CONCLUSIONS

CONCLUSIONS

• S'ha dut a terme una anàlisi comparativa de l'oxidació electroquímica d'ànodes de coure i plata en medi aquós i hidròxids fosos. S'observen diferències notables entre els dos medis de síntesi com per exemple la naturalesa dels productes formats i la diferent resolució de les ones redox.

• S'ha sintetitzat un nou òxid de Ag mitjançant l'oxidació anòdica d'un elèctrode de plata en hidròxids fosos. Aquest mateix compost també s'obté per precipitació àcid-base a partir de sals de plata en el mateix medi.

• S'han obtingut monocristalls adients per a la resolució i afinament de la seva estructura cristal·lina. Això no obstant, aquesta sembla complicada degut a la possible existència de pseudosimetria o maclatge, fet que ha impedit l'establiment d'un model estructural fiable. Actualment continuem treballant en la resolució d'aquest problema.

• S'ha sintetitzat el primer òxid mixt de coure i plata. Les anàlisi d'EDX, d'absorció atòmica i termogravimètriques, indiquen una estequiometria Ag₂Cu₂O₃. El nou òxid Ag₂Cu₂O₃ s'ha sintetitzat per coprecipitació àcid-base a partir de sals de coure i plata tant en medi aquós com en hidròxids fosos. En aquest darrer medi s'observa per EDX i per difracció de raigs-X en pols, la presència de plata metàl·lica com a impuresa. Aquesta prové de la descomposició tèrmica dels òxids de plata a les temperatures de treball. El producte obtingut per coprecipitació en medi aquós no conté impureses significatives i s'obté amb un alt rendiment.

• La nova fase $Ag_2Cu_2O_3$ cristal·litza en el sistema tetragonal, grup espacial $I4_1$ /amd, amb una cel·la a=b=5.8877Å, c=10.690Å. La seva estructura ha estat resolta mitjançant difracció de raigs X, de neutrons i d'electrons. L'afinament s'ha realitzat mitjançant el mètode Rietveld fent servir l'estructura del mineral Cu_4O_3 (paramelaconita) com a model de partida i fent un ajust simultani de les dades de raigs X i de neutrons.

• L'estructura consisteix en cadenes alternes de Cu(II) pla-quadrat i Ag(I) lineal que s'entrecreuen amb d'altres de perpendiculars. Aquesta estructura està relacionada amb la de l'òxid PdO i presenta respecte d'aquesta una superestructura associada amb l'ordre catiònic i les vacants d'oxigen.

• Els estudis per termogravimetria del nou òxid Ag₂Cu₂O₃ revelen una major estabilitat tèrmica en comparació amb els òxids simples de coure i plata. La pèrdua d'oxigen d'aquest compost es dóna a temperatures significativament superiors que en el cas de Ag₂O i fins i tot que en el de CuO amb tractaments tèrmics idèntics (Ar/H₂ 5% v.v.).

• El nou òxid Ag₂Cu₂O₃ presenta un comportament antiferromagnètic, amb una transició de fase a 80K que està essent estudiada mitjançant difracció de neutrons a baixa temperatura.

• Les propietats de transport del nou òxid Ag₂Cu₂O₃ han estat mesurades. Aquest compost mostra un comportament semiconductor amb seguiment de la llei d'Arrhenius. La separació de la contribució intergranular al valor de la resistivitat mitjançant mesures d'impedància AC ha esta difícil, donat el baix grau de sinterització de les mostres.

• S'han fet assaigs de síntesi d'hipotètiques fases relacionades amb Ag₂Cu₂O₃ intentant de substituir cadascun dels cations per d'altres amb química de coordinació i radis iònics semblants. Majoritàriament els mètodes emprats s'han basats en la síntesi a baixa temperatura, mitjançant la coprecipitació en medi bàsic. Fins ara, cap dels assaigs duts a terme a donat lloc a noves fases.

• S'ha intentat la síntesi d'òxids més complexes de coure i plata semblants a les fases superconductores de mercuri, que poguessin donar lloc a l'obtenció de nous superconductors. Tanmateix, cap dels assaigs duts a terme amb cations alcalinoterris o de terres rares ha estat fructuós.

D'altra banda, sí que ha estat possible l'obtenció d'una sèrie d'òxids complexes de coure, plata i plom. Aquesta consisteix en una dissolució sòlida de coure i plom amb estequiometria Ag₅Pb_{2-x}Cu_xO₆, 0≤x≤0.5 de la qual només es coneixia el membre amb x=0. Els paràmetres de cel·la disminueixen en augmentar el contingut de coure de la fase.

• A la sèrie $Ag_5Pb_{2-x}Cu_xO_6$ l'estat d'oxidació dels àtoms de plata varia des de +0.8 per al compost amb x=0, fins a +1 per al compost de x=0.5. Aquesta variació en l'estat d'oxidació formal de la plata porta associat un canvi en el comportament elèctric de la fase, passant de metàl·lic (x=0) a semiconductor i finalment a aïllant (x=0.5).

• Els nous òxids obtinguts, i en especial l'òxid Ag₂Cu₂O₃, suposen un precedent important en la química d'estat sòlid i en el tema dels òxids relacionats amb els cuprats superconductors. A més a més, presenten estructures i propietats prometedores per a noves i importants aplicacions en altres camps, des de la magnetoquímica fins la catàlisi.

PUBLICACIONS

PUBLICACIONS A QUE HA DONAT LLOC EL TREBALL DE RECERCA DESCRIT EN AQUESTA MEMÒRIA

- "Ag₂Cu₂O₃: The First Silver Copper Oxide ".
 Gómez-Romero, P., Tejada-Rosales, E.M., Palacín, M.R.
 Angewandte Chemie Int. Ed., 1999, 38(4), p.524. Angewandte Chemie, 1999, 111(4), p.544.
- "Síntesis y caracterización de Ag₂Cu₂O₃, el primer óxido de cobre y plata" Eva M. Tejada-Rosales, M. Rosa Palacín, Pedro Gómez-Romero. Boletín de la Sociedad Española de Cerámica y Vidrio. 2000 39 (3), p. 209-212.
- "Simultaneous Neutron and X-Ray Refinement of the Structure of Ag₂Cu₂O₃, the First Silver Copper Oxide" Tejada-Rosales E.M., Rodríguez-Carvajal J., Palacín, M.R., Gómez-Romero P. *Proceedings of the Seventh European Powder Diffraction Conference*. Barcelona, 20-23 May, **2000**)
- "Electrochemical Oxidation of Silver and Copper in Fused Hydroxide Electrolytes" Eva M. Tejada-Rosales and Pedro Gómez-Romero. submitted to <u>J.Electrochem.Soc.</u>
- "Low Temperature Synthesis, Crystal, Magnetic and Electronic Structure of the First Silver Copper Oxide"
 Eva M. Tejada-Rosales, Juan Rodríguez-Carvajal, Nieves Casañ-Pastor, Pere Alemany, Eliseo Ruiz, Santiago Alvarez and Pedro Gómez-Romero.
 submitted to <u>J.Am.Chem.Soc.</u>
- "Nuevos Catalizadores Basados en Óxidos de Cobre y Plata para la Oxidación Parcial de Alcoholes"
 P.Gómez Romero, E.M. Tejada Rosales, Gerhard Mestl, Jörg Wölk.
 Patent Espanyola en preparació.

- "Surface Segregation of Nanometric Silver Particles from a Silver Copper Oxide"
 E.M. Tejada-Rosales, J. Oró-Soler, P. Gómez-Romero.
 Manuscrit en preparació.
- "Synthesis and Caracterization of the Serie Ag₅Pb₂-xCuxO₆ (0≤x≤0.5)"
 E.M. Tejada-Rosales, J. Oró-Soler, P. Gómez-Romero.
 Manuscrit en preparació.

ALTRES PUBLICACIONS RELACIONADES AMB ALTRES TREBALLS REALITZATS DURANT EL PERÍODE DE FORMACIÓ DOCTORAL

"Laser Treatment of YBCO deposits obtained by electrophoresis"
 N. Casañ-Pastor, E.M. Tejada-Rosales, S. Ondoño-Castillo, C. Díez, G. De la Fuente.

Manuscrit en preparació.

- "Electric Field Influence in Preferential Orientation of YBCO Electrophoretic deposits over Ag substrates"
 C. Zinck, E.M. Tejada Rosales, S. Ondoño-Castillo, N.Casañ-Pastor Manuscrit en preparació.
- "Evidence of oxygen mobility by electrochemical oxidation of oxides. A Quartz Microbalance Study"
 N. Casañ-Pastor, C. Michel, C. Zinck, E.M. Tejada-Rosales, P.Gómez Manuscrit en preparació.

BIBLIOGRAFÍA

BIBLIOGRAFIA

1)Whangbo, M. H.; Torardi, C. C. Acc. Chem. Res. 1991, 24, 127.

2) Vanderah, T. A. en: "Chemistry of Superconductor Materials. Preparation, Chemistry,

Characterization and Theory"; Noyes Publications: Mill Road, 1992.

3)Goodenough, J. B. Supercond. Sci. Technol. 1990, 3, 26-37.

4) Alario-Franco, M. A. Adv. Mater. **1995**, 7, 229-232.

5)Cava, R. J. Science 1990, 24, 656.

6)Tokiwa-Yamamoto, A.; Isawa, K.; Itoh, M.; Adachi, S.; Yamauchi, H. *Physica C* **1993**, 216, 250-256.

7)Putilin, S. N.; Antipov, E.V.; Chmaissem, O.; Marezio, M. Nature 1993, 362, 226-228.

8)Putilin, S. N.; Bryntse, I.; Antipov, E. V. Mater. Res. Bull. 1991, 26, 1299-1307.

9)Cava, R. J. Nature 1993, 362, 204-205.

10)Shannon, R. D. Acta Cryst. A 1976, A32.

11)Majewsky, P. Adv. Mater. 1994, 6, 593-594.

12) Chuang, F. Y.; Sue, D.J.; Sun, C.Y. Materials Research Bulletin 1995, 30, 1309-1317.

13)El-Hofy, M. I.; Donia, A.M.; Abou-Sekkina, M.M. *J. Mater. Sci. Technol.* **1999**, 15, 87-90.

14)Frueh A.J. jr Z. Kristallogr. (A) 1955, 106, 299-307.

15)Baker, C. L.; Lincoln, F.J.; Johnson, A.W.S. Aust. J. Chem. 1992, 45, 1441-1449.

16)Bucher, M. J. Phys. Chem. Solids 1993, 54, 35-41.

17)Saito, M.; Tamaki, S. Solid State Ionics 1993, 60, 237-74.

18)Bailar, J. C.; Emeléns, H.J.; Nyholm, R.; Trotman-Dickenson, A.F. en "*Comprenhensive Inorganic Chemistry*" ; Ed. Pergamon Press, **1973**; Vol. 3, pp 97,98,119-121.

19)Bordet, P.; Le Floch, S.; Capponi, J. J.; Chaillout, C.; Gorius, M. F.; Marezio, M.; Tholence, J. L.; Radaelli, P. G. *Physica C* **1996**, 262, 151-158.

20)Bordet, P.; LeFloch, S.; Chaillout, C.; Duc, F.; Gorius, M. F.; Perroux, M.; Capponi, J. J.; Toulemonde, P.; Tholence, J. L. *Physica C* **1997**, 276, 237-244.

21)Bordet, P.; Chaillout, C.; Gautier, E.; Gorius, M. F.; Le Floch, S.; Perroux, M.; Capponi, J. J.; Toulemonde, P.; Tholence, J. L. *Physica C* **1997**, 282, 951-952.

22)Renevier, H.; Hodeau, J. L.; Fournier, T.; Bordet, P.; Marezio, M. *Physica C* **1990**, 172, 183-189.

23)West, A. R. en: "Solid State Chemistry and its Applications", Ed. by John Wiley & Sons: Aberdeen (Scotland), **1984**, pp 30.

24)Levin, R., McMurdle en: "*Phase Diagrams for Ceramists*"; Ed. by The American Ceramic Society, **1964**.; Vol. I, pp 326-327.

25)Plambeck, J. A. "*Encyclopedia of electrochemistry of the elements"*; Ed. M. Dekker: New York, **1973**; Vol. 10, pp 283-317.

26)Werner, P.-E., Eriksson, L. and Westdahl, M. J. Appl. Crystallogr. 1985, 18, 367-370.

27) Kraus, W., Nolze, G. POWDERCEL; 1.8 Berlin, 1996.

28)Rodriguez-Carvajal, J. FULLPROF; 3.5d ed.; Gif sur Yvette Cedex, 1998.

29)Primo, V. DRXWIN; 2.1 ed.; Primo, V., Ed.: Valencia, 1998.

30)Debaerdemaeker, T., Schmid, G. SHELX; 1990.

31)Mulay, L. N. en: "Theory and Applications of Molecular Paramagnetism"; Ed. John Wiley&Sons: New York, **1976**; Cap.9.

32)Van der Pauw, L. J. "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape" Phillips Res. Repts., **1958**.

33)Hoffmann, R.; Lipscomb, W. N. J. Chem. Phys 1962, 36, 2179.

34)Hoffmann, R. J. Chem. Phys 1963, 39, 1397.

35)Whangbo, M.-H.; Hoffmann, R, . J. Am. Chem. Soc. 1978, 100, 6093.

36)Whangbo, M.-H.; Hoffmann, R.; Woodward, R. B. *Proc. Roy. Soc. London, Ser. A* **1979**, 366, 23.

37)Ammeter, J. H.; Bürgi, H.-B.; Thibeault, J. C.; Hoffmann, R. *J. Am. Chem. Soc* **1978**, 100, 3686.

38)Llunell, M.; Alemany, P.; Ruiz, E. *CASSANDRA*; Universitat de Barcelona,: Barcelona, **1999**.

39)Landrum, G. YAeHMOP- Yet Another Extended Hückel Molecular Orbital Package; 1.1 Cornell University, Ithaca, N.Y., **1995**.

40) Vela, A. G.; Gázquez, J. L. J. Phys. Chem. 1988, 92, 5688.

41)Saunders, V. R.; Dovesi, R.; Roetti, C.; Causà, M.; Harrison, N. M.; Orlando, R.; Zicovich-Wilson, C. M. *CRYSTAL98*; University of Torino: Torino, **1998**.

42)Ruiz, E.; Alvarez, S.; Alemany, P.; Evarestov, R. A. Phys. Rev. B 1997, 56, 7189.

43)Hecht, D.; Frahm, R.; Strehblow, H. H. J Phys Chem 1996, 100, 10831-10833.

44)Hecht, D.; Borthen, P.; Strehblow, H. H. Surface Sci 1996, 365, 263-277.

45)Gomez-Becerra, J.; Salvarezza, R.C.; Arvia, A.J. *Electrochim. Acta* **1988**, 33, 1431-1437.

46)Scatturin, V.; Bellon, P. L.; Salkind, A. J. J. Electrochem. Soc. 1961, 108, 819.

47)Bard A.J. en: "*Encyclopedia of Electrochemistry of the Elements*", v.10 Ed. M. Dekker, pp 283-317.

48)Benedetti, A. V.; Nakazato, R.Z.; Sumodjo, P.T.A.; Cabot, P.L.; Centellas, F.A., Garrido, J.A. *Electrochim. Acta* **1991**, 36, 1409-1421.

49)Burdett, J. K.; Sevov ,S. J. Am. chem. Soc. 1995, 117, 12788-12792.

50) Friedman, T. L.; Stacy, A.M. Journal of Solid State Chemistry 1993, 109, 203-204.

51)Baker, C. L.; Lincoln, F.J.; Johnson, A.W.S. *Acta Crystallogr., Sect. B (Str. Sci)* **1991**, 47, 891-899.

52)Bailar, J. C.; Emeléns, H.J.; Nyholm, R.; Trotman-Dickenson, A.F.en: "*Comprenhensive Inorganic Chemistry"*; Ed. Pergamon Press, 1973; Vol. 3, pp 48.

53)Byström, A.; Evers, L. Acta Chem. Scand. 1950, 4, 613-627.

54) Jansen, M.; Bortz, M. Z. Anorg. Allg. Chem. 1989, 579, 123-128.

55) Jansen, M.; Bortz, M., Heidebrecht, K. Z. Crystallogr. 1989, 186, 147-149.

56)Wagner, C. D. en: "*Auger and X-ray Photoelectron Spectroscopy*"; Ed. Wiley, **1990**; Vol. 1, pp 608 i les referències que aquí apareixen.

57).Bao, X.; Muhler,M.; Schedel-Niedrig Th.; and Schlögl R. *Phys.Rev.B* **1996**, 54, 2249. 58)Gaarenstroom, S.W.; Winograd, N. *J.Chem.Phys* **1977**, 67, 3500.

59)Wells, A. F. en: "Structural Inorganic Chemistry" 5th ed.; Ed. Oxford University Press: Thetford, **1987**, pp 539.

60)Albright, T. A.; Burdett, J. K.; Whangbo, W. -H. ; Wiley J. en: "Orbital Interactions in Chemistry"; Ed. J. Wiley, New York, **1985**, pp 298.

61) Irvine, J. T. S.; Sinclair, D.C.; West, A.R. Adv. Mater. 1990, 2, 132-138.

62)Bruce, P. G.; West, A.R. J. Electrochem. Soc. 1983, 130, 662-669.

63)West, A. R. en: "Solid State Chemistry and its Applications", Ed. by John Wiley & Sons: Aberdeen (Scotland), **1984**, pp 559.

64)Estes, W. E.; Gavel, D. P.; Hatfield, W. E.; Hodgson, D. J. Inorg. Chem **1978**, 17, 1415.

65) Arai, H.; Okada, S.; Sakurai, Y.; Yamaki, J-I. Solid State Ionics **1998**, 106, 45-53.

66)Sapiña, F.; Rodríguez-Carvajal, J.; Sanchis, M. J.; Ibáñez, R.; Beltrán, A.; Beltrán, D. Solid State Communication **1990**, 74, 779.

67)Braden, M.; Ressouche, E.; Buechner, B.; Kessler, R.; Heger, G.; Dhalenne, G.; Revcolebschi, A. *Phys. Rev. B* **1998**, 57, 11497.

68)Hestermann, K.; Hoppe, R. Z. Anorg. Allgem. Chem 1969, 367, 261.

69)Karpinski, J.; Schwer, H.; Meijer, G. I.; Conder, K.; Kopnin, E. M.; Rossel, C. *Phys. C* **1997**, 274, 99.

- 70)Siegrist, T.; Roth, R. S.;. S.; Rawn, C. J.; Ritter, J. J. Chem. Mater. 1990, 2, 192.
- 71)Crawford, W. H.; Richardson, H. W.; Wasson, J. R.; Hodgson, D. J.; Hatfield, W. E. *Inorg. Chem* **1976**, 15, 2107.
- 72)Ruiz, E.; Alemany, P.; Alvarez, S.; Cano, J. J. Am. Chem. Soc. 1997, 119, 1297.

73)Ruiz, E.; Cano, J.; Alvarez, S.; Alemany, P.; Verdaguer, M. Phys. Rev. B 2000, 61, 54.

74)Ruiz, E.; Alvarez, S.; Alemany, P. Chem. Commun 1998, 2767.

- 75)S'ha trobat computacionalment que el valor de J en complexes binuclears amb pont hidroxo assimetrics és més negatiu per al mateix angle promig quan l'assimetria creix: Ruiz, E. *Inorg. Chem.* **1997**, 36, 3683.
- 76)Riera, J.; Dobry, A. Phys. Rev. B 1995, 51, 16098.
- 77)Nojiri, H.; Shmamoto, Y.; Miura, N.; Hase, M.; Uchinokura, K.; Kojima, H.; Tanaka, I.; Shibuya, Y. *Phys. Rev. B* **1995**, 52, 12749.
- 78)Castilla, G.; Chakravarty, S.; Emery, V. J. Phys. Rev. Lett. 1995, 75, 1823.
- 79) Mizuno, Y.; Tohyama, T.; Maekawa, S. Phys. Rev. B 1999, 60.
- 80)Patrakeev, M. V.; Leonidov, I. A.; Kozhevnikov, V. L.; Tsidilkovskii *Physica C* **1993**, 210, 213-220.
- 81)Long, N. J.; Petford-Long, A. K. Ultramicroscopy 1986, 20, 151.
- 82)Morgan, P. E. D., Partin, D.E., Chamberland, B.L., O'Keeffe, M.O. *Journal of Solid State Chemistry* **1996**, 121, 33-37.
- 83)Ponzano, G. P.; Barbangelo, O.; Bonora, P. L. Ann. Chim. 1975, 65, 561.
- 84)Antipov, E. V.; Capponi, J. J.; Chaillout, C.; Chmaissem, O.; Loureiro, S. M.; Marezio, M.; Putilin, S. N.; Santoro, A.; Tholence, J. L. *Physica C* **1993**, 218, 348-355.
- 85)Chmaissem, O.; Argyriou, D. N.; Hinks, D. G.; Jorgensen, D. G.; Storey, B. G.; Zhang, H.; Marks, L. D.; Wang, Y. Y.; Dravid, V. P.; Dabrowski, B. *Phys.Rev.B,Condens.Mat.* V 52 **1995**, 15636-15643.
- 86)Liu, R. S.; Hu, S. F.; Shy, D. S.; Wu, S. F.; Chen, D. H.; Jefferson, D. A. Chinese *Journal of Physics* (Taipei) **1993**, 31 ISSUE 6 , 1121-1126 .
- 87)Martin, C.; Huve, M.; Van Tendeloo, G.; Maignan, A.; Michel, C.; Hervieu, M.; Raveau,B. *Physica C*, **1993**, 212, 274-278.
- 88)Pelloquin, D.; Michel, C.; Van Tendeloo, G.; Maignan, A.; Hervieu, M.; Raveau, B. *Physica C*, **1993**, 214, 87-92.
- 89)Pelloquin, D.; Hervieu, M.; Michel, C.; Maignan, A.; Raveau, B. *Physica C* **1994**, 227, 215-224.
- 90)Wagner, J. L.; Radaelli, P. G.; Hinks, D. G.; Jorgensen, J. D.; Mitchell, J. F.; Dabrowski, B.; Knapp, G. S.; Beno, M. A. *Physica C* **1993**, 210, 447-454.

91)Cieplak, M. Z.; Xiao, G.; Chien, G. L.; Bakhshai, A.; Artymowicz, D.; Stalick, J. K.; Rhyne, J. *J. Phys.Rev.B,Condens.Mat.* **1990**, 42, 6200-6208.

92)Wells, A. F. en: "Structural Inorganic Chemistry"; 5th ed.; Wells, A. F., Ed.; Oxford University Press: Thetford, **1987**, pp 1220-1231.

93)Schmahl, N. G.; Barthel, J.; Eikerling, G. F. Z. Anorg. Allg. Chem. 1964, 332, 230-237.

94)Delorme, C. Bull.Soc.Fr.Miner.Crist . 1958, 81, 19-28.

95)Davies, P. K. J. Am. Ceram. Soc. 1986, 69, 800-805.

96) Wells, A. F. "Structural Inorganic Chemistry"; 5th ed.; Oxford University Press:, 1987.

97)Shin, Y. J.; Doumerc, J. P.; Dordor, P.; Delmas, C.; Pouchard, M.; Hagenmuller, P. *J.Solid State Chem.* **1993**, 107, 303-313.

98)Bailar, J. C., Emeléns, H.J., Nyholm, R., Trotman-Dickenson, A.F. en "*Comprenhensive Inorganic Chemistry*"; Ed. Pergamon Press, **1973**; Vol. 3, pp 1279.
99)Bullnheimer, F. *Ber.* **1898**, 31B, 1287.

100)Christ, C. I.; Clark, J.R. Am. Mineral. 1955, 40, 907-916.

101)Szillat, H.; Teske, C.L. Z. Anorg. Allg. Chem. 1994, 620, 1307-1311.

102) Jansen, M.; Bortz, M.; Heidebrecht, K. J. of Less-Comm. Met. 1990, 161, 17-24.

103)Wells, A. F. "Three-dimensional Nets and Polyhedra"; John Wiley: New York, 1977.

104) Johnson, R. L.; Hoffman, R. Polyhedron 1990, 9, 1901-1911.

105)Bortz, M.; Jansen, M.; Huhl, H.; Bucher, E. *J. Solid State Chem.* **1993**, 103, 447-450. 106)Brennan, T. D.; Burdett, J.K. *Inorg. Chem.* **1994**, 33, 4794-4799.

107)Goldschmidt, V. M. Skrifter Norske Videnskaps-Akad. Oslo I. Mat.-Naturv. Kl. 1926.

108)Lide, D. R.; Lide, D. R., Ed., **1997-1998**, pp 8.20-8.30.

109)Horowitz, H. S.; Longo, J.M.; Lewandowski, J.T. Inorg. Synth. 1983, 30, 64-69.

APÈNDIX 1 DEFINICIÓ DELS FACTORS D'ACORD D'UN AFINAMENT RIETVELD

DEFINICIÓ DELS FACTORS D'ACORD D'UN AFINAMENT (PROGRAMA FULLPROF)

En el programa FULLPROF 3.5d els factors d'acord d'un afinament a partir de dades experimentals es defineixen de la següent manera:

$$\overline{\mathbf{R}}_{\mathbf{p}} = 100 \cdot \left(\sum \left| \mathbf{Yi}_{\mathbf{obs}} - \mathbf{Yi}_{\mathbf{calc}} \right|^2 \right) / \sum \left| \mathbf{Yi}_{\mathbf{obs}} \right|$$

$$\mathbf{R}_{wp} = 100 \cdot \sqrt{\left(\sum \mathbf{w} \left| \mathbf{Y} \mathbf{i}_{obs} - \mathbf{Y} \mathbf{i}_{calc} \right|^2 \right) / \sum \mathbf{w} \left| \mathbf{Y} \mathbf{i}_{obs} \right|^2}$$

on Yi representa el nombre de comptes per segon (c.p.s) de cada punt experimental. D'altra banda, una comparació amb el R esperat ($R_{expected}$) expressada en termes del paràmetre χ^2 ens dona una estimació de la bondat de l'ajust:

$$\chi^{2} = \left[\mathbf{R}_{wp} / \mathbf{R}_{exp \text{ ected}}\right]^{2}$$
$$\mathbf{R}_{exp \text{ ected}} = 100 \cdot \sqrt{(\mathbf{N} - \mathbf{P} + \mathbf{C}) / \sum \mathbf{w} |\mathbf{Y}\mathbf{i}_{obs}|^{2}}$$

(N-P+C) és el nombre de graus de llibertat en realitzar l'afinament, on N és el nombre de punts experimentals, P el nombre de paràmetres afinats i C el nombre de restriccions imposades en dur a terme l'afinament.

APÈNDIX 2 AFINAMENTS RIETVELD

DADES ADICIONALS SOBRE LES AFINAMENTS RIETVELD REALITZAT

Hom presenta en aquest apèndix la sortida d'ordinador dels afinaments Rietveld de les estructures dels òxids $Ag_2Cu_2O_3$ i $Ag_5Pb_{2-x}Cu_xO_6$ descrits en aquesta memòria. Aquests afinaments han estat realitzats amb el programa FULLPROF (v.3.5).

Els paràmetres afinats normalment han estat: els paràmetres de cel·la, les posicions atòmiques (x, y, z), els factors tèrmics (B) de cada àtom (isotròpics o anisotròpics), el factor d'escala (S), paràmetre de forma (η_0), paràmetre de tensió lorentziana isotròpica, paràmetres d'amplada de pic (U,V,W), un valor per la correcció del zero en 20 del difractòmetre i paràmetres d'asimetria de pic (AsyN).

La forma dels pics és ajustada a una funció de tipus pseudo-Voigt, combinació d'una funció Gaussiana (G(x)) i Lorentziana (L(x)) d'acord amb la següent fórmula:

on η representa la contribució Lorentziana de la corba i que pot ser independent o depenent de 2 θ segons:

$$\eta = \eta_0 + X \cdot 2\theta$$

L'amplada dels pics a mitja alçada (FWHM) ve donada per una funció polinòmica que depèn de tan θ , amb tres paràmetres ajustables, U, V, W, segons l'expressió:

$$FWHM^2 = U \tan^2\theta + V \tan\theta + W$$

Les taules següents mostren les dades per a cada reflexió permesa, HW representa l'amplada de pic, ETA/M és un paràmetre que ajusta la forma dels pics a una combinació lineal entre una corba Lorentziana i una Gaussiana, 2 theta indica la posició del pic i ICALC i IOBS són les intensitats calculades i observades respectivament.

Després de la taula de valors es mostra el difractograma observat com punts discrets i el calculat com una línia que s'hi superposa; la línia base representa IOBS-ICAL (Yiobs - Yicalc) i les barres verticals indiquen la posició de les reflexions de Bragg permeses pel grup espacial.

SORTIDA DEL PROGRAMA FULLPROF PER A L'AFINAMENT DE L'ESTRUCTURA DE Ag₂Cu₂O₃

Difractograma de Raigs X

н	κ	L	Mult	Hw	ETA/M	2theta/TOF	lcalc	lobs
1	0	1	8	0.169	0.451	17.183	376.9	320.8
1	1	2	8	0.184	0.594	27.132	30.9	43.3
1	0	3	8	0.192	0.625	29.275	258.8	283.4
2	0	0	4	0.196	0.641	30.345	121.1	166.2
0	0	4	2	0.209	0.686	33.506	1350.7	1404.9
2	0	2	8	0.216	0.704	34.769	6390.1	6597.3
2	1	1	16	0.217	0.709	35.078	351.3	371.9
2	1	3	16	0.261	0.818	42.669	86.9	65.3
2	2	0	4	0.266	0.829	43.448	1180.4	1093.9
1	0	5	8	0.277	0.853	45.081	111.3	110.9
2	0	4	8	0.282	0.864	45.827	38.4	33.6
3	0	1	8	0.291	0.881	47.049	30.3	24.2
3	1	2	16	0.328	0.952	51.978	5.6	8.7
3	0	3	8	0.338	0.971	53.253	44.1	53.4
2	1	5	16	0.355	1	55.312	18.4	18.3
2	2	4	8	0.36	1.009	55.956	1710	1599
1	1	6	8	0.361	1.012	56.109	1.9	1.8
3	2	1	16	0.369	1.025	57.018	72.5	71.5
3	1	4	16	0.4	1.076	60.572	0	0
2	0	6	8	0.401	1.078	60.718	1057.2	1010.7
3	2	3	16	0.418	1.104	62.53	25.6	23.1
1	0	7	8	0.42	1.108	62.816	18.2	17.4
4	0	0	4	0.423	1.113	63.127	525.2	636.4
3	0	5	8	0.435	1.131	64.398	28.8	53
4	0	2	8	0.448	1.151	65.766	1.7	6.6
4	1	1	16	0.45	1.154	65.96	8.1	33.2
3	3	2	8	0.491	1.212	70.003	0.7	0.8
0	0	8	2	0.495	1.218	70.408	197.1	249.4
4	1	3	16	0.502	1.227	71.078	17.4	17.6
2	1	7	16	0.505	1.231	71.346	22.6	23.1
4	2	0	8	0.508	1.235	71.639	3.2	3.2
3	2	5	16	0.521	1.253	72.836	11.8	9.8
4	0	4	8	0.527	1.261	73.391	394	364.7
3	1	6	16	0.528	1.263	73.524	1	0.9
4	2	2	16	0.535	1.271	74.129	929.3	826.9
2	0	8	8	0.585	1.335	78.562	5.4	7.2
3	0	7	8	0.596	1.348	79.464	10.9	19.2
4	1	5	16	0.613	1.369	80.902	18.4	28.8
4	2	4	16	0.62	1.377	81.44	13.9	22.9
5	0	1	8	0.631	1.389	82.335	7	13
4	3	1	16	0.631	1.389	82.335	5	9.3
1	0	9	8	0.637	1.397	82.848	3.5	7
4	0	6	8	0.672	1.435	85.519	0.8	0.8
5	1	2	16	0.68	1.444	86.103	0.5	0.5
2	2	8	8	0.685	1.449	86.485	251	254.8

н	κ	L	Mult	Hw	ETA/M	2theta/TOF	Icalc	lobs
5	0	3	8	0.693	1.458	87.117	8.2	7.6
4	3	3	16	0.693	1.458	87.117	10.6	9.8
3	2	7	16	0.697	1.462	87.372	10.6	9.6
3	3	6	8	0.726	1.492	89.449	0.1	0.3

Difractograma de Neutrons

Н	κ	L	Mult	Hw	2theta/TOF	lcalc	lobs
1	0	1	8	0.445	13.637	179.1	165.5
1	1	2	8	0.438	21.488	54.8	51.8
1	0	3	8	0.422	23.172	0.2	0.2
2	0	0	4	0.402	24.01	208.5	208
0	0	4	2	0.402	26.486	29.5	33.4
2	0	2	8	0.405	27.472	757.5	750.8
2	1	1	16	0.475	27.714	14.6	14.7
2	1	3	16	0.435	33.612	27.7	28.3
2	2	0	4	0.394	34.214	30.9	28.1
1	0	5	8	0.384	35.474	16.4	14.9
2	0	4	8	0.389	36.049	166.5	163.6
3	0	1	8	0.368	36.989	22.6	20.9
3	1	2	16	0.439	40.761	26	27.3
3	0	3	8	0.368	41.731	0	0.1
2	1	5	16	0.391	43.294	73	74.6
2	2	4	8	0.383	43.781	756.3	739.5
1	1	6	8	0.368	43.897	9.8	9.6
3	2	1	16	0.428	44.584	4.5	4.3
3	1	4	16	0.407	47.256	0	0
2	0	6	8	0.362	47.365	252.7	253.5
3	2	3	16	0.411	48.72	13.1	13.6
1	0	7	8	0.35	48.933	1.5	1.5
4	0	0	4	0.337	49.165	289.5	302.6
3	0	5	8	0.358	50.11	6.1	9.9
4	0	2	8	0.339	51.123	0.1	0.2
4	1	1	16	0.417	51.267	35	38.5
3	3	2	8	0.356	54.241	6.4	5.2
0	0	8	2	0.337	54.537	122.1	126.7
4	1	3	16	0.404	55.025	0	0
2	1	7	16	0.358	55.221	2.6	2.6
4	2	0	8	0.437	55.434	61.8	66
3	2	5	16	0.388	56.304	37.6	38.4
4	0	4	8	0.34	56.706	22.8	23.1
3	1	6	16	0.376	56.802	10.6	10.7
4	2	2	16	0.43	57.24	308.1	323.5
2	0	8	8	0.339	60.419	54.1	57.5
3	0	7	8	0.345	61.06	0.6	0.6
4	1	5	16	0.386	62.078	7.5	7.3
4	2	4	16	0.413	62.458	108	104.6
5	0	1	8	0.318	63.087	6.4	5.8
4	3	1	16	0.397	63.087	21.9	19.8
1	0	9	8	0.33	63.446	26.1	25.8

нкг	Mult	Hw	2theta/TOF	lcalc	lobs
4 0 6	8	0.341	65.308	0.2	0.2
512	16	0.396	65.712	8	6.5
228	8	0.349	65.976	21.8	18.2
503	8	0.325	66.412	0	0
4 3 3	16	0.394	66.412	0	0
327	16	0.371	66.587	2.7	1.6
336	8	0.358	68.008	3.4	2.7
521	16	0.441	68.524	1	0.8
3 1 8	16	0.36	68.663	0	0
2 1 9	16	0.344	68.869	14.3	13.6
514	16	0.393	70.573	0	0
426	16	0.4	70.658	200.4	207.9
523	16	0.436	71.722	4.6	5.6
4 1 7	16	0.379	71.891	4	4.2
4 4 0	4	0.348	72.075	121.3	114.7
1 1 10	8	0.336	72.496	2	2.5
505	8	0.338	72.83	2.6	3.4
4 3 5	16	0.395	72.83	4	5.1
309	8	0.348	74.099	19.7	21.2
2 0 10	8	0.342	75.078	100.5	103.2
532	16	0.443	76.216	5.2	5.3
4 0 8	8	0.355	76.463	227.3	227.8
600	4	0.326	77.218	19.3	20.7
525	16	0.436	77.955	19.7	21.2
4 4 4	8	0.369	78.298	11	11.3
516	16	0.401	78.38	3.9	4
602	8	0.333	78.755	74.8	78.2
6 1 1	16	0.409	78.869	0.6	0.7
329	16	0.381	79.196	11.1	10.8
1 0 11	8	0.346	79.359	3.6	3.4
534	16	0.449	80.819	0	0
428	16	0.412	81.516	49.5	46.2
613	16	0.419	81.919	11.4	10.6
507	8	0.369	82.081	0.6	0.6
437	16	0.413	82.081	2.4	2.2
620	8	0.476	82.258	9	8.4
3 1 10	16	0.382	82.663	2.5	2.2
6 0 4	8	0.357	83.322	21.5	20.6
622	16	0.48	83.772	0.5	0.4
541	16	0.431	83.885	11	8.7
4 1 9	16	0.404	84.208	35.1	27.8
2 1 11	16	0.376	84.369	0	0
0 0 12	2	0.374	86.824	4.8	5.5
543	16	0.446	86.902	0.2	0.2
527	16	0.46	87.063	1.1	1.3
615	16	0.445	87.959	26.3	27
624	16	0.495	88.295	317.9	335.6
536	16	0.475	88.375	2.9	3
631	16	0.522	88.854	0.4	0.4
518	16	0.441	88.983	0	0
3 0 11	8	0.403	89.336	2.3	2.6
4 0 10	8	0.413	90.119	0	0
606	8	0.407	90.854	62.5	62.6

нкг	Mult	Hw	2theta/TOF	Icalc	lobs
2 0 12	8	0.411	91.783	18.4	20.1
633	16	0.537	91.861	9.3	10.1
3 3 10	8	0.443	92.599	0.8	1
5 4 5	16	0.484	92.918	2.3	3.2
701	8	0.406	93.815	2.7	3
509	8	0.442	94.137	9.7	10.1
439	16	0.477	94.137	29.8	31.3
3 2 11	16	0.455	94.298	0.2	0.2
4 2 10	16	0.481	95.084	125.8	127.2
626	16	0.539	95.822	0.1	0.1
712	16	0.503	96.191	2.7	2.8
552	8	0.463	96.191	1.4	1.4
4 4 8	8	0.48	96.433	139	136.6
2 2 12	8	0.461	96.756	148.4	147.8
703	8	0.436	96.835	0	0
617	16	0.508	96.997	1.4	1.4
640	8	0.564	97.173	21.4	21.6
1 0 13	8	0.451	97.482	7	7.2
635	16	0.577	97.899	20	20.7
642	16	0.577	98.691	93.6	91.3
721	16	0.589	98.804	0.2	0.2
538	16	0.548	98.935	0	0
529	16	0.54	99.129	4.2	3.9
3 1 12	16	0.489	99.26	0	0
4 1 11	16	0.503	99.292	5.4	5.1
714	16	0.547	100.752	0	0
6 0 8	8	0.506	101.454	21.1	18.7
723	16	0.617	101.861	2.6	2.4
547	16	0.566	102.025	2.4	2.3
2 1 13	16	0.511	102.518	38	37.8
5 1 10	16	0.551	102.615	1.7	1.6
705	8	0.505	102.942	0.6	0.5
644	16	0.622	103.287	30.8	28.6
732	16	0.702	106.314	2	1.7
628	16	0.644	106.565	16.5	15.2
4 0 12	8	0.572	106.9	13	11.7
637	16	0.672	107.15	1.7	1.5
3 0 13	8	0.575	107.654	4.6	4
725	16	0.688	108.089	8.4	8.4
716	16	0.641	108.527	2	2.3
556	8	0.612	108.527	0.7	0.8
651	16	0.658	109.033	0.1	0.1
1 1 14	8	0.587	109.206	0.1	0.1
619	16	0.647	109.373	3.8	3.9
5 0 11	8	0.612	109.544	2.8	2.9
4 3 11	16	0.641	109.544	3.8	4
734	16	0.764	111.077	0	0
646	16	0.724	111.163	85.3	89.8
2 0 14	8	0.628	111.853	57.4	60.1
4 2 12	16	0.674	112.163	28.9	29.8
653	16	0.708	112.247	6	6.2
707	8	0.641	112.42	0.1	0.1
800	4	0.617	112.61	52.5	55.1

Icalc Io 29.4 30 1.1 1 0.3 0 15.9 15 6.4 6 18 16 0 42.1 0.1 0	bs 0.5 .2 0.3 5.4 5.2 6.9 0 13
29.4 30 1.1 1 0.3 0 15.9 15 6.4 6 18 16 0 42.1 0.1 0	0.5 .2).3 5.4 5.2 6.9 0 13
1.1 1 0.3 0 15.9 1 6.4 6 18 16 0 42.1 0 0	.2).3 5.4).2 6.9 0 13
0.3 0 15.9 1 6.4 6 18 16 0 42.1 2).3 5.4 5.2 6.9 0 13
15.9 15 6.4 6 18 16 0 42.1 4 0.1 0	5.4 5.2 6.9 0 13
6.4 6 18 16 0 42.1 2	5.2 6.9 0 13
18 10 0 42.1 42.1 42	6.9 0 13
0 42.1 0.1	0 13
42.1 4	13
0.1 0	
0.1 0).2
0.1 0).2
2 2	2.2
10.6 1 [°]	1.6
8.6 8	3.7
16.2 1	5.8
5.6 5	5.9
1.7 1	.8
75.1 79	9.9
0.1 0).1
0.2 0).2
0.3 0).3
3.6 3	6.4
0.2 0).1
0.6 0).5
28.5 22	2.9
2.3	3
0.7 1	.1
0.3 0).5
	0.2 0 0.3 0 3.6 3 0.2 0 0.6 0 28.5 22 2.3 0.7 0.3 0

SORTIDA DEL PROGRAMA FULLPROF PER A L'AFINAMENT DE L'ESTRUCTURA DE Ag₅Pb_{1.5}Cu_{0.5}O₆

HKL	Mult	Hw	ETA/M	2theta	Icalc	lobs
0 0 1	2	0.294	0.455	13.961	0.9	0
1 0 0	6	0.293	0.498	17.571	65.3	69.6
1 0 -1	6	0.295	0.556	22.511	41.3	38.7
101	6	0.295	0.556	22.511	41.3	38.7
0 0 2	2	0.301	0.622	28.136	236.9	294.9
1 1 0	6	0.306	0.652	30.686	609.5	652.4
1 0 -2	6	0.312	0.683	33.366	804.4	783.2
102	6	0.312	0.683	33.366	804.4	783.2
1 1 -1	6	0.313	0.689	33.857	333.2	337.5
1 1 1	6	0.313	0.689	33.857	802.4	812.8
200	6	0.317	0.709	35.573	529.4	534.7
2 0 -1	6	0.325	0.742	38.387	593	601.5
201	6	0.325	0.742	38.387	593	601.5
1 1 -2	6	0.337	0.786	42.114	0.2	0.2
1 1 2	6	0.337	0.786	42.114	17.3	14.6
0 0 3	2	0.34	0.793	42.767	2.2	2.2
2 0 -2	6	0.352	0.831	45.956	3.3	2.6
202	6	0.352	0.831	45.956	3.3	2.6
1 0 -3	6	0.355	0.838	46.57	0	0
103	6	0.355	0.838	46.57	0	0
2 1 0	12	0.36	0.851	47.678	11.5	0
2 1 -1	12	0.37	0.877	49.928	2.6	1
2 1 1	12	0.37	0.877	49.928	17.2	6.4
1 1 -3	6	0.388	0.92	53.551	245.6	242
1 1 3	6	0.388	0.92	53.551	171.4	168.9
3 0 0	6	0.393	0.932	54.542	178.5	182.9
2 1 -2	12	0.402	0.952	56.28	253.6	260.7
212	12	0.402	0.952	56.28	297.4	305.7
3 0 -1	6	0.404	0.956	56.595	127.8	126.2
301	6	0.404	0.956	56.595	127.8	126.2
2 0 - 3	6	0.405	0.958	56.804	140.2	133.6
203	6	0.405	0.958	56.804	140.2	133.6
0 0 4	2	0.413	0.974	58.174	140.1	152.2
1 0 -4	6	0.432	1.011	61.27	4.4	7.5
104	6	0.432	1.011	61.27	4.4	7.5
3 0 -2	6	0.44	1.025	62.488	0.5	0.4
3 0 2	6	0.44	1.025	62.488	0.5	0.4
220	6	0.449	1.041	63.902	250.9	267.1
2 2 -1	6	0.462	1.063	65.772	0.8	0.9
221	6	0.462	1.063	65.772	3.1	3.8
2 1 -3	12	0.463	1.066	65.957	0.8	0.9
2 1 3	12	0.463	1.066	65.957	0	0
3 1 0	12	0.469	1.076	66.84	9.9	10.6
1 1 -4	6	0.472	1.08	67.213	69	67.9

Н	Κ	L	Mult	Hw	ETA/M	2theta	Icalc	lobs
1	1	4	6	0.472	1.08	67.213	28.8	28.3
3	1	-1	12	0.483	1.097	68.668	7.9	2.7
3	1	1	12	0.483	1.097	68.668	1	0.3
2	0	-4	6	0.493	1.114	70.08	16.1	15.6
2	0	4	6	0.493	1.114	70.08	16.1	15.6

SORTIDA DEL PROGRAMA FULLPROF PER A L'AFINAMENT DE L'ESTRUCTURA DE Ag₅Pb_{1.9}Cu_{0.1}O₆

HKL	Mult	Hw	ETA/M	2theta	Icalc	lobs
0 0 1	2	0.325	0.237	13.811	17.6	17.7
1 0 0	6	0.332	0.275	17.335	100.3	117.4
1 0 -1	6	0.344	0.328	22.231	61.6	69.7
101	6	0.344	0.328	22.231	61.6	69.7
0 0 2	2	0.363	0.389	27.829	268.4	304.1
1 1 0	6	0.373	0.415	30.215	673.6	652.7
1 0 -2	6	0.385	0.445	32.973	778.1	763.2
1 0 2	6	0.385	0.445	32.973	778.1	763.2
1 1 -1	6	0.387	0.449	33.36	404.2	411.3
1 1 1	6	0.387	0.449	33.36	855	870
2 0 0	6	0.395	0.468	35.082	390.5	396.3
2 0 -1	6	0.408	0.498	37.869	597.5	596.9
2 0 1	6	0.408	0.498	37.869	597.5	596.9
1 1 -2	6	0.428	0.538	41.54	2.5	3.2
1 1 2	6	0.428	0.538	41.54	34.2	43.6
0 0 3	2	0.432	0.546	42.287	0.3	0.7
2 0 -2	6	0.45	0.58	45.358	4.2	4
2 0 2	6	0.45	0.58	45.358	4.2	4
1 0 -3	6	0.454	0.587	46.024	1	0.8
1 0 3	6	0.454	0.587	46.024	1	0.8
2 1 0	12	0.46	0.597	46.932	22.1	16.9
2 1 -1	12	0.474	0.621	49.16	8.7	14.6
2 1 1	12	0.474	0.621	49.16	21	35.1
1 1 -3	6	0.499	0.661	52.849	283.2	286.3
1 1 3	6	0.499	0.661	52.849	212.3	214.6
3 0 0	6	0.506	0.671	53.755	214	245.8
2 1 -2	12	0.518	0.689	55.444	305	308.4
2 1 2	12	0.518	0.689	55.444	336.4	340.1
3 0 -1	6	0.52	0.693	55.784	167.2	170.1
301	6	0.52	0.693	55.784	167.2	170.1
2 0 -3	6	0.523	0.696	56.075	165.1	168.3
2 0 3	6	0.523	0.696	56.075	165.1	168.3
0 0 4	2	0.533	0.712	57.494	165.6	186
1 0 -4	6	0.557	0.745	60.53	7.9	6.6
1 0 4	6	0.557	0.745	60.53	7.9	6.6
3 0 -2	6	0.566	0.756	61.603	0.3	0.1
3 0 2	6	0.566	0.756	61.603	0.3	0.1
220	6	0.576	0.77	62.834	326.9	321.5
2 2 -1	6	0.591	0.79	64.681	2.5	2.6
221	6	0.591	0.79	64.681	1.2	1.2
2 1 -3	12	0.594	0.793	64.998	2.2	2.2
2 1 3	12	0.594	0.793	64.998	0.9	0.9
3 1 0	12	0.601	0.801	65.748	15.5	13.7
1 1 -4	6	0.606	0.808	66.326	92.1	86.8
1 1 4	6	0.606	0.808	66.326	47	44.3

HKL	Mult	Hw	ETA/M	2theta	lcalc	lobs
3 1 -1	12	0.617	0.821	67.552	8.9	6.8
3 1 1	12	0.617	0.821	67.552	3.6	2.7
2 0 -4	6	0.631	0.838	69.163	30.6	39.1
2 0 4	6	0.631	0.838	69.163	30.6	39.1

SORTIDA DEL PROGRAMA FULLPROF PER A L'AFINAMENT DE L'ESTRUCTURA DE Ag₅Pb₂O₆

	HKL	Mult	Hw	ETA/M	2theta	lcalc	lobs
0	0 1	2	0.233	0.507	13.801	7.7	9.4
1	0 0	6	0.237	0.503	17.258	46.4	41.8
1	0 -1	6	0.246	0.498	22.164	25	25.1
1	0 1	6	0.246	0.498	22.164	25	25.1
0	02	2	0.26	0.492	27.808	97.1	108
1	1 0	6	0.267	0.49	30.125	284.9	291.6
1	0 -2	6	0.276	0.487	32.913	304.4	296.4
1	02	6	0.276	0.487	32.913	304.4	296.4
1	1 -1	6	0.277	0.487	33.274	177	179.6
1	1 1	6	0.277	0.487	33.274	357.3	362.5
2	0 0	6	0.283	0.485	34.925	151.6	175
2	0 -1	6	0.294	0.482	37.718	230.1	230.5
2	0 1	6	0.294	0.482	37.718	230.1	230.5
1	1 -2	6	0.309	0.478	41.457	3.8	4
1	12	6	0.309	0.478	41.457	12.6	13.2
0	0 3	2	0.313	0.478	42.255	0.2	0.3
2	0 -2	6	0.327	0.474	45.217	4.8	4.6
2	0 2	6	0.327	0.474	45.217	4.8	4.6
1	0-3	6	0.33	0.474	45.962	1.3	1
1	0 3	6	0.33	0.474	45.962	1.3	1
2	1 0	12	0.334	0.473	46.777	8.5	7.4
2	1 -1	12	0.346	0.471	49.007	3.7	4.8
2	1 1	12	0.346	0.471	49.007	11.8	15
1	1 -3	6	0.366	0.467	52.764	118.7	126.8
1	1 3	6	0.366	0.467	52.764	77.2	82.5
3	0 0	6	0.37	0.466	53.503	96.1	111.3
2	1 -2	12	0.38	0.464	55.295	134.7	140.5
2	12	12	0.38	0.464	55.295	146.4	152.7
3	0 -1	6	0.382	0.464	55.534	70.5	76.4
3	0 1	6	0.382	0.464	55.534	70.5	76.4
2	0 -3	6	0.384	0.464	55.94	69	70.2
2	03	6	0.384	0.464	55.94	69	70.2
0	0 4	2	0.393	0.462	57.448	77.2	82.9
1	0 -4	6	0.412	0.459	60.459	3	5.3
1	0 4	6	0.412	0.459	60.459	3	5.3
3	0 -2	6	0.418	0.458	61.36	0.2	0.3
3	0 2	6	0.418	0.458	61.36	0.2	0.3
2	2 0	6	0.426	0.457	62.63	146.1	150.9
2	2 -1	6	0.439	0.455	64.478	2.6	2.7
2	2 1	6	0.439	0.455	64.478	0	0.1
2	1 -3	12	0.441	0.454	64.849	2.7	3.4
2	1 3	12	0.441	0.454	64.849	0.8	1
3	1 0	12	0.446	0.454	65.5	6.3	6.8
1	1 -4	6	0.451	0.453	66.234	40.3	33
1	1 4	6	0.451	0.453	66.234	26.2	21.4
3	1 -1	12	0.459	0.452	67.305	5.9	1.9

	HKL	Mult	Hw	ETA/M	2theta	lcalc	lobs
3	1 1	12	0.459	0.452	67.305	1.7	0.6
2	0 -4	6	0.471	0.45	69.025	13.7	10.9
2	0 4	6	0.471	0.45	69.025	13.7	10.9
2	2 -2	6	0.478	0.449	69.864	30	27
2	2 2	6	0.478	0.449	69.864	25.5	23

APÈNDIX 3 DIFRACCIÓ D'ELECTRONS En aquest apèndix mostrarem de manera més detallada les reconstruccions de la xarxa recíproca dutes a terme mitjançant difracció d'electrons per als dos òxids nous, $Ag_2Cu_2O_3$ i $Ag_5Pb_{2-x}Cu_xO_6$. Per a aquesta darrera dissolució sòlida, només mostrarem la reconstrucció per a l'òxid amb x=0.5.

Ag₂Cu₂O₃: RECONSTRUCCIÓ DE LA XARXA RECÍPROCA I DETERMINACIÓ DE LA CEL·LA UNITAT

A continuació explicarem com es va dur a terme la reconstrucció de la xarxa recíproca a partir de plans que tenen l'eix \mathbf{c}^* com a eix comú, la qual ens va portar a la confirmació de la cel·la unitat i a la determinació del grup espacial del compost.

A partir de l'angle que forma cadascun d'aquests plans amb el pla xy del microscopi podem reconstruir el pla a^*b^* tal com s'explica en el capítol de Tècniques Experimentals (veure figura Ap. 3.1) i una fracció de volum del la xarxa recíproca (veure fig. Ap3.2). La figura Ap3.3 presenta fotografies d'alguns dels plans fets servir per la reconstrucció del pla a^*b^* . La reconstrucció d'aquest pla és la que ens permet trobar els paràmetres *a* i *b*, així com la simetria i el grup espacial a partir de les extincions sistemàtiques, un cop feta la indexació de tots els plans trobats . A partir de qualsevol de les fotografies fetes servir, donat que totes contenen l'eix c^* , podem trobar el paràmetre *c*.

Figura Ap3.1 Reconstrucció del pla b^*c^* a partir de les fotografies dels plans trobats girant entorn a l'eix c^* . Les esferes blanques indiquen que estan a $\frac{1}{2}$ d'alçada en *c*, les grises a $\frac{1}{4}$ i les negres al pla base.

Les fotografies de difracció (fig. Ap3.3) corresponen als diferents plans que contenen l'eix **c**^{*} obtinguts en girar al voltant d'aquest eix un angle φ respecte al pla a^*c^* i que s'observen en el políedre de la figura Ap3.2. Així, per exemple el pla que trobem marcat amb línia de punts en el políedre correspon a la tercera fotografia de difracció d'electrons ($\varphi = 26.6^\circ$) que es presenta en la figura Ap3.3.

Figura Ap3.2 Reconstrucció d'una fracció de volum de la xarxa recíproca a partir de plans de difracció cristal·logràfics que tenen com a eix comú el \mathbf{c}^* . El pla representat amb una línia de punts correspondria al pla amb eix de zona [120] (ϕ =26.6°).

A partir dels negatius de les fotografies de difracció d'electrons podem mesurar els paràmetres de cel·la, utilitzant la constant de càmera del microscopi (K=19.25 nm/cm). La cel·la resultant és la mateixa que l'obtinguda mitjançant difracció de RX, si bé els valors són menys precisos donat que la mesura de distàncies entre reflexions és molt més imprecisa.

Figura Ap3.3 Fotografies de difracció d'electrons que tenen com a eix comú l'eix \mathbf{c}^* del compost Ag₂Cu₂O₃. Els pics assenyalats amb la fletxa són deguts a doble difracció.

Donada l'anisotropia morfològica dels cristalls, que tenen una geometria de regleta (veure figura 4.11), aquests s'orienten majoritàriament de manera que l'eix \mathbf{c}^{\cdot} es col·loca perpendicularment al feix electrònic. Girant la mostra al microscopi era impossible d'aconseguir l'observació del pla $a^{*}b^{*}$ donat que això suposava haver de girar 90° el cristall, fet que amb el portamostres del microscopi utilitzat no ens era permès.

Malgrat aquest fet, l'observació del pla a^*b^* (fig. Ap3.4) va ser possible en un cristall pertanyent a un dels aglomerats esmentats anteriorment, on de fet, la seva posició estava condicionada per d'altres cristalls.

Figura Ap3.4 Fotografies de difracció d'electrons dels dos plans base de l'òxid Ag_2Cu_2O_3

La indexació dels pics de tots els plans aquí observats permet de determinar les extincions sistemàtiques i per tant, el grup espacial de simetria, resultats que es mostren en el capítol 4 d'aquest treball.

Ag₅Pb₂₋xCuxO6: RECONSTRUCCIÓ DE LA XARXA RECÍPROCA I DETERMINACIÓ DE LA CEL·LA UNITAT

Com ja s'ha vist en el capítol 7 d'aquest treball el nou òxid $Ag_5Pb_{2-x}Cu_xO_6$ té simetria trigonal. En un principi però, a partir de les fotografies de difracció d'electrons vàrem creure que la mostra era ròmbica, si bé ens vam adonar que ambdues definicions de la cel·la estaven relacionades.

Si hom s'imagina una cel·la trigonal o hexagonal P, pot observar que conté per definició una cel·la ròmbica C (veure figura Ap3.5)

Figura Ap3.5 Esquema d'una cel·la hexagonal o trigonal P (sombrejada) contenint una cel·la ròmbica C (línia de punts).

Tenint això en compte, hom pot veure a més que per tal de que una cel·la ròmbica C pugui ser definida com una cel·la hexagonal o trigonal, calen dues condicions, una d'elles geomètrica i l'altra de simetria. La condició geomètrica que han de complir els paràmetres d'una cel·la ròmbica per que sigui susceptible de ser hexagonal o trigonal és que $b_r = \sqrt{3}a_r$, d'altra banda aquest no és requisit suficient, perquè una cel·la hexagonal té una simetria més elevada que la ròmbica, i per tant hi ha requisits de simetria. Una cel·la ròmbica té al llarg de l'eix **c** un eix de simetria 2, mentre que en el trigonal és 3, i en un hexagonal seria 6. La diferent simetria d'una cel·la ròmbica o hexagonal i una trigonal pot ser fàcil de veure observant el pla a^*b^* de difracció d'electrons, donat que s'hauria d'observar diferència en la intensitat dels punts del difractograma tal com s'esquematitza a la figura Ap3.6:

Figura Ap3.6 Esquema d'un possible difractograma d'electrons del pla amb eix de zona [001] segons la simetria del cristall tingui respectivament un eix d'ordre 6 (cel·la hexagonal) (A) o d'ordre 2 (cel·la ròmbica) (B).

En el nostre cas, de la fotografia de difracció d'electrons del pla *ab* (figura Ap3.9), es deduiria que el cristall té simetria hexagonal/trigonal, i suposem que aquesta és trigonal per similitud amb l'òxid Ag₅Pb₂O₆.

A partir de l'observació del pla a^*b^* , vàrem reconstruir la xarxa recíproca girant al voltant de dos dels eixos cristal·logràfics ortonormals. A la figura Ap3.7 es presenta com exemple la reconstrucció del pla amb eix de zona [110]_{ròmbic}.

L'observació del pla *b*c** no va ser possible fent servir el TEM JEOL JEM-1210 (acceleració de 120kV) del ICMAB, pels problemes d'absorció de la mostra que hem explicat en el capítol 7 d'aquest treball.

A les figures Ap3.9 i Ap3.10 es presenten les fotografies dels plans cristal·logràfics observats en girar entorn als eixos cristal·logràfics [$\overline{110}$] i **c***, a partir de les quals vàrem fer les reconstruccions dels plans que apareixen a les figures Ap3.7 i Ap3.8 respectivament.

Figura Ap3.7 Reconstrucció del pla amb eix de zona $[\bar{1}10]$.

Figura Ap3.8. Reconstrucció del pla amb eix de zona [001]

Figura Ap3.9 Fotografies de difracció d'electrons que tenen com a eix comú l'eix $[\bar{1}10]$ del compost Ag₅Pb_{1.5}Cu_{0.5}O₆.

Figura Ap3.10 Fotografies de difracció d'electrons que tenen com a eix comú l'eix [001] del compost $Ag_5Pb_{1.5}Cu_{0.5}O_6$.

A partir dels negatius de les fotografies de difracció d'electrons dels plans observats vam poder mesurar els paràmetres de cel·la, utilitzant els valors de les constants de càmera de cada microscopi. Segons aquesta reconstrucció la cel·la era trigonal i amb paràmetres de cel·la:

$$a=b=5.82$$
 Å, $c=6.34$ Å, $\alpha=\beta=90^{\circ}$, $\gamma=120^{\circ}$