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Raúl Gracia Tinedo

On Personal Storage Systems: Architecture
and Design Considerations

Ph.D. Dissertation
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obtención del tı́tulo de Doctor, ha sido realizado bajo mi dirección en el Departa-
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Abstract

Nowadays, end-users require higher amounts of reliable and available on-line space to

store their personal information (e.g., documents, pictures). This motivates researchers to de-

vise and evaluate novel personal storage systems in order to cope with the growing storage

demands of users. In this dissertation, we focus our efforts to study two emerging personal

storage architectures: Personal Clouds and social storage systems. As one can easily infer, both

architectures are radically different and pursue distinct goals.

On the one hand, Personal Clouds such as Dropbox or SugarSync, are centralized on-line

cloud services for personal information that enable users to store, synchronize and share data

from a variety of devices and operating systems. On the other hand, a social storage service

is built upon a decentralized system that leverages preexisting trust or social relationships be-

tween users to enable mutually beneficial resource sharing.

According to these storage architectures, this thesis contributes in two general challenges.

Our first challenge is to understand the operation and performance of Personal Clouds. Un-

der this ambitious challenge, (i) we first contribute by unveiling the internal structure of a

global-scale Personal Cloud, namely UbuntuOne (U1), by describing its architecture, meta-

data service and storage interactions. Moreover, (ii) we provide a back-end analysis of U1 that

includes the study of the storage workload, the user behavior and the performance of the U1

metadata store. We also suggest improvements to U1 that can also benefit similar Personal

Cloud systems in terms of storage optimizations, user behavior detection and security.

Apart from the internal facets of Personal Clouds, users and applications may interact with

these services externally. In this sense, we also contribute by (iii) measuring and characteriz-

ing the transfer performance (e.g., speed, variability) of Personal Cloud REST API services.

Furthermore, we realized that these API services may be a vector of abuse of Personal Clouds

free accounts, which motivated us to study this vulnerability and propose several counter-

measures.

Overall, our contributions under this challenge provide a holistic view of the behavior of

Personal Clouds that extends the state-of-the-art knowledge on these systems.
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Our second challenge is to explore the Quality of Service (QoS) of social storage systems. To

undertake this challenge, we noticed that social storage systems are highly affected by avail-

ability correlations and very small groups to store data. This particular scenario poses new

research questions that remain unsolved for providing an adequate storage QoS to users.

In this sense, our first contribution is (iv) to analyze the QoS of social storage systems in

terms of data availability, transfer performance and load balancing. Moreover, (v) we evaluate

the suitability of common approaches for estimating data availability when users are corre-

lated, showing that these techniques are severely biased and how this impacts on the data

redundancy calculation. In consequence, we propose a history-based method to calculate data

availability tailored to heterogeneous and correlated availabilities.

Given the performance limitations inherent to many social storage scenarios, (vi) we design

a hybrid architecture to enhance the QoS achieved by the system that combines user resources

and cloud storage to let users infer the right balance between control and performance. In

the experimental evaluation of this architecture, we specially focus on the role that the social

topology plays in the system’s performance.

Therefore, we contribute new insights on the performance of social storage systems as well

as alternative architectural designs. Our contributions may help to increase the feasibility and

performance of these systems, which is fundamental to their eventual adoption by end-users.

Keywords: Personal Clouds, Performance Analysis, Distributed Storage, Friend-to-Friend

Systems, Social Clouds.
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Resum

Actualment, els usuaris necessiten grans quantitats d’espai d’emmagatzematge remot per

guardar la seva informació personal (p.e., documents, fotografies). Això motiva als investiga-

dors a fer recerca i crear nous sistemes d’emmagatzematge d’informació personal per cobrir les

creixents necessitats dels usuaris. En aquesta dissertació, estudiarem dues arquitectures emer-

gents de sistemes d’emmagatzematge d’informació personal: els Núvols Personals i els sistemes

d’emmagatzematge social. Com ara veurem, ambdues arquitectures són radicalment diferents i

persegueixen objectius dispars.

D’una banda, els Núvols Personals, com Dropbox i SugarSync, són sistemes centralitzats

d’emmagatzematge al núvol per informació personal que permeten als usuaris guardar, sin-

cronitzar i compartir informació des d’una gran varietat de dispositius i sistemes operatius.

D’altra banda, un sistema d’emmagatzematge social té una arquitectura descentralitzada i es

beneficia dels lligams socials o de confiança existents entre usuaris per permetre la compar-

tició de recursos al sistema. Donades aquestes arquitectures d’emmagatzematge, aquesta tesi

contribueix en dos reptes generals.

Com a primer repte, ens proposem entendre l’operació i rendiment d’un Núvol Personal.

Dins d’aquest ambiciós desafiament, les nostres contribucions són: (i) contribuı̈m desvelant

l’operació interna d’un Núvol Personal d’escala global, anomenat UbuntuOne (U1), incloent-

hi la seva arquitectura, el seu servei de metadades i les interaccions d’emmagatzematge de da-

des. A més, (ii) proporcionem una anàlisi de la part de servidor d’U1 on estudiem la càrrega del

sistema, el comportament dels usuaris i el rendiment del seu servei de metadades. També sug-

gerim tota una sèrie de millores potencials al sistema, en termes d’optimització de procés de

dades, seguretat i detecció de comportament d’usuari que poden beneficiar sistemes similars.

A més dels aspectes interns dels Núvols Personals, els usuaris i les aplicacions poden in-

teractuar amb aquests serveis externament. En aquest sentit, en aquesta tesi també contribuı̈m

(iii) mesurant i analitzant la qualitat de servei (p.e., velocitat, variabilitat) de les transferències

sobre les REST APIs oferides pels Núvols Personals. A més, durant aquest estudi, ens hem
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adonat que aquestes interfı́cies poden ser objecte d’abús quan són utilitzades sobre els com-

ptes gratuı̈ts que normalment ofereixen aquests serveis. Això ha motivat l’estudi d’aquesta

vulnerabilitat, aixı́ com de potencials contramesures.

Sobretot, les nostres contribucions en aquest repte proporcionen una visió holı́stica del

comportament i la naturalesa dels Núvols Personals que va més enllà de la literatura actual en

aquest camp.

El segon repte d’aquesta tesi consisteix a explorar la qualitat de servei que els sistemes

d’emmagatzematge social poden aconseguir. Per portar a terme aquest estudi, primer vam

entendre que a aquests sistemes els hi afecten greument les correlacions en les hores de dis-

ponibilitat dels usuaris aixı́ com la reduı̈da mida dels grups d’amics on es guarden les dades.

Llavors, les caracterı́stiques particulars d’aquests sistemes requereixen especial atenció per en-

tendre la qualitat de servei que poden oferir.

En aquest sentit, la nostra primera contribució és (iv) analitzar la qualitat de servei que els

sistemes d’emmagatzematge social poden proporcionar en termes de disponibilitat de dades,

velocitat de transferència i balanceig de la càrrega. A més, (v) analitzem la idoneı̈tat d’aplicar

tècniques de manegament de dades provinents de sistemes de gran escala, com ara les utilit-

zades per al càlcul de la disponibilitat de les dades. Una de les nostres observacions és que els

mètodes tradicionals no són adequats per les particularitats dels sistemes d’emmagatzematge

social. Per tant, proposem un mètode per calcular la disponibilitat de les dades que es basa en

el comportament previ dels usuaris, el qual es demostra una tècnica millor en aquest context.

Donades les limitacions de rendiment dels sistemes d’emmagatzematge social purament

descentralitzats, (vi) dissenyem una arquitectura hı́brida que combina recursos del núvol i

dels usuaris. Aquesta arquitectura té com a objectiu millorar la qualitat de servei del sistema

i deixa als usuaris decidir la quantitat de recursos utilitzats del núvol, o en altres paraules, és

una decisió entre control de les seves dades i rendiment. A l’avaluació experimental d’aquesta

arquitectura posem especial èmfasi en el rol que la topologia social té al rendiment del sistema.

Per tant, aportem noves perspectives sobre el rendiment dels sistemes d’emmagatzematge

social, aixı́ com dissenys d’arquitectures alternatives. Les nostres contribucions poden ajudar

a millorar la viabilitat d’aquests sistemes, el qual és fonamental per a la seva eventual adop-

ció pels usuaris finals.

Paraules clau: Núvols Personals, Anàlisi de Rendiment, Emmagatzematge Distribuı̈t, Siste-

mes d’Amic-a-Amic, Núvols Socials.
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It is hard to fail,

but it is worse never to have tried to succeed.

Theodore Roosevelt

You are as young as your self-confidence,

as old as your fears;

as young as your hope;

as old as your despair.

Samuel Ullman

The true sign of intelligence is

not knowledge but imagination.

Albert Einstein
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1
Motivation and Challenges
In a recent report, the International Data Corporation (IDC) stated that “a majority of the in-

formation in the digital universe, 68% in 2012, is created and consumed by end-users; watch-

ing digital TV, interacting with social media, sharing images and videos between devices and

around the Internet, and so on” [1]. A significant fraction of this information can be classified

as personal data and constitutes a fundamental part of the ever-growing digital lives of users.

Naturally, most of the data that users generate should be preserved or stored along time.

Thus, devising novel personal storage systems to cope with the storage necessities of users has

long been a relevant research line [2, 3, 4, 5, 6]. In this thesis, we focus on two particular

personal storage architectures:

• Personal Clouds: A Personal Cloud is an online cloud service for personal information

that enables users to store, synchronize and share data from a variety of devices and

operating systems (OSes). Moreover, Personal Clouds are a platform to deploy third-

party applications that provide value-added services on users’ data.

• Socially-oriented distributed storage systems: This kind of storage systems —namely

social storage systems for brevity— leverages preexisting trust relationships between users

to enable mutually beneficial resource sharing. The main difference between social and

traditional decentralized storage systems lies in the social component, which facilitates

long term cooperation with lower privacy and security requirements.

As one can easily infer, both architectures are radically different and pursue distinct goals.

On the one hand, Personal Clouds are centralized systems designed to provide a rich and mas-

sive high-quality storage service to end-users. However, due to their proprietary nature, very

little is known about their internal operation, infrastructure and supported workload.

On the other hand, a decentralized alternative such as a social storage system gives users the

control over their personal information and resources, which engenders trust and cooperation.

Unfortunately, despite the potential benefits that the social component brings to distributed

storage systems, not enough attention has been paid to explore their Quality of Service (QoS).

In this thesis, we aim to explore these architectures from an empirical perspective.

UNIVERSITAT ROVIRA I VIRGILI 
ON PERSONAL STORAGE SYSTEMS: ARCHITECTURE AND DESIGN CONSIDERATIONS. 
Raúl Gracia Tinedo 
Dipòsit Legal: T 1344-2015



2 1. MOTIVATION AND CHALLENGES

1.1 Personal Clouds: Analyzing Global-Scale Storage Services

In one decade, an entire ecosystem of cloud storage services has emerged to satisfy the need

for storage of end-users. To illustrate this, Gartner Inc. forecasts a growth of 36% in the volume

of digital information that users will store in the cloud from 2011 to 2016 [7]. In other words,

users will store more than a third of their data in the cloud by 2016.

One of the factors that motivates this “exodus to the cloud” lies deeply in the widespread

necessity for online and ubiquitous storage that users currently exhibit. This is exacerbated by

the fact that users need their personal information to be accessed by a multitude of devices

and OSes. Apparently, we are witnessing a paradigm shift from the personal computer to the

Personal Cloud to cope with the nowadays’ requirements of users.

Over the last years, the concept of Personal Cloud has been materialized by several suc-

cessful commercial offerings. Services like Dropbox, Box or SugarSync provide online storage,

file synchronization, sharing, as well as accessibility from a variety of mobile devices and the

Web. Furthermore, Personal Clouds are also becoming a popular platform to deploy external

applications, such as photo viewers or document editors, that give added value to the personal

storage service itself. According to the market reports, these services are meeting well users’

needs; for instance, Dropbox’s user population grew from 100 to 200 million only in 2013 [8].

Unfortunately, very little is known about what happens behind the scenes in a Personal

Cloud. Typically, the implementation of these services is proprietary and it is difficult to

fully understand their back-end operation from external vantage points. Besides, despite their

broad adoption, many practitioners desire to understand the QoS of Personal Clouds to choose

a particular vendor or to benefit from storage diversity [9, 10]; to wit, there is little or no public

information about the control policies that Personal Clouds may enforce, or about the factors

impacting on their performance.

At the time of this writing, it is known that Dropbox decouples the management of file

contents (data) and their logical representation (metadata) [11]. Thus, Dropbox only owns the

metadata service, which processes requests that affect the virtual organization of files in user

volumes. The actual contents of files are stored separately in a third party cloud provider

(Amazon S3). However, this is the boundary of current knowledge; more research is required

to understand the internal operation of Dropbox-like services, in terms of infrastructure, meta-

data organization or QoS characterization, to name a few.

The opaque operation of Personal Clouds may have consequences. That is, the lack of

knowledge around the internal operation of Personal Clouds may limit research advances in
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1.2 Social Storage Systems: A True Decentralized Alternative? 3

this field. Moreover, developers integrating third-party applications in Personal Cloud plat-

forms may have difficulties to understand the performance implications of choosing one ven-

dor or another. As a result, we believe that it is essential to understand in depth how these

services operate due to their relevance and scale. This leads to the following challenge:

Challenge 1: Understanding the operation and performance of Personal Clouds.

1.2 Social Storage Systems: A True Decentralized Alternative?

Many users are reluctant to move all their data to centralized storage services due to the large

amount of control ceded to the service provider, and the lack of trust that users may feel in

such situation [12, 13]. In fact, this motivated the research on decentralized approaches for

personal storage [14]. Broadly speaking, the existing decentralized personal storage systems

can be classified into P2P and social storage systems.

Essentially, P2P systems provide a unified and self-organizing management of the sparse

disk space of users to storage, replicate and maintain data. Thus, users participating in a P2P

storage system contribute part of their local storage resources in exchange of available and

durable online storage space [3, 15, 16, 17]. However, P2P storage systems have been studied

in depth over the last decade but their adoption by end-users has been lower than expected.

Among the limitations P2P storage systems, the instability and heterogeneity of peers is an

important issue that hinders the provision of an appropriate service quality [18]. Even worse,

despite important efforts [19], the existence of selfish behaviors (e.g., free-riding) and the lack of

trust among participants make end-users reluctant to adopt P2P storage systems to store their

personal information.

Social storage systems originally emerged to overcome many of the limitations of P2P stor-

age systems. These systems rely on the synergy between social networks and storage systems:

users store their data in a set of social or real-world friends [20, 21, 22, 23]. Thus, data is neither

stored in a centralized server nor in unknown peers, enabling users to retain the control of their

data. Moreover, the social component of social storage systems alleviates many undesirable

problems present in large-scale distributed systems such as security, trust, and incentives.

However, a social storage system also carries important deficiencies because its operational

feasibility is based on the premise that participants are socially motivated and subject to the

personal repercussions outside the functional scope of the system. This is primarily due to the

existing level of trust that already exists between members. Although a social storage system
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4 1. MOTIVATION AND CHALLENGES

is built upon social incentives, peer pressure, etc., the discontinuous participation of social

contacts, or even the abandon of the system, is intrinsic to the nature of social relationships.

In terms of storage, the intermittent participation of users impacts on the achievable storage

QoS. That is, the unavailability of users limits the amount of time a file can be downloaded

from the system (i.e., data availability) and how fast a file transfer can be performed (i.e., transfer

times). Moreover, if some users are significantly more available than others, the workload

supported across them may be unequally distributed (i.e., load balancing).

Surprisingly, despite the potential benefits that the social component may provide to dis-

tributed storage systems, very little attention has been paid to explore the storage QoS of these

systems. In this thesis, by storage QoS we refer to the data availability, transfer performance

and load balancing levels that a social storage system can provide to end-users. We believe

that understanding the potential limitations of these systems is a necessary first step towards

devising new techniques to improve their performance. This leads to the following challenge:

Challenge 2: Explore the QoS of social storage systems.

1.3 Research Questions and Contributions of This Thesis

In what follows, we aim to relate specific research questions with the aforementioned general

research challenges. These unanswered questions are the motivation for the main contribu-

tions of this thesis.

Challenge 1: Understanding the operation and performance of Personal Clouds. Several research

questions arise under this ambitious challenge. Since we mentioned that Dropbox decouples

the management of file data and metadata, natural research questions in this sense are, for

instance, how does a Personal Cloud internally manage the metadata of clients? And, which is the

extent of the required metadata infrastructure? Despite the relevance of these questions, they are

still unanswered in the literature.

Another interesting set of questions emerges if we want to understand the storage service

of a Personal Cloud itself. That is, one can easily formulate questions of great interest like which

is the nature of the workload supported by a Personal Cloud? How users behave in this kind of services?

Or, is there a relationship between these factors and the performance of the metadata service? Moreover,

it would be desirable to enable the research community to also address these challenges by

making real workload traces of Personal Clouds publicly available [24].
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1.3 Research Questions and Contributions of This Thesis 5

On the other hand, very little is known about the transfer QoS of Personal Clouds. There

is no public information about the control policies that Personal Clouds may enforce, as well

as the factors impacting on their service performance. There are a variety of aspects that are

relevant not only to end-users, but also to developers integrating third-party applications in a

Personal Cloud platform: does the geographic location impact of a user on the transfer QoS? Does

the service exhibit variability along time? And, are Personal Clouds services reliable?

Our contributions under Challenge 1 are the following:

• Our first contribution is to unveil the internal structure of a global-scale Personal Cloud,

namely UbuntuOne (U1), by describing its: architecture, core components involved in the

U1 metadata service hosted in the datacenter of Canonical, as well as the interactions of U1

with Amazon S3 storage service, to which U1 outsources data storage.

• Our second contribution is to provide an extensive analysis of the back-end activity of

U1 for one month, by means of tracing the metadata servers. Our analysis includes the

study of the storage workload, the user behavior and the performance of the U1 metadata

store. Moreover, based on our analysis, we also suggest improvements to U1 that can

also benefit similar Personal Cloud systems.

• Our third contribution is to actively measure Personal Clouds through their REST APIs

for characterizing their QoS, such as transfer speed, variability and failure rate. Our mea-

surement is the first to deeply analyze many facets of these services and reveals new

insights, such as important performance differences among providers, the existence of

transfer speed daily patterns or sudden service breakdowns. Moreover, we demonstrate

that combining open APIs and free accounts may lead to abuse by malicious parties. We

also propose countermeasures to limit the impact of abusive applications in this scenario.

Challenge 2: Explore the QoS of social storage systems. First of all, this challenge calls for a deep

understanding of the specific characteristics that govern the performance of social storage sys-

tems. Basically, we refer to fundamental questions such as “are social storage systems a particular

case of a P2P system?” “Are there differential factors that impact on their QoS?” In fact, understand-

ing the nature of these systems is the first step towards their analysis.

Following this line of reasoning, there are important issues that remain unexplored related

to the feasibility of these systems in terms of storage QoS: Can social storage systems provide
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adequate data availability to end-users? And short transfer times? And, is the storage service un-

equally supported among participants? These questions should be explored to discern the poten-

tial adoption of social storage systems as a practical alternative to cloud services.

As one can infer, the storage QoS also depends on the data management decisions im-

plemented by a particular social storage system (e.g., data placement, data redundancy manage-

ment). From the point of view of designers and practitioners, a natural approach to develop

a social storage application could be to borrow data management techniques from large-scale

distributed storage systems. Therefore, a critical question in this regard is, “Are the traditional

large-scale data management mechanisms suitable in a social storage scenario?”

Perhaps, in a pessimistic scenario, a possible conclusion could be that it is difficult to

achieve an adequate storage QoS in this setting —similar to what has been observed in large-

scale systems [18]. In this case, how can we improve the performance of a social storage system? Does

improving the storage QoS have repercussions on the trust and privacy properties of the system?

Our contributions under Challenge 2 are the following:

• Our fourth contribution is to analyze the QoS of social storage systems in terms of data

availability, transfer performance and load balancing. Conversely to P2P systems, social stor-

age is highly affected by availability correlations and very small groups, which pose new

challenges that remain unsolved to achieve an adequate storage QoS.

• Our fifth contribution is to understand the role of data management techniques in so-

cial storage system. Concretely, we evaluate the suitability of common approaches of

estimating data availability when users are correlated. We demonstrate that these tech-

niques are severely biased and this impacts on the data redundancy calculation. We pro-

pose a history-based method to calculate data availability tailored to heterogeneous and

correlated availabilities. We also contribute by analyzing the impact of data placement

and transfer scheduling policies in these systems.

• Our sixth contribution is to design a hybrid architecture to enhance the QoS achieved by

a social storage system that combines user resources and cloud storage to let users infer

the right balance between user control and QoS. This architecture is able to deliver such

a balance thanks to the development of a new suite of data management algorithms. We

also present an empirical evaluation of our architecture to study important operational

aspects, such as the impact of the social topology on the storage QoS.
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1.4 Outline of This Dissertation 7

1.4 Outline of This Dissertation

This thesis is organized in two parts. According to the presented challenges, Part I contains the

analysis and measurement of Personal Clouds, and Part II explores the QoS of social storage

systems. In the following, we provide a summary of the thesis chapters:

Chapter 2: Background. This Chapter provides definitions and concepts that are required

throughout the thesis, as well as an overview of a set of important personal storage systems.

Chapter 3: State-of-the-Art. This Chapter discusses the current literature in personal storage

systems and illustrates the key differences of this thesis with previous works.

Part I: Analysis of Personal Clouds

Chapter 4: Dissecting a Personal Cloud Back-end. In this Chapter we describe the internal

operation of the UbuntuOne Personal Cloud, including the analysis of the storage workload,

user behavior and metadata performance of this system.

Chapter 5: Actively Measuring Personal Clouds: Analysis and Abuse. This Chapter presents

our measurement analysis of Personal Clouds REST APIs, jointly with the characterization of

their QoS in various aspects. We also illustrate the potential abuse of these APIs and possible

countermeasures.

Part II: Exploring QoS in Social Storage Systems

Chapter 6: Understanding QoS in Friend-to-Friend Storage Systems. This Chapter provides

an analysis of the storage QoS of purely distributed storage systems, as well as the impact

of traditional large-scale data management techniques in this setting. We also devise cloud-

assisted or hybrid architectures to improve the overall service performance.

Chapter 7: Empirical Analysis of Social Cloud Storage. Based on a battery of real experi-

ments, this Chapter evaluates various aspects that impact on the storage QoS of a social cloud

for storage, paying special attention to the role of the social topology.

Chapter 8: Conclusions and Future Directions. This Chapter presents the conclusions that

ensue from this work and a variety of possible future research lines.
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• Raúl Gracia Tinedo, Marc Sánchez Artigas, Adrián Moreno-Martı́nez, Cristian Cotes
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2
Personal Storage Systems:
Background and Definitions
In this Chapter, we aim at providing the necessary concepts and definitions to properly under-

stand the rest of this thesis. We first give some background on the operation and architecture

of Personal Clouds, taking Dropbox as a paradigmatic example, which is essential to intro-

duce the reader for Chapters 4 and 5. Second, we illustrate the principles and concepts behind

a decentralized storage system, paying particular attention to social storage systems. This

background is necessary for Chapters 6 and 7. In both cases, we overview a variety of existing

systems to provide the reader with a big picture of the personal storage arena.

2.1 Overview of a Personal Cloud System

As we mentioned in Chapter 1, services like Dropbox, Box or SugarSync currently provide

end-users and enterprises with online storage, file synchronization, sharing, as well as accessi-

bility from a variety of mobile devices and the Web. To clarify the concept of Personal Cloud,

we provide our own definition as follows:

Definition 1 (Personal Cloud) The Personal Cloud is an online cloud service for personal informa-
tion that enables users to store, synchronize and share data from a variety of devices and OSes. More-
over, Personal Clouds are a platform to deploy third-party applications that provide value-added services
on users’ data.

In this sense, a natural question might be: how does a Pesonal Cloud work? To gain better

understanding on the operation of a Personal Cloud like Dropbox, we believe appropriate the

parallelism with a traditional file system.

In the context of a file system, a collection of user files consists of two separate informa-

tion layers: metadata and data. On the one hand, a file’s metadata contains information about

the physical location of the file contents (structural metadata or inodes) as well as a variety of

attributes describing a file’s content type or application (descriptive metadata). On the other

hand, a file’s data refers to the actual contents or extents indexed by the structural metadata.
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Cloud 
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Figure 2.1: High-level architecture of Dropbox. We observe that Dropbox owns the metadata back-
end whereas file contents are stored in Amazon S3.

Analogously, Personal Clouds like Dropbox, UbuntuOne (U1) or StackSync [34] are designed

to separately manage the data and metadata of users files. We illustrate this next.

2.1.1 Architecture: The Case of Dropbox

Following the example of Dropbox, from an architectural viewpoint, this service exhibits a 3-

tier architecture consisting of clients, synchronization service and data store [11] (see Fig. 2.1). As

visible in Fig. 2.1, Dropbox decouples the management of file contents (data) and their logical

representation (metadata). Thus, Dropbox only owns the infrastructure for the metadata ser-

vice, which processes requests that affect the virtual organization of files in user volumes. The

actual contents of file transfers are stored separately in a third party cloud provider (Amazon

S3). One of the most important advantages of this architecture is that Dropbox can easily scale

out the storage back-end thanks to the “pay-as-you-go” economies of cloud services [35], thus

avoiding a heavy initial investment in storage resources.

In general, Personal Clouds provide users with 3 main types of access to their service: Web

access, desktop clients and REST (Representational State Transfer) APIs (Application Programming

Interface). Perhaps, for users, the Web access is the most common and intuitive way of man-

aging their data online. However, since a Personal Cloud Web access is less aligned with our

research interests, it is not discussed further in this thesis.

In this sense, Personal Clouds enable other applications to interact with the service via

REST APIs. These APIs make it possible for third-party applications to execute data man-

agement operations on files (PUT, GET, etc.) in user accounts. In fact, one can easily find

similarities between these APIs (files/accounts) and the operation of object storage services (ob-
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jects/containers) [36]. In the course of this thesis, we found that these API services are powerful

abstractions that have not received enough attention from the research community. For this

reason, we devote Chapter 5 to characterize and understand the operation of these APIs.

On the other hand, Personal Cloud desktop clients are very popular among users since

they provide automatic synchronization of user files across several devices. To achieve this,

desktop clients and the server-side infrastructure communicate via a storage protocol. In the

case of Dropbox this protocol is proprietary. However, Drago et al. [11] inferred the messages

exchanged between clients and servers. Similarly to the UbuntuOne protocol described in

Chapter 4, the storage protocol of Dropbox is based on TCP and offers an API consisting of the

data management and metadata operations that can be executed by a client. Metadata operations

are those operations that do not involve transfers to/from the data store (i.e., Amazon S3),

such as listing or deleting files, and are entirely managed by the synchronization service. On

the contrary, uploads and downloads are, for instance, typical examples of data management

operations.

From a research perspective, both desktop clients and REST APIs are the most interesting

ways of accessing Personal Cloud services. In the next subsections, we illustrate technical

aspects of both desktop clients and REST APIs, respectively.

2.1.2 Data Reduction Techniques in Desktop Clients

In general, it is important to the economic feasibility of Personal Clouds to reduce the expense

on data outsourcing as much as possible. For this reason, desktop clients of most vendors

include a number of data reduction techniques, that is, data management techniques intended to

minimize the amount of data actually stored or transferred to the system.

Recent research works on Personal Clouds unveiled the techniques that are being currently

applied by major vendors [24, 34, 37, 38]. In this section, however, our objective is to introduce

the basic concepts and definitions related to these techniques:

Chunking: To ease the management of large data transfers, most desktop clients split files

into chunks of smaller size, of the order of a few MBs. As one can infer, a desktop client in

a domestic network has limited bandwidth and may experience failures while transferring

large files. Thus, transferring files at the chunk granularity is an effective mechanism for pro-

viding resumable transfers in the presence of failures. As we will see, splitting files is also a

intermediate step to enable data reduction techniques at the chunk granularity.
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14 2. PERSONAL STORAGE SYSTEMS: BACKGROUND AND DEFINITIONS

Compression: Compression is, perhaps, the most intuitive data reduction technique. It con-

sists of reducing data redundancies within data streams, such as the repetition of sequences

(back-pointers, dictionaries [39, 40]) or the skewed frequency distribution of bytes (entropy cod-

ing [41]). Algorithms like zlib [42] or lz4 are commonly found in a variety of storage systems

to improve performance and increase storage capacity [43, 44, 45]. In the case of desktop

clients, data compression reduces the amount of data transferred and stored in the data store.

Deduplication: Data deduplication is a technique intended to avoid storing repeated content

in a system [46, 47, 48]. Very succinctly, in a deduplication system, pieces of data are indexed

and identified by its content (e.g., SHA-1 hash of a file) at either the chunk or file granularities.

Upon the arrival of a new store operation, the index is checked to ensure that the new content

to be stored does not exist already in the system. In the affirmative case, a logical link relates

the new object with the existing content, avoiding thus storing again repeated data. Personal

Clouds desktop clients that apply deduplication at the network level [11, 24]. That is, they

avoid many file uploads detecting those ones that are already stored in the system; to this end,

for instance, U1 desktop clients send the hash of a new file prior to the actual upload.

Synchronization deferment: It is common to find files in a Personal Cloud that are susceptible

of experiencing successive modifications due to the user activity, such as text documents or

source code files. Under this active update pattern, a desktop client may produce an intense

network overhead if every change persisted in the file is uploaded to the cloud. To prevent

this situation, many desktop clients wait for a certain period of time from the last file update

before starting the synchronization process [24, 37].

Delta updates: When a file changes, a desktop client should reflect this change in the server-

side. In a simple desktop client implementation, this can be done by uploading the whole file

again to the server. However, as one can infer, this may induce high network overhead under

successive changes on moderate or large files. To reduce this burden, Personal Clouds like

Dropbox implement delta updates. That is, the desktop client detects the differences between

the current and the immediate previous version and only uploads the fraction of the file that

actually changed. In the case of Dropbox desktop clients, delta updates are provided by the

libsync library [49] that, in turn, is based on the well-known rsync algorithm [50].

File bundling: In many cases users synchronize files at directory granularity with their desk-

top clients —i.e., synchronize a directory that may contain several files inside it. In this sit-

uation, desktop clients may be forced to perform a synchronization process for every file
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2.1 Overview of a Personal Cloud System 15

contained in that directory. This can be inefficient, if we consider the synchronization pro-

tocol overhead (metadata, communication) compared with very small files. Therefore, some

Personal Clouds enable desktop clients to transfer multiple small files as a single object to

efficiently handle these situations.

Clearly, as previous works pointed out [11, 24, 37, 38], various vendors integrate different

combinations of data reduction techniques in their respective desktop clients. A main design

choice that Personal Clouds should face is whether to apply data reduction techniques at the

file or chunk levels; for instance, Dropbox deduplicates data at the chunk level, whereas U1

implements file-level deduplication —as we will show in Chapter 4.

Furthermore, different combinations of these techniques may have disparate effects on

both the design complexity of the system and the experienced savings. That is, implement-

ing both data compression and deduplication at chunk-level may be complex as stated by Li

et al. [24]. This may justify implementing data deduplication only at file level, if the potential

savings are similar to the ones obtained by applying chunk-level deduplication. In our view,

exploring these trade-offs is a potential vein of research related to this thesis.

2.1.3 Understanding Personal Cloud REST APIs

In addition to desktop clients, most Personal Clouds provide open REST APIs to make it pos-

sible for developers to create novel applications which use the information stored in user

accounts. In this section, we will describe the functioning of these APIs and the procedure

needed to register an application to enable its access to user storage. We will describe the

complete process for Dropbox at the time of this writing (see Figure 2.2).

Registering our application with Dropbox. A Personal Cloud application is an authorized

namespace within the Personal Cloud domains which enables REST API calls over user ac-

counts. In Dropbox, these applications are either in production or development states. The

former means that the application has been revised and approved by Dropbox, whereas the

latter has limited features (development purposes). The Dropbox API incorporates OAuth [51]

authorization mechanism to manage the credentials/tokens of applications and users grant-

ing access to these applications. Note that with a Dropbox application in development state, a

user is able to access up to 5 free storage accounts through the REST API.

Dropbox provides 3 subdomains to support its API service: i) dropbox.com corresponds

to the webpage, the place where users and developers perform manual interactions as ex-

plained later on; ii) api.dropbox.com is the subdomain against which applications perform
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Figure 2.2: Registering an application in Dropbox to enable REST API file access to user accounts.

authentication and meta-data requests; and iii) api-content.dropbox.com is the subdomain

where Dropbox handles API data management operations (PUT, GET). In the latter case, these

operations are executed against Amazon S3, the storage back-end of Dropbox.

Now, we describe in general terms how to make an application operational in Dropbox.

We denote the application to be registered as A, Dropbox as DB, and a user U that permits the

access to his storage space. The procedure is as follows.

First, a developer registers A via DB’s webpage (dropbox.com subdomain), where DB cre-

ates an application token pair that it will use to authenticate A. Second, A asks for a request token

to DB. Note that A performs this step using DB’s API, and therefore, addressing a request via

a HTTP POST message to the api.dropbox.com subdomain. As a result, DB replies to A with

a request token pair. Thirdly, U authorizes A via DB’s webpage. Normally, U is redirected to

DB’s webpage by a link containing A’s request token as argument. With this information, DB

knows that user U is giving access to A. In fourth place, once U authorizes A, DB automat-

ically notifies A about this event. DB generates the access token for A, which grants access to

U’s storage space. Next, A performs an API call to DB asking for the access tokens. Finally, A

performs storage operations against U’s account. The only requirement in each API call (PUT,

GET) is to include the access token in the request.

We followed this procedure to enable user accounts to be accessed through REST APIs in

order develop our analysis in Chapter 5.
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2.1.4 Landscape of Personal Clouds

Next, we overview the current landscape of Personal Clouds1. Concretely, we aim at illustrat-

ing the available deployment strategies of a Personal Cloud as well as several relevant function-

alities that big vendors provide nowadays. All in all, we believe that this section will help the

reader to understand the variety, heterogeneity and extent of the Personal Cloud arena.

At this moment, we mainly referred to vendors that provide public services like Box, U1,

Dropbox, etc. Nevertheless, a client may use a Personal Cloud system based on different

deployment strategies depending on how the service metadata and data are located and managed:

• Private or on-premise Personal Cloud: In this deployment strategy, both data and meta-

data are stored on the client’s infrastructure. In other words, a client administrates the

Personal Cloud system that is deployed in his own storage infrastructure. Systems like

StackSync2 or ownCloud3 allow private deployments on a client’s infrastructure.

• Public Personal Cloud: Data and metadata are stored in a public storage provider such

as Dropbox or Box. This is probably the most common case, where users delegate on a

provider such as Dropbox the entire management of the service.

• Hybrid Personal Cloud: In this case, data is stored in a public cloud storage provider

and metadata is kept inside the client’s infrastructure. This allows clients to keep sen-

sitive meta-information of their files under control, whereas raw data is encrypted and

stored at a third-party storage service. A representative service of this category is Egnyte4,

that allows customers to work either with cloud or owned storage resources.

The non-public deployments are particularly important for organizations and companies,

since many of them may be reluctant to outsource all their data to a public Personal Cloud. In

this sense, Personal Clouds such as Egnyte, ownCloud or StackSync are currently providing

on-premise or hybrid deployments, which are being increasingly adopted in the market [53].

Moreover, another interesting dimension that may serve to classify existing Personal Clouds

lies on their functionalities. Concretely, we focus on the following operational areas: storage,

file synchronization, sharing, security and platform. In what follows, we elaborate these features

providing appropriate examples of real-world systems.

1This section in based on our work in Deliverable 2.1 of CloudSpaces project [52].
2http://stacksync.org/
3http://www.owncloud.org/
4https://www.egnyte.com/
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Storage. Online storage is, perhaps, the most basic service that Personal Clouds. Often, to

materialize this service, public vendors may opt to own the storage infrastructure (Google

Drive, SkyDrive) or to outsource data storage (Dropbox, U1, SugarSync) to a third-party stor-

age provider (e.g., Amazon S3, Carpathia Hosting).

Regarding storage, public Personal Clouds usually offer their services based on a freemium

business model. In other words, a product is offered for free, but a premium product with

advanced features is offered at a charge. Therefore, the storage quota offered for free accounts

is an important feature that users consider. This aggressive market strategy has been widely

adopted by providers such as Dropbox or Box.

Sometimes, Personal Clouds apply restrictions on the maximum file size, which can vary

depending on whether the file is synced on the desktop application or uploaded through the

web interface, or even the type of account (free/paid). For instance, Box enforces a file size

limitation of 250MB for personal free accounts, whereas for business accounts this limit is 5GB.

To optimize storage and minimize the bandwidth consumed by clients, Personal Clouds

may introduce data management techniques in desktop clients (see Section 2.1.2). Moreover,

techniques like deduplication can be applied to different scopes (i.e., across all files in the

system or only across a user’s files), which presents a trade-off between storage efficiency

and privacy [54]. Actually, the study of the implications of data management techniques in

Personal Clouds is an active research path [24, 37].

File Synchronization. One of the key aspects of Personal Clouds is file synchronization (or

syncing). We understand it as a two-way file synchronization, which means that a locally

modified file is updated in each location this file is present. In addition, if a file is modified

remotely, these changes will be automatically updated locally, with the purpose of keeping

every copy of a file identical in all locations.

In this sense, some companies such as Cubby1 or BTSync2 also implement P2P file syncing,

that is, the ability to keep two or more files identical in different locations without resorting

to a central service. It allows companies to reduce the outgoing traffic from the data center,

which translates in cost savings. It is also useful for users that want to store the same files on

two or more computers avoiding the need to resort to the server.

Personal Clouds like Google Drive or Dropbox only sync files that are stored inside a spe-

cific folder created for that purpose. On the contrary, services like U1 or SugarSync, apart from

1https://www.cubby.com
2https://www.getsync.com
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creating a default synchronized folder, enable a user to keep in sync multiple folders within

his file system.

Another interesting feature is file versioning, which allows users to restore previous ver-

sions of a file after a number of changes. For those Personal Clouds implementing versioning,

this can be done by limiting the version history to a maximum number of revisions to be kept

in the system or for a specific period of time. For instance, Dropbox stores all versions of a file

in the last 30 days —this may also vary depending on the account type.

Sharing. Sharing is an attractive feature that most of Personal Clouds provide, whether it is

with users inside the service or with people outside the Personal Cloud. Internal sharing is

usually offered as an integrated functionality in the user interface. Whereas public sharing

is commonly offered as direct HTTP links that allow other users to access to files or folders.

Anyway, the sharing infrastructure must provide users with mechanisms for managing access

control of external users to their personal data.

Privacy-aware sharing is arousing interest in the Personal Cloud market. Currently, only

SpiderOak is considered to implement a privacy-aware data sharing scheme. SpiderOak al-

lows users to password protect all their Share Rooms1 so that only the people they want to

give access to their data can view or download their shared files. Each Share Room has its

own private, secure URL so users can easily share them with only the people they want.

Real-time collaboration allows multiple users to edit a file at the same time. So users can see

where in the document or file a particular editor is currently writing. Only Google Drive and

SkyDrive let multiple users collaborate simultaneously on the same file from any computer.

When someone makes changes to a document, the other person can see the changes in real-

time and respond to the edits immediately.

Security. Personal Clouds must ensure that user data is not accessed by third-parties and only

authenticated users are granted access. Some companies use standard authentication protocols

such as OAuth [51] (Dropbox, Box), others opt for using their own mechanisms (SugarSync).

As a security measure, most vendors store user data encrypted. In general vendors provide

server-side encryption, meaning that users delegate to the system the task of protecting their

files and managing the cryptographic keys. As an alternative, vendors such as SpiderOak2

and Wuala3 implement client-side encryption, which allows users to encrypt their data before it

1https://spideroak.com/engineering_matters
2https://spideroak.com
3https://www.wuala.com
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is transmitted to the server. So the user is responsible for managing the keys and the service

provider is unable to decrypt his data, adding an extra layer of security.

Besides the fact of having the files secured when they are at rest in the server, it is also

essential to assure their privacy when they are being transmitted to and from the server. To

this end, these systems usually use HTTPS to communicate to their services either from the

desktop application or other tools such as the REST APIs or the web interface.

As any other piece of software, the implementation of Personal Cloud systems are under

licenses that grant rights and impose restrictions on the use of software. In general, most

Personal Clouds are proprietary, so the source code cannot be freely accessed and reused.

However, very few Personal Cloud implementations, such as ownCloud1, StackSync and the

desktop client of U1, are available for the general public and the end-user can further distribute

or copy the software.

Platforms. Many Personal Clouds are currently providing raw storage services through web

interfaces, acting like pseudo Infrastructure-as-a-Service (IaaS) providers. Thus, to access user

data from an external application, Personal Clouds must implement an API, which allows

developers to integrate their application on top of the storage system. When used in the web

environment, an API is typically defined as a set of HTTP request messages and XML or JSON

response messages, also known as REST API. These APIs are implemented by most public

vendors, such as Dropbox, SugarSync, SkyDrive and Box.

An alternative way to allow external access to user data is through the WebDAV protocol.

It provides a framework for users to create, change and move their documents. Most current

operating systems (OSes) provide built-in support for WebDAV. This approach, however, has

gauged less adoption, and only Cubby and ownCloud implement WebDAV data access.

Being able to access to users’ stored data from a web browser is an essential functionality.

Web interfaces typically allow users to manage their files (move, delete, upload, download,

etc.) and access to extra tools such as generating public links. Additionally, most Personal

Clouds are integrating their services across a multitude of OSes (Linux, Windows, Mac) and

devices (Android, iOS) to reach large amounts of users.

1https://owncloud.org/
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2.2 Definition of a Social Storage System

In this section, we provide a comprehensive overview of the principles and characteristics that

give form to the social storage paradigm. Moreover, we introduce concepts related to our view

of the storage QoS of a social storage system, as well as the most important data management

techniques in this regard. We believe that this background is essential to understand Part II of

this dissertation.

2.2.1 Principles: Decentralization and Social Component

In essence, a social storage system can be understood as a particular case of a decentralized storage

system. For this reason, we believe adequate to provide the following definition:

Definition 2 (Decentralized Storage System) A decentralized storage system integrates storage
nodes into a single and uniform data storage service that applications and users can access through
a communication network [55].

In such a kind of systems users donate part of their local storage resources in exchange of a

share in the on-line storage service [3, 5, 56, 57]. The system is thus in charge of transparently

manage the data stored given the amount and stability of the resources that users contribute. In

fact, the unavailability of user resources, namely churn, is one of the main impediments for the

correct operation of decentralized storage systems [58, 59, 60].

Particularly, in a social storage system, the exchanges of resources among users are bounded by

their social relationships [20, 61]. This means that, conversely to traditional large-scale systems,

participating users are socially motivated to do so.

Definition 3 (Social Tie or Friend) In a social storage system, two storage nodes are social ties or
friends of each other if they establish a symmetric link between them to share storage resources based on
trust, social or real-world relationships.

Therefore, it is important to note here that a social storage system is not crowdsourc-

ing [62] or volunteer computing [63] as the social relationships are generally symmetric. In

other words, members are more or less seen as equals who provision resources to benefit from

sharing, whereas crowdsourcing or volunteer systems operate in the master-worker model

where work flows in one direction, which does not in itself constitute sharing. That is, the in-

teractions that govern the resource contribution in a social storage system are similar to those

found in the traditional P2P literature [3, 15, 16, 19].
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Figure 2.3: The contribution of each node to the system may depend on the social topology.

In a social storage service, the topology of the underlying friendship graph plays a central

role in the contribution asymmetry and, consequently, in the operational system requirements.

Definition 4 (Social Graph or Topology) The social graph or topology governs the interaction be-
tween pairs of users and determines the storage resources to be contributed by them.

Although users with many friends have more chances of storing their data with higher

availability, they may possibly have to donate more disk space to socially reciprocate a larger

number of friends. This is especially visible for those users with higher degrees, usually called

hubs, whose level of contribution may be very high for comparatively little benefit.

From a global perspective, it is not hard to imagine that the degree distribution of the

social graph is one the main factors impacting the system’s operation. To better understand

this, pretend that two users, say a and b, want to store 3 data blocks each (see Figure 2.3). Also,

assume that they have a friend in common, say c. Depending on the number of friends, then

a and b will store more or less data blocks in c. If a and b had two additional friends, then

c would need to store only 2 data blocks, one from a and one from b. However, if c was the

only friend of a and b in the system, 3 · 2 = 6 blocks would be allocated to c. This shows the

importance of social connectivity on contributed storage, specially for hubs.

Real measurements of social networks [64, 65] show that while clustering is very high, the

presence of hubs is characteristic of social interaction. Understanding the influence that graph

properties have on the extent of storage contribution is crucial to decide to what extent the

asymmetry in contributory levels requires control and regulation [23, 66].

As we will show in this thesis, both the unavailability of user resources and the structure of

the social graph are key elements to the QoS of achieved by a social storage system. In the

following, we define the properties that constitute storage QoS in Part II of this dissertation.
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2.2.2 Storage QoS in a Social Storage System

We already described that social storage systems are built upon the resource contribution of

users integrating the service. Moreover, we also mentioned that the underlying social topology

plays an important role on the operation of the system, specially regarding the symmetry of

resource contribution among users.

Nevertheless, irrespective of the nature of “social storage”, users expect from a storage

system to provide an adequate Quality of Service (QoS). In other words, social storage systems

should provide reliable and fast off-site storage in order to be widely adopted by end-users.

In Part II of this dissertation, we focus on evaluating the QoS that a social storage system

may achieve depending on various operational and structural aspects. To set an appropriate

ground for such evaluation, in what follows we provide an overview of what we understand

by QoS in a social storage system, i.e., data availability, load balancing and transfer performance.

Certainly, our QoS framework is focused to understand the system’s performance in the

short term. However, we can find other metrics that are necessary to evaluate the long run

operation of a storage system, such as data durability [55]. We defer the study of data durability

for future work, since permanent departures are less frequent among in a social storage system

that in large-scale scenarios [20, 61].

Data Availability. Formally, we can define data availability as follows:

Definition 5 (Data Availability) In a decentralized storage system, data availability can be defined
as the fraction of time a user is able to retrieve a data object from its remote location. This applies
irrespective of whether a data object is stored as a single piece or split into blocks.

Although the concept of social storage is built upon social incentives, peer pressure, etc.,

the discontinuous participation of social links is intrinsic to the nature of interactions in online

social networks (OSNs). In terms of storage, intermittent participation means that data may

be subject to recurrent periods of unavailability, which may be long depending on the activity

pattern between pairs of users. Unlike commercial cloud storage systems like Amazon S3 and

Microsoft Azure that offer high data availability (e.g., 0.999), the availability of any particular

file cannot be guaranteed in a decentralized social storage system. At any given time, data

availability depends on the number and availability of the social links with whom content is shared.

As we will see later on, users will need to generate data redundancy (e.g., parity blocks, repli-

cas) to mask the unavailabilities of nodes. In fact, to model and improve the data availability

achieved by a social storage system is one of the contributions of this dissertation.
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Load Balancing. Regarding load balancing, we propose the following definition:

Definition 6 (Load Balancing) Given a group of storage nodes, the load balancing metric captures
the (in)equality of supported work across nodes within the group.

Load balancing is critical to the feasibility of a distributed social storage system. In terms

of storage, load should be balanced across nodes regarding inbound bandwidth, outbound band-

width and storage space. The lack of load balancing is directly translated into resource contri-

bution unfairness among users, which impacts, for example, on the storage QoS in terms of

transfer performance.

Perhaps, in the absence of regulatory mechanisms, the underlaying social topology may in-

fluence the system’s load balancing in terms of resource consumption (storage, bandwidth). In this

sense, to fully understand the interplay between the social topology and the system’s load

balancing, the local point viewpoint of a single node is not sufficient; one of our interests in

this thesis is to study the system from a global, network-wide perspective.

Transfer Performance. We provide the following definition of transfer performance:

Definition 7 (Transfer Performance) The transfer performance metric refers to the speed at which a
single data object can be stored or retrieved from the system.

For a storage service, providing fast access to data is a paramount concern, irrespective of

whether it is measured in terms of transfer times or bandwidth (e.g., Mbps). Analogously, in a

distributed social storage system, users will expect to store or retrieve files from the system

with an acceptable performance. In this sense, the completion of a transfer can be interpreted

differently depending on whether it is an upload or download transfer.

On the one hand, when a user uploads a file to the system, he will probably need to upload

redundant data blocks of that file as well. As we already mentioned, the main purpose of intro-

ducing data redundancy is to alleviate data unavailability in the presence of intermittent user

connectivity. On the other hand, a download transfer will be considered as completed when

the necessary number of data blocks to reconstruct the original file have been downloaded. As

one can infer, uploads will generally take longer transfer times than downloads.

In a social storage scenario, there are several potentially entangled factors that may influ-

ence on the performance of transfers; for instance, the number and availability of a user’s social

ties and the amount of generated data redundancy. Thus, guaranteeing acceptable transfer per-

formance in a social storage system without dedicated resources poses a complex challenge,

which is object of study in Part II of this dissertation.
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At this point, we described the main properties that constitute our framework to evaluate

the QoS of a social storage system: data availability, load balancing and transfer performance. In

the following, we overview the data management techniques that enable a storage system to

maximize the storage QoS depending on the system’s conditions.

2.2.3 Data Management Techniques

Data management is a central operational point of any decentralized storage system. When

appropriately designed, data management techniques allow a storage system to efficiently

replicate data to increase data availability or to improve load balancing by properly assign-

ing data to storage nodes, among other aspects. As one can easily infer, data management

techniques may considerably differ depending on the system where they are devised for.

In what follows, we focus on data management techniques in the scope of decentralized

storage systems, since social storage systems belong to this category. Note that this section

aims at introducing fundamental concepts for a storage model that will be further developed

in Part II of this dissertation.

Data Placement: Assigning Data to Nodes

In a decentralized storage system data files are normally split into data blocks to facilitate

transfers of large files. Upon a store operation of a file, its data blocks need to be stored across

a subset of storage nodes from the total F. In other words, each data block is assigned to a

storage node in order to be persisted. This inherently implies that the system should take a

decision about which blocks are assigned to which storage nodes.

To analytically represent this decision, we denote by b f ∈ {0, 1, . . . , n} the number of blocks

assigned to a node f ∈ F. Note that this representation allows the system to assign more than

one block to a single storage node, which may be inevitable depending on the available num-

ber of storage nodes. An assignment is represented as a vector
→
b=

(
b1, . . . , b|F|

)
, where the

ith position is the number of blocks bi stored at the ith node. As one can infer, this assign-

ment vector can be managed in order to implement a certain placement policy in the system.

In other words, the system can take special care of the relationship among storage nodes and

data blocks to increase performance.

To illustrate this, imagine that we aim to maximize the data availability of files within the

system. Given this objective metric, we can implement a simple greedy policy, namely avail-

ability proportional, that proportionally stores more data blocks on the most available nodes.
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Figure 2.4: Storage QoS trade-offs that depend on the data placement policy.

Thus, at the moment of storing the blocks belonging to a new file, the vector
→
b will contain the

most available storage nodes. Also, in a situation where the number of blocks is larger than

the number of nodes, more blocks would be proportionally placed at highly available nodes.

This can be observed in Figure 2.4.

However, despite the potential gain in data availability, one can easily understand that this

strategy tends to overload highly available nodes, exhibiting poor load balancing. In turn, this

placement policy may have negative consequences on the storage performance of the system

(e.g., concurrent transfers), or it may motivate highly available nodes to leave the system due

to lack of incentives.

On the other hand, a policy that does not distinguish the behavior of nodes, such as round

robin data placement, will probably provide better load balancing. However, given the same

amount of data redundancy, this policy will probably achieve lower data availability.

Therefore, a data placement policy is a pivotal element to the correct operation of the stor-

age system, and as such, it poses QoS trade-offs that should be carefully considered.

Data Transfer Scheduling

Upon a file transfer operation, the system should start transferring data to or from the

selected storage nodes. In this sense, we term data transfer scheduling to the decision problem

that manages the order in which transfers occur over time.

However, before going any further in the concept of data transfer scheduling, it should be

clearly stated what is meant by the term scheduling. We provide some definitions to clarify this

concept.

Concretely, when we refer to a transfer, we mean the connection with a remote node that

causes the transfer of a single block of data to it. Clearly, a transfer may be interrupted if the

remote node becomes offline during this process. This takes an amount of time, namely, block
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Figure 2.5: Relevance of data transfer scheduling decisions on file transfers in the presence of inter-
mittent node availabilities.

transfer time (BTT). For this reason, we refer to a schedule as the set of transfers concerning the

same data object.

Furthermore, we refer to as scheduling policy, the algorithm that decides the order according

to which transfers must occur over time in order to minimize the time to complete a given

schedule. We refer to the time to complete a schedule simply as the time to schedule (TTS).

We define two important concepts to understand the efficacy of scheduling policies further

on in this thesis:

Definition 8 (Minimum Time To Schedule, MTTS) The minimum time to schedule (MTTS) is
the time a node requires to transfer all blocks of a single schedule assuming ideal conditions, i.e., the
MTTS only depends on the amount of data to transfer and the current bandwidth capacity.

Definition 9 (Optimal Time To Schedule, OTTS) The optimal time to schedule (OTTS) refers to
the shortest TTS assuming the dynamic participation from friends.

To compute the OTTS it is necessary to explore all the possible scheduling combinations

with prior knowledge of the exact ON/OFF pattern of each storage friend, which is not feasible

in practice1. However, the OTTS will be very useful as a baseline in our evaluations.

Once provided the necessary technical definitions, let us draw an illustrative example of

how a data transfer scheduling policy may impact on the storage system. Imagine a storage

system with 3 storage nodes that alternate between on-line and off-line states, as described in

Figure 2.5. Moreover, let us assume that we are willing to store a data object in the system,

and we split it into 3 data blocks that will be stored at distinct storage nodes. To simplify the

example, the block transfer time (BTT) is 1 time slot and blocks are transferred sequentially.

At time t0, the system should take an important scheduling decision: whether to start trans-

ferring the first data block either to SN1 or SN3, since both are available. If the system starts

1This time is computed by modeling the scheduling with dynamics friends as a flow network, and using binary
search to find the shortest-time max-flow solution similar to [67].
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Figure 2.6: Example of generating, storing and retrieving a file from a distributed storage system
making use of erasure coding.

transferring the first data block to SN1, the second block would not be able to be transferred

to SN2 until t2. Even worse, the last block transfer to SN3 will be deferred until time t7, when

it is on-line again. This means that the time to schedule (TTS) of this scheduling plan would

be TTS = 8 time units. As one can infer, this result is significantly worse than the optimal and

minimum time to schedule values —in this particular example, MTTS=OTTS=3 time slots.

On the other hand, if the system starts transferring the first block to SN3 the schedule

would not be affected anymore by the disconnection pattern of that node. Subsequently, the

second data block would be transferred to SN1 at time t1 and the last one would be transferred

to SN2 at t2. In this case, the system performed the best possible schedule resulting in TTS=3

time slots. Therefore, we clearly observe that data transfer scheduling is a relevant aspect

regarding the QoS of a decentralized storage system.

Data Redundancy

To maintain the desired level of data availability, it must be carefully decided the degree

of redundancy. Object replication is, perhaps, the simplest way of producing data redundancy,

being suitable for storage of small objects that are accessed frequently. However, other re-

dundancy schemes based on erasure codes can reduce the storage and communication costs

compared to replication [59, 68].

Concretely, in Part II of this thesis we make use of Reed-Solomon codes (RS) [69]. Given

a data object of size B, a RS(n, k) code partitions the data object into k equal-sized fragments,

each of size B/k bits. These k fragments are then encoded to a set of n = k + h redundant

blocks. Since this code is a maximum distance separable (MDS) code, the stored object can be

reconstructed from any k-subset of redundant fragments. The consequence of this property is

that a RS(n, k) code can tolerate the loss of any h = n− k blocks with a redundancy ratio of

only n/k.

In Figure 2.6 we illustrate a simple example of the practical use of erasure codes in a dis-

tributed storage system. That is, if we split a file into n = 12 blocks so that any k = 6 blocks
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suffice to reconstruct the original file, we can tolerate 6 failures with an storage-space over-

head of only 100%. If we had used replication instead, we would have needed 7 replicas to

achieve the same level of fault tolerance, yielding an storage-space overhead of 700%. The use

of coding is thus highly desirable in this environment where the nodes storing the data will

not be available at all times.

2.2.4 Existing Social Storage Systems

Next, we provide an overview of some important social storage systems. Apart from helping

the reader to know the most relevant systems in this regard, we believe that this section will

also give a sense on the potential applicability of our contributions in Part II of this thesis.

Friend-to-Friend (F2F) Storage Systems. F2F storage systems originally emerged as an alter-

native to traditional P2P storage systems. Although many relevant systems and designs have

been proposed in the literature (e.g., OceanStore [56], PAST [3], Farsite [16], etc), P2P storage

systems suffer from inherent drawbacks that are hard to overcome. First, the instability of

peers [18] makes difficult and costly to provide high data availability. Furthermore, despite

important efforts [19], the existence of free riding and selfish behaviors complicates the effi-

cient management of the existing resources. Moreover, many users are still reluctant to store

their data in unknown hosts due to trust and security reasons.

Instead of interacting with random nodes, the main strength of the F2F paradigm lies on

building storage interactions upon trust, social or real-world relationships. Thus, F2F systems

assume that the existence of social connections among participants gives a node reasons to

trust that these contracts will be respected, and behave accordingly [70]. This makes the whole

system to operate in a more favorable scenario, reducing the overhead of dealing with high

rates of free-riding and malicious behaviors. Next, we briefly describe several F2F systems:

• BlockParty is a distributed backup application, originally presented in the pioneering

work of Li and Dabek [61], that provides an off-site backup service for home users. As

other systems, BlockParty breaks the data to be backed up into chunks and distributes

each chunk to one or more neighbor machines depending on the desired replication

level. To ensure storage balance, the BlockParty software at a node dedicates at least

as much space to storing other nodes’ backups as the node wishes to use on other nodes.

• Friendstore [20] is a cooperative backup systems that also relies on trust relationships

among participants to ameliorate the impact of free-riding and malicious behavior that
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may harm the operation of the system. Friendstore puts special emphasis on keeping

track of the limited and heterogeneous resources of users (bandwidth, storage space) to

optimize backup operations, which are potentially resource consuming. For instance,

they reduce storage consumption by applying a simple coding scheme.

• Crashplan1 is an offsite backup service that enable users to store data in the cloud or

in other remote locations, such as other computers in a user’s network of friends and

family. Although the technical details are not public, Crashplan can be seen as one of the

first commercial products offering F2F storage.

Distributed On-line Social Networks (DOSN). Online social networks, such as Facebook,

Google+ and LinkedIn, are becoming a predominant service today. Catering for people of all

ages, gender and class, social networking services have become the primary means of commu-

nication between friends, family and colleagues. However, major social networks are currently

operated by private companies that control the data of users, which represents a potential

threat for privacy and security [71, 72, 73].

As a reaction to the risk that a centralized social network architecture represents for users’

privacy, researchers started to devise decentralized social networking systems [74, 75, 76, 77,

78]. As any other decentralized system, DOSNs integrate the spare resources contributed by

users (bandwidth, storage) to provide a social networking service. Moreover, in terms of stor-

age, a DOSN must take care all the operational aspects of any decentralized storage system,

including data placement, failure detection and redundancy, among other aspects.

• PeerSon [77] is a pioneering DOSN and its design is built upon three pillars: encryption,

decentralization, and direct data exchange. In PeerSon, data is stored encrypted for keeping

users’ data private, and decentralization —by means of leveraging an underlying P2P

overlay— provides independence from OSN providers. Authors state that decentral-

ization makes it easier to integrate direct data exchange between users’ devices into the

system. This, in turn, allows users to use the system without constant Internet connec-

tivity, leveraging real-life social networking and locality.

• Supernova [78] represents an evolution of the PeerSon design. Supernova introduces

the concept of super-peers in the system in order to improve data availability and deal

with heterogeneity in a more effective manner. Moreover, super-peer resources can be

1https://www.code42.com/crashplan/
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shared across users. The share a user obtains from a super-peer depends on his behavior,

which is a mechanism to incentivize user cooperation.

• SafeBook [76] is a decentralized and privacy-preserving online social networking site.

This system relies in two design principles, decentralization (P2P substrate) and exploit-

ing real-life trust. In this setting, SafeBook integrates various privacy and security mech-

anisms to provide data storage and data management functions that preserve users’ pri-

vacy, data integrity and availability.

• Vis-à-Vis [79] is a decentralized framework for OSNs based on the privacy-preserving

notion of a Virtual Individual Server (VIS). The main idea behind Vis-à-Vis is to make

use of existing cloud infrastructures to sustain a social networking site (running VIS in-

stances), being owned by the users in the system instead of a single OSN company. Tech-

nically, Vis-à-Vis is self-organized into overlay networks corresponding to social groups

and puts especial emphasis on preserving privacy of user location information.

The Social Cloud. The advent of social networks and digital relationships creates new op-

portunities to spur the adoption of socially oriented computing. One representative example

of this trend is the concept of “social cloud” as a means of facilitating resource sharing by

utilizing the relationships established between members of a social network [22, 23, 66].

A social cloud leverages preexisting trust relationships between users to enable mutually

beneficial sharing. This facilitates long term sharing with lower privacy and security require-

ments than those that are present in traditional cloud environments. For the time being, the

cloud accrues massive amounts of private information to provide for instance highly targeted

advertisements. Not surprisingly, security breaches, poor judgment, or even the lack of judi-

cial oversight leaves users vulnerable. In this sense, the “social cloud” represents a new form

for the users to retake control of the cloud service, avoiding to be tracked or give personal in-

formation against their will, or in a way in which they feel uncomfortable. In fact, as pointed

out by S. Pearson [80], one of the “top six” recommended privacy practices for cloud systems

is to maximize user control, which is one of the outstanding feature of the “social cloud”.

Another distinguishing feature of the “social cloud” is that the network comes first. It

is not a cloud or middleware extended with a social network; rather, it is a social network

extended with cloud functionality. Users form the basic infrastructure and share resources

around their social graphs. Such an organization brings out many benefits. For instance, one

of those advantages is usability, since the interface and tools for resource sharing are already
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familiar to users. Another one is that it allows users to maximize the control of the cloud

service by letting users choose how their resources will be used. Giving users the control over

their personal information and resources engenders trust, but this can be difficult in a cloud

computing scenario. This feature is very interesting for the adoption of the “social cloud”, as it

permits users to define a series of preferences for the management of their personal data, and

take account for that, among other advantages.
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3
State-of-the-Art
This Chapter aims at bringing the reader closer to the concrete research problems that motivate

this thesis. For the sake of clarity, we organize this Chapter into sections according to the

different topics treated throughout the remaining chapters.

Moreover, in each section, we provide a complete discussion of the existing related work,

comparing the achievements of this thesis to the state-of-the-art. This will ease the reader to

discern the context and the extent of our contributions.

3.1 Dissecting a Personal Cloud Back-end

3.1.1 Internal Operation of Personal Cloud Services

The internal operation and infrastructure of a Personal Cloud remains quite unknown. That

is, there is little information about the internals of these systems in order to understand the

management of user metadata or how the client notification system works, to name a couple of

examples. Although this can be understandable from the viewpoint of providers, such a lack

of information limits the scientific contributions of the research community in this field [24].

In this sense, Drago et al. [11] presented an external measurement of Dropbox in both a

university campus and residential networks. Authors unveiled that the Dropbox service is

composed of metadata servers, notification servers and a storage back-end, which is actually

Amazon S3. Although this is a significant contribution, authors only provided a high-level

perspective of the Dropbox’s architecture. In fact, from external vantage points, it is almost

impossible to fully understand the internal operation of a cloud service.

Thus, authors in [11] did not answer questions like Does Dropbox store metadata in a relational

database or not? In the affirmative case, which is the infrastructure needed to scale out metadata

storage? Which is the performance of this approach of managing metadata? Similar questions may

raise regarding other architectural elements of a Personal Cloud.

Very recently, Dropbox released a sales-oriented document explaining the security features

of the service. In that document, authors state that Dropbox stores metadata in a MySQL-

backed database using sharding and replication [81]. Similarly, Box [82] also explained how
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they scaled a MySQL cluster to store user metadata. However, although some vendors are

currently providing clues about the way they manage metadata, more work is needed to un-

derstand the trade-offs of these designs as well as to collect real system traces to foster research

in this field.

Progress beyond state-of-the-art: In Chapter 4, we describe the internal architecture and in-

frastructure of a global-scale Personal Cloud, namely UbuntuOne (U1). Concretely, we pro-

vide technical details of the metadata management system of U1 and its performance, as well

as the explanation of other internal elements (e.g. notifications, data model) and the interac-

tions with a cloud storage provider (Amazon S3) to outsource data storage. To the best of our

knowledge, this thesis is the first to illustrate the internals of a big Personal Cloud player in

such level of detail. We also make available the collected traces for the research community.

3.1.2 Passive Measurements of Personal Clouds

Another interesting research issue related with the operation of Personal Clouds is to analyze

the supported storage workload and how users produce it. This is specially interesting due to the

specific usage that users may present in such application [24, 83]; a deep understanding of

such usage may lead to the development of optimized data management techniques in this

scenario [38] and better system designs [34, 84].

In this regard, up to date there have been some attempts to model the storage workload

and user behavior of these systems. For instance, Drago et al. [11] analyzed the behavior of

users in Dropbox, mainly in university campus scenarios. This work includes macroscopic

workload metrics (e.g., daily traffic, characterization of storage/metadata flows), as well as

remarkable aspects of the behavior of users (e.g., number of devices, sharing). A study of a

similar flavor but of smaller scale has been also conducted for Microsoft SkyDrive [85].

Liu et al. [86] inspected in depth the workload patterns of users also in the context of a

storage system within a university campus. This work concentrates on macroscopic storage

workload metrics and the type of requests, as well as the differences in access patterns of

personal and shared folders. In Chapter 4 we also analyze macroscopic metrics of U1, as well

as other aspects (user behavior, metadata store performance) not discussed in [86].

Authors in [83] are particularly interested on modeling the behavior of user connectivity.

This work provides valuable insights regarding the nature of connection patterns of users, as

well as statistical observations to model the session behavior of users in this type of systems.
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Chapter 4 Drago et al. [11] Li et al. [24] Liu et al. [86] Gonçalves et al. [83]
Back-end operation Yes No No Yes No
Architecture Yes Yes No Yes No
Daily workload Yes Yes No Yes No
Analysis of files Yes Yes (Chunks) Yes Yes No
User behavior Yes Yes Yes No Yes
Metadata store perfor-
mance

Yes No No No No

Client sessions Yes Yes No No Yes
Measurement Scale 1.17M users 35K users 153 users 19K users 22K users
Methodology Server side Vantage points Client moni-

toring
Server side Vantage points

Table 3.1: Features of Chapter 4 compared to related works.

By monitoring a reduced number of users, Li et al. [24] measured the behavior of dozens

of desktop clients from various vendors in several universities. Their main objective was to

understand the data reduction and management techniques implemented in Personal Cloud

desktop clients (compression, deduplication). A similarity of this work with Chapter 4 is that

we also focus on the workload generated by desktop clients. Additionally, our measurement

includes many aspects not studied in [24], e.g., burstiness of user operations, user/system

workload metrics, DDoS attacks, among others.

To ease the comparison with main prior works, we suggest the reader to inspect Table 3.1.

However, the main shortcoming of previous efforts is that they analyze specific user com-

munities, which may be not representative enough of the global usage of a Personal Cloud

service. Ideally, to fully understand the workload of these services it would be necessary to

capture the activity of a large fraction of users, or even the whole population, which becomes

highly impractical considering proprietary and global-scale services.

Progress beyond state-of-the-art: Also in Chapter 4, we captured the activity of the whole user

population of U1 for one month by means of tracing its back-end servers. This valuable source

of information enabled us to provide an extensive characterization of the storage workload

and user behavior in U1. In our view, this contribution extends the state-of-the-art on Personal

Clouds measurements.

In summary, Chapter 4 illustrates the internal infrastructure and operation of a global-scale

Personal Cloud (U1) in a high level of detail. Moreover, we contribute an extensive study of

the workload and user behavior of the entire user population of U1 for one month; to the best

of our knowledge, this is the first analysis of a Personal Cloud at this scale.
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3.2 Measurement and Abuse of Personal Cloud REST APIs

3.2.1 Personal Cloud Active Measurements

The performance evaluation of cloud storage services [9] is an interesting topic with several

papers appearing recently. Hill et al. in [87] provide a quantitative analysis of the performance

of the Windows Azure Platform, including storage. Bergen et al. in [88] execute an extensive

measurement against Amazon S3 to elucidate whether cloud storage is suitable for scientific

Grids. Similarly, [89] presents a performance analysis of the Amazon Web Services.

The problem is that these works provide no insights regarding Personal Clouds. In fact, de-

spite their commercial popularity, only few research works have turned attention to measure

the performance of Personal Cloud storage services [11, 24, 37, 38, 90].

Naturally, in a complex architecture such as a Personal Cloud, the service performance can

be measured at various stages. We particularly focus on the client-side transfer performance of

the service. In such a competitive market, this perspective of performance analysis can pro-

vide useful information about the quality and experience of clients interacting with a service.

Therefore, a client may interact with a Personal Cloud making use of Web/mobile clients, desktop

clients and REST APIs.

As a part of their study, Drago et al. [11] briefly addressed user interactions with the Drop-

box’s Web interface in campus environments. However, since this type of access is the least

innovative, it has attracted less attention from the research community.

For desktop clients, the first analysis of Personal Cloud storage services we are aware of

was [90]. Hu et al. [90] compared Dropbox, Mozy, Carbonite and CrashPlan storage services.

However, their analysis was rather lightweight and only scratched the surface; the metrics

provided in [90] are only backup/restore times depending on several types of backup contents.

They also discussed potential privacy and security issues comparing these vendors.

In this line, authors in [37] present a complete framework to benchmark Personal Cloud

desktop clients. One of their valuable contributions is to design a benchmarking framework

for comparing the different data reduction techniques implemented in desktop clients (e.g, file

bundling, compression, deduplication).

Similarly, Li et al. in [24] examined the performance, specifically in terms of network over-

head, of various Personal Cloud desktop clients. Other works inspected the performance

issues of active update patterns in synchronized files [38]. Anyway, we believe that under-
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standing the interplay between data management techniques in desktop clients and service

performance is still requiring research efforts.

Unfortunately, to the best of our knowledge, the analysis of Personal Cloud REST API

services has not been addressed by the research community, mainly because desktop clients

attracted most recent works in this field. However, we believe that understanding their per-

formance may be of interest for developers integrating applications in Personal Clouds or

when clients use Personal Clouds as IaaS providers. Moreover, a proper characterization of

their performance may be used in modeling and simulation environments, for example.

Progress beyond state-of-the-art: As a major contribution of Chapter 5, we provide an ac-

tive measurement of various Personal Cloud vendors. This measurements characterizes the

transfer performance, variability and failures of these services, among other aspects. In our

view, our work extends the state-of-the-art knowledge on how Personal Clouds behave by

inspecting in depth their REST APIs.

3.2.2 Exploitation of Personal Clouds

In Chapter 5, apart from contributing our analysis, we argue that these services may be abused

through their REST APIs over free accounts. For this reason, we found specially interesting

recent efforts regarding security in Web Services [91]. In this sense, the authors of [13] observe

that the current lack of integrity controls at the data level in API REST Web Services could

result in profound problems regarding data integrity. Other works such as [92] exploit specific

vulnerabilities on the authentication mechanisms employed in Amazon EC2 and Eucalyptus

cloud control interfaces.

The abuse of cloud services is currently a relevant research concern. As described in [93],

one of the major risks of cloud computing is its “abuse and nefarious use” by malicious parties

(e.g. botnets, software exploits). In this line, few works have analyzed the impact of external

attacks on cloud services and applications. For instance, authors in [94, 95] investigate the

potential vulnerabilities of the cloud computing model, which could be exploited from fraud-

ulent resource consumption of any Internet connected host.

Directly related to Personal Clouds, authors in [54] subvert the Dropbox client to hide files

in the cloud with unlimited storage capacity. Although this work shares the same spirit than

Chapter 5, we focus on the abuse of Personal Clouds from their REST API services instead of

manipulating the desktop client. In fact, REST API services embody a more general form of

abuse that can be exploited in more scenarios than desktop clients.
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Furthermore, we prove our findings by designing and evaluating an application capable

to abuse Personal Clouds via their REST APIs. Regarding abusive applications, few previous

works have presented systems which benefit from the available Internet services. Close to our

work, EMFS [96] is a personal storage system which aggregates cloud storage by establishing

a RAID-like system on top of e-mail accounts. Other works propose backup tools or file sys-

tems benefiting from a variety of remote services, such as caches of Internet search engines,

e-mail accounts and free web space [97, 98]. These works are clearly in line with our abusive

application prototype, but they apply to different scenarios.

Progress beyond state-of-the-art: In contrast with previous research, Chapter 5 is the first

work to study the potential of Personal Cloud REST APIs as a vector for exploitation. Fur-

thermore, we developed and evaluated a file-sharing application to show how easy exploiting

these services is. We believe that our insights in this field may be useful to public vendors in

order to detect and mitigate the abusive use of their resources.

To summarize this section, Chapter 5 provides a thorough measurement and analysis of a

novel aspect of a Personal Cloud: the REST API service. Furthermore, we investigate a new

form of abuse that malicious users may perform against Personal Clouds by exploiting the

REST API service over free accounts.

3.3 Analysis of QoS in Friend-to-Friend Storage Systems

3.3.1 Performance Analysis of F2F Storage Systems

In Part II of this dissertation, we focus on social storage systems. Concretely, one of our main

interests is to understand the effect that aspects like the ON/OFF dynamics of participants or

the structure of their social relationships have on the achievable storage QoS: data availability,

load balancing and transfer performance.

Social storage systems —e.g., friend-to-friend (F2F), social clouds— originally emerged as

an alternative to overcome many of the limitations of P2P storage systems, such as free-riding

and the lack of trust. In fact, in the pioneering work of J. Li et al. [61], the authors argued that a

user should choose its neighbors (the nodes with whom it shares data) based on existing social

links instead of randomly. Such an approach provides incentives for users to cooperate and

results in a more stable system which, in turn, reduces the cost of maintaining data.

However, despite the hype aroused by this new decentralized storage paradigm [61], social

storage systems are still in their infancy. One of the contributions of this thesis is to provide
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a deep understanding of the specific characteristics that govern the performance of social stor-

age systems. In particular, we found two decisive factors to the operation of a social storage

system: (i) Users may use reduced friendsets of strong ties to store data [65]; (ii) The probability

for a user of finding logged off all the social links storing some specific content is high (i.e.,

availability correlations), particularly during night hours [99, 100].

Friendstore [20, 101] looked at how to ensure availability and durability in a social backup

system by storing data only on trusted nodes, and hence discouraging free-riding. However,

Friendstore evaluation was conducted by using availability traces of corporate desktop ma-

chines, which did not account for availability correlations existing in Internet systems. In Chap-

ter 6 we specifically address this fundamental problem of social storage systems.

Intuitively, to build a decentralized social storage system, one may think on borrowing

data management techniques from large-scale systems. Thus, a natural question that might

arise could be: Are the large-scale data management techniques suitable in a social storage scenario?

Availability correlation is a well-known issue in large-scale distributed systems [102, 103],

even for small groups [104]. For instance, [105] argues that the average user availability may

be misleading when it is used to calculate data redundancy in the presence of availability

correlations. Also, authors in [106] introduced new metrics to quantify the degree of online-

offline correlation of nodes. They applied these metrics to improve the performance of task

scheduling and file storage applications.

In Chapter 6, we present a novel history-based data availability estimation tailored to F2F

storage systems. In this line, in the presence of peer heterogeneity and availability patterns,

Kermarrec et al. proposed very recently [107] to resort to historical node availabilities to im-

prove data placement and repairs. However, our work differs from [107] in several aspects:

i) Contrary to a P2P scenario, the number of available nodes in a F2F system is extremely re-

duced; ii) In [107], the storage nodes are selected by their level of anti-correlation. This is not

the case for a F2F system where nodes cannot be selected from a large set: they are restricted

to a user’s trustworthy social links. Overall, one of the main objectives of both approaches is to

improve the data availability of the system.

Important research efforts have been focused on providing an adequate replica placement

to guarantee data availability [108, 109]. Instead of replicas, authors in [110] proposed to store

data blocks to nodes proportional to their availability. They also provided a numerical method

to estimate data availability in a system with heterogeneous nodes.
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The only work we are aware of that studied data availability in F2F storage systems is [99],

which showed that F2F systems cannot guarantee high data availability: if no friends are

online, then the data stored in the system will not be accessible by any means. However, this

work did not consider the correlated dynamics of friends and how this affects to the storage

service.

Progress beyond state-of-the-art: As a major contribution of this dissertation, in Chapter 6 we

model and improve the poor data availability experienced in a F2F storage system. Further-

more, we also investigate data management techniques tailored to this particular scenario.

This includes, for instance, an effective technique to calculate and generate the necessary

amount of data redundancy in the presence of small friendsets with correlated availabilities.

Clearly, our efforts go far beyond the current literature in social storage systems.

3.3.2 Hybrid or Cloud-assisted Architectures

Another major contribution visible in the second part of this thesis is the design (Chapter

6) and implementation (Chapter 7) of a cloud-assisted or hybrid social storage architecture.

This architecture combines resources from both end-users and the cloud storage services to

overcome the storage QoS limitations of purely decentralized social storage systems.

In this context, peer-assisted storage systems also combine the spare network bandwidth

and storage space of peers with that of a cloud storage service such as Amazon S3. The key

feature of peer-assisted storage is that it is comparable to the traditional client-server architec-

ture but at a fraction of its costs [111]. A representative example was Wuala1, a commercial

storage service that now only stores files in data centers but that in the past it stored (encoded)

fragments of the data on peers to save bandwidth at the server side [112]. Another example

is AmazingStore [113], which augments a centralized cloud-based storage service with a P2P

network to improve its resilience to correlated failures. Similarly, FS2You [114] is a large-scale

online storage system with peer-based assistance and semipersistent file availability that was

developed to reduce server bandwidth costs. Their measurement study demonstrated the fea-

sibility of combining peers with cloud resources.

Another related type of systems are user-assisted systems; they combine dedicated user re-

sources and cloud services to build a storage system. That is, Ctera [115] and Cleversafe [116]

are online storage providers that sell network attached storage (NAS) devices that users or

1http://www.wuala.com/
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small and medium enterprises (SMEs) install in their offices. The data stored in these NAS

devices is replicated to datacenters and immediately accessible through an online service.

Cleversafe even uses erasure codes as its redundancy scheme to optimize the utilization of

the contributed storage resources, spreading stored data across several NAS devices, owned

by different customers. However, as in the case of a traditional cloud service, users do not hold

the control of their data; it is replicated and managed in the server-side. Moreover, users should

acquire dedicated hardware to become part of the system, which differs from our targeted

scenario.

Progress beyond state-of-the-art: In Chapter 6, we propose a cloud-assisted architecture tai-

lored to the specific problems of F2F storage systems: availability correlations and small friend-

sets. Moreover, this architecture is complemented with a battery of specific data management

techniques for social storage scenarios (data availability, scheduling).

In summary, Chapter 6 contributes to the state-of-the-art paying particular attention to the

specific problems of F2F storage systems: small friendsets and availability correlations. In this

setting, we study the suitability of traditional data management techniques (data availabil-

ity, redundancy) and devise new ones. Finally, we design a novel cloud-assisted F2F storage

architecture to overcome the QoS limitations of pure decentralization.

3.4 Empirical Analysis of Social Cloud Storage

3.4.1 Understanding Storage QoS in the Social Cloud

Many works in the literature discuss on the use of social networks for building computing

systems and incentivizing resource sharing. One can find countless examples of applications

that leverage existing social networks to manage and authenticate users and even recruit vol-

unteers. For instance, both ASPEN [117] and PolarGrid [118] use social networks to manage

users and facilitate resource sharing.

The social cloud model, first proposed in [22], takes a different tack by extending cloud-like

functionality to online social networks instead of incorporating social networking to existing

computation platforms. Since its born, a plethora of works have been examining the potential

of this new social paradigm, particularly for underpinning computation [119, 120].

However, in the case of storage, only the research works [22, 23] partially explain some

of the barriers to overcome towards the realization of socially oriented cloud storage. More

specifically, these works concentrate on how to support storage trading through various social
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market metaphors but do not give any discussion on the operational requirements of the so-

cial cloud storage like data availability and the amount of storage space to be contributed by

friends. In Chapter 7, we aim at filling this gap by spotting concrete evidence of the existing

operational hurdles in the social cloud storage.

In addition, there is a great deal of synergy between the social cloud and P2P networking

paradigm in that services are provided by a network of peers. The P2P literature is full of

examples of storage systems where the storage capacity is contributed by a pool of distributed

peers such as Samsara [19] and PAST [121]. However, these systems lack of accountability,

familiar interface, and the social incentives that minimize the administrative overhead, which

are precisely the costs that social storage systems are meant to avoid.

Closer to the scope of a social cloud, F2F storage systems benefit from the trust relation-

ships among users to provide a more reliable storage service [20, 61, 101]. The authors in [61]

argued that a user should choose its neighbors (the nodes with which it shares data) based on

existing social relationships instead of randomly. Similarly, Friendstore [20, 101] enables users

to mutually back-up data via real-world negotiations. Although these systems could provide

the storage functionality of a social cloud, to the best of our knowledge, none of them is fully

integrated with a real-world social network. This is a primary requirement to realize a social

cloud.

Progress beyond state-of-the-art: In Chapter 7, we implement FriendBox: the first social

cloud storage application integrated with a real social network (Facebook). Furthermore,

thanks to our insights in Chapter 6, our application leverages resources from friends and cloud

resources to let users infer the right balance between data control and QoS.

3.4.2 Impact of the Social Network on the Performance of a Social Cloud

In a social cloud, storage interactions among users are defined by the social graph. Thus, an

interesting aspect that has not received enough attention is the role that the social network

topology plays on the storage QoS of a social cloud. This is one of the key points in Chapter 7.

Related to this topic, a myriad of research efforts have been devoted to build Decentral-

ized Online Social Networks (DOSNs) [75, 76, 77, 78], i.e., social networks that can operate in

a decentralized fashion thanks to the resources contributed by users. DOSNs are assumed to

provide higher security and privacy guarantees than nowadays’s massive online social net-

works, such as Facebook and Google+.
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Buchegger et al. present in [77] a prototype implementation of a DOSN system. Moreover,

authors discuss about the relevance of geographical/temporal storage diversity to data avail-

ability and the asymmetry of user contributed versus consumed resources. These research

topics are very aligned to our empirical study presented in Chapter 7.

Regarding data placement, Sharma et al. [78] investigated the effect of various placement

strategies to the data availability in an DOSN. The data placement strategies included in this

work considered storing data only at friends, in super-peers as well as mixing them with

strangers (i.e., users that are not friends). However, the number of candidate storage nodes

was generally higher than the expected amount of strong ties (e.g., family, close friends) in the

social circles of users to sustain a permanent personal storage service. Furthermore, authors

did not explored in depth the role of the social topology structure (node degree, clustering) on

the storage QoS.

The closest work that we are aware of in this respect is [122]. Zuo et al. present a metric to

quantify the strength of indirect ties (i.e., friends of friends). This metric is then used to extend

user friendsets in a F2F system while preserving social incentives. Among the presented use

cases, authors consider a F2F storage system scenario. In fact, this work can be seen as a

potential solution to the problems that we empirically analyze and characterize in Chapter 7.

Progress beyond state-of-the-art: Compared with previous works, Chapter 7 goes a step fur-

ther by providing novel insights on the interplay between the social network topology and the

storage QoS of a social cloud. We believe that understanding this interplay is vital to appraise

to what extent the social cloud can emerge as a true alternative to existing commercial and

non-profit storage systems.

To conclude, we present FriendBox in Chapter 7: a social cloud system for storage that

efficiently combines resources from trusted friends and cloud services to provide a flexible,

trusted and private personal storage service. Moreover, we conduct an experimental study

with FriendBox to understand the implications of the social topology (e,g, degree, clustering)

on the achievable storage QoS.
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Personal Clouds

UNIVERSITAT ROVIRA I VIRGILI 
ON PERSONAL STORAGE SYSTEMS: ARCHITECTURE AND DESIGN CONSIDERATIONS. 
Raúl Gracia Tinedo 
Dipòsit Legal: T 1344-2015



UNIVERSITAT ROVIRA I VIRGILI 
ON PERSONAL STORAGE SYSTEMS: ARCHITECTURE AND DESIGN CONSIDERATIONS. 
Raúl Gracia Tinedo 
Dipòsit Legal: T 1344-2015



4
Dissecting a Personal Cloud
Back-end

Summary

In this Chapter, we focus on understanding the nature of Personal Clouds by presenting the

internal structure and measurement study of UbuntuOne (U1). We first detail the U1 architecture,

core components involved in the U1 metadata service hosted in the datacenter of Canonical,

as well as the interactions of U1 with Amazon S3 to outsource data storage. Moreover, by

means of tracing the U1 servers for one month, we provide an extensive analysis of the storage

workload, user behavior and the performance of the metadata back-end. Finally, we discuss

potential improvements to the operation of U1 that may be of interest to similar systems.

A paper with the results of this Chapter has been submitted for publication.
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4.1 Introduction

Today, users require ubiquitous and transparent storage to help handle, synchronize and man-

age their personal data. In a recent report, Forrester research [123] forecasts a market of 12

billion in the US in paid subscriptions to personal and user-centric cloud services by 2016. In

response to this demand, Personal Clouds like Dropbox, Box and UbuntuOne (U1) have pro-

liferated and become increasingly popular, attracting companies such as Google, Microsoft,

Amazon or Apple to offer their own integrated solutions in this field.

In a nutshell, a Personal Cloud service offers automatic backup, file sync, sharing and re-

mote accessibility across a multitude of devices and operating systems. The popularity of these

services is based on their easy to use Software-as-a-Service (SaaS) storage facade to ubiquitous

Infrastructure-as-a-Service (IaaS) providers like Amazon S3 and others.

Unfortunately, due to the proprietary nature of these systems, very little is known about

their performance and characteristics, including the workload they have to handle daily. And

indeed, the few available studies have to rely on the so-called “black-box” approach, where

traces are collected from a single or a limited number of measurement points, in order to infer

their properties. This was the approach followed by the most complete analysis of a Personal

Cloud to date, the measurement of Dropbox conducted by Drago et al. [11]. Although this

work describes the overall service architecture, it provides no insights on the operation and

infrastructure of the Dropbox’s back-end. And also, it has the additional flaw that it only

focuses on small and specific communities, like university campuses, which may breed false

generalizations.

Similarly, several Personal Cloud services have been externally probed to infer their op-

erational aspects, such as data reduction and management techniques [24, 37, 38], or even

transfer performance [29, 90]. However, from external vantage points, it is impossible to fully

understand the operation of these systems without fully reverse-engineering them.

In this Chapter, we present results of our study of U1: the Personal Cloud of Canonical,

integrated by default in Linux Ubuntu OS. Despite the shutdown of this service on July 2014,

the distinguishing feature of our analysis is that it has been conducted using data collected by

the provider itself. U1 provided service to several millions of users at the time of the study on

January-February 2014, which constitutes the first complete analysis of the performance of a

Personal Cloud in the wild. Such a unique data set has allowed us to reconfirm results from

prior studies, like that of Drago et al. [11], which paves the way for a general characterization

of these systems. But it has also permitted us to expand the knowledge base on these services,
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UbuntuOne Analisys Finding Implications and Opportunities
90% of files are smaller than 1MByte. Object storage services normally used as a cloud ser-

vice are not optimized for managing small files [124].
Storage Workload
(4.4)

18.5% of the upload traffic is caused by file up-
dates.

Changes in file metadata cause high overhead since
the U1 client does not support delta updates (e.g.
.mp3 tags).

We detected a deduplication ratio of 17% in one
month.

File-based cross-user deduplication provides an at-
tractive trade-off between complexity and perfor-
mance [24].

DDoS attacks against U1 are frequent. Further research is needed regarding secure protocols
and automatic countermeasures for Personal Clouds.

1% of users that manage files generate 65% of the
traffic.

Very active users may be treated in an optimized man-
ner to reduce storage costs.

User Behavior (4.5) Data management operations, such as uploads or
file deletions, are normally executed in long se-
quences.

This correlated behavior can be exploited by caching
and prefetching mechanisms in the server-side.

User operations are bursty; users transition be-
tween long, idle periods and short, very active
ones.

User behavior combined with the user per-shard data
model impacts the metadata back-end load balancing.

A 20-node database cluster provided service to
1.17M users without symptoms of congestion.

The user-centric data model of a Personal Cloud makes
relational database clusters a simple yet effective ap-
proach to scale out metadata storage.

Metadata Back-end
Performance (4.6)

RPCs service time distributions accessing the
metadata store exhibit long tails.

Several factors at hardware, OS and application-
level are responsible for poor tail latency in RPC
servers [125].

In short time windows, load values of API
servers/DB shards are very far from the mean
value.

Further research is needed to achieve better load bal-
ancing under this type of workload.

Table 4.1: Summary of some of our most important findings and their implications.

which now represent a considerable volume of the Internet traffic. According to Drago et

al. [11], the total volume of Dropbox traffic accounted for a volume equivalent to around one

third of the YouTube traffic on a campus network. Consequently, we believe that the results

of our study can be useful for both researchers, ISPs and data center designers, giving hints

on how to anticipate the impact of the growing adoption of these services. In summary, our

contributions are the following:

Back-end architecture and operation of U1. This Chapter provides a comprehensive descrip-

tion of the U1 architecture, being the first study to depict the back-end infrastructure of a real-

world vendor. Similarly to Dropbox [11], U1 decouples the storage of file contents (data) and

their logical representation (metadata). Canonical only owns the infrastructure for the metadata

service, whereas the actual file contents are stored separately in Amazon S3. Among other in-

sights, we found that U1 API servers are characterized by long tail latencies and that a sharded

database cluster is an effective way of storing metadata in these systems. Interestingly, these

issues may arise in other systems that decouple data and metadata as U1 does [34].

Workload analysis and user behavior in U1. By tracing the U1 servers in the Canonical dat-

acenter, we provide an extensive analysis of its back-end activity produced by the entire user
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population of U1 for one month (1.17M distinct users). Our analysis confirms already reported

facts, like the execution of user operations in long sequences [11] and the potential waste that

file updates may induce in the system [24, 38]. Moreover, we provide new observations, such

as a taxonomy of files in the system, the modeling of burstiness in user operations or the de-

tection of attacks to U1, among others. Table 4.1 summarizes some of our key findings.

Potential improvements to Personal Clouds. We suggest that a Personal Cloud should be

aware of the behavior of users to optimize its operation. Given that, we discuss the implica-

tions of our findings to the operation of U1. For instance, despite U1 was frequently used

for editing files, file updates were responsible for 18.5% of upload traffic mainly due to the

lack of delta updates in the desktop client. Furthermore, we detected 3 DDoS attacks in one

month, motivating the need for further research in automatic attack countermeasures in secure

and dependable storage protocols. Although our observations may not apply to all existing

services, we believe that our analysis can help to improve the next generation of Personal

Clouds [34, 38].

Publicly available dataset. We contribute our dataset (773GB) to the community and it is

available at http://cloudspaces.eu/datasets/u1_measurement. To our knowledge, this is

the first dataset that contains the back-end activity of a large-scale Personal Cloud. We hope

that our dataset provides new opportunities to researchers in further understanding the inter-

nal operation of Personal Clouds, promoting research and experimentation in this field.

The rest of this Chapter is organized as follows. We describe in Section 4.2 the architecture

of U1 and its metadata back-end. In Section 4.3 we explain the trace collection methodology.

In Section 4.4, 4.5 and 4.6 we analyze the storage workload, user activity and back-end perfor-

mance of U1, respectively. We discuss the implications of our insights and draw conclusions

in Section 4.7.

4.2 The U1 Personal Cloud

U1 was a suite of online services from Canonical that enabled users to store and sync files

online and between computers, as well as sharing files/folders with others using file synchro-

nization. Until the service shutdown in July 2014, U1 provided desktop and mobile clients and

a Web front-end. U1 was integrated with other Ubuntu services, like Tomboy for notes and U1

Music Store for music streaming.
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In this section, we first describe the U1 storage protocol used for communication between

clients and the server-side infrastructure (Sec. 4.2.1). This will facilitate the understanding

of the system architecture (Sec. 4.2.2). We then discuss the details of a U1 desktop client

(Sec. 4.2.3). Finally, we give details behind the core component of U1, its metadata back-end

(Sec. 4.2.4).

4.2.1 U1 Storage Protocol

U1 uses its own protocol (ubuntuone-storageprotocol) based on TCP and Google Protocol

Buffers1. In contrast to most commercial solutions, the protocol specifications and client-side

implementation are publicly available2. Here, we describe the protocol in the context of its en-

tities and operations. Operations can be seen as end-user actions intended to manage one/many

entities, such as a file or a directory.

Protocol Entities

In the following, we define the main entities in the protocol. Note that in our analysis, we

characterize and identify the role of these entities in the operation of U1.

Node: Files and directories are nodes in U1. For files, U1 decouples their logical representation

from their actual contents. Drawing a comparison to a file system, the inodes are stored in

the metadata service and the extents are stored in Amazon S3. The protocol supports CRUD

operations on nodes (e.g. list, delete, etc.). The protocol assigns Universal Unique Identifiers

(UUIDs) to both node objects and their contents, which are generated in the back-end.

Volume: A volume is a container of node objects. During the installation of the U1 client, the

client creates an initial volume to store files with id=0 (root). There are 3 types of volumes: i)

root/predefined, ii) user defined folder (UDF), which is a volume created by the user, and iii) shared

(sub-volume of another user to which the current user has access).

Session: A user interacts with the server in the context of a U1 storage protocol session (not

HTTP or any other session type). This session is used to identify the requests of a single

user during the session lifetime. Usually, sessions do not expire automatically. A client may

disconnect, or a server process may go down, and that will end the session. For this reason, in

parallel with a session, a user establishes a TCP connection with U1 that is used to detect these

1https://wiki.ubuntu.com/UbuntuOne
2https://launchpad.net/ubuntuone-storage-protocol

UNIVERSITAT ROVIRA I VIRGILI 
ON PERSONAL STORAGE SYSTEMS: ARCHITECTURE AND DESIGN CONSIDERATIONS. 
Raúl Gracia Tinedo 
Dipòsit Legal: T 1344-2015

https://wiki.ubuntu.com/UbuntuOne
https://launchpad.net/ubuntuone-storage-protocol


52 4. DISSECTING A PERSONAL CLOUD BACK-END

API Operation Related RPC Description
ListVolumes dal.list volumes This operation is normally performed at the beginning of a session and lists all the

volumes of a user (root, udf, shared).
ListShares dal.list shares This operation lists all the volumes of a user that are of type share. In this operation, ther

field shared by is the owner of the volume and shared to is the user to which that
volume was shared with. In this operation, the field shares represents the number of
volumes type share of this user.

(Put/Get)Content see Appendix A These operations are the actual file uploads and downloads, respectively. The notifica-
tion goes to the U1 back-end but the actual data is stored in a separate service (Amazon
S3). A special process is created to forward the data to Amazon S3. Since the upload
management in U1 is complex, we refer the reader to Appendix A for a description in
depth of upload transfers.

Make dal.make dir

dal.make file

This operation is equivalent to a “touch” operation in the U1 back-end. Basically, it
creates a file node entry in the metadata store and normally precedes a file upload.

Unlink dal.unlink node Delete a file or a directory from a volume.
Move dal.move Moves a file from one directory to another.
CreateUDF dal.create udf Creates a volume of type udf.
DeleteVolume dal.delete volume Deletes a volume and the contained nodes.
GetDelta dal.get delta Get the differences between the server volume and the local one (generations).
Authenticate auth.get user id

from token

Operations managed by the servers to create sessions for users.

Table 4.2: Description of the most relevant U1 API operations.

events. To create a new session, an OAuth [51] token is used to authenticate clients against U1.

Tokens are stored separately in the Canonical authentication service (see 4.2.4).

API Operations

The U1 storage protocol offers an API consisting of the data management and metadata oper-

ations that can be executed by a client. Metadata operations are those operations that do not

involve transfers to/from the data store (i.e., Amazon S3), such as listing or deleting files, and

are entirely managed by the synchronization service. On the contrary, uploads and downloads

are, for instance, typical examples of data management operations.

In Table 4.2 we describe the most important protocol operations between users and the

server-side infrastructure. We traced these operations to quantify the system’s workload and

the behavior of users.

4.2.2 Architecture Overview

As mentioned before, U1 has a 3-tier architecture consisting of clients, synchronization service

and the data/metadata store. Similarly to Dropbox [11], U1 decouples the storage of file contents

(data) and their logical representation (metadata). Canonical only owns the infrastructure for the

metadata service, which processes requests that affect the virtual organization of files in user

volumes. The actual contents of file transfers are stored separately in Amazon S3.
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However, U1 treats client requests differently from Dropbox. Namely, Dropbox enables

clients to send requests either to the metadata or storage service depending on the request

type. Therefore, the Dropbox infrastructure only processes metadata/control operations. The

cloud storage service manages data transfers, which are normally orchestrated by computing

instances (e.g. EC2).

In contrast, U1 receives both metadata requests and data transfers of clients. Internally,

the U1 service discriminates client requests and redirects them either to the metadata store

or the storage service, respectively. For each upload and download request, a new process is

instantiated to manage the transfer between the client and S3 (see A). Therefore, the U1 model

is simpler from a design perspective, yet this comes at the cost of delegating the responsibility

of processing data transfers to the metadata back-end.

U1 Operation Workflow. Imagine a user that initiates the U1 desktop client (4.2.3). At this

point, the client sends an Authenticate API call (see Table 4.2) to U1, in order to establish a

new session. An API server receives the request and contacts to the Canonical authentication

service to verify the validity of that client. Once the client has been authenticated, a persistent

TCP connection is established between the client and U1. Then, the client may send other

management requests on user files and directories.

To understand the synchronization workflow, let us assume that two clients are online and

work on a shared folder. Then, a client sends an Unlink API call to delete a file from the shared

folder. Again, an API server receives this request, which is forwarded in form of Remote

Procedure Call (RPC) to a RPC server (4.2.4). As we will see, RPC servers translate RPC calls

into database query statements to access the correct metadata store shard (PostgreSQL cluster).

Thus, the RPC server deletes the entry for that file from the metadata store.

When the query finishes, the result is sent back from the RPC server to the API server that

responds to the client that performed the request. Moreover, the API server that handled the

Unlink notifies the other API servers about this event that, in turn, is detected by the API

server to which the second user is connected. This API server notifies via push to the second

client, which deletes that file locally.

Next, we describe in depth the different elements involved in this example of operation:

The desktop client, the U1 back-end infrastructure and other key back-end services to the

operation of U1 (authentication and notifications).
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4.2.3 U1 Desktop Client

U1 provides a user friendly desktop client, implemented in Python (GPLv3), with a graphical

interface that enables users to manage files. It runs a daemon in the background that exposes

a message bus (DBus) interface to handle events in U1 folders and make server notifications

visible to the user through OS desktop. This daemon also does the work of deciding what to

synchronize and in which direction to do so.

By default, one folder labeled ∼/Ubuntu One/ is automatically created and configured for

mirroring (root volume) during the client installation. Changes to this folder (and any others

added) are watched using inotify. Synchronization metadata about directories being mir-

rored is stored in ∼/.cache/ubuntuone. When remote content changes, the client acts on the

incoming unsolicited notification (push) sent by U1 service and starts the download. Push no-

tifications are possible since clients establish a TCP connection with the metadata service that

remains open while online.

In terms of data management, Dropbox desktop clients deduplicate data at chunk level [11].

In contrast, U1 resorts to file-based cross-user deduplication to reduce the waste of storing re-

peated files [24]. Thus, to detect duplicated files, U1 desktop clients provide to the server the

SHA-1 hash of a file prior to the content upload. Subsequently, the system checks if the file to

be uploaded already exists or not. In the affirmative case, the new file is logically linked to the

existing content, and the client does not need to transfer data.

Finally, as observed in [24], the U1 client applies compression to uploaded files to optimize

transfers. However, it does not perform advanced techniques, such as file bundling1, delta

updates and sync deferment, to buffer frequent changes to the same file, leading to potential

inefficiencies.

4.2.4 U1 Metadata Back-end

The entire U1 back-end is all inside a single datacenter and its objective is to manage the

metadata service. The back-end architecture appears in Fig. 4.1 and consists of metadata servers

(API/RPC), metadata store and data store.

System gateway. The gateway to the back-end servers is the load balancer. The load balancer

(HAProxy, ssl, etc.) is the visible endpoint for users and it is composed of two racked servers.
1Li et al. [24] suggest that U1 may group small files together for upload (i.e. bundling), since they observed

high efficiency uploading sets of small files. However, U1 does not bundle small files together. Instead, clients
establish a TCP connection with the server that remains open during the session, avoiding the overhead of creating
new connections.
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Figure 4.1: Architecture of U1 back-end.

Metadata store. U1 stores metadata in a PostgreSQL database cluster composed of 20 large

Dell racked servers, configured in 10 shards (master-slave). Internally, the system routes op-

erations by user identifier to the appropriate shard. Thus, metadata of a user’s files and folders

reside always in the same shard. This data model effectively exploits sharding, since normally

there is no need to lock more than one shard per operation (i.e. lockless). Only operations

related to shared files/folders may require to involve more than one shard in the cluster.

API/RPC servers. Beyond the load balancer we find the API and RPC database processes

that run on 6 separate racked servers. API servers receive commands from the user, perform

authentication, and translate the commands into RPC calls. In turn, RPC database workers

translate these RPC calls into database queries and route queries to the appropriate database

shards. API/RPC processes are more numerous than physical machines (normally 8− 16 pro-

cesses per physical machine), so that they can migrate among machines for load balancing. In-

ternally, API and RPC servers, the load balancer and the metadata store are connected though

a switched 1Gbit Ethernet network.

Data storage. Like other popular Personal Clouds, such as Dropbox or SugarSync, U1 stores

user files in a separate cloud service. Concretely, U1 resorts to Amazon S3 (us-east) to store

user data. This solution enables a service to rapidly scale out without a heavy investment

in storage hardware. In its latests months of operation, U1 had a ≈ 20, 000$ monthly bill in

storage resources, being the most important Amazon S3 client in Europe.

With this infrastructure, U1 scaled up to 4 million registered users (1.17M were traced in

this measurement).

Authentication Service

The authentication service of U1 is shared with other Canonical services within the same

datacenter and it is based on OAuth [51]. The first time a user interacts with U1, the desktop

client requires him to introduce his credentials (email, password). The API server that handles
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the authentication request contacts the authentication service to generate a new token for this

client. The created token is associated in the authentication service with a new user identifier.

The desktop client also stores this token locally in order to avoid exposing user credentials in

the future.

In the subsequent connections of that user, the authentication procedure is easier. Basically,

the desktop client sends a connection request with the token to be authenticated. The U1 API

server responsible for that requests asks the authentication service if the token does exist and

has not expired. In the affirmative case, the authentication service retrieves the associated

user identifier, and a new session is established. During the session, the token of that client is

cached to avoid overloading the authentication service.

The authentication infrastructure consists of 1 database server with hot failover and 2 ap-

plication servers configured with crossed stacks of Apache/Squid/HAProxy.

Notifications

Clients detect changes in their volumes by comparing their local state with the server side

on every connection (generation point). However, if two related clients are online and their

changes affect each other (e.g. updates to shares, new shares), API servers notify them directly

(push). To this end, API servers resort to the TCP connection that clients establish with U1 in

every session.

Internally, the system needs a way of notifying changes to API servers that are relevant to

simultaneously connected clients. Concretely, U1 resorts to RabbitMQ (1 server) for commu-

nicating events between API servers1, which are subscribed in the queue system to send and

receive new events to be communicated to clients.

Next, we describe our measurement methodology to create the dataset used in our analysis.

4.3 Data Collection

We present a study of the U1 service back-end. In contrast to other Personal Cloud measure-

ments [11, 24, 29], we did not deploy vantage points to analyze the service externally. Instead,

we inspected directly the U1 metadata servers to measure the system. This has been done

in collaboration with Canonical in the context of the FP7 CloudSpaces2 project. Canonical

anonimyzed sensitive information to build the trace, following strict ethical guidelines.

1If connected clients are handled by the same API process, their notifications are sent immediately, i.e. there is no
need for inter-process communication with RabbitMQ.

2http://cloudspaces.eu
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Trace duration 30 days (01/11 - 02/10)
Trace size 773 GB (3, 391M lines)
Back-end servers traced 6 servers (all)
Unique users 1, 170, 880
Unique files 137.63M
User sessions 42.5M
Transfer operations 194.3M
Total upload traffic 105TB
Total download traffic 120TB

Table 4.3: Summary of the trace.

The traces are taken at both API and RPC server stages. In the former stage we collected

important information about the storage workload and user behavior, whereas the second

stage provided us with valuable information about the requests’ life-cycle and the metadata

store performance.

We built the trace capturing a series of service logfiles. Each logfile corresponds to the entire

activity of a single API/RPC process in a machine for a period of time. Each logfile is within

itself strictly sequential and timestamped. Thus, causal ordering is ensured for operations done

for the same user. However, the timestamp between servers is not dependable, even though

machines are synchronized with NTP (clock drift may be in the order of ms).

To gain better understanding on this, consider a line in the trace with this logname: product

ion-whitecurrant-23-20140128. They will all be production, because we only looked at pro-

duction servers. After that prefix is the name of the physical machine, followed by the number

of the server process. The mapping between services and servers is dynamic within the time

frame of analyzed logs, since they can migrate between servers to balance load. In any case,

the identifier of the process is unique within a machine. After that is the date the logfile was

“cut” (there is one log file per server/service and day).

Database sharding is in the metadata store back-end, so it is behind the point where traces

were taken. This means that in these traces any combination of server/process can handle

any user. To have a strictly sequential notion of the activity of a user we should take into

account the U1 session and sort the trace by timestamp (a user may have more than one parallel

connection). A session starts in the least loaded machine and lives in the same node until it

finishes, making user events strictly sequential. Thanks to this information we can estimate

system and user service times.

Approximately 1% of traces are not analyzed due to failures parsing of the logs.

Dataset
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The trace is the result of merging all the logfiles (773GB of .csv text) of the U1 servers for

30 days (see Table 4.3).

The trace contains the API operations (request type storage/storage done) and their

translation into RPC calls (request type rpc), as well as the session management of users (re-

quest type session). This provides different sources of valuable information. For instance, we

can analyze the storage workload supported by a real-world cloud service (users, files, opera-

tions). Since we captured file properties such as file size and hash, we can study the storage

system in high detail (contents are not disclosed).

Dataset limitations. We mentioned that timestamps among servers are not dependable

since they may be different (in order of ms). Also, the dataset only includes events originating

from desktop clients. Other sources, namely the web front-end and the mobile clients, are not

included. This is because the different client types are handled by different software stacks

that were not logged. Finally, we detected that sharing among users is limited.

4.4 Storage Workload

4.4.1 Macroscopic Daily Usage

First, we quantify the storage workload supported by U1 for one month. Moreover, we pay

special attention to the behavior of files in the system, to infer potential improvements. We

also unveil attacks perpetrated to the U1 service.

Storage traffic and operations. Fig. 4.2a provides a time-series view of the upload/download

traffic of U1. We observe in Fig. 4.2a that U1 exhibits important daily patterns. To wit, the vol-

ume of uploaded GBytes per hour can be up to 10x higher in the central day hours compared

to the nights. This observation is aligned with previous works, that detected time-based vari-

ability in both the usage and performance of Personal Cloud services [11, 29]. This effect is

probably related to the working habits of users, since U1 desktop clients are by default initi-

ated automatically when users turn on their machines.

Another aspect to explore is the relationship between file size and its impact in terms of

upload/download traffic. To do so, in Fig. 4.2b, we depict in relative terms the fraction of

transferred data and storage operations for distinct file sizes. As can be observed, a very small

amount of large files (> 25MBytes) capitalizes 79.3% and 88.2% of upload and download

traffic, respectively. Conversely, 84.3% and 89.0% of upload and download operations are

related to small files (< 0.5MBytes). As reported in other domains [126, 127, 128], we conclude
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Figure 4.2: Macroscopic storage workload metrics of U1.

that in U1 the workload in terms of storage operations is dominated by small files, whereas a

small number of large files generate most of the network traffic.

For uploads, we found that 10.05% of total upload operations are updates, that is, an up-

load of an existing file that has distinct hash/size. However, in terms of traffic, file updates

represent 18.47% of the U1 upload traffic. This can be partly explained by the lack of delta

updates in the U1 client and the heavy file-editing usage that many users exhibited (e.g., code

developers). Particularly for media files, U1 engineers found that applications that modify

the metadata of files (e.g., tagging .mp3 songs) induced high upload traffic since the U1 client

uploads again files upon metadata changes, as they are interpreted as regular updates.

To summarize, Personal Clouds tend to exhibit daily traffic patterns, and most of this traffic

is caused by a small number of large files. Moreover, desktop clients should efficiently handle

file updates to minimize traffic overhead.

R/W ratio. The read/write (R/W) ratio represents the relationship between the down-

loaded and uploaded data in the system for a certain period of time. Here we examine the

variability of the R/W ratio in U1 (1-hour bins). The boxplot in Fig. 4.2c shows that the R/W

ratio variability can be important, exhibiting differences of 8x within the same day. Moreover,

the median (1.14) and mean (1.17) values of the R/W ratio distribution point out that the U1

workload is slightly read-dominated, but not as much as it has been observed in Dropbox [11].
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This indicates that users mainly use U1 as a storage service, rather than for sharing content.

We also want to explore if the R/W ratios present patterns or dependencies along time due

to the working habits of users. To verify whether R/W ratios are independent along time, we

calculated the autocorrelation function (ACF) for each 1-hour sample (see Fig. 4.2c). To inter-

pret Fig. 4.2c, if R/W ratios are completely uncorrelated, the sample ACF is approximately

normally distributed with mean 0 and variance 1/N, where N is the number of samples. The

95% confidence limits for ACF can then be approximated to ±2/
√

N.

As shown in Fig. 4.2c, R/W ratios are not independent, since most lags are outside 95%

confidence intervals, which indicates long-term correlation with alternating positive and neg-

ative ACF trends. This evidences that the R/W ratios of U1 workload are not random and

follow a pattern also guided by the working habits of users.

Concretely, averaging R/W ratios for the same hour along the whole trace, we found that

from 6am to 3pm the R/W ratio shows a linear decay. This means that users download more

content when they start the U1 client, whereas uploads are more frequent during the common

working hours. For evenings and nights we found no clear R/W ratio trends.

We conclude that different Personal Clouds may exhibit disparate R/W ratios, mainly de-

pending on the purpose and strengths of the service (e.g., sharing, content distribution). More-

over, R/W ratios exhibit patterns along time, which can be predicted in the server-side to

optimize the service.

4.4.2 Analysis of Files in U1

File operation dependencies. Essentially, in U1 a file can be downloaded (or read) and uploaded

(or written) multiple times, until it is eventually deleted. Next, we aim at inspecting the depen-

dencies among file operations [86, 129], which can be RAW (Read-after-Write), WAW (Write-

after-Write) or DAW (Delete-after-Write). Analogously, we have WAR, RAR and DAR for op-

erations executed after a read.

First, we inspect file operations that occur after a write (Fig. 4.3a). We see that WAW de-

pendencies are the most common ones (30.1% of 170.01M in total). This can be due to the fact

that users regularly update synchronized files, such as documents of code files. This result is con-

sistent with the results in [129] for personal workstations where block updates are common,

but differs from other organizational storage systems in which files are almost immutable [86].

Furthermore, the 80% of WAW times are shorter than 1 hour, which seems reasonable since

users may update a single text-like file various times within a short time lapse.
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Figure 4.3: Usage and behavior of files in U1.

In this sense, Fig. 4.3a shows that RAW dependencies are also relevant. Two events can

lead to this situation: (i) the system synchronizes a file to another device right after its cre-

ation, and (ii) downloads that occur after every file update. For the latter case, reads after suc-

cessive writes can be optimized with sync deferment to reduce network overhead caused by

synchronizing intermediate versions to multiple devices [24]. This has not been implemented

in U1.

Second, we inspect the behavior of X-after-Read dependencies (Fig. 4.3b). As a conse-

quence of active update patterns (i.e., write-to-write) and the absence of sync deferment, we

see in Fig. 4.3b that WAR transitions also occur within reduced time frames compared to other

transitions. Anyway, this dependency is the least popular one yielding that files that are read

tend not to be updated again.

In Fig. 4.3b, 40% of RAR times fall within 1 day. RAR times are shorter than the ones

reported in [86], which can motivate the introduction of caching mechanisms in the U1 back-

end. Caching seems specially interesting observing the inner plot of Fig. 4.3b that reveals a

long tail in the distributions of reads per file. This means that a small fraction of files is very

popular and may be effectively cached.

By inspecting the Delete-after-X dependencies, we detected that around 12.5M files in U1
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were completely unused for more than 1 day before their deletion (9.1% of all files). This simple

observation on dying files evidences that warm and/or cold data exists in a Personal Cloud, which

may motivate the involvement of warm/cold data systems in these services (e.g., Amazon

Glacier, f4 [130]). To efficiently managing warm files in these services is object of current work.

Node lifetime. Now we focus on the lifetime of user files and directories (i.e., nodes). As

shown in Fig. 4.3c, 28.9% of the new files and and 31.5% of the recently created directories are

deleted within one month. We also note that the lifetime distributions of files and directories

are very similar, which can be explained by the fact that deleting a directory in U1 triggers the

deletion of all the files it contains.

This figure also unveils that a large fraction of nodes are deleted within few hours after their

creation, especially for files. Concretely, users delete 17.1% of files and 12.9% of directories

within 8 hours after their creation time.

All in all, in U1 files exhibit similar lifetimes than files in local file systems. For instance,

Agrawal et al. in [127] analyzed the lifetimes of files in corporative desktop computers for

five years. They reported that around 20% to 30% of files (depending on the year) in desktop

computers present a lifetime of one month, which agrees with our observations. This suggests

that users behave similarly deleting files either in synchronized or local folders.

4.4.3 File Deduplication, Sizes and Types

File-based deduplication. The deduplication ratio (dr) is a metric to quantify the proportion of

duplicated data. It takes real values in the interval [0, 1), with 0 signaling no file deduplication

at all, and 1 meaning full deduplication. It is expressed as dr = 1− (Dunique/Dtotal), where

Dunique is the amount of unique data, and Dtotal is equal to the total storage consumption.

We detected a dr of 0.171, meaning that the 17% of files in the trace can be deduplicated.

This is slightly better than the deduplication ratio reported by Canonical (≈ 11%), and similar

(18%) to that given by the recent work of Li et al. [24]. This suggests that file-based cross-user

deduplication could be a practical approach to reduce storage costs in U1.

Moreover, Fig. 4.4a demonstrates that the distribution of file objects w.r.t unique contents

exhibits a long tail. This means that a small number of files accounts for a very large number

of duplicates (e.g., popular songs), whereas 80% files present no duplicates. Hence, files with

many duplicates represent a hot spot for the deduplication system, since a large number of

logical links point to a single content.
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Figure 4.4: Characterization of files in U1.

File size distribution. The inner plot of Fig. 4.4b illustrates the file size distribution of

transferred files in the system. At first glance, we realize that the vast majority of files are

small [126, 127, 128]. To wit, 90% of files are smaller than 1MByte. In our view, this can have

important implications on the performance of the back-end storage system. The reason is that

Personal Clouds like U1 use object storage services offered by cloud providers as data store,

which has not been designed for storing very small files [124].

In this sense, Fig. 4.4b shows the file size distribution of the most popular file extensions

in U1. Non-surprisingly, the distributions are very disparate, which can be used to model

realistic workloads in Personal Cloud benchmarks [37]. It is worth to note that in general,

incompressible files like zipped files or compressed media are larger than compressible files

(docs, code). This observation indicates that compressing files does not provide much benefits in

many cases.

File types: number vs storage space. We classified files belonging to the 55 most popular

file extensions into 7 categories: Pics (.jpg, .png, .gif, etc.), Code (.php, .c, .js, etc.), Docs

(.pdf, .txt, .doc, etc.), Audio/Video (.mp3, .wav, .ogg, etc.), Application/Binary (.o, .msf,

.jar, etc.) and Compressed (.gz, .zip, etc.). Then, for each category, we calculated the ratio

of the number of files to the total in the system. We did the same for the storage space. This
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Figure 4.5: DDoS attacks detected in our trace.

captures the relative importance of each content type.

Fig. 4.4c reveals that Audio/Video category is one of the most relevant types of files re-

garding the share of consumed storage, despite the fraction of files belonging to this class is

low. The reason is that U1 users stored .mp3 files, which are usually larger than other popular

text-based file types.

Further, the Code category contains the highest fraction of files, indicating that many U1

users are code developers who frequently update such files, despite the storage space required

for this category is minimal. Docs are also popular (10.1%), subject to updates and hold 6.9%

of the storage share. Since the U1 desktop client lacks delta updates and deferred sync, such

frequent updates suppose a high stress for desktop clients and induce significant network

overhead [24].

4.4.4 Threats for Personal Clouds: DDoS

A Distributed Denial of Service (DDoS) can be defined as the attempt to disrupt the legitimate

use of a service [131]. Normally, a DDoS attack is normally accompanied by some form of

fraudulent resource consumption in the victim’s side.

Surprisingly, we found that DDoS attacks to U1 are more frequent than one can reasonably

expect. More specifically, we found 3 evidences of such attacks in our traces (January 15, 16

and February 6)1. These DDoS attacks had as objective to share illegal content through the U1

infrastructure.

As visible in Fig. 4.5, all the attacks resulted in a dramatic increase of the number of session

and authentication requests per hour —both events related to the management of user ses-

sions. Actually, the authentication activity under attack was 5 to 15 times higher than usual,

which directly impacts the Canonical’s authentication subsystem.

1Our interviews with Canonical engineers confirmed that these activity spikes correspond to DDoS attacks, in-
stead of a software release or any other legitimate event.
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The situation for API servers was even worse: during the second attack (01/16) API servers

received an activity 245x higher than usual, whereas during the first (01/15) and last (02/06)

attacks the activity was 4.6x and 6.7x higher than normal, respectively. Therefore, the most

affected components were the API servers, as they serviced both session and storage operations.

We found that these attacks consisted on sharing a single user id and its credentials to dis-

tribute content across thousands of desktop clients. The nature of this attack is similar to the

storage leeching problem reported in [30], which consists of exploiting the freemium business

model of Personal Clouds to illicitly consume bandwidth and storage resources.

Also, the reaction to these attacks was not automatic. U1 engineers manually handled

DDoS by means of deleting fraudulent users and the content to be shared. This can be easily

seen on the storage activity for the second and third attack, which decays within one hour

after engineers detected and responded to the attack.

These observations confirm that Personal Clouds are a suitable target for attack as other

Internet systems, and that these situations are indeed common. We believe that further re-

search is needed to build and apply secure storage protocols to these systems, as well as new

countermeasures to automatically react to this kind of threats.

4.5 Understanding User Behavior

Understanding the behavior of users is a key source of information to optimize large-scale

systems. This section provides several insights about the behavior of users in U1.

4.5.1 Distinguishing Online from Active Users

Online and active users. We consider a user as online if his desktop client exhibits any form of

interaction with the server. This includes automatic client requests involved in maintenance

or notification tasks, for which the user is not responsible for. Moreover, we consider a user as
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Figure 4.7: User requests and consumed traffic in U1 for one month.

active if he performs data management operations on his volumes, such as uploading a file or

creating a new directory.

Fig. 4.6 offers a time-series view of the number of online and active users in the system

per hour. Clearly, online users are more numerous than active users: The percentage of active

users ranges from 3.49% to 16.25% during the whole trace. This observation reveals that the

actual storage workload that U1 supports is light compared to the potential usage of its user

population, and gives a sense on the scale and costs of these services with respect to their

popularity.

Frequency of user operations. Here we examine how frequent the protocol operations are

in order to identify the hottest ones. Fig. 4.7a depicts the absolute number of each operation

type. As shown in this figure, the most frequent operations correspond to data management

operations, and in particular, those operations that relate to the download, upload and deletion

of files.

This result is very interesting, because it proves that the U1 protocol scales well, since the

operations that users issue to manage their sessions and are typically part of the session start

up such as ListVolumes are significantly less frequent. And consequently, the major part of

the processing burden comes from active users as desired. This is essentially explained by the
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fact that the U1 desktop client does not need to regularly poll the server during idle times,

thereby limiting the number of requests not linked to data management.

As we will see in 4.6, the frequency of API operations will have an immediate impact on

the back-end performance.

Traffic distribution across users. Now, we turn our attention to the distribution of con-

sumed traffic across users. In Fig. 4.7b we observe an interesting fact: in one month, only

14% of users downloaded data from U1, while uploads represented 25%. This indicates that a

minority of users are responsible for the storage workload of U1.

To better understand this, we measure how (un)equal the traffic distribution across active

users is (170K users in the trace are active). To do so, we resort to the Lorenz curve and the Gini

coefficient1 as indicators of inequality. The Gini coefficient varies between 0, which reflects

complete equality, and 1, which indicates complete inequality (i.e., only one user consumes

all the traffic). The Lorenz curve plots the proportion of the total income of the population (y

axis) that is cumulatively earned by the bottom x% of the population. The line at 45 degrees

thus represents perfect equality of incomes.

Fig. 4.7c reports that the consumed traffic across active users is very unequal. That is,

the Lorenz curve is very far from the diagonal line and the Gini coefficient is close to 1. The

reason for this inequality is clear: 1% of active users account for the 65.6% of the total traffic

(147.52TB). Providers may benefit from this fact by identifying and treating these users more

efficiently.

Types of user activity. To study the activity of users, we used the same user classification

than Drago et al. in [11]. So we distinguished among occasional, download/upload only and

heavy users. A user is occasional if he transfers less than 10KB of data. Users that exhibit more

than three orders of magnitude of difference between upload and download (e.g., 1GB versus

1MB) traffic are classified as either download-only or upload-only. The rest of users are in the

heavy group.

Given that, we found that 85.92% of all users are occasional (mainly online users), 7.07%

upload-only, 2.12% download-only and 4.87% are heavy users. Our results clearly differ from

the ones reported in [11], where users are 30% occasional, 7% upload-only, 26% download-

only and 37% heavy. This may be explained by two reasons: (i) the usage of Dropbox is more

extended that the usage of U1, and (ii) users in a university campus are more active than other

types of users captured in our trace.

1http://en.wikipedia.org/wiki/Gini_coefficient
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Figure 4.8: Desktop client transition graph through API operations. Global transition probabilities
are provided for main edges.

4.5.2 Characterizing User Interactions

User-centric request graph. To analyze how users interact with U1, Fig. 4.8 shows the se-

quence of operations that desktop clients issue to the server in form of a graph. Nodes repre-

sent the different protocol operations executed. And edges describe the transitions from one

operation to another. The width of edges denotes the global frequency of a given transition.

Note that this graph is user-centric, as it aggregates the different sequence of commands that

every user executes, not the sequence of operations as they arrive to the metadata service.

Interestingly, we found that the repetition of certain operations becomes really frequent across

clients. For instance, it is highly probable that when a client transfers a file, the next operation

that he will issue is also another transfer —either upload or download. This phenomenon can

be partially explained by the fact that many times users synchronize data at directory granular-

ity, which involves repeating several data management operations in cascade. File editing can

be also a source of recurrent transfer operations. This behavior can be exploited by predictive

data management techniques in the server side (e.g., download prefetching).

Other sequences of operations are also highlighted in the graph. For instance, once a user

is authenticated, he usually performs a ListVolumes and ListShares operations. This is a

regular initialization flow for desktop clients. We also observe that Make and Upload operations

are quite mixed, evidencing that for uploading a file the client first needs to create the metadata

entry for this file in U1.
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Figure 4.9: Time-series view of inter-arrival times and their approximation to a power-law.

Burstiness in user operations. Next, we analyze interarrival times between consecutive

operations of the same user. We want to verify whether inter-operation times are Poissonian

or not, which may have important implications to the back-end performance. To this end, we

followed the same methodology proposed in [132, 133], and obtained a time-series view of

Unlink and Upload inter-operation times and their approximation to a power-law distribution

in Fig. 4.9.

Fig. 4.9a exhibits large spikes for both Unlink and Upload operations, corresponding to

very long inter-operation times. This is far from an exponential distribution, where long inter-

operation times are negligible. This shows that the interactions of users with U1 are not Pois-

sonian [132].

Now, we study if the Unlink and Upload inter-operation times exhibit high variance, which

indicates burstiness. In all cases, while not strictly linear, these distributions show a downward

trend over almost six orders of magnitude. This suggests that high variance of user inter-

arrival operations is present in time scales ranging from seconds to several hours. Hence,

users issue requests in a bursty non-Poissonian way: during a short period a user sends several

operations in quick succession, followed by long periods of inactivity. A possible explana-

tion to this is that users manage data at the directory granularity, thereby triggering multiples

operations to keep the files inside each directory in sync.

Nevertheless, we cannot confirm the hypothesis that these distributions are heavy-tailed.

Clearly, Fig. 4.9b visually confirms that the empirical distributions of user Unlink and Upload

inter-arrivals can be only approximated with P(x) ≈ x−α, ∀x > θ, 1 < α < 2, for a central

region of the domain.

We also found that metadata operations follow more closely a power-law distribution than

data operations. The reason is that the behavior of metadata inter-operation times are not
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Figure 4.11: Distribution of shared/udf volumes across users.

affected by the actual data transfers.

In conclusion, we can see that user operations are bursty, which has strong implications to

the operation of the back-end servers (4.6).

4.5.3 Inspecting User Volumes

Volume contents. Fig. 4.10 illustrates the relationship between files and directories within user

volumes. As usual, files are much more numerous than directories. And we have that over

60% of volumes have been associated with at least one file. For directories, this percentage

is only of 32%, but there is a strong correlation between the number of files and directories

within a volume: Pearson correlation coefficient is 0.998. What is relevant is, however, that a

small fraction of volumes is heavy loaded: 5% of user volumes contain more than 1, 000 files.

Shared and UDF volumes. At this point, we study the distribution of user-defined/shared

volumes across users. As pointed out by Canonical engineers, sharing is not a popular feature

of U1. Fig. 4.11 shows that only 1.8% of users exhibits at least one shared volume. On the

contrary, we observe that user-defined volumes are much more popular; we detected user-

defined volumes in 58% of users —the rest of users only use the root volume. This shows that

the majority of users have some degree of expertise using U1.
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Figure 4.12: Distribution of RPC service times accessing to the metadata store.

Overall, these observations reveal that U1 was used more as a storage service rather than

for collaborative work.

4.6 Metadata Back-end Analysis

In this section, we focus on the interactions of RPC servers against the metadata store. We also

quantify the role of the Canonical authentication service in U1.

4.6.1 Performance of Metadata Operations

Here we analyze the performance of RPC operations that involve contacting the metadata

store.

Fig. 4.12 illustrates the distribution of service times of the different RPC operations. As

shown in the figure, all RPCs exhibit long tails of service time distributions: from 7% to 22%

of RPC service times are very far from the median value. This issue can be caused by several

factors, ranging from interference of background processes to CPU power saving mechanisms,

as recently argued by Li et al. in [125].

Also useful is to understand the relationship between the service time and the frequency

of each RPC operation. Fig. 4.13 presents a scatter plot relating RPC median service times

with their frequency, depending upon whether RPCs are of type read, write/update/delete or
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Figure 4.13: We classified all the U1 RPC calls into 3 categories, and every point in the plot represents
a single RPC call. We show the median service time vs frequency of each RPC (1 month).

cascade, i.e., whether other operations are involved. This figure confirms that the type of

an RPC strongly determines its performance. First, cascade operations (delete volume and

get from scratch) are the slowest type of RPC —more than one order of magnitude slower

compared to the fastest operation. Fortunately, they are relatively infrequent. Conversely,

read RPCs, such as list volumes, are the fastest ones. Basically, this is because read RPCs can

exploit lockless and parallel access to the pairs of servers that form database shards.

Write/update/delete operations (e.g. make content, or make file) are slower than most read

operations, but exhibiting comparable frequencies. This may represent a performance barrier

for the metadata store in scenarios where users massively update metadata in their volumes

or files.

4.6.2 Load Balancing in U1 Back-end

We are interested in analyzing the internal load balancing of both API servers and shards in

the metadata store. In the former case, we grouped the processed API operations by physical

machine. In the latter, we distributed the RPC calls contacting the metadata store across 10

shards based on the user id, as U1 actually does. Results appear in Fig. 4.14, where bars are

mean load values and error lines represent the standard deviation of load values across API

servers and shards per hour and minute, respectively.

Fig. 4.14 shows that server load presents a high variance across servers, which is symptom

of bad load balancing. This effect is present irrespective of the hour of the day and is more

accentuated for the metadata store, for which the time granularity used is smaller. Thus, this

phenomenon is visible in short or moderate periods of time. In the long term, the load balanc-

ing is adequate; the standard deviation across shards is only of 4.9% when the whole trace is

taken.
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Figure 4.14: Load balancing of U1 API servers and metadata store shards.

Three particularities should be understood to explain the poor load balancing. First, user

load is uneven, i.e., a small fraction of users is very active whereas most of them present low ac-

tivity. Second, the cost of operations is asymmetric; for instance, there are metadata operations

whose median service time is 10x higher than others. Third, users display a bursty behav-

ior when interacting with the servers; for instance, they can synchronize an entire folder. So,

operations arrive in a correlated manner.

We conclude that the load balancing in the U1 back-end can be significantly improved,

which is object of future work.

4.6.3 Authentication Activity & User Sessions

Time-series analysis. Users accessing the U1 service should be authenticated prior to the

establishment of a new session. To this end, U1 API servers should contact a separate and

shared authentication service of Canonical.

Fig. 4.15 depicts a time-series view of the session management load that API servers sup-

port to create and destroy sessions, along with the corresponding activity of the authentication

subsystem. In this figure, we clearly observe that the authentication and session management

activity is closely related to the habits of users. In fact, daily patterns are evident. The au-

thentication activity is 50% to 60% higher in the central hours of the day than during the night

periods. This observation is also valid for week periods: on average, the maximum number

of authentication requests is 15% higher on Mondays than on weekends. Moreover, we found

that 2.76% of user authentication requests from API servers to the authentication service fail.

Session length. Upon a successful authentication process, a user’s desktop client creates a

new U1 session.
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Figure 4.16: Distribution of session lengths and storage operations per session.

U1 sessions exhibit a similar behavior to Dropbox home users in [11] (Fig. 4.15). Con-

cretely, 97% of sessions are shorter than 8 hours, which suggests a strong correlation with user

working habits. Moreover, we also found that U1 exhibits a high fraction of very short-lived

sessions (i.e. 32% shorter than 1s.), probably due to the operation of NAT and firewalls that

normally mediate between clients and servers [134]. Overall, Fig. 4.15 suggests that domestic

users are more representative than other specific profiles, such as university communities, for

describing the connection habits of an entire Personal Cloud user population.

We are also interested in understanding the data management activity related to U1 ses-

sions. To this end, we differentiate those sessions that exhibited any type of data management

operation (e.g., upload, download, delete file, etc.) during their lifetime, namely, active sessions.

First, we observed that the majority of U1 sessions (and, therefore, TCP connections) do

not involve any type of data management. That is, only 5.57% of connections in U1 are active

(2.37M out of 42.5M), which, in turn, tend to be much longer than cold ones. From a back-end

perspective, the unintended consequence is that a fraction of server resources is wasted keeping

alive TCP connections of cold sessions.

Moreover, similarly to the distribution of user activity, the inner plot of Fig. 4.15 shows

that 80% of active sessions exhibited at most 92 storage operations, whereas the remaining
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20% accounted for 96.7% of all data management operations. Therefore, there are sessions

much more active than others.

A provider may benefit from these observations to optimize session management. That

is, depending on a user’s activity, the provider may wisely decide if a desktop client works

in a pull (cold sessions) or push (active sessions) fashion to limit the number of open TCP

connections [135].

4.7 Discussion and Conclusions

In this Chapter, we focus on understanding the nature of Personal Cloud services by pre-

senting the internal structure and measurement study of UbuntuOne (U1). The objectives of

our work are threefold: (i) to unveil the internal operation and infrastructure of a real-world

provider, (ii) to reconfirm, expand and contribute observations on these systems to generalize

their characteristics, and (iii) to propose potential improvements for these systems.

Our study unveils several aspects that U1 shares with other large-scale Personal Clouds.

For instance, U1 presents clear similarities with Dropbox regarding the way of decoupling data

and metadata of users, which seems to be a standard design for these systems [34]. Also, we

found characteristics in the U1 workload that reconfirm observations of prior works [11, 24]

regarding the relevance of file updates, the effectiveness of deduplication or the execution of user

operations in long sequences, among other aspects. Therefore, our analysis and the resulting

dataset will enable researchers to get closer to the nature of a real-world Personal Cloud.

Thanks to the scale and back-end perspective of our study, we expanded and contributed

insights on these services. That is, we observed that the distribution of activity across users in

U1 is even more skewed than in Dropbox [11] or that the behavior of domestic users dominate

session lengths in U1 compared to other user types (e.g., university). Among the novelties of

this work, we modeled the burstiness of user operations, we analyzed the behavior of files in U1,

we provided evidences of DDoS attacks to this service, and we illustrated the performance of

the U1 metadata back-end.

An orthogonal conclusion that we extract from our study is that understanding the behavior

of users is essential to adapt the system to its actual demands and reduce costs. In the following,

we relate some of our insights to the running costs of U1 as well as potential optimizations,

which may be of independent interest for other large-scale systems:
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Optimizing storage matters. A key problem to the survival of U1 was the growing costs of

outsourcing data storage [136], which is directly related to the data management techniques

integrated in the system. For instance, the fact that file updates were responsible for 18.5%

of upload traffic in U1, mainly due to the lack of delta updates in the desktop client, gives

an idea of the margin of improvement (Section 4.4.1). Actually, we confirmed that a simple

optimization like file-based deduplication could readily save 17% of the storage costs. This

calls to further research and the application of advanced data reduction techniques, both at

the client and server sides.

Take care of user activity. This observation is actually very important, as we found that 1% of

U1 users that manage files generated 65% of traffic (Section 4.5.1), showing a weak form of the

Pareto Principle. That is, a very small fraction of the users represented most of the OPEX for

U1. A natural response may be to limit the activity of free accounts, or at least to treat active

users in a more cost effective way. For instance, distributed caching systems like Memcached,

data prefetching techniques, and advanced sync deferment techniques [24] could easily cut the

operational costs down. On the other hand, U1 may benefit from cold/warm storage services

(e.g., Amazon Glacier, f4 [130]) to limit the costs related to most inactive users.

Security is a big concern. Another source of expense for a Personal Cloud is related to its ex-

ploitation by malicious parties. In fact, we found that DDoS attacks aimed at sharing illegal

content via U1 are indeed frequent (Section 4.4.4).The risk that these attacks represent to U1 is

in contrast to the limited automation of its countermeasures. We believe that further research

is needed to integrate secure storage protocols and automated countermeasures for Personal

Clouds. In fact, understanding the common behavior of users in a Personal Cloud (e.g., stor-

age, content distribution) may provide clues to automatically detect anomalous activities [95].

Conclusions. This Chapter presented the first measurement of a global-scale Personal

Cloud back-end, in particular of U1. First, we have described in depth its protocol, the ma-

jor elements of its architecture and the internal metadata infrastructure. Second, we have

contributed central insights regarding the storage workload, user behavior and the metadata

back-end of the U1 service. Finally, we have discussed the implications and opportunities of

pursuing a successful operation of U1, which may be of general interest for large scale systems

and promote research in this field.
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5
Actively Measuring Personal
Clouds: Analysis and Abuse

Summary

Understanding the transfer QoS of cloud storage services is of great interest to end-users,

researchers and developers. In this Chapter, we present a measurement study of three major

Personal Clouds: Dropbox, Box and SugarSync. Actively accessing to free accounts through

their REST APIs, we analyzed important aspects to characterize their transfer QoS, such as

transfer speed, variability and failure rate. Moreover, we demonstrate that combining open

APIs and free accounts may lead to abuse by malicious parties. We also propose countermea-

sures to limit the impact of abusive applications in this scenario.

The papers with the results of this Chapter appeared in [29, 30]
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5.1 Introduction

The hype around the Personal Cloud model [123] has promoted the appearance of a myriad

of very competitive offerings (e.g., Dropbox, Box) that nowadays populates the market. This

makes, in turn, Personal Clouds to aggressively react and improve their service to retain their

market share. Essentially, Personal Clouds make their offering more interesting for new cus-

tomers adding innovative functionalities to their service and delivering freemium accounts.

First, Personal Clouds are incorporating a large corpus of value-added functionalities to

their service (e.g. collaborative editors, media viewers). In this sense, major companies pro-

vide open REST APIs for developers to create clever applications that make their service even

more attractive. From a functional perspective, these APIs enable an application to transfer

files to/from user accounts, blurring the lines between a Personal Cloud service and a pure

IaaS provider as Amazon S3. Such a powerful abstraction hides the complexity of block-level

data management and constitutes a rich substrate to cultivate a developer ecosystem.

Secondly, most vendors offer free accounts to lure new customers and gain market share.

These free accounts normally include reduced storage space, as well as virtually unlimited

transfers. Moreover, as paid accounts, free accounts provide standard functionalities, such as

access from syncing desktop clients and Web front-ends. The impact of this freemium business

model is remarkable: In 2012, from the 100 million of Dropbox users only 4% are estimated to

pay for storage [137]. To better understand these elements is the goal of this Chapter.

In this Chapter, our objectives are: (i) To measure and characterize the transfer QoS of Personal

Cloud REST APIs, and (ii) understand the potential exploitability of these APIs over free accounts.

The motivation of our first objective is that, despite their broad adoption, very little is

known about the transfer QoS of Personal Cloud REST APIs. Furthermore, there is no public

information about the control policies that vendors may enforce, as well as the factors impact-

ing on their service performance. In our view, exploring these services is specially interesting

in the case of free accounts, since most users freemium users.

Thus, we present a measurement study of various Personal Clouds. Concretely, during two

months, we have actively measured the REST API service of Dropbox, Box and SugarSync free

accounts. We gathered information from more than 900, 000 storage operations, transferring

around 70TB of data. We analyzed important aspects to characterize their QoS, such as in/out

transfer speed, service variability and failure rate. To our knowledge, this work is the first to

deeply explore many facets of these popular services and reveals new insights. Some of our

most relevant research observations are summarized in Table 5.1.
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Measurement of REST APIs Finding Implications and Opportunities
The transfer performance of these services
greatly varies from one provider to another.

This is a valuable insight for designers and develop-
ers to select the best vendor for their needs.

Measuring Transfer Per-
formance (4.4)

North American clients experience transfers
several times faster than European ones for the
same Personal Cloud.

The geographic location of a client importantly im-
pacts on the speed of transfers.

In general, transfer speeds of files can be ap-
proximated using well-known statistical distri-
butions.

This opens the door to create Personal Cloud simu-
lation environments.

We found that uploads are more variable than
downloads.

Personal Clouds tend to perform a more restrictive
bandwidth control to outgoing traffic.

Variability of Transfer
Performance (4.5)

The variability of transfers depends on several
factors, such as the traffic type (in/out) or the
hour of the day. Actually, we found daily pat-
terns in the Dropbox service.

This represents a source of uncertainty to users and
developers employing these services.

These services are in general reliable and, in
some cases, service failures can be modeled as
a Poisson process.

This allows researchers to develop tractable analyt-
ical models for Cloud storage.

Service Failures and
Breakdowns (4.6)

We observed a radical change in the transfer
speed of SugarSync in late May 2012.

This suggests that Personal Clouds may change
their freemium QoS unexpectedly, due to internal
policy changes or agreements.

Table 5.1: Summary of some of our most important findings and their implications.

Our second objective in this Chapter is to unveil a form of abuse that malicious parties may

perpetrate on Personal Clouds. That is, the unintended consequence of combining REST APIs

and free accounts is that these companies are exposing automated access to a free storage infras-

tructure, which may lead to abuse by malicious parties. Nothing prevents a malicious user from

acquiring an arbitrary number of free accounts from a single vendor and access to them via

REST APIs, given the quick registration process that it requires. Furthermore, that user may

aggregate accounts from various providers to build a larger and even better storage facility by

exploiting storage diversity.

Although aggregating free accounts might not be interpreted as an attack by itself, thanks

to open APIs these accounts can be used to materialize illicit actions against Personal Clouds.

For instance, as we reported in Chapter 4, users may perpetrate DDoS attacks, fraudulent

resource consumption, or they could use free accounts as a storage layer to support abusive

applications. We call this vulnerability the storage leeching problem.

We describe the roots of the storage leeching problem and shows how easy is to benefit

from it. To this end, we implemented Boxleech: a proof-of-concept file-sharing application

able to distribute digital content by abusing Personal Clouds. This application transparently

aggregates the limited-space free accounts from multiple providers into a single larger storage

space while achieving better transfer performance than that received from a single provider.

Considering this problem, we provide some discussion about possible countermeasures to

deliver a more secure API service to developers.
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The contributions of the present Chapter can be summarized as follows:

• We present an active measurement of various Personal Clouds to characterize their trans-

fer QoS via the available REST API service.

• We unveil a new form of abuse that malicious parties may exploit for consuming re-

sources of Personal Clouds to carry out illicit activities.

• We discuss the most important observations of our measurement and their implications,

as well as potential countermeasures to ameliorate the impact of storage leeching.

• We contribute the collected measurement data set and we make it publicly available for

the research community1.

The rest of this Chapter is organized as follows. Our methodology is described in Section

5.2. The measurement data analysis appears in Section 5.3. We describe the storage leeching

problem in Section 5.4. The design of Boxleech appears in Section 5.5. In Section 5.6 we show

the evaluation of Boxleech compared with Personal Cloud desktop clients. To close the Chap-

ter, in Section 5.7 we provide technical discussion on the implications of our measurement and

the countermeasures to the storage leeching problem, as well as our conclusions.

5.2 Measurement Methodology

From May 10, 2012, to July 15, 2012, we installed several vantage points in our university

network (Universitat Rovira i Virgili, Spain) and PlanetLab [138] to measure the performance

of three of the major Personal Cloud services in the market: Dropbox2, Box3 and SugarSync4.

The measurement methodology was based on the REST interfaces that these three Personal

Cloud storage services provide to developers.

As we discussed in Chapter 2, Personal Clouds provide REST APIs, along with their client

implementations, to make it possible for developers to create novel applications. These APIs

incorporate authorization mechanisms (OAuth [51]) to manage the credentials and tokens that

grant access to the files stored in user accounts. A developer first registers an application in

the Cloud provider website and obtains several tokens. As a result of this process, and once

1http://ast-deim.urv.cat/trac/pc_measurement
2http://www.dropbox.com
3http://www.box.net
4http://www.sugarsync.com
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the user has authorized that application to access his storage space, the Personal Cloud storage

service gives to the developer an access token. Including this access token in each API call, the

application can operate on the user data.

There are two types of API calls: meta-info and data management calls. The former type

refers to those calls that retrieve information about the state of the account (i.e., storage load,

filenames), whereas the latter ones are those calls targeted at managing the stored files in the

account. We will analyze the performance of the most important data management calls: PUT

and GET, which serve to store and retrieve files.

5.2.1 Measurement Platform

We employed two different platforms to execute our tests: University laboratories and Planet-

Lab. The reason behind this is that our labs contain homogeneous and dedicated machines that are

under our control, while PlanetLab allows the analysis of each service from different geographic

locations.

University laboratories: We gathered 30 machines belonging to the same laboratory to per-

form the measurement. These machines were Intel Core2 Duo equipped with 4GB DDR2

RAM. The employed operating system was a Debian Linux distribution. Machines were inter-

nally connected to the same switch via a 100Mbps Ethernet links.

PlanetLab: We collected 40 PlanetLab nodes divided into two geographic regions: Western

Europe and North America. This platform is constituted by heterogeneous (bandwidth, CPU)

machines from several universities and research institutes. Moreover, there were two points

to consider when analyzing data coming from PlanetLab nodes: i) Machines might be concur-

rently used by other processes and users, and ii) The quota system of these machines limited

the amount of in/out data transferred daily.

Specifically, we used the PlanetLab infrastructure for a high-level assessment of Personal

Clouds depending on the client’s geographic location. However, the mechanisms to enforce

bandwidth quotas in PlanetLab nodes may induce the appearance of artifacts in bandwidth

traces. This made PlanetLab not suitable for a fine-grained analysis in our context.
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Location Op. Type Operations Transferred Data

University Labs
GET 168, 396 13.509 TB
PUT 247, 210 15.945 TB

PlanetLab
GET 354, 909 31.751 TB
PUT 129, 716 9.803 TB

Table 5.2: Summary of Measurement Data (May 10 − July 15)

5.2.2 Workload Model

Usually, Personal Cloud services impose file size limitations to their REST interfaces, for we

used only files of four sizes to facilitate comparison: 25MB, 50MB, 100MB and 150MB1. This

approach provides an appropriate substrate to compare all providers with a large amount of

samples of equal-size files. Thanks to this, we could observe performance variations of a single

provider managing files of the same size.

We executed the following workloads:

Up/Down Workload. The objective of this workload was twofold: Measuring the maximum

up/down transfer speed of operations and detecting correlations between the transfer speed

and the load of an account. Intuitively, the first objective was achieved by alternating upload

and download operations, since the provider only needed to handle one operation per account

at a time. We achieved the second point by acquiring information about the load of an account

in each API call.

The execution of this workload was continuously performed at each node as follows: First,

a node created synthetic files of a size chosen at random from the aforementioned set of sizes.

That node uploaded files until the capacity of the account was full. At this point, that node

downloaded all the files also in random order. After each download, the file was deleted.

Service Variability Workload. This workload maintained in every node a nearly continuous

upload and download transfer flow to analyze the performance variability of the service over

time. This workload provides an appropriate substrate to elaborate a time-series analysis of

these services.

The procedure was as follows: The upload process first created files corresponding to each

defined file size which were labeled as “reserved”, since they were not deleted from the ac-

count. By doing this we assured that the download process was never interrupted, since at

1Although the official limitation in some cases is fixed to 300MB per file, we empirically proved that uploading
files larger than 200MB is highly difficult. In case of Box this limitation is 100MB.
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least the reserved files were always ready for being downloaded. Then, the upload process

started uploading synthetic random files until the account was full. When the account was

full, this process deleted all files with the exception of the reserved ones to continue uploading

files. In parallel, the download process was continuously downloading random files stored in

the account.

Finally, we executed the experiments in different ways depending on the chosen platform.

In the case of PlanetLab, we employed the same machines in each test, and therefore, we needed

to sequentially execute all the combinations of workloads and providers. This minimized the

impact of hardware and network heterogeneity, since all the experiments were executed in the

same conditions. On the contrary, in our labs we executed in parallel a certain workload for

all providers (i.e. assigning 10 machines per provider). This provided two main advantages:

The measurement process was substantially faster, and fair comparison of the three services

was possible for the same period of time.

We depict in Table 5.2 the total number of storage operations performed during the mea-

surement period.

5.2.3 Setup, Software and Data Collection

Prior to the start of our experiments, we created around 150 new user free accounts from the

targeted Personal Clouds. That is 120 new accounts for PlanetLab experiments (40 nodes × 3

Personal Clouds), and 30 accounts for the experiments in our labs (10 accounts per Personal

Cloud deployed in 30 machines). We also registered as developers 35 applications to access the

storage space of user accounts via REST APIs, obtaining the necessary tokens to authenticate

requests. We assigned to every node a single new free account with access permission to the

corresponding application. The information of these accounts was stored in a database hosted

in our research servers. Thus, nodes executing the measurement process were able to access

the account information remotely.

Measurement processes were implemented as Unix and Python scripts that ran in every

node. These scripts employed third party tools during their execution. For instance, to syn-

chronize tasks, such as logging and starting/finishing experiments, we used the cron time-

based job scheduler. To gather bandwidth information we used vnstat, a tool that keeps a

log of network traffic for a selected interface. Nodes performed storage operations against

Personal Clouds thanks to the API implementations released in their websites.
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The measurement information collected in each storage operation was sent periodically

from every node to a database hosted in our research servers. This automatic process facili-

tated the posterior data processing and exploration. The measurement information that nodes

sent to the database describes several aspects of the service performance: operation type, band-

width trace, file size, start/end time instants, time zone, capacity and load of the account, and

failure information.

5.3 Measuring Personal Cloud REST APIs

5.3.1 Transfer Capacity of Personal Clouds

In this section, the transfer capacity of Box, Dropbox and SugarSync is characterized using the

following indicators:

• File Mean Transfer Speed (MTS). This metric is defined as the ratio of the size of a file, S, to

the time, T, that was spent to transfer it: MTS = S/T (KBytes/sec).

• Bandwidth Distributions. We define as a bandwidth trace the set of values that reflects the

transfer speed of a file at regular intervals of 2 secs. To obtain a single empirical distribu-

tion, we aggregated the bandwidth traces of all the transfers separated by uploads and

downloads. We refer to the resulting empirical distribution as the aggregated bandwidth

distribution.

Transfer speeds. Fig. 5.1 reports these metrics for both workloads (up/down and service vari-

ability) executed in our university labs during 10 days. First, Fig. 5.1 evidences an interesting

fact: Personal Clouds are heterogeneous in terms of transfer speed. For instance, Fig. 5.1b shows that

Box and Dropbox present an upload MTS several times faster than SugarSync. The same ob-

servation holds for downloads. Moreover, the heterogeneity of these services also depends on

the traffic type (in/out). This can be appreciated by comparing Fig. 5.1a with Fig. 5.1b: Dropbox

exhibits the best download MTS while Box presents the fastest uploads.

This proves that the transfer performance of these services greatly varies among providers, and

consequently, developers should be aware of this in order to select an adequate provider.

Among the examined Personal Clouds, Dropbox and SugarSync are resellers of major Cloud

storage providers (Amazon S3 and Carpathia Hosting, respectively). On the other hand, Box

claims to be owner of several datacenters. In our view, it is interesting to analyze this Cloud

ecosystem and the possible implications to the service delivered to end-users.
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Figure 5.1: Transfer capacity of Box, Dropbox and SugarSync free account REST API services. The
data represented in these figures corresponds to the aggregation of the up/down and service vari-
ability workloads during 10 days (June/July 2012) in our university laboratories.

In this sense, in Fig. 5.1 we observe that Personal Clouds apply distinct internal control

policies to the inbound/outbound bandwidth provided to users. To wit, both Dropbox and Box

exhibit an upload transfer capacity remarkably better than the download capacity. This means that

the datacenter outgoing traffic is more controlled and restricted than the incoming traffic. This

agrees well with the current pricing policies of major Cloud providers (Amazon S3, Google

Storage) which do not charge inbound traffic whereas the outbound traffic is subject to specific

rates (see http://aws.amazon.com/en/s3/pricing/).

In SugarSync, both the upload and download transfer speeds are constant and low. In-

terestingly, SugarSync presents slightly faster downloads than uploads, though only a small

fraction of downloads (less than 1%) exhibits a much higher transfer speed than the rest. These

observations are also supported by Fig. 5.1c and Fig. 5.1d: the captured download bandwidth

values fall into a small range [200, 1300] KB/sec. Also, the shape of these distributions are not

steep, which reflects that there is a strong control in the download bandwidth. On the con-

trary, upload bandwidth distributions present more irregular shapes and they cover a wider

range of values, specially for Box. As a possible explanation to this behavior, the experiments
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Figure 5.2: Distribution fittings of upload/download file mean transfer speeds (MTS) of the exam-
ined Personal Clouds (up/down workload, university labs).

of Fig. 5.1 were executed from our university labs (Spain) to exclude the impact of geographic

heterogeneity. Considering the fact that the majority of Personal Cloud datacenters are located

in USA [11], this may have implications in the cost of the traffic sent to Europe. This could mo-

tivate the enforcement of more restrictive bandwidth control policies to the outbound traffic.

Characterization of transfers. To characterize the transfer performance of both Dropbox and

Box (the constant behavior of SugarSync deserved no further analysis), three checks were

made to determine the shape of the transfer distributions with sufficient confidence. We used

the same methodology of [139].

First, visual inspection of per-file MTS distributions against the most similar standard dis-

tributions was performed. Second, we performed a linear regression analysis on the best-fit

lines of the quantile-quantile plots from the fitted distributions and empirical data. From this

analasys, we obtained the coefficient of determination, R2 ∈ [0, 1]. A value of R2 close to 1

signals that the candidate distribution fits the data. Finally, we used the Kolmogorov-Smirnov

(KS) test to assess the statistical validity of the fittings. Essentially, this test is used to check

whether a fitted distribution matches the empirical distribution by finding the maximum dif-

ferences between both distributions1.

As seen in Fig. 5.2a and 5.2c, both Dropbox and Box download file MTS can be approxi-

mated using log-logistic or logistic distributions, respectively. This argument is supported by the

coefficient of determination, R2, which in the case of Box is R2 = 0.9972, and for Dropbox is

1Chi-square test was not used since it works well only when the number of items that falls into any particular
bin is approximately the same. However, it is relatively difficult to determine the correct bin widths in advance for
different measured data sets, and thus the results of the this test can vary depending on how the data samples are
divided [139].
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Figure 5.3: File MTS distributions of PlanetLab nodes from June 22 to July 15 2012 depending on their
geographic location (up/down workload). Clearly, USA and Canada nodes exhibit faster transfers
than European nodes.

Geo. Location Metric Box Dropbox SugarSync

USA & CA
D̄MTS/ŪMTS 3.198 2.482 2.522
D̃MTS/ŨMTS 2.550 2.722 2.500

WEST EU
D̄MTS/ŪMTS 0.255 0.681 2.589
D̃MTS/ŨMTS 0.190 0.682 2.387

Table 5.3: Download/Upload transfer speed ratio of Personal Clouds depending on the client’s geo-
graphic location.

R2 = 0.9957. However, we observe that these fittings differ from the empirical data in the tails

of highest transfer speed values. Further, we performed fittings depending on the file size,

obtaining closer fittings as the file size grew. The heavier tails found in empirical data but not

captured well in the fittings led the KS test to reject the null hypothesis at significance level

α = 0.05, although in the case of Dropbox, this rejection is borderline (KS-test=0.0269, critical

value=0.0240, p-value=0.197).

Regarding uploads, we find that Dropbox file MTS can be modeled by a Weibull distribution

with shape parameter µ = 1339.827 and scale parameter σ = 14.379 (Fig. 5.2b). In addition

to the high R2 = 0.9896, the KS test accepted the null hypothesis at significance level α = 0.05

(KS-test=0.0351, critical value=0.0367, p-value=0.0025).

Due to the high variability, we found that Box uploads do not follow any standard distri-

bution. The implications of these observations are relevant. With this knowledge, researchers

can model the transfer speed of Personal Cloud services employing specific statistical distri-

butions.

Transfers & geographic location. Next, we analyze transfer speeds depending on the geo-

graphic location of vantage points.
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Figure 5.4: Transfer times distributions by file size.

In Fig. 5.3, we illustrate the file MTS obtained from executing the up/down workload dur-

ing 3 weeks in PlanetLab. As can be seen in the figure, Personal Clouds provide a much greater

QoS in North American countries than in European countries. Intuitively, the location of the dat-

acenter plays a critical role in the performance of the service delivered to users. Observe that

this phenomenon is orthogonal to all the examined vendors.

Finally, we quantify the relative download/upload transfer performance delivered by each

service as a function of the geographic location of users. To this end, we used a simple metric,

what we call the download/upload ratio (D/U), which is the result of dividing the download and

upload transfer speeds of a certain vendor. In Table 5.3, we calculated this ratio over the mean

(Ū, D̄) and median (Ũ, D̃) values of the file MTS distributions of each provider depending on

the geographic location of nodes.

In line with the results obtained in our labs, European nodes receive a much higher transfer speed

when uploading than when downloading (D/U < 1). However, contrary to conventional wisdom,

North American nodes exhibit just the opposite behavior. This is clearly visible in Dropbox and Box.

However, this ratio is constant in SugarSync, irrespective of the geographic location.

5.3.2 Variability of Transfer Performance

In this section, we analyze which factors can contribute to the variance in transfer speed ob-

served in Personal Clouds. We study three potential factors, which are the size of file transfers;

the load of accounts; and time-of-day effects.

Variability over file size. We first investigate the role that file size plays on transfer times and

transfer speeds. Fig. 5.4 and Table 5.4 report the results for both metrics as function of file

size, respectively. Unless otherwise stated, results reported in this subsection are based on

executing the up/down workload in our university labs during 5 days.
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Figure 5.5: Relationship between file MTS and the storage load of an account.

Fig. 5.4 plots the transfer time distribution for all the evaluated Personal Clouds. As shown

in the figure, for the same provider, all the distributions present a similar shape, which sug-

gests that the size of file transfers is not a source of variability. As expected, the only difference

is that the distributions for large file sizes are shifted to the right towards longer time values.

Significant or abnormal differences were not observed when transferring large files compared

to small data files. This observation is applicable to all evaluated Personal Clouds. This leads

us to the conclusion that these Personal Clouds do not perform aggressive bandwidth throttling

policies to large files.

An interesting fact appreciable in Table 5.4 is that managing larger files report better transfer

speeds than in case of small files. Usually, these improvements are slight or moderate (0.5% to

25% higher MTS); however, uploading 100MB files to Box exhibits a MTS 48% higher than

uploading 25MB files to this service. In our view, this phenomena is due to the variability in

the incoming bandwidth supplied by Box, and the TCP slow start mechanism, which makes

difficult for small file transfers to attain high performance [140].

Further, we found that all the measured Personal Cloud vendors tend to perform a more

restrictive bandwidth control to outgoing traffic. This can be easily confirmed by inspecting

the obtained standard deviations σ of file MTS listed in Table 5.4. Clearly, the inbound traffic

in Dropbox and Box is much more variable than the outbound traffic. On the contrary, despite its

limited capacity, the source of highest transfer variability in SugarSync is in the outbound

traffic, which a clear proof of the existing heterogeneity in Personal Clouds.

Variability over load account. Next we explore if Personal Clouds perform any control to the

transfer speed supplied to users based on the amount of data that users have in their accounts.

To reveal any existing correlation, dispersion graphs were utilized to plot the relationship

between the MTS and the load of an account at the instant of the storage operation.
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Upload File MTS Distribution (KBps) Download File MTS Distribution (KBps)
Size Provider Min. Q1 Median Q3 Max. Mean (µ) Std. Dev. (σ) CV (σ/µ) Min. Q1 Median Q3 Max. Mean (µ) Std. Dev. (σ) CV (σ/µ)

25MB
Dropbox 13.54 819.20 903.94 1008.24 1456.36 896.28 151.56 0.1691 24.89 582.54 624.152 672.16 970.90 626.94 71.23 0.1136

Box 14.70 1379.71 2383.13 3276.80 3744.91 2271, 29 973.06 0.3963 163.84 397.19 459.90 534.99 794.38 463.72 87.76 0.0837
SugarSync 41.87 78.25 78.96 80.17 86.23 79.26 2.82 0.0356 136.53 198.59 200.11 201.65 1048.57 201.35 37.89 0.1882

50MB
Dropbox 213.99 970.90 1092.27 1191.56 1497.97 1069.12 152.23 0.1424 210.56 624.15 663.66 699.05 888.62 661.55 58.02 0.0877

Box 5.26 2496.61 4369.07 4766.25 5825.42 3721.12 1357.18 0.3647 14.15 623.16 647.26 672.16 887.42 646.22 44.33 0.0686
SugarSync 40.27 78.72 79.44 80.41 86.95 79.59 3.08 0.0387 144.43 200.88 202.43 204.00 2496.61 216.57 149.28 0.6893

100MB
Dropbox 250.26 1127.50 1219.27 1310.72 1519.66 1205.69 143.05 0.1186 25.09 647.27 676.50 708.49 1497.97 680.32 50.94 0.0749

Box 4.71 2912.71 3883.61 6168.09 7489.83 4350.37 1797.32 0.3252 14.43 436.91 487.71 579.32 1233.62 507.82 89.36 0.0539
SugarSync 42.23 78.96 79.62 80.66 87.31 79.64 3.74 0.0470 145.64 202.03 204.00 205.20 3744.91 223.49 219.50 0.9822

Table 5.4: Summary of file MTS distributions by file size.
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Figure 5.6: Evolution of Personal Clouds upload/download transfer speed during 5 days. We plot-
ted in a time-series fashion the mean aggregated bandwidth of all nodes (600 secs. time-slots) exe-
cuting the service variability workload in our university laboratories (3rd−8th July 2012).

As shown in Fig. 5.5, we were unable to find any correlation between the file MTS and the load

of an account in any of the measured Personal Clouds. This suggests that the transfer speed

delivered to users remains the same irrespective of the current amount of data stored in an

account. This conclusion is important to characterize which types of control mechanisms are

actually applied to these storage services.

Variability over time. We now analyze how the transfer speed varies over time. To better cap-

ture these variations, we used the data from the service variability workload, which was aimed

to maintain a constant transfer flow and was executed at our university labs. The results are

shown in Fig. 5.6 where the mean aggregated bandwidth of all nodes as a whole is plotted in

time intervals of 600 seconds. As expected, we found that the transfer speed of these services

behave differently depending on the provider. To wit, while SugarSync exhibits a stable service

for both uploads and downloads, at the price of a modest transfer capacity (Fig. 5.6a), the upload

transfer speed varies significantly over time for Dropbox and Box.

Appreciably, Dropbox exhibits appreciable daily upload speed patterns (Fig. 5.6b). Data repre-

sented in Fig. 5.6 was gathered between July 3, 6:00p.m. and July 8, 3:00p.m. Clearly, during
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Figure 5.7: Evolution of transfer speed variability over time (service variability workload, university
labs).

night hours (1 a.m.−10 a.m.), transfer speed was between 15% to 35% higher than during

diurnal hours. This phenomenon has been also detected in the experiments performed in

PlanetLab, thereby discarding any artificial usage pattern induced by our university network.

Moreover, considering that Dropbox uses Amazon S3 as storage back-end, our results are con-

sistent with other recent works [141] that observed similar patterns in other Amazon services.

Further, we found that Box upload service may be subjected to high variability over time.

Indeed, we observed differences in upload transfer speed by a factor of 5 along the same day. This

observation is consistent with the analysis of the file MTS distribution where significant het-

erogeneity was present. More interestingly, Box uploads appear to be also affected by daily

patterns. Concretely, the periods of highest upload speed occurred during the nights, whereas

the lowest upload speeds were observed during the afternoons (3 p.m. −10 p.m.). Due to the

huge variability of this service, a long-term measurement is needed to provide a solid proof of

this phenomenon, though.

With respect to downloads, we observed no important speed changes over time in any

system. This suggests that downloads are more reliable and predictable, probably due to a more

intense control of this type of traffic by the datacenter.

To specifically compare the variability among services over time, we made use of the Co-

efficient of Variation (CV), which is a dimensionless and normalized measure of dispersion of

a probability distribution, specifically designed to compare data sets with different scales or

different means. The CV is defined as:

CV =
1
x̄

√√√√ 1
N − 1

N

∑
i=1

(xi − x̄)2,

where N is the number of measurements; x1, .., xN are the measured results; and x̄ is the mean

of those measurements.
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Downloads Dropbox Box SugarSync
25MB 0.047%( 5

10,503 ) 0.572%( 68
11,878 ) 0.115%( 2

1,740 )

50MB 0.082%( 8
9,745 ) 0.698%( 80

11,445 ) 0.057%( 1
1,727 )

100MB 0.044%( 4
9,026 ) 0.716%( 80

11,169 ) 0.059%( 1
1,691 )

150MB 0.042%( 3
7,136 ) − 0.076%( 1

1,359 )

Uploads Dropbox Box SugarSync
25MB 0.384%( 41

10,689 ) 0.566%( 227
40,043 ) 0.889%( 8

899 )

50MB 0.450%( 48
10,663 ) 1.019%( 405

39,719 ) 1.079%( 10
926 )

100MB 0.502%( 54
10,740 ) 2.097%( 836

39,875 ) 1.988%( 18
905 )

150MB 1.459%( 58
3,974 ) − 3.712%( 33

889 )

Table 5.5: Server-side failures of API operations (3rd − 8th July 2012).

Fig. 5.7 depicts the CV in 1-hour time slots of the aggregated bandwidth provided by each

Personal Cloud vendor. Clearly, it can be observed important differences across the vendors.

Concretely, SugarSync experiences low variability with a CV of only 10%. Dropbox with a CV

around 50%, however, exhibits a much higher variability than SugarSync, including isolated

spikes in the upload bandwidth that reach a CV of 90%. In this sense, the Box download

bandwidth capacity exhibits a similar trend. Finally, the highest observed variability was for

Box uploads. In the first 3 days of the experiment, Box exhibited a mean CV of 125% approx.

However, in the last part of the experiment some spikes reached a CV of 300%, suggesting that

it is really hard to predict the behavior of this service.

5.3.3 Service Failures and Breakdowns

Another important aspect of any Cloud storage service is at what rate users experience failures,

and whether the pattern of failures can be characterized by a simple failure process like a Poisson process,

which allows researchers to develop tractable analytical models for Personal Clouds.

For this analysis, any event server-side notification signaling that a storage operation did

not finish successfully was counted as a failure, thereby excluding any failure, where abnormal

or degraded service was observed1. Table 5.5 summarizes the server-side failures observed

during a 5-day measurement based on the variability workload run at our labs.

Failure rates. Table 5.5 illustrates a clear trend: in general, uploads are less reliable than downloads.

This phenomenon is present in all the Personal Clouds measured and becomes more important

for larger files. As can be observed, downloads are up to 20X more reliable than uploads (Drop-

box, SugarSync), which is an important characteristic of the service delivered to users. In this

1We filtered the logged error messages depending on their causes as detailed in the API specifications. We con-
sidered as errors most of the responses with 5XX HTTP status codes as well as other specific errors related with timed
out or closed connections in the server side.
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Figure 5.8: Failure interarrival times autocorrelation (upper graphics) and exponential fitting of fail-
ure interarrival times (lower graphics) for Box.

sense, although failures among uploads and downloads are not so high, Box seems to provide

the least reliable service. Anyway, failure rates are generally below 1%, which suggests that

these free storage services are reliable.

Poissonity of failures. Now we study whether service failures appear Poisson or not, because

Poisson failures allow for easy mathematical tractability. Poisson failures are characterized

by interarrival times which are independent of one another and are distributed exponen-

tially [104], and for which the failure rate is constant. In this case, we focused only on Box,

since it was the only service for which enough observations were available for the statistical

analysis to be significant.

To verify whether failures are independent, we calculated the autocorrelation function

(ACF) for consecutive failures in the time series and depicted it in Fig. 5.81. When the fail-

ures are completely uncorrelated, the sample ACF is approximately normally distributed with

mean 0 and variance 1/N, where N is the number of samples. The 95% confidence limits for

ACF can then be approximated to 0 ± 2√
N

. As shown in Fig. 5.8, in the case of download

failures, autocorrelation coefficients for most lags lie within 95% confidence interval, which

1Due to lack of space, we refer the reader to [104] for a technical description in depth of this methodology to assess
Poissonity.
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Figure 5.9: We observe a radical change in the upload transfer speed of SugarSync from May 21
onwards. After May 21 all the tests performed against SugarSync reported very low transfer speeds.
This reflects a change in the QoS provisioned to the REST APIs of free accounts.

demonstrates that failure interarrival times are independent of one another. However, up-

loads failures are not independent, since the first lags exhibit high ACF values, which indicates

short-term correlation, with alternating positive and negative ACF trends.

To conclude Poissonity for failures, failure interarrival times must be exponentially dis-

tributed, for we report the coefficient of determination, R2, after performing linear regression on

the distribution log10(1− {Pr{X < x}), where Pr{X < x} is the empirical failure interarrival

time distribution obtained for Box. In the case of downloads R2 = 0.9788 whereas for up-

loads R2 = 0.9735. This means that failure interarrival times approximately follow an exponential

distribution, which is evidenced in Fig. 5.8, where most of the samples match the exponential

fitting, with the exception of those at the end of the tail. Hence, Box download failures can

be safely considered as being Poisson. Although upload interarrival times can be well fitted by

the exponential distribution, they are not independent and further analysis is needed to their

characterization.

Service breakdowns. Apart from the “hard” failures, there are other types of “soft” failures

related with the deterioration of the QoS. And indeed, we captured a strong evidence of this in

late May 2012 (Fig. 5.9). In Fig. 5.9 we present a time-series plot of the aggregated upload MTS

of PlanetLab nodes against SugarSync. This information is divided for those nodes located in

West Europe and USA & Canada1.

Clearly, the behavior of the upload speed of SugarSync changed radically from May 21

onwards (Fig. 5.9). Before that date, SugarSync provided high transfer upload speed, compa-

1 Spikes present in Fig. 5.9 are due to the PlanetLab quota system, which limits the amount of data that users can
transfer daily.
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Figure 5.10: PlantLab experiments against SugarSync before and after the service breakdown re-
ported in May 21. We observe an important service degradation for uploads, whereas the download
service remains unaltered.

rable to current performance of Box. However, in May 21 SugarSync bandwidth provisioning

policies changed dramatically; the upload MTS was reduced from 1, 200KBps to 80KBps in

Western Europe —a similar trend can be observed in USA and Canada. Note that we accessed

to the SugarSync service from a variety of nodes and accounts, discarding thus the possibility

of IP filtering and account banning.

In this sense, Fig. 5.10 shows the upload/download MTS distributions for measurements

performed before and after the service breakdown —executing the same workload (up/down

workload) over the same nodes. Clearly, the change in the transfer speed of SugarSync was

focused on uploads, that previously exhibited a good performance. On the other hand, we

see that the download service was almost unaltered after May 21. These observations apply

to both geographic regions. This means that Personal Clouds may change their freemium QoS

unexpectedly, due to internal policy changes.

At this point, we have characterized the transfer QoS of three major Personal Clouds

through their REST API service. In what follows, we describe how malicious parties can ex-

ploit the available REST API service over free accounts to abuse Personal Cloud and consume

storage resources freely.

5.4 The Storage Leeching Problem

As we mentioned before, major Personal Clouds such as Dropbox, Box and SugarSync pro-

vide open REST APIs for developers to create clever applications over their service, in order to

make their offering more attractive. From a functional viewpoint, these APIs enable an appli-

cation to upload/download files to/from user accounts, blurring the lines between a Personal
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Cloud service and a pure IaaS storage provider as Amazon S3. However, the unintended con-

sequence is that it is very easy for a user to aggregate multiple free accounts from the same or

from different Personal Clouds to obtain a free storage space comparable to paid accounts.

The roots of the problem lie deeply in the lack of accountable identities. Personal Clouds

do not provide mechanisms to enforce the rule that one real person gets one virtual identity in

their online services, what is known as the Sybil attack [142]. As an illustrative example, Box

requires only the first name, last name, email and password for a user to set up an account

of 5 GB of free storage. This quick registration process makes it possible for one real person

to get multiple accounts and here is when the open nature of these REST APIs facilitate the

abuse of the storage service. Box REST API allows a developer to enable up to four other users

per application yet in development status, so nothing prevents a malicious developer from

aggregating his 25 GB of free storage as a single unit. In the case of Box, this new form of

abuse may have economic consequences. At the time of this writing, a Box account of 25 GB

costs $9.99 per month.

The extent of the abuse can be even worse if the abuser aggregates accounts from multiple

providers. In such a case, the abuser can take benefit of storage diversity to obtain even a

better service than what can be delivered from a single provider. By an intelligent allocation

of file chunks to different providers, a malicious user can improve download times, upload

times or both, and obtain a unified account with better QoS than a paid account totally free of

charge.

We use the term “storage leeching” to refer to this generic form of abuse because the abusers

or leechers seek to benefit from free storage while trying to leave unnoticed. This form of abuse

is hard to prevent because it is under the umbrella of the freemium business model adopted by

Personal Cloud companies. That is, storage providers offer free and paid premium accounts

that are very similar in all aspects except for the amount of storage space offered. This, in

conjunction with the business strategy to cultivate a developer ecosystem through the release

of open APIs, makes it really hard for these companies to prevent storage leeching.

To illustrate the potential consequences of storage leeching, let us describe a real example.

During the development of this piece of research, we executed several experiments against

the REST API service of three major vendors: Box, Dropbox and SugarSync. We consumed

around 45.26TB of download traffic, 25.75TB of upload traffic and 450GB of storage. Excluding

the number of transactions, in terms of Amazon S3 pricing1, our experiments represent a cost of

1http://aws.amazon.com/en/s3/pricing/
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5.5 Boxleech: An Abusive File-sharing Application 97

$5, 431.2 in download traffic, plus a monthly storage cost of $42.75. This evidences that it is very

easy to exploit these services.

We believe that the storage leeching problem is a substrate over which many abusive appli-

cations might exploit Personal Clouds. For instance, a single user may aggregate free accounts

as a storage backend to support an illegal webpage which exhibits prohibited contents or even,

as a part of a peer-assisted storage system [25]. Even worse, a malicious user may share with

others the access tokens of a certain account, which enables any other user to access the stored

data. The potential damage of this form of exploitation may be important, since it leverages

the creation of applications such as file-sharing, where users not registered in any Personal Cloud

can freely consume resources and illicitly benefit from these services.

The next section describes the design of a proof-of-concept file-sharing application that

abuses Personal Clouds.

5.5 Boxleech: An Abusive File-sharing Application

Boxleech is a proof-of-concept file-sharing application able to disseminate illegal or copy-

righted content by abusing Personal Clouds. Essentially, it aggregates free accounts from mul-

tiple Personal Clouds into a single storage unit that can be freely accessed by users interested

in a certain content. In particular, Boxleech aggregates free accounts from Dropbox, Box and

SugarSync, three major storage vendors, which shows the potential impact of storage leeching

and the simplicity to exploit public APIs to abuse Personal Clouds.

In Fig. 5.11, we provide a general overview of the functioning of Boxleech. We observe two

Personal Clouds where a malicious user has registered a developer application and few free

accounts. Besides, he enables the REST API access to these accounts obtaining the required

tokens. Using the Boxleech client, he uploads chunks corresponding to an illicit content he

wants to share. Finally, he generates and distributes the metadata file which contains the

information to enable any other Boxleech user to download the content.

The design of Boxleech can be divided into three main blocks: data management, metadata

and chunk assignment.

Data management. First, similar to Dropbox and the likes, which internally do not use the

concept of files, Boxleech splits every file into chunks of up to 100MB in size. There were

three good reasons for this: i) To surpass the file size limitations commonly imposed in the

REST API access to free accounts, ii) To exploit storage diversity by allocating chunks of the
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Figure 5.11: Users abusing Personal Clouds by sharing illicit contents with Boxleech. Once users
get the metadata file that contains the account access credentials for each chunk, they are able to
download the shared content.

same file to different Personal Clouds and, iii) To make it impossible for a single provider to

store an entire copy of an illicit content. Currently, Boxleech applies a simple fragmentation

algorithm to create equally-sized file chunks. However, more elaborated mechanisms such as

Erasure Codes [25] may be introduced to increase data availability via data redundancy.

Locally, Boxleech maintains an index which relates every chunk with the file it belongs to,

as well as the information about the cloud account where it has been stored. To manage data

chunks from these Personal Clouds, the implementation of Boxleech includes the client API

of all of them. Clearly, supporting a new provider will require introducing the corresponding

API implementation in the application.

Metadata. The objective of Boxleech metadata files (.boxleech) is to map a set of chunks

corresponding to the same content to their location in diverse Personal Cloud accounts. A

metadata file is formed by a set of rows, each one containing the following information for a

data chunk: [chunk id], [order], [provider], [access credentials]. The first two fields describe the

identifier of a chunk (e.g. hash value) and the chunk position, which is needed to reconstruct

the file after downloading it. The access credentials field includes the necessary access infor-

mation to download that chunk from the appropriate provider. In the case of Dropbox and
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5.5 Boxleech: An Abusive File-sharing Application 99

Box, there is only need to include the access token for the account where the chunk is stored.

However, SugarSync requires to include the secret/application keys as well as the account

login/password information to renew the token after its expiration.

Boxleech is capable of generating a .boxleech file for a content that a user has uploaded,

as well as to interpret these files to download contents shared by other users. Similarly to a

.torrent file [143], there are several ways of indexing and distributing these metadata files, such

as a Web server (tracker) or a Distributed Hash Table (DHT). Going further, we advocate for

building a metadata index also exploiting Personal Cloud accounts. To illustrate this, let us

assume that each metadata file is named with the hash of the original content name (e.g. film

title). Making use of consistent hashing [144], we can partition the hash identifier space among

a set of storage accounts, which adopt the role of traditional hash buckets. Hence, Boxleech

clients are able to deterministically search for a hash value in the appropriate account. This

leverages an integral file-sharing service entirely supported by exploited resources from Per-

sonal Clouds1.

Chunk Assignment. The allocation of chunks when exploiting various Personal Clouds plays

a critical role on the speed of transfers.

As we already observed in Section 5.1, Fig. 5.1 evidences an interesting fact: Personal Clouds

provide very disparate transfer speeds. For instance, in Fig. 5.1b we observe that Box and Drop-

box provide a upload MTS several times faster than SugarSync —the same observation holds

for downloads. Moreover, the heterogeneity of these services also depends on the traffic type

(in/out). This can be appreciated comparing Fig. 5.1a and 5.1b: Dropbox exhibits the best

download MTS values whereas Box clearly provides the fastest uploads. Hence, we conclude

that Personal Clouds are heterogeneous in terms of transfer performance.

Boxleech exploits this feature to show that leechers can obtain even faster transfers by

intelligently allocating the file chunks to various providers2. This allocation depends on the

chunk assignment policy. In Section 5.6, we propose and evaluate Boxleech using several chunk

assignments.

Initialization. To share content with Boxleech, all we needed to do was to sign up for some

free accounts and then register as a developer in each storage service. Once registered, we

instantiated a fake application with the intention to receive an application and secret key pair.

1In [54], Mulazzani et. al. point out that Dropbox is being used to store and share .torrent files, as well as to
distribute copyrighted material.

2We confirmed through experimentation that multiple parallel download transfers from a single data object do
not decrease transfer performance. This provides an appropriate substrate to build an efficient file-sharing system.
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Using these keys, we validated our credentials and obtained the authorizing tokens that must

be passed in every API call. All this process was done with little human interaction since

the core idea of the freemium model is to recruit as much users as possible through a simple

sign-up process.

5.6 Experimental Evaluation

Next, we evaluate Boxleech and we compare its performance with desktop clients delivered

by Dropbox and SugarSync to illustrate the potential benefits of storage leeching.

5.6.1 Setup & Methodology

Scenario. We executed our experiments in our university laboratories. We used 12 machines

in order to run the different software configurations employed in our tests. We employed Intel

Core i5 machines equipped with 4GB of DDR3 memory. The operating system was Windows

7 (Dropbox, SugarSync clients) and Linux Debian (Boxleech). Machines were connected to

the same switch via a Fast Ethernet link.

Software. Personal Cloud Desktop Clients. Dropbox and SugarSync provide free and closed

desktop clients to maintain in sync files from multiple devices and the Cloud1. In our ex-

periments, both clients were explicitly configured to provide the maximum transfer capacity.

Moreover, in the case of Dropbox, we deactivated the LAN Sync option which permits the

synchronization of multiple devices in the same network.

Boxleech. Our file-sharing application employed the standard API implementations to

access storage accounts. Specifically, we used two configurations of free accounts in our tests:

i) 3 free accounts, one for each Personal Cloud analyzed in this article and ii) 5 Box accounts,

to test large storage operations to the same provider. Boxleech made use of parallel transfers

when transferring chunks in and out from each account. In case of a failed storage operation on

a chunk, it performed retries until making the operation succeed. This could increase transfer

times in case of multiple failures.

Workload. For both desktop clients and Boxleech we executed an alternate upload and

download workload. Basically, it consisted on generating a new file, uploading it to the ac-

count and downloading it before its deletion.

1 Sugarsync client version: 1.9.71.94365.20120712. Dropbox client version 1.4.11. Box is excluded from this evalu-
ation since it currently does not provide a free desktop client.
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Figure 5.12: Impact of chunk assignment on transfer times (chunks are assumed to be sequentially
transferred). Clearly, different assignments report disparate transfer performance, which is essential
to effectively exploit the service.

Specifically, in the case of desktop clients, the workload is executed by pairs of computers

—each one dedicated either to upload or download files. First, the upload script created a syn-

thetic file which is stored in the desktop client watch directory of the computer responsible for

uploads. This script was continuously checking in the server-side whether the client finished

the upload or not. In parallel, the download script was waiting in the second computer until

the upload had finished. Then, it started measuring the download time until the remote file

was available in that computer. When the download concluded, the download script deleted

the file, which served as a notification to the upload script to repeat the process again.

Storage operations were performed over synthetic random and compressed files. This was

necessary to prevent desktop clients from applying caching, deduplication and compression

mechanisms over these files. Our results are based in approx. 100 storage operations for each

software and configuration.

Chunk Assignments. To explore the impact of chunk assignments in depth, we performed

a battery of Monte Carlo simulations over the empirical data collected in our measurement (see

Fig. 5.1). Fig. 5.12 plots the impact of different chunks allocations. The abscissa axis shows

the upload/download transfer time measured in seconds for transferring a file of F = 600
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MB. For each possible allocation of n chunks among Box, Dropbox and SugarSync, there is

one corresponding bar in Fig. 5.12. Note that depending on the chunk size β, the number of

chunks n will vary (n = F/β). The colored segments in the bars represent the time incurred to

sequentially transfer the chunks assigned to a given Personal Cloud.

As expected, assigning more chunks to Dropbox reduces the download time, since this ven-

dor exhibited the fastest download capacity in our experiment. This always holds, irrespective

of the chunk size. In any case, allocating the majority of chunks among Box and Dropbox en-

sures to the abusive application good download performance while improving load balancing

among both providers.

On the other hand, due to its poor performance, allocating more chunks to SugarSync

yields higher upload times. The impact on transfer times of SugarSync uploads is much higher

than in the case of downloads. In this sense, we observe an important improvement as more

chunks are assigned to Box, which exhibits the fastest upload service in our experiment.

As a result of these observations, we implemented and tested three simple allocation poli-

cies to assess the potential benefits of exploiting storage diversity. These policies are:

• Round Robin (RR): This strategy is extremely simple to implement and has been adopted

in many real systems. This placement allocates the same amount of chunks to each user

account in order to ensure fairness and reliability. This policy serves as a performance

baseline and it does not make use of any source of information.

• Upload/Download Proportional (UP, DP): Based in our analysis, we propose two new place-

ments to reduce upload and download transfer times. Both placements assign a number

of chunks in proportion to the transfer capacity of each Personal Cloud. The transfer

capacities has been extracted from our measurement study, and therefore, UP and DP

are informed assignment policies.

Next, we evaluate the differences in performance between both types of placement policies

(informed and non-informed).

5.6.2 Experimental Results

Single provider. One simple form of storage leeching is to aggregate free accounts from the

same provider. In the next experiment, we want to verify if the aggregation of accounts from

the same provider entails some performance degradation. For this reason, we aggregated 5

Box accounts and uploaded large amounts of data. The results are shown in Fig. 5.13.
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Figure 5.13: Transfer performance of Boxleech aggregating 5 Box accounts. We observe that the
upload capacity of Box is really high and can be effectively exploited to store and share large amounts
of data.

Fig. 5.13 shows the storage and retrieval performance of Boxleech aggregating 5 Box ac-

counts for different amounts of data. Although the linear behavior of transfer times was ex-

pected, it is surprising to see the upload speed Boxleech with this configuration. Actually, the

average transfer speed of chunks was ≈ 11.5MBps1, which is a high-quality free service. One

of the most important conclusions of this experiment is that aggregating an arbitrary number of

free accounts is extremely easy. Furthermore, aggregating several accounts of the same Personal

Cloud does not seem to degrade the service performance, meaning than exploiting a single

provider is a feasible leeching strategy.

As an important remark, note that a single user is able to consume around 25GB of storage and

upload traffic, as well as 5GB of download traffic in one hour. Thus, one can easily imagine the

economic expense in terms of consumed resources that a large user population may cause to

a provider.

Multiple providers. Next, we focus on the transfer speed of Boxleech compared with Drop-

box and SugarSync desktop clients. For this experiment we used 600MB synthetic files, which

emulates a scenario of users sharing music albums.

In Fig. 5.14 we infer that Boxleech obtains better transfer speed than Dropbox and Sug-

arSync clients in many configurations. For downloads, Boxleech using the Download Pro-

portional policy (DP) provides a transfer speed nearly 2 times higher than the obtained by the

SugarSync client, which is the client exhibiting fastest downloads. To wit, the DP policy as-

signs more chunks to Box and Dropbox services, which present the highest download speeds

1Note that such a speed cannot be continuously maintained since we start a new TCP connection for each chunk
to be transmitted.
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Figure 5.14: Mean transfer times and standard deviation (error bar) of Boxleech under distinct con-
figurations and Dropbox (DB) and SugarSync (SS) clients.

in our measurement. This makes Boxleech downloads considerably faster. Note that even

using the simple Round Robin (RR) policy, Boxleech reports a download speed similar to the

SugarSync client.

For uploads, we see that Boxleech is able to obtain comparable or even better transfer

speed than Personal Cloud desktop clients. That is, Boxleech using the Upload Proportional

(UP) policy with chunks of 25MB presents upload times over 55% shorter than its counter-

parts. In this sense, the RR policy reports the worst performance due to the amount of chunks

uploaded to the SugarSync service, which is really limited. However, this is the only policy

that provides storage balance among accounts. Thus, there is a trade-off between storage balance

and transfer speed when exploiting accounts from multiple providers.

Appreciably, for both uploads and downloads, we see that our informed chunk assign-

ment policies provide a higher transfer speed than the RR policy. Hence, the information of our

measurement helps to better exploit storage diversity.

Fig. 5.15 helps to understand the reported file transfer times in Fig. 5.14. Fig. 5.15 shows the

chunk transfer time distributions for each Personal Cloud used by Boxleech. We found that

a small fraction of chunks exhibit really large transfer times. This phenomenon is specially pro-

nounced in Box uploads. This impacts on file transfer times of our application since all chunks

should be transferred before finishing. This effect might be induced by the management of
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Figure 5.15: Boxleech chunk transfer times distributions for both uploads and downloads, as well
as for different chunk sizes β. Probably, due to the management of parallel transfers of Boxleech, a
small fraction of chunks present really large transfer times.

parallel transfers in Boxleech, that should be carefully addressed for those applications which

want to optimize transfers.

Moreover, Fig. 5.14 shows that the chunk size (β) does not have important implications to

the transfer performance, at least in case of moderate file sizes.

Another interesting observation comes from the analysis of Dropbox and SugarSync clients

(Fig. 5.14). In our experiments, Dropbox exhibits a much greater REST API transfer speed than

SugarSync. However, we see that the transfer performance of both clients is quite similar in

case of uploads. Furthermore, we observe that SugarSync provides a download speed much

better than the Dropbox client. This suggests that: i) these clients may implement bandwidth

control mechanisms in order to restrict the resource consumption coming from free accounts, and ii)

the performance of REST APIs is not necessarily related with the performance of the desktop client.

5.7 Discussion and Conclusions

In this section, we discuss (i) the most important insights from our measurement of Personal

Cloud REST APIs and (ii) several countermeasures to ameliorate the impact of storage leech-
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ing. First, here we summarize the most relevant technical observations obtained from this

measurement:

• Characterization of transfers. In some cases, we observed that transfer time distributions

can be characterized by known statistical distributions like the log-logistic and the logistic

for downloads in Dropbox and Box, respectively. We also found that upload transfer

times are Weibull distributed in Dropbox. In SugarSync, we observed a constant and

very limited transfer performance. This characterization opens the door to create Per-

sonal Cloud modeling and simulation environments.

• High service variability. The variability of Personal Cloud services is significant and in-

duced by many factors. To wit, we discovered that uploading to Dropbox is substantially

faster at nights (15%− 35%), which proves the presence of daily usage patterns. We also

found that the magnitude of the variation is not constant over time. An example of this

is Box. While Box uploads exhibited a mean variability of 125% at the beginning of our

experiment, the CoV reached 300% at the end. Further, we found that uploads are more

variable than downloads.

• Reliability and Poissonity of failures. In general, we found that Personal Clouds are reliable,

exhibiting failure rates below 1%. We also found that for Box, failure interarrival times

approximately follow an exponential distribution. Moreover, Box download failures can

be modeled as a Poisson process, which is analytically simple.

• QoS changes and data lock-in. We found that SugarSync changed its freemium QoS unex-

pectedly. Concretely, the mean upload speed delivered by SugarSync suddenly dropped

from 1, 200 KBps to 80 KBps in EU. This emphasizes the relevance of the data lock-in

problem, where a customer gets trapped in a provider whose service is unsatisfactory

but cannot move to a new one because of the amount of data stored in it.

In summary, our measurement provides a novel characterization of Personal Clouds REST

API services that expands the knowledge base on these systems. Our insights and the publicly

available dataset will enable researchers and practitioners to better understand, model and

predict the behavior of Personal Clouds.

Second, in our view we just scratched the surface of the set of exploitation possibilities that

the storage leeching problem permits. In addition to benefit abusive applications like Boxleech,
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storage leeching is a vector to materialize many other threats, such as denial-of-service attacks

against Personal Clouds [13] or fraudulent resource consumption [94, 95].

In this sense, we highlight the danger that a quick account registration process (e.g. no

captchas) represents to Personal Clouds. As a lesson learned from working with Personal

Cloud APIs, we created over 140 free accounts and 35 developer applications of various ven-

dors in few hours. This represents a virtual storage capacity of around 450GB. Moreover, it

is not hard to imagine expert hackers creating scripts to facilitate, even more, the initial reg-

istration process for non-expert users. In our view, leveraging storage leeching to the masses

would have important economic implications to Personal Clouds.

Although introducing countermeasures to provide a secure API service is strategic decision

from a vendor’s viewpoint, we propose the following ones based on our experience:

• Enforce accountable user identities. The main requirement to access free storage and reg-

ister an application as developer is an email account. Thus, if email accounts are easy

to create, any user can rapidly gather an arbitrary amount of free storage. We suggest

to introduce filters in the creation of Personal Cloud free accounts and/or registering

applications to enforce that one user obtains one account (phone number, human inter-

vention). Currently, systems like Facebook introduce very restrictive procedures to their

developer environments.

• Expiration time for developer applications. To discourage malicious users to exploit open

APIs as a durable storage substrate, we believe that introducing expiration mechanisms

to both developer applications and the related free accounts could be an effective coun-

termeasure. By doing this, Personal Clouds would force abusers storing their data in the

system to periodically migrate it.

• Identify anomalous workloads. According to our conclusions in Chapter 4, Personal Clouds

could benefit from research efforts focused on identifying fraudulent resource consump-

tion to detect abuse in storage accounts related to developer applications. This sug-

gestion comes from our empirical experience: we actively performed tests against free

accounts for 2 months. In that time, we have not detected any change in the service pro-

vided by Personal Clouds, even though the executed workload could be easily detected

as an anomaly.

Finally, it is surprising that many vendors do not implement this kind of security measures

in their API service, even though it is technically possible. Perhaps, Personal Clouds assume

UNIVERSITAT ROVIRA I VIRGILI 
ON PERSONAL STORAGE SYSTEMS: ARCHITECTURE AND DESIGN CONSIDERATIONS. 
Raúl Gracia Tinedo 
Dipòsit Legal: T 1344-2015



108 5. ACTIVELY MEASURING PERSONAL CLOUDS: ANALYSIS AND ABUSE

the risk of a possible abuse of their service motivated by luring as many users and developers

as possible. However, observing the behavior of SugarSync, where the REST API transfer

performance is substantially worse than that exhibited by the desktop client, it seems probable

that other providers will restrict the freemium API service in the future.

Conclusions. To lure customers and developers, Personal Clouds provide open REST APIs

to create new applications that make their service even more attractive. In this Chapter, we first

provided a characterization of the transfer QoS of these services, analyzing relevant aspects of

their performance such as transfer speed, variability and failures. This information may be

of great interest no only to end-users, but also to developers integrating their applications in

Personal Clouds, or to researches willing to model the behavior of these services.

Moreover, we observed that the unintended consequence of combining REST APIs over

free accounts is that it is very easy for a user to abuse the service by aggregating free accounts,

from one or several providers, to obtain a high-quality storage service. We demonstrated this

observation with a practical example of an abusive file-sharing application.

Finally, we provided technical discussion on both the implications of our measurement

and some potential countermeasures to mitigate the impact of storage leeching, which pushes

forward the understanding of Personal Clouds.
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Part II

Exploring QoS in Social Storage
Systems
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6
Analysis of QoS in
Friend-to-Friend Storage
Systems

Summary

Due to the growing necessity for secure and private off-site storage, it is increasingly com-

mon to find storage systems where users interact just with a set of trustworthy participants,

such as in Friend-to-Friend (F2F) networks. In this Chapter, we argue that this kind of sys-

tems are highly affected by availability correlations and very small friendsets, which calls for

a deep analysis of the storage QoS in this particular setting. We also inspect the applicability

of traditional data management techniques (e.g. data availability, redundancy calculation) in

this context. Moreover, to overcome the QoS limitations of purely decentralized systems, we

propose a hybrid architecture that combines F2F storage systems and the availability of cloud

storage services to let users infer the right balance between user control and QoS.

The papers with the results of this chapter appeared in [26, 27].
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6.1 Introduction

Friend-to-Friend (F2F) storage systems are currently an interesting research topic and they

constitute an alternative approach to leverage personal storage [20, 22, 25, 26, 61]. The F2F

paradigm is based on the synergy between social networks and storage systems: users store

their data in a set of trustworthy friends. Thus, data is neither stored in a centralized server

nor in unknown peers, enabling users to retain the control of their data. Moreover, the social

component of F2F systems alleviates many undesirable problems present in large-scale storage

systems —e.g. security, trust, incentives.

Generally, F2F storage systems have been treated as a particular case of P2P systems where

nodes are connected by social relationships [20, 61]. However, very little attention has been

paid to the characterization of these systems. Understanding the characteristics of F2F systems

is crucial for providing an adequate storage service to users (Fig. 6.1). However, we consider

two main aspects which clearly differentiate F2F systems from traditional P2P systems:

High Availability Correlations: Availability correlation can be understood as the high proba-

bility that given an ON (OFF) user, his friends are ON (OFF) as well. Indeed, measurements of

online social networks have shown that friends present significant correlation in their activity

patterns [145]—in line with other popular P2P applications [102, 103]. This implies that it is

probable to find all friends of a user simultaneously offline (e.g. night) which makes it impos-

sible to maintain high data availability even when placing one replica at each friend [99]. Fig.

6.1b shows the presence of correlations in real P2P systems.

Extremely Small Friendsets: Users in a F2F storage system are likely to hold a reduced number

of trustable friends. To wit, over 63% of Facebook users have less than 100 friends [65], and

what is even worse, most of their interactions occur only across a reduced subset of their social

links. Concretely, 20% of their friends account for 70% of all interactions [65]. As we can see in

Fig. 6.1a, other social-based applications present even lower connectivity among users.

The combination of these issues poses new challenges which remain unsolved in a F2F

scenario. Thus, our first contribution is to analyze the applicability of traditional data man-

agement techniques (e.g. data availability, redundancy calculation) in this context and their

effect on the achievable storage QoS (e.g., data availability, transfers). Moreover, provided that

traditional techniques to estimate data availability are severely biased in a F2F environment,

we propose history-based method to calculate data availability tailored to heterogeneous and

correlated availabilities.
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Figure 6.1: Characterization of F2F storage systems.

Unfortunately, the previous analysis confirms our intuition that it is extremely hard for

a F2F system to provide a good storage service to users due to availability correlations. To

improve the QoS, our idea was to take advantage of the superior availability of the cloud to

find the right balance between user control and QoS.

The second contribution of this Chapter is a hybrid architecture called F2Box that combines

F2F systems and cloud storage to get “the best of both worlds”. The design of F2Box allows

users to decide the level of QoS they want to obtain in basis to two parameters: the targeted

level of data availability and the fraction of data to be permanently stored in the cloud. At one end lies

a user who wants a high QoS, for which the amount of data to be stored at the cloud is high.

At the other end is a user who wants high control over his data, for which he keeps most of

his data stored at friends, but at the cost of a lower storage service quality.

To improve upload and download transfer times, F2Box is accompanied by new scheduling

policies at two levels: at the friend-to-friend level and at the friend-to-cloud level. Further, a

new method to adjust the amount of redundancy as a function of the availability patterns is

introduced in F2Box. Finally, we analyze the existing trade-off between QoS and monetary

cost. In summary, our contributions in this Chapter are the following:

• We analyze the impact of availability correlations on data availability provided by a

small group of friends. Contrary to conventional wisdom, we found that correlations can

be exploited to achieve an adequate trade-off between data availability and redundancy.

• We evaluate the performance of common approaches of estimating data availability

when users are correlated. Given that these techniques are severely biased in a F2F en-
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114 6. ANALYSIS OF QOS IN FRIEND-TO-FRIEND STORAGE SYSTEMS

vironment, we propose history-based method to calculate data availability tailored to

heterogeneous and correlated availabilities.

• We explore the relationship between data availability and download times. Our results

suggest that, due to availability patterns, we should distinguish between if a file is cur-

rently available and if it is retrievable in a reasonable amount of time.

• We realize that it is hard to achieve an adequate storage service in a pure decentralized

F2F system. To improve the QoS of a purely decentralized system, our idea is to take

advantage of a cloud to find the right balance between user control and QoS.

• We design a hybrid F2F storage architecture called F2Box. We evaluate several aspects of

this design, including the existing trade-off between QoS and monetary cost.

The remainder of this Chapter is structured as follows. In Section 6.2 we model a de-

centralized F2F system that will help us understand the main QoS problems in this setting.

Section 6.3 presents a new approach to estimate data availability in a F2F system, and how

we benefit from it to calculate the appropriate level of data redundancy. The results of our

analysis of storage QoS in F2F systems appear in Section 6.4. We propose a hybrid alternative

architecture to improve the storage QoS of F2F systems in Section 6.5 and we evaluate it in

Section 6.6. We provide some technical discussion and conclude the Chapter in Section 6.7.

6.2 System Model

In this section, we extend the definitions of Chapter 2 to model thoroughly a F2F storage

system. In our view, this model will help us to understand the storage QoS achievable in this

scenario.

For a node f , we denote by F the set of friends at which f wants to store data. We as-

sume that this set is built up by leveraging upon real trust between users, for example, in an

online social network (OSN) like Facebook or Orkut. Since our focus is on home users, we

assume that node f has limited download and upload bandwidth, denoted by d f and µ f , re-

spectively. We also limit the number of parallel connections to Pd and to Pµ for downloads and

uploads, respectively. The storage capacity at node f is denoted by s f .

Friends alternate between online (ON) and offline (OFF) states. In addition, their online

sessions may be correlated over time. Correlation can be understood as the high probability
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6.2 System Model 115

that given an online user, his friends are online as well, which corresponds well with the strong

diurnal pattern observed empirically in OSNs like Facebook [145].

To capture availability correlations, we distinguish between availability correlation for on-

line sessions and correlations for offline sessions. As we will see next, this separation provi-

sions us with valuable information about the impact of correlations on data availability that

otherwise would remain hidden.

Technically, to represent the availability of a host f , we use a vector AVf of size T, where

its ith position AVv[i] = 1 if f was ON at time ti, or 0 otherwise, where ti = ∆ · i, ∆ > 0. ∆

represents the length of a time slot. With this representation, we can measure both types of

correlations adapting the metrics in [106] into Definition 10:

Definition 10 (Presence Matching) The Presence Matching (PM) metric measures the level of co-
incidence of the ON sessions of two nodes a, b:

PMa,b = |AVa [t]∩AVb [t]|
|AVa [t]∪AVb [t]|

, ∀t ∈ T where AVi[t] = 1, i ∈ {a, b}

Analogously, the Disconnection Matching (DM) metric gives the same information about OFF dura-
tions (AVi[t] = 0).

We extend the above two metrics by calculating the average pairwise PM and DM mea-

sures within a group F. We refer to these metrics by Group Presence Matching (GPM) and Group

Disconnection Matching (GDM), respectively. Given a group F, we calculate the GPM over F as

follows:

GPM(F) =
∑i,j∈F,i 6=j PMi,j

∑
|F|−1
i=1 i

(6.1)

Naturally, the calculation of GDM is analogous but for DM instead of PM.

6.2.1 Estimating Data Availability to Generate Redundancy

As the number of friends is small and they can be temporarily offline, F2F storage systems

provide data availability (δ) by means of redundancy. Concretely, to assure a given level of

data availability, our F2F system makes use of Erasure Codes (ECs), which has been proven to

be more efficient in terms of redundancy than replication [68]. As introduced in Chapter 2,

an EC scheme splits an input file into k fragments of 1/kth the size of the original file. Then,

these k fragments are encoded into n redundant blocks k, k ≤ n, which are stored at different

nodes to mask failures. The data redundancy required to store a file is thus n
k . The original file

can then be recovered by collecting any subset of k blocks out of the total n.
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116 6. ANALYSIS OF QOS IN FRIEND-TO-FRIEND STORAGE SYSTEMS

Blocks generated during the encoding process are assigned to the friendset members. This

assignment depends on a data placement policy —we overview various policies in Section 6.2.3.

For analytical treatment, we denote by b f ∈ {0, 1, . . . , n} the number of blocks assigned to

a friend f ∈ F. An assignment is represented as a vector
→
b=

(
b1, . . . , b|F|

)
, where the ith

position is the number of blocks bi stored at the ith friend.

Naturally, the amount of redundancy generated will depend on the availability of the

nodes that store data blocks. Traditionally, given the number of fragments for a file k and

the target level of data availability δ, the number of encoded blocks to upload n and hence, the

redundancy rate n
k , has been determined as follows:

δ =
n

∑
i=k

(
n
i

)
āi(1− ā)n−i, (6.2)

where ā is the average host availability of a group F. (6.2) simply accounts for all the

possible combinations of finding ≥ k blocks out of n, and the probability that this happens.

Two important observations must be discussed here about (6.2). The first is that this equa-

tion assumes that each fragment is stored at a distinct machine, because otherwise the failure

of a single host would imply the loss of multiple fragments, thereby leading to an underesti-

mation of the real data availability given by (6.2). This assumption is not realistic in our case.

Due to the reduced number of friends (typically, between 5 and 20), it is very likely that a

friend gets assigned more than one fragment.

Second, by employing the mean node availability ā, the binomial approximation (Eq. 6.2)

does not take into account the heterogeneity of node availabilities within a group. This could

potentially introduce estimation errors if we consider heterogeneous friendsets. Recently, a

heterogeneity-aware calculation has been proposed to calculate data availability with higher ac-

curacy [110].

Considering a set of friends F = { f1, f2, . . . , f|F|}, the combinadic C|F|,i is the lexicographi-

cally ordered list with all the (|F|i ) possible combinations of i friends. In order to lexicographi-

cally sort this list, we consider the nodes in each combination sorted in ascending order using

their subindexes. By abuse of notation we denote as C|F|,ij the jth element of C|F|,i. For exam-

ple, for |F| = 3: C|F|,2 = [[ f1, f2], [ f1, f3], [ f2, f3]] and C|F|,22 = [ f1, f3].

Once addressed the concept of combinadic, we have that:

δ =
|F|

∑
i=1

(|F|i )

∑
j=1

γ(k, C|F|,ij ,
→
b) ∏

f∈C|F|,ij

a( f ) ∏
f∈F\C|F|,ij

(1− a( f ))

 , (6.3)
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6.2 System Model 117

where a( f ) is the availability of friend f , and the function γ selects which combinations

from the storage set L store together at least k data blocks, since they could store distinct

amounts of data:

γ(k,L,
→
b) =

{
1 (∑i∈L bi) ≥ k
0 otherwise (6.4)

The heterogeneity-aware approach provides a remarkably more precise notion of data

availability than the binomial approximation. Moreover, Eq. 6.3 avoids restrictive assump-

tions which are not necessarily present in real systems (e.g. every block must be stored in a

distinct node).

However, both Eq. 6.2 and Eq. 6.3 assume that hosts are not correlated, since they consider

that a mean availability value is an accurate representation of a user’s behavior. In our view,

this is by far not true in F2F systems and it may imply that these approaches can highly un-

derestimate or overlook the real data availability. This motivates us to present a more accurate

approach for representing node availabilities, and even, the collective dynamics of a friendset.

6.2.2 The Problem of Scheduling with Availability Correlation

In Chapter 2, we defined the concept of transfer, which basically refers to the connection with

a remote node that causes the transfer of a single block of data to it. Furthermore, we refer to a

schedule as the set of transfers concerning the same data object. In this section, we specifically

focus on understanding the role of correlated node availabilities on scheduling times (TTS).

Armed with the previous definitions, we are now in position to describe rather informally

the problem of data scheduling on a small group of availability-correlated storage nodes by

means of a simple formulation.

At this point, we assume that an appropriate (k, n)-erasure code has been selected accord-

ing to the target data availability δ and the availability correlations for the storage nodes in

F, with |F| ≥ n. Similar to [67], let S(i, t) denote the event that an encoded block has been

transferred to a friend i during time slot t. Also, let 11S(i,t) be the indicator variable that notes

whether or not the encoded block has been transferred. We say that a schedule S is complete if

n

∑
i=1

TTS(S)

∑
t=1

11S(i,t) = n, (6.5)

where TTS(S) is the TTS for schedule S. Let S denote the set of all complete schedules. For

simplicity, let us consider the set of schedules where each friend receives at most m fragments
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Figure 6.2: Example of availability correlation.

Sm, i.e., Sm =
{

S ∈ S|∑TTS(S)
t=1 11S(i,t) ≤ m, ∀i ∈ F

}
. Then, the goal of the scheduling policy will be to

find the schedule S in Sm with the shortest possible TTS.

For a schedule S, its corresponding TTS(S) is equal to max
{

t ∈N+|11S(i,t) = 1, i ∈ F
}

.

This implies that if the order in which transfers are to be executed does not take into account

availability correlations, TTS may grow significantly if, for instance, the least available friend

was scheduled last when all friends follow a diurnal pattern. This fact is mirrored in the ex-

ample of Fig. 6.2, where n = |F| = 3 and the set of potential schedules is S1 (exactly one

encoded fragment to each friend). We have depicted in gray the time slots where each node is

online. This scenario highlights the importance of a good schedule when storage friends have

correlated availabilities.

With an optimal schedule the owner would send a fragment to p3 in the first time slot,

then another to p1 in time slot t2, and finally one to p2 in time slot t3, concluding the schedule.

However, if the first block is sent to p2, then the second block to p1, the owner will have to

wait for p3 to come online again in time slot t7 to complete the upload. If the availability

pattern of p3 had been considered, this schedule would have been considered suboptimal and

immediately discarded.

In a F2F system, finding the most optimal scheduling plan is key to provide an efficient storage

service in terms of transfer times, which is not trivial due to the reduced number of friends and

the availability correlations among them.

In our analysis, we evaluate the time needed to download data, both a per-block (BTT) and

a per-object (TTS) basis, as a complementary metric to measure data availability. As one can

infer, these times are influenced by the chosen transfer scheduling policy, that is, the algorithm

that decides the order according to which transfers must occur over time in order to minimize

the time to complete a given schedule. As a baseline in our analysis, we make use of the random

policy: among the pending block transfers the user chooses one of them uniformly at random

until gathering at least k blocks. We compare the performance of the random policy with the
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6.3 Historical Data Availability & Redundancy 119

optimal time to schedule (OTTS) to understand the margin of improvement that more elaborated

scheduling policies may achieve.

6.2.3 Data Placement

Given a set of candidates, a data placement policy is the algorithm which decides the recipient

of a data block. In this Chapter, we evaluate two distinct placements: round-robin (RR) and

availability proportional (AP).

The RR data placement is extremely simple to implement and preserves fairness among

friends regarding storage load. In our framework, this placement is used when we estimate

the necessary redundancy using the binomial approximation (BA) and our history-based (HB)

algorithm (see Section 6.3.2).

In [147], authors formally demonstrated that, having a group of nodes with heteroge-

neous availabilities, assigning an amount of redundancy proportional to their availabilities

maximizes the resulting data availability. Hence, we employ the AP data placement in the

heterogeneity-aware (HA) calculation1.

We believe that preserving load balancing in a reduced set of participants is essential to

provide scalable storage and to avoid service bottlenecks. Our objective is to quantify the

impact of data placement on storage fairness and reliability provided by a friendset.

6.3 Historical Data Availability & Redundancy

In general, the majority of real-world systems express node availabilities with simple averages

of their past behavior. With this information, it is simple to estimate the data availability

provided by storage nodes with Eq. 6.2 or Eq. 6.32.

The relevance of heterogeneity and availability patterns reported in social networks [145]

and many P2P systems [102, 103] poses an important evidence: availabilities cannot be accurately

estimated by averaging the fraction of time nodes have been online. Furthermore, in a F2F scenario,

the reduced number of storage nodes makes availability correlations to be even more impor-

tant [104]. Such a simplification completely hides the correlated dynamics of nodes, which

1We thank Matteo Dell’Amico and Lluı́s Pàmies for developing a dynamic programming solution to perform this
calculation.

2Other theoretical models to describe node dynamics, such as Markov chains, have reported limited applicability
in practice [107, 148].
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120 6. ANALYSIS OF QOS IN FRIEND-TO-FRIEND STORAGE SYSTEMS

may, in turn, produce considerable problems to the storage service; for instance, significant

errors in the estimation of data availability.

In our system, we calculate the data availability provided by a friendset F in a window of

T time units as follows:

δ =
1
|T|

T

∑
t=0

α(k,F, t,
→
b), ∀t ∈ T, (6.6)

where α(k,F, t,
→
b) is an indicator function which evaluates whether a file is available at instant

t as follows:

α(k,F, t,
→
b) =

{
1 (∑i∈F AVi[t] · bi) ≥ k.
0 otherwise (6.7)

Therefore, we calculate the data availability provided by a group of friends based on their

historical behavior. Note that the value of δ in Eq. 6.6 is basically the aggregation of the times-

lots of instant data availability, that is, those periods where the number of available blocks is

greater than k.

This approach provides an exact notion of the data availability provided by a set of friends

in a past window of time, even in the presence of high heterogeneity and availability patterns.

Our objective is to benefit from this mechanism to calculate the precise amount of data redundancy

(n/k) to be stored in F for achieving a targeted data availability (δ).

6.3.1 Historical Optimal Data Redundancy: Complexity

Ideally, the amount of redundancy used should be minimal to optimize storage space, provided

that the target level of data availability is met. Moreover, since friendsets are normally small,

we should maintain load balancing for providing fairness and reliability in such a limited system.

This problem can be defined as follows (Definition 11):

Definition 11 (History-based Optimal Redundancy Problem) Given a fixed k and a friendset F,
our objective is to find the minimal n, n ≥ k, that achieves a targeted data availability δ, where each
friend f ∈ F stores a number of blocks b f , bmin ≤ b f ≤ bmax, where constants bmin, bmax ∈ {0, . . . , n}.

Solving this problem requires to examine all the possible block assignments for each value of n.

The reason is that the resulting data availability depends on the availability history of friends,

for which no assumption can be made on its exact behavior. Further, it can be easily seen that

the optimal block assignment with n + 1 blocks will never provide less data availability than
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6.3 Historical Data Availability & Redundancy 121

the optimal one with n blocks. Consequently, we will be able to use binary search to optimize

the search in n (Algorithm 1).

Algorithm 1: Historical Optimal Data Redundancy
Input: F, δ, k, bmin, bmax

Output: n
n← k, t← |F| · k;
while n 6= t do

m = n+t
2 ;

if maxDA(F, k, m, bmin, bmax) < δ then
n← m + 1;

else
t← m;

end

end

The most computationally expensive part of Algorithm 1 lies on the function maxDA. This

function looks for the block assignment that maximizes data availability under the established

redundancy and load balancing constraints. Intuitively, we confront a combinatorial opti-

mization problem. To illustrate its complexity, we formalize the maxDA function as a bounded

knapsack problem [149].

In our formalization, we assume that each friend has a weight b f , that is, the number of

blocks it stores. Moreover, to fit our problem into the formal knapsack definition, each friend

f has a specific value function v f defined as follows:

v f (
→
b) =

1
|T|

T

∑
t=0

AVf [t] · τ(k,F, t,
→
b) (6.8)

τ(k,F, t,
→
b) =

 1
ρ(F,t,

→
b )

α(k,F, t,
→
b) = 1

0 otherwise
(6.9)

where the function ρ(F, t,
→
b) = ∑ f∈F AVf [t] · bi represents the total number of available

blocks at instant t. Therefore, v f expresses the relative contribution of a friend f to the time

periods where the file is available. Then, the optimization problem is:

maximize V = ∑
f∈F

v f (
→
b) · b f , bmin ≤ b f ≤ bmax (6.10)

subject to ∑
f∈F

b f ≤ n (6.11)
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122 6. ANALYSIS OF QOS IN FRIEND-TO-FRIEND STORAGE SYSTEMS

The additional complexity of this problem w.r.t. the classical knapsack problem is that co-

efficients (v f , b f ) depend on the assignment
→
b , and therefore, they should be recalculated at

each execution step. Moreover, one can infer that depending on the assignment of data blocks

within a friendset F, the resulting data availability will vary. This means that distinct assign-

ments of equivalent redundancy and load balancing constraints may lead to different V values

due to the collective dynamics of nodes. Thus, the complexity of our problem extends beyond

the classical non-linear bounded knapsack problem, which is known to be NP hard [149].

For this reason, we propose a heuristic method to take advantage of the historical informa-

tion in an efficient manner.

6.3.2 Estimating Data Redundancy with the History of Friends

As aforementioned, availability correlation in conjunction with a small friendset makes it hard

to maintain a high data availability at any moment. This calls for a new notion of data avail-

ability in this context:

Definition 12 (Daily Data Availability) The daily data availability metric aims to express the amount
of hours per day a file object is available in a storage system.

That is, we strive to ensure a high data availability during the period of the day where a

user’s friends are mostly online. The new perspective of data availability presented in Def-

inition 12 specifically benefits from correlations to provide an feasible and scalable F2F storage

service. More specifically, our aim is to assure a high data availability during at least δ hours

per day, instead of at all times as in traditional large-scale storage systems, where a sufficient

number of uncorrelated nodes can be found.

The algorithm for this computation works as follows. The initial number of blocks to be

transferred to the friendset is n = k. The algorithm then assigns the n blocks to the friends in a

round-robin style in order to balance storage costs. Using a past time window of w timeslots, it

computes the number of timeslots wtimeslot within the window where the number of available

blocks navail is equal or greater than k. Note that at least few days should be considered in the

time window w. If wtimeslot times the duration of a timeslot ∆ covers δ hours, the algorithm

halts, and the value of n is returned. Otherwise, n is incremented by one block and the entire

process is repeated (up to |F| replicas). This procedure is repeated again and again until the

value of n guarantees δ hours of data availability. The pseudocode for this algorithm is shown

in Algorithm 2.
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Algorithm 2: Historical data redundancy calculation
Input: F, δ, k
Output: n
n← k− 1;
havail ← 0
while havail ≤ δ and n

k < |F| do
n = n + 1;
ntimeslot ← 0;
for i in w do

navail ← 0;
for f in F do

if AVf [i] ≡ 1 then
navail = navail + n/|F|;

end

end
if navail ≥ k then

ntimeslot = ntimeslot + 1;
end

end
havail ← ntimeslot · ∆

end

6.4 Analysis of storage QoS in F2F systems

6.4.1 Setup & Methodology

In our tests, we modeled the alternating ON/OFF behavior of nodes using availability traces.

Unfortunately, we could not find real traces of any F2F storage system, simultaneously includ-

ing social graph and availabilities [99]. Thus, to evaluate the impact of availability correlations

we employed real traces from Kad [102] and Skype [103]. Additionally, we used synthetically

generated [150] traces of an Heterogeneous Yao model1 [151]. From these traces, we excluded

all the nodes whose availability was out of the range [āmin, āmax] every 48 hours during the

simulation window of T = 12 days. This filtering process was necessary to exclude from sim-

ulation extreme availability cases (e.g. superpeers, permanent churn). As a result, we obtained

nodes with regular participation in the system and exhibiting strong correlation (see Fig. 6.3).

Friendsets are formed selecting random nodes from these traces. Note that forming random

groups from a strongly correlated trace will generally result in correlated groups.

1The average online session for friends was of 8 hours while the average downtime was of 16 hours (ā = 0.33).
Both ON/OFF time durations were drawn from Pareto distribution (heavy-tailed) with shape parameter α = 3, which
has been reported to provide a tight fit to the real lifetime distribution found in decentralized systems.
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Figure 6.3: ON/OFF behavior of nodes in our traces after the filtering process.

N Filtered nodes 122 (Skype), 192 (Kad)
85 (Yao)

[āmin , āmax ] Node mean availability Kad, Skype [0.2, 0.8]
Yao [0.3, 0.4]

T Simulation time 12 days
µ f , d f Node up/down bandwidth 30KBps, 120KBps
s f Node storage capacity 500GBytes
Pµ , Pd Parallel up/down connections 1, 4
k Original file fragments 40
β Object size 500MB, 1GB, 2GB
|F| Friendset size [5, 10, 20]

Table 6.1: System parameters and description.

Our simulations are divided into three different phases, each during 4 days:

1. Training phase. In this phase, the users collect historical information in form of availability

vector AV about each of their respective storage friends.

2. Upload phase. During this phase, the data owner uploads a single file of β bytes, plus the

associated redundancy, to the system.

3. Download phase. Finally, in the download phase a user retrieves k data blocks from the

system to reconstruct the uploaded file. During this phase we continuously inspect the

data availability provided by the group of friends to which the file was uploaded. We

measure data availability as the number of time-slots where the number of available

blocks is ≥ k (Eq. 6.6).

In our F2F application, retrieving a file requires locating a sufficient number of blocks to

perform a decoding operation. Thus, a user needs the network information of their storage

friends in the system to initiate the downloading process. We do not restrict the way of storing

this information; for instance, it can be stored in a social application or a tracker.

The important simulation parameters used in our simulations are depicted in Table 6.1.

Simulation results for each trace correspond to a collection of 1, 000 random friendsets.

UNIVERSITAT ROVIRA I VIRGILI 
ON PERSONAL STORAGE SYSTEMS: ARCHITECTURE AND DESIGN CONSIDERATIONS. 
Raúl Gracia Tinedo 
Dipòsit Legal: T 1344-2015



6.4 Analysis of storage QoS in F2F systems 125

δ = 0-4 hrs./day | n/k = 1

δ = 4-7 hrs./day | n/k = 1.4

δ = 7-10 hrs./day | n/k = 2

k=40

Time (hrs.)

Correlated Friends
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(b) Friendset with low GPM.

Figure 6.4: Impact of GPM on the data redundancy (n/k) a friendset requires to provide a certain
degree of data availability (δ). Correlated friends provide low/moderate data availability values
using less redundancy than uncorrelated ones. However, only uncorrelated friendsets can provide
high data availability.

6.4.2 Availability Correlations and Data Availability

Generally, the presence of availability correlations has been considered in the P2P literature

as a flaw which should be avoided to guarantee a high data availability. However, the ac-

tual impact of correlated availabilities on the data availability provided by a small group of

participants remains unexplored.

To address this issue, we resort to the GPM metric to measure the degree of coincidence

among the online sessions of a group of friends. We analyze the resulting data availability

when these friends are highly correlated in their online sessions (high GPM) and in the oppo-

site case (low GPM). Both cases are illustrated in Fig. 6.4. This figure depicts the relationship

between data availability and redundancy depending on the GPM of a friendset.

For this analysis, we have synthetically generated 1K friendsets of cardinality 5 for both

categories of GPM ∈ [0.05, 0.15] and GPM ∈ [0.3, 0.4] from the Yao trace during the download

phase. Note that from this trace we excluded all the nodes whose availability was out of the

range [0.3, 0.4] every 48 hours during the simulation. This will give us a clear picture of the

impact of availability correlations, without the bias induced by high node heterogeneity.

First, in Fig. 6.5 we observe a clear distinction in the growth of data availability as a func-

tion of data redundancy depending on the GPM degree of a friendset. For low to moderate

amounts of data redundancy, we see that availability correlations improve the data availability pro-

vided by the friendset. For instance, when two replicas are introduced in the system (n/k = 2),

correlated friendsets double the data availability provided compared with the uncorrelated

friendsets.
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Figure 6.5: Evolution of data availability in function of the data redundancy for corre-
lated/uncorrelated friendsets (H. Yao trace, RR placement).

Although this observation may be contrary to conventional wisdom, it is clearly depicted

in Fig. 6.4. In Fig. 6.4a, we observe that correlated friends provide moderate levels of data

availability at a lower storage cost. The reason is simple: if friends coincide in their online ses-

sions, data availability is maintained by all friends simultaneously. This reduces the amount

of data redundancy needed at each friend. On the contrary (Fig. 6.4b), friendsets exhibiting

low GPM have almost no common online periods among them. This implies that they should

support large amounts of redundancy per friend (even a replica) to guarantee a high data

availability.

However, when we introduce large amounts of data redundancy we observe that this be-

havior changes. In case of n/k = 5, uncorrelated friendsets provide a significantly higher data

availability than correlated ones. That is, for very large amounts of data redundancy, uncorrelated

friends are able to cover the majority of the day time with k blocks or more. On the other hand, we

observed that if friends within a group coincide in their online sessions, they also coincide in

their offline sessions (high GDM). This fact lead us to an important conclusion: in a correlated

friendset, the maximum data availability achievable is limited by the degree of coincidence in their offline

sessions (GDM).

Fig. 6.6 depicts the GPM/GDM distribution of 50K random friendsets selected from avail-

ability traces. First, in Fig. 6.6a we observe that the GPM distribution exhibits a wide range

([0.1, 0.35]) in all traces due to the randomness of the node selection. Since there are no real
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Figure 6.6: GPM/GDM distribution of random friendsets of different cardinalities collected from
employed traces during the download phase (4 days).

traces of F2F storage systems, we cannot generalize the observed GPM values in our traces

to real systems. In our opinion, trusted friends will likely live in the same time-zone, proba-

bly exhibiting similar patterns [145]. In that case, the GPM distribution would be remarkably

concentrated in high values.

Second, we observe that the GDM distribution of these traces exhibits higher values than

the GPM distribution. There are two reasons for this phenomena: i) Low node availabilities

make the coincidence of nodes in their offline sessions easier, and ii) the nocturnal patterns of

real traces increases the probability for a group of friends to be simultaneously offline.

In line with [104], we found that it is easier to find high availability correlations among partic-

ipants as the friendset becomes smaller. This can be appreciated in Fig. 6.6: For small friendsets

(|F| = 3) the GPM/GDM distributions present more extreme values than for larger friendsets

(|F| = 10).

In conclusion, in F2F systems, the presence of availability correlations offers a good trade-

off between data availability and data redundancy.

6.4.3 Data Redundancy Estimation

Next, we study the accuracy of the traditional ways of calculating the necessary amount of

data redundancy to achieve a certain data availability. To this end, in Fig. 6.7 we illustrate the

data availability experienced by 1K friendsets of distinct cardinalities (|F|) when varying the

required data availability (δ).

In Fig. 6.7, we clearly observe that for low δ, the binomial approximation (BA) tends to greatly

overestimate the amount of data redundancy required. Proof of that is that the system exhibits a
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Figure 6.7: Data availability obtained by different redundancy calculations approaches varying the
targeted data availability (δ) and the friendset size (|F|).

Table 6.2: Mean data availability deviation (µ− δ) and coefficient of variation (CV) of redundancy
calculation techniques - Skype

δ = 0.25|6 hours/day BA (|F| = 5) HA (|F| = 5) HB (|F| = 5)
µ− δ +0.21(+84%) +0.07(+28%) +0.03(+12%)

CV (σ/µ) 0.37 0.46 0.54
δ = 0.66|16 hours/day BA (|F| = 5) HA (|F| = 5) HB (|F| = 5)

µ− δ −0.14(−21.2%) −0.04(−6.1%) 0.0(0%)

CV (σ/µ) 0.32 0.25 0.21
δ = 0.25|6 hours/day BA (|F| = 20) HA (|F| = 20) HB (|F| = 20)

µ− δ +0.19(+76%) +0.08(+32%) −0.01(−4%)

CV (σ/µ) 0.17 0.25 0.34
δ = 0.66|16 hours/day BA (|F| = 20) HA (|F| = 20) HB (|F| = 20)

µ− δ −0.13(−19.7%) −0.12(−18.2%) −0.02(−3%)

CV (σ/µ) 0.11 0.12 0.09

much higher data availability than expected. In this sense, the heterogeneity aware (HA) calcu-

lation significantly improves the accuracy of the BA, thereby demonstrating the importance of

considering heterogeneous availabilities [110].

On the other hand, both BA and HA highly underestimate the necessary amount of redundancy

needed for high values of δ, providing lower data availabilities than expected. This is mainly due to

strong availability correlations. Further, this phenomenon seems to be more evident as the

friendset size grows since most members exhibit nocturnal patterns (Fig. 6.7).

We observe that, our history-based (HB) redundancy calculation is very accurate in the presence

of correlations, irrespective of δ and |F|. In Table 6.2, we illustrate the mean data availability

deviation (µ − δ) provided by each method and the resulting coefficient of variation (CV).

For instance, for |F| = 5 and δ = 0.25, the HB method has a mean deviation of +12% from

the expected availability, whereas the HA and BA exhibit a deviation of +28% and +84%
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Figure 6.8: Average data redundancy factor introduced by BA, HA and HB.

respectively.

In Table 6.2 we also infer that the data availability CV is higher for low δ values and small

friendsets. This is congruent with results in Section 6.4.2, where in case of correlated friend-

sets and low δ, small increments of redundancy result in significant improvements in data

availability. This implies that small variations of redundancy induce high variability (CV).

It is worth mentioning that the HB method provides a slightly lower data availability than

expected for δ = 0.25 in Kad. By inspecting the Kad trace, we noted that the selected nodes

exhibited lower availabilities in the download phase (0.397) than in the training phase (0.449).

This induces an underestimation of the necessary redundancy, as the HB algorithm uses the

availability vectors of nodes during the training phase. Therefore, the HB method can lead to

incorrect redundancy estimations in case of significant variations between the friendset history

and the current friendset availability.

The resulting data availability comes from the generated data redundancy. Fig. 6.8 illus-

trates the differences in the average data redundancy factor exhibited by the different redun-

dancy calculation approaches. When a user demands high data availability (δ = 0.66), we

observe that both BA and HA calculations provide much less redundancy than the HB ap-

proach (from −30% to −15%). Further, the deviation of BA and HA calculations techniques

causes friendsets to not meet the required data availability (Fig. 6.7, Table 6.2).

Clearly, for low values of δ both BA and HA introduce more data redundancy than the HB

approach. That is, in Skype for |F| = 10 and δ = 0.25, the BA and HA store 26.97% and 4.13%

more redundant data than our proposal, respectively. Furthermore, in that case, this extra

redundancy is unnecessary since the BA and HA calculations provide more data availability
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Figure 6.9: Storage load balancing supported by nodes. Clearly, the BA and HB redundancy calcula-
tion algorithms preserve load balancing due to the use of RR placement whereas the AP placement
incurs in high unbalance.

than expected. In a F2F system, this burden in terms of unnecessary redundancy may pose important

drawbacks (e.g. limited scalability, high upload times).

In conclusion: i) Due to availability correlations, the BA and HA approaches produce sig-

nificant deviations for calculating the necessary data redundancy for a targeted data avail-

ability, and ii) Our HB method is accurate enough to produce an adjusted amount of data

redundancy in the presence of correlations. This provides important benefits to the system in

terms of data availability and storage scalability.

6.4.4 Storage Load Balancing and Reliability

We investigate next the impact of data placement on the load balancing and reliability of the

storage service. To this end, we compare two placement policies described in this Chapter:

round-robin (RR) and availability proportional (AP) policies. As mentioned in Section 6.2.3, we

use the RR placement for the BA and HB redundancy calculation algorithms. The AP place-

ment is inherently used by the HA calculation.

Fig. 6.9 depicts the storage load CDF experienced by nodes in our simulations. Noticeably,

the AP assignment induces a high storage unbalance. This is specially evident for very small and

heterogeneous groups. To wit, for |F| = 5, we note that the 20% of nodes store less than 15% of a

file, whereas a 4% of nodes suffer a load greater than 30%.

Conversely, irrespective of the redundancy calculation and the values of δ and |F|, the RR

placement offers high load balancing. As expected, as the value of |F| grows, the differences

between both placements become less important.

In our view, load balancing is a key property for such a limited storage system. Poor load

balancing may in fact produce severe service problems.

In this sense, Table 6.3 presents the file recovery probability in the presence of node failures.

In these simulations, we loaded friendsets with a certain amount of data redundancy (n/k)
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Table 6.3: File recovery probability in the presence of failures

Friend Random Failures ( fr) - |F| = 5 (Kad)
n/k = 1.5 fr = 1 fr = 2 fr = 3

Av. Prop. 100% 99.6% 21.9%
Round Robin 100% 100% 0%
n/k = 3 fr = 3 fr = 4 fr = 5

Av. Prop. 100% 85.2% 1.1%
Round Robin 100% 100% 0%

Most Av. Friend Failures ( fa) - |F| = 5 (Kad)
n/k = 1.5 fa = 1 fa = 2 fa = 3

Av. Prop. 100% 97.7% 0%
Round Robin 100% 100% 0%
n/k = 3 fa = 3 fa = 4 fa = 5

Av. Prop. 100% 17.5% 0%
Round Robin 100% 100% 0%

Friend Random Failures ( fr) - |F| = 10 (Skype)
n/k = 1.5 fr = 3 fr = 4 fr = 5

Av. Prop. 100% 80.5% 0%
Round Robin 100% 100% 0%
n/k = 3 fr = 6 fr = 7 fr = 8

Av. Prop. 100% 93.8% 25.7%
Round Robin 100% 100% 0%

Most Av. Friend Failures ( fa) - |F| = 10 (Skype)
n/k = 1.5 fa = 3 fa = 4 fa = 5

Av. Prop. 100% 0% 0%
Round Robin 100% 100% 0%
n/k = 3 fa = 6 fa = 7 fa = 8

Av. Prop. 98.9% 1.4% 0%
Round Robin 100% 100% 0%

using the AP and RR placements. Moreover, we considered two failure models across a group:

random failures and failures occuring to the most available friends.

In general, random failures within a friendset exhibit a similar impact on both placement strategies.

However, in extreme cases of random failures (rightmost column) we observe that the AP

assignment provides better resilience. This is due the fact that random failures can occur to

the majority of lowest available (and therefore least loaded) friends, thus providing higher

recovery probabilities. In other cases we observe slightly better results from the RR strategy.

Nevertheless, when highest available nodes fail, the RR placement offers a greater resilience

than the AP. Actually, in the Skype scenario, the RR strategy tolerates one node failure more

than the AP placement. This represents a difference of 10% in the recovery probability for

the same amount of storage redundancy. Therefore, we conclude that in a F2F scenario it is

important to preserve storage load balancing to provide fairness and reliability, as well as to

avoid service bottlenecks.
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Figure 6.10: Relationship between data availability and optimal download times (RR placement).

6.4.5 Data Availability vs Download Times

Conversely to large-scale systems, providing a certain degree of data availability in a F2F net-

work does not necessarily imply that data can be retrieved in a short period of time. This is

mainly due to the reduced number of available friends, their bandwidth limitations and their avail-

ability patterns. In this section, we analyze the relationship between availability and download

times in a F2F system.

Fig. 6.10 illustrates the behavior of the data availability and download optimal times to

schedule (OTTS) during a time series analysis of 4 days for different values of n/k, |F| and

β. First, we can observe in a time-series representation the impact of availability correlations

on the mean number of available blocks maintained by friendsets. Clearly, the strong patterns

of nodes produce periods of data redundancy over-provisioning and under-provisioning. This effect
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Figure 6.11: TTS and BTT distributions of 1, 000 downloads at the start of the download phase using
a random scheduling policy (RR placement).

becomes more significant as the redundancy rate n/k grows.

As can be inferred from Fig. 6.10, the availability correlations of nodes also impact on

the download OTTS. As expected, the download times present a near-opposite behavior than

data availability; the more redundancy is available, the shorter the download time a user can

achieve. However, we also see that the download OTTS values are highly dependent on the

redundancy introduced in the system. That is, in Kad for β = 1GB and n/k = 3, the mean

download OTTS values range from 2.54h. to 8.32h. (µ = 4.39h.), whereas when n/k = 1.5

they range from 3.67h. to 13.94h. (µ = 7.98h.). Further, results for Skype suggest that larger

friendsets notably improve the time to retrieve a file from the system.

It is interesting to note that both availability and download OTTS plots are not completely

opposite to each other. To wit, we can find periods without availability and low download times,

being the contrary also true. Hence, start downloading a file in the evening may take several

hours, due to the simultaneous disconnection of nodes before the download is completed. On

the contrary, retrieving a file in early morning exhibits low download times even though the

availability at the start of the download indicates that the file is unavailable.

In Fig. 6.10 we observe that the lowest TTS values are clearly dependent on the file size (β).

However, the largest download times seem to be less affected by the file size, specially in Kad.

To explore this issue in depth, in Fig. 6.11 we present the TTS and BTT distributions obtained

by a random scheduling policy for different values of β and n/k.

As can be observed in Fig. 6.11a, we see that for low TTS values the file size plays an

important role. The dominance of low TTS values in Fig. 6.11a is because these downloads are

performed at the beginning of the day. However, we observe that as the download times become

higher, TTS distributions become similar irrespective of the value of β. The reason of that is that the

order in which transfers are executed do not take into account availability correlations. Hence,
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TTS may grow significantly if, for instance, the least available friend was scheduled last when

all friends follow a diurnal pattern. This fact is mirrored in the BTT distribution.

In Fig. 6.11b we present the BTT distribution of the schedules depicted in Fig. 6.11a. Note

that while the majority of blocks are transferred in a reasonable time, there is a reduced num-

ber of blocks (< 10%) exhibiting very large transfer times. Thus, the presence of availability

patterns cause the unavailability of these blocks, which importantly increase the final TTS.

Therefore, irrespective of the file size, the largest TTS values are dictated by a minimal fraction of

blocks whose schedule is affected by availability correlations.

6.5 F2Box: Cloudifying F2F Storage

In the previous analysis, we observed that the achievable storage QoS for a purely decentral-

ized F2F system is negatively affected by the small groups of friends storing data and their cor-

related availabilities. From our point of view, there is little margin to improve these systems

with novel data management techniques, since their limitations are inherent to their decen-

tralized nature. For this reason, in this section we present a novel hybrid architecture where

storage resources from users are blended with cloud storage to improve the storage QoS.

6.5.1 System Design

To improve the performance of F2F storage, we propose F2Box, a hybrid architecture that

exploits the higher availability of cloud storage services. As pure F2F systems, F2Box nodes

use their social links to set up symmetric storage relationships among them. Furthermore,

each F2Box node incorporates his preferred cloud storage service as a storage node. Our hybrid

model does not restrict the number of cloud providers, thereby avoiding the vendor lock-in

problem.

Cloud services improve the storage QoS of nodes in a two-fold manner:

1. When friends exhibit poor availabilities, cloud storage is used to store a fraction of the

data to assure the targeted data availability; and

2. As a temporary buffer to store blocks assigned to offline friends until they become online

again. The idea of using the cloud as a temporary buffer is to shorten the TTS by letting

F2Box users to upload blocks to the cloud instead of waiting for the disconnected friends

to come back on-line again.
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If the cloud is used as a temporary buffer, then the friends themselves are responsible for

downloading the missing blocks from the cloud. In the end, the data owner removes the extra

blocks from the cloud upon a valid notification.

6.5.2 Historical Data Availability in a Hybrid Environment

F2Box benefits from the concept of daily data availability (Definition 12) for providing δ hours

per day of data availability mixing resources from friends and the cloud. In fact, we extend

Algorithm 2 to deal with a hybrid environment.

To this end, we propose a novel hybrid redundancy scheme where a fraction of the data is

permanently stored in the cloud and the rest is maintained by the friendset. More specifically,

we denote by FC the fraction of the files to be permanently stored at the cloud. A high value of

FC translates into a high data availability, since any cloud service has been designed to reach

several nines of uptime availability. Notice that for a FC < 1 there will be less than k blocks

permanently stored in the cloud. This preserves the distinctive data privacy feature of F2F

systems, since the cloud vendor cannot reconstruct the original file by any means.

The remaining proportion of the file 1− FC is maintained by the friendset. Given a chosen

k, this requires a new method to calculate the minimum redundancy rate n
k according to the

specific availability patterns of friends, so that data availability can be maintained at least δ

hours per day. Recall that a file is available if at least k blocks are available for download.

The algorithm for this computation works as follows. Given the number of blocks k, the al-

gorithm computes the number of blocks to be uploaded to the cloud ncloud as ncloud = dk · FCe.

The initial number of blocks to be stored at friends is nfriend = bk(1− FC)c. The algorithm then

assigns the nfriend blocks to the friends in a round-robin style in order to balance storage costs.

Using a past time window of w timeslots, it computes the number of timeslots ntimeslot within

the window where the number of available blocks ncloud + navail is equal or greater than k.

Note that at least few days should be considered in the time window w. If ntimeslot times the

duration of a timeslot ∆ covers δ hours, the algorithm halts, and the values ncloud and nfriend

are returned. Otherwise, nfriend is incremented by one block and the entire process is repeated.

This procedure is repeated again and again until the value of nfriend guarantees δ hours of

data availability, whenever nfriend does not exceed |Fv| replicas. Then, the redundancy rate is

simply (ncloud + nfriend) /k. The pseudocode for this algorithm is shown below.

Note that Algorithm 3 gives flexibility to the user regarding the amount of data he wishes

to store in the cloud. Moreover, depending on the targeted data availability δ, the mone-
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tary cost of cloud storage will be higher or lower, and the disk capacity required to friends will

be on the opposite situation. We study this trade-off in the next section.

Algorithm 3: Hybrid historical redundancy calculation
Input: Fv, δ, FC, k
Output: ncloud, nfriend

ncloud ← bk · FCc;
nfriend ← dk · (1− FC)e − 1;
havail ← 0
while havail ≤ δ and nfriend

k < |Fv| do
nfriend = nfriend + 1;
ntimeslot ← 0;
for i in w do

navail ← 0;
for u in Fv do

if AVu[i] ≡ 1 then
navail = navail + nfriend/|Fv|;

end

end
if ncloud + navail ≥ k then

ntimeslot = ntimeslot + 1;
end

end
havail ← ntimeslot · ∆

end

6.5.3 Improving Scheduling Times

Given determined the redundancy rate in terms of ncloud and nfriend, we resort to the cloud

in order to decrease scheduling times. As described above, the cloud provider, in addition to

store ncloud blocks, acts as a temporary repository to store the blocks assigned to nodes that

are currently offline. This policy can lead to an important reduction of scheduling times.

To this aim, we propose the Bandwidth Maximizing Friend-to-Cloud policy1. With this pol-

icy a user seeks to minimize scheduling times as much as possible by fully utilizing his own

bandwidth. Thus, if a node responsible for a block is not online, this policy automatically

pushes this block to the cloud. This ensures that a node achieves the MTTS. In this sense, this

scheduling policy can be viewed as a pure F2F scheduling policy that immediately uploads a

block to the cloud when the corresponding friend to which transfer that block is offline.
1 In this piece of research we designed other Friend-to-Cloud policies. However, the differences in performance

among them were not significant.
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In any case, the extra fragments allocated to the cloud will have to be downloaded after-

wards by the friends to whom were initially assigned. Clearly, this yields extra cloud costs in

outgoing traffic, which are analyzed in Section 6.6.

Finally, apart from the random scheduling policy presented in Section 6.2.2, we want to

extend the performance analysis of data transfer scheduling policies introducing two new

ones:

• Least-Available First (LAF). This scheduling strategy is based on the assumption that

nodes that have been online in the past will continue to do so in a near future. Therefore,

it prioritizes transfers towards the nodes that have been less available within a past time

window of w timeslots [67].

• Previous Optimal Schedule (POS). We propose a novel policy which takes advantage from

the max-flow based calculation of the optimal time to schedule. Essentially, it works as

follows. If a scheduling were to be started at time t of day d, this policy would reproduce

exactly the optimal schedule that would be obtained from the max-flow based approach

but starting at time t of day d in the preceding week. This policy thus tries to take

advantage of the regular participation of nodes over the week.

Our objective is to understand the effects of more elaborated transfer scheduling policies

on transfer times and cost of the F2Box storage service.

6.6 Evaluation of F2Box

6.6.1 Setup & Methodology

Similarly to our previous analysis, in our tests we modeled the alternating ON/OFF behavior

of nodes using real availability traces. Since a capital aspect of our evaluation lies on studying

the impact of availability correlation, we employed traces from Kad [102] and Skype [103].

From these traces, we excluded all the nodes whose availability was out of the range [0.2, 0.6]

during the simulation window of T = 12 days. From this subset, we filtered out the nodes that

were not online at least once every 48 hours. This filtering process was necessary to exclude

from simulation extreme availability cases, such as superpeers or permanent churn.

Since we do not target backup scenarios, where each storage operation involves several

Gigabytes of content, we consider that the data owner stays connected during the whole stor-

age operation. This behavior is natural in file-sharing and storage applications. In addition,
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Parameter Description and Values
N Nodes in the system 60 (Skype), 110 (Kad)
ā Node mean availability [0.2, 0.6]
T Simulation time 12 days
µ, d Node upload/download bandwidth 30KBps, 120KBps
s Node storage capacity 500GBytes
Pµ , Pd Parallel upload/download connections 1, 4
k Original file fragments 40
β Object size 2GB
|F| Friendset size 10

Table 6.4: System parameters and description.

each friendset served a single storage request. The impact of concurrent schedules within a

friendset was addressed in the experimental evaluation.

Our simulations are divided into three different phases, each during 4 days:

1. Training phase. In this phase, the users collect historical information in form of availability

vector AV about each of their respective storage friends. This knowledge base is vital to

calculate the value of nfriend, or to initialize the scheduling policies LAF and POS, among

other matters.

2. Upload phase. During this phase, the data owner uploads a single file of β bytes, plus the

associated redundancy, to the system.

3. Download phase. Finally, in the download phase a user retrieves k data blocks from the

system to reconstruct the uploaded file.

All the results presented below were obtained by repeating this process for 1, 000 random

friendsets in each configuration.

Our analysis showed that applying scheduling policies in this scenario has little or no ef-

fect on download TTS. For this reason, download schedules are performed randomly, giving a

greater priority to the available blocks stored at friends in order to save costs due to data trans-

ferred out of the cloud. Only in case of having idle connections, a node retrieves fragments

from the cloud.

Monetary Cost. We adopt for our evaluation the same pricing model of Amazon S3, which

is a well representative for cloud storage. Accordingly, we consider outgoing data transfers

and storage to be charged by the cloud service. At February 2012, Amazon S3 pricing was of

$0.120 per GB of data transfer out of the cloud and $0.140 per GB/month of storage. Transfers

into the cloud are free of charge. Finally, it must be noted that we did not account for the cost
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Figure 6.12: Scheduling times as a function of FC and the targeted data availability δ for friendsets of
size |F| = 10.

incurred by transactions (GET, PUT, COPY, POST, and LIST requests) due to the small charge

per transaction: $0.01 for every 10, 000 transactions.

We compare the costs of F2Box with the same service provided by Amazon S3. We analyze

the costs by file operation, which corresponds to upload and download a file of β bytes, as well

as keeping it stored for one month in the system.

6.6.2 Results

Scheduling times. In first place, we comment on the scheduling times obtained by F2Box and

depicted in Fig. 6.12a for Kad, and in Fig. 6.12b for Skype, respectively. As can be seen in both

figures, the higher the amount of data transferred to the friends, the longer the upload time

to schedule. This is because a higher value of 1− FC translates into a greater number of blocks

nfriend to be uploaded in order to assure the same level of data availability. This fact is clearly

visible in the case of demanding a high data availability like a δ of 12 hours/day.

It is worth to note that the steeper slope that is observed in Fig. 6.12a and 6.12b decreases

as more blocks are stored at friends. The reason of this lies on the redundancy calculation we

make to ensure data availability in the presence of high availability correlation. However, the
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Figure 6.13: Relationship between daily data availability (δ) and the amount of redundancy
(blocks/friend). Clearly, this has a tremendous impact on the TTS.

availability traces we use in our tests are only moderately correlated, which very often results

in an increase in the redundancy assigned to friends, so as the time to schedule. This is clearly

visible in the “flattened” region of the curves for FC = 0.3. Such an increase of redundancy

is not inversely linear with the level of availability correlation, which is especially apparent

in friendsets of small cardinality. In fact, we observed that this flattened region disappears

completely in friendset of 30 or more members.

We illustrate the relationship between data availability and redundancy at storage nodes

in Fig. 6.13. By simple inspection of this figure, it is easy to see that a targeted daily data

availability of 8 hours requires much lower redundancy than a little higher data availability of

9 hours.

The download scheduling times are close to the MTTS as shown in Fig. 6.12c and Fig. 6.12d.

Even in the worst case, between 65% to 90% of downloads are completed in less than 8 hours

when the MTTS is of 4, 85 hours. It is interesting to note that assigning more redundancy to

friends contributes definitely to the smaller download TTS compared with upload times. On

the other hand, the relatively long tail of the download TTS distribution, particularly for Kad,

suggests that uploading more blocks to the cloud significantly reduces the chances to exceed

greatly the average download TTS. This was expected since a user can always resort to the

cloud when their friends are unavailable or present a high GDM.

Data availability. In Table 6.5, the data availability obtained by our system is reported for

different values of FC.

First, we observe that our redundancy calculation algorithm is very accurate in the pres-

ence of availability correlation. This means that past availability information is suitable to
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Table 6.5: Data Availability

δ = 8 hours/day Kad (|F| = 10) Skype (|F| = 10)
Percentile 0.25 0.5 0.75 0.25 0.5 0.75
FC = 0.3 5.09 6.67 8.16 6.59 8.10 9.40
FC = 0.7 4.76 6.49 7.97 6.52 7.96 9.37

δ = 12 hours/day Kad (|F| = 10) Skype (|F| = 10)
Percentile 0.25 0.5 0.75 0.25 0.5 0.75
FC = 0.3 8.84 10.54 11.89 10.28 11.59 12.77
FC = 0.7 8.88 10.52 11.89 10.29 11.55 12.77
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Figure 6.14: Comparison of monetary costs of schedules between Amazon S3 and F2Box for one
month storage in Kad with |F| = 10 and δ = 12 hours/day.

assure δ hours of data data availability for small, correlated friendsets. Proof of that is that the

median data availability is quite close to the targeted data availability δ, particularly for Skype.

Further, we do not observe significant differences between the data availability obtained

depending on the fraction of data stored in the cloud (FC). This means that our algorithms

performs well irrespective of the storage distribution between friends and the cloud.

Second, as FC grows, the amount of data redundancy needed to achieve a certain δ is clearly

lower, as can be inferred from the upload times (figures 6.12a and 6.12b). Therefore, by making

use of cloud storage, F2Box enables achieving equal or higher levels of data availability than a F2F

system with much less data redundancy. This is key to limit scheduling times and improve the

storage capacity of a F2F system.

Cost-QoS trade-off of F2Box. First, it is clear that there exists a trade-off between cloud mone-

tary costs and upload scheduling times as shown in Fig. 6.14a and Fig. 6.14b. More specifically,

if a user prefers to minimize the time spent in storing large files, it is generally better upload-

ing more data to the cloud. This will reduce the number of blocks to be transferred to friends

nfriend, thereby drastically reducing the upload time to schedule.

The inverse trade-off arises from downloads. Storing more data at friends reduces mone-

tary costs because less fragments must be downloaded from the cloud. Therefore, if some file

is retrieved very often, it would pay off to decrease FC and upload more data to friends.
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Finally, it worth to mention that the specific F2F scheduling policy chosen as basis for

Bandwidth Maximizing Friend-to-Cloud policy has little impact on monetary costs, so the use of

the cloud as a temporary buffer contributes minimally to the total cost. This cost is termed

auxiliary download bandwidth in Fig. 6.14. However, it must be noted that POS outperforms

LAF and RAN, mainly for two reasons: i) The nodes in the traces are autocorrelated enough to

exploit their previous behavior, which yields that nodes exhibit a quite regular participation

over time; and ii) the transfer of blocks into the cloud indirectly increases the autocorrelation

of the schedule (i.e., similarity with itself), as those blocks will always be uploaded in the

specified timeslot by POS.

In conclusion, F2Box is flexible enough to cover all user needs by trading daily data availability

and scheduling times for monetary cost. This opens the door to a real adoption of F2F systems

thanks to the greater reliability of cloud storage.

6.7 Discussion and Conclusions

In this section, we discuss the main observations of our analysis of F2F storage systems,

putting special emphasis on their QoS limitations that motivated us to propose a novel data

management techniques and a hybrid storage architecture.

Data availability and redundancy. We observed that, in general, traditional approaches to

estimate data availability are not suitable in a decentralized F2F system. The cause of their lack

of accuracy is the assumption that online sessions are not correlated, which translates into an

over-provisioning of redundancy during diurnal hours and into an under-provisioning dur-

ing night hours. We showed that such a treatment of redundancy is inadequate, and strongly

hinders the viability of a pure F2F solution. For this reason, we proposed a new notion of

data availability, called daily data availability, and a history-based data availability estimation

algorithm to accurately calculate the level of data redundancy in the presence of strong corre-

lations. Moreover, contrary to conventional wisdom, we found that the presence of availability

correlations offers a good trade-off between data availability and data redundancy.

Load Balancing. Load balancing becomes a critical aspect to evaluate the effectiveness of a

data placement policy. In our analysis, we discovered that storing more data blocks at highly

available nodes may achieve higher data availability requiring less data redundancy than a

simple round-robin data placement. However, considering small groups of friends to store

data, this type of placement makes highly available nodes to be overloaded, inducing poor
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load balancing. Combined with our history-based data availability calculation, we demon-

strated that a round-robin placement can be used to maintain load balancing and to obtain an

adequate degree of data availability in a F2F scenario.

Transfer Performance. The correlated availabilities of nodes in a F2F system makes it nec-

essary to differentiate between if a file is available at a certain instant (i.e., there are enough

blocks stored at online nodes) and if it is retrievable in a reasonable amount of time. This

is mainly due to the presence of nocturnal patterns, which force the interruption of transfers

performed before nights until blocks stored at disconnected nodes become available again.

Further, although we detected slight differences in the performance of various data transfer

scheduling policies, there is not a “clear winner” and normally these policies perform signifi-

cantly worse than the optimal time to schedule (OTTS) —this result agrees very well with the

results obtained in previous works. We also found that in most cases a small number of blocks

is responsible for large delays of file transfers.

From our analysis, we conclude that due to the characteristics of F2F systems, it is difficult

to provide an acceptable storage QoS to end-users. However, although these problems seem

hard to overcome in a pure decentralized setting, we believe that a wise involvement of a

cloud storage service in a F2F system may improve many of these limitations. Therefore, we

propose to resort to the cloud to provide realistic service guarantees.

Essentially, our hybrid architecture, called F2Box, aims at helping a purely decentralized

F2F storage system in the following aspects:

• Reducing upload times: The cloud helps users to reduce upload times by temporarily

buffering data blocks that should be stored at friends that are unavailable at the moment

of the upload.

• Reducing download times: The cloud improves download times of users by providing the

missing data blocks in the cases where a group of friends cannot serve enough blocks to

reconstruct the original file.

• Limiting the amount of data redundancy: To achieve a certain degree of data availability,

storing data blocks of a file across friends and the cloud requires less data redundancy

that storing that file only at friends. Naturally, this is due to the superior availability of

the cloud that avoids generating additional redundancy for the blocks stored on it.
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• Users keep the control of their data: In F2Box users are able to decide up to which extent

a cloud is involved in their storage service. In turn, this decision is also reflected in the

cost-storage QoS trade-off that our architecture provides.

In our view, F2Box improves critical aspects of the storage QoS of purely decentralized F2F

systems, which may represent a significant step towards the adoption of these systems.

Conclusions. In this Chapter, we illustrated that F2F systems have specific characteristics

(reduced friendsets, availability correlations) which need a special treatment. In this sense, we

explored the storage QoS of F2F storage system analyzing severals aspects that are fundamen-

tal for their adoption, such as data availability, load balancing and transfer performance.

We evaluated traditional data management techniques used in large-scale systems (e.g.,

data availability, redundancy) and we concluded that they are not suitable in a F2F scenario.

To solve this problem, we proposed to use historical information on the availability of friends

to accurately calculate data redundancy. In our simulations, our technique obtained significant

improvements compared with traditional redundancy calculation approaches.

Finally, our analysis also showed that it is difficult to provide an adequate QoS in a pure

F2F system due to the presence of availability correlations and small groups of friends. To

retain the main advantages of F2F systems, we have proposed a hybrid architecture that takes

advantage of the superior availability of cloud storage services to improve their QoS. To this

aim, we have developed novel scheduling strategies, and a new algorithm that let users adjust

redundancy according to the availability correlation exhibited by friends. Our results certify

the benefits of combining the best of both worlds.
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7
Empirical Analysis of Social
Cloud Storage

Summary

Digital relationships between individuals are becoming capital for turning to one another

for communication and collaboration and create new opportunities to define socially oriented

computing models. In this Chapter, we propose to leverage these relationships to form a

dynamic “social cloud” for storage. While at first glance, the concept of social cloud looks

very appealing, a deeper analysis brings out many problems in terms of storage QoS due to

its decentralized nature. To overcome this problem, in addition to digital friends, we propose

to the members of the social cloud the use of online storage services like Amazon S3 to store

data and improve the service performance. Through a real deployment in our campus, we

analyze the role that factors like the social network graph play on storage QoS to determine

the feasibility of the social cloud as storage media.

The papers with the results of this chapter appeared in [25, 28, 31].
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7.1 Introduction

The “social cloud” facilitates resource sharing by utilizing the relationships established be-

tween members of a social network [22, 23]. Therefore, compared with cloud storage, the

information is made only available to trustable members of the social network, thus signifi-

cantly reducing the risk that personal data might be sold on, and without raising suspicions

about how commercial storage services are monetized.

However, despite the increasing popularity of this computing paradigm, the social cloud

also carries important deficiencies due to its decentralized nature. The most critical one is that,

contrary to commercial clouds, it is not feasible to establish a formal Service Level Agreement

(SLA) within a social cloud system. Its operational feasibility is based on the premise that

participants are socially motivated and subject to the personal repercussions outside the func-

tional scope of the social cloud. This is primarily due to the existing level of trust that already

exists between members. In this context, SLAs or “contracts” should be viewed as a best effort

agreement between the social links. This weaker form of agreement translates into a limited

availability of resources and capabilities. Although a social cloud system is built upon social

incentives, peer pressure, etc., the discontinuous participation of social contacts, or even the

abandon of the social cloud, is intrinsic to the nature of social relationships.

In terms of storage, this means that the data stored within the social cloud may be subject

to recurrent periods of unavailability. In a social cloud, the percentage of time that data is

available is a function of the number of friends contributing their storage space over time. And

such a dependence has deep implications for the correct operation of a social cloud, mainly in

terms of data availability, understood as the probability to access a data item when needed.

First, as pointed out in Chapter 6, while there may be a sizable number of individuals

in a social network, typically only an insignificant number can be utilized as a destination

for personal data. To inform this argument, over 63% of Facebook users have less than 100

friends, and the majority of social interactions occur only across a small subset of them. More

specifically, it has recently been observed that only 20% of the social links capitalize 70% of all

social interactions [65]. This means that in practice the number of users willing to contribute

their storage resources to sustain the social cloud will be small. If in addition to this we add the

problem of the temporal correlation in the connection habits of users, the loss of data availabil-

ity is inevitable. Real measurements from online social networks have detected the presence

of strong daily and weekly interaction patterns [99, 100]. Very succinctly, this means that the

probability of finding simultaneously offline all the social links of a user is high, particularly
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during night hours, which makes it impossible to maintain data availability even under full

replication where a replica is allocated to every member of the social cloud.

Second, the topology of the social network graph plays a central role. As such, it delineates

the interaction events that may occur across social links and hence, the amount of resources to

be contributed by a member. Although users with many friends have a greater opportunity

to store their data with higher availability, they may possibly have to donate more disk space

to reciprocate a larger number of friends. Real measurements of social networks [64, 65] show

that while clustering is very high, the existence of a few users with a large number of friends

is characteristic of social interaction. For these users with abnormally high degrees, usually

called hubs in the graph literature, the contribution of their storage resources may be high

for little or no personal gain. In this sense, poor storage fairness may motivate the need for

economic or non-economic mechanisms to regulate sharing within a social cloud.

Overall, understanding these factors is a necessary step in determining whether the vision

of social cloud is realizable, and therefore, it can really emerge as an alternative to commercial

cloud providers. In this Chapter, we aim to answer questions like: “What is the role of social

graph in the obligation to trade storage space? Is there any significant asymmetry in the level of contri-

bution by users such that an altruistic model is infeasible? Is the availability of a user indicative of its

real contribution level to the social cloud?” Questions that have not been raised in the existing lit-

erature. We believe that answering these questions is vital to appraise to what extent the social

cloud can emerge as true alternative to existing commercial and non-profit storage systems.

In summary, the main contributions of this Chapter are the following:

• We contribute to the state of the art by quantifying the influence of the above factors,

putting special emphasis on the topological effects, while outlining some of the chal-

lenges to make the concept of social cloud storage a reality.

• To conduct this study, we have instantiated this model into Friendbox [25], a social cloud

storage application embedded into Facebook. A distinctive feature of Friendbox is that

lets a user add an external cloud storage service like Amazon S3 to its social cloud in

order to improve the availability of its data.

• Through a real deployment in our campus, we spot evidence of the bearing of factors like

the social topology on the definition of social cloud storage. The fact that our results has

been obtained through experimentation gives the additional advantage of measuring the

real impact that these factors and design choices may have on performance and cost.
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The remainder of this Chapter is structured as follows. In Section 7.2 we describe FriendBox,

our social storage application to conduct our experimental assessment, which is included in

Section 7.3. The results of our empirical analysis appear in Section 7.4. Finally, we provide

some discussion about our empirical insights and our conclusions in Section 7.5.

7.2 Social Storage with FriendBox

To give form to the definition of “social cloud storage” and determine what aspects should be

integrated into its definition, we have employed our social cloud storage application, called

FriendBox [25], which has been developed and deployed as a Facebook application. We chose

Facebook for its popularity, development environment and API, and very importantly, be-

cause Facebook identification allows users to define policies regarding who can store and ac-

cess their personal data. For example, a user could limit the sharing of their data with close

friends only, or users in the same group. This gives individuals high control over their data,

engendering trust and some level of accountability, properties that are hard to find in a cloud

environment. From a privacy standpoint, while Facebook learns the interactions between the

members of the social cloud, personal information is never revealed to this online service, as

it is stored and shared through peer-to-peer exchanges.

A distinctive feature of FriendBox is that lets a user add an external cloud storage service

like Amazon S3 to its social cloud in order to improve the availability of its data. By no means

this signifies that all data will be stored in the cloud. Following the spirit of the social cloud

approximation, FriendBox lets the user decide the amount of data to be stored in the cloud,

which can be zero if the user wishes so. This feature is particularly useful, as it allows to trade

data availability for monetary costs and adapt the storage service to the user needs. In fact,

FriendBox is based on the design of F2Box and our insights in Chapter 6.

Further, the use of the cloud requires another layer of preprocessing the data in order

to protect it from unauthorized access, disclosure and theft. This could be accomplished in

many ways. A simplistic approach could be to encrypt each sensitive piece of data and share

the key with the authorized users. Instead of this simple encryption scheme, we use Reed-

Solomon codes [69] for that purpose, blending storage efficiency [68] and privacy in a single

scheme. Other approaches would be equally possible with no significant changes in the pro-

posed method. However, we do not want to involve ourselves in this question here, since our

focus is on analyzing the feasibility of this new storage model.
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File1: [U1:B1], [U5:B2], [U7:B3]
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Figure 7.1: A user maintains storage links with some of his friends in Facebook. Moreover, this user
is able to store a fraction of his data in a cloud storage service. The state information of a user’s data
is stored in the FriendBox Application State. Finally, users manage their storage relationships and
check the state of their storage service in the FriendBox Social Front-end.

In what follows, we will describe the components of FriendBox, whose general architecture

is illustrated in Fig. 7.1. We will give the essential details to make our results understandable

and refer the reader to [25] for full details1.

7.2.1 Social front-end: Facebook Application

In our social cloud, the storage overlay is bootstrapped by the underlying social structure.

Accordingly, every node in the friendship graph acts as a storage service to their adjacent

neighbors. In practice, the friendship graph can include members of the family, close friends

only, or even friends of friends, which can be viewed as directly connected to each user that

selects them as storage servers.

As social substrate, FriendBox uses Facebook for user management, because Facebook

exposes access to their social graph through a simple API, called the Graph API2. This API

exposed through a REST service gives access to many objects, including friends, profile infor-

mation, groups and photos. To control access to the Graph API, Facebook utilizes the OAuth

protocol [51] to authenticate both users and applications. This authorization model allowed

FriendBox to delegate access control to Facebook, simplifying considerably user management

and accountability.

The integration of FriendBox with the Facebook look and feel was by means of the Face-

book Markup Language (FBML). FBML includes a subset of HTML with proprietary exten-

sions that enables the creation of applications that follow the Facebook style. Code written in

FBML is retrieved by the Facebook server, parsed, and then inserted into their surrounding

1FriendBox webpage: http://ast-deim.urv.cat/friendbox/
2http://developers.facebook.com/docs/reference/api/.
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code. This facilitated the creation of a familiar and intuitive GUI for FriendBox. Through this

GUI, the user can keep track of its monthly storage consumption in the cloud provider of its

choice and the distribution of its data within the social cloud, among other operations. Such

state information is maintained in a separate component called Application State, which we

discuss in the following section.

7.2.2 Application State

Essentially, the Application State maintains up to date the data management information

about any file stored in the system. This information includes the specific set of friends that

store each data object along with the network address of each one. Without this information,

the clients would be unable to perform the necessary peer-to-peer storage operations to store

and retrieve any data file from the social cloud. The logic of keeping the Application State

current lies on the desktop clients themselves. The clients update the Application State via a

REST API.

The role of the Application State is depicted in Fig. 7.1. In this figure, we show how a user

communicates with the Application State to transfer state information. In this example, a user

sends a message informing that a new file has been stored in the system. As shown in the

figure, Application State stores this information using mappings that relate data blocks with

the friends who are responsible for them.

The Facebook application code for FriendBox along with the Application State is nowadays

hosted in Google App Engine1. The reason for this choice was that this PaaS for developing

web applications offers elasticity in the service. Note that if we wanted to protect the metadata

from possible threats such as theft, unauthorized access, copying, etc., an additional layer of

protection would be indeed necessary. One simple way of doing this would be to encrypt the

metadata before storing it in Google App Engine. This issue is, however, beyond the scope of

this thesis.

7.2.3 Desktop Client

In addition to the integration with Facebook, a social cloud storage application needs a desktop

client to store and access remote data. To efficiently achieve the desired level of data availabil-

ity, FriendBox lets users select the set of friends to where store each content and decide which

part of the data should go to the cloud. In the current version of FriendBox, the desktop client

1http://code.google.com/intl/en/appengine/.
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only permits to store data in Amazon S3, though other cloud storage services like Windows

Azure and Google Drive can be easily supported.

To achieve high availability, the best strategy would be to store all data in the cloud to

guarantee 24/7/365 access availability. However, at $0.120 per GB of data transferred out

of the cloud, these costs might quickly add up. To decrease monetary costs, FriendBox uses

the friends in the social cloud to store data but at the expense of a lower data availability. The

fundamental idea behind FriendBox is to provide data availability during the hours of the day

where friends are mostly logged in to benefit from availability correlations. We introduced

this new notion of data availability, termed daily data availability in Chapter 6, for we refer

the reader to for further details. Going back to our formulation in Section 2.2.2, a user may

want to achieve a daily data availability of δ time units for its data. By viewing daily data

availability D as a subset of Tday, i.e., the set including all the time units of one day according

to a particular quanta, D contains those time units of Tday being covered by at least one friend,

and preferably those with a greater number of friends. The reason is that a greater number of

friends supplies more flexibility to allocate data for load balancing.

7.2.4 Data Redundancy and Privacy

In Chapter 2 we explained the advantages of Reed-Solomon (RS(n, k)) codes and our data

redundancy model. Thus, we are now ready to discuss how we distribute the encoded data

objects across the social ties and the cloud service. Concretely, after applying the RS coding

scheme, a fraction FC of the original k fragments is allocated to the cloud. Recalling that n =

k+ h, the remaining d(1− FC) · ke+ h blocks are allocated to the social friends in a round robin

fashion to achieve an even use of their disk capacity. Compared with replication, one of the

most valuable assets of RS codes is that the amount of data assigned to a friend is typically

only a fraction of the original file size, saving significant storage space.

It is important to mention here that the exact value for FC depends on the parameter δ and

the connection pattern of the friends in the social cloud. For instance, let us consider we want

to cover δ time units of data availability. Depending on the number of online friends at each

of these time units, the storage requirements and the appropriate value for FC will vary. To

illustrate this, we consider two extreme cases. At one extreme lies the case where one of the

δ time units is covered by a single friend. In this case, in order to ensure the reconstruction

of the object, this single friend will be forced to store at least k − bFC · kc out of the n blocks.

And here the chosen value for FC makes a big difference. The reason is that the value of FC
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Figure 7.2: Implicit trade-offs between data availability, redundancy and cloud costs in FriendBox.

determines the storage requirements for this friend, which will be maximal and lead to the

storage of a complete replica of the data file for FC = 0. At the other extreme is the case that

all δ time units are covered by at least k − 1 friends, requiring to store only one block in the

cloud. In this case, however, a small value of FC will be not so problematic, because the storage

capacity contributed by each friend will be significantly smaller: Just one block. Hence, a high

level of correlation in availability patterns can help to reduce the fraction FC for a fixed δ.

Another important advantage of Reed-Solomon codes is that the generator matrix of the

code can be chosen to be non-systematic. If a code is non-systematic, then the original data

fragments will not appear in the code, preserving data confidentiality. Note that this state-

ment is valid provided that no subset of blocks of cardinality greater than k− 1 is in the hands

of a non-authorized party —for instance, a cloud storage provider. We must note, however,

that while a non-systematic RS code is a (k, n) threshold scheme, and can be interpreted in

terms of Shamir’s secret sharing [152], its security guarantees are less than Shamir. The rea-

son is the lack of randomness in the generator matrix of RS codes. So, attackers looking for

known or patterned data can find it more easily without reconstructing the original data [153].

In FriendBox, this level of protection is sufficient. A higher protection level can be simply

achieved by first encrypting the data and then encoding it, or by using more elaborated dis-

persal schemes such as AONT-RS [153]. Since all of these variants also transform a file into n

distinct blocks, our analysis is equally valid for all of them.

For completenesses, Fig. 7.2 illustrates the relationship between data availability δ, the

redundancy ratio n/k, and the fraction of data allocated to the cloud FC, which are the three

parameters of our storage model. Let us first consider that the redundancy ratio n/k is kept

fixed. In that case, the result of increasing FC by pushing more blocks to the cloud is that

data availability increases. This suggests that by choosing the right FC, one can achieve the

same data availability with less redundancy. Consequently, a user will experience shorter
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transfer times and he will require less resources from his friends. However, increasing FC may

present some drawbacks, specially related with a higher cost of the storage service and the

amount of data control relinquished to the cloud operator. Furthermore, even in the case of

storing k− 1 blocks in the cloud, 100% availability cannot be guaranteed: If all storage friends

are simultaneously unavailable, the missing block will not be reachable [27]. FriendBox gives to the

user the opportunity to decide the most adequate storage service depending on his needs.

7.2.5 Data Transfer

As introduced in Chapter 6, once a file has been encoded, it is necessary to transfer the encoded

blocks to the corresponding social ties and to the cloud storage service. In FriendBox, we

differentiate between two distinct types of transfer scheduling policies: Friend-to-friend transfer

scheduling policies, which select the blocks that should be transferred to storage friends in a

certain order based on a criterion, and (ii) friend-to-cloud transfer scheduling policies that decide

if blocks should be transferred first from the cloud or friends.

First, we describe the friend-to-cloud transfer scheduling policies implemented in FriendBox.

To minimize transfer time and fully utilize the upstream bandwidth, FriendBox uses the cloud

storage service as a temporary repository to store the blocks for those social links that were of-

fline when the transfer of their blocks was scheduled. In any case, the extra blocks pushed to

the cloud are downloaded afterwards by the friends to whom they were initially allocated.

For downloading a file, FriendBox prioritizes the download of the corresponding blocks

from friends to incur the minimal monetary costs due to the data transfers out of the cloud.

Only in the case that there are less than k blocks, the remaining up to k are downloaded from

the cloud storage service.

Regarding friend-to-friend transfer scheduling policies, to simplify the development, we

implemented in FriendBox a random transfer scheduling policy. That is, given a set of data

block assigned to a group of available nodes, FriendBox selects at random the order in which

block transfer will occur. This applies to both uploads and downloads.

7.3 Evaluation Framework

In this section, we empirically study the fundamental problems and challenges involved in the so-

cial cloud storage paradigm. Indeed, what the incipient social cloud literature misses is a deep

analysis of the implications that environmental factors such as user availability and topology
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have on the storage service. As a central contribution of this work, we identify and quantify

the main underlying factors that influence the storage service provided by a social cloud.

Objectives and metrics

Through experimentation, we aim to shed some light on the following aspects that we

believe capital to provide an adequate storage service in a social cloud:

• Daily Data Availability: The probability to access a data object during the day, which

depends on parameters such as the amount of redundancy n
k and the fraction of the data

allocated to Amazon S3. Of course, correlation in availabilities plays a key role on the

achievable daily data availability.

• Clustering Coefficient: In addition to the graph degree, we make use of the clustering

coefficient (CC) to measure to what extent the social links in the friendship graph tend

to cluster together. The local CC of a user v is defined as:

CCv =
2 · Ev

Dv(Dv − 1)
, (7.1)

where Ev is the number of edges between neighbors of v and Dv is the degree of user v.

Loosely speaking, the CCv quantities to what extent the neighbors of v are linked to one

another. In our tests, we will mainly use this metric to study the contribution level of

hubs.

• Load Balancing: Load balancing is critical to the feasibility of a distributed storage sys-

tem [27]. For this reason, we analyze the interplay of the social graph topology and user

availability on the resulting storage load supported by users.

We quantify load balancing in two ways. At the user level, we account for the number of

storage operations processed by each user, i.e., data block PUTs and GETs. At the global

level, we utilize the Gini coefficient and the Lorentz curve to examine the distribution

of served storage operations in the social graph. Specifically, the Lorenz curve depicts

the proportion of the total income of the population (y axis) that is cumulatively earned

by the bottom x% of the population1. The diagonal line represents perfect equality of

incomes. The Gini coefficient, denoted by G, is the ratio of the area that lies between the

line of equality and the Lorenz curve (A) over the total area under the line of equality

(A + B):

G = A/(A + B). (7.2)
1For a technical description of Gini coefficient and Lorentz curve see http://en.wikipedia.org/wiki/Gini coefficient.
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• Transfer Time: An important performance metric for social cloud storage is data transfer

speed. In particular, we study two aspects: the congestion caused by the topology of the

social network and the impact of correlated user availabilities on the time to download

a file from the system.

• Fairness: Typically, a social cloud adds regulatory protocols to enforce resource fairness.

However, there is no analysis on the extent of the potential asymmetry that may arise

in a social cloud along with what elements may originate it. As a simple measure of

fairness, we utilize the ratio between the amount of resources contributed to the social

cloud and those consumed by a user:

FR =
Rp

Rc
, (7.3)

where Rp represents the amount of resources a user provides to the system, and Rc the

amount of resources that a user consumes from his social ties. A value of FR equals to 1

represents perfect equilibrium between resource consumption and contribution. FR > 1,

however, means that a user is contributing more resources to the system than what is

actually consuming. Finally, FR < 1 signals that a user may be abusing its social ties,

because it consumes more than it donates.

• Cloud Contribution: As we use cloud storage, i.e. Amazon S3, as a pivotal element to

the feasibility of a storage service in a social cloud [25], its role in the system deserves

special attention. Indeed, we measure the consumption of cloud resources that the mem-

bers of the social cloud incur in their PUT and GET storage operations, depending on their

availability and position in the social graph. We use the number of data blocks trans-

ferred in and out of the cloud because this simple metric can be immediately turned into

monetary metrics like the “dollars per storage operation”.

Scenario and Setup

Once elaborated on the objectives of our evaluation, we are ready to describe the setup of

our experiments.

Topology. We deployed a group of 20 FriendBox desktop clients in our university labo-

ratories. The 20 FriendBox clients were organized according to two real graphs from Friend-

ster [154] in order to assess the influence of the friendship topology. One topology shows a

high clustering or local transitivity, i.e., if user a knows b and c, then b and c are likely to know
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Figure 7.3: Input social graphs for our experiments. The graph on the left exhibits a low average
clustering coefficient of CC = 0.3, whereas the CC of the graph on the right is 0.7. Node labels
correspond to their degree.

each other, while the other is weakly clustered. To identify each topology, we will use the value

of the clustering coefficient at the hub. Both topologies are illustrated in Fig. 7.3. Accordingly,

their degree distributions are shown in Fig. 7.4 (right).

Availability. To incorporate availability correlations into our experiments, we instrumented

the alternating ON-OFF behavior of users by means of an availability trace from Skype [103],

which exhibits strong diurnal patterns and high heterogeneity in user availabilities. Both prop-

erties are clearly visible in Fig. 7.4 (left). The CDF of user availabilities ranges from 0.18 to 0.75,

which evidences high heterogeneity. Furthermore, the time-series representation in the inner

plot illustrates that friends are mostly connected during the central part of the day and dis-

connected during night hours.

To study the impact of availability in the social hub, we assigned two different availabilities

to the highest degree user in the social graph: A high availability of 0.594 and a low availability

of 0.278.

We also conducted simulations where users were always online as baseline to understand

the effect of availability correlations. We will refer to this scenario as “no churn” throughout

the evaluation.

Workload. The workload model of our experiments is homogeneous. All nodes alter-

natively perform file downloads and uploads while being logged in. Hence, file transfers are

concurrently executed throughout the experiment to capture the effects of network congestion.

File transfers are randomly performed every period of [600-1, 200] seconds over synthetic files
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Parameter Description and Values
Nodes in the system 20
Experiment duration 24 hours
Node storage capacity 40 GB
Parallel upload/download connections 2, 2
Erasure codes original file fragments (k) 40
Cloud file fraction (FC) 0.5
Object size (β) 400 MB
Data redundancy (n/k) 2.0
Cloud back-end Amazon S3

Table 7.1: Parameter configuration in our experimental scenario.
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Figure 7.4: Nodes present high availability heterogeneity and diurnal patterns (left). The node de-
gree distribution varies significantly depending on the CC (right).

of size β = 400MB. Unless otherwise stated, we fixed FC = 0.5 and the redundancy ratio to
n
k = 2.

Hardware. FriendBox clients were hosted in desktop computers (Intel Core2 Duo and

AMD Athlon X2 processors) equipped with 4GB DDR2 RAM. The OS was Debian Linux1.

The clients were connected via a 100 Mbps switched Ethernet links. For the collection of phys-

ical network information, we utilized vnstat, a tool that keeps a log of network traffic for

a selected interface. The rest of information presented in this section was gathered by the

FriendBox log system. Other important parameters in this experimental scenario are depicted

in Table 7.1.

7.4 Experimental Results

Here we present the experimental results and describe the main insights that follow from our

analysis of the social cloud storage.

1FriendBox works for other platforms such as Windows and Linux Ubuntu.
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7.4.1 Data Availability

In this section, we study the factors that influence the daily data availability. For this reason,

we fix the target daily data availability δ to 7.2 hours and vary the fraction FC of data to be allo-

cated to the cloud. For clarity, we only report the results for the topology with small clustering.

Also, we only consider the case where the social hub is highly available.

The effect that availability correlation induces on daily data availability can be clearly seen

in Fig. 7.5 (left). Surprisingly, the least connected user achieves the target 7.2 hours of data

availability by making use of less redundancy than the social hub. This can be easily inferred

by tracking over time the number of data blocks available for each user. The cause of this

counterintuitive behavior is availability correlation: The two friends of the least connected

user are simultaneously online for ≈ 8.5 hours. Because they cover by far the target 7.2 hours

of daily data availability, no extra redundancy is necessary. In general, however, it is difficult

to have a sufficient number of online friends for δ hours, which requires the introduction of

extra redundancy to meet the target level of data availability.

Further, Fig. 7.5 (left) gives an interesting result: The allocation of a larger proportion of

data to the cloud makes it possible to achieve the target 7.2 hours of data availability with

less redundancy. This is because a larger FC reduces the number of data blocks to be given

to friends. Since friendsets exhibit poor availability compared with Amazon S3, the necessary

redundancy to meet a certain δ may become smaller. This occurs to the social hub whose

redundancy ratio n
k decreases by a 14% when increasing FC from 0.25 to 0.75. These savings

become more significant for higher δs.

The dispersion graph in Fig. 7.5 (right) relates the number of social links (x axis) with

the achievable δ (y axis) for different amounts of redundancy n
k . As expected, the higher the

redundancy is, the higher the data availability is. However, the increase in data availability is
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Figure 7.6: Distribution of served download block requests (GETs) in a churn scenario depending on
CC.

not linear and may be abrupt or even zero for a higher n
k . Concretely, the final data availability

depends more on the availability pattern of users than on the number of friendship links a user

has. This is evidenced by the lack of correlation between the node degree and the achievable δ.

In fact, some users with a smaller number of friends present a higher δ than those users with

a larger friendset.

We can summarize the main findings of this section as follows: (i) A larger number of

friends helps but does not necessarily improve daily data availability; (ii) The degree of coincidence

in the online periods of friends is crucial to understand the relationship between data availability

and redundancy; (iii) Storing a fraction of data in the cloud may reduce the overall redundancy

needed in a social cloud system.

7.4.2 Load as a Function of Social Graph Topology

Here we examine the influence of the graph topology on the load experienced by users. In

Fig. 7.7, we report the number of data blocks that a user stored (PUT) and served (GET) as a

function of its degree. The figure contains four subplots, each of which corresponds to a dis-

tinct combination of topology and availability model. Interestingly, all four dispersion graphs

show that the load of users varies significantly depending on the clustering of the social graph

topology. For high clustering, load is more evenly spread across all users, irrespective of the

availability model.

For low clustering topologies, however, the degree strongly determines the load of a user.

This conclusion comes from the visible linear growth on the number of storage operations with
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Figure 7.7: Relationship between a node’s degree and the storage load caused by its friends. We
illustrate a churn scenario (high available hub) and a stable scenario.

increasing user degree. Such a behavior may compromise the scalability of a social cloud.

Social hubs, which interact with most of their social links [65], may become eventually sat-

urated, and socially-based incentives may be even insufficient to enforce cooperation in the

social cloud. This may pose the need for more sophisticated trading and sharing strategies

like auctions and formal SLAs.

To examine load balancing from a global view, we calculate the Gini coefficient to measure

the inequality in serving GET operations. The corresponding Lorentz curves are shown in

Fig. 7.6. As shown in this figure, the Gini coefficient is much smaller and the Lorenz curve

much closer to the diagonal in the topology with high clustering, which indicates that a higher

connectivity facilitates the balancing of load among the members of the social cloud. But more

importantly, and contrary to conventional wisdom, there exists no correlation between the

load and the user degree in the presence of availability correlations. This phenomenon can be

easily seen in the lower right subplot of Fig. 7.7, where users of similar degree present very

disparate loads. We explore this issue in the next section.

We summarize the main results of this section as follows: (i) For low clustering, the degree

strongly determines the load of a user; (ii) In general, a high clustering coefficient results in a better

load balancing within the social cloud.
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Figure 7.8: Relationship between storage load and node availability depending on the clustering
coefficient.

7.4.3 Load as a Function of User Availability

Let us now consider the traffic load a user encounters as a function of its availability. The dis-

persion graphs in Fig. 7.8 relate these metrics for both stored and served blocks in a dynamic

scenario with different clustering values.

The first main observation is that user availability does not positively correlate with stor-

age load when the degree of clustering is low. This result is important because conventional

wisdom assumes that high user availability is synonym of a higher burden. However, we ob-

serve that load in a social cloud system depends on other factors like the specific topology of

the social graph. Concretely, we find that for low clustering, the number of friends that a user

has is what determines its storage load.

On the contrary, when the social graph is highly interconnected, availability is what

mainly determines the storage load experienced by users. This conclusion is evidenced by

the linear increase in the number of data block transfers with increasing user availability. This

result is not surprising. In the ideal case that all the members of the social cloud were fully con-

nected, the burden experienced by each individual would be proportional to its availability:

The higher availability the greater the odds of undertaking a storage PUT and GET operation.

To summarize, in a social cloud with high clustering, the availability of a user determines the

load it will receive.

7.4.4 Data Transfer Time

First, we assess transfer speed as a function of the social graph topology. To avoid any interfer-

ence caused by availability correlations, Fig. 7.9 depicts the distribution of transfer time when

all the users in the social cloud are online, i.e., when there is no churn. For clarity, we only plot

UNIVERSITAT ROVIRA I VIRGILI 
ON PERSONAL STORAGE SYSTEMS: ARCHITECTURE AND DESIGN CONSIDERATIONS. 
Raúl Gracia Tinedo 
Dipòsit Legal: T 1344-2015



162 7. EMPIRICAL ANALYSIS OF SOCIAL CLOUD STORAGE

40 50 60 70
0

0.2

0.4

0.6

0.8

1
Download Times − No Churn, CC=0.3

Time to Transfer (secs.)

C
D

F

100 150 200 250 300
0

0.2

0.4

0.6

0.8

1
Upload Times − No Churn, CC=0.3

Time to Transfer (secs.)

C
D

F

40 50 60 70
0

0.2

0.4

0.6

0.8

1
Download Times − No Churn, CC=0.7

Time to Transfer (secs.)

C
D

F

100 150 200 250 300
0

0.2

0.4

0.6

0.8

1
Upload Times − No Churn, CC=0.7

Time to Transfer (secs.)

C
D

F

Node (2 friends)

Node (7 friends)

Hub (18 friends)

Node (2 friends)

Node (7 friends)

Hub (18 friends)

Node (5 friends)

Node (13 friends)

Hub (18 friends)

Node (5 friends)

Node (13 friends)

Hub (18 friends)

Figure 7.9: Effects of CC on transfer times and congestion.

the transfer time distribution for three users: the social hub who is linked to 18 friends, a user

with the average network degree, and the least connected user in the social cloud.

For the low clustering topology, two observations are specially interesting. First, the least

connected user achieves a lower transfer time than its higher degree friends, particularly for

downloads. This is explained by the fact that for low clustering topologies, the users with

many social links support a higher storage load and suffer from congestion. Second, the dif-

ferences in the upload time are less significant. This is mainly due to two factors. First, local

data block transfers among friends are much faster because of our Fast Ethernet LAN than

accessing Amazon S3. Second, uploading in FriendBox involves the transfer of a fraction of

the data to Amazon S3 while downloads retrieve as much as possible data from friends only

accessing the cloud if there are not enough blocks available at friends.

For the high clustering topology, however, there are no important differences in file trans-

fer times neither for uploads nor downloads. This means that a higher clustering coefficient

introduces less congestion.

Now we study the effects of availability correlations on download times. For such a pur-

pose, Fig. 7.10 plots the download time given as a time series for the social hub and one of the

users whose degree coincides with the average degree of the social graph. For the social hub,
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Figure 7.10: Time series analysis of download times of two different nodes. We clearly observe the
consequences of availability correlations on download times.

Fig. 7.10 (left) reports that the download time is short when most of its friends are logged in.

However, this time increases significantly during night hours. This is because the hub needs

to resort to the cloud in order to complete the file download, which makes downloading to be

slower in our campus scenario.

For the average-degree user, Fig. 7.10 (right) reports a larger download time than for the

social hub, which indicates that the download time diminishes with the number of friends

since blocks transfers from friends are faster than accessing the cloud. This is supported by

the fact that for the same node, in most cases, a higher degree induces shorter download times.

Finally, it is worth mentioning that in some cases, specially at the end of the regular node

execution, a few file downloads when that node has 13 friends are slower than when it has

only 5 friends. As in the case of data availability, a higher degree reduces download times if friends

are simultaneously online at the moment of downloading the content. Otherwise, a higher degree

will have little or no positive effect for the storage service a node receives.

We summarize this section as follows: (i) For low network clustering, users with high degrees

exhibit larger transfer times due to network congestion, which can be critical for hubs; (ii) A

higher clustering coefficient inherently reduces congestion and improves transfer times; (iii) Al-

though having more friends may in general improve download times, the actual number of

online friends when the download occurs is fundamental.

7.4.5 Fairness

Now we study the resource fairness among the members of the social cloud. We use the fair-

ness ratio (FR) as defined in Eq. 7.3 to measure the asymmetry in resource contribution. To
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Figure 7.11: Fairness ratios of up./down. transfers depending on the network’s CC for stable/churn
scenarios.

start with, we focus on the fairness in bandwidth contribution. As a boxplot allows to as-

sess the dispersion of a given distribution, Fig. 7.11 shows the boxplots of the distribution of

fairness ratio when the resource under consideration is the upstream and downstream band-

width1. As can be seen in the figure, a high clustering is crucial to promote fairness. For the

topology with small clustering, around 70% of the users consume more resources than they

contribute. This forces the remaining 30% to correct this deficit and contribute the missing re-

sources for little or no personal gain. Some users even present a FR superior to 2, which may

be a powerful disincentive for many users to remain in the system.

For the topology with high clustering, however, the boxplots resemble a normal distribu-

tion centered at the equilibrium point of FR = 1. This is very positive for the system, as it

means that most users consume an amount of resources that is equal to their individual con-

tribution.

Next, we investigate the influence of user degree on the fairness ratio. More specifically,

Fig. 7.12 correlates the fairness ratio with user degree by means of several dispersion graphs.

As before, this figure contains four subplots, each corresponding to a single combination of

topology and availability model.

As can be seen in the figure, and contrarily to our prior observations, the user degree is the

dominant factor controlling local fairness: The higher the degree is, the higher the asymmetry

is, because the number of storage operations is proportional to the number of friends. Inter-

estingly, perfect fairness is only achieved for those users whose degree is close to the average

degree of the social graph, which is 6.7 and 13.1 for the low and high clustered graphs, respec-

tively. This gives a clue about the intricate relationship between topology and fairness, whose

analytical study is object of future work.

1In our experiments, the application workload is homogeneous, which means that asymmetry arises as a result of
topological variations
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Figure 7.12: Relationship between up./down. fairness ratios and node degree for churn/stable sce-
narios.

Furthermore, the availability of friends does not affect fairness, which can be verified by

comparing the subplots of Fig. 7.12 where users are always logged in, labeled “no churn”, with

those subplots where users join and disconnect from the social cloud. The main reason is that

while a user is offline, no data block can be stored in the hard disk of a friend, and vice versa.

Our observations may have important implications on the behavior of users in a social

cloud. For instance, given that users with a low degree tend to abuse the system, their friends

may, in turn, reject to transact with them until they increase their degree. This could lead to a

cold-start situation, where newcomers cannot easily be part of the social cloud. Therefore, fur-

ther research is needed to guarantee resource fairness in a social cloud by taking into account

the underlying system characteristics.

The main insights of this section can be summarized as follows: (i) A high clustering coeffi-

cient is critical to maintain fairness in the system; (ii) The degree of a user greatly determines the

fairness it establishes with the system.
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Figure 7.13: Cloud block transfers depending on the hub’s availability and the clustering coefficient.

7.4.6 Cloud Usage & Monetary Costs

Finally, we study the use of storage cloud resources by FriendBox clients. Concretely, we il-

lustrate the total number of data block transfers in and out of the cloud when the social “hub”

is highly available, abbreviated H.A.H, and low available, abbreviated L.A.H, for our two

topologies with clustering coefficients of 0.3 and 0.7, respectively. To avoid biasing the results,

the data blocks transferred by the hub were excluded from the final count. The reason was

that a highly available hub conducts more block transfers than a hub with a lower availabil-

ity, which may seriously bias results towards the H.A.H configuration. Results are shown in

Fig. 7.13.

For the same degree of clustering, this figure shows that overall the users resort to the

online cloud storage service substantially more times when the availability of the hub is low,

effect that is more significant for file downloads. This behavior is aggravated for social graphs

for which the clustering is small. For instance, for the topology with CC = 0.3, the number

of data transfers out of the cloud increases a 26.5% when the availability of the social hub

decreases from 0.594 to 0.278. The reason is that for social graphs with small clustering, users

have fewer chances of downloading data blocks from their friends, thus making the system

more dependent on the availability of the hub.

For the same hub availability, a higher CC reduces significantly the number of data block

transfers out of the cloud. To give some numbers: If the hub has low availability, the number

of transfers is comparatively a 34.6% smaller in the high clustering graph than for the social

topology with small clustering. This can be explained by the fact that a higher clustering de-

gree is accompanied by a greater number of links between users, which in general increases the

number of data blocks retrievable from friends at any time [27, 99]. This reduces the number

of accesses to the cloud.
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Storage
($/month)

Down.
Traffic ($)

Storage Buffer-
ing ($/month,
only 1st month)

Down. Buffer-
ing Traffic ($)

FriendBox

vs. Cloud
(1st month)

FriendBox

vs. Cloud
(permanent)

H.A.H.
CC = 0.3 9.234 3.891 8.571 10.826 −21.19% −68.19%
CC = 0.7 9.234 2.941 8.227 10.392 −25.37% −68.83%

L.A.H.
CC = 0.3 9.234 5.294 11.417 14.421 −2.18% −64.79%
CC = 0.7 9.234 3.459 9.373 11.839 −17.84% −69.24%

Amazon S3 18.465 22.8 - - - -

Table 7.2: Costs estimation of FriendBox compared with Amazon S3 for the experiment workload.

Further, we observe that uploads consume a higher amount of cloud resources than down-

loads. This is because FriendBox minimizes the number of cloud transfers by giving priority to

friends in the download schedule, only accessing the cloud in those situations where available

friends cannot supply the necessary blocks to complete the file retrieval. However, uploads al-

ways require transferring a fraction of the data to the cloud, which increases its overall usage.

It should be noted that alternatively uploading and downloading distinct files makes it diffi-

cult for offline nodes to download buffered blocks and serve download requests when they

become online again. This means that less aggressive workloads would greatly reduce the

number of cloud downloaded blocks, since there would be enough blocks available at friends.

Therefore, we see that a higher CC alleviates the consumption of cloud resources when the

social hub is poorly available. This implies that when the hub is disconnected, Amazon S3 is

used to temporarily buffer a smaller number of blocks per file storage operation than when

the degree of clustering is low.

The previous observations are reflected in the economic cost of the FriendBox service as

visible in Table 7.21. At first glance, we observe that low network CC and poor hub availability

induce high economic expenses in cloud resources. This particularly impacts on the number of

extra blocks buffered in the cloud due to the unavailability of friends at the moment of storing

a file. However, we should note that FriendBox greatly reduces the long term cloud costs. For

example, configuring FriendBox with FC = 0.5 and n/k = 2, users save up 50% of permanent

storage costs and 87%− 77% of download traffic costs compared with Amazon S3. Thus, we

conclude that FriendBox is feasible in economic terms.

We summarize this section as follows: (i) The availability of social hubs plays an impor-

tant role in the consumption of cloud resources, specially for low clustering topologies; (ii) In

general, a high clustering degree reduces the overall amount of consumed cloud resources; (iii)

FriendBox provides an attractive trade-off between storage service and economic cost.

1According to Amazon’s S3 at December 2013 we assume 0, 12 per GB of outgoing traffic and 0, 095 per GB/month
of storage. Incoming traffic is free of charge.
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7.5 Discussion and Conclusions

An important conclusion drawn from our evaluation is that the degree of clustering plays a crit-

ical role on how storage resources are exchanged among social links. More concretely, we have seen

that resource fairness, simply understood as a cost-benefit ratio, can exhibit a large imbalance

when the cluster coefficient is low.

We envisage two different strategies to address this situation:

• Apply a different placement policy to balance the contributed resources by each user;

and

• Increase the cluster coefficient through incentives.

Regarding the first solution, the idea is to replace the round robin allocation policy used in

FriendBox by a fairer policy. For instance, a better policy would be to allocate much more data

to the members with a small number of social ties, because, in general, those users are prone

to consume more resources than they contribute. This would free the hubs from donating too

much resources to the social cloud.

However, this policy might introduce undesirable effects. For example, a large number of

blocks might be allocated to a single friend in an attempt to reduce contribution asymmetry.

Once this friend went offline, data availability could be highly affected because the data owner

might unable to retrieve a sufficient number of redundant blocks from the remaining set of

logged-in friends and the cloud.

Regarding the second solution, we have seen that the best fairness ratio is achieved in the

social graphs with high clustering, mainly because the data is better spread among friends

without overloading hubs. This leads to the question of which type of incentive mechanism

would be appropriate to increase the clustering coefficient and improve the overall fairness.

An appealing way of regulating sharing, providing incentives to users and mitigating the

risk of an unfair distribution of resources in a social context is the use of market metaphors

as shown in [23]. Although using market-based mechanisms is not a new idea to solve the

resource allocation problem in computer systems (see, for example, [155][156]), leveraging

digitized social relationships provides benefits in terms of increased trust and lowers the bar-

rier to share spare resources. The key idea would be to provide incentives for users to create

new social interactions to increase the cluster coefficient up to the necessary level upon which

a fair distribution of work among the whole social network could be achieved.
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Figure 7.14: Fairness ratio for different CC using round robin placement or widening storage links
to the extended network.

More technically, given a user v of the social cloud, let us consider the ratio of fairness at

v, namely FRv and calculated by (Equation 7.3), as the objective metric we want to equalize

among all participants. Let us now denote by d(v1, v2) the shortest distance between node v1

and v2 in the social graph, and by

Xv = {vi : d(v, vi) ≥ 1∧ FRvi < 1}

the extended network of v that includes the friends and friends of friends that have a fairness

metric less than 1 (contribute less than consume). If we consider the excess of contribution

M = Rp − Rc as a currency in the social market, participants with a FRvi > 1 and M > 0 could

be allowed to use its extended network Xvi to discover new social contacts where store new

content, increase their FRvj while decreasing its own FRvi .

To give a sense of the efficacy of this solution, an initial simulation was run on the topolo-

gies of Fig. 7.3 using round robin scheduling for exactly 10 rounds of simulation. In each

simulation round, storage requests were repeatedly made by all the members of the social

cloud using the same setup as in the experiments of the preceding section. Results are de-

picted in Fig. 7.14, where it is easy to appreciate the high imbalance when the social graph is

sparse (CC = 0.3) compared when it is highly connected (CC = 0.7).

If we turn our attention to the new mechanism, the members of the social network with

an initial excess of contribution (FR > 1) after the first round of storage requests are allowed

to use the extended network on subsequent rounds as explained above until they run out of

storage currency. Contrary to the simple round robin policy, Fig. 7.14 clearly verifies how the

fairness index at each member is close to the target value of 1: Rp = Rc ⇒ FR = Rp/Rc = 1,

thanks to the use of the extended network and very importantly, irrespective of the cluster-

ing degree. The extended network serves to artificially increase the degree of clustering by

creating new social links (transient social ties), thereby leading to a better balanced system.
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As a side effect, we are also improving data availability by adding more social contacts to the

ego-centric graph of each user. The new social acquaintances might even belong to other time

zones, which would alleviate the effects of availability correlations.

Although the use of market metaphors in the social cloud is a promising line of work, their

final adoption is yet uncertain as it remains to be studied how factors like the topology, avail-

ability correlations, etc., shape the form of utility functions. Regarding the implications on

trust and privacy of adding new social ties, this decision potentially could be made using rep-

utation measures to leverage the level of trust among direct links and the extended network,

addressing to some degree the trust and privacy concerns of users [122].

Conclusions. In this Chapter, we have shown how to leverage social relationships to form

a dynamic social cloud for storage. To this end, we presented FriendBox: A social cloud

storage application embedded into Facebook. Moreover, a salient feature of FriendBox is that

lets a user add an external cloud storage service like Amazon S3 to its social cloud in order to

improve data availability while keeping the control of his data.

Although the social cloud model builds upon the unique environment in which users are

motivated by social incentives, we have seen that there exist some difficulties and subtleties

that prevent the realization of this concept in the real world, such as the availability correlation

between social contacts and the asymmetry in contribution levels. Through a real deployment of

FriendBox in our campus, we have studied to what extent these factors affect the feasibility

of socially oriented storage, paying special attention to the role that the social graph plays in

the system’s performance. Our analysis has revealed new insights on how to design a social

storage cloud, in particular, when the storage resources contributed by each member are aug-

mented with an external storage service like Amazon S3. We believe that our analysis provides

useful guidelines to improve the design and performance of social cloud systems in the future.
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8
Conclusions and Future
Directions
8.1 Conclusions

Increasingly, end-users demand larger amounts of online storage space to store their personal

data. This challenge motivates researchers to devise and study novel personal storage infras-

tructures. In this thesis, we focused on two popular personal storage architectures: Personal

Clouds and social storage systems. In our view, despite their growing popularity among users

and researchers, there still remain some critical aspects to address regarding these systems.

On the one hand, Personal Clouds are centralized systems built on top of dedicated cloud

resources for providing a high performance storage service, but their internal infrastructure

and behavior remains unknown in many senses since they are proprietary services. On the

other hand, social storage systems aim at leveraging the synergy between social networks and

storage systems to build a private and secure online storage service. Unluckily, it is unclear

if they will be widely adopted by end-users, specially because of their QoS limitations due to

their decentralized nature. These two issues are the main topics of this thesis.

Measurement and Analysis of Personal Clouds

In Part I of this dissertation, we focused on Personal Cloud systems. We examined various

aspects of their internal operation (metadata back-end) and external service access (REST APIs).

• We contribute the first study of a global-scale Personal Cloud back-end.

In Chapter 4, we illustrated the internals of a global-scale Personal Cloud service (Ubun-

tuOne, U1). One contribution of this Chapter is the technical description of the U1 back-end,

including its architecture, core components involved in the metadata service hosted in the data-

center of Canonical, as well as the interactions of U1 with Amazon S3 to outsource data storage.

In fact, Chapter 4 is the first study to depict the metadata store of a real-world vendor.

We also analyzed in depth the performance issues of the metadata store. Among our insights,

we found that U1 API servers present high tail latencies, that metadata servers exhibit poor
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load balancing in the short term, and that a sharded database cluster is an effective way of

storing metadata in U1. In our view, this knowledge may be useful for researchers and practi-

tioners in order to comprehend how these systems work and foster research in this field.

• We provide an extensive analysis of the U1 activity for one month.

Apart from the performance analysis of the metadata store, Chapter 4 also includes the study

of the storage workload and the user behavior in U1. It must be remarked that our study encom-

passes both the storage and metadata activity of the entire U1 user population (1.17M users),

which provides a more general view of U1 than existing measurements on similar systems.

In addition to reconfirm observations of prior works [11, 24] to generalize aspects of these

systems, we observed that the distribution of activity across U1 users is more skewed than in

Dropbox [11] (1% of active users generate 65% of the traffic) and that user operations are

bursty; users transition between long, idle periods and short, very active ones. We also found

that integrating the adequate data management mechanisms in desktop clients may report

significant savings in storage resources (e.g., delta updates, file-based deduplication) and that

DDoS attacks against U1 are frequent. These insights can be used to optimize systems like U1.

An important conclusion of our study is that understanding the behavior of users is essen-

tial to adapt the system to its actual demands and reduce costs. As a result, we suggested

improvements to U1 that can also benefit similar Personal Cloud systems in terms of storage

optimizations, user behavior detection and security. Actually, our experience in this Chapter points

out that there are still technical and research challenges to face for optimizing these services.

• Characterization and exploitation of Personal Cloud REST API services.

In Chapter 5, we conducted an active measurement of the REST API service of various

vendors to generate a public dataset as a basis for our analysis. We studied several aspects of

the transfer QoS of these services, including their transfer speed, variability and failure behavior.

For instance, we found that the transfer speed of these services greatly varies from one

provider to another and also depending on the client’s geographic location, which is a valuable

insight for users and developers to choose the best vendor for their needs. In this sense, we

observed that uploads are more variable than downloads and that such variability depends on

various aspects, like the hour of the day. Moreover, we noticed that SugarSync changed its

freemium QoS unexpectedly, which emphasizes the relevance of the data lock-in problem.
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We also contributed statistical insights on the transfer QoS of these services (e.g., Poissonity

of failures) to help researchers on building simulation environments for Personal Clouds, as

well as for providing solid assumptions to their analytical modeling.

Apart from their characterization, we detected that these open REST APIs may be a vec-

tor for abuse of Personal Clouds, given the freemium business model that most vendors adopt

—in line with the attacks reported in Chapter 4. In this thesis, we termed the automated and

fraudulent resource consumption that malicious parties may perpetrate on Personal Clouds

by exploiting the REST API access to free accounts as storage leeching problem. We demon-

strated the practicality of abusing Personal Clouds by building a proof-of-concept file-sharing

application that benefits from storage leeching to share illicit content, even exploiting storage

diversity across multiple vendors. To conclude this Chapter, we discussed the main causes that

make storage leeching possible, as well as various alternatives to mitigate this vulnerability.

To summarize, Part I of this dissertation provides a holistic view of the behavior of Personal

Clouds, which extends the state-of-the-art knowledge on these systems.

Exploring QoS in Social Storage Systems

As an alternative to Personal Clouds, social storage systems are emerging as a mean of

providing private and secure online storage to end-users. In Part II of this thesis, we stud-

ied the storage QoS of social storage systems in terms of data availability, load balancing and

transfer times. Our main interest was to understand the way intrinsic phenomena, such as the

dynamics of users and the structure of their social relationships, limit the storage QoS of these

systems, as well as to research novel mechanisms to ameliorate these limitations.

• We analyzed the role of data management mechanisms in the QoS of F2F systems.

In Chapter 6, we focused on the performance of friend-to-friend (F2F) storage systems.

First, we noted that these systems differ from large-scale storage systems in the sense that they

are highly affected by small groups of nodes to store data and high availability correlations. In

our analysis, we found that these particularities should be seriously considered to implement

effective data management techniques.

Concretely, we illustrated that traditional mechanisms, such as estimating data availability

and redundancy, are not suitable in this scenario; they exhibit significant estimation errors that

may lead to additional overheads. In this sense, we believed it necessary to coin a new notion
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of data availability adjusted to the daily-patterned dynamics of users, called daily data avail-

ability. Moreover, we presented a history-based data availability estimation tailored to this new

notion of data availability that accurately calculates the level of data redundancy.

With respect to load balancing, we discovered that storing more data blocks at highly avail-

able nodes may achieve higher data availability requiring less data redundancy than a simple

round-robin data placement. However, considering small groups of friends to store data, this

type of placement makes highly available nodes to be overloaded, inducing very poor load

balancing. To solve this problem, we demonstrated that the combination of a round-robin

placement and our history-based data availability calculation obtains an adequate degree of

data availability without compromising load balancing in a F2F scenario.

Regarding transfer performance, the correlated availabilities of nodes in a F2F system makes

it necessary to differentiate between if a file is available at a certain instant and if it is retrievable

in a reasonable amount of time. This effect dominates the performance of transfer scheduling

policies, among which we found no clear winner.

• A novel hybrid storage architecture to improve the QoS of social storage systems.

Unfortunately, one of the main conclusions of our analysis in Chapter 6 was that it is dif-

ficult to provide a high-quality storage service in a purely decentralized F2F system. Thus, we

contributed with a new hybrid architecture design, namely F2Box, that blends user resources

with cloud storage services in a F2F system to enhance storage QoS.

In F2Box, the cloud reduces transfer times and limits the amount of redundancy needed to

achieve a targeted data availability, which makes the system more scalable. Moreover, F2Box

is equipped with a battery of data management techniques that enable users to decide the best

trade-off between data control, and service QoS/cost. Our results certify that our architec-

ture leverages the benefits of combining the best of both worlds, which may represent a step

towards the wide adoption of F2F storage systems by end-users.

• Understanding the role of network topology in the Social Cloud.

In adition to F2F storage systems, the “social cloud” is also becoming a popular socially-

motivated computing paradigm that enables resource sharing across users. Our main interest

in Chapter 7 was to understand, from an empirical perspective, the role that social network

topology plays in the storage QoS provided by a social cloud.

To conduct this analysis, we implemented FriendBox, the first social cloud storage appli-

cation that materializes the architecture presented in Chapter 6. We studied how the correlated
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user availabilities, the friendset size and the degree of connectivity among friends impact on the

storage QoS of the system. Moreover, we analyzed how the combinations of these elements

influence the consumption of cloud resources. In summary, our analysis has revealed new

insights on how to design a social storage cloud, in particular, when the storage resources

contributed by each member are augmented with an external storage service. In our view, un-

derstanding the underlying infrastructural issues in a social cloud, such as the availabilities of

users and the network topology, is critical to avoid undesirable effects like overloading highly

available users. Thus, our insights in this Chapter may guide the design of sophisticated so-

cial cloud markets that also take into account the storage infrastructure when allocating and

trading resources to enhance the performance of the system.

In summary, the Part II of this thesis contributes by providing new insights on the perfor-

mance of social storage systems as well as alternative architectural designs. Our contributions

may help to understand and enhance these systems, which is fundamental to their eventual

adoption by end-users.

8.2 Future Directions

Optimizing and designing novel personal storage systems is, and will probably be, an active

research topic given the increasing needs and new requirements that users exhibit. In the

course of this thesis, we found several research lines that may be interesting to develop, among

which we highlight the following ones:

• Hot/Cold Personal Data Identification: In many cases, Personal Clouds resort to third-party

cloud storage providers for outsourcing data storage. This means that Personal Clouds

are highly motivated to cut down costs in storage resources in order to maximize their

profit. From our analysis in Chapter 4, we realized that almost 80% of the new files

stored in U1 are read only once. Furthermore, 60% of reads over files occur within 3

days, which means that in the long term files are rarely accessed. We believe that these

empirical observations can be exploited to build intelligent algorithms that decide when

a file can be considered warm or cold. This may enable Personal Clouds to migrate these

files to cold storage services, such as Amazon Glacier1, and save a significant fraction of

their monthly expenses in storage resources.

1http://aws.amazon.com/es/glacier/
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• Benchmarking On-Premise Personal Clouds: On-premise Personal Clouds are an attractive

solution to enterprises since they provide Dropbox-like functionality (file storage, syn-

chronization and sharing) to employees without the need of outsourcing sensitive data

to a public vendor. However, there are no tailored tools for accurately evaluating and

right-sizing an on-premise Personal Cloud, which is critical to the performance and cost

of the system being deployed. Intuitively, the specific user activity within an enterprise

may play a key role on choosing the correct vendor, given that Personal Clouds integrate

distinct data reduction techniques. Our idea is to first identify the different types of user

behavior commonly found in a Personal Cloud, namely stereotypes. The second step is

to develop a benchmarking framework for modeling and reproducing user behavior in

a Personal Cloud at scale.

• Topology-level Incentives in Social Cloud Storage: In Chapter 7, we discussed that resource

fairness in a social cloud, simply understood as a cost-benefit ratio, can exhibit a large

imbalance when the degree of connectivity or cluster coefficient among users is low.

We presented two mechanisms to ameliorate the impact of such unfairness in this con-

text: a topology-aware data placement strategy and the provisioning of incentives to modify the

underlying social network topology. An interesting research line may be to continue this

discussion with a practical implementation of these mechanisms in a real social cloud

market to evaluate their implications, also considering the effect of user dynamics.
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A
U1 Upload Management
The management of file uploads is one of the most complex parts in the U1 architecture1.

Specifically, U1 resorts to the multipart upload API offered by Amazon S32. The lifecycle of an

upload is closely related to this API, where several U1 RPC calls are involved (see Table A.1).

dal.add part to uploadjob Continues a multipart upload by adding a new chunk.
dal.delete uploadjob Garbage-collects the server-side state for a multipart upload, either because of commit

or cancellation.
dal.get reusable content Check whether the server already has the content that is being uploaded.
dal.get uploadjob Get the server-side state for a multipart upload.
dal.make content Make a file entry in the metadata store (the equivalent of an inode).
dal.make uploadjob Set up the server-side structure for multipart upload.
dal.set uploadjob multipart id Set the requested Amazon S3 multipart upload id to the uploadjob.
dal.touch uploadjob Check if the client has canceled the multipart upload (garbage collection after a week).

Table A.1: Upload related RPC operations that interact with the metadata store.

Internally, U1 uses a persistent data structure called uploadjob that keeps the state of a

multipart file transfer between the client and Amazon S3. The main objective of multipart up-

loads in U1 is to provide user with a way of interrupting/resuming large upload data trans-

fers. uploadjob data structures are stored in the metadata store during their life-cycle. RPC

operations during the multipart upload process guide the lifecycle of uploadjobs (see Fig.

A.1).

Upon the reception of an upload request, U1 first checks if the file content is already stored

in the service, by means of a SHA-1 hash sent by the user. If deduplication is not applicable

to the new file, a new upload begins. The API server that handles the upload sends an RPC to

create an entry for the new file in the metadata store.

In the case of a multipart upload, the API server creates a new uploadjob data structure

to track the process. Subsequently, the API process requests a multipart id to Amazon S3 that

will identify the current upload until its termination. Once the id is assigned to the uploadjob,

1Downloads are simpler: API servers only perform a single request to Amazon S3 for forwarding the data to the
client.

2http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingRESTAPImpUpload.html
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Figure A.1: Upload state machine in U1.

the API server uploads to Amazon S3 the chunks of the file transferred by the user (5MB),

updating the state of the uploadjob.

When the upload finishes, the API server deletes the uploadjob data structure from the

metadata store and notifies Amazon S3 about the completion of the transfer.

Finally, U1 also executes a periodic garbage-collection process on uploadjob data struc-

tures. U1 checks if an uploadjob is older than one week (dal.touch uploadjob). In the af-

firmative case, U1 assumes that the user has canceled this multipart upload permanently and

proceeds to delete the associated uploadjob from the metadata store.
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B
Glossary
API: Application Programing Interface.

BTT: Block Transfer Time.

CC: Clustering Coefficient.

DOSN: Distributed Online Social Network.

F2F: Friend-to-Friend.

GDM: Group Disconnection Matching.

GPM: Group Presence Matching.

IaaS: Infrastructure-as-a-Service.

MTTS: Minimum Time To Schedule.

NAS: Network Attached Storage.

OS: Operating System.

OSN: Online Social Network.

OTTS: Optimal Time To Schedule.

P2P: Peer-to-Peer.

QoS: Quality of Service.

REST: REpresentational State Transfer.

RPC: Remote Procedure Call.

SaaS: Software-as-a-Service.

SLA: Service Level Agreement.

SME: Small and Medium Enterprise.

TCP: Transmission Control Protocol.

TTS: Time To Schedule.
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[27] Raúl Gracia-Tinedo, Marc Sánchez-Artigas, and
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[33] Raúl Gracia-Tinedo, Danny Harnik, Dalit Naor,
Dmitry Sotnikov, Sivan Toledo, and Aviad Zuck.
SDGen: Mimicking Datasets for Content Genera-
tion in Storage Benchmarks. In USENIX FAST’15,
2015.
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[83] Glauber Gonçalves, Idilio Drago, Ana
Paula Couto da Silva, Alex Borges Vieira,
and Jussara M Almeida. Modeling the dropbox
client behavior. In IEEE ICC’14, volume 14, 2014.

[84] Yupu Zhang, Chris Dragga, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau. *-box: to-
wards reliability and consistency in dropbox-like
file synchronization services. In USENIX HotStor-
age’13, pages 2–2, 2013.

[85] Herman Slatman. Opening up the sky: a compar-
ison of performance-enhancing features in sky-
drive and dropbox. In Proceedings of the 18th
Twente Student Conference on IT, 2013.

[86] Songbin Liu, Xiaomeng Huang, Haohuan Fu, and
Guangwen Yang. Understanding data character-
istics and access patterns in a cloud storage sys-
tem. In IEEE/ACM CCGrid’13, pages 327–334,
2013.

[87] Zach Hill, Jie Li, Ming Mao, Arkaitz Ruiz-
Alvarez, and Marty Humphrey. Early observa-
tions on the performance of windows azure. In
ACM HPDC ’10, pages 367–376, 2010.

[88] Mayur R. Palankar, Adriana Iamnitchi, Matei Ri-
peanu, and Simson Garfinkel. Amazon s3 for sci-
ence grids: a viable solution? In ACM DADC’08,
pages 55–64, 2008.

[89] A. Bergen, Y. Coady, and R. McGeer. Client
bandwidth: The forgotten metric of online stor-
age providers. In IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing,
pages 543–548, 2011.

UNIVERSITAT ROVIRA I VIRGILI 
ON PERSONAL STORAGE SYSTEMS: ARCHITECTURE AND DESIGN CONSIDERATIONS. 
Raúl Gracia Tinedo 
Dipòsit Legal: T 1344-2015



BIBLIOGRAPHY 185

[90] W. Hu, T. Yang, and J.N. Matthews. The good,
the bad and the ugly of consumer cloud stor-
age. ACM SIGOPS Operating Systems Review,
44(3):110–115, 2010.

[91] Meiko Jensen, Nils Gruschka, and Ralph
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