b | X

N

Universitat de Lleida

Management of Cloud systems applied to eHealth

Jordi Vilaplana Mayoral

Diposit Legal: L.1439-2015
http://hdl.handle.net/10803/311417

—G)
Management of Cloud systems applied to eHealth esta subjecte a una llicéncia

de Reconeixement 3.0 No adaptada de Creative Commons

Les publicacions incloses en la tesi no estan subjectes a aquesta llicéncia i es mantenen sota
les condicions originals.

(c) 2015, Jordi Vilaplana Mayoral

http://creativecommons.org/licenses/by/3.0/deed.ca
http://creativecommons.org/licenses/by/3.0/deed.ca

Management of Cloud systems applied to eHealth
by
Jordi Vilaplana Mayoral

Submitted to the Department of Computer Science and Industrial
Engineering
in partial fulfillment of the requirements for the degree of

PhD Thesis in Engineering and Information Technology
at the
UNIVERSITY OF LLEIDA
September 2015
(© Universitat de Lleida 2015. All rights reserved.

Thesis SUPETVISOTttt
Francesc Solsona

Associate professor

Thesis SUPEIVISOTttt
Francesc Abella

Adjunct Professor

Management of Cloud systems applied to eHealth
by
Jordi Vilaplana Mayoral

Submitted to the Department of Computer Science and Industrial Engineering
on July 21, 2015, in partial fulfillment of the requirements for the degree of
PhD Thesis in Engineering and Information Technology

Abstract

Background: Cloud computing is a new paradigm that is changing how companies,
institutions and people understand, perceive and use current software systems. With this
paradigm, organizations have no need to maintain their own servers, nor host their own soft-
ware. Instead, everything is moved to the Cloud and provided on demand, saving energy,
physical space and technical staff. Cloud-based system architectures provide many advan-
tages in terms of scalability, maintainability and massive data processing. The healthcare
sector can greatly benefit from these advantages.

Methods: Queueing theory and nonlinear programming were used respectively as a
mathematical approach to modelling Cloud-based architectures and to develop an algo-
rithm aimed at reducing both energy consumption and response time. An event-driven
simulator was used to implement and compare some of these techniques. Finally, two
eHealth applications were designed, deployed and tested in a real Cloud environment.

Results: This thesis explores techniques, models and algorithms for an efficient man-
agement of Cloud systems and how to apply them to the healthcare sector in order to
improve current treatments. It presents two Cloud-based eHealth applications to telemon-
itor and control smoke-quitting and hypertensive patients. Different Cloud-based models
were obtained and used to develop a Cloud-based infrastructure where these applications
are deployed. The results show that these applications improve current treatments and that
can be scaled as computing requirements grow.

Conclusions: Multiple Cloud architectures and models were analyzed and then imple-
mented using different techniques and scenarios. The Smoking Patient Control (S-PC) tool
was deployed and tested in a real environment, showing a 28.4% increase in long-term ab-
stinence. The Hypertension Patient Control (H-PC) tool, was successfully designed and
implemented, and the computing boundaries were measured.

Resum

Introduccié: La computacié al Niivol és un nou paradigma que estd canviant com les
empreses, les institucions i la gent entenen, perceben i usen els sistemes de programari
actuals. En aquest paradigma, les organitzacions no tenen la necessitat de mantenir els
seus propis servidors ni d’allotjar el seu propi programari. En canvi, tot aixo es mou al
Nuvol i es proporciona sota demanada, estalviant energia, lloc fisic i personal técnic. Les
arquitectures dels sistemes basats en el Nuvol ofereixen multiples avantatges en termes
d’escalabilitat, manteniment i processament massiu de dades. El sector de la salut pot
beneficiar-se ampliament d’aquests avantatges.

Metodes: La teoria de cues i la programacié no linial s’han utilitzat com una aproximacio
matematica per modelar arquitectures basades en el Nuvol i per desenvolupar un algorisme
amb l'objectiu de reduir tant el consum energetic com el temps de resposta, respectiva-
ment. Un simulador basat en esdeveniments s’ha utilitzat per implementar i comparar
algunes d’aquestes técniques. Finalment, dues aplicacions de salut electronica (eHealth)
s’han dissenyat, desplegat i provat en un entorn real al Ntuvol.

Resultats: Aquesta tesi explora téniques, models i algorismes per una gestié eficient en
sistemes al Nuivol i com aplicar-ho en el sector de la salut per tal de millorar els tractaments
actuals. Presenta dues aplicacions de salut electronica basades en el Nuvol per telemoni-
toritzar i controlar pacients fumadors i hipertensos. S’ha obtingut diferents models basats
en el Nuvol i s’han utilitzat per a desenvolupar una infraestructura on desplegar aquestes
aplicacions. Els resultats mostren que aquestes aplicacions milloren els tractaments actuals
aixi com escalen a mesura que els requeriments computacionals augmenten.

Conclusions: Miiltiples arquitectures i models han estat analitzats i implementats util-
itzant diferents técniques i escenaris. L’aplicacié Smoking Patient Control (S-PC) ha estat
desplegada i provada en un entorn real, aconseguint un augment del 28,4% en ’abstinencia
a llarg termini de pacients fumadors. IL’aplicacié Hypertension Patient Control (H-PC)
ha estat dissenyada i implementada amb exit, i els seus limits computacionals han estat
mesurats.

Resumen

Introduccién: La computacién en la Nube es un nuevo paradigma que estd cambiando
como las empresas, instituciones y la gente entienden y usan los sistemas de software ac-
tuales. En este paradigma, las organizaciones no tienen la necesidad de mantener sus
propios servidores ni de alojar su propio software. En cambio, todo esto se mueve a la
Nube y se provee bajo demanda, ahorrando energia, espacio fisico y personal técnico. Las
arquitecturas de los sistemas basados en la Nube ofrecen multiples ventajas en términos de
escalabilidad, mantenimiento y procesamiento masivo de datos. El sector de la salud puede
beneficiarse ampliamente de estas ventajas.

Métodos: La teorfa de colas y la programacién no lineal se han utilizado como una
aproximacion matematica para modelar arquitecturas basadas en la Nube y para desarrol-
lar un algoritmo con el objetivo de reducir tanto el consumo energético como el tiempo de
respuesta, respectivamente. Se ha utilizado un simulador basado en eventos para implemen-
tar y comparar algunas de estas técnicas. Finalmente, dos aplicaciones de salud electrénica
(eHealth) se han disenado, desplegado y probado en un entorno real en la Nube.

Resultados: Esta tesis explora ténicas, modelos y algoritmos para una gestién eficiente
de sistemas en la Nube y como aplicarlos en el sector de la salud con el fin de mejorar
los tratamientos actuales. Presenta dos aplicaciones de salud electrénica basadas en la
Nube para telemonitorizar y controlar pacientes fumadores e hipertensos. Se han obtenido
diferentes modelos basados en la Nube y se han utilizado para desarrollar una infraestructura
donde desplegar estas aplicaciones. Los resultados muestran que estas aplicaciones mejoran
los tratamientos actuales asi como escalan a medida que los requerimientos computacionales
aumentan.

Conclusiones: Miiltiples arquitecturas y modelos han sido analizados e implementados
utilizando diferentes técnicas y escenarios. La aplicaciéon Smoking Patient Control (S-PC)
se ha desplegado y probado en un entorno real, consiguiendo un aumento del 28,4% en
la abstinencia a largo plazo de pacientes fumadores. La aplicacién Hypertension Patient
Control (H-PC) ha sido disenada e implementada con éxito, y sus limites computacionales
han sido medidos.

Our greatest weakness lies in giving up.
The most certain way to succeed is always to try just one more time.

— Thomas A. Edison

Acknowledgments

Doing this PhD has been an eye-opening experience and a great opportunity. It has
been tough at times, and I had to step out of my comfort zone, but it has taught me
a lot and I am truly happy that I have had a chance to complete it. It would not have
been possible without all those people who helped me along this journey. First of all,
I would like to thank my supervisors, Dr. Francesc Solsona and Dr. Francesc Abella,
whose constant attention and care pushed me unhurriedly and steadily throughout
this adventure.

I want to acknowledge Prof. Yaxin Bi for being an excellent host and supervisor
during my doctoral stay at the Ulster University, and for providing valuable comments
and suggestions on improving my work.

I would like to thank all the past and current members of the Department of Com-
puter Science and Industrial Engineering, at the University of Lleida. In particular,
I thank Fernando Cores, Francesc Giné, Fernando Guirado, Josep Lluis Lérida and
Concepcié Roig. I also want to thank my past and current co-workers, Eloi Gabaldoén,
Ivan Teixid6, Jordi Mateo, Jordi Lladods, Ismael Arroyo, Miquel Orobitg, Josep Rius
and Anabel Usié, for being such a wonderful bunch of people, I have had a great
time with them. I also want to mention Montse Espunyes for being the best clerk a
department can hope for.

I would also like to thank my friends and family for the support they have pro-
vided me with throughout my life, especially my parents, Ignasi and Conxita, who
exposed me to all sorts of opportunities as I grew up, and have always been incredibly
encouraging of everything I wanted to do. Also Ignasi and Anna, for being a great
brother and sister-in-law. And in particular, I must acknowledge my wife and best
friend, Agata, without whose love, encouragement and assistance, I would not have

finished this thesis.

Jordi Vilaplana
Lleida, Catalonia
10 September 2015

12

13

14

Contents

1 Introduction and scope of the research 21
1.1 Modelling Cloud systems 22
1.1.1 Queueing Theory 24
1.1.2 Nonlinear programming 25
1.1.3 Cloud simulation 26
1.1.4 Cloud platform 28

1.2 Cloud computing challenges and issues 29
1.2.1 Reliability, availability and serviceability 30
1.2.2 System security, user privacy and trust issues 30
1.2.3 Performance and energy consumption issues 31

1.3 Motivations for eHealth 32
1.4 Description of eHealth 33
1.5 Applied cases: Smoking and Hypertension 33
1.5.1 Smoking 34

1.5.2 Hypertension 36

1.6 Research objectives o 38
1.7 Related Work and Contributions 39
1.8 Publications 41
1.8.1 Journal publications 41

1.8.2 Conference publications and attendance 42
1.8.3 Other publications 43

1.9 Three-month doctoral stay 44

2 Methodology 47

2.1 Paper 1: A queuing theory model for cloud computing A7

2.2 Paper 2: An SLA and power-saving scheduling consolidation strategy
for shared and heterogeneous clouds 47

2.3 Paper 3: H-PC: a cloud computing tool for supervising hypertensive
patients Lo 48

2.4 Paper 4: S-PC: An e-treatment application for management of smoke-
quitting patients 48
3 Papers 51
4 Global discussion of results 123
5 General conclusions and future directions 127
5.1 Conclusions 127
5.2 Future research directions 128
5.2.1 Internet of Things. 129
5.2.2 Big Data techniques applied to eHealth 130
5.3 Final remarks 130
A Doctoral stay at the Ulster University: Research diary 133
B Paper: A performance model for scalable cloud computing 153

16

List of Figures

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8

Overview of the eHealth Cloud Infrastructure. 22
Cloud service models. oo 23
Queueing theory concept model. 24
Basic CloudSim architecture. 27
Architecture of OpenStack. L. 29
General diagram for Smoking and Hypertension platforms. 34
Smoking application (S-PC) diagram. 36
Hypertension application (H-PC) diagram. 38

17

18

19

20

Chapter 1

Introduction and scope of the

research

Cloud computing has gained worldwide attention in the last few years, not only for its
benefits to the Information and Communication Technology (ICT) industry, but also
for its application in several different fields. This paradigm allows organizations to
delegate their computing infrastructure to a Cloud provider, paying only for what they
are really using. Consequently, many companies have gained access to computational

resources that were limited to high performance computing centers.

Several industries have embraced Cloud computing as a means to improve their
efficiency and productivity, and to offer better service to their customers. The health
care sector can benefit greatly from the advantages of Cloud infrastructures in order

to improve treatment, reduce costs and offer patients better service.

Applying Cloud computing to the health care sector opens new opportunities when
dealing with several medical institutions containing thousands of patients. However,
it is essential to guarantee a certain level of provisioning and performance. This task
can be achieved by means of different techniques and approaches that are dealt with

in this work.

Figure 1-1 shows an overall schema of the work involved in this thesis where Cloud
systems are modelled using such formal mathematical techniques such as queueing

theory and nonlinear programming. Then, performance evaluation is carried out

21

- Cloud Modelling .
- Performance Issues

- Enegery Consumption
k)

I:> fnl;lealth Cloud
L rastructure
Cloud Platform I ﬁ Iél t\’ Smoking

Hypertension

Cloud Simulator I

Queueing Theory

Nonlinear programming

Figure 1-1: Overview of the eHealth Cloud Infrastructure.

through a simulation tool and a Cloud platform, taking performance and energy
consumption issues into account. Finally, the Cloud infrastructure applied to eHealth
is designed. We have dealt mainly with two specific scenarios: hypertension and

smoking.

1.1 Modelling Cloud systems

Cloud systems can be served in three different ways (see Figure 1-2). The first layer,
named Infrastructure as a Service (laaS), consists of offering hardware, storage and
physical devices over the Internet. The Software as a Service (SaaS) layer offers
software and hosted applications over the Internet. Finally, as a combination of both,
the Platform as a Service (PaaS) layer offers the capability of deploying applications
created using programming languages, libraries, services, and tools supported by the
Cloud provider, where the consumer does not manage or control the underlying Cloud

infrastructure, but has control over the deployed applications [23, 38].

22

Moreover, Clouds can be deployed as public, private, hybrid or community, de-
pending on how they are managed. Private Clouds are operated by a single company
or organization, whilst public Clouds are available for external and public usage.
Community Clouds share their infrastructure between multiple companies or organi-

zations. Finally, hybrid Clouds are a composition of the previous deployment models.

On-premise Inirastructt:?: :s a Service Platformp:: g Service SoftwareS:: g Service
| Application | | Application | | Application | | Aplication |
| Data | | Data | l Data J | Data |
| Runtime J L Runtime | L Runtime j [Runtime J
| Middleware | | Middleware | | Micdleware | Middleware |
L Operating System J L Operating System J l Operating System J [Operating System J
| Vinualization | | Vinualization | Vinualizaion | Vinualization |
| Servers J I Servers J | Servers J L Servers J
| Storage | L Storage J L Storage J [Storage l
| Networking | . Networking | Networking | Networking |

. L Managed by end-user J LManaged by cloud provider J ‘

Figure 1-2: Cloud service models.

When handling large amounts of users and data, saturation problems can arise. In
Cloud computing, hardware and software services are efficiently handled, as they can
be added and released dynamically [3]. Problems arise when scaling the system, that
is, when trying to deploy a platform to support the computing needs of many hospitals
with different clinical departments and their corresponding clinicians and patients.
The need for scalability further increases when the Cloud must also provide support
for additional common and specific desktop or Internet applications (administration,

specialized, general purpose, etc.).

23

Models can be designed in order to predict different performance metrics, such
as response time, task blocking probability, immediate service and mean amount of
system tasks [59], for specific scenarios. The models can usually be correctly sized,
thus avoiding or minimizing performance issues. There are several ways to develop

these models.

1.1.1 Queueing Theory

Queueing theory consists of studying queues from a mathematical point of view, and

it provides tools to define several performance metrics [24].

Processing

Entry .EEE

] ==
A =

Database

[

Client Output

— Q< «EEE
\‘Queueing Theory J /

Figure 1-3: Queueing theory concept model.

Figure 1-3 shows a simple queueing theory model. Servers are seen as queueing
nodes, each one with its own arrival (A) and service (u) rates.

Parameters such as the utilization factor (p), the average number of costumers in
the system (V) and the average time in the system (7) can be calculated for different
queues. One of the most widely-used queues is the M /M /1, which represents a one-
server system where both the arrival rate and the service time follow an exponential
distribution. Equations 1.1, 1.2 and 1.3 respectively show how the utilization factor,

average number of customers and the average time in the system are obtained.

24

A
p=—A<p (1.1)
I

N=-L_ (1.2)

==

T

=12 (1.3)

Moreover, several different queues can be modelled depending on multiple factors,
such as the arrival and service distributions or the number of servers. The resulting
analyses sharply grow in complexity with more elaborate models.

Although queueing theory results are not directly applicable to Cloud performance
analysis when there is a large number of servers, the distribution of service times is
unknown or the traffic intensity varies over a wide range [23], these models allow us to
obtain reasonable approximations to the response time distribution of Cloud systems
[61] and determine the level of service and relationship between the maximum number

of tasks and the minimum number of resources.

1.1.2 Nonlinear programming

Like queueing theory, nonlinear programming is a mathematical approach that can
be used to study and model performance issues. A nonlinear programming problem
(NLP) deals with mathematical optimization problems where the objective function
to be maximized or minimized, or some of its constraints, are nonlinear. It is a
technique for solving an optimization problem that is subject to a set of constraints
(equalities and inequalities), over a set of unknown real, integer and Boolean variables,
along with an objective function to be maximized or minimized.

Generally, a NLP can be defined as:

Max(f(xy,xe,..., 7)), (1.4)
s.t. (subject to):

25

(1.5)

Once the NLP has been defined, it can be processed by a solver (i.e. CPLEX,
Ip_solve, Excel Solver Function, etc.) to extract an optimal solution.

Linear and nonlinear programming are widely used in scheduling research [1]. Tt
has been used to design a nonlinear programming scheduling algorithm to minimize

energy consumption and maximize SLA guarantees at the same time.

1.1.3 Cloud simulation

Although queueing theory can provide very efficient models for relatively simple sce-
narios, the complex mathematical analyses hinder us from obtaining simple and fast
solutions for more elaborate systems.

In addition, it is not possible to perform benchmarking tests in dependable, re-
peatable and scalable environments using real Cloud environments [9, 5].

Therefore, Cloud simulator tools are best suited for large Cloud system testing to
decrease the complexity and enable performance analysts to assess system behavior
by focusing on quality issues of specific components under different scenarios [36].

Several Cloud simulators have been specifically developed for the performance
analysis of Cloud computing environments, with CloudSim!, CloudAnalysit [60],
GreenCloud?, iCanCloud®, MDCSim [34], NetworkCloudSim [17] and VirtualCloud*
being the most prominent ones. Among all these tools, CloudSim is considered to
be the most sophisticated [36] and is also the most widely-used and referenced in the
literature.

CloudSim is an event-driven and extensible simulation toolkit that enables Cloud

systems and scenarios to be modelled and simulated. It facilitates the development

1CloudSim webpage: http://www.cloudbus.org/cloudsim/

2GreenCloud webpage: http://greencloud.gforge.uni.lu/

3iCanCloud webpage: http://www.arcos.inf.uc3m.es/ icancloud/Home.html
4VirtualCloud webpage: http://sourceforge.net/projects/virtualcloud/

26

of personalized settings involving multiple data centers, physical hosts and virtual
machines with their own characteristics. It also allows custom allocation policies to
be developed for both user jobs or tasks and for virtual machines. The high level of
customization and its default policies make CloudSim a remarkable tool for simulating

both simple and complex scenarios.

Users Datacenters Hosts VMs Cloudlets

VMs [Jobs (Cloudlets) =_.-_'7@

Allocation - MIPS -# CPU - Length
Policies s - RAM - MIPS -# CPU
. - DISK - RAM - In. size

- BW - BW - Out. size

Broker

\L Cloud Simulator J

Figure 1-4: Basic CloudSim architecture.

L/

A simplified architecture schema of CloudSim is described in Figure 1-4. There
are multiple entities that must be taken into account in CloudSim. A Datacenter is an
entity that represents an aggregation of Hosts. A Host represents a physical machine
with its own computing capacity (as Millions of Instructions per Second or MIPS),
RAM memory, storage space or disk, and bandwidth (BW). Virtual machines (VMs)
are allocated to Hosts following a Virtual Machine Allocation Policy that can be fully
customized. Jobs or tasks are represented by the Cloudlet entity. Each Cloudlet
has its own length (in Millions of Instructions), the required number of processing
elements or CPUs and its input and output size. Cloudlets are allocated to VMs
following a Cloudlet Allocation Policy that can also be fully customized. Finally, the
Broker entity coordinates things between the Datacenters and the Users, receiving
Cloudlets and VMs from the users and scheduling them to the different Datacenters
according to specific policies.

When programming a CloudSim simulation, one must provide the initial Cloud

27

environment, describing the Datacenters, Hosts and types of Virtual Machines. Sim-
ulations can be then performed where simulated users can submit their own VMs and
Cloudlets. Multiple metrics can be obtained and a wide range of scenarios can be
simulated.

Although the CloudSim experimentation performed in the course of this thesis
does not appear in the main articles listed in Chapter 2, some of it can be seen in

Appendix B.

1.1.4 Cloud platform

Cloud platforms allow us to implement our models and deploy our applications within
a real Cloud infrastructure.

Many companies offer commercial Cloud platforms in terms of laaS (Infrastructure
as a Service), where users can purchase their services on a pay-as-you-go basis. Among
the most prominent ones are the Amazon EC2°, Windows Azure® and the Google
Cloud Platform”.

Moreover, there are also several open source Cloud platforms that can be freely
downloaded and installed. OpenStack®, XCP? Eucalyptus'®, OpenNebula!'!, Nim-
bus'? and Apache CloudStack!'® are probably the most mature and best-known ones.

Among all the possible solutions, OpenStack is the one used throughout this work.
The main reasons are its open-source license, the availability of APIs so that user-
deployed applications can interact with the platform and the fact that OpenStack is
a solid and well-known solution adopted by many researchers.

The basic architecture of OpenStack can be seen in Figure 1-5. This platform can

be installed on top of one or several physical machines or servers connected throughout

> Amazon EC2 webpage: http://aws.amazon.com/ec2/
®Windows Azure webpage: http://azure.microsoft.com/
"Google Cloud Platform webpage: https://cloud.google.com/
8https:/ /www.openstack.org/
9XCP webpage: http://www.xenproject.org/

0Eucalyptus webpage: https://www.eucalyptus.com/

" OpenNebula webpage: http://opennebula.org/

12Nimbus webpage: http://www.nimbusproject.org/

13 Apache CloudStack webpage: https://cloudstack.apache.org/

28

User Appllcatlon:
APIs A
< v
Dashboard I I

Compute Networking

.
@

Storage

= \

Shared Services

&Cloud Platform ﬁ ﬁﬁﬁ /

Figure 1-5: Architecture of OpenStack.

a local network. Once installed, OpenStack offers several services distributed in four
different blocks or layers. The compute layer provisions and manages large networks
of virtual machines. The networking layer offers a pluggable and scalable network
and IP address management. The storage layer offers object and block storage capa-
bilities for use with servers and applications. Finally, the shared services layer offers
additional features that expand the three previous layers, such as the identity service
that manages the OpenStack users or the image service that provides capabilities for

managing disk and server images, among others.

1.2 Cloud computing challenges and issues

Cloud computing is a large paradigm and involves many challenges and issues that
can be studied from different ICT perspectives. Cloud architectures must provide
high availability [37], serviceability [55], variability [20], reliability [58] and system

security [62] while maintaining a negotiated performance and being energy efficient.

29

1.2.1 Reliability, availability and serviceability

There are many aspects to take into account in Cloud computing. However, the
reliability, availability and serviceability (RAS) of the Cloud infrastructure are major
aspects of the virtualization technology and require special attention [51].

The reliability of the Cloud systems is critical, although it is hard to analyze due to
its characteristics of massive-scale service sharing, wide-area network, heterogeneous
software and hardware components and the complex interactions between these [10].
Therefore, typical software or hardware reliability models or conventional networks
simply cannot be applied to studying the reliability of Cloud systems. Reliability
models must take into account several types of failures that can have a significant
impact on the overall functioning of Cloud services, such as overflow, timeout, data
resource missing and software, hardware and network failures.

Availability refers to the ratio of time a Cloud system is functional to the total time
it is required or expected to function. This can be expressed as a direct proportion,
a percentage (i.e., 90%) or in terms of average downtime. Delivering a high level of
availability has been a major challenge, as Cloud technology has been deployed on
a large scale, the likelihood of incidents has progressively increased over the last few
years [46].

In Cloud computing, high serviceability indicates the ability to maintain and re-
pair the system easily and it is directly related to fault tolerance. Being able to
detect potential problems is critical in this respect, and once a problem is found,
the maintenance and repair operations should cause as little service disruption as
possible.

This thesis does not focus on these issues.

1.2.2 System security, user privacy and trust issues

Security can be seen as the combination of confidentiality (prevention of the unautho-
rized disclosure of information), integrity (prevention of the unauthorized amendment

or deletion of information), and availability (prevention of the unauthorized withhold-

30

ing of information). Security is the absence of unauthorized access to, or handling of,
the system state [4], and is one of the most significant obstacles for opening up the
new era of the long dreamed vision of computing as a utility [56]. For Cloud users,
privacy means “that nobody else has access to my data” [19]. That is, the ability
of an individual or group to seclude themselves, or information about themselves,
and thereby reveal themselves selectively. Finally, trust is seen as a measurable be-
lief that utilizes experience to make trustworthy decisions. Trust is one of the most
important means of improving security and enabling the interoperability of current
heterogeneous independent Cloud platforms. Moreover, it is a complex relationship
between entities because it is extremely abstract, unstable and difficult to measure
and manage [33].

This thesis does not focus on these issues.

1.2.3 Performance and energy consumption issues

In Cloud computing, a Service-Level Agreement (SLA) is a contract or agreement
between a service provider and a consumer where the former agrees to deliver a
service to the latter under specific terms, such as time or performance. In order to
comply with the SLA, the service provider must monitor its quality of service (QoS)
closely through such performance metrics as response or waiting time, throughput or
makespan [21]. Studying and determining SLA-related issues is a big challenge [20].

In this thesis, a policy named GreenC' was designed to lower energy consumption
while maintaining a desired SLA. GreenC focuses on these two aspects and does
not consider such other Cloud-related issues such as variability, system security and
availability.

Job response time is one of the most important QoS metrics in a Cloud computing
context. Good solutions dealing with QoS and energy consumption have been pre-
sented by some researchers in the literature [6, 25]. However, the model presented in
GreenC aims to obtain the best scheduling consolidation of virtual machines to hosts
taking both criteria into account.

The proposed policy has been theoretically tested by means of nonlinear program-

31

ming and it has been implemented and tested using the OpenStack Cloud platform.

1.3 Motivations for eHealth

Healthcare is a critical area that can benefit from the advantages of Cloud computing.
Although significant work is being done in this field, there is still much to do in order
to bring computer science into the health area. The union of the healthcare and the
information and communications technology (ICT) areas, usually referred as eHealth,
supplies unique and valuable benefits to the healthcare practice. Cloud computing
can offer many opportunities for improving health care services from the viewpoint
of management, technology, security and legality [27].

By moving the infrastructure to the cloud, valuable data extracted from the
databases of treatment, patients, diseases, and so on will be accessible to doctors
for analytical studies and to see statistical results. By hiding the personal details of
patients, data could be shared between doctors and even hospitals, and could also
be cross-referenced between different diseases and treatments. In [50], the authors
examine how the biomedical informatics community, especially consortia that share
data and applications, can take advantage of Cloud computing. Cloud computing
systems offer the illusion of infinite computing resources available on demand, al-
lowing an expansion of the resources when needed. Hardware and software services
are more efficiently handled than in other High Performance Computing (HPC) in-
frastructures as they can be added and released dynamically [2]. However, problems
arise when scaling the system, that is, when trying to deploy a platform to support
the computing needs of many hospitals, with different clinical departments and their
corresponding clinicians and patients. We can say that this health approach can be
extrapolated to many other areas, such as administration, education, social care, etc.

A recent study [16] showed that personalized follow-up by telematic tracking ap-
plications via SMS messaging improved the results of patients trying to quit smoking.
Related experiments also proved that the same method is useful for applications re-

lated with the treatment of hypertensive patients [7] and in patients with chronic

32

disease in general [31]. By using telematic applications, the time dedicated to person-
alized clinical attention to patients increased, and clinicians more effectively scheduled
and managed that time. It also avoided unnecessary travelling by patients, while al-
lowing them to feel closely followed by the clinician. This is just one example of the
benefits that telematic applications can provide, and which are increasingly being

implemented in health centres.

1.4 Description of eHealth

eHealth involves a wide range of aspects related to medicine and healthcare where
information and communication technologies are involved. One of the main ones is
telemedicine, where diagnosis and/or treatment is performed remotely. Other aspects
are the management of electronic health records, electronic prescribing options and
patient data management. Moreover, mHealth refers to the use of mobile devices to
collect and receive data, communicate and perform real-time monitoring.

These systems can integrate multiple aspects of eHealth to provide an enhanced
diagnosis or treatment and improve the existing ones. This work is focused on
telemedicine applications, where patient-doctor communication is partially performed

remotely.

1.5 Applied cases: Smoking and Hypertension

In this thesis, two applied cases were researched and, as a result, two eHealth telemedicine
applications, based on a Cloud infrastructure and delivered in a SaaS model (see
Figure 1-2), were developed. In particular, two eHealth applications for treating
smoke-quitting and hypertensive patients.

Smoking and hypertension have been chosen as applied cases due to the fact that
both conditions involve a strong psychological factor in their treatment, where a close
follow-up and enhanced doctor-patient communication can be decisive for a successful

outcome of the treatment.

33

—> |
_ QJJ
5

{ ® H\
S EE@% =

EA@ s

Figure 1-6: General diagram for Smoking and Hypertension platforms.

Figure 1-6 shows a concept diagram for the two platforms, where doctors and
patients interact with each other by means of the eHealth applications. Doctors
have a web-based dashboard where they can easily communicate with their patients
and check their status in terms of statistics, tables and charts. Patients receive the
scheduled messages from their doctors and can also send their current status back.
The applications react differently depending on their status, allowing doctors to focus
on the ones that need more attention.

In the following subsections, both eHealth applications are thoroughly described.

1.5.1 Smoking

Smoking is a major risk factor for active and passive smokers in certain respiratory
[14] and circulatory diseases [43] as well as in some types of cancer and infections,
among other diseases. Because of this, both public and private medical institutions
in an increasing number of countries provide services for people who want to stop
smoking.

There are several treatments and techniques to achieve abstinence in smoking pa-

tients like the Nicotine Replacement Therapy (NRT). These consist of replacing the

34

source of nicotine using transdermal patches, gums, nasal spray, inhaler or sublin-
gual tablets. NRT has proved effective in treating short-term nicotine withdrawal,

increasing the chances of successfully quitting smoking by between 50% and 70% [54].

However, NRT treatments are not so effective in keeping a patient off smoking over
longer periods of time, after around eight weeks. Quitting smoking is just a first step
and achieving a long-term abstinence in ex-smokers can be a difficult challenge. For
this reason, reinforcing this part of the treatment can be critical in terms of achieving

a successful outcome.

Several cessation programs combine pharmacological treatment with a simultane-
ous psychological treatment to control the progress and reinforce the motivation of
the patient, which can be done on an individual basis [28], in the context of group
therapy [52], or via long-distance support through phone calls [53]. A previous study
proved that individual counselling, combined with telephone counselling were asso-
ciated with higher 52-week abstinence rates than telephone counselling alone [48].
Moreover, previous studies have shown that social support was associated with ces-
sation and short-term maintenance of abstinence [39]. Therefore, there is the need to
develop efficient eHealth tools in order to optimize both the time spent by the clini-
cians who follow a patient and the efficacy of their service, minimizing the probability
of relapse. In consequence, tools are required to allow professionals to follow patients

without making this too time consuming.

There is previous research showing that the use of telephones, mobile phones
and text messages to develop a tighter follow-up of the patients is more effective
for successfully stopping smoking and reducing cigarette consumption [15, 57, 16].
Such contact and follow-up are very important psychological aspects of the process of
quitting smoking, because they provide support and help maintain patient motivation
[11].

In this thesis, an eHealth tool named S-PC (Smoker Patient Control) was designed,
developed and deployed. This tool allows fluid communication between clinicians and
patients while providing the former with an efficient interface to control, manage and

personalize the follow-up and treatment of their patients. It allows clinicians and

35

patients to communicate and interact via mobile text messages (SMS) and e-mails.
Given that this requires a large time investment by health professionals, it is
important for them to have tools that automate this part of the treatment as far as
possible, while maintaining or increasing the efficiency of the professionals. Taking
the facts described in the previous paragraphs into account, it was our objective
to develop and benchmark the effectiveness of an eHealth tool that would: a) be
generally applicable in smoking cessation treatment programs, b) automate much of
the work that needs to be done by the clinicians, ¢) allow professionals to maintain
a personalized support and follow-up of patients more effectively, d) give patients
the psychological support that they require to succeed at stopping smoking, and e)
decrease the time needed by clinicians to manage the patients and reduce the average
length of waiting lists. This tool was named S-PC (Smoker Patient Control). An
additional objective was to understand to what extent patients were satisfied with

being treated using the tool.

Doctor

Patients

db Regular visits

/“‘\/\{\/\ S-PC

\A\Positive reinforcement
Patient status &

Figure 1-7: Smoking application (S-PC) diagram.

1.5.2 Hypertension

Hypertension is a factor of risk in cardiovascular disease, the leading cause of death
worldwide. The difficulty of ensuring satisfactory control of blood pressure is still a
great challenge, despite the major steps that have been taken to improve the lifestyle

through new pharmaceutical treatments [29, 12].

36

Monitoring blood pressure at home consists of patients taking the readings at home
and registering these using a digital device. Then, the patients send the readings to a
health professional, who is responsible for taking appropriate action. One home blood
pressure approach is patient self-management, defined as the ability and willingness
of a patient to self-monitor. Some studies show that self-managed blood pressure

control is at least as, or even better than, office-monitored blood pressure [8, 41].

Our motivation is based on the work published in [26], which demonstrates the

effectiveness of telemonitoring.

High blood pressure monitoring and telemonitoring should become a routine com-
ponent of blood-pressure measurement in the majority of patients with known or
suspected hypertension [47], given that such readings may be better predictors of

cardiovascular and renal outcomes than surgery readings [42, 7].

A telemedicine eHealth application called Hypertension Patient Control (H-PC)
was developed to allow patients to monitor their blood pressure at home and send
the measurements to their clinicians via SMS or e-mail. In addition, through H-PC,
the professional can also send SMS or e-mail messages back to patients. In telemon-
itoring, readings taken at home are relayed by communication media to health-care

professionals who can take appropriate action [44].

Figure 1-8 shows a flow diagram for the H-PC tool. First, the application server
sends a scheduled message to the subscribed patients requesting their blood pressure
readings. Once the patients have measured and sent their readings back to the server,
the system checks whether those readings are within the established limits or not. In
case of abnormally high readings, the system will automatically notify the doctor
about this situation. The doctor, through the application web interface, can check

all the data and decide the best course of action.

The purpose of this tool is not to implement a new protocol or treatment procedure
for hypertensive patients, but rather to develop a telemonitoring application that can

be used by both patients and clinicians in a simple and user-friendly fashion.

37

H-PC server

Blood pressure

readings request , - BP over
@ - limit?

Blood pressures

Patients

Intervention [Alert doctor

@) =

——

Figure 1-8: Hypertension application (H-PC) diagram.
1.6 Research objectives

The main purpose of this thesis is to achieve eHealth solutions through Cloud-based
technologies and architectures, specifically to allow clinicians to control and com-
municate with patients remotely and establish a bidirectional exchange to improve
treatments where such contact is essential for a successful outcome.

To deal with this challenge, the following objectives were defined:

e Develop models to determine performance metrics (i.e. response time, through-
put) and issues (i.e. SLA guarantee, QoS) in Cloud-based architectures. Specif-
ically, design a Cloud system by means of queueing theory and validate it using

the OpenStack Cloud simulator.

e Design of a nonlinear programming scheduling algorithm to optimize both en-

ergy consumption and SLA guarantees.

e Explore and analyze current solutions and environments where these models
can be applied, and design a Cloud architecture for an eHealth environment

and analyze its behaviour with the CloudSim simulator.

38

e Design and implement a Cloud-based eHealth telemonitoring tool for smoke-
quitting patients and test it in a real environment to assess its usefulness through

statistical studies of prevalence.

e Design and implement a Cloud-based eHealth telemonitoring tool for hyperten-
sive patients, tests its performance and scalability and finally, test it in a real

environment.

e Develop a scalable and power-aware Cloud-based infrastructure to support these

applications using the OpenStack platform.

1.7 Related Work and Contributions

In queueing theory, previous research showed that Cloud systems could be mod-
elled through an M/M/m open network [61]. Other theoretical studies evaluated
and analysed more complex queueing theory systems that did not follow exponential
distributions [35]. However, in these complex models it is not possible to obtain a
closed formula to represent the probability distributions of the response or waiting
time of customers in the queue, thus requiring finding approximate models. The
main contribution in this field is the analysis and design of a Cloud-based system,
modelled using M/M/m and M/M/1 queues, with quality of service capabilities (see
Section 2.1). The queueing theory models are later validated and implemented using
the OpenStack Cloud platform and the CloudSim event-driven simulator. Moreover,
they are also extended by adding a two-level scheduler to map tasks to processing
nodes according to their processing power and availability (see Appendix B).

In the field of linear and nonlinear programming, prior work has been done in
algorithms applied to scheduling [18, 32]. Other techniques, such as neural network
predictors [13] and genetic algorithms [40], have also been used to develop power-
aware systems. The main contribution in this regard is the design of a nonlinear
programming scheduling algorithm to minimize energy consumption and maximize

SLA guarantees at the same time. To date, there is no research work based on

39

these two criteria in Cloud computing. Another important contribution is the way
that the power of virtual machines is modelled in function of their workload. This
algorithm relies on the work done in [22], where the authors formulate the problem of
assigning people from various groups to different jobs and who may complete them in
the minimum time as a nonlinear programming problem. The job completion times
have been assumed to follow a Gamma distribution. To model the influence of the
workload, the computing capacity of the physical host was weighted by a load factor
determined by an Erlang distribution (equivalent to a Gamma). Finally, a nonlinear
programming problem was obtained and transformed into an equivalent deterministic
problem with a nonlinear objective function. The algorithms were implemented and

tested using the OpenStack Cloud platform (see Section 2.2).

From the eHealth point of view, this thesis presents two telemonitoring applica-
tions for the smoking and hypertension scenarios that offer a bidirectional commu-
nication between patients and clinicians via SMS and e-mail, allow efficient patient

management and access to electronic medical records.

Most reported studies on stopping smoking with mobile phone technology follow
patients for at most six months [57, 16]. In Section 2.4, the S-PC tool is presented,
where the associated study followed the patients for twelve months. Additionally, it
evaluates the effect of the tool on time management of both clinicians and patients,

waiting list reduction and patient satisfaction with the mobile text intervention.

The most important applications that perform similar functions to that of S-PC
are STOMP [49], PMC [30] and txt2stop [15]. Table 1.1 presents a comparison of the
functionality of these tools compared to S-PC, the latter having the most complete
set of features. The communication channels used by each of the applications vary.
PMC uses e-mails to exchange messages and information with the patients, whereas
STOMP and test2stop use mobile text messaging (SMS) for the same purpose. S-PC
can communicate via mobile text messages and/or e-mails, although for the clinical
study, it was set-up to use mobile text messages only. S-PC and PMC are the only
tools that create customized lists of patients and represent clinical history and treat-

ment progression graphically. In addition, S-PC sends warning messages to clinicians

40

when a patient is identified by the program as being at risk. It also allows messages

to be customized at will. These two features are exclusive to S-PC.

Program | C. S. | C. C. | Charts | Lists | M. H. | C. M. | C. A. | T.

STOMP Yes SMS No No No Yes No No
PMC - E-mail Yes Yes Yes Yes No No
txt2stop | Yes SMS No No No Yes No Yes

S-PC Yes SMS+E Yes Yes Yes Yes Yes Yes

Table 1.1: Comparing S-PC with other similar programs (STOMP, PMC and txt2stop
and S-PC). C. S. stands for Clinician support, C. C. stands for Communication chan-
nel, M. H. stands for Medical history, C. M. stands for Custom messages, C. A. stands
for Custom alerts, T. stands for Templates

For the hypertension scenario, a comparison between 20 web sites used to manage
and present home blood-pressure readings was carried out between June and August
2009 [45]. The results showed that none of these 20 web sites were directly linked
to common electronic medical records. Despite web sites having alert values, none of
them provided any tools for sending alert messages in any format to patients, i.e. to
telemonitor them.

The H-PC tool is presented in Section 2.3. This allows patients to monitor their
blood pressure at home and send the measurements telematically, using both mobile

text messages and e-mails.

1.8 Publications

The following publications have been derived from the work on this thesis.

1.8.1 Journal publications

The following publications in research journals are derived from the work in this

thesis:

1. Vilaplana, J., Solsona, F., Abella, F., Filgueira, R., & Rius, J. (2013). The
cloud paradigm applied to e-Health. BMC Medical Informatics and Decision
Making, 13, 35. doi:10.1186/1472-6947-13-35

41

2. Vilaplana, J., Solsona, F., Abella, F., Cuadrado, J., Alves, R., & Mateo, J.
(2014). S-PC: An e-treatment application for management of smoke-quitting

patients. Computer Methods and Programs in Biomedicine, 115(1), 3345.
d0i:10.1016/j.cmpb.2014.03.005

3. Vilaplana, J., Solsona, F., Teixidé, 1., Mateo, J., Abella, F., & Rius, J. (2014).
A queuing theory model for cloud computing. The Journal of Supercomputing,

69(1), 492507. doi:10.1007/s11227-014-1177-y

4. Vilaplana, J., Solsona, F., Teixidé, I., Usié, A., Karathia, H., Alves, R., &
Mateo, J. (2014). Database Constraints Applied to Metabolic Pathway Recon-
struction Tools. The Scientific World Journal, 2014. doi:10.1155/2014/967294

5. Vilaplana, J., Solsona, F., Abella, F., Cuadrado, J., Teixidé, 1., Mateo, J., &
Rius, J. (2014). H-PC: a cloud computing tool for supervising hypertensive
patients. The Journal of Supercomputing, 71(2), 591612. doi:10.1007/s11227-
014-1312-9

6. Vilaplana, J., Mateo, J., Teixidd, 1., Solsona, F., Giné, F., & Roig, C. (2014).
An SLA and power-saving scheduling consolidation strategy for shared and

heterogeneous clouds. The Journal of Supercomputing. doi:10.1007/s11227-
014-1351-2

1.8.2 Conference publications and attendance

The following publications in international conferences are derived from the work in

this thesis:

1. Abdelli, O., Usié, A., Karathia, H., Vilaplana, J., Solsona, F. & Alves, R. (2011).
Parallelizing Biblio-MetReS, a data mining tool. XXII Jornadas de Paralelismo
JP2012. La Laguna (Tenerife), Spain.

2. Vilaplana, J., Solsona, F., Abella, F. & Celma, J. (2012). Diseno de un Sistema
Cloud Aplicado a e-Health. XXIII Jornadas de Paralelismo JP2012. Elche
(Alicante), Spain.

42

3. Vilaplana, J., Solsona, F., Teixidd, 1., Mateo, J., Rius, J. & Abella, F. (2014).
An SLA&Power Aware Strategy for a Cloud. International Conference on In-

formation Technology and Management Engineering (ITME2014), Hong Kong.

4. Vilaplana, J., Mateo, J., Teixidd, I. & Solsona, F. (2014). A Green Job Schedul-
ing Policy for Heterogeneous Clouds. 14th International Conference on Com-
putational and Mathematical Methods in Science and Engineering (CMMSE
2014), Rota, Cadiz - Spain, Volume: 4.

5. Vilaplana, J. & Solsona, F. (2014). SLA-Aware Load Balancing in a Web-
Based Cloud System over OpenStack. LLNCS vol. 8377:281-293. ICSOC 2013
Workshops. CCSA. Berlin, Germany. doi: 10.1007/978-3-319-06859-6_26.

6. Vilaplana, J., Solsona, F., Teixidé, 1., Mateo, J., Rius, J. & Abella, F. (2014). A
Green Scheduling Policy for Cloud Computing. First International Workshop,
ARMS-CC 2014, held in Conjunction with ACM Symposium on Principles of
Distributed Computing, PODC 2014, Paris, France, Volume: 8907.

7. Vilaplana, J., Solsona, F. & Teixido, I. A performance model for scalable cloud
computing. 13th Australasian Symposium on Parallel and Distributed Com-

puting (AusPDC 2015), Sydney, Australia, Volume: 163.

1.8.3 Other publications

1. Abella, F., Vilasarau, A., Cuadrado, J., Solsona, F., Alves, R., Vilaplana, J. &
Serra, J. (2011). Seguimiento y control de pacientes fumadores en proceso de
deshabituacin mediante SMS. Una experiencia en e-salud. Revista Espaola de

Drogodependencia, 39(4) 7787.

2. Abella, F., Vilasarau, A., Vilaplana, J., Josa, 1., Cuadrado, J. & Solsona, F.
(2011). Programa de Control de Pacientes Fumadores (CPF), INFO TABAC
21:1.

43

3. Mateo, J., Vilaplana, J., Pla, L1. M., Lérida, J. L. & Solsona, F. (2014). A
Green Strategy for Federated and Heterogeneous Clouds with Communicating

Workloads. The Scientific World Journal *. doi: 10.1155/2014,/273537.

4. Vilaplana, J., Solsona, F., Teixid, I., Mateo, J., Usié, A., Torres, N., Comas, J.
& Alves, R. (2014). MetReS: a Metabolic Reconstruction Database for Cloud
Computing. Cloud Computing Project and Initiatives (CCPI'14). Rome, Italy.

5. Mateo, J., Pla, LI. M., Vilaplana, J., Solsona, F. & Lérida, J. Ll. (2015).
Parallel Lagrangian Decomposition for large-scale two-stage stochastic mixed
0-1 problems. 15th International Conference Computational and Mathematical

Methods in Science and Engineering (CMMSE 2015), Rota (Cédiz), Spain.

1.9 Three-month doctoral stay

During the course of the present thesis, I spent a three-month doctoral stay at the
University of Ulster in Belfast, where I was involved in a cyber-bullying detection
project in the Twitter social network. My supervisor was Prof. Yaxin Bi from the
School of Computing and Mathematics.

My work consisted of developing a user-friendly interface for an existing sentiment
analysis engine that could detect bullying behaviour in text messages and connect it
to the Twitter network with the aim of identifying possible bullies within that social
network.

The main objective of my work was to develop a client application that would
access Twitter datasets through its APIs based on predefined search queries and
hashtags. Once the data is retrieved, the client sends it to the previously-developed
server application through its APIs. Then, the results are retrieved from the server
in JSON format and presented to the user through a web-based dashboard.

Appendix A describes this work in full detail.

14The Scientific World Journal. A Green Strategy for Federated and Heterogeneous Clouds with
Communicating Workloads. http://www.hindawi.com/journals/tswj/2014/273537/

44

45

46

Chapter 2

Methodology

2.1 Paper 1: A queuing theory model for cloud

computing

Springer and the original publisher The Journal of Supercomputing, Vol 69, 2014,
pp 492-507, A queuing theory model for cloud computing, Jordi Vilaplana, Francesc
Solsona, Ivan Teixidd, Jordi Mateo, Francesc Abella, Josep Rius, with kind permission

from Springer Science and Business Media.

2.2 Paper 2: An SLA and power-saving scheduling
consolidation strategy for shared and hetero-

geneous clouds

Springer and the original publisher The Journal of Supercomputing, Vol 71, 2014,
pp 1817-1832, An SLA and power-saving scheduling consolidation strateqy for shared
and heterogeneous clouds, Jordi Vilaplana, Jordi Mateo, Ivan Teixido, Francesc Sol-
sona, Francesc Giné, Concepcio Roig, with kind permission from Springer Science

and Business Media.

47

2.3 Paper 3: H-PC: a cloud computing tool for
supervising hypertensive patients

Springer and the original publisher The Journal of Supercomputing, Vol 71, 2014, pp
591-612, H-PC: a cloud computing tool for supervising hypertensive patients, Jord:
Vilaplana, Francesc Solsona, Francesc Abella, Josep Cuadrado, Ivan Teixidd, Jordi

Mateo, Josep Rius, with kind permission from Springer Science and Business Media.

2.4 Paper 4: S-PC: An e-treatment application for
management of smoke-quitting patients

Reprinted from Computer Methods and Programs in Biomedicine, Vol 115, Jordi Vi-
laplana, Francesc Solsona, Francesc Abella, Josep Cuadrado, Rui Alves, Jordi Mateo,
S-PC: An e-treatment application for management of smoke-quitting patients, Pages

No. 83-45, Copyright (2014), with permission from Elsevier.

48

49

50

Chapter 3

Papers

51

52

J Supercomput (2014) 69:492-507
DOI 10.1007/s11227-014-1177-y

A queuing theory model for cloud computing

Jordi Vilaplana - Francesc Solsona -
Ivan Teixid6 - Jordi Mateo -
Francesc Abella - Josep Rius

Published online: 9 April 2014
© Springer Science+Business Media New York 2014

Abstract The ability to deliver guaranteed QoS (Quality of Service) is crucial for
the commercial success of cloud platforms. This paper presents a model based on
queuing theory to study computer service QoS in cloud computing. Cloud platforms
are modeled with an open Jackson network that can be used to determine and measure
the QoS guarantees the cloud can offer regarding the response time. The analysis can
be performed according to different parameters, such as the arrival rate of customer
services and the number and service rate of processing servers, among others. Detailed
results for the model are presented. When scaling the system and depending on the
types of bottleneck in the system, we show how our model can provide us with the best
option to guarantee QoS. The results obtained confirm the usefulness of the model
presented for designing real cloud computing systems.

J. Vilaplana - F. Solsona () - I. Teixidé - J. Mateo
Department of Computer Science, University of Lleida, Jaume II 69, 25001 Lleida, Spain
e-mail: francesc @diei.udl.cat

J. Vilaplana
e-mail: jordi@diei.udl.cat

1. Teixido
e-mail: iteixido @diei.udl.cat

J. Mateo
e-mail: jmateo @diei.udl.cat

F. Abella
IRB Lleida, Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain
e-mail: abella@gss.scs.es

J. Rius
ICG Software, Pol. Industrial Torrefarrera. Mestral, s/n, Torrefarrera, 25123 Lleida, Spain
e-mail: jrius@icg.es

@ Springer

A queuing theory model for cloud computing 493

Keywords Cloud computing - Cloud architecture - Scalability - Queuing theory -
Quality of Service - Simulation - Validation

1 Introduction

Cloud computing aims to shift the location of the computing infrastructure to Inter-
net to reduce the costs of management and maintenance of hardware and software
resources [1]. Cloud computing is a new cost-efficient computing paradigm in which
information and computer power can be accessed by the customers through a web
browser [2]. Cloud service providers offer high performance, scalability, security and
high availability [3]. However, performance issues lead to the question of how to
guarantee that the system can offer QoS (Quality of Service). Cloud computing has
received worldwide attention from many researchers, but only a small portion of these
have addressed the performance problem [4].

This article presents the design of a cloud platform with QoS guarantees based on
response time for services. Response time is defined as the time for a request to be
serviced, in other words, the sum of the waiting and servicing times in the cloud.

Cloud computing systems offer the idea of infinite computing resources avail-
able on demand, allowing the resources to be expanded as needed. Hardware and
software services are more efficiently handled than in other high performance com-
puting (HPC) infrastructure as they can be added and released dynamically [5].
However, problems arise when scaling the system, for example, when trying to
deploy a platform to support the computing needs of many institutions, organisms
or companies with different departments with their own staff and customers. The
need for scalability increases even more when the cloud must also provide sup-
port for other common and specific desktop or Internet applications. Consequently,
the model presented can be directly applied to almost all public and commercial
areas.

As stated in [2], most current cloud computing infrastructures consist of services
that are offered and delivered through a service center, such as a data center, that can
be accessed from a web browser anywhere in the world. The two most significant
components of a cloud computing architecture are the front-end and the back-end.
The front-end is the gateway to the cloud and consists of the software components and
interfaces needed to connect to the platform using remote client applications. These
applications usually use standard web protocols to access the system and an authen-
tication protocol, which allows access to authorized users. The back-end functions
include management of the job queue, the servers and their virtual machines and the
storage servers with their database system. Database inconsistencies are avoided by
considering only one storage (i.e., database) server.

The main contribution of this paper consists of a computer service QoS model for
the cloud architecture of the back-end (or simply called a cloud) made up of processing
servers and a data service that, in line with the explanation above, consists of only one
database server (see Fig. 1). In this model, the cloud is a single access point for the
computing needs of the customers being served [2] through a web browser supported
by a web server. The service center is a collection of service resources used by a

@ Springer

494 J. Vilaplana et al.

Iternet
>

Cloud
Architecture

Fig. 1 Cloud computing paradigm

service provider to host service applications for customers. A service request from
a user is transmitted to the web server running a service application [6], asso-
ciated with an SLA (Service Layer Agreement). This process is performed at
the front-end. The SLA is a contract negotiated and agreed between a customer
and a service provider so a customer only pays for the resources and services
used. Thus, the customer, who may represent multiple users, generates service
requests at a given rate for processing at the service center hosted by the service
provider through the cloud according to the negotiated QoS requirements at a given
price.

Our proposal is modeled using queuing theory to identify and manage the users’
response time for services. The model allows the cloud system to be scaled optimally
to guarantee the QoS for the response time, and planning the proper deployment and
removal of virtual machines (logical/virtual servers making up the cloud architecture)
according to the system load. To guarantee the negotiated SLA, the model must be
capable of determining the required number of virtual machines to reach the QoS (i.e.,
the response time of the applications entering the system). To comply with that, the
cloud system should be able to add/remove virtual machines dynamically according
to the outputs obtained by simulation. Those results can be obtained on- or off-line (in
other words, respectively, on-time or in advance), depending on the speed of obtaining
them. An interesting future work could be to try to solve this. Even though simulated
predictions based on the model are not in real scale, they must be very reliable and,
depending on the number of servers and the arrival speed, these could be very useful
for generating an accurate approximation of the task response times to avoid exceeding
the SLA.

In doing so, the cloud architecture is modeled with an open Jackson network [7,8]
of M/M/m and M/M/1 interconnected servers. There are two types of server, namely
processing and data servers. We are interested in modeling QoS performance by scal-
ing cloud platforms, leaving aside other issues such as cloud availability [9], energy
consumption [10], variability [11] or reliability [12].

The remainder of the paper is organized as follows. Section 2 details the related
work on queuing system theory and other alternative methods to address the problem of
providing QoS and scalability in cloud computing. In Sect. 3, we present our modeling
proposal to design cloud computing systems with open Jackson networks to guarantee
QoS based on response times for customer services. Experimentation showing the
good behavior of our proposal is presented in Sect. 4. Finally, Sect. 5 outlines the
main conclusions and future work.

@ Springer

A queuing theory model for cloud computing 495

2 Related work

The problem of computer service performance modeling subjected to such QoS metrics
as response time, throughput and network utilization, has been extensively studied in
the literature [2,13-17]. For instance, in [16], Karlapudi proposed and validated a
web application performance tool for the performance prediction of web applications
between specified end-points. In [17], Mei addressed the problem of an end-to-end
QoS guarantee for VoIP services.

In [2], the authors obtained the response time distribution of a cloud system modeled
on a classic M/M/m open network, assuming an exponential density function for the
inter-arrival and service times. Using the response time distribution, they determined
the optimum level of service and the relationship between the maximum number of
tasks and the minimum number of resources (virtual machines). The response time
takes into account both the waiting time in the queue and the service time. For a given
service resource, the authors obtained the level of QoS services that can be guaranteed
in terms of response time.

In [14], the authors obtained the response time distribution for a cloud with an
M/M/m/m+r system model. Both inter-arrival and service distribution times were
assumed to be exponential and the system had a finite number of m+r size buffers.
The complexity of other queues (G/M/m, M/G/m, G/G/m) comes from the impossi-
bility of obtaining a closed formula to represent the probability distributions of the
response or waiting times of customers in the queue, and therefore requires finding
approximate models. However, the results mentioned above are not directly applica-
ble to performance analysis of cloud computing server farms, where one or more
of the following holds [4]: the number of servers is huge (in general, these models
are reasonably accurate when there are few servers, typically below 10 or so); the
distribution of service times is unknown and does not, in general, follow any of the
“well-behaved” probability distributions, such as the exponential distribution. Finally,
the traffic intensity is small or can vary over an extremely wide range (that means
the covariance of the service time is large [18]). In a previous work [19], our group
designed a first attempt to simulate an e-health cloud system, modeled simply by con-
necting two M/M/m queues. Although the main goal was to provide QoS capabilities
based on the waiting time of the requests, the study lacked more experimentation
and an accurate model validation. In the present work, we expand the e-health model
developed in [19], presenting a more general and better-validated cloud model.

The nodes forming the cloud architecture can be analyzed independently when
they make up an open Jackson network. The interconnection and behavior between
the queues are ruled by Burke’s [20] and Jackson’s theorems [7,8]. Burke states that
we may connect many multiple-server nodes together in a feedforward network and
still preserve the node-by-node decomposition when arrival and servicing times are
modeled by exponential density functions. In addition, Jackson pointed out that to
calculate the total average arrival rate we must sum the arrivals from outside the system
plus arrivals from all internal nodes. As a result, we can join different processing nodes
to design the cloud architecture according to the response time as the QoS performance
metrics. As the assumption that there are only exponential distributions for the arrival
and servicing rates is a restriction, we only consider M/M/1 and M/M/m nodes.

@ Springer

496 J. Vilaplana et al.

The authors in [5] showed how multiple virtual machines (VMs) can share CPUs and
main memory surprisingly well in cloud computing, but that network and filesystem
sharing is more problematic. They obtained a mean bandwidth of 75 instances of the
same memory benchmark of 1,355 MB/s, with a standard deviation of just 52 MB/s
(approx. 4 % of the mean). In an analogous experiment, they also obtained a mean
disk-write bandwidth of nearly 55MB/s with a standard deviation across instances of
a little over 9MB/s (approx. 16 % of the mean). That demonstrated the problem of I/O
interference between virtual machines. Therefore, in the design of the architecture of
our web-based application, we consider the distinction between processing and data
Servers.

In [21], Ming presented an integer programming mechanism to scale computing
instances on a cloud based on workload information and performance desire automati-
cally. It was based on activity scheduling by starting and shutting down VM instances.
The mechanism enabled cloud applications to finish submitted jobs within the dead-
line by controlling underlying instance numbers and reducing user cost by choosing
appropriate instance types.

In [13], Slothouber stated that a single queue is insufficient to model a complex
system such as a web server. He defined the response time of the system treating the
model as a Jackson network. He studied which parameters influenced the response
time when the web server and network were the bottleneck. He was able to determine,
for example, that in the first case, the best alternative was to increase the network
bandwidth, and in the second, it was to double the server speed. Nah [22] stated that
for users, the tolerable waiting time before abandoning the downloading of a Web
page can vary under different circumstances and contexts. However, the findings from
this study suggested that most users are only willing to wait for about two seconds
for simple information retrieval tasks on the Web. So, if we apply this result to cloud
computing, a reasonable design decision should be to design clouds with good and
predictable response times as a valid QoS parameter.

We go further than the model presented in [13] by modeling a cloud architecture
instead of a web server. We also model the system as an open Jackson network. As
introduced above, the operation of a cloud system is very similar to a web server
one, so we expand Slothouber’s original idea [13] to model a cloud architecture. As
in [2], we are interested in defining what level of QoS (i.e., response time) can be
guaranteed for any given service. The model must also be useful as a guide for the
creation/deletion of VMs, as in [21], or for studying the cause of the bottlenecks and
providing solutions, as in [13,23].

3 Model

We propose a multi-server system with the queuing model (see Fig. 1, representing
an Open Jackson network.

This network has a single entry point ES (Entering Server). The server acts as a
load balancer, which forwards the user requests to one of the PS;, where i = 1...m,
namely the Processing Server nodes. The load balancer is represented by a M/M/1
queue, with an arrival and service rate modeled on an exponential pdf with parameters

@ Springer

A queuing theory model for cloud computing 497

A and L, respectively, where A < L. Its purpose is to determine the PS; node to deliver
the service. In doing so, it uses an algorithm that distributes the requests depending
on the averaged workload in each PS; node.

A processing server PS; is a node, core or processor representing the physical
computational resources of our cloud architecture where the services are computed.
The selected PS; node performs all the services required by the user request. The PS;
is identical and is modeled as an M/M/m queueing system. Each PS; node has the
same service rate and is equal to p, thisis u = p;, i = 1...m.

Each PS; node accesses DS with a probability §. DS represents a database server
and serves to model the access to files, directories and databases or any kind of I/O
access to secondary memory during the service in the cloud architecture. As stated in
the introduction, this is an important consideration to be taken into account, because
I/O interference between virtual machines is an important issue. In addition, data
inconsistencies are avoided by choosing only one database server in our design. DS is
modeled by an M/M/1 queue with respective exponential arrival and service rates of
3y (according to the rules of the open Jackson network) and D, respectively.

OS represents the Output Server of the cloud architecture. OS is the node forming
the cloud architecture that transmits the response data over the Internet, back to the
client that made the original request (CS).

CS is the Client Server. It sends requests in an exponential distribution with parame-
ter A to the entering server ES. It also receives the responses from the cloud architecture.
CS receives files or pieces of files, until the request is fully satisfied. Both OS and CS
are also modeled by an M/M/I queue. y is the arrival rate of the exponential pdf to both
nodes. However, like the other network nodes above, they can have different service
rates.

Connecting servers with exponential arrival and service distributions in a feedfor-
ward (without feedback paths) are independent from each other and preserve the pdf
distributions [20]. So A is the feeding distribution for the customers leaving the enter-
ing server (ES). In addition, Jackson [7,8] stated that, to calculate the total average
arrival rate, we must sum the arrivals from outside the system and the arrivals from
all the internal nodes. By applying Jackson, we can obtain y. Let 7 be the output
probability of leaving the open Jackson network, according to A must be conserved
(as Jackson stated in [7,8]), y = A/(1 — 7).

The response time (7') of the global cloud architecture, as a result of being consid-
ered as an open Jackson network, is the following:

T = Tgs + Tps + Tps + Tos + Tcs (1)

Then, each term of Eq. 1 is explained separately.

3.1 Obtaining Tgs

Tgs represents the response time of the Entering Server (ES) which acts as a load
balancer. The ES node is modeled as an M /M /1 queue. Thus, the formula for obtaining

@ Springer

498 J. Vilaplana et al.

the response time for an M /M /1 queue is [24]:

1/L

1—a/L°)

Tgs =
where A is the arrival rate (see Fig. 2), and L the service rate of the node ES.

3.2 Obtaining Tps

Tps represents the response time of the Process Servicing nodes that actually process
the user requests. There is a maximum of m PS nodes, where m is determined by the
physical computing resources of the cloud architecture. These nodes are modeled as
an M /M /m queue. According to [25], the response time of such a queue is defined

as: R)
m,
fos = L C0n.0)

, (3)
wo omp—y

where m is the number of processing elements, and y and u = u;,i = 1...m, are,
respectively, the arrival and service rates of each processing element, respectively (see
Fig. 2). The term C(m, p) represents Erlang’s C formula, which gives the probability
of a new client joining the M/M/m queue. Erlang’s C formula is defined as [24]:

() (%)

—1 (mp)* (mp)™ 1)’
k=0 ~ T +(mm!)(m)

C(m,p)= 4)

where p = y /.

3.3 Obtaining Tps

Tps represents the response time of the Database Server. Requests are sent to the DS
node with a probability §. The DS node is modeled as a M /M /1 queue, and so (see
Fig. 2):

1/D

Ty ©

Tps
where &y is the arrival rate to DS (see Fig. 2), and D is the service rate. Eq. 5 is
obtained from the mean response time formula of a M /M /1 queue in a similar way
as Tgs was obtained in Eq. 2.

Note that the arrival rate at the Output Server (OS) is the sum of the arrival rates
of the two crosspoint branches entering the summatory represented in Fig. 2. The one
crossing the data server is the same than at its input (§)). On the other branch, the y
term must be changed by its complement to one.

(I=8)y+déy=vy (6)

@ Springer

A queuing theory model for cloud computing 499

=M (1-1)

client Internet

Fig. 2 Model of the cloud architecture

3.4 Obtaining Tos

Tos represents the response time of the Output Server (OS), the one that transmits
data (i.e., files) back to the client. We also supposed that its operation is also modeled
as a M/M/1 queue (as in Eq. 2). The service rate of this node is defined as O/F,
where O is the average bandwidth speed (in bytes per second) of the OS, and F is the
averaged size of the data responses of the system. Its response time (Eq. 7) is defined
by the following formula:

. ___F/O

ST 1=y /(0/F)

Tos = —— ™
O—yF

In the present work, the number of responses (i.e., response pdf) is not taken into
account because we have insufficient information in this sense. More in-depth research
into this is required. Furthermore, the performance of cloud systems should be adapted
to the needs of the field (area) they are applied to.

3.5 Obtaining Tcs

Finally, Tcs is the response time of the Client Server (CS), which receives the data
sent by the OS node through Internet, and then operates as an M /M /1 queue. The
service rate in this case is defined as C/F, where C is the average bandwidth speed
of the client server in bytes per second. As when obtaining Tops, F is the average size
in bytes of the received reply files. Accordingly, the response time is defined in this
case as (see Fig. 2):

,o__ FIC
ST 1=y /(C/F)
F
Ics = ——, (8)
C—-yF

@ Springer

500 J. Vilaplana et al.

4 Results

The following section presents an analysis of how the response time is affected by
modifying some of the metrics presented in the model. Our purpose is to verify whether
our model behaves as expected when a range of parameters and system configurations
are tested.

First, we give the results obtained in the simulation. Then, we validate the model
by comparing the simulated results with those obtained in a real cloud system.

4.1 Simulation

The model was implemented using Sage 5.3 mathematical software'. All the results
(y-axis) are in simulation units of time, so no Y-labels were placed in the figures. The
parameters used in the implementation are described below:

A Arrival rate. This is the average number of requests reaching the system per unit
of time. 1/ is the mean inter-arrival time. We aimed to show how the total response
time (7') is affected by varying the parameter A. The number of processing servers
(m) represents the total number of processors, cores or nodes dedicated to servicing
requests. Changing this parameter shows the impact of adding or removing servers
from the system.

F Average file size. This is the mean size of the files that are sent to clients via
Internet as the service response of the overall system. This value depends on the
web application that runs on the system, although it should be no greater than IMB
in most cases.

O Server bandwidth. This is the network speed at which files are sent to clients
over the Internet.

C Client bandwidth. This is the average connection speed of the clients receiving
the data sent from the system. This parameter will usually be outwith our control.
6 Database access probability. This is the probability that an incoming request
needs to access the database node DS. As we are modeling a web-based system,
not all requests will require access to the database server. Note, however, that this
probability will usually be relatively high.

w Service rate. This describes the speed at which the web servers handle the
requests. 1/u is the mean service time. To simplify the results we have chosen the
same value for all PS; servers. The total service rate of the system must always
be greater than A for the system to be stable. This value was modified in the
tests to check the performance impact. Although the service rates of ES, PS;,i =
1...m, DS, OS and CS could be different, we assumed the same value to simplify
the experiments. So, in this case, u = L = D = O/F = C/F in all the
tests.

1 Sage. http://www.sagemath.org.

@ Springer

A queuing theory model for cloud computing 501

173 | ERRUEMISIISE S — R S ——— 1
17,1 E——

600 | RS

o
T

400 ..
20 I { s ot |“‘
llllllIlIIIIllllllllllII'IIII'IIIIIIIIIll‘

0

(a) m=1.

] R RTIEE SIS T TR
160_ - . . B E T T R PR -
1401

120

S R | . ,ﬁ, 11
A ||“”|| r
aob ,
-llllllllllllIIIIlI'IIIIIIlllI

0

o

o

(b) =2

Fig. 3 Total response time (7T") of the cloud model in function of A

4.1.1 Response time

Figure 3 shows how the total response time (7') is affected by increasing the arrival
rate (1) for one (Fig. 3a) and two (Fig. 3b) servers.

Increasing low values of the number of servers has a great impact on lowering
the response time. However, the response time stabilizes quickly when the number of
servers increases. We found that no significant differences were obtained when the
number of servers was higher than 5. We may find the explanation for this phenomenon
in the utilization of the PS; nodes, defined as p = y /.

@ Springer

502 J. Vilaplana et al.

4000+
3500+
3000+

2500+

2000} : -
1500 : : ot
1000+ B f
500+ : : I I :

‘ 1 2 3 2 5 6 7 g ”

0

o

Fig. 4 Total response time (7') of the cloud model in function of p

From Fig. 3, we can derive that the reason the response time stabilizes so fast is
because in Fig. 3a, when the entering arrival rate for requests to the system (A) is high,
alsois y = A/(1 — 1)), the arrival rate at PS. By adding servers to the PS; nodes,
the utilization rate of the M /M /m queue decreases and the response time stabilizes
to the same value as service time. For this case, by adding more PS; nodes, almost no
improvement was observed in the response time. Thus, no further results are shown.
There is an upper soft bound above which adding more PS; nodes, hardly decrease
the system’s total response time (7). In this case, this soft bound was 2.

Figure 4 illustrates how the response time of the PS node (7ps) lengthens expo-
nentially as the utilization or traffic intensity (p) of the server increases. When the
utilization is close to zero, the response time is almost equal to the service time. The
response time increases with the utilization until it approaches one. At that moment,
the response time grows rapidly towards infinity. We observe the same behavior as in
Fig. 3.

Figure 5 shows the Total Response Time of the system when the arrival rate (1),
mean file size (F) and the output server bandwidth (O) are modified.

Total response time (7') grows exponentially when the mean file size (F') is increased
or when the server bandwidth (O) is decreased. This behavior was expected. When
files are too large, the output server OS needs more bandwidth to transfer data to
clients across the network (i.e., Internet) efficiently. Similarly, when server bandwidth
decreases, files are transferred at a much lower speed and consequently the total
response time (7") of the system also increases.

4.1.2 Bottlenecks

Figures 6 and 7 present two different bottleneck studies, also by measuring the total
response time (7).

@ Springer

A queuing theory model for cloud computing 503

72 T i

A s0 1 F

819 ———

A 50 15000 0
(b) T given A and O.

Fig. 5 Total response time (7") of the cloud model in function of A, F and O

—Base case
=Double service rate
=Double bandwidth

200

150
100 , e
] e 50, S-.;_'.\A..-..‘f..‘....j.
. . L . . A
0 20 40 60 80 100

Fig. 6 Total response time (7). Servers are the bottleneck

@ Springer

504 J. Vilaplana et al.

400({—Base case
=Double service rate
=Double bandwidth

11 0 | ISRC SRR s ST S

o]0] ISE—
200+
150
100+

50

A e

0 20 40 60 80 100

Fig. 7 Total response time (7'). Bandwidth is the bottleneck

The figures show three different situations. The first is the base case, which presents
a system where the servers are the bottleneck in the cloud system. The other two cases
represent the system behavior (7') when the service rate and server bandwidth are
doubled.

In Figure 6, we see that the best alternative is to double the service rate of the
server. This increased the performance enormously in all the A axis. From this result,
we can conclude that the servers are really the current bottleneck, which means that
the performance of our system is limited by the service capacity of our servers.

In Fig. 7, we adjusted our system so that our base case represented a situation where
the bandwidth was the bottleneck. As expected, the best alternative was to double the
server bandwidth, which significantly increased the performance from 25 to 360 %.

From the given tests, we can confirm that our model represents a cloud accurately.
The response time of the system is consistent with extreme situations. We showed that,
depending on the system configuration, some parameters become more important or
can be rather insignificant for the overall system performance.

4.2 Model validation

To validate the usefulness of this model in predicting the cloud behavior, we com-
pared the above simulation results with the results from the experimentation in a real
environment system.

The proposed queuing theory model was implemented using an open-source cloud
platform called OpenStack®. OpenStack goes beyond a classic hypervisor (i.e., Virtu-

2 OpenStack. http://www.openstack.org.

@ Springer

A queuing theory model for cloud computing 505

8000
7000

6000 /
5000

4000 /
3000 {/

2000 //

1000
r—""—"“—’—‘
0
200 400 600 800 1000 1200 1400 1600 1800 2000

Requests (thoudsands)
(a) Response time (7') with 1 server.

Time (milliseconds)

3500

3000 /
/

m
2
S 2500 /
o
& 2000 /
£ 1500
o /
£ 1000 /
'_

500

./lr/
0 —

200 400 600 800 1000 1200 1400 1600 1800 2000
Requests (thoudsands)
(b) Response time (T') with 2 servers.

Fig. 8 Response time obtained in a real OpenStack cloud system

alBox?, Xen* and VMwareS), which allows the creation and setup of virtual machines
dynamically, as computational resources are needed. This enables the QoS restrictions
in traffic peaks to be handled, in other words, when the arrival rate of the requests to
be served increases. OpenStack can be set up to create new instances automatically
when current servers are overwhelmed and to shut them down when traffic decreases.
The architecture designed for this test was made up of different servers created as vir-
tual machines (VMs) containing the entering server (ES), four servicing nodes, PS
...PS4,and a MySQL6 database, DS, and the output and client servers. Each virtual
machine had 4 GB RAM and two cores of an AMD Opteron 6,100 processor running
at 2.1 GHz.

Figure 8 shows the average response time (in milliseconds) of the system when
benchmark applications were executed using one and two servicing nodes. To simulate

3 VirtualBox. https://www.virtualbox.org.
4 Xen. http://www.xenproject.org.
5 VMware. http://www.vmware.com.

6 MySQL. http://www.mysql.com.

@ Springer

506 J. Vilaplana et al.

the incoming requests, the Apache JMeter [26] tool was used. This tool allows the
creation of accurate and controllable testing workloads of web requests to be performed
by sending them to an HTTP queuing server. VMs always perform the same task: when
idle, they pick up a new task from the HTTP queuing server, if there is any, and process
it. If not, they wait until a task becomes available. This way, specific parametrized
performance tests can be automatically done, thus simulating a huge incoming load.

As in the simulation, the most significant gain was obtained by passing from one to
two VMs, namely servicing nodes in the Model and Simulating sections (Sects. 3 and
4.1, respectively). Hardly appreciated gains were obtained when adding one additional
server, and no more significant gains were achieved from three onwards. Then, no more
figures with the results for more than two servicing nodes are shown. It can be seen
that the shapes of the simulation and real results are very similar. It should be very
difficult to give absolute times in the simulation case. However, the similarities in
shapes between the simulation and real results prove the good behavior of the model.
The real validation of the model adds additional value to this paper because it proves
its usefulness.

5 Conclusions and future work

In this paper, a model for designing cloud computing architectures with QoS is pre-
sented. Queuing theory and the open Jackson’s networks were selected as the basic
means to guarantee a certain level of performance in line with the waiting and response
times of such networks.

Through a preliminary analysis, the design of a cloud architecture with QoS require-
ments was proposed. The combination of M/M /1 and M/M/m in sequence was
proposed to model the cloud platform. Our work shows that to provide good QoS
in terms of response time, we have to determine where the system has a bottleneck
and then improve the corresponding parameter. We can then conclude that our model
can be very useful for tuning service performance, i.e., QoS [response time (7")], thus
guaranteeing the SLA contract between the client and the service provider.

As future work, we plan to investigate other issues related to cloud computing, such
as user variability and the reliability of the cloud platform. The final purpose is to enable
our design to satisfy the servicing needs of many areas (education, administration,
e-health, etc.) easily, allowing the construction of web-based applications that
implement all the needed workflows.

Acknowledgments This work was supported by the MEyC under contract TIN2011-28689-C02-02.
Some of the authors are members of the research group 2009 SGR145, funded by the Generalitat de
Catalunya.

References

1. Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2008) A break in the clouds: towards a cloud
definition. ACM SIGCOMM Comput Commun Rev 39:50-55

2. Xiong K, Perros H (2009) Service performance and analysis in cloud computing. In: Proceedings of
IEEE World Conference Services, pp 693-700

@ Springer

A queuing theory model for cloud computing 507

bl

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.
24.

25.
26.

Varia J (2010) Architection for the cloud: best practices. Amazon Web Services
Khazaei H, Misic J, Misic V (2012) Performance analysis of cloud computing centers using
M/G/m/m+r.Queuing Systems. IEEE transactions on parallel and distributed systems, vol 23, no 5

. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A,

Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50-58

Martin J, Nilsson A (2002) On service level agreements for IP networks. In: Proceedings of the IEEE
INFOCOM

Jackson JR (1957) Networks of waiting lines. Oper Res 5:518-521

Jackson JR (1963) Jobshop-like queueing systems. Manage Sci 10:131-142

Martinello M, Kadniche M, Kanoun K (2005) Web service availability: impact of error recovery and
traffic model. J Reliab Eng Syst Saf 89(1):6-16

Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers.
Concurr Comput Pract Exp 24(13):1397-1420

Iosup A, Yigitbasi N, Epema D (2011) On the performance variability of production cloud services.
11th IEEE/ACM international symposium on cluster, cloud and grid, computing (CCGrid’2011),
pp 104-113

Vishwanath KV, Nagappan N (2010) Characterizing cloud computing hardware reliability. In: Pro-
ceedings of the 1st ACM symposium on Cloud computing (SoCC *10), pp 193-204

Slothouber L (1996) A model of web server performance. In: Proceedings of the fifth international
world wide web conference

Yang B, Tan F, Dai Y, Guo S (2009) Performance Evaluation of cloud service considering fault recovery.
In: Proceedings of the first international conference on cloud, computing (CloudCom’09), pp 571-576
Ma N, Mark J (1998) Approximation of the mean queue length of an M/G/c queueing system. Oper
Res 43:158-165

Karlapudi H, Martin J (2004) Web application performance prediction. In: Proceedings of the IASTED
international conference on communication and computer networks, pp 281-286

Mei RD, Meeuwissen HB (2005) Modelling end-to-end Quality-of-Service for transaction-based ser-
vices in multidomain environement. In: Proceedings of the 19th international teletraffic congress
(ITC19), pp 1109-1121

Boxma OJ, Cohen JW, Huffel N (1979) Approximations of the Mean waiting time in an M=G=s
queueing system. Oper Res 27:1115-1127

Vilaplana J, Solsona F, Abella F, Filgueira R, Rius J (2013) The cloud paradigm applied to e-health.
BMC Med Inf Decis Making 13:35

Burke PJ (1956) The output of a queuing system. Oper Res 4:699-704

Mao M, Li J, Humphrey M (2010) Cloud auto-scaling with deadline and budget constraints. In:
Proceedings of the 11th IEEE/ACM international conference on GRID, pp 41-48

Nah F (2004) A study on tolerable waiting time: how long are Web users willing to wait? Behav Inf
Technol 23(3):153-163

Sai Sowjanya T, Praveen D, Satish K, Rahiman A (2011) The queueing theory in cloud computing to
reduce the waiting time. IJCSET, vol 1, no 3, pp 110-112

Kleinrock L (1975) Queueing systems: theory, vol 1. Wiley-Interscience, New York

Barbeau M, Kranakis E (2007) Principles of ad-hoc networking. Wiley, New York

Apache JMeter website. http://jmeter.apache.org/. Accessed 10 March 2014

@ Springer

The Journal of Supercomputing
DOI 10.1007/s11227-014-1351-2

An SLA and power-saving scheduling consolidation
strategy for shared and heterogeneous clouds

Jordi Vilaplana - Jordi Mateo - Ivan
Teixidé - Francesc Solsona - Francesc
Giné - Concepcio Roig

Published online: 29 November 2014

Abstract This paper presents a power-aware scheduling policy algorithm of
Virtual Machines into nodes called Green Cloud (GreenC) for Heterogeneous
cloud systems.

GreenC takes into account optimal assignments according to physical and
virtual machine heterogeneity, the current host workload and communication
between the different virtual machines.

An initial test case has been performed by modelling the policies to be
executed by a solver that demonstrates the applicability of our proposal for
saving energy and also guaranteeing the QoS.

The proposed policy has been implemented using the OpenStack software
and the obtained results showed that energy consumption can be significantly
lowered by applying GreenC to allocate virtual machines to physical hosts.

J. Vilaplana
Department of Computer Science and INSPIRES, University of Lleida, Av. Jaume IT 69,
25001 Lleida, Spain. Tel.: 4+34-973-702718. E-mail: jordi@Qdiei.udl.cat

J. Mateo
Department of Computer Science and INSPIRES, University of Lleida, Av. Jaume II 69,
25001 Lleida, Spain. Tel.: 4+34-973-702730. E-mail: jmateo@diei.udl.cat

I. Teixidé
Department of Computer Science and INSPIRES, University of Lleida, Jaume II 69, Lleida,
Spain 25001. Tel.: +34-973-702711. E-mail: iteixido@diei.udl.cat

F. Solsona
Department of Computer Science and INSPIRES, University of Lleida, Av. Jaume II 69,
25001 Lleida, Spain. Tel.: +34-973-702735. E-mail: francesc@diei.udl.cat

F. Giné
Department of Computer Science and INSPIRES, University of Lleida, Av. Jaume II 69,
25001 Lleida, Spain. Tel.: +34-973-702748. E-mail: sisco@diei.udl.cat

C. Roig
Department of Computer Science and INSPIRES, University of Lleida, Av. Jaume IT 69,
25001 Lleida, Spain. Tel.: +34-973-702733. E-mail: roig@diei.udl.cat

2 Jordi Vilaplana et al.

Keywords Green cloud computing - SLA - power-aware scheduling -
non-linear programming

1 Introduction

In cloud computing, an SLA (Service-Level Agreement) is an agreement be-
tween a service provider and a consumer where the former agrees to deliver
a service to the latter under specific terms, such as time or performance. In
order to comply with the SLA, the service provider must monitor the QoS
(Quality of Service) closely through such performance metrics as response or
waiting time, throughput or makespan [6]. Studying and determining SLA-
related issues is a big challenge [2,5].

GreenC is designed to lower power consumption [16] as much as possible.
At the same time, GreenC is aimed at guaranteeing a negotiated SLA and
power-aware [12] solutions, leaving aside such other cloud-computing issues as
variability [5], system security [16] and availability [10]. Job response time is
perhaps the most important QoS metric in a cloud-computing context [2]. For
this reason, it is also the QoS parameter chosen in this work. Good solutions
have been presented by some researchers in the literature dealing with QoS
[14,13] and power consumption [3,8]. However, the model presented (GreenC')
aims to obtain the best scheduling consolidation of Virtual Machines (VMs)
to hosts, taking both criteria into account.

There is a great deal of work in the literature on linear programming (LP)
solutions and algorithms applied to scheduling, like the one presented in [9,4].
Other notable work was performed in [15], where authors designed a Green
Scheduling Algorithm that integrated a neural network predictor in order to
optimize server energy consumption in Cloud Computing. Also, in [11] authors
proposed a genetic algorithm that takes into account both makespan and en-
ergy consumption. Our main objective is to design a NLP (Non-Linear Pro-
gramming) scheduling algorithm to minimize energy consumption and max-
imize SLA guarantees at the same time. To date, there is no research work
based on these two criteria in cloud computing.

An important contribution of this paper is the way we model the power
of the virtual machines in function of their workload. We rely on the work
done in [7], where the authors formulate the problem of assigning people from
various groups to different jobs and who may complete them in the minimum
time as a stochastic programming problem. The job completion times were
assumed to follow a Gamma distribution. To model the influence of the work-
load, we weighted the computing capacity of the physical host by a load factor
determined by an Erlang distribution (equivalent to a Gamma). Finally, we
obtained a stochastic programming problem and transformed it into an equiv-
alent deterministic problem with a non-linear objective function.

The proposed policy has been implemented and tested using OpenStack®,
which is an open source software platform for managing cloud infrastructures.

1 http://www.openstack.org OpenStak. http://www.openstack.org

An SLA and power-saving scheduling consolidation strategy 3

The remainder of the paper is organized as follows. Section 2 presents our
main contributions, a sort of scheduling policy. These proposals are arranged in
order of increasing complexity. In Section 3, our proposal was first tested with
the Excel optimizer, which provides tools to implement the models presented.
Then it was implemented in a real cloud platform. The implementation is
presented in Section 4. The experimentation showing the good behavior of our
cloud model is presented in Section 5. Finally, Section 6 outlines the main
conclusions and possible research lines to explore in the near future.

2 Materials and Methods

Our scheduling proposals, based on non-linear programming (NLP), model a
problem with an Objective Function (OF). This objective function represents
several performance criteria. Multiple performance criteria can be taken into
account in order to choose the optimal scheduler. The most widely used are
the minimization of the power consumption of the cloud system and the mean
response time of the tasks. These are also the ones chosen in this article.

The relationships between variables and parameters and their ranges ap-
pearing in the OF are defined by additional constraints. The OF is then exe-
cuted in a solver jointly with the constraints. In our case, the solver gives the
assignment of Virtual Machines to hosts (physical machines) that minimize
power consumption while preserving the QoS (Quality of Service).

GreenC tries to assign as many tasks as possible to the most powerful hosts,
leaving aside the remaining ones. This way, unused VMs can then be turned off.
The method is based on the computing capacity of the hosts, making decisions
about which ones will hold more Virtual Machines to give the opportunity to
power off the idle ones to maximize the QoS and save as much energy as
possible.

The GreenC policy assumes a cloud made up of V' heterogeneous hosts
and a set of T heterogeneous Virtual Machines. Each host (H,) has a specific
amount of Memory (M,), which restricts the maximum workload it can host.
The notation and different features the model has to support are introduced
prior to presenting the GreenC OF and its constraints.

2.1 Host Heterogeneity

The relative computing power (A,) of a Host H, (v=1,...,V), is defined as

the normalized score of such a host. Formally, given V hosts, A, = ﬁ,
k=1"%F

where Zkv=1 A, =1. 6, is a valid score (i.e. the computing power) of H,,. Al-
though 4, is a theoretical concept, there are many valid benchmarks to obtain
node scores to get the relative computing power (i.e. Linpack? or SPEC?).

2 Linpack. http://www.netlib.org/linpack/
3 SPEC. http://www.spec.org

4 Jordi Vilaplana et al.

Linpack (available in C, Fortran and Java) for example, is used to obtain the
number of floating-point operations per second. In our case, the closer the
relative computing power is to one (in other words, the more powerful it is),
the more likely it is that the VMs will be mapped into such a host.

2.2 Virtual Machine Heterogeneity

In order to model Virtual Machine heterogeneity, each VM, U¢ (i = 1,...,T),
has its Processing cost P;, representing the execution time of VM, U7, in
H, with respect to the execution time of VM U; in the less powerful H, (in
other words, with the lowest A,). M! is defined as the amount of Memory
allocated to VM U; in H,. It is assumed that Memory requirements do not
change between hosts, so M = M!, Vv,v’ < V. The Boolean variable U¢
represents the assignment of VM U to host H,. Once the solver is executed,
U variables will inform about the assignment of VM to hosts. This is Uf = 1
if U is assigned to H,, and U% = 0 otherwise.

2.3 Host Workload

The performance drop experienced by hosts due to workload saturation is also
taken into account. If a host is underloaded, its throughput will increase as
more VM are assigned to it. When the host reaches its maximum workload
capacity, its throughput starts falling asymptotically towards zero. We can
model this behaviour with an Erlang distribution density function. Erlang is
a continuous probability distribution with two parameters, « and A. The «
parameter is called the shape parameter, and the A parameter is called the
rate parameter. These parameters depend on the VM characteristics. When «
equals 1, the distribution simplifies to the exponential distribution. The Erlang
probability density function is:

a—1
E(z;a,\) = Aeikm%Vx, A>0 (1)

We consider that the Erlang modelling parameters of each host can easily
be empirically obtained (i.e. by increasing the workload and measuring the
mean response times). Fig. 1 shows various Erlang plots for some « and A
values by varying the z, designed in this case to represent the workload.

The Erlang distribution was developed to examine the number of telephone
calls that might be made to the operators on a switchboard at the same time.
We use it here to weigh the relative computing power A, of each H, with its
associated workload factor determined by an Erlang distribution. This way,
we model the loss or gain of executing power in each H, according to its
workload. In our case, we changed the abscissas (z) by the summatory of the
Processing cost P? of each U; assigned to such a H,. Provided that Boolean
variable U! = 1 is a Boolean variable informing that ¢ is assigned to H,, and

An SLA and power-saving scheduling consolidation strategy 5

QLR
S

2
1
2w
2
5

o
~
>3
)
©

i

Fig. 1 Erlang plots for different « and A values.

U! = 0 if not, the Erlang-weighted relative computing power (4A,) of a Host
H,) would be:

=1

2.4 Virtual Machine Communication

We also want to consider here the communication between VMs. The Commu-
nication Cost (representing the communication time) between VMs, 0% and
U7, is denoted by C* and should be passed to the solver as an argument. For
simplicity reasons, we consider that all the host communication links have the
same bandwidth capacity. Notation C¥ represents the Communication Cost
between U° residing in H,, with other U (located in the same host or else-
where). Provided that equivalent bandwidth between any two hosts, ng =Cy
Vi,7 < T and v,v’ < V. In other words, the communication time does not de-
pend on the host or the links used between the hosts.

According to VM communication, the idea is to add a component in the
OF that penalize (enhance) the communications performed between differ-
ent hosts. Grouping VMs inside the same host not only will depend on their
respective Processing cost (P!), but also in the relative communicating time
Ci.

Finally, the best VM scheduling assignment to hosts which take into ac-
count all the features (GreenC policy) is formally defined by the following
non-linear programming model:

6 Jordi Vilaplana et al.

\% T T T
maz(d_ O ULPI+ D (CHUIC, + CTONAE(S Pl -0l;0,0) (3)
v=1 i=1 J st i>j Jj=1
\%4
st. Y UL=1 Vi<T (4)
v=1
T
STMi<M, W<V (5)

i=1

Equation 3 is the Objective Function (OF) to be maximized. Equality in
Equation 4 and inequality in Equation 5 are the constraints of the objective
function variables. Given the constants T (the total number of VMs), and A,
and M, for each H,, the solution that maximizes OF will obtain the values of
the variables U¢, representing the VMs assigned to H,,. Thus, the U? obtained
will be the assignment found by this model.

OF takes into account the Processing costs (P!) and the communication
times (Ci9) of the VMs assigned to each H,. In the communication part of
the OF (CHUICs + CYUL), we select the j so i > j, because communication
costs between VMs should only be counted once. In addition, we multiply the
communicating cost of the two hosts by a given Communication Speedup (Cs)
when U/ is located in the same H,. This happens when U7 = 1. Otherwise
UL = 1, meaning 7 is assigned to other hosts than H,,. Cs can be obtained by
using a benchmark that measures communication speed. On this occasion, a
communicating benchmark can be implemented by using such ICMP diagnos-
tic tools as ping or traceroute unix commands and perhaps with some basic
shell scripting.

3 Theoretical Experimentation

In this section, we present the theoretical results obtained from solving the
scheduling problems to achieve the best VM to host assignation. Two rep-
resentative experiments were performed in order to test the performance of
GreenC.

The theoretical experiment was performed using the non-linear solver of
the Excel program. As the objective of this section is to prove the correctness
of the policy, we chose a small set of VMs and also simulated a small virtual
architecture. The experimental framework chosen here was a cloud infrastruc-
ture made up of 3 hosts and 3 VMs. The parameters of each host are shown
in Table 1. The configuration of each VM is shown in Table 2. Table 3 shows
the Communication Cost between VMs and the speedup if communication is
performed inside the host. This is the Communication Speedup (Cs).

An SLA and power-saving scheduling consolidation strategy 7

‘ Host ‘ Memory ‘ Av ‘ Erlang Distribution ‘

1 10 0.55 a=3,\=38
2 10 0.35 a=3,1=38
3 10 0.1 a=3,71=28

Table 1 Host configurations.

[VM | Weight |
1 1

2 5
3 1
Totals 3 7

Table 2 VM Configurations

[[VMi]| VMj | Cost |

1 2 0.2

1 3 0.6

2 3 0.3
Cs 0.6

Table 3 Communication configurations

3.1 Dominant host

In this example, we used the configuration shown in Table 1, where all the
hosts followed the same Erlang distribution function with the same number
of assigned VMs. Logically, in this case, the best option would be to assign
all VMs to the most powerful host, as the communication costs between VMs
will delay the execution.

The resulting assignment is H; = {U', %, 03}, Hy = @ and Hy, = 2.

This example consolidated all the VMs in the most powerful host in order
to minimize the communication costs between them. The assignment given by
the model is consistent with the results expected by the model.

3.2 Erlang-shaped hosts

In this case, we supposed the configuration shown in Table 4, where all the
hosts followed different Erlang distribution functions. In this case, we forced
the Erlang distribution for Host 1 to obtain its maximum when assigning two
VMs with a total weight of 6. The Erlang distribution for Host 3 reached
its maximum when only one VM was assigned to it. Furthermore, in both
cases the Erlang decreases sharply when more VMs are assigned to them. In
this case, as could be expected, the best assignation is to assign two VMs to
Host 1 and 1 VM to Host 3. That happens because the communication costs
are compensated by the high computing power of the assigned nodes.

8 Jordi Vilaplana et al.

Host | Memory ‘ Ay ‘ Erlang Distribution ‘

1 10 0.55 a=T7A =1
2 10 0.35 a=8 =3
3 10 0.1 a=2,A=1

Table 4 Host configurations.

The resulting assignment is H; = {0, %}, Hy = @ and Hz = {U3}. The
assignment is different to the Powerful Host case due to the compensation of
the communication costs with a smaller execution time required by the hosts.
The results obtained were also consistent with the model objectives.

3.3 Erlang-shaped hosts with heterogeneous memory

In this scenario, the configuration shown in Table 5 is applied. Now all hosts
also follow different Erlang distribution functions but, in addition, each host
has different memory capacities. This way, although Host 1 is the most suitable
one to host VM1 and VM2, due to its memory constraints only VM2 can fit.
VM2 will be assigned to Host 1 instead of VM1 due to its Erlang distribution
function.

Host | Memory ‘ Ay ‘ Erlang Distribution ‘

1 5 0.55 a=T,A=1
2 10 0.35 a=8r=3
3 7 0.1 a=2,A=1

Table 5 Host configurations.

The resulting assignment is Hy = {U%}, Hy = {0,053} and H; = 2.

4 Implementation

The implementation was carried out by using four identical physical hosts
making up the cloud infrastructure. Each host is a HP Proliant DL165 G7
with two AMD Opteron 6274 processors with 16 cores each at 2.2 GHz, 112
GB of RAM, 600 GB of SAS disk and 1 Gb Ethernet network. CentOS release
6.5 has been used as operating system.

Fig. 2 shows the implementation diagram. In each host, the OpenStack
2014.1 (Icehouse) software has been installed as the cloud platform. The Wake-
on-LAN (WoL) program has been used in order to remotely boot the physical
machines. WoL is a standard protocol for remotely waking computers up.
Both, the remote host motherboard and network card must support this func-
tionality. In our case, all the nodes supported the WolL protocol.

An SLA and power-saving scheduling consolidation strategy 9

OpenStack
compute01
Transmitter
controller node
compute node @—
AY
A}
compute02 \
‘l
controller node | IAM N
A
EnviR >| data 1log |
7
controller node IAM 1
'I
K
controller node 1AM

Fig. 2 Implementation diagram.

The hosts making up the cloud infrastructure are named compute01, com-
pute02, compute03 and computels (see Fig. 2). The compute0! host acts as
the controller (i.e. front-end) node, that provides some additional services like
the database (MySQL) and the web interface (Dashboard). The other three
hosts act as compute nodes, that provide the processing, memory, network
and storage resources to run the virtual machines.

Energy consumption has been empirically monitored. To do so, the follow-
ing Current Cost devices have been used: four Individual Appliance Monitors
(IAMs) were used alongside the nodes, and an EnviR, that transmits all the
data collected from the IAMs (see Fig. 2). EnviR has a 433MHz SRD band
receiver and offers an overall accuracy of >97%. IAMs operate at 230V AC
voltage, 13A max Amps and C? 433.92MHz communication. These devices
allow us to individually monitor the energy consumption (in Watts) of each
physical host every second and transfer the data to a text file for further anal-
ysis. The room temperature has also been monitored with a Thermometer and
has remained constant at 27 degrees Celsius throughout all the experimenta-
tion.

The GreenC policy has been implemented using Python scripts. Algo-
rithm 1 and Algorithm 2 show how physical nodes are powered off and on.

Algorithm 1 shutdown_host()

Require: username: remote host root username
Require: ip: remote host IP address
host = username +' Q' + ip
subprocess.call([”ssh”, host,” powerof f”]);

10 Jordi Vilaplana et al.

Algorithm 2 startup_host()

Require: cntyser: controller host root username

Require: cnt;;,: controller host IP address

Require: hwaddr: remote host MAC address
subprocess.call([?ssh”, cntyser +' Q" + cnt;p,” WoL” + hwaddr));

To shut a host down, the poweroff command is executed in the selected
host. To power a host on, the WolL command is executed from the controller
host (compute01) targeting the MAC address of the remote host that needs
to be awaken. Note that all nodes are connected in the same network.

Algorithm 3 allocate_vm()

Require: name: VM name
Require: vcpu: amount of VCPUs required
Require: ram: amount of RAM required
Require: flavor: VM flavor
Ensure: host_list: sorted by descending relative computing power (Ay)
for host in host_list do
if host.vcpu_used + vepu < host.vepuandhost.ram_used + ram < host.ram then
nova.servers.create(name, flavor = flavor, availability_zone = host.av)
end if
end for

Algorithm 3 shows, in a simplified way, how VMs are allocated to hosts
based on the requested and available resources. Provided a list of sorted hosts,
it chooses the host with more relative computing power that has enough re-
sources to host the VM. A descriptive VM name needs to be provided, along-
side the required resources and the desired flavor.

OpenStack defines different virtual hardware templates called flavors. These
flavors have been used to create the VMs of the experimentation performed
(Section 5). The principal VM parameters of the OpenStack flavors are listed
in Table 6.

[Flavor | VCPUs [RAM (MB) |

tiny 1 512
small 1 2048
medium 2 4096
large 4 8192
xlarge 8 16384

Table 6 OpenStack flavors.

We first try to allocate the VM to the most powerful host that meets the
desired requirements (in order to guarantee the SLA). Note that OpenStack
supports overcommitting CPU and RAM on compute nodes, which allows to
consume more resources than available on the hardware at the cost of reducing

An SLA and power-saving scheduling consolidation strategy 11

the performance of the instances. This behavior may have sense since, in some
scenarios, VMs are likely not to use all its VCPUs (Virtual CPUs assigned
to a VM) or RAM. In such a situation, these VMs could lend underutilized
computational resources to other(s) VMs neediest of them. However, in order
to guarantee the SLA (this is, to provide to the client the amount of promised
resources), the GreenC policy ensures that overcommitting is not allowed.

In order to allocate VMs to the desired physical host, OpenStack availabil-
ity zones have been used. Availability zones allow users to define separated
groups of nodes and assign new VMs to them.

In our case, an availability zone has been created for each host (compute01,
..., compute04). This way, it can be controlled to which specific host each VM
is allocated.

Finally, Algorithm 4 shows the controller process, located in the compute01
(the controller node). It is responsible for starting and shutting hosts down
depending on the number of VMs assigned to them. If there are not enough
available cloud resources, additional hosts will be turned on. If at the end of
the VM assignment, a host remains idle, it will be then powered off.

Algorithm 4 Controller()

Require: zlarge
Require: large
Require: medium
Require: small
Require: tiny
Ensure: vm_list: sorted by descending processing cost (Py)
Ensure: compute_list: all compute nodes that are not controller nodes
for vm in vm_list do
name = vm.name + str(z)
allocated = allocate_vm(name, vm.vepus, vm.ram, vm. flavor)
if allocated == error then
new_host = select_poweredof f_host(compute_list)
startup-host(new_host)
allocateym (name, vm.vepus, vm.ram, vm. flavor)
end if
end for
for compute in compute_list do
if compute.vepu_used == 0 then
shutdown_host(compute.user, compute.ip)
end if
end for

Algorithm 4 takes as input the number of VMs to be deployed for each
flavor, a sorted vm_list and compute_list. Then, for each VM, tries to allocate
it using the allocate_vm() function defined in Algorithm 3. If the VM could not
be allocated, an additional host is started. Finally, when the VM assignment
is complete, all the idle hosts are powered off.

12 Jordi Vilaplana et al.

5 Results

This section presents the experimental results obtained using the OpenStack
software. The GreenC policy has been implemented using python-novaclient,
which is a Python client for the OpenStack Nova API that allows us to interact
with the OpenStack platform. Each test has been performed three different
times, and in this section the mean values are presented.

First, a test to determine the energy consumption of the physical hosts
when idle was performed. A host is considered to be idle when no virtual
machines are deployed in it.

Fig. 3 shows the energy consumption (in Watts) of the four physical hosts
making up the cloud for one hour. It can be seen how the controller node,
compute01 (Fig. 3, top left), consumes more energy than the remaining ones.
Moreover, compute04 consumes slightly more energy than compute02 and
compute03. This could be due to its physical location inside the data center
that could affect the node temperature, or due to intrinsic hardware issues.
During the time period shown in Fig. 3, no additional tasks were executed in
the cloud.

110 120 130 140 150 160 170 180
110 120 130 140 150 160 170 180

N > 2 > o ® N > o ®
~ e o g © o° ~ & o g & o°
N A P IS 2 § N N P s £ 5

& & N & & S & NJ N & N S

° °

27 29

° °

R R4

3 s

= @4

° °

21 91

° °

< 2

. \ .

&1 1 \]

SR Vﬂw \ l.\ \ \ g

-] Sl \a W\ wu -]

S Y ® ® T3 ® > o) ®
A T A T I & &S

& N3 & N3 & N & & & N3 & N3

Fig. 3 Idle cloud energy consumption (in Watts) for 1 hour (between 8:00am and 9:00am).
(top left) compute0l, (top right) compute02, (bottom left) compute03, (bottom right) com-
puteO4.

Then, the energy consumption evolution when turning a node off and on
has been tested. Fig. 4 shows the consumption process of the compute04 node
during fifteen minutes. It can be seen as energy consumption falls down to 7

An SLA and power-saving scheduling consolidation strategy 13

Watts when a node is turned off and takes 137 seconds to be fully operational
again. Moreover, when a node is turned back on, its energy consumption sig-
nificantly increases during the start-up time and then gets back to its steady
normal consumption.

o
S
(]
o
2
N
o
S |
N
o
2
o
S |
o |
0
o
o3 > Q 3 3
g »° 5 s° &
NG Ng NG NG Ng

Fig. 4 Energy consumption evolution (in Watts) when stopping and starting a compute
node (compute04).

Next, it has been tested how energy consumption increases when adding
virtual machines to a node. In this case, a total of 100 VMs were deployed
on compute02. Each second, one VM was added to the node, until a total
of 37 VMs. Then, the deployment was paused. At the vertical dashed line
(around 13:10), the VM deployment was resumed and the remaining 63 VMs
were deployed. At the second vertical line (dotted-dashed), all the VMs were
successfully deployed. From then on, energy consumption remained steady at
around 250 Watts.

From Fig. 5, it can be seen how energy consumption actually increases when
adding more VMs, although the major impact corresponds to the deployment
of the first 37 VMs.

In the next test, a group of VMs has been deployed to the OpenStack
infrastructure using its default scheduling policy. This policy first filters the
hosts to only consider the ones that meet all the VM requirements. Then
weights the hosts according to the request specifications, and selects the host
with the largest weight. For this test, a total of 37 VMs were deployed with
the flavors described in Table 7.

Table 8 shows the resulting allocation of VMs to hosts when applying the
default policy.

Fig. 6 shows the energy consumption evolution (in Watts) when using the
default OpenStack scheduling policy. In this case, the compute04 node was
powered off at the beginning of the test and it gets powered on immediately
after. The VMs are deployed among all the hosts and it can be seen how the

14 Jordi Vilaplana et al.

150 200 250 300
g
<
<

)

o
=
o |
n
o
S N > > N
& K &Y i K
o O O 9 9

Fig. 5 Energy consumption evolution (in Watts) when increasing the load on a compute
node (compute02).

[Flavor | Deployed |

xlarge 3
large 6
medium 16
small 8
tiny 4

Table 7 Deployed VMs grouped by flavor.

‘ VM flavor ‘ computeOl ‘ compute02 | compute03 | compute04

xlarge 1 0 1 1
large 1 2 1 2
medium 4 5 5 2
small 4 0 2 2
tiny 1 1 1 1

Table 8 Resulting allocation when using the default policy.

energy consumption increases homogeneously among all the hosts. At the end
of the test, all the deployed VMs were terminated and it can be seen how the
energy consumption levels return back to its previous values. The mean energy
consumption for each node during the execution of the VMs can be seen in
Table 9.

[compute0l ‘ compute02 ‘ compute03 ‘ compute04 ‘ TOTAL ‘
[208.6542 [187.94 | 188.29 [202.3373 | 787.2215 |

Table 9 Mean energy consumption when using the default policy.

An SLA and power-saving scheduling consolidation strategy 15

100 150 200 250 300
100 150 200 250 300

50

0
0

2.
2.
2,
.
.
‘2.
.
2.
.
.

100 150 200 250 300

50

0

100 150 200 250 300

50

0

kS K K

Fig. 6 Energy consumption evolution (in Watts) when applying the default policy. (top left)
compute01, (top right) compute02, (bottom left) compute03, (bottom right) compute04.

Next, the same test has been performed using the GreenC' policy. Table 10
shows the resulting allocation of VMs to hosts when applying the GreenC
policy.

[VM flavor | compute0l | compute02 | compute03 | compute04 |

xlarge 3 0 0 0
large 1 5 0 0
medium 1 5 10 0
small 1 1 6 0
tiny 0 0 4 0

Table 10 Resulting allocation when using the GreenC policy.

It can be seen how the GreenC policy consolidates as much VMs as possible
in a single host without overpassing its available resources. As no VMs have
been assigned to the compute04 node, it has been automatically powered off.

Fig. 7 shows the energy consumption evolution (in Watts) throughout the
test. When VMs are deployed, energy consumption for nodes compute01, com-
pute02 and compute03 greatly increases. However, compute0/ is powered off.

The mean energy consumption for each node during the execution of the
VMs can be seen in Table 11.

The mean energy consumption for all nodes is 604.9 Watts when using
the GreenC policy and 787.2 Watts when using the default OpenStack policy.

16 Jordi Vilaplana et al.

100 150 200 250
100 150 200 250

50
50

° o
™ N ~) ~ ~ > N S
oS oF Ks & o oS o 3 g3 IS
N A QP oS S § N r S oS
& S & N S & S & & &
1) 1)
3 3
{ &
s s
8 8
& &
o o
3 3
s s
8 8
2 s
3 3
o o
~ ~ > N o N N > N &)
¢ L $ 28 g N
& o . q;f? _%Q") & & o w\‘? 556? &

& & &’ N3 & & & &’ & &

Fig. 7 Energy consumption evolution (in Watts) when applying the GreenC policy. (top
left) compute0l, (top right) compute02, (bottom left) compute03, (bottom right) com-
pute04.

l compute0l [compute02 [compute03 [compute04 [TOTAL ‘
[194.4395 [196.2511 | 202.9821 [11.2343 | 604,9070 |

Table 11 Mean energy consumption when using the GreenC policy.

Therefore, the GreenC policy reduced energy consumption by 182.3 Watts
(23%).

6 Conclusions and Future Work

This paper presented a cloud-based system scheduling mechanism called GreenC
that is able to achieve reduced power consumption and still maintain the SLA
agreements. The complexity of the model developed was increased, thus adding
more factors to be taken into account. The model was first tested using the
Excel optimizer, and the results obtained proved consistent over a range of
scenarios. Then, further experimentation in a real cloud platform has been
performed and the energy consumption has been empirically monitored using
a range of devices.

Initial results proved encouraging, achieving up to a 23% energy consump-
tion reduction by using the GreenC' policy. Nonetheless, much more experi-
mentation is needed to demonstrate the usefulness of our proposals and should
be contrasted with other power-aware policies.

An SLA and power-saving scheduling consolidation strategy 17

In the near future, we plan to compare our policy with other power-aware
policies and frameworks, such as OpenStack-Neat. We also plan to further
expand our algorithms to consider further resources as disk usage and network
communications, and to add live VM migration. We also plan to expand our
architecture and to perform tests with additional physical hosts allocated in
several data centers.

In the longer term, we consider to add machine learning techniques in order
to predict future workloads so powered off hosts can be turned on in advance,
as there is a significant start-up time and this can lead to unacceptable long
response times when sudden workloads arrive to the system.

Acknowledgements

This work was supported by the MEyC under contracts TIN2011-28689-C02-
02. The authors are members of the research groups 2009-SGR145 and 2014-
SGR163, funded by the Generalitat de Catalunya.

References

1. M. ArRMBRUST, A. Fox, R. GRIFFITH, A.D. JoserH, R. KaTz, A. KONWINSKI, G. LEE,
D. PATTERSON, A. RABKIN, I. STOICA, M. ZAHARIA, A view of cloud computing, Com-
mun. ACM. Vol. 53, Issue 4, pp. 50-58. 2010.

2. R. AvVErsaA, B. D1 MarTINO, M. RAK, S. VENTICINQUE, U. VILLANO, Performance
Prediction for HPC on Clouds. Cloud Computing: Principles and Paradigms, John
Wiley & Sons. 2011.

3. A. BELOGLAZOV, R. Buyya, Optimal Online Deterministic Algorithms and Adaptive
Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual
Machines in Cloud Data Centers. Concurrency and Computation: Practice and Ezpe-
rience, vol. 24 pp. 1897-1420. 2012.

4. A. GOoLDMAN, Y. NGOKO, A MILP Approach to Schedule Parallel Independent Tasks.
International Symposium on Parallel and Distributed Computing, ISPDC ’08, pp. 115—
122. 2008.

5. A. Tosup, N. YiciTBasi, D. EPEMA, On the Performance Variability of Production
Cloud Services. 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid’2011), pp. 104-113. 2011.

6. A. KELLER AND H. LupwiG, The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services, J. Netw. Syst. Manage. Vol. 11, Issue 1, pp. 57-81.
2003.

7. M.F. KHAN, Z. ANWAR, Q.S. AHMAD, Assignment of Personnels when Job Completion
time follows Gamma distribution using Stochastic Programming Technique. Interna-
tional Journal of Scientific €& Engineering Research, Volume 3, Issue 3. 2012.

8. D. KriazovicH, P. BouvRry, S. KHAN, GreenCloud: a packet-level simulator of energy-
aware cloud computing data centers. The Journal of Supercomputing. 2010.

9. J.LL. LERIDA, F. SOLSONA, P. HERNANDEZ, F. GINE, M. HANzZICH, JOSEP CONDE, State-
based predictions with self-correction on Enterprise Desktop Grid environments. Jour-
nal of Parallel and Distributed Processing, vol 71, n. 11, pp. T77-789. 2012.

10. M. MARTINELLO, M. KAANICHE, K. KANOUN, Web service availability: Impact of error
recovery and traffic model. Journal of Reliability Engineering and System Safety, Vol.
89, n. 1, pp. 6-16. 2005.

18

Jordi Vilaplana et al.

11.

12.
13.

14.

15.

16.

M. MEzMmAZ, N. MELAB, Y. Kessacl, Y.C. LEg, E.-G. TALBI, A.Y. ZoMAYA, D. TuyT-
TENS, A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud
computing systems. Journal of Parallel and Distributed Computing, Volume 71, Issue
11, November 2011, pp. 1497-1508. 2011.

J. Varia. Architection for the Cloud: Best Practices. Amazon Web Services. 2014.

J. VILAPLANA, F. Sorsona, I TEIXiDO, F. ABELLA, J. RIUS, A queuing theory model
for cloud computing. The Journal of Supercomputing. 2014.

J. VILAPLANA, F. SOLSONA, F ABELLA, R. FILGUEIRA, J. Rius, The cloud paradigm
applied to e-Health. Bmc Medical Informatics and Decision Making. 2013.

T. Ving, T. Duy, Y. SATO, Y. INOGUCHI, Performance evaluation of a Green Scheduling
Algorithm for energy savings in Cloud computing. Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW) , pp. 1-8. 2010.

K.V. VisHwANATH, N. NAGAPPAN, Characterizing cloud computing hardware reliability.
In Proceedings of the 1st ACM symposium on Cloud computing (SoCC ’10), pp. 195-
204. 2010.

J Supercomput
DOI 10.1007/s11227-014-1312-9

H-PC: a cloud computing tool for supervising
hypertensive patients

Jordi Vilaplana - Francesc Solsona -
Francesc Abella - Josep Cuadrado -
Ivan Teixid6 - Jordi Mateo - Josep Rius

© Springer Science+Business Media New York 2014

Abstract Hypertension or high blood pressure is a condition on the rise. Not only does
it affect the elderly but it is also increasingly spreading to younger sectors of the pop-
ulation. Treating it involves exhaustive monitoring of patients. Current health services
can be improved to perform this task more effectively. A tool adapted to the par-
ticular requirements of hypertension can greatly facilitate monitoring and diagnosis.
This paper presents the computer application Hypertension Patient Control (H-PC),
which allows patients with hypertension to send their readings through mobile phone

This work was supported by the MEyC under contracts TIN2011-28689-C02-02. The authors are
members of the research group 2009-SGR 145, funded by the Generalitat de Catalunya.

J. Vilaplana - F. Solsona () - J. Rius - I. Teixid¢ - J. Mateo
Department of Computer Science and INSPIRES, University of Lleida,
Jaume II 69, 25001 Lleida, Spain

e-mail: francesc @diei.udl.cat

J. Vilaplana
e-mail: jordi@diei.udl.cat

J. Rius
e-mail: jrius@diei.udl.cat

I. Teixidd
e-mail: iteixido @diei.udl.cat

J. Mateo
e-mail: jmateo @diei.udl.cat

F. Abella
Santa Maria Hospital, Avda Alcalde Rovira Roure 44, Lleida 25198, Spain
e-mail: abella@gss.scs.es

J. Cuadrado

Hesoft Group, Partida Bova, 15, LLeida 25196, Spain
e-mail: josep @hesoftgroup.com

Published online: 18 October 2014 @ Springer

J. Vilaplana et al.

Short Message Service (SMS) or e-mail to a cloud computing datacenter. Through a
graphic interface, clinicians can keep track of their patients, thus facilitating moni-
toring. Cloud-based datacenters provide a series of advantages in terms of scalability,
maintainability, and massive data processing. However, the ability to guarantee Quality
of Service (QoS) is crucial for the commercial success of cloud platforms. A novel and
efficient cloud-based platform managing H-PC with QoS is also proposed in this paper.

Keywords Hypertension - Health monitoring systems - Patient tracking -
Cloud systems - Quality of Service

1 Introduction

Cloud computing has gained worldwide attention from many researchers, but only
a small portion of these have addressed the performance problem [1]. Performance
issues affect the question of how to guarantee that the system can offer an acceptable
level of Quality of Service (QoS).

In cloud computing, both the applications delivered as services over the Internet
and the hardware and systems software in the data centers that provide those services.

In cloud computing, hardware and software services are efficiently handled, as they
can be added and released dynamically [2]. Problems arise when scaling the system,
that is, when trying to deploy a platform to support the computing needs of many
hospitals with different clinical departments and their corresponding clinicians and
patients. The need for scalability even increases when the cloud must also provide
support for additional common and specific desktop or Internet applications (admin-
istration, specialized, general purpose, etc.). However, we focused our attention to
scaling H-PC users and hospitals for only one speciality, namely hypertension.

Hypertension is a factor of risk in cardiovascular disease, the leading cause of death
worldwide. Only about half the people under treatment for hypertension successfully
maintain their blood pressure at the recommended levels nowadays [3,4]. Furthermore,
the difficulty of ensuring satisfactory control of blood pressure is still a great challenge,
despite the major steps that have been taken to improve the lifestyle through new
pharmaceutical treatments [5,6]. Therefore, techniques to control hypertension such
as home blood pressure (HBP) may have an important role [7].

Monitoring blood pressure at home consists of patients taking the readings at home
and registering these using a digital device. Then, the patients send the readings to a
health professional, who is responsible for taking appropriate action.

In this article, we present the H-PC tool, which allows patients to monitor their
blood pressure at home and send the measurements via SMS or e-mail. In addition,
through H-PC, the professional can also send short message service (SMS) or e-mail
messages back to patients. In telemonitoring, readings taken at home are relayed by
communication media to health care professionals who can take appropriate action [8].
Thus, H-PC implements a sort of telemonitoring based on SMS and e-mail messaging.

The H-PC tool has several advantages over traditional HBP. It allows the blood
pressure measurements to be sent back to the health center immediately. This way,
clinicians can monitor their patients in real time and immediately take appropriate
actions when needed. Furthermore, controlled patients can delay or bring forward

@ Springer

H-PC: a cloud computing tool

visits depending on their measurements, allowing clinicians to focus on the patients
who need immediate attention. Moreover, deploying this tool in a cloud environment
enables several health care centers to be integrated easily, thousands of patients to be
managed and the system scaled when more resources are needed.

We are working on H-PC for following hypertensive patients in the cardiology ser-
vice at Santa Maria Hospital, in Lleida (Spain). The rationale for doing so is twofold.
First, HBP monitoring and telemonitoring should become a routine component of
blood pressure measurement in the majority of patients with known or suspected
hypertension [9], given that such readings may be better predictors of cardiovascular
and renal outcomes than surgery readings [10,11]. The scope of this work is not to
develop an efficient protocol or treatment procedure for hypertensive patients. How-
ever, we are interested in developing a user-friendly tool able to implement any kind
of telemonitoring treatment by the clinicians in a simple way.

Second, there is a possibility that the telemonitoring service will become saturated
and unable to guarantee appropriate care for all its patients. Taking this into account,
we developed a Software as a Service (SaaS) cloud architecture with QoS guarantees.
Service requests are transmitted to a cloud server running the H-PC application, which
is associated with a Service Level Agreement (SLA). An SLA is a contract negotiated
and agreed between a customer and a service provider for which a customer pays only
for the resources and services used according to negotiated QoS requirements at a
given price [12]. In this work, the SLA is maintained between H-PC and the health
care centers using it, which act as customers. Job response time is perhaps the most
important QoS metric in a cloud computing context [12]. For this reason, it was also
the QoS parameter chosen in this work.

We also present a cloud computing framework providing QoS for a given SLA
and number of H-PC users (patients and clinicians). Basically, this is based on the
response time as the QoS metric. The system also provides high reliability [13] and
variability [14], leaving aside such other cloud computing issues as cloud availability
[15] or energy consumption [16].

The remainder of the paper is organized as follows. Section 1.1 details the related
work to address the problem of providing QoS and scalability in telemonitoring cloud
computing, in our case, applied to hypertension. In Sect. 2.1, we present both the
H-PC application and the cloud computing framework, which was specially designed
to embed the H-PC application with QoS guaranteeing. Experimentation showing the
good behavior of our proposal is presented in Sect. 3. Finally, Sect. 4 outlines the main
conclusions and future work.

1.1 Related work

Quantifying the computing resources for servicing the required QoS in a real cloud
computing environment (Amazon EC2 [17], Microsoft Azure [18], Google App
Engine [19]) is a research challenge because clouds exhibit a high variability of
demands for computing resources; and users also have dynamic and different QoS
requirements. The use of real infrastructures for benchmarking the application perfor-
mance under variable conditions (availability, task arrival rate, falling, scalability, and

@ Springer

J. Vilaplana et al.

occupancy) is often constrained by the rigidity of the infrastructure. Therefore, this
makes the reproduction of the results that it can generate extremely difficult [20]. Some
authors rely on queuing theory to simulate real cloud behavior [1,21]. Others instead
rely more on the possibilities of event-driven simulators [20,22,23]. Thus, it is a chal-
lenge to perform benchmarking experiments using real-world cloud environments, the
one chosen for this article.

Also, previous work has been done to analyze cloud computing applied to home
health care systems [24]. In [25], the authors discuss several mitigation techniques
focussing on patient-centric control and policy enforcement via cryptographic tech-
nologies.

There is a potentially important role for novel techniques to lower blood pressure,
especially in primary care, where management of hypertension mainly takes place
[26]. In arecent scientific article, the American Heart Association concluded that HBP
monitoring ‘“should become a routine component of blood pressure measurement in
the majority of patients with known or suspected hypertension” [9]. HBP readings
may also be better predictors of cardiovascular and renal outcomes than surgery read-
ings [10,11]. Furthermore, the potential benefits of HBP also include more accurate
assessment than surgery blood pressure, rapid titration of antihypertensive therapy,
identification of white-coat and masked hypertension, and greater patient involvement
in managing hypertension, a condition that is typically asymptomatic [26]. One HBP
approach is patient self-management, defined as the ability and willingness of a patient
to self-monitor. Some studies shown that self-management blood pressure control is
at least as, or even better than, office-monitored blood pressure [27,28].

In another study [30], a comparison of web sites used to manage and present HBP
readings was performed between June and August of 2009. A list of 33 desirable web
site features was drawn up and a total of 60 web sites identified, of which 20 were free
or free to try. The results showed that these 20 web sites offered between 41 and 77 %
of the 33 features considered desirable, such as displaying HBP readings in tabular and
graphic modes. In contrast, none of them were directly linked to common electronic
medical records. Despite web sites having alert values, none of them provided any tools
for sending alert messages in any format (e-mail or SMS) to patients, i.e., to telemonitor
them. Our motivation is based on the work published in [29], which demonstrates the
effectiveness of it it telemonitoring.

The main aim of H-PC is to provide access to standard medical records and allow
physicians to control and communicate with patients by sending SMS messages and
e-mails. The ability to perform this bidirectional communication makes H-PC an
innovative and very useful tool for hypertension physicians. Furthermore, moving H-
PC into a real-world cloud environment with QoS guarantees is a novel and interesting
challenge that is dealt with in this paper.

2 Material and methods
2.1 H-PC

In this section, we explain the H-PC application in detail. In doing so, the main features
and its operation are first presented. Next, the main principles of the H-PC design are

@ Springer

H-PC: a cloud computing tool

_ 180 Pulse (BPM) memmm ; ; 120
o Systole (mmHg) ; ;
E 160 |- Diastole (mmHg) ‘ : : 100
£ SysoleLimiti~__ 1) =
= ‘ - 80 E
O 140 [a
a ®
1993
o 120} 0
s 40 3
©
S 100 - 20
m Diastole Limit S

80 0

23 24 25 29

June

Fig. 1 H-PC readings

introduced. Finally, taking efficiency and performance into account, the architecture
of the cloud-based system is explained.

2.1.1 Features and operation

Hypertension Patient Control was designed for collecting and managing data from
hypertensive patients. Its functions are to record and print/display measurement sta-
tistics, to graphically show patients’ evolution using charts, automatic control of risk
communication by SMS messages or e-mail to aid clinicians to diagnose and generate
alerts or suggestions for treatments, patient monitoring, medication, nutrition, etc.

Hypertension Patient Control allows target limits to be established individually from
both systole and diastole blood pressures, depending on patient characteristics. If these
limits are exceeded, an alert is shown in the main page of the H-PC tool so clinicians
can act quickly and, if needed, perform an intervention or send an alert to the patient.

Figure 1 shows an example of the graphic data plot of a patient’s readings. These
readings can be registered automatically from SMS or e-mails sent by the patients or
can be introduced manually by the clinicians. H-PC automatically calculates the mean
values for each day, showing only one value per day only in the plot. Nevertheless,
individual readings can also be viewed in table format. Note that pulse can also be
registered when manually entering the data or when sending it via e-mail. When the
data is sent by a patient, H-PC performs a data verification check to avoid incorrect or
invalid measurements, like negative or impossibly high values.

Figure 2 shows the operation of H-PC. First of all, via bluetooth, the blood pressure
device (i.e., Fully Automatic Wrist Bluetooth Blood Pressure Monitor HPL-108) sends
the patient’s readings to a mobile phone (1). Those readings can be sent via SMS or e-
mail (2). There are two different pathways to the destination, one for the SMS messages
and another for e-mails. The SMS messages are delivered via a GSM. Global System
for Mobile communications GPRS. General Packet Radio Service. GSM extension on
the 2/3G communication network to the cloud computing framework, made up of two
sites with different domain names (site / and 2). Site 1, the one containing a GSM

@ Springer

J. Vilaplana et al.

(A))

site 1

i GSM modem

o

Moblle _’

blood pressure

clinician Internet

Fig. 2 H-PC operation

modem device with a Subscriber Identity Module (SIM) card associated with a mobile
telephone number, will be responsible for receiving/sending SMSs from/to H-PC.
Then, when receiving an SMS message through the GSM modem, the cloud framework
redirects it to H-PC itself, which is responsible for checking and saving the data in the
database. Next, depending on the data, H-PC responds to the patient’s mobile with
another SMS (3). Sending/receiving readings by means of e-mails through Internet
follows a similar pathway as the SMS. The default destination server will also be site 1.

The H-PC tool can be freely downloaded from Hesoft Group website. To operate
properly, it requires a GSM modem device with a SIM card.

Hypertension Patient Control is currently designed to operate with only one SIM
(i.e., phone number), hence a single GSM Modem device is used. This device is located
in site 1. So only site I can send/receive SMS messages (see Fig. 2). This rather
determines the architecture design. However, future trends will be on the addition of
a SIM duplication on site 2. This will allow site 2 to deal also with SMSs, potentially
increasing the reliability and availability of the overall system when site I fails.

In addition, as we will see in Sect. 2.1.3, site 2 is mainly responsible for providing
reliability and variability features and increasing the scalability of the cloud system,
which is important to guarantee the QoS of the H-PC tool that is offered as SaaS on
top of it.

2.1.2 Design principles

Hypertension Patient Control is a multi-platform and multi-language web-based appli-
cation with a user-friendly graphic user interface (GUI) that provides the clinician with
easy access and utilization of all its functions, implemented using Java for the back-
end and Javascript, CSS, XHTML, and AJAX for the front-end. H-PC can run on any
computer, operating system (Windows, Symbian, Leopard, Linux, etc.), and any of the
major web-browsers (Firefox, Explorer, Chrome, Opera, Safari, etc.). The interface

@ Springer

H-PC: a cloud computing tool

Table 1 Usability criteria

Criterion What is measured

Learnability How much time is required for people to complete basic tasks?

Efficiency How many steps are required to complete basic tasks?

Memorability How much does the person remember afterwards or after periods of non-use?
Errors How many mistakes did people make using the program?

Emotional response How does the person feel about the tasks completed (confident, stressed)?

was developed using the responsive web design approach, thus providing an optimal
viewing experience across a wide range of devices.

Nowadays, HBP is mainly used for measuring blood pressure in patients with rec-
ommended disparity between the query and the pressures obtained outside the hospital
environment, which consists of placing a device for measuring blood pressure daily,
including during sleep. However, it can be applied to any kind of hypertensive patient.
Usually, the readings period is 24 or 48 hours, with a measurement taken every hour.
However, as stated above, using H-PC, we provide a means for implementing a more
efficient telemonitoring approach, able to avoid duration and frequency restrictions.

Although the efficiency of the telemonitoring technique has been demonstrated in
several studies, the main problem is its high cost. In this work, the cost is significantly
reduced due to the use of conventional devices.

Design decisions are focused on eliminating waiting lists, saving the patients and the
health center time and money, and aiding diagnosis. However, to reach these goals, it
is very important to provide this tool with a high degree of usability. This will facilitate
its successful deployment among health professionals.

The design of H-PC also followed stringent usability and user-friendliness criteria
(see Table 1) after an exhaustive analysis of the clinical requirements of medical staff
in the Santa Maria Hospital and the University Hospital Arnau de Vilanova.

There are five criteria that determine usability and user-friendliness [31]. Firstly,
a usable program must allow users to accomplish basic tasks the first time they use
it (Learnability). Secondly, users who are familiar with the program should be able
to perform the tasks for which the program is required quickly (Efficiency). Thirdly,
users should quickly relearn how to use the program after some time without using
it (Memorability). Fourthly, users should not make serious errors when using the
program, and recovering from any error should be easy (Error rate). Fifthly and finally,
the user should be satisfied with using the program (Emotional Response).

The principles of cloud computing were also incorporated into the design. As a con-
sequence, H-PC can be accessed from standard computers, smartphones, and tablets.
These criteria and the comments of six users were used to design and iteratively
improve the GUI of the program. Development finished after eleven iterations. The
number of users was determined using Nielsen’s formula [32]: the number of usability
problems found at least once by i users is:

Found(i) = N(1 — (1 — p)"), (1)

@ Springer

J. Vilaplana et al.

where N is the total number of problems in the interface and p is the probability of
finding the average usability problem when running a single user. Provided that p is
0.33 (as was suggested in [32]), through simple calculations, it can be seen that finding
90 % (i.e., Found(i)=9 and N=10) requires the problem to be tested by 6 users (in our
case, medical staff).

2.1.3 Architecture

Hypertension Patient Control can be executed in different Internet sites (i.e., domains).
In this case, we only have two, site 1 and site 2.

First, there is a firewall that will pass incoming requests from the H-PC users
to the system. A firewall is a security system that controls the incoming and out-
going network traffic and determines, based on predefined rules, whether this traf-
fic should be allowed or not. Next, the scheduler assigns the requests to the virtual
machines, where a copy of H-PC is running. The data is managed by a clustered
database.

The two sites are implemented using OpenStack (on site 1) and VMware (on site
2). Both environments are able to create virtual machines dynamically as needed. The
difference, subtle but important, is that in VMware (site 2), this operation must be
performed manually by one operator, while in OpenStack, the creation/deletion of
virtual machines can be performed automatically. OpenStack (site 1) is more dynamic
and flexible because no human interaction is needed unless the entire system has to
be restarted.

This way, QoS can be guaranteed by adding more virtual machines when response
time reaches a certain threshold. Moreover, saturation scenarios can be avoided, thus
maintaining the maximum system throughput. These QoS metrics are studied in Sect. 3
below.

Site 1 hosts the Virtual Machine (VM) which acts as entry point (the Master), the
one executing the scheduler (or load balancer, see Sect. 2.2.3) between the remaining
Virtual Machines forming site / and 2 Virtual Machines 1 and 2 (VM1 and VM2) to
site 1 and Virtual Machine 3 (VM3) to site 2. This will influence performance and
scalability as well as tolerance to load variability of the cloud framework. The scheduler
is exclusively dedicated to routing entering service requests to the slaves (virtual
machines). The architecture proposal could be extended to any number of Virtual
Machines, but for simplicity, we only deal with this composition. Experimentation
with larger numbers of VMs is left for future work. To provide the system with the
ability to save power whenever possible, idle VMs should be turned off. OpenStack,
on site 1, is able to turn virtual machines on and off on the fly, thus saving energy
whenever possible. However, power-aware consumption is outside the scope of this
work, but it is planned to assess this in future trend.

To guarantee robustness against failures, there are two copies of the same relational
database (and implemented with MySql Cluster, acting as a mirroring Raid (i.e., Raid
1). One copy is located at site 1 and the other one at site 2. The database is synchronized
by configuring MySql Cluster accordingly, so that registers in both database sites are
properly synchronized. This guarantees a high degree of system reliability.

@ Springer

H-PC: a cloud computing tool

2.2 H-PC features

Cloud frameworks should provide a certain number of desirable performance features.
Our contributions in the design of the cloud framework are mainly the following:
scalability, reliability, and load balancing.

2.2.1 Scalability

Providing a high degree of scalability is a key to successfully implementing a cloud-
based system. In addition to horizontal, vertical, and database scalability, the archi-
tecture has been designed to provide scalability at four different levels:

Administrative. Scalability in terms of the number of organizations or users sharing
the system. The system must be able to handle an increasing number of registered users
and organizations and, therefore, an increasing number of concurrent users and user
requests. We go into this aspect in depth, because the cloud framework is designed to
deal with large numbers of users, clinicians, and hospitals.

Functional. Scalability in terms of improving current functions and adding new
ones. The system must be easily updated and able to add new functionality without
excessive effort. Having multiple VMs allows new H-PC versions to be installed on the
fly. For example, while a new version is being installed on VM1 and VM2, VM3 can
be active, and vice-versa. The same is true for the cloud infrastructure, while updating
one site the other one can be active, and vice versa.

Geographic. Scalability in terms of expanding the system from a local area to a
wider geographic territory without loosing performance. It must be taken into account
that the system may be eventually used globally and ensure that the system is not
bound to any geographical pattern. Both sites are located in the same geographical
area. Future work will deal with a) increasing the number of sites and b) deploying
them in different geographical areas. For simplicity, this has not been performed yet.

Load. Scalability in terms of dynamic workload. The system must be able to distrib-
ute load efficiently between its computing resources. Note that it is also important to
add/remove resources dynamically depending on the load in terms of optimal resource
utilization and power-aware management. The scheduler has been designed to distrib-
ute service requests in a balanced way. However, future trends will be aimed at reducing
power consumption by stopping idle VMs.

2.2.2 Reliability

Designing a reliable system is also crucial when developing a cloud architecture [13].
A fault tolerant system is able to continue operating when unexpected negative events
occur. The main idea is to avoid a complete failure when one or multiple parts of the
system fail, and keep providing service at a reduced performance rate.

In our architecture, each virtual machine is a component that can potentially fail.
To avoid a complete failure when a single component fails, redundancy is applied.

Although this is an excellent way of improving reliability, it also has some draw-
backs. Redundancy implies an increased cost in terms of the required resources, com-

@ Springer

J. Vilaplana et al.

plexity and power consumption, among others [33]. Therefore, we have followed a
criterion to determine which components redundancy should be applied to.

Our criteria were driven by three factors. The probability of failure of the com-
ponent, the critical nature of the component, and the associated cost of applying
redundancy to the component. Taking this into account, redundancy was applied to
the database. The failure of a single database in one site is possible and is not unrea-
sonably expensive. This is examined in greater detail in the Implementation Section
(Sect. 2.3).

The Master was not replicated as its probability of faulting is extremely low due
to its scarce functionality. Only restarting the VM is enough. No serious damage will
occur while the Master is restarted, except the time lost in doing so. Furthermore,
processing VMs (VM1, VM2, and VM3) do not need to be duplicated. Simply, when
one fails, its service requests it is executing are restarted when the VM is reestablished.

The GSM modem was not replicated due to the cost of the physical device. More-
over, it can be considered a non-critical component due to the fact that incoming and
outgoing SMS messages will remain stored until the device is functional again, and
therefore, no messages would be lost if this component stopped working for a short,
or even a long, period of time. The same holds for e-mailing.

2.2.3 Scheduler

The scheduler is responsible for balancing the requests among the different computing
virtual machines, and more specifically between VM1, VM2, and VM3, as can be seen
in Fig. 3. Italso acts as the entry point to the system. All incoming requests pass through
the scheduler.

Several scheduling policies can be applied. However, we have focused on three
different ones (Request Counting, Weighted Traffic, and Pending Request).

Request Counting Policy. In this policy, each virtual machine is given a normalized
score that determines the number of requests that the scheduler will send to it. The
normalized score is obtained as follows. Assuming that the scores of VM1, VM2, and

1
SMS | OpenStack GSM site 1
Messages |« r
9) | Modem
:

Master SMSLiE- OpenStack
, Y N\ Dashboard

|

|

HTTP Apache httpd i
mod_proxy_balancer ,
|

|

Fig. 3 Implementation of the system architecture

@ Springer

H-PC: a cloud computing tool

VM3 are Symi, Svmz, and Syms, respectively, the normalized score of VMi, namely
Ny uyi (being i = {1, 2, 3}), is obtained as follows:

SvMi
Nong — 2
VM Svmi + Svmz + Svms)

Therefore, the closer the normalized score is to one, the more requests will be mapped
to such a virtual machine. This policy is based on the computing capacity of the virtual
machines, and allows us to decide which ones will process more requests.

Weighted Traffic Policy. This policy has the same mechanics as the previous one
with the exception that the score will determine how much traffic, in bytes, a virtual
machine will handle. So, in this case, instead of taking the number of requests sent to
the virtual machine into account, it will take into consideration the amount of traffic.
This policy allows a balancing to be performed by taking network traffic into account,
instead of the number of requests.

Pending Request Policy. This policy assigns an incoming request to the virtual
machine with the lowest number of active requests at that moment. Therefore, when a
new request arrives, it is assigned to the virtual machine which is currently processing
fewer requests. This policy performs a very accurate balancing among the virtual
machines when all requests have a similar difficulty to be served. When some requests
may need a lot of computing resources and some others may not, this policy would
not be a good option.

2.3 Implementation

Next, the main details about the implementation of the cloud framework and the
most complex part of the framework, responsible for scheduling requests, namely the
Master, is presented.

2.4 Cloud framework

The framework is made up of six VMs, distributed in two different sites (site I and 2).
All the VMs run Ubuntu GNU/Linux 3.2.0-41-virtual x86_64. The first site allocates
four VMs deployed on top of the OpenStack (Master, VM1, VM2, and a database VM).
The second site is set up in a different physical location and deployed using VMware.
The second one allocates two VMs deployed also on top of the VMware (VM3 and a
database VM). As mentioned above, the degree of administrative and geographic scal-
ability increases with the number of sites. Figure 3 shows the implementation schema.

The scheduler, located at the Master VM, is deployed in a VM with 512MB RAM
and 1 Virtual CPU (VCPU). A VCPU corresponds to one core of an AMD Opteron
6100 processor running at 2,1 GHz. It is implemented using the Load Balancer of
Apache Tomcat 7, through the mod_proxy_balancer module.

VMI and VM2 have 4GB RAM and 2 VCPU. VM3 has 2GB RAM and 2 VCPU.
These three VMs are the computing VM nodes, where the H-PC application copies
(each performing the same operation) are deployed on top of the Apache Tomcat web

@ Springer

J. Vilaplana et al.

server. Site 1 hosts two computing VMs (VM1 and VM?2) and site 2 allocates the
remaining computing VM (VM3). The communication/synchronization between the
Master and the computing VM nodes follows a master—worker paradigm. So, VM1,
VM2, and VM3 are also named workers from now on.

All VMs are configured with the AJP(Apache JServ Protocol - Apache Tomcat
Connector) protocol enabled, which is used by the scheduler to communicate with the
nodes. AJP is a protocol that can proxy inbound requests from a web server (Apache
HTTP server) to an application server (Tomcat), and it also allows the web server
to monitor the application server through ping. Furthermore, all these instances are
created from a unique snapshot instance, that is, an image created from a running VM.

The use of snapshots allows the VMs to be updated to newer versions of the H-PC
application very easily. Therefore, we achieve a high degree of functional scalability.

The database is implemented using a MySQL Cluster, distributed between the two
sites. The MySQL Cluster is implemented with two VM with 4GB RAM and 2 VCPU
(each on different sites). Having multiple computing and data sites ensures a high
degree of load and administrative scalability and reliability. The table engine used is
MyISAM.

The GSM Modem device is connected to VM1 through a USB port. The commu-
nication between the VM and the device is performed using the SMSLib messaging
library. This way, incoming messages are retrieved from the GSM Modem and stored
in the database. When an outgoing message is generated, it is stored in a specific data-
base table, which is constantly monitored by VM 1. When a new message is detected,
it is immediately forwarded to the GSM Modem.

Outgoing e-mails are managed using MailChimp, which allows a maximum of
12,000 e-mails to be delivered per month (a limitation of the ISP used). Note that if
needed, it would be possible to have an unlimited number of e-mails per month, but
at a cost fixed by the ISP.

2.4.1 Master

The scheduler works as a function in the Master VM, and is activated asynchronously
on arrival of a request for service. The scheduler (in the Master VM) is implemented
using the Apache 2.2 HTTP Server module mod_proxy_balancer. 1t distributes the
load among the different available computing VMs or workers (see Algorithm 1).

Algorithm 1 Master. Scheduling function.

Input: Scheduling_Policy { Request Counting, Weighted Traffic,

Pending Request};

1. while(requests)

2. vm=Select_VM(Scheduling_Policy);
3 If (vm.off) vim.on;

4. wpew=Create_worker(vm);

5 start(request,Wyeyw,vm);

6. end while

@ Springer

H-PC: a cloud computing tool

The scheduler operates until there are no more pending requests. These requests
can be to process web services from the users, SMSs or e-mail processing, and/or
reception/delivering (line 1). The VM selected to process a request (line 2) is obtained
based on the scheduling policies presented in Sect. 2.2.3: Request Counting, Weighted
Traffic, and Pending Request. The different policies can be selected by setting the
Ibmethod parameter inside the Apache configuration file. If the selected VM is off, it
is switched on (line 3). Then, a new worker process (w,ew) is created on the selected
VM vm (line 4) and started on it (line 5).

The Request Counting policy is the default one. This is established by setting the
Ibmethod variable to byrequests. The Master assigns an [bfactor to each VMi, which,
in our case, is the normalized score of VMi, Nymi, as defined in the NVM formula.
The Ibfactor of each VM is computed as a function of the computing capacity of such a
VM. The scheduler communicates with different VMs via the AJP protocol to monitor
their condition. If a VM fails, it stops sending requests and the load is redistributed
among the remaining VMs.

The mod_proxy_balancer also offers two different scheduling algorithms. The
Weighted Traffic policy can be applied by changing the lbmethod variable to bytraffic.
It has the same mechanics as the previous one with the difference that /bfactor is a
normalized value representing how much traffic (bytes) the VM will handle. There-
fore, in this case, instead of counting the number of requests, the amount of traffic in
the VM is taken into account.

Finally, the Pending Request policy can be applied by setting lbmethod variable to
bybusyness. It keeps track of how many requests are currently assigned to each VM
and a new request is assigned to the worker with the lowest number of active requests.

These policies are thoroughly studied later on in Sect. 3.4.

3 Results

The following section presents an analysis of the H-PC behavior and the performance
of the cloud framework. In doing so, we measure the scalability using the response
time metric. Next, we give the results obtained to guarantee SLA agreement. System
performance was measured using the throughput metric. With the same metric, we
provide a means for controlling the saturation of the cloud framework. We also measure
the scheduling policies and system reliability.

Application stress tests via HT TP requests were performed using the Apache JMeter
[34] tool, which was used to measure performance and functional behavior. These
requests represent both patients consulting or introducing their data and the clinicians
using the H-PC application.

All tests scenarios were performed in a real system using the traffic generated with
the Apache JMeter tool.

The scheduler (Load Balancer) is configured to distribute the requests across the
three VMs depending on a predefined factor. OpenStack VMs (VM1 and VM2) is
assigned an initial /bfactor of 40, and 20 for the external VM (VM3). This value
represents the strengths of the VMs, and consequently, a higher /bfactor leads to more
requests being assigned to the VM. It is set this way because VM1 and VM2 are in

@ Springer

J. Vilaplana et al.

Table 2 Test plan requests Total Requests

Users T1 Req/user 10 Req/user 100 Req/user
50 50 500 5000
100 100 1000 10000
200 200 2000 20000
400 400 4000 40000
800 800 8000 80000
1600 1600 16000 160000

the same site as the scheduler, and have greater Memory capacity. This way we force
the local VMs to be scheduled more often than VM3.

Requests were generated according to the test plan in Table 2. The test plan was
performed with different sets of VMs enabled: VM1, VM2, and VM3 enabled, VM1
and VM3 enabled, VM1 enabled, and VM3 enabled. The test plan consisted of six
tests with three different variations, with 1, 10, or 100 requests per user. The ramp-
up period was set at 50 s, which means that all users would be running within that
period of time. Also, the time between users is constant, and therefore, they are evenly
distributed.

Similar results were obtained across all the low load tests. The average response time
ranged between 16 and 27 ms when using only the OpenStack VMs (VM1 and VM2),
and between 68 and 72 ms when using only the external VM (VM3). We also observed
that the maximum response time varied between different repetitions of the same test
when working with low loads. This is due to the unpredictable and heterogeneous
usage of the networks by external agents. Furthermore, we must increase the stress of
the overall resources to appreciate its usage effectively when they are high and evenly
loaded. For these reasons, from here on, the experiments were focused on the high
load tests.

3.1 Response time

The first tests were performed using a single VM (VM1 from site 1) and performing
100 requests per user. Figure 4a shows the evolution of the response time (in ms) when
increasing the number of users and, therefore, the number of requests, was increased.
It can be seen that saturation of the system begins when requests are scaled over
20,000.

The next test was performed using all three available VMs and performing 100
requests per user. In Fig. 4b, the results are shown in terms of the minimum, maximum,
and average system response time when the number of users increases from 50 to 800.
It can be seen how increasing the number of VMs increases the performance of the
whole system by reducing the mean response time to 500 ms. Even though at 40,000
requests, the system starts to overload, it still maintains an averaged response time
below 1 s.

@ Springer

H-PC: a cloud computing tool

5000
4500
4000 i o
3500
3000
2500
2000
1500
1000
500

0

Average ——
hﬂn @

Time (ms)

0 10 20 30 40 50 60 70 80
Requests (thousands)

(a) 1 VM.

5000
Average =t
4500 A —

4000 L
3500 \'\\\\\\\\\\\\\\\\!
3000 \\\\\‘\\\\\\\\

: \\\\\\\\\\\\\\
2000

1500 \\\\\‘\\\\\\\\
1000 s

W
p
\\\\\.Iflif/”/m o
S L e
500 w g

0 10 20 30 40 50 60 70 80
Requests (thousands)

(b) 3 VM.

Fig. 4 Evolution of response time (min, max, and average)

Time (ms)

3.2 SLA agreement

Similar tests to the ones performed in Fig. 4 are shown in Fig. 5. It shows the evolution
of the average, the median and the 90 % line evolve. The 90 % line (or 90th percentile)
is the value below which 90 % of the samples fall. That means that 90 % of the overall
requests were processed in less than the given value. This metric is more meaningful
than the maximum, minimum, median, or the average value in terms of SLA. As
we do not have absolute control over the Internet network, there can be momentary
fluctuations that can greatly affect the results in terms of the maximum time required
to process a request through a test. For this reason, having a metric that takes most of
the samples into account can offer a more reliable estimation of the performance of
the system.

From Fig. 5, it can be seen that the system reaches its maximum performance at
some point between 40,000 and 80,000 requests (i.e., between 400 and 800 users), as
the 90 % line sharply increases until a certain point that endangers the compliance of

@ Springer

J. Vilaplana et al.

1800
Average ——
1600 Median e
90% Line mmimmmn
1400
1200 \\\\\\\\\\\\\
1000 \\\\\\\\\\\\\\
800
600
400
200

Time (ms)

IUALL LU

20 30 40 50 60 70 80
Requests (thousands)

Fig. S Evolution of response time (average, median, and the 90 % line) when using three VMs

700

T T Wi, T
LTI T ' ' W iy . '
3 VM : ‘ . ‘
1 VM =t ! ! \\\\\\\\\ ' v llll/u///m,,,,,,m.‘“m .
600 ---------- proseeeee e RO poeeeooeees b L |

500
400
300

Throughput

200

100

0 10 20 30 40 50 60 70 80
Requests (thousands)

Fig. 6 Evolution of system throughput when using three VM

the SLA. These tests (i.e., metrics) are not useful in determining this point. Further
metrics, like throughput, will help to find this.

3.3 System throughput and saturation

Another performance metric is the throughput. It is not as widely used for measuring
QoS as response time. However, throughput is widely used for measuring system
performance in terms of the number of requests served per unit of time. On this
occasion, throughput can be defined as:

number of requests
Throughput = - (3)
time

Figure 6 shows the evolution of the system throughput when using one single VM
and when using all three VMs. When using three VMs, we can appreciate a constant
throughput increment when the number of requests increases until a maximum of
40,000 requests, where throughput starts falling. The same behavior occurs when using
a single VM, but the maximum performance is reached around the 30,000 requests.

@ Springer

H-PC: a cloud computing tool

Although no formal or heuristic method to manage variability is given in the paper,
this figure show us that it can also be possible to determine the degree of variability
offered by the system empirically.

From Fig. 6, we can obtain the turning point where the system starts saturating,
and therefore, its performance starts to drop (beyond this number of requests, SLA is
not guaranteed). We can also appreciate how the overall performance of the system
increases when more VMs are active. In this case, we obtain a performance increment
of 35.44 % when two more VMs are added to the system. The performance increment
is not proportional to the added computing resources. This is due to the delay intro-
duced by the remote communication between sites, which is often the bottleneck. In
addition, VM3 is less powerful than VM1 and VM3. In any case, this result suggests
the deployment of work first to local, and then to remote, VMs.

This behavior is consistent with the one presented in [21], where a similar system
was designed through a mathematical approach using queuing theory-based model. In
that model, the system became overloaded at some point, which led to a steep increase
in the waiting time. This problem was solved by adding more servers, and hence more
computing capacity, to the system. In this case, we face a similar situation where our
system becomes overloaded, leading to a significant increase in the response time and
a decrease in the system throughput. Also, it can be seen that adding more VMs to the
system moves this turning point and extra load is required to overload the system.

3.4 Scheduler

The following tests were focused on testing the three different scheduling policies. The
Request Counting Policy is referred to as byrequests, Weighted Traffic as bytraffic,
and Pending Request as bybusyness. Each policy was tested through four tests: with
200, 400, 600, and 800 concurrent users performing 100 requests each, and a ramp-up
period of 50 s.

Figure 7 shows the evolution of the 90 % line with respect to each policy. It can be
seen that bybusyness was the best policy. For 80,000 requests, bybusyness obtained a
14.94 % time reduction compared with bytraffic and 29.06 % over byrequests. Past
that point, all three policies were overloaded. However, bybusyness still continued to
give the best performance. In all the cases, the system reached its maximum capacity
at some point beyond 40,000 requests, as the 90 % line started increasing. This means
that the system was overloaded and, therefore, requests took longer to be processed.

To confirm this, further measurements were performed for the bybusyness pol-
icy. Figure 8 shows the average, minimum, and median time (in ms) and the system
throughput for the bybusyness policy. Looking at the system throughput, it can be
clearly seen how performance starts decreasing over 40,000 requests.

3.5 Reliability
The architecture was based on a reliable design to minimize the fail probability of

the system. Hence, redundancy was applied to the critical components of the system
architecture.

@ Springer

J. Vilaplana et al.

5000 bytraffic N
4500 |- byrequests mum@uum --------- R R R T
4000 |- bybusyness - 77777777
o 9500 [
£ 8000 [b
(g1 SNSRI ORI SONANS N SO SRS SRR U/ S
() ' "
E 2000 i AL
: : : : : S W
I R 1 1
1000 A U SRS I L O S —
500 T, L RRREEREEE oo R 1
0 ‘

50 60 70 80 90 100
Requests (thousands)

Fig. 7 Evolution of 90 % line with different scheduling policies

1200 : : : ‘ 1000
Average (ms) : ; : ;
Min (ms) o 900
1000 - Throughput = ; : 3 :
Median (ms) mm@mn \\\\\\\\\. 800
» 800 ‘ 2 s \\\'\%\\“\\\ ,,,,, 700 "g-
é .4#600 -8)
) 600 -f S
£ 500 ©
= c
— 400[&‘ 400 =
300
200 : & : : : :
R o | | 200
0 u‘ ‘|!||||I|l||||l|l|||ll|’\\\\ N N ! iR ;i 1 Oo
20 30 40 50 60 70 80 90 100

Requests (thousands)

Fig. 8 Evolution of different metrics with the bybusyness scheduling policy

1000
900
800
700
600
500 -
400 ook -
L
200 [-----eoeeeeeee 1

100 fioeoeiaii: e

Time (ms)

0 5000 10000 15000 20000 25000
Request number

Fig. 9 Evolution of system response time when using three VMs

@ Springer

H-PC: a cloud computing tool

1000
900
800
700
600

500
300 |
200
100

Time (ms)aaa

R o AL s
0 5000 10000 15000
Request number

20000 25000

Fig. 10 Evolution of system response time when VMs fail

That said, the next test was focused on testing the fault-tolerance capabilities of
the system. In this scenario, the evolution of the response time was considered in two
different situations. In the first (Fig. 9), the system was running normally using the
three available VMs. In the second one (Fig. 10), the first OpenStack VM failed at the
10th second and the external VM ceased to operate at the 20th second. The vertical
lines indicate the moment when each VM failed. The test was configured with a total
of 500 users with a ramp-up period of 30 s. Each user sent 50 requests to the system,
thus a total of 25,000 requests were made in each test.

Figure 10 shows how the system performance significantly decreased when 2 VMs
were disabled at different time slices. Even though the response time increased sig-
nificantly, the percent error stayed at 0.00 %, which implies that no user request was
lost or incorrectly responded to. These results verify the good reliability of our design
of the system, and prove the effectiveness of the load balancer managing unstable
situations.

4 Conclusions

The results indicate that H-PC was successfully designed, implemented, and used
in the context of telemonitoring. It also supported the usage of text messaging and
e-mailing in improving a) the control of patients and b) the management of time
and patients by clinicians, and thus the optimization of health care resources and the
reduction of patient waiting lists. We measured the H-PC computing boundaries and
proved its good behavior and novel cloud design for deploying in clinical centers. We
also proved the good results in scalability, performance, reliability, and variability.

We believe that H-PC can also be adapted to other detoxification programs, such as
for alcoholism or drug addiction. Furthermore, treatment of chronic diseases, such as
diabetes, obesity, cancer [29], or HIV [35], will benefit from new and effective e-care
solutions.

Our design still has a single point of failure (SPOF), this being the Master (Sched-
uler) VM. Although the Master VM is quite robust, it is imperative to avoid any SPOF

@ Springer

J. Vilaplana et al.

when implementing a truly fault-tolerant design. For this reason, as part of our future
work, we plan to implement a load-balancing replication through the use of DNS, pro-
viding sites with multiple IPs. This will influence the question of availability. Power
awareness is another important issue we plan to add to the system.

Itis also planned to address other key issues in our future work. Security and privacy
are critical topics to be taken into account in cloud-based systems and health-related
platforms. We intend to study and address these topics thoroughly in the near future.
In this regard, we also plan to design mechanisms to determine the integrity of the
transmitted data, as any transmission error may change the values, causing undesired
adverse effects.

Section 2.1 shows that the H-PC design currently works using only one GSM
modem. As part of our future work, we plan to operate using multiple modems with
SIM replication. We also want to perform stress tests to determine how many SMS
messages and e-mails can be sent/received per second. In this respect, we plan to study
the implementation of priority assignments in our scheduling policies. This way, values
above a certain threshold (for example, that exceed the target blood pressure limits),
could be assigned a high priority and be processed immediately. Scaling the number
of sites and providing the system with a power-aware policy are also among our future
plans.

We also intend to scale the database system and incorporate big data techniques
to perform statistical analysis of the data. This way, trends could be established by
analyzing past data to predict near future values. Machine learning and data mining
are very interesting methods that could give the proposed system great value and could
also allow us to perform more realistic testing based on human behavior.

Also, further usability testing by medical staff should be done to ensure independent
users. Therefore, we plan to invite medical staff from other hospitals and regions to
test the H-PC tool.

Moreover, we plan to test this system in a public cloud like Amazon, to perform
a study of the costs of running the system and provide feasible solutions on how to
support these costs.

Acknowledgments This work was supported by the MEyC under contract TIN2011-28689-C02-02.
Some of the authors are members of the research group 2009 SGR145, funded by the Generalitat de
Catalunya.

References

1. Khazaei H, Misic J, Misic V (2012) Performance analysis of cloud computing centers using m/g/m/m+r
queuing systems. IEEE Trans Parallel Distrib Syst 23(5):936-943

2. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A,
Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50-58

3. Craig R, Mindell J (eds) (2006) Health survey for England 2006. Her Majesty’s Stationery Office,
London

4. NHS Information Centre. Quality and outcomes framework 2008/09. Online GP practice results data-
base. http://www.qof.ic.nhs.uk/

5. Law MR, Morris JK, Wald NJ (2009) Use of blood pressure lowering drugs in the prevention of
cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from
prospective epidemiological studies. BMJ 338:b1665

@ Springer

H-PC: a cloud computing tool

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Dickinson HO, Mason JM, Nicolson DJ et al (2006) Lifestyle interventions to reduce raised blood
pressure: a systematic review of randomized controlled trials. J Hypertens 24:215-33

Green BB, Cook AJ, Ralston JD et al (2008) Effectiveness of home blood pressure monitoring, web
communication, and pharmacist care on hypertension control: a randomized controlled trial. JAMA.
299(24):2857-2867. doi:10.1001/jama.299.24.2857

Pare G, Jaana M, Sicotte C (2007) Systematic review of home telemonitoring for chronic diseases: the
evidence base.] Am Med Inform Assoc 14:269-77

Pickering TG, Miller NH, Ogedegbe G et al (2008) Call to action on use and reimbursement for home
blood pressure monitoring: a joint scientific statement from the American Heart Association, American
Society of Hypertension, and Preventive Cardiovascular Nurses Association. Hypertens 52:10-29
Ohkubo T, Imai Y, Tsuji I et al (1998) Home blood pressure measurement has a stronger predictive
power for mortality than does screening blood pressure measurement: a population-based observation
in Ohasama. Jpn J Hypertens 16:971-975

Bobrie G, Chatellier G, Genes N et al (2004) Cardiovascular prognosis of masked hypertension detected
by blood pressure self-measurement in elderly treated hypertensive patients. JAMA 291:1342-1349
Aversa R, Di Martino B, Rak M, Venticinque S, Villano U (2011) Performance prediction for HPC on
clouds. Principles and paradigms, Cloud Computing

Vishwanath KV, Nagappan N (2010) Characterizing cloud computing hardware reliability. In: Pro-
ceedings of the 1st ACM symposium on cloud computing (SoCC *10), 193-204 2010

Tosup A,Yigitbasi N, Epema D (2011) On the performance Variability of Production cloud services.
11th IEEE/ACM international symposium on cluster, cloud and grid computing (CCGrid’2011), 104—
113, 2011

Martinello M, Kaniche M, Kanoun K (2005) Web service availability: impact of error recovery and
traffic model. J Reliab Eng Syst Saf 89(1):6-16

Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers.
Concurr Comput Pract Exp 24(13):1397-1420

Amazon Elastic Compute Cloud (EC2). Available at: http://www.amazon.com/ec2/. 2013

Chappell D Introducing the Azure services platform. White Paper, October 2008.

Google App Engine. Available at: http://appengine.google.com. 2013

Calheiros R, Ranjan R, Beloglazov A, De Rose C, Buyya R (2011) CloudSim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Soft Pract Exp 41(1):23-50

Vilaplana F, Abella F, Filgueira R, Rius J (2013) The cloud paradigm applied to e-health. BMC Med
Inf Decis Mak 13(1):35

Kliazovich D, Bouvry P, Khan S (2010) GreenCloud: a packet-level simulator of energy-aware cloud
computing data centers. J Supercomput

Lim S, Sharma B, Nam G, Kim E, Das ¢ (2009) MDCSIM: a multi-tier data center simulation platform.
In: Proceedings of IEEE international conference on cluster computing, 2009

Abbadi IM, Namiluko C, Martin A (2011) Insiders analysis in Cloud computing focusing on home
healthcare system. In: 2011 international conference for internet technology and secured transactions,
350,357, 11-14 Dec. 2011.

Deng M, Petkovic M, Nalin M, Baroni I (2011) A home healthcare system in the cloud-addressing secu-
rity and privacy challenges. In: 2011 IEEE International Conference on Cloud Computing (CLOUD),
vol., no., pp. 549,556, 4-9 July 2011 doi:10.1109/CLOUD.2011.108.

McManus RJ et al (2010) Telemonitoring and self-management in the control of hypertension (TAS-
MINH?2): a randomised controlled trial. Lancet 376(9736):163-172

Bray EP, Holder R , MantJ , McManus RJ (2010) Does self monitoring reduce blood pressure? analysis
with metaregression of randomized controlled trials. Ann Med 42(5):371-386

Ogedegbe G, Schoenthaler A (2006) A systematic review of the eff ects of home blood pressure
monitoring on medication adherence. J Clin Hypertens (Greenwich) 8:174-80

Kroenke K et al (2010) Effect of telecare management on pain and depression in patients with cancer:
A randomized trial. JAMA 304(2):163-171

Patel B, Turban S, Anderson C, Charleston J, Miller E, Appel L (2010) A comparison of web sites
used to manage and present home blood pressure readings. J Clin Hypertens 12(6):389-395
Karwowski W, Soares MM, Stanton NA (2011) Human factors and ergonomics in consumer product
design: methods and techniques (Handbook of human factors in consumer product design): needs

@ Springer

J. Vilaplana et al.

32.

33.
34.
35.

analysis: or, how do you capture, represent, and validate user requirements in a formal manner/notation
before design?. CRC Press, Florida Chapter 26 by K Tara Smith

Nielsen J, Landauer T. A mathematical model of the finding of usability problems. In: Proceedings
of ACM INTERCHI’93 Conference Amsterdam, ACM Press, Amsterdam, Netherlands, pp. 206-213
1993.

Dubrova E (2013) Fault-tolerant design. Springer, ISBN 978-1-4614-2112-2 2013

Apache JMeter. webpage http://jmeter.apache.org/

Len A et al (2011) A new multidisciplinary home care telemedicine system to monitor stable chronic
human immunodeficiency virus-infected patients: a randomized study. PLoS ONE 6(1):e14515

@ Springer

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE II5 (20I4) 3345

journal homepage: www.intl.elsevierhealth.com/journals/cmpb

S-PC: An e-treatment application for management @CMk
of smoke-quitting patients

Jordi Vilaplana®, Francesc Solsona®*, Francesc Abella®, Josep Cuadrado®,
Rui Alves?, Jordi Mateo®

2 Departament d’Informatica i Enginyeria Industrial & INSPIRES, Universitat de Lleida, Av. Jaume II no 69, 25001
LLeida, Spain

b Hesoft Group, Partida Bova, 15, 25196 Lleida, Spain

¢ Unitat de Tabaquisme de 'Hospital Santa Maria, Alcalde Rovira Roure, 44, 25198 LLeida, Spain

d Departament de Ciéncies Médiques Basiques & IRBLIeida, Universitat de Lleida, Montserrat Roig no 2, 25008
LLeida, Spain

ARTICLE INTFO ABSTRACT

Article history: The main objective of this paperis to present a new program that facilitates the management
Received 24 August 2013 of people who want to quit smoking, implemented through an e-treatment software called
Received in revised form S-PC (Smoker Patient Control). S-PC is a web-based application that manages groups of
6 February 2014 patients, provides a bidirectional communication through mobile text messages and e-mails
Accepted 11 March 2014 between patients and clinicians and offers advice and control to keep track of the patients

and their status.

Keywords: A total of 229 patients were enrolled in the study, randomly divided into two groups,
E-health although some variables were tested to ensure that there were no significant differences
SMS between the groups that could have an impact on the outcome of the treatment. There
Smoking cessation were no significant differences between the two groups regarding the ratio/number of
Treatment support males/females, tobacco dependence, co-oximetry, average cigarette consumption, current

age and age when smoking started. The first group was made up of 104 patients (45.4% of
the total) and followed a treatment that incorporated the S-PC tool, while the second one
had 125 patients without the S-PC tool. S-PC was evaluated for its effectiveness at assisting
the patients to give up smoking, and its effect on clinician time management.

74% of the S-PC group completed the treatment without relapses and remained abstinent
three months after the completion of the treatment, understanding abstinence as being
continuous (with no relapses allowed and co-oximetry below 1 ppm) from the day of stop-
ping. In contrast only 45.6% of the No S-PC group completed the treatment without relapses
and remained abstinent three months after completion of the treatment. The rate of admit-
tance to the program has doubled in one year and patients went from having to wait for 3
months to be immediately admitted into the program.

* Corresponding author at: Departament d'Informatica i Enginyeria Industrial, Universitat de Lleida, Av. Jaume II no 69, 25001 Lleida, Spain.
Tel.: +34 973 70 27 35; fax: +34 973 70 27 02.
E-mail address: francesc@diei.udl.cat (F. Solsona).

http://dx.doi.org/10.1016/j.cmpb.2014.03.005
0169-2607/© 2014 Elsevier Ireland Ltd. All rights reserved.

34 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE I15 (2014) 3345

This therapeutic e-health program aims at maximizing the number of patients that a pro-

fessional can effectively help to quit smoking. In addition, the system also detects patients

who are not progressing appropriately, allowing the professional to improve their treatment

parameters dynamically.

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Tobacco smoking is a major risk factor for active and pas-
sive smokers in certain respiratory [1] and circulatory diseases
[2] as well as in some types of cancer [3,4] and infections
[5], among other diseases [6-10]. Because of this, both pub-
lic and private medical institutions in an increasing number
of countries provide services for people that want to quit the
habit of smoking.

NRT (Nicotine Replacement Therapy), in the form of nico-
tine patches and/or nicotine gum, is effective to treat the
short-term nicotine withdrawal. Depending on the treatment
and replacement, the chances that patients succeed in quit-
ting smoking are increased between 50% and 70% upon NRT
[11]. However, NRT alone becomes ineffective after about 8
weeks of starting the treatment and its effect in maintaining a
smoke-free patient over alonger period of time (years) appears
to be quite modest, as demonstrated by meta-analysis of dif-
ferent studies [12,13]. In light of this, some countries, such as
the USA [14], the UK [15] and Australia [16], have published
evidence-based guidelines to recommend effective tobacco
cessation interventions ranging from brief instructions for
quitting to extensive counseling combined with pharmaceu-
tical adjuncts [17].

Because of the social context of tobacco smoking and
extension of tobacco addiction in the population, it is not fea-
sible to provide general cessation programs where patients are
interned and only return to the streets upon completion of the
program. A major issue in the treatment of addictions, and in
smoking cessation, is the high relapse rates. There can be sev-
eral reasons: decrease of the initial motivation, carelessness,
yielding to peer pressure in certain situations (parties, din-
ners, situations of anxiety or relaxation), a conscious decision
by the patient to start smoking again, craving, among others.
A factor that can help in these situations is to develop a strong
therapeutic link between the patient and the medical service.
Constantly reminding them about the decision taken (to stop
smoking), and making them feel closely connected to the pro-
fessional team can minimize the chances of relapse. Strategies
that favor this situation may have a positive impact on the
obtained results regarding the long-term tobacco abstinence.

Therefore, many cessation programs combine pharmaco-
logical treatment therapy with a simultaneous psychological
treatment to control the progress and reinforce the motivation
of the patient. This following can be done on an individ-
ual basis [18], in the context of group therapy [19], or via
long distance support through phone calls [20]. The increas-
ing number of people taking advantage of public and private
cessation programs overloads these programs and decreases
their efficacy. This is so because the psychological part of
the treatment is often as important as the pharmacological

treatment in order for a patient to quit smoking. A previ-
ous study proved that individual counseling, combined with
telephone counseling were associated with higher 52-week
abstinence rates than telephone counseling alone [21]. Previ-
ous studies have shown that social support was associated
with cessation and with short-term maintenance of absti-
nence [22]. Therefore, there is the need to develop efficient
e-health tools in order to optimize both the time spent by the
clinicians that follow a patient and the efficacy of their service,
minimizing the probability of relapse by the patient. In conse-
quence, tools are needed to allow professionals follow patients
without making such following too long time consuming.
Preliminary work using mobile phones showed that this
type of patient was twice as likely to successfully quit smoking
as patients that did not have such support [23]. A more recent
study [24] confirmed that proactive telephone counseling is
effective in short term reduction of cigarette consumption
and in increasing the percentage of smokers that attempts to
quit by more than 5%, when compared to that of people with-
out phone counseling. Another study [25] of the same group
suggests that text messaging can double the likelihood of
smoking cessation when compared to patients that have nei-
ther continuous contact with their caregivers nor personalized
follow-up. Such contact and follow-up are very important psy-
chological aspects of the process of quitting smoking, because
they provide support and help maintain patient motivation
[26,27]. Another study [28], that aimed at determining whether
mobile phone-based interventions are effective in stopping
smoking, concluded that mobile phone-based text messag-
ing smoking cessation interventions have a positive effect on
long-term outcomes. Another study [29] evaluated the effec-
tiveness of the telemedicine interventions, comparing their
applications at home and in the consulting room or hospital.
It showed evidence for the efficacy of household applications
in clinical outcomes for chronic disease management, as for
example hypertension and AIDS. In hospital applications, it
was found that telemedicine was comparable to face-to-face
care in emergency medicine. Therefore, psychological follow-
ing appears to be an essential part in the quitting of the
smoking process, as it is the case for other cessation programs.
Given that such following requires a large time investment
by health professionals, it is important to have tools that auto-
mate this part of the treatment as much as possible, while
maintaining or increasing the efficiency of the professionals.
Taking the facts described in the previous paragraphs into
account, it was our objective to develop and benchmark the
effectiveness of an e-health tool that would: (a) be generally
applicable in smoking cessation treatment programs, (b) auto-
mate much of the work that needs to be done by the clinicians,
(c) allow professionals to more effectively maintain a person-
alized support and follow-up of patients, (d) give patients the

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE I15 (2014) 3345

35

psychological support that they require for successfully quit-
ting smoking, and (e) decrease the time needed by clinicians
to manage the patients and reduce average length of waiting
lists. This tool was named S-PC (Smoker-Patient Control). An
additional objective was to understand to what extent patients
were satisfied with being treated using the tool.

S-PCis an e-medicine service based on a computer program
that manages a central database of information on patient
progression. It was benchmarked in the smoking cessation
program being run at the public hospital Santa Maria in Lleida,
Spain. In this paper we present the tool and its functionality, as
well as the results of the benchmark and studies on patients’
satisfaction. Those studies suggest that S-PC meets the objec-
tives of its development. This tool can be freely downloaded
from Hesoft Group web page.!

2. Background and significance

Most reported studies of mobile phone technology used for
smoking cessation follow patients by at most 6 months [23-26].
This is at odds with the current study, which has followed
patients for a year.

Nevertheless, the effect of S-PC on the likelihood of smok-
ing cessation by patients appears to be comparable to that
found in other studies that measure the effect of SMS on smok-
ing cessation in the short term [23-26,34]. All such studies
present likelihoods of smoking cessation that are approx-
imately twice as high using mobile phone technology as
in control groups. In some of these studies that likelihood
decreases at 6 months while in others it remains at about 2
months, as is the case with ours. Studies that followed the
patients for longer periods usually also considered the effect
of Internet messages on improving the outcome of smoking
cessation interventions.

In the “Free C” study [23], the response rate at 6 months was
92%. In “Tzelepis F” [24], the results showed that telephone-
counseling participants were more likely than the controls
to have attempted to stop (48.6% vs. 42.9%, p=0.01) and
they reduced their cigarette consumption (16.9% vs. 9.0%,
p=0.0002). In the “Free C” [25], continuous abstinence at 6
months increased significantly in the intervention group com-
pared to the control group (10.7% intervention vs. 4.9% control,
RR 2.20, 95% CI, 1.80-2.68; p<0.0001). The “Whittaker R” [28]
six-months studies concluded that mobile phone interven-
tions increased rate long-term of stopping (RR 1.71, 95% CI,
1.47-1.99). However, none of these studies lasted more than
six months, while the present study was conducted over a
one-year period.

Whatis new about the current study is the evaluation of the
effect of the tool on clinician and patient’s time management,
waiting list reduction, and the patient satisfaction with the
mobile texting intervention. As far as we know none of the
other studies have performed such evaluation.

The most important applications that perform a function
similar to that of S-PC are STOMP [32], PMC [33] and txt2stop
[23,25]. Table 1 presents a comparison of the functionality of

1 Hesoft Group. http://www.hesoftgroup.com.

i~
]
=
[]
]
-
M
-
o
=]
©
O
p=
Ay
ar
=
o
I
a
2
[<]
<]
-
~
©
=1
£
(7]
-t
[}
=
o
£
3
O
A
[77]
[]]
=]
‘"
©
(=¥
g
o
O
1
i
[}
3
©
[

Custom Custom Templates

messages

Medical

Lists

(%]
il
=
©
<
O

Clinician Communication

Program

alerts

history

channel

support

No

No

Yes

No

No

No

SMS

Yes

STOMP
PMC

No

No

Yes

Yes

Yes

Yes

E-mail

SMS
SMS

Yes No Yes

No

No

No

Yes

TEXT2STOP

S-PC

Yes

Yes

Yes

Yes

Yes

Yes

Yes

36 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE I15 (2014) 3345

these tools with respect to that of S-PC. S-PC is the application
with the more complete set of functionalities. The physical
medium used by each of the applications varies. PMC uses e-
mail to exchange messages and information with the patients.
STOMP and test2stop use mobile text messaging for the same
effect. S-PC was set-up in this study to use mobile text mes-
saging. Nevertheless, it can also use e-mail if that is required
by the clinicians. Only S-PC and PMC create customized lists of
patients, and graphically represent clinical history and treat-
ment progression. In addition, S-PC sends warning messages
to clinicians when a patient at risk is identified by the pro-
gram. It also permits customizing messages at will. These two
features are exclusive to S-PC.

3. Materials and methods

3.1. Smoking cessation program at University of
Lleida/Santa Maria Hospital

The smoking cessation program of the detoxification unit at
the University of Lleida/Santa Maria Hospital has been active
for 6 years. Currently, the applied smoking cessation proto-
col has three goals for the patients. The first two, nicotine
detoxification and smoking cessation, are easily achieved with
appropriate pharmacological treatment. The third goal is that
the patient suffers the least possible anxiety during the pro-
cess, in order not to relapse when the treatment is over. This
goal is currently where the clinician focuses most of his/her
efforts.

Over the years, the types of patients treated in this unit
have changed. Ten years ago, 90% of the patients were referred
to the service via medical recommendations and due to press-
ing health problems. Currently, 90% of the patients seek
treatment because they want to lead healthier lives and spend
less money. In fact, economicreasons led to a sharp increase in
the number of patients wanting to quit smoking with the unit’s
help in the last couple of years. Given budget restrictions that
make it impossible for more personnel to be hired, patients
had a three-month waiting period before being admitted to the
program. In addition, many of the patients are from neighbor-
ing villages, which leads to an increase in their transportation
expenses. If the reasons for quitting smoking are economic,
this could threaten the continuity of the patient in the smok-
ing cessation program. This situation made it necessary to
develop an e-health tool to improve the efficiency of the staff
and decrease the overall cost of treatment for the patients.

The S-PC tool was designed with this considerations in
mind and benchmarked for a year in a small scale clini-
cal study performed in the smoking cessation program of
Santa Maria Hospital. Ethics approval for the study was
obtained from CEIC (in catalan: Comité Etic d’Investigacié
Clinica), the Ethics Committee for the Health Region of
the province of Lleida (Spain), where the participants were
recruited and human experimentation was conducted. All
participants signed an informed and written consent before
engaging in the study.

The definition of abstinence used in the smoking ces-
sation program of the detoxification unit at the University
of Lleida/Santa Maria Hospital is understood as continuous

abstinence from the last day of stopping with no relapses
allowed. Self-reported abstinence is verified through the co-
oximetry levels with the Fagerstrom test [30]. Although some
tobacco guides define non-smokers from 0 to up to 10 ppm
in the co-oximetry test [44], in this case and due to the low
contamination levels in the city of Lleida, patients were con-
sidered to be non-smokers when the test result was below 1.
Various Fagerstrom tests are done throughout the treatment.
When patients first arrive to the unit, one test is done. Then,
seven days after, the day to stop is set and a second test is per-
formed. A week after the stopping day a third test is done, the
result of which should be below 1. Finally, a last test is done at
the end of the treatment.

3.2. Patient selection

The Tobacco Unit of the Santa Maria Hospital, where S-PC
was implemented, provides service to a town of approximately
150,000 inhabitants. For this reason, the absolute numbers of
patients that try to quit smoking is small. In order to be able
to perform this study with sufficient statistical power, all 229
patients that required the services of the Unit after implemen-
tation of S-PC were enrolled in the study, after giving their
informed consent.

The patients were divided into two groups with randomly
selected patients. The first group, the intervention arm, made
up of 104 patients (45.4% of the total, SMS group) followed
a treatment that incorporated S-PC. The only requirement
to be part of this group was to own a mobile phone and
know how to use it. The second group, the control arm,
formed by 125 patients (54.6% of the total, No SMS group)
followed a treatment that did not include S-PC. Both groups
were then tested to ensure that the following variables, which
may have significant impact on the outcome of the treat-
ment, were not significantly different between them: mean
cigarette consumption (P-value, P=0.1), age at which cigarette
consumption started (P=0.8), current age (P=0.16), tobacco
dependence [as measured by the Fagerstrom test [27]] (P=0.86)
and co-oximetry [level of CO exhaled] (P =0.39). There are also
no significant differences between the two groups regarding
the “number of males/number of females” ratio (P =0.14). Both
groups are not significantly different regarding these variables
(P>0.05). These are important controls to avoid that results of
the study are biased by possible confounding factors.

Fig. 1 illustrates the procedure of the study, with the two
groups of patients involved, the type of treatment they fol-
lowed and the types of communication between them and
the clinician. Both groups made regular visits to the clinician.
The clinician monitored the Control Group manually, whereas,
for the SMS Group the clinician monitored the patients with
the assistance of the S-PC tool. Additionally, the SMS Group
had an additional form of communication through mobile text
messages as positive reinforcement and test questions.

All patients that belonged to the SMS group and had an
were sent and answered the satisfaction questionnaire about
the use of S-PC during their treatment. 69 patients answered
this survey. This group was statistically tested to ensure that
it was representative of the larger SMS-group.

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE I15 (2014) 3345 37

Table 2 - Patient characterization. Statistical differences between the two groups.

SMS group No SMS group P
Consumption 25.26 + 11.07 27.98 + 14.22 0.11
Fagerstrom Test 5.38 £ 1.95 541 + 2.07 0.86
Co-oximetry 21.36 + 11.55 20.60 + 11.70 0.39
Current age 43.04 £9.2 447 £9.5 0.16
Start smoking age 16.16 £ 2.9 16.29 £ 3.5 0.81
to use the program after some time without using it (Mem-
.’. Classical orability). Fourth, users should not be able to make serious
a0 Y Treatment . .
o mistakes by using the program, and recovery from any error
s ought to be easy (Error rate). Fifth and final, the user should
(125 patients) E— be satisfied with using the program (Emotional Response).

Regular Visit A

itive Reinforcement

S-PC
SMS Group Treatment

(104 patients)

Test Question

i

Fig. 1 - Procedure of the study illustrating the two groups of
patients and their relations with the clinician.

3.2.1. Statistical testing

Mainly we compare patients treated using the S-PC protocol
(SMS group) with patients treated using the classical proto-
col (No SMS group). SPSS [31] was used for statistical analysis.
A x? test was used to determine the degree of statistical
significance of the differences between patient and control
groups with regard to non-numerical variables. For exam-
ple, comparing how significantly different is the percentage
of patients that quit smoking in each group, or how different
two groups are with regard to their percent sex composition
is done through this test. A Student-t test was used to deter-
mine the degree of statistical significance of the differences
between patient and control groups with regard to numerical
variables. For example, differences in co-oximetry, number of
cigarettes, ages, etc. The significance level or p-value (P) was
set to 0.05. In our case, this measures the probability that two
sets of patients being compared with respect to a given vari-
able are similar. Table 2 describes the statistical differences
between the two groups.

3.3. S-PC design

The design of S-PC was made following stringent usability and
user-friendliness criteria, after an exhaustive analysis of (a)
other applications with partial functional overlap (Table 1),
and (b) the clinical requirements of the medical staff that uses
S-PC.

There are five criteria that determine usability and user-
friendliness [38,39]. First, a usable program must allow users
to accomplish basic tasks the first time they use it (Learnabil-
ity). Second, users that are familiar with the program should
be able to quickly perform the tasks for which the program is
required (Efficiency). Third, users should quickly re-learn how

Design principles of cloud computing were also incorporated
in the design. Therefore, S-PC can be accessed from standard
computers, smartphones and tablets. These criteria and the
comments of six clinicians were used to design and iteratively
improve the graphical user interface (GUI) of the program.
Development was finished after eleven iterations. The number
of clinicians and iterations was determined using Virzi’s for-
mula [40-42]. According to this formula, the number of users,
n, needed to uncover N% of all problems in the interface is
given by n=Log(N)/Log(1 — (1 — p)), assuming that the probabil-
ity p of existing a problem is 0.33 [40]. Finding more than 90% of
all problems requires 6 users, which is the number of clinicians
that test the program through 11 iterations of change. Deploy-
ment of the application was made in Santa Maria Hospital and
in two town surgeries.

3.4. Implementation details for S-PC

S-PC is a multiplatform, multi-language, application with
a user-friendly graphical user interface (GUI) that enables
easy access and utilization of all its functions by the clini-
cian, implemented by using Javascript, CSS, JSP and XHTML.
English, Spanish and Catalan languages are currently avail-
able. Additional languages can be easily added upon request.
An intuitive help menu is also available, as well as a user
manual. S-PC can run on any computer, operating system
(Windows, Symbian, Leopard, Linux, etc.), and on any of the
major web-browsers (Firefox, Explorer, Chrome, Opera, Safari,
etc.). The implementation reported in this paper runs on an
Intel Xeon X3430 (2.4 GHz, 8 Mbytes of cache), Main Memory
of 4 GBytes, 1333 MHz and with 3 Mbits bandwidth for Internet
access. It is implemented by using cloud technology, which
diverts the calculations from the core of the computer where
the application runs to virtual machines. This ensures greater
service quality and decreases maintenance and upgrade costs.

Basic elements (see Fig. 2) are the computer, a modem,
mobile text messages, mobile phones and the web server. The
computer stores patients’ information in a MySQL database
and runs S-PC. S-PC sends text messages to the mobile phones
of patients and receives their responses. The modem con-
nects S-PC (located at the server) with the mobile phone
network. Fig. 2 shows the communication flow chart between
the patients and the clinicians. The patient interface with S-
PC via SMS messages received in and sent from their mobile
phones. Clinicians interface with SP-C via a computer and
use it to communicate with the patients via SMS messaging

38 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE I15 (2014) 3345

test, reinforcement, alert

——.
@ i automatedtasksl Sewerﬁﬁ?\

/

SMS T PR—
»
Modem GSM 35iT
—)

test / - >Web
4 —
&8
- | automated tasks

Fig. 2 - S-PC flow chart. This Figure shows both, the basic elements of the S-PC program and the flow of information
between them. Basic elements are the computer, a GSM 35iT modem, mobile text messages, mobile phones and the web
server. The computer stores patient information in a MySQL database and runs S-PC. The GSM 35iT modem connects S-PC
to the mobile phone network. S-PC sends text messages to the mobile phones of patients and receives their responses.
Clinicians interact with SP-C via web browser and use it to communicate with the patients via mobile text messaging and

to analyze patient progression in the treatment program.

and to analyze patient progression in the treatment program.
Patient-Clinician communication is described in more detail
in Fig. 2.

S-PC has a client-server architecture (see Fig. 3). In its
implementation, different technologies were applied. The pre-
sentation layer is implemented using Java Server Pages (JSP)
for the structure and CSS (Cascading Style Sheets) is used in
the presentation. JavaScript is ideal for verifying web forms.
Therefore, we use it for validation of submitted information
to the server. Java Servlets has been used in the controller
layer and Java in the model layer. CSS has been used for defin-
ing the presentation of a web document (HTML, XHTML, etc.).
JDBC (Java Database Connectivity) allows the connection to
the database. The database is implemented in MySQL because
of its performance and wide range of Application Program-
ming Interfaces (APIs) available for it. The database stores

GSM modem a

Ll | P ¢ swsut
—)
Y JavE
@ |)sp ————CONTROLLER «— MODEL
&
@ e JDBC
HTML N
PRESENTATION MuSCL- paTABASE

Fig. 3 - S-PC Architecture. Main technology and their
relationship. All the used software is free.

information about clinical history of patients of each center,
messages and messaging, treatments and clinicians, etc.

3.5. Patient—clinician communication

S-PC enables clinicians to pre-define, edit, adapt, and send
three types of SMS messages to the patients, following guide-
lines that were established to improve impact of messaging
[27]:

1. The same Test question is sent once a week to follow
each patient’s progression through the treatment: How is
the treatment going? A mandatory text messaging reply
is required. Possible replies are 0 (Bad), 1 (Not too Bad),
2 (Good) and 3 (Very Good). This format facilitates auto-
mated processing, storage, graphing, and analysis of the
answers by the server. Missing replies and “0” answers are
flagged as risk patients and forwarded to the clinicians for
personalized follow-up. The system relies on the honesty
of the patient’s answers. Having a single question repeated
weekly avoids patient’s confusion. Given that the informa-
tion is organized in the database, a clinician can access the
list of patients at risk, and of patients that are not follow-
ing the treatment appropriately, enabling a personalized
treatment of each type of profile. Patients at risk are the
patients who answered Bad or Not too Bad to the test ques-
tion.Once the weekly test response from the patients is
received, messages are processed in the following way. We
recommend contacting directly with the patients at risk via
mobile text message or a phone call (method used in sec-
tion “An evaluation of S-PC in the context of the smoking
cessation program”) inviting them to visit the health cen-
ter. However, as the S-PC allows any configuration, the final
decision is up to the clinician.

2. Positive Reinforcement messages that support the patients
and reinforce their resolution to quit smoking, assuring

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE I15 (2014) 3345 39

Table 3 - Examples of Positive Reinforcement SMS messages.

Order Message

1st Welcome to the smoking cessation program. You will now start receiving messages from your clinician
2nd Not smoking is easier than it looks. Congratulations on your decision to quit
3rd You can now resist without smoking for a few more days

4th Quitting smoking was an excellent decision!!

Sth Think about what you have already achieved!

6th Breathing better? Getting less tired?

7th Think about how much you have already improved!!!

8th You are a great example for other people that are quitting smoking!!!

9th You have been smokeless for 3 moths!!! Congratulations!!!

10th Four months without smoking! Well done!

11th More than 6 months without smoking a cigarette! What an achievement!
12th Please remember not to smoke, OK?

13th You'd better not smoke, alright?

14th Almost a year without smoking!! Congratulations!!!

the patient that he/she is thoroughly followed. A variety
of messages can be defined and used, in order to avoid that
the patient feels that he/she is being routinely attended
by a machine, which would have a negative effect on the
treatment. These messages were written by the clinicians,
based on previous consultation with patients regarding the
positive reinforcement they would like to hear during their
treatment. This approach comes from the group of expert
patients as a therapeutic strategy, which has been suc-
cessfully used [43], and which consists of a small group of
patients who succeeded in giving up smoking and want to
help other patients to do the same. Table 3 shows the 14
first messages used for positive reinforcement.

3. Alert messages that notify risk patients that they are
close to relapse (by observing a worsening of the patient’s
responses to the Test messages), with the purpose of cor-
recting the patient’s behavior. Clinicians contact patients
with this kind of message in order to have them come to
the hospital for consultation.

A Patient-Clinician communication example can be seen
in Fig. 4, which describes the communication flow between
the two parts. Over the course of a week, various messages
are sent from the clinician (S-PC) to the patient. In this exam-
ple, two reinforcement messages are sent on days 2 and 4

respectively. One test question is sent on day 7 and answered
by the patient with one of a range of possible options.

All messages can be defined or modified at any time in the
database of S-PC. By default S-PC automatically sends mes-
sages on predefined days and schedules. Test and Positive
Reinforcement messages are typically sent this way. Alterna-
tively, a clinician can manually send a message to a patient
through the system. Alert messages are typically sent this way.
No patients were told that S-PC could automatically send the
messages at predefined schedules.

3.6. Treatment protocol

We are now able to explain the e-treatment implemented by
S-PC in which patient and clinician interchange SMS in a pre-
defined protocol. The first message (Positive Reinforcement)
welcomes the patient into the program, notifying that SMS
monitoring will start. When and how many Positive Rein-
forcement SMS are sent to each patient is a decision of the
professional that follows that patient. The frequency of the
messages can be fully automated. However, the clinician must
consider that a constant frequency could cause a negative psy-
chological effect on the patient, derived from routine. To avoid
this, a protocol that varies the number of Positive Reinforce-
ment messages that are sent to the patients over time was
developed and implemented (Table 4). Test messages are sent

S-PC

i
)
S| 4 —]
o
E
=
5
6

Positive Reinforcement
| Positive

Positive Reinforcement

3 /
Test Question

Not too Bad
& H
‘ Good ’

Very Good

/——>

-

/ Patient

Test response

Fig. 4 - Information flow diagram between S-PC and a patient.

40 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE I15 (2014) 3345

Table 4 - Scheduling of the positive reinforcement SMS messages. Positive reinforcement messages are delivered

according to schedule shown in this table. The number of delivered positive reinforcement SMS messages sent to a

patient during each week of the treatment is shown here.

Month Week #SMS Month Week #SMS Month Week #SMS Month Week #SMS

1 1 2 4 13 1 7 25 0 10 37 0
2 2 14 0 26 0 38 0

3 2 15 1 27 1 39 1

4 2 16 0 28 0 40 1

2 5 1 5 17 1 8 29 0 11 41 0
6 1 18 0 30 0 42 0

7 1 19 1 31 1 43 0

8 1 20 0 32 0 44 1

3 9 1 6 21 1 9 33 1 12 45 0
10 1 22 0 34 0 46 0

11 1 23 1 35 0 47 1

12 1 24 0 36 1 48 1

once a week. As was said before, sending an Alert message
depends on the progress of each patient.

The number of SMS depends on the therapy duration. To
begin with, the psychologist of the team ascertained that 2
Positive Reinforcement messages per week were sufficient to
support the patient’s progression. If progression of the treat-
ment is favorable, message frequency will decrease to avoid
saturation. For stronger psychological effect, it is important
that test and Positive Reinforcement messages arrive to the
patients at unexpected times (for example Sunday at lunch).
This leads to further discussion of the treatment between the
patient and his/her local support system, increasing motiva-
tion. However, care is taken so that messages are not delivered
at inconvenient times (for example at work or at night, while
patients are sleeping), because such delivery could contribute
to treatment rejection. This strategy is designed to reinforce
the sensation that the professional is following the patient at
all times with great interest.

Cost of SMS messaging must also be taken into account.
The scheduling for positive reinforcement shown in Table 4
takes this factor into account and was decided upon by the
clinicians of the Santa Maria Hospital after some testing. The
duration of the whole program is 1 year.

4, S-PC operation

S-PC can be accessed through the web-browser, using a secure
login window. It is available from anywhere in the world, as
long as an active Internet connection is available. The user

S-PC

Access to S-PC

User: |]
Password: [|
Language: [Default 3|
1L Login | [Cancel |

Fig. 5 - S-PC Login. This is the authentication window.
Catalan, Spanish or English languages can be chosen.

(clinician) logs in by entering its username and password,
choosing the language in which s/he wishes to work (Cata-
lan, Spanish and English). Fig. 5 shows the access screen of
the application.

Next, the user (clinician) accesses the main screen (Fig. 6),
where s/he can search for the status of patients, append notes
to clinical histories (yellow) or registered new patients. The
main S-PC functionalities are (1) registering a new patient, (2)
identification and management of lists of different types of
patients, (3) create/modifying the templates of “test” and “pos-
itive reinforcement” messages, (4) deliver “alert” messages to
the mobile phone of patients, (5) change user properties (as
password), (6) exit, (7) return to the login screen, (8) show
patient status, (9) save private clinician notes, and (10) send
user feedback to improve the application. Next, mainly win-
dows are presented.

Patient responses of the “test” messages can be visualized
in pie charts (Fig. 7) and progress charts (Fig. 8). Answers are
codified as follows: 0 Bad, 1 Regular, 2, Good and 3 Very Good.
These charts facilitate identifying patients at risk that need
personal attention:

9/3/2011

Control Patients - Smoking

— Enter patient

/" Charts Cercar
U4

[+] See detalls

/ Listings

Templates

m Notes.

/—J_\ Alerts
&\UW
(;) -

Save notes

Fig. 6 - Main screen window. It can be appreciated all the
functionality provided by S-PC. (For interpretation of the
references to color in text near the reference citation, the
reader is referred to the web version of this article.)

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE I15 (2014) 3345 41

_— " rom 1/10/2011
DURIAK Marea L)

Patients State
.w Insert patient

Patients State

-
2 Charts
-
-
-,
/ Listings -~
Templates
‘; 'S Nerts Bad Regular Gooe Very good
Patient 1 Patient 2 Pateent 4 Patwnt 8

Patient 3 Patent S Pate

g User Patient 6 Patuent 3
Patient 7 Patient 11

Patient 1

O-

Fig. 7 - Patients State. Graphical and schematic (in %)
representation of the patients state. A list of the patients in
each corresponding state is also shown.

1. Patients State (Fig. 7). It shows the general graphical per-
centiles of the current status of patients. The individual
status of each patient is also displayed.

2. Patients Evolution (Fig. 8). This table shows the responses of
individual patients to test questions over their treatment.
In this case the number of weeks are twenty. Users can
modify the number of weeks to be represented.

Many listings can be created, as for example patients at risk
(see Fig. 9).

Creating and modifying templates for all kind of messages
(test, positive reinforcement and alert) can be done as shown
in Fig. 10.

The system also allows the clinician to select a group of
patients to whom a given alert message must be send (Fig. 11).

R — 17/8/2003
PSR maraa
Patients Evolution
(m Insert patient
- Patients 12345678910111213 14 15 16 17 18 19 20
| (A Charts Patient 1 22
> Patient 2 Z20ENNEN2 2 2 W3 3
Patient 3 222222222 2 2
Patient 4 3333333003 W3 3 W2 3 3 3
g Listings Patient 5 32332 3 2
/ patient 6 2322323333 3 333 3333
Patient 7 1200202303 3 3 3 3 4
Patient 8 2333301333 GHENEN2 2 2 |2
Templates Patient 9 2222222222 2 2 2 2 3
Patient 10 2222223333 3 3 3 3
Patient 11 2221222222 2 W1 82
4 Patient 12 2222223222 2 2 23 2 3
i!’i\“eﬂ! Patient 13 22220122223 2 2 3
2 Patient 14 232332213 3 3 |3
Patient 15 222222222
Patient 16 2222202302 2 2 2 302
&"S!f Patient 17 222221502 BHEHEREN2 2
Patient 18 222223333 El2 ENE
Patient 19 2222202222 2 2 2 2 HE
. Patient 20 22
(0) (2 Patient 21 3 3 1 3 M3
Patient 22 33033333
Patient 23 1lil32223 2222 M2 2

Fig. 8 — Patients evolution. It shows the evolution of the
patients according to the codified state: 0 Bad, 1 Regular, 2,
Good and 3 Very good.

O A - - oseom
1ESO| GROUP = - ®
1

& Insert patient

List of patients at risk

Total 6 patients atrisk.

":3 s Name DNI state Mobile
) Patient 1 DNI 1 Statel Mobile 1
Patient 2 DNI 2 State2 Mobile 2
Patient 3 DNI 3 State3 Mobile 3
_ Patient 4 DNI 4 Stated Mobile 4
/ R Patient 5 DNI5 State 5 Mobile 5
Patient 6 DNI 6 State6 Mobile 6

Templates

i} N Alerts

‘ User
@ Exit

Fig. 9 - Listing patients at risk. Only the patients at risk (no
response or Bad state) are listed.

5. Results
5.1. S-PC effectiveness

The effectiveness of S-PC was evaluated with respect to (a)
its effect in assisting the patients to quit smoking, and (b) its
effect on clinician time management, as measured by the time
that patients spend in the waiting list before being admitted in
the program and by the number of personal visits each patient
requires.

Table 5 summarizes the results and the differences
between the SMS and the No-SMS group. 74% of the SMS group
completed the treatment without relapses and remained
abstinent three months after the completion of the treatment.
In contrast only 45.6% of the No-SMS group complete the treat-
ment without relapses and remained abstinent three month
after completion of the treatment. The groups were signifi-
cantly different with respect to this issue and the treatment

Question1: s i s e s et e o s g e
-
2 Charnts QUESBION 2. No smoking s easser than & looks! . Congr atulations’
v
QuUOSHON 3: & takes 2 few days wihout smoking
QUESION & Quiting smoking has made an excelient decrsion
) 2 Uistings Question S Thek youre gecting
QUESHON 6: reathe better?. You get tred less?
QUESHON 75 Thew about the ergrovements youTe Comtedenng
Templates.
Question 8: Surely you are & 9ood example Tor Many people Mot T WToke’
Question 9
stion 10 #our mon WL wmokIng (o o
.\‘m‘ Que the wEhout smoking. Congy atuist
&7 QUESHON 11 pore than six menths wethout smeking. congratudation

QUESHION 12: memenmber. do net smske: Congratubatons:
Question 13: Best Non-smeking. nght?

Question 18: Almost a yew wehout wmskng. Cong stubateons

Aewty the tempiate to st messages
(") U
e amtare = cre

Fig. 10 - Creating template messages. We show in this
window the creation of the list of Positive Reinforcement
SMS messages.

42 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE I15 (2014) 3345

Table 5 - Contingency table comparing relapses between patients of different groups. Patients in the SMS group more
strictly adhered to NRT and had significantly less relapses than those in the No SMS group (x? test shows significance of

P<0.001 in both cases). NRT differences are seen by comparing the first five rows of the table, while relapsing differences
can be seen by comparing rows 6-9. There was no significant difference in the relapsing frequency with respect to sex,

where P=0.1, (see rows 10-13). This can be seen by analyzing the last four rows of the table.

Patient types SMS No SMS Total
Strictly following NRT 52 48 100
Following NRT 34 21 55
Left NRT 18 56 74
Total 104 125 229
Strictly follow treatment 77 57 134
Smoking relapses during treatment 27 68 95
Total 104 125 229
Men Women Total
Strictly follow treatment 63 71 134
Smoking relapses during treatment 55 40 95
Total 118 111 229

is significantly more successful in the SMS group than in the
No-SMS group (P <0.001). We found no significant influence of
sex on treatment success in either of the groups (P=0.1), dis-
carding sex as a confounding factor for the effect of S-PC in
the treatment of patients that are quitting tobacco.

We also note that S-PC has positive effects on the first two
goals of treatment (nicotine detoxification and smoking ces-
sation). Records of adherence by the SMS and No SMS group
to Nicotine Replacement Therapy (NRT), as reported by the
patients, were kept and analyzed. Comparing the SMS and the
No SMS group shows that adherence to NRT was significantly
greater in the former than in the later (P <0.001).

To evaluate the effect of S-PC on the time management
of clinicians, we compared clinician patient load before and
after S-PC implementation. We also compared the time that
patients spent in the waiting list and the average number of
visits per patient before and after S-PC was implemented. The
effect of S-PC on clinician time management was strong. 100
new patients per clinician were enrolled in the program dur-
ing 2010 without S-PC. In comparison, S-PC allowed 200 new
patients per clinician to be enrolled and treated during 2011.
Before using S-PC, each patient attended 10 visits/year. S-PC

g L - 1/10/2011
b eonevras H
HORTAK mara

Send alert
'w Insert patient
Patients List Patients Selected
- Select Select
2 Charts —
v
Pocier

/ Listings

Templates

Send message (sms) to selected patients

Send Alert

Fig. 11 - Sending Alerts. This window shows the mean for
sending SMS messages to patients at risk.

allowed this number to decrease to an average of only 7 vis-
its/year per patient. In addition, more time is now spent with
the new patients (the ones that require more attention) and
significantly less clinician time is dedicated to already enrolled
patients, which are effectively accompanied through S-PC.
Even though the rate of admittance to the program has dou-
bled in one year, patients went from having to wait for 3 month
to be admitted in the program to immediate admittance.

5.2. Patient satisfaction

To further evaluate the role of S-PC during the treatment, we
prepared an electronic satisfaction survey that was answered
by all patients of the SMS group that used The questions were
designed to evaluate the opinion of patients on the appro-
priateness and effectiveness of using S-PC in their treatment.
The group contains representative proportions of age, sex and
physical condition with respect to the complete treatment
group.

95% of all patients used the application throughout the full
duration of their treatment. 92% of the patients were either
satisfied or completely satisfied with the support given by
S-PC. However, 20% felt that they would still have managed
without the system. Thus, 70% of the patients strongly agreed
that the S-PC system helped them remain smoke-free, 10%
had no opinion about this issue and 20% disagreed or strongly
disagreed that S-PC helped them remain smoke-free. 60% of
the patients agree that S-PC decreases the number of medical
appointments needed during the treatment, with 25% of the
patients disagreeing with this statement. When comparing S-
PC to other methods used in the smoking cessation program,
70% of the patients are satisfied with this method, 25% are
unsure about the comparison and less than 5% considers S-
PC is not a good methodology. 96% of all patients feel that
S-PC is either an adequate or a perfectly adequate tool to aid
them quit smoking. Less than 10% of the users reported prob-
lems receiving or sending messages. Approximately 70% of
all patients do not consider S-PC usage monotonous, with 8%
having no opinion on the subject. Less than 5% of the patients
felt harassed by the messaging generated by S-PC. 95% of all
patients using the system felt that the clinician who took care

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE I15 (2014) 3345 43

of them was permanently following them and taking notice of
their messages and answers. Finally, 98% would accept similar
systems in other health treatments.

6. Discussion
6.1. Main findings

S-PC is effective, useful and perceived as an added value to
treatment by patients and by clinicians. Its use increases com-
pliance to NRT to levels of 95%, reduces the probability of
relapsing and smoking during treatment by more than half.
In addition, more than 90% of patients regard S-PC as having
added value in the treatment and see possibilities for applying
similar tools in other health treatments.

The time management of clinicians was also significantly
improved. The same number of clinicians is now processing,
treating and following twice as many patients. The waiting
list was reduced from three months to 2 days, which is the
time it takes to process and enter patient information into
the S-PC central database. In addition, the time dedicated to
personalized clinical attention to patients that are at risk and
require closer follow-up, has been significantly increased and
clinicians more effectively schedule and manage that time. S-
PC also avoids unnecessary travel while allowing patients to
feel closely followed up by the clinician.

These results are encouraging and complement the results
foundin earlier studies. Abstinence levels were 14.3% higherin
the SMS group than in the control group over a twelve-month
period. Previous studies reached similar positive outcomes,
although none of them lasted so long and the usual treatment
period was six months. Abstinence rates tend to decay over
time, and alonger study implies higher levels of relapse among
patients. However, our trial had some limitations regarding the
number of patients involved in the study. Some of the previ-
ous studies had larger participant samples, thus reducing the
margin of error. Further larger studies should be performed to
verify the current results.

Our findings reassert that the use of mobile phone
interventions may be effective in increasing the long-term
abstinence rates in smoking patients, and that positive rein-
forcements messages and the usage of technology-based
interventions can be an effective complements to the current
smoking cessation programs.

6.2. Perspectives

We believe that S-PC could also be successfully adapted to
other chronic diseases, such as hypertension. We are work-
ing on such an application for following high blood pressure
patients in the cardiology service of Hospital Santa Maria. The
rationale for doing so is two-fold. Firstly, given that hyper-
tensive patients are on the rise there is a possibility that the
service will be overwhelmed and unable to provide appropri-
ate care for all of its patients. Secondly, home blood pressure
(HBP) monitoring “should become a routine component” of
blood pressure measurement in the majority of patients with
known or suspected hypertension [35,36], given that such

readings may be better predictors of cardiovascular and renal
outcomes than office readings [37].

7. Conclusion

The results indicate that S-PC was successfully designed,
implemented and used in the context of the quit smoking
treatment. They also support the usefulness of text messaging
in improving (a) the outcome likelihood of smoking cessation
interventions, (b) the management of time and patients by
clinicians, and thus the optimization of health care resources
and the reduction of waiting lists, and (c) the patient’s percep-
tion of constant psychological support by the clinician.

Conflicts of interest

The authors claim no conflicts of interest.

Acknowledgments

This work was supported by the MEyC-Spain under contracts
BFU2010-17704 and TIN2011-28689-C02-02, by Generalitat
de Catalunya, through research groups 2009SGR809 and
2009SGR145 and the CUR of DIUE of GENCAT, and by the Euro-
pean Social Fund.

REFERENCES

[1] L.Erhardt, Cigarette smoking: an undertreated risk factor for

cardiovascular disease, Atherosclerosis 205 (2009)

23-32.

S.R. Orth, S.I. Hallan, Smoking: a risk factor for progression

of chronic kidney disease and for cardiovascular morbidity

and mortality in renal patients-absence of evidence or

evidence of absence? Clin. J. Am. Soc. Nephrol. 3 (2008)

226-236.

P. Boffetta, et al., Tobacco smoking as a risk factor of

bronchioloalveolar carcinoma of the lung: pooled analysis of

seven case-control studies in the International Lung Cancer

Consortium (ILCCO), Cancer Causes Control 22 (2011)

73-79.

P. Bravo, J. del Rey Calero, J. Sanchez, M. Conde, Tobacco as a

risk factor in cancer of the bladder, Arch. Esp. Urol. 39 (1986)

237-240.

A.S. Furber, R. Maheswaran, J.N. Newell, C. Carroll, Is

smoking tobacco an independent risk factor for HIV

infection and progression to AIDS? A systemic review, Sex.

Transm. Infect. 83 (2007) 41-46.

[6] J.S. Sandhu, Smoking-a renal risk factor, J. Assoc. Physicians
India 51 (2003) 900-902.

[7] S.S. DeBlack, Cigarette smoking as a risk factor for cataract

and age-related macular degeneration: a review of the

literature, Optometry 74 (2003)

99-110.

O.P. Almeida, G.K. Hulse, D. Lawrence, L. Flicker, Smoking as

a risk factor for Alzheimer’s disease: contrasting evidence

from a systematic review of case-control and cohort studies,

Addiction 97 (2002) 15-28.

B.B. Love, J. Biller, M.P. Jones, H.P. Adams, Bruno, A cigarette

smoking. A risk factor for cerebral infraction in young

adults, Arch. Neurol. 47 (1990) 693-698.

2

3

[4

[5

[8

[9

44

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE I15 (2014) 3345

(10]

(11]

(12]

(13]

(14]

(15]

18]

(17]

(18]

(29]

(2]

(21]

(22]

(23]

(24]

(25]

T. Flensborg-Madsen, et al., Tobacco smoking as a risk factor
for depression. A 26-year population-based follow-up study,
J. Psychiatr. Res. 45 (2011)

143-149.

L.F. Stead, R. Perera, C. Bullen, D. Mant, T. Lancaster, Nicotine
replacement therapy for smoking cessation, Cochrane
Database Syst. Rev. (1) (2008),
http://dx.doi.org/10.1002/14651858.CD000146.pub3 (Art. N.
CD000146).

H. Alpert, G. Connolly, L. Biener, A prospective cohort study
challenging the effectiveness of population-based medical
intervention for smoking cessation, Tob. Control (2012),
http://dx.doi.org/10.1136/tobaccocontrol-2011-050129.

J. Etter, S. Stapleton, Nicotine replacement therapy for
long-term smoking cessation: a meta-analysis, Tob. Control
15 (2006) 280-285, http://dx.doi.org/10.1136/tc.2005.015487.
M.C. Fiore, A clinical practice guideline for treating tobacco
use and dependence: 2008 update. A U. S. Public Health
Service report, Am. J. Prev. Med. 35 (158) (2008)

e76.

R. West, A. McNeill, M. Raw, Smoking cessation guidelines
for health professionals: an update Health Education
Authority, Thorax 55 (987) (2000) e99.

N. Zwar, R. Richmond, R. Borland, et al., Smoking cessation
guidelines for Australian general practice, Aust. Fam.
Physician 34 (461) (2005) e6.

C. Fong-ching, H. Teh-wei, L. Shu-ying, Y. Po-tswen, C.
Kun-yu, H. Mei-ling, Quit smoking advice from health
professionals in Taiwan: the role of funding policy and
smoker socioeconomic status, Tob. Control 19 (2010) 44-49.
T. Lancaster, L.F. Stead, Individual behavioural counseling
for smoking cessation, Cochrane Database Syst. Rev. (2)
(2005), http://dx.doi.org/10.1002/14651858.CD001292.pub2
(Art. N. CD001292).

L.F. Stead, R. Perera, T. Lancaster, Group behaviour therapy
programmes for smoking cessation, Cochrane Database
Syst. Rev. (2) (2005), http://dx.doi.org/10.1002/14651858 (Art.
N. CD001007. CD001007.pub2).

L.F. Stead, R. Perera, T. Lancaster, Telephone counseling for
smoking cessation, Cochrane Database Syst. Rev. (3) (2006),
http://dx.doi.org/10.1002/14651858.CD002850.pub2 (Art. N.
CD002850).

J.M. Ramon, I. Nerin, A. Comino, C. Pinet, F. Abella, J.M.
Carreras, M. Banque, A. Baena, S. Morchon, A.
Jimenez-Muro, A. Marqueta, A. Vilarasau, R. Bullon, C.
Masuet-Aumatell, A multicentre randomized trial of
combined individual and telephone counselling for smoking
cessation, Prev. Med. 57 (September (3)) (2013)

183-188.

R. Mermelstein, S. Cohen, E. Lichtenstein,].S. Baer, T.
Kamarck, Social support and smoking cessation and
maintenance, J. Consult. Clin. Psychol. 54 (4) (1986) 447-453,
http://dx.doi.org/10.1037/0022-006X.54.4.447.

C. Free, R. Whittaker, R. Knight, T. Abramsky, A. Rodgers, I.G.
Roberts, Txt2stop: a pilot randomised controlled trial of
mobile phone-based smoking cessation support, Tob.
Control 18 (2009) 88-91.

F. Tzelepis, C.L. Paul, J. Wiggers, R.A. Walsh, J. Knight, S.L.
Duncan, C. Lecathelinais, A. Girgis, J. Daly, A randomised
controlled trial of proactive telephone counselling on
cold-called smokers’ cessation rates, Tob. Control 20 (2011)
40-46.

C. Free, R. Knight, S. Robertson, R. Whittaker, P. Edwards, W.
Zhou, A. Rodgers, J. Cairns, M.G. Kenward, 1. Roberts,
Smoking cessation support delivered via mobile phone text
messaging (txt2stop): a single-blind, randomised trial,
Lancet 378-9785 (2011)

49-55.

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

36]

(37]

(38]

(39]

[40]

(41]

Institut Catala del consum de tabac (Generalitat de
Catalunya). Guies de practica clinica. Detecci6 i tractament
del consum de tabac.
http://www20.gencat.cat/portal/site/canalsalut/ (accessed
15.10.11), 2009.

K.C. Davis,].M. Nonnemaker, M.C. Farrelly, J. Niederdeppe,
Exploring differences in smoker’s perceptions of the
effectiveness of cessation media messages, Tob. Control 20
(2011) 26-33.

R. Whittaker, H. McRobbie, C. Bullen, R. Borland, A. Rodgers,
Y. Gu, Mobile phone-based interventions for smoking
cessation, Cochrane Database Syst. Rev. (11) (2012),
http://dx.doi.org/10.1002/14651858.CD006611.pub3 (Art. No.:
CD006611).

W.R. Hersh, M. Helfand, J. Wallace, D. Kraemer, P. Patterson,
S. Shapiro, et al., Clinical outcomes resulting from
telemedicine interventions: a systematic review, BMC Med.
Inform Decis. Making 1 (1) (2001) 5.

T.F. Heatherton, L.T. Kozlowski, R.C. Frecker, K.O.
Fagerstrom, The Fagerstrom test, for nicotine dependence: a
revision of the Fagerstrom Tolerance Questionnaire, Br. J.
Addict. 86 (1991) 1119-1127.

L. Fiddler, L. Hecht, E.E. Nelson, E.N. Nelson, J. Ross, SPSS for
Windows Version 13.0: A Basic Tutorial.
http://www.doocu.com/pdf/read/15204 (accessed 09.04.14).
https://nihi.auckland.ac.nz/page/completed-research/
stomp-stop-smoking-mobile-phones-trial (accessed
09.04.14).

L. Lenert, R.F. Munoz, J. Stoddard, K. Delucchi, A. Bansod, S.
Skoczen, E.J. Pérez-Stable, Design and pilot evaluation of an
internet smoking cessation program, J. Am. Med. Inform.
Assoc. 10 (January-February (1)) (2003)

16-20.

R. Whittaker, R. Borland, C. Bullen, R.B. Lin, H. McRobbie, A.
Rodgers, Mobile phone-based interventions for smoking
cessation (Review), Cochrane Libr. 4 (2009) (Art. N.
CD006611).

T.G. Pickering, N.H. Miller, G. Ogedegbe, et al., Call to action
on use and reimbursement for home blood pressure
monitoring: a joint scientific statement from the American
Heart Association, American Society of Hypertension, and
Preventive Cardiovascular Nurses Association, Hypertension
52 (2008) 10-29.

T. Ohkubo, Y. Imai, I. Tsuji, et al., Home blood pressure
measurement has a stronger predictive power for mortality
than does screening blood pressure measurement: a
population-based observation in Ohasama, Jpn. J.
Hypertens. 16 (1998) 971-975.

G. Bobrie, G. Chatellier, N. Genes, et al., Cardiovascular
prognosis of “masked hypertension” detected by blood
pressure self-measurement in elderly treated hypertensive
patients, J. Am. Med. Assoc. 291 (2004) 1342-1349.

J. Nielsen, Usability 101: Introduction to Usability.
http://www.useit.com/alertbox/20030825.html (accessed
09.04.14).

W. Karwowski, M.M. Soares, N.A. Stanton, Human Factors
and Ergonomics in Consumer Product Design: Methods and
Techniques (Handbook of Human Factors in Consumer
Product Design): Needs Analysis: Or, How Do You Capture,
Represent, and Validate User Requirements in a Formal
Manner/Notation before Design, CRC Press, 2011 (Chapter 26
by K. Tara Smith).

J. Nielsen, T. Landauer, A mathematical model of the finding
of usability problems, in: Proceedings of ACM INTERCHI'93
Conference, Amsterdam, Netherlands, ACM Press, 1993, pp.
206-213.

R. Virzi, Refining the test phase of usability evaluation: how
many subjects is enough? Hum. Factors (34) (1992) 457-468.

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE I15 (2014) 3345

45

(42]

(43]

C. Turner, J. Lewis, J. Nielsen, Determining Usability Test
Sample Size. International Encyclopedia of Ergonomics and
Human Factors, CRC Press, Boca Raton, FL, 2006, pp.
3084-3088.

F. Abella, A. Vilarasau, A. Perera,].L. Cruz, The group of
expert patients as a therapeutic strategy in tobacco
cessation, Rev. Clin. Med. Fam. 6 (n.2) (2013) 118-119,

http://scielo.isciii.es/scielo.php?script=sci. arttext&pid=
51699-695X2013000200009

[44] C. Pereiro, E. Becoiia, R. Cérdoba, J. Martinez, C. Pinet,
Tabaquismo. Guias Clinicas SOCIDROGOALCOHOL, 2008,
http://www.socidrogalcohol.org/index.php?option=com_
docman&task=doc_details&gid=72&Itemid=19

122

Chapter 4

Global discussion of results

A model based on queuing theory to study the Quality of Service (QoS) in Cloud
computing was presented. Cloud platforms were modeled with an open Jackson net-
work that could be used to determine and measure the QoS guarantees the Cloud can
offer regarding the response time. The analysis was performed according to different
parameters, such as the arrival rate of customer services and the number and service
rate of processing servers, among others. When scaling the system and depending
on the types of bottleneck, the model provided the best option to guarantee QoS.
Moreover, the response time of the system was consistent with extreme situations,
and the similarities in shapes between the simulation (obtained with Sage 5.3 math-
ematical software ') and real results (obtained with OpenStack) proved the good
behavior of the model. These results confirmed the usefulness of the model presented
for designing real Cloud computing systems.

A power-aware scheduling policy algorithm called Green Cloud (GreenC) for het-
erogeneous Cloud systems was presented. An initial test case was performed by
modelling the policies to be executed by a solver that demonstrated the applicability
of this proposal for saving energy and also guaranteeing the QoS. The proposed pol-
icy was implemented using the OpenStack Cloud platform and the obtained results
showed that energy consumption was significantly lowered by applying GreenC to

allocate virtual machines to physical hosts.

1Sage http://www.sagemath.org

123

Moreover, two eHealth applications were presented. The Hypertension Patient
Control (H-PC) tool was designed to improve current hypertension treatments by
means of telemonitoring. A novel and efficient cloud-based platform managing H-
PC with QoS was also proposed in this thesis. The results showed that H-PC was
successfully designed, implemented, and used in the context of telemonitoring. It
also supported the usage of text messaging and e-mailing to telemonitor the patients
to improve the communication between them and clinicians. The H-PC computing
boundaries were measured and proved its good behavior and novel Cloud design.
Good results in scalability, performance, reliability, and variability were also proved.

The Smoking Patient Control (S-PC) tool was also presented. This tool was aimed
to improve current smoking treatments. A study with real patients was performed in
order to test its effectiveness in a real scenario. A total of 229 patients were enrolled
in the study, randomly divided into two groups, although some variables were tested
to ensure that there were no significant differences between the groups that could
have an impact on the outcome of the treatment. The first group was made up of 104
patients (45.4% ofthe total) and followed a treatment that incorporated the S-PC tool,
while the second one had 125 patients without the S-PC tool. S-PC was evaluated for
its effectiveness at assisting the patients to give up smoking, and its effect on clinician
time management. 74% of the S-PC group completed the treatment without relapses
and remained abstinent three months after the completion of the treatment. In
contrast only 45.6% of the No S-PC group completed the treatment without relapses

and remained abstinent three months after completion of the treatment.

124

125

126

Chapter 5

General conclusions and future

directions

This chapter summarizes the research work on Cloud systems and architectures ap-
plied to eHealth that are presented in this thesis and highlights the main findings.
It also discusses open research problems in the area and outlines a number of future

research directions.

5.1 Conclusions

On the one hand, this thesis proposed and investigated multiple Cloud architectures
and models and implemented them using different techniques and scenarios, such as
queueing theory, nonlinear programming and Cloud simulation. Having these mod-
els, a Cloud infrastructure was developed using OpenStack. Moreover, a scheduling
mechanism called GreenC was developed to achieve energy efficiency while maintain-
ing the performance of the Cloud system. This policy obtained a reduction in energy
consumption of up to 23% compared with the default policy.

On the other hand, two eHealth telemonitoring applications were implemented
and deployed on the developed Cloud infrastructure. The first of these, Smoking
Patient Control (S-PC), was deployed and tested in two hospitals with a total of 229

real patients, where 104 patients were treated using the S-PC tool and 125 without it.

127

The results showed that 74% of the patients treated using the S-PC tool successfully
completed the treatment without relapses, while only 45.6% of those who followed
the conventional treatment successfully achieved long-term abstinence. The second
application, Hypertension Patient Control (H-PC), was successfully designed and im-
plemented, and the computing boundaries were measured, proving its good behavior
in terms of performance and scalability. These performance results are also directly

applicable to the S-PC tool.

5.2 Future research directions

Despite the contributions of the current thesis in the Cloud and eHealth fields, there
are a number of open research challenges to address in order to further advance in
these areas.

Regarding the telemedicine applications, they will be deployed in more hospitals
and healthcare centers in order to test their effectiveness with a larger test group. On
the one hand, the Sant Joan de Déu' hospital in Manresa has agreed to test the S-PC
tool with its patients. More hospitals and healthcare centres are being contacted to
expand the testing both in the number of patients and the geographic location. On
the other hand, the H-PC tool has entered the testing phase with real patients in three
different centers: the Arnau de Vilanova® and Santa Maria® hospitals in Lleida and
the Clinic* Hospital in Barcelona. Moreover, a smartphone app is being developed
for both tools. This way, communication can be done directly using mobile devices
and it also allows much more information to be displayed. The eHealth field applied
to mobile devices, referred to as mHealth, offers great opportunities for improving
current healthcare treatments and processes, becoming an interesting research field.
One example would be that patients may sometimes provide wrong information when
manually entering the data. New devices can directly send the measurements through

the mobile phone without the need to be manually introduced by the patient, avoiding

!Sant Joan de Déu hospital webpage: http://www.althaia.cat/
2Arnau de Vilanova hospital webpage: http://www.icslleida.cat/
3Santa Maria hospital webpage: http://www.gss.cat/

4Clinic Hospital webpage: http://www.hospitalclinic.org/

128

these errors.

Another future research path is to explore additional treatments and diseases, such
as diabetes, dietary treatment or alcoholism, where these and similar techniques could
be applied. Expanding the number of healthcare centers, patients and treatments en-
tails an increase in the complexity of the underlying infrastructure. Hence, additional
performance and scalability tests will be undertaken in order to avoid performance

1ssues.

Another different, but related, direction involves the analysis of social networks
that are increasingly used by young people. The work done during the doctoral stay
(see Appendix A) showed that studying and analyzing social networks like Twitter can
greatly help in major health-related issues like cyber-bullying. Moreover, additional
techniques and studies can be performed, such as using social networks to group
together patients that are following the same treatment, preventive actions associated

with social networks and social behaviour linked to the use of new technologies.

5.2.1 Internet of Things

Increasingly, more “smart” devices or “things” are being manufactured and available
to the population. The network of electronic devices with embedded software and
sensors is called the Internet of Things (I0T). The IoT can generate a new paradigm
where data can be gathered much more easily, frequently and accurately. Hence, it
can have a great impact in fields like healthcare, where these devices could greatly help
to monitor patients, prevent and detect emergency situations and provide valuable

feedback to practitioners.

This new paradigm will also bring with it new research challenges and issues. One
of the most direct challenge will be how to process, store and analyze the huge amounts
of data provided by these devices, where the data will not be strictly structured due
to coming from a wide range of devices, and where the data will need to be processed

and analyzed quickly or even in real time.

129

5.2.2 Big Data techniques applied to eHealth

Cloud systems bring the possibility to aggregate several healthcare centers, managing
thousands or millions of patients from different areas. Big Data techniques offer the
possibility of analyzing large sets of data and extracting valuable information. These
techniques could potentially allow to perform in depth analyses of current treatments
to be performed, sharing useful data between healthcare centers and professionals
and improving current medical workflows.

Big Data techniques could allow an efficient management of all the data produced
by IoT devices, where the information arriving in a variety of ways and formats
must be processed quickly. These techniques will be applied to the two eHealth
applications, S-PC and H-PC, when their databases grow beyond a certain threshold
both in volume and variability. Moreover, data visualization techniques like the ones
used during the doctoral stay (see Appendix A), are also required to display the

information in a useful and engaging way.

5.3 Final remarks

Cloud systems have powered a new paradigm that has revolutionized many sectors,
including healthcare. Research, such as that presented in this thesis, combined with
the new technological advances in the industry, will undoubtedly drive further inno-

vation in eHealth and the development and improvement of healthcare treatment.

130

131

132

Appendix A

Doctoral stay at the Ulster

University: Research diary

133

134

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

< ~r

Doctoral stay at Ulster University

Jordi Vilaplana, PhD student

PhD advisor: Prof. Francesc Solsona

Doctoral stay supervisor: Prof. Yaxin Bi

Abstract

This research diary presents a summary of the work that I have done during my three-month doctoral

stay at the University of Ulster (Belfast) under the supervision of Prof. Yaxin Bi.

There are three major aspects to be considered:

o What I am expected to contribute: Become involved in the “Identifying cyberbullying from
social media” project and develop a client application for the existing sentiment analysis backend
server. The initial idea is to develop a web-based user interface that allows Twitter’s datasets to
be queried and sent to the existing backend server and display the results in a visually engaging
way.

o What I expect to get: Get to know an existing project that analyses Twitter data, its architecture
and inner working. Become familiar with Twitter’s APIs and data visualization tools and apply
this knowledge to the #eMOVIX project. Moreover, build a research relationship with Prof. Yazxin
Bi and the Ulster University, exploring possible further collaboration and research opportunities
between both institutions.

o What I am expected to do: Mainly, the following three points:

— Work on the cyberbullying project.
— Work on the #eMOVIX project.
— Work on the writing of my PhD thesis.

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 1

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

1 February 09 - February 13

1.1 Initial preparation: Workspace setup and initial meeting

I have discussed with Prof. Yaxin Bi what the course of action during my stay at Ulster University will
be.

We discussed the #eMOVIX and the cyberbullying projects.

The main objective of my work will be to develop a client application that will access Twitter datasets
through its APIs based on some search queries and hashtags that need to be defined. Once the data is
retrieved, the client will send it to the previously-developed server application through its APIs. Then,
the results will be fetched from the server in JSON format and presented to the user through a web-based
dashboard.

s

P | @ Frx, dobbent.

/‘ (}\\

s

's
\

‘/,) N

/ <)

4.,

Figure 1: Initial project sketch.

A first sketch of the overall process can be seen in Figure 1. The work in this first week is focused on
defining the work to be done and becoming familiar with the existing server’s API, the Twitter APIs and
reading some cyberbullying-related papers in order to gain a better insight into the subject.

1.2 TO-DO list

e @QDONE: Send a summarized and translated version of the #eMOVIX project definition to Prof.
Yaxin Bi.

e @QDONE: Explore the different Twitter APIs.

e @DONE: Read cuberbullying-related papers [2, 1, 9, 3, 7, 5].

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 2

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

2 February 15 - February 19

2.1 Initial design: Twitter APIs and web application
This week I have been using the Twitter4J [8] library in order to search and retrieve tweets from Twitter
based on predefined queries.

The client web application has been started using the Grails [6] framework. This web-based interface will
allow users to execute queries, send the data to the server engine and display the results.

U Home Twitter Query

Show Twitter Query

i= Twitter Query List | 4+ New Twitter Query

Query: belfast

Username Text Geolocation

@EmmaHixy @Liverpool_ONE: Youve got a chance to win a luxury trip to Belfast with
Flybe today in Liverpool ONE! http://t.co/SEbd4kGUIg @robertomill94

@LondonWw UK : Union calls Bombardier's cut of 130 jobs in Belfast a ‘savage blow’
http://t.co/f8kwVXcVJO | #Unicns

@BeckyDouglas RT @BiteOfQueens: Calling all #womeninscience. Apply to showcase your

Figure 2: Initial web application design.

So far, I have worked on the initial phase. Figure 2 shows an initial user interface where users can run
Twitter queries and see the results.

Early next week, I should meet Prof. Yaxin Bi in order to review this initial work and further develop
the required and desired features.

2.2 TO-DO list

e @QDONE: Install and test the T'witter4J library.
e @QDONE: Develop a first sketch of the web platform.
e @QTODO: Explore the engine API.

e @QDONE: Start writing my PhD thesis.

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 3

JORDI VILAPLANA

RESEARCH DIARY

2015 | FEBRUARY | 09

3 February 23 - February 27

3.1 Engine API: Connecting Twitter to the backend server

This week Prof. Yaxin Bi showed me the server
API and I have been able to use it to analyze
tweets successfully. There is a sample web appli-
cation that shows its basic usage !.

We also reviewed the current work. Figure 3 shows
the current twitter query interface. This interface
should be enhanced to be a dashboard with rele-
vant statistical measures and charts. Prof. Yaxin
Bi has sent me a new paper so I can explore more
keywords in order to build the search queries. The
queries should be wide in order to obtain the max-
imum number of tweets. Moreover, I should look
into other types of queries like geolocation-based
queries, and further search parameters like filter-
ing by date.

There should also be a way to manually mark
tweets as bullying or not bullying. To ease this
process, bullying tweets should be ordered by the

Twitter AP| Status

Twitter Query

et Home
iy

Show Twitter Query

< Refresh + New Twitter Query

Query: (bitch you OR your) OR (gay your OR your) OR faggot OR (dumb you OR your) OR (stupid
you OR your) OR fuck OR shit OR ass -xD lang:en

= Twitter Query List

Count: 100
Enabled: true

Running: true

Total Neutral Bullying Improper Mood

14775 11474 320 3623 189

© Show responses

Figure 3: Twitter query interface.

score returned by the engine (where a higher score is more likely to be a bullying message).

Prof. Yaxin Bi also provided me with the Ulster University logo to include on the interface. I will also
think up a name for the current project. Depending on the results, this could be further developed in a

joint research project between both universities.

3.2 TO-DO list
e @QDONE: Explore the engine API.

e @QDONE: Save tweets to database.

e @DONE: Add the new Ulster University logo.

e @QTODO: Think of possible project names.

e @DONE: Read cyberbullying-related paper [4].

e @DONE: Explore Twitter search options and use a wide range of keywords.

e QTODO: Develop a dashboard with statistics and some chart.

e QTODO: Develop a feature to manually verify tweets as bullying.

e @QDONE: Start writing the introduction section of my PhD thesis.

!Treze Bullying Servlet Request: http://restful.scm.ulster.ac.uk:8080/Treze/SentilyticIndex.html

UNIVERSITY OF LLEIDA / ULSTER

Last modified: June 20, 2015 4

JORDI VILAPLANA

RESEARCH DIARY

2015 | FEBRUARY | 09

4 March 02 - March 06

4.1 Interface development: Review and initial visualization

e Twitter Query

Bullying

< Refresh

» Enable

wwwwwwww

+ New Twitter Query Label
Messages Verified 22

Message distribution Something eise

Unreviewed Something else
Pending review. Review

now!

1= Twitter Query List

Total Neutral Bullying Improper Mood

2805 2570 25 139 i

Figure 4: Initial dashboard interface.

After reading [4], the current predefined query has
also been improved with more keywords added.
Also, the current dashboard should be further im-
proved and additional data visualization scenarios
should be explored.

Regarding the technologies behind the current
server engine, Prof. Yaxin Bi will meet with the in-
dustrial partner that holds its intellectual property
2 to see how much information they could provide
us so we can replicate it for the #¢eMOVIX project.

4.2 TO-DO list

e @QTODO: Learn about the technologies in-
volved in the server engine.

@DONE: Develop an initial dashboard.

e QDONE: Manual tweet verification.

@DONE: Expand the current search query.

@QTODO: Think of possible project names.

®Treze: http://treze.co.uk/

UNIVERSITY OF LLEIDA / ULSTER

Home
Show apps

This week has been focused on developing and im-
proving the web application:

e Enhancing the current interface and trans-
forming it into a dashboard. Figure 4 shows
an initial mock-up.

e Manual review. Users can now manually re-
view tweets the engine marks as bullying in
order either to verify them or to mark them
as false positives (see Figure 5).

e User and role authentication. Some parts
and features of the application can be private
or for registered users only. Tweet review is
only available for authenticated users.

Twitter Query

© Overview Review bullying messages
2 Refresh

» Enable (24
©® show respanses IS thiS bu"yll‘lg?

® Review messages

@wwwhbigbaldhead you are so rude

to me. Thanks a lot for continuing to
hurt my feelings. You are really good
at that. Glad to know.

— @Raverchick2

= New Twitter Query

i= Twitter Query List

G Edit

X Delete

Figure 5: Initial manual review interface.

Last modified: June 20, 2015 5

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

5 March 09 - March 13

5.1 Visualizing the data: Exploring data visualization techniques

The first month is over, and at this point, the development of the cyber-bullying application has success-
fully achieved two of the three main goals:

e v/ Fetch data from Twitter.
e v/ Send the data to the back-end engine and obtain the results.

e X Visualize the results.

As for the schedule, during this second month, the visualization part should be fully developed and
the application should be thoroughly debugged and tested. During the third month, the project should
be validated to ensure everything is correct and as expected, and plan the writing of a research paper
describing this work.

So this week has been focused on researching data visualization tools and techniques that could be applied
to this project. Also, the human reviewing process has been enhanced. Now, when marking a message
as bullying, the user name of the victim must be also provided. This way, we will have more information
regarding the relationships between the bullies and their victims.

Regarding the technologies behind the current server engine, I will have a meeting with Prof. Francesc
Solsona and Prof. Yaxin Bi next week in order to discuss this topic.

5.2 TO-DO list

e QTODO: Learn about the technologies involved in the server engine.
e @QDONE: Improve the current reviewing process

e @QDONE: Start researching data visualization tools.

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 6

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

6 March 16 - March 20

6.1 Data visualization tools: D3.js

This week I have been researching different data visualization tools that could fit the project. Among all
the explored possibilities the chosen one is the D3.js tool. D3.js is a JavaScript library for manipulating
documents based on data, and allows almost any type of chart and visualization to be created. Figure 6
shows a sample graph developed using the D3.js visualization tool.

o a1 o =P
. ~. ‘..‘ & - ® L- a

L &
F

Lo [
. : 9 e Y .. \ -,.'r ’
@) @ o
° G580 7 PIret e ele 1 WeS

o

*

Figure 6: D3.js sample graph.
Unfortunately, due to the agreements between the Ulster University and its industry partner, it is not

allowed to disclose the inner working of the server engine. However, Prof. Yaxin Bi will discuss possible
future collaborations in this area with the industry partner.

6.2 TO-DO list

e QDONE: Select a visualization tool.

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 7

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

7 March 23 - March 27

7.1 Visualizing the data: Getting started with D3.js

During this week, the D3.js tool has been researched in order to familiarize myself with its workings and
to ensure that it is a valid tool for our purpose. Although getting started with D3.js has proved somewhat
tricky, it is a very powerful tool that can offer great results once mastered.

Moreover, we have decided to develop a directional graph based on the reviewed data from the application.
This way, we will have a highly intuitive interface that will show the relationships between bullies and
their victims.

7.2 TO-DO list

e @QDONE: Get familiar with the D3.js tool.

e QTODO: Develop a directional graph.

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 8

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

8 March 30 - April 03

8.1 Visualizing the data: Developing the directional graph

This week the directional graph has been developed using the D3.js visualization tool. Figure 7 shows the
resulting graph, where bullies and victims are connected by arrows going from the former to the latter.

ashley_pineros
SkylerSrock

brianna_neylon
_briiiwhite
davelee1968
rupasubramanya

mhtrash ,
L/ skintostudyabt Janafur rmishra_cool

AllyBrooke
Beccalynnxxo

babsofbagnall

mclaughlinkimmy
HeartFelty

MonarrezMo
gymaholiced

MannyPacquiao

Figure 7: Directional graph developed with D3.js.

The next step should be to verify the good behaviour of this graph and add some more statistical visual-
izations to understand the data gathered.

8.2 TO-DO list

e @QDONE: Develop a directional graph.

e @QTODO: Add further statistics and graphs to the visualize data section.

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 9

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

9 April 06 - April 10
The Ulster University is closed during this week for holidays.

The last four weeks will be aimed at finishing the results visualization section and testing and deploying
the application.

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 10

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

10 April 13 - April 17

10.1 Visualizing the data: Data statistics

This week, the final development of the data visualization section has been carried out. Now the data
from the human-verified bullying messages can be visualized in the following ways:

e Overview: Statistical information regarding the total number of gathered messages, the number of
suspected bullying messages, the ones that were verified as bullying and the total number of false
positives (messages marked as bullying by the server engine but discarded by a human verifier).

e Map: A world map where those messages are displayed with attached geo-location.
e Words: A chart showing the most frequently used words within the bullying messages.
e Tweets: A table that shows all the bullying messages with the author and date.

e Relationship graph: The directed graph described in 7.

Home Twitter Query Twitter API Status admin~

@ overview Human-verified bullying messages
© Refresh Map Oveniew Words Tweets Relationship graph
> [Ean Most used words in bullying Tweets
@ Review messages 10
+ New Twitter Query &)
iZ Twitter Query List . I~
0]

G Edit

= a

ol B & & o) o G G

Number of occurrences

© 2015 Jordi Vilaplana

Figure 8: Directional graph developed with D3.js.

Figure 8 shows the final result of the described section, where the Words section can be seen.

10.2 TO-DO list

e @QDONE: Add further statistics and graphs to the visualize data section.

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 11

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

11 April 20 - April 24

11.1 Enhancing the application: Usability and display testing

This week has been focused on improving the visual feeling of the application and testing the good
rendering of the interface in different screen sizes and resolutions.

11.2 TO-DO list

e @QDONE: Visual testing.

e QTODO: Functional testing.

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 12

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

12 April 27 - May 01

12.1 Final testing: Functional testing

This week the application has been thoroughly tested to ensure that all the functionalities and features
are working smoothly and error-free.

12.2 TO-DO list

e @QTODO: Deploy the application in the test server at the Ulster University.

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 13

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

13 May 04 - May 08

13.1 Final arrangements: Verification and deployment

This last week has been devoted to test all the interface and arrange the deployment of the application
within a test server at the Ulster University.

There has been some trouble deploying the database due to minor issues regarding the character set,
although these have been successfully solved.

Finally, the application has been deployed and Prof. Yaxin Bi has said that he will present it to the
industry partner to explore possible further collaborations.

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 14

JORDI VILAPLANA RESEARCH DIARY 2015 | FEBRUARY | 09

References

[1] Eytan Bakshy et al. “The role of social networks in information diffusion”. In: Proceedings of the
21st international conference on World Wide Web - WWW 12 (2012), p. 519. poI: 10. 1145/
2187836 .2187907. URL: http://dl.acm.org/citation.cfm?id=2187907\backslashnhttp:
//dl.acm.org/citation.cfm?doid=2187836.2187907.

[2] Maral Dadvar and Franciska De Jong. “Cyberbullying detection: a step toward a safer Internet yard”.
In: Proceedings of the 21st international conference ... (2012), pp. 121-125. po1: 10.1145/2187980.
2187995. URL: http://dl.acm.org/citation.cfm?id=2187995.

[3] Karthik Dinakar, Roi Reichart, and Henry Lieberman. “Modeling the Detection of Textual Cyber-
bullying”. In: Association for the Advancement of Artificial Intelligence (2011), pp. 11-17.

[4] Karthik Dinakar et al. “Common Sense Reasoning for Detection, Prevention, and Mitigation of
Cyberbullying”. In: ACM Transactions on Interactive Intelligent Systems 2.3 (2012), pp. 1-30. 1SSN:
21606455. Dor: 10.1145/2362394 .2362400.

[6] Samaneh Nadali et al. “A Review of Cyberbullying Detection : An Overview”. In: (2013), pp. 326—
331. URL: http://www.mirlabs.net/isdal3/proceedings/pdf/paper81l.pdf.

[6] Pivotal. Grails Open Source, full stack, web application framework for the JVM. 2013. URL: http:
//grails.org/ (visited on 02/18/2015).

[7] Huascar Sanchez and Shreyas Kumar. “Twitter bullying detection”. In: UCSC ISM245 Data Mining
course report (2011).

[8] Yusuke Yamamoto. Twitter)J Twitter Java API 2007. URL: http://twitter4dj.org/ (visited on
02/18/2015).

[9] Dawei Yin et al. “Detection of Harassment on Web 2.0”. In: In Proceedings of the Content Analysis
in the WEB 2.0 (CAW2.0) Workshop at WWW2009, . (2009).

UNIVERSITY OF LLEIDA / ULSTER Last modified: June 20, 2015 15

150

151

152

Appendix B

Paper: A performance model for

scalable cloud computing

153

154

PROCEEDINGS OF THE 13TH AUSTRALASIAN SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING
(AusPDC 2015), SYDNEY, AUSTRALIA, 27 - 30 JANUARY 2015

A performance model for scalable cloud computing

Jordi Vilaplana', Francesc Solsona' and Ivan Teixidé!

! Department of Computer Science. University of Lleida, Jaume II 69, 25001 Lleida, Spain.
Emails: jordi@diei.udl.cat,francesc@diei.udl.cat,iteixido@diei.udl.cat

Abstract

Cloud computing is a new paradigm that offers sev-
eral advantages in terms of scalability, maintainabil-
ity, high availability, efficiency and data process-
ing. Infrastructure and applications are moved to the
cloud and provided as a pay-for-use service.

When designing a cloud infrastructure, it is critical
to assure beforehand that the system will be able to
offer the desired level of QoS (Quality of Service). Our
attention is focused here on simulation environments
for cloud computing systems.

This paper presents a model based on queuing
theory for service performance in cloud computing.
More complicated cloud-based proposals are then pre-
sented. Such models, based on event-driven simula-
tion, possess scheduling capabilities for heterogeneous
and non-dedicated clouds.

The results demonstrate the usefulness of the sim-
ulation models presented for the design of cloud com-
puting systems with guarantees of QoS under ideal
conditions and when scaling the system.

Keywords: SLA, QoS, cloud computing, scalability,
simulation

1 Introduction

Clouds [1] aim to power the next-generation datacen-
ters as the enabling platform for dynamic and flex-
ible application provisioning. This is motivated by
the fact that datacenters offer their computational
resources as a network of virtual services, so that
users are able to access and deploy applications from
anywhere in the Internet, driven by the demand and
Quality of Service (QoS) requirements [2]. As a con-
sequence, by using clouds, I'T companies are no longer
required to make high investments in computing in-
frastructures [1].

Cloud systems can be served on three different lev-
els [3]. The first of these is Infrastructure as a Service
(TaaS), which means offering hardware, storage and
physical devices over the Internet. The second layer
is Software as a Service (SaaS), which means offering
software and hosted applications over the Internet.
Then, combining both of these, there is Platform as
a Service (PaaS), which means offering the capabil-
ity to deploy applications created using programming

Copyright (©2015, Australian Computer Society, Inc. This pa-
per appeared at the 13th Australasian Symposium on Paral-
lel and Distributed Computing (AusPDC 2015), Sydney, Aus-
tralia, January 2015. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 163, Bahman Javadi
and Saurabh Kumar Garg, Ed. Reproduction for academic,
not-for-profit purposes permitted provided this text is included.

languages, libraries, services, and tools supported by
the provider.

The main contribution of this paper consists of an
TaaS model proposal with QoS for clouds providing
processing and database service. The cloud is mod-
eled as a single access point for the computing needs
of the customers being served [4]. The service cen-
ter is a collection of computing resources offered to
customers (or users) by a service provider. A service
request sent by a user is usually transmitted to a web
server running a service application [5], which is as-
sociated with an SLA (Service-Level Agreement). An
SLA is a contract negotiated and agreed between a
customer and a service provider for which a customer
pays only for the resources and services used accord-
ing to negotiated QoS requirements at a given price.
Job response time is perhaps the most important per-
formance index in a cloud computing context [6]. For
this reason, it was also the QoS parameter chosen in
this work.

Quantifying the computing resources in servicing
the required QoS in a real cloud computing environ-
ment (Amazon EC2 [7], Microsoft Azure [8], Google
App Engine [9]) is a research challenge because clouds
exhibit a high variability in their demands on com-
puting resources. Users also have dynamic and differ-
ent QoS requirements. The use of real infrastructure
for benchmarking the application performance un-
der variable conditions (availability, task arrival rate,
falling, scalability, occupancy), is often constrained
by the rigidity of the infrastructure. Therefore, this
makes it extremely difficult to reproduce the results
that it can generate [2]. Thus, it is not possible to
perform benchmarking experiments using real-world
cloud environments. A more viable and widely-used
alternative is to use simulation tools.

Some authors rely on queuing theory to simulate
real cloud behavior [3, 4, 10] while others rely more on
the possibilities of event-driven simulators, although
there is only a small set of these for cloud computing.
The best-known ones are GreenCloud [11], MDC-
Sim [12], iCanCloud [13], NetworkCloudSim [14] and
CloudSim [2], the one chosen in this paper.

First of all, we develop a theoretical model based
on queuing theory with ideal conditions for a cloud
proposal designed for process and data servicing. The
main drawback is the difficulty of reproducing it in
real clouds. Then, the same model is taken to an
event-driven simulation environment. We also extend
the model by providing it with a two-level scheduler to
map tasks to processing nodes according to their pro-
cessing power and availability. The top level assigns
virtual machines to hosts, and the bottom one maps
tasks to virtual machines. Finally, the CloudSim im-
plementation of the even-driven simulator is also pre-
sented in this article.

51

CRPIT VOLUME 163 - PARALLEL AND DISTRIBUTED COMPUTING 2015

The remainder of this paper is organized as fol-
lows. Section 2 details the related work. Section 3
presents the design of a cloud architecture and Sec-
tion 4 its queuing theory model. Next, a more realis-
tic scheduling model based on event-driven simulation
is presented in Section 5. Extensive experimentation
(Section 6) shows the performance and good behavior
of our proposals. Finally, Section 7 outlines the main
conclusions and future work.

2 Related Work and Motivation

Simulation-based cloud approaches offer significant
benefits by allowing cloud services to be tested
in repeatable and controllable environments; cor-
rect framework bottlenecks before deploying on real
clouds; and experiment with different scheduling po-
lices and workload to determine resource performance
on simulated infrastructures [14]. We investigate two
kinds of simulators, ones based on queuing theory and
the others on discrete events.

The problem of computer service performance
modeling subject to such QoS metrics as response
time, throughput, network utilization and so on, have
been extensively studied in the literature [4, 23, 24].
For instance, in [23], Karlapudi proposed and val-
idated a web application performance tool for the
performance prediction of web applications between
specified end-points. In [24], Mei addressed the prob-
lem of an end-to-end QoS guarantee for VoIP services.

In [29], authors present a modeling technique of
using Jackson’s network theorem to characterize the
performance of mashup multiple servers in cloud com-
puting environments. Their proposed model aims
to predict the breakpoint where the waiting time in
mashup cloud servers would sharply increase. In [30],
authors evaluate the possibility of using Microsoft
Windows Azure as a platform for HPC applications
and outline the challenges encountered during port-
ing applications and their resolutions. Furthermore,
they introduce a metric to measure the efficiency of
Cloud Computing platforms in terms of performance
and price. In [31], authors present a continuum of
four scheduling polices along with an analytical re-
source prediction model for each policy to estimate
the level of resources needed to operate an efficient,
responsive, and reliable virtual cluster system.

In [4], the authors obtained the response time dis-
tribution of a cloud system modeled on a classical
open network M/M/m, assuming an exponential den-
sity function for the inter-arrival and service times.
By using the response time distribution, they de-
termined the optimum level of service and the rela-
tionship between the maximum number of tasks and
the minimum number of resources (virtual machines).
For a given computing service, the authors obtained
the level of QoS services in terms of response time
that can be guaranteed. The complexity of other
queues (G/M/m, M/G/m, G/G/m) comes from the
impossibility of obtaining a closed formula to rep-
resent the probability distributions of the response
or waiting time of customers in the queue [3]. Our
work does not focus on research into specific queu-
ing theory challenges but rather on the use of exist-
ing models for designing and testing the performance
of cloud systems. In addition, problem arises when
trying to incorporate scheduling, heterogeneity, user
workload and occupancy emulation or sophisticated
network connections between their forming computa-
tional resources that make them up.

To deal with this problem, data-driven simulators
have been taken into account, thus allowing research

52

into the behavior of large scale distributed systems.
There are a great range of simulators focused on simu-
lating grid computing systems, such as MDCSim [12],
GridSim [25], GangSim [26]. Grid simulators have
been used to evaluate costs of executing distributed
applications in grid/cluster infrastructures [25]. The
most popular among these is GridSim. The GridSim
toolkit is a Java-based simulation toolkit that sup-
ports the modeling and simulation of heterogeneous
grid resources and users spread across multiple orga-
nizations with their own policies for scheduling appli-
cations. It supports multiple application models and
provides primitives for creating and deleting applica-
tion tasks, the mapping of tasks to resources and the
managing of tasks and resources [25]. However, none
of the current grid system simulators can be directly
used for modeling cloud-computing environments [2].

The CloudSim framework was originally built on
top of the GridSim toolkit [25]. CloudSim is the most
advanced ([14]) among the cloud simulation environ-
ment, more so than GreenCloud [11], MDCSim [12],
iCanCloud [13] and NetworkCloudSim [14]. It scales
well and has a low simulation overhead and is also
the most widely used in current research publications
[15, 16, 17]. NetworkCloudSim is capable of simulat-
ing real cloud datacenter networks and applications
with communicating tasks, such as MPI, with a high
degree of accuracy compared to the real ones [14]. As
the use of complex MPI applications falls outwith the
scope of this work, the good accuracy of the CloudSim
(the base platform of NetworkCloudSim) for simu-
lating embarrassingly parallel applications justifies it
being chosen for this work. Embarrassingly paral-
lel applications, the ones used in this work, require
no synchronization or communication between tasks.
They are much simpler than the more complicated
MPI distributed applications, which need to inter-
change intermediate results between tasks. So our
efforts have been centered on CloudSim. No other
additional features were needed to support complex
communication, as in the case of NetworkCloudSim.
Thus, we can state that the behavior of our models is
in line with real clouds.

3 Cloud Architecture

As stated in [4], most current cloud computing infras-
tructures consist of services that are offered and de-
livered through a service center, that can be accessed
from a web browser anywhere in the world. The two
most significant components of a cloud-computing
framework are the Front-end and the Back-end. They
are also the main components of our cloud architec-
ture, the base platform on which we develop our pro-
posals.

3.1 Front-end

The Front-end is the gateway to the cloud and con-
sists of the software components and the interfaces
needed to connect to the platform using remote client
applications [5]. Normally, these applications use
standard web protocols to access the system and an
authentication protocol that allows access to autho-
rized users. All requests are processed by the sched-
uler, which sends the selected tasks to the queue of the
Back-end. For simplicity, a First-Come-First-Serve
(FCFS) scheduling policy was assumed.
Furthermore, user requests are usually received by
the web server, which is also in charge of tasks run-
ning in the Back-end. This application/service is as-
sociated with an SLA. The interface and negotiation

PROCEEDINGS OF THE 13TH AUSTRALASIAN SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING
(AusPDC 2015), SYDNEY, AUSTRALIA, 27 - 30 JANUARY 2015

processes are usually performed at the Front-end.

As we are proposing a generic system, application
workflows other than embarrassingly parallel applica-
tions will not be considered in our model, thus avoid-
ing deadlock situations. All arriving tasks forming
the applications will consist of web requests served
by the Front-end.

3.2 Back-end

The Back-end is really the part of the cloud were the
main HPC processing is performed. The Back-end
functions include management of the job queue, the
servers and their virtual machines and the storage
servers. For clarity purposes, we have only consid-
ered one storage (i.e. database) server. Note that,
internally, this server could be composed by a clus-
tered database.

The Back-end is made up of two different kinds of
server:

Processing servers:
Virtual machines responsible for performing
most of the computation.

Data servers:
Virtual machines whose main task is to perform
database transitional operations.

We are interested on modeling this part of the
cloud, namely the Back-end. In doing so, we first
deal with a model based on queuing theory (Sec. 4).
Next, we propose a more realistic way of modeling the
cloud Back-end, based on event-driven simulation.

4 Cloud Architecture Modeling

To model the Back-end, we propose a multi-server
system based on the queuing model (see Fig. 1), rep-
resenting an Open Jackson network [20, 21].

This network has a single Entry point E. This
server acts as a load balancer, which forwards the user
requests to one of the processing nodes N;, where i =
1..m. The load balancer is represented by an M/M/1
queue with an arrival and service rate modeled by an
exponential pdf with parameters A and [respectively,
where \ < [.

A processing node N; is a node, core or processor
representing the physical computational resources of
our cloud architecture where the services are com-
puted. The selected N; node performs the service
required by the user request. All N; nodes are iden-
tical (homogeneous) and are modeled as an M/M/m
queueing system. Each N; node has the same service
rate and is equal to p, this is p = p;, % = 1.m.

Each N; node accesses D (Database) with a proba-
bility 4. D represents a database server and serves to
model the access to files, directories and databases or
to any kind of I/O access to secondary memory dur-
ing the service in the cloud architecture. This is an
important consideration to be taken into account be-
cause I/0O interference between virtual machines is an
important issue. D is modeled by an M/M/1 queue
with exponential arrival and service rates of J\ (ac-
cording to the rules of the open Jackson network) and
d respectively.

Connecting servers with exponential arrival and
service distributions in a feedforward (without feed-
back paths) are independent from each other and pre-
serve pdf distributions [22]. So, A is the feeding dis-
’Eril))ution for the customers leaving the Entry node

FE).

O,
Figure 1: Queuing theory architectural model.

As a result of being considered as an open Jackson
network, the response time (T') of the global cloud
architecture is the following:

T=Tg+Tn+Tp (1)

Tr represents the response time of the Entry node,
modeled as an M/M/1 queue. Thus, Tk is defined as
(see [18] for more details):

ETT i/i/z’ @)

Tn represents the response time of the servicing
nodes that actually process the user requests. As
these servers are modeled as an M /M /m queue, ac-
cording to [19], the response time of such a queue is
defined as:

1 C(m,p)
Ty = — + —1—=

The term C(m, p) represents Erlang’s C formula,
which gives the probability of a new client joining the
M/M/m queue. Erlang’s C formula is defined as [18]:

() ()
Pt () (L

where p = \/p.

Finally, Tp represents the response time of the
Database server, D. As D is modeled as an M/M/1
queue, similarly to Tg, Tp is obtained as follows:

1/d
T 1=oa/d’ 5)

C(m,p) =

@
)

Tp

5 Scheduling

The Back-end can be divided into two levels, the
physical hosts and the virtual machines. Tasks
are assigned to virtual machines, which are in turn
mapped to a sort of computing clustered resources
(cores/processors, main memory, secondary memory
and network bandwidth). As a consequence, we ex-
tend the functionality of the previous model by taking
these issues into account. In doing so, we propose a
two-level event-driven scheduler to map tasks to pro-
cessing nodes according to their processing power and
availability. The top-level scheduler assigns virtual
machines to hosts (named Virtual Machine Sched-
uler), and the bottom one assigns tasks to virtual
machines (named Job Scheduler).

5.1 Virtual Machine Scheduling

Our virtual machine scheduling criteria is based on
minimizing power consumption. Note that, ideally,
the total response time of the tasks assigned to vir-
tual machines should not be affected by the virtual

53

CRPIT VOLUME 163 - PARALLEL AND DISTRIBUTED COMPUTING 2015

machine scheduling policy. This is because each vir-
tual machine has its own requirements in terms of
computing capacity, and regardless of which physical
host is selected to allocate the virtual machine, it will
always have those minimum requirements. For this
reason, the criteria selected for the virtual machine
scheduling policy was minimizing the power consump-
tion. Note that this scheduling level has nothing to do
with Section 4. Those are really two separate issues.

The way that virtual machines are allocated to
physical hosts will determine the energy consumption
of the whole system. Energy consumption is not lin-
eal and modeling it would lead to a complex analyt-
ical problem [17]. In order to solve that, real data
on power consumption obtained from benchmarks is
used.

Instead of using an analytical power model for the
physical hosts, we utilize real data on power consump-
tion provided by the results of the SPECpower bench-
mark !, as in [17]. This is also the power model used
in CloudSim. As an example, Fig. 2 shows the power
consumption of two HP machines, obtained with the
SPECpower and implemented in CloudSim.

Power consumption (in Watts)

e
130 1 1P ProLiant ML110 G4 —&— o
125 HP ProLiant ML110 G5 M,We"“"
120
115 /-/H/Il
110 "
105 0
o
100 o
95 ™
o
£l n/,/
85
0 20 40 60 80 100

% Occupation

Figure 2: Power consumption for two HP machines.

The following are two policy proposals for the vir-
tual machine scheduler.

5.1.1 Round-robin VM Scheduling

First of all, we present Round-robin, the first policy
for scheduling virtual machines (VM) to hosts. Vir-
tual machines are assigned to hosts by following a
circular ring ordering. In this first approach, no con-
siderations about power consumption are taken into
account. The main aim of this simple vm scheduling
is to present the policy implemented by the CloudSim.
Apparently, a wide margin from improvement is left
to the following policy.

5.1.2 Power-aware VM Scheduling

We propose a custom policy, called “Power-aware
Virtual Machine Scheduling”, that assigns VMs to
hosts based on the number of free cores (see Alg. 1).
For each virtual machine to be allocated, we select
the host with the fewest cores available which can
host it. This way, hosts with less capacity are used
first, decreasing the energy consumption as the more
powerful hosts can meanwhile be idle.

For each virtual machine (VM) to be allo-
cated (from list wvmList), Alg. 1 selects the
host (hostse;) with fewest available cores from the
host list (hostList) after the assignment (minAC)
that suits the requirements of the current virtual
machine (vm.requiredCores). Finally, it assigns

'SPECpower benchmark. www.spec.org/powerssj2008/

54

Algorithm 1 Power-aware virtual machine alloca-
tion algorithm

minAC=o0;
for all vm € {vmList} do
for all host € {hostList} do
C' = host.availCores — vm.requiredCores;
if (C>0 && C <minAC) then
hostge; = host; minAC = C;|
end if
end for
vm.assignHost(hostge;)
end for

the current virtual machine to the selected host
(vm.assignHost(hostse;)).

5.2 Job Scheduler

The minimisation of response time is addressed by the
bottom scheduler, or Job Scheduler. The heuristics
of this scheduler are focused on reducing the time of
parallel jobs (or tasks), thus providing the QoS as
agreed at the SLA. However, we will not delve into
interface nor negotiation mechanisms. We are only
interested in obtaining the best scheduling according
to the response time performance.

Two job scheduler proposals are presented. In
the first version, Round-robin, we simply transferred
the queuing model to an event-driven model as accu-
rately as possible by defining a single scheduling pol-
icy for the processing nodes (NN;, from Fig. 1). Note
that a processing node refers to a virtual machine
as presented in Section 5.1. In the second proposal,
we increased the accuracy of real cloud environments
by providing the scheduler with the functionality of
dealing with additional processing element features,
such as workload occupancy and processing capabili-
ties (heterogeneity).

5.2.1 Round-robin Job Scheduler

First of all, we present Round-robin, a policy analo-
gous to the one presented for scheduling virtual ma-
chines (Section 5.1.1), but which schedules jobs in-
stead. We suppose the system is entirely dedicated
to processing our servicing requests. That means the
cloud is entirely dedicated to processing arriving ser-
vices (tasks making up an embarrassingly parallel ap-
plication) in any order from one user. This simplifies
the scheduling task, that is the selection of the N;
nodes of Fig. 1, in order to process the processing
requests.

We also suppose, as in Sec. 4, that each N; node
has the same computing power. The mapping pol-
icy of tasks to nodes NV;, implemented at the E node,
is quite simple. The nodes are scheduled in a single
Round-robin manner, without taking either their oc-
cupancy or computing power into account. We also
named this scheduling version “Round-robin”.

Communication costs have not been considered.
Network latency in sending tasks from the E to one
N;, and from one N; to D are negligible. This is the
case when all these cloud components are physically
located in the same machine, where communicating
costs are low enough to be ignored.

Another aim of this first version of the event-
driven implementation is to construct the base model
to compare with the queuing system designed in Sec.
4 and the improvements added in the Balanced ver-
sion.

PROCEEDINGS OF THE 13TH AUSTRALASIAN SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING
(AusPDC 2015), SYDNEY, AUSTRALIA, 27 - 30 JANUARY 2015

5.2.2 Balanced Job Scheduler

We provide the E with a scheduling policy which is
able to deliver jobs to the best processing node N;.
We named this scheduling version “Balanced”. As-
signments take into account both the occupancy and
computing power capacity of each IV; node. This fea-
ture will provide the model with the ability to simu-
late heterogeneous environments. Nowadays, the dis-
posal of a great range of computing power nodes in
cloud systems is very common. Over time, cloud cen-
ters acquire new computational resources as needed,
and these are hot-plugged to the pool of processing
nodes without restarting the system. Consequently,
the N; nodes can become quite heterogeneous with
time.

Starting as a reference point the work done in [28],
we define the Effective Power (I';) of each node N; as
a function of the relative computing power and the
availability of such a node. The scheduler will assign
a new task entering to the N; node with the highest
Effective Power. Formally, I'; is defined as follows:

Iy =PF-A;, (6)

where P; is the relative computing power of node i
(N;) with regard to the most powerful node in the
pool of processing nodes. The values of this parame-
ter are in the range 0 < P; < 1, where P; = 1 means
node i is the most powerful one and P; < 1 otherwise.
The P; value can be obtained by benchmarking ap-
plications, as described in [27]. The availability (A;)
of a node N; is defined as the complement to one of
its percentage of occupation. 4; = 0 when the CPU
is fully occupied and 0 < A; < 1 otherwise.

As a consequence, the Effective Power value is in
the range (0..1], where I'; &~ 0 means node 7 is unable
to execute any task and I'; = 1 implies tasks can be
executed at full speed in such a node.

Algorithm 2 Balanced job scheduling algorithm

Fmaz =0
for job : jobList() do
for node : nodeList() do
A =1 — (node.workload/sum{jobList.workload})
P = (node.power /maz{nodeList.power})
r=pP-A
if T' > T'yaxr then
nodege; = node

Tmaz =T
end if
end for
job.assignNode(nodege;)

end for

Based on the considerations above, the Balanced
job scheduling algorithm is presented in Alg. 2. It dis-
tributes a job to the node with the highest computed
I', which depends on its A and P. A is obtained as
the complement to one of the workload of such nodes
compared to the total workload, the sum of the overall
jobs (1 — (node.workload/sum{jobList.workload})).
There are many ways to estimate the workload.
It can be supposed, for example, that jobs are
made up of homogeneous tasks, and that a task
is the unity workload. So a node with one job
with 8 tasks would have a workload equal to 8.
The computing power P of a node is obtained as
the relation between its power and the maximum
(node.power /maz{nodeList.power}). Each job from
list jobList will be mapped onto the node in the pool
of processing nodes nodeList with the maximum com-
puted I (job.assignNode(nodes.;)).

6 Results

We present an analysis of how the response time is af-
fected by modifying some of the metrics in the mod-
els presented. First of all, we analyze the queueing
theory-based model of the Back-end part of the cloud
architecture. Secondly, a set of simulations is per-
formed using the CloudSim framework. Our purpose
is to verify the cloud architecture when scaling the
computing resources of a cloud site. The scheduling
proposals (the Power-aware Virtual Machine and the
Job Scheduling policies) are also tested below. Next,
the computing resource utilization of a unique cloud
site is analyzed. Finally, we show the performance
when scaling the number of cloud site’s (datacenters).

6.1 Queuing Theory Simulation

The Back-end architecture discussed in Section 3.2,
modeled through a mathematical approach (the queu-
ing theory) and presented in Section 4, was imple-
mented using the mathematical software Sage 5.32.
The parameters used in the implementation are de-
scribed below:

A Arrival rate. Average number of requests reaching
the system per unit of time. 1/ is the mean
inter-arrival time. We aimed to show how re-
sponse time (7T') is affected by varying the pa-
rameter X\. The number of processing servers (m)
represents the total number of processors, cores
or nodes dedicated to servicing requests. Chang-
ing this parameter will show the impact of adding
or removing servers to the system.

6 Database access probability. The probability that
an incoming request needs to access the database
node D. Not all requests will always require ac-
cess to the database server. Note however that
this probability will usually be relatively high.

v Service rate. This describes the speed at which
the web servers handle the requests. 1/pu is the
mean service time. The total service rate of the
system must always be greater than A for the
system to be stable. This value was modified
through the tests in order to check the impact
on performance. Although service rates of E (1),
N; i =1.m (u;), and D (d) could be different,
in order to simplify the experiments, it was as-
sumed that they all had the same value. Thus,
throughout the test, we supposed I = p = p; = d.

Figs. 3a and 3b show the response time (T") ob-
tained in the queuing simulator by increasing the ar-
rival rate (A) for one and 1000 servers, respectively.

The response time decreased from one to 1000
servers servers. However, the response time stabilized
quickly when the number of servers increased beyond
ten. The explanation for this phenomenon can be
found in the utilization of the N; nodes (see Fig. 4),
defined as p = \/p.

From Fig. 3 and Fig. 4, we can derive that the re-
sponse time stabilizes with server utilization (p). In
Fig. 3a, when the entering arrival rate for requests
to the system, which in turn equals the arrival rate
in the pool of servers (\), is high, the utilization (p)
approaches one. Adding servers to the N; nodes, led
the utilization rate of the M /M /m queue to decrease
and the response time to stabilize. For this reason,
there is an upper bound above which, adding more
N; nodes means hardly any decrease in the system’s

2Sage. http://www.sagemath.org/

55

CRPIT VOLUME 163 - PARALLEL AND DISTRIBUTED COMPUTING 2015

1000+~

800 -

600 -

400{-

2

=3
=]

180+

160+

140+

120+

||||||llIlIIIIIIIII||||||IIIIIIIIIIIIII|||||“‘
‘ o 20 30 0

o 1

(a) Response time (T') with 1 server.

) | | |“|“||||I| |
a0l - | |
|llIII|"""""""IIII“""

0 10 20 30 0

(b) Response time (T") with 1000 servers.

Figure 3: Response Time (7') with 1 and 1000 servers.

0.9

0.8

0.7

0.6

0.5

P

0.4 : : - ; :

03 : : - : :

0.2 I I : :

0_1‘ - . I . . . - =] — - : .
0 2 4 6 8

10

Figure 4: Utilization (p = A/u) rate.

response time (7'). In Fig. 4, we can see how uti-
lization (p) quickly decreases when servers start to
be added to the system. For values above 10, the
degree of utilization scarcely decreases, although its
value approaches asymptotically to 0.

6.2 Event-driven Simulation

Once the queueing theory-based model had been im-
plemented, we used the CloudSim 3.0.2 software [2] to
implement the cloud as an event-driven simulation to
verify the behavior consistency of the proposed mod-
els. The performance of the Back-end implemented
was measured in an event-driven simulator.

From then on, we used a new cloud event-driven
simulation environment, based on a real machine with
two processors AMD Opteron 6,172 processors, 144
GB of Memory and 4.5 TB of secondary memory stor-
age3. Each processor was composed of 12 cores (PE
Processing Elements) at 2.1 GHz and 3,150 MIPS
each. By using CloudSim, it was possible to emulate
the same machine reliably. Virtual machines have a
different number of PE (CPU) depending on each
test, and all the PFEs were configured to 3,150 MIPS
and 4,096 MB of Memory. The number of virtual ma-
chines depends on the simulation performed below.

Shttp://www.cisco.com/

56

Prior to presenting the implementation, let us in-
troduce some CloudSim terminology. CloudSim man-
ages a set of entities, described as follows:

Host.
Physical machine which can be divided into sev-
eral virtual machines.

PE.
Processing Element. This represents a CPU unit,

defined in terms of Millions Instructions Per Sec-
ond (MIPS).

VM.
Virtual machine. An abstraction of a host (physi-
cal machine), with its own RAM Memory, CPUs,
secondary memory storage and bandwidth. Each
virtual machine is assigned to a specific broker.

Broker.
Entity responsible for handling the service re-
quests made by the cloud users. A virtual ma-
chine list and a cloudlet list are submitted to
each broker. This entity is used internally in the
simulations.

Cloudlet.
Represents an application service or a cloud task.
The work to be done is specified by giving its
execution length (number of instructions) to be
executed in the virtual machines. Each cloudlet
is assigned to a specific broker.

Datacenter.
Set of hosts. Cloudlets (representing applica-
tions, tasks or jobs) are delivered to datacenters
in order to be executed. At least one datacenter
is needed to run a simulation.

We first measured the behavior of a single cloud
site by scaling the number of jobs to be processed
in the Back-end. In order to measure the scalabil-
ity of a cloud site, we evaluated the job execution
times in function of their size. Fig. 5a shows the per-
formance in the execution of the cloudlets (in time
units) for three different application (job) sizes (100,
200 and 500 cloudlets, i.e. services or tasks). We used
two equal virtual machines with two PFEs. Each ser-
vice (task) was specified by defining its cloudlet size,
in other words, the number of instructions (in thou-
sands). Its size in turn is determined by the number

PROCEEDINGS OF THE 13TH AUSTRALASIAN SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING
(AusPDC 2015), SYDNEY, AUSTRALIA, 27 - 30 JANUARY 2015

of instructions required to complete the cloudlet. As
can be observed, for each job, times increased linearly
with the size of the cloudlets. Measurements were
obtained for 0, 20,000, 40,000 ... 100,000 instruc-
tions per cloudlet. In addition, for the same task size,
the execution times increased proportionally with the
number of cloudlets. Although the results are logical
in ideal conditions, real clouds are not accurately rep-
resented because the shapes of the time lines should
behave asymptotically and not so linearly.

4000 100 cloudlets —@—
200 cloudlets @
3500 500 cloudlets

3000
2500

2000
1500
1000
500
0

0 20 40 60 80 100
Parallel job scalability (thousands)

(a) Constant job size.

2000

100 cloudlets &
200 cloudlets &
500 cloudlets ?ﬁ
1500 e
ﬁ:’“"ﬁr
1000 o
@
o
o |
" w,,m'“’r ,,,n"""”
500 e
mw"‘“ WWM# MM /
o ’
. w*’""‘w»mwm w/
0 i e
0 20 40 60 80 100

Parallel job scalability (thousands)
(b) Variable job size.

Figure 5: Execution times for three scenarios (100,
200 and 500 cloudlets).

In order to solve the linearity presented in the pre-
vious figure (Fig. 5a), we defined a different policy
for workload arrival. Fig. 5b shows the total exe-
cution time of all the parallel jobs submitted to the
system (and as before, with job sizes of 100, 200 and
500 cloudlets) when the size of each job is not con-
stant. For each kind of job, the number of instructions
per cloudlet was also varied from 0..100, 000, in incre-
ments of 100,000/ (number of cloudlets). For exam-
ple, for the case of 500 cloudlets, the increment was
200. In addition, each job was executed separately
and all its component cloudlets were submitted at the
same time. Cloudlets were executed in increasing size
without delays between consecutive executions. Each
cloudlet should be waiting for the execution of the
previous one. This way, we simulated two aspects of
real cloud computing systems, the sharing of cloud re-
sources by the workload and the non-linear property
of the most real cloud systems, a key feature not pro-
vided by other simulation systems of the literature.
Furthermore, it was very useful in order to perform
stress testing, although this kind of arrivals may not
represent realistic or probable arrival rates.

Fig. 6 shows the system behavior when scaling
it by increasing the number of virtual machines and
the number of available hosts. The simulation en-
vironment was configured with one datacenter and
1,000 cloudlets with a size of 100,000 instructions
each. Further experiments by varying the parameter

values gave similar results.

Figure 6: Execution times depending on the number
of virtual machines and the number of hosts.

We can appreciate that increasing the number of
virtual machines and hosts significantly decreases the
total execution time of the jobs. From Fig. 6, it can
be seen that by adding virtual machines, the system
will approach asymptotically a limit where it does not
have enough computational resources (RAM, CPUs,
etc.. making up the hosts) to map the cloudlets (i.e.
the cloudlet instructions), and so the execution time
stabilizes. Similar behavior occurs when adding more
hosts without adding more virtual machines.

6.3 Scheduling

We measured the two proposed schedulers and their
different versions. Firstly, the performance of the vir-
tual machine allocation policy that maps virtual ma-
chines into hosts was tested. Lastly, we checked the
job (cloudlet) allocation scheduler, which determines
the virtual machine the cloudlets will be executed in.

6.3.1 Virtual Machine Scheduling

In Fig. 7, we applied the Power-aware policy de-
fined in Sec. 5.1.2 and compared it with the default
CloudSim policy, which is based on the Round-robin
scheduling algorithm, and defined in Sec. 5.1.1. The
way virtual machines are allocated to hosts deter-
mines the power consumption of each host and even-
tually the energy efficiency of the whole datacenter.

The simulation environment was configured with a
heterogeneous set of 27 VM of three different types:
20 VM with 1 core, 5 VM with 8 cores and 2 VM
with 4 cores. FEach core had a capacity of 3150
MIPS. The simulation was carried out from 100 to 500
cloudlets with two different policies. All the cloudlets
had 10,000 instructions. The datacenter had three
different hosts. The first with 12 PE of 5,000 MIPS
each, the second one with 24 PE of 6,000 MIPS each,
and the third one with 48 PFE of 6,300 MIPS each.

The results in Fig. 7 show a significant improve-
ment in the energy consumption of the datacenter
when compared to the default Round-robin policy,
with a 7,9% reduction of the consumption. This de-
notes how allocating virtual machines efficiently can
lead to a more power-efficient system.

Note that allocating virtual machines to hosts does
not affect the response times of the tasks that will
be later assigned, as each virtual machines are only
assigned to hosts that fulfill its computing resource
needs.

o7

CRPIT VOLUME 163 - PARALLEL AND DISTRIBUTED COMPUTING 2015

2800 Round-robin ——
2600 Power-aware s

1000 i
800
600
400 —

100 200 300 400 500
Cloudlets

Figure 7: Energy consumption (in kW) of two differ-
ent VM allocation policies.

6.3.2 Job Scheduling

In the following section, we discuss cloudlet (task) al-
location to virtual machine policies (see Section 5.2).
As opposed to the previous section (Sec. 5.1), cloudlet
mapping has a direct impact on the response time of
the system and determines finishing task times.

In Fig. 8, we applied the policy defined in Sec.
5.2.2 and compared it to the Round-robin scheduling
policy (described in Sec. 5.2.1). The simulation envi-
ronment was configured with a heterogeneous set of
6 VM of three different types: 2 VM with 1 core, 2
V M with 2 cores and 2 VM with 4 cores. Each core
had a capacity of 3150 MIPS. A total of 6 simula-
tions were performed, for 100 cloudlets, 200 cloudlets
and 500 cloudlets with two different policies. All the
cloudlets had 100,000 instructions. The first policy
was the default policy included in CloudSim, which
is a Round-robin algorithm that distributes cloudlets
in equal portions and in circular order to the different
available VM (as in Sec. 5.2.1). The second policy
consisted of the one described in Sec. 5.2.2, based on
the Formula 6 (I'; = P; - A;).

000 Round-robin —&@—
Balanced @

2500 /
2000 .

/ ™
1500 e

/ e
™

1000 -

100 150 200 250 300 350 400 450 500
Cloudlets

Figure 8: Total response time using two different
cloudlet allocation policies.

The results in Fig. 8 show that taking the capacity
and the availability of the V' Ms into account in a het-
erogeneous environment improved the performance of
the system significantly when compared with the de-
fault Round-robin policy. The gains reached 25%.

This improvement is due to considering not only
the computing capacity of the V M s, but also its cur-
rent state. Thus avoiding overloading the most pow-
erful V Ms while leaving the less powerful ones un-
derloaded.

6.4 Resource utilization

In this section, we are interested in measuring the
utilization of the computing resources (CPU, Main

58

Memory and Bandwidth). In the next experiment,
we defined two datacenters and three customers. The
first and second datacenter held 4 and 200 hosts re-
spectively. Fig. 9 shows the resource utilization of
the first datacenter. The utilization behavior of the
second datacenter is very similar.

60

CPU (MIPS)
'|J- 1 RAM (MB)
Bandwidth (Mbps)

50

40

ol Ny il

Time
Figure 9: Resource utilization. Datacenter 1.

We can appreciate how the datacenter analyzed
experienced a peak of CPU utilization during the be-
ginning of the simulation that then stabilized with
time. This is explained by CloudSim first having
to schedule and allocate all the customer’s jobs in
the respective virtual machines. Next, the amount
of resources needed to keep executing the jobs de-
creased until it stabilized. Note that the Memory
and CPU utilization are closely correlated. However,
the CPU was in an upper scale of magnitude. It
can be appreciated that no network bandwidth was
used. There was no communication between job tasks
(cloudlets). This is the distinctive feature of the par-
allel applications we used throughout the experimen-
tation, namely the embarrassingly parallel ones

6.5 Cloud Site Scalability

In this section, we measure the impact of having mul-
tiple sites (datacenters). In doing so, we scale the
number of sites. The concept of doing this is depicted
visually in Fig. 10.

In Fig. 11a, two datacenters were added to the one
used previously in the simulation in order to test the
scalability of the system. These two datacenters had
the same characteristics as the one previously defined.
The simulation environment was configured using 500
cloudlets, each requiring 1,000,000 instructions and a
total of 60 V' M with 2 CPU and 4,096GB RAM each.

We can appreciate in Fig. 11a that the total ex-
ecution time significantly decreases when one more
datacenter is added. In this case, CloudSim used
a Round-robin filling-up scheduling policy. When a
datacenter is at its full capacity, incoming tasks are
submitted to the next one, following a ring order. We
can see that execution times tend to stabilize.

In Fig. 11b, further testing was done to verify
the scalability. A total of seven datacenters with the
same characteristics as the ones used in the previous
test were used. The simulation environment was con-
figured using 130 VM and 1,000 cloudlets each with
1,000,000 instructions. We can verify how the behav-
ior from Fig. 1la is still valid when scaling in both
senses, the amount of computing resources and the
application size.

Having multiple datacenters also ensures a higher
level of robustness. Even if one or more datacenters
falls or becomes unavailable, the workflow of incom-
ing tasks can be redirected to other datacenters by

PROCEEDINGS OF THE 13TH AUSTRALASIAN SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING
(AusPDC 2015), SYDNEY, AUSTRALIA, 27 - 30 JANUARY 2015

Figure 10: Cloud site scaling.

4000
3500
3000
2500
2000

1500
1000
500

1 2 3
Datacenters

(a) Up to 3 datacenters.

7000

6000

5000

4000

3000

2000

1000

1 2 3 4 5 6 7
Datacenters

(b) Up to 7 datacenters.

Figure 11: Execution time.

applying a heuristic policy, increasing the fault toler-
ance of the whole system enormously.

7 Conclusion and Future Work

In this paper, a model for designing cloud-computing
architectures with QoS is presented. We presented
two main alternatives for doing so. The first one,
based on queuing theory and the open Jackson net-
works, was selected as the basic means of guaran-
teeing a certain level of performance according to
the response times of such networks. Secondly, the
need to design more accurate schedulers for real sites,
that is, non-dedicated and heterogeneous clouds, led
us to develop new event-driven simulation policies.
It is demonstrated that our proposal, a two-level
scheduling algorithm, improved performance signifi-

cantly. The mapping of virtual machines into physical
hosts was demonstrated to be important from the en-
ergy consumption point of view (the savings reached
7.9%), whilst job scheduling into virtual machines im-
proved response time by up to 25%.

As future work, we plan to develop new schedul-
ing policies taking into account more complicated
jobs, with communication and synchronization be-
tween their component tasks. Moreover, we want to
develop further models that also consider data repli-
cation and multiple storage servers. We also are work-
ing on the design and deployment of our proposals
into real clouds by means of the OpenStack* plat-
form.

Acknowledgments

This work was supported by the MEyC under con-
tract TIN2011-28689-C02-02. The authors are mem-
bers of the research group 2009 SGR145, funded by
the Generalitat de Catalunya.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R.
Katz, A. Konwinski, G. Lee, D. Patterson, A.
Rabkin, I. Stoica, M. Zaharia. A view of cloud
computing. Communications of the ACM, vol.
53(4), pp. 50-58. 2010.

[2] R. Calheiros, R. Ranjan, A. Beloglazov, C. De
Rose, R. Buyya. CloudSim: A Toolkit for Model-
ing and Simulation of Cloud Computing Environ-
ments and Evaluation of Resource Provisioning
Algorithms. Software: Practice and Experience,
vol. 41, no. 1, pp. 23-50. 2011.

[3] H. Khazaei, J. Misic, V. Misic. Performance
Analysis of Cloud Computing Centers Using
M/G/m/m+r. Queuing Systems. IEEE Transac-
tions on parallel and distributed systems, vol. 23,
n. 5. 2012.

[4] K. Xiong, H. Perros. Service Performance and
Analysis in Cloud Computing. Proc. IEEE World
Conf. Services, pp. 693-700. 2009.

4OpenStack. http://www.openstack.org/software

59

CRPIT VOLUME 163 - PARALLEL AND DISTRIBUTED COMPUTING 2015

[5] J. Martin, A. Nilsson. On service level agreements
for IP networks. In Proceedings of the IEEE IN-
FOCOM. 2002.

[6] R. Aversa, B. Di Martino, M. Rak, S. Ven-
ticinque, U. Villano. Performance Prediction for
HPC on Clouds. Cloud Computing: Principles
and Paradigms. 2011.

[7] Amazon Elastic Compute Cloud (EC2).

http://www.amazon.com /ec2/. 2013.

[8] D. Chappell. Introducing the Azure services plat-
form. White Paper. 2008.

[9] Google App
http://appengine.google.com. 2013.

[10] J. Vilaplana, F. Solsona, F. Abella, R. Filgueira,
J. Rius. The Cloud Paradigm Applied to e-Health.
BMC Med. Inf. & Decision Making vol. 13. 2013.

[11] D. Kliazovich, P. Bouvry, S. Khan. GreenCloud:
a packet-level simulator of energy-aware cloud
computing data centers. The Journal of Supercom-
puting. 2010.

[12] S. Lim, B. Sharma, G. Nam, E. Kim, C. Das.
MDCSIM: A Multi-tier Data Center Simulation
Platform. Proceedings of IEEE International Con-
ference on Cluster Computing. 2009.

[13] A. Nuez, J. Vzquez-Poletti, A. Caminero, G.
Casta, J. Carretero, I. Llorente. iCanCloud: A
Flexible and Scalable Cloud Infrastructure Simu-
lator. J. Grid Computing 10:185-209. 2012.

[14] S.K. Garg, R. Buyya. NetworkCloudSim: Mod-
elling Parallel Applications in Cloud Simulations.
Fourth IEEE International Conference on Utility
and Cloud Computing. 2011.

[15] R. Calheiros, R. Buyya, C. De Rose. Building an
automated and self-configurable emulation testbed
for grid applications. Softw. Pract. Exper. 2010,
40405-429. 2010.

Engine.

[16] K. Kim, A. Beloglazov, R. Buyya. Power-aware
Provisioning of Cloud Resources for Real-time
Services. Proc. of the 7th Intl. Workshop on Mid-
dleware for Grids, Clouds and e-Science. 2009.

[17] A. Beloglazov, R. Buyya. Optimal Online De-
terministic Algorithms and Adaptive Heuristics
for Energy and Performance Efficient Dynamic
Consolidation of Virtual Machines in Cloud Data
Centers. Concurrency and Computation: Practice
and Expererience, vol. 24 pp. 1397-1420. 2012.

[18] L. Kleinrock. Queueing Systems: Theory, vol. 1.
Wiley-Interscience. 1975.

[19] M. Barbeau, E. Kranakis. Principles of Ad-hoc
Networking. John Wiley & Sons. 2007.

[20] J.R. Jackson. Networks of waiting lines. Opera-
tions Research, vol. 5, 518-521. 1957.

[21] J.R. Jackson. Jobshop-Like Queueing Systems.
Management Science, vol. 10, pp. 131-142. 1963.

[22] P.J. Burke. The Output of a Queuing System.
Operations Research, vol. 4, pp. 699-704. 1956.

[23] H. Karlapudi, J. Martin. Web application perfor-
mance prediction. In Proceedings of the IASTED
International Conference on Communication and
Computer Networks, pp. 281-286. 2004.

60

[24] R.D. Mei, H.B. MeeuwissenB. Modelling end-to-
end Quality-of-Service for transaction-based ser-
vices in multidomain environement. In Proceed-

ings of the 19th International Teletraffic Congress
(ITC19), pp. 1109-1121. 2005.

[25] R. Buyya, M. Murshed. GridSim: a toolkit for
the modeling and simulation of distributed re-
source management and scheduling for Grid com-
puting. Concurrency Computat.: Pract. Exper.
vol. 14 pp. 1175-1220. 2002.

[26] C. Dumitrescu, I. Foster. GangSim: a simulator
for grid scheduling studies. Proc. of the 5th Inter-
national Symposium on Cluster Computing and
the Grid (CCGrid 05), IEEE Computer Society.
2005.

[27] X. Du, X. Zhang. Coordinating parallel processes
on networks of workstations. Journal of Parallel
and Distributed Computing vol. 46, pp. 125-135.
1997.

[28] J.L. Lerida, F. Solsona, F. Giné, J.R. Garcia, M.
Hanzich, P. Hernndez. Enhancing Prediction on
Non-dedicated Clusters. Lecture Notes in Com-
puter Science EuropPar’2008, vol 5168 pp. 233-
242. 2008.

[29] Wei-ping Yang, Li-Chun Wang, Hung-Pin Wen.
A queueing analytical model for service mashup
in mobile cloud computing. Wireless Communica-
tions and Networking Conference (WCNC). 2013.

[30] E. Roloff, F. Birck, M. Diener, A. Carissimi,
P. Navaux. Fvaluating High Performance Com-
puting on the Windows Azure Platform. TEEE
5th International Conference on Cloud Comput-
ing (CLOUD). 2012.

[31] T.J. Hacker, K. Mahadik. Flexible resource allo-
cation for reliable virtual cluster computing sys-
tems. High Performance Computing, Networking,
Storage and Analysis (SC), 2011 International
Conference for. 2011

- Hacker, T.J., Mahadik, K., Flexible resource al-
location for reliable virtual cluster computing sys-
tems, in International Conference for High Per-

formance Computing, Networking, Storage and
Analysis (SC), IEEE 2011

165

166

Bibliography

1]

Patrick R. Amestoy, lain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. A
Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling,
2001.

M Armbrust, M Armbrust, A Fox, A Fox, R Griffith, R Griffith, AD Joseph,
AD Joseph, RH, and RH. Above the clouds: A Berkeley view of cloud computing.
University of California, Berkeley, Tech. Rep. UCB, pages 07-013, 20009.

Michael Armbrust, Ion Stoica, Matei Zaharia, Armando Fox, Rean Griffith, An-
thony D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson,
and Ariel Rabkin. A view of cloud computing, 2010.

Algirdas Avizienis, Jean Claude Laprie, Brian Randell, and Carl Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11-33, 2004.

Xiaoying Bai, Muyang Li, Bin Chen, Wei Tek Tsai, and Jerry Gao. Cloud testing
tools. In Proceedings - 6th IEEE International Symposium on Service-Oriented
System FEngineering, SOSE 2011, pages 1-12, 2011.

Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic consolida-
tion of virtual machines in Cloud data centers. In Concurrency Computation
Practice and Ezperience, volume 24, pages 1397-1420, 2012.

Guillaume Bobrie, Gilles Chatellier, Nathalie Genes, Pierre Clerson, Laurent
Vaur, Bernard Vaisse, Joél Menard, and Jean-Michel Mallion. Cardiovascular
prognosis of "masked hypertension” detected by blood pressure self-measurement
in elderly treated hypertensive patients. JAMA : the journal of the American
Medical Association, 291(11):1342-1349, 2004.

Emma P Bray, Roger Holder, Jonathan Mant, and Richard J McManus. Does
self-monitoring reduce blood pressure? Meta-analysis with meta-regression of
randomized controlled trials. Annals of medicine, 42(5):371-386, 2010.

Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A F De Rose, and
Rajkumar Buyya. CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software - Practice and Ezperience, 41(1):23-50, 2011.

167

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

Yuan-shun Dai, Bo Yang, Jack Dongarra, and Gewei Zhang. Cloud Service
Reliability : Modeling and Analysis. Science And Technology, pages 1-17, 2009.

Kevin C Davis, James M Nonnemaker, Matthew C Farrelly, and Jeff
Niederdeppe. Exploring differences in smokers’ perceptions of the effectiveness
of cessation media messages. Tobacco control, 20(1):26-33, 2011.

Heather O Dickinson, James M Mason, Donald J Nicolson, Fiona Campbell,
Fiona R Beyer, Julia V Cook, Bryan Williams, and Gary A Ford. Lifestyle
interventions to reduce raised blood pressure: a systematic review of randomized
controlled trials. Journal of hypertension, 24(2):215-233, 2006.

Truong Vinh Truong Duy, Yukinori Sato, and Yasushi Inoguchi. Performance
evaluation of a green scheduling algorithm for energy savings in cloud comput-
ing. In Proceedings of the 2010 IEEE International Symposium on Parallel and
Distributed Processing, Workshops and Phd Forum, IPDPSW 2010, 2010.

Leif Erhardt. Cigarette smoking: An undertreated risk factor for cardiovascular
disease, 2009.

C Free, R Whittaker, R Knight, T Abramsky, A Rodgers, and I G Roberts.
Txt2stop: a pilot randomised controlled trial of mobile phone-based smoking
cessation support. Tobacco control, 18(2):88-91, 2009.

Caroline Free, Rosemary Knight, Steven Robertson, Robyn Whittaker, Phil Ed-
wards, Weiwei Zhou, Anthony Rodgers, John Cairns, Michael G. Kenward, and
Ian Roberts. Smoking cessation support delivered via mobile phone text messag-
ing (txt2stop): A single-blind, randomised trial. The Lancet, 378(9785):49-55,
2011.

Saurabh Kumar Garg and Rajkumar Buyya. NetworkCloudSim: Modelling par-
allel applications in cloud simulations. In Proceedings - 2011 4th IEEE Interna-
tional Conference on Utility and Cloud Computing, UCC 2011, pages 105113,
2011.

Alfredo Goldman and Yanik Ngoko. A MILP approach to schedule parallel
independent tasks. In Proceedings of the 7th International Symposium on Parallel
and Distributed Computing, ISPDC 2008, pages 115-122, 2008.

[ulia Ton, Niharika Sachdeva, Ponnurangam Kumaraguru, and Srdjan Capkun.
Home is Safer than the Cloud ! Privacy Concerns for Consumer Cloud Storage.
Security, pages 13:1-13:20, 2011.

Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. On the performance vari-
ability of production cloud services. In Proceedings - 11th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, CCGrid 2011, pages
104-113, 2011.

168

[21]

[22]

[24]

[25]

[26]

[27]

28]

[29]

Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services. Journal of Network and
Systems Management, 11(1):57-81, 2003.

Mohammed Faisal Khan, Zaki Anwar, and Qazi Shoeb Ahmad. Assignment of
personnels when job completion time follows gamma distribution using stochastic
programming technique.

Hamzeh Khazaei, Jelena Misic, and Vojislav B. Misic. Performance analysis of
cloud computing centers using M/G/m/m-+r queuing systems. IEEE Transac-
tions on Parallel and Distributed Systems, 23:936-943, 2012.

Leonard Kleinrock. Theory, Volume 1, Queueing Systems. Wiley-Interscience,

1975.

Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. GreenCloud: A
packet-level simulator of energy-aware cloud computing data centers. Journal of
Supercomputing, 62(3):1263-1283, 2012.

Kurt Kroenke, Dale Theobald, Jingwei Wu, Kelli Norton, Gwendolyn Morrison,
Janet Carpenter, and Wanzhu Tu. Effect of telecare management on pain and
depression in patients with cancer: a randomized trial. JAMA : the journal of
the American Medical Association, 304(2):163-171, 2010.

Alex Mu-Hsing Kuo. Opportunities and Challenges of Cloud Computing to
Improve Health Care Services, 2011.

T Lancaster and L F Stead. Individual behavioural counselling for smoking ces-
sation. Cochrane database of systematic reviews (Online), (2):CD001292, 2005.

M R Law, J K Morris, and N J Wald. Use of blood pressure lowering drugs in
the prevention of cardiovascular disease: meta-analysis of 147 randomised trials

in the context of expectations from prospective epidemiological studies. BMJ
(Clinical research ed.), 338:b1665, 2009.

Leslie Lenert, Ricardo F. Munoz, Jackie Stoddard, Kevin Delucchi, Aditya Ban-
sod, Steven Skoczen, and Eliseo J. Pérez-Stable. Design and pilot evaluation
of an internet smoking cessation program. Journal of the American Medical
Informatics Association, 10(1):16-20, 2003.

Agathe Leon, César Caceres, Emma Fernandez, Paloma Chausa, Maite Martin,
Carles Codina, Araceli Rousaud, Jordi Blanch, Josep Mallolas, Esteban Mar-
tinez, Jose L. Blanco, Montserrat Laguno, Maria Larrousse, Ana Milinkovic,
Laura Zamora, Neus Canal, Josep M. Mir6, Josep M. Gatell, Enrique J. Gémez,
and Felipe Garcia. A new multidisciplinary home care telemedicine system to
monitor stable chronic human immunodeficiency virus-infected patients: A ran-
domized study. PLoS ONE, 6, 2011.

169

[32]

[33]

[35]

[36]

[39]

[40]

[41]

Josep L. Lerida, Francesc Solsona, Porfidio Hernandez, Francesc Gine, Mauri-
cio Hanzich, and Josep Conde. State-based predictions with self-correction on
Enterprise Desktop Grid environments. Journal of Parallel and Distributed Com-
puting, 73(6):777-789, 2013.

Wenjuan Li and Lingdi Ping. Trust model to enhance security and interoper-
ability of cloud environment. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), volume 5931 LNCS, pages 69-79, 2009.

Seung Hwan Lim, Bikash Sharma, Gunwoo Nam, Eun Kyoung Kim, and Chita R.
Das. MDCSim: A multi-tier data center simulation platform. In Proceedings -
IEEFE International Conference on Cluster Computing, ICCC, 20009.

B. N. W. Ma and J. W. Mark. Approximation of the Mean Queue Length of an
M/G/c Queueing System, 1995.

Rahul Malhotra and Prince Jain. Study and Comparison of Various Cloud Sim-
ulators Available in the Cloud Computing. International Journal of Advanced
Research in Computer Science and Software Engineering, 3(9):347-350, 2013.

Magnos Martinello, Mohamed Kaaniche, and Karama Kanoun. Web service
availabilityimpact of error recovery and traffic model, 2005.

Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing
Recommendations of the National Institute of Standards and Technology. Nist
Special Publication, 145:7, 2011.

R Mermelstein, S Cohen, E Lichtenstein, J S Baer, and T Kamarck. Social
support and smoking cessation and maintenance. Technical Report 4, 1986.

M. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E. G. Talbi, A. Y. Zomaya,
and D. Tuyttens. A parallel bi-objective hybrid metaheuristic for energy-aware

scheduling for cloud computing systems. Journal of Parallel and Distributed
Computing, 71(11):1497-1508, 2011.

G Ogedegbe and A Schoenthaler. A systematic review of the effects of home
blood pressure monitoring on medication adherence. Journal of Clinical Hyper-
tension (Greenwich, Conn.), 8(United States PT - Journal Article PT - Research
Support, N.I.LH., Extramural PT - Review LG - English OVID MEDLINE UP
20081216):174-180, 2006.

T Ohkubo, Y Imai, I Tsuji, K Nagai, J Kato, N Kikuchi, A Nishiyama, A Aihara,
M Sekino, M Kikuya, S Ito, H Satoh, and S Hisamichi. Home blood pressure
measurement has a stronger predictive power for mortality than does screen-

ing blood pressure measurement: a population-based observation in Ohasama,
Japan. Journal of hypertension, 16(7):971-975, 1998.

170

[43]

[46]

[47]

[48]

[51]

[52]

[53]

Stephan R Orth and Stein I Hallan. Smoking: A Risk Factor for Progression
of Chronic Kidney Disease and for Cardiovascular Morbidity and Mortality in
Renal PatientsAbsence of Evidence or Evidence of Absence? Clinical Journal of
the American Society of Nephrology, 3:226-236, 2008.

Guy Paré, Mirou Jaana, and Claude Sicotte. Systematic Review of Home Tele-
monitoring for Chronic Diseases: The Evidence Base, 2007.

Birju Patel, Sharon Turban, Cheryl Anderson, Jeanne Charleston, Edgar R.
Miller, and Lawrence J. Appel. A comparison of web sites used to manage
and present home blood pressure readings. Journal of Clinical Hypertension,
12(6):389-395, 2010.

Cuong Pham, Phuong Cao, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. To-
ward a high availability cloud: Techniques and challenges. In Proceedings of the
International Conference on Dependable Systems and Networks, 2012.

Thomas G. Pickering, Nancy Houston Miller, Gbenga Ogedegbe, Lawrence R.
Krakoff, Nancy T. Artinian, and David Goff. Call to action on use and reim-
bursement for home blood pressure monitoring: A joint scientific statement from
the american heart association, american society of hypertension, and preventive
cardiovascular nurses association. Hypertension, 52(1):10-29, 2008.

Josep M. Ramon, Isabel Nerin, Araceli Comino, Cristina Pinet, Francesc Abella,
José Ma Carreras, Marta Banque, Antoni Baena, Sergio Morchon, Adriana
Jimenez-Muro, Adriana Marqueta, Assumpcio Vilarasau, Raquel Bullon, and
Cristina Masuet-Aumatell. A multicentre randomized trial of combined indi-
vidual and telephone counselling for smoking cessation. Preventive Medicine,
57(3):183-188, 2013.

A Rodgers, T Corbett, D Bramley, T Riddell, M Wills, R-B Lin, and M Jones.
Do u smoke after txt? Results of a randomised trial of smoking cessation using
mobile phone text messaging. Technical Report 4, 2005.

Arnon Rosenthal, Peter Mork, Maya Hao Li, Jean Stanford, David Koester, and
Patti Reynolds. Cloud computing: A new business paradigm for biomedical
information sharing, 2010.

Farzad Sabiha. Cloud Computing Reliability, Availability and Serviceability
(RAS): Issues and Challenges, 2012.

L F Stead and T Lancaster. Group behaviour therapy programmes for smok-
ing cessation. Cochrane database of systematic reviews (Online), (2):CD001007,
2005.

L F Stead, R Perera, and T Lancaster. Telephone counselling for smoking ces-
sation. Cochrane database of systematic reviews (Online), 3:CD002850, 2006.

171

[54]

Lindsay F Stead, Rafael Perera, Chris Bullen, David Mant, Jamie Hartmann-
Boyce, Kate Cahill, and Tim Lancaster. Nicotine replacement therapy for smok-
ing cessation. Cochrane database of systematic reviews (Online), 11:CD000146,
2012.

Dawei Sun, Guiran Chang, Changsheng Miao, and Xingwei Wang. Building
a high serviceability model by checkpointing and replication strategy in cloud
computing environments. In Proceedings - 32nd IEEE International Conference
on Distributed Computing Systems Workshops, ICDCSW 2012, pages 578587,
2012.

Dawei Sun, Guiran Chang, Lina Sun, and Xingwei Wang. Surveying and an-
alyzing security, privacy and trust issues in cloud computing environments. In
Procedia Engineering, volume 15, pages 2852-2856, 2011.

Flora Tzelepis, Christine L. Paul, John Wiggers, Raoul A Walsh, Jenny Knight,
Sarah L Duncan, Christophe Lecathelinais, Afaf Girgis, and Justine Daly. A ran-
domised controlled trial of proactive telephone counselling on cold-called smok-
ers’ cessation rates. Tobacco control, 20(1):40-46, 2011.

Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing Cloud
Computing Hardware Reliability. In Proceedings of the 1st ACM symposium on
Cloud computing - SoCC 10, page 193, 2010.

Lizhe Wang, Gregor Laszewski, Andrew Younge, Xi He, Marcel Kunze, Jie Tao,
and Cheng Fu. Cloud Computing: a Perspective Study, 2010.

Bhathiya Wickremasinghe, Rodrigo N. Calheiros, and Rajkumar Buyya. Cloud-
Analyst: A cloudsim-based visual modeller for analysing cloud computing en-
vironments and applications. In Proceedings - International Conference on Ad-
vanced Information Networking and Applications, AINA, pages 446452, 2010.

Kaiqi Xiong and Harry Perros. Service Performance and Analysis in Cloud
Computing. In 2009 Congress on Services - I, pages 693-700, 2009.

Dimitrios Zissis and Dimitrios Lekkas. Addressing cloud computing security
issues. Future Generation Computer Systems, 28(3):583-592, 2012.

172

173

