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Matemàtiques de la Universitat Autònoma
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sota la direcció del Dr. Marcel Nicolau Reig.
Bellaterra, maig de 2006.

Dr. Marcel Nicolau Reig.
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La construcció del caṕıtol 3 està inspirada en una idea de’n Jean Jacques Loeb
i en Marcel Nicolau per a estructures complexes sobre grups de Lie compactes
semisimples. El seu ajut per comprendre els punts delicats i les seves suggerències
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Introduction

Most of the known examples of complex manifolds, in particular all projec-
tive manifolds, are of Kähler type. Since Erich Kähler’s article of 1933 (see
[Käh33]) the subject of Kählerian geometry has been transformed into a major
area of mathematics and Kähler manifolds are pretty well understood. One can
quote Hodge theory, which imposes strong topological conditions on compact
Kähler manifolds in terms of the De Rham and Dolbeaut cohomology groups,
or the Albanese torus, which provides a description of holomorphic vector fields
that allows to distinguish those that admit zeros from the non-vanishing ones.
Furthermore, Kodaira immersion theorem characterizes which compact Kähler
manifolds are projective. Compact Riemann surfaces are always Kählerian. In
dimension 2, it is known that a compact surface is Kählerian if and only if its
first Betti number (that is, the dimension of the first real De Rham cohomology
group) is even. In higher dimensions, deciding whether a given compact complex
manifold is Kähler is far from being a solved question1.

If only for the strong topological restrictions that must verify a compact
complex manifold to be Kählerian one would expect that, besides dimension
2, Kähler manifolds are the exception rather than the rule. A corollary of a
result by Taubes (see [Tau92]) implies that every finite presentation group is the
fundamental group of a non-Kähler compact complex 3-manifold. Although it is
not related to our main goal we will briefly outline the proof of this fact (see C.
LeBrun’s expository article, [LeB97], Twistors for Tourists) for it is a beautiful
example of the interplay between complex and Riemannian geometry.

Given a Riemannian oriented 4-manifold (M, g) one can consider the S2-
bundle π : Z → M of almost complex structures on M compatible with g and
the orientation. The total space Z carries naturally an almost-complex structure

1The most recent significant progress on that problem I am aware of is the work by M.Paun

and J.P. Demailly on the Kähler cone of a compact complex manifold.
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2 Introduction

such that it acts by rotation by −90◦ on the fibre and as the almost-complex
structure corresponding to that point of Z on the horizontal subspace of TZ
(with respect to the Levi-Civitta connection). When (M, g) is an anti-self-dual
4-manifold the previous almost-complex structure on Z, which depends only on
the conformal class [g] of g, is integrable and the complex 3-manifold Z is called
the twistor space of M. Taubes proved that for any compact 4-manifold M there
exists n0 ≥ 0 such that the connected sum of M and n copies of P2 (P2 with
the reversed orientation) admits an anti-self-dual metric for n ≥ n0. Moreover,
a theorem by Hitchin states that up to a conformal isometry the only compact
anti-self-dual 4-manifolds with Kählerian twistor spaces are S4 and P2. The
fundamental group of the twistor space of M#P2 being the same that the one
of M, one concludes that any finite presentation group is the fundamental group
of a twistor space. All this suggests that non-Kählerian geometry is an area
of geometry worth exploring in which not only results but also easy-to-handle
examples are lacking.

One can easily notice that some of the standard techniques to produce ex-
amples of compact smooth manifolds do not work in the complex case. For
instance, the maximum principle implies that the only compact complex mani-
folds of Cn obtained as the zeros of a holomorphic function are points. If one is
interested in non-Kählerian examples the situation becomes even more difficult.
Compact complex manifolds obtained as zeros of holomorphic functions of CPn

turn out to be projective by Chow’s theorem (and therefore Kählerian). Com-
pact complex manifolds obtained as a quotient of a bounded domain of CPn are
also algebraic (see [Sun80] or [Wel80]). On the other hand the only compact
complex Lie groups are complex torus.

Historically, the first examples of non-Kähler manifolds were constructed by
H. Hopf as a quocient of Cn\{0} for n > 1 by a contracting biholomorphism of Cn

which fixes the origin. Later, E. Calabi and B. Eckmann described a class of non-
Kähler complex structures on the product S2n+1×S2m+1 for n, m ≥ 0 such that
the corresponding complex manifold is the total space of a holomorphic principal
bundle over Pn × Pm with fiber an elliptic curve. In [LN96] J.J. Loeb and M.
Nicolau generalized Calabi-Eckmann and Hopf structures by the construction of
a class of complex structures on the product S2n+1 × S2m+1 that contains the
precedents. Every complex manifold of this class is the subset of the orbit space
of an holomorphic flow on Cn+m and admits a non-vanishing holomorphic vector
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field. A similar idea has been used by S. Lopez de Medrano and A. Verjovsky in
[LdMV97] to construct another family of non-Kählerian compact manifolds and
later generalized by L. Meersseman in [Mee00].

In this thesis we present a different approach, even though it is partially
inspired by Loeb-Nicolau class of examples, to construct a new family of com-
plex structures on some classes of compact manifolds. Namely, we depart from
a class of odd-dimensional compact connected real manifolds equipped with a
normal almost contact structure and by very elementary geometrical construc-
tions (products and suitable S1-principal bundles and suspensions) we produce
a compact manifold together with a complex structure defined by means of the
normal almost contact structure. The basic ingredient will be the class T of
odd-dimensional real manifolds admitting a CR-structure of maximal dimension
and a transverse CR-action, which is also known as a normal almost contact
structure (see [Bla02] for a survey on these concepts or chapter 2). More pre-
cisely, we will consider three constructions: (A) products of odd-dimensional
real manifolds in the class T , (B) S1-principal bundles over a manifold in the
class T (with an extra restriction on the bundle) and (C) suspensions of a man-
ifold in the class T by an automorphism preserving the normal almost contact
structure. The common feature of all the manifolds so constructed is the ex-
istence of a holomorphic vector field without zeros. Conversely, we will prove
that the complex structure of a compact Kähler manifold with a non-vanishing
holomorphic vector field can be recovered by the construction of case (C).

The idea of trying to relate normal almost contact structures on odd-dimen-
sional manifolds to complex structures and of exploiting the parallelisms between
them is not new. In 1963 A. Morimoto showed how to define an integrable
almost complex structure on a product of two normal almost contact manifolds
M1 × M2 (see [Mor63]). M. Capursi, in 1984, characterized when the product
metric corresponding to some particular metrics adapted to the normal almost
contact structure on M1 and M2 is Kähler (see [Cap84]). The complex structures
that we describe on M1×M2, case (A), for the choice of the parameter τ = −i are
exactly those of Morimoto. On the contrary, the constructions of cases (B) and
(C) had not been studied and we present a unified approach to the three cases,
which is quite close to that of A. Haefliger and D. Sundararaman in [HS85]
or M. Brunella in [Bru96], in which the goal is to complexify a transversely
holomorphic flow.
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The natural question at this point is whether it is possible to characterize
when the previous complex structures admit a Kähler metric or, if this goal
turns out to be beyond our reach, to find obstructions for the previous complex
manifolds to admit a Kähler metric. Note that even for case (A) such a result
is stronger than the one in [Cap84]. Indeed, we prove that there is an obstruc-
tion for the resulting manifolds to be Kähler which can be expressed in terms of
a cohomological invariant of the departing normal almost contact structure (or
structures): the Euler class of the flow F associated to the CR-action. When the
flow F is isometric, the Euler class agrees with the classical one, as one would
expect. We will see that no complex manifold obtained by the constructions
of cases (A), (B) or (C) can possibly be Kähler unless the Euler classes of all
the involved normal almost contact structures are zero. One of the principal
interests of this result is that it relies very little on particular characteristics of
the resulting complex manifold other than the existence of a holomorphic vector
field without zeros. This allows us to deduce several consequences on elliptic
principal bundles, C∗-principal bundles and (C,+)-principal bundles. Moreover,
when the flows associated to the CR-action are isometric we give necessary and
sufficient conditions for the complex manifold to be Kähler exploiting the fact
that for isometric flows that are transversely Kähler it is possible to develop a
transverse Hodge theory analogous to the one on compact Kähler manifolds (see
[EKA90]). In cases (A) and (B) the characterization is complete for isometric
flows and can be roughly stated by saying that the resulting complex manifold
is Kähler if and only if the Euler classes are zero and the flows are transversely
Kählerian. In case (C) a result in this spirit requires assuming that the auto-
morphism corresponding to the suspension is an isometry. Since this hypothesis
is too restrictive we will study the question under different assumptions.

This work has been done keeping the following general goals in mind as
guidelines:

A. Construct explicit and easy-to-handle examples of non-Kähler compact com-
plex manifolds.

B. Obtain new examples of manifolds in the class T .

C. Study the interplay between complex and normal almost contact structures,
with special emphasis on Kählerianity.

In practice the results obtained can be divided in three groups:
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1. Description of a class of complex structures on certain compact manifolds
obtained from manifolds in the class T (Chapter 4);

2. Geometrical description of left-invariant normal almost contact structures on
compact connected semisimple Lie groups and a geometrical construction of
new non-invariant normal almost contact structures (Chapter 3);

3. Obtention of necessary (and in some cases sufficient) conditions for the com-
plex manifolds in 1.- to admit a Kähler metric (Chapter 5).

The rest of the thesis is organized as follows. In chapter 1 we recall all prelim-
inary concepts and results. In chapter 2 we define the class T , we present an
alternative characterization of T that will be more suitable for our purposes,
we define the Euler class and we describe briefly several classical families of
examples. Finally, in chapter 6, we classify compact 3-manifolds admitting a
normal almost contact structure and study the compact complex surfaces that
are produced by the constructions in chapter 3.

In the rest of the introduction we intend to outline the main results of the
thesis. We begin by recalling some concepts and by fixing the notation.

One says that a topological space M is a complex manifold when it carries a
complex structure, that is, an atlas {(Ui, ϕi)}i∈I where the Ui are open subsets
homeomorphic to open subsets of Cn such that M =

⋃
i∈I Ui and the functions

ϕj ◦ ϕ−1
i are holomorphic. Every complex manifold carries naturally an almost

complex structure, that is, a tensor J : TM → TM of type (1,1) such that
J2 = −Id (the tensor J is simple the rotation by 90◦ from the real direction
to the imaginary direction of a complex line). Since J can be extended linearly
to T CM one can define the eigenspaces T 1,0M and T 0,1M of J of eigenvalues i
and −i respectively. That allows us to speak of vector fields of type (1, 0) and
(0, 1) and by duality of forms of type (p, q). Moreover, by a famous theorem by
Newlander-Niremberg we know that the almost complex structures that arise
from complex structures are exactly those satisfying [T 1,0M, T 1,0M] ⊂ T 1,0M
(often called involutive or integrable). From now on, we will identify complex
structures and involutive almost complex structures.

A Riemannian metric g on a complex manifold compatible with the complex
structure in the sense that J is an isometry with respect to it (i.e. g is hermitian)
and such that∇XJ = 0 for every vector field X on M (where∇ denotes the Levi-
Civitta connection) is called a Kähler metric. The last condition is equivalent
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to imposing that the 2-form Φ, defined by Φ(X, Y ) := g(X, JY ) for every pair
of vectors X, Y on M, is closed. Essentially we will use two major results on
compact Kähler manifolds: Hodge theorem and a well-known corollary of it, the
∂∂-lemma, and Carrell-Liebermann theorem (see chapter 1).

On a compact smooth manifold M of odd dimension 2n + 1 the closest
structure to a complex one is a CR-structure (of maximal dimension), i.e. a
complex bundle Φ1,0 of complex dimension n such that Φ1,0 ∩ Φ1,0 = {0} and
[Φ1,0,Φ1,0] ⊂ Φ1,0. The real subbundle D underlying to Φ1,0 defines a distribu-
tion of codimension 1 at every point of M (notice that D needs not be integrable
in the real sense, that is, we cannot assume that [D,D] ⊂ D). If M2n+1 is a com-
pact connected manifold the pair (Φ1,0, T ) of a CR-structure and a vector field T

without zeros is called a normal almost contact structure on M if T is transverse
to the distribution D and the action induced by T preserves the CR-structure
Φ1,0. Under this hypothesis the flow F defined by T is transversely holomorphic.
Moreover, the 1-form ω defined by ω(T ) = 1 and ω|D = 0 verifies that dω is a
basic 1-form of type (1,1). Conversely, let F be a transversely holomorphic flow
on a compact manifold M2n+1 generated by a real vector field T without zeros
and a 1-form ω such that ω(T ) = 1. Set D = kerω and let J be the almost
complex structure on D induced by F . Then (D, J) is a CR-structure on M
of dimension n and T defines a transverse CR-action if and only if iT dω = 0
and the basic form dω is of type (1, 1) with respect to the complex structure
transverse to F .

We define the Euler class of a normal almost contact structure, which is
a natural generalization of the Euler class of an isometric flow, as the basic
cohomology class given by

eF (M) = [dω] ∈ H2(M/F).

Note that if (Φ1,0, T ) and (Ψ1,0, T ) are two normal almost contact structures
their Euler classes coincide. The vanishing of the Euler class is equivalent to
the existence of an integrable distribution D transverse to the vector field T and
invariant by the action of T . Moreover, as a consequence of Tischler’s theorem
(see theorem 2.1.7), if eF (M) = 0 the compact manifold M is a fibre bundle over
S1 and in particular M cannot be simply connected. On the other side, when D
is a contact distribution the Euler class is not zero.

We will denote by T the class of compact connected manifolds M of odd
dimension which are endowed with a normal almost contact structure. In view
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of the previous discussion is not difficult to verify that circle principal bundles
over a compact complex manifold B such that there exists a connection 1-form
ω with associated curvature form dω of type (1,1) with respect to the com-
plex structure on B are examples of manifolds in the class T . More generally,
transversely holomorphic isometric flows on a compact manifold for which there
exists a characteristic 1-form ω such that dω is of type (1, 1) with respect to the
transverse complex structure also belong to the class T . This includes certain
classes of Seifert fibrations over complex orbifolds, for instance Brieskorn mani-
folds (see section 2.3). The suspension of a compact complex manifold N by an
automorphism g ∈ AutC(N) carries a natural normal almost contact structure
where Φ1,0 = T 1,0N. When the compact manifold M has real dimension 3 we
have a complete classification of the manifolds in the class T (see section 2.2
and chapter 6) based on Brunella-Ghys classification of transversely holomor-
phic flows on compact connected 3-manifold. Let M be a compact connected
manifold of dimension 3 in the class T , then, up to diffeomorphism, the manifold
M3 and the vector field inducing the CR-action belong to the following list:

(i) Seifert fibrations over a Riemann surface with a vector field tangent to
the fibres such that the isometric flow of the action admits a characteristic
1-form ω such that dω is of type (1, 1).

(ii) Linear vector fields in T3.

(iii) Foliations on S3 induced by a singularity of a holomorphic vector field in
C2 in the Poincaré domain and their finite quotients, i.e. foliations on the
lens spaces Lp,q.

(iv) Suspensions of a holomorphic automorphism of P1 with a vector field tan-
gent to the flow associated to the suspension.

Moreover, all the previous manifolds admit a normal almost contact structure
such that the CR-action is the one induced by the corresponding vector field.

In chapter 3 we consider normal almost contact structures on a particular
family of manifolds: compact connected semisimple Lie groups of odd dimen-
sion. In the first part of the chapter we study left-invariant normal almost
contact structures, that is, structures on a compact Lie group K such that the
vector field T and the CR-structure Φ1,0 are invariant by the action on the left of
elements of K. A classical theorem proved independently by Wang and Samel-
son states that every compact Lie group of even dimension admits a complex
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structure such that left translations are holomorphic maps. A quite recent re-
sult by Charbonnel-Khalgui states that every compact semisimple Lie group of
odd dimension admits a left-invariant CR-structure of maximal dimension (see
chapter 3 for more details and more antecedents). We prove that every compact
connected Lie group of odd dimension admits a normal almost contact structure
(as a matter of fact it is enough to prove the statement for compact connected
semisimple Lie groups, one can afterwards remove the hypothesis using general
properties of Lie groups and Samelson’s result). The main interest of the previ-
ous result lies in the fact that we can describe all left-invariant normal almost
contact structures on a compact connected semisimple Lie groups geometricaly.
Before we give the precise statement one must note that a left invariant normal
almost contact structure on a Lie group K with Lie algebra k is defined by a pair
of Lie complex subalgebras l ⊂ l′ of dimensions n and n + 1 of g = kC such that:

(a) l ∩ k = {0};

(b) dimRl′ ∩ k = 1;

(c) l is an ideal of l′, i.e. [l, l′] ⊂ l.

The CR-structure Φ1,0 is given by l (the conjugation is a convention that will
simplify things later) and the vector field defining the CR-action by l′ ∩ k. Ob-
viously the previous definition is valid only at the point e ∈ K but since we are
considering a left-invariant structure the extension is unique.

More generally a normal almost contact structure on a compact connected
Lie group K of odd dimension 2n + 1 is determined by a complex subbundle V

of T CK of rank n and a real vector field ξ on K such that V ′ := V ⊕ 〈ξ〉C is a
complex subbundle of T CK of rank n + 1 fulfilling:

(a) V ∩ TpK = {e};

(b) [V, V ] ⊂ V ;

(c) [ξ, V ] ⊂ V ;

for every p ∈ K. By convention V corresponds to the distribution of vector fields
of T C

p K of type (0, 1). The normal almost contact structure is then left-invariant
if and only if the subbundle V and the vector field ξ are left-invariant by product
of elements of K.

Theorem 1. Let K be a semisimple compact connected Lie group of odd dimen-
sion 2n + 1 and rank 2r + 1 and let G be its universal complexification. Assume
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that H is a Cartan subgroup of G and Λ : Cr+1 → H a Lie group morphism
verifying the transversality condition (I). If B is a Borel subgroup of G such
that H ⊂ B and U is its subgroup of unipotent elements then the Lie subalgebras
lΛ ⊂ l′Λ of g associated to the complex Lie subgroups L′Λ = Λ(Cr+1) · U and
LΛ = Λ({0} × Cr) · U of G define a left-invariant normal almost-contact struc-
ture KΛ on K. Moreover, the Lie subgroup LΛ is closed and the CR-structure on
K determined by LΛ agrees with the one induced by the embedding K ↪→ G/LΛ

of K as a real hypersurface of the complex manifold G/LΛ. Conversely, every
left-invariant normal almost contact structure is induced by such a morphism Λ
from Cr+1 into a Cartan subgroup H of G.

The transversality condition (I) (see lemma 3.1.20) is a condition on the ranks
of some matrices associated to the Lie morphism Λ. To clarify the previous result
it might be useful to recall that if ρ : K → G is the universal complexification
of K, which is a non-compact complex algebraic group with Lie algebra g =
kC = k ⊕ ik, then there is a decomposition of the Lie algebra g which has as a
consequence a decomposition in terms of Lie groups that we explote. Let us
choose a maximal torus T of K with Lie algebra t, let H be the Cartan subgroup
of G with Lie algebra r = tC and a Borel subgroup B of G such that H ⊂ B.
We denote by U the subgroup of unipotent elements of B and by A the simply
connected Lie subgroup of G with Lie algebra it. Then the map

Φ : (k, a, u) 7→ k · a · u; k ∈ K, a ∈ A, u ∈ U

is a diffeomorphism from the product manifold K · A · U into G (this is known
as the Iwasawa decomposition). In particular G/U ∼= K · A and note that
A ∼= RrankK. In consequence, as the Lie group K is embedded in G/U and
U ⊂ LΛ, one can see the normal almost contact structure on K as induced by
a locally free holomorphic Cr+1-action ϕ : Cr+1 × G/U → G/U. Indeed, if we
define

Fx := ϕ({0} × Cr, [x]); F ′
x := ϕ(Cr+1, [x]),

that is, the leaves through [x] ∈ G/U of the foliations defined by the actions of
Cr ∼= {0} × Cr and Cr+1 respectively, then one has:

Lemma 2. A locally free holomorphic Cr+1-action ϕ : Cr+1 × G/U → G/U
fulfilling:

(i) dimR(Fp ∩K · a) = 0, for a = e and each p ∈ K · e = K,
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(ii) dimR(F ′
p ∩K · a) = 1, for a = e and each p ∈ K · e = K,

(iii) there exists λ ∈ C such that ξ = dϕ
(
Re
(
λ ∂

∂z0

))
is tangent to K · a, for

a = e and each p ∈ K · e = K,

induces a normal almost contact structure on K. We refer to the previous con-
ditions as the transversality hypothesis (II).

In our case the Cr+1-action is induced by the Lie group morphism Λ : Cr+1 →
H composed with the action of H by product on the right (that is well defined
because N(U) = B).

The previous discussion allows us, in the second part of the chapter 3, to con-
struct non-invariant normal almost contact structures on a compact connected
semisimple Lie group K. The first remark is that the action of (C∗)4r+2 ∼=
H×H = B/U× B/U on the homogeneous space G/U given by

H×H×G/U → G/U, (h1, h2, [g]) 7→ [h1 · g · h2]

is well defined. Using the same idea as in the left invariant case, one can construct
normal almost contact structures on K exploiting this action of H×H on G/U. As
before, it implies the existence of non-invariant normal almost contact structures
on every compact connected Lie group of odd dimension.

Theorem 3. Let K be a semisimple compact connected Lie group of odd dimen-
sion 2n + 1 and rank 2r + 1 and let G be its universal complexification. Assume
that H ⊂ B are a Cartan subgroup and a Borel subgroup of G respectively. Then
every morphism of Lie groups Λ : Cr+1 → H × H inducing a locally free holo-
morphic action ϕΛ : Cr+1 × G/U → G/U verifying (II) determines a normal
almost contact structure in a natural way by lemma 3.2.4. Moreover, such a
normal almost contact structure is left-invariant if and only if Λ = (e,Λ2) where
Λ2 : Cr+1 → H is a morphism verifying the transversality hypothesis (I). In
particular, there exist small deformations of the previous ones obtained by de-
forming Λ which induce suitable Cr+1-actions defining normal almost contact
structures on K generically non-invariant.

The previous result implies that every compact connected Lie group of odd
dimension is in the class T , not only equipped with left-invariant normal almost
contact structures but also provided with non-invariant (and in particular new)
normal almost contact structures.
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After discussing normal almost contact structures and classical and new ex-
amples of manifolds in the class T we intend to discuss how to obtain complex
structures on the three classes of compact connected manifolds (A), (B) and (C)
described above. Namely, we prove the following results:

Proposition 4 (Case (A)). Let M1 and M2 be two manifolds in the class T .
There exists a 1-parametric family of integrable almost complex structures Kτ

on the product M1 ×M2, for τ ∈ C\R, so that the complex manifold M1 ×M2

admits a non-vanishing holomorphic vector field v.

Morimoto complex structures mentioned before are particular cases of this
construction for τ = −i. Calabi-Eckmann complex structures on the products
of spheres of odd-dimension S2n+1 × S2m+1 are also examples.

Proposition 5 (Case (B)). Let M be a manifold in the class T . Denote by T

the vector field inducing the CR-action and by FT the transversely holomorphic
flow induced by T . Let π : X → M be a S1-principal bundle over M with Chern
class [dβ], where β is a 1-form on X such that dβ ∈ π∗Ω1,1(M/FT ). Then there
exists a 1-parametric family of integrable almost complex structures Kτ on X for
τ ∈ C\R so that the complex manifold X admits a non-vanishing holomorphic
vector field v.

The Iwasawa manifold or, more generally, elliptic principal bundles over a
compact complex manifold are examples of this situation.

Proposition 6 (Case (C)). Let M2n+1 be a manifold in the class T with a
CR-structure Φ1,0 and a vector field T inducing a transverse CR-action. Given
f ∈ AutCR(M) such that f∗T = T the suspension X of M by f admits a 1-
parametric family of integrable almost complex structures Kτ for τ ∈ C\R so
that the complex manifold X admits a non-vanishing holomorphic vector field v

induced by T − τ ∂
∂s .

An example of this situation is what we will refer to as a double suspension
of a compact complex manifold. Namely, let N be a compact complex manifold
and f, g ∈ AutC(N) so that f ◦ g = g ◦ f , the quotient X of N× C by F (x, z) =
(f(x), z +1) and G(x, z) = (g(x), z + τ) for τ ∈ C\R is a complex manifold with
a non-vanishing vector field induced by ∂

∂z .
Even though the last construction might seem rather particular it is not in

view of the following theorem that we prove:
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Theorem 7. Every compact Kähler manifold X admitting a non-vanishing holo-
morphic vector field v can be obtained by the construction of proposition 6.

Indeed, the example of the double suspension is also quite remarkable:

Theorem 8. Every compact Kähler manifold X admitting a holomorphic vec-
tor field v without zeros admits a complex structure on the underlying smooth
manifold X arbitrarily close to the original one that can be obtained by a double
suspension.

The previous results constitute the core of the chapter 4. To avoid presenting
a different proof of the integrability of the almost complex structures defined in
cases (A), (B) and (C) the first section of the chapter tries to describe an unified
approach. In the three constructions the initial data allows to construct a smooth
compact manifold X together with a locally free action of R2 (given by two lin-
early independent vector fields T1 and T2) inducing a transversely holomorphic
foliation F . Moreover, the real distribution of the normal almost contact struc-
tures gives rise to a distribution D transverse to F . The integrability condition
of the almost complex structure on X defined by imposing that it is compatible
with the transverse holomorphic structure of F and that v = T1−τT2 is a vector
field of type (1,0) for any τ ∈ C\R can be explicitly written and we will make
use of this in the proof of the propositions. Moreover, when the distribution D
is invariant by the vector fields T1 and T2, which is always the case for our con-
structions, v is a holomorphic non-vanishing vector field. Loeb-Nicolau complex
structures on the product of odd-dimensional spheres (see [LN96]) can be pro-
duced by this construction for an invariant distribution D. Indeed, the complex
structure of every compact complex manifold with a holomorphic vector field
without zeros can be recovered in the previous way, maybe for a non-invariant
distribution D.

We will next state some of the main results regarding the question of whether
the complex manifolds obtained by the constructions of cases (A), (B) and (C)
admit a Kähler metric (see chapter 5 for the complete discussion). We will begin
by exhibiting obstructions in terms of the Euler class for the different situations.
To simplify the exposition we introduce the notion of complexification of a pair
(M, T ), where M is a manifold in the class T and T the vector field defining the
CR-action, which includes cases (A) and (C). We denote by F the transversely
holomorphic flow induced by T . We say that a compact complex manifold X
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endowed with a non-singular holomorphic vector field v is a complexification of
the pair (M, T ) if:

(i) M is a real submanifold of X.

(ii) The transversely holomorphic structure on F is induced by the complex
structure on X.

(iii) There exists λ ∈ C such that Re(λv) = T .

Theorem 9. Let M be a manifold in the class T and T the vector field inducing
the CR-action. If eF (M) 6= 0 then (M, T ) admits no Kähler complexification.

Corollary 10. Let M be a manifold in the class T and T the vector field inducing
the CR-action. If M admits a normal contact structure compatible with the CR-
action induced by T then (M, T ) admits no Kähler complexification.

Corollary 11. Let M be a manifold in the class T and T the vector field inducing
the CR-action. If b1(M) = 0, in particular if M is simply connected, then (M, T )
admits no Kähler complexification.

A remarkable particular case of this situation is when M is a compact con-
nected semisimple real Lie group of odd dimension, for its first Betti number is
zero.

The previous results apply to the constructions of the cases (A) and (C). For
the construction of the case (B) we prove the following:

Theorem 12. Assume that X is a compact complex manifold constructed as in
proposition 5 (case B) from a manifold M in the class T . If X is Kählerian then
eF (M) = 0 and the S1-principal bundle π : X → M is flat. In particular, if X is
Kähler and H2(M, Z) has no torsion then the S1-principal bundle is topologically
trivial.

Theorem 13. Assume that X is a compact complex manifold constructed as in
proposition 6 (case C) from a manifold M in the class T . If X is Kählerian then
eF (M) = 0.

The main tool used in the proof of the previous results is a theorem by
Carrell-Liebermann (see [CL73]) that states that a holomorphic vector field v

over a compact Kähler manifold X has zeros if and only if for every holomorphic
1-form α on X we have α(v) = 0. As all the complex structures that we are
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considering admit a non-vanishing vector field v if the compact complex manifold
X is Kähler we can assume that there exists a closed holomorphic 1-form α such
that α(v) = 1. This implies the existence of a Levi-flat complex distribution on
X invariant by the vector field v, which can be translated into a condition on
the departing manifold M and on its normal almost contact structure.

Under more restrictive hypothesis we can obtain necessary and sufficient
conditions for the resulting complex manifold to be Kählerian:

Theorem 14. Let X = M1×M2 be a complex manifold obtained by proposition
4 (case A) from two manifolds M1 and M2 in the class T such that the flows F1

and F2 in M1 and M2, respectively, induced by the vector fields of the normal
almost contact structures are Riemannian. Then X is Kählerian if and only if
eF1(M1) = eF2(M2) = 0 and the flows F1 and F2 are isometric and transversely
Kählerian (on M1 and M2, respectively).

Theorem 15. Let X be a complex manifold obtained by proposition 5 (case B)
from a manifold M in the class T such that the flow FT on M is Riemannian.
Then X is Kähler if and only if the S1-principal bundle π : X → M is flat,
eFT

(M) = 0 and the flow FT is isometric and transversely Kählerian.

The two last theorems are in fact two particular cases of a more general
statement and its proof explotes strongly the fact that given a normal almost
contact structure such that the flow F induced by the vector field of the CR-
action is isometric and transversely Kählerian one can apply Hodge theory on
the transverse part of the flow F . The control on the part tangent to F is
achieved thanks to the hypothesis on the Euler class. The difficulty in obtaining
a complete characterization of whether the complex structures admit Kähler
metrics or not when the flows are not isometric lies in the lack of control on the
transverse part of the flow F .

A different approach, based on a result of A.Blanchard (see [Bla56]) and a
theorem of D.Liebermann (see [Lie78]), allows us to prove the following nec-
essary and sufficient conditions for some of the constructions of case (C). The
first theorem deals with double suspensions and characterize when the complex
structure is Kähler (we also give a characterization of when a double suspen-
sion is a projective manifold, see chapter 5) and the second is a generalization
of the first that is proved by the same arguments with the only difference that
transverse Hodge theory plays the role of Hodge theory on a compact Kähler
manifold.
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Theorem 16. Let N be a compact complex manifold and f, g ∈ AutC(N) such
that f ◦ g = g ◦ f and let X be the suspension N × C/〈F,G〉 where F (x, z) =
(f(x), z+1), G(x, z) = (g(x), z+τ) and Im(τ) 6= 0. Then the following conditions
are equivalent:

(i) X is Kähler.

(ii) There is a Kähler form ω on N such that [f∗ω] = [g∗ω] = [ω].

(iii) N is Kähler and there are integers n, m > 0 such that fn, gm ∈ Aut0(N).

Theorem 17. Let M2n+1 be a manifold in the class T with CR-structure Φ1,0

and vector field T . Assume that the flow F induced by the vector field T on
M is isometric. Assume that X is a compact complex manifold constructed as
in proposition 6 (case C) from M. If X is Kähler then the following conditions
hold:

(i) The Euler class eF (M) is zero.

(ii) The flow F is transverselly Kähler and there exists a Kähler transversal
form Φ such that [f∗Φ] = [Φ] ∈ H1,1(M/F).

Moreover if the CR-structure is Levi-flat (so in particular the Euler class eF (M)
is zero) and f∗ = id acting on H1(M, C) then X is Kähler if and only (ii) holds.

Finally in chapter 6 we discuss examples of compact complex surfaces S that
can be obtained by the previous discussions. Using that S admits a holomorphic
vector field without zeros a well-known classification implies that such a surface
must belong to the following list:

(I) Complex tori.

(II) Principal Seifert fibre bundles over a Riemann surface of genus g ≥ 1
with fiber an elliptic curve.

(III) Ruled surfaces over an elliptic curve.

(IV) Almost-homogeneous Hopf-surfaces.

On the other hand the classification of transversely holomorphic flows on a com-
pact connected 3-manifold by M.Brunella and E.Ghys plus a small discussion
gives the list of possibilities for compact connected 3-manifolds in the class T
stated above. In most cases we can determine precisely which compact complex
surface is obtained by each construction.



Chapter 1

Preliminaries

In this chapter we briefly recall all the classical notions and results that we
use hereinafter. While the first six sections deal with concepts that appear
throughout all the thesis the last section is only used in chapter 3.

1.1 CR-structures and complex manifolds

Let M be a smooth manifold and suppose that Φ1,0 is a complex subbundle of
dimension m of the complexified tangent bundle T CM = TM ⊗ C. We recall
that the pair (M,Φ1,0) is called a CR-manifold or that the bundle Φ1,0 is called
a CR-structure on M of dimension m (cf. [KN69] or [Bog91]) if:

(i) Φ1,0 ∩ Φ1,0 = {0};

(ii) Φ1,0 is involutive, i.e. [Φ1,0,Φ1,0] ⊂ Φ1,0.

The complex bundle Φ1,0 induces a real subbundle D of TM defined as D =
TM ∩ (Φ1,0 ⊕ Φ1,0). We define an endomorphism J : D → D imposing that
v− iJv ∈ Φ1,0 for every v ∈ D. Note that we can determine the CR-structure by
giving (M,D, J). Setting Φ0,1 = Φ1,0 we have a decompositionD⊗C = Φ1,0⊕Φ0,1

where Φ1,0 and Φ0,1 are the eigenspaces of J (extended by complex linearity to
D ⊗C) of eigenvalue i and −i respectively. We denote by AutCR(M) the subset
of Diff(M) of maps f such that df preserves D and commutes with J .

Now let {ϕt : t ∈ R} be the flow induced by a smooth R-action on M.
We say that {ϕt} defines a CR-action if ϕt ∈ AutCR(M) for each t. When
dimR M = 2m+1 we call the action transverse to the CR-structure if the smooth

17
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vector field T = (dϕt/dt)t=0 is everywhere transverse to D, i.e. 〈T 〉⊕D has real
dimension 2m + 1 at every point.

An almost complex structure on a manifold M2n is a complex subbundle
T 1,0M of T CM of dimension n such that T 1,0M ∩ T 1,0M = {0}. We say that
M is an almost complex manifold . Equivalently an almost complex structure
on M is given by a tensor J : TM → TM of type (1, 1) such that J2 = −Id.
Notice that a complex manifold M carries a canonical almost complex structure
which can be easily defined, if zj = xj + iyj are holomorphic coordinates, by
J
(

∂
∂xj

)
= ∂

∂yj
and J

(
∂

∂yj

)
= − ∂

∂xj
. If M is an almost complex manifold we can

decompose the complexified tangent space T CM into T 1,0M⊕T 0,1M where T 1,0M
and T 0,1M are the eigenspaces of J (extended by complex linearity to T CM) of
eigenvalue i and −i respectively. In particular T 1,0M∩T 0,1M = {0} and T 1,0M⊕
T 0,1M = T CM. We also obtain a decomposition of the complexified exterior
algebra: we denote by Ωp,q(M) the space of sections of the bundle Λp(T 1,0M)∗⊗
Λq(T 0,1M)∗ so that Ωr(M)⊗ C =

∑
p+q=r Ωp,q(M). We say that an r-form ω is

of type (p, q) if ω ∈ Ωp,q(M). An almost complex structure induced by a complex
structure is involutive (also called integrable), that is [T 1,0M, T 1,0M] ⊂ T 1,0M.
The reciprocal, that is, an integrable almost complex structure is the canonical
almost complex structure associated to some complex structure, is true by a
deep theorem by Newlander-Nirenberg (see [NN57]):

Theorem 1.1.1. With the above notation the following conditions are equiva-
lent:

(i) J is induced by a complex structure on M.

(ii) T 1,0M is involutive, i.e., [T 1,0M, T 1,0M] ⊂ T 1,0M.

(iii) dΩp,q(M) ⊂ Ωp+1,q(M)⊕ Ωp,q+1(M).

(iv) The Nijenhuis tensor N(X, Y ) = [JX, JY ]− [X, Y ]−J [JX, Y ]−J [X, JY ]
vanishes identically.

Consequently, a possible way to endow a real manifold M of dimension 2n

with a complex structure is to define an almost complex structure on M and to
check the involutivity of the distribution T 1,0M or any other equivalent condition.



1.2 Kähler manifolds 19

1.2 Kähler manifolds

We say that a Riemannian metric g on an almost complex manifold (M, J) is
hermitian if g(X, Y ) = g(JX, JY ) for all pairs X, Y of vector fields on M. If
a complex manifold M admits a hermitian metric g such that its Levi-Civitta
connection ∇ verifies ∇XJ = 0 for every vector field X on M we say that M is
a Kähler manifold and that g is a Kähler metric. A classical example of Kähler
manifold is Pn with the Fubini-Study metric and consequently all projective
manifolds are also Kählerian (restricting the Fubini-Study metric).

Given an hermitian metric g on a complex manifold (M, J) we define the
fundamental 2-form Φ associated to g as Φ(X, Y ) = g(X, JY ) for every X, Y ∈
X(M). The real form Φ is of type (1, 1). Kähler metrics are characterized in
terms of Φ as follows:

Proposition 1.2.1. Let g be a hermitian metric on a complex manifold M.
Then g is Kählerian if and only if dΦ = 0.

Therefore Φ represents a cohomology class in H2(M, R) which is not zero
if the manifold M is compact. Indeed, if Mn is a compact Kähler manifold
then even Betti numbers b2k = dimR H2k(M, R) are positive for 0 ≤ k ≤ n.

Clearly every 1-dimensional complex manifold is Kählerian because as dΦ is a
3-form it must vanish. A compact complex surface S is Kählerian if and only if
b1(S) = dimR H1(S, R) is even (see [Lam99] or [Buc99]). For higher dimensions
we are far from having such a simple characterization, however compact Kähler
manifolds verify strong topological conditions (see [ABC+96] for restrictions on
the fundamental group and a survey of related topological questions).

If M is a complex manifold we denote by Ωr(M) the sheaf of germs of holo-
morphic r-forms on M. If M is compact and Kählerian then the holomorphic
q-forms H0(M,Ωq) inject into Hq(M, C), that is every holomorphic form ν 6= 0 is
closed and non-exact. Let us denote by Hp,q(M) Dolbeaut’s cohomology groups.
Recall that Hp,q(M) ∼= Hq(M,Ωp(M)) and set hp,q = dimR Hp,q(M). One of
the fundamental results of the theory of compact Kähler manifolds is the Hodge
decomposition theorem (see [GH78] for details):

Theorem 1.2.2. Let Mn be a compact Kähler manifold. Then

Hr(M, C) =
⊕

p+q=r

Hp,q(M), for 0 ≤ r ≤ n
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and Hp,q(M) ∼= Hq,p(M). In particular bk =
∑

p+q=k hp,q and hq,p = hp,q.

It follows that if Mn is a compact Kähler manifold odd Betti numbers b2k+1 =
dimR H2k+1(M, R) are even for 0 ≤ k ≤ n. Note also that the class of the 2-form
Φ belongs to H1,1(M, C) ∩H2(M, R).

In [HL83] Harvey-Lawson give a characterization in terms of currents of those
compact complex manifolds which admit Kähler metrics, namely they prove that
a compact complex manifold admit a Kähler metric if and only if it does not
carry any non-trivial positive current which is a (1, 1)-component of a boundary.
More restrictions for a compact complex manifold M to be Kählerian expressed in
terms of currents can be found in the recent work of Demailly-Paun (c.f. [DP04])
on the Kähler cone of a compact manifold (the set of H1,1(M, C) ∩H2(M, R) of
all class of (1, 1)-forms associated with Kähler metrics on M)).

An important consequence of the Hogde theorem that will be used later on
is the so-called ∂∂-lemma:

Proposition 1.2.3. Let η be a d-closed form of type (p, q) on a compact Kähler
manifold M which is d, ∂ or ∂-exact. Then there exists a form γ of type (p −
1, q − 1) such that η = ∂∂γ. Furthermore, if p = q and η is real we can choose
iγ to be real.

1.3 The Albanese torus

Let M be a compact Kähler manifold and keep fixed the notation of the preceding
section. The Albanese torus Alb(M) of M is defined as H0(M,Ω1)∗/H1(M, Z).
Assume h1,0 = k and fix a basis ω1, ..., ωk of H0(M,Ω1). Then

∆ =
{(∫

γ
ω1, ...,

∫
γ
ωk

)
∈ Ck |γ ∈ H1(M, Z)

}
is a lattice in Ck and Alb(M) ∼= Ck/∆, which is a complex torus. In particular if
M is a complex torus then Alb(M) ∼= M. The Jacobi map J is the holomorphic
map from M to Alb(M) defined by

p 7→
(

α 7→
(∫ p

p0

α mod ∆
))

where α ∈ H0(M,Ω1) and p0 is an arbitrary base point of M. One of the
most remarkable properties of the Jacobi map is its behaviour with respect to
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holomorphic vector fields on M. Indeed every holomorphic vector field v on M
admits a projection to Alb(M) which vanishes identically if and only if v has
zeros.

Let Aut0(M) be the identity component of the group Aut(M) of holomorphic
automorphisms of M and choose f ∈ Aut0(M). There exists f ! ∈ Aut(Alb(M))
such that J ◦ f = f ! ◦ J . Note that for every holomorphic 1-form α on M we
have f∗α = α, then:∫ f(p)

p0

α =
∫ f(p0)

p0

α +
∫ f(p)

f(p0)
α =

∫ f(p0)

p0

α +
∫ p

p0

f∗α =
∫ f(p0)

p0

α +
∫ p

p0

α

Therefore we can define f !(y) = y+J(f(p0)). Let us denote by h the Lie algebra
of holomorphic vector fields over M and by g the Lie algebra of holomorphic
vector fields over Alb(M). The map f 7→ f ! induces a homomorphism of Lie
algebras between h and g.

Theorem 1.3.1. Let M be a compact Kähler manifold and v an holomorphic
vector field on M. Then v has zeros if and only if v is tangent to the fibres of
the Jacobi map.

We refer the reader to [Mat71] for the proof. Equivalently, a vector field v

has zeros if and only if it belongs to the kernel of the previous homomorphism
h → g. We denote this ideal by h0. The above theorem is a reformulation of the
Carrell-Liebermann theorem, that we will use later on:

Theorem 1.3.2 ([CL73]). A holomorphic vector field v over a compact Kähler
manifold M has zeros if and only if for every holomorphic 1-form α on M we
have α(v) = 0.

1.4 Flows with transverse structures

Recall that a foliation F on a manifold M is given by an atlas {Ui, fi, γij}i∈I

where:

(a) {Ui}i∈I is an open covering of M,

(b) fi is a submersion from Ui onto a manifold V called the transverse manifold ,

(c) γij is a local diffeomorphism of V such that fi(x) = (γij ◦ fj)(x) for every
x ∈ Ui ∩ Uj ,
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(d) the diffeomorphisms γij verify the cocycle condition γik(x) = (γij ◦ γjk)(x)
for all x ∈ fk(Ui ∩ Uj ∩ Uk).

The leaves of F are defined on each open set Ui as the fibers of the submersion
fi.

If M and V are complex manifolds and fi and γij are holomorphic maps we
say that F is a holomorphic foliation. A foliation F is said to be orientable
if the plane field tangent to F is orientable and transversely orientable if there
is a field complementary to the tangent field to F continuous and orientable.
An orientable nonsingular foliation F of dimension 1 is always defined by a
nonsingular vector field T , we call such a foliation together with the vector field
a flow and we write F when the vector field is implicitly understood.

Defining a transverse structure for the foliation F is equivalent to imposing
conditions on the pseudo-group Γ generated by {γij}. For instance, a foliation
F is transversely holomorphic if V has a complex structure invariant by Γ.

We denote by TF the tangent bundle of F . A form α on M is called basic with
respect to a foliation F if iSα = iSdα = 0 for every vector field S tangent to the
leaves of F . Thus we can consider the basic de Rham complex Ωr(M/F , R) and
the basic cohomology H∗(M/F , R) (in an analogous way we define Ω∗(M/F , C)
and H∗(M/F , C)).

1.5 Riemannian and isometric flows

A foliation F is Riemannian if there exists a Riemannian metric h on V invariant
by Γ. This is equivalent to the existence of a Riemannian metric g on M whose
transverse part is invariant along the leaves of F . Such a Riemannian metric on
M is called bundle-like.

Let (M, g) be a Riemannian manifold. A vector field T is said to be Killing
if the associated 1-parameter group ϕt is an isometry for every t, equivalently if
LT g ≡ 0. We say that a one-dimensional orientable foliation F on a compact
manifold M is isometric if there exist a Riemannian metric g on M and a non-
vanishing Killing vector field T such that the integral curves of T are the leaves
of F . Rescaling the metric we can always assume that T is of constant length
one. We will say that F together with a Killing vector field of length one is an
isometric flow. An alternative (and classical) characterization of isometric flows
is the following one:
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Proposition 1.5.1. Let F a flow on a compact smooth manifold M generated
by a non-vanishing vector field T . Then T is a Killing vector field with respect
to some Riemannian metric g on M if and only if H = {ϕt}t∈R is a compact
subgroup of Diff(M), where ϕt is the 1-parameter group associated to T .

We say that a 1-form χ is a characteristic form for F and T if χ(T ) = 1
and iT dχ = 0. In particular dχ is basic and LT χ = 0, so χ is invariant by T .
Actually, for an isometric flow there always exists at least one characteristic form
that can be defined by imposing χ(T ) = 1 and χ|T⊥ = 0. Conversely, if F is an
Riemannian flow induced by a vector field T and there exists a 1-form χ such
that χ(T ) = 1 and iT dχ = 0 then the flow F is isometric. The basic cohomology
class eg(F) = [dχ] ∈ H2(M/F) does not depend on the characteristic 1-form
chosen, for if χ1 and χ2 are characteristic 1-forms then χ1 − χ2 ∈ Ω1(M/F). It
is called the Euler class of F with respect to g and it does not depend on the
metric up to a non-zero factor (see [Sar85]).

Example 1.5.2. An example of isometric flow on the unit sphere S2n+1 ⊂ Cn+1

with the standard metric is given by the Killing vector field T = Re(iR) for
R = z1

∂
∂z1

+ ... + zn
∂

∂zn
. A characteristic form is given by

ω =
(
i

n∑
j=1

(zjdz̄j − z̄jdzj)
)
|S2n−1 =

(
2

n∑
j=1

(xjdyj − yjdxj)
)
|S2n−1 .

It defines a contact structure on S2n−1, i.e. ω ∧ dωn 6= 0. The Euler class is the
basic cohomology class of dω =

(
4
∑n

j=1 dxj ∧ dyj)
)
|S2n−1 , which is the class of

the curvature form of the Hopf S1-principal bundle π : S2n+1 → Pn.

A foliation F of codimension n on a compact manifold M is called homolog-
ically orientable if Hn(M/F , C) 6= 0.

Theorem 1.5.3 ([MS85]). An orientable Riemannian foliation F of dimen-
sion 1 on a compact manifold Mn+1 is a flow of isometries if and only if
Hn(M/F , C) 6= 0.

For the sake of clarity we prove the direct implication, that is, that every
isometric flow is homologically orientable. Let T be a Killing vector field for
a Riemannian metric g on a compact manifold Mn+1, let χ be a characteristic
1-form and η the volume form. Since F is isometric LT η = 0 so iT η is closed and
basic. Therefore we can write η = 1

n+1 iT η ∧ χ. If iT η were exact, i.e. iT η = dα,
then η = d

(
1

n+1α ∧ χ
)
, which is a contradiction. Thus iT η defines a non-zero

class of Hn(M/F , C).



24 Preliminaries

1.6 Transversely Kählerian flows

Let F be a transversely holomorphic foliation of complex codimension n. We
will assume that F is homologically orientable, that is, Hn(M/F , C) 6= 0. We
consider the complex Ωp,q(M/F) of a smooth basic forms of type (p, q) and the
operator

∂ : Ωp,q(M/F) → Ωp,q+1(M/F)

inducing the basic Dolbeaut cohomology of F , which we denote by
Hp,q(M/F).

We say that F is transversely hermitian if there exists a hermitian metric h

on the transverse manifold V invariant by Γ. In particular F is Riemannian. If
there exists a closed real form Φ on M whose transverse part corresponds to a
transversely hermitian metric h (analogously as in the Kähler case) we say that
F is transversely Kählerian. We call such a form Φ a transverse Kähler form
and note that the transverse part of Φ is of type (1, 1). The analogous to Hodge
decomposition theorem in this context is the following:

Theorem 1.6.1 ([EKA90]). Let F be a homologically orientable and trans-
versely Kählerian foliation on a compact manifold M of complex codimension n.
Then: {

Hr(M/F , C) = ⊕p+q=rH
p,q(M/F) 0 ≤ r ≤ n

Hp,q(M/F) = Hq,p(M/F).

As a corollary one obtains the so-called ∂∂-lemma :

Lemma 1.6.2. Let η be a d-closed basic form of type (p, q) on a compact mani-
fold M with a homologically orientable and transversely Kählerian foliation such
that η is d, ∂ or ∂-exact as a basic form. Then there exists a basic form γ of
type (p− 1, q− 1) such that η = ∂∂γ. Furthermore, if p = q and η is real we can
choose iγ to be real.

1.7 Lie groups

Unless otherwise specified K will denote a Lie group which can be real or com-
plex, in general though we will reserve the notation K for real Lie groups and
G for complex Lie groups. We refer the reader to [Hel78], [Che68], [Die75] and
[OV94] for most proofs.
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1.7.1 Basic concepts

A Lie group K is called semisimple if its Lie algebra k is semisimple, i.e. if
[k, k] = k. A Lie group K is called quasisimple if its Lie algebra k is simple, i.e.
if it is not abelian and it does not contain other ideals besides {0} and k. Every
semi-simple Lie algebra can be represented in an unique way as finite direct
sum of simple ideals k =

∑s
j=1 ij and every ideal of k if a finite sum of ideals

ij . A semisimple Lie algebra has center C(g) = {X ∈ g : [X, Y ] = 0, ∀Y ∈ g}
equal to {0}, therefore the center Z(K) of a semisimple Lie group is discrete.
Every semisimple Lie group K is, up to a covering, a product K1 × ... × Kr

of quasisimple Lie groups. Besides, the only connected normal subgroups of
a simply connected semisimple Lie group K are products of a certain number
of Kj , therefore they are closed in K (cf. [Die75], p.39). It follows that every
normal connected subgroup H of a semisimple compact Lie group K is closed
because the universal covering K̃ of K is a finite covering (see section 1.7.5).

If X ∈ k the adjoint of X is the endomorphism of K defined by adX : Y 7→
[X, Y ]. The map X 7→ adX is called adjoint representation and it sends every
X ∈ k to a derivation of k. Let k be a Lie algebra over a field of characteristic zero.
The Killing form κ of k is defined as the bilinear form κ(X, Y ) = Tr(adXadY )
over k× k where Tr denotes the trace of an endomorphism of vector spaces.

Theorem 1.7.1. A Lie algebra k over a field of characteristic zero is semisimple
if and only if the Killing form κ of k is non-degenerate.

The n-th derived group of K (for n a positive integer), which we will denote
by DnK, is the subgroup of K defined inductively in the following way: D0K = K
and Dn+1K = [DnK,DnK] for all n > 0 is the commutator subgroup of DnK.
The group K is called solvable if there exists n ≥ 0 such that DnK = {e}.
Equivalently a Lie group is solvable if its Lie algebra is solvable, i.e. if there
exists a sequence

0 = kl ⊂ ... ⊂ k0 = k (∗)

of subalgebras such that every quotient ki/ki+1 is abelian. If we set k0 := k and
kn+1 := [kn, kn] for every positive integer n the algebra k is solvable if there exists
l such that kl = 0, in this case these ki provide a sequence verifying (∗).

Recall that every connected compact abelian Lie group is isomorphic to a
torus. In particular, given a real compact Lie group K, every Lie subgroup T
which is closed, connected and abelian is a torus. We say that T is a maximal
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torus of K if there does not exist any torus in K different from T and containing
it. A necessary and sufficient condition for a connected Lie subgroup H to be a
maximal torus is that its Lie algebra h is an abelian maximal subalgebra of k.
Every abelian connected Lie subgroup H of a compact connected Lie group K
is contained in a maximal torus of K and every compact connected Lie group K
is the reunion of its maximal torus (as a consequence of the exhaustivity of the
exponential map on a compact connected Lie group).

Theorem 1.7.2. Let K be a compact connected real Lie group, T a maximal
torus of K and A a torus in K. There exists s ∈ K so that sAs−1 ⊂ T (therefore
sAs−1 = T if A is a maximal torus).

In particular all maximal torus are conjugate and we can define rank(K) as
the dimension of a maximal torus.

Let G be a complex Lie group, we say that G is a complex algebraic group
if it admits a structure of complex affine algebraic variety such that the map
µ : G×G → G defined by µ(x, y) = x · y−1 is a morphism of algebraic varieties.
Examples of complex algebraic groups are Cl, (C∗)l and GL(l, C) for l ≥ 1. On
Cn we define Zariski’s topology by imposing that affine algebraic varieties are
closed sets. An algebraic subgroup of G is a Lie subgroup of G closed with respect
to the Zariski topology.

Theorem 1.7.3. Every connected complex semisimple Lie group G admits a
unique structure of complex algebraic group.

1.7.2 The universal complexification of a real Lie group

The universal complexification of a compact real Lie group K is a couple (G, γ)
where G is a complex Lie group and γ : K → G is a Lie group morphism
such that for every complex Lie group G̃ and every morphism u : K → G̃ of
real Lie groups there exists a unique complex analytic morphism u+ : G → G̃
such that u = u+ ◦ γ. The couple (G, γ) is uniquely determined by K up to
isomorphism. The universal complexification G = KC of a compact Lie group K
can be constructed in the following way. Since every compact Lie group admits
a faithful complex linear representation

ρ : K ↪→ GL(n, C)
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(cf. [Die75], p.90) we can consider the Zariski closure G of ρ(K) in GL(n, C).
Then G is a complex linear algebraic Lie group (i.e. a subgroup of GL(n, C)
defined by polynomial equations) with Lie algebra g = kC := k⊗ C. It contains
K as completely real submanifold and verifies Z(K) = K∩Z(G). Moreover G is
reductive, i.e. it has a finite number of connected components and the connected
component G0 of {e} has a real compact form. Recall that a closed subgroup
K with Lie algebra k of a complex connected Lie group G with Lie algebra g is
called a real form of G (or of g) if k → g induces a Lie algebras isomorphism
kC ∼= g. If K is compact we then say that K is a real compact form of G. Every
semisimple complex Lie algebra g admits a real compact form (cf. [Hel78]). If G
is a complex semisimple Lie group and K is a real compact form of G, the group
K is semisimple, it is a maximal compact subgroup of G and we have Z(G)⊂K,
thus Z(G)=Z(K) (cf. [Lee02]).

The following result, due to Cartan, Malcev and Iwasawa (cf. [Iwa49]), states
that every Lie group admits a Lie subgroup which is a compact deformation
retract.

Theorem 1.7.4. Let K be a real connected Lie group, then K has a maximal
compact subgroup T unique up to conjugacy and K is homeomorphic to the prod-
uct T× Rm. In particular K and T have the same homotopy groups.

Let G = KC be the universal complexification of a compact connected real
Lie group K. Since K is a maximal compact subgroup of G we conclude from
the previous theorem that G is homeomorphic to K× Rm.

1.7.3 Cartan, Iwasawa and Levi decompositions

Let G = KC be the universal complexification of a compact connected real Lie
group K. A Borel subgroup B of G is a maximal solvable irreducible algebraic
subgroup. All Borel subgroups of a complex algebraic group G are closed and
conjugate to each other (cf. [Hum75]). A Borel subalgebra b of g = kC is a
maximal solvable subalgebra. A Cartan subgroup H of G is the centralizer of a
maximal torus. All Cartan subgroups are abelian, connected and conjugated to
each other. The subalgebra of a Cartan subgroup is called a Cartan subalgebra.
Given a Cartan subalgebra r there exists a maximal abelian subalgebra t of g

such that r = tC (see [Bor91]). Fix a Borel subalgebra b such that r ⊂ b and set
u := [b, b].
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The endomorphisms of g defined by adgr, i.e. φR(X) = [R,X] where R ∈ r

and X ∈ g, are diagonalizable due to the fact that g is semisimple (c.f. [Hum78]
and [Hal03]). Therefore, by a standard result in linear algebra they diagonalize
simultaneously. We have thus a decomposition in proper spaces g =

⊕
α∈r∗ gα

where gα = {X ∈ g : [R,X] = α(R) ·X, ∀R ∈ r}. Moreover g0 = C(r) = r. We
denote by Φ the finite subset of α ∈ r∗, α 6= 0, such that gα 6= 0 and its elements
will be called roots of g relative to r. With this notation there is a decomposition
in root spaces or Cartan decomposition:

g = r⊕α∈Φ gα.

Proposition 1.7.5. With the above notation:

(a) Φ spans r∗ and if α ∈ Φ then −α ∈ Φ.

(b) If α, β ∈ Φ then α + β ∈ Φ and [gα, gβ ] ⊂ gα+β.

(c) If α ∈ Φ, X ∈ gα and Y ∈ g−α then [X, Y ] = κ(X, Y ) · Tα where κ is the
Killing form on g × g and Tα is defined imposing κ(Tα, R) = α(R) for all
R ∈ r. In particular [gα, g−α] has dimension 1.

(d) For every α ∈ Φ and Xα ∈ gα, Xα 6= 0, there exists Yα ∈ g−α such that
Xα, Yα,Hα = [Xα, Yα] ∈ r span a simple subalgebra sα of dimension 3
isomorphic to sl(2, C) via

Xα 7→ ( 0 1
0 0 ) , Yα 7→ ( 0 0

1 0 ) , Hα 7→
(

1 0
0 −1

)
.

(e) If α ∈ Φ then dim gα = 1. In particular if hα = [gα, g−α] then sα =
gα ⊕ g−α ⊕ hα.

We can choose a subset Φ̃ of Φ maximal with respect to the subsets Ψ such
that α ∈ Ψ if and only if −α 6∈ Ψ and if α, β ∈ Ψ then α + β ∈ Ψ. In that
case r = ⊕

α∈eΦhα and b = r ⊕
α∈eΦ gα is a Borel subalgebra (and every Borel

subalgebra containing r is of this type for a proper choice of the subset Φ̃).
Moreover u := [b, b] = ⊕

α∈eΦgα and therefore b = r⊕ u.
Let H be the Cartan subgroup of G associated to the subalgebra r. It is

the universal complexification of (S1)rankK and therefore H ∼= (C∗)rankK. If U
and B are the Lie subgroups of G associated to u and b respectively then, as a
consequence of the Cartan decomposition, B ∼= H ·U.
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From the Cartan decomposition of g with respect to r one also obtains the
following decomposition of g as a real Lie algebra:

g = k⊕ it⊕ u,

which is known as Iwasawa decomposition. Note that in particular b ∩ k = t.
Moreover it follows that

dimC u = (dimR K− rank K)/2; dimC b = (dimR K + rank K)/2.

We also conclude that dimR K and rankK have the same parity.

Theorem 1.7.6. Let G be the universal complexification of a semisimple com-
pact connected Lie group K with Lie algebra g = kC. Set r = tC where t is
an abelian maximal subalgebra of k, b a Borel subalgebra such that r ⊂ b and
u = [b, b]. Let A and U be the subgroups of G with Lie algebras it and u respec-
tively. Then the map

Φ : (k, a, u) 7→ k · a · u; k ∈ K, a ∈ A, u ∈ U

is a diffeomorphism from the product manifold K · A · U into G. Moreover the
groups A and U are simply connected.

With the notation of the above theorem let T be the connected Lie subgroup
of K corresponding to t and B the Borel subgroup of G corresponding to b. Then
K/T ∼= G/B. In particular K/T admits a left invariant complex structure.

We finally recall Levi-Malcev’s theorem on the existence of Levi decomposi-
tions. A representation of a Lie algebra g as a sum r+ s of a solvable ideal r and
a semisimple subalgebra s is called a Levi decomposition of the Lie algebra g.

Theorem 1.7.7 (Levi-Malcev). Let g be a Lie algebra over a field of character-
istic 0, then g admits a Levi decomposition.

1.7.4 Classification of abelian complex Lie groups

Every compact complex Lie group is abelian, in particular it is a complex torus.
On the other hand there is a classification of abelian connected complex Lie
groups due to A.Morimoto.

We say that a complex Lie group is a Stein group if G is Stein as a complex
manifold. It is known that every abelian connected Stein group is isomorphic to
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Cm × (C∗)n for m,n ≥ 0 (cf. [MM96]). A complex Lie group is called a (HC)-
group if holomorphic functions over G are constant. It is known that every
(HC)-group is abelian and that given a connected complex Lie group G there
exists a unique normal closed connected complex subgroup G0 such that G/G0

is a Stein group and G0 is a (HC)-group. A.Morimoto then proves the following:

Theorem 1.7.8 ([Mor66]). Let G be an abelian connected complex Lie group.
Then G is isomorphic to the product G0×Cm× (C∗)n where m,n ≥ 0 and G0 is
a (HC)-group. Moreover if G1 and G2 are abelian connected complex Lie groups
and Gi = G0

i × Cmi × (C∗)ni are the previous decompositions then G1
∼= G2

(isomorphism of complex Lie groups) if and only if G0
1
∼= G0

2, m1 = m2 and
n1 = n2.

1.7.5 The topology of compact Lie groups

Theorem 1.7.9. (H. Weyl) Let K be a semisimple compact connected Lie group.
The universal covering K̃ of K is compact.

Let K be a compact connected real Lie group and k its Lie algebra. Then
k = [k, k] ⊕ C(k) and k′ = [k, k] is a semisimple subalgebra of k. Recall that
C(k) denotes the center of k and that it is an abelian subalgebra of k. The
universal covering K̃ of K is isomorphic to a product Rn × K′ where K′ is a
semisimple simply connected compact Lie group. Moreover the center Z(K′) of
K′ is finite and K is isomorphic to (Rn ×K′)/D where D is a discrete subgroup
of Z(Rn ×K′) = Rn × Z(K′). Consider the subgroup D′ = D ∩ (Rn × {e}), the
compact Lie group (Rn×K′)/D′ is a finite covering of K isomorphic to (S1)n×K′.
Thus we have obtained:

Theorem 1.7.10 ([Die75]). Let K be a compact connected real Lie group. Then
K admits a finite covering of the form (S1)n×K′ where K′ is a simply connected
semisimple compact Lie group. Moreover K ∼= ((S1)n × K′)/Γ where Γ is a
discrete subgroup of {e} × Z(K′).

Corollary 1.7.11. If K is a semisimple compact connected real Lie group then
π1(K) is finite and b1(K) = 0.

We will now see that the computation of the De Rham cohomology over a
compact connected Lie group can be reduced to the computation of the coho-
mology of its Lie algebra. Let K be a compact connected real Lie group and k
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its Lie algebra. We consider the complex of differentiable forms Ω∗(K)K over K
invariants by the action of K on the left. Notice that Ω∗(K)K ∼= k∗. A theorem
by Cartan (cf. [Hae85]) states that H∗

DR(K, R) is isomorphic to the cohomology
of the complex of left invariant forms, that we will denote by H∗(k∗, R). The
natural inclusion Ω∗(K)K ↪→ Ω∗(K) induces an isomorphism between H∗(k∗, R)
and H∗(K, R)K (De Rham cohomology classes on K invariant by the action of
K on the left). Since K is connected the action of K over H∗(K, R) is trivial,
therefore

H∗(K, R) ∼= H∗(k∗, R).

On the other hand we can define the cohomology H∗(k, R) of a Lie algebra k (cf.
[CE48], [Kos50]), [Jac62]) using the complex of cochains C∗(k) where a p-cochain
c is a alternated linear p-form on k with values on R and the differential d is
defined by

(dc)(X0, ..., Xp) =
∑

(−1)iXic(X0, ..., X̂i, ..., Xp)

+
∑
r<s

(−1)r+sc([Xr, Xs], X0, ..., X̂r, ..., X̂s, ..., Xp).

The restriction to left-invariant vector fields induces an isomorphism between
Ω(K)K and C(k) which yields

H∗(k, R) ∼= H∗(k∗, R).

Theorem 1.7.12. If k is a semisimple real Lie algebra of finite dimension then
H1(k, R) = H2(k, R) = 0.

Corollary 1.7.13. If K is a compact connected semisimple Lie group then
b1(K) = b2(K) = 0.



Chapter 2

Normal almost contact

structures. The class T .

This chapter is devoted to the class of normal almost contact manifolds, which
we will denote by T . We introduce normal almost contact structures and de-
scribe several classical families of manifolds in the class T . All manifolds are
supposed to be smooth and connected and all differentiable objects (differen-
tiable structures, tensors,...) to be of class C∞, unless it is otherwise specified.

2.1 Generalities

In this section we introduce the class T of normal almost contact manifolds (see
[Bla02]) and we give some equivalent definitions which are better adapted to our
purposes.

Definition 2.1.1. We denote by T the class of compact connected manifolds
M of odd dimension which are endowed with a CR-structure Φ1,0 of maximal
dimension (i.e. dimC Φ1,0 = n if dimR M = 2n + 1) and a transverse CR-action
induced by a flow {ϕt}.

Let M2n+1 be a smooth manifold and suppose that there are given an endo-
morphism ϕ on the tangent space, a vector field T and a 1-form ω. We say that
(ϕ, T, ω) is an almost contact structure on M if: (1) ω(T ) = 1, (2) rank ϕ =
2n, (3) ϕ(T ) = 0, (4) ω(ϕ(X)) = 0 and ϕ2(X) = −X + ω(X)T for ev-
ery tangent vector field X on M. There is an almost contact structure on R
given by (0, ∂

∂t , dt). If M1 has an almost contact structure (ϕ1, T1, ω1) then

33
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there is an almost complex structure K on M1 × R defined by K(X1, a
∂
∂t) =

(ϕ1(X1) − aT1, ω1(X1) ∂
∂t). We say that an almost contact structure on M1 is

normal if K is integrable (cf. [Bla02]).

Proposition 2.1.2. The class T is the class of normal almost contact manifolds.

Proof. Let M2n+1 be a smooth manifold with a CR-structure (D, J) of dimension
n and T a transverse vector field inducing a CR-action, let ω be the 1-form
defined by kerω = D and ω(T ) = 1 and using TM ∼= D ⊕ 〈T 〉 set ϕ = (J, 0).
Then (ϕ, T, ω) defines a normal almost contact structure on M. The proof of the
converse is analogous.

We discuss now another equivalent way to determine a CR-structure of max-
imal dimension and a transverse CR-action on a manifold M2n+1. Notice first
that if M2n+1 is a manifold in the class T the flow F defined by the CR-action
is transversely holomorphic.

Let F be a transversely holomorphic flow on a compact manifold M2n+1

generated by a real vector field T without zeros and let D be a distribution such
that TM = D ⊕ TF . We will denote by Φ1,0 the vectors in DC of type (1, 0)
with respect to the transverse complex structure. We assume that:

(i) The vector field T preserves D, i.e. [T,D] ⊂ D.

(ii) Φ1,0 defines a CR-structure, i.e. [Φ1,0,Φ1,0] ⊂ Φ1,0.

Then T defines a transverse CR-action.

Note that in the above situation if ω is the 1-form on M defined by ω(T ) = 1
and D = kerω then (i) holds if and only if iT dω = 0. In that case dω is basic
and then (ii) holds if and only if dω is of type (1, 1) with respect to the complex
structure transverse to F . Therefore we obtain the following characterization of
normal almost contact structures:

Proposition 2.1.3. Let F be a transversely holomorphic flow on a compact
manifold M2n+1 generated by a real vector field T without zeros and a 1-form
ω such that ω(T ) = 1. Set D = kerω and J the almost-complex structure on
D induced by F . Then (D, J) is a CR-structure on M of dimension n and T

defines a transverse CR-action if and only if iT dω = 0 and the basic form dω is
of type (1, 1) with respect to the complex structure transverse to F .
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Let M be a compact manifold in the class T and let F be the transversely
holomorphic flow induced by the vector field T . Let ω be the 1-form associated
to the normal almost contact structure.

Definition 2.1.4. With the above notation, we define the Euler class of the
pair (M,F) as the basic cohomology class given by

eF (M) = [dω] ∈ H2(M/F).

This definition generalizes the classical notion of Euler class of an isometric
flow. Note that the class eF (M) only depends on the flow F (in particular,
on the vector field T inducing the CR-action). Clearly the Euler class does
not depend on the CR-structure. Let ω′ be another 1-form inducing a normal
almost contact structure on M, i.e. ω′(T ) = 1, iT dω′ = 0 and dω′ is of type (1, 1)
with respect to the complex structure transverse to F , then ω−ω′ ∈ Ω1(M/F).
Therefore [dω] = [dω′]. Nevertheless, to define the Euler class we have used the
fact that there exists a distribution of maximal dimension transverse to T and
invariant by the flow, which is equivalent to state that there exists a 1-form χ

such that χ(T ) = 1 and iT dχ = 0. Note that eF (M) ∈ H1,1(M/F) but the class
in H1,1(M/F) might depend on the CR-structure.

Proposition 2.1.5. With the above notation the following conditions are equiv-
alent:

(a) eF (M) = 0.

(b) There exists a closed 1-form χ on M such that χ(T ) = 1.

(c) There exists a distribution transverse to T of maximal dimension and in-
variant by the flow which is integrable.

The proof is straightforward. The distribution is given by ker χ and since
LT χ = 0 the form χ is invariant by the flow. Conversely one defines the 1-form
χ imposing that it vanishes on the distribution and χ(T ) = 1.

Corollary 2.1.6. With the above notation if eF (M) = 0 then M is a fiber bundle
over S1. In particular b1(M) 6= 0 and M is not simply connected.

The first statement of the previous corollary is a consequence of the following
theorem by D. Tischler :
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Theorem 2.1.7 ([Tis70]). Let M be a compact manifold. If M admits a non-
vanishing closed 1-form then M is a fibre bundle over S1.

The second statement of the corollary is an immediate consequence of the
homotopy exact sequence associated to a fibration.

Proposition 2.1.8. With the above notation, if there exists a contact form χ

on M such that χ(T ) = 1 and iT dχ = 0 then eF (M) 6= 0.

We include the proof for the sake of clarity, however it must be noted that
follows from an argument of Saralegui for isometric flows (cf. [Sar85]).

Proof. Suppose that dim M = 2n+1 and eF (M) = 0. Then there exists a 1-form
β basic with respect to F such that dβ = dχ. Therefore

d(β ∧ χ ∧ dχn−1) = χ ∧ dχn − β ∧ dχn = χ ∧ dχn

since β ∧ dχn is a basic (2n + 1)-form. It follows, by Stoke’s theorem, that∫
M χ ∧ dχn = 0, which contradicts the hypothesis χ ∧ dχn 6= 0.

The rest of this chapter and the following one will be devoted to discuss some
families of manifolds in the class T . Essentially we will consider manifolds in
the class T of the following types:

• Isometric flows, which include circle principal bundles over complex man-
ifolds and Seifert fibratrions over complex orbifolds (in particular real hy-
persurfaces in complex manifolds);

• Suspensions of complex manifolds;

• Lie groups (next chapter).

2.2 Isometric flows.

The next result follows immediately from the previous discussion:

Corollary 2.2.1. Let M be a compact manifold and F a transversely holomor-
phic isometric flow on M. Let T be a Killing vector field, ω a characteristic
1-form and J the induced almost-complex structure on D = kerω. Then (D, J)
is a CR-structure on M if and only if dω is of type (1, 1). In that case T defines
a transverse CR-action.
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Remark 2.2.2. Recall that a Riemannian real flow F induced by a vector field
T without zeros is isometric if and only if there exits an invariant transverse
distribution, equivalently if and only if there exists a basic form η such that
η(T ) = 1. Therefore if M is a compact manifold endowed with a normal almost
contact structure such that the flow F induced by the CR-action is Riemannian
then F is an isometric flow.

Circle principal bundles are a particular case of isometric flows. Let B be a
compact complex manifold, π : M → B a S1-principal bundle, T the fundamental
vector field of the action and ω a connection form. We can endow M with a
Riemannian metric so that the flow F generated by T is isometric. Then T is
a Killing vector field and ω is a characteristic form. Furthermore the flow F is
transversely holomorphic with respect to the complex structure induced by B.
Then (D = kerω, J) is a CR-structure on M if and only if the curvature form
dω is of type (1, 1) on B. It is known that a S1-principal bundle admits such
a connection form if and only if it is the unit bundle associated to a hermitian
metric on a holomorphic line bundle. When this hypothesis is verified the vector
field T induces a transverse CR-action. Notice that if dimR M = 3 this condition
is always fulfilled since every 2-form on a compact Riemann surface is of type
(1, 1).

More generally, compact Seifert fibrations over a complex orbifold also pro-
vide examples of transversely holomorphic isometric flows. Let Γ be a pseu-
dogroup of complex automorphisms of Cn. One defines a complex orbifold of
dimension n to be a Hausdorff paracompact space which is locally homeomor-
phic to the quotient space of Cn by a finite group of automorphisms belonging to
Γ (see [Sat56] for a precise definition). Assume now that M is a smooth manifold
such that S1 acts freely on M on the right, the quotient space of M by the action
of S1 is a complex orbifold B and the canonical projection π : M → B is differen-
tiable. We say that M is a Seifert fibration over B if M is locally homeomorphic
to the quotient space of Cn×S1 by a finite subgroup of automorphisms of Cn×S1

belonging to Γ×S1 and the projection p is the one induced by π1 : Cn×S1 → Cn

where π1(z, t) = z (again see [Sat56] for the precise definition). The S1-action
on M is given by a global vector field without zeros and since all the orbits are
closed if we consider the 1-parametric flow ϕt corresponding to T it generates
a compact subgroup of Diff(M). Therefore if M is compact the flow F induced
by T is isometric and it is clearly transversely holomorphic. We are thus under
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the hypothesis of the corollary 2.2.1 and we will obtain a CR-structure on M
provided that there exists a characteristic 1-form ω such that dω is of type (1, 1).

Let now (D, J) be a CR-structure on M2n+1 and suppose that the distribution
D is a contact structure, i.e., if ω is a 1-form such that ker ω = D then ω∧(dω)n 6=
0. Then (D, J) is called a strictly pseudo-convex CR-structure on M. The couple
of a strictly pseudo-convex CR-structure of maximal dimension and a transverse
CR-action on an odd-dimensional manifold is also known as a normal contact
structure. The following result is well-known, we include the proof for the sake
of clarity.

Proposition 2.2.3. Let M be a compact connected 3-manifold. If (D, J) is a
strictly pseudo-convex CR-structure and T a vector field inducing a transverse
CR-action then T is Killing for a Riemannian metric g.

Proof. The hypothesis ω ∧ dω 6= 0, iT dω = 0 and ω(T ) = 1 imply that dω is a
non-degenerate form on D, thus we can assume that dω(X, JX) > 0 for every
X ∈ D such that X 6= 0 (note that ω ∧ dω(T,X, JX) = 2dω(X, JX) 6= 0 for
every X ∈ D such that X 6= 0). Moreover dω is a closed real-valued 2-form of
type (1, 1) invariant by the action of the vector field T . Therefore dω defines
a hermitian metric on DC invariant by the action of T . Since dω is real-valued
g = ω⊗ω + g̃, where g̃(X, Y ) := dω(X, JY ), is a Riemannian metric on M such
that T is a Killing vector field with respect to g.

Corollary 2.2.4. If (M,D, J) is a strictly pseudo-convex CR-structure, T a
vector field on M inducing a transverse CR-action and F the flow induced by
T , then eF (M) 6= 0.

The corollary is a consequence of proposition 2.1.8.

When M is a compact manifold of dimension 3 there is a classification due
to H.Geiges of the manifolds admitting a normal almost contact structure based
on the classification of compact complex surfaces:

Theorem 2.2.5 ([Gei97]). A compact 3-manifold admits a normal almost con-
tact structure if and only if it is diffeomorphic to one of the following manifolds:

(a) Γ\S3 with Γ ⊂ SO(4) ∼= Isom0(S3);

(b) Γ\S̃L2 with Γ ⊂ Isom0(S̃L2);
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(c) Γ\Nil3 with Γ ⊂ Isom0(Nil3);

(d) Γ\H2 × R with Γ ⊂ Isom0(H2 × R);

(e) T2-bundles over S1 with periodic monodromy;

(f) S2 × S1;

where S̃L2 denotes the universal covering of PSL2(R), Nil3 the Heisenberg group
of upper triangular (3×3)-matrices and H2 the hyperbolic plane. Isom0(X) stands
for the identity component of the isometry group a Riemannian manifold X and
Γ denotes a discrete subgroup of Isom0(X) acting freely on X.

For normal almost contact structures on a compact connected 3-manifold M
such that the flow induced by the CR-action is isometric we can give a more
explicit classification. Note that as a consequence of proposition 2.2.3 this case
includes all normal contact structures. From the classification of isometric flows
on compact 3-manifolds (see [Car84]) we conclude that if a compact connected
3-manifold admits a normal almost contact structure such that the flow induced
by the CR-action is isometric then it is diffeomorphic to one of the following
manifolds:

(i) Seifert fibrations.

(ii) Linear foliations of T3.

(iii) Lens spaces Lp,q = S3/〈γp,q〉 for p, q ∈ Z with action γp,q(z1, z2) =
(e2πi/pz1, e

2πi/qz2) and flow given by ϕt[z1, z2] = [eiµ1tz1, e
iµ2tz2] where

µ1, µ2 ∈ R. Notice that L1,1 = S3.

(iv) S2×S1 and the flow given by the suspension of an irrational rotation of S2,
i.e. if we identify S2 with CP 1 we consider the suspension of f(z) = eiαz

where α 6∈ Q.

Moreover the flow associated to the CR-action is the one specified in each case
and by proposition 2.1.8 we conclude that we can obtain a normal contact struc-
ture only in cases (iii) and (i). Note that when dimR M = 3 the base B of a
Seifert fibration π : M → B is a Riemann surface and the Euler class of the
isometric flow induced by a Seifert fibration is zero if and only if the fibration
is flat. On the other hand every isometric flow on a 3-manifold is transversely
holomorphic, since we can define a transverse operator J on the distribution D
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orthogonal to the leaves and the pair (D, J) defines a CR-structure on M such
that the vector field T induces a transverse CR-action with respect to it. Then
from the corollary 2.2.1 it is clear that all the previous isometric flows admit a
normal almost contact structure.

In the last chapter we will prove that actually the only compact connected 3-
manifolds which are in the class T are the ones in the previous list plus foliations
on S3 induced by a singularity of a holomorphic vector field in C2 in the Poincaré
domain and their finite quotients, i.e. foliations on the lens spaces Lp,q (note
that the flows in (iii) are a particular case of these ones) and suspensions of a
holomorphic holomorphism of P1 (i.e. case (iv) with f ∈ AutC(P1) instead of an
irrational rotation), regardless of whether the vector fields induce an isometric
flow or not.

2.3 Real hypersurfaces in complex manifolds.

Let Ω be a real hypersurface of a compact complex manifold V with a transverse
holomorphic vector field S such that T = Re(S) is tangent to Ω. Set D =
TΩ ∩ JTΩ where J denotes the almost complex structure on Ω. Then (D, J)
is a CR-structure on Ω. Moreover if the vector field T preserves D then T

defines a transverse CR-action. This is the case for instance for S2n−1 ⊂ Cn and
S =ia1z1

∂
∂z1

+ ... + ianzn
∂

∂zn
with aj ∈R+ for j = 1, ..., n. Set now (q1, ..., qn)∈

(N\{0})n. We say that p(z1, ..., zn) is a weighted homogeneous polynomial of
type (q1, ..., qn) if p(tq1z1, ..., t

qnzn) = tdp(z1, ..., zn) for some d ∈ N. Let us
assume that V = {p = 0} ⊂ Cn is a smooth manifold or that it has an isolated
singularity at the origin. Set R̂ = q1z1

∂
∂z1

+ ... + qnzn
∂

∂zn
and let J be the

almost complex structure of Cn. Then R̂ is transverse to the unit sphere S2n−1

and we can define a CR-structure of maximal dimension on M(p) = V ∩ S2n−1

setting (D = TM(p) ∩ J(TM(p)), J|D). Moreover the vector field T = Re(iR̂)
induces a CR-action on M(p). A particular case of this situation are Brieskorn
manifolds, which are given by p(z1, ..., zn) = (z1)a1 +...+(zn)an where aj ∈ Z and
aj ≥ 2. All these examples are S1-Seifert fibre bundles over a complex orbifold
for which the S1-action is given by the real vector field T induces a projection
π : M(p) → B over a complex orbifold B.
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2.4 Suspensions of complex manifolds.

The opposite situation to a strictly pseudo-convex CR-structure from the point
of view of the real integrability of the distribution D is Levi-flatness, that is,
the condition ω ∧ dω ≡ 0. In this case we can easily construct examples of
CR-manifolds with a vector field T inducing a CR-action and such that the flow
generated by T is not isometric.

Definition 2.4.1. The suspension of a compact manifold N by g ∈ Diff(N) is
the compact manifold M given by M = N × R/ ∼ where (z, s) ∼ (g(z), s + 1).
We denote M = N×g R.

Proposition 2.4.2. Let N be a compact complex manifold and g ∈ AutC(N).
The suspension M of N by g carries a natural Levi-flat CR-structure defined by
TN and a transverse CR-action induced by ∂

∂s . In particular if F denotes the
flow induced by the CR-action then eF (M) = 0.

Remark 2.4.3. If we choose g such that it is not an isometry for any metric on
N, for instance N = CP 1 and g(z) = λz with λ ∈ C such that |λ| 6= 1, the flow
F generated by ∂

∂s is clearly not isometric for any Riemannian metric on M.



Chapter 3

Normal almost contact

structures on Lie groups

By a classical result of Samelson it is known that every compact Lie group of
even dimension admits a complex structure such that left translations are holo-
morphic maps (c.f. [Sam53]). Independently Wang proved that quotient spaces
of even dimension K/P, where K is a compact semisimple Lie group and P a
parabolic Lie subgroup, admit a left-invariant complex structure and that every
homogenous complex compact manifold is of this type (c.f. [Wan54]). Wang’s
theorem includes Samelson’s result as a particular case. Charbonnel and Khalgui
studied in [CK04] left-invariant complex and CR structures of maximal dimen-
sion on a compact Lie group by means of the Lie subalgebras associated to them
(for CR-structures see also [GT92]). Finally CR-structures on homogeneous
manifolds have been studied in [AHR85] and [AS03].

We start this chapter by giving a new geometrical construction proving the
existence of left-invariant CR-structures of maximal dimension on a compact
semisimple Lie group of odd dimension, with and without a transverse CR-
action. We then prove that every left-invariant normal almost contact structure
on a compact semisimple Lie group can be recovered by this construction. More
precisely:

Theorem 3.0.4. Let K be a semisimple compact connected Lie group of odd
dimension 2n + 1 and rank 2r + 1 and let G be its universal complexification.
Assume that H is a Cartan subgroup of G and Λ : Cr+1 → H a Lie group mor-
phism verifying the transversality condition (I). If B is a Borel subgroup of G

43
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such that H ⊂ B and U is its subgroup of unipotent elements then the Lie subal-
gebras lΛ ⊂ l′Λ of g associated to the complex Lie subgroups L′Λ = Λ(Cr+1)·U and
LΛ = Λ({0} × Cr) · U of G define a left-invariant normal almost-contact struc-
ture KΛ on K. Moreover, the Lie subgroup LΛ is closed and the CR-structure on
K determined by LΛ agrees with the one induced by the embedding K ↪→ G/LΛ

of K as a real hypersurface of the complex manifold G/LΛ. Conversely, every
left-invariant normal almost contact structure is induced by such a morphism Λ
from Cr+1 into a Cartan subgroup H of G.

Condition (I) is stated precisely in lemma 3.1.20. Using Samelson-Wang
result we can conclude the following:

Corollary 3.0.5. Let K be a compact connected real Lie group of odd dimension,
then K admits a left invariant normal almost contact structure (and in particular
a left-invariant CR-structure of maximal dimension).

We next show how we can use the previous geometrical construction to obtain
by deformation normal almost contact structures on compact semisimple Lie
groups of odd dimension which are not left invariant (we will call them non-
invariant). More precisely we prove:

Theorem 3.0.6. Let K be a semisimple compact connected Lie group of odd
dimension 2n + 1 and rank 2r + 1 and let G be its universal complexification.
Assume that H ⊂ B are a Cartan subgroup and a Borel subgroup of G respec-
tively. Then every morphism of Lie groups Λ : Cr+1 → H×H inducing a locally
free holomorphic action ϕΛ : Cr+1 × G/U → G/U verifying (II) determines
a normal almost contact structure in a natural way by lemma 3.2.4. Moreover,
such a normal almost contact structure is left-invariant if and only if Λ = (e,Λ2)
where Λ2 : Cr+1 → H is a morphism verifying the transversality hypothesis (I).
In particular there exist small deformations of the previous ones obtained de-
forming Λ which induce suitable Cr+1-actions defining normal almost contact
structures on K generically non-invariant.

Condition (II) is stated in lemma 3.2.4. From this result we deduce:

Corollary 3.0.7. Let K be a compact connected real Lie group of odd dimen-
sion, then K admits a non-invariant normal almost contact structure (and in
particular a non-invariant CR-structure of maximal dimension).
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The construction of non-invariant normal almost contact structures is based
on an analogous of the following lemma for normal almost contact structures,
which we will discuss in section §3.2:

Lemma 3.0.8. Let F be a holomorphic foliation on a complex manifold X. A
real submanifold M codF of X transverse to F inherits a natural complex struc-
ture.

This view-point has been adopted by Loeb and Nicolau (c.f. [LN96]), López
de Medrano and Verjovsky (c.f. [LdMV97]) and Meerseeman (c.f. [Mee00]) to
construct families of non-kählerian compact complex manifolds which include
Hopf and Calabi-Eckmann manifolds as very particular cases.

3.1 Left-invariant normal almost contact structures

Let K be a compact connected real Lie group such that dimRK = 2n + 1 and
rank K = 2r + 1 and let k be its Lie algebra.

Proposition 3.1.1. A left-invariant CR-structure of maximal dimension over
K is defined by a complex subalgebra l of g = kC such that dimCl = n and
l ∩ k = {0}.

Proof. Notice that a left-invariant CR-structure on K is determined by a complex
subspace l of g defining the vectors of T CK of type (0, 1). The hypothesis l∩ k =
{0} is equivalent to l ∩ l = {0} and l is involutive, i.e. [l, l] ⊂ l, if and only if l is
a subalgebra of g.

Remark 3.1.2. By convention the subalgebra l will always correspond for us to
the distribution of vector fields of type (0, 1) of the CR-structure.

From a result by Charbonnel-Khalgui if follows that every complex subalge-
bra l of g = kC defining a CR-structure is solvable:

Theorem 3.1.3 ([CK04]). Let K be a compact connected real Lie group and l

be a complex subalgebra of g = kC of maximal dimension such that l ∩ k = {0}.
Then the subalgebra l is solvable.

As a consequence we obtain:
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Corollary 3.1.4. Let K2n+1 be a compact connected real Lie group and let l

define a left-invariant CR-structure of maximal dimension. Then the subalgebra
l is solvable.

This last result plays a crucial role in the proof of the main theorem, for it will
allow us to conclude that all normal almost contact structures on a semisimple
compact Lie group can be obtained by our construction. We will give an alter-
native and independent proof of this result. Nevertheless, we include here an
sketch of the proof of the corollary following the ideas of Charbonnel-Khalgui
under more restrictive hypothesis for the sake of clarity. We assume that K is
a compact connected semisimple Lie group, which will be our situation. We
denote by G the universal complexification of K and by L the Lie subgroup of
G with Lie algebra l. Let L be the clausure of L in G. One of the main elements
of the proof is the following result (c.f. [Hel78], Ch. I, Thm. 13.5):

Theorem 3.1.5 (Cartan). Let M be a simply connected complete Riemann man-
ifold with negative curvature. Let K be a compact Lie group of transformations
of M such that its elements are isometries on M. Then the elements of K have
a common fixed point.

Proof. (Corollary 3.1.4). Let l̃ be the Lie algebra of L. Then one can prove that
the subalgebra l is an ideal of l̃. Let X be the left coset manifold G/K. We denote
by θ the canonical map from G to X and by gR the real Lie algebra underlying
g. As K is semisimple the Killing form κ on gR × gR is non degenerate and
defines on X a G-invariant Riemann structure of negative curvature (cf. [Hel78],
Ch.V, Thm. 3.1). Let Y be the image of L by θ. Then Y is a closed connected
submanifold of X. Moreover the restriction to Y of the Riemannian structure
over X is a Riemannian structure of negative curvature. By Levi-Malcev theorem
we can decompose l as the sum of a solvable ideal r and a semisimple Lie algebra
s. If l is not solvable then s 6= 0 and it admits a real compact form T, i.e. there
exists a real compact Lie subgroup T of L with Lie algebra t such that s = tC.
In particular T is a compact connected semisimple subgroup of L. Let us see
that if we find an element l ∈ L such that l−1Tl ⊂ K, or equivalently l ∈ L
such that the point θ(l) of the submanifold Y of X is fixed by the action of T
on X, then we have a contradiction. Indeed, since l is an ideal of l̃ the subgroup
L is normal in L, thus l−1Ll = L and l−1Tl ⊂ L ∩ K, but as l ∩ k = {0} this is
not possible. Since T is a subgroup of L, Y is invariant by the action of T. We
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denote by Ỹ the universal covering of Y and by T̃ the universal covering of T.
There exists a unique action of T̃ over Ỹ which defines on the quotient the action
of T over Y. There exists a unique Riemannian structure on Ỹ which defines on
the quotient the Riemannian structure on Y. By the previous proposition we
know that the Riemannian structure on Ỹ is invariant by T̃, complete and of
negative curvature. As T is connected, compact and semisimple, T̃ is compact.
Therefore the action of T̃ on Ỹ has a fixed point, by Cartan’s theorem, and it
follows that the action of T over Y has a fixed point.

Proposition 3.1.6. A left-invariant normal almost contact structure over K is
determined by a pair of complex subalgebras l ⊂ l′ of g = kC of complex dimension
n and n + 1 respectively such that:

(a) l ∩ k = {0};

(b) dimRl′ ∩ k = 1;

(c) l is an ideal of l′, i.e. [l, l′] ⊂ l.

Proof. Because of the proposition 3.1.1 the subalgebra l defines a left-invariant
CR-structure on K. Note that l′ ∩ k = 〈ξ〉R corresponds to the left-invariant
vector field defining the CR-action. Clearly the vector field ξ is transverse to
the CR-structure determined by l and (c) implies that it induces a CR-action.
Conversely, given a normal almost contact structure, if l defines the CR-structure
and ξ the CR-action it is enough to set l′ = l⊕〈ξ〉C. Notice that g = l⊕ l⊕〈ξ〉C,
therefore dimRl′ ∩ k = 1.

Remark 3.1.7. If the complex subalgebras l ⊂ l′ = l ⊕ 〈ξ〉C (with the same
notation as in the above proof) of g = kC determine a left-invariant normal
almost contact structure over K then we can define a natural left-invariant com-
plex structure on K × S1 by imposing that the subalgebra l ⊕ 〈ξ + i ∂

∂t〉 is the
distribution of vector fields of type (0, 1) where ∂

∂t is a tangent vector field on
S1 corresponding to the S1-action (note that the integrability of the complex
structure follows from the fact that the almost contact structure is normal, see
definition 2.1.1).

Definition 3.1.8. Let l ⊂ l′ and m ⊂ m′ be left-invariant normal almost contact
structures over the compact Lie groups K and M respectively. We say that
f : K → M is an isomorphism of left-invariant normal almost contact structures
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if f is a Lie group isomorphism between K and M and the complexified linear
map f∗ : kC → mC verifies f∗l = m and f∗l

′ = m′.

Theorem 3.1.9. Let K be a compact connected real semisimple Lie group with
Lie algebra k endowed with a left-invariant normal almost contact structure de-
fined by a pair of subalgebras l ⊂ l′ of g = kC. Let G be the universal complex-
ification of K and L the connected complex Lie subgroup of G associated to l.
Then L is closed and the map K ↪→ G/L induced by the inclusion K ⊂ G is a
totally real embedding such that the left-invariant CR-structure on K defined by
l agrees with the induced by the embedding and the natural complex structure on
G/L. Moreover the subalgebras l and l′ are solvable.

Since l′ = l⊕ 〈ξ〉C and l is an ideal of l′ we have [l′, l′] ⊂ l, thus l′ is solvable
if and only if l is solvable. By the previous theorem by Charbonnel and Khalgui
we know that the subalgebra l is solvable. Nevertheless we present here an alter-
native proof since its approach will allow us (see the next section) to construct
non-invariant normal almost contact structures. Note also that we prove that
the connected Lie subgroup L of G corresponding to the subalgebra l is closed,
which could not be concluded from Charbonnel-Khalgui proof. In the following
argument we use strongly the existence of a normal almost contact structure,
not only of a CR-structure.

Proof. We can define on K×S1 a left-invariant complex structure such that if l̃

is the distribution of vector fields of type (0, 1) of K× S1 then l̃ ∩TCK = l (see
remark 3.1.7). First of all we will prove that there is a closed subgroup L of the
universal complexification G of K and a totally real embedding K↪→G/L such
that the left-invariant CR-structure on K defined by l agrees with the induced
by the embedding and the natural complex structure on G/L. Next we will
see that L is the connected complex Lie subgroup of G associated to the Lie
subalgebra l. We define Ĝ = AutC(K× S1) and L̂ = Ie, the isotropy group of e,
i.e. Ie = {f ∈ Ĝ : f(e) = e}. It is a well-known fact that Ĝ is a complex Lie
group (cf. [Kob72], p. 77). Note that L̂ is closed and we have an embedding
K ↪→ Ĝ/L̂ where the elements of K act as left-translations on K and fix S1.
Note that as K×S1 acts transitively by left-translations on K×S1 the complex
manifold K× S1 is naturally identified to Ĝ/L̂. Therefore the CR-structure on
K agrees with the one induced by the embedding K ↪→ Ĝ/L̂ and the complex
structure on Ĝ/L̂. Let ĝ be the Lie algebra of Ĝ, next we will see that k is
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completely real in ĝ. Consider the ideal of k defined by m = k ∩ ik, where i
denotes the complex product by

√
−1 corresponding to the complex structure

on ĝ. Since K is semisimple we have k ∼= i1 ⊕ ... ⊕ is where i1, ..., is are simple
ideals of k and we can write m as a sum of some of these ideals. In particular
[m,m] = m. On the other hand m is a complex subalgebra and there exists a Lie
subgroup M of K with a complex Lie group structure such that its Lie algebra
is m. Since m is an ideal of a semisimple compact Lie group K the subgroup M
is normal and therefore closed. It follows that M is compact (for K is compact)
and consequently abelian, which contradicts [m,m] = m. We have thus proved
that m = 0 o equivalently that k is totally real in ĝ. Let now G be the connected
complex subgroup of Ĝ associated to the complex Lie algebra g := k⊕ i k, we will
next show that G is the universal complexification of K. Recall that K is totally
real in G and that the Lie algebra of G is a complexification of the Lie algebra
of K, therefore K is a real compact form of the complex semisimple Lie group G.
We denote by ρ : K ↪→ KC the universal complexification of K. The semisimple
complex Lie group KC also admits K as a real compact form. In particular K is
maximal compact subgroup both of KC and of G, therefore K is a deformation
retract of both complex Lie groups. On the other hand G and KC differ at most
in a finite quotient but, as they have the same deformation retract, one has
G ∼= KC. We define now the closed subgroup L := L̂ ∩ G of G and check that
there is an embedding K ↪→ G/L and that dimC G/L = n + 1. Notice that there
is a totally real embedding K ↪→ Ĝ/L̂ and that by construction K⊂G, therefore
K ↪→ G/L and dimC G/L ≥ n + 1. Moreover dimC G/L ≤ dimC Ĝ/L̂ = n + 1,
so the equality follows. Therefore G/L ∼= Ĝ/L̂. In addition the CR-structure
on K corresponding to l agrees with the one induced by the embedding of K as
a real hypersurface of G/L (because then the CR-structure was compatible by
construction with the embedding K ↪→ Ĝ/L̂ and the complex structure of Ĝ/L̂),
i.e. the Lie algebra of L coincides with l. Now Levi-Malcev theorem states that
l can be decomposed as sum of a solvable ideal r and a semisimple subalgebra
s. If l is not solvable then the subalgebra s 6= 0 admits a real compact form T,
i.e. there exists a compact real Lie subgroup T of L with Lie algebra t such that
s = tC. As K is a maximal compact subgroup of G there exists an element g ∈ G
such that T ⊂ gKg−1 = K′, in particular, K′ ∩L ⊇ T 6= {e}. Recall that K×S1

is naturally identified to Ĝ/L̂. It follows that the action of K over Ĝ/L̂ ∼= G/L
by left-translations is free and therefore the orbits have real dimension 2n + 1.
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We conclude that the action of K′ by left-translations over G/L is free and the
orbits of this action have real dimension 2n + 1, since if [x ·L] ∈ G/L and k ∈ K
then [g−1 · k · g · x · L] = [x · L] if and only if [k · (g · x) · L] = [(g · x) · L]. Setting
x = e it follows that K′∩L= {e}. Thus we have reached a contradiction so l

must be solvable.

Remark 3.1.10. Given a complex subalgebra l with dimCl = n and l ∩ k = {0}
it does not always exist a subalgebra l′ ⊃ l defining a normal almost contact
structure. The Lie groups SO(3) and SU(2) provide examples of this situation,
as we will see in the last section.

Proposition 3.1.11. Let K2n+1 be a compact connected semisimple Lie group
with Lie algebra k and assume that the pair l ⊂ l′ defines a left-invariant normal
almost contact structure on K2n+1. Then there exists a Borel subalgebra b and
a Cartan subalgebra r = tC ⊂ b such that t is a maximal abelian subalgebra of k

and l′ ⊂ b. Moreover, if u = [b, b] we have l′ = (l′ ∩ r)⊕ u and l = (l∩ r)⊕ u. In
particular u ⊂ l ⊂ l′.

Before we start the proof we establish some results that we will need.

Lemma 3.1.12. There is a unique maximal torus in (C∗)k given by (S1)k.

Note that since (C∗)k is abelian the conjugation plays no role.

Lemma 3.1.13. Every connected complex subgroup M of (C∗)k is isomorphic
to Cl × (C∗)s for l, s ≥ 0 and l + s ≤ k. Moreover:

(a) If dimR(M ∩ (S1)k) = 0 then M is isomorphic to Cl and 0 ≤ l ≤ k/2.

(b) If dimR(M ∩ (S1)k) = 1 then M is isomorphic to Cl × C∗ or Cl+1 and
0 ≤ l ≤ (k − 1)/2.

Proof. By a theorem by Morimoto (see theorem 1.7.8) a Lie subgroup M of
(C∗)k is isomorphic to M0 × Cl × (C∗)s where M0 is a (HC)-group. As (C∗)k is
Stein all its subgroups admit non-constant holomorphic functions (since for every
x, y ∈ M there exists a holomorphic function f on (C∗)k such that f(x) 6= f(y)),
therefore M0 = {e}. Moreover since (C∗)k and M are abelian their maximal
tori are unique and it follows that the maximal torus (S1)s of M is included in
the maximal torus (S1)k of (C∗)k. Therefore if dimR(M ∩ (S1)k) = 0 then M is
isomorphic to Cl. Finally note that if an injective map Ω : Cl → (C∗)k verifies
dimR(Im(Ω) ∩ (S1)k) = 0 then l ≤ k/2. The argument of (b) is analogous to
the previous one.
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Lemma 3.1.14. If M is a complex subgroup of (C∗)2k+1 isomorphic to Ck+1

and such that dimR(M ∩ (S1)2k+1) = 1 then MZar = (C∗)2k+1.

Proof. Every irreducible (or connected) algebraic subgroup of (C∗)n is of the
form (C∗)m for m ≤ n where the C∗ are some of the factors of (C∗)n (c.f.
[Oni90]). Since MZar is an algebraic subgroup of (C∗)2k+1 it is isomorphic to
(C∗)l with l ≤ 2k+1. It is enough to notice that M ∼= Ck+1 can not be immersed
into (C∗)l for l < 2k + 1 since it would contradict the inequality

2k +2+ l = dimR Ck+1 +dimR(S1)l ≤ dimR(C∗)l +dimR(Ck+1 ∩ (S1)l) = 2l +1.

Lemma 3.1.15. If M is a complex subgroup of (C∗)2k isomorphic to Ck and
such that dimR M ∩ (S1)2k = 0 then MZar = (C∗)2k.

The proof is analogous to the previous one.

Proposition 3.1.16. Let K2n+1 be a compact connected semisimple Lie group
with Lie algebra k and assume that the pair l ⊂ l′ defines a left-invariant normal
almost contact structure on K2n+1. Let b be a Borel subalgebra of g such that
l′ ⊂ b. Then t := b ∩ k is a maximal abelian subalgebra of k and for the Cartan
subalgebra r = tC ⊂ b we have l′ + r = b and dimR(l′ ∩ r) = 2r + 2.

Proof. Let us begin by proving that t := b ∩ k is a maximal abelian subalgebra
of k. As the identity component of B∩K is a closed connected Lie subgroup of a
compact Lie group K, it is compact and it follows that b∩k = [b∩k, b∩k]⊕C(b∩k),
where [b ∩ k, b ∩ k] is semisimple and C(b ∩ k) is abelian (see section 1.7.5).
On the other hand, b ∩ k is solvable, therefore it cannot admit a semisimple
subalgebra and we conclude that the subalgebra b∩k is abelian. Recall now that
dimR k = 2n + 1 and dimR b = 2n + 2r + 2 (the last equality is a consequence of
Cartan decomposition, see section 1.7.3). Thus,

4n+2r+3 = dimR b+dimR k = dimR(b+k)+dimR(b∩k) ≤ 4n+2+dimR(b∩k).

Therefore dimR(b∩ k) ≥ 2r+1 and b∩ k must be a maximal abelian subalgebra t

of k. Then r = tC is a Cartan subalgebra of g contained in b and dimR r = 4r+2.
Note that 〈ξ〉R = l′ ∩ k ⊂ b ∩ k = t, therefore l′ ∩ t = 〈ξ〉R. Under the above
hypothesis l′ + r ⊂ b. Recall that

dimR r = 4r + 2; dimR l′ = 2n + 2; dimR b = 2n + 2r + 2.
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Therefore

2n + 2r + 2 = dimR b ≥ dimR(l′ + r) = 2n + 4 + 4r − dimR(l′ ∩ r)

so 2r +2 ≤ dimR(l′ ∩ r). On the other hand l′ ∩ r is a real subspace of dimension
at least 2r + 2 of t ⊕ it intersecting t with dimension 1 (for l′ ∩ t = 〈ξ〉R), by
Grassman formula one concludes then that dimR(l′ ∩ r) = 2r + 2. Finally from
the previous inequality we see that dimR(l′ + r) = 2n + 2r + 2. Consequently
l′ + r = b.

Before we begin the proof of the proposition 3.1.11 we recall a couple of
results of linear algebra that we use throughout it.

Lemma 3.1.17. Let f, g be diagonalizable endomorphisms of a finite dimen-
sional vector space E such that f ◦ g = g ◦ f . There exists a basis in which f

and g diagonalize simultaneously.

Lemma 3.1.18. Let f be a diagonalizable endomorphism on a finite dimensionl
vector space E and F a f-invariant subspace of E, i.e. f(F ) ⊂ F . Then f|F is
diagonalizable and if E = Eλ1 ⊕ ...⊕Eλs is a decomposition of E in eigenspaces
of eigenvalue λi with λi 6= λj for i 6= j then F = (Eλ1 ∩ F )⊕ ...⊕ (Eλs ∩ F ) is
a decomposition of F in eigenspaces.

Proof. It is enough to prove that F ⊂ (Eλ1 ∩ F ) ⊕ ... ⊕ (Eλs ∩ F ). Any v ∈ F

admits a decomposition v = v1 + ... + vs where vi ∈ Ei for every i = 1, ..., s.
Consider now

f(v) = λ1v1 + ... + λsvs ∈ F

f2(v) = λ2
1v1 + ... + λ2

svs ∈ F

...

fs−1(v) = λs−1
1 v1 + ... + λs−1

s vs ∈ F

It is enough to notice that∣∣∣∣∣∣∣∣∣∣
1 ... 1
λ1 ... λs

...

λs−1
1 ... λs−1

s

∣∣∣∣∣∣∣∣∣∣
=
∏
i>j

(λi − λj) 6= 0

to conclude that vi ∈ F for every i, so vi ∈ Ei ∩ F for every i.
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Proof. (Proposition 3.1.11) Since l′ is solvable there exists a Borel subalgebra b

such that l′ ⊂ b. In proposition 3.1.16 we have seen that t = b ∩ k is a maximal
abelian subalgebra of k. Then r = tC is a Cartan subalgebra such that r ⊂ b.
We must then show that l′ = (l′ ∩ r) ⊕ u and l = (l ∩ r) ⊕ u. Recall that using
the root decomposition of g by respect to r (see section 1.7.3) we obtain

g = r⊕α∈Φ gα, b = r⊕
α∈eΦ gα, u = ⊕

α∈eΦgα,

where Φ is the set of roots of g relative to r, Φ̃ is a subset of Φ and gα are proper
spaces. We consider now the action on l′ of its abelian subalgebra l′∩r. As a con-
sequence of lemma 3.1.18 the endomorphisms of l′ defined by the elements of l′∩r

diagonalize. Then lemma 3.1.17 assures us that they diagonalize simultaneously.
Thus we obtain a decomposition of l′ as a direct sum of eigenspaces:

l′ = l′0 ⊕α∈(l′)∗ l′α,

where l′α = {X ∈ l′ : [R,X] = α(R) · X, ∀R ∈ l′ ∩ r}. Note that l′α ⊂ u for
α 6= 0. Indeed if there exists R ∈ r ∩ l′ such that α(R) 6= 0 for X ∈ l′α we have

X =
1

α(R)
[R,X] ∈ [l′, l′] ⊂ [b, b] = u.

Moreover it is clear that l′∩r ⊂ l′0. Now we want to prove that l′ = (l′∩r)⊕u with
l′0 = l′∩ r and ⊕α∈(l′)∗ l

′
α = u. This will end the proof because then l = (l∩ r)⊕u.

Indeed since [l′, l′] ⊂ l we conclude that l′α ⊂ l for α 6= 0, therefore u ⊂ l, in
particular l = (l ∩ r)⊕ u.

We will start by seeing that l′0 ⊂ r, which yields l′ ∩ r = l′0 and we will then
conclude by an argument of dimensions. We must check that given X ∈ l′ such
that [R,X] = 0 for every R ∈ r∩ l′ then [R,X] = 0 for every R ∈ r. Let L′ and H
be the connected Lie subgroups of G corresponding to the Lie subalgebras l′ and
r respectively. Recall that H ∼= (C∗)2r+1. Define S′ as the connected component
of the id of L′ ∩ H. Applying lemma 3.1.13 we conclude that there are two
possibilities. In the first case S′ ∼= Cr ×C∗ and if we denote by M the subgroup
of S′ isomorphic to Cr then dimR M ∩ (S1)2r+1 = 0. Then by lemma 3.1.15 we
obtain S′Zar = H. In the second one, S′ ∼= Cr+1 and dimR(Cr+1∩ (S1)2r+1) = 1.
Then by lemma 3.1.14 we also obtain S′Zar = H. By hypothesis adR ·X = 0 for
every R ∈ L′ ∩ H and X ∈ L′ and we want to verify that adRX = 0 for every
R ∈ H and X ∈ L′. Since the hypothesis adRX = 0 is algebraic and S′Zar = H
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it follows that l′0 ⊂ r. We conclude that l′ = (l′ ∩ r) ⊕α∈l′∗ l′α and l′α ⊂ u. Set
u′ = ⊕α∈(l′)∗ l

′
α ⊂ u and notice that by proposition 3.1.16

dimC u′ = n + 1− r − 1 = n− r = dimC u.

The above result is not true when one considers a complex subalgebra l defin-
ing a left-invariant CR-structure of maximal dimension. The Lie groups SO(2)
and SU(3) provide a counterexample. Indeed, as we will see in the last section,
they admit CR-structures that can not be completed to a normal almost contact
structure, then the statement is a consequence of the following proposition:

Proposition 3.1.19. With the above notation, if l is a left-invariant CR-struc-
ture of maximal dimension on a semisimple compact connected Lie group K2n+1

then there exists a Borel subalgebra b of g = kC such that u = [b, b] ⊂ l ⊂ b if
and only if there exists a subalgebra l′ of g such that the pair l ⊂ l′ defines a
left-invariant normal almost contact structure on K2n+1. Moreover, in this case,
we can choose l′ ⊂ b.

Proof. By the previous theorem it is enough to prove the direct implication.
Recall that dimC r = 2r + 1, dimC u = n− r, dimC b = n + r + 1, dimC l = n and
dimC l′ = n + 1. Moreover b = r ⊕ u and l = l ∩ r ⊕ u. Therefore dimC(l ∩ r) <

dimC r. Therefore it exists at least a vector ξ ∈ r\(l∩r) and if we define l′ = l⊕〈ξ〉
then dimR(l′ ∩ k) = 1. We claim that the pair l ⊂ l′ defines a normal almost
contact structure. Clearly l is an ideal of l′ since for every X ∈ l we have X =
X0 + X1 where X0 ∈ l∩ r and X1 ∈ u, thus [ξ,X] = [ξ,X0] + [ξ,X1] ∈ u ⊂ l.

Let K be a semisimple compact connected real Lie group of odd dimension
2n+1 and rank 2r+1 and let ρ : K → G = KC be its universal complexification.
Choose a maximal torus T of K and a Borel subgroup B of G such that H :=
ρ(T)C ⊂ B. The subgroup H is isomorphic to (C∗)2r+1 and denoting by U the
subgroup of unipotent elements of B we have B = H ·U.

A Lie groups morphism Λ : Cr+1 → H ∼= (C∗)2r+1 is given by the composition
of the exponential map with a linear map

Λ0 : Cr+1 → C2r+1

z := (z1, . . . , zr+1)t 7→ M · z
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where M = (mj
i ) is a (2r+1)×(r+1) complex matrix. Note that rank M = r+1.

We denote by AΛ the (2r+1)×(2r+2) real matrix that has the real components
of the vectors Λ0(ei) as columns, where e1, ..., e2r+2 is the canonical basis of
R2r+2 ∼= Cr+1. Namely,

AΛ =


Re m1

1 − Im m1
1 . . . Re mr+1

1 − Im mr+1
1

...
...

...
...

Re m1
2r+1 − Im m1

2r+1 . . . Re mr+1
2r+1 − Im mr+1

2r+1

 .

Let BΛ be the (2r + 1)× 2r real matrix obtained by taking the 2r last columns
of AΛ.

Lemma 3.1.20. Let Λ : Cr+1 → H be a Lie group morphism. With the above
notation the following conditions are equivalent:

(a) The Lie subgroups Λ({0} × Cr) and Λ(Cr+1) of H verify

Λ({0} × Cr) ∩ T = {0}, dimR Λ(Cr+1) ∩ T = 1.

(b) rank AΛ = 2r + 1 and rankBΛ = 2r. (I)

Moreover then Λ({0} × Cr) is a closed subgroup of H.

Remark 3.1.21. Under the hypothesis of the previous lemma the morphism Λ is
injective when restricted to {0} × Cr and dim ker Λ = 0.

Example 3.1.22. The following example shows that in order to assure that (a)
is fulfilled it is not enough to impose that the complex matrix M has maximal
rank. Consider the injective map Λ0 : C2 → C3 given by

(z1, z2) 7→ (z1 + (1 + i)z2,−z1 + (1− i)z2, 0)

which induces an injective morphism Λ : C2 → (C∗)3 by the expression

(z1, z2) 7→ (ez1+(1+i)z2 , e−z1+(1−i)z2 , 1).

Then with the previous notation

M =

 1 1 + i

−1 1− i

0 0

 ; AΛ =

 1 0 1 −1
−1 0 1 1
0 0 0 0

 ; BΛ =

 1 −1
1 1
0 0

 .
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Note that T = (S1)3 ⊂ (C∗)3. Let us compute Λ({0} × C) ∩ (S1)3 and Λ(C2) ∩
(S1)3. In the first case z1 = 0 and Λ((0, z2)) ∈ (S1)3 if and only if

Re((1 + i)z2) = Re((1− i)z2) = 0,

that is, if and only if z2 = 0. Therefore Λ({0} ×C)∩ (S1)3 = {0} and note that
this is equivalent to rankBΛ = 2. On the other hand dimR Λ((z1, z2))∩(S1)3 = 1
if and only if the linear system{

Re(z1 + (1 + i)z2) = 0
Re(−z1 + (1− i)z2) = 0

has rank 3, that is, if rank AΛ = 3, which is not the case in this example. Note
that this shows that it is necessary to impose conditions on both AΛ and BΛ,
not only on M.

Proof. Notice that T = (S1)2r+1 ⊂ (C∗)2r+1 = H in the usual way. Then

Λ(z1, ..., zr+1) =
(

e
Pr+1

j=1 mj
1zj , ..., e

Pr+1
j=1 mj

2r+1zj

)
and Λ(0, z2, ..., zr+1) intersects (S1)2r+1 ⊂ (C∗)2r+1 if and only if

Re
( r+1∑

j=2

mj
1zj

)
= ... = Re

( r+1∑
j=2

mj
2r+1zj

)
= 0. (∗)

Setting zj = xj + iyj the condition (∗) can be rewritten as

r+1∑
j=2

(
Re mj

kxj − Im mj
kyj

)
= 0 ∀k = 1, ..., 2r + 1.

Note that the coefficients of this homogeneous system are the entries of the
matrix BΛ. Therefore the system (∗) admits a unique solution z2 = ... = zr+1 = 0
if and only if rankBΛ = 2r. Finally, an analogous computation shows that the
condition dimR Λ(Cr+1) ∩ T = 1 is always verified since rankAΛ = 2r + 1. We
end by verifying that Λ({0} × Cr) is closed in H = (C∗)2r+1. It is enough to
check that it is closed at a neighborhood of Λ(0) = e = 1. Note that Λ({0}×Cr),
at a neighborhood of e = 1, is isomorphic to an open set of Cr. By the previous
calculation Λ(z) is close to e if and only if∣∣∣∣ r+1∑

j=2

(
Re mj

kxj − Im mj
kyj

)∣∣∣∣ < ε ∀k = 1, ..., 2r + 1.
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We conclude that Λ(z) is close to e if and only if z is close to 0 in Cr+1, thus
Λ({0} × Cr) is closed in H.

Theorem 3.1.23. Let K be a semisimple compact connected Lie group of odd
dimension 2n+1 and rank 2r+1 and let G be its universal complexification. As-
sume that H is a Cartan subgroup of G and Λ : Cr+1 → H a Lie group morphism
verifying the transversality condition (I). If B is a Borel subgroup of G such that
H ⊂ B and U is its subgroup of unipotent elements then the Lie subalgebras
lΛ ⊂ l′Λ of g associated to the complex Lie subgroups L′Λ = Λ(Cr+1) · U and
LΛ = Λ({0} × Cr) · U of G define a left-invariant normal almost-contact struc-
ture KΛ on K. Moreover, the Lie subgroup LΛ is closed and the CR-structure on
K determined by LΛ agrees with the one induced by the embedding K ↪→ G/LΛ

of K as a real hypersurface of the complex manifold G/LΛ. Conversely, every
left-invariant normal almost contact structure is induced by such a morphism Λ
from Cr+1 into a Cartan subgroup H of G.

In particular this theorem implies that every semisimple compact connected
Lie group admits a left-invariant normal almost contact structure. Considering
only LΛ = Λ({0}×Cr) ·U we obtain a left-invariant CR-structure of maximal di-
mension by the same construction, however it is not true that every left-invariant
CR-structure of maximal dimension is always of this type, the Lie group SU(2)
provides a counterexample as we will see in the last section.

Lemma 3.1.24. Under the hypothesis of the previous theorem, the connected
complex Lie subgroup LΛ = Λ({0} × Cr) ·U is closed in G.

Proof. Recall that the Borel subgroups and the unipotent subgroups of a com-
plex algebraic group are closed. On the other hand by the Iwasawa decompo-
sition we have a diffeomorphism ϕ : H × U → B given by (h, u) 7→ h · u. By
the lemma 3.1.20 we know that Λ({0} ×Cr) is closed in H. Let us see that this
implies that LΛ = Λ({0}×Cr) ·U is closed in B and thus in G. Choose {hn}n∈N,
{un}n∈N such that hn ∈ Λ({0}×Cr) and un ∈ U and assume that hn ·un → h ·u
when n →∞ where h ∈ H and u ∈ U. Then hn → h ∈ H and un → u ∈ U when
n → N (because ϕ is a diffeomorphism). As Λ({0} × Cr) is closed in H we have
h ∈ Λ({0} × Cr) and h · u ∈ LΛ.

Lemma 3.1.25. The only pairs L ⊂ L′ of complex Lie subgroups of B = H ·U of
dimensions n and n + 1 respectively such that they contain U, T ∩ L = {e} and
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T ∩ L′ = 〈ξ〉R are those of the form LΛ = Λ({e} × Cr) · U ⊂ L′Λ = Λ′(Cr+1) · U
where Λ : Cr+1 → (C∗)2r+1 is a Lie group morphism verifying (I).

Proof. It is enough to apply lemma 3.1.13.

Recall that if we fix a maximal torus T on K and a Borel subgroup B of G with
Lie algebras t and b respectively and such that T ⊂ B the corresponding Iwasawa
decomposition states that G ∼= K ·A ·U where A and U are the simply connected
Lie subgroups associated to the Lie algebras it and u = [b, b] respectively. Recall
also that B = H·U where H is the Cartan subgroup of G associated to r = tC and
that K ∩ B = T = (S1)2r+1. Then LΛ := Λ(Cr × {0}) · U is a closed connected
complex Lie subgroup of G of complex dimension n. From the construction of
LΛ and the Iwasawa decomposition of G it follows that the natural inclusion
K ↪→ G/LΛ is an embedding of K as a real hypersurface of the complex manifold
G/LΛ. Note that G/U = K ·A where A ∼= R2r+1 and we consider K = K · {e} ⊂
G/U. This inclusion induces a CR-structure on K which is left invariant (since
K acts holomorphically on the complex Lie group G by left translations). Notice
that if lΛ is the Lie subalgebra of g = kC corresponding to LΛ then lΛ defines the
CR-structure on K induced by the embedding of K in G/LΛ.

Proof. (Theorem 3.1.23) Let lΛ ⊂ l′Λ be the Lie subalgebras of g associated
to the Lie subgroups LΛ and L′Λ respectively. Note that dimC lΛ = n and
dimC l′Λ = n+1. Clearly lΛ∩k = {e}, dimR l′Λ∩k = 1 and [l′Λ, l′Λ] ⊂ [b, b] = u ⊂ lΛ,
therefore they define a left-invariant normal almost contact structure on K2n+1.
For the converse we apply proposition 3.1.11 and the previous lemma.

Let K be a semisimple compact connected Lie group of odd dimension 2n+1
and rank 2r + 1 and let ρ : K → G = KC be the universal complexification of
K. We choose two maximal tori T, T′ of K and two Borel subgroups B, B′ of G
such that H:=ρ(T)C ⊂B and H′ := ρ(T′)C ⊂B′ respectively. We denote by U, U′

the unipotent elements subgroups of B and B′ respectively. Let Λ : Cr+1 → H
be a morphism of Lie groups verifying (I).

Proposition 3.1.26. With the above notation, there exists k ∈ K such that if
we denote by ck : K → K the map defined by ck(x) = k · x · k−1 then:

(a) ck(B) = B′, ck(T) = T′, ck(H) = H′ and ck(U) = U′.

(b) The Lie group morphism Λ′ : Cr+1 → H′ defined by Λ′ = ck ◦Λ verifies (I).
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(c) If we denote by KΛ and KΛ′ the left-invariant normal almost contact struc-
tures on K obtained as in theorem 3.1.23 then ck : KΛ → KΛ′ is a left-
invariant normal almost contact structure isomorphism.

In other words, up to conjugacy, the only way to obtain different normal
almost contact structures is by making a different choice of the morphism Λ :
Cr+1 → H.

Proof. (a) Since G is a connected algebraic group we know that there exists
g ∈ G such that g · B · g−1 = B′ and g · T · g−1 = T′ (c.f. [Bor91], p. 156).
Moreover, as G is semisimple, from the Iwasawa decomposition and the fact
that N(B) = B (cf. [Hum75], p.143) we derive that if g = k ·a ·u ∈ K ·A ·U
then B′ = k · B · k−1 = ck(B). Therefore ck(T) is a maximal torus of K
contained in B′, but since K ∩ B′ = T′ we conclude that ck(T) = T′. Then
ck(H) = H′ and ck(U) = U′.

(b) It is clear.

(c) It is enough to notice that ck(G) = G, ck(LΛ) = LΛ′ and ck(L′Λ) = L′Λ′ .

Now we will illustrate the preceding results with some examples of classical
Lie groups. We will skip some standard computations (see [MT86] or [Oni90]
for details).

•SU(2) = {A ∈ GL(2, C) : A · Āt = Id, det(A) = 1} is a 3-dimensional compact
connected semisimple Lie group. Its Lie algebra is

su(2) = {A ∈ GL(2, C) : A + Āt = 0, tr(A) = 0} =
{(

iy u
−u −iy

)
: y ∈ R, u ∈ C

}
and choosing the basis

u1 =
(

i 0
0 −i

)
; u2 =

(
0 1
−1 0

)
; u3 =

(
0 i
i 0

)
we see that [u1, u2] = 2u3; [u2, u3] = 2u1; [u3, u1] = 2u2. Indeed,

SU(2) =
{(

z −w

w z

)
: z, w ∈ C, |z|2 + |w|2 = 1

}
∼= S3.

The universal complexification of SU(2) is the group

SU(2)C = SL(2, C) = {A ∈ GL(2, C) : detA = 1}
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whose Lie algebra is sl(2, C) = {A ∈ M2×2(C) : trA = 0}. To define a left-
invariant normal almost contact structure on SU(2) we will exhibit complex
subalgebras l ⊂ l′ of sl(2, C) of complex dimensions 1 and 2 respectively verifying
the hypothesis of the section 3.1. Since rank SU(2) = 1 we can choose r = 〈u1〉C,
which is unique up to conjugation. There exist two Borel subalgebras containing
r:

b = 〈u1, u2 + iu3〉C, u = 〈u2 + iu3〉C; b′ = 〈u1, u2 − iu3〉C, u′ = 〈u2 − iu3〉C.

Therefore, by the results of the section 3.1 we can conclude the following:

Proposition 3.1.27. With the above notation:

(a) There are only one left-invariant normal almost contact structure on SU(2)
up to conjugation: u ⊂ b.

(b) There are left-invariant CR-structures on SU(2) which cannot be completed
to a normal almost contact structure.

Recall that every 1-dimensional complex subalgebra l of sl(2, C) such that
l ∩ su(2) = {0} in sl(2, C) defines a left-invariant CR-structure on SU(2). For
instance, we can choose l = 〈u1 + α(u2 + iu3)〉C for α ∈ R, which can not be
completed to a normal almost contact structure.

•SO(3) = {A ∈ GL(3, R) : A · At = Id, det A = 1} is a 3-dimensional compact
connected semisimple Lie group with Lie algebra

so(3, R) = {A ∈ M3×3(R) : A + At = 0, tr(A) = 0}.

It admits a basis

e1 =
(

0 −1 0
1 0 0
0 0 0

)
, e2 =

(
0 0 −1
0 0 0
1 0 0

)
, e3 =

(
0 0 0
0 0 −1
0 1 0

)
,

such that [e1, e2] = e3; [e2, e3] = e1 and [e3, e1] = e2. It is well known that
there exists a covering map ϕ : SU(2) → SO(3). Moreover SO(3) ∼= RP 3 and
π1(SO(3)) ∼= Z/2Z. The universal complexification SO(3) is the group

SO(3, C) = {A ∈ GL(3, C) : A ·At = Id, det A = 1}

with Lie algebra so(3, C) = {A ∈ M3×3(C) : A + At = 0, tr(A) = 0}. Note also
that SO(3) = SO(3, C) ∩ SU(3).
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As rank SO(3) = 1 we can choose r = 〈e1〉C as maximal abelian subalgebra
and it is unique up to conjugation. There are two Borel subalgebras containing
r as a subalgebra: b = 〈e1, e2 − ie3〉C ⊃ u = [b, b] = 〈e2 − ie3〉C and b′ =
〈e1, e2 + ie3〉C ⊃ u′ = [b′, b′] = 〈e2 + ie3〉C. As in the previous case, we conclude
that:

Proposition 3.1.28. With the above notation, there is only one left-invariant
normal almost contact structure on SO(3) up to conjugation: u ⊂ b .

Since so(3, R) ∼= su(2) it is clear that the study of left-invariant normal
almost contact structures on SO(3) is the same as in SU(2).

•SU(n) = {A ∈ Mn×n(C) : A · Āt = Id; detA = 1} is a compact connected
semisimple real Lie group with Lie algebra

su(n) = {A ∈ Mn×n(C) : A + Āt = 0; trA = 0}

=


 iθ1 −z̄1 ...

z1 iθ2 ...
....
.... iθn−1 −z̄n2−n

.... zn2−n −i
Pn−1

k=1 θk

 : θ1, ..., θn−1 ∈ R; zj ∈ C, j = 1, ..., n2 − n

 .

A small computation shows that dimR SU(n) = n2 − 1 and that SU(n) is
simply connected (this follows from the isomorphism SU(n)/SU(n−1)∼= S2n−1).
Moreover rank SU(n)=n − 1. From now on we assume n is even, so that
dimR SU(n) = n2 − 1 is odd.

We can choose a basis of su(n) formed by the vectors {r1, ..., rn−1, uij} where
uij are matrices with a 1 in the position (i, j) for i 6= j and a zero otherwise and
rj are diagonal matrices with 1 in the (j, j) position for j < n, −1 in the (n, n)
position and zero otherwise. We can easily compute the Lie brackets, we obtain
[ri, rj ] = 0 and

[uij , usl] =


ri − rj j = s, i = l

uil j = s, i 6= l

−usj i = l, j 6= s

0 otherwise;

[rk, uij ] =



uij i = k, j 6= k, 2n o j = 2n, i 6= k, 2n

−uij i = 2n, j 6= k, 2n o j = k, i 6= k, 2n

2uij i = k, j = 2n

−2uij i = 2n, j = k

0 otherwise;
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The universal complexification of SU(n) is SL(n,C), whose Lie algebra is
sl(n, C) = {A ∈ Mn×n(C) : tr(A) = 0}. Up to conjugation we can assume that
the maximal abelian subalgebra is r = 〈r1, ..., rn−1〉C. As a Borel subalgebra b

we choose superior diagonal matrices or diagonal inferior matrices. The corre-
sponding subalgebra u of unipotent elements is the one generated by {uij} for
i < j or j > i respectively.

Proposition 3.1.29. With the above notation, fixed the previous Cartan subal-
gebra r and Borel subalgebra b, the left invariant normal almost contact struc-
tures on SU(n) described in theorem 3.1.23 are the pairs of complex subalgebras
l ⊂ l′ ⊂ sl(n, C) of the form

l = u⊕

〈
n−1∑
j=1

aj
krj

〉n/2−1

k=1

; l′ = l⊕

〈
n−1∑
j=1

bjrj

〉
.

where aj
k, b

j ∈ C and rank(Re aj
k, Im aj

k) = n − 2. Moreover these are the only
left-invariant normal almost contact structures up to conjugation.

We end this section by proving a last corollary of theorem 3.1.23:

Corollary 3.1.30. Let K be a compact connected Lie group of odd dimension.
Then K admits at least one left-invariant normal almost contact structure (and
in particular a left-invariant CR-structure of maximal dimension).

Remarks 3.1.31. (a) By Samelson-Wang theorem we know that every semisim-
ple compact connected Lie group of even dimension admits a left-invariant
complex structure.

(b) Let K be a semisimple compact connected real Lie group of even dimension
endowed with a left-invariant complex structure. Then the odd-dimensional
compact connected Lie group K×S1 admits a natural left-invariant normal
almost contact structure. Indeed, if l is a complex subalgebra of g = kC

defining the distribution of vector fields of type (0, 1) and ∂
∂t is a tangent

vector field of S1 inducing the S1-action then the subalgebras l ⊂ l′ =
l⊕ 〈 ∂

∂t〉
C of l⊕ C define a normal almost contact structure on K× S1.

(c) Let M and N be compact connected Lie groups. If M and N carry respec-
tively a left-invariant normal almost contact structure and left-invariant
complex structure then the product M×N carries a natural left-invariant
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normal almost contact structure (by an argument analogous to the previous
one).

Proof. If K is semisimple we apply theorem 3.1.23. Otherwise we know that
up to a finite covering K is isomorphic to K′ × (S1)s where K′ is a semisimple
compact Lie group (see section 1.7.5). If s is even we apply theorem 3.1.23 to
obtain a left-invariant normal almost contact structure on K′ and complexify
(S1)s in a natural way. If s is odd we fix a left-invariant complex structure
on K′, then K′ × S1 admits a left-invariant normal almost contact structure,
and we complexify (S1)s−1 in a natural way. To conclude recall that the finite
quotient on K′ × (S1)s which yields K is given by left-translations of elements
of Z(K′)×{e}. Since the normal almost contact structure that we have defined
on K′ × (S1)s is left-invariant it induces a well defined normal almost contact
structure on the quotient K.

Remark 3.1.32. Since we are considering left-invariant structures all the previous
operations could be described in terms of the Lie algebra, however this argument
has the advantage that generalizes easily to the non-invariant case.

3.2 Non-invariant normal almost contact structures

Let K be a semisimple compact connected real Lie group of odd dimension 2n+1
and rank 2r + 1 with Lie algebra k and let ρ : K → G = KC be the universal
complexification of K.

Definition 3.2.1. A normal almost contact structure on a compact connected
Lie group K of odd dimension 2n + 1 is determined by a complex subbundle V

of T CK of rank n and a real vector field ξ on K such that V ′ := V ⊕ 〈ξ〉C is a
complex subbundle of T CK of rank n + 1 fulfilling:

(a) V ∩ TpK = {e};

(b) [V, V ] ⊂ V ;

(c) [ξ, V ] ⊂ V ;

for every p ∈ K.

Remark 3.2.2. By convention V corresponds to the distribution of vector fields
of T C

p K of type (0, 1). In the left-invariant case it was enough to fix Ve and ξe

so that we obtained Lie subalgebras of kC.
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We fix a maximal torus T ⊂ K and a Borel subgroup B of G such that H :=
ρ(T)C ⊂ B, with Lie algebras t and b respectively. The corresponding Iwasawa
decomposition induces a diffeomorphism G ∼= K · A · U where A and U are the
simply connected Lie subgroups associated to the Lie algebras it and u := [b, b]
respectively. Since G/U ∼= K ·A there is a projection π : G/U → A ∼= R2r+1. We
will denote by K · a its fibers and by K := K · e. Then the inclusion K ↪→ G/U
is an embedding.

Lemma 3.2.3. The action of (C∗)4r+2 ∼= H×H = B/U× B/U on the homoge-
neous space G/U given by

H×H×G/U → G/U

(h1, h2, [g]) 7→ [h1 · g · h2]

is well defined.

Proof. The right action of H on G/U is well defined for N(U) = B (cf. [Hum75],
p.144). The left action is the restriction of the action of G on G/U. Finally since
both actions commute the action of H×H is well-defined.

Given a locally free holomorphic Cr+1-action ϕ : Cr+1 × G/U → G/U and
x ∈ G we define

Fx := ϕ({0} × Cr, [x]); F ′
x := ϕ(Cr+1, [x]),

that is, the leaves through [x] ∈ G/U of the foliations defined by the actions
of Cr ∼= {0} × Cr and Cr+1 respectively. We denote by z0, z1, . . . , zr the linear
coordinates of Cr+1.

Lemma 3.2.4. A locally free holomorphic Cr+1-action ϕ : Cr+1×G/U → G/U
fulfilling:

(i) dimR(Fp ∩K · a) = 0, for a = e and each p ∈ K · e = K,

(ii) dimR(F ′
p ∩K · a) = 1, for a = e and each p ∈ K · e = K,

(iii) there exists λ ∈ C such that ξ = dϕ
(
Re
(
λ ∂

∂z0

))
is tangent to K · a, for

a = e and each p ∈ K · e = K,

induces a normal almost contact structure on K. We refer to the previous con-
ditions as the transversality hypothesis (II).
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Proof. Let π̃ : G → G/U be the natural projection. We define

Vp := π̃∗(TFp)|K ⊂ TpG.

One can easily see that Vp is well defined and depends analytically on p. By
definition TpU ⊂ Vp. Clearly all the conditions in the above proposition hold
since the action is locally free by hypothesis and the fundamental vector fields
of the action commute.

Remark 3.2.5. Unlike the case of complex structures (see lemma 3.0.8) a Cr+1-
action on a complex manifold X containing K as a real submanifold and such
that the intersection of the leaves of the associated foliation F with K has real
dimension 1 does not determine a normal almost contact structure for there is
no natural choice of a distribution transverse to the vector field. Therefore the
previous lemma should be considered as analogous of lemma 3.0.8 for normal
almost contact structures.

• Let us consider non-invariant normal almost contact structures on SU(2). We
use the same notation as in the example of the non-invariant case. The Iwasawa
decomposition associated to r = 〈u1〉C and u = 〈u2 − iu3〉C is

SL(2, C) = SU(2) ·A ·U

where A =
{(

λ 0
0 λ−1

)
: λ ∈ R+

}
, H =

{(
α 0
0 α−1

)
: α ∈ C∗}, U = {( 1 a

0 1 ) : a ∈ C}.
Therefore

SU(2) ↪→ SL(2, C)/U ∼= C2\{0}

where the identification of SL(2, C)/U with C2\{0} is induced by the transitive
action of SL(2, C) over C2\{0} defined by

SL(2, C)× C2\{0} → C2\{0}(
a b
c d

)
, (z, w) 7→ (az + bw, cz + dw)

(note that the isotropy group of (1, 0) is U). With this identification SU(2)∼= S3

is embedded in the usual way in C2\{0}. The action of H×H ∼= (C∗)2 on C2\{0}
defined by the product on the right and on the left corresponds to

(H×H)× C2\{0} → C2\{0}

(α, β), (z, w) 7→ (αβz, α−1βw).
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A morphism Λ : C → (C∗)2 is of the form Λ(t) = (eat, ebt) for a, b ∈ C. Therefore
the locally free C-action on C2\{0} induced by the action of H×H is

C× C2\{0} → C2\{0}

(t, (z, w)) 7→ (e(a+b)tz, e(b−a)tw)

where a, b ∈ C are parameters. We will now study for which choices of a and
b the previous action verifies the transversality hypothesis (II). Notice that the
action ϕΛ is the induced by the linear vector field

η = (a + b)z
∂

∂z
+ (b− a)w

∂

∂w
,

which intersects S3 in a 1-dimensional orbit if and only if there does not exist
µ ∈ R− such that a + b = µ(b− a) or b− a = µ(a + b). Therefore the condition
dimR ϕΛ(C, p) ∩K = 1 for all p ∈ SU(2) is verified if and only if there does not
exist µ ∈ R− such that a + b = µ(b− a) or b− a = µ(a + b). On the other hand
ϕ(t, (z, w)) ∈ S3 if and only if

e2Re((a+b)t)|z|2 + e2Re((b−a)t)|w|2 = 1 (∗).

If the condition (iii) of the transversality hypothesis is verified then{
Re((a + b)t) = 0
Re((b− a)t) = 0

because the t ∈ C that verify (∗) must be independent of the point (z, w) ∈ S3.
We decompose t = t1+it2, a = a1+ia2, b = b1+ib2 where t1, t2, a1, a2, b1, b2 ∈ R
and the previous system can be rewritten as{

(a1 + b1)t1 − (a2 + b2)t2 = 0
(b1 − a1)t1 − (b2 − a2)t2 = 0

and we must impose that the vector subspace of solutions has real dimension 1,
that is,

(a1 + b1)(a2 − b2) + (a2 + b2)(b1 − a1) = Im((a + b)(b− a)) = 0,

or equivalently, that there exists µ ∈ R such that a + b = µ(b − a) or b − a =
µ(a + b). Note that if µ ∈ R− then dimR(F ′

p ∩ S3) = 2 at some point p ∈ S3.
To sum up, we have obtained that a morphism Λ : C → (C∗)2 verifies the
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transversality hypothesis (II) for SU(2) if and only if there exists µ ∈ R+ such
that a + b = µ(b− a) or b− a = µ(a + b). By the previous lemma we conclude
that each such morphism Λ induces a normal almost contact structure on SU(2).
Note that the CR-structure is always left-invariant (and corresponds to the Lie
subalgebra u). On the other hand the vector field

ξ = Re
(

λ ·
(

(a + b)z
∂

∂z
+ (b− a)w

∂

∂w

))
= Re

(
i
(

z
∂

∂z
+ µw

∂

∂w

))
where µ ∈ R+ is left-invariant if and only if µ = 1. Indeed, one can verify the
last statement explicitly taking into account that the action of

S3 ∼= SU(2) =
{(

α −β
β α

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
on the left on C2\{0} ∼= SL(2, C)/U by the previous identification is given by

(α, β), (z, w) 7→ (αz − βw, βz + αw).

Proposition 3.2.6. There is a family of non-invariant normal almost contact
structures on SU(2).

• Let us consider non-invariant structures on SO(3,R), like before we use the
same notation as in the left-invariant case. Note that the difference with SU(2)
consists only in a finite quotient. As every normal almost contact structure on
SO(3,R) admits a lift to a normal almost contact structure on SU(2) it is enough
to study which of the structures on SU(2) are invariant by the map ν : C2\{0} →
C2\{0} defined by ν(z, w) = (−z,−w) (with the same notation as before). Since
all the CR-structures are left-invariant and ν∗η = η there is no restriction in the
choice of the morphism Λ. Therefore every normal almost contact structure on
SU(2) induces a normal almost contact structure on SO(3,R). This conclusion
is not surprising since we know that finite coverings of Lie groups are obtained
by quotients of discrete subgroups of the center.

Proposition 3.2.7. There is a bijection between normal almost contact struc-
tures on SU(2) and on SO(3, R). In particular there is a family of non-invariant
normal almost contact structures on SO(3, R).

Theorem 3.2.8. Let K be a semisimple compact connected Lie group of odd
dimension 2n + 1 and rank 2r + 1 and let G be its universal complexification.
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Assume that H ⊂ B are a Cartan subgroup and a Borel subgroup of G respec-
tively. Then every morphism of Lie groups Λ : Cr+1 → H×H inducing a locally
free holomorphic action ϕΛ : Cr+1 × G/U → G/U verifying (II) determines
a normal almost contact structure in a natural way by lemma 3.2.4. Moreover,
such a normal almost contact structure is left-invariant if and only if Λ = (e,Λ2)
where Λ2 : Cr+1 → H is a morphism verifying the transversality hypothesis (I).
In particular, there exist small deformations of the previous ones obtained by
deforming Λ which induce suitable Cr+1-actions defining normal almost contact
structures on K generically non-invariant.

Remark 3.2.9. Note that when rank K > 1, that is, r > 0, it is clear that there
exist suitable deformations of the actions inducing left-invariant normal almost
contact structures. Indeed, it is enough to fix the action on the first variable (so
that the condition (iii) of the transversality hypothesis (II) holds) and deform
slightly the action on the others variables. Then one obtains a left-invariant
vector field and a generically non-invariant CR-structure. On the other hand
the only compact connected Lie groups of rank 1 are S1, SO(3) and SU(2) (see
[BtD85], p.185). In the first case a normal almost contact structure is simply
a non-vanishing vector field. For the other two cases we have already proved
directly that there are non-invariant normal almost contact structures. Notice
that for these groups the CR-structure turned out to be always left-invariant
whereas the vector field were not.

• Let us apply the previous theorem to construct non-invariant normal almost
contact structures on SU(n). We recover the notation of the left-invariant case.
Fix the following Iwasawa decomposition associated to r = 〈r1, ..., rn−1〉C:

SL(n, C) = SU(n) ·A ·U

where U is the subgroup of diagonal inferior matrices with 1’s on the diagonal,
A is the subgroup of diagonal matrices with entries λ1, ..., λn ∈ R+ such that
λ1 · λ2 · ... · λn = 1 and H is the subgroup of diagonal matrices with entries
α1, ..., αn ∈ C such that α1 · ... · αn = 1. Denote n = 2r + 2 and

Λ : Cr+1 −→ H×H ∼= (C∗)2n−2

(t1, ..., tr+1) 7→
(
e

Pr+1
j=1 cj

1tj , ..., e
Pr+1

j=1 cj
n−1tj , e

Pr+1
j=1 dj

1tj , ..., e
Pr+1

j=1 dj
n−1tj

)
for cj

k, d
j
k ∈ C. If condition (II) holds we obtain a normal almost contact structure

on SU(n). If rank(Re dj
k,− Im dj

k)
n−1
k=1 = n− 1, rank(Re dj

k,− Im dj
k)

n−1
k=2 = n− 2,
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c1
k = 0 for k = 1, ..., n − 1 and cj

k are small enough for k = 2, ..., n − 1 and
j = 1, ..., r + 1 we are under the hypothesis of theorem 3.2.8 and we obtain
normal almost contact structures on SU(n) that are not left-invariant unless
cj
k = 0 for every j, k (notice though that the vector field of the normal almost

contact structure is left-invariant).

Proposition 3.2.10. There is a family of non-invariant normal almost contact
structures on SU(n).

The proof of the above theorem is straightforward once we prove the fol-
lowing two propositions. The first one assures us that a small deformation of
a morphism Λ under the above hypothesis induce a locally free action on G/U
and the second one characterizes when a normal almost contact structure so ob-
tained is left-invariant. We will hereinafter consider that a Lie group morphism
Λ : Cr+1 → H×H induces a holomorphic action ϕΛ : Cr+1 × G/U → G/U by
means of the action of H×H on G/U. We denote such a morphism
Λ : Cr+1 → H×H by Λ = (Λ1,Λ2) where Λi : Cr+1 → H are Lie group
morphisms.

Lemma 3.2.11. Let ϕΛ : Cr+1×G/U → G/U be a holomorphic action induced
by a Lie group morphism Λ : Cr+1 → H×H. Then for every x ∈ K, c ∈ Cr+1

and a ∈ A we have
ϕΛ(c, [x · a]) = ϕΛ(c, [x]) · a.

Proof. Note that A ⊂ H ⊂ N(U) = B. Then

ϕΛ(c, [x · a]) = [Λ1(c) · x · a · Λ2(c)] = [Λ1(c) · x · Λ2(c) · a] = ϕΛ(c, [x]) · a.

Proposition 3.2.12. Let ϕΛ : Cr+1 × G/U → G/U be a holomorphic action
induced by a Lie group morphism Λ : Cr+1 → H×H such that the action ϕΛ is
locally free and verifies (II) for a = e and for each p in K. Then the action ϕΛ

verifies (II) for each a ∈ A and for each p ∈ K · a.

Proof. Choose [y] ∈ K · a. There exist x ∈ K and v ∈ U such that y = x · a · v
and by lemma 3.2.11 we know that

ϕΛ(c, [y]) = ϕΛ(c, [x]) · a.
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We derive easily that if dimR Fp ∩ K · e = 0 and dimR F ′
p ∩ K · e = 1 hold for

every p ∈ K · e the previous equalities are also true for p ∈ K · a substituting K
by K · a. Analogously one proves (iii).

Proposition 3.2.13. Let Λ : Cr+1 → H×H be a Lie group morphism inducing
a locally free holomorphic action ϕΛ : Cr+1 ×G/U → G/U verifying (II). With
the same notation as in theorem 3.2.8 the following conditions are equivalent:

(a) The normal almost contact structure KΛ on K induced by Λ is left-invariant.

(b) Given x, k ∈ K we have k · Fx = Fk·x and k · F ′
x = F ′

k·x.

(c) Given y, g ∈ G we have g · Fy = Fg·y and g · F ′
y = F ′

g·y.

(d) The morphism Λ is of the form Λ = (e,Λ2) where Λ2 : Cr+1 → H is a Lie
group morphism verifying (I).

Proof. (a)⇔(b): The normal almost contact structure KΛ obtained by lemma
3.2.4 is left-invariant if and only if for every x, k ∈ K we have

k·dϕΛ({0}×Cr, [x]) = dϕΛ({0}×Cr, [k·x]), k·dϕΛ(Cr+1, [x]) = dϕΛ(Cr+1, [k·x]),

(by abuse of notation we denote here by k· the differential of this map). These
conditions say that the distributions of Cr and Cr+1-planes tangent to the leaves
Fx and F ′

x of the foliations associated to the actions ϕΛ({0} × Cr, ·) and ϕΛ

respectively are left-invariant by elements of K when restricted to K. From a
differential version of lemma 3.2.11 we conclude that these distributions are
left-invariant by elements of K when restricted to K if and only if they are left-
invariant over every fibre K · a of π : G/U → A ∼= C2r+1 (and consequently
over G/U). Integrating the distributions we obtain the leaves of the foliations
associated to the actions ϕΛ({0} × Cr, ·) and ϕΛ. It follows that the normal
almost contact structure is left-invariant if and only if

k ·ϕΛ({0}×Cr, [x]) = ϕΛ({0}×Cr, [k ·x]), k ·ϕΛ(Cr+1, [x]) = ϕΛ(Cr+1, [k ·x]),

that is, if and only if k · Fx = Fk·x and k · F ′
x = F ′

k·x for every x, k ∈ K.
(b)⇔(c): We will see first that it is enough to prove that for every y ∈ G
and k ∈ K we have k · Fy = Fk·y and k · F ′

y = F ′
k·y. We will denote these two

conditions by (∗). Indeed, if (∗) hold we define

G̃ = {g ∈ G : g · Fy = Fg·y, g · F ′
y = F ′

g·y, ∀y ∈ G}.
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Note that G̃ is a complex Lie subgroup G because e ∈ G̃ and g · Fg−1·y = Fy,
so Fg−1·y = g−1 · Fy. As K is totally real in G = KC and (∗) implies K ⊂ G̃ we
conclude that G = G̃. Let us then prove the second equality in (∗) (for the first
one we would proceed analogously). Choose k ∈ K, c ∈ Cr+1 and y ∈ G. We
want to prove that there exists d ∈ Cr+1 such that

k · ϕΛ(c, [y]) = ϕΛ(d, [k · y]) (♣).

There exist unique x ∈ K, a ∈ A and v ∈ U such that y = x · a · v. The equation
(♣) is equivalent to see that

k · Λ1(c) · x · a · v · Λ2(c) = Λ1(d) · k · x · a · v · Λ2(d) · u

for some u ∈ U. Assume that such a solution exists. As N(U) = B there exist
v′, v′′ ∈ U such that

v · Λ2(c) = Λ2(c) · v′ and v · Λ2(d) = Λ2(d) · v′′ (♠).

Moreover a commutes with Λ2(c) and Λ2(d), thus we obtain

k · Λ1(c) · x · Λ2(c) = Λ1(d) · k · x · Λ2(d) · a · (v′′ · u · v′−1) · a−1.

Note that a · (v′′ ·u · v′−1) ·a−1 ∈ U. By hypothesis (see (b)) we know that there
exist d ∈ Cr+1 and ũ ∈ U such that

k · Λ1(c) · x · Λ2(c) = Λ1(d) · k · x · Λ2(d) · ũ.

Setting u = v′′−1 · (a−1 · ũ · a) · v′ ∈ U where v′, v′′ are those that verify (♠) for
this d ∈ Cr+1 we obtain

k · Λ1(c) · y · Λ2(c) = Λ1(d) · k · y · Λ2(d) · u

and have therefore concluded.
(c)⇒(d): Assume that there exists c ∈ Cr+1 such that Λ1(c) 6= e. If r = ⊕

α∈eΦhα

and b = r⊕
α∈eΦ gα (the Lie subalgebras associated to H and B respectively) set

b′ := r ⊕
α∈eΦ g−α. Let B′ and U′ be the connected Lie subgroups associated to

b′ and u′ = [b′, b′] respectively. Note that B′ = H ·U′ and U∩U′ = {e}. Choose
g ∈ U′, by hypothesis there exists d ∈ Cr+1 such that

g−1 · ϕΛ(c, [g]) = ϕΛ(d, [e]).
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Equivalently there exists u ∈ U such that

g · Λ1(d) · Λ2(d) = Λ1(c) · g · Λ2(c) · u (♦).

Note that g ∈ U′ and Λ1(c),Λ2(c),Λ1(d),Λ2(d) ∈ H, therefore g · Λ1(d) · Λ2(d),
Λ1(c) · g · Λ2(c) ∈ B′. As U ∩ B′ = {e} the equation (♦) is equivalent to

g · Λ1(d) · Λ2(d) = Λ1(c) · g · Λ2(c) (♥)

which can be rewritten as

Λ1(d)−1 · g · Λ1(d) = Λ1(c− d) · Λ2(c− d) · Λ−1
2 (c− d) · g · Λ2(c− d)

where Λ1(d)−1 ·g ·Λ1(d),Λ−1
2 (c−d)·g ·Λ2(c−d) ∈ U′ and Λ1(c−d)·Λ2(c−d) ∈ H.

Since H ∩U′ = {e} this implies Λ1(c− d) = Λ2(d− c) or equivalently

Λ1(c) · Λ2(c) = Λ1(d) · Λ2(d).

Combining the last equation with (♥) we obtain

g = Λ1(c)−1 · g · Λ1(c).

Therefore Λ1(c) belongs to the center of B′ which is equal to the center of G = KC

(for G is a connected algebraic group, cf. [Hum75], p.140) that is discrete for G
is semisimple. If Λ1(c) 6= e by continuity there exists a small neighborhood Bc of
c in Cr+1 such that for every c̃ ∈ Bc we have Λ1(c̃) 6= e. This is a contradiction
unless for every c̃ ∈ Bc we have Λ1(c̃) = Λ1(c). In this case, since Λ1 is a
holomorphic map it should be constant and since it is a Lie group morphism it
would follow that Λ1 ≡ Λ1(0) = e, which contradicts our first assumption.
(d)⇒(a): Clear.

Proposition 3.2.14. Let Λ : Cr+1 → H×H be a morphism of Lie groups
inducing a locally free holomorphic action ϕΛ which verifies (II). With the same
notation as in proposition 3.2.8 the normal almost contact structure KΛ on K
induced by Λ is left-invariant by the action of Z(K).

Proof. It is enough to apply the same arguments as in proposition 3.2.13 taking
into account that Z(K) = Z(G).

Corollary 3.2.15. Let K be a compact connected Lie group of odd dimension.
Then K admits a non-invariant normal almost contact structure (and in partic-
ular a non-invariant CR-structure of maximal dimension).

The proof is analogous to the invariant case (see theorem 3.1.30) thanks to
the previous proposition.



Chapter 4

Three constructions of

complex structures

In this chapter we construct complex structures on some classes of smooth ma-
nifolds obtained by geometrical constructions from manifolds in the class T . We
begin by considering the problem of describing an integrable almost-complex
structure on a particular class of transversely holomorphic foliations given by
a smooth action of R2. Next, we discuss with detail the three cases that we
announced at the introduction and we verify that we can apply the previous
study on the complexification of foliations to produce complex structures on
these manifolds.

4.1 Complexification of 2-foliations.

Let F be a transversely holomorphic foliation on a compact manifold M induced
by a locally free action of R2, i.e. there are two global linearly independent
vector fields T1 and T2 on M such that TF = 〈T1, T2〉 and [T1, T2] = 0. Let D
be a real distribution such that TM = D ⊕ TF .

Set τ ∈ C\R. We define a complex vector field v = T1 − τT2 and a complex-
valued 1-form χ on M imposing that ker(χ) = D, χ(v) = 1 and χ(v̄) = 0. Under
the above assumptions we can define an almost-complex structure K on TM
imposing that K is compatible with the transverse holomorphic structure for F
and that χ is of type (1, 0).

73
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Proposition 4.1.1. With the above notation and hypothesis K is integrable if
and only if dχ0,2 = 0. We will denote by (M, χ), or simply by M, the compact
complex manifold so obtained.

Remark 4.1.2. The integrability condition dχ0,2 = 0 must be understood in
terms of the almost-complex structure K.

Notice that the complex structure transverse to F induces an almost complex
structure J on D. Let us denote by T 1,0 the subbundle of vectors in D ⊗ C of
type (1, 0) with respect to J . An equivalent way to define K is to require that
Q1,0 = T 1,0⊕〈v〉 is the subbundle of vector fields of type (1, 0) of T CM = TM⊗C.
We could also have imposed that 〈χ〉 ⊕ Φ1,0 are the forms of type (1, 0) where

Φ1,0 = {α ∈ Ω1(M)⊗ C : α(X) = 0, for X ∈ 〈T1, T2〉 ⊕ T 0,1}.

We can define Φp,q in an analogous way. Finally it is also equivalent to define
K by the conditions K|D = J and

K(T2) =
|τ |2T1 − (Re τ)T2

Im τ
; K(T1) =

(Re τ)T1 − T2

Im τ
.

Proof. With the above notation, from the fact that F is an transversely holo-
morphic foliation, we obtain

(a) [v, T 1,0] ⊂ T 1,0 ⊕ 〈v, v〉,

(b) [T 1,0, T 1,0] ⊂ T 1,0 ⊕ 〈v, v〉.

Thus the almost complex structure K is integrable if and only if [v, T 1,0] ⊂
Q1,0 and [T 1,0, T 1,0] ⊂ Q1,0. These conditions are equivalent to dχ(v,X) =
dχ(X, Y ) = 0 for all X, Y ∈ T 1,0, which can be rewritten as dχ0,2 = 0.

Proposition 4.1.3. With the above notation, if K is integrable:

(a) The vector field v is holomorphic on (M, χ) if and only if the 1-form Lvdχ

is of type (1, 0).

(b) The form χ is holomorphic if and only if dχ = dχ2,0.

Proof. For the proof of (a) we will use that a vector field Z of type (1, 0) is
holomorphic if and only if [Z,Q0,1] ⊂ Q0,1 where Q0,1 = Q1,0 = T 0,1⊕〈v〉. Since
[v, v] = 0 and [v, T 0,1] ⊂ T 0,1 ⊕ 〈v, v〉 by hypothesis, it is enough to verify that
[v, T 0,1] ⊂ T 0,1⊕〈v〉. By the same argument as in lemma 4.1.1 this last condition
can be written as dχ(v, T 0,1) = 0. The assertion in (b) is clear.
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Corollary 4.1.4. If dχ is a basic form the vector field v is holomorphic.

That will be the case when the distribution D is preserved by the action, i.e.
[Ti,D] ⊂ D for i = 1, 2.

Proposition 4.1.5. Given M and F as before, the distribution D is preserved
by the action if and only if dχ is basic.

Proof. It follows from the equality

2iTidχ(X) = 2dχ(Ti, X) = Xχ(Ti)− Tiχ(X)− χ[Ti, X].

The direct implication is straightforward. For the reciprocal apply the same
equality to X ∈ D, it shows that χ[Ti, X] = 0 for i, j ∈ {1, 2}, thus [Ti,D] ⊂
D.

We will hereinafter restrict ourselves to the case of a distribution D pre-
served by the action, in particular the vector field v is holomorphic. Recall that
the existence of a holomorphic vector field without zeros on a compact complex
manifold implies that the Chern classes of M must vanish (c.f. [Kob72], p.121).
When dχ is basic dχ0,2 denotes the component of type (0, 2) of dχ with respect
to the transversely holomorphic structure of the departing foliation F . There-
fore, when dχ is basic the integrability condition does not depend on how we
have defined the almost-complex structure on the tangent space of F , so it is
much easier to control. Furthermore, as D is preserved by T1 and T2, we have
[Ti, T

1,0] ⊂ DC. The fact that the foliation is transversely holomorphic implies
then [v, T 1,0] ⊂ T 1,0. If moreover dimR M = 4 then dχ = 0, since dχ is a basic
2-form and the transverse complex dimension is 1, therefore the integrability
condition for K is empty.

Definition 4.1.6. With the above notation, assume that the distribution D is
invariant with respect to the vector fields T1 and T2. We define the Euler classes
of F1 and F2 as the cohomology classes in H2(M/F , R) given by

eF1(M) = [dω1], eF2(M) = [dω2],

where ω1, ω2 are 1-forms on M such that ωi(Tj) = δij and iTidωj = 0 for i, j =
1, 2.
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Note that the Euler classes eF1(M) and eF2(M) do not depend on the distri-
bution D, as long as it is invariant with respect to T1 and T2.

The case of an invariant distribution D presents another interesting property.
We denote by Ω∗(M/F) the space of basic holomorphic forms for the holomorphic
flow F , i.e. α ∈ Ω∗(M) such that ivα = ivdα = 0. Let ν = TM/TF be the
normal bundle, K(M/F) =

∧n−1 ν∗ the transverse canonical line bundle and
K(M) =

∧n TM∗ the canonical line bundle.

Proposition 4.1.7. With the above notation, if dχ is a basic form and K(M/F)
is trivial then K(M) is also trivial.

Proof. By hypothesis there exists a holomorphic (n − 1)-form ω without zeros
such that ivω = 0. Then χ ∧ ω is a form of type (n, 0) and it clearly has no
zeros. It suffices to show that χ∧ω is holomorphic on (M, χ), i.e. ∂̄(χ∧ω) = 0.
As M has complex dimension n it is equivalent to prove that χ ∧ ω is closed.
Moreover ω is a form of type (n− 1, 0) such that ∂̄ω = 0, hence dω is a form of
type (n, 0). Recall that d(χ∧ω) = χ∧dω−dχ∧ω. As dχ is a basic form with no
component of type (0, 2) the form dχ∧ω is transverse and only has components
of type (n+1, 0) and (n, 1). Since the complex dimension of the transverse part
is n − 1 we can conclude that dχ ∧ ω = 0. Finally χ ∧ dω is of type (n + 1, 0),
so it must also be 0.

Proposition 4.1.8. Let M be a compact complex manifold with a holomorphic
vector field v without zeros. The complex structure on M can be constructed by
means of proposition 4.1.1. Moreover if M is Kähler we can assume dχ = 0, in
particular D is a Levi-flat distribution invariant by the action.

Proof. We can construct a 1-form χ of type (1, 0) on M such that χ(v) = 1
and since M is a complex manifold dχ0,2 = 0. We decompose v = T1 − iT2

so that T1, T2 are real vector fields. As v is holomorphic we have [T1, T2] = 0.
The distribution D is given by ker(χ). We can thus conclude that every complex
structure on a compact manifold that admits a non-vanishing holomorphic vector
field is under the hypothesis of this section and can be obtained by the preceding
method. If M is Kähler we can apply a result by Carrell-Lieberman (see [CL73])
to conclude that there exists a holomorphic 1-form χ such that χ(v) 6= 0. As M
is compact we can assume that χ(v) = 1 and as M is Kähler χ is closed.

Although we will only apply this discussion to three particular cases the
previous result gives us an idea of how general the situation we have considered
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is. For instance, all complex structures on the product of spheres S2n−1×S2m−1

described in [LN96], which are not Kähler, can be recovered by proposition 4.1.1
for a distribution D invariant by the action given by the product of the usual
contact distribution on a odd-dimensional sphere, even though they do not fall
into any of the three cases that we will study in the next sections.

Let us recall the Loeb-Nicolau construction of complex structures on S2n−1×
S2m−1 (see [LN96]). We consider

S2n−1×S2m−1 = {(z1, . . . , zn, w1, . . . , wm) ∈ Cn+m :
n∑

i=1

|zi|2 = 1,

m∑
j=1

|wj |2 = 1}

and the linear holomorphic vector field on Cn+m given by

ξ =
n∑

i=1

λizi
∂

∂zi
+

m∑
j=1

µjwj
∂

∂wj

where (λ1, . . . , λn, µ1, . . . , µm) ∈ Cn+m belongs to the Poincare domain, i.e. the
convex hull of the points λ1, . . . , λn, µ1, . . . , µm ∈ C does not contain 0 ∈ C, and

0 = arg(λ1) ≤ . . . ≤ arg(λn) < arg(µ1) ≤ . . . ≤ arg(µm) < π.

Under this conditions each leaf of Fξ meets transversely the product of spheres
S2n−1 × S2m−1. Therefore ξ induces a complex structure on this product, we
denote by Σn,m the complex manifold that results. The vector field

η =
n∑

i=1

Re(λi)zi
∂

∂zi
+

m∑
j=1

Re(µj)wj
∂

∂wj

induces a holomorphic vector field v without zeros on Σn,m, which can be written
on S2n−1 × S2m−1 as v = Re(η)− Re(ξ) + i Im(η). Furthermore

Zij = zi
∂

∂zj
− zj

∂

∂zi
, Wij = wi

∂

∂wj
− wj

∂

∂wi

are vector fields of type (1, 0) on Cn+m and Φ1,0 = 〈Zij ,Wij〉 is a distribution
of vector fields of type (1, 0) on Σn,m transverse to the vector field v. We set
D as the distribution given by D = 〈Re(Zij), Im(Zij),Re(Wij), Im(Wij)〉 and
v = T1 − iT2 where T1 and T2 are real vector fields on S2n−1 × S2m−1. An
explicit calculation allows us to obtain the equalities

[T1, Zij ] =
1
2i
(
Im(λi) + Im(λj)

)
Zij , [T2,Wij ] =

1
2i
(
Re(µi) + Re(µj)

)
Wij .
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Therefore the distribution D is preserved by the vector fields T1 and T2. Thus
we are exactly under the hypothesis of this section for a distribution D preserved
by T1 and T2, the integrability being assured by the fact that we depart from a
complex structure. For the choice of the parameters (1, ..., 1, µ, ..., µ) we obtain
Calabi-Eckmann complex structures, which are the total space of an elliptic
principal bundle over Pn×Pm. However it must be noted that not all the complex
structures described by Loeb-Nicolau are elliptic principal bundles. Furthermore
generically these complex structures cannot be recovered by any of the particular
constructions that we describe next. Note that no complex structure on S2n−1×
S2m−1 can admit a Kähler metric unless n = m = 1, since H2(S2n−1×S2m−1) =
0. This example also shows that even if we restrict ourselves to the case of the
distribution D being preserved by the vector fields T1 and T2 the construction of
proposition 4.1.1 still provides interesting examples of complex manifolds which
are not Kähler.

Next we discuss how to use the manifolds in the class T to produce explicit
examples of smooth manifolds which are under the hypothesis of the previous
section. In the three cases the distribution D considered is invariant by the
R2-action.

4.2 Products of two manifolds in the class T (case A)

Proposition 4.2.1. Let M1 and M2 be two manifolds in the class T . There
exists a 1-parametric family of integrable almost complex structures Kτ on the
product M1 ×M2 for τ ∈ C\R so that the complex manifold M1 ×M2 admits a
non-vanishing holomorphic vector field v.

Proof. Let us denote by (T1, ω1) and (T2, ω2) the vector fields and the 1-forms
of the CR-structures and the CR-actions on M1 and M2 respectively. The dis-
tribution D is given by D = kerω1 ⊕ ker ω2 and the 2-foliation F generated
by T1 and T2 is transversely holomorphic. Clearly [T1, T2] = 0. Moreover
χ = i

2 Im τ (τ̄ω1 + ω2). Therefore dχ is basic and we are under the hypothe-
sis of proposition 4.1.1. The integrability condition is verified for every τ ∈ C\R
since dχ is of type (1, 1).

Example 4.2.2. Recall that in chapter 2 we have discussed some examples of
compact 3-manifolds in the class T . If we apply the previous propostion to
a pair of Seifert fibrations M1 and M2 we obtain a complex structure on the
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product M1 ×M2 which is a principal Seifert elliptic fibration over an orbifold
of complex dimension 2. If M1 and M2 are linear foliations of T3 the above
construction yields a complex torus of dimension 3. When M1 and M2 are S3

or lens spaces one obtains Calabi-Eckmann complex structures on the product
S3 × S3 or finite quotients of those. Analogously, Calabi-Eckmann complex
structures on the product of spheres S2n−1 × S2m−1 can be obtained by the
preceding construction. When M1 = S3 and M2 = S2 × S1 with the flow
induced by the suspension of an irrational rotation of S2 we obtain a complex
structure on S2 × S1 × S3 which is a topologically trivial analytic fibre bundle
with fibre P1 over a primary Hopf surface.

Remark 4.2.3. Let M1 and M2 be two manifolds in the class T with normal
almost contact structures (ϕj , Tj , ωj) on Mj for j = 1, 2. Morimoto defines an
almost complex structure on M1 ×M2 by

K(X1, X2) = (ϕ1(X1)− ω2(X2)T1, ϕ2(X2) + ω1(X1)T2),

which corresponds to K−i in the preceding proposition (see [Mor63]).

Example 4.2.4. Let K be a compact connected real Lie group of odd dimension.
The previous proposition describes a complex structure on the product K× S1.
Note that as K×S1 is also a Lie group this can be seen as a particular case of a
result by Samelson (cf. [Sam53]). Moreover, it is known that X cannot be Kähler.
Indeed, up to a finite covering, we can assume that K ∼= K′ × (S1)r, where K′ is
a compact connected semisimple real Lie group. Since b1(K′) = b2(K′) = 0 (see
section 1.7.5) by Kunneth’s formula we conclude that H2(K×S1) ∼= H2((S1)r+1)
so there cannot exist a Kähler form [ω] ∈ H2(K × S1) such that [ω]2s 6= 0 in
H2s(K×S1) for s = dimC(K×S1). We have therefore proved that there exists a
finite analytic covering of K× S1 that is not Kähler, which implies that K× S1

cannot be Kähler.

4.3 S1-principal bundles over a manifold in the class

T (case B)

Proposition 4.3.1. Let M be a manifold in the class T . Denote by T the
vector field inducing the CR-action and by FT the transversely holomorphic flow
induced by T . Let π : X → M be a S1-principal bundle over M with Chern class
[dβ], where β is a 1-form on X such that dβ ∈ π∗Ω1,1(M/FT ), that is, dβ is the
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pull-back of a closed (1, 1)-form on M. Then there exists a 1-parametric family
of integrable almost complex structures Kτ on X for τ ∈ C\R so that the complex
manifold X admits a non-vanishing holomorphic vector field v.

Proof. Let ω be the 1-form associated to the CR-structure on M and the vector
field T . We denote by T̃ the vector field on X contained in ker β such that
π∗(T̃ ) = T and define the 1-form ω̃ = π∗ω. Let R denote the fundamental
vector field of the action corresponding to the S1-fibration π : X → M such that
β(R) = 1. The compact manifold X is under the hypothesis of proposition 4.1.1
with an invariant distribution for the vector fields T̃ and R, the distribution
D = kerβ ∩ ker ω̃, and the transverse holomorphic structure for F = 〈T̃ , R〉
induced by the CR-structure of M. The holomorphic vector field v is T̃ − τR for
τ ∈ C\R. We define a complex-valued 1-form χ by imposing kerχ = D, χ(v) = 1
and χ(v) = 0. The hypothesis dβ ∈ π∗Ω1,1(M/FT ) and dω ∈ Ω1,1(M/FT ) imply
that dχ is of type (1, 1), thus the complex structure defined on section 4.1 is
integrable.

When M is the total space of a S1-principal bundle over a complex manifold
and the normal almost contact structure on M is obtained as we described in
corollary 2.2.1 then the resulting complex manifold X is an elliptic principal bun-
dle. Conversely, every complex manifold which is the total space of an analytic
elliptic principal bundle can be constructed in this way. The Iwasawa manifold
is an example of this situation.

Example 4.3.2. Let H =
{(

1 z1 z3
0 1 z2
0 0 1

)
: zj ∈ C

}
. The Iwasawa manifold is the

compact homogeneous space M = Γ\H where Γ =
〈(

1 n1 n3
0 1 n2
0 0 1

)〉
for nj ∈ Z + iZ

is a cocompact discrete group. It admits an structure of elliptic fibre bundle
over a complex torus T2 considering the projection:

π : Γ/H −−−−→ T2 = C2/(Z + iZ)2(
1 z1 z3
0 1 z2
0 0 1

)
−−−−→ (z1, z2).

The fiber is {z3 ∈ C : z3 ∼ z3 + n3} where n3 ∈ Z + iZ, thus it is an elliptic
curve. The vector field of the action is ∂

∂z3
and χ = dz3 − z1dz2 is a connection

of type (1, 0) with dχ = −dz1 ∧ dz2, which is a non-exact form on T2. It is not
difficult to verify that the complex structure on the Iwasawa manifold can be
recovered by our procedure. Also note that Γ/H is parallisable but not abelian,
therefore Wang’s theorem (see corollary 4.4.10) implies that it is not Kähler.
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4.4 Suspensions of manifolds in the class T (case C)

Definition 4.4.1. Let M2n+1 be a compact manifold with CR-structure Φ1,0 of
dimension n and a vector field T inducing a CR-action. We define

AutT (M) = {f ∈ AutCR(M) : f∗T = T}.

Proposition 4.4.2. Let M2n+1 be a manifold in the class T with a CR-structure
Φ1,0 and a vector field T inducing a transverse CR-action. Given f ∈ AutT (M)
the suspension X of M by f admits a 1-parametric family of integrable almost
complex structures Kτ for τ ∈ C\R so that the complex manifold X admits a
non-vanishing holomorphic vector field v induced by T − τ ∂

∂s .

The proof is straightforward, the distribution D is induced by the CR-
structure Φ1,0 on M. There is a fibration π : X → S1 with fibre M so that
the flow defined on X by the vector field induced by ∂

∂s is transverse to this
fibration. Note also that if the CR-structure on M is Levi-flat the manifold X
admits a holomorphic foliation transverse to v. For f = id we obtain X = M×S1

and the complex structure on X corresponds to the one described in proposition
4.2.1.

Lemma 4.4.3. The inclusion i : {g ∈ AutT (M) : g ◦ f = f ◦ g} → AutC(X)
induced by g 7→ (g, id) is an injective homomorphism.

Proof. It is enough to observe that if g ∈ Autτ (M) and f ◦ g = g ◦ f then (g, id)
is well-defined and it preserves the vector fields of type (1, 0) on M × R with
respect to Kτ .

Remark 4.4.4. Recall that in lemma 2.4.2 we remarked that a suspension of
a complex manifold N by an automorphism g ∈ AutC(N) gives an example of
normal almost contact structure. Applying proposition 4.4.2 to such a manifold
in the class T is equivalent to consider the quotient X of N × C by F (x, z) =
(f(x), z + 1) and G(x, z) = (g(x), z + τ), where f ∈ AutC(N) so that f ◦ g =
g ◦ f , which we will call double suspension of a compact complex manifold.
Furthermore there is a holomorphic fibration π : X → Eτ = C/〈1, τ〉 such that
the vector field ∂

∂z is transverse to the fibers.
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Theorem 4.4.5. Every compact Kähler manifold X admitting a non-vanishing
holomorphic vector field v can be obtained by the construction of proposition
4.4.2.

Proof. By a result by Carell-Lieberman (see [CL73]) there exists a holomorphic
1-form χ over X such that χ(v) = 1. Denote b1(X) = 2k, let γ1, ..., γ2k be
closed paths giving a basis of H1(X, Z) modulus torsion and let ξ1, ..., ξ2k be the
dual basis of closed 1-forms. Fix a basis ω1, ..., ωk of H0(X,Ω1). By Hodge’s
decomposition theorem we have

ξi = a1
i ω1 + ... + ak

i ωk + b1
i ω1 + ... + bk

i ωk + dfi = ηi + dfi

where fi is a differentiable function, for i = 1, ..., 2k, and aj
i , b

j
i ∈ C. By Stokes

theorem the two sets of 1-forms {ξi} and {ηi} have the same periods. In partic-
ular {η1, ..., η2k} is a basis of H1(X, C) dual of {γ1, ..., γ2k}. Since Q + iQ is a
dense subset in C we can choose ai ∈ C for i = 1, ..., 2k arbitrarily small so that
η = χ +

∑
aiηi is a closed 1-form and

∫
γj

η ∈ Q + iQ for j = 1, ..., 2k. Moreover
by construction the 1-form η is of the form:

η = c1ω1 + ... + ckωk + d1ω1 + ... + dkωk

with ci, di ∈ C for i = 1, ..., k. It follows that η(v) is constant and close to 1 by
construction, set η(v) = δ. In an analogous way η(v̄) is constant and close to 0,
set η(v̄) = ε. Therefore Γ =

{ ∫
γ η : γ ∈ H1(X, Z)

}
is finitely generated and it is

contained in Q + iQ, thus Γ ∼= Z + iZ. Fixing a base point p0 the differentiable
map

π1 : X → C/Γ

p 7→
∫ p

p0

η mod Γ

over the elliptic curve C/Γ is well defined. Furthermore π1 is a proper submersion
and thus a fibration. The real vector fields v + v̄ and i(v − v̄) are transverse to
the fibres of π1 and preserve the fibration (because η(v + v̄) = ε + δ, η(i(v −
v̄)) = i(δ − ε) are constants close to 1 and i respectively and η is closed). Since
η(v+ v̄) = δ+ε ∼ 1 we can find a linear map h : C → R such that h(η(v+ v̄)) > 0
and h(Γ) ⊂ Z. Let h̄ : C/Γ → R/Z be the induced fibration. The composition
π2 = h̄ ◦ π1 : X → R/Z is a fibration over the circle. The fibres of π2, denoted
by M = π−1

2 (p), admit a CR-structure induced by the complex structure on X.
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There exists a ∈ C\R such that the real vector field v1 = Re(av) is tangent to
M. As the flow associated to v is holomorphic the vector field v1 preserves the
CR-structure of M and induces a transverse CR-action. On the other hand there
exists b ∈ R+ such that the vector field v2 = Re(bv) projects over the vector
field ∂

∂t on S1. The flow of v2 preserves the CR-structure over M and clearly
[v1, v2] = 0. Finally setting τ = ā · b−1 we obtain v1− τv2 = Re(av)− τ Re(bv) =
µ · v, where µ ∈ C. Taking the automorphism f over M induced by the flow of
v2 for time 1 the complexification of 4.4.2 for the preceding τ gives rise to the
original complex structure.

Theorem 4.4.6. Every compact Kähler manifold X admitting a holomorphic
vector field v without zeros admits a complex structure on the underlying smooth
manifold X arbitrarily close to the original one that can be obtained by the con-
struction of remark 4.4.4.

Remark 4.4.7. The statement that the new complex structure on the underlying
smooth manifold X is arbitrarily close to the original one can be stated more
precisely in the following way. Let Ω1,0(X) be the subspace of smooth (1,0)-
forms on X and {α, α1, ...., αk} a family of (1, 0)-forms which span Ω1,0(X) as a
C∞(X)-module such that α(v) = 1 and αj(v) = 0 for j = 1, ..., k. Then there
exists a closed 1-form β of type (0,1) arbitrarily small such that β(v̄) = 0 and for
the new complex structure on X the set of forms {α + β, α1, ...., αk} is a family
of (1, 0)-forms which span Ω1,0(X) as a C∞(X)-module.

Proof. There exists a holomorphic 1-form α on X such that α(v) = 1 and dα = 0.
We proceed as in theorem 4.4.5 to obtain a closed 1-form η with group of pe-
riods Γ ∼= Z + iZ and a smooth fibration π1 : M → C/Γ given by x 7→

∫ x
x0

η.
Every fibre N of π1 is transverse to the foliation Fv generated by v. Therefore
N admits a complex structure. Note that η = π∗1(dz). Consider the universal
covering p : C → C/Γτ and the pullback π2 : N× C → C of the fibration π1 by
the map p. There exists a map q : N × C → X such that π1 ◦ q = p ◦ π2. The
holomorphic vector field v is transverse to the leaves of π1 and it preserves the
complex structure on N. We recall that η(v) = δ ∼ 1 and that η(v̄) = ε ∼ 0. Fix
τ ∈ C\R. We decompose δ−1v = v1− τv2, where v1 and v2 are real vector fields.
Then v1 and v2 are transverse to the fibers of π1, they preserve the fibration and
the complex structure on N and [v1, v2] = 0 (for δ−1v is holomorphic). Finally,
they project over ∂

∂t and ∂
∂s on C/Γ respectively where z = i

2 Im τ (ds + τ̄ dt). We
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set f, g ∈ AutC(N) as the flows v1 and v2 for time 1 and −1 respectively. Thus
X is diffeomorphic to the suspension N×C/〈F,G〉 where F (x, z) = (f(x), z +1),
G(x, z) = (g(x), z + τ) and f ◦ g = g ◦ f . The construction of the remark 4.4.4
gives a complex structure on X which is arbitrarily close to the original complex
structure on X. Note that with the new complex structure on X the fibration
π1 : X → C/Γ is holomorphic and the fibres N are analytic submanifolds. Choos-
ing η close enough to the starting holomorphic 1-form α we obtain a complex
structure as close to the original as we wish.

There is a natural generalization of the construction of the remark 4.4.4 to a
suspension of a compact complex manifold N by a commutative subgroup Γ =
〈f1, ..., fs, g1, ..., gs〉 of AutC(N). The resulting complex manifold has complex
dimension dimC N + s and fibers over the torus Ts. Then one can prove, with
the same arguments as in theorem 4.4.6, the result below. Recall that h is the Lie
algebra of holomorphic vector fields on X and h0 the Lie algebra of holomorphic
vector field with zeros.

Theorem 4.4.8. Let X be a compact Kähler manifold such that h admits an
abelian subalgebra h̃ of holomorphic vector fields without zeros such that dimC h̃ =
s > 0. The underlying smooth manifold X admits a complex structure arbitrarily
close to the original one, obtained as a suspension over the complex torus Ts.

Remark 4.4.9. Recall that [h, h] ⊂ h0. Therefore if dimC h = s > 0 and h0 = 0
the hypothesis of the above theorem holds. Any complex manifold which is a
product Ts ×N where N is a Kähler compact manifold is also a trivial example
of a manifold under the above hypothesis.

The limit case, i.e. when dimC h̃ = dimC X, is a classical result by Wang’s:

Corollary 4.4.10. Let X be a complex parallisable compact Kähler manifold,
then X is a complex torus.

Proof. Since X is parallisable h0 = 0 and dimCh = dimC X = s > 0. We
now apply the preceding theorem for n = 0. We obtain X as the suspension
over a compact complex manifold N of dimension 0, that is, a point. Since the
obstruction in the previous theorem to obtain the original complex structure was
due to the fact that N was not a complex submanifold of X, we can conclude.
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4.5 Complexifications of manifolds in the class T .

Let M be a manifold in the class T . We denote by T the vector field defining
the CR-action and by F the transversely holomorphic flow induced by T .

Definition 4.5.1. With the above notation, we say that a compact complex
manifold X endowed with a non-singular holomorphic vector field v is a com-
plexification of the pair (M, T ) if:

(i) M is a real submanifold of X.

(ii) The CR-structure of M is compatible with the complex structure of X.

(iii) There exists λ ∈ C such that Re(λv) = T .

Remark 4.5.2. Both the constructions of case A and case C produce complex
manifolds that are complexifications in the previous sense of the departing man-
ifolds in the class T . Indeed, if v = T1 − τT2 for τ ∈ C\R then T1 = Re

(
iτ̄

Im τ v
)

and T2 = Re
(

i
Im τ v

)
.

4.6 A remark on deformations.

Let (M, χ) be a compact complex manifold with a holomorphic foliation F ob-
tained by proposition 4.1.1 with two vector fields T1 and T2 and χ = χ1 + τχ2.
The flow F is a transversely holomorphic foliation when we forget part the tan-
gent part of the complex structure of M, we will denote this foliation by F tr. We
call f -deformations to those deformations of the holomorphic flow F which keep
fixed its transversal type. For specific definitions, details and proofs we refer the
reader to [GN89]. Families of f -deformations can be viewed as families of com-
plex structures on M for which F tr becomes a holomorphic foliation, therefore
it is the natural context to study the effect of changing the parameters of our
construction (the two 1-forms χ1 and χ2 and the complex number τ ∈ C\R or
equivalently χ = χ1 + τχ2) on the resulting complex structure.

Let ΘF be the sheaf of germs of holomorphic vector fields over M preserving
F and Θf

F the subsheaf of ΘF consisting of those elements of ΘF tangent to the
leaves of F . Note that in our case Θf

F is isomorphic to the sheaf of germs of
holomorphic functions OM, for there is a non-vanishing holomorphic vector field
v tangent to F .
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Let S be an analytic space with a distinguished point 0. A family of f -
deformations of F parameterized by S is an analytic space X with a proper
projection p : X → S inducing on each fibre Ms = p−1(s) a complex structure
together with a holomorphic foliation Fs, which depend analytically on s, and a
smooth trivialization X ∼= M × S compatible with p such that Fs = F tr on Ms

as transversely holomorphic foliations. We suppose also that there is given an
isomorphism i : (M,F) → (M0,F0). We will only deal with germs of families,
that is, we will only consider the behavior near the fibre M0. Thus a family will
be parameterized by a germ (S, 0) of S at 0.

A family of f -deformations is called versal if for any other family of f -
deformations of F there is a morphism of germs of analytic spaces ϕ : (S ′, 0) →
(S, 0) inducing an isomorphism of families of f -deformations and such that the
tangent map of d0ϕ of ϕ at 0 is unique. If a versal family (S, 0) exists then it is
unique up to isomorphism and S is called the versal space.

Theorem 4.6.1 ([GN89]). With the above notation, there is a germ of analytic
space (Kf , 0) parameterizing a family p : Zf → Kf of f-deformations of F
which is versal with respect to f-deformations. More precisely, there is an open
neighborhood V of 0 in H1(M,Θf

F ) and an analytic map ζf : V → H1(M,Θf
F )

such that (Kf , 0) is isomorphic to the germ at 0 of ζ−1
f (0).

The Kodaira-Spencer map

ρ : T0S → H1(M,ΘFf )

is defined in the following way. Let T 0,1 and T 0,1
s denote the complex subbundles

of vector fields of type (0, 1) of T CM and T CMs respectively. There is an analytic
family of 1-forms ϕs on M defined imposing that (ϕs +Id)(T 0,1) = T 0,1

s and from
the integrability condition on T 0,1

s it follows that

∂ϕs −
1
2
[ϕs, ϕs] = 0.

Then we define ρ( ∂
∂s |s=0) = ∂ϕs

∂s |s=0 ∈ H1(M,Θf
F ). The Kodaira-Spencer map is

an isomorphism from T0K
f to H1(M,Θf

F ). From the previous theorem it follows
that if (S, 0) is a germ of an analytic space S at 0 parameterizing a family of
f -deformations such that the Kodaira-Spencer map ρ : T0S → H1(M,Θf

F ) is
not identically zero then the family is not trivial.
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Assume that (M, χ′) is a complex structure on M obtained by proposition
4.1.1 with the vector fields T1 and T2 and χ′ = χ′1 + τ ′χ′2. The Kodaira-Spencer
map

ρ : T0S → H1(M,Θf
F ) ∼= H1(M,OM)

can be easily computed in this situation when S is an analytic space parameter-
izing the 1-forms χ′ close to χ. If we denote by T 0,1 and T ′0,1 the subbundles of
vectors of type (0,1) in (M, χ) and (M, χ′) respectively and set

ϕ =
τ ′ − τ̄ ′

τ − τ̄ ′
(χ′)0,1 ⊗ v,

then (Id + ϕ)(T 0,1) = T ′0,1 (it is an easy computation, just note that χ′(v) =
τ̄ ′−τ
τ ′−τ̄ ′ ). Note that ∂α = 0. Thus ρ(χ′) = τ ′−τ̄ ′

τ−τ̄ ′ (χ
′)0,1.

Assume now that τ = τ ′, we can consider a family of complex structures
on M defined by χs = (1 − s)χ + sχ′. Then ϕs = s(χ′)0,1 ⊗ v so ρ(χ′) =
(χ′)0,1. We conclude that if there exists χ′ close enough to χ and such that ρ(χ′)
represents a non-zero cohomology class in H1(M,OM) we can obtain, changing
the parameters of our construction, complex structures on M for which there does
not exist a diffeomorphism tangent to the leaves of F , close to the identity and
preserving the transversally holomorphic foliations F tr sending one into another.
A similar computation can be done when χ′1 = χ1 and χ′2 = χ2 changing the
complex parameter τ and yields a similar result.



Chapter 5

Criteria of Kählerianity

In this chapter we discuss some criteria to determine when the complex manifolds
obtained by the constructions of the previous chapter are Kählerian. We first
prove that in order to obtain a Kähler manifold, in the three cases we have
discussed (cases A, B and C), the Euler class of the flows associated to the
departing normal almost contact structures must be zero. When the flows are
isometric we give sufficient and necessary conditions for the resulting complex
manifold to be Kählerian. Finally, in the context of suspensions (case C) we
exhibit more necessary conditions for the complexification to be Kählerian which
in some cases, for instance a double suspension, are also sufficient.

5.1 The Euler class

The next result is an obstruction for the complex manifolds obtained as in the
section 4.1 to admit a Kähler metric.

Theorem 5.1.1. Let (X,F) be a compact complex manifold with a holomorphic
flow whose complex structure has been obtained as in proposition 4.1.1 with a
distribution D invariant with respect to the vector fields T1 and T2. If X is
Kählerian then eF1(X) = eF2(X) = 0 (where Fi is the flow defined by Ti for
i = 1, 2).

Proof. Since X is a compact Kähler manifold with a holomorphic vector field
v without zeros by Carrell-Liebermann’s theorem there exists a holomorphic 1-
form α such that α(v) 6= 0. As X is compact we can assume that α(v) = 1 and as
X is Kählerian the form α is closed. We decompose α = i

2 Im τ (α2 + τ̄α1) where

89
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α1 and α2 are real closed 1-forms. Using that α(v) = 1 and α(v) = 0, a direct
computation shows that αi(Tj) = δij for i, j = 1, 2. Thus eF1(X) = eF2(X) =
0.

Let M be a manifold in the class T . We denote by T the vector field defining
the CR-action and by F the transversely holomorphic flow induced by T .

Proposition 5.1.2. With the above notation, assume that the compact com-
plex manifold X is a complexification of (M, T ) (cf. definition 4.5.1). If X is
Kählerian then eF (M) = 0.

Corollary 5.1.3. With the above notation, if eF (M) 6= 0 no complexification
obtained by proposition 4.2.1 (case A) or proposition 4.4.2 (case C) can admit
a Kähler structure.

Corollary 5.1.4. With the above notation, if M admits a normal contact struc-
ture compatible with the CR-action induced by T then (M, T ) admits no Kähler
complexification.

It follows from corollary 2.2.4.

Corollary 5.1.5. With the above notation, if b1(M) = 0, in particular if M is
simply connected, then (M, T ) admits no Kähler complexification.

It is a consequence of corollary 2.1.6.

Corollary 5.1.6. With the above notation, let M be a compact connected semi-
simple real Lie group of odd dimension endowed with a normal almost contact
structure. Then (M, T ) admits no Kähler complexification.

It is enough to recall that for any such group b1(M) = 0.

Proof. (Proposition 5.1.2) We denote by v the holomorphic vector field on X and
by λ the complex number such that T = Re(λv) on M. Since X is a compact
Kähler manifold with a non-singular vector field v by the same argument as
in the previous theorem there exists a holomorphic closed 1-form α such that
α(v) = λ−1. We can decompose (λ · v)|M = T − iS where S is a real vector field.
Set α = 1

2(α1 + iα2) where α1, α2 are real 1-forms on X. Then α1 and α2 are
closed and α1(T ) = 1 on M. The closed real 1-form ω := α1|M verifies ω(T ) = 1
(because α(v) = 1 and α(v) = 0), therefore eF (M) = 0.
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Proposition 5.1.7. With the above notation, assume that X is a compact com-
plex manifold constructed as in proposition 4.3.1 (case B) from a manifold M
in the class T . If X is Kählerian then eF (M) = 0 and the S1-principal bundle
π : X → M is flat. In particular, if X is Kähler and H2(M, Z) has no torsion then
the S1-principal bundle is topologically trivial. Moreover, if α is a connection
1-form on X such that dα ∈ π∗Ω1,1(M/F) then [dα] = 0 in H2(M/F).

Proof. With the notation of proposition 4.3.1, by the same argument as before
if v is the holomorphic vector field of the complexification there exists a closed
holomorphic 1-form α on X such that α(v) = 1. The connected group S1 acts
holomorphically on X (as the group of the action of the S1-principal bundle),
therefore the forms α and ᾱ are invariant by the action of S1. Notice that
v = T̃ − τR where R is the vector field of the action and, T̃ is the vector field
contained in kerβ such that π∗(T̃ ) = T (recall that T is the vector field inducing
the CR-action on M) and τ ∈ C\R. We decompose α = i

2 Im τ (α2 + τ̄α1) where
α1, α2 are real 1-forms. Then α1 and α2 are closed 1-forms invariant by the
action of S1 (for they are a linear combination of α, ᾱ with constant coefficients)
such that α1(T̃ ) = α2(R) = 1 and α1(R) = α2(T̃ ) = 0 (because α(v) = 1 and
α(v) = 0). Since α1 is a closed real basic S1-invariant 1-form it induces a closed
1-form ω on M such that ω(T ) = 1, thus eF (M) = 0. Finally, α2 is a closed
connection 1-form for the S1-principal bundle π : X → M, so it is flat. When
H2(M, Z) has no torsion all flat bundles are topologically trivial. Moreover, if α

is a connection 1-form on X such that dα ∈ π∗Ω1,1(M/F) then [dα] = [dα2] = 0
in H2(M/F).

5.2 Criteria for isometric flows

Theorem 5.2.1. Let (X,F) be a compact complex manifold with a holomor-
phic flow whose complex structure has been obtained as in the previous chapter.
Assume that the real foliation F = 〈T1, T2〉 is Riemannian. The manifold X is
Kähler if and only if the flows F1 and F2 are isometric, eF1(X) = eF2(X) = 0
and F is transversely Kählerian.

Proof. ⇒) : The same argument as in theorem 5.1.1 shows that there are two
closed real 1-forms α1 and α2 on M such that αi(Tj) = δij for i, j = 1, 2. In
particular the flows are isometric (see section 1.5), α1 and α2 are characteristic
forms for F1 and F2 respectively and eF1(X) = eF2(X) = 0. We denote by (ϕ1)t
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and (ϕ2)t the 1-parametric groups associated to T1 and T2 respectively and by
H the closure in Isom(X) of the abelian group generated by (ϕ1)t and (ϕ2)t. If
Φ is the Kähler form on X then the transverse part Ψ(·, ·) with respect to F of∫

H
Φ(σ∗·, σ∗·),

where we integrate with respect to the Haar mesure on H, is a transverse Kähler
form.

⇐) : With the notation of the section 4.1, we denote by ω1 and ω2 the 1-forms
defined by ωi(Tj) = δij and ωi|D = 0 for i, j = 1, 2. Since eF1(X) = eF2(X) = 0
there exist β1, β2 ∈ Ω1(X/F) such that dβi = dωi for i = 1, 2. We denote by
β the basic form β = i

2 Im τ (β2 + τβ1). It follows that dβ = dχ. We begin
by showing that it is enough to find α ∈ Ω1(X/F , C) of type (1, 0) such that
dα = dχ. Indeed, if α exists the form Φ = (χ−α)∧ (χ−α) is closed and of type
(1, 1). Adding to Φ a positive multiple of the transverse Kähler form of F we
obtain a Kähler form on X and the proof is complete. We will now show that
such a form exists. Since dβ0,2 = dχ0,2 = 0 we have dβ = d(β1,0) + ∂(β0,1), i.e.
∂(β0,1) = 0, and

d(∂β0,1) = (∂ + ∂)(∂β0,1) = −∂∂β0,1 = 0

so ∂(β0,1) is a (1, 1)-form which is ∂-exact as a basic form and d-closed. Applying
the basic ∂∂-lemma (see section 1.6) to ∂(β0,1) we obtain a basic function f such
that

∂(β0,1) = ∂∂f = ∂∂(−f).

Then −∂f is a basic form of type (1, 0) such that d(−∂f) = −∂∂f = ∂(β0,1).
The form α = β1,0 − ∂f is basic, of type (1, 0) and dα = dβ = dχ so the
conclusion follows.

Remark 5.2.2. Every Riemannian holomorphic flow F in a compact complex
surface S is transversely Kählerian. Therefore with the notation and hypothesis
of the above theorem, when the complex manifold X has dimension 2, it is Kähler
if and only if the flows F1 and F2 are isometric and eF1(X) = eF2(X) = 0.

Corollary 5.2.3. Let X be a complex manifold obtained by proposition 4.2.1
(case A) from two manifolds M1 and M2 in the class T such that the flows F1

and F2 in M1 and M2 respectively induced by the vector fields of the normal
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almost contact structures are Riemannian. Then X is Kählerian if and only if
eF1(M1) = eF2(M2) = 0 and the flows F1 and F2 are isometric and transversely
Kählerian (on M1 and M2 respectively).

Corollary 5.2.4. Let X be a complex manifold obtained by proposition 4.3.1
(case B) from a manifold M in the class T such that the flow FT on M is
Riemannian. Then X is Kähler if and only if the S1-principal bundle π : X → M
is flat, eFT

(M) = 0 and the flow FT is isometric and transversely Kählerian on
M.

Remark 5.2.5. Recall that if H2(M, Z) has no torsion then the S1-principal
bundle π : X → M is flat if and only if it is topologically trivial.

The previous theorem also allows us to derive some results for elliptic prin-
cipal bundles, C-principal bundles and C∗-principal bundles.

Corollary 5.2.6. Let B be a compact complex manifold and π : X → B an
elliptic principal bundle. Then X is Kähler if and only if B is Kähler and the
fibre bundle π : X → B is flat. If H2(B, Z) has no torsion then X is Kähler if
and only if B is Kähler and the fibre bundle π : X → B is topologically trivial.
Moreover, if X is Kähler then π : X → B admits an holomorphic connection
form.

It follows directly from the preceding theorem. Recall that an elliptic prin-
cipal bundle π : X → B over a compact manifold B with fibre E = C/〈1, τ〉
for τ ∈ C\R is topologically trivial if and only if the Chern class [Ω1 + τΩ2] ∈
H2(B, Z⊕τZ) is zero or equivalently if there exists a C-principal bundle p : X̃ →
B and a group Γ acting properly discontinuously on X̃ so that X̃/Γ ∼= X and if
we denote by q : X̃ → X̃/Γ ∼= X then id ◦ p = π ◦ q.

Remark 5.2.7. In particular this criterium shows that the Iwasawa manifold
cannot be Kähler, since it is an elliptic principal bundle over a torus T2 (note
that H2(T2, Z) ∼= Z ⊕ Z) which is not topologically trivial. Note also that the
Iwasawa manifold admits a holomorphic connection, therefore this condition is
not equivalent to the other ones.

Corollary 5.2.8. If π : X → B is a C-principal bundle over a Kähler manifold
B then X is Kähler and π : X → B admits a holomorphic connection form.

Proof. We cannot directly apply theorem 5.2.1 because the total space of a
C-principal bundle is not compact. Nevertheless every C-principal bundle is
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topologically trivial. Given any lattice Γτ = Z + τZ in C with Im τ 6= 0, it
induces a topologically trivial E = C/〈1, τ〉-principal bundle p : M → B, thus
the total space M is Kähler. We consider the commutative diagram of fibre
bundles:

C C/Γτy y
X

q−−−−→ M ∼= X/Γτyp

yπ

B id−−−−→ B.

Since Γτ acts properly discontinuously the projection q is a covering map and
we can conclude that X is Kähler. Taking the pull-back by q of the holomorphic
connection form on M we obtain a holomorphic connection form on X.

A similar argument yields the following:

Corollary 5.2.9. Let B be a compact complex manifold and π : X → B a
C∗-principal bundle. Then the following statements are equivalent:

(a) B is Kähler and π : X → B is topologically trivial.

(b) B is Kähler and π : X → B is obtained as a quotient of a C-principal bundle.

If they hold then X is Kähler and π : X → B admits a holomorphic connection
form.

5.3 Criteria for suspensions

5.3.1 Double suspensions

Let N be a compact Kähler manifold and f, g ∈AutC(N) such that f ◦ g = g ◦ f .
We consider the compact complex manifold X obtained as the suspension

X = N× C/〈F,G〉

where F (x, z) = (f(x), z + 1), G(x, z) = (g(x), z + τ) and Im(τ) 6= 0. There is a
holomorphic submersion over the elliptic curve E = C/〈1, τ〉 given by

p : X → E; (x, z) 7→ z
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and the holomorphic vector field without zeros v induced by ∂
∂z projects over

the vector field ∂
∂z on E. We denote by Aut0(N) the connected component of

the identity in the group of holomorphic transformations AutC(N) of N.

Lemma 5.3.1. Let M be a compact manifold, f ∈ Aut(M) and X = M ×f R.
Then the de Rham cohomology groups Hr(X) is isomorphic to

{[σ] ∈ Hr(M) : f∗[σ] = [σ]} ⊕
(

Hr−1(M)
{[σ − f∗σ] : [σ] ∈ Hr−1(M)}

)
∧ [ds].

In particular, if f∗ = id acting on H∗(M), then

Hr(X) ∼= Hr(M)⊕Hr−1(M) ∧ [ds].

Remark 5.3.2. With the above notation, if M is connected then

H1(X) ∼= {[σ] ∈ H1(M) : f∗[σ] = [σ]} ⊕ 〈[ds]〉.

Proof. For the proof of the lemma it is enough to use Mayer-Vietoris sequence for
the De Rham cohomology groups (see [BT82] for details). Let X be a compact
manifold and assume X = U ∪ V where U, V are open subsets of X. There is a
short exact sequence given by

0 −−−−→ Ω∗(X) −−−−→ Ω∗(U)⊕ Ω∗(V ) −−−−→ Ω∗(U ∩ V ) −−−−→ 0

α −−−−→ (α|U , α|V )

(ω, τ) −−−−→ ω|U∩V − τ|U∩V

which induces an exact sequence for the De Rham cohomology groups:

Hq−1(U ∩ V ) d∗−−−−→ Hq(X) −−−−→ Hq(U)⊕Hq(V )
Fq−−−−→ Hq(U ∩ U)

The coboundary operator is given by

d∗[ω] =

{
[−d(ρV ω)] on U

[d(ρUω)] on V

where {ρU , ρV } is a partition of unity associated to the covering {U, V }. Now
recall that a suspension admits a fibration p : X → S1 with fibre M. We choose
as open sets U = p−1(S1\{1}) ∼= (0, 1)×M and V = p−1(S1\{−1}) ∼= (0, 1)×M.
Therefore H∗(U) ∼= H∗(V ) ∼= H∗(M) and H∗(U ∩ V ) ∼= H∗(M) ⊕H∗(M). The
map Fq : Hq(U)⊕Hq(V ) → Hq(U ∩ V ) corresponds to

Hq(M)⊕Hq(M)
Fq−−−−→ Hq(M)⊕Hq(M)

([α], [β]) −−−−→ ([α− β], [α− f∗β])
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so Ker(Fq) ∼= {[σ] ∈ Hq(M) : f∗[σ] = [σ]} and Im(Fq) ∼= [ds] ∧ (Hq−1(M) ⊕
{[σ − f∗σ] : [σ] ∈ Hq−1(M)}). Finally, considering the short exact sequence

0 −−−−→ Hq(M)⊕Hq(M)/Im(Fq−1) −−−−→ Hq(X) −−−−→ Ker(Fq) −−−−→ 0

we can conclude.

Corollary 5.3.3. Let K be a non-abelian compact connected real Lie group of
odd dimension endowed with a normal almost contact structure, f ∈ AutT (K)
and X = K ×f R endowed with the complex structure described in proposition
4.4.2. Then X cannot admit a Kähler metric.

Proof. We know that X = K ×f R admits a finite covering X̃ = M ×f̃ R such
that M ∼= K′×(S1)r where K′ is a compact connected semisimple real Lie group,
0 ≤ r < dimR K and f̃ the lift of f to X̃. Using Kunneth’s formula and taking
into account that b1(K′) = b2(K′) = 0 (see section 1.7.5) we conclude that
H2(M) ∼= H2((S1)r) and H1(M) ∼= H1((S1)r). Now, the previous lemma says
that H2(X̃) is isomorphic to

{[σ] ∈ H2(M) : f∗[σ] = [σ]} ⊕
(

H1(M)
{[σ − f∗σ] : [σ] ∈ H1(M)}

)
∧ [ds].

If X̃ were Kähler then there would be a class [ω] ∈ H2(X̃) such that [ωs] 6= 0 in
H2s(X̃), where s = dimC X̃, which is impossible. Therefore X̃ is not Kähler and
it follows that X cannot be Kähler.

Corollary 5.3.4. Let N be a compact complex manifold and f, g ∈ AutC(N)
such that f ◦g = g ◦f and let X be the suspension N×C/〈F,G〉 where F (x, z) =
(f(x), z + 1), G(x, z) = (g(x), z + τ) and Im(τ) 6= 0. If f∗, g∗ act as the identity
on H1(N, R) then b1(X) = b1(N) + 2.

Theorem 5.3.5. Let N be a compact complex manifold and f, g ∈ AutC(N) such
that f ◦ g = g ◦ f and let X be the suspension N × C/〈F,G〉 where F (x, z) =
(f(x), z+1), G(x, z) = (g(x), z+τ) and Im(τ) 6= 0. Then the following conditions
are equivalent:

(i) X is Kähler.

(ii) There is a Kähler form ω on N such that [f∗ω] = [g∗ω] = [ω].

(iii) N is Kähler and there are integers n, m > 0 such that fn, gm ∈ Aut0(N).



5.3 Criteria for suspensions 97

Recall that if h1, h2 are homotopic endomorphisms of a manifold (or topo-
logical space) X then h∗1 = h∗2 on H∗(X, R). In particular if f ∈ Aut0(N) then
f∗ = id in H∗(N).

Corollary 5.3.6. Let N be a compact Kähler manifold, if b2(N) = 1 any compact
complex manifold X obtained by a double suspension on N is Kähler.

Example 5.3.7. If dimC N = 1 then b1(N) = 1 and we conclude that any compact
complex manifold X obtained by a double suspension on N is Kähler. We can
see that any surface obtained as in the remark 4.4.4 is Kähler using the fact
that a compact surface is Kähler if and only if it has even first Betti number (cf.
[Buc99]). Note that when f, g ∈ Aut0(N) we have f∗ = g∗ = id on H1(N), then
by the previous corollary b1(X) = b1(N) + 2. If dimC N = 1 then b1(N) is even
(for N is Kähler), then it follows that b1(X) is even.

Proof. (Corollary 5.3.6) Applying Hodge decomposition theorem to N one con-
cludes that H2(N, C) ∼= H1,1(N, C) ∼= C. Then if ω is a Kähler form on N and
f ∈ AutC(N) we have [f∗ω] = [λω], where λ ∈ R+. Then f∗ω = λω + dα where
α is a 1-form. Moreover we know that [λnωn] = f∗[ωn] = [ωn], therefore λ = ±1.
Assume that λ = −1, then the Kähler form ω + f∗ω = dα is exact, which is
a contradiction. Thus λ = 1 and we conclude that the hypothesis (ii) in the
theorem 5.3.5 is trivially fulfilled.

Example 5.3.8. If N is a compact Kähler manifold and AutC(N) is finite then
any complex manifold X thus obtained from N must be Kähler. Among the ex-
amples of manifolds N under the previous assumptions we have compact Kähler
manifolds with negative definite Ricci tensor, quotients D/Γ of a bounded do-
main of Cn by a properly discontinuous group Γ of holomorphic transformations
acting freely on D and any non-singular hypersurface of degree d in Pn for n > 4
and d ≥ 3 (see [Kob72], p.86-88).

Lemma 5.3.9. Let X̃ be the finite covering of n ·m sheets of X obtained as the
suspension

X̃ = N× C/〈Fn, Gm〉

where Fn(x, z) = (fn(x), z + n) and Gm(x, z) = (gm(x), z + mτ). Then X̃ is
Kähler if and only if X is Kähler.

Remark 5.3.10. With the above notation, X̃ is isomorphic to the suspension
N× C/〈F̃ , G̃〉, for F̃ (x, z) = (fn(x), z + 1) and G̃(x, z) = (gm(x), z + m

n τ).
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Proof. Clearly, if X is Kähler the pull-back of a Kähler form on X is a Kähler
form on X̃. Assume now that Φ is a Kähler form on X̃, which we can represent
by a Kähler form on N×C invariant by Fn and Gm. Then the form Ψ on N×C
defined by:

Ψ = Σi=0,..,n−1;j=0,...m−1(F i)∗ ◦ (Gj)∗(Φ)

is a Kähler form on N × C invariant by F and G, thus it represents a Kähler
form on X.

During the proof of the theorem we will make use of the following result by
A.Blanchard (cf. [Bla56], p.192):

Theorem 5.3.11 (Blanchard). Let X be a fibred complex compact analytic space
with base B and fibre F. Let us assume that π1(B) acts trivially on H1(F, R).
Then X is Kähler if and only if the following conditions hold:

(i) There is a Kähler form on F which represents a cohomology class invariant
by π1(B).

(ii) B is Kähler.

(iii) b1(X) = b1(B) + b1(F).

The basic tools to prove the preceding result are the following two versions
of the ∂∂-lemma with parameters. Their proof can also be found in [Bla56].

Lemma 5.3.12. Let M be a compact Kähler manifold and let ω be an exact
form of type (p, q) on M such that ω = dMα and ω and α depend smoothly
on a complex parameter z ∈ C. Then there exist a (p − 1, q)-form µ and a
(p, q− 1)-form ν that depend smoothly on z ∈ C and such that ω = dMµ = dMν.

Lemma 5.3.13. Let M be a compact Kähler manifold and let ω be an exact form
on M such that ω = dMα and ω and α depend smoothly on a complex parameter
z ∈ C. Assume that ω = ω1 + ω2 where ω1 is of type (p + 1, q) and ω2 of type
(p, q + 1), both depending smoothly on z ∈ C. Then there exists a (p, q)-form ν

which depends smoothly on z ∈ C and such that ω = dMν.

Remark 5.3.14. Since the total space X of a suspension is locally a product
of N and an elliptic curve E = C/〈1, τ〉 the exterior derivative d on X can be
decomposed as the sum d = dN +dE. Moreover dN = ∂N +∂N; dE = ∂E +∂E and
∂E, ∂E and ∂N, ∂N are the usual well-defined operators on N and E respectively.
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Note also that any of these differential operators of E anti-commute with any of
these operators on N, for instance dE ◦ dN = −dN ◦ dE. This is also true if one
considers the contractions i ∂

∂z
and i ∂

∂z̄
and any of the previous operators on N.

Proof. (Theorem 5.3.5) (i) =⇒ (ii): Let Ψ be a Kähler form on X. Its pull-back
Φ = π∗Ψ by the covering map π : N × C → X is a Kähler form on N × C. Let
us choose z0 ∈ C. If we denote by Nz = N × {z} and by ωz(x) = Φ(x, z)|Nz

then ωz0 is a Kähler form on Nz0 . It suffices to show that [f∗ωz0 ] = [ωz0 ] (for
g the argument is analogous). By construction of Φ we know that F ∗Φ = Φ
where F (x, z) = (f(x), z + 1), therefore f∗ωz0 = ωz0−1. Recall that if [Φ] =
[Φ′] ∈ H2(N × C, R) then [Φ(x, z0)|N] = [Φ′(x, z0)|N] in H2(N, R). Therefore it
is enough to see that [Φ(x, z)] = [Φ(x, z + a0)] in H2(N × C, R) for all a0 ∈ C.
Since the map (x, z) 7→ (x, z + a0) is homotopic to the identity on N × C this
condition is verified and we can conclude.

(ii) =⇒ (iii): It is an immediate consequence of a result by D.Lieberman (see
[Lie78]) that asserts the following: if M is a compact Kähler manifold, ω a Kähler
form and we denote by Autω(M) the group of automorphisms of M preserving
the Kähler class [ω] then Autω(M)/Aut0(M) is a finite group. Indeed, if we
consider {f, f2, ...} there must exist n1 > n2 > 0 such that fn1 = fn2 · h with
h ∈ Aut0(N). Therefore for n = n1 − n2 we have fn ∈ Aut0(N) (and we would
proceed identically for g).

(iii) =⇒ (ii): Let ω̃ be a Kähler form on N whose Kähler class is preserved
both by fn and gm. Considering the Kähler form

ω =
∑

i=0,..,n−1;j=0,...,m−1

(f i)∗ ◦ (gj)∗ω̃,

the class [ω] is preserved both by f and g.

(iii) =⇒ (i): It is enough to show that a double suspension of a compact
Kähler manifold N by f, g ∈Aut0(N) is Kähler (see lemma 5.3.9 and remark
5.3.10). This follows from the theorem by A.Blanchard stated above: note that
since f, g ∈Aut0(N) the fundamental group π1(E) acts trivially on H1(N, R) and
consequently b1(X) = b1(N) + 2.

For the sake of clarity we discuss the argument under our hypothesis. The
Kähler form on X is constructed in several steps. We begin by fixing a Kähler
form ω on N. We can choose an open covering {Ui} of E so that the fibration
p : X → E is trivial over Ui. Then ω induces a well-defined form ωi on
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p−1(Ui) ∼= Ui × N. Let {ρi} be a partition of unity associated to {Ui}, then
Φ0 =

∑
i ρi(z, z̄)ωi is a real global (1, 1)-form on X so that Φ0|N is a Kähler

form on N representing a fixed cohomology class (as f∗ and g∗ preserve H∗(N)
all the forms ωi belong to the same cohomology class in H2(N) ). Moreover
dΦ0 = dEΦ0. Now we want to obtain a closed real valued (1, 1)-form Φ on X
such that Φ|N = Φ0. If {xi} are local coordinates on an open set U of N and {z}
is the usual complex coordinate on E then Φ will have the local form:

Φ = Σjkajkdxj ∧ dx̄k + Σjhjdxj ∧ dz̄ + Σj h̄jdx̄j ∧ dz + ifdz ∧ dz̄.

where a, hj , h̄j , f are functions on X depending on x, x̄, z, z̄ and f is real-valued.
Equivalently Φ can be written as

Φ = Φ0 + H ∧ dz̄ + H ∧ dz + ifdz ∧ dz̄,

where H is a (1, 0)-form on X and f a real valued function on X. The hypothesis
dΦ = 0 is equivalent to the following equations

∂EΦ0 + ∂NH ∧ dz = 0 (I)
∂NH = 0 (II)

∂EH + i∂Nf ∧ dz = 0 (III)

Obtaining the form Φ is equivalent to finding H and f that solve the previous
system. Roughly speaking, we will first solve (I) and (II) so that we determine
H and then define f as the solution of (III). The equations (I) and (II) are
equivalent to

dNH = i ∂
∂z̄

∂̄EΦ0 (IV).

Note that the form ω = i ∂
∂z̄

∂̄EΦ0 can be seen locally as a (1, 1)-form on N which
depends smoothly on the complex parameter z. To apply lemma 5.3.12 to obtain
a local (1, 0)-form Hi which solves (IV) we must assure that ω is dN-exact. Note
that

dNω = i ∂
∂z̄

∂̄EdNΦ0 = 0.

To prove the exactness it is enough to see that∫
C

ω = i ∂
∂z̄

∂̄E

∫
C

Φ0 = 0

for every cycle C on N. This holds because Φ0 represents the same cohomology
class on every fibre so

∫
C Φ0 does not depend on z or z̄. Therefore there exist
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local solutions {Hi} to (IV) which depend smoothly on z. Using a partition of
unity as above we obtain a global solution H0 =

∑
i ρ(z, z̄)Hi. Now, to proceed

with our plan, we should define f as the solution of (III) for the previous H0.
The equation (III) is equivalent to

dNf = i
(
i ∂

∂z̄
∂̄EH − i ∂

∂z
∂EH

)
=: ν (V).

Note that the term on the right ν is a real form which is the sum of a form of
type (1, 0) and a form of type (0, 1), therefore we can try to apply lemma 5.3.13.
Moreover ν is dN-closed, for

dNν = i
(
i ∂

∂z̄
∂̄EdNH − i ∂

∂z
∂EdNH

)
= i

(
i ∂

∂z
◦ i ∂

∂z̄
∂̄E∂EΦ0 − i ∂

∂z̄
◦ i ∂

∂z
∂E∂̄EΦ0

)
= 0

Nevertheless, here we encounter a difficulty, since we cannot prove that ν0, for
the previous solution H0, is dN-exact. To overcome it we will modify H0 to
obtain a new solution of (IV) for which the corresponding ν in (V) is dN-exact.
Fix a basis {α1, ..., αk, α1, ..., αk} of H0(N,Ω1) ⊕ H0(N,Ω1). Note that since
αi are holomorphic forms on a compact Kähler manifold N they are fixed by
f, g ∈ Aut0(N), therefore we can assume that they are well-defined holomorphic
forms on X. Indeed, as f, g preserve the cohomology classes, f∗ωi − ωi and
g∗ωi − ωi are holomorphic exact 1-forms for i = 1, ..., k, thus zero. In other
words f∗ωi = g∗ωi = ωi for i = 1, ..., k and ω1, ..., ωk are well-defined forms
in H0(X,Ω1) defining a basis of H0(N,Ω1). By construction they are also dE-
closed. Let {γ1, ..., γk, γ1, ..., γk} be the dual basis of H1(N, C). Note that if α

is a 1-form γ(α) := γ(α). We define

uj = i
∫

γj

(∂̄EH0 ∧ dz + ∂EH0 ∧ dz̄) =
∫

γj

ν0 ∧ dz ∧ dz̄

for 1 ≤ j ≤ k. It is not difficult to see that they are dE-closed (1, 1) forms on E.
Moreover

uj = dE

∫
γj

i(H0 ∧ dz + H0 ∧ dz̄)

so they are also dE-exact. Applying lemma 5.3.12 to E and uj we obtain a family
{v1, ..., vk} of (0, 1)-forms on E so that dEvj = uj . We can define now a new
solution H of (IV) by the formula

H ∧ dz̄ = H0 ∧ dz̄ + i
k∑

j=1

αj ∧ vj .
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We will next verify that the integral of νdz ∧ dz̄ = idE(H ∧ dz + H ∧ dz̄) is
zero for any cycle C on N, for it is equivalent to

∫
C ν = 0. Note that since we

saw that ν is dN-closed when H is a solution of (IV) it is enough to check that∫
γj

νdz ∧ dz̄ =
∫
γ̄j

νdz ∧ dz̄ = 0. Indeed,∫
γj

νdz ∧ dz̄ =
∫

γj

ν0dz ∧ dz̄ − dEvj = uj − uj = 0∫
γ̄j

νdz ∧ dz̄ =
∫

γ̄j

ν0dz ∧ dz̄ + dEv̄j = −ūj + ūj = 0.

Therefore, we are left to solve dNf = ν with ν satisfying all the hypothesis in
lemma 5.3.13 to obtain local real functions fi so that dNfi = ν. We define thus f

by means of a partition of unity, f =
∑

i ρifi. To finish the proof it is enough to
add to Φ the pullback of a Kähler form on E positive enough so that we obtain
a positive closed (1, 1)-form on X.

Let now N be a compact Kähler manifold. We denote by Alb(N) its Albanese
torus, by J the Jacobi map and by f ! the automorphism of Alb(N) induced by a
given f ∈AutC(N) (see section 1.3). We want to determine when the suspension
X of a compact projective manifold N by f, g ∈AutC(N) such that f ◦ g = g ◦ f

is projective. Since the condition is expressed in terms of the Albanese torus of
X we will begin by computing it.

Proposition 5.3.15. Let N be a compact projective manifold and f, g ∈ Aut0(N)
such that f ◦ g = g ◦ f . Then Alb(X) is isomorphic to the suspension Alb(N)×
C/〈F !, G!〉 where f !, g! are the translations of Alb(N) induced by f, g respectively,
F !(y, z) = (f !(y), z + 1) and G!(y, z) = (g!(y), z + τ).

Proof. Since H1(X, Z) ∼= H1(N, Z) ⊕ H1(E, Z) (because X is homeomorphic to
N×E) we can obtain a basis of H1(X, Z) taking a basis γ1, ...γ2k of H1(N, Z) and
σ1, σ2 which are defined as the composition of ρ1 and a path on the fibre N from
x0 to f(x0) and of ρ2 and a path on the fibre N from x0 to g(x0) respectively
where ρ1 and ρ2 are respectively the projection on X of the paths

[0, 1] −−−−→ N× C ; [0, 1] −−−−→ N× C

t −−−−→ (x0, t) t −−−−→ (x0, τ t).

Assume ω1, ..., ωk are a basis of H0(N,Ω1). As f, g preserve the cohomology
classes, f∗ωi − ωi and g∗ωi − ωi are holomorphic exact 1-forms for i = 1, ..., k,
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thus zero. In other words f∗ωi = g∗ωi = ωi for i = 1, ..., k and ω1, ..., ωk are
well-defined forms in H0(X,Ω1

X) defining a basis of H0(N,Ω1
N). We complete

to a basis of H0(X,Ω1
X) by adding σ = p∗(dz) where p : X → E is the natural

projection. Therefore if ∆N =
{( ∫

γ ω1, ...,
∫
γ ωk

)
: γ ∈ H1(N, Z)

}
, the Albanese

torus is isomorphic to Alb(N) = Ck/∆N and the Albanese map is

J : N −−−−→ Alb(N)

x −−−−→
(∫ x

x0
ω1, ...,

∫ x
x0

ωk

)
.

Then a basis of ∆X, where Alb(X) = Ck+2/∆X, can be given by the rows of the
matrix 

∫
γ1

ω1 ...
∫
γ1

ωk 0

... 0∫
γ2k

ω1 ...
∫
γ2k

ωk 0∫ f(x0)
x0

ω1 ...
∫ f(x0)
x0

ωk 1∫ g(x0)
x0

ω1 ...
∫ g(x0)
x0

ωk τ

 =

 ΩM 0
J(f(x0)) 1
J(g(x0)) τ

 .

The result is the following:

Theorem 5.3.16. Let N be a projective compact manifold and f, g ∈AutC(N)
such that f ◦g = g ◦f and let X be the suspension N×C/〈F,G〉 where F (x, z) =
(f(x), z + 1), G(x, z) = (g(x), z + τ) and Im(τ) 6= 0. Assume that X is Kähler.
Then the following conditions are equivalent:

(i) X is projective.

(ii) Alb(X) is projective.

Corollary 5.3.17. Let N be a projective compact manifold and f, g ∈AutC(N)
such that f ◦g = g ◦f and let X be the suspension N×C/〈F,G〉 where F (x, z) =
(f(x), z + 1), G(x, z) = (g(x), z + τ) and Im(τ) 6= 0. Assume that X is Kähler
and that there exists x0 ∈ N such that x0 = f(x0) = g(x0). Then X is projective.

Proof. It is enough to use the computation in the previous proposition with base
point x0 to deduce that Alb(X) = Alb(N)× E, thus it is projective.

Example 5.3.18. If M = P1 then f, g ∈ AutC(P1) commute if and only if they
have a common fixed point x0 ∈ P1, therefore every suspension of P1 is projective.
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The previous theorem is based on the following result by A.Blanchard, also
in [Bla56], and on the lemma below:

Theorem 5.3.19 (Blanchard). Let X be a fibred complex compact analytic space
with base B, connected fibre F and connected structural group. Assume that X
is Kähler. Then X is projective if and only if the following conditions hold:

(i) F and B are projective.

(ii) Alb(X) is projective.

Note that we cannot apply Blanchard’s theorem directly to our situation
because our structural group is connected if and only if f, g ∈ Aut0(N). The
following lemma is well-known but we include the proof for the sake of clarity.

Lemma 5.3.20. Let N be a projective compact manifold and f, g ∈ AutC(N)
so that there exist n, m ≥ 0 such that fn, gm ∈ Aut0(N). Let X̃ be the finite
covering of n ·m leaves of X obtained as the suspension

X̃ = N× C/〈Fn, Gm〉

where Fn(x, z) = (fn(x), z + n) and Gm(x, z) = (gm(x), z + mτ). Then X is
projective if and only if X̃ is projective.

Proof. We will use Kodaira embedding theorem for compact Hodge manifolds.
It is also worth recalling that if p : X̃ → X is a finite covering map of n ·m sheets
then there is a transfer map p! : H∗(X̃) → H∗(X) such that p! ◦ p∗ = n ·m · id
and p∗ ◦ p! = n ·m · id on Im(p∗) defined by

p![ω] :=
∑

i=0,...,n−1;j=0,...,m−1

[(f i)∗ ◦ (gj)∗ω],

see [Bre97]. The direct implication of the lemma is clear since the pull-back of a
Kähler integer form on X is an integer cohomology class. If Φ is a Kähler form
in X̃ such that [Φ] ∈ H1,1(X̃) ∩H2(X̃, Z) it induces a Kähler form Ψ on N × C
in the same way as in lemma 5.3.9, namely [Ψ] = p![Φ], and by construction
[Ψ] ∈ H1,1(N × C) ∩ H2(N × C, Z). Then the class that Ψ induces, up to a
integer positive constant, is in H2(X, Z).

Proof. (Theorem 5.3.16) (i) =⇒ (ii): Since X is projective it is also Kähler. Then
there exists n, m > 0 such that fn, gm ∈ Aut0(N). The suspension X̃ of N by
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fn, gm is projective if and only if the suspension X of N by f, g is projective, by
the lemma above. Then by Blanchard’s theorem applied to X̃ we conclude that
Alb(X̃) is projective. Finally, by the above lemma we can also see that Alb(X)
is projective if and only if Alb(X̃) is projective.

(ii) =⇒ (i): It is enough to show that a double suspension of a compact
projective manifold N by f, g ∈Aut0(N) is projective, by the above lemma. This
follows from the theorem by A.Blanchard stated above.

5.3.2 Suspensions of manifolds in the class T

Let M2n+1 be a compact manifold in the class T and let F be the transversely
holomorphic flow induced by the vector field T . We denote by ω the 1-form
such that ω(T ) = 1 and iT dω = 0 corresponding to the normal almost contact
structure on M. Fixed τ ∈ C\R and given f ∈ AutT (M) we denote by X the
suspension M×f R endowed with the complex structure described in proposition
4.4.2. Let v be the holomorphic vector field on X induced by T − τ ∂

∂s and Fv

the holomorphic flow on X defined by v.

Let Ωp
f (M/F) be the vector space of holomorphic closed basic p-forms β on

M with respect to the transversal holomorphic structure such that f∗β = β. Let
Hp,q

f (M/F) be the Dolbeaut cohomology groups of basic forms fixed by f . We
denote by Ωp(X/Fv) the holomorphic p-forms on X basic with respect to Fv.

Theorem 5.3.21. With the above notation, if X is Kähler then:

(i) eF (M) = 0. Moreover [dω] = 0 in H1,1
f (M/F).

(ii) There exists a basic (1, 0)-form ν on M such that dω = dν and f∗ν = ν.
Moreover

H1(X, C) ∼= Ω1
f (M/F)⊕ Ω1

f (M/F)⊕ 〈[ω − ν]〉 ⊕ 〈[ds]〉.

(iii) There exists a closed positive form Φ on M such that Φ| ker ω is of type (1, 1)
with respect to the holomorphic transverse structure and [f∗Φ] = [Φ]. In
particular, if dω = 0 then Φ| ker ω is a Kähler form on the leaves V of the
foliation defined by ker ω on M.

Proof. (i),(ii) Since v is a holomorphic vector field without zeros there is a
holomorphic 1-form α such that α(v) = 1 and dα = 0. In local coordinates the
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form α has an expression of the type

α =
i

2 Im τ
(h(x, s)ds + τ̄ ω̃) =

i
2 Im τ

(h(x, s)ds + τ̄
∑

ai(x, s)dxi)

where x are real coordinates on M and ai(x, s) and h(x, s) are complex-valued
functions. Since α(v) = 1 and α(v̄) = 0 it follows that h = ω̃(T ) = 1. Therefore
ω̃ is closed and it does not depend on s (because dα = 0), i.e. ω̃ is a closed form
on M and f∗ω̃ = ω̃. Set χ = i

2 Im τ (ds + τ̄ω), since χ is of type (1, 0) there exists
a (1, 0)-form µ in X such that α = χ + µ, therefore ω̃ = ω − 2i Im τ

τ̄ µ. The form
ν = 2i Im τ

τ̄ µ is a basic (1, 0)-form such that dν = dω and f∗ν = ν. By Hodge
decomposition theorem we know that

H1(X, C) ∼= H0(X,Ω1)⊕H0(X,Ω1).

We can assume that there is a basis of H0(X,Ω1) of closed holomorphic forms
α, α1, ..., αk such that αj(v) = 0 for j = 1...k. One can easily prove that the
forms α1, ..., αk can be taken as forms on M basic with respect to the flow F
and such that f∗αj = αj for j = 1, ..., k (the last assertion follows from the fact
that (f, id) induces a holomorphic automorphism on X). It follows that

H1(X, C) ∼= Ω1
f (M/F)⊕ Ω1

f (M/F)⊕ 〈[ds]〉 ⊕ 〈[ω − ν]〉.

(iii) The same argument than in the case of the double suspension yields
the result. Choose a Kähler form Ψ0 on X and the pullback Ψ to M × R. The
restriction Φ = Ψ(x, s0)|M is the desired form.

Corollary 5.3.22. If X is Kähler then

α :=
i

2 Im τ

(
ds + τ̄(ω − ν)

)
is a closed holomorphic 1-form on X such that α(v) = 1.

Recall that the form χ = i
2 Im τ

(
ds+ τ̄ω

)
is always of type (1, 0) but it might

be neither closed nor holomorphic.

Proposition 5.3.23. If X is Kähler then

(i) Hp,0(X) ∼= Ωp
f (M/F)⊕ Ωp−1

f (M/F) ∧ [α].

(ii) Ωp(X/Fv) ∼= Ωp
f (M/F).
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Proof. Let ζ be a closed (p, 0)-form on X, in particular ζ is holomorphic. Since
ivζ is a holomorphic (p − 1)-form on X we have divζ = 0. It follows that
ζ = α ∧ ivζ + ζb where ζb is a closed (p, 0)-form basic with respect to the real
flows induced by T and ∂

∂s (since we also have iv̄ζ = 0). Moreover, since ζb, ivζ

are closed and basic they do not depend on s, thus ζb, ivζ ∈ Ω∗,0(M/F). Since
a holomorphic form on a compact Kähler manifold is closed and never exact it
follows that

Hp,0(X) ∼= Ωp
f (M/F)⊕ Ωp−1

f (M/F) ∧ [α].

There is a natural inclusion of Ωp
f (M/F) into Ωp(X/Fv). On the other hand,

given ζ ∈ Ωp(X/Fv) it can be regarded as a holomorphic p-form on X, thus
(f, id)∗ζ = f∗ζ = ζ. The same argument as before proves that ζ ∈ Ω∗,0(M/F),
thus we can conclude.

When the flow F on the compact manifold M is isometric we can give more
specific conditions for the suspension X to be Kähler:

Proposition 5.3.24. Assume that the flow F induced by the vector field T on
M is isometric. If X is Kähler then the following conditions hold:

(i) The Euler class eF (M) is zero.

(ii) The flow F is transverselly Kähler and there exists a basic Kähler form Φ
such that [f∗Φ] = [Φ] ∈ H1,1(M/F).

Proof. Applying theorem 5.1.1 we conclude that eF (M) = 0. Choose now a
Kähler form Ψ0 on X and define Ψ as the pullback to M × R. We define Φ0 =
Ψ(x, s0)|M so that [f∗Φ0] = [Φ0] and Φ0 is a closed form of type (1, 1) with respect
to the holomorphic transverse structure. We denote by ϕt the 1-parameter group
on M associated to T and by H the closure in Isom(M) of the abelian group
generated by ϕt. The form Φ defined as the basic part of∫

H
Φ0(σ∗·, σ∗·),

where we integrate with respect to the Haar mesure on H, is a basic Kähler form
on M. Moreover since f∗Φ0 = Φ0 + dα where α is a 1-form on M, the form f∗Φ
is the basic part of∫

H
f∗(Φ0(σ∗·, σ∗·)) =

∫
H
(f∗Φ0)(σ∗·, σ∗·) =

∫
H

Φ0(σ∗·, σ∗·) +
∫

H
dα(σ∗·, σ∗·)

=
∫

H
Φ0(σ∗·, σ∗·) + d

∫
H

α(σ∗·)
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(see [GHV72] and [GHV73] and note that f∗T = T so f ◦ σ = σ ◦ f). Therefore
[f∗Φ] = [Φ].

Let M2n+1 be a compact manifold in the class T and F the transversely
holomorphic flow induced by the vector field T . We denote by ω the 1-form
such that ω(T ) = 1 and iT dω = 0 corresponding to the normal almost contact
structure on M.

Definition 5.3.25. We say that a compact connected manifold M with a fixed
normal almost contact structure belongs to the class T0 if and only if its CR-
structure is Levi-flat.

Lemma 5.3.26. A compact connected manifold M with a fixed normal almost
contact structure belongs to the class T0 if and only if dω = 0.

Proof. Recall that a CR-structure is Levi-flat if and only if ω ∧ dω = 0. Since
dω is basic for the foliation induced by T on M this condition is equivalent to
dω = 0. Therefore the manifolds in class T0 are exactly the manifolds in class T
with a Levi-flat CR-structure Φ1,0.

If M is a compact connected manifold in the class T0 and X is the suspension
of M by f ∈ AutT (M) the (1, 0)-form χ induced by i

2Imτ (ds+ τ̄ω) on X is closed,
in particular χ is holomorphic. Moreover if M belongs to the class T0 then
ker ω defines a foliation F̃ on X transverse to the vector field T such that every
leaf is biholomorphic to the same complex (possibly non compact) manifold V.
The biholomorphism between the leaves is given by the 1-parameter flow ϕt

associated to T , since ϕt ∈ AutCR(M).
The suspension M of a compact complex manifold N by g ∈ AutC(N) with

the normal almost contact structure described in proposition 2.4.2 belongs to
the class T0. Conversely, one has the following result:

Theorem 5.3.27. Let M2n+1 be a manifold in class T0 with CR-structure Φ1,0

and vector field T . If ω has group of periods Γω
∼= Z then the CR-structure Φ1,0

and the vector field T can be obtained as in lemma 2.4.2 as a suspension of the
compact manifold V by g ∈ Aut(V).

Proof. Assume that ω has periods group Γω
∼= Z, then there is a well defined

fibration
π : M → S1 ∼= R/Γω, x 7→

∫ x

x0

ω
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with compact fibers isomorphic to V which are the leaves of the foliation induced
by kerω. The compact leaf V carries a complex structure induced by the CR-
structure Φ1,0 on M. The automorphism g ∈ Aut(V) corresponding to the
suspension giving rise to M is induced by ϕt0 , where t0 verifies ϕt(x0) /∈ V for
0 < t < t0 and ϕt0(x0) ∈ V for every x0 ∈ V . The vector field T is transverse to
the leaves of the fibration and ω = π∗(dt), where t denotes the real coordinate
on S1. The choice of g and the hypothesis ω(T ) = 1 imply that T is the vector
field induced by ∂

∂t .

Theorem 5.3.28. Let M2n+1 be a manifold in the class T0 with CR-structure
Φ1,0 and vector field T . Assume that the flow F induced by the vector field T on
M is isometric and that f∗ = id acting on H1(M, C). Then X is Kähler if and
only there exists a basic Kähler form Φ for the flow F such that [f∗Φ] = [Φ] ∈
H1,1(M/F).

Lemma 5.3.29. Let M a compact manifold with a transversely Kählerian flow
F depending smoothly on a real parameter s ∈ R. Let ω be an exact basic form
on M of type (p, q) such that ω = dMα for a basic form α depending smoothly
on s. Then there exists a basic (p − 1, q)-form µ and a basic (p, q − 1)-form ν

that depend smoothly on s and such that ω = dMµ = dMν.

Lemma 5.3.30. Let M a compact manifold with a transversely Kählerian flow
F depending smoothly on a real parameter s ∈ R. Let ω be an exact basic form
on M such that ω = dMα for a basic form α depending smoothly on s. Assume
that ω = ω1 + ω2 where ω1 is of type (p + 1, q) and ω2 is of type (p, q + 1), both
basic and depending smoothly on s. There exists a basic (p, q)-form ν such that
ω = dMν and it depends smoothly on s.

The proofs of the previous lemmas are analogous to the ones of the lemmas
5.3.12 and 5.3.13 using the fact that on a transversely Kähler isometric flow there
exists a transversal Hodge theory regarding basic forms and in particular a basic
∂∂-lemma (see section 1.6). Note that locally every suspension is a product, thus
we can consider the exterior derivative ds with respect to the local coordinate s

and then d = dM + ds.

Proof. =⇒) : It follows from proposition 5.3.24.
⇐=) : We define α as the (1,0)-form induced by i

2 Im τ (ds + τ̄ω), which is a
closed holomorphic 1-form on X such that α(v) = 1. Besides, from Gysin’s
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exact sequence it follows that

H1(M) ∼= H1(M/F)⊕ 〈[ω]〉.

From the hypothesis f∗ = id acting on H1(X) and lemma 5.3.1, it follows that
H1(X) ∼= H1(M) ⊕ 〈[ds]〉. Since the flow F is transversely Kählerian on M by
Hodge theory

H1(M/F) ∼= H1,0(M/F)⊕H0,1(M/F)

and there exists a basis α1, ..., αk of H1,0(M/F) of closed (1,0)-forms (and there-
fore holomorphic) on M such that f∗αj = αj for j = 1, ..., k (for f∗ = id on
H1(M) and the representatives of cohomology classes of type (1,0) are unique as
a consequence of the transversal Hodge theory). Note also that H1,0(X/Fv) ∼=
H1,0(M/F) since a basic 1-form on X can not depend on s and therefore lives
on M. Fix the transverse Kähler form Φ on M. We can choose an open covering
{Ui} of S1 so that the fibration p : X → S1 is trivial over Ui. Then Φ induces
a well-defined form Φi on p−1(Ui) ∼= Ui ×M. Let {ρi} be a unit partition asso-
ciated to {Ui}. Then Φ0 =

∑
i ρi(s)Φi is a real global (1, 1)-form on X so that

Φ0|M is a transverse Kähler form on M representing a fixed cohomology class,
since [f∗Φ] = [Φ]. Moreover dΦ0 = dsΦ0. Now we want to obtain a closed real
valued (1, 1)-form Φ̃ on X such that Φ̃|M = Φ0. We search Φ̃ of the type:

Φ̃ = Φ0 + H ∧ ᾱ + H ∧ α + iFα ∧ ᾱ,

where H is a basic (1, 0)-form on X and F a real valued function on X. The
hypothesis dΦ̃ = 0 is then equivalent to the following equations:

dsΦ0 − 1
2i Im τ (−dMH ∧ ds + dMH ∧ ds) = 0 (I)

−τdMH ∧ ω + τ̄ dMH ∧ ω = 0 (II)
1

2i Im τ (−τdsH ∧ ω + τ̄ dsH ∧ ω)− idFα ∧ ᾱ = 0. (III)

Note that

idFα ∧ ᾱ =
−dF

2 Im τ
ds ∧ ω.

Obtaining the form Φ̃ is equivalent to finding H and F that solve the previous
system. Roughly speaking, we will first solve (I) and (II) so that we determine
H and then define F as the solution of (III). The equation (I) is equivalent to

2i Im τi ∂
∂s

dsΦ0 = dMH − dMH = dM(H −H)
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which is fulfilled if

dMH = τ̄ i ∂
∂s

dsΦ0 (IV).

The form γ := τ̄ i ∂
∂s

dsΦ0 can be seen locally as a basic form on M of type (1,1)
that depend smoothly on the real parameter s. To apply lemma 5.3.29 to obtain
local basic (1, 0)-forms Hi on p−1(Ui) ∼= Ui×M which solve (IV) we must assure
that γ is dM-exact. Note that

dMγ = τ̄ i ∂
∂s

dsdMΦ0 = 0.

To prove the exactness it is enough to see that∫
C

γ = τ̄ i ∂
∂s

ds

∫
C

Φ0 = 0

for every cycle C on M. This holds because Φ0 represents the same cohomology
class on every fibre so

∫
C Φ0 does not depend on s. Therefore there exist 1-forms

{βi} on M depending smoothly on s such that γ = dMβj . We denote by ϕt the
1-parameter group associated to T and by L the closure of the abelian group
generated by ϕt. Define β̃j as the transverse part of

∫
L βj(σ·) (integrating with

respect to the Haar measure on L). Then β̃j is a transverse 1-form on X which
depends smoothly on s and such that

dMβ̃j = dM

∫
L

σ∗βj =
∫

L
σ∗dMβj =

∫
L

σ∗γ = γ

(recall that γ is basic, so
∫
L σ∗γ = γ). Therefore there exist basic local solutions

{Hi} to (IV) which depends smoothly on s. Using a unit partition as above we
obtain a global solution H0 =

∑
i ρ(s)Hi. Note that by construction of H it

verifies τdMH = τ̄ dMH, therefore it is also a solution of (II). Now, to proceed
with our plan we should define F as the solution of (III) for the previous H0.
Instead of finding a solution of (III) we will solve the following equation:

dMF = i
(
τi ∂

∂s
dsH − τ̄ i ∂

∂s
dsH

)
= ν (V).

Note that the term on the right ν is a basic real form on M depending smoothly
on s which is the sum of a form of type (1, 0) and a form of type (0, 1), therefore
we can try to apply lemma 5.3.30. Moreover ν is dM-closed, for

dMν = i · i ∂
∂s

ds(τdMH − τ̄ dMH) = 0
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Nevertheless, here we encounter a difficulty, since we cannot prove that ν0, for
the previous solution H0, is dM-exact. To overcome it we will modify H0 to
obtain a new solution of (IV) for which the corresponding ν in (V) is dM-exact.
Consider the basis {α1, ..., αk, α1, ..., αk} of H1,0(M/F) ⊕ H0,1(M/F) of forms
fixed by f so that they are well-defined closed forms on X (note that α1, ..., αk

are holomorphic). Let {γ1, ..., γk+1, γ1, ..., γk+1} be the basis of H1(M, C) dual
to {α1, ..., αk, α, α1, ..., αk, α}. We define

uj = i
∫

γj

(
τdsH − τ̄ dsH

)
= i · ds

∫
γj

(τH − τ̄H)

for 1 ≤ j ≤ k. Notice that

ūj = i · ds

∫
γj

(τH − τ̄H)

It is not difficult to see that they are ds-closed and exact real 1-forms on S1 (the
base of the natural fibration). There exists a family {v1, ..., vk} of real functions
on S1 (that we extend by pullback to X) such that dsvj = uj , namely

vj = i
∫

γj

(τH − τ̄H).

We can define now a new solution H of (IV), and therefore a solution of (I) and
(II), by the formula

H = H0 + i · τ−1
k∑

j=1

αj · vj

so that

νds = i
(
τdsH0 − τ̄ dsH0

)
+

k∑
j=1

uj ∧ αj −
k∑

j=1

ūj ∧ αj .

We will next verify that the integral of νds = i
(
τdsH − τ̄ dsH) is zero for any

cycle C on M, for it is equivalent to
∫
C ν = 0. Note that since we saw that ν

is dM-closed when H is a solution of (IV) it is enough to check that
∫
γj

νds =∫
γ̄j

νds = 0 (note that if ν = dMG the function G must be basic). Indeed,∫
γj

νds =
∫

γj

ν0ds− dsvj = uj − uj = 0∫
γ̄j

νds =
∫

γ̄j

ν0ds− dsv̄j = ūj − ūj = 0.
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Therefore, we are left to solve dMF = ν with ν satisfying all the hypothesis in
lemma 5.3.29 to obtain local real functions Fi such that dMFi = ν. We define
thus F by means of a unit partition, F =

∑
i ρiFi. To finish the proof it is enough

to add a positive constant to F so that we obtain a positive closed (1, 1)-form
on X.

Let β be a closed 1-form on M such that β(T ) = 1 and f∗β = β. Consider
on M the operator dT ,β acting on the complex

Ω∗
T ,f (M, C) = {σ ∈ Ω∗(M) : iT σ = 0, f∗σ = σ}

by the following formula:

dT ,β : Ωp
T ,f (M, C) → Ωp+1

T ,f (M, C)

α 7→ dα− β ∧ (iT dα).

Choose α ∈ Ωp
f (M, C), then

d2
T ,β(α) = dT ,β(dα− β ∧ (iT dα)) = β ∧ d ◦ iT ◦ dα− β ∧ d ◦ iT ◦ dα = 0.

Consequently we can consider the cohomology groups corresponding to dT ,β ,
that we will denote by H∗

T ,β(M, C). If one considers the complex Ωk
f (M) of

k-forms on M fixed by f the maps

i : Ωk
T ,f (M, C) → Ωk

f (M)/〈β〉; χ : Ωk
f (M)/〈β〉 → Ω∗

T ,f (M, C),

where i is the natural projection and χ[σ] = σ−β∧ iT σ, induce an isomorphism
between H∗

T ,β(M, C) and the cohomology of the complex Ωk
f (M)/〈β〉 together

with the restriction of the usual differential operator on Ω∗(M).

Proposition 5.3.31. Let M2n+1 be a manifold in the class T0 with CR-structure
Φ1,0 on M. With the usual notation assume f ∈ Isom(M) for some Riemannian
metric on M. Then X = M ×f R is Kahler if and only if there exists a closed
form Φ on M such that Φ| ker ω is of type (1, 1) with respect to the holomorphic
transverse structure and positive, f∗Φ = Φ and the form µ = τ−1(iT Φ)1,0 +
τ̄−1(iT Φ)0,1 verifies dMµ ∧ ω = 0 and 0 = [LT µ] ∈ H1

T ,ω(M, C).

Remark 5.3.32. Under the above hypothesis the flow induced by ∂
∂s is an iso-

metric flow with zero Euler class. Recall also that if M is a compact Riemannian
manifold then Isom(M) is compact (see [Kob72]).
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Proof. ⇒) : We choose a Kähler form Ψ0 on X. We denote by ϕs the 1-parameter
group associated to ∂

∂s and by L the closure in Isom(X) of the abelian group
generated by ϕs which is compact for ∂

∂s generates an isometric flow on X. We
define

Ψ1(·, ·) =
∫

L
Ψ0(σ∗·, σ∗·)

where we integrate with respect to the Haar measure on L. The (1, 1)-form
Ψ1 is closed and positive on X, therefore it is a Kähler form on X. Moreover,
when expressed in local coordinates its coefficients do not depend on s. Set now
Ψ := π∗Ψ1 where π : M× R → X is the natural projection and Φ := Ψ|M. Note
that we need not fix s0 ∈ R since Ψ|M does not depend on s. The form Φ is
closed and Φ| ker ω is of type (1, 1) and positive on the leaves V of the foliation
associated to ker ω. Moreover if (z, z̄, t) are local coordinates on M such that
T = ∂

∂t , z, z̄ are coordinates on V , that is, F = {z = const, z̄ = const} and
V = {t = const}, and s is the coordinate on R, the form Ψ has an expression of
the type:

Ψ =
n∑

j,k=1

Ajk(z, z̄, t)dzj ∧ dz̄k +
n∑

j=1

Hj(z, z̄, t)dzj ∧ (ds + τdt) +

n∑
j=1

Hj(z, z̄, t)dz̄j ∧ (ds + τ̄ dt) + F (z, z̄, t)dt ∧ ds.

We set A :=
∑n

j,k=1 Ajk(z, z̄, t)dzj∧dz̄k and H :=
∑n

j=1 Hj(z, z̄, t)dzj∧(ds+τω)
so that

Ψ = A + H ∧ (ds + τω) + H ∧ (ds + τ̄ω) + F (z, z̄, t)ω ∧ ds. (∗)

Note that H = τ−1(iT Φ)1,0 and H = τ̄−1(iT Φ)0,1. Note that dMA = dtA and
∂MH = ∂̄MH = 0. Moreover iT A = i ∂

∂s
A = 0. The form Ψ is closed if and only

if the following two equations hold:{
dMA + (τdMH + τ̄ dMH) ∧ ω = 0 (I)

dMH + dMH + dMF ∧ ω = 0 (II)

which imply dMA + (τ − τ̄)dMH ∧ ω = 0. The form Φ has local expression

Φ = A + (τH + τ̄H) ∧ ω.

Since F ∗Ψ = Ψ where F : M× R → M× R is defined as F (x, s) = (f(x), s + 1)
and the coefficients of Ψ do not depend on s we have f∗Φ = Φ. The form
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µ = τ−1(iT Φ)1,0+τ̄−1(iT Φ)0,1 = H+H verifies dMµ = dMH+dMH = −dMF ∧ω

so dMµ∧ω = 0 and LT µ = dMF−iT dMF∧ω = dT ,ω(F ). Finally, from F ∗Ψ = Ψ,
f∗ω = ω and the uniqueness of the decomposition on (∗) it follows that f∗F = F .
⇐) : The form Φ is a well defined closed form on X = M ×f R. We begin by
modifying it so that we obtain a well-defined real (1, 1)-form on X. Set

Φ0 := Φ + τ−1(iT Φ)1,0 ∧ ds + τ̄−1(iT Φ)0,1 ∧ ds = Φ + µ ∧ ds.

Recall that v = T −τ ∂
∂s is a holomorphic vector field. Moreover we can complete

v to a local basis of vector fields of type (1,0) by adding ∂
∂z1

, ..., ∂
∂zn

where z1, ..., zn

are holomorphic coordinates on V = kerω as before. Then

i ∂
∂zj

Φ0 = i ∂
∂zj

Φ− τ−1(iT ◦ i ∂
∂zj

Φ) ∧ ds

so i ∂
∂zk

◦ i ∂
∂zj

Φ0 = 0 (for Φ is of type (1,1) on V ) and

iv ◦ i ∂
∂zj

Φ0 = iT ◦ i ∂
∂zj

Φ− iT ◦ i ∂
∂zj

Φ = 0.

The same arguments show that Φ0 has no part of type (0, 2) with respect to the
complex structure on X. We would like to complete Φ0 to a closed (1, 1)-form Φ̃
on X of the form

Φ̃ := Φ0 + iFα ∧ ᾱ

where F is a function on M such that f∗F = F . The condition dΦ̃ = 0 is
equivalent to

dMµ + d

(
F

2 Im τ

)
∧ ω = 0.

Since dMµ ∧ ω = 0 by Cartan’s lemma dMµ = β ∧ ω. Therefore LT µ = iT β ∧
ω − β = dG − iT dG ∧ ω for some function G on M such that f∗G = G. Since
β + dG = (iT β + iT dG) ∧ ω we conclude dMµ + dG ∧ ω = 0 and it is enough to
choose F := (2 Im τ)G + K where K is a positive constant.

Essentially the same argument proves the following:

Proposition 5.3.33. Let M2n+1 be a manifold in the class T with CR-structure
Φ1,0 on M. With the usual notation assume f ∈ Isom(M) for some Riemannian
metric on M. Then X = M×f R is Kahler if and only if there exists a closed pos-
itive form Φ on M such that Φ| ker ω is of type (1, 1) with respect to the holomor-
phic transverse structure, f∗Φ = Φ and the form µ = τ−1(iT Φ)1,0 + τ̄−1(iT Φ)0,1

verifies dMµ = dMG∧ω+G∧dMω for some function G on M such that f∗G = G.



Chapter 6

Examples of compact complex

surfaces

In this chapter we discuss some examples of compact complex surfaces that can
be obtained by means of the constructions in chapter 4. Let M3 be a compact
connected manifold in the class T and let S be a compact complex surface
obtained as in proposition 4.3.1 on the total space of a S1-principal bundle over
M3 (case (B), note that S ∼= M3 × S1, i.e. case (A), is included in this one) or
as in proposition 4.4.2, i.e. case (C), on a suspension of M3 by f ∈ AutT (M3).
Since S admits a holomorphic vector field v without zeros, it is well known that
S must be minimal, we will include here the proof for the sake of completeness.

Lemma 6.1. Let S be a compact complex surface and v a holomorphic vector
field on S without zeros. Then S is minimal.

Proof. Assume that there exists a holomorphic curve C ∼= S2 such that (C,C) =
−1. Since C does not admit any deformation the vector field v must be tangent
to C at every point. Therefore v must have a singularity, which contradicts the
hypothesis.

We recall now the classification of minimal compact complex surfaces admit-
ting a non-trivial holomorphic vector field (see [DOT00] and [DOT01]):

Theorem 6.2. A compact minimal surface S admits a non-trivial holomorphic
vector field if and only if it belongs to the following list:

1. kod(S) ≥ 0.
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(a) Complex tori.

(b) Principal Seifert fibre bundles over a Riemann surface with fibre an el-
liptic curve.

2. kod(S) = −∞ and S is Kählerian.

(a) Holomorphic fibrations with fibre P1 and structural group C∗ over a Rie-
mann surface of genus g ≥ 1, P2 and the Hizerbruch surfaces Fn with
n = 0, 2, ...

(b) Holomorphic fibrations with fibre P1 and solvable connected structural
group over a Riemann surface of genus g ≥ 1 such that the associated
line bundle has a non-trivial holomorphic section.

3. kod(S) = −∞ and S non-Kählerian.

(a) Almost-homogeneous Hopf-surfaces.

(b) Inoue surfaces of type S+
N,p,q,r,t.

(c) Some particular surfaces of class V II+
0 .

With the exception of the case 3(c) the last result has been known for a
long time, see also [Miz78] and [CHK73]. A classical argument by Blanchard
(see [Ghy96a]) shows that every holomorphic vector field v on a ruled surface
preserves the fibration. Thus, either v is tangent to the fibre P1 or projects over
a non trivial vector field of the base. Since P2 and Riemann surfaces of genus
g ≥ 2 do not admit vector fields without zeros it follows that the only surfaces in
case 2 which can admit vector fields without zeros are some ruled surfaces over
an elliptic curve. On the other hand it is known that surfaces in cases 3(b) and
3(c) only admit vector fields with zeros. Thus, taking into account that v has
no zeros, we can conclude that a priori we have the following list of possibilities
for S:

(I) Complex tori.

(II) Principal Seifert fibre bundles over a Riemann surface of genus g ≥ 1 with
fiber an elliptic curve (this includes hyperelliptic, Kodaira and properly
elliptic surfaces).

(III) Ruled surfaces over an elliptic curve.

(IV) Almost-homogeneous Hopf-surfaces.
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Our next goal is to determine which of the previous surfaces are obtained by
our constructions for each possible choice of the manifold M3 in the class T . We
will make use essentially of two criteria: whether the resulting complex surface S
is Kählerian or not and a study of the analytic (or differential) universal covering
of S. Recall that surfaces in the classes (I) and (III) are always Kählerian
whereas those in the class (IV) are non-Kählerian. Note also that an elliptic
fibre bundle over P1 is either a product or a Hopf surface (cf. [BPVdV84],
p.146), therefore we can impose genus g ≥ 1 in case (II) without any loss of
generality. For Seifert principal fibrations over a Riemann surface Ng with g ≥ 1,
by theorem 5.2.1, we know that the total space is Kähler if and only if the Euler
classes are zero.

Finally we will make use of the following classical argument:

Lemma 6.3. The analytic universal covering of a Seifert fibre bundle S over
a Riemann surface N of genus g(N) ≥ 1 with fibre F is either D × F̃ or C × F̃
where F̃ is the analytic universal covering of F.

Proof. Taking a suitable ramified covering Ñ of N we obtain an analytic fibre
bundle S̃ → Ñ with fibre F such that S̃ is a smooth covering space of S. From
the inequality g(Ñ) ≥ g(N) = 1 we deduce that the universal covering of Ñ is
D or C. By pull-back we obtain a fibration π : X → D or π : X → C that is
analytically trivial since D and C are contractible and Stein (by Oka’s principle,
see [Gra58]), hence X ∼= D × F̃ or X ∼= C × F̃. Finally, it is clear that X is the
analytic universal covering of S̃, and consequently of S.

Thus we conclude that the analytic universal covers of the previous surfaces
are: C2 for complex tori, C2 or D × C for case (II), P1 × C or P1 × D for case
(III) and C2\{0} for Hopf surfaces. The previous lemma will also allow us to
classify all connected compact 3-manifolds in the class T . We can sum up the
information we have gathered up to now in the following table :

Surface Kähler Universal covering

Complex tori Yes C2

Principal elliptic Seifert fibre bundles Iff the Euler C2 or D× C
over a Riemann surface Ng, g ≥ 1 classes are zero

Ruled surfaces over an elliptic curve Yes P1 × C or P1 × D
Hopf surfaces No C2\{0}
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Let M3 be a compact connected 3-manifold in the class T for a CR-structure
Φ1,0, a CR-action induced by a vector field T and a 1-form ω. We denote by
F the flow induced by the vector field T . Recall that in order to apply the
construction of proposition 4.3.1, case (B), we must choose a S1-fibre bundle
over M and a connection 1-form α such that dα ∈ Ω1,1(M/F).

Assume that F is an isometric flow induced by a Killing vector field T and
that ω is a characteristic 1-form of F on M defining a normal almost contact
structure. If the flow F is isometric then H2(M/F) ∼= C (see section 1.5) and
in particular the flow F is homologically orientable. Furthermore the transverse
part of F has complex dimension 1 and the flow is transversely Kählerian, hence
by the Hodge decomposition theorem for transversely holomorphic flows (see
section 1.6) one has H2(M/F) ∼= H1,1(M/F) ∼= C. Applying Gysin’s exact
sequence for isometric flows (see [RP01]) it follows that if [dω] 6= 0 in H2(M/F)
then the map H2(M/F) → H2(M) is identically trivial. Indeed, one has

. . .H0(M/F) δ−−−−→ H2(M/F) i∗−−−−→ H2(M)
R ∗

−−−−→ H1(M/F) . . .

where i∗ is the map induced by the inclusion,
∫ ∗ the integral along the leaves

and δ[c] = [c ∧ dω]. Since H2(M/F) ∼= C, if [dω] 6= 0 in H2(M/F) then Im δ =
H2(M/F) = Ker i∗. Therefore if the Euler class of F is not zero, that is, if
[dω] 6= 0 in H2(M/F), then the only S1-principal bundles p : X → M which
admit a complex structure by the construction of proposition 4.3.1 are the flat
ones. Recall that to apply proposition 4.3.1 the S1-principal bundle p : X → M
must admit a connection form α such that dα ∈ p∗Ω1,1(M/F). Then if [dω] 6= 0
in H2(M/F) the previous discussion shows that [dα] = 0 in H2(M), that is, the
fibre bundle p : X → M is flat. If H2(M, Z) has no torsion then the fibre bundle
is topologically trivial.

Proposition 6.4. With the notation above, if S is a complex surface obtained
from M3 as in proposition 4.3.1, case (B), then:

(a) S is parallisable.

(b) If [dα] 6= 0 or [dω] 6= 0 in H2(M/F) then S is not Kählerian.

Proof. (a) Recall that every compact orientable 3-manifold is parallisable. Using
the connection form α we take a horizontal elevation to S of a basis of global
vector fields of M3. The vector fields that result together with the fundamental
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vector field of the S1-action are a parallism for S. In particular the tangent
bundle is topologically trivial.
(b) As the flow associated to a S1-fibre bundle is always isometric, this is a
consequence of proposition 5.1.7.

On the other hand the classification of transversely holomorphic flows on
a compact connected 3-manifold (see [Bru96] and [Ghy96b]) together with the
condition of the existence of a CR-structure and a transverse CR-action give a
short list of possibilities for M3 in the class T . Indeed we prove the following:

Theorem 6.5. Let M3 be a compact connected manifold of dimension 3 in the
class T . Then, up to diffeomorphism, the manifold M3 and the vector field
inducing the CR-action belong to the following list:

(i) Seifert fibrations over a Riemann surface with a vector field tangent to the
fibres such that the isometric flow of the action admits a characteristic
1-form ω such that dω is of type (1, 1).

(ii) Linear vector fields in T3.

(iii) Foliations on S3 induced by a singularity of a holomorphic vector field in
C2 in the Poincaré domain and their finite quotients, i.e. foliations on the
lens spaces Lp,q.

(iv) Suspensions of a holomorphic automorphism of P1 with a vector field tan-
gent to the flow associated to the suspension.

Moreover, all the previous manifolds admit a normal almost contact structure
such that the CR-action is the one induced by the corresponding vector field.

In the first case we described a family of CR-structures and transverse CR-
actions in chapter §2. For T3 a suitable closed linear form provides a CR-
structure adapted to the vector field. In (iii) we can choose the canonical contact
structure on S3 as the CR-structure. Finally, for suspensions of P1 the tangent
space of P1 defines a Levi-flat CR-structure which is compatible with the vector
field. In the classification of transversely holomorphic flows there are two more
cases that are not in the class T :

(v) Strong stable foliations associated to suspensions of hyperbolic diffeomor-
phisms of T2.
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(vi) C× R\{(0, 0)}/ ∼ where (z, t) ∼ (λz, 2t) for λ ∈ C such that |λ| > 1 with
the flow induced by the vertical vector field ∂

∂t .

To prove the theorem it is enough to rule out these two cases. The flows in
(v) are examples of non-isometric Riemannian flows (see [Car84]), note that if
they admitted an invariant CR-structure together with a transverse CR-action
they would be isometric (see section 1.5), therefore they cannot be in the class
T . The manifolds in (vi) are excluded by the following proposition:

Proposition 6.6. Let M3 be C×R\{(0, 0)}/ ∼ where (z, t) ∼ (λz, 2t) for λ ∈ C
such that |λ| > 1 with the flow F induced by the vertical vector field ∂

∂t . The
manifold M3 cannot admit a normal almost contact structure with a CR-structure
transverse to F and a CR-action tangent to F .

Proof. Suppose that M3 admits a CR-structure Φ1,0 transverse to F and a vector
field T tangent to F inducing a CR-action, i.e. M3 is in the class T . Let us
define a complex structures on X = M3 × S1 as in proposition 4.2.1. Since X is
homeomorphic to S2 × S1 × S1 the complex surface X must be a ruled surface
over an elliptic curve (if it were an elliptic fibre bundle with base P1 it would
be trivial, thus a product, which is also a ruled surface). However we will see
that this is a contradiction. Recall that the universal covering of a ruled surface
over an elliptic curve is either D×P1 or C×P1. By construction of the complex
structure on X = M × S1 we have that t + τs is a holomorphic coordinate for
some τ ∈ C\R, therefore the analytic universal covering X̃ = C×R\{(0, 0)}×R
of X admits a holomorphic projection p : X̃ → C defined by p(z, t, s) = z with
fiber an open subset of C. As P1 is compact by the maximum principle it is
immersed in the fibers of p, which is a contradiction.

Recall that when one complexifies M3 by means of the construction in propo-
sition 4.3.1, case (B), we are able to decide if the resulting complex surface is
Kählerian only when the flow is isometric. This is always the case for the flows
in (i) and (ii), the flows in (iii) are isometric if and only the flow is given by
ϕt[z1, z2] = [eiµ1tz1, e

iµ2tz2] where µ1/µ2 ∈ R and the flows in (iv) are isometric
if and only if the automorphism is a rotation (cf. [Car84]).

Theorem 6.7. Let S be a compact complex surface obtained from a manifold
M3 in the class T by means of the constructions of cases (A), (B) or (C). Then:
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(i) Assume that M3 is a Seifert fibration. In case (B) the surface S is an
elliptic Seifert principal fibre bundle over a Riemann surface Ng with g ≥
1. Moreover S is Kählerian if and only if eF (M) = 0 and the S1-principal
bundle π : S → M is topologically trivial.

(ii) Assume M3 ∼= T3. In case (B), when π : S → M is a topologically trivial
fibration the surface S is a complex torus, otherwise S is a non-Kählerian
elliptic Seifert principal fibre bundle over a Riemann surface Ng with g ≥
1. In case (C) we can obtain a complex torus or a Seifert elliptic principal
fibre bundle over a Riemann surface Ng with g ≥ 1.

(iii) If M3 ∼= S3 or M3 ∼= Lp,q then S is a Hopf surface.

(iv) Assume that M3 is the suspension of an automorphism of P1. If S → M3

is a S1-bundle which is not topologically trivial then S is a Hopf surface.
Otherwise it is a ruled surface over an elliptic curve.

Remark 6.8. The 3-manifolds in the previous list might admit different CR-
structures for which the above vector fields define transverse CR-actions. Nev-
ertheless the statements in the theorem are true for the corresponding complex-
ifications independently of the normal almost contact structure.

We can always regard case (A) as a particular case of case (B) for the trivial
fibre bundle. In the case (i) we will partially discuss the surfaces that can be
obtained by the construction of case (C) in the next proposition, when M3 is
the total space of a S1-principal bundle instead of a Seifert fibration. Finally,
note that for all the previous 3-manifolds M3 in cases (ii), (iii) and (iv) the
cohomology group H2(M, Z) has no torsion, therefore a S1-principal bundle over
M is flat if and only if it is topologically trivial.

Proof. (i) The first statement is clear and the second one follows directly from
theorem 5.2.1, for the second cohomology group of a Riemann surface has no
torsion.
(ii) Assume that we have a topologically trivial S1-principal bundle π : S → T3.
We obtain a Kählerian surface S homeomorphic to (S1)4. If we assume that
dω = 0, where ω denotes the 1-form of the normal almost contact structure, and
S = T3 × S1 we obtain a complex torus. Since every deformation of a complex
torus is a complex torus (cf. [Cat02]) we conclude that when the S1-principal
bundle π : S → T3 is topologically trivial S is a complex torus. Otherwise, that
is, if the S1-principal bundle π : S → T3 is not topologically trivial, the surface S
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cannot be Kähler (by theorem 5.2.1) and its universal covering is R4, therefore it
must be a non-Kählerian principal elliptic Seifert fibre bundles over a Riemann
surface Ng with g ≥ 1. In case (C), since the universal covering is R4 we must
be in case (I) or (II).
(iii) It is enough to consider the case M3 = S3. As H2(S3, Z) = 0 every S1-
principal bundle over S3 is topologically trivial so in case (B) the surface S is
homeomorphic to S3 × S1. In particular S is not Kählerian and we obtain a
primary Hopf surface. For Lp,q we obtain secondary Hopf surfaces. On the
other hand, since Diff+(S3) is connected (by Cerf’s theorem, c.f. [Cer68]) in
case (C) the surface S is also homeomorphic to S3×S1 and the same arguments
apply.
(iv) Assume first that p : S → M is a S1-principal bundle which is not topologi-
cally trivial, that is, [dα] 6= 0. Note that in this case S is not Kählerian. On the
other hand the universal covering of M3 is p : S2 × R → M3 so by pull-back of
the S1-principal bundle π : S → M3 we obtain a fibre bundle with total space a
product of a finite quotient of S3 times R. It follows that S3×R is the universal
covering of S and we can conclude. If S → M3 is topologically trivial the uni-
versal covering is S2 × R2. Note that since AutC(P1) = PSL(2, C) is connected
M3 ∼= S2 × S1. Moreover the universal covering of S is S2 × R2. Therefore S is
a ruled surface over an elliptic curve.

Proposition 6.9. Let M3 be a S1-principal bundle over a Riemann surface B
endowed with a normal almost contact structure and let S be a compact complex
surface obtained from M3 by means of the construction of case (C). Then:

(a) When B is a Riemann surface Ng of genus g ≥ 2, the surface S is a Seifert
fibration over Ng with fibre an elliptic curve.

(b) When B = P1 the surface S is a ruled surface over an elliptic curve when
eF (M) = 0 and a Hopf surface when eF (M) 6= 0.

(c) When B is an elliptic curve the surface S is either a complex torus or a
principal elliptic Seifert bundle over an elliptic curve.

Moreover if eF (M) 6= 0 the surface S is not Kählerian

Proof. (a) Assume now that we are in case (C) and let S be the suspension of M
by f ∈ AutT (M). As f preserves the vector field of the CR-action it preserves
the fibration of M and projects over an automorphism f̃ of Ng. Up to a finite
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covering we can assume that f̃ = id, for AutC(Ng) is a finite group when g ≥ 2.
It is not difficult to see that an automorphism preserving such a normal almost
contact structure and projecting over the identity can only be ϕt0 , where ϕt

is the 1-parameter group corresponding to the vector field T of the action and
t0 ∈ R+ (it is enough to impose the conditions f∗T = T and f∗ω = ω). It
follows that, up to a finite covering, S is an elliptic fibration over Ng, which is
Kähler if and only eF (M) = 0. Thus S is a Seifert principal elliptic fibre bundle
over Ng with fibre an elliptic curve. Finally notice that there is a finite analytic
covering of S which is Kähler if and only if eF (M) = 0 (as the total space of
the finite covering is the product M× S1 the criterium of theorem 5.2.1 can be
applied). To conclude it is enough to notice that a finite analytic covering of S
is Kählerian if and only if S is Kählerian.
(b) Note that eF (M) = 0 if and only if the S1-principal bundle is topologically
trivial. The S has universal covering S2 × R2 if eF (M) = 0 and S3 × R if
eF (M) 6= 0, which allows us to conclude.
(c) It enough to notice that the universal cover must be C2, therefore we can
obtain a complex torus or a principal elliptic Seifert bundle over an elliptic curve.
Moreover if eF (M) 6= 0 the surface S is not Kählerian, therefore it cannot be a
complex torus.
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