’ — Bouv — Ajuv® — uv”,
The linear part of system (4.11) at Oy, is identically zero. Thus it is necessary to apply
a directional blow up v = uw to it, resulting the following system

v = —(1 4+ u)uPw?,
o . (.12
V' = u(—Ciu — Bow — Ajuw” + w”).
Doing the rescaling of time dT" = uds in system (4.12) and we get
= —(1 4 u)uw?,
, ( ) 9 3 (4.13)
v = —Chu — Bow — Ajuw® + w”,

where the prime now denotes derivative with respect to T'. The singular points of system
(4.13) are p; = (0,0),p2 = (0, —/Bs) and p3 = (0,1/Bsy). Hence we consider the following
cases.

Subcase II.1: By > 0. We have pq,ps,p3 as three distinct real singular points. The
corresponding linear part of system (4.13) at p; is

0 0
—Cy —By )
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Applying Theorem 2.19 of [22] we conclude that p; is an unstable node.

The linear parts of system (4.13) at py and ps are identical, namely

—By 0
—AlBQ — Ol ZBQ '
Applying Theorem 2.15 of [22] it follows that p; and ps are saddles. Going back with
the blow down we get the local phase portrait at the origin of system (4.6) topologically

equivalent to the one of Figure 4.21.
\/

ZR

Figure 4.21: Phase portrait of system (4.6) for By > 0.

All global phase portraits of planar quartic polynomial differential systems with a
uniform isochronous center at the origin are symmetric with respect to the y—axis.
Moreover, the graphic at the boundary of the period annulus of the uniform isochronous
center at the origin is formed by separatrices of infinite singular points. Considering these
results and the above calculations, we shall have two distinct global phase portraits for

Subcase 1I.1.
Subcase I1.1.1: C; = —A;B,. Under this hypothesis we have the following result.

Lemma 4.5 (Invariant straight lines). If By > 0, C} = —A; By and C3 = 0 in the quartic
polynomial differential system (4.3) of Theorem 4.1, then the system has the two invariant
straight lines x = ++/1/Bs.

Proof: If B, > 0, C; = —A;By and C3 = 0 in system (4.3), then it writes & =
(Box? — 1)(—A12* + y), vy = (1 + A1y — Ay Box®y + Bay?). Hence x = +/1/B, are
invariant. [

Using lemma 4.5 we obtain the global phase portrait for Subcase I1.1.1 shown in Figure
4.1(e) of Theorem 4.3.

Subcase I1.1.2: C; # —A;Bs. The global phase portrait is shown in Figure 4.1(d) of
Theorem 4.3.

Subcase 11.2: B, < 0. The only real singular point is the origin, p; = (0,0). The linear
part of system (4.13) at p; is
0 0
(& )

Applying Theorem 2.19 of [22] we conclude that p; is a saddle.

The local phase portrait at the origin of system (4.6) depends on the sign of the
coefficient 'y as shown in Figure 4.22, obtained as in case 1.1.1.
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C>0 C,<0

Figure 4.22: Phase portrait of system (4.6) for By < 0.

Although the system might present two distinct local phase portraits at the origin,
the corresponding global phase portraits are topologically equivalent, and it is shown in
Figure 4.1(a) of Theorem 4.3.

Subcase I1.3: By = 0. The only singular point is the origin, p; = (0,0). The linear part
of system (4.13) at p; is
0 0
(b))

Therefore p; is a nilpotent singular point. Applying Theorem 3.5 of [22], we conclude
that p; is a saddle, similar to the one illustrated in Figure 4.23.

W
A

Figure 4.23: saddle of a nilpotent singularity.

The local phase portrait at the origin of system (4.6) in this case is given in Figure
4.24. Then the global phase portrait is shown in Figure 4.1(e) of Theorem 4.3.

N\

*J u

Figure 4.24: Phase portrait of system (4.6) for C5 = By = 0.

Case III: C;C3 > 0. There are only two possible singular points in the chart Uy,
(—v/—C1/C3,0) and (1/—C;/C3,0). Since C1C5 > 0 system (4.5) in U; has no real
singular points.

In the chart U, the origin, which we denote by Oy, is the only real singular point of
system (4.7). Its linear part is
0 O
(& 0)
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Chapter 4. Global phase portraits

Therefore Oy, is a nilpotent singularity and by Theorem 3.5 of [22] it is a cusp, whose
behavior depends on the sign of the coefficient C's. Hence the local phase portrait at the
origin for system (4.6) might be one of the two shown in Figure 4.3. Then the global
phase portrait is shown in Figure 4.1(a) of Theorem 4.3.

Case IV: By = 0,C;C3 < 0. The expression (4.5) for the system in the local chart Uy
is
u' = (1 +u®)?,

4.14
V= —C) — Csu?® — Ajv? + w?, (4.14)

So there are two singular points at infinity in Uy, p1 o = (£+1/—C1/C3,0). Similarly in the
chart U, the origin Oy, is a singularity, because the system in that chart is

u = —(1+ u?)v?,

v = —Csu — Ciu® — Ayuv® — uv?,

(4.15)

The linear parts of system (4.14) at p; and ps, and of system (4.15) at Oy, are

0 0 0 0 0 0
205\ /—C1/C5 0 ) \2cs/=Cijcs 0 ) \ —C5 0 )

respectively.

The point Oy, in the chart Us is a nilpotent singularity and by Theorem 3.5 of [22]
it is a cusp, whose local phase portrait depends on the sign of the coefficient C';. Hence
the local phase portrait at the origin for system (4.6) might be one of the two shown in
Figure 4.3.

Since both p; and py are also nilpotent singularities we apply the same theorem to
determine that p; and py are cusps, whose behavior also depend on the sign of C', but
are slightly distinct from that one of Op,. For C5 < 0 the local phase portraits at p; and
po are topologically equivalent to Figure 4.25(I) and (II) respectively, whereas for C3 > 0,
the local phase portraits at p; and py are topologically equivalent to Figure 4.25(11) and
(I), respectively.

(1) (1)
Figure 4.25: Phase portrait of system (4.6) for By = 0, ¢1C3 < 0.

Applying similar arguments as in the previous cases, we shall have three possible
configurations for the global phase portraits, they are shown in Figures 4.1(f), (g) and
(h) of Theorem 4.3.

Case V: B # 0,C;C;3 < 0. The expression (4.5) for the system in the local chart U; is
u = (14 u?)v?,

4.16
v = —C) — Csu? — Byuv? — Ayv? + uv®, (4.16)
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So there are two singular points at infinity, p; = (v/—C1/C3,0) and py = (—+/—C4/C3,0).
Similarly in the chart U, the origin Oy, is a singularity, because this system writes

u' = —(1+u?)v?
!/ ( ) 3 2 3 (417)
v’ = —Ciu — Ciu’ — Bouv — Ajuv® — uv®,
The linear parts of system (4.16) at p; and p,, and of system (4.17) at Oy, are
respectively

( —203\/()—(71% —BQ\/%/@, ) :

()

The singular points p; and ps are semi-hyperbolic singularities. By Theorem 2.19 of
[22], p1 and py are saddle-nodes. We remark that in Case IV, which only differs from
the present one by the vanishing of the coefficient By, the two singular points p; and py in
the chart U; are cusps. Both cusps and saddle-nodes are singular points of index 0. The
cusps in the previous case bifurcate to saddle-nodes by changing Bs from zero to non-zero
values.

The local phase portraits at p; and p, depend on the values of the coefficients A;, Bs,
C7 and (3. The possible local phase portraits are shown from figures 4.26 to 4.30. These
local phase portraits are obtained as in case 1.1.1. The local phase portraits to the cases
A1, By, C3 > 0, C; < 0and By, C3 > 0, Ay,C; < 0 are topologically equivalent to the
ones in Figures 4.30 and 4.27, respectively.

g
g

Figure 4.26: Phase portrait of system (4.4) for A;,C; > 0, B, C5 < 0.

p&//i )‘f/ﬂ/;\\\\‘

Figure 4.27: Phase portrait of system (4.4) for C; > 0, Ay, B2, C3 < 0.
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Figure 4.28: Phase portrait of system (4.4) for A;,C5 > 0, Bs,Cy < 0.

5
v v

R -
i’

Figure 4.29: Phase portrait of system (4.4) for C5 > 0, Ay, B2,Cy < 0.

The point Oy, in the chart U, is a nilpotent singular point. Applying Theorem 3.5
of [22] we see that it is a cusp, whose behavior depends on the sign of the coefficient
(5. Hence the local phase portrait at the origin for system (4.6) might be one of the two
shown in Figure 4.3.

Using similar arguments as in the previous cases, we shall prove that there exist three
possible configurations for the global phase portraits. They are shown in Figures 4.1(i),
(j) and (k) of Theorem 4.3. We remark that all three configurations are possible, setting
By = ¢ > 0 in the examples presented in Case IV.

4.3.2 Proof of Theorem 4.4

The fact that any quartic polynomial differential system of the form (4.2) has a uniform
isochronous center at the origin is a direct consequence of Theorem 2.7 (see section 2.2).

In order to provide all possible phase portraits in the Poincaré disc for the uniform
isochronous system (4.2) with homogeneous nonlinearities of degree 4, we shall study the
finite and infinite singular points of such systems.

Finite singular points

e
’

Figure 4.30: Phase portrait of system (4.4) for A; € R, By, C; > 0, C3 < 0.
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By proposition 2.2 (see section 2.2) the differential system (4.2) has no finite singular
points except the origin.

Propositions 2.2 and 2.4 imply that the boundary of the period annulus of the uniform
isochronous center at the origin is a graphic formed by infinite singular points and their
separatrices.

Infinite singular points

In the chart U; the differential system (4.2) when f(z,y) is a homogeneous polynomial
of degree 3 becomes
= v (14 u?),
O = v(uwv* — f(1,u)).

Therefore all the points (u,0), for all u € R are infinite singular points in U;. In order to
obtain the local phase portraits near the infinity, we rescale system (4.18) doing ds = vdt
and we obtain

(4.18)

u = v*(1 +u?),
v =v(uw — f(1,u)),

where the prime denotes derivative with respect to s.

(4.19)

Now the infinite singular points of system (4.19) are (u*,0) with u* a zero of f(1,u).
So at the chart U; we have at most 3 infinite singular points.

Since at most one more additional infinite singular point can appear, which is the
origin of the chart U,, without loss of generality we can assume that all the infinite
singular points of system (4.2) after the rescaling ds = wvdt are in the local chart Uy,
otherwise doing a rotation in the coordinates (z,y) this would be the case. So in what
follows we do not need to study whether the origin of the chart Us is an infinite singular
point.

To investigate the infinite singular points of system (4.2), we need to split our study
into several cases, according to the cubic homogeneous polynomial f(z,y). Taking into
account that we can assume that all the infinite singular points after the rescaling ds = vdt
are in the local chart Uy, the polynomial f(x,y) must have one of the following expressions,
with a # 0

( _7"1@( _T2x)(y—7‘3x)a7“1<7“2<7“3,

a
a(y — rx)?(y — rox), 11 < 19,
a(y —rlm)

= (a2’ + Bry +vy°)(y — nx), f° — day <0,
= (az’® + Bry +vy°)y, 2 — day < 0.

In the polynomial fi, & = 1,2,3 we can assume that a = 1 in system (4.2) by doing
the rescaling (z,y) — (x//a,y//a), and otherwise we can assume v = 1 applying the

vescaling (z,) — (2/ 97,9/ /7).
In short we must study the phase portraits of the uniform isochronous system (4.2)
with f(z,y) in one of the following cases

Case I: f(z,y) = (y — riz)(y — mx)(y — r3z), r1 < ro < T3;
Case I1: f(z,y) = (y — riz)*(y — rox), 71 < T3;
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Case III: f(z,y) = (y — mx)3;
Case IV: f(x,y) = (az? + Bry + v*)(y — riz), with 82 — 4a < 0;
Case V: f(x,y) = (az® + Bzy + y*)y, with 5% — 4a < 0.

Except for the Cases I and IV, in which system (4.2) depends of 3 parameters, in all
other cases it depends at most of 2 parameters.

For the characterization of each local phase portrait, we shall apply the well known
results for the hyperbolic and nilpotent singular points, see for instance Theorems 2.15
and 3.5 of [22]. In what follows we study each case in detail.

Case I. In the chart U, the differential system (4.2) becomes

= (14 u?)v?,
. ( ) 9 3 3 (4.20)
U =v[rirers — (rire + rirs + rars)u + (ry + ro + ry)u” —u’ + uv’,
Performing the rescaling of time ds = vdt system (4.20) writes as
u' = (14 u?)v?,
, ( ) 5 3 5 (4.21)
v =rirors — (rire + rirs + rars)u 4 (rp + ro 4+ r3)u” — u’ + uv”.

The singular points at infinity are p; = (r1,0), po = (r2,0) and ps = (r3,0). The linear
parts of system (4.21) at each of these points are respectively

((TQ—Tl)O(Tl—’I"g) 8)’ ((7“1—7“2)0(7‘2—7"3) 8)’

((Tl—r3ﬁrs—r2) 8)

Since 1 < ry < r3 the terms r; —r; for ¢ # j, 4,7 = 1,2, 3 never vanish. Consequently
the corresponding linear parts of system (4.21) at p;, po and ps are never identically
zero and thus they are nilpotent singular points. For each singular point, we perform
appropriate translations and rescalings of time to have system (4.21) under the normal
form necessary to apply Theorem 3.5 of [22]. Taking into account the hypothesis r; <
ro < 13, we conclude that each one of these 3 singular points is a cusp. Therefore modulus
a translation to the origin and undoing the rescaling of time ds = wdt, the local phase
portrait for each singular point of system (4.20) might be one of the two shown in Figure
4.31.

p,and p, P,

Figure 4.31: Local phase portraits at p1, p2 and ps3 of system (4.20). The horizontal axis is
filled of singular points.
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Each global phase portrait for this case is obtained taking into account: all the local
phase portraits of the finite and infinite singular points; the Ezistence and Uniqueness
Theorem of solutions; the fact that the boundary of the Poincaré disc consists entirely of
singular points; and that the graphic at the boundary of the period annulus of the uniform
isochronous center at the origin is formed by separatrices of infinite singular points. Hence
the global phase portrait for Case I is topologically equivalent to the ones of Figure 4.2(a)
or (b) of Theorem 4.4. We remark that the two configurations are possible by setting
convenient values to the real parameters rq, ro and rs.

Case II. In the chart U; system (4.2) is written as

= (1+u*)0’,
) = vlr2 2 2 3 3 (4.22)
U = v[riry — (17 + 2rire)u + (211 + ro)u” — u” 4w,
and after the rescaling of time ds = vdt system (4.22) becomes
u' = (1+u?)v?
! (2 ) 2 2 3 3 (4.23)
v =riry — (r{ + 2rire)u + (2r1 + ro)u” — u’ + uv”.

The singular points at infinity are p; = (r1,0) and ps = (19,0). We first analyze p;. The
corresponding linear part of system (4.23) at this singular point is identically zero. Thus
it is necessary to apply a directional blow up (u,v) — (u,w) where v = uw, obtaining the
following system, modulo a translation of p; to the origin

= (1 +r? 4 2ru + u?)w?,

w=ulry —r; —u— (1+7r}w

, (4.24)

— ruw®).
Performing a change of the independent variable of the form dT" = uds in (4.24), we get
the system

u' = u(l+ 7]+ 2ru + u?)w?,
, o 3 3 (4.25)
w =ry—ry —u— (1+r]))w’ — ruw’,
where the prime now denotes derivative with respect to T. On the axis u = 0 there is a
unique singularity q; = (0, ¥/(ro — r1)/(1 +r?)). The corresponding linear part of system
(4.25) at ¢y is

( =3(L+ 1) 3 (ry — ) 0 ) ,

0 (1+7’%>1/3(7”2 —T1)2/3

Applying Theorem 2.15 of [22] and the hypothesis 1 < 7 we conclude that ¢; is a
saddle. The local phase portrait at ¢; for system (4.25) and system (4.24) are shown in
Figures 4.32 and 4.33, respectively.

Going back through the blow up we get the local phase portrait at the origin of system
(4.23), see Figure 4.34. Finally, taking into account the rescaling of time ds = vdt, we
obtain that the phase portrait at the origin of system (4.22) is topologically equivalent to
the one of Figure 4.35.

Now we perform the study for p,. The corresponding linear part of system (4.23) at

this singular point is
0 0
—(Tl — 7’2)2 0 '
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/
A 4

Figure 4.33: Phase portrait of system
(4.24). The vertical axis is filled of singular
points.

Figure 4.32: Phase portrait of system
(4.25).

s
-

Figure 4.34: Phase portrait of system
(4.23).

Figure 4.35: Phase portrait of system
(4.20). The horizontal axis is filled of
singular points.

Since r; < rg by hypothesis, (r; — rq) never vanishes. Therefore py is a nilpotent
singular point. By performing convenient translation and rescaling of time to have system
(4.23) under the normal form necessary to apply Theorem 3.5 of [22], and taking into
account the hypothesis r; < r9, we conclude that this singular point is a cusp. Therefore
modulus a translation to the origin and undoing the rescaling of time ds = wvdt, the local
phase portrait of system (4.22) for py is topologically equivalent to the picture on the left
side of Figure 4.31. The global phase portrait for Case II is topologically equivalent to
the one of Figure 4.2(c) of Theorem 4.4.

Case III. In the chart U; system (4.2) becomes

= (14 u?)v?,
RS (426)
0 =v(r] — 3rju + 3ru® —u’ + uv”),
and after the rescaling of time ds = vdt system (4.26) is written as
u' = (1+u?)v?,
SRR AN (127)
v =r] —3rju+3riu” —u’ +uv.

The only singular point at infinity is p; = (r1,0). The corresponding linear part of system
(4.27) at this singular point is identically zero. Thus it is necessary to apply a directional
blow up (u,v) — (u,w) where v = uw, obtaining the following system, after performing
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a translation of p; to the origin

w=u?(1+r? 4+ 2ru + u?)w?,

4.28
W = —ufu+ (14 r7)w® + riuw?). (4.28)

Performing a change of the independent variable of the form dT" = uds in (4.28), we get
the system
' =u(l + 72+ 2ru + uHw?,
,(153)3 (4.29)
w = —(u+ (1 +7r)w’ + ruw’).
On the axis u = 0 there is a unique singularity ¢; = (0,0). The corresponding linear part

of system (4.29) at ¢y is
0 0
-1 0/

Applying Theorem 3.5 of [22] we conclude that ¢; is a saddle. The local phase portrait
at ¢, for system (4.29) and system (4.28) are shown in Figures 4.36 and 4.37, respectively

I\ N

Figure 4.37: Phase portrait of system
(4.28). The vertical axis is filled of singular
points.

Figure 4.36: Phase portrait of system
(4.29).

Going back through the blow up we get the local phase portrait at the origin of system
(4.27), see Figure 4.38. Finally, we obtain that the phase portrait at the origin of system
(4.26) is topologically equivalent to the one of Figure 4.39. Thus the global phase portrait

7
TN

Figure 4.38: Phase portrait of system
(4.27).

\

bz

Figure 4.39: Phase portrait of system
(4.26). The horizontal axis is filled of
singular points.

for this case is topologically equivalent to the one of Figure 4.2(c) of Theorem 4.4.
Case IV. In the chart U; system (4.2) is
i = (1+u*)?,

b =vra+ (rf—a)u+ (r — Bu* —u’® + u’). (4.30)
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We perform the rescaling of time ds = vdt to obtain

u=(1+ uz)UQ,

4.31
v =ra+ (B —a)u+ (r — Bu® —u® + ur®. (4:31)

The unique singular point at infinity is p; = (r1,0) and the corresponding linear part of

system (4.31) at p; is
0 0
—a—ri(rn+58) 0 )

Due to the hypothesis 32 — 4a < 0, the expression —a — r1(r1 + 3) never vanishes. In
fact, if = —ry(r; + () then by the hypothesis we would have (8 + 2r;)? < 0 which is
obviously a contradiction. Thus p; is a nilpotent singular point. Applying Theorem 3.5
of [22] we conclude that the resulting local phase portrait at the origin of system (4.30) is
topologically equivalent to the one on the left of Figure 4.31. This local phase portrait is
obtained using a similar method applied in the previous cases. The global phase portrait
for Case IV is topologically equivalent to the one of Figure 4.2(c) of Theorem 4.4.

Case V. In the chart U; system (4.2) is written as

L= (14 u2),
P (1.32)
0 =w(—a— Pu—u’+0°).
We perform the rescaling of time ds = vdt to obtain
/ — 1 2 2
ui= (Lt (4.33)

v = u(—a — Bu —u® +v°).

The origin is the unique singular point at the infinity and the linear part of system (4.33)

at (0,0) is
(S0)

Since a > 0, due to the hypothesis 3% — 4a < 0, the linear part of system (4.33)
at (0,0) is never identically zero and therefore the origin is a nilpotent singular point.
Applying Theorem 3.5 of [22] and a similar procedure as those applied in the previous
cases, we conclude that the resulting local phase portrait at the origin of system (4.32) is
topologically equivalent to the one on the left of Figure 4.31. The global phase portrait
for this case is topologically equivalent to the one of Figure 4.2(c) of Theorem 4.4.

Remark 4.6. From the proof of Theorem 4.4 it follows that the global phase portrait of
any quartic polynomial differential system which can be written into the form (4.2) is
topologically equivalent to the phase portrait (1) or (m) of Figure 4.2 if we are in Case I,
and to the phase portrait (a) of Figure 4.2 otherwise.

63



Chapter 4. Global phase portraits

64



Chapter 5

Limit cycles bifurcating from
continuous and discontinuous
perturbations of uniform isochronous
centers of degree 3

In this chapter we develop the averaging theory at any order for computing the periodic
solutions of discontinuous piecewise differential system of the form

, | Fr(0,re) if 0<6<a,
" F~(0,r,e) if a<6<2nm,

where F£(0,7,¢) = S8 e FE(0,r) + e R*(0,r,¢) with 6 € S' and r € D, where D is
an open interval of R, and ¢ is a small real parameter.

Applying this theory we study the bifurcation of limit cycles in planar cubic polynomial
differential systems with a uniform isochronous center at the origin when they are perturbed,
either inside the class of all continuous cubic polynomial differential systems, or inside the
class of all discontinuous piecewise cubic polynomial differential systems with two zones
separated by the straight line y = 0. Later on in chapter 6 we apply this theory to analyze
the number of limit cycles which bifurcate from the uniform isochronous centers of planar
quartic polynomial differential systems.

5.1 Background

One of the main open problems in the qualitative theory of polynomial
differential systems in R? is the determination of their limit cycles. Bifurcations of limit
cycles have been exhaustively studied in the last century and is closely related to the
Hilbert’s 16" Problem. However, in spite of all efforts, up to now there is no general
method to solve this problem.

Bifurcation of limit cycles in continuous planar differential systems are still largely
studied. Nonetheless due to the considerable number of discontinuous phenomena in the
real world, see for example [9, 54] and the references therein, a significant interest in the
investigation of limit cycles of discontinuous piecewise differential systems has arisen. For
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instance in [44], applying the theory of regularization, the averaging theory is extended
up to order 1 for studying the periodic solutions of systems of the form 2’ = 5(F (t,z,e)+
sign(h(z))G(t,z,€)). In [41] there is a version of the averaging theorem up to order 2 for
a bigger class of discontinuous piecewise differential equations z’ = eF}(t, z, ¢). Finally in
[42] it is stated averaging theorems for studying the periodic solutions of discontinuous
piecewise differential equations of the form z' = Fy(t,z) + eFy(t, z) + 2 Fy(t, x, €).

5.1.1 Result on averaging theory

We develop the averaging theory at any order for computing the periodic solutions of
discontinuous piecewise differential system of the form

, | Fr(0,re) if 0<6<a, (5.1)
| F(O,re) if a<6<2nm, '
where i
FE(0,r.0) = O S FH0.0) + & R0, ), (5:2)
i=1

The set of discontinuity of system (5.1) is ¥ = {# = 0} U{f = a} with 0 < o < 27. Here
Ff:S'xD - Rfori=0,1,...,n, and R* : S' x D x (—&g, &) — R are C**! functions,
where D is an open and bounded interval of (0,00), and S* = R/(27).

We point out that taking o = 27 system (5.1) becomes continuous. So the averaging
theory developed in this section also applies to continuous differential systems.

Fori=1,2,...,k, we define the averaging function f; : D — R of order i as
+ —
y; (a,p) —y; (@ —2m,p
where y : S' x D = R, for i = 1,2,...,k — 1, are defined recurrently as
+ - i 1
- = 4! : .
v (0:) Z'/O F2(9,0) +lzlgbﬂbg!2!b2...bl[ubz
l - (5.4)
0"FE (0,0) [T (¢, p)bf) dg,
j=1
where S; is the set of all [-tuples of non—negative integers (by, by, - - -, b;) satisfying by +

2()2+"'+lbl:l, andL:b1+b2—|—---+bl.

As we shall see the averaging functions f; control the existence of isolated periodic
solutions of system (5.1). These functions are obtained directly from y; using (5.4). We
provide the explicit formulae of yfﬁ up to order 7 in Appendix C.

5.1.2 Bifurcation of limit cycles from the uniform isochronous
centers of degree 3

As already previously stated in this work, a small limit cycle is one which bifurcates
from a center equilibrium point, and a medium limit cycle is one which bifurcates from a
periodic orbit surrounding a center.
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We study the largest number of small and medium limit cycles for the uniform
isochronous cubic centers, when they are perturbed either inside the class of all continuous
cubic polynomial differential systems, or inside the class of all discontinuous differential
systems formed by two cubic differential systems separated by the straight line y = 0.

Given a perturbed differential system, the next result provides a method to write it
under the form (5.2) for the continuous case, that is, by setting o = 27 in system (5.1).

Theorem 5.1. Consider the unperturbed system & = P(x,y), § = Q(z,y), where P,Q :
R2? — R are continuous functions, and assume that this system has a continuous family of
period solutions {I'y} C {(z,y) : H(x,y) = h,hy < h < hs}, where H is a first integral of
the system. For a given first integral H assume that xQ(z,y) —yP(z,y) # 0 for all (z,y)
in the period annulus formed by the ovals {T'y}. Let p: (v/hi,vVha) x [0,27) — [0,00) be

a continuous function such that
H(p(R,0)cosf,p(R,0)sinfd) = R

for all R € (v/hi,v/ha) and all 6 € [0,27). Then the differential equation which describes
the dependence between the square root of the energy R = vh and the angle 0 for the
perturbed system @ = P(x,y) + ep(x,y), ¥ = Q(z,y) + eq(z,y), where p,q : R> = R are
continuous functions is

AR __p(@® +y*)(Qp — Pq)

de 2R(Qz — Py)
where p = p(x,y) is the integrating factor corresponding to the first integral H of the
unperturbed system and v = p(R,0)cosf, y = p(R,0) sinb.

+ O(£?) (5.5)

For more details see [11].

We also need the next results. The first one can be found in Proposition 1 of [39] and
the latter in [36].

Proposition 5.2. Let fy, ..., f, be analytic functions defined on an open interval I C R.
If fo,..., fn are linearly independent then there exists sy,...,8, € I and Ag,..., Ay € R

such that for every j € {1,...,n} we have Z)\ifi(sj) =0.
i=0

We say that the functions (fo,..., f,) defined on the interval I form an Extended
Chebyshev system or ET-system on [, if and only if, any nontrivial linear combination
of these functions has at most n zeros counting their multiplicities and this number is
reached. The functions (fy,..., f.) are an Extended Complete Chebyshev system or an
ECT-system on [ if and only if for any k£ € {0,1,...,n}, (fo,..., fr) form an ET-system.

Theorem 5.3. Let fq,..., fn be analytic functions defined on an open interval I C R.
Then (fo, ..., fn) is an ECT-system on I if and only if for each k € {0,1,...,n} and all
y € I the Wronskian

fo(y) f}(y) fzf(y)

18 different from zero.
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In order to study the bifurcation of limit cycles in the planar uniform cubic centers
we take into account Proposition 3.2 due to Collins [18], presented in chapter 3 of this
work. According to this proposition, a planar cubic differential system with a uniform
isochronous center at the origin can be reduced to either of the following two forms

P (] — 2’
Pemuee) 5.6
y= z(1+y),

= —y + 2”4 Az’y,

T Y+ %y (57)

U= x4+ xy+ Axy’

with A € R. For now on we shall call (5.6) and (5.7) as Collins first form and Collins
second form, respectively.

5.2 Main results

5.2.1 Result on averaging theory

Our result on the periodic solutions of (5.1) is the following.

Theorem 5.4. Assume that, for some ¢ € {1,2,...,k}, fi =0 fori =1,2,...,0—1
and fi; # 0. If there exists p* € D such that f,(p*) = 0 and f;(p*) # 0, then for |e| > 0
sufficiently small there exists a 2m—periodic solution (0, ¢) of (5.1) such that r(0,e) — p*
when € — 0.

Theorem 5.4 is proved in section 5.3.1. This result has been submitted for publication,

see [34].

5.2.2 Bifurcation of limit cycles from the uniform isochronous
centers of degree 3

We consider the following continuous systems

6
=1 (5.8)

6

i=1
where f(x,y) is as in Theorem 3.1, and the system
i =—y+ 2%y +epk(z,y), U= x+ay’+eqx(z,y), (5.9)
where
p; = oo+ ady + oda® + oday + ody? + oo + odaty + oday® + oy,
¢; = Bl + By + Bia® + Blay + By + Bia® + B’y + Bay’ + By’
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PK = Qg + p1, qx = Bo + q1.

Moreover we consider the discontinuous systems
T\ | Xa(z,y) i oy >0;
( Y ) =X(oy) = { Xo(z,y) if y<O. (5.10)

T\ ~ Yi(z,y) if y>0;
(y)‘m’y)‘{lé(x,y) if y<0, (5:11)
where
y+:vfxy)+z L epil, y))
r+yf(zy)+ > ealry) )’

0=
< —y+af(z, y)+ZZ s, y)),

r+yf(z,y +Zz 15Uz(x Y)

B —y+ux y+€pK(33>y>
K(%y)_( x+xy2+8ql(($7y) )7

_ _y+x2y+5uK(xay)
Ya(z,y) = ( z+ zy? +evg(x,y) )’

=z + 9y + 72’ + vizy + 1y + i’ + Aty + ey + iy
—5]x+5 Ty + 8a? 4 Fay + 0ly? + G + lay + Slay® + 6P,
UK—70+U1, Vg = 0p + V1.
In what follows we state our results.

Theorem 5.5. For |e| # 0 sufficiently small the mazimum number of small limit cycles
of the differential system (5.8) is 8 using the averaging theory of order 6, and this number
can be reached.

Theorem 5.5 is proved in section 5.3.2 of this chapter.

Theorem 5.6. For |e| # 0 sufficiently small the mazimum number of medium limit cycles
of the differential system (5.9) is 3 using the first order averaging theory and this number
can be reached.

Theorem 5.6 is proved in section 5.3.3.

Theorem 5.7. For |g| # 0 sufficiently small the mazimum number of small limit cycles
of the discontinuous differential system (5.10) is 5 using the averaging method of order 6
and this number can be reached.

Theorem 5.7 is proved in section 5.3.4.
Theorem 5.8. For |e| # 0 sufficiently small the mazimum number of medium limit

cycles of the discontinuous differential system (5.11) is 7 using the averaging method of
first order and this number can be reached.
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Theorem 5.8 is proved in section 5.3.5.

Theorems 5.5 and 5.6 extend previous results presented in [25]. In that work the
authors proved the existence of one or two limit cycles in some subfamilies of uniform
isochronous cubic centers. Moreover Theorem 5.8 extends the work done in [40] on the
number of medium limit cycles which can bifurcate from a family of uniform isochronous
quadratic centers perturbed by discontinuous differential systems with the straight line
of discontinuity y = 0, to the uniform isochronous cubic centers given by the Collins first
form.

These results have been published in [31].

5.3 Proofs of the results

5.3.1 Proof of Theorem 5.4

The proof of Theorem 5.4 is based on the following lemma.

Lemma 5.9 (Fundamental Lemma). Let r*(-,p,e) : [0,0,) — R¥ be the solution of
v = F*(0,r ) with r(0,p,e) = p. If 6, > T, then

(0, p, e —p—l—Ze’yZ (0’ )+Ok+1< )

=1
where y£(t, z) fori=1,2,...,k are defined in (5.4).
The proof of Lemma 5.9 can be found in [43].

Now we prove Theorem 5.4. First of all we have to show that there exists ¢y sufficietly
small such that for each p € D and for every e € [—&,&0] the solutions r*(6,p,¢)
are defined for every 6 € [0,7]. Indeed, by the Eristence and Uniqueness Theorem of
solutions (see, for example, Theorem 1.2.4 of [53]), r£(6, p,¢) is defined for all 0 < 6§ <
inf (T,d/M*(g)), for each & with |r — p| < d and for every p € D, where

k
() > [ FE (0, p) + R0, p, )|
=1

Clearly € can be taken sufficiently small in order that inf (T, d/M=*(c)) = T for all p € D.
Moreover, since the vector fields F'=(60,r,¢) are T—periodic, the solutions 7%(6, p,¢) can
be extended for 6 € R.

We denote
F(p.6) = r*(@,pe) =1 (a = T, p,c).
It is easy to see that system (5.1) for € = & € (—¢ep,e0) has a periodic solution passing
through p € D if and only if f(p,&) = 0.

From Lemma 5.9 we have that

fp.c) = S MODUOL o (o)

i=1

Z e'fi(p) + Orsa(e)

70



Chapter 5. Limit cycles of uniform isochronous centers of degree 3

where the function f; is the one defined in (5.3) for i = 1,2,--- | k. From hypothesis

flpe) =€"fo(p) 4+ " fulp) + Orsr ().

Since f.(p*) = 0 and f/(p*) # 0, the implicit function theorem applied to the function
F(p,e) = f(p,e)/e" guarantees the existence of a differentiable function p(e) such that
p(0) = p* and f(p(e),e) =" F(p(e ),e) = 0 for every |e| # 0 sufficiently small. Then the
proof of the theorem follows.

5.3.2 Proof of Theorem 5.5

We use the Collins first and second forms to prove Theorem 5.5. Due to the fact that
system (5.1) becomes continuous by taking o = 2w, the averaging theory developed in
subsection 5.1.1 also applies to continuous differential systems.

We shall use the averaging theory given in Theorem 5.4 up to order 6 to study the limit
cycles for Collins first and second forms. In order to calculate the respective averaging
functions f;, for ¢ = 1,...,6, we used the formulae of y;, for © = 1,...,6 presented in
Appendix C (for simplicity we omit the “£” in the notations of the functions f; and y;
because we are in the continuous case).

Collins first form
Consider system (5.8) with f(x,y) = zy, that is, the unperturbed system is the Collins
first form.

6
B=—y+ay+ > 'pilxy),

=1
: (5.12)

g= xtzy’+ ) calry).
i=1
In order to analyze the Hopf bifurcation for system (5.12), applying Theorem 5.4, we
introduce a small parameter ¢ doing the change of coordinates x = ¢X, y = €Y. After
that we perform the polar change of coordinates X = rcosf,Y = rsin#, and by doing a
Taylor expansion truncated at the 6! order in € we obtain an expression for dr/df similar
to (5.2) with o = 27. The explicit expression is quite large so we omit it.

System (5.12) is a polynomial system. The functions F;(0,r), i = 1,...,6 and
R(0,7,e) (we omit the “+” in the notations of the functions F; and R because we
are in the continuous case) of system (5.12) are analytic. Moreover these functions
are 2w —periodic because the variable 6 appears through sinus and cosinus. Hence the
assumptions of Theorem 5.4 are satisfied. We take the open interval D of Theorem 5.4 as
D = {r: 0 <r < 1} because the Collins first form has the period annulus of the center
in the band —1 <z < 1.

Applying Theorem 5.4 we obtain the averaging function of first order

filr) =mr(ag + By).

Clearly fi(r) has no solution in D. Thus there is no small limit cycle which bifurcates
from the uniform isochronous center at the origin by the averaging method of first order.
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Setting 32 = —al we obtain fi(r) = 0. So we can apply the averaging theory of second

order using Theorem 5.4, obtaining the averaging function of second order.

fo(r) =mr(af + B3).

Since fa(r) has no solution in D, there is no small limit cycle which bifurcates from the
uniform isochronous center at the origin applying the averaging method of second order.
Doing 32 = —a? we get fo(r) = 0, and then we can apply the averaging method of third
order obtaining

fa(r) = r(Asr* + Ay),

where -
Ay = J(ar + 305+ ag + 7 +3f), Av=m(al + B).

The rank of the Jacobian matrix of the function A4 = (A;, A3) with respect to the
variables al, ad, af, al, 83, 51, B4 is maximal. Then the coefficients A; and Aj are linearly

independent in their variables.

The averaging function f3(r) has one solution in D if 0 < —A; /A3 < 1. Hence applying
Theorem 5.4 it is proved that at most 1 small limit cycle can bifurcate from the uniform
isochronous center at the origin and this number can be reached.

In order to apply the averaging method of order 4, we need to have f3(r) = 0 so we
set 33 = —af and BF = —(4af + 3a§ + ag + 365). The resulting averaging function of
fourth order is

f4(7”) = T(B37’2 + Bl),

where

4(
+O‘3 4 63@1 ﬁ ﬁ5 + 20 555 +51O‘8 +40‘1 +3O‘6
+ 62 "’0484'359)»

By =n(ai + ).

The rank of the Jacobian matrix of the function B = (By, Bs) with respect to its variables
is maximal, thus Bi, B3 are linearly independent in their variables.

Therefore fy4(r) has one solution in D if 0 < —B;/Bs < 1. Hence we can show that
at most 1 small limit cycle can bifurcate from the uniform isochronous center and this
number can be reached, applying Theorem 5.4. Solving B; = 0 for 83 and Bz = 0 for (32,
we obtain f;(r) = 0 so we can apply the averaging theory of order 5, and its corresponding
averaging function is

fs(r) = 7"(057"4 + Cyr? + ),

where
Cs :%(20& + 20 + ag + B3),
Cs 22(40&(@%)2 + 200507 + 2000505 + 200 ()" — gy
+ 616381 + 201005 — 20163 85 + ar(ay)’ — i (6;)* — o Bz
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01:

and since the rank of the Jacobian matrix of the function C = (Cy, C3, Cs) with respect
is maximal, C;, i = 1, 3,5 are linearly independent in their variables.

to its variables

The averaging function of fifth order f5(r) can have at most 2 solutions in D, see
Proposition 5.2. Thus applying Theorem 5.4 it is proved that at most 2 small limit cycles
can bifurcate from the uniform isochronous center at the origin and this number can be

+ o&a}l 5 (55) + 04154045 + 40‘10‘2 + 2a1a7 + 20‘158

+36165 + (o 2) ag + 3(a)* By + 381z + aéaéa}l + 2050505
— ay B335 + doyap 5 + B%aéaé +4osaf + onag + 3%59
+ 261033 — 20303 + aza] 5354 + Bragog + agai — B 53
+ 04}104?) ﬁiﬁg + 25 04565 + 055 4 6564 + 20‘555 + 20‘%04%
+ O‘é51 + 0‘8“2 + 35961 + 258041 + 359a2 253043 + 255%
+ Biaz +4ad + 3ag + B2+ al + 363),
(al + 52);

reached, using the averaging method of order 5.

In order to

order we have

where

5

Dy

Ds

apply the averaging theory of order 6 we solve C; = 0 for 33, Cs = 0 for
B2 and Cs for (33, resulting that f5(r) = 0. Calculating the averaging function of sixth

f(j(?”) = T’(D5T4 + .D47”3 + D37’2 + D1)7

1
= —%—4w(45a1a2 + 192050 — 112050 — 1120505 — 192070

+ 96 g + 288agay + 96agay — 19207 — 19208 — 9603
+ 192048 + 288a3 83 + 640t Bs — 1653381 + 320048 + 9604 i
+ 2371 B — 168, 82 + 288a1 B3 + 288c535 + 960535 — 9633,

1
= —gah(aé + B1) () + B3 +283),

1
:_Eﬁ(ms%(al) +3651 (1) — 384azay(aq)®

+ 7205 (aq)? + 2560383 (a1 )? + 1285;,5;(@1) — 2560; 85 (a1)?

+ 3845455(041) +319(ap)’aq — 27(8;) %y — 2560‘2(%%,)204%

— 25605 (ag)?ar + 905 (6)ar + 12805(8y)ar — 12861 (81) oy
— 128ayai (a)? + 51205 (B3 ) — 51204%0%04%0& 25604%04%0&

+ 572030307 — 256asa5a7 — 512asa3a; — 256(as )’ atal

— 256agaia; — 256azaza; — 256aza3a; + 2560ha7 — 256a7oz1

+ 867(ary)? B ay + 256()*Biag + 8280381 a + 128amar) Bya

+ 12803 B3a7 — 12831 fra; + 128a2a354a1 — 25603033, al

+ 128038 a7 — 128a564a1 — 128031 Bya1 — 25605035y

— 128ajB507 + 2560533 8307 — 25603, B3 G501 — 256(03)* By g

— 256036507 + 828,87l + 6083 Biag + 128a4ﬁ3a1

+ 256: Baa; + 1283 8] — 1280z 507 + 25631 53
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+ 76887 — 256851 + 3003 (B])* + 128a1(ﬁ4)
+ 25602 (35 )? — 128(%)2@;@1 - 384(&2)2%11@% + 768(a5)3a1

+ 256(ag) g — 482(ag)*a? — 256(aj)*a — 128(ay)a]
— 25604%)04%04% — 25604504%0(% — 1283503 — 2560055
1.1 2 1.1 2 1.1 2

+ 1536a30503 + 51204503 — 5120203 — 128aaas

— 128033073 — 256a;a;a§ 128a3a4 256050502

— 128702 — 2560702 — 128(ay)*ag — 128a5a3 — 512508

— 256ata + 768a6a2 + 256050 — 128a4a3 128aja

— 12830 — 128 — 128a2a8 — 512a; — 384046 128arg

— 25600 00 81 + T68( ) g By + 256(ay)?agB) + 60aalf;

+ 768aga3 31 + 256agas ) — 128atai) — 128a;a23;

— 1285033 — 1280331 + 2560a3(31)*Bs + 128a,03 B3

+ 25603 33 — 2560331 B3 + 128a§a B — 128a303 8,

+128(8;)*B38; — T68(ap)*az 5 — 128c;01 5 — 512050533

— 51205035 — 2560535 — 51205053 B5 — 256030, B3

+ 25607 35 65 + 128<a%>26i6é + 128a§6i651 256@%@%%

— 25607 8% — 128aai 37 + T68as05 37 + 256050837 — 1280337

— 256033357 — 1283331 51 — 2560335 5] + 2560335 — 2560331 35

— 1285318155 — 12803 55 57 + 128,55 5 + 128638 — 5120505033

— 2560232 — 256031 2 + 12881 B2 + 1288232 — 2560232

— 384(0)* By — 3840385 — 384,y By — 38407 55 + 7680 B

+ 2560433 + 2560535 + 128531 55 + 128531 32 + 12843152

— 256032 + 1288, 32 — 384a53: — 38451 35 — 1287 — 384/3;),
Dy =n(af + ),

Therefore fe(r) can have 3 solutions in D according to Proposition 5.2. By Theorem
5.3 (r,r3,r1,r®) is an ECT-system because Wi(z) = z, Wa(z) = 223, Wi(z) = 625,
Wy(z) = 482" are nonzero in D, where W;(z),7 = 1,2,3 denotes the Wronskian of the
first j functions in (r,r3,r% r5). Moreover D;, D3, D, and Djs are linearly independent
functions. In fact only Ds presents the coefficients af and o2, only D3 has the coefficient
a2, and Dy is the only one with the coefficients af and 5§. We claim that D, is also
linearly independent of the other coefficients. Suppose that this is false. Then there exist
real numbers k, [, m not all zero such that Dy = kD + (D3 +mDs. But D, is the only one
with the variables af and S, so in order to D, does not present these variables we must
set k = 0. Since the other two functions D3 and Dj also have variables which uniquely
appears in their respective expressions, the same argument holds so [ = m = 0. But then
D4 = 0, which is a contradiction. Therefore Dy, D3, Dy and Dj are linearly independent
functions.

Hence applying the averaging theory of order 6 we can show that at most 3 small limit
cycles can bifurcate from the uniform isochronous center at the origin and this number
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can be reached.

Now we perform similar calculations to the Collins second form.

Collins second form
Consider system (5.8) with f(z,y) =z + Axy.

6
&= —y+ 2’ + Az’y + Z e'pi(z,y),
= (5.13)

6
g= ztay+Any’+) gy,
=1

where A € R\{0}, since for A = 0 system (5.13) is a quadratic system, which has been
exhaustively studied.

Similarly to the previous procedures applied in the Collins first form, in order to
analyze the Hopf bifurcation for system (5.13), applying Theorem 5.4, we introduce a
small parameter € doing the change of coordinates x = X, y = €Y. After that we
perform the polar change of coordinates X = rcos#,Y = rsinf, and by doing a Taylor
expansion truncated at the 6 order in € we obtain an expression for dr/df similar to
(5.2) with a = 27. Using the same arguments as in the proof of the Collins first form
the differential equation dr/df = ... satisfies the assumptions of Theorem 5.4. We take
D ={r:0<r <rg< 1}, where the unperturbed system has periodic solutions passing
through the point (r < ry,0 = 0).

Applying Theorem 5.4 we obtain the averaging function of first order

filr) =mr(ag + By).

Clearly fi(r) has no solution in D. Setting 33 = —al we obtain fi(r) = 0. So we can
apply the averaging theory of order 2 using Theorem 5.4, obtaining

fo(r) = wr(af + 53)

Again f5(r) has no solution in D. Doing 3 = —a? we get fo(r) = 0. Then we can apply

the averaging method of third order
fa(r) = r(Asr? + Ay),
where
Ay =7 (440} + af + 3a§ + o — 38} — 53 + B} + 35)),
Ay =n(a} + 63).

Thus f3(r) can have one solution in D if 0 < —A;/A3 < ro. In order to apply the
averaging method of forth order, we need to have f3(r) = 0. We set 35 = —a} and
Bl = —(4Aaf + ol + 3af + af — 381 — B2 + 38)). The resulting averaging function of
fourth order is

f4(7”> = T(B3T2 + Bl),
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where

By :%(41404%045 +4Aa} + 3ajag + 361 B3 — 31 By + 3ajag + 20404

+ 2085 + 361 By + a0 — axff; + agag + 35 — 2055
+agoy — By By + agan — Bif5 + 20555 + Prog — 385+ af
— B2+ 3ag + 07 + af + 355,
By =r(a} + ).
Then f4(r) has one solution in D if 0 < —B;/Bs < 1. Solving By = 0 for 3, and

Bz = 0 for 8%, we obtain f;(r) = 0, and we can apply the averaging theory of order 5. Its
corresponding averaging function is

fs(r) = 7“(057"4 + Cyr? + ),

where

o

24
+ 6A8y — 1285 + 6y — 635 + 18ag + 120 + 1835),

Cs :%(4140&(045)2 +4A0tas + 4Aajad 4+ 4Aad — 3(0&)253} — 3(511)2531

Cs (12A%] + 18Aal — 1TABs + TAag — 19A6) + 1240} + 6 A}

3ol — 3018+ 351008 + 3aade) ~3adads] + 6
111 111 11,1 1/ 142 111 3
+ 6o s + 20550, + 2000505 + 200 (az)” — 3P1ayaz + ai
~ alad + 131+ 2atabd — 20088 + a0} — ad(3))?
 adfhal + alall — 2a3(817 + alphal + adad + 26802 + 358
192 1.2 1.2 142 12 12 1 1\2 o1
— 3 By + 3oy 4 20 07 + 20 B5 + 361 By + (o) ay — (a3)7 B3
+ (ap)?ag + 3(05)?Bg + 31y fy + azagzay + 2050505 + fBiog
— a%ﬁiﬁé + 40450%5% + ﬁlloéaé + ayaf — a%ﬁg + ozéozg + 304%53
+ 201 B3 + Boalt + 36387 — 20505 + azaly — B3 57 + Blagaj
+ agas + agoi — BiB5 + aqai — B8 + 281 as B — 383 + 36153
+3agad + atai — B3 55 + 20382 + 2akal + agffi + 3ajas + o
+ 306587 — 36,07 + 26507 — fia5 + 38505 — 26303 — B5 + 303),
Cy =m(af + 53),

and since the rank of the Jacobian matrix of the function C = (Cy, C3, Cs) with respect
to its variables is maximal, C;, 1 = 1, 3,5 are linearly independent in their variables The
averaging function f5(r) has at most 2 solutions in D, see Proposition 5.2. In order to
apply the averaging method of order 6 we solve C; = 0 for 83, C3 = 0 for 52, and C5 = 0
for 35, resulting f5(r) = 0. We remark that these expressions only hold for A # —3. The
results for A = —3 are presented later on. Calculating the averaging function of sixth
order we obtain
fﬁ(?”) = T’(D57’4 + D3T2 + Dl)
The expressions of D; for i = 1,3,5 are very long so we present them in Appendix D.

Therefore fg(r) has at most 2 solutions in D. Using the same arguments than in the
proof of the Collins first form for fs(r) we can show that at most 2 small limit cycles
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can bifurcate from the uniform isochronous center at the origin and this number can be
reached.

Now we analyze the bifurcation of small limit cycles for the center of (5.13) in the case
A = —3. We remark that until the averaging method of order 5 the respective averaging
functions for this special case can be obtained by plugging A = —3 in the equations of
the general case, so we do not explicit them. Hence we solve C; = 0 for 85, C5 = 0 for
B2, and C5 = 0 for af, and we get f5(r) = 0 when A = —3. Calculating the averaging
function of sixth order we obtain

fG(T) = T(D57”4 —|— D47“3 + D3T2 —|— Dl)

The explicit expressions of D; for j = 1,3,4,5 are very long so we present them in
Appendix E.

Therefore fg(r) has at most 3 solutions in D according to Proposition 5.2. Using
similar arguments as those applied in the proof of the Collins first form for fg(r) it is
proved that at most 3 small limit cycles can bifurcate from the uniform isochronous
center at the origin and this number can be reached.

This completes the proof of Theorem 5.5.

5.3.3 Proof of Theorem 5.6

A first integral H and its corresponding integrating factor u for system (5.6) are H(x,y) =
(22 +y?)/(1 —2?) and p = —2/(2*> — 1)%2. When h € (0,1) then H(x,y) = h are periodic
solutions around the center (0,0) contained in the open disc of radius 1 centered at the
origin. For proving Theorem 5.6 we shall use Theorem 5.1. Therefore applying the
notation of Theorem 5.1 we have h; = 0, hy = 1 and p(R,0) = R/(R*cos*0 + 1) for
all 0 < R < 1 and 0 € [0,27). Then all the hypotheses of Theorem 5.1 are satisfied for
system (5.6). Using Theorem 5.1 we transform the perturbed differential system (5.9)
into the form

@_ Z?ZOMi(Q,Oé,ﬂ)Ri
do - c 1+ R2cos?6

+ O(e?) (5.14)
where

My(6, ar, ) = — V1 + R2cos? 0 cos 0 + By sin b)),
Mi(8,a,8) = — a;cos® 0 — (ag + B1) cos O sin ) — B, sin? 6,
My(0, o, B) =(—1/4v2)\/2 + R2 + R2 cos(20)((Ta + 3avs + a5
+ 1) cos O + (ap + a3 — a5 — By) cos(30) + 2(ay
+ Bo+ B3+ B5 + (o + Bo + B3 — B5) cos(26)) sin §),
Ms(0,a, ) = — (201 + ag) cos* O — (2ay + a7 + By + ) cos® O sin 6
— (a1 + ag + By + Br) cos? Osin® 6 — (az + ag + Ps)
cos @ sin® @ — By sin? 4,
M40, a, B) =(—1/2v/2) cos /2 + R? + R? cos(20) (g + a3 + a5
+ (g + a3 — as) cos(26) + ay sin(26)),

7
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M50, a, B) =(—1/4) cos 0((3(a1 + ) + ag) cos @ + (aq + ag — )
co8 30 + 2(az + a7 + a9 + (g + ap — ag) cos 26) sin §),

where a = (o, ..., a9) and 8 = (Bo, ..., Bo).
We must study the zeros of the averaging function f : (0,1) — R defined by
o 2 Z?:() Mz<67 «, 6>RZ

J(R) = 0 1+ R2cos?6 0.

By computing the previous integral, we obtain

f(R) =m(ag — a1 — 3ag — Bo — fr + 3059)go — m(o1 + o6 + as) 1
+ 27 (g — Bo) g2 + 2m(a — as — Br + B9)gs, (5.15)

where

=R, g=R’ g=RVI+R: g¢g3=(1-V1+R?/R

In order to find the maximum number of simple zeros of the function f we need to prove
that the four functions g; : (0,1) — R, ¢ € {0,...,3} given in (5.15) are an ECT-system
and according to Theorem 5.3 this is the case if each Wronskian W;(go,...,g;) #0, j €
{0,...,3}. More precisely

Wo=R, Wy,=2R%  W,=—2R’/(1+ R?)*?
W3 =12R*(8 + 12R? + 4R* — 8(1 + R*)%? — R*/1+ R?)/(1 + R®)"/2.

For R € (0,1) we have that all the Wronskians above are nonzero. Moreover the rank
of the Jacobian matrix of the coefficients of g;, @ = 0,...,3 in f(R) in the variables
aq, ag, g, B, Br, By is maximal. Thus applying Theorems 5.3 and 5.4, we conclude that
wit is proved that at most 3 medium limit cycles can bifurcate from the periodic solutions
surrounding the uniform isochronous cubic center of the Collins first form and this number
can be reached. This completes the proof of Theorem 5.6.

5.3.4 Proof of Theorem 5.7

We use the Collins first and second forms to prove Theorem 5.7. We were able to apply
up to the averaging theory of order 6 using Theorem 5.4, and in order to calculate
the respective averaging functions f;, for © = 1,...,6 we used the formulae of y;t from
Appendix C.

Collins first form

Consider the planar cubic polynomial differential system (5.10) with f(z,y) = zy. In
order to analyze the Hopf bifurcation for this system, applying Theorem 5.4, we set a« = 7
and we introduce a small parameter € doing the change of coordinates © = ¢ X, y = €Y.
After that we perform the polar change of coordinates X = rcosf, Y = rsinf and by
doing a Taylor expansion truncated at the 6 order in & we obtain an expression for dr/df
similar to (5.1), with & = m. The explicit expression is very large so we omit it.

The differential system (5.10) with f(z,y) = xy is a polynomial system, therefore the
corresponding functions F*(0,7) and RF(,7,¢), for i = 1,...,4 are analytic. Moreover,
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since the variable 6 appears through sinus and cosinus, system (5.10) with f(z,y) = zy
is 2r—periodic when it it is written under the form dr/df. We shall have D of Theorem
b4as D={r:0<r <1}

We obtain each y;” and y; ,i = 1....,4 using the formulae in Appendix C, respectively
for X; and Xy of system (5.10) with f(z,y) = zy, after the changes described in the
previous paragraphs of this section. Then we calculate the averaging functions f;,i =
1....,6 using equation (5.3). Therefore, by Theorem 5.4 we have the averaging function
of first order

fi(r) = mr(al + Ba + 71 + 03).

Clearly fi(r) has no solution in D. Thus there is no small limit cycles bifurcating from
the uniform isochronous center at the origin by the averaging theory of first order. Now
setting vf = —(ai + (3 + 1) we obtain fi(r) = 0. So we can apply the averaging theory
of order 2, obtaining

fa(r) =r(Aar + A1),

where
2
Ay =5 (s = v1 + B3 + 255 — 85 — 265),
™
Ay = (anay + 207 +21(ar)” — agp + 291 — B + ufy + dman

— Y25 = BBy +2m(By)" + 205 + 0101 + By0y + 263).

Thus f5(r) has one solution in D if 0 < —A;/As < 1. Therefore applying Theorem 5.4
it is proved that at most 1 small limit cycle can bifurcate from the uniform isochronous
center at the origin and this number can be reached. To apply the averaging method of
third order we need that fo(r) = 0. Thus we solve A; = 0 for ; and Ay = 0 for 7% from
these coefficients. Calculating the next averaging function we have

f3(7"> = T(BgTZ + BQT + Bl>,

where

1
By =S m(—483 + 3ag + B + f + 365 — 48 + 3} + 355 + 3y, +34),
2
By :5(04%043 — 3B 85 + 6w B3 — a1 By + bmajay + 20008 + 12w s

O‘idl + 04173 + 20‘175 + 6776263 +3a 2044 45254 + 6o %ﬁé
+ 1213385 — B304 — 5By + 61y — 3ayyy + 28505 + 305
+ 30‘2 + 65? + 35%‘% + 355541 - 5372 - 5572 + 35372 5273
+ 60373 + 28575 — 303 — 371 — 63),

By :iﬂ(l()WQ( D? — 8781 (a1)? + 307%(a1)? By — 4(a})?Ps

16
+87T(Oéi) 2+ 3(8)? 52 +4m(a7)?0; — 4(aq)?0; — dm(a7)*y,
+ 3(ﬁ1> - 167T51041 2 5104151 + 3C“l (042> + 30 1(52)

- 4a1(ﬁg) = 8781 (B,)* — 281010y + 16701058, + 207050)
+ 81018500 — 2818501 — 8en 50, — 20n057, — 40 By
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and since the rank of the Jacobian matrix of the function B =
to its variables is maximal, B;, i =1,...

The averaging function f3(r) can have at most 2 solutions in D, see Proposition 5.2.
Thus using Theorem 5.4 we conclude that at most 2 small limit cycles can bifurcate from
the uniform isochronous center at the origin and this number can be reached. In order to
apply the averaging theory of order 4 we need that f3(r) = 0, so we vanish its coefficients
Bi, By and Bj by conveniently isolating &5, 2 and 3 from these coefficients. The resulting

+ 167T0410‘1 + 40‘1(12 + 167T04152 4511/33 1( %)2
—401(05)* — a7 (7)” + 281017, — 8mar By, — 20‘%5%721
+ 40107 — 4oy + 10 2(83)° + 3(ap)* By + 4m(B;)%0)
- 4(52) 51 - 251 272 , + 8 052(52> + 20 2/3251 + 4o 2041
— 48357 + Aoy B3 + 1676, 55 — By(61)% — 45,(6)°
- 26“25272 + 45252 4/61041 + 16”520‘1 + 404%51
- 404172 + 4520‘2 + 45251 + 80‘1 + 852 62 (72) + 25152’72
- 477(52) - 2525172 4ﬁ272 4ﬁ272 + 871 + 853)7

averaging function of order 4 is

where
Cy

Cs =

Cy =

f4(7’) = T(O47’3 + 037”2 + 027" + Cl),

4

1
Tid ——(128(ay)* + 25685f + 51282 + 36aimal + 36aima

— 1447%(8;)? + 128(85)* + 512(83)* — Sdagm By + 18agm 3y
+ 72761 By — 144a;m By + 108ag7m? By + 36agm? By — 21605753,
— 63almfBs + 2TadnBY — T2aim B — 36781 AL + 51244 6}

— 36mB1 5 + T2am B — 99735 B — 99wy — 187 3] B

+ 367263 B3 + 360,71 + 18w By — 817wBy 8 — Yo TPy

+ 5471 By 4 10872 B3 Ba + 108aim? By + 1620w By — 14433
+ 36732 + 1087335 + 108ajagm” + 360 a7 + Sdagagm

+ 901 asm + Sdagagm + 2T7ajagm + 108agm + 36037),

- (32al(al)? + 15578} ()7 ~ 168}(0})? — 36wB1 (ad)?

+ 907283 () — 3283 (a7)? + 45057 (a)? + 36az7(a))?

+ 48asaza + 19200507 + 48a3a; + 96aza] — 483 )

— bdajmBial — 176a452a1 + 90ajm? By — 144aimByag

— 1627 3] B3a1 + 9072 By B3 + 11265 Bz + 540427rﬁ3oz1

+ 4883 Byaq — 18073y By — 10873, Biay + 18072 By B5 vy

+ 324asmBiar + 1087 [B5a; — 4832a) + 2167 i

+ 162050 ma; — 25633 B5a; — 48 By + 14daimByaq
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+108a3ma; — 64a)(By)* + 45a,m%(B)* — 180a3m(35)?
+ 144(ay )y + 48azaf + 96045041 + 144003 + 14daya]
+ 14403 — 240a5a;,52 + 1920504 35 — 2400335 + 96023,
+ 2400381 By — Hdaymhi By + 162508,y + 108aim Sy
+45m%(B,)° B3 + 128(8,)*B5 — 16273 B, B3 + Hdaym 3, B
— 1447(5,)*B; — 4803 B; — 192055, 85 + 192531 5,8,

+ 288(a3)?Bs + 1083w B; + 144(81)*Bs + T2a5m(By)?

+ 7205 (y)? + 907 (35)° B3 + 64(6;)* 55
+ 2160278L — 14451 57 — 240083 + 960 52 + 108733 B2
— 19281 85 + 216782 33 + 108a;7 B2 — 1445; 32 + 108733 33
— 192833 83 + 288532 + 21673, B2 + 14435 + 28833
+ 108cyaim — 108731 By B + 324w By B + 288a5031),

1

C, :@w(wi"(a})‘* + 127(ad)* + 36ai(al)® — 127261 (al)? — 3651 (al)?

+47° B3 (aq)° + 12057 ()* + 487 (81)* (e)* + 67°(8;)* (o)

— 247(6;)*(a1)? + 7205 (a1)* — 48aymPi()” — 36335 (a7)?

— 367251 By (1)* + 3651 By (a1)* + 360, By (a1)? — 48737 (ap)?

+ 247785 (en)” — 2483 ()* + 2407 (a7)” + 48(a) *m(0y)*

+48a3m(ay)? + 60(ay) e — 60(81)’ay + 47°(8;)°cy

+360,(81) a1 — 3605(6;)*ar — 3675, (B;)aq + 3601 (B2) oy

+ 36057 (By) %} + 14404;@3@% + 960507 — 36(as)*Brag

- 4804261% 960‘17T51 041 + 967(51) 52041 48@%52%

— 96057 B; fya + 48aiT Byaq + 96(a2) mByaq + 965 Byaq
48042/810‘1 + 1445151 al - 967T5251 041 - 967?51 52041

+ 487 By B3 — 48(By) B3y + 96y By — 9637

+ 967831 + 96agaima; + 96aiTar + w4 (By)*t + 127m(8;)*

- 127T261(52) - 3651 (52) + 12&%7T2(ﬁ%)3 + 720‘%(511)2

+48m(81)*(By)” — 2401 (5,)” — 480,y (B2)” + 24aim*(B,)*

+48(ay)*m(By)? 4 48aim(By)? + 487 (3)% + T2() 0

+ 9603 a; + 96ayai + 19207 — 48asaifl + 36a5(By)?

— 9601 8; + 60(ay)’ B — 60(57)° B3 + 3605(6;)? 55 + 14daza3f,

+ 96058, — 36(a3)?B1 By — 48031 By — 9601 B) By + I6azaimf,

+ 960%m 3} — 48m(B3)26% — 48k B33 + 14481 5357 + T2(a)* B3

— 960337 + T2(BL)2 63 + 247 ()2 B2 + T2(83)25 + 960363

— 4803152 — 96w BLB3 + 960k 5353 — 965252 + 96am 2

— 968,87 + 960535 — 96[3] B + 967 33 B + 19235 + 48(a})*).

Using similar arguments as in the study of the previous averaging functions, we

conclude that fy(r) can have at most 3 solutions in D, so at most 3 small limit cycles
can bifurcate from the uniform isochronous center at the origin and this number can be
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reached. In order to apply the averaging method of order 5 we must have that f4(r) = 0.
Thus we solve C; =0, Cy = 0, C3 = 0 and Cy=0 isolating 33, 32, 52 and 3} respectively.
Now we can apply the averaging theory of order 5, and its averaging function is

f5(’f’) = T(D5’l"4 + D47“3 + D37‘2 + DQ’I" + Dl),

where again we do not provide the explicit expressions of D, for j = 1,...,5. Hence f5(r)
has at most 4 solutions in D. Doing analogous arguments as in the proof of Theorem 5.5
to prove that D; for 7 = 1,...,5 are linearly independent functions and to prove that
(r5, 7% r3 R? r) is an ECT-system (see Theorem 5.3), we prove that at most 4 small limit
cycles can bifurcate from the uniform isochronous center at the origin using the averaging
theory of order 5, and this number can be reached.

To apply the averaging theory of order 6 we solve Dy = 0 for 65, Dy = 0 for 62, D3 = 0
for 63, D, for 62, and Ds = 0 for 74, so we get f5(r) = 0. Calculating the averaging
function of order 6 we obtain

fo(r) = r(Eer® + Esr* + Eyr® + Esr® 4+ Eor + E)).

We do not provide the expressions of F; for i = 1,...,6 because they are too long.
Thus fs(r) has at most 5 solutions in D. Doing analogous arguments than in the proof of
Theorem 5.5 we can show that at most 5 small limit cycles can bifurcate from the uniform
isochronous center at the origin using the averaging theory of order 6, and this number
can be reached.

Collins second form

Similarly to the previous arguments used in the Collins first form case, we apply
Theorem 5.4 to study the Hopf bifurcation for system (5.10) with f(z,y) = = + Axy,
for A € R. We set a = 7 and we introduce a small parameter € by doing the change
of coordinates © = X, y = €Y and then we perform the standard polar change of
coordinates X = rcosf, Y = rsinf. Doing a Taylor expansion truncated at the 6'* order
in € we obtain an expression for dr/df under the form (5.1), with @ = w. The explicit
expression is very large so we omit it.

We shall have the open interval D of Theorem 5.4 as D = {r : 0 < r < ro < 1}, where
the unperturbed system has periodic solutions passing through the point (r < rg, 8 = 0).
Moreover since system (5.10) with f(x,y) = = + Azy is a polynomial differential system,
the corresponding functions F*(6,r) and RE(0,r,¢), i = 1,...,4 are analytic. Finally,
the variable § appears through sinus and cosinus in system (5.10) with f(z,y) = = + Axy
when it is written under the form dr/df, and therefore it is 2r—periodic.

We obtain each y;” and y; ,i = 1....,4 using the formulae provided in Appendix C
respectively for X; and X, of system (5.10) with f(z,y) = = + Azy, after the changes
described before. Then we calculate the averaging functions f;,7 = 1...., 6 using equation
(5.3). Hence, by Theorem 5.4 we have the averaging function of first order

1
filr) = grr(en + B + 8 + ).
Therefore fi(r) has no solution in D. Setting 7§ = —(af + 3 + §3) we have fi(r) = 0.
So we can apply the averaging theory of order 2 obtaining

fg(’f’) = T(AQT’ + Al),
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where
2
Ay =2 (=38, + B + o + 263 + 30, — 0y — 205 — ),
T
A =7 (2n(01)? + ol (=B8] + af + 4mfy + 61 — 3) — B3 + 2w ()’

+ @%521 + 5215% + 20‘% + 252 5272 + 2’71 + 252)

Thus fo(r) can have one solution in D if 0 < —A; /Ay < rg. Therefore applying Theorem
5.4 we can show that at most 1 small limit cycle can bifurcate from the uniform isochronous
center at the origin and this number can be reached. To apply the averaging theory of
order 3 we solve A; = 0 and Ay = 0 isolating v} and 77 respectively. Calculating the next
averaging function we have

fg(’l") = ’I"(Bg’l"2 + BQ’I“ + Bl),
where

B :g(—zum; — 4A5; — 3By — 263 + 20 + B + 3o + Br + ag + 3534

+ 365 — 463 — 363 + 0% + 305 + 376 + 73,

By =+ 2(9B11521 — 187aq By + ajay — 33163 + 6w 85 — a8y
+ 6raray + 2a0s + 12701 B — a1d; + aivys + 2007 — 187(5B;)?
+ 673y 35 — 45264 + 3a2a4 + 12785 3% + 633 — B3b; — 5350
+ 6752044 472 + 252 045 9/322 + 3@% + 30@21 + 6ﬁ5z - 95%55
+ 35151 + 35151 + 952'72 - 353'72 - 655'72 + 35372 - 90‘%521
+ 5273 + 65273 + 25275 + 953 - 373 - 374 - 65?%

By =+ —-(107%(a})’ — 8741 (a})? + 30m(a})?B} — 4(al)*B}

16
+ 8m(an)ay + 3(81)* 6, + 4m(an)?6) — 4(a)?0, — 47T(041) Y
— 1673, 04152 - 251 151 + 30‘%(0‘%)2 + 30m o 1(52) - 1(52)

— 8761 (B3)? — 2Biatad + 16malad By + 2aiasdl + Sralfad:
- 25116215i - 80‘1525% %045721 404161 + 167T0410‘1 + 40‘1‘%
+16mar By — 48183 — a1(01)” — 4aq(d3)° — 041(72)
+ 2511041721 8770415272 - 20‘%5172 + 404151 - 1722 + 10772(521)3
+ 3(042) 52 + 4w (62) 5% (62) 51 - 2ﬂ1 QP s 8770‘2(@)
+ 2050507 + 4oy — 485 87 + 4oy B3 + 1615585 — 5 (6;)?
- 452 (5%) 2a2ﬂ272 + 46252 51041 + 167TB2041
+4030] — dafvyy + 48505 + 4[;’251 + 803 + 8835 + 3(81)*«
— By(1)* + 2515272 A (83) v, — 283017 — 4537,
45272 + 871 + 853)

Then f3(r) has at most 2 solutions in D. Thus applying Theorem 5.4 it is proved that at
most 2 small limit cycles can bifurcate from the uniform isochronous center at the origin
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and this number can be reached. To apply the averaging method of order 4 we solve
B; =0, B, =0 and Bz = 0 isolating 43, 02, 3 respectively. The next averaging function
is

f4(T) = 7"(047"3 + 037“2 —+ CQ?” —+ Cl)

We do not provide the expressions of C; for j = 1,...,4 because they are too long.

Of course fy4(r) has at most 3 solutions in D, that is, applying the averaging theory
of order 4 we can show that at most 3 small limit cycles can bifurcate from the uniform
isochronous center at the origin and this number can be reached. To apply the averaging
method of order 5 we solve C; = 0, Cy = 0, C3 = 0 and C,; = 0 isolating 3, 32, 82 and
35 respectively. The next averaging function is

f5(7‘) = T<D5T4 + D47”3 -+ D3T2 + DQT’ + Dl),

where again we do not give the expressions of D; for j = 1,...,5. Hence f;(r) has at
most 4 solutions in D. Using analogous arguments than in the proof of Theorem 5.5 and
applying Theorem 5.4 we can show that at most 4 small limit cycles can bifurcate from
the uniform isochronous center at the origin and this number can be reached.

In order to apply the averaging theory of order 6 we solve D; = 0 for &5, Dy = 0 for
03, D3 = 0 for 63, D, for 63, and D5 = 0 for 7¢, so we get fs5(r) = 0. Calculating the
averaging function of order 6 we obtain

fﬁ(T’) = T‘(E6T5 + E5T4 + E4T'3 + E3T'2 + EQT' —|— El)

We do not provide the expressions of E; for 1 = 1,...,6 because they are too long. Thus
fe(r) has at most 5 solutions in D. Doing analogous arguments than in the proof of
Theorem 5.5 and applying Theorem 5.4 it follows that at most 5 small limit cycles can
bifurcate from the uniform isochronous center at the origin using the averaging theory of
order 6, and this number can be reached.

This ends the proof of Theorem 5.7.

5.3.5 Proof of Theorem 5.8

We proceed as in the proof of Theorem 5.6 in section 5.3.3 since the unperturbed system
(5.6) is the same. Hence a first integral H, its corresponding integrating factor u, and
a function p satisfying the hypotheses of Theorem 5.1 are H(z,y) = (2? + 3*)/(1 — z?),
p=—2/(x* —1)% and p(R,0) = R/(R*cos*f + 1) for all 0 < R < 1 and 6 € [0, 27).

Applying Theorem 5.1 we transform the perturbed differential system (5.11) into the
form

5 .
S M, '
- i=0 Z<07 «, ﬁ)R + 0(52) if y > 07

dR 1+ R?cos? 0
_ | (5.16)
db S Ni(0,7,0) R’ o
= f
It RZcost +0E) iy <0,

where the functions M;(0, «, ) coincide with those given in system (5.14), N;(0,v,0) =
M;(0,,0) fori =0,...,5, with v = (y0,...,%), 6 = (Jo, - - -, o).
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The discontinuous differential system (5.16) is under the assumptions of Theorem 5.1.
Hence we must study the zeros of the averaged function f : (0,1) — R

/ Zz OM 0 « B) de_'_ o zf:ONz(evvaé)RZ

do
1+ R2%2cos?6 1+ R2?2cos?6

™

We compute these integrals obtaining

f(R) =n(asg — ag — fBr + o + 76 — 78 — 07 + d9)go + 7/2(
—ay; —3ag — P2 — Br+308y — 71+ % — 378 — 02 — I7
+309)g1 — 7/2(a1 + g + ag + 71+ Y6 + 8)92 + (Bs (5.17)
—ay—fo— B3+ 7+ 00+ 03— d5)g3 + m(as — By + s
—09)gs + (Ya — ) gs + (a — Bo + B3 — 5 — 74 + o
— 03+ 05)g6 + (4 — 285 — Y4 + 205) 97,

where

90 (1_ \ 1+R2)/R’ g1 :R7 g2 :R3a

93:V1+R27 94:R\/1+R2, 95:R2V1—|—R2,
ge =(arcsinh R)/R, g7 = Rarcsinh R.

In order to find the maximum number of simple zeros of function f we need to prove that
the eight functions ¢; : (0,1) — R, ¢ € {0,...,7} given in (5.17) form an ECT-system
and according to Theorem 5.3 this is the case if each Wronskian W;(go,...,g;) #0, j €
{0,...,7}. More precisely

Wo=(1—K)/R, W, = (2K —2— R*)/(RK),

Wy =2K3(1 — 6K% 4 8K?3 — 3K*),

W3 =6R?K (8 — 8K + 4R°K + R'(16 — 7TK) + 4R*(6 — 5K)),

W, =—36R?K "(4R°K + R*(76 — 56K) + R*(40 — 17K)
—40(K — 1)),

W5 =1080R°K " (24(K — 1) + R*(R*K (3R*> — 5) + 4(4K — 7)),

Ws =25920R™ K 2°(64(1 — K) + R*(R*K (6R* — 17) + 32(7 — 6K))
+ 105R? arcsinh R),

Wy =1244160R™ 5K 2°(4R® — 515R* — 12R° — 256(K — 1) + R*(896 K
— 243) + 105RK (2R? — 5) arcsinh R),

where K = +/1+ R?. For 0 < R < 1 we have that all the Wronskians above are nonzero.
Moreover the rank of the Jacobian matrix of the coefficients of ¢; for i € {0,...,7} in
(5.17) in the variables ay, ay, as, as, Bo, B2, B3, B5, B7, Ba, V1,745 V6> V85 00, 02, 03, 05, 07, Gg 18
8. Hence applying the averaging theory of first order and Theorem 5.3 it is proved that
at most 7 medium limit cycles can bifurcate from the periodic solutions of the cubic
uniform isochronous center of the Collins first form and this number can be reached. This
completes the proof of Theorem 5.8.
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Chapter 6

Limit cycles bifurcating from
continuous and discontinuous
perturbations of uniform isochronous
centers of degree 4

In this chapter, we apply the averaging theory developed in chapter 5 to provide lower
bounds for the maximum number of limit cycles that bifurcate from the origin of quartic
polynomial differential systems of the form & = —y + ap(z,y), vy = =+ yp(x,y), with
p(z,y) a polynomial of degree 3 without constant term, when they are perturbed, either
inside the class of all continuous quartic polynomial differential systems, or inside the
class of all discontinuous piecewise quartic polynomial differential systems with two zones
separated by the straight line y = 0.

6.1 Background

According to Proposition 2.1 (see section 2.2) any planar polynomial differential system
of degree n with a uniform isochronous center can be written into the form

where p(z,y) is a polynomial in x and y of degree n — 1 and p(0,0) = 0.

Let H.(n) denote the maximum number of limit cycles that bifurcate from the origin of
system (6.1), when it is perturbed inside the class of all continuous polynomial differential
systems of degree n, and Hy(n) denotes the maximum number of limit cycles that bifurcate
from the origin of system (6.1), when it is perturbed inside the class of all discontinuous
piecewise polynomial differential systems of degree n with two zones separated by the
straight line y = 0. We provide lower bounds for H.(4) and H4(4) in both cases when
the origin is either a uniform isochronous center, or a weak focus. The method used for
obtaining these lower bounds is based on the averaging theory.

In order to prove our results we also need the Descartes Theorem about the number
of zeros of a real polynomial, see [8].
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Theorem 6.1 (Descartes theorem). Consider the real polynomial r(z) = a;; x™ + a;,x™ +
oot ap o with 0 = i) < iy < ... < i, and ai; # 0 real constants for j € {1,2,...,r}.
When a;;a;;,, < 0, we say that a;; and a;,,, have a variation of sign. If the number
of variations of signs is m, then r(x) has at most m positive real roots. Moreover, it is
always possible to choose the coefficients of r(x) in such a way that r(z) has exactly r —1
positive real roots.

6.2 Main results

We consider the following family of continuous differential systems

4
&= —y+ap(r,y) + Z e'pil,y),
i=1
’ (6.2)

g= z+yplr,y)+ Y alr,y),
=1

where
D; :aé + a{x + agy + ozéxz + aia:y + oz%gf + 04%3:3 + aj}ny + agng + agy?’
+ador! + o 12y + alyr’y? + odyey® + adyy’,
q; =05 + Blz + Biy + Bla® + Blay + Biy* + Bia® + Bra’y + Blay® + By’
+ Boxt + B112%y + Blax®y? + Blary® + By’
and of the discontinuous differential systems
T\ | Xi(z,y) i y>0,
(?J ) =Xey) _{ Xo(z,y) if y <O, (6.3)
k .
X, () = < y+ap(z,y) + 3 'pile,y) ) |

z+yp(z,y) + S ai(x,y)

e = [ Ty Hap(zy) + S Elu(a,y)
Xolzy) = ( v+ yp(r,y) + S0 v, y) )

where

uj =74 + e + Y + e’ ey +gy? g’ + ety +day? + gy
+ ot + 2%y + a2y sy’ ey’
v; =6 + 6w + 03y + 4 + lay + 0ly* + §ia° + Sty + day® + &y
+ oot + 67,27y + 01,27y + Oy + 64y,
with £ = 4 or k = 7 depending on the order of the averaging theory that we can compute.
For the continuous and the discontinuous cases we have to consider either

p(m, y) = thZE + tmy + t20x2 -+ tul’y -+ t02y2 + tgol’g -+ t21x2y -+ tlglL’yQ —+ t03y3, (64)
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with t;; ER, i+ 7 =1,2,3, t5,+ 15, + 13, + 33 # 0, or
p(x,y) = i + tnzy + tsox” + taxy?, (6.5)
with #2, + 3, # 0, or
p(x,y) = tsox® + to1 @y + t1awy® + tosy®. (6.6)

We remark that the polynomials p(z,y) in (6.5) and (6.6) are used to study the cases
of quartic polynomial differential systems with a uniform isochronous center at the origin,
having a non—homogeneous nonlinear part (see Theorem 4.1) or a homogeneous nonlinear
part, respectively. On the other hand, since (6.4) is a general cubic polynomial in z and
y without constant term, it is used to study the bifurcation of limit cycles in both cases
when the origin can be either a uniform isochronous center or a weak focus.

In the following we state our results.

Theorem 6.2. Using averaging theory of order j we obtain, for |e| # 0 sufficiently small,
Hy(4) > 6 for the differential system (6.3) with p(x,y) of the form (6.4) (i.e. system (6.3)
has a weak focus or a uniform isochronous center at the origin).

Theorem 6.2 is proved in section 6.3.1.

Theorem 6.3. Using averaging theory of order 4 we obtain, for |e| # 0 sufficiently small,
Hy(4) > 5 for the differential system (6.3) with p(x,y) either of the form (6.5) or (6.6)
(i.e. system (6.3) has a uniform isochronous center at the origin).

Theorem 6.3 is proved in section 6.3.2.

Theorem 6.4. Using the averaging theory of order 7 we obtain, for |e| # 0 sufficiently
small, Hq(4) > 6 for the differential system (6.3) with p(x,y) of the form (6.5) and

Theorem 6.4 is proved in section 6.3.3.

Theorem 6.5. Using the averaging theory of order 4 we obtain, for |e| # 0 sufficiently
small, H.(4) > 2 for the differential system (6.2) with p(x,y) of the form (6.4).

Theorem 6.6. Using the averaging theory of order 4 we obtain, for |e| # 0 sufficiently
small, H.(4) > 1 for the differential system (6.2) with p(x,y) either of the form (6.5) or
(6.6).

Theorems 6.5 and 6.6 are proved in section 6.3.4.
These results have been submitted for publication, see [34].

We remark that all these results were obtained for Hopf bifurcation, that is, we studied
the number of small limit cycles that can bifurcate from the uniform isochronous center.

We also remark that to prove Theorems 1.14 and 1.15 (respectively Theorems 1.17
and 1.18) we shall use the averaging theory of order 4 for discontinuous (respectively
continuous) differential systems, together with a rescaling of the variables. In these proofs
we can see, using Descartes Theorem (see Theorem 6.1 in this work), that the lower bounds
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which appear in the theorems are actually upper bounds for the averaging theory of order
4. From Theorems 1.14 and 1.15 (respectively Theorems 1.17 and 1.18) it follows that
if applying the averaging theory of order 4 to the differential system (1.15) (respectively
(1.14)) we obtain 6 (respectively 2) limit cycles, the origin of the differential system (1.15)
(respectively (1.14)) is a weak focus.

All calculations were performed with the assistance of the software Mathematica.

6.3 Proofs of the results

6.3.1 Proof of Theorem 6.2

Consider system (6.3) with p(z,y) of the general form (6.4). In order to analyze the Hopf
bifurcation for this system, applying Theorem 5.4, we set @ = 7 and we introduce a small
parameter £ doing the change of coordinates z = X, y = €Y. After that we perform the
polar change of coordinates X = rcosf,Y = rsinf, and by doing a Taylor expansion
truncated at the 4™ order in € we obtain an expression for dr/df of the form (5.1), with
a = 7. The explicit expression is quite large so we omit it.

The differential system (6.3) is a polynomial system, so the corresponding functions
FX(0,7) and RF(0,r,¢),i=1,...,4 are analytic. Moreover, since the variable # appears
through sinus and cosinus, system (6.3) in the form dr/df is 2r—periodic. It suffices to
apply Theorem 5.4 to take the open interval D = {r : 0 < r < ro}, where the unperturbed
system has periodic solutions passing through the points (0,7) with 0 < r < rq.

We obtain each y and y; ,i = 1....,4 using the formulae provided in Appendix
C respectively for X; and X5 of system (6.3), after the changes described in the first
paragraph of this section. Then we calculate the averaging functions f;,7 = 1....,4 using
equation (5.3). Hence, by Theorem 5.4 we have the averaging function of first order

fl(r) = Al?” -+ Ao,

where

1
Ay ==7(3to1(ag +75) + a1 + Bs + 1 + 65 — 3t10(By + 0p)),

2
Ao =2(Bya5 + () *tor — B4 (agtio + BL) — 1505 — (19)*tor + 06 (votio + 67)
+ 85— 65).

The rank of the Jacobian matrix of the function A = (Ag, A;) with respect to the
variables o1, 10, b, 1, B3, B, Bas Vo, 715 06, 01, 04 is maximal. Then the coefficients A
and A; are linearly independent in their variables.

Clearly fi(r) has at most one solution in D. Thus applying Theorem 5.4 it is proved
that at most 1 limit cycle can bifurcate from the origin of system (6.3) with p(z,y) of
the form (6.4), using the averaging theory of first order. Solving A; for aj and A, for 62
we have f1(r) = 0, and we can apply the averaging theory of order 2. Its corresponding
averaging function is

fQ(T) = B37’3 + Bg?”2 + BlT’ + BQ,
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where

Bz =27 (to2 + ta0),
1

B2 :§<—4) (3t01(20é(1]t10 — OK% + 47&&0 + ’}/21> — 8t02<05(1] — ’yé) — Oéétgo — Oé}l — Bé
— 205 + 671t10 + Yota0 + V4 + 05 + 205 + 3t3,(By — ) — 3Botio
— 1565t3, + 3B3t10 + 30yt10 + 485t — 455t11),

1
By =7 m(=8agfy + 8agf — tor (fio(—agye + 15650 + 8(ag)” + 8(5p)”

+ (70)* = 7(6)%) + 3agg — 58505 — dagay — 45358, — 56m

— B + 5705 + 701 — T + 0503 — 4o — 445)

+ 315, (8ag 8y + 15 (1585 — Td5)) + 16tz (()* + (7)) + ag¥itio
— 3ayy — 3050, + B10; + 24agfgty — 3agdst

— 24a(1)65t10 + 904;5(1)2510 + a(l)(S%tlo - 1604(1),832511 + 40[5@}1 — 453@1
+ B — 87305 — 1161 + 37205 + 87905 + 3750511

— 97385t10 — Y903t10 — YY1t — 1679505t + 30173 + 470

— 6165 — 4630, + 43 + 483 + 47 4 403 — 3B165t10

+ 2455 Bitao + 38001 t10 — 2455t10 + 16(55)ta0 + 16(8p) t20),

By = — 4(—apB30) + a1 B3 + BBy — ()85 + tor () (87 — 61)
+ad(3adrd + 28L (v + 68)) + tio(—68Laddt — (ad)*ag + (af)?
— 6736505 + (85)% = (85)*)) + 7068505 + 36535 + 655m
— 49185 + 37072 — 0905 + 3ag + 375)) + 310t (20005,

+ 7385 = 8)) + toa((19)° = (@9)*) + B tTo — aBaveto
+ B5(02)% + agagyi + By Bioy + agands + 85520,

+ 8185 + Bo 7 — apls — (ag)* Byt + agByditio — 2055 Bt
+ (ag)?Batio — 3agadgtio + agBiti + (ag)* Byt — ag(Bg) tao
— Bo(B1)? = (85)*B5 + 285705 + By (n)* + BoBori — (11)%05
— 710305 — 10940 + 107202 + (10)%05 + mag — 0155

— 0607 + 7170 + 7005 — 6837 Sgt10 — 2(B5)* 1t

+ By B170t10 + 471 (85)*t10 — 3797200t10 — Y055t — (10)*pt1n
+ 70 (00)*ta0 + 83(60)* + 1071172 + G204 — 305t

+ 0375 — 30575t10 — B + 65 + 985 (09)*t50 + 6(55) 6oty

— 3(00)°t10 — 380 B200t10 — 6850305t10 — 2(By)*d3t10 + 05(5p)*t10),

and since the rank of the Jacobian matrix of the function B = (By, By, Bs, B3) with respect
to its variables is maximal, B;, i = 0, ..., 3 are linearly independent in their variables.

Hence f5(r) has at most 3 solutions in D, see Theorem 6.1. Applying Theorem 5.4 it
is proved that at most 3 limit cycles can bifurcate from the origin of system (6.3) with
p(z,y) of the form (6.4), using the averaging theory of order 2. Solving Bs for ¢y, By for
o), By for 82 and By for §3 we obtain fo(r) = 0, and we can apply the averaging theory
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of order 3, which corresponding averaging function is of the form
Tf3(7“) = 047’4 -+ 037”3 + CQT2 + Cl’f’ —+ C(),

and C; for © = 0,...,4 are linearly independent in their variables, because the rank of the
Jacobian matrix of the function C = (Cy, ..., Cy) with respect to its variables is maximal.
We do not explicitly provide their expressions, since they are very long. Therefore f3(r)
has at most 4 solutions in D, by Theorem 6.1. Applying Theorem 5.4 it is proved that at
most 4 limit cycles can bifurcate from the origin of system (6.3) with p(x,y) of the form
(6.4) using the averaging theory of order 3. By conveniently choosing variables to cancel
the coefficients Cj,i = 0,...,4 we have f3(r) = 0. Hence we apply the averaging theory
of order 4 to obtain the averaging function of order 4

7f1(r) = Der® + Dsr® + Dyr* + Dsr® + Dor® + Dy + D

Since the rank of the Jacobian matrix of the function D = (D, ..., Dg) with respect to
its variables is maximal, the coefficients D;, ¢ = 0,...,6 are linearly independent in their
variables. Their expressions are very long so we do not provide them here. As a result
of these calculations, it follows that f,(r) has at most 6 solutions in D by Theorem 6.1.
Applying Theorem 5.4 we conclude that at most 6 limit cycles can bifurcate from the
origin of system (6.3) with p(x,y) of the form (6.4), using the averaging theory of order
4. This result is a lower bound for Hy(4), hence Theorem 6.2 is proved.

6.3.2 Proof of Theorem 6.3

First we consider the systems of the form (6.3) with p(z,y) of the form (6.5). According
to Theorem 4.1, the corresponding unperturbed system has a uniform isochronous center
at the origin. In order to study the Hopf bifurcation for this case, we apply the results
obtained in the proof of Theorem 6.2, by conveniently vanishing the coefficients of (6.4),
used in that proof. More precisely, we take tg; = tog = tge = to1 = tp3 = 0.

We also consider the systems of the form (6.3), with p(z,y) of the form (6.6), whose
corresponding unperturbed system also has a uniform isochronous center at the origin, see
Theorem 2.7. Again, we use the results obtained in the proof of Theorem 6.2, vanishing
the appropriate coefficients of (6.4), that is, we take tg; = t19 = tog = t11 = tos = 0.

Considering the above restrictions to the coefficients of p(z, y) we obtain the averaging
functions f;,7 = 1,...,4 and since they are similar to those calculated in the proof of
Theorem 6.2 we do not explicitly present them here. It is interesting to observe that the
same number of limit cycles in each averaging order was obtained with p(z,y) of the form
(6.5) and (6.6).

The following table summarizes the results obtained in this proof and in the proof of
Theorem 6.2.

It follows that if system (6.3) has 6 limit cycles up to the averaging theory of order 4,
then it must have a weak focus at the origin.

6.3.3 Proof of Theorem 6.4

Consider system (6.3) with p(z,y) of the form (6.5) and take o), = 8] =~ = & = 0, for
7 =1,...,7. In this case the corresponding unperturbed system has a uniform isochronous
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Averaging order # limit cycles
Theorem 6.2 | Theorem 6.3 with p(z, y) given by (6.5) or (6.6)
1 1 1
2 3 2
3 4 4
4 6 5

Table 6.1: Number of limit cycles for discontinuous differential systems (6.3).

center at the origin, see Theorem 4.1. In order to analyze the Hopf bifurcation for this
case, applying Theorem 5.4, we set @ = 7 and we introduce a small parameter £ doing
the rescaling x = €X, y = €Y. After that doing the polar change of coordinates X =
rcos@,Y = rsinf and a Taylor expansion truncated at the 7% order in ¢ we obtain an
expression for dr/df of the form (5.1), with a = m. The explicit expression is quite large
so we omit it. All hypotheses for applying Theorem 5.4 to this case are satisfied using
similar arguments to those presented for the proof of Theorem 6.2.

We obtain each y; and y; ,4 = 1....,7 using the formulae provided in Appendix C
respectively for X; and X5 of system (6.3), after the changes previously described. Then
we calculate the averaging functions f;,7 = 1....,7 using equation (5.3). We remark that,
up to the averaging theory of order 4, the results in this case can be easily obtained from
those already calculated in the proof of Theorem 6.3, taking into account the condition
aé = 53 = 'yé = (56 =0,5 =1,...,7, so we do not explicitly present the averaging
functions from order 1 to 3 here. Starting from the averaged function of order 4 we have

f4(7’) = R4T’4 -+ R3T3 + R2T2 + er,

and R; for © = 1,...,4 are linearly independent in their variables, since the rank of the
Jacobian matrix of the function R = (R, ..., Ry4) with respect to its variables is maximal.
We do not explicitly provide their expressions, because they are very long. Therefore f;(r)
has at most 3 solutions in D, by Theorem 6.1. Applying Theorem 5.4 it is proved that at
most 3 limit cycles can bifurcate from the origin of system (6.3) with p(z,y) of the form
(6.5), and oy = 8 =~} =&} =0, j = 1,...,7 using the averaging theory of order 4.

The next averaging functions are calculated in a similar way, so we obtain
f5(r) = S51° + Syr* 4 Ssr® + Sor? + Sy,
and S; for : = 1,...,5 are linearly independent in their variables,
fo(r) = Ter® + Tsr® 4 Tyr* + Tar® + Tor? + Tyr,
and Tj for j =1,...,6 are linearly independent in their variables,
fo(r) = Upr™ 4 Ugr® + Usr® + Uyr* 4 Usr® + Uyr® + Uy,
and Uy for k = 1,...,7 are linearly independent in their variables. The expressions of 5;,

v=1,...,5,T5,5=1,...,6 and Uy, k = 1,...,7 are very long so we do not provide them
here.
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Thus f5(r), fe(r) and f7(r) has at most 4, 5 and 6 solutions in D, respectively, see
Theorem 6.1. Applying Theorem 5.4 we conclude that at most 4, 5, and 6 limit cycles
can bifurcate from the origin of system (6.3) with p(z, y) of the form (6.5), and of), = =
fyg = 63 = 0,7 =1,...,7 using the averaging theory of order 5, 6 and 7, respectively.
Therefore Theorem 6.4 is proved.

The following table summarizes our results for this case

’ Averaging order ‘ # limit cycles ‘
1 0

| O O | W
O O | W DN+~

Table 6.2: Limit cycles for quartic discontinuous differential systems with a uniform
isochronous center at the origin.

6.3.4 Proof of Theorems 6.5 and 6.6

System (5.1) becomes continuous by taking o = 27 and therefore the averaging theory
developed in chapter 5 also applies to continuous differential systems.

First, consider the continuous differential system (6.2) with p(x,y) of the form (6.4).
In order to study the limit cycles for this system we only need the expressions of y;",i =
1....,4, which were already calculated for studying the previous cases. Hence, the
averaging functions f;,;7 = 1....,4 can be obtained by the same algorithm used for the
discontinuous differential systems, by taking a = 2.

The unperturbed continuous differential system corresponding to the perturbed system
(6.2), with either p(z,y) of the form (6.5) or (6.6) has a uniform isochronous center at the
origin, according to Theorems 4.1 and 2.7, respectively. We apply the same arguments as
in the previous paragraph, by taking o = 27 and using the expressions of y;",i = 1....,4
calculated in the proof of Theorem 6.3 to obtain the averaging functions f;,;i = 1....,4
for this case. We remark that the same number of limit cycles was obtained in both cases
where p(x,y) is either of the form (6.5) or (6.6), in each averaging order studied.

Since the calculations and arguments are quite similar to those used in the previous
proofs, we omit the explicit expressions of the averaging functions. We summarize our
results in the following table

We remark that from this proof, it follows that system (6.2) with p(x,y) of the form
(6.4) has a weak focus at the origin provided that it has 2 limit cycles up to the averaging
theory of order 4.
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Averaging order # limit cycles
general case \ Uniform center

1 0 0

2 1 0

3 1 1

4 2 1

Table 6.3: Number of limit cycles for continuous differential systems (6.2).
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Chapter 7

Application of the averaging theory
in a concrete planar polynomial
differential system of degree 4

In this chapter, we apply the averaging theory to study the bifurcation of limit cycles in
a concrete planar polynomial differential system of degree 4 with a uniform isochronous
center at the origin. More precisely, we study the limit cycles that bifurcate from the
periodic solutions of the differential system & = —y + zy(2? + 3?), ¥ = z + y*(2* + y?)
when it is perturbed inside the class of all quartic polynomial differential systems. Using
the averaging theory of first order we show that at least 8 limit cycles can bifurcate from
the period annulus of the considered center.

7.1 Background

Peng and Feng studied in [48] the following quartic polynomial differential system with a
uniform isochronous center at the origin

i=—y+ayl@®+y?), y=z+y°(@*+y?). (7.1)

They show that under any quartic homogeneous polynomial perturbations, at most 2
limit cycles bifurcate from the period annulus of system (7.1) using averaging theory of
first order, and this upper bound can be reached. In addition these authors prove that
for the family of perturbed quartic polynomial differential systems

i =—y+ay(x® +y*) + e(awr + any + anry + anx’y + agsy’
+ asr’ + a2’y + anr’y’ + azry’® + aowy?),

y =z + y*(2® + y°) + e(brox + b1y + baox® + bosy® + bsoa®
+ bioxy® + baox® + b3’y + boox®y® + bizay® + boay?),

(7.2)

there are at most 3 limit cycles bifurcating from the period annulus of (7.1) using averaging
theory of first order, and this upper bound is sharp. We remark that the perturbed system
(7.2) studied by Peng and Feng do not consider all the quartic polynomial differential
systems because they omit the coefficients aqgg, asg, gz, @30, @12, boo, 11, ba1, bp3 as we shall
present in the next section.
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7.2 Main results

we consider the polynomial differential systems

4
b= —y+ay@@®+y’)+e > pilry),
=0
: (7.3)
j= v+’ @+ ") +e > alxy),
=0

where p;, = Z ajkxjyk and ¢; = Z bjkxjyk are real homogeneous polynomials of
jtk=i jt+k=i
degree 1.

In what follows we state our result.

Theorem 7.1. For |e| # 0 sufficiently small there are quartic polynomial differential
systems (7.3) having at least 8 limit cycles bifurcating from the periodic orbits of the
uniform isochronous center (7.1).

Note that Theorem 7.1 improves the result of Peng and Feng in 5 additional limit
cycles. The proof of Theorem 7.1 is presented in section 7.3. This result has been
submitted for publication, see [33].

All calculations were performed with the assistance of the software Mathematica.

7.3 Proof of Theorem 7.1

By Theorem 2.7 it follows that system (7.1) has a uniform isochronous center at the origin.
A first integral H and its corresponding integrating factor p for system (7.1) are

1 T 1

H(z,y) = (a2 + 232 (22422 Kl ) = (a2 +y2)5

respectively. When h € (1,400) then H(x,y) = h are periodic solutions around the
center (0,0). For proving Theorem 7.1 we shall use Theorem 5.1. We choose

1

PR, 0) = (R2? + 3cos)1/3’

then H(pcos, psinf) = R?/3forall R > v/3 and 6 € [0, 27). Therefore all the hypotheses
of Theorem 5.1 are satisfied for system (7.1). Using Theorem 5.1 we transform the
perturbed differential system (7.3) into the form

dR (3Qp—Pq)
YL

A G + O(g?), (7.4)

xr=p cos B,y=psin O

where

Qp— Pg=A+ B,
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with

A =agox + booy + (agz + bin)zy” + asz® + (ago + bos)y*
— boowy” + (ago + a12 + ba1) 2’y — booz’y + azoz” + agay’
+ (a2 + aso — bi1)zy* + (aso — bin)z'y® + (a12 — bos) g’
(a12 + aso — boz — ba1)z y* + (aso — bay)2”y?,

B =a10z” + (ao1 + bio)xy + bory” + (a11 + bao) 2’y + booy®
+ (@91 + b3o)z®y 4 (ao3 + bi2)wy® + asr® + (as) + by — byo)x'y
+ (@22 + aro + bz — bo1) 2y + (a13 + agr + bas — b1g)z*y’
+ (ags + @i + bis — b1 )wy* + (agr + bos)y® — b’y
+ (a1 — by — 502)1’393 + (a11 — 502)1@5 - b3ol’6y
+ (a21 — bzo — bi2)x*y® + (as1 + ags — b12)2y° + agsy”
— byox"y + (as0 — b31)2y* + (a1 — bag — bao) 2"y’
+ (@40 + az — by — biz)x*y* + (agi + arz — bao — boa)2”y”.

The coefficients {a;j, bi;}: jeo,....4y Wwhich appear in A and B are different. The expression
B corresponds to the perturbed system (7.2) studied in [48]. The authors of [48] obtained
for this system the following averaging function

3 3Mq + 4Ms + 8M3 2 My + 2Ms 6 2M, 10
= — M — - -
98(8) =1 [( 4 36 ) R ;2 1T 5
et SRS L SO RY oMy + My + Ms) )
+(729R tg Bt R (My + Ms + Ms) g
where
My =agy — aso — ags + bz1 — by,
My = — 2a99 + aso + 3aps — bzi + 2b13, (7.6)

M3 =agy — 3ags — bis,
My =ay + bo:.

Peng and Feng prove that the function gg(R) has at most 3 zeros in R € (v/3, +00), and
using the averaging theory of first order they show that the maximum number of limit
cycles of system (7.2) emerging from the period annulus of the unperturbed system (7.1)
is 3.

In this work we extend the results presented in [48] by calculating the part of the
averaging function of system (7.3) corresponding to the expression A. In this way we
perturbed the center (7.1) inside the whole class of quartic polynomial differential systems.
We note that (7.4) is continuous and bounded for @ € (0,27) and R € (1/3, +-00) therefore
the integral of (7.4) is the sum of the integrals of its parts A and B. Then from the
expression (7.4) we have

v _ (34 (2L +0(e%)
do N 2R p5 r=pcosf 2R p5 r=pcosf '

y=psin O y=psin 0
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We obtain the averaging function f(R) = ga(R) + g5(R) where

ga(R) =apogo(R) + ap2g1(R) + a1292(R) + ags(R) + az0g4(R)
+ bo3g5(R) + b11g6(R) + b21g7(R),

gp(R) = Z M; guj(R),

and g5(R) is the function (7.5) rearranged in a convenient way, with M;, j = 1,...,4
given in (7.6). The expressions of g;(R), ¢ = 0,...,7 and of gp;(R), j = 1,...,4 are
shown in sections F.1 and F.1 of Appendix F, respectively.

Out of the 12 functions G; = ¢; : (V3,400) = R, i € {0,...,7}, Gisr = guri
(V3,+00) — R, i € {1,...,4} we have that 9 are linearly independent. Indeed, by
proceeding to the calculation of the Taylor expansions in the variable R around R = 2
until the 15 power of R for the 12 functions, which are too long and therefore they are
not presented here, and by using the software Mathematica we conclude that the rank of
the matrix 12 x 16, where in the k row there are the 16 coefficients of R, R!,..., RY of
the Taylor expansion of Gy, k € {0,...,11}, is 9.

By Proposition 5.2 since there are 9 linearly independent functions among the 12
previously described, then there exists a linear combination of them with at least 8 zeros,
because all the coefficients of the 12 functions are linearly independent, as it is easy
to check, and hence the coefficients of the 9 linearly independent functions, which are a
subset of the 12 functions, are also linearly independent. Thus there exist Ry, Rs, ..., Rg €
(v/3,+00) and coefficients a;;,b; € R, i,j € {0,...,4} such that f(Ry) = 0, k €
{1,...,8}.

In summary, there are quartic polynomial differential systems (7.3) having at least 8
limit cycles bifurcating from the period orbits of the uniform isochronous center (7.1).

Note that in Theorem 7.1 we study medium limit cycles, i.e. limit cycles bifurcating
from the periodic orbits surrounding the uniform isochronous center of the differential
system (7.1), whereas in chapter 6 we have studied the small limit cycles of all quartic
uniform isochronous centers, i.e. the limit cycles bifurcating from the center equilibrium
point.
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Appendix A

Poincaré Compactification

Consider X a planar polynomial vector field of degree n. The Poincaré compactified
vector field p(X) corresponding to X is an analytic vector field induced on S? as follows,
for further details see for instance [28], or chapter 5 of [22]. Let S* = {y = (y1,v2,93) €
R® : y? + y3 + y3 = 1} (the so called Poincaré sphere) and T,S* be the tangent space
to S? at the point y. Moreover, consider the central projection f : T(01S* — S
This map defines 2 copies of X', one in the northern hemisphere and the other in the
southern one. Denote by X’ the vector field Df o X defined on S? except on its equator
S' = {y € S* : y3 = 0}. Note that S' is identified to the infinity of R?. Then p(X) is the
only analytic extension of y§ ' X’ to S2. On S%\S! there are two symmetric copies of X,
and studying the behavior of p(X') around S', we obtain the behavior of X at infinity. The
projection of the closed northern hemisphere of S? on y3 = 0 under (y1, y2, y3) — (Y1, ¥2)
is known as the Poincaré disc, and it is denoted by D?. One important property of the
Poincaré compactification is that S! is invariant under the flow of p(X).

Since $? is a differentiable manifold we consider the six local charts U; = {y € S? : y; >
0}, and V; = {y € S? : y; < 0} where i = 1,2, 3 for computing the expression for p(X).
The diffeomorphisms F; : U; — R? and G, : V; — R? for i = 1,2,3 are the inverses of
the central projections from the planes tangent at the points (1,0,0), (—1,0,0), (0, 1,0),
(0,—-1,0), (0,0,1), and (0,0, —1) respectively. We denote by (u, v) the value of Fi(y) or
Gi(y) for any i = 1,2,3. Note that (u, v) represents different things according to the local
charts under consideration.

In the local chart (Uy, Fy), p(X) is written as

1 1 1
vv v Vv

and the expression for p(X') in the local chart (Us, F3) is

i=e[p(G2) e (Gr)) e=rma(Gn)
v v v v v v

and finally for (Us, F3) it is
= P(u,v), 0=0Q(u,v).

The expression for p(X') in each chart (V;,G;) is the same as in the chart (U;, F;),
multiplied by (=1)""!, i = 1, 2, 3. The points of S' in any chart have v = 0. Therefore
we have a polynomial vector field in each local chart.
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We define finite (respectively, infinite) singular points of X or p(X’) the singular points
of p(X) which lie in S*\S! (respectively S!). We note that if y € S! is an infinite singular
point, then —y is also a singular point. Since the local behavior near —y is the local
behavior near y multiplied by (—1)""!, it follows that the orientation of the orbits changes
when the degree is even.

The unique singular points at infinity which cannot be contained into the charts U; UV}
are the origins of Uy and V5. Then, when we study the infinite singular points on the
charts Uy U V5, we only have to verify if the origin of these charts are singularities.
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Topological equivalence

Two polynomial vector fields X and Y on R? are topologically equivalent if there exists a
homeomorphism on S? which preserves the infinity S* carrying orbits of the flow induced
by p(X) into orbits of the flow induced by p(Y'), preserving or reversing simultaneously
the sense of all orbits.

A separatriz of p(X) is an orbit which is either a singular point, or a limit cycle, or a
trajectory which lies in the boundary of a hyperbolic sector at a finite or infinity singular
point.

We denote by Sep(p(X)) the set formed by all separatrices of p(X'). The set Sep(p(X))
is closed, see [47]. Each open connected component of S?\ Sep(p(X)) is called a canonical
region of p(X). A separatriz configuration is a union of Sep(p(X)) plus one representative
solution chosen from each canonical region. Moreover, Sep(p(X)) and Sep(p(Y)) are
equivalent if there exists a homeomorphism in S? preserving the infinity S' carrying orbits
of Sep(p(X)) into orbits of Sep(p(Y)), preserving or reversing simultaneously the sense of
all orbits.

The next result is due to Neumann [47] and characterizes the topologically equivalence
between two Poincaré compactified vector fields.

Theorem B.1. Let X and Y be two polynomial vector fields in R%. If p(X) and p(Y)
have finitely many separatrices, then p(X) and p(Y') are topologically equivalent if and
only if their separatrix configurations are equivalent.

Theorem B.1 implies that, to obtain the global phase portrait of a polynomial vector
field p(X) with finitely many separatrices, we need to determine the separatrices of p(X)
and one orbit in each canonical region.

Using the arguments of the proof of Theorem B.1 the next result follows.

Theorem B.2. Let X and Y be two polynomial vector fields in R%. If p(X) and p(Y)
have the infinity filled of singular points and finitely many separatrices in R?, then p(X)
and p(Y') are topologically equivalent if and only if their separatriz configurations are
equivalent.

According to Theorem B.2, in order to have the global phase portrait of a polynomial
vector field X with the infinity filled of singular points and finitely many separatrices in
R?, we need to determine the separatrices of p(X) and one orbit in each canonical region.
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Appendix C

Expressions of y;(0, p), for i =1,

We present the expressions of y;(6, p), fori =1,...,7.

0
yr (0, p) =/ FE (¢, p)do,

0

0
0.0 = [ (2F50.0)+ 207 (0.0 0.0)) 0,

0
0.0 = [ (675 0.)+ 605 (0. ) 0.0
+ 302 F (9. )y (6, )° + BOFFE (9, ) 3 (6,.9) ) do,

yi (0, p) = /0 (24Ff(¢,p)+243Fi(¢ P)yi (¢, p)

+ 120°F5 (6, p)yi (9, p)° + 120F5 (¢, p)ys (¢, p)
+ 120 F{ (9, p)yi (9, )y (9, p)

+ 40°FE (9. )y (6, )" + 4OFFE (9, p)u (6,9) ) do,

+
1
+
1

10,0 = [ (1207 (00p) + 1200FE 6.0 6.)
+ 600 F5° (¢, p)yi (¢, p)? + 600F5 (¢, p)ys (6, p)
+ 600 F5 (¢, p)yi (¢, p)ys (¢, p) + 200°F5 (¢, p)yi (9, p)*
+ 200F5 (¢, p)ys (¢, p) + 200° Fy (o, p)yi (0, p)yz (¢, p)
+ 150°F (6, p)ys (¢, p)* + 300° Fi (9, p)ui (6, )5 (9, p)

+ 50 FE (6, )yt (6,0)" + 5OFE(6, p)ui (01 ) ) do,

0
i 0.0) = [ (T20F(0.) + T0OF (0. 0.0

+ 3600° Fy (¢, p)yi (9, p)* + 3600F; (6, p)ys (¢, p)

+ 12003 FE (¢, p)yE (o, p)® + 36002 FE (6, p)yt (o, p)y (6, p)

+ 1200F5 (6, p)ys (¢, p) + 300" F5- (¢, p)y (¢, p)*

+ 1808° F5 (¢, p)yi (9, p)?u5 (9, p) + 1200° F5™ (9, p)yi (6, )5 (¢, p)
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+ 9007 F3 (¢, p)yz (¢, p)? + 300F; (¢, p)yi (6, p)

+ 600" Fi(¢, p)yi (¢, p)°y5 (0, p) + 600° Fi (6, p)yi (6, p) 3 (6, )
+ 900°Fi (¢, p)yi (9, p)yz (9, p)* + 300° Fi (¢, p)yi (9, p)yz (9, p)
+ 600°Fy(¢, p)yz (¢, p)yz (9, p) + 60°F{~ (6, p)yi (6, p)°

+ 6OF (6, p)yi (6,) ) do

Y (t,p) = / t (040F5 (¢, p) + 50400F5 (¢, p)yi (¢, p)

0

+25200° F5° (9, p)yi (¢, p)? + 25200F5 (6, p)y3 (6, p)
+25200°F5 (6, p)i (¢, p)Y5 (0, p) + 8400° Fi7 (o, p)yi (6, p)°

+ 8400F; (6, p)ys (¢, p) + 8400°F5™ (6, p)yi (¢, p)ys (. p)

+ 6300%F5" (9, p)ys (¢, p)* + 12600° 5" (¢, p)ui (6, p)*ys (6, )
+2100" F5 (¢, p)yi (¢, p)* + 2100F5 (6, p)y (¢, p)

+ 21007 F3 (¢, p)yi (9, p)ya (0, p) + 4200° F5* (9, p)ui (¢, p) 5 (¢, p)
+ 4200 (0, p)yi (9, p)%5 (9, p) + 6300° F5™ (¢, p)ys (6, 0)*0i (6, )
+420°FE(6, p)yE (o, p)® + 42002 FE (¢, p)yE (6, p)yE (0, p)

+ 420F5 (¢, p)ys (¢, p) + 6300° F5 (6, p)ys (0, p) i (¢, p)
+TOFE (o, p)yE (6, p)® + 10505 FE (¢, p)y (6, p) v (6, p)

+ 1400" F* (6, p)yi (¢, p)°ys (6, p) + 6300 Fi* (o, p)yi" (¢, p)* w5 (6, p)?
+ 1058 F{™(0, p)yi (¢, p)?us (¢, p) + 420° (0, p)yi (&, p)ya (9, p)
+42083Fi(¢a )yf@ )3/2 (o, )ys (¢,p)

+ 1050° F (¢, p)ya (9, p)* + 1050° Fy(¢, p)yz (9, p)ya (9, p)
+HT0F (6, p)ys (6, 0)* + TOFT (6, 0)ys (¢, p)) do.
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Averaging function of order 6 for the
Collins second form, A =# 0.
Continuous Case

We present the averaging function of order 6 for the Collins second form, in the case
A # 0, discussed in the proof of Theorem 5.5.

fﬁ(?") = T(D57’4 + D3T2 + D1>
where

Ds = — n(237A%a1 8] + 45A4%a1a — 1924307 + 2406 A%a1 3]
+ 1446 A%ajay — 476 A%a1 a3 + 524A2a L+ 60A%
+ 694 A%3] 85 + 288A4%; 56 192A% a5 + 96 A%a]ag
+ 272A% 104 + 454 A% 3 + 192A2a2a6 400A% 300
— 256 A3 + 656A251 ay + 16A4%; 176A2a4a5
+ 16423, 8 — 32A4%ai B + 19214251 ag — T20A%a7 + 272A% 53
— 112A4%a3 + 304A%32 — 1924%a; — 96A%a; — 96 A% 33
+ 5229 A} Bf + 4509 Aa oy — 540Aa1a3 + 2124 A0 B,
+ 1980 Aajag + 2322483, 85 + 2376 Aa; 35 — 1080 Aa; o
— T2A01 B3 + T92Aaiag + 1008 Aayary + 1746 Ay B2
+ 864 Acyag — 360Aay s + 432Aazah + 176 Aazag
+ 1584 A8 oy + 288 Aay B3y + 864Aagal + 216 A5, s
+ 720 Aa; 35 — 48 Aajar + 48 Ay By + 432 A as
+ 744 Ao B + 720Aa5a6 + 648 A5 35 + 208 Acvs g
+ 24 A3 5L + 576 AB; a6 + 144A54a6 + 288 Aag 3
+ 288 Aagag — 24ABkat — 96 ABTag + 16 A8 ag + 96 ABsag
+ 96 Aagag + 216 ABsag — 432403 + 1008435 — 432Aa]
+ 1008AB2 — 864Aa? — 480Aa2 — 5T6ASB2 + 345601 31
+ 17280 — 2880 as + 115201 B + 864ajay
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+ 20163 3+ + 302401 B¢ — 2016afas — 72004 B + 57650,
+ 115208 + 864a2a6 1152050 — 11520333
— 288asag + 14408 oy + 288031 + 288ajar + 2880, 3;
+ 864035 — HT6asar — 288arsBg + 57603 Bs
+ 864aial + 129651 Bt + 192aias — 14461 6L + 864! o
+ 28831 ag + 4320535 — 14dagar — 14405
+ 432a50 — 28835k — A8aarg + 14485y — 480 By
+ 144aiad + 57682 — 288a2 + 288432 — 86403 — 57602
— 864/32)/[384(A + 3)],

D3 = — 7(1084%a3(a7)? — 828 Aag(a7)® — 3456a5(a;)?
—1152Aa3(a1)? — 3456a3(a7)® — 384 Aas(ay)?
— 115203 (a])T36 A%B1 (a7)® + 2412481 (a7 ) + 69128 (a})?
— 1536 Aajag(a7)? — 4608azay(at)? — 640Aasag(a)?
— 1920050, (a7)* — 128 Aayas (o) — 384aai (af)?
+ 724%03 (a7)? — 2088 Aa3(af)? — 691202 (a7)* — T68Aaj(aq)?
— 23040 (aq)? + 1536 Aay ) (a)? + 460803 (a1)?
— 12840, 55 (a1)® — 384084 (1) — T68 Ay 55 ()
— 23040y 5 (a1)” — 512Aa85(a1)* — 15360385 (a7)”
— 256 A5 (a1)® — 7680565 (a7)? + 192046, 55 (a7)?
+ 5760081 B (a1)® + 128A8; B2 (})? + 38401 63 (o)
+ 384 AB3(ay)? + 11525335 (a7 )? — 384AB2 (ay)?
— 115284 (a})? + 31942 (ad)?al + 30694 (aj)3al
+2304(ad)®al — 27A%(B))%al + 1071A(B])3al
+ 3456(5371)*a; — 256 Aag(az)?al — 768a2(a3)2a}
— 384 A, () 0y — 115205 ()) 0y + 9A%a3(B)) 0y
+ 27Acd (81?0l — 1152Aa§(511)2 1 — 345603(51) %
+128A0y(81)*ag + 384a5(6;)*a 1 — 12840 (1)’
— 38441 (81)%aq + 51248, (B;)%aq + 15366, (65)
- 384A(a2)2a§a} - 1152(%)2@?{@} — 1152A(a2)2a})a}
— 3456(ay)?ata) — 512Acgazata; — 15360030t ay
— 256 A(cd)*atal — 768(a3)?atal — 1920Aaia’al
— 5760 0t a; + 572A% 0507 + 5940 Aagasag
+ 4608ay050; — 384Aataza] — 115203050,
— 768Aatasa; — 2304aiaial — 256 Aaraia;
— 768asas0] — 384Aajasa; — 1152050307
—512Aa303a; — 153600307 — 256 Aasasa;
— 768aiaia; — 384Aajaia; — 1152050300

— 768Aazaia; — 2304asaza) — 256 Aazaiag
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Appendix D. Averaging function of order 6 for the Collins second form, A # 0

— 768azaia; — 256 Aajaza; — T68azaza; + 256 A%aja]
+ 2880 Aciaq + 2304asa; — 1152Aa5a; — 3456050
— 384Aaial — 11520z50z1 25614@7&1 768a3a]
+ 867A%(a3)? 1a1 + 4713 A()?Braq + 2304(ay)? Bl ay
+ 256 A(az)?Biag + 768(ad)?Bla; + 128A(ay)?*Biog
+ 384(a))?Bia; + 384AadasBiar + 115205038 o)
+ 828 A3 B ) + 4596 Aas Bt + 23045 B o)
+ 115240381 a1 + 34560381 o] + 384 A(a)* By
+ 1152(0ai)?Brad + 128 Aagad 8ol + 384asas Bl
— 256 Aagai 801 — T68aza3 B + 384AasB1a;
+ 115205 8,1 + 128Aa354a1 + 384033107 — 128A045B4a1
— 384a2B1a; — 384Aas B Biar — 11520381 Biog
— 128Aa3 8, Bia1 — 384a38, Biar — T68 Aayary Biaq
— 2304008t a1 — 1536 Aa’fia; — 4608 155@1
- 38414(1455041 — 115203 B2t + 512Aa451
+ 153603, Bra; — 256 A(ay)?Bgar — 768(a2) ga}
— 256 AaiBsa; — 768a3 Bl + 828 A%ag Bl
+ 4596 Aay Bia] + 230404261(11 + 1152Aa361a1
+ 345605 87a] + 60A%6] Biay — 2124AB] Biar — 691243, B3
+ 128Aa;faa; + 384al Bial + 256 AB3 Baar)
+ 7688: Baa; + 384 Ay Siar + 115205 B0
+ 128 Az Biaq + 384az 8507 — 128 Aai Bia — 384aifiaq
+ 256 A8 Bial + 7683, a7 — 384Aa)Bial
— 115282} — 256 Ay 8307 — T68ag By
+ T68A%Ba; + 5568 A8 at + 576085,
— 256 AB5a; — 768B3a; + 384Aaj(B)? + 1152a5(5)?
— 256 Aazay(B])* — 76830 (81)? + 30A%a3(B])* + 90Aai(B])?
+ 128407 (81)” + 38407 (8;)* — 256Aa(65)* — T68a7(65)*
+ 1408 A(a3)*ay + 768(ag)*ay — 128 A(ag) azay
— 384(042)20z§04}1 — 38414(042)20(}104% 1152(042)20510451)
+ 768 A () ag + 1152(a) g + 256A(a;)3 + 384(aj)3ay
— 482A%(a)%af — 1446A(a5) — 256A(a3) ol
— 768(a3)?a? — 256 A(ay)?ad — 768(a4) o
— 384Aajaiat — 1152050502 — 768 Aazaia’
— 230dayaial — 256 Aazatal — T68azatad
— 256 Aagaial — T68azanal + 2816 Aagayas
+ 15360503 — 128 Aadagas — 384asagas

— 256 Aagaias — T68a aias + 1536 Aagagas
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Appendix D. Averaging function of order 6 for the Collins second form, A # 0

+ 2304ay0505 + 512 Aagagas + T68azasas

— 512A%a% a5 — 1536 Aaia; — 128 Aaagal

- 384a;a1a§ 384Aatai — 1152at03 — 128A(ay)*a

— 384(ap)%a] — 128 Aagaias — 384aza3a) — 256Aoéozéai
768a;a;ai 128Aaza; — 384a3a; — 128Aasza;

— 3840302 — 256 Aasajal — T68aza a0l — 384Aatal

— 11520303 — 128Aa4a5 384ajai — 256Aoz10z7

— 768a30a2 — 128 A(ay)?ai — 384(ay)?a3 — 128 Aasa;

—512A4%3a8 — 1536Aa2a1 384Aa3a1 11520403

— 384Aazat — 11520308 — 256 Aasa? — T68asa;

+ 1408 Aaas + 768y + 768 Aagas + 1152050

+ 256 Aagai + 384agas — 384 Aagai — 1152

— 128 Aaga)) — 384aza) — 128 Aazal — 384a3a;

— 128 Ao — 384azar) — 128Aa4a5 384ay08

— 128Aaga; — 384asai — 512A4%] — 1536 Aa]

— 128Aa — 384a] — 384Aa6 1152a§ — 128Aa§

— 384ag + 1536A(a;) ayfy + 1152(a2) ayf — 384a§a§

- 256Aa%aiaé 1 — 7680z 0: 3] 1 + 768 A()? a6 11

+ 1152(0g)%ag 8] + 256 A(ad)?ag 81 + 384(ag)ag By

+ 6042501 B] + 180Aazai B + 384AasalBy + 1152a307 B,

+ 1536 Aajas ] + 1152 051 + 768 Aagas By

+ 1152050581 + 256 AagasB) + 384agas Bl + 256 Aayas B

+ 768050381 — 128 Aaia’ifl — 384aiai B — 128 Aajaif)

— 38405028 — 128 Aaya3 3] — 3840z B — 128Aai 3

— 38403f; — 128Aay(61)*B; — 384a,(6)*B; + 384Aayaify

+ 1152a502 B} + 128 Aaza? By + 384aialify — 128 Aatal B;

— 384aiaif; + 384Aa3 B, + 115203 3; — 384Aai B By

— 11520231 B} + 1088 A(as)? B 4 1536(as)* B2

+ 2304(611)3/6’51 —512Aa3(8;)*B5 — 1536&%(511)2B51

— 2304(ay)%ai B — 640Aoz}lozfﬁ5 768A(a2) kB3

— 1920} B 4 2176 Ay B 4 3072050338

— 512Aata3Bs — 153603053 8s — 512AayaifBs — 1536050z 3

+ 1088 Acy B3 + 1536033 — 512Aa; 34

— 1536038} — 256 Al — 768a23s + T6SA(BL)3 B

+960A(az)?B1 B5 + 1152(3)*B1 B5 — 512 A58, B

— 15360504 81 B2 + 960 Aas B B + 11520381 35 + 512Aa3 34 s

+ 15360361 85 — 256 AazB) b5 — T680351 5

+128A(ap)?B1 85 + 384(p)? 1 B5 — 256 A(B1)* 8155
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Appendix D. Averaging function of order 6 for the Collins second form, A # 0

+ 128Aa33; B3 + 3840583 — 256 Aaya’ By — T68asa]Be
— 256 Aa} By — 76803 By + 1536 Aayay B7 + 11520, 37
+ T68asan /7 — 128 Aasal B2 — 384agal B2 4 T68 Aadal 32
— 768(81)B1 5% + 11520504 55 + 256 Aayag 87 + 384azas Bt
— 128Aa; 37 — 3840387 — T68Aay 3] 87 + 1728 AB5 B}
— 23040y B, 57 + 128 Ay B3 87 + 38403, Bt + 256 Az 57
+960Acd B3 B2 + 115204 B3 B2 + 512 Ay B2 3
+ 1536035 87 — 256 Acv; 5581 — 76803 85 57
— 1536 A0, 55 57 — 46080, 55 57 + 256 AB4 53 57
+ 768018587 + 384 A(By)? 55 + 1152(51)* 43
+ 256 Aaif32 + 7680232 — 256 AasBi B3 — T68as 51 B2
— 128AB! 5185 — 3848 8183 — 384AB} 55 — 115237 35
+ 384A03 B + 115205 85 + 128 Aavy 81 B3 + 384,81 33
+ 128 Aay 3587 + 3840, 55 51 + 256 A4 35 51
+ 76831 33 57 + 128AB3 31 + 3840355 + 128A(c3)* 3%
+ 384(ay)? B2 — 512Aayag B2 — 15360504 32
+ 128 A2 32 + 3840282 — 256 AaZB? — 76802032
— 256 Aaz3) 55 — 768531 55 + 128 Ay 8153 + 38408153
+ 128AB2 52 + 384/32 52 — 256 Ao B2 — 76803 32
— 384A(ad)?B2 — 1152(a3)? B3 — 384Aa3s — 128AB;
— 11520383 — 384 Aag 3133 — 11520531 B2 + 384035
— 384AB7 33 — 115253732 + 1920 Aa} 53 + 23040 57
+ T68Aag B + 11520 B3 + 256 A B3 + 384053
+ 345632 37 + 256 Aas 33 + 768033 — 384 A3 Bs
— 11520 83 + 128 A8, 33 + 38453, 35 — 128 Ay B}
— 38433 — 128ABL B3 — 3848133 + 128 Aaj 32
+ 384533 — 256 Aas B8 — T68cii Bs + 128 A8, 3:
+ 3843, 82 — 384 Aay 83 — 11520535 — 384 A3, 533
— 1152531 B3 + 384 AB5 + 11525 + 128433 — 38432
— 384A85 — 11528;) /[512(A + 3)],
Dy =7(a§ + B%).
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Appendix E

Averaging function of order 6 for the
Collins second form, A = 0.
Continuous case.

We present the averaging function of order 6 for the Collins second form, in the case
A =0, discussed in the proof of Theorem 5.5.

fﬁ(’f’) = T<D5T4 + D4T’3 + D3T2 + Dl),

where
T

D5 = 192( 105301 81 + 45901y + 67801 ay

— 11798181 + 618al 5} + 234alal — 13655!
+ 216 85 — T2ajas + T2 By + 7201 ag
— 14483 By — 3390333 — 2Tabay — 189a 35
+ 1ddayag + 127203 85 — 4560z + 9633 8,
+ 18240l 8} — 2160404 + 27651 B4 + 10083 5.
+ 2640335 + 28581y — 48ay By — 328y
+1208; 85 — 120385 — 20y — 4day By + 1200
+ 2483, By + 776355 + 1120a555 264at ag + 30035 B
+ 1402 B + 21603 By + 28881 ag — 728,05 — T2a gﬁg
— 2dagal — 2405 By — T20508 + 7285 85 + 683
+ 1168 a3 + 240 By + 2483 By + 156850 + 27655049
+ 720433 + 64802 + 31232 — 12002 + 40832
— 1440 — 48a3),
D, :‘%aaa; +B1)(30d +ad + B +261),
Ds =15 T (324ab(a})® + 384al(al)? + 384ad(al)? + 1086} (a})?
— 3848, (a7)? + 768aza(al)? + 384asaj(ar)? + 128aai (af)?
+ 21607 (a7)? + 384a;(a7)? — 384081 (a})? — 384535 (a7)?

113



Appendix E. Averaging function of order 6 for the Collins second form, A =0

— 2560333 (ay)? + 76803 B3 (v1)* — 128635 81 (1)* — 7680y 35 (ey)*

+ 2560‘555(041) + 384ﬁ155(041) - 384@15;(0&)2 - 846:?(0‘%)2
— 3842(a1)? — 195(ai)3al — 81(B1)%al + 25604 (i)l

1/ 1y2 1 1/ 4132 1 1121 12 1
+ 25605 (o) ay + 27a5(B8; ) a; + 3840‘3(51) - 128@2(54) o3
+ 128831 (61)%ay — 51205(83) % + 384(042)2(1%0& + 1152() 050
+ 512@%@%(1%0& + 256((12)204%0& + 768a411a%a% 588&%&%0&
+ 3840%(13@% + 768@%0430& + 25604%0[%0& + 38404%04%@%

+ 512a30501 + 256050 + 256 aiaq + T68agaiay

+ 256030zl + 256a5a2a; — 384a2a1 + 384a3a;

+ 384ada; + 256a7a1 + 1449(0)* Bt — 256(a3)?Bla;

— 38405 il + 13320581 a1 — 384043ﬁ1041 128030, 3307
— 76807 B3a7 — 128a3 B3 + 128a 81 Bzaf — 384(ag)?Biag
— 384(B))*Bia) — 128aqa38; a7 + 256050310 — 38404264051
— 12838 04 + 12802 B1a; + 384au 3 Bra; + 128a38 Biay
+ 2560 oz}l/35a1 768a1@5a1 + 128038501 — 2560533 B3
+ 25681 B3 B51 + 256(a)? Byt + 25603 Bsa + 133204251041
- 384043B1041 + 1808 B2a; + 38443, 2t — 128a;B2a;

— 2560; 3oz1 — 384(1254@1 —128a383a; + 128a5ﬁ4a1

+ 38483 B — 2563, Biaq + 128a, 8 — 25633 32

- 5126565(11 + 256038507 + 1152330 — 38433a]

+ 256501 + 900‘1 (B1)% —128a3(8;)* — 25607 (5;)?
—192()?ay + 128(042)204}.)04}1 + 384(042)204}104% — 384(ay ) ag
— 1446(ag )3 + 256(a)’af + 128(ay)*af + 384asazar

+ 768aza505 + 256azaial + 256a5asa] — 384asa s

+ 128aza 05 + 2560 0t a; — 76804%0461,043 15360303

+ 1280z 0 + 384aias + 128(ad)*ad + 128aza5a]

+ 256050505 + 128a5a7 + 128a3a] + 25604%0@1104%

+ 384ajaz + 128aja; + 25600z + 128(as)’ag

+ 128030z — 1536050’ + 384aza} + 384aia}

+ 256a5a; — 192050 — 384agas + 128a03 + 128050

+ 128aa + 128agai) + 128aai + 128ahai

— 15360} + 128a + 384ag + 128@8 —320(ag)?ay Bt

+ 256050 04 81 — 384(ag)*agBi + 180a0s 81 — 384asalB;
— 320alalfl — 384aalfBt + 128ata2 Bl 4 128alalf]

+ 128030z 31 + 128381 + 832(ay)* B3 + 384(61)* 3

— 25603(81)* B3 — 12801 B; + 16640335 + 8320535

— 2560361 + 832(a)?B1 B} + 8320351 6} + 2560251 5}

— 3840303 — 128a30s B + 128atai3; — 384033,
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Dl =T

+ 384a 16164 —128(8;)° 6364 +960(ay)’ 55 +768(ay)? % 5
+ 128ai B3 + 19205038 + 5120t a3 83 + 51200 B3

+ 9600332 + 2560282 4 1088(a3)? 51 AL + 51200k 31 5
+ 10880331 B5 + 256036, B5 — 25607155 85 — 128(az)* 1 55
— 128053, 85 + 256003 By + 25603 By + 384 () By

+ T68az05 35 + 38403 85 + 384(ay)? 81 By + 3840331 By

— 320050, 87 + 128j0i 37 — 384agag 3t + 1280337

+ 8320583 87 + 2560333 57 — 76831 37 + 12805 81 57

+ 108835 57 + 2560535 57 + 384,55 8 — 384(61)* B3

— 2560365 + 256001 55 + 12806181 55 + 3840; 53

— 3841} + 1286 B3 55 — 128aéﬂéﬂi 12833 63

— 128(ay)? 2 + 512a5a45 32 — 1280332 + 256232

+ 2560‘55155 — 128a 25455 - 1285455 + 2560‘%68

+ 384(ary)? B3 + 3840535 + 3843, B3 + 3843733

— 320037 — 38437 + 121683 87 + 108833 57

+ 38403537 — 2560333 + 3841 33 — 128,33

— 1283333 — 1286183 — 1280432 + 25604 32

— 1280, 88 + 384535 + 38431 B3 — 38435

— 12802 + 12852 + 3843]),

(af + 53).
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Appendix F

Expressions of g;(R) and gp;(R).

We present the expressions of g;(R), i =0,...,7 and gu;(R), j =1,...,4.

F.1 Functions g;(R), for i =0,...,7

go = — 3m((R* + 3)(—6R"(R? + 3)*/3 + 59R°(R? 4 3)*/3 — 1440 R?
(R? 4 3)%3 + 6RS((R* — 9)*3/R2 — 3 + 3(R? + 3)*/%) — RY(709
(R* —9)?3V/R? — 3+ 177(R? + 3)*/%) 4 360(12(R* + 3)*/3

— 61VR? — 3(R* — 9)¥/3)) 2F1(—%, %; 1; %ﬁ)m

+ (7320(R* — 9)*/°/R? — 3 — 1440(R? + 3)*® + R*(1346
(R* — 9)23V/R? — 3+ 6R3(R* + 3)%% + 618(R* + 3)*® — 6R®
((R4 B 9)2/3m 4 (R2 + 3)2/3) . R4(12(R4 . 9>2/3

VR? =3+ T1(R? + 3)%/) + R*(685(R* — 9)**V/R? — 3+ 59
(R? +3)%3))) QFl(%, %; 1; R26+ 3)(32 —3)42 4 (R* 4 3)%/3
((—1346(R* — 9)**V/R2 4+ 3 + 618(R? — 3)** + R?(685(R* — 9)*/°
VR?+3 - 59(R? — 3)*3 + R*(12(R* — 9)*YR2 + 3 - 71

(R* = 3)*® + 6R*(—(R' — 9)**VR? + 3+ R*(R* - 3)**

+ (R? = 3)%))))R? + 120(61(R* — 9)*/R* + 3

+ 12(R? — 3)¥%)) 2Fl(%, g; 1; —%) — (R* = 3)VR2+ 3(6R"
(R* —3)%% — 59RS(R* — 3)*3 4+ 1440R*(R? — 3)*/® + 360(61
(R* — 9)23V/R? + 3+ 12(R* — 3)%3) + R*(709VR2 + 3(R* — 9)*/®

— 1T7(R? = 3)*%) + 6R*(3(R? — 3)** — VR? + 3(R" — 9)*%))
L2 0 ))/14560R(R2 — 3)23(R? + 3)3(R* — 9)¥/3;

21( 2737 ) R2—3
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Appendix F. Ezpressions of g;(R) and g, (R).

g1 =n(—(2R* — 39)(3R2V/R? — 3+ 9V R? — 3+ 2(R? + 3)**V/ R — 9)R?
21 6
Fi(—=2,=1 ————) +2(R* = 12)((R?* + 3)(3R*VR2 + 3
2 Fi ( 3,2,7R2+3)+( (R +3)( +

11 6
= VR 34+ 2(R* = 3)VRT = 9)5Fi (5, 5 L= 5 —)

+ (R* = 3)(3R*VR? — 3+ 9V R2 — 3+ 2(R* + 3)**V/R4 - 9)

11 6 3 5

35 ,R2+3))—R2(2R4—39)(3R2\/R2+3—9\/R2+3
2 1

LR — 3PV =0)y R (—2, 21— — 0 )

32 T RZ_3
/ 880R/RI — 0:

21 (5,

g2 =37((R? + 3)(T2R™(R? + 3)*/® — 840R'"(R?* + 3)*/® + 391R"
(R? 4 3)%° + 50688 R?(R* 4 3)%3 — T2R((R* — 9)**V/R? -3
+ 3(R% + 3)%3) + 24R%(T3(R" — 9)**V/R? — 3 + 105(R? + 3)*/?)
— 51RY(261(R* — 9)¥3V/R? — 3 + 23(R? + 3)%/3) — 1728(88

( 12 6
R? 4+ 3)23 —15¢/R2 — 3(R* — 9)¥/3)) ,F 1
(R*+3) ( )7)) 2 1(23,,RZ+3)

VR? =3+ ((12294(R* — 9)*3V/R? — 3 — 24702(R? + 3)%® + R?
(8535(R* — 9)2/3/R2 — 3 + 391(R? + 3)*% + R*(—2640(R* — 9)*/*
VR? =3 — 17T11(R? + 3)*% — 24R*(61(R* — 9)*>*/R? — 3 + 3R®

(R? +3)%% 4+ 35(R? + 3)%% — 3R*((R* — 9)**V/R? — 3 + (R? + 3)*/%)
— R?(6(R* — 9)**V/R2 — 3+ 41(R? + 3)*)))))R? + 576(88

(B2 4 8)%° — 15V B(R' — 0))) o (5, 251 0 (2 - 3y
+ V/R2 4 3((50688(R? — 3)%® + R*((391(R? — 3)%/® + 24R*(73
(R* — 9)2/3V/R? + 3+ 3RS(R* — 3)% — 35R?(R* — 3)*3 — 105

(R* — 3)% + R*9(R* — 3)*® — 3V/R? + 3(R* — 9)*?)))R* 4 51(23
(R? — 3)%/* — 261V/R2 + 3(R* — 9)*3)))R* + 1728(15(R* — 9)%/3

VR? + 34 83(R? — 3)%/%)) , Fy(— ; g,l,—R26_3)(RQ—3)

— (R + 3)Y3(((—8535(R* — 9)*3V/R? + 3 4 391(R? — 3)%/®

+ R*(—2640(R* — 9)**V/R? + 3 + 17T11(R? — 3)*/® 4 24R*(61
(R* — 9)*/3/R? + 3 — 35(R* — 3)*/® + R*(6(R* — 9)*/*/R? + 3
— 41(R? — 3)*® + 3R?(—(R* — 9)*/*¥/R? + 3 + R*(R? — 3)%3
+ (R? = 3)**))))R® + 6(2049(R* — 9)3¥/R2 + 3

+ 4117(R? — 3)**))R* + 576(15(R* — 9)**/R* + 3
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Appendix F. Ezpressions of g;(R) and g, (R).

gs =T

94

12 6
1:—

2'3 T R 3))

442624 R(R? — 3)/3(R? + 3)(R* — 9)*/,

+ 88(R? — 3)¥3)) o Fy (=,

(—29R*VR2 +3+87TVR2+3+6R°VR2+3
+98(R? — 3)3V/RY — 9 + RY(4(R* — 3)*3V/R* — 9

21 6
— 18V R? 2R (==, =1, —

8 R+3))R2 1( 372a ) R2—3)
+ (—29R*VR? — 3 — 87TV R? — 3+ 6R°VR2 — 3
+ 98(R* 4 3)*3V/ Rt — 9 + 2R*(9V/R? — 3

21 6
2 2/33/ 4 _ 2 (== 2:1:
+2(R +3) R ))R 2 1( 3727 7R2+3)
—2(R*+ 3)(8R*VR2 + 3 — 24V R> + 3 + 3R°VR2 + 3
+ 64(R? — 3)¥3V/RY — 9 + R4(2(R2 —3)¥3V/Rt =9
11

VR 3)) 2R (5, 2,1,—%)—2(R2—3)(8R2\3/R2—3
+3RSVR? — 3+ RY9VR2 — 3+ 2(R* + 3)”*VR - 9)

11 6
+8(3VR2 =3+ 8(R* + 3" VR = 9)2Fi(5, 55 15 3 m13)
/880Rm;

12
=37 ((R? + 3)(6R® — TR* — 1056)(R* — 3)*3 ,Fy(— 5 3L

12
+ (R? +3)*3(6R® — TR* — 1056)(R* — 3) 2Fi(=5, 51—

— (6R® +12R% + 17R* 4+ 58R* — 352)(R* — 3)*3,Fy(=

+ (R*+3)*3(—6R" — 6R® + 19R° 4+ TR* 4 526 R* + 1056)
12

F 1l ————
G gl

))/2912R(R4 — 9)2/3,

g5 = — In(—(R* + 3)(—120R™(R* + 3)*3 + 1704R'°(R? + 3)*/*

— 3641R5(R? + 3)%3 — 11520R?(R? 4 3)*3 + 120R"2((R* — 9)%/°
VRZ =3+ 3(R* + 3)¥%) + 17280(7(R* — 9)*/R? — 3

+ 2(R? 4 3)%/3) — 8R%(403(R* — 9)*/3/R? — 3 4 639(R? 4 3)%?)
+ 3R4(10587(R4 — 9)23/R? — 3 + 3641(R? + 3)¥?))

L 2, 1; VR? — 3+ ((35994(R* — 9)*3v/R2 — 3
2'3 R2+3

— 9858(R? + 3)%3 + R?(22585(R* — 9)%/*V/R? — 3 + 3641(R* + 3)%/*

2 1 (—
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+ R*(—5008(R* — 9)*/3V/R2 — 3 — 6449(R? + 3)*/®

— 8R?(343(R* — 9)**V/R? — 3 + 213(R? 4 3)%*

+ 3R*(—10(R* — 9)*3V/R? — 3+ 5R*(R? 4 3)*/® — 81(R? + 3)*/®
VR =3+ (R? + 3)¥°)))))R? + 5760(7(R* — 9)*/*V/R? — 3

1 2 6
2 2/3 2 _ 9\4/3
2R+ 37) 2R (5, 5 L ) (2 3)

+ VR? + 3((11520(R? — 3)*% 4+ R*(=31761(R* — 9)**V/R2 + 3
+10923(R? — 3)%/® + R*(3641(R? — 3)*/® + 8R%(403(R* — 9)*/®
VR? + 3+ 15R5(R? — 3)%% — 213R*(R? — 3)%/® — 639(R? — 3)*/®
+15R*(3(R? — 3)%3 — VR2 +- 3(R* — 9)¥?)))))R?

+17280(2(R? — 3)%% — 7V/R? + 3(R* — 9)*%))

P~ g; 1 —%)(32 _3) — (R2+ 3)/3((35994(R" — 0)*/3
VR? 4 3 + 9858(R? — 3)%/% + R*(—22585(R* — 9)**V/R? + 3

+ 3641(R? — 3)%3 + R*(—5008(R* — 9)*3V/R? + 3 + 6449(R? — 3)%/3
+ 8R?(343(R* — 9)*V/R? + 3 — 213(R? — 3)%/*

+ 3R*(10(R* — 9)*3V/R? + 3 — 81(R* — 3)*® + 5R*(—(R' — 9)*/*
VR? 3+ R*(R? — 3)*% 4+ (R? — 3)**))))))R? + 5760(2(R? — 3)*/?

TR EB(R ) aFi (G, 2k )

/2213120R(R2 — 3)*3(R? + 3)3(R* — 9)¥%,

g6 =m(2(29R*V/R? + 3 — 87\3/R2 — 6R°V/R? + 3 + T8(R* — 3)%/3
VRY =9+ 2R4(9\/R2 Q(R2 3)?3V/Rt — 9))R?

2 1 6
21 (— 3 2’1’_ﬁ) + 2(29R*V/R? — 3+ 87vV/R2 — 3

— 6RSV/R? — 3 + T8(R? + 3)**VR* —9 — 2R*(9VR2 — 3
2 1 6
2 2/3 3 Y 2 F I
+2(R* 4 3)?3V/R* — 9))R* , Fy ( 3 s +3)
+4(R* +3)(SR*VR? +3 + 3RSV R? +3 — 24(VR> +3
+ (R? — 3)*V/R* — 9) + R*2(R? — 3)**V/R* — 9 — 9V R2 + 3))
11 6
1, ————) +4(R* - 3)(8R*VR% - 3
33 g —g) T4 )
+3R°V/R? — 3+ RYOVR? — 3+ 2(R* + 3)*3V/R* - 9)
11 6
+24(VR2 —3 — (R*+ 3)3V/R* = 9)) o Fy (=, =; 1; ———))

3’2 "RZy3
/ 1760 R</RY — 9;

2 F1(5
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—=3m(3(R2 + 3)(2R® — 11R* + 64)(R%2 — 3)¥3 ,F (—=. = 1;
g7 =3m(3(R° + 3)( +64)( )77 o Fi( 2,3,,R2+3)
6

12
3(R? 4 3)3(2R® — 11R* 4+ 64)(R? — 3) o Fy (==, =; 1; —
4 B(R 4 37 HOO(R =3)2F(—5, 5L g —g)
12 6
B 6R8 12R6_9R4 6R2 64 R2_35/3 (= =1
(6R® + + +64)( )2 1(2’3’ ’R2+3)
12 6
— (B 43)%(6R* — 12R° — 90R' — 6R* + 64) 213 (5. 55 1i =)

/2912R(R4 — )23,

where o F(a, b, ¢, z) is the hypergeometric function which has the following series expansion

S~ (@)D 2"
; (e K
with (1 if k=0;
(@) = { ala+1)(a+2)---(a+k—-1) ifk>0.

F.2 Functions gy/;(R), for j=1,...,4

R R R 3 . R
g1 16 108 486 2RVRI—9  486VRi_0

R R VRY-9 1
—+5—4VR4—9R3;

M= 135 T T eR
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