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Abstract

The bidimensional multivariate regression procedures: multiple linear regression (MLR), principal component regression
(PCR), partial least squares regression (PLS) and continuum regression (CR), and several N-way methods such as N-way
PLS (nPLS) and parallel factor analysis (PARAFAC) are tested as calibration methods for the kinetic-spectrophotometric
determination of ternary mixtures in a pseudo first-order kinetic system. The different calibration procedures were first
applied to computer simulated kinetic-spectrophotometric data where the effect of spectral overlap and the differences in
the kinetic constants were evaluated at a low level of experimental noise. Later they were applied to the stopped-flow
kinetic-spectrophotometric simultaneous resolution of Co(II), Ni(II) and Ga(III) using 4-(2-pyridylazo)resorcinol (PAR) as
a chromogenic reagent. Accurate estimations of concentrations with relative standard errors of prediction of about 8% were
obtained even though a high degree of spectral overlap and similar rate constants were present. The study of the influence of
experimental noise on the 3-component system justifies the difference between the simulations and the experimental results for
the different calibration procedures. PARAFAC and MLR did not allow the resolution of the proposed 3-component system.
CR provided slightly better results than those obtained by PLS, PCR and nPLS. © 2000 Elsevier Science B.V. All rights
reserved.

Keywords:Simultaneous kinetic determination; Multivariate calibration; N-way methods; 4-(2-pyridylazo)resorcinol; Metal ions
determination; Stopped-flow photodiode array spectrophotometry

1. Introduction

Applications of kinetic-spectrophotometric meth-
ods of analysis to simultaneous determinations have
grown recently as the result of the incorporation of
computerized data acquisition systems based on mul-
tiwavelength detectors (e.g. diode arrays) and the
development of powerful mathematical treatments for
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processing the recorded information (e.g. multivariate
calibration) [1,2].

Principal component regression (PCR) and partial
least squares regression (PLS) are well known multi-
variate calibration procedures [3] widely used in recent
years for the simultaneous determination of analytes
in mixtures by means of kinetic-spectrophotometric
procedures. Less widely used in this field is contin-
uum regression which has unified under one approach
the regression techniques of multiple linear regression
(MLR), PCR and PLS [3]. These calibration proce-
dures do not require a prior knowledge of the kinetic
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model and are relatively robust in the presence of
experimental noise. In spite of their flexibility, mul-
tivariate calibration presents certain limitations when
the chemical system in study shows a non-linear
behaviour. For highly non-linear systems artificial
neural networks (ANN) [4,5] with a previous decom-
position of the data into principal components (PCA)
have proved successful.

Kinetic-spectrophotometric data has an intrinsi-
cal three-dimensional structure (sample, wavelength,
time). To be able to apply the above methods to
kinetic-spectrophotometric data (three-way data), it is
necessary to unfold the data in two ways obtaining
tables similar to bidimensional tables [3,6]. If this
approach is taken, it means that the scans recorded
at various times are sequentially linked together to
form a single row per sample in theXXX data matrix
(λ1t1,. . . λ2t1. . . λnt1. . . λi tj . . . λ1tm, λ2tm. . . λntm). It
is obvious that for a sample, the measured absorbance
at λi and tj is related to the measured absorbance
at λi+1 and tj +1. This information is lost when the
data are unfolded, resulting in matrices with very cor-
related variables which give rise to models difficult
to interpret. These problems can be surpassed using
multi-way procedures which keep the tridimensional
structure of the data. Recently the multi-way data
analysis methods: N-way partial least squares (nPLS)
[7,8], parallel factor analysis (PARAFAC) [9], tri-
linear decomposition (TLD) and multivariate curve
resolution based on alternating least-squares (ALS)
[10] have been applied to kinetic-spectrophotometric
data. In these methods, the data for each sample are
arranged in a matrix with the rows containing the
spectra measured at preselected successive times dur-
ing the evolution of the reaction, and the columns the
kinetic profiles measured at preselected successive
wavelengths. For the analysis of three-way data sets,
using methods such as PARAFAC and nPLS, trilinear-
ity is an essential property (i.e. every chemical species
must be defined in the different data matrices by the
same spectral and concentration profiles). Under such
conditions, these methods can recover the concentra-
tion and pure spectral profiles of the analytes. Also,
with only the additional input of the analyte spec-
trum, they can determine the analyte concentration
in the presence of unknown interferences by using
a reduced number of standards (second-order ad-
vantage). Kinetic-spectrophotometric data have been

found to produce rank deficiency and rank overlap
[11]. A data matrix is rank deficient when the num-
ber of significant contributions to the data variation
estimated is lower than the real number of chemical
components presents in the system. Such a situation
occurs when at the beginning of a chemical reaction,
more than one component already exists (absorp-
tion of the reagent or analytes). When two chemical
species are characterized by the same profile in any
of the two orders (i.e. the same kinetic profile or com-
plete spectral overlap for two analytes) there is rank
overlap.

Saurina et al. analyzed the resolution of simulated
and experimental first-order kinetic systems in the
presence of rank deficiencies caused by rank over-
lap in any of the two orders (time or spectral) using
a curve resolution method based on alternating least
squares [11]. Thus, if trilinearity is present and the sys-
tem is full rank, the estimation of the correct profiles
and concentrations is possible and it results in simple
and robust models which preserve all the sources of
variability of the data. In spite of the potential advan-
tages that can be provided by three-way data analysis
methods, it has not been shown yet that they provide
a better predictive capacity than the conventional un-
folded methods with kinetic systems under the same
experimental conditions. Also, it has yet to be shown
how spectral overlap, similarity in the rate constants
and experimental noise affect the results.

In this work, simulations were first carried out
to learn how spectral overlap and reaction rate dif-
ferences of three analytes influence the predictive
ability of the multivariate calibration procedures men-
tioned above. Subsequently, the methods were ap-
plied to the stopped-flow kinetic-spectrophotometric
resolution of the mixtures of Ni(II), Co(II) and
Ga(III) complexes with the chromogenic agent
4-(2-pyridylazo)resorcinol, (PAR). Preliminary stud-
ies showed slight differences in UV–VIS spectra of
metal–PAR complexes. Moreover, some differences
were also observed in the reaction rates of each metal,
allowing some kinetic discrimination. Thus, the three
analytes present different behaviour in the two orders
of measurement (i.e. the spectral order and the ki-
netic order). Before proceeding to the resolution of
the 3-component system, this reaction was applied to
mixtures of Co(II) and Ni(II) by direct reaction with
PAR, which has not been described previously in the
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literature. Finally, using the spectra of the reaction
products for each metal–PAR complex and the ex-
perimentally estimated rate constants, the effects of
increasing instrumental and rate constant noise were
studied.

1.1. Theory

The multivariate calibration algorithms PLS, PCR
and MLR have been extensively described in the lit-
erature [3,6] so, only a brief description of the less
known methods used in this work (CR and N-way pro-
cedures) is given here.

1.1.1. Continuum regression (CR)
First, the algorithm carries out a singular value

decomposition SVD (or PCA) on the centered data
matrix,XXX [3,6]:

XXX = USVUSVUSVT (1)

whereUSUSUS = TTT is the matrix of scores andVVV is the
loading matrix. The elements on the diagonal ofSSS are
positive values (singular values), while the values in
the off-diagonal positions are zero. The matrix is then
modified to:

XXX(γ ) = USUSUS(γ )VVV T (2)

i.e. the singular values are raised to a certain power
γ and a modified predictor matrix is constructed.
Then one applies PLS regression and the results are
back-transformed to the originalXXX matrix. Changing
the power from 0 to∞ the model changes from MLR
(γ = 0) via PLS (γ = 1) to PCR (γ = ∞).

1.1.2. Parallel factor analysis (PARAFAC)
PARAFAC is a decomposition method, in which a

three-way tableXXX(I × J × K) is decomposed into
three, two-way loading matrices (one for each mode
or way)AAA (I × F ), BBB (J × F ) and C(K × F ) such
that, [3,6]

xijk =
F∑
f

aifbjfckf + eijk (3)

whereeijk represents a residual error term andF the
number of factors.I, J andK may be regarded as the

number of samples, wavelengths and times, respec-
tively. This model can also be written as,

XXX =
F∑
f

aif ⊗ ckf + EEE (4)

where ⊗ represents the ternary tensor product of
the three vectors andE represents the three-way
array of residuals. The elements of the loading ma-
trices AAA, BBB, CCC are computed by alternating least
squares.

When PARAFAC is used for a calibration with
kinetic-spectrophotometric data, the three two-way
matrices correspond to the concentration versus sam-
ple, the concentration versus time, and the absorbance
versus wavelength dimensions of the data. The num-
ber of factors in each two-way matrix (AAA, BBB or CCC)
corresponds to the number of species that contributes
to the data; usually this is equal to the number of an-
alytes. Since the concentration of the analytes in the
calibration set are known, it is possible to compare
them to each factor in the matrix of concentration ver-
sus sample and determine which factor corresponds
to which analyte. In a second step, it is possible to
do a simple least-square regression between the con-
centration of the analyte in each sample and the con-
centration versus sample dimension of that analyte’s
factor.

The important difference between PCA and
PARAFAC is that in PARAFAC there is no need for
orthogonality between the three loading matrices (AAA,
BBB andCCC) to identify the model, and the solution is
unique.

1.1.3. Multilinear partial least squares regression
(nPLS)

The main feature of the nPLS algorithm is that it
produces score vectors that in a trilinear sense have
maximum covariance with the unexplained part of the
dependent variable [6,12]. The goal of the algorithm
is to make a decomposition of the data matrixXXX into
a set of triads. A triad consists of one score vectorttt

and two weight vectors, one in the second order called
wwwjjj and one in the third order calledwwwkkk and the model
is given by the equation:

xijk =
F∑
f

tifwjfwkf + eijk (5)
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whereeijk represents a residual error term andF the
number of components. It assumes that both the de-
pendent and the independent data are three-way. Let
XXX be theI × J × K array of independent andXXX the
I × JK unfolded array. LetYYY be theI × L × M array
of dependent data andYYY the I × LM unfolded array.
Thus, the nPLS models decomposeXXX as:

XXX = T (WK/ ⊗ /WJ )T + Ex (6)

i.e. a trilinear model similar to the PARAFAC model
andYYY as:

YYY = U(QM/ ⊗ /QL)T + Ey (7)

whereTTT andUUU are the scores matrices,WWW andQQQ are
the loading matrices andEEEx , EEEy the error matrices
for the independent and dependent variables, respec-
tively. A superscriptJ, K, L or M respectively, is used
to specify which mode the vectors refer to. The de-
composition models ofXXX andYYY and the expression
UUU = TBTBTB+ EEEu relating these models, together consti-
tute the nPLS regression model.

2. Experimental section

2.1. Simulations

Kinetic-spectrophotometric data were simulated us-
ing a program written in MATLAB (The Math Works,
Natick, Mass.). The algorithm generates kinetic-
spectra by solving differential equations and assuming
that only the reaction products absorb with Gaussian
spectral bands. The Gaussian bands were built with
the same width (σ = 20 nm) and the same absorptiv-
ity coefficients every 1 nm over a wavelength range of
50 nm. In all cases, adherence to Beer’s law was pre-
sumed for each component, and the total absorbance
at each wavelength was assumed to be the sum of
the absorbances of the components. The analyte con-
centrations were varied between 0.5–1.5 × 10−6,
0.75–1.75× 10−6 and 1.0–2.0× 10−6 M for the first,
second and third analyte, respectively. Data were gen-
erated for 27 standard calibration mixtures and for
eight unknown mixtures. In order to ensure pseudo
first-order kinetics in relation to the PAR reagent,
its concentration was 5.00 × 10−4 M. Under these
conditions, 100 times were used in calculation (a

Fig. 1. Gaussian spectra used for simulations. Displacement of
analyte i from the coded position−3 to 3 keeping constant the
position of the analytej and k,which are centered in the position
−1 and 1, respectively; (−spectrum centered in position 0 is the
sum of spectrum analytej plus spectrum analytek).

kinetic-spectra of 100× 50 = 5000 variables per
sample), simulating that the observed fraction as re-
action of the slower reacting analyte at the end of
data collection was 90%. In order to study only the
effect of spectral overlap and rate constant variations,
the instrumental and rate constant noise contributions
were kept initially constant at 1% of their values.

In order to reproduce different spectral overlaps and
different reaction rates, the position and rate constant
of one analyte are modified whereas the other analytes
are kept constant. The analytes that are not moved
remain in the positions coded as−1 and 1 (Fig. 1)
and the values of the rate constants are 60, 40 and 20
for analyte 1, 2 and 3, respectively. The analyte that
moves goes from position−3 to 3, producing seven
spectral overlaps. In each case, seven rate constant
values (10, 20, 30,40, 50, 60 and 70) were studied.
The total number of simulations was 147.

2.2. Reagents

All solutions were prepared in a Borax medium con-
sisting in 0.1 M Na2B4O7·10H2O adjusted to pH= 7
with nitric acid in distilled water.
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Table 1
Concentration ranges (mg/l) for each analyte in binary and ternay
mixtures used for calibration
Metal 2-component

system (mg/l)
3-component
system (mg/l)

Cobalt(II) 0.2–1.0 0.2–0.6
Nickel(II) 0.4–2 0.4–1.2
Gallium(III) – 0.4–2.0

Analytical-reagent grade Ga(NO3)3·H2O, NiCl2·
6H2O, Co(NO3)2·6H2O and 4-(2-pyridylazo) resor-
cinol monosodium salt hydrate (PAR) were used
throughout.

A 1 × 10−3 M stock solution of PAR was prepared
by weighing the appropriate amount of the reagent.
Different stock solutions for each metal were prepared
and diluted to obtain the working mixtures with the
concentrations shown in Table 1. Concentration lev-
els were chosen based on the linear ranges obtained
with single analyte experiments. Calibration models
were constructed from 25 and 47 mixtures for the
2- and 3-component system, respectively. The predic-
tive capacity of the different models tested was as-
sessed by using a prediction set of 15 mixtures in both
cases, which contained analyte concentrations within
the calibration range (Table 1). To introduce experi-
mental variability, calibration samples, were prepared
and measured on different days.

2.3. Apparatus

A stopped-flow apparatus [13–14] interfaced to a
thermoelectrically cooled Tracor Northern (Model
TN-6123) 512 element intensified diode array (Tra-
cor Northern, Philadelphia, PA) configured to ac-
quire spectra in the 400–800 nm range was used. All
measurements were performed at room temperature
with no additional thermostating in the stopped-flow
apparatus.

2.4. Procedure

The metal solutions were mixed in a 1:1 ratio with
the PAR solution in the stopped-flow mixing system.
The reaction progress was followed spectrophotomet-
rically in the 400–800 nm range. In the wavelength
range of interest, 520–560 nm, absorbances were
measured at 52 equally-spaced wavelengths. Kinetic

information was obtained by acquiring 43 (2-compo-
nents system) and 57(3-components system) scans at
a rate of 7.0 scans/s for a total acquisition time of 6
and 8 s, respectively.

2.5. Data processing

Kinetic-spectrophotometric data were collected in
duplicate and averaged. Data were mean-centered
before being input to the appropriate algorithms.
Multivariate calibration algorithms provided in the
PLS TOOLBOX 2.0 (Eigenvector Technologies,
Manson, WA) [6] and run in MATLAB were used to
perform determinations. Cross-validation of the cali-
bration set was used with all unfolded methods and
nPLS. The number of factors giving the minimum
error was chosen to quantify the prediction set. With
continuum regression, in a first step,γ values of 0,
0.06, 0.12, 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8 and∞ were
tested. For each value ofγ , the optimal number of
factors was found by cross-validation. Finally, they
value was adjusted in 0.02 steps around the minimum
found in the first step. The number of factors and
y value found with the calibration set were used to
quantify the prediction set. In PARAFAC, we decom-
posed a data set that consisted of both calibration and
unknown data. This makes sure that the decomposi-
tion is the same for both standards and unknowns.
The least-squares regressions were performed be-
tween the factors and the known concentrations for
the calibration data, and then the resulting calibra-
tion model (slope and intercept) and the factors for
the unknowns were used to calculate the concentra-
tions of the analytes in the unknowns, one analyte at
a time.

In order to facilitate the comparison of the different
calibration methods evaluated, the relative standard er-
ror of prediction per analyte RSEP(%)a, and per mix-
ture RSEP(%)m are used. This error per mixture is
defined as:

RSEP(%)m =
√√√√

∑m
i=1

∑n
j=1(cij − ĉij )2

∑m
i=1

∑n
j=1(cij )2

× 100 (8)

wherecij is the concentration added of thejth com-
ponent to thejth sample,ĉij the estimated (mean of
two runs) concentration in the test set. RSEP(%)a in
the equation only refers to one analyte (m = 1).
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3. Results and discussion

3.1. Simulations

A problem that arises when making simulations in
a kinetic system of more than two components is the
interpretation and visualization of results. In systems
of two components, the representation of results is
simplified by using the ratio of rate constantskx /ky

and the spectral resolution or the distance between
absorption maxima [15–17].

Resolution of mixtures can be achieved by both
spectral and kinetic differences. A way to express the
difference between spectra is by computing the cor-
relation coefficient (ρspectral). This parameter has the
advantage of a very easy interpretation, taking into
account not only the differences in the maximum, but
also the differences in the spectral shape. A value of
1 means complete correlation and consequently the
impossibility of resolving these mixtures using only
the spectral information. That idea can be extended
to the kinetic profile computing the kinetic difference
as the corresponding correlation coefficient (ρkinetic).
For a complex system, a measure of the discriminat-
ing information can be acquired by the discrimination
index [18],

Discrimination index

=



x=m−1,y=m∏
x=1,y=2

(1 − ρ
spectral
xy · ρkinetic

xy )




1/n

; x < y

(9)

where ρxy is the spectral or kinetic correlation be-
tweenx andy, y andm the number of analytes. The
parametern is the number of terms and it normalizes
the expression in order to compare systems with a
different number of analytes. A discrimination in-
dex approaches 1 when a large difference (kinetic
or spectral) exists between analytes, so the mixture
should be resolved accurately. A discrimination in-
dex approaches 0 when a very similar behaviour
exists between analytes and a poorer resolution
should be expected. A disadvantage that the use of
this equation presents is that it does not make any
differentiation between the kinetic and spectral influ-
ence, only one value is obtained that includes both
variables.

Fig. 2 illustrates the accuracy of the predicted con-
centrations, expressed as the RSEP(%)m Eq. (8), for
each algorithm as a function of the discrimination
index. The trend of decreasing error when the dis-
crimination index increases appears in all unfolded
methods. Determinations using CR globally produced
the most accurate predictions, followed by PLS and
PCR results. Despite the fact that MLR provides poor
results, they still follow the expected trend of lower er-
ror when the differentiation among analytes increases.
The high degree of overlap in spectral or time orders
with simulated data makes the system lack of trilinear
structure in many of the cases studied, so it is not
possible to observe any global tendency in the errors.
nPLS provides errors of the same order as the other
methods, but its behaviour is not predictable with re-
spect to the discrimination index, whereas PARAFAC
always produced the worst prediction errors.

3.2. Chemical system

The reaction between some metal ions and PAR has
been described in the literature [19] and applied in an-
alytical chemistry [17,20,21]. At equilibrium, with ex-
cess PAR, Ni(II), Co(II) and Ga(III), form complexes
where two PAR molecules react with one metal ion
[22].

Other papers describe several methods for the de-
termination of some metals based on differences in the
rates of substitution reactions of EDTA or EGTA by
PAR [23–26].

The reaction rate depends on the pH and strongly
on the nature of the buffer used. At pH= 7 the UV/V
is spectrum of 1× 10−5 M of PAR shows one absorp-
tion band centered at 420 nm. The spectra of the three
metal–PAR complexes and the spectrum of PAR are
shown in Fig. 3.

Although multivariate techniques do not need prior
knowledge of the rate constant values to resolve
the mixtures, an estimation of them is convenient
to facilitate a suitable selection of the concentra-
tion ranges of the calibration samples. At pH= 7
and a PAR concentration of 1× 10−3 M, the re-
action can be assumed to be pseudo first-order in
the metal concentration,v = kapparent[Me]. The ap-
parent rate constant for each metal was calculated
from the three or four reagent mixtures containing
a variable concentration of metal and a constant
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Fig. 2. RSEP(%)m Eq. (8) versus discrimination index Eq. (9). (a) MLR, (b) PCR, (c) PLS, (d) PARAFAC, (e) nPLS and (f) CR.

concentration of PAR in excess. Each kinetic mea-
surement was made in duplicate. The following val-
ues of the rate constants were obtained (kapparent =
kMe[PAR]), where uncertainties are quoted as the
95% confidence intervals:kapparent(Co2+) = (2.212±

0.066)s−1, kapparent(Ni2+) = (0.558± 0.007)s−1 and
kapparent(Ga3+) = (0.425± 0.008)s−1.

From the spectra obtained in these individual stud-
ies for each Me–PAR complex, their respective ab-
sorptivities (εMe–PAR−εPAR) in the spectral range of
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Fig. 3. Absorbance spectra for 1× 10−4 M of reagent PAR
and 2 mg/l complex solutions of Co(II)–PAR, Ni(II)–PAR and
Ga(III)–PAR at pH= 7 and room temperature.

520–560 nm have been used to calculate the kinetic
and spectral correlation coefficients which are shown
in Table 2 with their corresponding discrimination in-
dexes.

Kinetic differentiation is the major source of se-
lectivity; it is thus expected that a higher kinetic
correlation coefficient will result in a higher error of
prediction. Indeed, this is what is observed. Fig. 4
shows the variation of the absorptivities at 540 nm
with time for solutions containing Ga(III), Ni(II) and
Co(II) and a 1× 10−3 M stock solution of PAR. In
observing the kinetic profile at 540 nm the reaction
for Co(II) is nearly complete before the first measure-
ment, i.e. in the time delay of 75 ms between the flow
stopping and the first data point.

3.3. Kinetic-spectrophotometric resolution of 2- and
3-component systems

An excess of ligand and pH control produce pseudo
first-order conditions for both cases studied. Thus, the

Table 2
Correlation coefficients (kinetic and spectral) and discrimination index Eq. (9) between analytes

Metals Kinetic correlation coefficient(ρkinetic
1,2 ) Spectral correlation coefficientρspectral

1,2 Discrimination index

Co–Ni 0.8100 0.9816 0.205
Co–Ga 0.7604 0.9829 0.252
Ni–Ga 0.9932 0.9972 0.010
Co–Ni–Ga – – 0.079

Fig. 4. Absorbance divided by molar concentration of analyte at
540 nm vs. time for Co(II), Ni(II) and Ga(III) complexes. Signal
evolution of PAR.

concentration of the different species formed during
the reaction of the analytes is always linearly related
to the initial concentration of the analyte.

As can be seen in Fig. 3 the spectral profiles show
a high spectral overlap, confirmed by the values of
the spectral correlation coefficient in Table 2, so the
determination of 3-component mixtures is the most
difficult task.

Despite the fact that three-way methods do not re-
quire a large number of samples for a calibration, in
order to compare the results from different procedures,
the same calibration and prediction sets were used in
all calibration models tested.

3.3.1. Kinetic-spectrophotometric determination of
Co(II) and Ni(II)

In spite of the high reaction rate of Co(II) with PAR,
it was possible to determine binary mixtures of Co(II)
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Table 3
RSEP%m and RSEP%a Eq. (8) in the resolution of the binary
mixture of Co(II) and Ni(II) for the different calibration methods

Method Model RSEP(%)Co RSEP(%)Ni RSEP(%)m

Unfolded MLR 14.8 14.9 14.9
PCRa 5.3 4.7 4.8
PLSa 5.3 4.6 4.7
CRb 4.4 4.4 4.4

Three-way PARAc 26.6 40.5 38.2
nPLSd 4.9 4.8 4.8

a Models defined with 4 factors.
b Models defined with 4 factors (γ = 0.48) and (γ = 0.74)

for Co and Ni, respectively.
c The decomposition of three-way matrix was performed using

two factors.
d Models defined with 3 factors for Co and 4 factors for Ni.

and Ni(II) using both kinetic and the spectral differen-
tiation. The spectral region between 520–560 nm was
found to contain the majority of spectral differentia-
tion between the analytes although other wavelength
ranges have been tried. Increasing the spectral range
increased the data processing time, but did not im-
prove the error of prediction. The spectral region be-
low 520 nm is not useful due to the strong absorbance
of PAR. Above 560 nm, the metal–PAR complexes
exhibit low absorbance, except for Co–PAR and there
is little absorbance change throughout the course of
the reaction. Different time intervals were used, but
the best results for both analytes were obtained using
a 6 s interval. Decreasing the time used did not effect
the fastest analyte [Co(II)], but the error of predic-
tion of the slowest analyte, [Ni(II)] was higher. It is
clear that the selection of wavelength range and time
interval are an important consideration and must be
done carefully. The results of these determinations are
presented in Table 3. As expected, according to the
high index of discrimination computed (Table 2), the
determination of binary mixtures of Co(II) and Ni(II)
was achieved with a high accuracy and an RSEP(%)
on the order of 4%. For binary mixtures of Ni(II)
and Ga(III), with a smaller discrimination index, the
prediction errors were higher than 10% under similar
experimental conditions as previously reported [17].
In comparing the multivariate calibration techniques,
CR produced slightly better results, especially for Co,
probably because the Co–PAR complex has the high-
est absorptivity in the wavelength range selected. The

techniques MLR and PARAFAC were clearly inferior.
PLS, PCR and nPLS provided similar results.

3.3.2. Kinetic-spectrophotometric determination of
Co(II), Ni(II) and Ga(III)

The results for 3-component mixtures obtained
using the same spectral range and an overall mea-
surement time of 8 s are presented in Table 4. Under
our experimental conditions, CR also produced the
most accurate predictions. The techniques MLR and
PARAFAC were clearly inferior and did not allow the
determination of the 3-component system. PLS, PCR
and nPLS provided similar results, but worse than CR.

The trend in the results is similar to what is expected
based on the simulation studies at a very low noise
level, where nPLS was often worse than the unfolded
techniques PLS, PCR and CR. Clearly, PARAFAC and
MLR cannot be used to resolve a 3-component system
with these characteristics. The prediction errors are
as expected according to the discrimination indexes,
but higher than the values found in the simulations.
The reason for this disagreement could be the differ-
ence in the noise level which was forced to be very
low in the simulations in order to study the predictive
capacity and behaviour of the calibration procedures.
Thus, a new set of simulations was performed using
the data derived from spectra of the reaction products
and the calculated rate constants for the 3-component

Table 4
RSEP%m and RSEP%a Eq. (8) in the resolution of the ternary
mixture of Co(II), Ni(II) and Ga(III) for the different calibration
methods

Method Model RSEP
(%)Co

RSEP
(%)Ni

RSEP
(%)Ga

RSEP
(%)m

Unfolded MLR 31.4 25.2 36.0 32.8
PCRa 8.8 7.4 8.2 8.0
PLSa 8.6 7.8 8.8 8.5
CRb 5.3 6.8 7.9 7.5

Three-way PARAc 24.0 28.9 35.5 33.0
nPLSd 8.1 6.6 8.6 8.0

a Models defined with 4 factors for Co and 5 factors for Ni
and Ga.

b Models defined with 4 factors (γ = 0.60), (γ = 0.80) and
(γ = 0.90) for Co, Ni and Ga, respectively.

c The decomposition of three-way matrix was performed using
three factors.

d Models defined with 4 factors for Co and Ni and 5 factors
for Ga.
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Fig. 5. RSEP(%)m as a function of constant rate (kv) fluctuations and instrumental noise. (a) PCR, (b) PLS, (c) CR, (d) MLR, (e)
PARAFAC and (f) nPLS.
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mixtures. A study of the influence of instrumental
noise and rate constant fluctuations was carried out.
The rate constants were varied with a Gaussian distri-
bution centered on the true value and having a stan-
dard deviation proportional to a percentage of the
rate constant between 0–10%. Instrumental noise pro-
portional to the absorbance at each wavelength was
added to all simulated data taking values between
0–10%. So again, as can be seen in Fig. 5, all the
unfolded multivariate calibration techniques followed
the same trend. The results expressed as RSEP(%)m
have been influenced by instrumental noise and prac-
tically unaltered by the constant rate fluctuations. This
can be explained because similarity between the spec-
tra is higher than similarity in reaction rate constants
(Table 2) and uncontrolled changes in rate constants
will have less effect in prediction errors than changes
in spectra. Moreover, nPLS is not affected by instru-
mental noise as much as the unfolded models, but it is
more affected by rate constant fluctuations. Thus, the
nPLS technique is expected to be more sensititive than
the unfolded models to such uncontrolled experimen-
tal conditions as temperature fluctuations, pH varia-
tions and ionic strength changes that affect the rate
constants. The results obtained by PARAFAC did not
follow a clear trend when the two different sources of
variation are added.

4. Conclusions

The discrimination index is an adequate parame-
ter to define the kinetic-spectral features of a kinetic
system. This parameter allows the comparison of sys-
tems with different numbers of analytes. As is shown
in the simulations, at low noise level the classical
techniques PLS and PCR provide similar or slightly
better results than the three-way models. Continuum
regression, which combines the characteristics of
PLS, PCR and MLR, provides the smallest errors in
the prediction samples.

The error found in the resolution of the 2- and
3-component real systems studied here and the value
found previously [17] for Ga(III) and Ni(II) mixtures
are correlated with the discrimination index of the
system.

Under experimental conditions with high spectral
overlap and similarity in the kinetic model of the

components, PARAFAC and MLR do not present a
good alternative for the resolution of mixtures; nPLS
and unfolded methods allow accurate estimations of
the concentrations.

In the case studied, with different constant rate and
similar spectra, PLS, PCR and CR are more sensi-
tive to instrumental noise than nPLS. However, nPLS
is more sensitive to fluctuations in the rate constant
values than the unfolded methods.
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