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“L’art est fait pour troubler. La science rassure.”

“Art is made to disturb. Science reassures.”

Georges Braque
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Human impact on groundwater resources has led to a rapid growth of social concerns

worldwide owing to an increasing presence of toxic chemicals released in the subsurface.

Risk assessment provides the scientific tool needed to quantify the actual thread that

these potential hazards pose to human health. Specifically, risk analysis enables decision

makers to answer: What can happen? How likely is it to happen? What can be the con-

sequences? Risk assessment is in this context essential. However, modeling e↵orts involve

in risk analysis are still facing several problems. Among them, in some cases, degrada-

tion products can constitute new noxious chemical compounds not necessarily less toxic

than their parent product. Thus, the original pollutants and their daughter products are

susceptible to co-exist in the aquifer forming a hazardous chemical mixture composed of

products of di↵erent toxicity. This renders the quantification and interpretation of hu-

man health risk a non-trivial and challenging task. Also, the lack of information in the

hydraulic and biochemical properties renders transport predictions to be highly uncer-

tain. Stochastic human health risk assessment incorporates hydrogeological uncertainty

in human health predictions. This way, probabilistic risk models can be used to determine

the likelihood of risk exceeding a given regulatory threshold value or the expected threat

to the exposed population and its uncertainty. Unfortunately, these approaches are very

computationally demanding. Moreover, the diverse mineralogical composition of a real

soil and the complex spatial variability of aquifer properties can produce a mixture of

rates of mass transfer between regions of mobile and immobile contaminants. This calls

for more sophisticated or alternative transport models such as those that conceptualize

the porous medium as a multi-porosity system. Finally, risk predictions are typically

challenged by the complexity of the source zone condition. Dense non-aqueous dense
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liquids illustrate perfectly this complexity by causing a slow release of contaminants into

the aquifer according to a depletion rate that strongly depends on the architecture of the

source zone.

Existing reactive transport models based on Eulerian methods still undergo computational

burden and numerical problems when modeling strong hydro-biochemical heterogeneities

with complex reactions in multi-porosity systems. In this context, Particle Tracking

Methods constitute a feasible alternative but these methods are limited in the range of

applicability. The work presented in this thesis proposes an e�cient particle tracking

solution capable to simulate serial-parallel degradation reactions in multiple porosity sys-

tems with rate-limited mass transfer and strong heterogeneities. The approach is based

on the development of transition probabilities that describe the probabilities that parti-

cles belonging to a given state (species and mobile/immobile region) at a given time will

be transformed into another state in a later time. The method is then used to charac-

terize the human health risk posed by chemical mixtures in highly heterogeneous porous

media under complex source zone conditions. In particular, we systematically investigate

the interaction between aquifer heterogeneity, connectivity, contaminant injection mode

and chemical toxicity in the probabilistic characterization of health risk. We illustrate

how chemical-specific travel times control the regime of the expected risk and its cor-

responding uncertainties. Results indicate conditions where preferential flow paths can

favor the reduction of the overall risk of the chemical mixture. The overall human risk re-

sponse to aquifer connectivity is shown to be non-trivial for multi-species transport. This

non-triviality is a result of the interaction between aquifer heterogeneity and chemical tox-

icity. To quantify the joint e↵ect of connectivity and toxicity in health risk, we propose a

toxicity-based Damköhler number. Furthermore, we provide a statistical characterization

in terms of low-order moments and the probability density function of the individual and

total risks. Results also show that the degradation capacity of immobile water regions

and the mass depletion model can play a significant role on the spatiotemporal behavior

of the contaminant mixture. Our work also highlights the potential impact of the water

flux passing through the source zone on the e↵ective increased lifetime cancer risk due

to a reactive chemical mixture. Counter-intuitively, the source zone e�ciency is shown

to have a beneficial e↵ect on the risk. The total risk tends indeed to decrease for high

source zone e�ciency due to the consequential decrease in travel times near the source

zone, which may limit the production of highly toxic daughter products.
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por Christopher V. Henri

El impacto humano sobre los recursos h́ıdricos que forman los acúıferos es actualmente

una de las grandes preocupaciones sociales en crecimiento debido a la presencia antrópica

cada vez mayor de productos qúımicos tóxicos liberados en el subsuelo. El análisis de

riesgo proporciona la herramienta cient́ıfica necesaria para cuantificar el peligro real que

estos contaminantes suponen para la salud humana. En concreto, el análisis de riesgo

permite tomar decisiones que respondan a las siguientes preguntas: Qué puede pasar?

Qué tan probable es que suceda? Cuál pueden ser las consecuencias? El análisis de

riesgo es una herramienta clave en este sentido. Sin embargo, los esfuerzos de modelación

necesarios para llevar a cabo el análisis de riesgo se enfrentan con varios problemas. Entre

ellos, algunos productos tóxicos de degradación pueden constituir nuevos compuestos

qúımicos nocivos no necesariamente menos tóxico que su producto padre. Por lo tanto,

los contaminantes originales y sus productos hijos son susceptibles de coexistir en los

acúıferos formando una mezcla de compuestos qúımicos de diferente toxicidad. Esto hace

que la cuantificación e interpretación del riesgo para la salud humana sea una tarea no

trivial y desafiante. Por otra parte, la falta de información en las propiedades hidráulicas

y bioqúımicos hace que las predicciones sobre el comportamiento de dichos contaminantes

en el subsuelo sean altamente inciertas. El análisis de riesgo estocástico incorpora de forma

natural la incertidumbre hidrogeológica que existe en las predicciones de riesgo para la

salud humana. De esta manera, estos modelos pueden ser utilizados para determinar

la probabilidad de que el riesgo supere un valor umbral o el valor esperado del riesgo y

su incertidumbre. Desafortunadamente, estos enfoques son muy exigentes en tiempo de

cálculo. Además de estas dos problemáticas, también se tiene que tener en cuenta que la

composición mineralógica de un suelo real es diversa y variable en el espacio. Muchas veces

esto implica la transferencia de masa entre zonas de contaminantes móviles e inmóviles.
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Esto ltimo exige modelos sofisticados de transporte que, por ejemplo, conceptualicen el

medio poroso como un sistema multi-porosidad. Finalmente, la complejidad que existe en

el comportamiento del foco de contaminación hace complicado un análisis de riesgo. Los

ĺıquidos tóxicos densos y no acuosos ilustran perfectamente esta complejidad. Una vez en

el subsuelo, estos ĺıquidos liberación lentamente los contaminantes dentro del acúıfero de

acuerdo con una tasa de agotamiento que depende fuertemente de la arquitectura errática

del foco de contaminación.

Los modelos de transporte reactivo Eulerianos tienen problemas numéricos cuando se sim-

ulan fuertes heterogeneidades hidro-bioqúımicos en el terreno al mismo tiempo que reac-

ciones qúımicas complejas en sistemas multi-porosidad. En este contexto, los métodos de

trayectorias de part́ıculas constituyen una alternativa viable. Sin embargo, estos métodos

pueden tener en cuenta un rango pequeo de reacciones qúımicas. El trabajo presentado

en esta tesis propone una solución a estos problemas mediante un método de trayectoria

de part́ıculas. El método es eficiente y capaz de simular cadenas y redes de degradación

en sistemas heterogéneos con porosidad mltiples. El método se basa en el desarrollo de

probabilidades de transición que describen las probabilidades de que las part́ıculas que

pertenecen a un estado determinado (producto qúımico y región móvil / inmóvil) en un

momento dado se transformará en otro estado en un momento posterior. El método se

utiliza para caracterizar el riesgo para la salud humana que representan las mezclas de

degradación en medios porosos altamente heterogéneos derivados de focos de contami-

nación complejos. En particular, se investiga la interacción entre la heterogeneidad, la

conectividad, el modo de inyección de los contaminantes y su toxicidad qúımica con re-

specto a la caracterización probabiĺıstica del riesgo para la salud humana. Los resultados

indican las condiciones mediante las cuales las v́ıas de flujo preferencial pueden favorecer

la reducción del riesgo para la salud humana. La dependencia de la conectividad con

el riego se demuestra que no es nada trivial cuando se trata de mezclas de compuestos

qúımicos. Esta no trivialidad es el resultado de la interacción entre la heterogeneidad

del acúıfero y la toxicidad de los compuestos qúımicos. Para cuantificar el efecto con-

junto de la conectividad y la toxicidad en el riesgo para la salud, se propone un nmero de

Damköhler nuevo que tiene en cuenta la toxicidad. Además, el riesgo también se caracter-

iza en términos estad́ısticos mediante momentos de bajo orden y funciones de densidad de

probabilidad. Los resultados también muestran que tanto la capacidad de degradación de

zonas inmóviles como los modelos existentes de agotamiento del foco pueden desempear



un papel muy significativo en el análisis espacio-temporal del riesgo. Este trabajo también

muestra que la eficiencia del foco de contaminación para concentrar el flujo puede tener

un efecto beneficioso sobre el riesgo. El riesgo total de hecho tiende a disminuir para

eficiencias grandes debido a la disminución consecuente en tiempos de viaje cerca del foco

de contaminación, limitando la producción de productos de degradación más tóxicos.
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CONTEXT AND OBJECTIVES

Groundwater Contaminations. The groundwater resource, largest volume of read-

ily accessible fresh water on Earth, is an essential factor of societies stability by securing

water supplies in a large portion of the globe [UNESCO, 2012]. However, in a context

of quantitatively limited natural resources, always increasing world population and past

lack of environmental consciousness, the pressure that human societies have imposed to

its groundwater led to important environmental and public health issues. Indeed, the

resource is currently presenting a worrying qualitative state in many inhabited areas de-

spite a relatively late industrialization of human societies. To date, no less than 342,000

sites has been estimated to be contaminated across the European Union [Panagos et al.,

2013] (see Figure 1 for more detailed numbers about groundwater contamination in the

E.U.). Aquifer contamination presents a wide variety of origin, from noxious agricultural

practice (e.g. nitrate or pesticides), insecure landfills (e.g. chlorinated solvents), uncon-

trolled hazardous waste sites or leakage of sub-products from the nuclear industry. Issues

related to the deterioration of the groundwater state are therefore numerous and public

concerns are widely increasing with the advances in the resource qualitative characteriza-

tion. Moreover, the groundwater, being in permanent motion, represents a particularly

e�cient vector of pathogens or toxic agents from an isolated contaminated site toward

human populations [World Health Organization, 2006].

1



Chapter 1. Context & Objective 2number (in the E.U.)

Groundwater contaminations

Remediated

Contaminated

Potentially contaminated

Sites x 1000
0 750 1500 2250 3000

2 553

342
1 170

127

58
Identified
Estimated

Panagos et al. (2013) Journal of Environmental and Public Health 
Figure 1: Number of remediated, contaminated and potentially contaminated sites in the

European Union based on identification and estimation (from Panagos et al. [2013]).

Risk Management. As a response to this threat, regulators and hydrogeologists have

contributed since few decades to the elaboration of a large arsenal of legislative and

scientific tools aiming to minimize the risk posed by groundwater on the human health

while preserving an acceptable cost-e�ciency in the contamination monitoring. A large

number of the pre-cited contamination cases leads to a serious degradation of groundwater

quality over decades. In this context, the importance of a predictive e↵ort is primordial for

engineers to limit the long-term harmful consequences of a groundwater contamination.

This need coupled to the impressively rapid development and democratizing of computer

technologies makes that the numerical modeling of biochemical reaction and transport of

solute contaminants into aquifers is taking an ever increasing importance in the decision-

making process. The risk for a given human population to develop diseases from the

ingestion, inhalation or dermal exposures to a predicted amount of contaminant can then

be evaluated. This evaluated risk can then serve as a base for decision makers to adapt

the aquifer decontamination strategy to socioeconomic constraints. We can therefore

distinguish two key steps of a risk management: (1) the prediction of the contaminant

evolution in time and space, and (2) the quantification of the consequences on the human

health of an exposure to this contaminant leading to a decision making.

Complexity. This two-step process hides unfortunately a highly complex set of interde-

pendence between physical, biochemical, toxicological, physiological and societal param-

eters. This need for a multiprocess analysis makes risk management a perfect example of
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the necessary integration of the concept of complex thinking in environmental sciences,

which makes the interlinking between disciplines a norm to face future challenges [Morin,

1990]. Among the multiplicity of key processes complexifying the spatiotemporal propa-

gation of human health risk in aquifers, two can been highlighted as significant controlling

factors: the chemical, biochemical or physicochemical reactions of contaminants and the

heterogeneities in the hydraulic properties of the porous media.

Chemical Mixtures. A significant number of polluting agents are chemically and/or biolog-

ically reactive in the subsurface. Moreover, many reactive (bio)chemical processes such as

the radioactive decay, the reductive dechlorination of chlorinated organic compounds, the

oxidative pathway of pesticide and the sequential nitrate reduction consists in the isotopic

or molecular transformation of an original contaminant into one or a series of subspecies.

Both parent species and transformation product(s) are then susceptible to coexist in the

porous media to form what one could call a chemical mixture. The risk posed by an expo-

sure to this chemical mixture is controlled by a series of species-dependent reaction rates

and toxicities that will complicate significantly both the reactive transport modeling and

the spatiotemporal prediction of the e↵ective risk that the multispecies contamination

may pose to the human health.

Heterogeneity. On the other hand, the locally specific physico- and bio-chemical conditions

and the heterogeneity in the hydraulic properties of the aquifer [Dagan, 1989] render

spatial variability a highly controling factor of groundwater contamination spatiotemporal

evolution. Dealing with heterogeneous hydraulic properties is particularly challenging

owing to its intrinsic multiscale nature and complex characterization. Observed from

the scale of lithological formations to the scale of pores organization, heterogeneities are

shown to favor the development of a complex network of high velocity channels, areas of

low water flow, and even zones of near-zero flow where only di↵usive processes e↵ectively

occurs. This complex spatial distribution of water velocities will impact significantly the

focus and spread of the transported contaminant plume(s), and by consequent the risk

posed to the exposed population.

Conceptualization. Contaminated hydrogeological systems carry therefore divers de-

grees of complexity that makes the representation of reality barely thinkable. Our engi-

neering field seeks to face these scientific and societal challenges by proposing useful and
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accurate tools to the civil society. The conceptualization of the problem is the cornerstone

of this task. One could define engineering as a rigorous art of conceptualization, whom

reaching the highest degree of simplification while conserving accuracy in the analysis

conclusions is the goal. Both concepts of porous media heterogeneities and biochemical

reactions have been subject to an important e↵ort of conceptualization by our scientific

community.

Heterogeneity representation. In a modeling purpose, it is convenient to account for the

heterogeneity in the hydraulic conductivity by discretizing the problem into a number

of cells whom the spatial organization of their specific hydraulic properties will follow

a pre-characterized lithology. However, incorporating this certain degree of complexity

in the treatment of hydrogeological problems implies often to accept facing and quan-

tifying uncertainties [Gómez-Hernández, 2006]. Indeed, the full characterization of the

spatial distribution of the hydraulic conductivity at the model grid-size resolution is tech-

nologically untreatable and, even imagining an utopian advancement of characterization

techniques, the enormous allocation of economical resources that it would require would

have great chances to make the task societally unacceptable. In this context, quantifying

the uncertainty made on this conceptual representation and on the consequential risk

estimation can seem the wiser strategy to adopt. Stochastic approaches emerged then to

propose the description of aquifer systems by a series of equiprobable scenarios respecting

relatively characterizable properties and suspected spatial correlation [Rubin, 2003].

However, even described stochastically, the finite discretization of hydraulic properties in-

tegrate inevitably heterogeneities at smaller scale than the grid-cell size. While the meth-

ods developed to solve this upscaling problem focused successfully on flow representation,

their application highlighted the partial inadequacy of the classic advection-dispersion

equation to model solute transport. Fitted transport parameters failed indeed to repro-

duce late time contaminant arrivals taking because of the slow di↵usion of mass from and

into non-represented small-scale zones of very low or near-zero velocity. More sophisti-

cated conceptual models of solute transport emerged subsequently coupling a di↵usive

mass transfer from/into “immobile” zones to the advection-dispersion model [Haggerty

and Gorelick, 1995; Carrera et al., 1998].

This significant e↵ort of conceptualization achieved great success to assess the risk posed

by single non-reactive contaminants but a void exists in the consideration of multispecies
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reactive contamination in such complex aquifers.

Biochemical Models. Regarding the actual state of the field, our capacity to couple “phys-

ically complex” aquifers to “biochemically complex” reactive systems in an accurate man-

ner passes also by a strong conceptual simplification of the biochemical problem. The ac-

curacy of a numerical method passes by its numerical stability and an algorithm e�ciency

making the model applicable. The pre-discussed stochastic description of the hydraulic

properties involves significant computational e↵orts and makes the e�ciency of the reac-

tive transport model a particularly important aspect of its applicability. Highly complex

biochemical reactive systems has been satisfactorily simplified by empirical models such as

the Michaelis-Menten model for enzyme kinetics or the Monod model for microorganisms

growth. However, their application in stochastic modeling of complex aquifer systems may

render the task certainly interesting in a theoretical sense, but also highly time-consuming

and therefore poorly applicable for engineering purposes. On the other hand, the approx-

imation of biochemical reactions by a simplified first-order decay is frequently used by

stakeholders to represent complex network of interacting chemicals. This approach has

several advantages such as the limitation of the number of parameters and the linearity

conservation of the ordinary di↵erential equation systems that is often synonymous with

a great e�ciency in the solving process while preserving the most important features of

the problem.

Random Walk Particle Tracking. Envisaging a stochastic modeling and risk assess-

ment of such complex systems passes by the development of highly e�cient numerical

method capable to simulate simplified reaction network in aquifers presenting multiscale

heterogeneities while preserving trustable predictions. A large diversity of numerical

methods exists to model multispecies reactive systems. However, their application in

finely discretized and three-dimensional heterogeneous porous media shows a relatively

poor e�ciency and numerical issues that can make the prediction misleading. Random

walk particle tracking approaches have demonstrated to be a powerful alternative present-

ing a high computational e�ciency and solution stability even for models with millions

of grid cells [Salamon et al., 2006b].
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Thesis objectives and organization. This thesis aims to develop novel numerical

methods and assisting tools for human health risk assessment in case of complex aquifer

contamination by multispecies chemical systems. The attention is particularly focused

on conserving e�ciency and accuracy in the numerical solutions in order to be applied in

a probabilistic assessment of the human health risk. This assessment seeks to illustrate

the capability of the novel method, and more importantly, to develop practical tool and

metrics adapted to the risk management of aquifer contamination by reactive chemical

mixtures. The thesis is therefore oriented around two main parts respectively focusing

on: (1) the development of accurate tools for modeling multispecies reactive systems in

heterogeneous conditions and (2) the characterization of the human health risk propaga-

tion related to the presence of noxious chemical mixtures released from complex source

zones in heterogeneous aquifers. Each part is composed of two chapters. Each chapter

takes the form of an article aimed to be published in an international journal.

The first chapter proposes a novel random walk particle tracking method to simulate the

transport of chemicals a↵ected by first-order decay network. The novel method is shown

to be stable and e�cient in three-dimensional and well discretized heterogeneous flow

conditions and the peculiar impact of heterogeneity on reactive plumes is furthermore

exposed.

In chapter 2, the novel particle based method for multispecies reactive systems is extended

to include mass transfer processes. The coupling of the multirate mass transfer model

associated to first-order decay network reaction gives the choice between a large variety

of scenarios, both in the “architecture” definition of the reaction network and in the

conceptualization of the immobile domain. The method is applied with finely defined and

heterogeneous hydraulic properties and decay rates to illustrate the potential joint e↵ect of

mass transfer and degradation in the immobile domain on a multispecies contamination.

The third chapter, initiating the second part of the thesis, focuses on the stochastic

characterization of the human health risk related to a chemical mixtures. After discussing

the particular spatial and/or temporal behavior of the statistics and probability functions

of selected risk metrics, some main controlling factors of the risk propagation are identified

in order to develop specific tools for the risk management of reactive mixtures.



Chapter 1. Context & Objective 7

All along the thesis, the particular case of contamination by the chlorinated solvent Per-

chloroethylene (PCE) is illustratively used. Under specific anaerobic conditions, PCE

initiate a sequential reductive dechlorination that has for main consequence the produc-

tion of a series of noxious sub-compounds before reaching a harmless chemical form. This

behavior is a very often encountered example of formation of a chemical mixture. More-

over, PCE, as a well-known dense-nonaqueous phase liquid (DNAPL), is characterized

by a particularly problematical release of mass from the contamination source to the

groundwater body. To conclude, the fourth chapter proposes an analysis of the impact of

DNAPL mass release mode on the propagation of the human health risk in heterogeneous

aquifers. In line with the global philosophy, practical observations on the controlling

factors of risk propagation are finally delivered.
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2.1 Introduction

The assessment of groundwater polluted systems requires e�cient and trustable predictive

models. By e�cient, we usually mean a small computational cost, and by trustable the

proper representation of all key processes controlling the fate and transport of contam-

inants. Unfortunately, these two desirable properties contrast with the common adage

opposing e�ciency and complexity in transport simulations. Model complexity often

arises from the need to jointly incorporate, in three dimensions, the spatial variability of

aquifer properties and numerous chemical reactions into the same multi-species reactive

transport model. Thus, properties such as the hydraulic conductivity and the di↵erent

degradation rates can vary several orders of magnitude in an aquifer [e.g., Rubin, 2003;

Fennell et al., 2001; Sandrin et al., 2004]. Even though the description of the spatial

variability of all these properties at high resolution is crucial for making contaminant pre-

dictions [e.g., Feehley et al., 2000; Salamon et al., 2007; Riva et al., 2008; Llopis-Albert

and Capilla, 2009], its implementation in transport models typically leads to numerical

problems.

Contaminants in the subsurface are also a↵ected by chemical reactions. Among them,

network reactions have been used to model a large variety of contaminants. This includes

the degradation of chlorinated solvents [e.g., Clement, 1997, 2001], the decay of radioactive

species [e.g., Painter et al., 2008], and the transformation of pesticides, organic phosphates

and nitrogen in the environment [e.g., van Genuchten, 1985; Mishra and Mishra, 1991;

Vishwanathan et al., 1998]. When contaminant concentrations are small, i.e., less than

the Michaelis half-saturation constant in the Monod or Michaelis-Menten enzyme kinetic

model, the microbial biotransformation rates can be described by pseudo-first-order re-

action rates [e.g., Bouwer et al., 1981; Vogel et al., 1987; Haston and McCarty, 1999;

Burnell et al., 2014]. In this context, organic chlorinated solvents are often described by

first-order reaction chains schematically described by A ! B ! C ! D, meaning that

species A is transformed into species B, B into C and so on. The quantification of the

risk posed by these contaminants is not a trivial problem [Benekos et al., 2006; Henri and

Fernàndez-Garcia, 2014]. The degradation products can constitute new noxious chemical

compounds not necessarily less toxic than its parent product. Even though analytical

solutions [e.g., Sun et al., 1999; Zhang and Woodbury, 2002; Sun and Buscheck, 2003;
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Falta et al., 2002] have been routinely employed by decision makers to e�ciently man-

age the risk posed by these contaminants, the spatial variability of aquifer properties,

always observed in natural systems, have seriously questioned the application of such

simple approaches [Adrian et al., 1994; Miralles-Wilhelm and Gelhar, 1996; Scholl, 2000;

Cunningham and Fadel, 2007; Henri and Fernàndez-Garcia, 2014].

The presence of low permeability regions where contaminants can be temporarily trapped

by di↵usion typically reduces the e�ciency of in situ cleanup technologies [e.g., Soga et al.,

2004; Stroo et al., 2012]. To represent this situation in a macroscopic transport model,

the porous medium is typically conceptualized as a multi-porosity system that partitions

the domain into one region formed by mobile water where advection and dispersion can

take place, and another region with relatively immobile water where transport is di↵usion

limited [van Genuchten and Wierenga, 1976; Neretnieks, 1980; Cunningham et al., 1997;

Carrera et al., 1998; Zinn and Harvey, 2003]. This conceptual model has received great

attention in the last decades for its success in reproducing tailing and anomalous trans-

port [Harvey and Gorelick, 2000; Huang and Hu, 2000; Li and Brusseau, 2000; Haggerty

et al., 2000]. Albeit mass transfer models were originally formulated with a single mass

transfer coe�cient, i.e., a double porosity system [van Genuchten and Wierenga, 1976;

Neretnieks, 1980; Harvey and Gorelick, 2000], this particular model has shown drastic

limitations in characterizing the long-term behavior of solute transport [Young and Ball,

1995; Haggerty and Gorelick, 1995; Haggerty et al., 2000]. The main reason is that the

diverse mineralogical composition of a real soil and the complex spatial variability of

aquifer properties can produce a mixture of mass transfer processes occurring over mul-

tiple scales. To overcome this limitation, the multirate mass transfer model was later on

developed by Haggerty and Gorelick [1995], who extended the double porosity model to

multiple immobile domains. The multirate mass transfer model represents a complete

and practical answer to the complexity of a natural groundwater polluted system. For in-

stance, by choosing appropriate parameter values, this model can simulate a large variety

of di↵usion processes such as di↵usion into cylinders, spheres, layers, rock matrices, and

others [Haggerty and Gorelick, 1995; Carrera et al., 1998]. Moreover, various authors [e.g.

Zinn and Harvey, 2003; G. et al., 2004; Fernàndez-Garcia et al., 2009] have demonstrated,

that solute transport can be properly upscaled using a multirate mass transfer model.
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The incorporation of all theses processes highly complicates numerical simulations. Re-

active transport codes based on Eulerian methods (finite di↵erences or finite-elements)

typically encounter numerical problems and su↵er from computational burden when deal-

ing with strong heterogeneities [Salamon et al., 2006a; Boso et al., 2013]. These limitations

have been largely emphasized by the recent need to conduct integrated risk analysis studies

with many uncertain parameters at high resolution [Maxwell et al., 2008; de Barros et al.,

2009; Benekos et al., 2006]. In this context, Particle Tracking Methods (PTMs) constitute

an e�cient numerical alternative to simulate reactive transport [Kitanidis, 1994; Salamon

et al., 2006a; Henri and Fernàndez-Garcia, 2014]. Even though a large variety of methods

exist to simulate rate-limited mass transfer processes with particle tracking [Benson and

Meerschaert, 2009; De Simoni et al., 2001; M. and Berkowitz, 2003; Salamon et al., 2006b;

Tsang and Tsang, 2001a], this method is still limited in the type of chemical reactions

available, which include sorption [Tompson, 1993; Valocchi and Quinodoz, 1989; Micha-

lak and Kitanidis, 2000], radioactive decay [Wen and Gómez-Hernández, 1996; Painter

et al., 2008], first-order network reactions [Burnell et al., 2014; Henri and Fernàndez-

Garcia, 2014], and simple bimolecular reactions [Benson and Meerschaert, 2008a; Ding

et al., 2013; Edery et al., 2009, 2010; Paster et al., 2014] among others. None of the

methods available nowadays supports multi-porosity systems with network reactions in

three-dimensional randomly heterogeneous porous media.

We present a new particle tracking method that e�ciently handles hydro-biogeochemical

spatial variability, multi-rate mass transfer processes and first-order network reactions.

The approach is based on the development of transition probabilities that describe the

likelihood that particles belonging to a given species and mobile/immobile domain at a

given time will be transformed into another species and mobile/immobile domain after-

wards. These probabilities are derived from the solution matrix of the spatial moments

governing equations. The organization of the paper is as follows. First, sections 2.2

and 2.3 respectively present the governing transport equations and the development of

transition probabilities. These probabilities are then used in section 2.4 to incorporate

mass transfer processes and network reactions into a random walk model. Finally, a 3D

high-resolution synthetic example is presented to investigate the impact that the di↵erent

sources of variability have on the fate and transport of tetrachloroethylene (PCE) and its

degradation products in a groundwater polluted system.
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2.2 The Multirate Model with Network Reactions

2.2.1 Conceptual Model

The multirate mass transfer model has been extensively presented in the literature [Hag-

gerty and Gorelick, 1995; Haggerty et al., 2000; Donado et al., 2009]. Here, we extend the

model for use in modeling contaminant transport with network reaction systems. The

porous medium is conceptualized as a multi-porosity system consisting of one mobile wa-

ter region where solute moves by advection and dispersion, and any number of immobile

water regions where solute transport is di↵usion limited. A series of mass transfer equa-

tions describe the mass exchange between the mobile and any number of immobile regions.

Considering this conceptualization of the porous medium, Figure 2.1 shows a schematic

representation of a chain reaction (A ! B ! C) in this system. This figure represents

several physical and biochemical processes that occur simultaneously in porous media.

At the large scale, contaminants can di↵use into clay layers/lenses or get transferred into

low conductivity regions by slow advection. In this context, it is generally observed that

biotransformation rates in the mobile and immobile regions can be substantially di↵erent.

The main reason is that biotransformation rates and bacterial activity largely depends on

the clay content, being often smaller in confining beds than in more permeable systems

[Chapelle, 2001]. Because bacteria generally have diameters that range between 0.1 and

1 microns, the small e↵ective porosity of clays typically restricts the ability of bacteria to

move and reproduce e↵ectively. Also, the natural occurrence of preferential flow channels

in porous media (typically represented as a mobile region in the multirate model) favors

the movement of groundwater and dissolved elements through certain pathways, which

typically harbor larger bacterial densities and microbial activities compare to the adja-

cent porous media [Pivetz and Steenhuis, 1995; Mallawatantri et al., 1996; Rubol et al.,

2014]. In fact, Vinther et al. [1999] and Bundt et al. [2001] found that both substrate

availability and nutrient supply are largest in preferential flow paths, enhancing bacte-

rial biomass and associated microbial processes. Similar processes occur at a smaller

scale where contaminants may di↵use into stagnant water (intraaggregate or dead-end

pores) or/and inside biofilms attached to the aquifer soil surface. In this case, the rate

of contaminant degradation mainly occurs in the active biofilm rather than in the bulk

aqueous phase [Rittmann and McCarty, 1980; Baveye and Valocchi, 1989; Cunningham
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and Mendoza-Sanchez, 2006]. Based on these observations, the reactive multirate model

proposed here considers that network reactions can simultaneously occur over multiple

scales with di↵erent biotransformation rates in the mobile and immobile regions.

Figure 2.1: Illustration of mass transfer occurring at di↵erent scales and rates in case of a
sequential three-species reactive system (A ! B ! C). The thickness of the bicolor arrow rep-
resenting biochemical reaction is proportional to the expected intensity of the reaction. The
bottom right magnifying frame illustrates the heterogeneity in the grain distribution and re-
lated contaminant di↵usion from/into aggregates. The top right magnifying frame illustrates
the potential di↵usion-rate limited transfer of contaminant toward an active biofilm and the

subsequent enhanced degradation.

2.2.2 Governing Equations

We consider a network reaction system formed by Ns species moving through a mobile

domain of porosity �0 and Nim immobile domains of porosity (�1, ...,�Nim). Let us denote

the biotransformation rate associated with species i and j in the ` domain by

rij` = yijkj`�`cj`, (2.1)

where rij` is the production of mass of the ith species per unit of time and aquifer volume
⇥
ML�3T�1

⇤
due to the degradation of the jth species in the ` domain, ki`

⇥
T�1

⇤
is the
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first-order contaminant destruction rate constant of the ith species in the ` domain, yij⇥
M M�1

⇤
is the e↵ective yield coe�cient for any reactant or product pair (i, j). This

coe�cient is a stoichiometric coe�cient defined as the ratio of mass of species i generated

to the amount of mass of species j consumed. The yield coe�cients yii is equal to �1

and represent the first-order decay of the ith species. Similar reaction terms have been

presented by many authors [Clement, 1997, 2001; Sun et al., 1999; Falta et al., 2002].

The multirate mass transfer model with network reactions can be written as the following

system of equations

�0Ri0
@ci0
@t

+
NimX

l=1

�`Ri`
@ci`
@t

= L (ci0) +
NsX

j=1

NimX

`=0

rij`, i = 1, Ns, (2.2)

�`Ri`
@ci`
@t

= �`↵
0
i` (ci0 � ci`) +

NsX

j=1

rij`, ` = 1, Nim, i = 1, Ns. (2.3)

Without the chemical reaction term rij`, these equations form the standard multirate

mass transfer model [Haggerty and Gorelick, 1995] that describes advective-dispersive

transport with rate-limited mass transfer between a mobile domain and any number of

immobile domains for each species. In these equations, the variable ci0
⇥
M L�3

⇤
is the

concentration of the ith species in the mobile domain (denoted always by the subscript

index ` = 0), ci`
⇥
M L�3

⇤
is the concentration of the ith species in the `th immobile

domain (` = 1, ..., Nim), Ri0 (dimensionless) is the retardation factor of the ith species

in the mobile domain, and Ri` (dimensionless) is the retardation factor of the ith species

in the `th immobile domain (` = 1, ..., Nim). Sorption is considered in local equilibrium

(linear isotherm), and L (c) is the transport operator of the mobile concentrations defined

by

L (c) = r · (�0Drc)�r · (qc) , (2.4)

where q
⇥
LT�1

⇤
is the groundwater flux, and D is the dispersion tensor

⇥
L2 T�1

⇤
. The

first equation (2.2) is actually the mass balance associated with any of the species involved

in the network reaction system, and equation (2.3) describes the mass transfer of the ith
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species between the mobile domain and the `th immobile domain. We have assumed

that only aqueous concentrations are susceptible to undergo chemical reactions, i.e., no

biodegradation in the sorbed phase occurs. Nevertheless, we note that other situations

can be simulated by properly redefining the degradation rates [van Genuchten, 1985].

2.3 Development of Transition Probabilities

Transition probabilities denote the probability that a system that was in a given state at

time t = 0 jumps to another state at some later time t > 0 [e.g., Ross, 2003]. In subsurface

hydrology, this concept has been used in the past to simulate solute transport with sorp-

tion/desorption processes [Valocchi and Quinodoz, 1989; Michalak and Kitanidis, 2000],

rate-limited mass transfer processes [Salamon et al., 2006b], and kinetic network reactions

[Henri and Fernàndez-Garcia, 2014]. Following Michalak and Kitanidis [2000] and Henri

and Fernàndez-Garcia [2014], transition probabilities can be determined from the evolu-

tion of the zeroth spatial moments of the solute plume. This is the procedure employed

here.

Let us express the governing system of equations (2.2)-(2.3) in terms of the total densities,

⇢i`, defined as the total amount of aqueous and sorbed mass of a given species i per unit

volume in the ` domain, i.e., ⇢i` = �`Ri`ci`. From this, the transport equation reads as

NimX

`=0

@⇢i`
@t

= L

✓
⇢i0

�0Ri0

◆
+

NsX

j=1

NimX

`=0

Kij`⇢j`, i = 1, Ns, (2.5)

@⇢i`
@t

= ↵i`�i`⇢i0 � ↵i`⇢i` +
NsX

j=1

Kij`⇢j`, ` = 1, Nim, i = 1, Ns, (2.6)

where Kij` = yijkj`/Rj`, �i` is the field capacity coe�cient of the ith species in the `

immobile domain, and ↵i` is the apparent mass transfer coe�cient of the ith species in

the ` immobile domain,

�i` =
�`Ri`

�0Ri0
, (2.7)
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↵i` =
↵0
i`

Ri`
. (2.8)

Let us also define the zeroth spatial moment of the solute plumes associated to species i

in the mobile or any immobile domain ` by,

µi`(t) =

Z

V
⇢i`(x, t)dV, ` = 0, Nim, i = 1, Ns, (2.9)

where V is the volume of the domain. Knowing that a particle located at position xt at

time t can be seen as an infinitely small plume [Kitanidis, 1994], the total density of the

particle in either the mobile or immobile domain can be represented by

⇢i`(x, t) = µi`(t)�(x� xt), ` = 0, Nim, i = 1, Ns, (2.10)

The governing equations of the spatial moments can be derived by integrating by parts

the transport equations given by (2.2)-(2.3). This leads to

NimX

`=0

dµi`(t)

dt
=

NsX

j=1

NimX

`=0

Kij`(xt)µj`(t), 8 i = 1, Ns, (2.11)

dµi`

dt
= ↵i`�i`µi0 � ↵i`µi` +

NsX

j=1

Kij`µj`, ` = 1, Nim, i = 1, Ns. (2.12)

Let us now define the vector mt of size n = Ns(1 +Nim) as

mt =

2

664

m1(t)
...

mNs(t)

3

775 , where mi(t) =

2

666664

µi0(t)

µi1(t)
...

µiNim(t)

3

777775
. (2.13)

The system of equations (2.11)-(2.12) can then be expressed in matrix format as
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A
dmt

dt
= B(xt)mt. (2.14)

Note that the subscript xt expresses that the matrix is evaluated at the particle position

xt. The A matrix is an n⇥ n block diagonal matrix defined as

A =

2

666664

A0
11 0 · · · 0

0 A0
22

. . .
...

...
. . .

. . . 0

0 · · · 0 A0
NsNs

3

777775
, (2.15)

where 0 is the zero matrix of size (1 + Nim) ⇥ (1 +Nim), and A0
ii {i = 1, ..., Ns}, is the

following (1 +Nim)⇥ (1 +Nim) constant matrix

A0
ii =

2

666664

1 1 · · · 1

0 1 0 0
...

. . .
. . . 0

0 · · · 0 1

3

777775
. (2.16)

The B(xt) matrix is the following n⇥ n block matrix evaluated at the xt location,

B(xt) =

2

664

B0
1 1 · · · B0

1Ns

...
. . .

...

B0
Ns 1

· · · B0
Ns Ns

3

775

xt

, (2.17)

where B0
ij(xt) are matrices of size (1 + Nim) ⇥ (1 + Nim) whose diagonal blocks B0

ii

(i = j) are defined by

B0
ii(xt) =

2

666664

Kii0 Kii1 · · · KiiNim

↵i1�i1 �↵i1 +Kiik
. . . 0

... 0
. . . 0

↵iNim�iNim · · · 0 �↵iNim +KiiNim

3

777775

xt

, (2.18)
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and whose non-diagonal blocks B0
ij (i 6= j) are written as

B0
ij(xt) =

2

666664

Kij0 Kij1 · · · KijNim

0 Kij1
. . .

...
...

. . .
. . . 0

0 · · · 0 KijNim

3

777775

xt

. (2.19)

The solution of the linear system of di↵erential equations (2.14) form an n-dimensional

complex linear vector space. That is to say that n linearly independent solutions of (2.14)

exist so that

mt =
nX

j=1

cjm
(j)
t , (2.20)

where cj are time-independent coe�cients and m(j)
t is the jth solution vector of the

system. It is often convenient to lump the independent solution vectors together in a so-

called solution matrix, denoted here as Pt in view of its future use as the state transition

probability matrix

Pt =
⇣
m(1)

t , . . . , m(n)
t

⌘
. (2.21)

From (2.14), this solution matrix also obeys the di↵erential equation

dPt

dt
= A�1B(xt)Pt (2.22)

The Picard-Lindel öf theorem establishes that a unique solution matrix exist for a given

initial condition. From Henri and Fernàndez-Garcia [2014], the solution matrix that

satisfies the initial condition Pt(t = 0) = Id can be assimilated to a state transition

probability matrix. This is easily seen by noticing that the system of equations (2.22) can

be interpreted as the forward kolmogorov equations of a continuous-time markov chain in

which the state space is formed by the Ns species involved in the reaction network and

the 1 +Nim mobile and immobile domains.
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This can also be explained by physical principles. Consider, for instance, a reactive system

that evolves from an initial condition given by mt(t = 0) = ( 1 0 ... 0 )t, i.e., only

the first species in the mobile domain exists, initially. When all particles have the same

mass, the probability Pi1(t) that a particle initially being species 1 in the mobile domain is

transformed and move into another species and domain at a later time t can be estimated

by the mass fraction of the species involved, given by mt(t). Repeating this for any given

initial species in the mobile or immobile domain leads to the transition probability matrix

Pt.

For chemically heterogeneous systems, the solution of (2.22) is given by the Peano-Baker

series

Pt = Id+

Z t

0
A�1B(x⌧1) d⌧1 +

Z t

0
A�1B(x⌧1) d⌧1

Z ⌧1

0
A�1B d⌧1d⌧2 + . . . (2.23)

Nevertheless, for small times (as typically used in particle tracking simulations) or locally

homogeneous media, equation (2.23) can be approximate by

Pt = exp
�
A�1B(xt)t

�
. (2.24)

The challenge here is then to compute the exponential of the matrix A�1B. A large diver-

sity of methods exist to solve such a matrix [Moler and van Loan, 2003]. Not all methods

are equivalent in terms of applicability, precision and e�ciency. In this work, we found

that diagonalization methods are convenient and computationally e�cient compared to

other approaches, such as the PADE approximation.

Suppose that the eigenvalues of A�1B are real and distinct. Then, there is a non-singular

n ⇥ n matrix S and a diagonal n ⇥ n matrix D such that A�1B = SDS�1. The matrix

S has as its columns the n eigenvectors for the n eigenvalues of A�1B. From this, the

exponential of such matrix can be written for small times as

Pt = S(xt) exp(D(xt)t)S
�1(xt) (2.25)
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The advantages of the diagonalization method in particle tracking are numerous: (1)

The exponential of a diagonal matrix is the exponential of each component, which is

cheaply computed; (2) In heterogeneous systems with spatially varying chemical coe�-

cients the eigensystem has to be determined only once per cell or per parameter zone; (3)

The method permits to e�ciently use a constant displacement scheme [Wen and Gómez-

Hernández, 1996], which adjusts automatically the time step size according to the grid

courant number in order to decrease computational e↵ort; (4) Eigensystems of general

matrices can be computed e�ciently and with accuracy by subroutine libraries such as

LAPACK [Anderson et al., 1999].

2.4 Implementation into the Random Walk Method

2.4.1 The Algorithm

The random walk particle tracking method is based on the apportionment of the trans-

ported total mass into a large number of representative particles that move randomly in

space. Thus, a particle moves by simple relationships and is characterized by an evolving

state which in our case is defined by two variables: the particle species i and the domain

` through which the particle is moving. The change of the particle state is given by the

state transition probability matrix Pt, which can be conveniently written as the following

block matrix

Pt =

2

664

P1 1 · · · P1Ns

...
. . .

...

PNs 1 · · · PNs Ns

3

775 , (2.26)

where Pij are the matrices

Pij =

2

666664

Pij,00 Pij,01 · · · Pij,0Nim

Pij,10 Pij,11 · · ·
...

...
...

. . .
...

Pij,1Nim · · · · · · Pij,NimNim

3

777775
. (2.27)
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The element Pij,k`(t) of the matrix Pt is the probability that a particle being initially at

species j and domain ` will turn into species i and domain k in a later time t. Let us

define m as an index number denoting all the potential states (i, k) in which a particle

initially belonging to species j and domain ` can turn into after a time dt,

m(i, k) = Ns(i� 1) + k. (2.28)

Knowing m, the corresponding particle species i and domain k can be estimated as

i(m) = F
✓

m

1 +Nim

◆
+ 1, (2.29)

k(m) = m�Ns (i(m)� 1) , (2.30)

where F(x) is the floor function that determines the largest integer not greater than the

real number x. According to the state transition probability matrix evaluated at the

particle position xt, the new particle state is defined by the index number ⌘ that satisfies

the following equation

⌘�1X

m=1

Pi(m)j,k(m)`(dt) < r 
⌘X

m=1

Pi(m)j,k(m)`(dt). (2.31)

where r is a random number generated from an uniform distribution in a unit interval.

The new species i and domain k will be given by i(⌘) and k(⌘), respectively. Once the

new state of the particle is known, those particles associated to the mobile domain (k = 0)

will be allowed to move by advection and dispersion following the random-walk scheme

developed by Henri and Fernàndez-Garcia [2014] for network reactions

xt+dt = xt +Aij(xt, t) dt+B1/2
ij (xt, dt) · ⇠(t)

p
dt (2.32)

where
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Aij(t) =
qp

�Re
ij

, (2.33)

Bij ·Bij
t =

2D

Re
ij

, (2.34)

where the vector Aij and Bij are the drift and the dispersion displacement associated to

a particle that initially belongs to species j and is transformed into species i during an

elapsed time dt, and ⇠ is a vector of independent and normally distributed random vari-

ables characterized by a zero mean and a unit variance. The dispersion matrix used here

has the form given by Lichtner et al. [2002]. The parameter Re
ij is the e↵ective retarda-

tion factor that evolves as a result of the di↵erential retardation e↵ects among the species

involved in the chemical network reaction system [Henri and Fernàndez-Garcia, 2014].

These authors showed that, for small time steps, the harmonic mean of the retardation

values of the species involved in the chemical reaction is a good estimate of the e↵ective

retardation factor. Given that random walk simulations typically use reasonably small

time step, this was the method chosen in this work. This algorithm was implemented into

the RW3D particle tracking code [Fernàndez-Garcia et al., 2005a; Salamon et al., 2006b;

Henri and Fernàndez-Garcia, 2014].

2.4.2 Numerical Details

The choice of the time step dt is an important issue in particle tracking methods. This

parameter largely controls the e�ciency and performance of the simulation. In advective-

dominated transport problems, it is convenient to estimate dt so as to satisfy that the

grid courant number Cg is a small value

Cg =
vdt

ds
< 0.1 (2.35)

where v is the particle velocity, dt is the time step, and ds is the size of the grid cell.

This maintains accuracy and e�ciency in heterogeneous porous media where, otherwise,

areas with small velocities will slow down the simulation [Wen and Gómez-Hernández,
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1996]. On the other hand, Salamon et al. [2006b] showed that if the time step size is

not su�ciently small to properly characterize mass transfer the detention of particles in

immobile domains will artificially increase producing artificial dispersion and tailing. To

avoid this problem, the grid mass transfer Damköhler number DgI should also fulfill the

following criteria

DgI = ↵i`(�i` + 1)Ri0dt < 10 (2.36)

Moreover, Henri and Fernàndez-Garcia [2014] demonstrated that if the time step size

is not small enough to properly characterize first-order network reactions particles will

artificially increase chemical reactions. To overcome this problem, the time step should

also satisfy that the grid chemical Damköhler number DgII is smaller than 0.1, i.e.,

DgII =
ki
Ri`

dt < 0.5 (2.37)

The latter criteria can be substantially relaxed if higher-order moments are used to modify

the drift and the dispersion displacement of the particle movement [Henri and Fernàndez-

Garcia, 2014]. In the limit, when the number of particles tends to infinity, the particle

density that evolves from the repeated application of (2.31) and (2.32) satisfies the sys-

tem of reactive transport equations (2.2)-(2.3). However, since a discrete number of

particles is always used, the particle tracking simulation will su↵er from problems orig-

inating from sub-sampling, i.e., statistical fluctuations produced by the reconstruction

of concentrations from discrete information. Smoothing techniques must then be used

to improve the performance of the method [Fernàndez-Garcia and Sanchez-Vila, 2011].

Once the total density fields ⇢i`(x, t) are estimated, concentrations can be calculated as

ci`(x, t) = ⇢i`(x, t)/(�`(x)Ri`(x)).

2.5 Temporal Evolution of the Transition Probabilities

This section analyzes the relative influence of biochemical reactions and mass transfer on

the functional form of the transition probabilities. We will show that the distribution of
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mass among species and domains strongly depends on the interplay between these two

processes. To simplified the problem, we consider a double porosity media with a simple

chemical reaction, i.e., species 1 is transformed into species 2. The analysis assumes that

the mass transfer coe�cient (↵), the retardation factor in the mobile domain (Rm) and

the retardation factor in the immobile domain (Rim) are the same for all species. Based

on this, the system of equations (2.12)-(2.11) can be written in dimensionless form (see

Appendix C) using the following variables,

⌧ =
km
Rm

t, (2.38)

� =
Rmkim
Rimkm

, (2.39)

DaII =
km
↵Rm

, (2.40)

The variable DaII can be seen as the second Damkhöler number defined as the ratio of

the chemical reaction rate to the mass transfer rate. The variable � is the ratio between

the immobile and the mobile decay rate. As shown in Appendix C, in this case, the

transition probability matrix Pt can be explicitly determined. From this, we evaluate

the influence of DaII and � on the temporal evolution of Pt associated with a particle

initially belonging to species 1 and the mobile domain. The e↵ect that the field capacity

� has on the transition probabilities is similar to the e↵ect induced by the Damkhöler

number and is therefore not shown.

Figure 2.2 shows the influence of mass transfer on the temporal evolution of Pt for � = 1

and � = 10. When the mass transfer rate is larger than the decay rate in the mobile

domain (i.e., DaII < 1), the probability to remain in the mobile domain (Figure 2.2a)

drops to an early equilibrium between the mobile and the immobile domain. After this,

biochemical reactions start dominating and this probability decays with time to almost

zero. In accordance with this result, the probability that species 1 is in the immobile

domain after time t increases to a plateau until chemical reactions take place at ⌧ ⇡ 1

(Figure 2.2b). Consequently, the probability that this particle is in the immobile domain
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increases with the mass transfer rate (inverse of DaII). Interestingly, at early times, mass

transfer is still not active and the probability that species 1 turns into 2 in the mobile

domain does not depend on DaII (Figure 2.2c). This probability increases linearly with

time due to the degradation of species 1 in the mobile domain. When DaII < 1 and mass

transfer starts to take place there are less particles of species 1 to degrade in the mobile

domain and the probability stabilizes. With time, this e↵ect vanishes and the probability

increases again linearly with time until species 2 starts to degrade.
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Figure 2.2: Impact of the second Damköhler number on the transition probability of a particle
initially being species 1 in the mobile domain: (a) probability to stay in the initial state after
a time t; (b) probability to be transferred to species 1 in the immobile domain; (c) probability
to turn into species 2 in the mobile domain; and (d) probability to turn into species 2 in the

immobile domain.

A decay di↵erence between the mobile and immobile domain (� 6= 1) can also have relevant

consequences on the temporal evolution of Pt. This is shown in Figure 2.3 for DaII = 1
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and � = 10 (rate-limited mass transfer). The probability that the particle still belongs

to species 1 in the mobile domain after a time t is shown in Figure 2.3a. Results show

that when degradation in the immobile domain is smaller than that of the mobile domain

(� < 1), for example due to the presence of an aquitard, the early equilibrium between the

mobile and the immobile domain discussed previously is also observed. However, when

degradation is higher in the immobile domain (� > 1), for example due to the presence of

biofilms at the pore-scale, the mass transferred into the immobile domain will be rapidly

consumed (see Figure 2.3b), preventing the previously observed mass transfer equilibrium

(Figure 2.3a).

During pump-and-treat remediation strategies, it is often observed that once pumping

ceases, a rebound of concentrations at the well takes place [e.g., de Barros et al., 2013].

Figure 2.3c shows that in a double-porosity system with network reactions this e↵ect

can also occur without any change in the pumping regime. We call this e↵ect ”natural

rebound” which is explained as it follows. When degradation is active in the immobile

domain, the parent species transferred into the immobile domain will be transformed into

degradation products. Once the reaction chain in the mobile domain has occurred, these

products will be allowed to back di↵use into the mobile domain causing the rebound of

concentrations. This explains the double peak observed in Figure 2.3c for the degradation

product. When degradation is not active in the immobile domain, a double peak is also

observed at a later time (� = 0). In this case, once the chain reaction in the mobile domain

has occurred, a second chain reaction in the mobile domain can be triggered by the release

of the parent species previously stored in the immobile domain due to back-di↵usion.

2.6 An Example of Application: E↵ect of the parameters

spatial variability

2.6.1 Problem Setup

The main advantage of our method is the possibility to simultaneously represent mass

transfer, spatially varying properties (heterogeneity) and network reactions without nu-

merical problems. To illustrate this, we consider a three-dimensional high-resolution
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Figure 2.3: Impact of the ratio between decay rate in the mobile and immobile domain on the
transition probability of a particle initially being species 1 in the mobile domain: (a) probability
to stay in the initial state after a time t; (b) probability to be transferred to species 1 in the
immobile domain; (c) probability to turn into species 2 in the mobile domain; and (d) probability

to turn into species 2 in the immobile domain.

synthetic aquifer initially contaminated by tetrachloroethylene (PCE) and a↵ected by

rate-limited mass transfer and degradation. With time, PCE is sequentially transformed

into TCE (trichloroethylene), TCE into DCE (cis-Dichloroethylene), and DCE into VC

(vinyl chloride). Groundwater flow takes place in a heterogeneous hydraulic conductivity

field obtained from a single realization of a sequential Gaussian simulation. The natural

logarithm of the hydraulic conductivity (lnK) is described by a random function of mean

3.55 m/d and an isotropic variogram of range 10.0 m and variance of 2.5. The domain

is a rectangular block of 120⇥100⇥40 m3, descritized into 300⇥250⇥100 cubic grid cells

of size 0.4 m (Figure 2.4). The flow is driven by a hydraulic gradient of 0.01 oriented
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along the x-axis and solved using the finite di↵erence code Modflow [Harbaugh et al.,

2000]. The transport parameters adopted are summarized in Table 2.1. Porosity, local

dispersivities and retardation factors are always considered homogeneous. The source

of contamination is represented by a PCE instantaneous point injection in the mobile

domain (x=20,y=50,z=20) of unit mass equally partitioned into 100,000 particles. Con-

centration breakthrough curves of all species (BTCs) were recorded at two control planes

located at 1 and 5 variogram ranges from the injection location (see Figure 2.4).

Figure 2.4: Simulation setup displaying the lognormal distribution of the hydraulic conduc-
tivity and first-order degradation rates of PCE, TCE, DCE and VC.

Rate-limited mass transfer is simulated using the spherical di↵usion model presented by

Rao et al. [1980]. Haggerty and Gorelick [1995] showed that this model and the multi-

rate model are mathematically equivalent provided that the series of porosities and mass

transfer coe�cients are specifically chosen. For practical purposes, the series has to be

truncated to a discrete number. Haggerty [2009] explained that the truncation of the

multi-rate series becomes an acceptable approximation when the final term is defined in

an appropriate manner. Table 2.2 shows the series of mass transfer and porosities for

spherical di↵usion. The number of terms used is 10. The total field capacity (�tot) is

fixed to 1.0 and the apparent pore di↵usion (Dp/a2) is set to 0.0023. These properties
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Table 2.1: Physical parameters used for the illustrative simulations

Parameter Value
Flow problem

Average hydraulic gradient [�] 0.01
Longitudinal dispersivity [m] 0.05
Transversal dispersivity in the horizontal plane [m] 0.01
Transversal dispersivity in the vertical plane [m] 0.005
Porosity [�] 0.3

Heterogeneous field
Variogram type spherical
Geometric mean of ln K [m/d] 3.55
Variance of ln K 2.5
Range, a [m] 10.0

Domain discretization
Number of cells in x direction, nx ⇥ ny ⇥ nz 300 ⇥ 250 ⇥ 100
Cell dimension, �x ⇥�y ⇥�z [m⇥m⇥m] 0.4 ⇥ 0.4 ⇥ 0.4

Table 2.2: Multi-rate Series for spherical di↵usiona

↵ij �ij
b

for j = 1, . . . , Nim � 1 j2⇡2
�
Da/a2

�
i

6

j2⇡2
(�tot)i

for j = Nim

15
�
Da/a2

�
i

2

41�
Nim�1X

j=1

6

j2⇡2

3

5

1�
Nim�1X

j=1

90

j4⇡4

2

41�
Nim�1X

j=1

6

j2⇡2

3

5 (�tot)i

a After Haggerty and Gorelick [1995].

b Where (�tot)i =
�imRim

i

�mRm
i

is the capacity ratio for a specie i.

were chosen from the review of mass transfer data given by Haggerty et al. [2004]. Mass

transfer parameters are summarized in Table 2.3.

The degradation rates of contaminants in aquifers can substantially vary in space [Allen-

King et al., 2006] due to, for instance, changes in the bacteria activity responsible for

biodegradation [e.g., Fennell et al., 2001; Sandrin et al., 2004]. To represent this, we

consider that a perfect negative linear correlation between lnK and the decay rates ex-

ist [Miralles-Wilhelm and Gelhar, 1996; Cunningham and Fadel, 2007]. We admit this

way that small decay rates relate to high lnK values and vice versa. This can happen
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Table 2.3: Reaction parameters used for the illustrative simulations

Parameter Value
Biochemical (mobile domain) pce tce dce vc

Mean first-order decay, ki0 [d�1] 0.0355 0.0055 0.0352 0.0206
Miminum first-order decay, min(ki0) [d�1] 0 0.001 0.00035 0.0013
Maximum first-order decay, max(ki0) [d�1] 0.071 0.01 0.07 0.04
First-order decay coe�cient of variation [�] 0.19 0.16 0.19 0.18
Yield coe�cient, yi/j [mol mol�1] ⇥ 0.79 0.74 0.64
Retardation factor, Ri0 [�] 7.1 2.9 2.8 1.4

Multirate Mass Transfer
Type spherical di↵usion
Number of multi-rate series, Nim 10
Total capacity ration, �tot 0.17
Apparent pore di↵usion, Dp/a2 0.0023

for instance when water fluxes can e↵ectively deplete electron acceptors/donors in the

porous medium [Cunningham and Fadel, 2007]. The minimum and maximum values of

PCE, TCE, DCE and VC decay rates were defined based on the range of possible values

provided by the U.S. Environmental Protection Agency as a support to decision mak-

ers [Environmantal Protection Agency (EPA), 1999; , EPA]. Thus, decay rates reflect

those obtained in several field sites and laboratory observations. The statistics of the

decay rates are given in Table 2.3. The spatial distribution of the lnK and the decay

rates in the mobile domain is shown in Figure 2.4. Two di↵erent conceptual models for

the degradation in the immobile domain were considered. The first model assumes that

degradation is not taking place in the immobile domain. This represents for instance

the presence of small clay layers or pods in the aquifer, preventing bacteria to move and

reproduce e↵ectively. The second model considers the enhancement of degradation due

to the existence of an active biofilm at the pore scale. In this case, the decay rate in the

immobile domain is assumed to be 10 times larger than in the mobile domain.

2.6.2 Results and Discussion

The distribution of mobile and immobile particles simulated with the proposed random

walk method is respectively shown in Figure 2.5 and 2.6 for two di↵erent times. The

species compound is denoted by the particle color. The particle size is proportional to
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the log of the cancer potency factor to visually display not only the density of particles

(concentrations) but also the potential threat that these contaminants pose to human

health. Important di↵erences between the two conceptual models can be distinguished.

The biofilm model clearly displays an enhancement of degradation which now mostly

occurs in the immobile domain. Comparing the two models, we see that, in the biofilm

model, a larger portion of the PCE has been already transformed into daughter products

at time t=160 d. This means that daughter products can now be produced at earlier times

and closer to the source area than expected from the mere di↵usion of products into clay

regions. This has important consequences for risk assessment. In heterogeneous porous

media without local mass transfer e↵ects, Henri et al. [2015] have demonstrated that the

hot spot of the risk posed by a chemical mixture (co-existence of the original pollutants

and their daughter products) depends on the joint e↵ect of degradation, advection and

toxicity. Results here show that the conceptualization of the immobile domain as an

active degradation region can largely complicate the quantification and interpretation of

human health risk.

The concentration breakthrough curves of all the species obtained at two di↵erent control

planes during the simulations are shown in Figure 2.7. Results show that the biofilm model

and the clay model give also very distinct signals. The clay model displays breakthrough

curves with long tails due to rate-limited mass transfer. In this model, particles can be

temporally trapped in the immobile domain by di↵usion without undergoing degradation

in this region. These particles will be capable to back di↵use into the mobile region at

a later time. However, in the biofilm model, these trapped particles can be transformed

into daughter products. This process prevents tailing and increases the amount of degra-

dation products that can be transferred later on by di↵usion into the mobile domain.

This explains why the breakthrough curves in the biofilm model display more peaked

distributions with more mass and less tailing.

2.7 Conclusions

The interaction between the spatial variability of aquifer properties, mass transfer and

chemical reactions often complicates reactive transport simulations. It is well documented

that hydro-biochemical properties are ubiquitously heterogeneous and that rate-limited
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Figure 2.5: Snapshots of the plume of mobile particles illustrating the impact of degradation
in the immobile domain at t=160 days (left hand frames) and t=512 days (right hand frames).
Blue spheres represent PCE particles; silver spheres represent TCE particles; golden spheres
represent DCE particles; and red spheres represent VC particles. The size of the spheres are
proportional to the log of the cancer potency factors related to the species. In other terms, the

toxicity of the compounds are correlated to the particle sizes.

mass transfer typically leads to the conceptualization of an aquifer as a multi-porosity

system. In this conceptual model, contaminants can be transferred to a number of im-

mobile water regions so as to represent di↵erent phenomena observed at multiple scales,

i.e., di↵usion into stagnant water at the pore-scale, di↵usion into biofilms attached to soil

surface, di↵usion into low permeability inclusions at the centimeter to meter scale, and

di↵usion into aquitards or the rock matrix of a fractured system. Importantly, the chem-

ical reactions taking place in these mobile/immobile water regions can be substantially

di↵erent between each other. Along this line, we have presented a random walk solution

that is capable to e�ciently simulate multi-rate mass transfer and first-order network

reactions in heterogeneous porous media without restrictions in the spatial variability of

biochemical and hydrodynamic properties. First-order rate coe�cients vary in space and

the type of water region involved. The approach is based on the development of transi-

tion probabilities that describe the likelihood that particles belonging to a given species

and mobile/immobile domain at a given time will be transformed into another species
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Figure 2.6: Snapshots of the plume of immobile particles illustrating the impact of degradation
in the immobile domain at t=160 days (left hand frames) and t=512 days (right hand frames).
Blue spheres represent PCE particles; silver spheres represent TCE particles; golden spheres
represent DCE particles; and red spheres represent VC particles. The size of the spheres are
proportional to the log of the cancer potency factors related to the species. In other terms, the

toxicity of the compounds are correlated to the particle sizes.

and mobile/immobile domain afterwards. This is important for assessing the risk posed

by a large variety of chemical systems that otherwise su↵er from numerical problems in

dealing with heterogeneities during reactive transport modeling, e.g., the degradation of

chlorinated solvents, the decay of radioactive species, and the transformation of pesti-

cides, organic phosphates and nitrogen in the environment. The method is limited to

first-order network reactions.

The approach is used to investigate the joint e↵ect of network reactions and mass trans-

fer on the spatiotemporal behavior of the sequential degradation of tetrachloroethy-

lene(PCE). Transition probabilities show that a double peak of daughter products can

occur when the degradation capacity in the immobile domain is relatively small. This late

rebound of concentrations is not driven by any change in the flow regime (e.g., pumping
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Figure 2.7: Breakthrough curves of the four chlorinated solvents (PCE, TCE, DCE and VC)
at a distance of 1 and 5 variogram ranges from the source for the two degradation modes (active

biofilms and clay pods).

ceases in the pump-and-treat remediation strategy) but due to the natural interplay be-

tween mass transfer and chemical reactions. To illustrate that the method can simultane-

ously represent mass transfer, spatially varying properties and network reactions without

numerical problems, we have simulated the degradation of PCE in a three-dimensional

fully heterogeneous aquifer subjected to rate-limited mass transfer. Two types of degra-

dation modes were considered to compare the e↵ect of an active biofilm with that of clay

pods in the aquifer. Both hydraulic conductivity and biochemical parameters were con-

sidered spatially variable and described at high resolution. Results of the two scenarios

display significant di↵erences. Biofilms that promote the degradation of compounds in

an immobile region are shown to significantly enhance degradation, rapidly producing

daughter products and less tailing.
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3.5 The Toxicology-Based Damkhöhler number . . . . . . . . . . 101

3.6 Impact of Connectivity . . . . . . . . . . . . . . . . . . . . . . . 103

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 107
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3.1 Introduction

Monitored natural attenuation is an attractive cleanup technique commonly used to reme-

diate organic and inorganic groundwater contaminants in field sites where biogeochemical

conditions favor natural processes that degrade or immobilize harmful contaminants [Mac-

Donald, 2000; Kitanidis and McCarty, 2012]. However, in some cases, before reaching a

harmless chemical form, intermediate degradation products can constitute new noxious

chemical compounds not necessarily less toxic than their parent product. In this situa-

tion, the original pollutants and their daughter products are susceptible to co-exist in the

aquifer forming an hazardous chemical mixture composed of products of di↵erent toxicity

[Environmantal Protection Agency (EPA), 2000]. This renders the quantification and

interpretation of human health risk a non trivial and challenging task.

The complexity associated with human health risk assessment for chemical mixtures stems

from the interaction between aquifer heterogeneity, its uncertainty and the contaminant

conditions (source characteristics, mixture composition, toxicity, and biochemical proper-

ties). The spatial heterogeneity of the hydrogeological properties will dictate the relative

importance of the degradation products to the total human health risk. In this context,

the variability of the hydraulic properties typically leads to preferential flow channels and

low permeability areas where contaminants can be temporarily trapped by rate-limited

mass transfer [e.g., Gomez-Hernandez and Wen, 1998; Zinn and Harvey, 2003; Bianchi

et al., 2011]. The formation of these fast flow channels is typically associated with the

presence of well-connected, highly permeable geological bodies or structures that can

concentrate flow and solute transport [e.g., Knudby and Carrera, 2005; Fernàndez-Garcia

et al., 2010; Fiori and Jankovic, 2012; Renard and Allard, 2013]. These geological fea-

tures are di�cult to model since characterization data are scarce and limited by financial

budgets. Therefore, risk predictions associated with aquifer contamination are subject to

uncertainty [e.g., Rubin et al., 1994; Maxwell and Kastenberg, 1999].

Incorporating hydrogeological uncertainty in human health predictions has been a topic

of intense research in the past [e.g., Andričević and Cvetković, 1996; Maxwell and Kasten-

berg, 1999; de Barros and Rubin, 2008; Cvetković and Molin, 2012; Rodak and Silliman,

2012; Andričević et al., 2012; Siirila and Maxwell, 2012; Atchley et al., 2013; de Barros

and Fiori, 2014]. Probabilistic risk models allow one to determine the likelihood of risk
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exceeding a given regulatory threshold value [Tartakosky, 2007], to delineate the spatial

distribution of a plume for monitoring adaptation or intensification [James and Gorelick,

1994; Maxwell et al., 1999; Smalley et al., 2000; Maxwell et al., 2008; Fernàndez-Garcia

et al., 2012] and to better allocate characterization e↵orts to reduce the overall uncer-

tainty of a given environmental performance metric [e.g., de Barros et al., 2009]. Most

of the studies related to probabilistic risk analysis focused on the evaluation of human

health risk posed by a single toxic compound.

Stochastic methods account for parametric uncertainty by considering aquifer parame-

ters to be random space functions [Rubin, 2003]. In general, the computational e↵ort

associated with stochastic simulations of multi-components reactive transport in three-

dimensional heterogeneous aquifers has often limited risk analysis to simple scenarios. For

example, a human health risk model related to multi-species groundwater contamination

was reported by Benekos et al. [2006], who used a biochemical model to evaluate the

human heath risk response to a bioremediation scenario in a two-dimensional aquifer con-

taminated by chlorinated solvents. Siirila et al. [2014] investigated the total risk posed by

the mobilization of metals from the leakage of CO2. To reduce computational needs, the

multi-species reactive transport problem was tackled using a two-step approach that com-

bined a simple one-dimensional geochemical model with fully three-dimensional transport

simulations and sorption in local equilibrium. The role of kinetics was later on analyzed

by Atchley et al. [2014], who used a simplified streamline approach. Despite the large

body of literature related to human health risk assessment, there are research needs to

further understand the joint e↵ect of degradation-related chemical mixtures and physical

heterogeneity on human health risk.

Another factor that can influence risk predictions of chemical mixtures is the contaminant

release behavior at the source zone. The importance of the source behavior is an aspect

often disregarded in risk management. However, previous works demonstrated that a mass

release proportional to local groundwater fluxes shows a strong and persistent impact on

the contaminant spread, concentration amplitude and peak predictability [Janković and

Fiori, 2010]. We hypothesize that this source behavior, together with the heterogeneous

structure of the aquifer, will play a significant role in the health risk.
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Within this context, this work focuses on improving our understanding of how hetero-

geneity (and connectivity) and the contaminant injection mode contributes to the cre-

ation of high risk locations. To achieve our objective, we simulate high-resolution three-

dimensional (3D) flow and multi-species reactive transport within a stochastic framework.

Human health risk is spatially characterized by lower-order statistical moments and em-

pirical probability density functions for each individual chemical species and the total

chemical mixture. We show that the total risk posed by a chemical mixture can increase

to a maximum at a critical distance controlled by a modified, toxicity-based, Damköhler

number that accounts for the joint e↵ect of contaminant mean travel times, reaction

kinetics and chemical toxicity. Connectivity is shown to produce a non-trivial impact

on risk measures, being potentially beneficial or detrimental depending on the proposed

toxicity-based Damköhler number.

3.2 Problem Statement

This paper considers an aquifer contaminated by tetrachloroethylene (PCE), which is a

common DNAPL product found in groundwater [Fay and Mumtaz, 1996]. PCE pure

liquid is assumed to be already trapped (immobile) in the aquifer but slowly dissolving

over time. This creates a long-term contamination plume downgradient. Under anaerobic

conditions, chlorinated solvents dissolved in groundwater can undergo reductive dechlo-

rination [Skeen et al., 1995; Jain and Criddle, 1995]. In such a case, PCE will be trans-

formed into trichloroethylene (TCE), TCE will be degraded into cis-Dichloroethylene

(DCE) (Dichloroethylene), DCE will react to produce vinyl chloride (VC) and, finally,

VC will transform into a non-toxic compound, ethene. This constitutes a sequential reac-

tion of the form PCE ! TCE ! DCE ! VC ! ethene. The four chlorinated compounds

can cause a potential risk on human health that we aim to quantify here. PCE, TCE

and DCE are categorized as probable human carcinogenic (e.g. limited evidence) by the

Environmantal Protection Agency (EPA) [1997]. However, VC is categorized as a hu-

man carcinogen (su�cient human evidence for causal association between exposure and

cancer) [Environmantal Protection Agency (EPA), 1997]. Parent and daughter species

of di↵erent toxicity temporarily co-exist in a chemical mixture. A 3D snapshot of the

contaminant and its daughter products is shown in Figure 3.1a. An illustrative example
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of the spatial evolution of the human health risk for each chlorinated solvent can be seen

in Figure 3.1b. Interestingly, a high risk zone can be expected far from the contaminant

source.
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Figure 3.1: (a.) Snapshot of a contaminants mixture plume (grey: PCE, blue: TCE, orange:
DCE, red: VC) approaching control planes and transported in a 3D heterogeneous hydraulic

conductivity field. (b.) Expected risk profile along the contaminated site.

Given that a significant fraction of DNAPL mass is likely to remain in aquifers even

after a given remediation treatment, Soga et al. [2004] proposed to consider what is an

acceptable contamination level not based on the amount of DNAPL mass removed from

the site but by measurements of dissolved concentrations downgradient. They called

this methodology the mass flux approach. Here, following this strategy, the estimation
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of human health risk is strictly based on integrated concentration breakthrough curves,

which are obtained at x-control planes perpendicular to the mean flow direction.

3.2.1 Human Health Risk Model

In this work, we will focus on quantifying cancer risk due to chronic exposure to chlo-

rinated solvents released in a spatially heterogeneous aquifer. The route of exposure is

assumed to be only direct ingestion. Following the human health risk assessment guidance

[Environmantal Protection Agency (EPA), 1989], carcinogenic health risk can be evalu-

ated by a Poisson model for individual cancer occurrence, where Ri(x) is the incremental

lifetime cancer risk (ILCR) to a contaminant i at a given longitudinal position x where

the control plane is located. The ILCR can be formally written as

Ri(x) = 1� exp[�ADDi(x)⇥ CPFi], (3.1)

where CPFi [kg d/mg] is the metabolized cancer potency factor related to the carcinogenic

contaminant i, and ADDi [mg/(kg d)] is the average daily dose of contaminant i. Here,

we will only consider human exposure by direct ingestion so that

ADDi(x) = c̄i(x)


IR

BW

�
ED ⇥ EF

AT
, (3.2)

where IR is the ingestion rate of water [L/d], BW is the body weight [kg], AT is the

expected lifetime [d], ED is the exposure duration [y], and EF is the daily exposure fre-

quency [d/y]. These parameters are assumed constant and defined in Table 3.1. The key

component in the evaluation of the average daily dose is c̄i [mg/L], which is the critical

(flux-averaged) concentration of the pollutant i at an environmentally sensitive location

x. This parameter c̄i can be seen as the maximum running averaged concentration of the

concentration breakthrough curve obtained at the control plane (CP) over the exposure

duration ED [Maxwell and Kastenberg, 1999]. Note that, by convention, lowercase and

uppercase concentrations will respectively denote flux-averaged and resident concentra-

tions throughout this work [Parker and van Genuchten, 1984]. The maximum running

averaged concentration is mathematically expressed by
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Table 3.1: Risk parameters

Parameter Value
Ingestion rate, IR [l/d] 1.4
Body weight, BW [kg] 70.0
Exposure duration, ED [y] 30.0
Exposure frequency, EF [d/y] 350.0
Average time of the expected lifetime, AT [d] 25550.0

pce tce dce vc
Cancer potency factor, CPFi [kg d/mg] 0.0021 0.011 0.6 1.5
Maximum Contaminant Level, MCLi, [µg/L] 5.0 5.0 7.0 2.0

c̄i(x) = max
t>0

⇢
1

ED

Z t+ED

t
ci(⌧ ;x)d⌧

�
, (3.3)

where ci(⌧ ;x) is the flux-averaged concentration defined as the ratio of the mass discharge

to the volumetric water flux at a control plane location x. We note that flux-averaged

concentrations have been widely used in previous human health risk analysis [Andričević

and Cvetković, 1996; de Barros and Rubin, 2008].

Another important metric is the total risk associated with the chemical mixture (e.g.,

PCE, TCE, DCE and VC). The total risk RT defines the e↵ective threat posed by the

exposure to a chemical mixture. When contaminant concentrations are low enough (lower

than 300 ppm), the total risk can be satisfactorily determined by the sum of individual

risks [Speek, 1981],

RT(x) =
4X

i=1

Ri(x). (3.4)

Stake-holders and regulators sometimes prefer to determine aquifer remediation goals in

terms of maximum contaminant levels (MCLs), defined by the United States Environmen-

tal Protection Agency as the legal threshold limit of a contaminant concentration allowed

in public water systems. To analyze this scenario, we also investigate the spatiotemporal

behavior of the probability of exceedance of MCLs associated to each chemical species i,

⇠ci(x, t) = Prob[ci(t;x) > MCLi]. (3.5)
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From a practical perspective, an important issue for risk assessors is the characterization

of hot spots and hot moments. A hot spot is typically defined as an area of elevated risk

[Dilley et al., 2005]. The level at which the risk is considered elevated is usually determined

by stakeholders and end-users during the risk assessment and decision making process.

This concept will be used here to qualitatively highlight an area of maximum risk. When

dealing with the ILCR, which is an integrated measure over time that only depends on x

(see equation (3.3)), the corresponding hot spot will refer to the x-interval with maximum

ILCR values. Instead, when dealing with the probability of exceedance of MCLs, the hot

spot will indicate the spatial window for which ⇠ci(x, t) reaches a relatively large value

at any given time. The temporal persistence of these high values is denoted as the hot

moment, which is only an intrinsic property of ⇠ci(x, t). Importantly, results will show

that the location of critical hot spots can drastically change with the risk metric employed

(probability of exceedance of MCLs or increased lifetime cancer risk).

3.2.2 Flow and Transport Model

In order to determine c̄i (3.3) we need to simulate flow and reactive transport. In this

work, we consider a 3D confined aquifer. The Cartesian coordinate system is given by x

= (x, y, z). The domain is a rectangular prism with length Lx = 1600 m, width Ly = 800

m, and thickness Lz = 400 m. The aquifer has constant head boundaries at x = 0 m and

x = 1600 m and no-flow conditions at the remaining boundaries. Groundwater flow is at

steady-state and driven by a mean horizontal hydraulic gradient given by J = 0.07 and

oriented in the x direction. Groundwater fluxes are described by Darcy’s law through,

q(x) = �K(x)rh(x), (3.6)

where q [m d�1] is the specific discharge, h [m] is the hydraulic head, and K [m d�1]

is the hydraulic conductivity at the x location. The hydraulic conductivity is assumed

locally isotropic but spatially heterogeneous. In this case, the groundwater flow equation

is

r · [K(x)rh(x)] = 0. (3.7)
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The reductive dechlorination of PCE due to biodegradation can be approximated by a se-

quential first-order reaction kinetic model [e.g., Clement, 2001; Burnell et al., 2014]. This

model assumes that contaminant concentrations are relatively low (below the Michaelis

half-saturation constant) [Cunningham and Mendoza-Sanchez, 2006]. Reactive transport

of PCE and its degradation products can be described by the following system of partial

di↵erential equations

�Ri
@Ci

@t
�r·(�DrCi)+r·(qCi) = yiki�1�Ci�1�ki�Ci+s(x, t)�i1, 8i = 1, . . . , 4, (3.8)

where � is the porosity, D [m2 d�1] is the hydrodynamic dispersion tensor, and �i1 is the

Kronecker delta function. The dispersion tensor D is oriented in the direction of flow with

principal components determined by DL = ↵Lv, DTH = ↵THv, and DTV = ↵TV v. Here,

v [m/d] is the velocity of groundwater, ↵L [m] is the longitudinal dispersivity, ↵TH [m] is

the horizontal transverse dispersivity, and ↵TV is the vertical transverse dispersivity [m].

Dispersivity coe�cients are assumed constants for all species and molecular di↵usion is

neglected. For each species i, Ri [�] is the retardation factor, Ci [g m�3] is the resident

concentration in the liquid phase, ki [d�1] is the first-order contaminant degradation rate

constant, and yi [g g�1] is the e↵ective yield coe�cient for any reactant or product pair.

These coe�cients are defined as the ratio of mass of species i generated to the amount of

mass of species i� 1 consumed. Sorption reactions are assumed in local equilibrium and

follow a linear sorption isotherm [Roberts et al., 1986]. Transport equations consider that

no biodegradation occurs in the sorbed phase. Nevertheless, we note that other scenarios

can be simulated by properly redefining the degradation rates.

The aquifer is considered to be initially clean (zero concentration of PCE and its degra-

dation products at time t = 0) but subject to a PCE time-dependent source dissolution

rate s(x, t) (mass per unit volume and time). This term represents the mass of dissolved

PCE leaving the source zone through a rectangular area As. This area is centered within

a vertical plane located at xinj = 200 m and has a size of 96⇥ 48 m2 (see Figure 3.1).
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3.2.3 Source Mass Release Model

Several mass-depletion models have been proposed in the literature to e↵ectively represent

DNAPL dissolution at a contaminated site. Among them, we employ the power-law

empirical model proposed by Rao et al. [2001] and Parker and Park [2004], which describes

the relationship between the flux concentrations of the dissolved DNAPL leaving the

source zone and the mass of DNAPL remaining in the source zone as

cs(t)

c0
=

✓
m(t)

m0

◆�

, (3.9)

where cs is the averaged flux concentration of the dissolved DNAPL chemical (PCE)

leaving the source zone, c0 is the corresponding initial concentration, and � is the mass-

depletion constant that accounts for changes in interfacial surface area as the source mass

diminishes. Typically, � is larger than 1 for contaminated sites with finger-dominated

residual DNAPL, and smaller than 1 for sites with prominence of DNAPL pools and lenses

[Parker and Park, 2004]. This is due to the fact that finger-dominated sources generally

exhibit higher initial mass transfer coe�cients per unit mass than lens-dominated systems.

Substituting (3.9) into the mass balance equation expressed at the source zone, the flux

concentration of PCE leaving the source zone can be determined from Parker and Park

[2004] as

cs(t) =
c0
m�

0

⇢
�Qsc0
�sm�

0

+

✓
m1��

0 +
Qsc0
�sm�

0

◆
e(��1)�st

� �
1��

, (3.10)

wherem0 is the initial mass of DNAPL at the source zone, Qs is the groundwater volumet-

ric discharge rate passing through the source zone, and �s is the first-order degradation

constant of PCE at the source zone. Based on this, the time-dependent source dissolution

rate s(x, t) can be written as

s(x, t) = qscs(t) �(x� xinj)⌦(x 2 As), (3.11)

where qs = Qs/As, Qs is the total flow passing through As, and ⌦(x 2 As) is an indicator

function that is equal to one when x 2 As and zero otherwise.
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It is common in modeling studies to distribute the total discharge mass of DNAPL leaving

the source zone homogeneously in the outlet source area. However, spatial variations in

the aquifer hydraulic properties may suggest more complicated source behaviors [Parker

and van Genuchten, 1984; Fure et al., 2006]. Two scenarios will then be considered in this

work: A classical mass injection mode (CIM) related to a homogeneous distribution and

a flux-weighted injection mode (FWIM) related to a flux weighted distribution of PCE at

the outlet source area.

3.3 Methodology

A stochastic framework is used to account for the uncertainty in the hydraulic conductiv-

ity field, which is described as a random space function. In this work, health risk statis-

tics are characterized through numerical Monte Carlo simulations. Analytical stochastic

approaches based on perturbation theory are available in the literature to estimate hu-

man health risk associated with individual species [e.g., Andričević and Cvetković, 1996;

de Barros and Rubin, 2008; de Barros and Fiori, 2014] but few works have assessed the risk

posed by chemical mixtures in highly heterogeneous 3D aquifers. For this work, the state

variables (i.e., ILCR) are characterized by their statistical moments and empirical prob-

ability density functions (pdf s). Monte Carlo simulations consist of four sequential steps:

(1) stochastic generation of equiprobable hydraulic conductivity fields; (2) solve the flow

problem associated to each hydraulic conductivity field; (3) solve the reactive-transport

problem for each flow field; and (4) estimate the corresponding ILCR at di↵erent control

planes.

The log-conductivity field, denoted as Y (x) = lnK(x), is considered to follow a multi-

Gaussian random space function model characterized by an isotropic Gaussian covariance

function with zero mean and an integral scale � of 14.18 m. Two levels of heterogeneity

of Y (x) were explored: �2
Y = 1 and �2

Y = 4. These values were chosen to represent a mild

and a highly heterogeneous aquifer scenario. The geostatistical parameters of the Y (x)

random field are summarized in Table 3.2. The domain is discretized into 400⇥200⇥100

squared cells that form an 8 million cell problem. The Monte Carlo simulations considered

500 equiprobable realizations of the Y (x) random field. The Monte Carlo convergence was
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Table 3.2: Physical parameters adopted for simulating serial reaction transport in a 3D het-
erogeneous flow system

Parameter Value
Flow problem

Average hydraulic gradient [�] 0.07
Longitudinal dispersivity, ↵L [m] 0.4
Transversal dispersivity in the horizontal plane, ↵TH [m] 0.04
Transversal dispersivity in the vertical plane, ↵TV [m] 0.01
Porosity, � [�] 0.3

Heterogeneous field
Variogram type Gaussian
Mean of Y (Y=lnK) [m2/d] 0.0
Variance of Y 1.0 and 4.0
Integral scales, �x=�y=�z [m] 14.18

Domain discretization
Number of cells in x direction, nx 400
Number of cells in y direction, ny 220
Number of cells in z direction, nz 100
Cell dimension, �x ⇥�y ⇥�z [m⇥m⇥m] 4.0 ⇥ 4.0 ⇥ 4.0

controlled by analyzing the stabilization of the mean and variance of total risk. Figure 3.2

shows a satisfactory stabilization of the two first statistical moments after 100 realizations.
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Figure 3.2: Monte Carlo convergence of the total mean increased lifetime cancer risk (Figure
a.) and its variance (Figure b.) as a function of the number of realizations obtained at the

control plane ⇣=24.7 for the three di↵erent scenarios.
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Table 3.3: Reaction parameters

Parameter
Value

pce tce dce vc

First order decay, ki [d�1] 0.0025 0.002 0.0015 0.001
Yield coe�cient, yi [g g�1] ⇥ 0.79 0.74 0.64
Retardation factor, Ri [�] 7.1 2.9 2.8 1.4

For each Y (x) realization, the groundwater flow equation (3.7) was first solved by means

of the well-known finite di↵erence code, MODFLOW [Harbaugh et al., 2000]. The multi-

species reactive transport problem formed by PCE, TCE, DCE and VC was then sim-

ulated using the random walk particle tracking (RWPT) methodology using the RW3D

code [Fernàndez-Garcia et al., 2005a]. This code has been recently adapted to e�ciently

simulate first-order network reaction systems [Henri and Fernàndez-Garcia, 2014]. RWPT

simulates solute transport by injecting a large number of mass particles into the system.

Particles move by following the velocity field obtained from the solution of the flow equa-

tion to simulate advection and adds a random displacement to simulate dispersion [e.g.,

Salamon et al., 2006a; Boso et al., 2013]. First-order network reactions are simulated

by changing the species state assigned to each particle based on transition probabilities

that depend on the biochemical properties of the species. The particle-tracking code

can e�ciently model such multi-species systems in heterogeneous conditions and at high

resolution. We refer to Henri and Fernàndez-Garcia [2014] for further numerical details.

Transport parameters are characterized by a constant porosity (� = 0.3), a longitudinal

dispersivity of 0.4 m, a horizontal transverse dispersivity of 0.04 m, and a vertical trans-

verse dispersivity of 0.01 m (see Table 3.2). Based on the review of field dispersion data by

Gelhar et al. [1992], these grid-cell values of dispersivity were estimated as ↵L ⇡ 0.1�x,

and ↵L/↵TH ⇡ 10 to account for subgrid heterogeneity. Biodegradation rates (ki) are

assumed constant in space and were chosen according to the range of possible first-order

rate constants observed and summarized by the Environmantal Protection Agency (EPA)

[1999]. The retardation factors were chosen according to the expected di↵erences in mo-

bility between the di↵erent chlorinated chemicals [Lu et al., 2011]. The adopted reaction

parameters are depicted in Table 3.3.

A large number of PCE particles (n = 105) were instantaneously released at x 2 As. In

terms of the correlation structure, the size of the source area As is 6.8�⇥ 3.4�, which is
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Table 3.4: Source zone mass transfer parameters

Parameter Value
Power law, � [�] 2.0
Initial concentration, C0 [g/m3] 0.1
Initial mass, M0 [kg] 300.0
Source first order decay rate, �S [d�1] 5⇥10�4

similar to reported field conditions at the Borden and Cape Cod sites [e.g., Mackay et al.,

1986; LeBlanc et al., 1991]. The first arrival time of particles passing through a set of

control planes was recorded during the simulation, from which cumulative breakthrough

curves were estimated, chi (t;x). The concentrations of all species ci(t;x) produced by a

time-dependent injection were then estimated using the principle of superposition, which

states that

ci(t;x) =

Z t

0
cs(⌧)c

�
i (t� ⌧ ;x)d⌧, (3.12)

where c�i (⌧ ;x) is the Dirac-input solution (instantaneous injection) of the concentrations

associated with the i�th species. By discretizing the source term in step functions,

cs(t) = cs,0H(t)+
P

j=1�cs,jH(t�tj), being H(t) the heaviside step function and �cs,j =

cs,j � cs,j�1, equation (3.12) can be written as

ci(t;x) = cs,0c
h
i (t;x) +

tj<tX

j=1

�cs,jc
h
i (t� tj ;x), (3.13)

where chi (t;x) is the cumulative breakthrough curve of the ith species obtained from a

unitary mass source. The mass depletion model parameters are summarized in Table 3.4.

The distribution of particles in the source area followed the two injection modes previ-

ously discussed, (i.e., CIM and FWIM). The CIM injection mode injected the particles

uniformly within the source area and the FWIM injection mode distributed the particles

proportional to local cell fluxes.
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3.4 Statistical Description of Risk

Computational results are organized as it follows: section 3.4.1 presents the probability

of exceedance of the maximum contaminant levels (MCLs). Then, section 3.4.2 o↵ers the

statistical description of the total ILCR. The statistical description of the total ILCR is

based on low-order statistics (ensemble mean and coe�cient of variation) as well as on

the full characterization of the pdf. The mean of the total ILCR, denoted here as hRT(x)i,
is a measure of the expected threat to the exposed population. Instead, the coe�cient

of variation of the total ILCR, given by CVRT(x) = �RT(x)/hRT(x)i, where �RT is the

standard deviation of the total ILCR, provides a measure of the degree of uncertainty in

risk predictions.

We also analyzed the so-called survival or reliability function of the total risk (⇠RT), i.e.,

the probability of exceedance of a given threshold R⇤, denoted as ⇠RT(x) = Prob[RT(x) >

R⇤]. This function identifies the area at which the risk persists beyond a specified thresh-

old normally defined by regulators. Typical values range between 10�4 and 10�6. For the

purpose of illustration, we set R⇤ = 10�5. In the following, results are presented in dimen-

sionless variables. The longitudinal distance from the injection (x � xinj) is normalized

by the integral scale �, i.e.,

⇣ =
x� xinj

�
,

and the time elapsed from the beginning of the contamination is normalized by the ex-

pected time needed to travel an integral scale, i.e.,

⌧ =
tKGJ

��
,

where KG is the geometric mean of the hydraulic conductivity, and J the hydraulic

gradient.
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3.4.1 Probability of Exceedance of MCLs

The visualization tool proposed here to analyze probabilities of exceedance of MCLs, i.e.,

⇠ci(x, t) = Prob[ci(t;x) > MCLi], provides a useful information on the temporal and

the spatial distribution of risk posed by the contamination. This graphical tool allows

decision makers to identify the spatial range in which high values of ⇠ci(x, t) are predicted

(hot spots) and the temporal persistence of these high values (hot moments). Figure

3.3 displays the spatiotemporal evolution of ⇠ci(x, t) for each chemical compound as a

function of �2
Y and the injection mode. Results show that the probability of exceedance is

highly sensitive to the species of concern. The area limited by non-negligible probabilities

of exceedance increases with decreasing MCL. Thus, the degradation product VC with

the lowest MCL produces an extended region of low risk reliability both in space and

time. The opposite occurs for the degradation product DCE with the highest MCL. An

increase in �2
Y leads to the dilution and spreading of the probabilities of exceedance in all

contaminant products. Consequently, the threat is smaller in magnitude but occupies a

larger spatiotemporal region. Nevertheless, the spreading mostly takes place in the spatial

dimension ⇣. Remarkably, concentrations can exceed the MCLs during a larger period of

time with smaller �2
Y (compare frames a-d with e-h).

The type of injection has substantial consequences on the spatiotemporal evolution of

⇠ci(x, t). A flux-weighted injection can drastically increase the magnitude and area oc-

cupied by the non-negligible probability of exceedance. This seems to suggest that the

dilution of the contaminant is limited by the flux-weighted injection mode. From a dif-

ferent perspective, we highlight that this graphical tool permits to clearly identify hot

spots and hot moments. In this context, it is interesting to see that the area of ⇠ci(x, t)

reaching a given predefined threshold at any given time (hot spot) and its corresponding

temporal persistence (hot moment) decreases with heterogeneity (�2
Y ). On the contrary,

the flux-weighted injection mode promotes larger hot spots and hot moments.
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Figure 3.3: Risks of exceedance of the MCLs as a function of the normalized time ⌧ and the
normalized distance ⇣ related to a variance of Y of 1.0 (left hand, frames a to d), a variance of
Y of 4.0 for a classical Injection Mode (center, frames e to h), and a variance of Y of 4.0 for a

flux-weighted injection mode (right hand, frames i to l).

3.4.2 Total Increased Lifetime Cancer Risk

3.4.2.1 Low-order Moments and Reliability

Additive risk models determine that the ILCR posed by a chemical mixture is the sum

of the risk posed by each chemical species in the chemical mixture, equation (3.4). The

total risk low-order moments are shown in Figure 3.4. Results demonstrate that, when the

toxicity of intermediate products is larger than that of the parent species, the mean total

risk can increase to a maximum (Rc) at a critical position (xc). The area with elevated

risk surrounding this critical position is denoted as a hot spot. Between the contamination

area (x = xinj) and the critical position (x = xc) the rate of risk generation due to the
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formation of toxic intermediate products exceeds the rate of risk reduction due to self-

purification (natural attenuation). Eventually, the total risk decreases to near zero at

larger distances meaning that the aquifer can remediate itself by natural attenuation.
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Figure 3.4: Longitudinal profile of the expected mean of the total increased lifetime cancer
risk (Figure a.), its coe�cient of variation (Figure b.), and its reliability function (Figure c.).

Results also indicate that careful attention should be paid to the risk metrics employed

during the management of chemical mixtures at a hazardous waste site. A completely

di↵erent depiction of the critical hot spot can be obtained by using the probability of

exceedance of MCLs. For instance, section 3.4.1 shows that the largest probability of
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exceedance of the MCL associated with the parent species PCE is situated nearby the

source zone and far from the critical position xc.

The critical position xc depends on the joint e↵ect of PCE and degradation products

on the total risk. The relative contribution of each species is depicted in Figure 3.5.

The individual risk posed by PCE and TCE is 2 orders of magnitude lower than DCE

and VC. Consequently, the contribution of PCE and TCE to the total risk is negligible

and the total mean risk is mainly controlled by DCE and VC. Figure 3.5b displays the

uncertainty in risk predictions. Interestingly, the coe�cient of variation (CVRT ) shows a

strong inverse correlation with its mean value. Thus, low risk values nearby the source

zone have large uncertainties and high risk values close to the critical position are the

most reliable.
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Figure 3.5: Influence of the variance of Y and of the injection mode on the longitudinal
distribution of the individual mean risk, for the compounds PCE (grey) and TCE (blue), Figures
a. (top), and the compounds DCE (orange) and VC (red), Figures b (bottom). Distances from

the injection are normalized by the integral scale as ⇣ = (xcp � xinj)/�.

The probability to exceed a mandated risk threshold ⇠RT(x) follows the total mean risk
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behavior (Figure 3.5c) but exhibits a larger area, centered at the critical position, within

which the risk persists beyond a specified threshold. That is to say that the area required

to accomplish an apparent decontamination can be large in practical situations. Moreover,

even though the mean risk at the source zone is close to the critical threshold (R⇤ =

10�5), we note that the probability to exceed R⇤ is still substantial. An e↵ect that seems

attributable to the high uncertainty attained in this region.

Heterogeneity favors the development of preferential channels through which contami-

nants can rapidly be transported from the source zone to further away distances [Gomez-

Hernandez and Wen, 1998; Zinn and Harvey, 2003]. Consequently, Figure 3.4a shows

that the critical distance increases with �2
Y . At the same time, the maximum risk value

diminishes with �2
Y due to the combination of enhanced macro-dispersive e↵ects and the

subsequent dilution of concentrations at control planes. Large �2
Y not only diminish the

maximum total risk attained at the critical position but also spreads the risk over a wider

area (Figure 3.4a). The CVRT analysis shows also a significant sensitivity to the degree

of heterogeneity (Figure 3.4b), especially, close to the source and at the hot spot where

the uncertainty in risk predictions increases with �2
Y . Finally, heterogeneity causes the

persistence of large ⇠RT values over a wider area (Figure 3.4c).

A flux-weighted injection mode (particles injected proportional to local fluxes) initially

concentrates more mass in preferential flow channels [Vanderborght et al., 1998]. This

e↵ect precludes the initial mixing of the contaminant nearby the injection location, causing

an increase in the maximum total mean risk and the critical distance (see Figure 3.4a).

As a result, the probability to exceed a mandated risk threshold is shifted away from the

source zone during a flux-weighted injection (Figure 3.4c).

3.4.2.2 Probability Density Functions

The total risk-pdf s are shown in Figure 3.6 as a function of �2
Y and the injection mode for

three di↵erent normalized traveled distances (⇣=3.5, 25.0 and 60.0). Results demonstrate

that biodegradation can e↵ectively modify the form of the risk-pdf s. These pdf s are

highly asymmetric, positively skewed nearby the source zone (⇣=3.5 on Figure 3.6a) due

to the high probability of occurrence of the less toxic compounds in this region. The

total risk-pdf s seem to approach a Gaussian-like behavior with travel distance (Figure
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3.6 frames b and c). The e↵ect of heterogeneity on the total risk-pdf s is also shown in

Figure 3.6. Close to the source zone (⇣=3.5), a large �2
Y yields residual but persistent

probabilities of high risk.
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Figure 3.6: Probability density functions (pdf s) of the total increased lifetime cancer risk
obtained at di↵erent control planes with normalized distance ⇣=3.5, 25 and 60.

The flux-weighted injection mode favors the production of degradation products at larger

travel distances. Consequently, knowing that the total risk behavior is mostly controlled

by the most toxic species DCE and VC, a flux-weighted injection leads to positively

skewed distributions of risk with a peak centered toward smaller risk values (Figure 3.6a).
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The total risk-pdf s also displays the probability of having negligible risk. This e↵ect

depends on the production and the consumption time of the species involved and the

travel time needed to reach a certain distance. Thus, negligible risk is highly probable at

short traveled distances (Figures 3.6a) due to the late production of the most toxic species,

VC. Heterogeneity a↵ects the probability of negligible risk. The formation of preferential

channels favored by large �2
Y and flux-weighted injections increases the probability of

negligible risk by promoting the rapid migration of products to far away distances.

Describing the risk-pdf s by their closest probability density function model provides useful

information for a future characterization of risk in real applications. To study this, the

sample total risk-pdf s (Figure 3.6) were fitted to di↵erent theoretical distribution functions

honoring the mean and the variance of the ensemble. The Kolmogorov-Smirnov (K-S)

test at a 95% confidence level indicates that the risk-pdf s obtained in high-risk areas

(hot spots) (Figure 3.6b) do not significantly deviate from a Gaussian distribution. In

other areas, the K-S tests were only satisfied for the lognormal and beta distribution.

This seems to be in agreement with results typically reported in the literature for the

concentration pdf s [e.g., Bellin et al., 1994; Rubin et al., 1994; Bellin and Tonina, 2007;

Sanchez-Vila et al., 2008; Dentz, 2014; de Barros and Fiori, 2014]. The Root-Mean-

Square-Deviations (RMSD) of the best fit between the theoretical distributions (truncated

normal, lognormal, and beta) and the sample total risk-pdf s are also shown in Figure 3.7.

The Gaussian-like behavior of the risk distribution obtained in hot spots is here confirmed.

In regions with limited or advanced degradation products production (at short and large

travel distances, i.e., ⇣ . 20 and ⇣ & 50), the risk distribution seems to follow a lognormal

or beta distribution. The di↵erent scenarios show consistent results (Figure 3.7a, 3.7b

and 3.7c).

The impact that the uncertainty in toxicological parameters has on total risk predictions

was also investigated. To consider this, a random perturbation of the previously used

cancer potency factors was introduced into equation (3.1). The perturbed cancer potency

factors were described by pseudo random numbers taken from a uniform distribution

supported on a bounded interval defined by µ(1 ± 25%), µ(1 ± 50%) and µ(1 ± 75%),

where µ denotes the previously defined CPFs. Figure 3.8 shows the results obtained

for �2
Y =1. When the mass of the chemical products controlling the total risk is small,

i.e., nearby the source zone (⇣=3.5), the uncertainty in physiological parameters do not
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Normal distributions and the total increased lifetime cancer risk obtained from Monte Carlo

simulations as a function of the normalized travel distance.
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Figure 3.8: Probability density functions (pdf s) of the total increased lifetime cancer risk
considering di↵erent degrees of perturbations around the mean of the species-specific cancer

potency factors for �2
Y =1.0 and normalized distances ⇣=3.5, 25 and 60.
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substantially a↵ect the risk-pdf s predictions (Figure 3.8a). In this case, the uncertainty

in the hydraulic conductivity is the controlling factor. However, in areas where the mass

of the products DCE and VC is abundant (⇣=25.0 and 60.0), a perturbation of the CPFs

will gradually deteriorate the Gaussian-like behavior observed in the risk-pdf s (Figure

3.8b and 3.8c). This result agrees with the conclusions of de Barros and Rubin [2008].

3.5 The Toxicology-Based Damkhöhler number

Results have demonstrated that, when the toxicity of intermediate products is larger than

that of the parent species, the mean total risk can reach a maximum value (Rc) at a critical

position (xc). At this critical position, the rate of risk generation due to the formation of

toxic intermediate products is equal to the rate of risk reduction due to self-purification

(natural attenuation). Based on this, it is useful to define a dimensionless number DR

to relate the distance of a sensitive location (d = x � xinj) to the corresponding critical

distance (dc = xc � xinj),

DR =
d

dc
. (3.14)

The sensitive location will be situated downgradient or upgradient from the critical posi-

tion depending onDR, i.e.,DR > 1 will indicate that the sensitive location is downgradient

and vice versa. Knowing this dimensionless number, the relative distance between the

sensitive location and the critical position can be estimated by

` =

����
d� dc
dc

���� = |DR � 1|. (3.15)

The estimation of DR in the field requires several considerations. The distance to the sen-

sitive location d is known by construction but the location of the hot spot (dc) is largely

uncertain. Let us express this critical distance as dc = vatc, where tc is the mean arrival

time needed for a non-reactive solute to reach the critical distance, and va is the apparent

velocity of groundwater. An approximate solution of tc can be determined analytically by

noticing that the total mass of a given species is closely related to the maximum running
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averaged flux-concentration. The derivation is provided in the Appendix D. Because tc,

which is referred to as the critical time, can be analytically determined from toxicolog-

ical and chemical properties, DR can be seen as a toxicology-based Damköhler number.

However, va depends mostly on the spatial variability of the hydraulic conductivity field

and is susceptible to large uncertainties. This uncertainty will propagate to DR. The

following section analyzes how this uncertainty can a↵ect the total risk predictions.

Figure 3.9: Relationship between the total increased lifetime cancer risk and the toxicological-
based Damköhler number obtained for each simulation and scenario at selected control planes.
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To illustrate the importance of the toxicology-based dimensionless number, we estimated

DR from (3.14) for each realization and x-control plane. The critical time tc was estimated

from the analytical solution provided in the Appendix D, i.e., from equation (D.15).

For each realization, we also simulated the transport of a non-reactive species with an

instantaneous injection. The resulting breakthrough curve is denoted as c�. From this, va

at a given x-control plane was calculated as va = d/t(x), where t(x) is the mean arrival

time determined from

t(x) =

R1
0 tc�(t;x)dtR1
0 c�(t;x)dt

. (3.16)

Figure 3.9 shows the ensemble of the total risk RT as a function of DR. Here, colors

are used to distinguish data from di↵erent selected control planes. Results show that

the maximum total risk satisfies that DR = 1 in all cases. Interestingly, the total risk

is positively correlated with DR when DR < 1 and negatively correlated when DR > 1.

That is to say that between the contamination area and the critical distance the total

risk increases with `, whereas beyond the critical distance the total risk decreases with `.

Essentially, the first regime is controlled by the production of highly toxic intermediate

species and the second regime is controlled by the self-purification capacity of the aquifer

due to natural attenuation.

The relationship between total risk and the toxicology-based Damköhler number as a

function of �2
Y and injection mode is better seen by presenting the ensemble average of

the two quantities over all realizations at each control plane (Figure 3.10). In this context,

the degree of heterogeneity �2
Y seems to dictate the intensity of RT for a given DR. The

intensity decreases with increasing �2
Y , suggesting a tendency to dilute the hazard. The

e↵ect of the injection mode is seen moderate in this case.

3.6 Impact of Connectivity

Low-order moments of a random field (mean, variance and covariance function) do not

provide su�cient information on the structure of preferential channels, which mainly

control va in a given realization. In other words, two realizations with the same low-order
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Figure 3.10: Coe�cient of variation (Figure a.) and mean (Figure b.) of the total increased
lifetime cancer risk as a function of the mean toxicological-based Damköhler number obtained

at each control plane for all scenarios.

moments can reflect substantially di↵erent connectivity features and, in turn, apparent

velocity estimates [Gomez-Hernandez and Wen, 1998].

Di↵erent metrics have been used to describe connectivity [Sanchez-Vila et al., 1999;

Fernàndez-Garcia et al., 2002; Knudby and Carrera, 2005, 2006; Trinchero et al., 2008;

Fernàndez-Garcia et al., 2010]. In general, Renard and Allard [2013] distinguished two

types of measures: Static connectivity metrics only depend on the spatial distribution of

aquifer properties, and dynamic connectivity metrics depend on the flow and/or transport

response to a given impulse. To analyze the e↵ect of connectivity on risk, this section

categorizes risk simulations in terms of a dynamic connectivity metric. The chosen con-

nectivity metric CI is defined as the ratio of the e↵ective hydraulic conductivity, Keff ,

to the geometric mean of K, KG [Knudby and Carrera, 2005],

CI =
Keff

KG
⇡ 1

t50

(xcp � xinj)�

KG J
, (3.17)

where t50 is the arrival time of the 50% of mass. High CI values indicate the presence

of preferential channels and vice versa. This connectivity metric was estimated for all

realization to represent CI as a function of the total risk (Figures 3.11d-f). For comparison
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Figure 3.11: Relationship between the increased lifetime cancer risk related to the exposure
to PCE (left figures, frames a-c) and to the chemical mixture (right figures, frames d-f), and
the connectivity indicator obtained for each simulation and scenario at selected control planes.
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purposes, we also estimated the relationship between CI and the individual risk posed

by PCE (Figures 3.11a-c).
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Figure 3.12: Schematic illustration of the relationship between the toxicological-based
Damköhler number (DR), connectivity (CI) and the total risk (RT). The red plume repre-
sents the spatial distribution of the total risk reaching a maximum at the critical distance dc.
The toxicological-based Damköhler number DR is equal to 1 at the critical distance. Left figures
represent an scenario A in which the exposed population is initially estimated to be located be-
tween the source of pollution and the hot spot (DR<1). Right figures represent an scenario B in
which the exposed population is initially estimated to be located beyond the hot spot location
(DR>1). If initial predictions on the critical distance have not considered (or missed) the pres-
ence of an existing preferential transport pathway, the real critical distance dc

0 will be located
at a farther away distance. This will cause a decrease of the total risk in scenario A (beneficial
impact of connectivity) but not in scenario B where the total risk increases (detrimental impact

of connectivity).

A clear power law relationship is observed for small �2
Y (Figure 3.11c and 3.11f). Yet,

this relationship is strikingly di↵erent for PCE than for chemical mixtures. Even though

the individual risk posed by PCE always tends to increase with connectivity, mostly due

to a decrease in the travel time and degradation, this is not necessarily true for chemical

mixtures. When DR < 1 the total risk decreases with increasing connectivity but the

opposite occurs when DR > 1. This indicates that the impact of connectivity on risk

predictions mostly depends on DR. When DR < 1, the hot spot is located beyond the

sensitive location (d<dc). In this situation, the presence of preferential channels (high

CI values) will move the hot spot to a farther distance, thereby reducing the total risk.

Instead, when DR > 1, the hot spot is located between the source zone and the sensitive

location (d>dc). In this case, preferential channels will move the hot spot closer to the
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sensitive location, thereby increasing the total risk. Figure 3.12 shows a sketch of these

situations.

To further explore this, the power law relationship was fitted to the following regression

model

RT = a (CI)b , (3.18)

where |b| expresses the sensitivity of the total risk to connectivity, and the sign of b indi-

cates whether connectivity is beneficial (b < 0) or detrimental (b > 0) in risk predictions.

Results show a strong linear relationship between b and DR (Figure 3.13a.) with a nega-

tive correlation when DR < 1 and a positive correlation when DR > 1. Suppose that one

estimates, based on the general properties of an aquifer, that a sensitive location (e.g.,

a populated area) is characterized by DR < 1. In this case, the unnoticed presence of

preferential channels at the field site due to the lack of detail characterization will lead to

smaller risk predictions than expected. A situation that is conservative in terms of risk.

On the contrary, if the sensitive location is characterized by DR > 1, the unnoticed pres-

ence of preferential channels can lead to significantly erroneous risk predictions. In this

case, one needs to intensify site characterization and monitoring e↵orts. It is also impor-

tant to highlight here that the e↵ect of connectivity is expected to be more pronounced in

non-multiGaussian fields, where well-connected structures with large permeability values

can develop faster solute pathways [Gomez-Hernandez and Wen, 1998].

Despite this clear trend, the correlation between CI and DR diminishes close to hot spots

(DR = 1) and large �2
Y values (Figure 3.13c). This is seen for both injection modes

without substantially a↵ecting the results. In sum, the unnoticed presence of preferential

channels can lead to catastrophic consequences in cases where DR is large (d>dc) and

�2
Y is relatively small. Finally, we note that other sources of uncertainty can also a↵ect

this relationship. For instance, the uncertainty in toxicity measures (see section 3.4.2.2)

seems to deteriorate the fit to the regression model without significantly a↵ecting the

parameters (Figure 3.14).
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3.7 Concluding Remarks

We have investigated human health risk of a chemical mixture, formed by the combination

of tetrachloroethylene with its daughter products, in a three-dimensional heterogeneous

aquifer under uncertainty through a set of Monte Carlo reactive transport simulations in-

volving a multispecies chemical system. Simulation results have provided a full statistical

description of the most common risk metrics (increased life time cancer risk and proba-

bility of exceedance of MCLs) as well as an examination of the key factors controlling the

formation of hot spots (high-risk areas). The following main findings are highlighted:

• Uncertainty and reliability. The statistical analysis of the increased lifetime

cancer risk has demonstrated that low risk values, observed far from the source

zone for the parent species and near the source for the degradation products, have

typically large uncertainties. Contrarily, high-risk areas are the most reliable. This

is in line with previous works that found low reliability at low expected concentra-

tions [Kapoor and Gelhar, 1994]. We have also proposed a visualization tool aimed

at analyzing the probability of exceedance of MCLs during the temporal and spatial

risk management of a contaminated site. Interestingly, results have determined that

the area of non-zero probability of MCLs increases with �2
Y , owing to the formation

of preferential channels and fast travel times, but they take place during a shorter

period of time due to an increase dilution of the contaminant in the system. More-

over, a flux-weighted injection mode has led to a decrease in reliability in both space

and time by limiting the dilution process while increasing travel times.

• Probability Distributions Forms. Total risk pdf s have shown positively-skewed

asymmetric distributions with a maximum at a relatively low risk value near the

source zone. This is especially true for small �2
Y or when a non trivial flux-weighted

injection mode is considered. The emergence of asymmetric distributions may lead

to reinterpret the a priori expected risk value and reliability, which is respectively

overestimated and underestimated. The functional form of the risk-pdf is deter-

mined to follow a Gaussian-like behavior nearby areas of elevated risk. However,
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in other areas, the distribution is better characterized by a lognormal or a beta

distribution.

• Formation of hot spots. Risk analysis of chemical mixtures cannot consider that

corresponding hot spots (here defined as areas of elevated risk) are somehow located

close to the contaminant source where concentrations are higher. In a chemical

mixture, the joint e↵ect of advection, degradation pathways and toxicity dictates

the formation of a hot spot. A newly proposed toxicity-weighted Damköhler number

DR has been shown to control the longitudinal distribution of the total risk, which

tends to increase with DR to a maximum at a certain critical position xc where

DR=1. The time needed for a conservative species to reach this critical distance (tc)

depends on toxicity and biochemical properties. Approximate analytical solutions

of this critical time are provided. These results di↵er from observation made on

more trivial cases, where early arrivals are often seen as the most dangerous cases.

On the other hand, the amplitude of the mean total risk is mainly a function of �2
Y .

• The Role of Connectivity. The assessment of human health risk based only on

low-order statistical moments is shown to provide an incomplete analysis of risk.

An additional key factor is shown to be connectivity. Results have illustrated that a

hydraulic conductivity field with high connectivity is susceptible to have a beneficial

(DR<1 or x<xc) or a detrimental (DR>1 or x>xc) e↵ect on risk depending on the

proposed toxicity-weighted Damköhler number. If a sensitive area is characterized

by DR<1, the unnoticed presence of a preferential channel due to the lack of detail

characterization is shown to lead to smaller risk estimates than expected. A situa-

tion that is conservative in terms of risk (overestimation). On the contrary, if the

sensitive area is characterized by DR>1, the unnoticed presence of a preferential

channel can have important consequences as it is shown to lead to higher than ex-

pected risk estimates. In this case, one needs to intensify site characterization and

monitoring e↵orts.
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4.1 Introduction

Contaminant source zones are often complex and subject to uncertainty. The uncertainty

arises from our lack of knowledge of the solute distribution in the contaminated area and of

the volumetric discharge crossing the source zone [e.g. Jarsj et al., 2005; Troldborg et al.,

2010; Koch and Nowak, 2015]. It is well known that source zone architecture and the

hydraulic conditions in its vicinity have a significant impact on the down-gradient solute

transport [Brusseau, 2013]. Understanding the release conditions of a contaminant into

the subsurface and how it a↵ects the potential exposure of humans to noxious chemicals

is essential for an accurate polluted groundwater management.

In this paper, we focus on the e↵ects of Dense Non-Aqueous Phase Liquids (DNAPLs)

source characterization on transport and related human health risk propagation into

heterogeneous porous media. Subsurface contamination by Dense Non-Aqueous Phase

Liquids (DNAPLs) constitutes a major environmental issue given its frequency and the

spatiotemporal complexity of its transfer into the groundwater [Cohen and Mercer, 1993].

DNAPLs are quasi-immiscible fluids with a density exceeding that of water. These spe-

cific properties are often synonymous with a slow release of mass into the aquifer due

mainly to a slow dissolution process. The rate of mass transferred from a source zone

into the solute plume is controlled by a complex set of parameters, such as the specific

chemico-physical characteristics of the DNAPL, the heterogeneity in the local water flux

and the DNAPL spatial distribution and saturation [Pankow and Cherry, 1996; Brusseau,

2013].

The spatio-temporal behavior of DNAPL mass discharge has been documented and dif-

ferent approaches has been adopted to link source zone architecture metrics to mass

discharge behavior [e.g. Fure et al., 2006; Page et al., 2007]. Because of the multiprocess

nature of DNAPL problems, complex multi-phase numerical methods are commonly used

to simulate the dissolution of DNAPL and the intensity of its release into the ground-

water [Abriola and Pinder, 1985; Kueper et al., 1989]. However, their application has

been limited to purely theoretical purposes because of their computational cost associ-

ated with complex non-linear equations and the need for a fine characterization of the

source zone spatial variability. From a practical point of view, it is helpful to make use of
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the low computational cost of integrative and empirical upscaled mass transfer relation-

ship tested in the literature [Rao et al., 2001; Rao and Jawitz, 2003; Parker and Park,

2004; Zhu and Sykes, 2004]. These methods highlight the main characteristics of DNAPL

mass discharge by linking the DNAPL source strength to the DNAPL mass remaining in

the source zone [Falta et al., 2005]. The simplicity of this approach lies in the conceptu-

alization of the source zone as a control plane from which the temporal evolution of the

contaminant fluxes is simulated using integrative parameters in line with the architecture

of the DNAPL. Moreover, in accordance with Soga et al. [2004], this screening approach

seems to be more suited to evaluating the risk down-gradient when compared with a

management strategy based on source zone monitoring.

DNAPLs are in most cases chemically complex industrial compounds that cause proven

or suspected deterioration of human metabolisms. The specific risk management related

to this type of subsurface contamination demands the evaluation of their consequences

on health. The management of contaminated aquifers is often based on maintaining an

estimated risk to health below an acceptable or legally mandatory threshold. However,

subsurface pollution, because of its multi-parameter nature, is complex to characterize

and is markedly a↵ected by several sources of uncertainty. Probabilistic risk assessment

methods for groundwater contamination incorporate hydrogeological uncertainty in the

threat quantification [e.g. Andričević and Cvetković, 1996; Maxwell and Kastenberg, 1999;

de Barros and Rubin, 2008; Cvetković and Molin, 2012]. This constitutes a robust sup-

port for risk assessors, i.e. (1) to quantify the aquifer locations and temporal windows

where the risk to health is mostly expected to exceed a regulatory threshold [Tartakosky,

2007; Henri et al., 2015]; (2) to optimize the location of necessary monitoring intensifica-

tion [James and Gorelick, 1994; Maxwell and Kastenberg, 1999; Fernàndez-Garcia et al.,

2012]; and (3) to optimize the allocation of resources for uncertainty reduction [de Barros

et al., 2009]. First applied to simple conceptualization of groundwater contamination

(e.g. conservative tracer), there is now a tendency for probabilistic risk assessment to

deal with more complicated scenarios. For instance, the impact of chemical reactions on

the risk to health has recently been assessed [Benekos et al., 2006; Siirila and Maxwell,

2012; Atchley et al., 2013; Henri et al., 2015]. However, the influence of source zone be-

haviors on health risk propagation remains to be investigated in depth. de Barros and

Nowak [2010] and Troldborg et al. [2010] have established a strong correlation between

the mode of the source zone release condition and the uncertainty of plume predictions.
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There is therefore a need to allocate research e↵orts to improve our understanding of the

significance of source zone release conditions on the risk to human health.

Our work seeks to characterize the impact of DNAPL mass release on the spatiotem-

poral evolution of the threat to health expressed in terms of the most frequently used

risk metrics. To this end, a consequent computational e↵ort was produced to simulate

the transfer, transport and fate of a DNAPL into a finely discretized three-dimensional

aquifer. Furthermore, we utilized a stochastic framework to incorporate the e↵ects of un-

certainty in the hydraulic properties of the aquifer. The two following sections (sections

2 and 3) detail, respectively, the problem and the methods adopted to solve it. Section

4 analyzes the impact of the DNAPL mass release on the human health risk through the

spatial characterization of its lower-order statistics and probability density functions. To

conclude, we show that the water flux crossing the source zone exerts a strong influence

on the e↵ective health risk due to a mixture of interdependent reactive chemicals.

4.2 Problem Statement

The study focuses on a subsurface contamination by the chlorinated solvent Perchloroethy-

lene (PCE), a well-known DNAPL that is responsible for considerable groundwater con-

tamination in industrialized societies [Fay and Mumtaz, 1996; McGuire et al., 2004]. The

chlorinated solvent is originally trapped and transferred under a solute form into the

aquifer from a source zone. Interestingly, the solute form of PCE initiates a successive

dechlorination under the anaerobic conditions assumed in our synthetic aquifer [Jain and

Criddle, 1995; McCarty, 1997]. This will lead to the formation of the degradation product

Trichloroethylene (TCE), which will be transformed into Dichloroethylene (DCE), which

will be successively reduced into Vinyl Chloride (VC), which will finally lose the remain-

ing chloride atom to become the non-toxic Ethene. The decontamination of the site is

then achieved when the reductive dechlorination chain is completed. However, the par-

ent species PCE and its three sub-products TCE, DCE and VC present a potential risk

to human health that needs to be monitored [Environmantal Protection Agency (EPA),

1997]. PCE, TCE and DCE are indeed suspected of being carcinogenic and VC is a

confirmed carcinogenic agent. When dechlorination is initiated, the parent and daughter
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species form a chemical mixture composed of chemicals with di↵erent toxicities [Environ-

mantal Protection Agency (EPA), 2000].

Figure 4.1: Scheme of an aquifer contamination by a DNAPL. The source zone is formed of
pools due to the presence of low permeability lenses in the source zones. The scheme illustrates
the screening approach used in this paper, i.e. the consideration of the concentrations leaving the
downstream edge of the source zone area to assess the health risk posed by the contamination.

The risk management of the contaminated aquifer must therefore consider the spatiotem-

poral behavior of the four compounds that can be simulated under the form of the sequen-

tial reaction PCE ! TCE ! DCE ! VC ! Ethene. The potential risk to human health

due to this chemical mixture (e↵ective risk) was characterized statistically and accounts

numerically for uncertainties in the hydraulic conductivity fields through a Monte Carlo

scheme. This probabilistic approach of human health risk estimation was adopted for

di↵erent modes of DNAPL mass release.

4.2.1 Flow and Reactive-Transport Model

In this paper, we modeled flow and reactive transport numerically. We considered a three-

dimensional (3D) confined aquifer conceptualized by a rectangular prism with length Lx

= 1600 m, width Ly = 800 m, and height Lz = 400 m. The flow in the synthetic aquifer

was constrained by a constant head at the longitudinal ends, and no-flow at the top and

bottom of the domain. We considered an aquifer with steady state flow conditions driven
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by a mean horizontal hydraulic gradient of 0.07. The spatially variable 3D flow field was

solved by applying Darcy’s law:

q(x) = �K(x)rh(x), (4.1)

where q [m d�1] is the specific discharge, h [m] is the hydraulic head and K [m d�1] is

the hydraulic conductivity at the given location x. The spatial variability of K and its

dependent 3D field of specific discharge were regarded as uncertain.

The sequential reductive dechlorination of the solvents PCE, TCE, DCE and VC was

approximated by a serial first-order decay reaction network [Clement, 2001; Cunningham

and Mendoza-Sanchez, 2006]. Earlier research has shown that these systems is able to

approximate more complex biodegradation models such as the Michaelis-Menten model

when concentrations are lower than the Michaelis-Menten rate. The serial network can

be mathematically expressed by the following system of partial di↵erential equations

�R1
@C1

@t
�r · (�DrC1) +r · (qC1) = �k1�C1 + s(x, t),

�Ri
@Ci

@t
�r · (�DrCi) +r · (qCi) = yiki�1�Ci�1 � ki�Ci, 8i = 2, . . . , 4,

(4.2)

where � is the porosity, and D [m2 d�1] is the hydrodynamic dispersion tensor. For

each species i, Ri [�] is the retardation factor, Ci [g.m�3] is the resident concentration

in the liquid phase, ki [d�1] is the first-order decay rate constant, and yij [mol.mol�1]

is the e↵ective yield coe�cient for any reactant or product pair, i.e. the ratio of mass

of species i generated to the amount of mass of species j consumed. Sorption reactions

were assumed to be in local equilibrium and to follow a linear sorption isotherm. The

concentration temporal evolution of the parent species PCE is a↵ected by a degradation

term (decay) and by the source term s(x, t) [g.m�3.d�1], reflecting the mass of dissolved

contaminant released from the source zone. This source dissolution rate can be derived

from cs, the concentration of the released contaminant (here PCE) as

s(x, t) = qszcs(t)�(x� xinj)⌦(x 2 Asz), (4.3)
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where qsz = Qsz/Asz, when Qsz is the total flow passing through the source zone area

Asz. ⌦(x 2 Asz) is a binary indicator function that equals one if x 2 Asz and zero

otherwise. In case of DNAPL contamination, the key point of a good predictive model is

to accurately represent the source dissolution rate cs(t).

4.2.2 DNAPL Mass Release Models

A simple mass transfer model As mentioned in the introduction, the intrinsic com-

plexity of the spatio-temporal behavior of DNAPLs mass depletion can be conceptualized

by diverse methods. We made use of the commonly employed power law empirical model

proposed by Rao et al. [2001] or Parker and Park [2004]. This method describes the tem-

poral evolution of the normalized flux-averaged concentrations of the contaminant leaving

a control plane located at the edge of the source zone as a power law of the normalized

mass of DNAPL remaining in the source zone (see Figure 4.1), or mathematically:

cs(t)

c0
=

✓
m(t)

m0

◆�

, (4.4)

where c0 is the initial flux-averaged concentration of the released contaminant (here PCE),

m is the mass of DNAPL remaining in the source zone with initial value m0. The tem-

poral evolution of the DNAPL discharge in the aquifer is controlled by the empirical

power exponent �. This integrative exponent reflects the shape of the source discharge

response to a changing source mass, which is controlled by the DNAPL architecture, the

heterogeneity of the flow field and by the correlation between heterogeneity and DNAPL

saturation [Rao and Jawitz, 2003]. Typically, a � lower than one is related to a source

discharge increasing rapidly for small increases in the source mass. This large initial mass

transfer is characteristic of the prominence of pool and lenses in the DNAPL source zone.

By contrast, a � larger than one demands a large decrease in mass to significantly increase

the source concentration, which reflects the prominence of finger or ganglia characterized

by a small initial mass transfer coe�cient.
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For a flow rate passing through the source zone assumed to be constant, the time depen-

dence of the source concentration can be expressed as [Falta et al., 2005]:

cs(t) =
c0
m�

0

⇢
�Qszc0
�sm�

0

+

✓
m1��

0 +
Qszc0
�sm�

0

◆
e(��1)�st

� �
1��

, (4.5)

where �s is the biodegradation rate observed in the source zone.

A two-domain mass transfer model However, field experiments have shown that the

conceptualization of the source zone by either pool or ganglia can be oversimplified and

inaccurate [Anderson et al., 1992; Sale and McWhorter, 2001]. Indeed, in many cases the

two kinds of DNAPL architecture may be present in the source zone and may significantly

a↵ect the contaminant mass transfer into the solute plume. A more appropriate mixture

of low saturation ganglia and high-saturation pools would lead to (1) an intense mass

release at short times due to the characteristic high initial mass transfer of pools and (2)

to a subsequent mass release of moderate intensity due to the presence of ganglia. As

introduced by Christ et al. [2010], this particular behavior can be conceptualized by a

two-domain style model. The respective source concentration related to both ganglia and

pool in the source zone is expressed as

c(g)s (t)

c(g)0

=

 
m(g)(t)

m(g)
0

!�g

, and
c(p)s (t)

c(p)0

=

 
m(p)(t)

m(p)
0

!�p

, (4.6)

where the exponents (g) and (p) of the source flux-averaged concentration (cs), remaining

masses (m), and power law exponent (�) refer, respectively, to the ganglia and pools.

The relative mass leaving the source due to pools and ganglia is mainly controlled by the

proportion of water flux crossing the two types of DNAPL architecture. The e↵ective

source concentration will evolve in time following:

cs(t) =
Q(g)

sz c
(g)
s +Q(p)

sz c
(p)
s

Q(g)
sz +Q(p)

sz

(4.7)
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Table 4.1: Risk parameters

Parameter Value
Ingestion rate, IR [l/d] 1.4
Body weight, BW [kg] 70.0
Exposure duration, ED [y] 30.0
Exposure frequency, EF [d/y] 350.0
Average time of the expected lifetime, AT [d] 25550.0

pce tce dce vc
Cancer potency factor, CPFi [kg d/mg] 0.0021 0.011 0.6 1.5
Maximum Contaminant Level, MCLi, [ppb] 5.0 5.0 7.0 2.0

where Q(g)
sz and Q(p)

sz are the flow passing through the ganglia and pools forming the source

zone area (i.e., Qsz = Q(g)
sz +Q(p)

sz ). Thus, the source concentration can be expressed as a

function of the fraction of pool (fp) and ganglia (fg) within the source zone:

cs(t) ⇡ c(g)s fg + c(p)s fp (4.8)

where fp + fg = 1.

While conceptualizing the source zone as a mixture of pools and ganglia, it is useful to

express the fraction of pool and ganglia in the source zone in terms of their ratio, i.e.

GTP = fg/fp = fg/(1 � fg) [Christ et al., 2005]. The temporal evolution of the source

concentration (4.8) is then expressed as a function of a single metric by:

cs(t) ⇡
c(g)s GTP + c(p)s

GTP + 1
. (4.9)

4.2.3 Human Health Risk Metrics

Stake-holders and regulators often base remediation monitoring and population protection

on maintaining the estimated risk below a threshold with respect to the metric used. We

analyzed two frequently employed metrics for decision making: (1) the Increased lifetime

Cancer Risk (ILCR), and (2) the exceedance of Maximum Contaminant Levels (MCL).

ILCR for an Exposure to a Chemical Mixture This work seeks to quantify the

risk of cancer from a long-term exposure to the mixture of chlorinated solvents along the
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contaminated aquifer after a DNAPL spill and reactive transport into a heterogeneous

porous media. The threat to human health were evaluated from the temporal evolution

of the contamination concentrations through integrated breakthrough curves obtained at

a series of vertical control planes. The quantification of the human health risk follows

the guidance of the Environmantal Protection Agency (EPA) [1989] that describes the

carcinogenic health risk as a Poisson model for individual cancer occurrence. Our analysis

focuses exclusively on the e↵ective threat posed by exposure to the chemical mixture of

chlorinated solvents (RT) that can be approximated by a simple addition of the individual

cancer risk associated with each of these compounds (PCE, TCE, DCE and VC) [Speek,

1981], i.e.

RT(x) =
4X

i=1

Ri(x). (4.10)

where Ri(x) is the incremental lifetime cancer risk (ILCR) due to the exposure to the

chemical i at a given longitudinal position of the control plane x. The individual ILCR

is given mathematically by

Ri(x) = 1� exp[�ADDi(x)⇥ CPFi]. (4.11)

The ILCR considers the toxicity of the contaminant i through the metabolized cancer

potency factor CPFi [kg d/mg], and the exposure by direct ingestion of the contaminant

i through the average daily dose ADDi [mg/(kg d)], given by

ADDi(x) = c̄i(x)


IR

BW

�
ED ⇥ EF

AT
, (4.12)

where IR is the ingestion rate of water [L/d], BW is the body weight [kg], AT is the

expected lifetime [d], ED is the exposure duration [y], and EF is the daily exposure

frequency [d/y]. We assume these behavioral and exposure parameters to be constant and

define them in Table 4.1. We focused more specifically on c̄i [mg/L], the critical (flux-

averaged) concentration of the pollutant i. This key factor of the average daily dose can

be regarded as a critical maximum running averaged concentration of the concentration

breakthrough curve obtained at the control plane located in x over the exposure duration

ED [Maxwell and Kastenberg, 1999]. Formally, c̄i is estimated by
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c̄i(x) = max
t>0

⇢
1

ED

Z t+ED

t
ci(⌧ ;x)d⌧

�
. (4.13)

In case of uncertain hydraulic properties, c̄i is described as random. The distribution of

which controls the resulting ILCR distribution.

Exceedance of MCLs When the quantification of the risk of cancer occurrence is not

mandatory, stake-holders can base the remediation e↵ort on maintaining concentrations

below MCLs, i.e. the legal threshold limit of a contaminant concentration permitted in

groundwater intended for human consumption. Under uncertain conditions, the monitor-

ing of the threshold satisfaction is described stochastically through the estimation of the

probability to exceed the MCLs associated with the chemical species i, i.e.

⇠ci(x, t) = Prob[ci(t, x) > MCLi]. (4.14)

One of the main goals of the risk assessor is to locate areas of elevated risk. These

areas will be denoted as hot spots. When the ILCR is a temporally integrative metric,

⇠ci preserves the temporality of the problem. In this case, a hot spot will indicate the

longitudinal interval in which the probability of exceedance reaches a large value at a

given time. In addition, we define the temporal windows of persistence of the elevated

values as hot moments.

The statistical analysis of the two human health risk metrics spatial (for RT) and spa-

tiotemporal (for ⇠ci) propagation was performed for a set of scenarios in order to study

the impact of the degree of heterogeneity in the uncertain hydraulic conductivity field

and the impact of the DNAPL source zone discharge behavior.

4.3 Methodology

Stochastic Framework The uncertainty in the hydraulic conductivity was considered

through a stochastic framework, with the K-field regarded as a random space function.

The stochastic estimation of the human health risk has been evaluated using analytical
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Table 4.2: Physical parameters

Parameter Value
Flow problem

Average hydraulic gradient [�] 0.07
Longitudinal dispersivity, ↵L [m] 0.4
Transversal dispersivity in the horizontal plane, ↵TH [m] 0.04
Transversal dispersivity in the vertical plane, ↵TV [m] 0.01
Porosity, � [�] 0.3

Heterogeneous field
Variogram type Gaussian
Mean of Y (Y=lnK) [m2/d] 0.0
Variance of Y 1.0, 2.0, 4.0, 8.0
Integral scales, �x=�y=�z [m] 14.18

Domain discretization
Number of cells in x direction, nx 400
Number of cells in y direction, ny 220
Number of cells in z direction, nz 100
Cell dimension, �x ⇥�y ⇥�z [m⇥m⇥m] 4.0 ⇥ 4.0 ⇥ 4.0

methods in order to consider uncertain hydrogeological characteristics [e.g., Andričević

and Cvetković, 1996; de Barros and Rubin, 2008]. However, no existing analytical ap-

proach is applicable to reactive chemical mixtures in highly heterogeneous 3D aquifers. In

the present study, the human health risk was evaluated through numerical Monte Carlo

simulations. This enabled us to characterize the ILCR by its statistical moments and

probability density functions (pdf s), and the determination of the exceedance of MCLs

in a probabilistic manner.

Random hydraulic conductivity field The spatial structure of the log-conductivity,

Y (x) = lnK(x), was described by its random space function. The Y -field follows

a multi-Gaussian random space function model with an isotropic Gaussian covariance

function characterized by a mean of zero and an integral scale � of 14.18 m. The

impact of the degree of heterogeneity was investigated considering four variances of

Y : �2
Y = {1.0, 2.0, 4.0, 8.0}. The domain was finely discretized into 8 million cells,

(400⇥ 200⇥ 100), each cell being a cube of 64 m3 (4.0⇥ 4.0⇥ 4.0 m). See Table 4.2.
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Table 4.3: Biochemical parameters

Parameter Value
pce tce dce vc

First order decay, ki [d�1] 0.0025 0.002 0.0015 0.001
Yield coe�cient, yi/j [mol mol�1] ⇥ 0.79 0.74 0.64
Retardation factor, Ri [�] 7.1 2.9 2.8 1.4

Flow and reactive transport For each of the 500 stochastically pre-generated equiprob-

able Y -fields, the Monte Carlo scheme consisted of three main steps: (1) solving the flow

problem; (2) solving the reactive-transport problem (Eq. 4.2); and (3) estimating the

corresponding RT and spatiotemporal windows of exceedance of the MCLs. The flow

equation (Eq. 4.1) was solved by means of the finite di↵erence code MODFLOW [Har-

baugh et al., 2000]. The reactive-transport of the four reactive compounds PCE, TCE,

DCE and VC was then solved making use of the e�cient random-walk particle-tracking

code rw3d developed by Fernàndez-Garcia et al. [2005a] and subsequently adapted to

first-order decay network simulation by Henri and Fernàndez-Garcia [2014].

The numerical method splits the reactive plumes into a large number of moving parti-

cles. Each particle is associated with a species state that evolves in time in accordance

with the biochemical conditions. It uses the velocity field previously resolved to advec-

tivally move particles, and disturbs the motion by a random displacement in order to

simulate dispersion [Salamon et al., 2006a]. Henri and Fernàndez-Garcia [2014] contains

more information on numerical details and model e�ciency and accuracy. Transport was

controlled by a spatially homogeneous porosity � of 0.3 and a longitudinal, horizontal

transverse and vertical transverse dispersivity of 0.4, 0.04 and 0.01, respectively (Table

4.2). Our selected values for the reaction rates (ki) are within the range of first-order

decay rates recorded by the [Environmantal Protection Agency (EPA), 1999]. The re-

tardation factors were chosen according to the di↵erences in mobility between the four

chlorinated solvents [Lu et al., 2011] (Table 4.3).

Source zone A large number of PCE particles (105) was uniformly and instantaneously

released from a rectangular 2D source area Asz of dimension 6.8�⇥3.4� (in the y-z plane).

This source area is perpendicular to the mean flow. From this pulse injection, the first
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Table 4.4: Source zone mass transfer parameters

Parameter Value
Initial concentration, C0 [g.m�3] 0.1
Initial mass, M0 [g] 3⇥ 105

Degradation rate, �s [d�1] 5⇥ 10�5

Volumetric discharge Qsz [m3.d�1] depends on K-field
Power law � [�] 0.25, 0.5, . . . , 4.0

arrival time of particles passing through a set of control planes were recorded to estimate

cumulative breakthrough curves of the flux-averaged concentrations, chi (t;x).

The flux-averaged concentrations resulting from the release of DNAPL expressed in (Eq.

4.5) were simulated using the principle of superposition that states that

ci(t;x) =

Z t

0
cs(⌧)c

�
i (t� ⌧ ;x)d⌧, (4.15)

where c�i is the Dirac-input solution of the flux-averaged concentrations for species i. For

numerical purposes, the source term can be discretized in step functions to give

cs(t) = c0H(t) +
X

j=1

�cs,jH(t� tj),

when �cs,j = cs,j�cs,j�1 and H(t) is the Heaviside step function. The principle of super-

position (Eq. 4.15) can now be written in terms of the estimated cumulative breakthrough

curves as

ci(t;x) = c0c
h
i (t;x) +

tj<tX

j=1

�cs,jc
h
i (t� tj ;x). (4.16)

The initial concentration of PCE in the source zone was fixed at 0.1 g.m3, for an ini-

tial total mass of 300 kg. Moreover, the chlorinated solvent was a↵ected by an in-situ

biodegradation fixed at the rate of 5 ⇥ 10�5 d�1. Source zone parameters are shown

in Table 4.4. The sensitivity analysis concerns the power exponent of the mass transfer

model (Eq. 4.4) and the fraction of ganglia and pools in the two-domain mass transfer

model (Eq. 4.6). The impact of these two parameters on the source concentration is

shown in Figure 4.2.
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Figure 4.2: Temporal evolution of the source zone concentrations for (a) a set of power ex-
ponent of the simple mass transfer model; and (b) for a set fraction of ganglia for a bimodal

source zone mass transfer model.

4.4 Statistical Assessment of the Impact of the DNAPL

Mass Release on the Human Health Risk

Results from the simulations are displayed in this section with regard to the following

organization: First, the observed impact of the power exponent of the DNAPL source-zone

mass-transfer model (reflecting the DNAPL architecture) is shown both on the probability

of exceedence of the MCLs (in section 4.4.1) and on the excepted value and the probability

density function of the total ILCR (in section 4.4.2). Secondly, the potential impact of

a two-domain style mass release model on the total ILCR is described (in section 4.4.3).

Results are presented in terms of dimensionless spatial and temporal variables normalizing
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the longitudinal distance from the injection by the integral scale as

⇣ =
x� xinj

�
,

and normalizing the elapsed time by an approximate time needed to travel an integral

scale, i.e.

⌧ =
tKG J

��
,

where KG is the geometric mean of the hydraulic conductivity and J is the hydraulic

gradient.

4.4.1 Impact of a power mass transfer on the probabilities to exceed

MCLs

The first risk metric that we analyze is the risk of exceedence of the Maximum Concen-

tration Levels, i.e. ⇠ci(x; t) = Prob[ci(t;x) > MCLi]. The hot spots e.g. spatial ranges

in which high values of ⇠ci are predicted and their temporal persistence (hot moments)

are identified through a useful visualization tool introduced in Henri et al. [2015]. Hot

spots and hot moments are shown in Figures 4.3 and 4.4. This visualization tool displays

the spatiotemporal propagation of the risk by contour-mapping ⇠ci with the normalized

longitudinal distances in the horizontal-axis and the normalized time in vertical-axis.

It should be noted that despite the lower concentrations expected for the last subspecies

of the reaction chain, the probability that VC concentrations exceed the MCL is high

over considerable distance and time (see Figures 4.3 and 4.4, frames d,h,l) because of

the low concentration threshold. Results show that the DNAPL source zone architecture

(or power exponent of mass-transfer) exerts a significant influence on the magnitude of

the probability of exceedance for any species of the mixture. An increase in the power

exponent is translated into a reduction of the global threat where hot spots are less

spread and hot moments are less persistent. In other words, an underestimation of the

pooling process of the DNAPL (increased � exponent) in the source zone leads to an

underestimation of the threat posed by the contamination. It is interesting to note that

despite a change in the risk amplitude the location of the peak of ⇠ci appears to be retained

for all � values.
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Figure 4.3: Risk of exceedance of the MCLs of PCE (first row), TCE (second row), DCE (third
row) and VC (fourth row) as a function of the normalized time ⌧ and the normalized distance
⌘ for variance of Y of 1.0 and a mass release power coe�cient of 0.5 (frames a-d), 1.5 (frames

e-h) and 3.0 (i-l).

As expected and as shown in Henri et al. [2015], the degree of heterogeneity in K plays

a major role in risk dilution. Comparison of Figures 4.3 and 4.4 illustrates how ⇠ci(⇣; ⌧)

varies from a mildly (�2
Y = 1.0) to a highly heterogeneous (�2

Y = 4.0) Y -field. It may

be observed that the magnitude of ⇠ci decreases when �Y increases. However, in this

scenario, a non-negligible risk is observed over a large portion of aquifer due to an increased

macrodispersion. In other words, hot spots are wider and hot moments are longer for a

low degree of heterogeneity, but this intense and spatiotemporally focused risk becomes

rapidly negligible when the plume moves downstream of the hot spots.
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Figure 4.4: Risk of exceedance of the MCLs of PCE (first row), TCE (second row), DCE (third
row) and VC (fourth row) as a function of the normalized time ⌧ and the normalized distance
⌘ for variance of Y of 4.0 and a mass release power coe�cient of 0.5 (frames a-d), 1.5 (frames

e-h) and 3.0 (i-l).

4.4.2 Impact of a power mass transfer on the total ILCR

Expected total ILCR Let us now focus on the second risk metric: the Increase Life

Time Cancer Risk, with e↵ective value RT. For the record, the ILCR is a temporally

integrative risk metric, i.e. only its spatial propagation is analyzed. Figure 4.5 displays

the evolution of the expected (i.e., average ensemble of the) total ILCR along the aquifer

longitudinal profile as a result of the simulations with �2
Y of 1.0 and 4.0 and using a set of

16 � values ranging from 0.25 to 4.0. Moreover, the profile of RT is shown for a temporal

evolution of the DNAPL source zone concentrations following a Heaviside step function,

i.e. cs(t) = c0 until the exhaustion of the initial mass. Note that this Heaviside function
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can be regarded as a result of the power mass depletion model with a � exponent tending

to 0.
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Figure 4.5: Impact of the mass release power coe�cient on the expected total ILCR from the
chlorinated solvents reactive-transport in (a) a mildly and (b) highly heterogeneous hydraulic

conductivity field.

The longitudinal profile of the expected RT displays a two-phase behavior characteristic of

a chemical mixture with subproducts presenting a higher toxicity than the parent species.

The total ILCR increases first in the subspecies zones of production, reaches a peak when

the rate production/destruction is similar, and then decreases when the toxic subspecies

are mostly destroyed (see Henri et al. [2015]). Regardless of the degree of heterogeneity

in the flow field, the mass release coe�cient � is shown to control the amplitude of the

total risk. Here again, the presence of ganglia (increased �) is shown to be beneficial
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by decreasing the amplitude of the total risk signal along the aquifer profile. In global

terms, increasing the degree of heterogeneity in the hydraulic conductivity field tends to

decrease this magnitude of the threat (compare frames a and b of the Figure 4.5).

On the other hand, it is interesting to observe that the exponent � does not have an impact

on the critical distance xc, i.e. the distance from the injection where the maximum risk is

observed (hot spot). As shown in Henri et al. [2015], for a first-order decay network, the

peak of expected total ILCR is predictable when a predefined toxicity-based Damköhler

(DR) reaches 1. This useful metric is defined as the ratio between t̄, the average time

needed for a conservative tracer to reach a sensitive location, and t̄c, a mean arrival time

needed for a tracer to attain the critical distance (where the total ILCR is expected to

reach a maximum value), i.e.

DR =
t̄

t̄c
. (4.17)

The critical time t̄c depends on risk parameters (toxicity, exposure duration and frequency,

physiological properties in individuals) and reaction parameters (decay, retardation) and

can be evaluated analytically, as

t̄c = argmax

(
IR⇥ ED ⇥ EF

BW ⇥AT

4X

i=1

CPFi Sije
�kj t̄Re

i (t̄)/RjS�1
j1

)
, (4.18)

where Re
i is a time dependent e↵ective retardation factor related to a species transition

PCE ! species i, and S is a matrix composed of the eigenvalues of a predefined reaction

matrix. Readers are referred to Henri and Fernàndez-Garcia [2014] for more information.

As stated in Henri et al. [2015], critical distance and time can be solved from a Dirac-

input source (or pulse injection) as the source term is assumed not to a↵ect the critical

distance. This statement is confirmed by the present results. The expected value of the

toxicity-based Damköhler corresponding to the control plane located at the x position is

shown in the upper axis of Figure 4.5. It may be observed that the peak of the expected

total ILCR is reached when DR approaches 1, which is independent of the value given to

�2
Y or to the PCE mass transfer power exponent �.
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Scaling factor When the ascending and descending phases of the risk signal along the

aquifer longitudinal profile are explained (and even well predicted) by the biochemical and

toxicological conditions, the changes of amplitude seem to be a more complex phenomenon

depending inter alia on the mass depletion mode (�) and on the degree heterogeneity in

the flow field. The dependence of the total ILCR amplitude on the DNAPL mass release

mode can be investigated by observing the scaling factor (�) between R(H)
T , the total

ILCR value obtained for a mass release following a Heaviside step function (� ⇡ 0), and

R(�)
T , the total ILCR value obtained for a given mass depletion power exponent, i.e.

� =
RT

(H)

RT
(�)

. (4.19)

The Heaviside function is an easily conceptualized model to describe the temporal evolu-

tion of the source zone concentration that produces the highest cancer risk values (“worst-

case scenario”).
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Figure 4.6: Expected value (a) and variance (b) of the scaling factor � as a function of the
power exponent of the DNAPL mass transfer model � for a variance of the hydraulic conductivity

of 0.0 (homogeneous case), 1.0, 2.0, 4.0 and 8.0. q

Interestingly, � seems to be relatively constant all along the aquifer longitudinal profile.

The scaling factor is calculated for each simulation. Figure 4.6 shows its ensemble mean
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(frame a) and variance (frame b) as a function of the source discharge for di↵erent vari-

ances of the Y -field. The more the power exponent of the mass transfer model increases,

the more the total ILCR deviates from the risk signal obtained for a step injection mode.

On the other hand, the sensitivity of the scaling factor to the source zone mass release

decreases with the degree of heterogeneity. These observations can be expressed by the

following regression model obtained over all realizations with equal �2
Y

� = a1�+ a2(exp(��/a3)� 1) + ✏, (4.20)

where a1, a2 and a3 are fitting parameters depending on �2
Y . This dependence is illustrated

in Figure 4.6c. The same Figure 4.6c shows that the coe�cient of determination of the

regression r2 decreases with the degree of heterogeneity, but remains acceptable in all

cases (> 0.6). Interestingly, the regression model fits perfectly (i.e., r2 = 1) the ensemble

mean behavior, which reflects a symmetrical disturbance ✏ around the mean. Moreover,

note that the relationship between � and � follows a simple linear regression model:

� = a�� b+ ✏ when � > 1 (ganglia).

Probability density functions of R
T

The total risk is now characterized by its

non-parametric pdf s for a set of mass depletion exponents and two di↵erent degrees of

heterogeneity (�2
Y = 1.0 and 4.0) at three normalized distances from the source zone (⇣

= 3.5, 25.0 and 60.0) as shown in Figure 4.7. The positive skewness observed near the

source zone (Figure 4.7a,d) is a typical asymmetry of total risk pdf s in case of chemical

mixtures. This is caused by the high probability of occurrence of arrival times lower than

the characteristic time required for the production of the highly toxic subspecies at short

distances [Henri et al., 2015].

More importantly, the results depicted in Figure 4.7 demonstrates the substantial impact

of the source zone architecture on the risk-pdf s shape. The presence of pools in the source

zone (low � exponents) tends to stretch the pdf s, increasing both mean and variance of

the risk distribution. This e↵ect seems more pronounced at mid-distance, where total

ILCRs are the highest (Figure 4.7b,e). These observations are true for both degrees of

heterogeneity in the K-field. The global impact of �2
Y produces an increase in the dilution
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Figure 4.7: Probability Density Functions of the total ILCR for a series of mass release power
coe�cient at the control planes located at the normalized distances from the injection ⇠ =3.5,
25 and 60, and for a mildly (left hand) and a highly (right hand) heterogeneous hydraulic

conductivity field.
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of the risk, i.e. an apparent increase in the total risk variance (compare frames a-c and

d-f in Figure 4.7).
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Figure 4.8: Impact of the fraction of ganglia on the expected total ILCR from chlorinated
solvents simulations in a mildly heterogeneous hydraulic conductivity field (�2

Y = 1.0) using
�p = 0.5 and �g = 1.5.

4.4.3 Impact of a Two-domain style mass release model on the total

ILCR

Expected R
T

Next, we focus on the second mass depletion model accounting for the

presence of both ganglia and pools in the source zone (Eq. 4.6 in subsection 4.2.2). Figure

4.8 shows the e↵ect of applying di↵erent fractions of ganglia (fg) on the propagation of

the expected total ILCR along the aquifer longitudinal profile. Typically, by increasing

fg, the total risk moves linearly from the risk signal corresponding to the sole presence of

pools (R
(�g)
T ) in the source zone to the risk signal corresponding to the sole presence of

ganglia (R
(�p)
T ). The following simple additive relation is then observed:

RT = R
(�g)
T fg +R

(�p)
T fp. (4.21)

Using this relation, a large number of ganglia/pool fraction can be tested without signif-

icant computational cost when R
(�g)
T and R

(�p)
T are known.
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Figure 4.9: Probability Density Functions of the total ILCR for a series of Ganglia To Pool
ratio at control planes located at the normalized distances from the injection ⇠ =3.5, 25 and
60, and for a mildly (left hand) and a highly (right hand) heterogeneous hydraulic conductivity

field (respectively �

2
Y = 1.0 and �

2
Y = 4.0).
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Figure 4.10: Probability Density Functions of the total ILCR considering a random Ganglia
To Pool (GTP) ratio taken from a normal distribution (left hand, frames a, b and c) and from
a uniform distribution (right hand, frames d, e, f) at control planes located at the normal-
ized distances from the injection ⇠ =3.5, 25 and 60, and for a mildly heterogeneous hydraulic

conductivity field (�2
Y = 1.0). Both distribution of the GTPs respects a mean of 5.0.
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Ganglia to Pool ratio and Probability density functions of R
T

This useful

observation (Eq. 4.21) allows us to easily translate the expression of ganglia and pool

fractions in terms of the more concise ganglia to pool (GTP) ratio from the pre-estimation

of R
(�g)
T and R

(�p)
T . Figure 4.9 shows the impact of the GTP ratio on the total risk pdf s.

The more the GTP ratio tends to zero (i.e., the sole presence of pools in the source zone),

the more the typical pdf s asymmetry is accentuated, with an increased tailing towards

high risk values, especially near the source zone (Figure 4.9d). Once more, this spreading

phenomenon is logically exaggerated by the heterogeneity in the flow field.

The GTP ratio can be treated as a random variable owing to the low computational cost

of a total risk profile evaluation while using the linear relation expressed in Eq. 4.21.

A total of 105 random values of GTP ratio were therefore randomly generated from a

normal and a uniform distribution, both using a mean of 5.0. Figure 4.10 displays the

resulting total risk pdf s. The randomization of the ganglia to pool ratio does not seem

to have an impact on risk distributions, adding a simple noise around the mean risk.

4.5 Source Zone E�ciency

The above results highlight the temporal evolution of the contaminant mass release as a

clear controlling factor of the human health risk. However, the source zone characteriza-

tion involves additional complex processes such as the hydraulic conditions in its vicinity.

In this section we investigate the potential impact of the water flux passing through the

source zone. For each realization ir, we defined the corresponding source zone e�ciency

⌘ir as the ratio between the volumetric water flux crossing the source zone Qsz,ir and an

expected flow rate hQszi defined as the average over all realizations, i.e.

⌘ir =
Qsz,ir

hQszi
. (4.22)

Introduced by de Barros and Nowak [2010], the metric above (Eq. 4.22) is an indicator

of the relative flux intensity passing through the source zone. Figure 4.11 displays this

potential relationship between the total risk and the source zone e�ciency.

Interestingly, an apparent power law correlation (RT = ↵ ⌘�) can be observed. The

negative correlation implies a beneficial e↵ect of ⌘ on the system, i.e. the total ILCR
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Figure 4.11: Relationship between the source zone e�ciency and the total increase lifetime
cancer risk obtained for each simulation at selected control planes. Right hand figures (frames
a and c) shows the relationship for a power DNAPL mass transfer exponent � of 0.5 (pool),
left hand (frames b and d) for a � of 1.5 (ganglia) for a mildly (top) and a highly (bottom)

heterogeneous hydraulic conductivity field (respectively �

2
Y = 1.0 and �

2
Y = 4.0).

decreases when the source e�ciency increases. By performing a regression analysis, we

obtain the power exponent of the data set in Figure 4.11. The power exponent informs us

about the degree of sensitivity of RT to ⌘ and the regression coe�cient of determination

can be seen as an indicator of the degree of correlation. Figure 4.12 expresses total risks

that are highly sensitive to the source zone e�ciency at short distances. The degree

of correlation between the risk and the water flux passing through the source zone is

relatively high at short traveled distances and decreases downstream of the hot spot

(near DR > 1). Surprisingly, the degree of correlation is highest near the hot spot location,

where the e↵ective threat to human health is the highest. Both sensitivity and correlation

between the two variables are mitigated by increasing the heterogeneity in the Y-field
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(Figure 4.12b). On the other hand, conceptualizing the source zone by ganglia (� = 1.5)

tends to decrease the dependence of the total risk on the source zone e�ciency (lower

absolute value of the � power law exponent and of the coe�cient of determination).
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Figure 4.12: Power regression coe�cient as a function of the normalized traveled distance
(bottom x-axis) and corresponding mean toxicity-based Damköhler (top x-axis) for a power
DNAPL mass transfer exponent � of 0.5 (solid line) and 1.5 (dashed line) and for a mildly (top)
and a highly (bottom) heterogeneous hydraulic conductivity field (respectively �

2
Y = 1.0 and

�

2
Y = 4.0). Grey lines shows the coe�cient of determination of the regression (right hand axis).

As shown in Henri et al. [2015], plume travel times control the e↵ective risk attributed

to a chemical mixture in a non-trivial manner. To sum up, increasing the advective

time will result (1) in an increase in the total risk beyond the mean hot spot location

characterized by a toxicity-based Damkölher number below 1 (zone of production of highly

toxic subspecies), and (2) in a decrease in the threat in zones with DR > 1 above 1,

between the source zone and the mean hot spot location (zone of destruction of highly
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toxic subspecies). Increasing the source zone e�ciency will generate lower travel times in

areas of production of daughter compounds (DR > 1), which will increase the probability

to decrease the risk near the source zone. This decrease in risk is also observed when the

plume moves downstream but vanishes progressively owing to the spread of the plume

and to the degradation of ⌘ as a good indicator of travel time.
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Figure 4.13: Probability Density Functions of the total ILCR conditioned to a source zone
e�ciency lower than 1 (dashed line) and higher than 1 (solid line) at control planes located
at the normalized distances from the injection ⇠ =3.5, 25 and 60, and for a mildly (left hand)
and a highly (right hand) heterogeneous hydraulic conductivity field (respectively �

2
Y = 1.0 and

�

2
Y = 4.0).
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Conditional probability density functions of R
T

In order to illustrate the poten-

tial importance of the water flux crossing the source zone in the total ILCR profile, we

conditioned the pdf s of RT on ⌘, and characterized the risk distribution for a source zone

e�ciency with ⌘ < 1 and ⌘ > 1.

The analysis was performed using the set of simulations related to a pool fully-dominated

source zone (� = 0.5). Figure 4.13 shows the clear di↵erence of total risk distribution for

the two conditions. Relatively high water flux passing through the DNAPL source zone

leads to lower total risk values (as explained above) with a clear di↵erence at the hot spot

location (Figure 4.13b,e). Total risk pdf s conditioned by a ⌘ > 1 also display a lower

variance, e.g. less uncertainty, especially at short distances from the source zone. Again,

the non triviality of the impact of travel times on the e↵ective ILCR in case of chemical

mixtures accounts for these observations.

4.6 Conclusions

This work investigates the human health risk response to DNAPL source zone behavior.

The human health risk due to the release of the chlorinated solvent PCE and to the reac-

tive transport of its carcinogenic biodegradation products was characterized stochastically

through Monte Carlo simulations considering uncertain hydraulic properties.

DNAPL mass release and Expected Risk, Uncertainty Results show that mass

release models control significantly the human health risk. The statistical analysis of

the increased lifetime cancer risk due to a mixture of chlorinated solvents demonstrated a

lower threat when the DNAPL source zone was mostly formed of ganglia. The detrimental

impact of the presence of DNAPL pools is also clearly shown while using the exceedence

of MCLs as a risk metric. Moreover, we show that in the presence of network reaction

systems, the DNAPL mass release mode, when modeled by an upscaled contaminant

mass transfer from a source zone, does not a↵ect the hot spot location (area of higher

risk). We confirm the observations made in [Henri et al., 2015] that highlight a risk-

based Damköhler number (depending on travel time and on species-dependent reaction

kinetics and toxicities) as the right metric to predict hot spot locations. The amplitude
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of the total risk follows a scaling factor sensitive to both source zone mass release and

heterogeneity in the hydraulic conductivity. Moreover, we show that the conceptualization

of DNAPL mass release has a significant impact on the uncertainty of the human health

risk estimation. Globally, an increase in the pooling-e↵ect decreases the reliability of the

expected risk values.

Impacts of a Two-domain Mass Depletion Model The propagation of the e↵ec-

tive lifetime cancer risk is then analyzed as a result of a simplified two-domain DNAPL

mass depletion model. Outputs show that the risk profile resulting from a source zone

constituted by ganglia and pools can be evaluated by a simple linear combination of the

risk profile solutions of a pool dominated source zone and a ganglia dominated source

zone. Interestingly, results display a higher uncertainty in the risk prediction when the

proportion of pool in the source zone is increased. Moreover, the ganglia to pool ratio

is considered for the first time as an uncertain parameter. We show that this additional

source of uncertainty does not have a significant impact on a lifetime cancer risk prediction

based on an expected ganglia-to-pool ratio.

The Role of Source-zone E�ciency As a complement to the above analysis of the

low statistical moments of risk, our work highlights the potential impact of the water flux

passing through the source zone on the e↵ective increased lifetime cancer risk due to a

reactive chemical mixture. Counter-intuitively, the source zone e�ciency is shown to have

a beneficial e↵ect on the risk. The total risk tends indeed to decrease for high source zone

e�ciency due to the consequential decrease in travel times near the source zone, which

may limit the production of highly toxic daughter products.



CONCLUSIONS

The increasing presence of toxic chemicals released in the subsurface has led to a rapid

growth of social concerns and the need to develop and employ models that can predict the

impact of groundwater contamination on human health risk under uncertainty. Monitored

natural attenuation is a common remediation action in many contamination cases, but

can lead to the production of subspecies of distinct toxicity that may pose challenges

in pollution management strategies. The actual risk that these contaminants pose to

human health depends on the interplay between the complex structure of the geological

media and the kinetic and toxicity of each pollutant byproduct. Modeling multispecies

reactive transport in natural systems with strong heterogeneities at divers scales and

complex biochemical reactions is therefore a major challenge for assessing accurately the

risk posed by groundwater polluted sites with organic and inorganic contaminants. The

following paragraphs will conclude this thesis by exposing the advances done in (1) the

development of e�cient and stable numerical solutions to model the fate and transport

of multispecies biochemical systems in heterogeneous porous media, and (2) the risk

assessment of complex contamination (by the presence of multispecies reactive systems

or non-trivial source zone behavior) under heterogeneous and uncertain conditions.
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Results Summary

Numerical methods The first chapter presents a random-walk particle tracking method

capable to e�ciently simulating the motion of particles a↵ected by first-order network re-

actions in three-dimensional systems, which are represented by spatially variable physical

and biochemical coe�cients described at high resolution. The approach is based on the

the development of transition probabilities that describe the likelihood that particles be-

longing to a given species and location at a given time will be transformed into and moved

to another species and location afterward. The method is fully coupled with reactions, free

of numerical dispersion and overcomes the inherent numerical problems stemming from

the incorporation of heterogeneities to reaction transport codes. In doing this, we demon-

strate that the motion of particles follows a standard random-walk with time-dependent

e↵ective retardation and dispersion parameters that depend on the initial and final chemi-

cal state of the particle. Moreover, explicit analytic solutions of the transition probability

matrix and related particle motions are provided for serial reactions. An example of the

e↵ect of heterogeneity on the dechlorination of organic solvents in a three-dimensional

random porous media shows that the power-law behavior typically observed in conserva-

tion tracers breakthrough curves can be largely compromised by the e↵ect of biochemical

reactions.

In the second chapter, we present a versatile particle method able to simulate contaminant

plumes moved by advection-dispersion and a↵ected by network reactions and multirate

mass transfer processes under spatially heterogeneous conditions. The stochastic approach

is based on the derivation of the probability that a particle being at a certain position,

specie and mobility zone will move into another specie and/or zone. The particle method

is free of numerical dispersion and overcomes the inherent numerical problems stemming

from the incorporation of heterogeneities into reactive transport codes based on Eulerian

approaches. We attempt to isolate the specific e↵ect of both processes by proceeding to a

sensitivity analysis and show this way the importance of their consideration. Illustratively,

we apply our method to model the sequential degradation of chlorinated solvents (PCE !
TCE ! DCE ! VC ! 0) into a finely discretized field and show how spatially variable

coe�cients of bio-decay and mass transfer a↵ect the spatial and temporal behavior of the

four reactive plumes.
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Risk Assessment The third chapter addresses human health risk for chemical mix-

tures (such as chlorinated solvents) under uncertainty through high resolution three-

dimensional numerical simulations. We systematically investigate the interaction between

aquifer heterogeneity, flow connectivity, contaminant injection model and chemical toxic-

ity in the probabilistic characterization of health risk. We illustrate how chemical-specific

travel times control the regime of the expected risk and its corresponding uncertainties.

Results indicate conditions where preferential flow paths can favor the reduction of the

overall risk of the chemical mixture. The overall human risk response to aquifer con-

nectivity is shown to be non-trivial for multispecies transport. This non-triviality is a

result of the interaction between aquifer heterogeneity and chemical toxicity. To quantify

the joint e↵ect of connectivity and toxicity in health risk, we propose a toxicity-based

Damköhler number. Furthermore, we provide a statistical characterization in terms of

low-order moments and the probability density function of the individual and total risks.

To finish, the fourth and last chapter focuses on the impact of the DNAPL release mode

on the human health risk propagation along the aquifer under uncertain conditions. We

simulate the release and the transport of the chlorinated solvent Perchloroethylene and its

carcinogenic degradation products in randomly heterogeneous porous media. The human

health risk posed by the chemical mixture of these contaminants is characterized by the

low-order statistics and the probability density function of common risk metrics. We

show that the zone of high risk (hot spot) is independent of the DNAPL mass release

mode, and that the risk amplitude is mostly controlled by heterogeneities and by the

source zone architecture. The risk is lower and less uncertain when the source zone is

formed mostly by ganglia than by pools. We also illustrate how the source zone e�ciency

(intensity of the water flux crossing the source zone) a↵ects the risk posed by an exposure

to the chemical mixture. Results display that high source zone e�ciencies are counter-

intuitively beneficial, decreasing the risk because of a reduction in the time available for

the production of the highly toxic subspecies.

Opening for Future Researches

This thesis contributed to the improvement of risk management under complex con-

tamination conditions. A great (and sometimes frustrating) attribute of sciences is the
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inevitable avalanche of questions arising from the answering of a single one. After this

thesis, the issues stay therefore numerous and the challenge exiting. Here are few thoughts

and example of remaining topics in line with the researches exposed in this dissertation:

• Near-future evolution of RW3D. The random walk particle tracking code RW3D

can now handle a wide range of simulation scenarios (any combination of single or

multirate mass transfer, linear sorption, serial or generic first-order decay network

reaction, . . . ). You will find in Appendix E a quick description of the algorithm

architecture and required inputs. One of the main limitations of RW3D is the im-

possibility to impose temporal variability in the groundwater flux and in the biogoe-

chemical system. One could say that this lack reflects the actual philosophy of the

“stochastic hydrogeology community” that focuses its e↵orts more on space than on

time. Incorporating transient water flux and biochemical conditions in the particle

tracking code will open great opportunities (1) to increase our understanding of the

subsurface contamination temporality and (2) to assess the impact of this tempo-

rality (in a stochastic manner?) on populations exposure to contaminants. It is also

planed to incorporate non-linear bimolecular reactions in RW3D. This will allow

a more sophisticated simulation of biodegradation processes based per instance on

Michaelis-Menten-Monod type of models. Despite the potential subsequent lose of

e�ciency, this may initiate interesting investigations to better understand the com-

plex interaction between hetereogeneities in hydrodynamic properties of the porous

media and the transport of reactive contaminants.

• Application to in-situ conditions. Through the newly developed numerical methods

to model biochemical reactive systems in heterogeneous porous media, we aim to

propose an e�cient and applicable alternative to simulate complex contamination

scenarios in a stochastic manner. The conceptual model presents however impor-

tant simplification such as the approximation of biochemical reactions by first-order

decay networks. The validation of our approach should obviously pass by an appli-

cation to a real and well monitored contaminated site.

• Spatial variability of biogeochemical conditions. The presence of a strong degree

of heterogeneity in the biogoechimical conditions within aquifers is more and more

documented, and few studies already shown the significant impact of this spatial
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variability on the solute transport. The chapter 3 of the thesis uses the assumption

of a negative correlation between hydraulic conductivity and first-order decay rates.

However, the controlling factors of the biochemical spatial variability are not fully

understood. More research e↵ort should be allocated to the better understanding

of this additional source of spatial variability. However, regarding the multitude

of processes engaged in biogeochemical reactions, uncertainties in the spatial dis-

tribution of the parameters will most certainly remain. In this context, adapted

stochastic approaches may be developed.
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APPENDIX A

DERIVATION OF FIRST SPATIAL MOMENTS

From equation (1.16), the solution matrix of the absolute first spatial moment (x-direction)

satisfies the following system of ordinary di↵erential equations

dXx

dt
=

q0x
�
R�1P(t) +KXx, (A.1)

subject to the initial condition

Xx(t = 0) = 0 (A.2)

where the matrix Xx is the ns ⇥ ns absolute first spatial moment matrix. The matrix

R�1 is a diagonal matrix composed by the inverse of the retardation factors, and K is

the reaction matrix. The parameter q0x and � represent the particle Darcy velocity in

the x-direction and the porosity of the medium, respectively. P(t) is the species state

transition probability matrix. Defining the matrix Yx(t) by
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Yx(t) =
q0x
�
R�1P(t), (A.3)

leads to the following system of equations

dXx

dt
= Yx(t) +KXx, (A.4)

whose solution is

Xx(t) =

tZ

0

exp(K(t� s))Yx(s)ds. (A.5)

After the diagonalization of K by K = SK0S�1, the solution can be written as

Xx(t) =

tZ

0

S exp(K0(t� s))S�1Yx(s)ds, (A.6)

where S is the transformation matrix composed by the eigenvalues of the reaction matrix

K, and K0 is the diagonal matrix whose components are the eigenvalues of K. The

component Xx,ij of this matrix (A.6) is expressed as

Xx,ij(t) =
nsX

p,q=1

SipS
�1
pq

tZ

0

exp(K
0
pp(t� s))Yx,qj(s)ds, (A.7)

where

Yx,qj(s) =
q0x

�Rqq
Pqj(s). (A.8)

From (1.20), the species state transition probability matrix can also be expressed in terms

of the eigenvalues and eigenvectors of K by
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Pqj(s) =
X

r

Sqr exp(K 0
rrs)S

�1
rj . (A.9)

The first absolute moment of a particle plume that moves from species j to species i after

a time interval t can be obtained by respectively introducing (A.9) and (A.8) into (A.8)

and (A.7),

Xx,ij(t) =
q0xt

�

nsX

p,q,r=1

SipS�1
pq SqrS

�1
rj

Rqq
Fpr(t), (A.10)

where

Fpr(t) =
1

t

tZ

0

exp(K 0
pp(t� s)) exp(K 0

rrs)ds. (A.11)

The solution of this integral is

Fpr(t) =

8
>>><

>>>:

exp(K 0
ppt)� exp(K 0

rrt)

t (K 0
pp �K 0

rr)
, if p 6= r

exp(K 0
rrt), if p = r

(A.12)

Based on this, the normalized first absolute spatial moments can be written as

Aij,x(t) =
Xx,ij

Pij
=

q0xt

�Re
ij(t)

, (A.13)

where Re
ij(t) is an e↵ective retardation coe�cient defined by

1

Re
ij(t)

=
1

Pij(t)

nsX

p,q,r=1

SipS�1
pq SqrS

�1
rj

Rqq
Fpr(t). (A.14)





APPENDIX B

DERIVATION OF SECOND SPATIAL MOMENTS

From equation (1.17), the solution matrix of the absolute second spatial moment (xy-

component) satisfies the following system of ordinary di↵erential equations

d xy

dt
=

q0y
�
R�1Xx +

q0x
�
R�1Xy + 2DxyR

�1P+K xy, (B.1)

subject to the initial condition

 xy(t = 0) = 0 (B.2)

where the component  xy,ij represents the temporal evolution of the absolute second

moment of a particle plume originally belonging to species j and turning into species i in

the time interval t. Defining

Yxy(t) =
q0y
�
R�1Xx +

q0x
�
R�1Xy + 2DxyR

�1P, (B.3)
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we obtain the following inhomogeneous first-order linear di↵erential equation system

@ xy

@t
= Yxy(t) +K xy(t). (B.4)

The solution of (B.4) is

 xy(t) =

tZ

0

exp(K(t� s))Yxy(s)ds. (B.5)

After the diagonalization of K by K = SK0S�1, this solution can be written as

 xy(t) =

tZ

0

S exp(K0(t� s))S�1Yxy(s)ds, (B.6)

where S is the transformation matrix composed by the eigenvalues of the reaction matrix

K, and K0 is the diagonal matrix whose components are the eigenvalues of K. The

component  xy,ij of this matrix (B.6) can be expressed as

 xy,ij(t) =
nsX

a,b=1

SiaS
�1
ab

tZ

0

exp(K 0
aa(t� s))Yxy,bj(s)ds. (B.7)

From (B.3), the component Yxy,bj is

Yxy,bj(s) =
q0y

�Rbb
Xx,bj(s) +

q0x
�Rbb

Xy,bj(s) +
2Dxy

Rbb
Pbj(s). (B.8)

Substituting (A.9) and (A.10) into (B.8) and (B.7) we obtain

 xy,ij(t) = 2Dxyt
nsX

a,b,u=1

SiaS
�1
ab SbuS

�1
uj

Rbb
Fau(t)

+
2q0xq

0
yt

2

�2

nsX

a,b,p,q,r=1

SiaS
�1
ab SbpS�1

pq SqrS
�1
rj

RbbRqq
Hapr(t), (B.9)
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where Fau(t) is defined in (A.12) and Hapr(t) is

Hapr(t) =
1

t2

tZ

0

exp(K 0
aa(t� s))sFpr(s)ds. (B.10)

The solution of this integral can be written as

Hapr(t) =

8
>>><

>>>:

Fap(t)� Far(t)

t
�
K 0

pp �K 0
rr

� , if p 6= r

War(t), if p = r

(B.11)

where

War(t) =

8
>>><

>>>:

exp(K 0
rrt) [(K

0
rr �K 0

aa)t� 1] + exp(K 0
aat)

t2 (K 0
aa �K 0

rr)
2 , if a 6= r

exp(K 0
aat)/2, if a = r

(B.12)

Based on this, the normalized second absolute spatial moment can be written as

B0
xy,ij(t) =

2Dxy

Re
ij(t)

t+
2q0xq

0
y

�2Gij(t)
t2, (B.13)

where

Gij(t) = Pij(t)

0

@
nsX

a,b,p,q,r=1

SiaS
�1
ab SbpS�1

pq SqrS
�1
rj

RbbRqq
Hapr(t)

1

A
�1

. (B.14)

Knowing (1.22) and (A.13), the second central spatial moment is

Bxy,ij(t) =
2Dxy

Re
ij(t)

t+
2q0xq

0
y

�2Re
ij(t)

 
Re

ij(t)

Gij(t)
� 1

2Re
ij(t)

!
t2. (B.15)





APPENDIX C

ANALYTICAL DETERMINATION OF THE EIGENSYSTEM FOR A

SIMPLIFIED TWO-SPECIES AND DOUBLE POROSITY PROBLEM

Let us first recall the definition of our three dimensionless variables

⌧ =
km
Rm

t, (C.1)

� =
Rm kim
Rim km

, (C.2)

DaII =
km

↵Rm
, (C.3)

The governing equation (2.12)-(2.11) can be written in dimensionless form for a two-

species system a↵ected by a single rate mass transfer as:
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dµm
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d⌧
+

dµim
1

d⌧
= �µm

1 � �µim
1

dµim
1

d⌧
= Da�1

II �µ
m
1 �Da�1

II µ
im
1 � �µim

1

dµm
2

d⌧
+

dµim
2

d⌧
= µm

1 � µm
2 + �µim

1 � �µim
2

dµim
2

d⌧
= Da�1

II �µ
m
2 �Da�1

II µ
im
2 + �µim

1 � �µim
2

(C.4)

This system can be written in term of matrix as in (2.14) defining the architecture matrix

A and reaction matrix B as:

A =

2

666664

1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

3

777775
(C.5)

B =

2

666664

�1 �� 0 0

Da�1
II � �Da�1

II � � 0 0

1 � �1 ��

0 � Da�1
II � �Da�1

II � �

3

777775
, (C.6)

which give the matrix A�1B

A�1B =

2

666664

�Da�1
II � � 1 Da�1

II 0 0

Da�1
II � �Da�1

II � � 0 0

1 0 �Da�1
II � � 1 Da�1

II

0 � Da�1
II � �Da�1

II � �

3

777775
. (C.7)

The eigensytem of a such matrix can be obtained analytically. The four eigenvalues are

given by � =
h
�1 �1 �2 �2

iT
where
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�1 =
1

2

q
Da�2

II �
2 + 2Da�1

II

�
Da�1

II � �+ 1
�
� +

�
Da�1

II + �� 1
�2

+
1

2
(�� � 1)Da�1

II � �

2
� 1

2
,

�2 = �1

2

q
Da�2

II �
2 + 2Da�1

II

�
Da�1

II � �+ 1
�
� +

�
Da�1

II + �� 1
�2

+
1

2
(�� � 1)Da�1

II � �

2
� 1

2
.

The matrix of eigenvectors is defined by:

S =

2

666664

S11 0 S12 0

S21 0 S22 0

S31 0 S32 0

1 0 1 0

3

777775
(C.8)

where

S1i =
�iDa�1

II�
Da�1

II + �i + �
� �

Da�1
II � + �i + 1

�
 i

S2i =
�i�

Da�1
II + �i + �

�
 i

S3i =

��
Da�1

II � + �i + 2
�
�+Da�1

II + �i

�
Da�1

II

 i

after the definition of  i and �i as:

 i =
�
�Da�1

II � � �i � 1
�
�2 +

�
Da�2

II �
2 + ((� � 1)�i + 2� � 1)Da�1

II + �i + 1
�
�

+Da�2
II �,

�i =
��
Da�1

II � + �i + 1
�
�+ (1 + (� + 1)�i)

�
Da�1

II

�
+ �i

2 + �i

�
� (�+ 1)Da�2

II





APPENDIX D

THE TOTAL RISK CRITICAL TIME AND DISTANCE

A closed-form analytical solution of the critical distance xc and the critical time tc at

which the total increased lifetime cancer risk (ILCR) reaches a maximum value is derived

in this appendix. We start by noticing that since c̄i(x) only depends on x and the partial

di↵erential equations describing contaminant transport constitutes a linear system, the

critical distance xc is independent of the temporal evolution of the source term cs(t). This

term will only a↵ect the intensity of the total risk but not its critical position. Based

on this, it is mathematically convenient to solve the critical distance xc for a Dirac-input

source of the form Qscs(t) = m0�(t), where m0 is the total initial contaminant mass of

PCE at the source zone.

By the definition of the maximum running averaged flux-concentration obtained at the

x-control plane we have that

Qd c̄i(x)ED =

Z tp+
ED
2

tp�ED
2

Qd ci(t;x) dt (D.1)
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where Qd is the total flow rate passing through the x-control plane, and tp is the time

where the risk reaches its maximum point. In the limit, when ED ! 1, the integral

in the right-hand-side of equation (D.1) is simply the total mass of species i recovered

at the control plane. The exposure duration ED is typically a large number ranging

between 30 years (non-carcinogens) and 70 years (for carcinogens). In this situation, this

integral can be seen as some proportion ↵ of the total mass. Imagine, for instance, that

the concentration profile is Gaussian and ED is about 4 standard deviations, in this case,

↵ = 95%. This reasoning suggests that one can approximate the integral in (D.1) by

Qd c̄i(x)ED ⇡ ↵Mi

✓
d(x)

va
Re

i

◆
, (D.2)

where d(x) = x�xinj is the distance from the source zone to the x location, and va is the

apparent velocity of groundwater (defined from the mean arrival time of a conservative

species at the x control plane as va = d(x)/t(x), Re
i is the e↵ective retardation factor of

the ith species, and Mi is the total mass of species i defined by

Mi(t) =

Z 1

�1
Ri �Ci(x, t) dx. (D.3)

The additivity property of risk states that the total ILCR for a system composed of ns

toxic chemical species is

RT(x) =
nsX

i=1

Ri(x). (D.4)

The human health risk model (section 3.2.1) relates the ILCR of a given species i to the

maximum running averaged flux-concentration c̄i and the toxicological parameters. For

the sake of simplicity, one can simply express that

Ri(x) = �i c̄i(x), (D.5)

where
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�i = CPFi ⇥

IR

BW

�
ED ⇥ EF

AT
(D.6)

Substituting (D.2) and (D.5) into (D.4) we obtain

RT(x) =
↵

QdED

nsX

i=1

�iMi

✓
d(x)

va
Re

i

◆
. (D.7)

The critical distance xc at which the total increased lifetime cancer risk reaches a maxi-

mum level is

xc = argmax
x

{RT(x)}, (D.8)

which can be obtained by setting @RT /@x = 0,

@

@x

nsX

i=1

�iMi

✓
d(x)

va
Re

i

◆
= 0. (D.9)

Defining t = d(x)/va, this equation can be rewritten as

@

@t

nsX

i=1

�iMi

�
tRe

i

�
= 0. (D.10)

Knowing Mi(t), the solution of this implicit equation yields the critical time tc needed for

a conservative tracer to reach the critical risk distance. Thus,

tc = argmax
t

(
nsX

i=1

�iMi

�
tRe

i

�
)
. (D.11)

The temporal evolution of the total mass of a given species i can be determined from the

mass balance equations of the chemical system, written as
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dMi(t)

dt
=

yiki�1

Ri�1
Mi�1(t)�

ki
Ri

Mi(t) +m0�(t)�i1, 8i = 1, . . . , ns, (D.12)

where �i1 is the Kronecker delta (only PCE is released from the source zone). This is a

system of ordinary di↵erential equations whose solution is

M(t) = m0e
A(t)e1, (D.13)

where M(t) = [M1(t), ...,Mn(t)]t, e1 = [1, 0, ..., 0]t, and A is a lower triangular matrix

with diagonal elements determined by Aii = �ki/Ri and non-zero satellite elements

determined by Aii�1 = yiki�1/Ri�1. This matrix A can be easily decomposed by the

eigenvalue method into A = SDS�1, where D is a diagonal matrix formed from the

eigenvalues of A, and the columns of S are the corresponding eigenvectors of A. In

a similar problem, Clement [2001] and Henri and Fernàndez-Garcia [2014] showed that

these matrices can be written as

Dii = �ki/Ri,

Sij = S�1
ij = 0, j > i,

Sij = S�1
ij = 1, j = i,

Sij = RiRi�j�1
j

i�1Y

m=j

✓
kmym+1

Rjkm+1 �Rm+1kj

◆
,

S�1
ij = Ri�j

i

i�1Y

m=j

✓
�kmym+1

Rmki �Rikm

◆
.

From this, the mass evolution of each species is written as
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Mi(t) = m0

nsX

j=1

Sije
DjjtS�1

j1 . (D.14)

so that the critical time tc is

tc = argmax
t

8
<

:

nsX

i=1

nsX

j=1

�iSije
�kjtRe

i /RjS�1
j1

9
=

; . (D.15)

Assuming that the chemical properties are spatially constant, Henri and Fernàndez-Garcia

[2014] has recently shown that the e↵ective retardation factor associated with a network

reaction system are time-dependent properties that depend on the initial conditions of

the chemical system. When only PCE is initially present in the aquifer, the e↵ective

retardation factors can be estimated from

Re
i (t) =

Mi(t)

m0

0

@
nsX

p,q,r=1

SipS
�1
pq R�1

q SqrS
�1
r1 Fpr(t)

1

A
�1

, (D.16)

where

Fpr(t) =

8
>>><

>>>:

exp(�kp/Rpt)� exp(�kr/Rrt)

t (�kp/Rp + kr/Rr)
, if p 6= r

exp(�kr/Rrt), if p = r

(D.17)

We refer to Henri and Fernàndez-Garcia [2014] for further details on the e↵ective retar-

dation factor.





APPENDIX E

RW3D RX: A THREE-DIMENSIONAL OBJECT-ORIENTED

REACTIVE-TRANSPORT MODEL USING RANDOM-WALK

PARTICLE-TRACKING

All numerical simulation of solute reactive transport presented in the thesis make use of

the capacities of the code RW3D. Initially developed a decade ago by Daniel Fernàndez-

Garcia during his stay at the the Colorado School of Mines (USA), RW3D has evolved

through the years to solve a larger and larger range of reactive transport problem. RW3D’s

algorithms are written in FORTRAN 90/95 and follow an object-oriented philosophy

making the code evolution easier. The following flow-chart diagram display summarily

the program architecture.

RW3D consists mainly on the motion of particles with specific mass and evolving chem-

ical state whom the ensemble simulates a plume evolution. The program is capable of

simulating motion by advection, di↵usion and dispersion, and reaction following a lin-

ear sorption, a range of mass transfer processes (single rate, multiple-rate, di↵usion from

spheres, layers or cylinders . . . ), or a first-order decay networks (serial and generic). Each

of the simulated processes can be considered separately as well as following whatever
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pre-defined combinations. Simpler scenarios are solved using analytical solutions increas-

ing significantly the e�ciency of the program. Most importantly, all motion or reaction

parameters can be defined as spatially heterogeneous (at steady-state).

The motion of particles is controlled by a hybrid scheme for the velocity interpolation that

has the advantage to provide divergence-free velocity fields within the solution domain and

a velocity dependent dispersion tensor that approximates mass balance at grid interfaces

of adjacent cells with contrasting hydraulic conductivity. More, the particles motion is

randomized in order to respect classical random-walk theories for dispersion/di↵usion

modeling.

If necessary, you will find the input parameters description following the program flowchart.
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FLOWCHART OF RW3D

Start Rw3d

Read Input Parameters

Injections Loop

Inject particles

Check if injected particles are inside domain

Particles Loop

Initiate particle properties

Loop for Particle Motion and Reaction

Update the particle properties

Update velocity, dispersion,
mass transfer and reaction pa-

rameters at the particle location

Is the particle stuck?

Get the time-step

Run the Batch Reactor defining
the particle new species and zone

Has the new particle been destroyed?

Get the new particle loction af-
ter advective and dispersive motion

Check if particle has crossed a control surface

Check if time for snapshot is reached

Is the particle out of the system

Save the particle his-
tory in system information

Was that the last particle?

Analyse results and print outputs

Was that the last injection?

Stop Rw3d

no

yes

no

yes

yes

no

yes

no

yes

no

1
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ReadMe: INPUT FILE FOR RW3D-Rx

Main program references

Fernàndez-Garcia, D., Illangasekare, T. H., and Rajaram, H. (2005), Di↵erences in the scale-

dependence of dispersivity estimated from temporal and spatial moments in physically and chem-

ically heterogeneous porous media, Advances in Water Resources (ISSN 0309-1708), 28, 745-759.

link

Salamon, P., Fernàndez-Garcia, D., and J. J. Gómez-Hernández (2006), A review and numerical

assessment of the random walk particle tracking method, Journal of Contaminant Hydrology (ISSN

01697722), 86, 277-305. link

Salamon, P., Fernàndez-Garcia, D., and J. J. Gómez-Hernández (2006), Modeling mass trans-

fer processes using random walk particle tracking, Water Resour. Res. (ISSN 0043-1397), 42,

W11417, doi:10.1029/2006WR004927. link

Henri, C.V., and Fernàndez-Garcia, D. (2014), Toward e�ciency in heterogeneous multispecies

reactive transport modeling: A particle-tracking solution for first-order network reactions, Water

Resour. Res., 50, 72067230, doi:10.1002/2013WR014956. link

Field applications

Salamon, P., Fernàndez-Garcia, D., J. J. Gómez-Hernández (2007), Modeling tracer transport at

the MADE site: The importance of heterogeneity, Water Resour. Res. (ISSN 0043-1397), 43,

W08404, doi:10.1029/2006WR005522. link

Riva, M., A. Guadagnini, D. Fernàndez-Garcia, X. Sánchez-Vila, (2008), Relative importance

of geostatistical and transport models in describing heavily tailed breakthrough curves at the

Lauswiesen site, Journal of Contaminant Hydrology (ISSN 01697722), 101, 1-13, 2008. link

INPUT FILES

Name file File with names for output files (by default: rw3d.nam)

Parameter file File with parameters (to be defined in the name file)

http://www.sciencedirect.com/science/article/pii/S0309170805000230
http://www.sciencedirect.com/science/article/pii/S0169772206000957
http://onlinelibrary.wiley.com/doi/10.1029/2006WR004927/abstract
http://onlinelibrary.wiley.com/doi/10.1002/2013WR014956/abstract
http://onlinelibrary.wiley.com/doi/10.1029/2006WR005522/abstract
http://www.sciencedirect.com/science/article/pii/S016977220800106X
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NAME FILE

LINE VARIABLE DESCRIPTION

1 Text

2 Text

3 Text

4 Text

5 File name Parameter file

6 Text

7 Text

8 Text

9 File name Output histogram (pdf) of particle arrival times

(btcs)

10 File name Output with cumulative pdf particle arrival

times (cbtcs)

11 File name Output with particle snapshots with time

12 File name Output with particle paths

13 File name Output with cartesian spatial moments

14 File name Output with spatial moments of particle posi-

tion

15 File name Output with particle position at control planes

16 File name Output with dilution index of kitanidis (option

disable)

17 File name Output with radial spatial moments

18 File name Output with temporal moments of breakthrough

curves

19 File name Output with dispersivities from control planes

breakthrus

20 File name Output with residence times in zonal regions

21 File name Output with velocity field (for idebug � 1)

22 File name Output with derivative of BTC in double log
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PARAMETER FILE

DEBUG OPTIONS

LINE VARIABLE DESCRIPTION

1 Text

2 Text

3 Text

4 idebug, ipReStart idebug : Integer defining degree of debugging as

written in rw3d general.dbg

options:

• idebug = -1 ! Do not write the velocity

field

• idebug = 0 ! Normal Run

• idebug = 10 ! Maximum Debugging De-

gree

ipReStart : Particle number to start simulations.

It is a restart options for those cases in which the

program crashes before finalizing the task. The

program writes all the particle info in temporary

files in real time so that no information is lost

when the program crashes.

GEOMETRY

LINE VARIABLE DESCRIPTION

5 Text

6 Text

7 Text

8 nx, ny, nz Number of cells in x,y,z directions
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9 dx [read as a real array] Size cells in x-direction

10 dy [read as a real array] Size cells in y-direction

11 dz [read as a real array] Size cells in z-direction

12 file, const, ivar, flag file: file name with array defining inactive cells

(ibound variable)

const : after reading the array, all values are mul-

tiplied by const

ivar : column variable in the gslib file

flag : integer defining the way to read the array

options:

• flag = 0: The array is not read from file.

• flag = 1: The array is read from file named file. This file has gslib format such

that:

ibound 6= 0: active cell

ibound = 0: inactive cell ! particles reflect at cell boundaries

• flag = 2: Option specific for reading ibound from modflow external file format.

• flag = 3: Specific for ibound array. This reads specific inactive cells from the

external file named file. The format of this external file is:

1. number of inactive cells [Integer]

for each inactive cell:

2. column, row, layer (in gslib format)

13 ibx1, ibx2, iby1, iby2,

ibz1, ibz2

Boundary conditions:

ib = 0 for flux boundary condition

ib = 1 for impermeable boundary condition
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TIME DISCRETIZATION

LINE VARIABLE DESCRIPTION

14 Text

15 Text

16 Text

17 string Method to calculate the time step

options:

• string = constant dt: The time step is fixed: standard random walk

• string = constant cu: The time step is estimated from

�t = Cu
�s

kvk/R ,

where �s is the characteristic size of a cell, Cu is the grid-courant number (given in

the next line), and R is the retardation coe�cient.

• string = constant pe: The time step is estimated from

�t = Pe min
�x2i
D

R,

where Pe is the grid-peclet number (given in next line), and D is the hydrodynamic

dispersion coe�cient.

• string = constant damt: The time step is estimated from

�t = DaMT / tmt

where DaMT is the grid-Damkholer number based on Mass Transfer process (given in

next line), and tmt is the characteristic time for mass transfer, i.e.:

tmt = max
1

↵k ⇥ �k
8k = 1, . . . , Nim,

where ↵k and �k are respectively the mass transfer coe�cient and the field capacity

coe�cient associated to the kth immobile domain, and Nim is the number of immobile

zones.
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• string = constant dasorp: The time step is estimated from

�t = DaSORP / max{kf , kb},

where DaSORP is the grid-Damkholer number based on Sorption process (given in

next line) modeled using the Continuous History Time Method, and kf and kb are

respectively the forward and backward rates.

• string = constant dadecay: The time step is estimated from

�t = DaDECAY / tk,

where DaDECAY is the grid-Damkholer number based on Decay process (given in next

line), and tk is the characteristic time for first-order decay, i.e. tk =
R

k
where k is the

first-order decay rate.

• string = constant pe or cu: Chooses the more restrictive of the times estimated

from Peclet and Courant numbers.

• string = constant cu or da: Chooses the more restrictive of the times estimated

from Courant and Damkholer numbers.

• string = constant cu or pe or da: Chooses the more restrictive of the times

estimated from Courant, Pecelt and Damkholer numbers.

• string = constant move x cell: Estimates the time step only once for each cell

as

�t = Cu Tesc,

where Tesc is the advective travel time of the particle in the cell.

18 Dt, Cu, Pe, DaMT Dt ! time step

DaSORP, DaDECAY Cu ! grid-Courant number

Pe ! grid-Pecklet number

DaMT ! grid-Damkholer number based on

Mass Transfer process

DaSORP ! grid-Damkholer number based on

Sorption process

DaDECAY ! grid-Damkholer number based on

Decay process
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ADVECTION PACKAGE

LINE VARIABLE DESCRIPTION

19 Text

20 Text

21 Text

22 Logical Flag True (T) if package is active

23 method Character variable specifying computation of

the advection displacement of a particle.

options:

• method = eulerian: Standard Random Walk with Eulerian integration of the

velocity:

�Xp,adv =
R
v(⌧)d⌧ ⇡ v(Xp, t)�t,

where Xp,adv is the advective motion of a particle, and v is the pore velocity.

• method = exponential: Pollock Method to integrate the velocity from finite-

di↵erence flow models:

�Xp,adv =
R
v(⌧)d⌧ ⇡ vi(Xp, t)

AiR
(exp(Ai�t)� 1), with

Ai =
vi,face(2) � vi,face(1)

�xi
.

24 qx [read as a real array] Darcy velocity in x

25 qy [read as a real array] Darcy velocity in y

26 qz [read as a real array] Darcy velocity in z

27 poro [read as a real ar-

ray]

Porosity for the Mobile Zone
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DISPERSION PACKAGE

LINE VARIABLE DESCRIPTION

28 Text

29 Text

30 Text

31 Logical Flag True (T) if package is active

32 aL [read as a real array] Longitudinal dispersivity

33 aTH [read as a real ar-

ray]

Transverse dispersivity in horizontal plane

34 aTV [read as a real ar-

ray]

Transverse dispersivity in vertical plane

35 Dm [read as a real ar-

ray]

Molecular di↵usion

MASS TRANSFER PACKAGE

LINE VARIABLE DESCRIPTION

36 Text

37 Text

38 Text

39 Logical Flag True (T) if package is active

40 Model Type of mass transfer model

options:

• model = multirate: discrete series of mass transfer rates

How to define input parameters?

41 Nim number of immobile zones

for each zone:

42 �k=1 [read as a real ar-

ray]

porosity in the 1st immobile zone
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43 ↵0
k=1 [read as a real ar-

ray]

first-order mass transfer rate associated with the

1st immobile zone

...
�k [read as a real array] porosity in the kth immobile zone

↵0
k [read as a real array] first-order mass transfer rate associated with the

kth immobile zone

• model = spherical diffusion or layered diffusion or cylindrical diffusion:

di↵usion geometry

How to define input parameters?

41 Nim number of immobile zones

42 �im [read as a real ar-

ray]

porosity in the immobile domain

43 Dp/a2 [read as a real ar-

ray]

e↵ective pore di↵usion coe�cient, related to ap-

parent pore di↵usion coe�cient Da/a2 by Da =

Dp/Rim. Dp [L2/T ] is the di↵usivity coe�cient,

a2 [L2] is the radius of the blocks. The multirate

series for di↵usion models is given in Table E.1.

• model = power law: power law memory function

How to define input parameters?

41 Nim number of immobile zones

42 �tot [read as a real ar-

ray]

total capacity ratio of all immobile zones

43 Amin [read as a real ar-

ray]

minimum apparent mass transfer coe�cient

44 Amax [read as a real ar-

ray]

maximum apparent mass transfer coe�cient

45 power [read as a real ar-

ray]

exponent of the power law density function of

first-order rate coe�cient

• model = lognormal law: lognormal law memory function

How to define input parameters?

41 Nim number of immobile zones

42 �tot [read as a real ar-

ray]

total capacity ratio of all immobile zones
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43 mean [read as a real ar-

ray]

mean of the natural log of mass transfer coe�-

cient

44 stdv [read as a real ar-

ray]

standard deviation of the natural log of mass

transfer coe�cient

• model = composite media: mixture of geometries

How to define input parameters?

41 Nmrate, Nsph, Ncyl, Nlay number of immobile zones for the multirate

model (Nmrate), the spherical di↵. model

(Nsph), the cylindrical di↵. model (Ncyl) and

the cylindrical di↵. model (Nlay)

for each zone of each mass transfer model :

42 Fmrate1 fraction of the 1st zone for the multirate model

. . . Fmratek fraction of the kth zone for the multirate model

43 Fsph1 fraction of the 1st zone for the sph. di↵. model

. . . Fsphk fraction of the kth zone for the sph. di↵. model

44 Fcy1 fraction of the 1st zone for the cyl. di↵. model

. . . Fcyk fraction of the kth zone for the cyl. di↵. model

45 Flay1 fraction of the 1st zone for the lay. di↵. model

. . . Flayk fraction of the kth zone for the lay. di↵. model

parameters for the multirate model :

46 �k=1 [read as a real ar-

ray]

porosity in the 1st imm. zone

47 ↵0
k=1 [read as a real ar-

ray]

first-order mass transfer rate associated with the

1st imm. zone

...
�k [read as a real array] porosity in the kth imm. zone

↵0
k [read as a real array] first-order mass transfer rate associated with the

kth imm. zone

parameters for the sph. di↵ model :

48 �im [read as a real ar-

ray]

porosity in the immobile domain

49 Dp/a2 [read as a real ar-

ray]

e↵ective pore di↵usion coe�cient
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parameters for the cyl. model :

50 �im [read as a real ar-

ray]

porosity in the immobile domain

51 Dp/a2 [read as a real ar-

ray]

e↵ective pore di↵usion coe�cient

parameters for the lay. model :

52 �im [read as a real ar-

ray]

porosity in the immobile domain

53 Dp/a2 [read as a real ar-

ray]

e↵ective pore di↵usion coe�cient

REACTION PACKAGE

LINE VARIABLE DESCRIPTION

44 Text

45 Text

46 Text

47 Logical Flag True (T) if package is active

48 Ns Number of species

sorption ....................

49 Text

50 Text

51 Text

52 Logical Flag True (T) if package is active

53 model Type of sorption
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options:

• model = linear: instantaneous linear sorption isotherm

for each species:

54 Ri=1 [read as a real ar-

ray]

retardation coe�cient for the 1st species

. . . Ri [read as a real array] retardation coe�cient for the ith species

if mass transfer:

mass transfer type = multirate

for each species, for each zone:

55 Rimi=1,k=1 [read as a

real array]

retardation for the 1st species in the 1st immo-

bile zone

. . . Rimi=1,k [read as a real

array]

retardation for the 1st species in the kth immo-

bile zone

56 Rimi,k=1 [read as a real

array]

retardation for the ith species in the 1st immobile

zone

. . . Rimi,k [read as a real

array]

retardation for the ith species in the kth immobile

zone

mass transfer type = diffusion or power law or lognormal law:

for each species:

57 Rimi=1 [read as a real

array]

retardation for the 1st species in the immobile

domain

. . . Rimi [read as a real ar-

ray]

retardation for the ith species in the immobile

domain

• model = chtm: linear sorption solved by Contineous History Time Method

only available for a single species and no mass transfer

54 bd [read as a real array] bulk density

55 kf [read as a real array] forward mass transfer coe�cient

56 kb [read as a real array] backward mass transfer coe�cient
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first-order network reaction ....................

55 Text

56 Text

57 Text

58 Logical Flag True (T) if package is active

59 model Type of network reaction

options:

• model = serial: for a serial reaction network: A ! B ! C ! . . .

• model = serial moment: for a serial reaction network with motion solved by

calculating the first and second spacial moments

• model = generic: for a generic network reaction

for each species:

60 ki=1 [read as a real ar-

ray]

first-order decay rate for the 1st species

. . . ki [read as a real array] first-order decay rate for the ith species

61 yi=1 [read as a real ar-

ray]

yield coe�cient for the 1st species

. . . yi [read as a real array] yield coe�cient for the ith species

if mass transfer:

mass transfer type = multirate

for each species, for each zone:

62 kimi=1,k=1 [read as a

real array]

first-order decay rate for the 1st species in the

1st immobile zone

. . . kimi=1,k [read as a real

array]

first-order decay rate for the 1st species in the

kth immobile zone

63 kimi,k=1 [read as a real

array]

first-order decay rate for the ith species in the

1st immobile zone

. . . kimi,k [read as a real ar-

ray]

first-order decay rate for the ith species in the

kth immobile zone
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mass transfer type = diffusion or power law or lognormal law:

for each species:

64 kimi=1 [read as a real

array]

first-order decay rate for the 1st species in the

immobile domain

. . . kimi [read as a real ar-

ray]

first-order decay rate for the ith species in the

immobile domain

CONTROL SURFACES PACKAGE

LINE VARIABLE DESCRIPTION

62 Text

63 Text

64 Text

65 Logical Flag True (T) if package is active

66 Nwell Number of wells

for each well :

67 Xwell, Ywell, Rwell,

Zbot, Ztop,

Xwell, Ywell : X, Y well coordinates

Flag, NPa Rwell : well radius

Zbot : well bottom (z coordinate)

Ztop: well top (z coordinate)

Flag : integer defining particle behavior after

passing thru the well

options:

• flag = 0 ! The particle passes thru the well

but does not exit the system

• flag = 1 ! The particle exits the system when

crosses the well

NPa: Expected number of particles arriving at

the well (only a rough approximation is needed)
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66 Nplane Number of control plane

for each plane:

options:

• For planes perpendicular or parallel to axes

67 Dist, Type, NPa, Flag Dist : Distance of the control plane with respect

to the x,y coordinate axis

Type: type of plane which can be:

• type = XX ! plane parallel to the x coordi-

nate

• type = YY ! plane parallel to the y coordi-

nate

NPa: Expected number of particles arriving at

the well (only a rough approximation is needed)

Flag : Integer that can be:

• flag = 0 ! The particle passes thru the well

but does not exit the system

• flag = 1 ! The particle exits the system when

crosses the well

67 A, B, C, D, NPa, Flag NPa: Expected number of particles arriving at

the well (only a rough approximation is needed)

• For planes oriented in any direction. The plane is described by the equation of a plane:

Ax+By + Cz +D = 0

Flag : Integer that can be:

• flag = 0 ! The particle passes thru the well

but does not exit the system

• flag = 1 ! The particle exits the system when

crosses the well
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INJECTIONS OF PARTICLES

LINE VARIABLE DESCRIPTION

68 Text

69 Text

70 Text

71 Ninj Number of injections

71 Ninj NOTE: This version considers the injections to

be independent from one another.

for each injection:

72 Type (string) Type of injections

options:

• type = point

point injection ! all particles start the simulation from the same point position.

73 Np, Totmass, Zone,

Specie

Np: Number of particles

Totmass: total mass injected

Zone: Zone which the particles belongs initially

(0 = mobile)

Specie: Specie which the particles belongs ini-

tially

74 xinj, yinj, zinj x, y, z point coordinates

• type = line

vertical line injection ! particles randomly uniformly distributed in a vertical line.

73 Np, Totmass, Zone,

Specie

see point injection

74 xinj, yinj, zbot, ztop xinj, yinj : x, y coordinates vertical line

zbot : z line bottom vertical position

ztop: z line top vertical position
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• type = block

block injection ! particles uniformly distributed, equidistantly, in a block defined by lower grid-cell and

upper grid-cell index.

73 Np, Totmass, Zone, Specie see point injection

74 idwn, jdwn, kdwn, iup,

jup, kup,

idwn, jdwn, kdwn: lower left cell number in x, y, z

direction

np11x, np11y, np11z iup, jup, kup: top right cell number in x, y, z direction

np11x, np11y, np11z : Number of particles per unit

length in each cell of the block for the three main

directions

NOTE: Np has to be equal to np11x⇥ dx+ np11y ⇥
dy + np11z ⇥ dz

• type = circle

circle injection ! particles uniformly distributed (randomly) within a vertical cylinder.

73 Np, Totmass, Zone, Specie see point injection

74 x0, y0, zbot, ztop, rcy x0, y0 : coordinates origin cylinder

zbot : z bottom position cylinder

ztop: z top position cylinder

rcy : cylinder radius

• type = radial

radial injection ! particles uniformly distributed (randomly) on the surface of a vertical cylinder.

73 Np, Totmass, Zone, Specie see point injection

74 xinj, yinj, zbot, ztop, rcp xinj, yinj : coordinates origin cylinder

zbot : z bottom position cylinder

ztop: z top position cylinder

rcp: cylinder radius

• type = plane

plane injection ! particles uniformly distributed in a vertical plane perpendicular to x direction

(not random, equidistant points).
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73 Np, Totmass, Zone, Specie see point injection

74 xdist, width, height xdist : x position of the vertical plane

width: width of the plane in the y direction

height : height of the plane in the z direction

• type = plane random

plane injection random ! particles uniformly distributed (randomly) in a vertical plane perpendicular to x direction.

73 Np, Totmass, Zone, Specie see point injection

74 xdist, width, height see plane injection

• type = line by points

line injection by points ! particles distributed uniformly (not random) in a line specified by points.

73 Np, Totmass, Zone, Specie see point injection

74 x1, y1, z1, x2, y2, z2 x1, y1, z1 : x,y,z coordinates of the first point

x2, y2, z2 : x,y,z coordinates of the second point

• type = line flux weighted

line flux weighted ! particles are distributed proportional to the darcy velocity.

73 Np, Totmass, Zone, Specie see point injection

74 x1, y1, z1, x2, y2, z2 see line injection

• type = read from file

read from external file.

The format of the external file is:

1 LINE: Heading

2 LINE: Number of particles

3 LINE: For each particle: x, y, z, mass particle , zone, specie



Appendix E. Random-Walk 3D 191

POST-PROCESSING AND OUTPUT OPTIONS

LINE VARIABLE DESCRIPTION

75 Text

76 Text

77 Text

plume snapshots parameters ....................

78 Text

79 Flag, File, Tlen, Ntstep,

Tmult

Flag : Integer that can be:

• flag = 0 ! Inactive

• flag = 1 ! Reading from file

File: Filename with specific times to take snap-

shots

The format of the file is:

1. Line: Heading

2. Number of times

3. Vertical column with times

Tlen (used if Flag = 0): Total elapsed time

Ntstep (used if Flag = 0): Total number of shots

Tmult (used if Flag = 0): Multiplier ! time

shots are calculated as dt(i+1) = Tmult⇥dt(i)

80 Flag Flag : print Cartesian Spatial Moments at Snap-

shots

81 Flag, Xr0, Yr0 Flag : print Radial Spatial Moments at Snap-

shots

Xr0 : X-position of the origin of coordinates

Yr0 : Y-position of the origin of coordinates

82 Flag Flag : print Particle Cloud at Snapshot
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breakthru curve parameters ....................

83 Text

84 Flag Flag : print temporal moments of BTCs

85 Flag Flag : print moments of particle positions at

planes

86 Flag Flag : print particle position at planes

87 Flag Flag : print apparent dispersivity at planes

88 Flag, ngrid, method, Flag : print BTCs

bw, min ngrid : size of the grid used for pdf reconstruc-

tion

method : options! BOX, TRIANGLE, GAUSS,

PLUGING

NOTE: The method PLUGIN optimizes the

bandwidth with an iterative algorithm that min-

imizes the mean integrated squared error of the

density function. In this case the resulting band-

width is the standard deviation of the Gaus-

sian density function. For most conditions works

quite well.

bw : half bandwidth support for histogram eval-

uation

• bw < 0 ! bw estimated by the program

min: minimum value of the histogram bin

• min < 0 ! min estimated by the program

max : maximum value of the histogram bin

• max < 0 ! max estimated by the program

89 Flag, Freq., Particle Flag : print path

Freq.: Frequency of printing particles =

moves/prints

Particle: Number of particle to print. If < 0 all

particles are printed
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AUXILIARY INFORMATION

How does the program read real arrays?

options:

• flag = 0: The array is not read from file. Instead the variable is regard as a constant

with a value equal to const.

• flag = 1: The array is read from file named file. This file has gslib format such

that:

ivar = column variable in the GSLIB file

const = after reading the array, all values are multiplied by const

• flag = 2: Option specific for reading Darcy velocities from MODFLOW. When this

option is specified in line for qx, then the program reads the output binary file from

MODFLOW with cell-to-cell budget.

Definition of the origin of coordinates

The origin of coordinates is the left-bottom corner so that:

How do we read real arrays?

The Fortran subroutine that reads the input real array follows the algorithm:

for k = 1 to nz do

for j = 1 to ny do

for i = 1 to nx do

read the input values at (i,j,k) ;

parameter at (i,j,k) = read values ⇥ const

end

end

end
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R. Andričević, V. Srzic, and H. Gotovac. Risk characterization for toxic chemicals trans-

ported in aquifers. Advances in Water Resources, 36, 2012.

A. L. Atchley, R. M. Maxwell, and A. K. Navarre-Sitchler. Human Health Risk Assessment

of CO2 Leakage into Overlying Aquifers Using a Stochastic, Geochemical Reactive

Transport Approach. Environ. Sci. Technol., 47(11), 2013. doi: 10.1021/es400316c.

URL dx.doi.org/10.1021/es400316c.

A. L. Atchley, R. M. Maxwell, and A. K. Navarre-Sitchler. Using streamlines to simu-

late stochastic reactive transport in heterogeneous aquifers: Kinetic metal release and

transport in {CO2} impacted drinking water aquifers. Adv. Water Resour., 52, 2014.

A. Bagtzoglou, A. F. B. Tompson, and D. E. Dougherty. Spatial distributions of per-

chloroethylene reactive transport parameters in the Borden Aquifer. Numer. Methods

Partial Di↵erential Equations, 8:325–340, 1992.

P. Baveye and A. Valocchi. An evaluation of mathematical models of the transport of

biologically reacting solutes in saturated soils and aquifers. Water Resour. Res., 25(6),

1989.

A. Bellin and D. Tonina. Probability density function of non-reactive solute concentration

in heterogeneous porous formations. Journal of contaminant hydrology, 94(1), 2007.

A. Bellin, Y. Rubin, and A. Rinaldo. Eulerian-Lagrangian approach for modeling of flow

and transport in heterogeneous geological formations. Water Resour. Res., 31(11),

1994.

dx.doi.org/10.1021/es00029a005
dx.doi.org/10.1021/es00029a005
dx.doi.org/10.1029/95WR03530
dx.doi.org/10.1021/es400316c


Bibliography 197

I. D. Benekos, C. A. Shoemaker, and J. R. Stedinger. Probabilistic risk and un-

certainty analysis for bioremediation of four chlorinated ethenes in groundwater.

Stochastic Environmental Research and Risk Assessment, 21(4):375–390, 2006. doi:

10.1007/s00477-006-0071-4. URL http://dx.doi.org/10.1007/s00477-006-0071-4.

D. A. Benson and M. M. Meerschaert. Simulation of chemical reaction via particle

tracking: Di↵usion-limited versus thermodynamic rate-limited regimes. Water Re-

sour. Res., 44(12), 2008a. doi: 10.1029/2008WR007111. URL dx.doi.org/10.1029/

2008WR007111.

D. A. Benson and M. M. Meerschaert. Simulation of chemical reaction via particle track-

ing: Di↵usion-limited versus thermodynamic rate-limited regimes. Water Resour. Res.,

44(7):W12201, 2008b. doi: 10.1029/2008WR007111. URL http://dx.doi.org/10.

1029/2008WR007111.

D. A. Benson and M. M. Meerschaert. A simple and e�cient random walk solution of

multi-rate mobile/immobile mass transport equations. Adv. Water Resour., 32:532–

539, 2009. doi: 10.1016/j.advwatres.2009.01.002. URL http://dx.doi.org/10.1016/

j.advwatres.2009.01.002.

B. Berkowitz, A. Cortis, M. Dentz, and H. Scher. Modeling non-Fickian transport in geo-

logical formations as a continuous time random walk. Rev. Geophys., 44:RG2003, 2006.

doi: 10.1029/2005RG000178. URL http://dx.doi.org/10.1029/2005RG000178.

M. Bianchi, C. Zheng, C. Wilson, G. R. Tick, G. Liu, and S. M. Gorelick. Spatial

connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths.

Water Resour. Res., 47(5), 2011. doi: 10.1029/2009WR008966. URL dx.doi.org/10.

1029/2009WR008966.

D. Bolster, M. Barahona, M. Dentz, D. Fernàndez-Garcia, X. Sanchez-Vila, P. Trinchero,
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D. Fernàndez-Garcia, T. H. Illangasekare, and H. Rajaram. Di↵erences in the scale-

dependence of dispersivity estimated from temporal and spatial moments in chemically

and physically heterogeneous porous media. Adv. Water Resour., 28(7), 2005a.
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