DISSECTING INTERMOLECULAR GOLD CATALYSIS: APPLICATION TO THE TOTAL SYNTHESIS OF RUMPHELLAONE A.

Carla Obradors Llobet

Dipòsit Legal: T 75-2015

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel-lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes.

Carla Obradors Llobet

Dissecting Intermolecular Gold Catalysis: Application to the Total Synthesis of Rumphellaone A

DOCTORAL THESIS
Supervised by Prof. Antonio M. Echavarren
Institut Català d'Investigació Química (ICIQ)

UniVersitat Rovira I Virgili

(1) UNIVERSITAT ROVIRA I VIRGILI

Departament de Quimica Analitica I QUIMICA ORGANICA

C/ Marcel.lí Domingo s/n
Campus Sescelades
43007 Tarragona
Tel. 34977559769
Fax 34977558446
e-mail: secqaqo@urv.net

Institut
Català
d'Investigació
Química

FAIG CONSTAR que aquest treball, titulat "Dissecting Intermolecular Gold Catalysis: Application to the Total Synthesis of Rumphellaone A", que presenta Carla Obradors Llobet per a l'obtenció del títol de Doctor, ha estat realitzat sota la meva direcció a l'Institut Català d'Investigació Química i que acompleix els requeriments per poder optar a Menció Internacional.

Tarragona, 13 d'Octubre 2014

El director de la tesi doctoral

UNIVERSITAT ROVIRA I VIRGILI
DISSECTING INTERMOLECULAR GOLD CATALYSIS: APPLICATION TO THE TOTAL SYNTHESIS OF RUMPHELLAONE A. Carla Obradors Llobet
Dipòsit Legal: T 75-2015

En primer lloc, agraeixo al Professor Antonio M. Echavarren l'oportunitat de formar-me en el seu grup a l'Institut Català d'Investigació Química (ICIQ). Li agraeixo les classes, els recursos, els seminaris, les conferències i l'accés a perspectives tan diferents. Per sobre de tot, li agraeixo la llibertat i absoluta confiança que he rebut des del primer dia.

A més, agraeixo a la Sònia Gavaldà i l'Imma Escofet la seva sublim eficiència. També que hagin decidit cuidar-nos a cada un de nosaltres simplement perquè tenen un bon cor. Agraeixo cada un dels seus ànims i somriures.

Agraeixo a tots els membres dels serveis tècnics de l'ICIQ la seva professionalitat i ajuda, en especial a David Pena i Ángel Mosquera d'Informàtica i als de Ressonància Magnètica Nuclear i de Difracció de Raigs X.

Agraeixo als Professors Vladimir Grushin, Rubén Martín, Feliu Maseras, Miquel Pericàs i la gent dels seus grups haver-me obert les portes i compartir el seu punt de vista cada cop que ho he demanat. Agraeixo també les col•laboracions amb Nicholas J. Green del grup del Professor Michael S. Sherburn a la Universitat Nacional d'Austràlia i amb el Doctor Iván Rivilla del grup del Professor Fernando P. Cossío a la Universitat del País Vasc.

Agraeixo a la Fundació ICIQ, Universitat Rovira i Virgili (URV), el projecte europeu ERC, AGAUR i el Ministeri espanyol amb una beca FPU haver-me finançat durant tot aquest temps.

També agraeixo l'oportunitat d'haver realitzat una estada a The Scripps Research Institute (USA). Agraeixo al Doctor Ryan Shenvi haver-me acceptat al seu grup i haver-me ensenyat tant durant aquells mesos. Agraeixo a Alberto Oppedisano, Doctor Sergey Pronin, Steven Crossley, Greg Trebor i Dennis Franco, entre tants d'altres personatges, tota la seva ajuda i amistat. Agraeixo a la Professora Donna Blackmond i als Doctors Erik Plata i Alex O'Brien la seva col-laboració en el meu projecte.

Agraeixo a tots els membres presents i passats del grup Echavarren qualsevol detall que m'hagin pogut ensenyar. Agraeixo al Doctor Paul McGonigal la seva immensa ajuda: la guia, les tècniques i la constant però no abatuda visió crítica del món. Agraeixo als Doctors Beatrice Ranieri, David Leboeuf, Juhannes Aydin, Javier Carreras, Michael Muratore i Laura López el seu granet de sorra. Per sobre de tot, agraeixo a aquells companys que han sigut amics: amb molt d'apreci a Yahui Wang, Anthony Pitaval i Pilar Calleja. També a Madeleine Livendah1, Núria Huguet, Morgane Gaydou, Masha Kirilova, Bart Herlé, Ana Escribano, Elena de Orbe, Ruth Dorel i tota la resta. Last but not least, agraeixo a l'Anna Homs cada dia que hem passat juntes i tots els que vindran.

Agraeixo a Tarragona haver-me acollit durant aquests anys. Per començar, al Doctor Xacobe Couso: agraeixo totes les cerveses, pitis i cafès. Fins i tot agraeixo totes les preguntes difícils que ens acompanyaven. A més, li agraeixo haver-me ensenyat a parlar amb un ordinador i ser capaç de portar a terme càlculs DFT. Amb moltíssim d'amor agraeixo a l'Asraa Ziadi cada moment que he passat amb ella i que mai m'hi hagi faltat un somriure o una abraçada. També agraeixo a totes aquelles persones que m'han fet sentir com a casa: per sobre de tot, Toni Moragas, David Bastida i cada una de les estones que hem passat tots junts al Delta. A la Berta Camafort, Jordi Ampurdanès, Álvaro Guitérrez, Arkaitz Correa, Piotr Jankowski, Andy Chapman, Alex Hamilton, Philipp Reeh, Andrea Henseler, Antonio Bazzo, Yolanda González, Claudio Martínez, Laura Fra, Jose Souto, Carles Rodríguez, Elena Arceo, Manuel Nappi, Paula Álvarez, Francisco Juliá, Anton

Lishchynski, Toni Bautista, Giulia Bergonzini, Charles Goery, Maria Basora, Miriam Sau, el Txepu i la Mariona i tants d'altres. I sobretot, a la senyora Azucena Obdulia del Carrer Sant Domènech.

Finalment, agraeixo a Manresa haver-me fet créixer fins a ser qui sóc avui i que encara ara senti que "ja he tornat" quan avanço Montserrat. Agraeixo a totes les persones que m'han acompanyat, ajudat i animat, cadascú en el seu moment i a la seva manera: a la Gemma Basiana, a la Miriam Raventós, al Josep M. Grané, al Jordi Guixé, a la Laura Fíguls, al Jordi Serra, a la Devi Tarragó, a l'Àstrid García, a la Sònia Cornejo, a l’Òscar Serra, al Victor Vallejo, al Marc Vila, a la Laura Vall, a la Tina Ribas, al Marc Khatib, a la Andrea Navarro, al Jordi Garcés, al Jordi Archs, a la Marta Vilar, al Joan Cantón, a la Txell Pons i a mil més que al recordar-los, em fan somriure. També agraeixo cada una de les converses que he tingut amb el senyor Pere, tot i que preferiria haver-lo conegut en unes altres circumstàncies.

I, per sobre de tot, agraeixo als meus pares, l'Emma i a tota la família l'amor, els consells i el suport incondicional que m'han regalat sempre. Aquesta tesis i la meva persona són obra seva, per haver construït un niu on sempre hi serem acceptats i estimats i per haver-me ensenyat a imitar-los: sempre creuré que són el millor exemple que hauria pogut tenir.

Per acabar, agraeixo haver conegut al Doctor Josep Cornellà: per mi, el Pep. Agraeixo cada una de les estones que hem passat junts: els riures, les discussions, l'ajuda i tot el que n'he pogut aprendre. Espero i desitjo que aquest hagi sigut només el començament del viatge.

En el moment de redactar aquesta memòria, els resultats aquí descrits han donat lloc a les següents publicacions:

Intermolecular Gold-Catalyzed Cycloaddition of Alkynes with Oxoalkenes

C. Obradors and A. M. Echavarren

Chem. -Eur. J. 2013, 19, 3547-3551
Dissecting Antion Effects in Gold(I)-Catalyzed Intermolecular Cycloadditions
C. Obradors, A. Homs, D. Leboeuf and A. M. Echavarren

Adv. Synth. Catal. 2014, 356, 221-228

Gold(I)-Catalyzed Macrocyclizations of 1,n-Enynes

C. Obradors, D. Leboeuf, J. Aydin and A. M. Echavarren

Org. Lett. 2013, 15, 1576-1579
Intriguing Mechanistic Labyrinths in Gold(I) Catalysis
C. Obradors and A. M. Echavarren

Chem. Соттии. 2014, 50, 16-28
Gold-Catalyzed Rearrangements and Beyond
C. Obradors and A. M. Echavarren

Acc. Chem. Res. 2014, 47, 902-912
Gold-Catalyzed Intermolecular Cycloadditions of Alkynes and Allenes
M. Muratore, A. Homs, C. Obradors and A. M. Echavarren

Chem. Asian J. 2014, DOI: 10.1002/asia. 201402395
Chloro[1,3-dihydro-1,3-bis(2,4,6-trimethylphenyl)-2H-imidazol-2-ylidene]gold
C. Obradors and A. M. Echavarren
e-EROS Encyclopedia of Reagents in Organic Synthesis 2011, DOI:
10.1002/047084289X.rn01338

Gold-Catalyzed Cyclizations of Alkynes with Alkenes and Arenes
M. Muratore, V. López-Carrillo, A. Escribano-Cuesta, N. Huguet, C. Obradors, A. M. Echavarren
Organic Reactions 2014, just accepted

UNIVERSITAT ROVIRA I VIRGILI
DISSECTING INTERMOLECULAR GOLD CATALYSIS: APPLICATION TO THE TOTAL SYNTHESIS OF RUMPHELLAONE A. Carla Obradors Llobet
Dipòsit Legal: T 75-2015

Table of Contents

Prologue 21
Abbreviations and Acronyms 23
General Introduction
Gold as a Catalyst 27
Activation of Unsaturated Bonds 28
Nucleophilic Attack 30
Gold Intermediates 32
Evolution of the Gold Intermediates 33
Intermolecular Processes 35
Applications of Gold Chemistry 36
Chapter 1: Gold-Catalyzed Macrocyclization of 1,n-Enynes via [2+2] Cycloaddition
Introduction 41
Objectives 46
Synthesis of Macrocycles
Optimization of the [2+2] Cyclization 47

- Scope of the [2+2] Cyclization 49
- Derivatization of the Macrocycles 54
Conclusions 57
Chapter 2: Gold(I)-Catalyzed Intermolecular [2+2+2]
Cycloaddition of Alkynes and Oxoalkenes
Introduction 61
Objectives 65
Synthesis of Oxabicycles
- Optimization of the $[2+2+2]$ Cycloaddition 66
- Scope of the $[2+2+2]$ Cycloaddition 67
- Mechanistic Proposal for the $[2+2+2]$ Cycloaddition 73
- Derivatization of the Oxabicycles 74
- Enantioselective [2+2+2] Cycloaddition 75
Synthesis of Tetrahydrofurans
- Optimization Towards a New Reaction Pathway 77
- Expansion of the Scope 79
Gold-Catalyzed Trimerization of Terminal Alkynes 80
- Scope of the Transformation 81
Conclusions 82
Chapter 3: Mechanistic Study of a [2+2+2] Cycloaddition: Role ofDigold Complexes
Introduction 87
Objectives 93
Theoretical Approach 94
Isotopic Labelling Experiments 100
Formation of Digold Complexes
- Monitoring of the [2+2+2] Cycloaddition 102
- Crystallization of the Resting State 103
- Low Temperature NMR Experiments 104
- Determination of the Equilibrium Constant 106
Reactivity of Digold Complexes
- Test of the Catalytic Activity 109
- DFT Calculations 111
Simultaneous Findings 112
Conclusions 115
Chapter 4: Anion Effects in Gold-Catalyzed Intermolecular Cycloadditions
Introduction 121
Objectives 127
Synthesis and Reactivity of New Catalysts
- Anion Effect in the [2+2] Cycloaddition 128
- Expansion to Other Transformations 131
Kinetic Study of the [2+2] Cycloaddition
- Monitoring of the Transformation 136
- Order of the Reagents 137
Involvement of Digold Complexes
- Crystallization of Intermediates 142
- Low Temperature NMR Experiments 144
- DFT Calculations 145
- Determination of the Equilibrium Constants 147
- Test of the Catalytic Activity 151
Conclusions 155
Chapter 5: Towards the Total Synthesis of Rumphellaone A
Introduction 161
Objectives 165
Silyloxyalkynylfuran Approach
- Retrosynthetic Analysis 166
- Synthesis of the Silyloxyalkynylfuran 167
- 2-Ethynyl-5-methylfuran as Model Substrate 169
Oxidation Approach
- Retrosynthetic Analysis 174
- Use of a Chiral Acetal 175
- Enantioselective Gold-Catalyzed [2+2] Cycloaddition 179
- Synthesis of the Racemic Rumphellaone A Gold-Catalyzed [2+2] Cycloaddition 182
Hydrogenation of the Cyclobutene 183
Phenyl Oxidation Followed by Esterification 187
Protection via Acetalization 188
Isomerization to the Thermodynamic Cyclobutane 189
Weinreb Amide and Methylation 190
Outline
- Final Steps Towards Rumphellaone AStereoselective Allylation Reaction192
Reverse Wacker Oxidation 194
Conclusions 195
General Conclusions 201
Experimental Section
General Information 217
Chapter 1
- Preparation of Gold Complexes 219
- Procedures for the Preparation of $1, n$-Enynes 221
- General Procedure for the Preparation of the Macrocycles 231
- Procedures for the Derivatization of the Macrocycles 235
- X-Ray Crystallographic Data 236
- DFT Calculations Data 244
Chapter 2
- Procedures for the Preparation of Starting Materials 253
- General Procedure for the Preparation of Oxabicycles 259
- Procedures for the Derivatization of Oxabicycles 270
- General Procedure for the Preparation of Tetrahydrofurans 271
- General Procedure for the Preparation of 1,3,5-Trisubstituted Benzenes 273
- X-Ray Crystallographic Data 274
Chapter 3
- Preparation of the Starting Materials 277
- X-Ray Crystallographic Data 278
- DFT Calculations Data 282
Chapter 4
- Preparation of Gold Complexes 313
- General Procedure for the Preparation of Cyclobutenes 317
- X-Ray Crystallographic Data 320
- DFT Calculations Data 344
Chapter 6
- Procedures for the Silyloxyalkynylfuran Approach 351
- Procedures for the Oxidation Approach 354
- DFT Calculation Data 361

This PhD manuscript is preceded by a General Introduction to gold chemistry and its applications. Part of this information was published in the form of reviews: e-EROS Encyclopedia of Reagents in Organic Synthesis (2011), Chemical Communications (2014), Accounts of Chemical Research (2014), Chemistry Asian Journal (2014) and Organic Reactions (2014).

At the same time, each chapter contains an outline with specific examples concerning our findings. Afterwards, the results are presented and discussed leading to the pertinent conclusions. Finally, a general overlook of the doctorate is exposed followed by all the experimental data: complete characterization of all the mentioned substrates, X-Ray crystallographic data and DFT calculations data. The references and numbering are organized by chapters as well.

The work performed during these four years has been divided in five chapters:
Chapter 1 gathers the development of the gold-catalyzed macrocyclization of large enynes via a $[2+2]$ cycloaddition. This work was performed in collaboration with Dr. Juhanned Aydin at the beginning and with Dr. David Leboeuf at the end. I also thank Dr. Paul McGonigal for his guidance. The results were defended as my Master project in 2010 and published in Organic Letters in 2013.

Chapter 2 presents the development of the gold-catalyzed intermolecular cascade $[2+2+2]$ cycloaddition of alkynes with oxoalkenes. I thank the lessons received by Dr. Xacobe Couso in order to perform DFT calculations. The results were published in Chemistry European Journal in 2013.

Chapter 3 contains a mechanistic study of the $[2+2+2]$ cycloaddition, which led to the discovery of digold species. I thank Dr. Josep Cornellà for fruitful discussions. The results were published together with Chapter 2.

Chapter 4 included the design of new gold complexes for the intermolecular reactions accompanied with a mechanistic study of the [2+2] cycloaddition of alkynes with alkenes in order to explain the anion effects. This work was performed together with Anna Homs and in collaboration with Dr. David Leboeuf. The results were published in Advanced Synthesis and Catalysis in 2014.

Chapter 5 collects all the results obtained towards the total synthesis of the natural product Rumphellaone A as well as the attempts of an enantioselecective $[2+2]$ version. This project is currently continued by Dr. Beatrice Ranieri. I thank Dr. Javier Carreras, Dr. Laura López and Dr. Josep Cornellà for crucial suggestions. These results are still unpublished.

In this manuscript, the abbreviations and acronyms most commonly used in organic and organometallic chemistry have been used following the recommendations of "Guidelines for authors" J. Org. Chem. 2006, 71, 1A-11A.

Additionally, we have also used the following ones:

DFT	Density Functional Theory
ESP	Electrostatic potential
Tol	Tolyl
DCE	1,2-Dichloroethane
THT	Tetrahydrothiophene
BIPHEP	(Biphenyl-2,2'-diyl)bis(diphenylphosphine)
TBHP	Tert-butylhydroperoxide
DTBB	4,4'-Di-tert-butylbiphenyl
CPME	Cyclopentyl methyl ether
iPr-DuPHOS	1,2-Bis[2,5-diisopropylphospholano]benzene
py	Pyridine
TsCl	Tosyl chloride
DIBAL	Diisobutyl aluminium hydride
TBS	Tert-butyldimethylsilyl
DIPT	Diisopropyltartrate
TMS	Trimethyl silyl
DME	Dimethoxyethane
TBAF	Tetrabutylammonium fluoride
BINAP	2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl
TMBN	2,4,6-trimethoxybenzonitrile
NNf ${ }_{2}^{-}$	Nonafluorobutanesulfimide

UNIVERSITAT ROVIRA I VIRGILI
DISSECTING INTERMOLECULAR GOLD CATALYSIS: APPLICATION TO THE TOTAL SYNTHESIS OF RUMPHELLAONE A.
Carla Obradors Llobet
Dipòsit Legal: T 75-2015

General Introduction

Gold as a Catalyst

For centuries, gold was considered a precious, purely decorative noble metal. It was not until 1998, in a groundbreaking report, that the hydration of alkynes catalyzed by $\mathrm{Au}(\mathrm{I})$ complexes under homogeneous conditions was reported. ${ }^{1,2}$ Henceforth, numerous transformations were developed, nourishing the field of organic synthesis. ${ }^{3}$ Gold salts and complexes emerged as powerful catalysts for the selective electrophilic activation of multiple bonds towards a variety of hetero- and carbonucleophiles under mild conditions. Cycloisomerizations and cycloadditions attracted particular attention for the construction of complex polycyclic structures present in diverse natural products. ${ }^{4,5}$ Reactions catalyzed by gold usually proceed by multistep pathways that are rather complex. Although coherent mechanistic proposals advanced by means of DFT calculations, as well as labelling and kinetic experiments, isolation of key intermediates was proven to be challenging. ${ }^{6}$

Figure 1. Gold complexes bearing different ligands.
Although simple gold salts such NaAuCl_{4} or AuCl were active enough to catalyze many transformations, precatalysts LAuCl bearing phosphine or N -heterocyclic carbene as ligands found more widespread applications. ${ }^{7}$ The active species were often generated in situ by chloride abstraction using a silver salt with distinct anions. However, the innocence

[^0]of silver in the reaction mixture was recently questioned. ${ }^{8}$ The most convenient catalysts are gold complexes [LAuL']X or [LAuX] with weakly coordinating neutral (L') or softer anionic ligands (X), which could enter the catalytic cycle by associative ligand exchange with the substrate (Figure 1). ${ }^{9}$ The properties of the catalysts can be easily tuned sterically or electronically depending on the ligand. Thus, in general, complexes with phosphite (A) and related ligands are more electrophilic than those bearing more donating N -heterocyclic carbenes (C), whereas with phosphines show intermediate electrophilicity (B or $\left.\left[\mathrm{Ph}_{3} \mathrm{PAuNCMe}\right] \mathrm{SbF}_{6}\right) .{ }^{3 \mathrm{~d}}$ The use of chiral ligands led to the development of efficient asymmetric processes. ${ }^{10,11}$

Activation of Unsaturated Substrates

Important structural features of gold are its aurophilicity, its linear geometry that limits the coordination potential and the fact that it does not undergo spontaneous oxidative addition nor β-hydride elimination. Gold has the highest electronegativity among the transition metals, which is attributed to relativistic effects. ${ }^{12}$ Hence, the contraction of the 6 s orbital in gold is much more significant than for the rest of the transition metals, which leads to an expansion of the 5d orbital, decreasing its electron-electron repulsion and becoming a remarkably soft Lewis acid. Furthermore, 5d electrons are too low in energy to experience a significant backbonding to anti-bonding orbitals but not to empty non-bonding orbitals. Thus, a 3 center - 4 electron σ-bond is proposed in gold(I)-carbenes $\left[\mathrm{L}-\mathrm{Au}=\mathrm{CR}_{2}\right]^{+}$ accompanied with orthogonal weak π-backbonding from the metal to both the ligand and the substrate (Figure 2).

[^1]

Figure 2. Ligand-metal-substrate orbital interactions in gold carbenes.
Gold(I) forms stable monomeric two coordinate π-complexes with alkenes, ${ }^{13}$ 1,3-dienes, ${ }^{14}$ substituted alkynes ${ }^{15}$ and allenes. ${ }^{16}$ Variations of the bond lengths as well as the ligand-metal-substrate angle suggest that the alkene orientation is controlled largely by steric factors. Thus, terminal alkenes bind unsymmetrically with gold(I) resulting in longer bonds with the substituted carbon atom. The X-ray structure of isobutylene IPr-gold(I) complex $\mathbf{1}$ revealed a $0.086 \AA$ difference between the metal-carbon bonds, whereas for norbornene (2) and 2,3-dimethyl-2-butene (3), this difference is $0.024 \AA$ and $0.009 \AA$, respectively (Figure 3). ${ }^{13 \mathrm{~b}}$ The angle between the metal and the centroid of the alkene also increased with the bulkiness of the alkene: 171.8° (isobutylene), 174.8° (norbornene), and 176.8° (2,3-dimethyl-2-butene).

1

2

3

4

Figure 3. Analysis of alkene and alkyne gold complexes.
Internal alkyne gold(I) complex 4 showed almost symmetrical η^{2}-coordination. The triple bond length is identical to that of a free alkyne, although there is significant bending back of the alkyl substituents. ${ }^{15 \mathrm{c}}$

In the case of allenes, structural and solution analysis demonstrated that gold(I) preferentially binds to the less substituted $\mathrm{C}=\mathrm{C}$ bond (Scheme 1). Although a theoretical study proposed that π-coordinated gold(I) complexes 5 with model NHC or phosphite

[^2]ligands could be in rapid equilibrium with η^{1}-allenyl species $5^{\prime},{ }^{17}$ other experimental results with gold(I) complexes bearing bulky phosphine ligands ruled out the involvement of 5^{\prime} in the low energy π-face exchange processes $\left(\leq 10 \mathrm{kcal} \mathrm{mol}^{-1}\right) .{ }^{16}$

Scheme 1. Proposed equilibrium between η^{2}-allene (5) and η^{1}-allenyl (5^{\prime}) gold species.

Nucleophilic Attack

In general, attack of nucleophiles to (η^{2}-alkyne)gold(I) complexes $\mathbf{6}$ gives trans-alkenyl species 7 (Scheme 2). ${ }^{3,18}$ Although an outer-sphere mechanism is widely accepted and it has been verified many times in the stereoselectivity of gold(I)-catalyzed reactions, there are few exceptions. Although it is difficult to distinguish an outer-sphere attack from an insertion process, this type of mechanism was suggested in the gold(I)-catalysed hydroamination of alkynes and allenes with ammonia, since coordination to nitrogen was found to be preferred under catalytic condition in the presence of an excess of alkyne when using catalysts as D. 3-Hexyne was transformed to imine $\mathbf{8}$ with an excess of ammonia in toluene at $200{ }^{\circ} \mathrm{C}$ for $20 \mathrm{~h} .{ }^{19}$ The syn-insertion of methyl propiolate in the Au-Si bond of a gold silyl complex was recently demonstrated. ${ }^{20}$

Scheme 2. Anti vs. syn nucleophilic attack to π-activated alkynes.
A wide range of carbon and heteronucleophiles such as arenes, ${ }^{21}$ heteroarenes, ${ }^{22}$ alcohols, ${ }^{23}$ amines, ${ }^{24}$ imines,,${ }^{25}$ sulfoxides, ${ }^{26} \mathrm{~N}$-oxides ${ }^{27}$ and thiols ${ }^{28}$ have been used as nucleophiles in

[^3]inter- or intramolecular processes. An early example was the intramolecular gold(III)catalyzed cyclization of α-hydroxyallenes, such as 9 , that allowed the straightforward synthesis of 2,5 -dihydrofurans like $\mathbf{1 0}$ in 78% isolated yield under mild conditions (Scheme 3). ${ }^{29}$

Scheme 3. Early gold-catalyzed cyclization of α-hydroxyallenes (9).
Noteworthy, the regioselectivity in the cyclization of halogenated allenones as $\mathbf{1 1}$ could be controlled depending on the oxidation state of the catalyst (Scheme 4). ${ }^{30}$ Thus, gold(III) favoured a mechanism in which the ketone is preferentially activated leading to cyclisation with concomitant 1,2-halogen migration through bromonium intermediate $\mathbf{1 2}$ to finally build $\mathbf{1 3}$ whereas gold(I) coordinated to the allene leading to cyclization without halogen migration via 14 to form 15.

Scheme 4. Regioselective cyclization of halogenated allenone 11 depending on the metal oxidation state.

The intramolecular nucleophilic addition deserves a special mention when the nucleophile is located at the propargylic position. ${ }^{31}$ Thus, propargylic carboxylates as $\mathbf{1 6}$ could undergo 1,2- or 1,3-acyloxy migrations leading to the formation of vinyl gold(I) carbenoid species 17 or allene gold(I) complexes 18, which could be in rapid equilibrium (Scheme 5). ${ }^{32} \mathrm{~A}$ double 1,2 -shift, which also led to $\mathbf{1 8}$, was found to be energetically more favoured than the direct 1,3 -shift, although different substitution at the substrate could significantly influence this preference.

[^4]

Scheme 5. Key intermediates in the propargylic migration of 16.

Cycloisomerization of $1, n$-enynes are a class of emblematic transformations in which an alkene acts as the nucleophile towards an alkyne activated by gold (see Chapters $\mathbf{1}$ and 2). ${ }^{3 \mathrm{~h}}$ A diverse array of reactions are possible with a significant increase in molecular complexity and in a fully atom economic manner. A representative example was the single-cleavage rearrangement of 1,6 -enyne 19 to form the conjugated diene 20 with 2 $\mathrm{mol} \%$ of $\mathrm{Ph}_{3} \mathrm{PAuCl} / \mathrm{AgSbF}_{6}$, which was proposed to proceed through a cyclopropyl gold(I) carbene (21) that could also be viewed as the homoallyl carbocation 21' (Scheme 6). ${ }^{9 b, 33}$ Gold(I) carbene intermediates could also be generated via a gold-catalyzed retro-Buchner reaction of 7 -substituted cycloheptatrienes. ${ }^{34}$

Scheme 6. Cyclopropyl gold carbene intermediate 21/21' proposed in the cycloisomerization of enynes.

Gold Intermediates

Although many gold intermediates are too highly reactive to be readily isolated, some progress has been achieved in the observation of few key species. ${ }^{6}$ In general, alkynes are selectively activated by gold(I) in the presence of other functional groups due to a higher reactivity of the η^{2}-alkyne gold(I) complexes towards nucleophilic attack. ${ }^{35}$ In the case of the reaction between alkynes and alkenes, gold(I) carbenes and gold(I) stabilized carbocations could be conceived as the intermediates (Scheme 6). ${ }^{33}$ An interesting debate, discussed in Chapter 3, was centred on the nature of the gold-carbon bond in complexes type $[\mathrm{LAuCHR}] .{ }^{+36}$ However, spectroscopic or structural data for carbene-like structures of

[^5]relevance in homogeneous catalysis is lacking. ${ }^{17,37}$ The interesting earlier structure of gold(I) carbene 22 showed C-Au length within the range of a single bond between a sp^{2} carbon atom and the metal while the $\mathrm{C}-\mathrm{N}$ bond was shorter than a typical imine as $\mathbf{2 2}^{\prime}$ (Figure 4). ${ }^{38,39}$ Neverthless, this scaffold is far from the intermediates generated in a catalytic cycle.

Figure 4. Isolated gold carbene 22/22'.

Evolution of the Gold Intermediates

Subsequently to the gold activation of the unsaturated scaffold and its nucleophilic attack, the intermediates could evolve through many different pathways leading to a huge variety of complex products. ${ }^{3}$ The simplest evolution of the alkenyl gold(I) intermediates is their reaction with an electrophile, most usually by protodeauration regenerating the active catalyst. For example, intermediate 23 reacted with p-toluenesulfonic acid at $80^{\circ} \mathrm{C}$ to form 24 (Scheme 7). ${ }^{40}$ Similarly, reaction with iodine and related electrophiles led to the corresponding halo-derivatives as $\mathbf{2 5}$. ${ }^{41}$

Scheme 7. Electrophilic attack to alkenyl gold complex 23.
The alkenyl gold(I) intermediate could further react in numerous multistep processes. ${ }^{42}$ In the case of $1, n$-enynes, they reacted with gold(I) by a series of fascinating rearrangements and related processes in the absence of external or internal nucleophiles (see Chapter 1). ${ }^{9 b, 33 a}$ On the other hand, they reacted both regio- and stereospecifically with a variety of them. ${ }^{21-28}$ As an illustrative example, 1,6 -enyne 26 reacted with $\mathrm{Ph}_{3} \mathrm{PAuMe} / \mathrm{HBF}_{4}$ to form 27 in 80% isolated yield as a result of the intermolecular anti attack of methanol on the

[^6]cyclopropyl ring intermediate analogous to 21 (Scheme 8). ${ }^{33 a}$

Scheme 8. Nucleophilic attack of methanol to 1,6-enyne 26.

Carbon nucleophiles reacted by similar mechanistic pathways. ${ }^{43}$ A particular case was illustrated by the cycloaddition of aryl substituted enynes, such as 28 , which reacted readily with cationic gold(I) catalyst \mathbf{B} to form smoothly tricyclic derivative 29 as well through a cyclopropyl gold carbene intermediate (Scheme 9). ${ }^{44}$ This formal [4+2] cycloaddition was stereospecific and, according to DFT calculations, proceeded in a stepwise fashion in which the nucleophilic attack of the π-activated alkyne was the ratedetermining step.

Scheme 9. [4+2] Cyclization of aryl-substituted 1,6-enyne 28.
Cyclopropyl gold(I) carbene intermediates could also be trapped by carbonyl groups interor intramolecularly as well as with alkenes via cyclopropanation (see Chapters 2 and 3). ${ }^{33,45,46}$ Dienynes such as $\boldsymbol{Z - 3 0}$ bearing an alkoxy group at the propargylic position reacted differently leading to tricyclic products (31) as a result of a cyclization cascade process that involved a formal 1,5-migration of the RO- group (Scheme 10). ${ }^{47}$ Thus, the reaction proceeded through intermediate 32, which evolved by intramolecular attack of the RO- at the electrophilic site of the cyclopropane to form 33. α, β-Unsaturated gold(I) carbene 34, generated by cleavage of the oxonium bridge, then underwent cyclopropanation with the pending alkene. Intermediate $\mathbf{3 2}$ could also be trapped intermolecularly with an external nucleophile to generate the epimeric derivative 35.

[^7]

Scheme 10. 1,5-Propargylic ether migration of 1,6-enyne Z-30 followed by intramolecular cyclopropanation.

Intermolecular Processes

Although many transformations were developed using gold catalysis to build complex polycyclic structures, those methodologies generally relied on intramolecular processes. ${ }^{3}$ In contrast, the corresponding intermolecular reactions were found to be more challenging (see the major advances in Chapter 2). ${ }^{48}$ The first gold-catalyzed cycloaddition was developed between alkynes and alkenes to afford a cyclobutene moiety (Scheme 11). ${ }^{49}$ As an example, reaction of ethynylbenzene with α-methylstyrene formed cyclobutene 36 when treated with [$\left.{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{SbF}_{6}(\mathbf{E})$ under mild conditions.

Scheme 11. Intermolecular [2+2] cycloaddition of alkynes and alkenes.
Afterwards, the presence of digold(I) complexes with bridging 3 center -2 electron bond were observed in this reaction as well as in many different contexts, which triggered detailed analysis on their involvement in catalysis (see Chapter 3). ${ }^{50,51}$ Moreover, several studies showed that the basicity and coordinating ability of the couteranion also played a

[^8]significant role in the reactivity as well as the selectivity of a specific transformation (see Chapter 4). ${ }^{52}$

Applications of Gold Chemistry

Therefore, gold-catalyzed reactions show many properties that prove them synthetically very useful. To start, gold chemistry allows a huge increment of the molecular complexity in really diverse types of transformations. ${ }^{3}$ Thus, gold chemistry comprises a set of fully atom economy methodologies that also show excellent regio-, chemo- and stereoselectivities. Furthermore, most reactions proceed under mild conditions, with no additives and with rather robust catalysts. Finally, its reactivity is usually orthogonal to other transition metal catalyzed processes.

For these reasons, gold has been involved in many total syntheses of natural products with pharmaceutical interest (see Chapter 5). ${ }^{53}$ Enantioselective processes are crucial in this area and, although asymmetric control has been shown possible in gold catalysis, there is still room for improvement regarding this specific feature. ${ }^{10,11}$ As an example, a goldcatalyzed cascade $[2+2+2]$ cyclization was used for the stereospecific synthesis of $(-)$ englerin A, which showed activity towards renal cancer cells (Figure 5). ${ }^{54}$

Figure 5. Englerin A synthesized using gold chemistry.

More recently, gold catalysis has also been combined with strong oxidants, ${ }^{55}$ organocatalysts, ${ }^{56}$ palladium, nickel or rhodium ${ }^{57}$ and photoredox reactions ${ }^{58}$ leading to a completely new set of interesting transformations. Finally, heterogeneous gold catalysis as well as the design of nanoparticles have shown great utilities in other contexts, for example, in the activation of small molecules, in supramolecular chemistry or in material science. ${ }^{59}$

[^9]UNIVERSITAT ROVIRA I VIRGILI

Chapter 1:

Gold-Catalyzed Macrocyclization of 1,n-Enynes via [2+2] Cycloaddition

1. Introduction

As explained in the General Introduction, gold-catalyzed cycloisomerizations of enynes emerged as a powerfull tool for the formation of $\mathrm{C}-\mathrm{C}$ bonds due to the remarkable carbophilic properties of this metal. ${ }^{1}$ These transformations allowed the construction of complex architectures under mild conditions from readily assembled starting materials and later led to the discovery of complex cascade reactions. In the absence of nucleophiles, $1, n$ enynes could form products of skeletal rearrangement in fully intramolecular reactions through discrete cationic intermediates stabilized by gold. ${ }^{2}$

Broadly, gold selectively activates alkynes in the presence of other functional groups forming (π-alkyne) gold complexes, which can undergo nucleophilic attack from an alkene. In the case of 1,6 -enyne $\mathbf{1}$, this step formed cyclopropyl gold carbene intermediates $\mathbf{2}$ or $\mathbf{3}$ by an anti-5-exo-dig or a 6 -endo-dig cyclization, respectively (Scheme 1). ${ }^{3}$ These intermediates were highly distorted according to DFT calculations and could later proceed via different pathways depending on the substitution pattern of the alkyne and the alkene.

Scheme 1. Cyclopropyl gold carbene intermediates from 1,6-enyne 1.

As an example, intermediate 2 could evolve via one step single cleavage rearrangement followed by demetallation in which only the alkene was cleaved. Thus, 1,6-enyne 4 reacted with $2 \mathrm{~mol} \%$ of $\mathrm{Ph}_{3} \mathrm{PAuCl} / \mathrm{AgBF}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ to build 1,3-diene 5 in 96% isolated yield after 15 min (Scheme 2). ${ }^{4}$

Scheme 2. Single cleavage rearrangement of 1,6-enyne 4.
On the other hand, 1,6-enyne 6 formed 1,3-diene 7 instead via a double cleavage rearrangement under similar conditions (Scheme 3). ${ }^{4}$ Hence, intermediate 2 generated a

[^10]new rearranged gold carbene (8) by a formal insertion of the terminal alkene carbon into the alkyne carbons. Subsequent α-proton elimination formed the final product.

Scheme 3. Double cleavage rearrangement of 1,6-enyne 6.
In the case of intermediate 3, α-proton elimination competed with single cleavage rearrangement through intermediate 9 (Scheme 4). ${ }^{5}$ Thus, 1,6-enyne $\mathbf{1 0}$ cyclized in the presence of $2 \mathrm{~mol} \%$ of $\mathrm{Ph}_{3} \mathrm{PAuCl} / \mathrm{AgSbF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ building 1,3-diene 11 in 67% isolated yield after 20 min .

Scheme 4. Cyclization of 1,6-enyne 10 via 6-endo-dig pathway.
Analogous methodologies using 1,5-enynes were developed as well. ${ }^{6}$ Moreover, similar cycloisomerizations of allenes are also possible. ${ }^{7}$

Alternatively, isomerization of $\mathbf{3}$ by ring expansion of the cyclopropane afforded 97% of cyclobutene $\mathbf{1 2}$ in the cyclization of 1,6 -enyne $\mathbf{1 3}$ with JohnPhosAuCl/ AgSbF_{6} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$ (Scheme 5)..8 Cyclobutene 12 could be detected spectroscopically by ${ }^{1} \mathrm{H}$ NMR but isomerized to cyclobutene $\mathbf{1 4}$ at $25^{\circ} \mathrm{C}$ in 96% yield after $15 \mathrm{~min} .{ }^{9}$

Scheme 5. Detection of cyclobutenes 12 and 14.

[^11]Nevertheless, cyclobutenes emerged as the major products with 1,7- or 1,8-enynes. Hence, tricyclic structure 16 was obtained in 80% isolated yield from the cyclization of 1,7-enyne 15 with $2 \mathrm{~mol} \%$ of [JohnPhosAuNCMe] $\mathrm{SbF}_{6}(\mathbf{B})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$ (Scheme 6). ${ }^{4}$

Scheme 6. Formation of a cyclobutene from 1,7-enyne 15.
Later on, cycloisomerization of 1,8-enynes catalysed by XPhosAuNTf $_{2}(\mathbf{F})$ was developed (Scheme 7). ${ }^{10}$ Thus, 1,8 -enyne $\mathbf{1 7}$ forged cyclobutene $\mathbf{1 8}$ in 90% isolated yield after 15 min in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ using $4 \mathrm{~mol} \%$ of the mentioned catalyst.

Scheme 7. Formation of a cyclobutene from 1,8-enyne 17.
So far, the largest $1, n$-enyne involved in a gold-catalyzed cycloisomerization was 1,9enyne 19 , which led to 10 -membered ring 20 (Scheme 8). ${ }^{11}$ However, this cyclization required $50 \mathrm{~mol} \%$ of the gold catalyst to afford the final product in a moderate yield after 14 h in toluene at $50^{\circ} \mathrm{C}$.

Scheme 8. Cyclization of 1,9-enyne 19.

On the other hand, the intermolecular [2+2] cycloaddition of terminal alkynes with an excess of an electron-rich alkene occurred using $3 \mathrm{~mol} \%$ of [$\left.{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{SbF}_{6}(\mathbf{E})$ with a really sterically hindered ligand (Scheme 9). ${ }^{12}$ The reaction proceeded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ to afford cyclobutene 21 regioselectively from ethynylbenzene and α-methylstyrene in 80% isolated yield.

[^12]Gold-Catalyzed Macrocyclization of 1,n-Enynes via [2+2] Cycloaddition

Scheme 9. Intermolecular [2+2] cycloaddition of alkynes and alkenes.
On the other hand, macrocycles are present in a multitude of important natural products that display a wide variety of biological activities. ${ }^{13}$ Macrocycles are also commonly exploited in the fields of material science ${ }^{14}$ and in supramolecular chemistry. ${ }^{15}$ The most common methods for gaining access to macrocycles involve macrolactonizations, ${ }^{16}$ ringclosing metathesis ${ }^{17}$ or cross-coupling reactions (Figure 1). ${ }^{18}$ For example, in the total synthesis of $(-)$-disorazole C_{1}, a late stage Yamaguchi lactonizaton was used to afford 30membered ring 22 in 79% isolated yield under mild conditions. ${ }^{19}$ Furthermore, during the synthesis of Taxol, an intramolecular Heck reaction with stoichiometric $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ at $90{ }^{\circ} \mathrm{C}$ afforded 7-membered ring 23 in 49% yield. ${ }^{20}$

Yamaguchi lactonization
79\%

49\%

Carbonylative Stille reaction
53\%

Olefin metathesis 65\% (E/Z, 2:1)

Figure 1. Examples of macrocyclizations in total synthesis.

[^13](+/-)-2-Epi-jatrophone, which containes a 11-membered ring, was also obtained via an intramolecular carbonylative Stille coupling transformation in 53% isolated yield. ${ }^{21}$ Finally, in the total synthesis of epothilones A and B, a ruthenium-catalyzed ring-closing olefin metathesis was applied to build 16 -membered ring 24 in $65 \%(E / Z, 2: 1)$ with 50 $\mathrm{mol} \%$ of catalyst loading. ${ }^{22}$

Therefore, the construction of large carbon-based cyclic structures is not synthetically straightforward. Thus, the basic principles underlying the cyclization of bifunctional chain molecules to many-membered rings were expressed in terms of quantitative and systematic relationships applying physical-organic concepts. ${ }^{23}$ The effective molarity, defined as $\mathrm{k}_{\text {Intra }} / \mathrm{k}_{\text {Inter }}$, determined the concentration limit in which a cyclization became favoured in front of polymerization. This factor relied on the type of transformation performed, the substrate involved, the most stable conformation as well as the size of the ring formed. Specifically, 3- to 7-membered rings, reaching the maximum in 5-, were the more straightforward rings formed due to entropic factors whereas it turned rather unfavoured from 8 -membered rings and beyond (Figure 2).

Figure 2. Relationship between the effective molarity in a cyclization and the size of the ring formed.

[^14]
2. Objectives

Intramolecular cyclizations of $1,5-, 1,6-, 1,7-$ and 1,8 -enynes were the benchmark to exploit gold-catalyzed reactions. ${ }^{1 \mathrm{~h}}$ Later on, the intermolecular cycloaddition between alkynes and alkenes led to the regioselective formation of cyclobutenes as $21 .{ }^{12}$ Due to the synthetic interest of macrocyclic structures, we reasoned we could develop a new methodology using this transformation. Thus, we decided to attempt the synthesis and gold-catalyzed cyclization of $1, n$-enynes $(n \geq 9) \mathbf{2 5}$ to obtain frameworks such as $\mathbf{2 6}$ (Scheme 10).

Scheme 10. Gold-catalyzed macrocyclization of $1, n$-enynes ($n \geq 9$).

Therefore, we planned the development of a gold-catalyzed macrocyclization of large enynes as an extension of the intermolecular [2+2] cycloaddition.

3. Synthesis of Macrocycles

Optimization of the [2+2] Cyclization

In contrast to the transformations involving small $1, n$-enynes $(n=5-8)$ that are entropically favoured, obtaining macrocycles from larger $1, n$-enynes ($n \geq 9$) is more challenging. ${ }^{23}$ Preferably, the reacting partners must be in close proximity in a stable conformation to perform the reaction under mild conditions. For example, 1,10-enyne 27 did not lead to the formation of the corresponding macrocycle 28 with $3 \mathrm{~mol} \%$ of catalyst E (Scheme 11). The reaction was attempted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ and only starting material was recovered after 24 h .

Scheme 21. Need of a spacer in order to react.
To circumvent this problem, we decided to add a spacer to favour the reactivity focusing on 1,14-enyne 29 towards 13 -membered ring 30 (Table 1).

We first used catalyst \mathbf{E} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ but with distinct concentrations, temperatures and reaction times. To start, we could observe that the reaction outcome was highly dependant on the substrate concentration. Thus, when the reaction was performed under concentrated conditions (0.3 M) at $25^{\circ} \mathrm{C}$, the yield of macrocycle $\mathbf{3 0}$ was not higher than 34% (entry 2). Interestingly, too long reaction times showed a decrease of the desired cyclobutene although complete conversion was reached in all cases. On the other hand, decreasing the concentration to 0.07 M and later to 0.007 M led to the formation of macrocycle $\mathbf{3 0}$ in good yields: 53 and 71%, respectively (entries 5 and 15). Nevertheless, the yield dropped to 57% (diastereoselectivity $2.3: 1$) after isolation. Heating the reaction allowed increasing the reaction rate but at the expense of the final yields. Presumably, oligomerization of the enyne or decomposition of the cyclobutene could occur more easily under these reaction conditions. Moreover, applying $10 \mathrm{~mol} \%$ of catalyst \mathbf{E} led to macrocycle $\mathbf{3 0}$ only in 64% yield (entry 22).

Afterwards, alternative gold complexes were examined in the macrocyclization of 1,14enyne 29 to explore the impact of the ligand in the reactivity (Figure 3). The transformation was performed under the optimized conditions and analysed after 1 h (Table 2).

Table 1. Screening of the reaction conditions for the macrocyclization of large enynes.

Enyne	Concentration (M)	Temperature (${ }^{\circ} \mathrm{C}$)	Time (h)	Yield ${ }^{\text {a }}$
1			3	23
2	0.3	25	6	34
3			12	29
4			3	29
5		25	6	53
6			12	43
7			3	24
8	0.07	50	6	39
9			12	35
10			3	9
11		80	6	18
12			12	12
13			3	59
14		25	6	63
15			12	71
16			3	56
17	0.007	50	6	67
18			12	61
19			3	22
20		80	6	42
21			12	54
$22^{\text {b }}$		25	12	64

${ }^{a}$ Crude analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standard, yields referred to macrocycle $\mathbf{3 0} .{ }^{b} 10 \mathrm{~mol} \% \mathbf{E}$.

Figure 3. Other complexes screened.

In the case of catalyst \mathbf{B}, a direct relationship between the bulkiness around the metal centre and the selectivity was observed. Thus, only 26% of macrocycle $\mathbf{3 0}$ was obtained with almost complete conversion (entry 1). Compared to complex E, new gold complexes \mathbf{G} and \mathbf{H} did not give macrocycle $\mathbf{3 0}$ in better yields (entries 3, 4 and 5). Study of the intermolecular [2+2] cycloaddition and the single cleavage of 1,6 -enynes revealed the same behaviour for these new catalysts. Moderate results towards the macrocyclization were observed for catalysts \mathbf{C} and \mathbf{I}. On the other hand, when the active species were generated in situ from $\mathrm{Ph}_{3} \mathrm{PAuCl} / \mathrm{AgSbF}_{6}$, the reaction proceeded very inefficiently (entry 7). Finally, no macrocycle $\mathbf{3 0}$ was observed using silver or platinum salts or complex [$\mathbf{P t}^{\mathrm{II}}$] (entries 8 to 11). ${ }^{2 \mathrm{a}}$

Table 2. Screening of catalysts for the macrocyclization of large enynes.

Entry	[Au]	Yield ${ }^{\text {a,b }}$
1	A	26\% (91\%)
2	C	22\% (45\%)
3	E	20\% (35\%)
4	G	8\% (29\%)
5	H	11\% (23\%)
6	I	29\% (47\%)
7	$\mathrm{Ph}_{3} \mathrm{PAuCl} / \mathrm{AgSbF}_{6}$	10\% (99\%)
8	AgSbF_{6}	-
9	PtCl_{2}	-
10	PtCl_{4}	-
11	$\left[\mathrm{Pt}^{\text {II }}\right]$	-
${ }^{a}$ Crude analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4diacetylbenzene as internal standard, yields referred to macrocycle 30. ${ }^{b}$ Reaction conversion in brackets.		

Scope of the [2+2] Cyclization

We started by examining the cyclization of 1,9-enyne $\mathbf{1 9}$ towards macrocycle $\mathbf{3 1}$ with catalyst \mathbf{E} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 12). The reaction was performed with $4 \mathrm{~mol} \%$ at $25^{\circ} \mathrm{C}$ and led to no product, neither with $20 \mathrm{~mol} \%$ at $50{ }^{\circ} \mathrm{C}$. On the contrary, catalyst \mathbf{B} led to complete decomposition.

Scheme 12. Macrocyclization of 1,9-enynes.

Afterwards, 1,9-enyne 32 was treated with $3 \mathrm{~mol} \%$ of catalyst \mathbf{E} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $50{ }^{\circ} \mathrm{C}$. Macrocycle 33 was not formed as no reaction was observed after 20 h . The analogous 1,10 -enyne 34 did not lead to macrocycle 35 under the same conditions either (Scheme 13).

Not observed Complex mixture

Scheme 13. Macrocyclization of 1,10-enynes.

A more flexible 1,10-enyne was synthesized (36) but reaction under the same conditions led to a very complex mixture and no cyclobutene 37 could be observed. In the case of 1,10 -enyne 38 only 19% of macrocycle 39 was obtained with 77% of conversion under the optimized conditions. However, the yield increased to 51% (diastereoselectivity $5: 1$) when the concentration was increased to 0.2 M . Cyclization of 1,10 -enyne 40 led to no reaction
under the optimized condition whereas formed macrocycle 41 in 66% isolated yield when the concentration was increased to 0.2 M and the temperature to $45{ }^{\circ} \mathrm{C}$. Furthermore, 9 -membered ring 41 could be crystallized and the structure confirmed by X-ray diffraction (Figure 4). We could observe that the tetracyclic structure was rather rigid, which led to a distance between the aromatic rings of $2.82 \AA$.

Figure 4. X-Ray crystal structure of macrocycle 41.

On the other hand, 1,11-enyne 42 led to 16% of macrocycle $\mathbf{4 3}$ and complete conversion under the optimized conditions (Scheme 14). When the reaction was performed in DCE $(0.3 \mathrm{M})$ at $70{ }^{\circ} \mathrm{C}$ the cyclobutene was obtained in 30% yield after $2 \mathrm{~h}, 20 \%$ (diastereoselectivity $4: 1$) after isolation.

Scheme 14. Macrocyclization of 1,11-enyne 42.
In the case of 1,12 -enynes, substrate 44 led to a very complex mixture and no macrocycle 45 was observed (Scheme 15). The reaction was attempted with $3 \mathrm{~mol} \%$ of catalyst \mathbf{E} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ at 25 and $50^{\circ} \mathrm{C}$ as well as at 0.05 M for 20 h .

Scheme 15. Macrocyclization of 1,12-enynes.
Cyclization of 1,12-enyne 46 afforded macrocycle 47 in 25% yield when treated with 3 $\mathrm{mol} \%$ of catalyst \mathbf{E} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$. Due to co-elution with substrate 46 , the yield of $\mathbf{4 7}$ was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standard. We attempted a subsequent reaction with the crude mixture based on click chemistry,
specifically, a copper-catalyzed Huisgen cycloaddition between the remaining alkyne with a solid supported azide using $10 \mathrm{~mol} \%$ of complex $\left[\mathrm{Cu}^{\mathbf{I}}\right.$] (Figure 5). ${ }^{24}$ The reaction was performed in DMF at $80^{\circ} \mathrm{C}$, which led to the triazole but macrocycle $\mathbf{4 7}$ underwent decomposition under these conditions.

Figure 5. Copper catalyst for a Huisgen cycloaddition.
In the case of 1,13 -enyne 48 , a very complex mixture with no cyclobutene 49 was also observed in the reaction with $3 \mathrm{~mol} \%$ of catalyst \mathbf{E} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 25 or $50^{\circ} \mathrm{C}$ (Scheme 16). Otherwise, 1,13-enyne $\mathbf{5 0}$ afforded macrocycle $\mathbf{5 1}$ in $\mathbf{1 1 \%}$ yield with complete conversion under the optimized conditions. However, it increased to 29% isolated yield when the reaction was performed at 0.3 M .

Scheme 16. Macrocyclization of 1,13-enynes.
On the other hand, cyclization of 1,14-enyne $\mathbf{5 2}$ led to macrocycle $\mathbf{5 3}$ in 57% isolated yield when treated with $3 \mathrm{~mol} \%$ of catalyst \mathbf{E} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$ at $25^{\circ} \mathrm{C}$ (Scheme 17).

Scheme 17. Macrocyclization of 1,14-enyne 52.

[^15]Afterwards, 1,15-Enyne 54 afforded macrocycle $\mathbf{5 5}$ in 70% isolated yield under similar conditions (Scheme 18). Therefore, increasing the length of the enyne could lead to better yields as a consequence of a relief in transannular strain.

Scheme 18. Macrocyclization of 1,15-enyne 54.
Nevertheless, 1,16-enyne 56 led to a very complex mixture with no cyclobutene $\mathbf{5 7}$ (Scheme 19).

Scheme 19. Macrocyclization of 1,16-enyne 56.
Similarly, 1,17-enyne 58 formed only traces of macrocycle $\mathbf{5 9}$ when reacted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 25 or $50^{\circ} \mathrm{C}$ for 20 h (Scheme 20).

Scheme 20. Macrocyclization of 1,17-enyne 58.
Therefore, in order to explore the scope of the reaction, macrocyclizations were performed with $1,9-$ to 1,17 - enynes bearing different spacers. In general, the reactions were carried out under mild conditions (30) although a few substrates required heating to furnish the macrocyclic products, for example, 41 and 43. In addition, highly diluted conditions were counter-productive in some cases: 39, 47, 51, 53 or 55. Under these conditions, the macrocyclization reaction proceeded in moderate to good yields drastically depending on each substrate: the chain length, the spacer and the substituents.

This methodology also provided access to m-cyclophanes. This class of compounds exhibits interesting chemical and physical properties that result from their unusual
architecture. ${ }^{25,26}$ Thus, 1,12-enyne $\mathbf{6 0}$ cyclized to form macrocycle $\mathbf{6 1}$ in 70% isolated yield with $3 \mathrm{~mol} \%$ of catalyst \mathbf{E} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.45 \mathrm{M})$ at $25^{\circ} \mathrm{C}$ for 1 day (Scheme 21).

Scheme 21. Macrocyclization of meta-substituted arylenynes.
Finally, cyclization of 1,16-enyne 62 required $5 \mathrm{~mol} \%$ of catalyst \mathbf{E} to obtain macrocycle 63 in 71% isolated yield, which proceeded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{M})$ at $45^{\circ} \mathrm{C}$ for 2 days. Under more diluted conditions, no reaction was observed. Interestingly, macrocycle 61 was obtained as a mixture of atropoisomers $5: 1$ and macrocycle $\mathbf{6 3}, 4: 1$. NMR studies at high temperature $\left(60{ }^{\circ} \mathrm{C}\right.$) did not provide further information due to decomposition of the macrocycles. ${ }^{27}$

Derivatization of the Macrocycles

Finally, we decided to further modify these scaffolds with known transformations in order to prove the synthetic value of the methodology. Attempts of performing a rutheniumcatalyzed ring opening cross-metathesis with ethylene led to no reaction whereas oxidation of the cyclobutene moiety afforded very complex mixtures. ${ }^{28,29}$

Afterwards, we performed the hydrogenation of $\mathbf{3 0}$. The cyclobutene could be reduced with $10 \mathrm{~mol} \%$ of Pd / C in methanol at $25^{\circ} \mathrm{C}$ for 8 h under 1 atm of H_{2} (Scheme 22). Under these conditions debenzylation of $\mathbf{3 0}$ was also observed and compound $\mathbf{6 4}$ was obtained in 79% isolated yield (diastereoselectivity $2 \cdot 4: 1$). Attempts to derivatize the free alcohol with p-nitrobenzoyl chloride to crystallize the resulting product failed.

[^16]

79\% isolated, 2.4:1

82\% isolated, 6.0:1.6:1.4:1.0
Scheme 22. Hydrogenation of macrocycle 30.
This problem could be circumvented by the addition of 0.5 equiv. of pyridine under similar conditions to furnish macrocycle $\mathbf{6 5}$ in 82% isolated yield. ${ }^{30}$ However, this scaffold was obtained as a mixture of diastereoisomers (6.0:1.6:1.4:1.0). The configuration in the cyclobutane ring of the major diastereoisomer was assigned as trans by ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC phase edited, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR spectroscopy.

Furthermore, we compared the stability of the different diastereoisomers of substrates $\mathbf{6 4}$ and 65 by means of DFT calculations. In the case of compound 64, the trans-cyclobutane was the more stable configuration and the effect of the methyl substituent was rather minor, $\mathrm{E}_{\text {CisTrans }}=0.7 \mathrm{kcal} / \mathrm{mol}$ (Figure 6). However, the cis-cyclobutane was significantly less stable, $\mathrm{E}_{\text {TransCis }}=2.6 \mathrm{kcal} / \mathrm{mol}$ and $\mathrm{E}_{\text {CisCis }}=3.3 \mathrm{kcal} / \mathrm{mol}$ than the trans-trans diastereoisomer.

Figure 6. Diastereoisomers of compound 64 (relative energies in kcal/mol).

[^17]On the other hand, macrocycle $\mathbf{6 5}$ was also more stable with a trans cyclobutane (Figure 7). Nevertheless, the effect of the methyl substituent was much more influential: $\mathrm{E}_{\text {CisTrans }}=$ $2.4, \mathrm{E}_{\text {CisCis }}=2.8$ and $\mathrm{E}_{\text {TransCis }}=3.7 \mathrm{kcal} / \mathrm{mol}$.

$65_{\substack{\text { TransTrans } \\ 0.0}}$
${ }^{65} 5_{\text {CisTrans }}$

${ }^{65}$ CisCis

Figure 7. Diastereoisomers of compound 65 (relative energies in kcal/mol).

4. Conclusions

Although a wide variety of gold-catalyzed cycloisomerizations of $1, n$-enynes were developed during the last decade, this class of emblematic transformations were limited from 1,5- to 1,8 -substrates. Construction of larger rings was proven to be challenging due to entropic factors. In here, we have developed a gold-catalyzed macrocyclization of $1, n$ enynes $(n \geq 9)$ via a $[2+2]$ cycloaddition towards a cyclobutene moiety. ${ }^{31}$ As an example, 1,14-enyne 29 led to macrocycle 30 in 57% isolated yield under highly diluted conditions, at $25^{\circ} \mathrm{C}$ using $3 \mathrm{~mol} \%$ of catalyst \mathbf{E} (Scheme 23).

Scheme 23. Macrocyclization under highly diluted conditions.
Nevertheless, these optimized conditions were not general and other substrates required increasing the temperature and/or the concentration in order to react. Thus, 1,10-enyne 40 gave macrocycle 41 in 66% isolated yield at 0.2 M and $45^{\circ} \mathrm{C}$ (Scheme 24).

Scheme 24. Macrocyclization under harsher conditions.
The gold-catalyzed macrocyclization reaction proceeded smoothly with moderate to good yields forging 8 - to 16 -membered rings, including m-cyclophanes. However, the reactivity showed a strong dependence on the structure of each substrate.

[^18]UNIVERSITAT ROVIRA I VIRGILI

Chapter 2:

Gold(I)-Catalyzed Intermolecular [2+2+2] Cycloaddition of Alkynes and Oxoalkenes

1. Introduction

As explained in the General Introduction, gold(I)-catalyzed intramolecular cycloisomerization reactions have been widely studied during the last decade. ${ }^{1}$ Gold(I) complexes have been found to be powerful homogeneous catalysts for carbon-carbon, carbon-oxygen or carbon-nitrogen bond formation proceeding by nucleophilic additions to alkynes, allenes and alkenes giving access to new carbo- and heterocyclic compounds. Despite these major advances, the development of intermolecular cycloadditions using alkynes as the substrates has been shown to be challenging. ${ }^{2}$ In these processes, different unsaturated substrates are involved and their possible competitive binding with the gold complex should be considered. Moreover, gold complexes are inherently acidic and therefore can promote the polymerization of alkenes via cationic mechanisms. ${ }^{3}$

The first intermolecular cycloaddition catalyzed by gold(I) involved terminal alkynes and electronrich alkenes that reacted to form cyclobutenes regioselectively, which are useful building blocks in synthesis (Scheme 1). ${ }^{4}$

Scheme 1. Gold-catalyzed [2+2] cycloaddition of alkynes with alkenes.
This reaction required the use of the sterically hindered gold(I) complex $\left[{ }^{t} \mathrm{BuXPhosAu}\left(\mathrm{NCMe}^{2}\right)\right] \mathrm{SbF}_{6}(\mathbf{E})$ as catalyst, which circumvented the addition of any silver salt. Thus, reaction of ethynylbenzene and α-methylstyrene led to the cyclobutene adduct $\mathbf{1}$ in 80% isolated yield.

Further studies allowed the development of the $[4+2]$ annulation of arylynamides with alkenes using $\operatorname{IPrAuCl} / \mathrm{AgNTf}_{2} .{ }^{5}$ Attack of p-methoxystyrene to the activated alkyne 2 followed by a Friedel-Crafts reaction afforded structure $\mathbf{3}$ in 88% isolated yield (Scheme 2). In contrast, when terminal ynamide 4 and an enol ether were treated with a gold

[^19]complex bearing a phosphine ligand, an intermolecular [2+2+2] reaction took place forming enamine 5 in 73% isolated yield diastereoselectively.

Scheme 2. Gold-catalyzed [4+2] and [2+2+2] annulation of ynamides with alkenes.
A [4+2] cycloaddition between propargylic esters or carboxylic acids with alkenes was also developed to build α, β-unsaturated lactones (Scheme 3). ${ }^{6}$ Therefore, tert-butyl propiolate reacted with α-methylstyrene and [JohnPhosAuNCMe]SbF ${ }_{6}(\mathbf{B})$ to build lactone 6 in 67% isolated yield. This transformation was also performed enantioselectively (up to $65 \% \mathrm{ee}$), being the first asymmetric example of an intermolecular gold-catalyzed cycloaddition. However, when 1,2-disubstituted alkenes were used, 1,3-dienes were formed stereospecifically by a metathesis-like process.

Scheme 3. Gold-catalyzed [4+2] cycloaddition of propargylic esters with alkenes.
The first intermolecular phenol synthesis was reported using the Schmidbauer-Bayer binuclear gold(I) complex $\left[\left(\mathrm{Mes}_{3} \mathrm{PAu}\right)_{2} \mathrm{Cl}\right] \mathrm{BF}_{4}$ as a catalyst with ethynylbenzene and 2,5dimethylfuran (Scheme 4). ${ }^{7}$

Scheme 4. Gold-catalyzed cycloaddition of alkynes with furans.
Phenol 7 was obtained in 38% isolated yield, along with large amounts of the hydroarylation product 8. The process was later improved using IPr as ligand (see Chapter 4 for more details). ${ }^{8}$

[^20]Finally, alkynes have been also used intermolecularly as nucleophiles (Scheme 5). ${ }^{9}$ As an example, treatment of a terminal alkyne with gold complex \mathbf{J} underwent deprotonation followed by addition to an imine. ${ }^{10}$ Thus, ethynylbenzene reacted with imine 9 to build the propargylic amine $\mathbf{1 0}$.

Scheme 5. Gold-catalyzed nucleophilic addition of alkynes to imines.

Besides, a noteworthy intramolecular cascade $[2+2+2]$ reaction between an alkyne, an alkene and a carbonyl group was designed based on the nucleophilic attack towards enynes. ${ }^{11}$ Thus, the cyclization of 1,6 -enyne bearing a carbonyl moiety $\mathbf{1 1}$ using AuCl allowed the formation of tricyclic scaffold $\mathbf{1 2}$ via two $\mathrm{C}-\mathrm{C}$ and one $\mathrm{C}-\mathrm{O}$ bond (Scheme 6), ${ }^{12}$ which has been used to build the core of several natural products as $(+)$-orientalol F or $(-)$-englerins A and B. ${ }^{13,14}$ Product $\mathbf{1 2}$ was obtained in 84% isolated yield (diastereoselectivity $50: 1$), together with diene $\mathbf{1 3}$ as a minor by-product.

Scheme 6. Gold-catalyzed [2+2+2] tandem cyclization of an alkyne
and an alkene bearing a carbonyl group.
Thus, the gold catalyst presumably activated preferentially the alkyne of 1,6-enyne 11, which suffered a nucleophilic attack from the alkene (Scheme 7). This step led to the formation of the cyclopropyl gold carbene 14. As discussed before, this intermediate is a highly distorted structure bearing a significant partial positive charge in the cyclopropyl ring. Therefore, it could undergo a subsequent intramolecular nucleophilic attack of the ketone forming a five-membered oxonium cation $\mathbf{1 5}$ stereospecifically. In the presence of

[^21]this alkenyl gold species, the intermediate proceeded through a Prins-type cyclization forming a tertiary carbocation first (16) and the final product 12 after demetallation (orange route). Simultaneous ring opening could explain the formation of the diastereoisomeric tricyclic scaffold $\mathbf{1 2}^{\prime}$ (green route) and the diene product $\mathbf{1 3}$ (blue route).

Scheme 7. Proposed mechanism of the [2+2+2] cyclization.
Trapping of cyclopropyl carbenes with carbonyl groups was also performed using 2 equiv. of an external aldehyde or ketone in the presence of a 1,6-enyne. ${ }^{15,16}$ As an example, 1,6enyne 17 reacted with 1,3,5-trimethylbenzaldehyde and $[\operatorname{IPrAuNCPh}] \mathrm{SbF}_{6}(\mathbf{C})$ to form oxacycle $\mathbf{1 8}$ as the main product (Scheme 8).

Scheme 8. Addition of a carbonyl to 1,6-enyne 17.
The transformation progressed at $-40^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with retention of the configuration and it was reasoned that this transformation proceeded analogously to the $[2+2+2]$ cyclization. Traces of diene 19 were formed by the competitive ring opening.

[^22]
2. Objectives

Considering the challenge when applying a gold-catalyzed intermolecular cycloaddition of an alkyne with an alkene or another functional substrate, we decided to focus on expanding the scope of these methodologies. Furthermore, intermolecular cascade cycloadditions are even scarcer. Although several additions of carbonyls to $1, n$-enynes have emerged successfully, the outcome was rather substrate-dependent leading to mixtures of products and always required the preparation of an elaborate unsaturated scaffold.

Therefore, we decided to attempt the development of an analogous [2+2+2] reaction between an alkyne (20) and an alkene linked to a carbonyl group (21) in an intermolecular fashion to build an oxabicycle scaffold such as 22 (Scheme 9).

Scheme 9. Intermolecular gold-catalyzed [2+2+2] cycloaddition of an alkyne, an alkene and a carbonyl group.

3. Synthesis of Oxabicycles

Optimization of the [2+2+2] Cycloaddition

First, we examined the cycloaddition between ethynylbenzene and 5-methylhex-5-en-2one in 0.5 M of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and at $25{ }^{\circ} \mathrm{C}$ for 24 h to form 23 . We screened several gold complexes as catalysts as well as the effect of the stoichiometry between the alkyne and the oxoalkene (Table 1). A slight excess of alkene was required in the formation of the cyclobutenes as dimerization of α-methylstyrene was observed as a competitive sidereaction. ${ }^{4}$ Under these conditions, although the desired oxabicycle was detected using catalyst $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{E}, the yields were very low (entries 1 to 4).

Table 1. Screening of catalysts for the [2+2+2] cycloaddition.

Entry	$[\mathbf{A u}]$	X equiv.	Yield $^{\boldsymbol{a}}$
1	\mathbf{A}	0.5	6%
2	\mathbf{B}	0.5	19%
3	\mathbf{C}	0.5	14%
4	\mathbf{E}	0.5	13%
5	\mathbf{B}	2	15%
6	\mathbf{C}	2	15%
7	\mathbf{E}	2	$39 \%^{b}$
8	\mathbf{K}	2	25%
9	\mathbf{L}	2	Complex mixture
10	AuCl	2	Complex mixture
${ }^{{ }^{\text {C Crude }} \text { analyzed }}$ by	${ }^{\mathrm{H}} \mathrm{H}$ NMR	spectroscopy	using
1,4-diacetylbenzene as internal			

However, the amount of product was increased significantly to 39% isolated yield of $\mathbf{2 3}$ with catalyst \mathbf{E} by switching the stoichiometry (entry 7). Catalyst \mathbf{K} also delivered the desired product in 25% yield (Figure 1). A complex mixture was observed with \mathbf{L} or AuCl (entries 8, 9 and 10).

Thus, we observed that, when increasing the steric bulkiness of the ligand in the gold complex, we obtained the maximum selectivity towards the intermolecular [2+2+2] cycloaddition. We centered our attention in catalyst \mathbf{E} and attempted the reaction with 5 equiv. of ethynylbenzene for 15 h modifying both the temperature and the concentration (Table 2). The oxabicycle product $\mathbf{2 3}$ was obtained in 68% isolated yield in 0.5 M of DCE at $50^{\circ} \mathrm{C}$ (entry 3). Longer reaction times did not affect the results.

Table 2. Effect of the temperature and the concentration."

Entry	Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Concentration (M)	Yield $^{\boldsymbol{b}}$
1	25	0.1	34%
2	25	0.5	41%
3	50	0.5	$68 \%^{c}$
4	80	0.5	43%
5	50	1.0	53%

${ }^{a}$ Reaction of 5-methylhex-5-en-2-one with 5 equiv. of ethynylbenzene and $5 \mathrm{~mol} \%$ of \mathbf{E} in DCE for $15 \mathrm{~h} .{ }^{b}$ Crude analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standard, yields referred to oxabicycle 23. ${ }^{\text {c }}$ Isolated yield.

New complexes (\mathbf{G} and \mathbf{H}) were also tested (Figure 2). ${ }^{17}$ We reasoned that either the methoxy or the methyl groups could further increase the bulkiness around the metal as well as the rigidity of the catalyst. However, 63% and 57% yields, respectively, were observed under the optimized conditions.

Figure 2. New gold complexes.
Interestingly, when the reaction was performed at $50^{\circ} \mathrm{C}$ or higher, an unprecedented trimerization of the alkyne was observed forming the 1,3,5-substituted benzene 24 (Figure 3).

Figure 3. Formation of 1,3,5-substituted benzene 24.

Scope of the $[2+2+2]$ Cycloaddition

The cycloaddition reaction proceeds in a general manner with aryl acetylenes 20 substituted at ortho, meta, or para positions with 6-methylhex-5-en-2-one to form cycloadducts $\mathbf{2 5}$ in moderate to excellent yields under the optimized conditions (Table 3). Aryl acetylenes $\mathbf{2 0}$ with electron-donating and electron-withdrawing substituents, alkyl groups, ethers and halides, react similarly.

[^23]Table 3. Alkyne scope of the [2+2+2] cycloaddition.

Entry	R-	Product	Yield ${ }^{\text {a,b }}$
1	Ph-	$\mathbf{2 3}$	68%
2	$2-\mathrm{Naphthyl}$	$\mathbf{2 6}$	62%
3	$p-\mathrm{FC}_{6} \mathrm{H}_{4}-$	$\mathbf{2 7}$	68%
4	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}-$	$\mathbf{2 8}$	55%
5	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}{ }^{-}$	$\mathbf{2 9}$	49%
6	$m-\mathrm{Tol}^{-}$	$\mathbf{3 0}$	70%
7	$m-\mathrm{FC}_{6} \mathrm{H}_{4}-$	$\mathbf{3 1}$	49%
8	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}-$	$\mathbf{3 2}$	55%
9	$m-\mathrm{HOC}_{6} \mathrm{H}_{4}-$	$\mathbf{3 3}$	65%
10	$m-\mathrm{MeOC}_{6} \mathrm{H}_{4}-$	$\mathbf{3 4}$	91%
11	$o-\mathrm{MeC}_{6} \mathrm{H}_{4}-$	$\mathbf{3 5}$	41%
12	$3-\mathrm{Thienyl}^{-}$	$\mathbf{3 6}$	$40 \%(79 \%)$

${ }^{a}$ Isolated yields. ${ }^{b}$ Reaction conversion in brackets, 100% if not stated.
2-Naphthylethynylbenzene, a polyaromatic acetylene, afforded oxabicycle 26 smoothly (entry 2). Moreover, a free phenol was also accommodated forming oxabicycle 33 (entry 9), the structure of which was confirmed by X-ray diffraction (Figure 4). Importantly, the reaction could be carried out on a 2 mmol scale without observing a decrease of the yield (74\%). (3Thienyl)acetylene reacted to furnish product 36 but never reached complete conversion (entry 12).

Figure 4. X-Ray crystal structure of oxabicycle 33.
Interestingly, we could also detect the formation of a tetrahydrofuran byproduct in low to moderate isolated yields for some of the substrates attempted (Figure 5).

Figure 5. Tetrahydrofurans formed as by-products.
However, the transformation did not tolerate amines or nitro substituents (entries 1 and 2, Table 4). Similar reactivities were also observed with alkyl acetylenes (entries 3, 4 and 5).

4-Acetylphenyl acetylene formed the corresponding oxabicycle 42 and 3,5bis(trifluoromethyl) ethynylbenzene oxabicycle 43 in 17% and 6% yield, respectively (entries 6 and 7).

Table 4. Other alkynes tested. ${ }^{a}$

Entry	R-	Product	Outcome ${ }^{b}$
1	$p-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-$	-	Complex mixture
2	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-$	-	Complex mixture
3	Cyclohexyl-	-	Complex mixture
4	Cyclopropyl-	-	Complex mixture
5	Benzyl-	-	Complex mixture
6	$p-\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-$	$\mathbf{4 2}$	17%
7	$3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3-}$	$\mathbf{4 3}$	6%

${ }^{a}$ Continuation of Table 3. ${ }^{b}$ Crude analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standard, yields referred to oxabicycles 25 .

Substrates bearing an electron-donating group in para-position led to the desired product in low yields (entries 1 and 2, Table 5): 13\% (44) for the methoxy substituent and 38% (45) for the methyl derivative.

Table 5. Optimization of para-electron-donating groups.

Entry	R-	X equiv.	Temperature (${ }^{\circ} \mathrm{C}$)	Product	Yield ${ }^{\text {a }}$
1	p - $\mathrm{MeOC}_{6} \mathrm{H}_{4}-$	5	50	44	$13 \%{ }^{\text {b }}$
2	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}-$	5	50	45	$38 \%{ }^{\text {b }}$
3	p - $\mathrm{MeOC}_{6} \mathrm{H}_{4}$ -	5	80	44	13\%
4^{c}	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}{ }^{-}$	5	25	44	6\%
5	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ -	0.2	50	44	$43 \%{ }^{\text {b }}$
6	p - $\mathrm{MeOC}_{6} \mathrm{H}_{4}$ -	0.2	80	44	24\%
7	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ -	0.2	0	44	8\%
$8^{\text {d }}$	p - $\mathrm{MeOC}_{6} \mathrm{H}_{4}$ -	0.2	50	44	4\%
$9{ }^{e}$	p - $\mathrm{MeOC}_{6} \mathrm{H}_{4}$ -	0.2	25	44	9\%
10^{e}	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ -	0.2	50	44	15\%
11	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{-}$	0.2	50	45	$52 \%{ }^{\text {b }}$

${ }^{a}$ Crude analyzed by ${ }^{1} \mathrm{H}$ NMR using 1,4-diacetylbenzene as internal standard, yields referred to oxabicycle $\mathbf{2 5}$.
${ }^{b}$ Isolated yield. ${ }^{c}$ Concentration $=1 \mathrm{M} .{ }^{d}$ Complex \mathbf{B} used as catalyst. ${ }^{e}$ Complex \mathbf{C} used as catalyst.
We reasoned that such an electon-rich alkyne could form a very stable gold complex that would not undergo nucleophilic attack from the oxoalkene. Thus, we decided to tune the reaction conditions for these specific substrates. First, we observed no improvement when modifying the temperature or increasing the concentration (entries 3 and 4). However, 43% isolated yield of 44 was obtained when switching the stoichiometry of the reaction (entry 5). Further variations of the ligand of the gold complex did not improve the result (entries

6 to 10). The same trend was observed for p-methylethynylbenzene and the oxabicycle 45 was isolated in 52% yield (entry11).

Later, we attempted the cycloaddition using 5-phenylhex-5-en-2-one and alkynes $\mathbf{2 0}$. The corresponding oxabicycles 46 were built with similar yields (Table 6). In some cases, we observed an increase of the yield up to 20% due to the absence of the tetrahydrofuran byproduct (entry 4).

Table 6. Scope with 5-phenylhex-5-en-2-one.

20
46

Entry	R-	Product	Yield a
1	$\mathrm{Ph}-$	$\mathbf{4 7}$	68%
2	$p-\mathrm{FC}_{6} \mathrm{H}_{4}-$	$\mathbf{4 8}$	65%
3	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathbf{4 9}$	61%
4	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}-$	$\mathbf{5 0}$	70%
5	$m-\mathrm{FC}_{6} \mathrm{H}_{4-}$	$\mathbf{5 1}$	59%
6	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}-$	$\mathbf{5 2}$	60%
Isolated yields.			

Then, we decided to further explore the effect of the substitution pattern in the alkene as well as in the α-position of the carbonyl group and the reaction was performed using substrates 53-64 (Figure 6). ${ }^{14 \mathrm{~b}}$ Under the optimized conditions, monosubstituted alkene 53 led to only traces of the oxabicycle 65 (entry 1, Table 7).

Table 7. Oxoalkene scope in the $[2+2+2]$ cycloaddition. ${ }^{a}$

Entry	Oxoalkene	Product	Yield b
1	$\mathbf{5 3}$	$\mathbf{6 5}$	$4 \%^{c}$
2	$\mathbf{5 4}$	$\mathbf{6 6}$	87%
3	$\mathbf{5 5}$	$\mathbf{6 7}$	16%
4	$\mathbf{5 6}$	$\mathbf{6 8}$	54%

${ }^{a}$ Reaction with 3.5 equiv. of ethynylbenzene and $5 \mathrm{~mol} \%$ of \mathbf{E} at $50^{\circ} \mathrm{C}$ in DCE for 20 h . ${ }^{b}$ Isolated yields. ${ }^{c}$ Crude analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using $1,4-$ diacetylbenzene as internal standard, yields referred to oxabicycle $\mathbf{6 5}$.

However, when the nucleophilicity of the α-substituent was increased (54), the yield improved to 87% isolated yield for 66 (entry 2) whereas decreased to 16% (67) by using aldehyde 55 (entry 3). Tert-butyl group (56) afforded the oxabicycle $\mathbf{6 8}$ in 54% isolated yield (entry 4). Substrates 57-64 led to very complex mixtures and no major product was detected.

57

58

63

64

Figure 6. Other oxoalkenes tested.
On the other hand, reaction of ethynylbenzene with 6-methylhept-5-en-2-one led to the formation of cyclobutene 69 as the major product (56% isolated yield), along with oxabicycle 70 (Scheme 10). By changing the substitution pattern of the alkene, the cyclization via an oxonium cation would form preferentially a six-membered ring (71). However, ring expansion of the cyclopropyl intermediate 72 was faster and delivered cyclobutene 69 via 73.

Scheme 10. Effect of the alkene substitution pattern.
Analogously, cycloaddition of ethynlbenzene and ethyl 4-methylpent-4-enoate afforded the cyclobutene scaffold 74 in 47% isolated yield (Scheme 11). Therefore, when using an ester the nucleophilic attack is also unfavorable.

Scheme 11. Cycloaddition using an ester.

Finally, we designed the construction of a tricyclic structure in one step using this new gold catalyzed transformation. Hence, we synthesized several cyclic oxoalkenes (75-79) to further cyclize them with ethynylbenzene (Figure 7).

75

79

Figure 7. Challenging cyclic oxoalkenes.
Under the optimized conditions with $10 \mathrm{~mol} \%$ of catalyst \mathbf{E}, only traces of the corresponding cyclobutenes were detected for $\mathbf{7 5}$ and 76 by ${ }^{1} \mathrm{H}$ NMR spectroscopy (entries 1 and 2, Table 8). A very complex mixture with no major product was observed for 77 (entry 3).

Table 8. Formation of a tricyclic scaffold. ${ }^{\text {a }}$

Entry	Oxoalkene	Modification	Product	Yield ${ }^{\text {b,c }}$
1	78	-	80	5\% (78\%)
2	76	-	81	5\%
3	77	-	-	Complex mixture
4	78	-	82	$12 \%{ }^{\text {d }}$ (89\%)
5	78	5 equiv.	82	$31 \%{ }^{\text {d }}$
6	78	$m-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CCH}$	83	19\% (87\%)
7	79	$m-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CCH}$	84	17\% (94\%)
8	79	5 equiv. $m-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CCH}$	84	$19 \%{ }^{\text {d }}$ (94\%)

${ }^{a}$ Reaction with 3.5 equiv. of ethynylbenzene and $10 \mathrm{~mol} \%$ of catalyst \mathbf{E} at $50^{\circ} \mathrm{C}$ in DCE for $20 \mathrm{~h} .{ }^{b} \mathrm{Crude}$ analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standar, yields referred to tricyclic oxabicycles. ${ }^{\text {c }}$ Reaction conversion in brackets, 100% if not stated. ${ }^{\text {a }}$ Isolated yields.

On the other hand, tricyclic structure $\mathbf{8 2}$ could be obtained in 31% isolated yield via a gold catalyzed $[2+2+2]$ cycloaddition of 5 equiv. of ethynylbenzene with oxoalkene 78 (entry 5). Use of m-methoxyenthynylbenzene to oxabicycle $\mathbf{8 3}$ or oxoalkene $\mathbf{7 9}$ did not improve the result (entries 6, 7 and 8). We reasoned that the most stable cyclopropyl intermediate might have a configuration that disfavors the nucleophilic attack of the carbonyl group. The configuration of the final product was confirmed by NOESY experiments (Scheme 12).

Scheme 12. Gold-catalyzed formation of a tricyclic scaffold.

Mechanistic Proposal for the $[2+2+2]$ Cycloaddition

Initially a plausible mechanism for the $[2+2+2]$ cycloaddition was based on the alkyne binding preferentially to the gold catalyst \mathbf{E} forming complex 85. This would further undergo nucleophilic attack from the alkene building the cyclopropyl gold carbene intermediate 86 (Scheme 13). ${ }^{11,18} \mathrm{An}$ intramolecular nucleophilic attack from the carbonyl occured forming oxonium cation 87, which could undergo a Prins-type cyclization. ${ }^{12}$ The carbocation 88 could proceed to 89 via demetalation and complex 85 would be recovered after ligand exchange with ethynylbenzene releasing 23.

Scheme 13. Mechanistic proposal ($L={ }^{t}$ BuXPhos).
Furthermore, we reasoned that the formation of tetrahydrofurans 37 could be explained due to the ability of gold complexes to deprotonate terminal alkynes (Scheme 14). ${ }^{19}$ Simultaneously, the presence of an acid in the reaction conditions could promote the cationic cyclization of the oxoalkene.

Scheme 14. Formation of tetrahydrofuran 37 ($L=^{t}$ BuXPhos).
Thus, complex 85 evolved to $\mathbf{9 0}$ generating acid, which reacted with 5-methylhex-5-en-2one to form oxonium cation 91/91'. This could be easily trapped with complex 90 forming the tetrahydrofuran product $\mathbf{3 7}$ along with the regeneration of $\mathbf{8 5}$. ${ }^{9,10}$

[^24]
Derivatization of the Oxabicycles

Eventually, we also attempted the derivatization of the oxabicycle scaffold $\mathbf{3 3}$ by distinct organic transformations. To start, neither the epoxidation ${ }^{13 b}$, oxidation ${ }^{20}$ nor the bromination of the double bond ${ }^{21}$ led to the desired products and very complex mixtures were observed. Then, attempts of a Diels-Alder cycloaddition of with maleic anhydride led to no reaction. ${ }^{22}$ Moreover, opening of the oxygen bridge also failed in all cases. ${ }^{23}$

Finally, we attempted the hydrogenation of the double bond of $\mathbf{3 3}$ using 1 atm of H_{2} with $\mathrm{Ni} /$ Raney in ethanol at $80{ }^{\circ} \mathrm{C}$ (Scheme 15). ${ }^{13 \mathrm{~b}}$ However, complete reduction of the oxabicycle product $\mathbf{3 3}$ was observed and $\mathbf{9 2}$ was isolated in 59% yield. The same product was obtained quantitavely when applying 60 atm of H_{2} with Pd / C in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.

Scheme 15. Complete hydrogenation of the oxabicycle product 33.

Nevertheless, when the reaction was performed with 1 atm of H_{2} with Pd / C in methanol at $25^{\circ} \mathrm{C}$, the selective hydrogenation of the alkene in 33 occurred in 95% isolated yield (diastereomeric ratio 2:1) forming scaffold 93 (Scheme 16). ${ }^{14 b}$

Scheme 16. Selective hydrogenation of the oxabicycle product 33.

[^25]
Enantioselective [2+2+2] Cycloaddition

Initially, we screened several chiral ligands using $\left[\mathrm{Au}(\mathrm{tmbn})_{2}\right] \mathrm{SbF}_{6}(\mathbf{M})$ as a cationic precatalyst for the optimized $[2+2+2]$ cycloaddition of 3-ethynylphenol with 5-methylhex-5-en-2-one. ${ }^{24} \mathrm{We}$ attempted the reaction with ligands $\mathbf{9 4 - 1 0 2}$ (Figure 8)

96

97

Figure 8. Gold pre-catalyst M and chiral ligands screened.
However, attempts to apply this strategy at $50^{\circ} \mathrm{C}$ failed due to the sensitivity of the gold complex and no reaction was obtained. Therefore, we synthesized the corresponding gold complexes with ligands $\mathbf{9 4}, \mathbf{9 8}$ and $\mathbf{1 0 1}$ and (THT)AuCl. ${ }^{25}$ We used these complexes under the optimized conditions along with AgSbF_{6} (Table 9). The reaction proceeded in moderate yields when ligands 94 and 98 were used, 58% and 64% respectively. Only 18%

[^26]of isolated oxabicycle 33 was obtained with 101. However, chiral HPLC analysis showed no enantioselectivity in the formation of $\mathbf{3 3}$ neither with $\mathbf{9 4}$ nor $\mathbf{9 8} .^{26,27}$

Table 9. Screening of chiral gold complexes for the [2+2+2] cycloaddition.

Entry	Ligand	Yield $^{\boldsymbol{a}}$	$\boldsymbol{e} \boldsymbol{e}^{\boldsymbol{b}}$
1	$\mathbf{9 4}$	58%	0%
2	$\mathbf{9 8}$	18%	Not determined
3	$\mathbf{1 0 1}$	64%	0%

$\overline{{ }^{a} \text { Isolated yields. }{ }^{b} \text { ChiralPak IB, hexane : ethanol : diethylamine }}$ (97:3:0.1), $1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$.

[^27]
4. Synthesis of Tetrahydrofurans

Optimization Towards a New Reaction Pathway

We decided to screen several solvents in order to check if the selectivity towards the formation of the tetrahydrofurans could be improved by modifying the polarity of the environment. ${ }^{28}$ We performed the reaction under the optimized conditions using p bromoethynylbenzene (Table 10). Chlorinated solvents as $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DCE}$ or CHCl_{3}, showed an excellent reactivity but very low selectivity (entries 1, 2 and 3). Hydrocarbons followed the same trend with even lower yields (entries 4 to 7).

Table 10. Screening of solvents for the formation of tetrahydrofurans.

Entry	Solvent	Yield of 29 $^{\boldsymbol{a}}$	Yield of 39 $^{\boldsymbol{a}}$	Conversion $^{\boldsymbol{a}}$
1	DCM	43%	34%	98%
2	DCE	41%	35%	99%
3	CHCl	3	29%	21%
4	Heptane	2%	15%	89%
5	Cyclohexane	17%	15%	97%
6	Benzene	35%	37%	99%
7	Toluene	33%	34%	96%
8	DMF	0%	0%	98%
9	MeOH	0%	0%	99%
10	MeCN	2%	3%	100%
11	Dioxane	2%	55%	66%
12	THF	0%	54%	99%
13	Acetone	8%	16%	100%
14	EtOAc	10%	42%	75%
15	Et 20	10%	39%	95%
16	-	36%	18%	95%
${ }^{a}$ Crude	100%	100%		

On the other hand, very polar solvents such as methanol, DMF or acetonitrile led to very complex mixtures with no major product observed (entries 8, 9 and 10). Then, the use of weak coordinative solvents, for example dioxane or THF, allowed an excellent selectivity, although the yields were still moderate (entries 11 to 15).

[^28]Therefore, we decided to perform the reaction with distinct modifications to the optimized conditions (Table 11).

Table 11. Further modifications for the formation of tetrahydrofurans. ${ }^{a}$

Entry	Modification	Yield of 29 ${ }^{\text {b }}$	Yield of 39 ${ }^{\text {b }}$	Conversion ${ }^{\text {b }}$
1	Catalyst C	18\%	0\%	100\%
2	Catalyst \mathbf{N}	0\%	26\%	95\%
3	Catalyst \mathbf{O}	11\%	0\%	65\%
4	$10 \mathrm{~mol} \% \mathbf{E}$	57\%	43\%	100\%
5	$3 \AA$ MS	40\%	18\%	92\%
6	$4 \AA$ MS	0\%	0\%	88\%
7	$5 \AA$ MS	8\%	0\%	90\%
8	$10 \mathrm{~mol} \% \mathrm{TsOH}$	13\%	$51 \%^{\text {c }}$	91\%
9	$10 \mathrm{~mol} \% \mathrm{NaHCO}_{3}$	22\%	14\%	80\%
10	$10 \mathrm{~mol} \% \mathrm{AcOH}$	45\%	35\%	100\%
11	$10 \mathrm{~mol} \%$	0\%	0\%	94\%
	$\mathrm{AcOH} / \mathrm{AcONa}$ (1:1)			
12	$10 \mathrm{~mol} \% \mathrm{CsCO}_{3}$	0\%	0\%	0\%

First, we performed the reaction with catalysts \mathbf{C}, \mathbf{N} or \mathbf{O} (Figure 9). Those attempts led to low yields with disparate selectivities (entries 1, 2 and 3).

Figure 9. Gold complexes N and O.
Treatment with $10 \mathrm{~mol} \%$ of catalyst \mathbf{E} led to a higher yields but with a similar selectivity (entry 4). Then, the transformation was performed in the presence of molecular sieves: $3 \AA$ MS did not improve the results and $4 \AA$ MS or $5 \AA$ MS quenched the reactivity towards both cycloadditions (entries 5, 6 and 7). Finally, we screened several additives to promote the deprotonation of the terminal alkyne and the cyclization of the oxoalkene. The best outcome was obtained with catalytic amounts of p-toluensulfonic acid, which led to the tetrahydrofuran product 39 in 51% yield (entry 8). Addition of NaHCO_{3} or acetic acid did not improve the selectivity (entries 9 and 10). A buffer solution of acetic acid and sodium acetate led to a complex mixture with no major product (entry 11). CsCO_{3} led to no reaction, probably due to the inactivation of the catalyst (entry 12).

Therefore, when the reaction was performed under the optimized conditions adding 10 $\mathrm{mol} \%$ of p-toluenesulfonic acid the yield towards the tetrahydrofuran product 39 was improved by 33% (Scheme 17).

Scheme 17. Optimized conditions for the formation of tetrahydrofurans.

Expansion of the Scope

Successfully, when this modification was applied to the formation of tetrahydrofurans shown in Figure 5, the same trend was observed (Table 12).

Table 12. Scope of the tetrahydrofuran formation. ${ }^{\text {a }}$

Entry	$\mathbf{2 0}$	Product	Yield $^{\boldsymbol{b}}$
1	PhCCH	$\mathbf{3 7}$	50%
2	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CCH}$	$\mathbf{3 8}$	48%
3	$m-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CCH}$	$\mathbf{4 0}$	47%
4	$m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CCH}$	$\mathbf{4 1}$	57%
Reaction with 5-methylhex-5-en-2-one, $5 \mathrm{~mol} \%$ of catalyst \mathbf{E} and $10 \mathrm{~mol} \%$ of TsOH at $50{ }^{\circ} \mathrm{C}$ in DCE.			
${ }^{b}$ Isolated yields.			

Thus, ethynylbenzene improved by 36% yield from 14% of $\mathbf{3 7}$ (entry 1), $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CCH}$ in 20% from 28% of 38 (entry 2), $m-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CCH}$ in 16% from 31% of 40 (entry 3) and m $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CCH}$ in 15% from 42% of 41 (entry 4).

5. Gold-Catalyzed Trimerization of Terminal Alkynes

As we mentioned before, the formation of 1,3,5-substituted benzene products such as 24 was constantly observed during the construction of oxabicyclic structures $\mathbf{2 2}$.

Although there are several reports of trimerization of alkynes promoted by gold in heterogenous catalysis, ${ }^{29}$ very few examples using homogeneous complexes have been described. Thus, decomposition of tris(alkyne)gold complex $\mathbf{1 0 3}$ led to the corresponding arene 104 after heating under refluxing conditions in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 18). Tris(hexamethylene)benzene (104) was isolated from a mixture of compounds in 48% yield.

Scheme 18. Gold-catalyzed trimerization of cyclooctyne.
On the other hand, the homodimerization of terminal alkynes as dodec-1-yne was reported with ${ }^{~}{ }^{\circ} \mathrm{BuXPhosAuNTf}{ }_{2}$ in the presence of sodium acetate in toluene under reflux for 24 h (Scheme 19). ${ }^{30}$

Scheme 19. Gold-catalyzed dimerization of alkynes.

Although harsh conditions were employed, good yields and selectivities were obtained. For example, $1,1^{\prime}$-disubstituted alkene $\mathbf{1 0 5}$ and cis-1,2-106 were obtained as a mixture in 72% isolated yield and 14:1 regioselectivity. However, the scope was rather limited: in the case of ethynylbenzene, the product was obtained only in 8% yield.

Interestingly, the gold-catalyzed trimerization of alkynes was not a competitive pathway in the $[2+2]$ cycloaddition of alkynes and alkenes leading to cyclobutenes, which was performed at $25^{\circ} \mathrm{C}$ (Scheme 1). ${ }^{4}$

[^29]
Scope of the Trimerization

Therefore, we continued optimizing the trimerization of alkynes to structures like $\mathbf{1 0 7}$ by screening the concentration as well as the catalyst loading (Table 13). $\left[{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{SbF}_{6}(\mathbf{E})$ was used in DCE at $50^{\circ} \mathrm{C}$. The reaction of ethynylbenzene with $1 \mathrm{~mol} \%$ of the gold catalyst afforded the terphenyl product 24 in 27% isolated yield (entry 1). The starting alkyne was completely consumed leading as well to distinct oligomerization products. Under the same conditions, the trimerization of p-bromo- and p -methoxy- substituted aryl akynes proceeded in 18% and 11% yields, respectively (entries 2 and 3).

Table 13. Expansion of the trimerization of terminal alkynes.

Entry	R-	Y mol\%	Concentration (M)	Product	Yield $^{\boldsymbol{a}}$
1	$\mathrm{H}-$	1	2.0	$\mathbf{2 4}$	27%
2	$p-\mathrm{Br}$	1	2.0	$\mathbf{1 0 8}$	$18 \%^{b}$
3	$p-\mathrm{MeO}$	1	2.0	$\mathbf{1 0 9}$	$11 \%^{b}$
4	$\mathrm{H}-$	3	2.0	$\mathbf{2 4}$	40%
5	$m-\mathrm{MeO}$	3	2.0	$\mathbf{1 1 0}$	$2{ }^{b}{ }^{b}$
6	$m-\mathrm{Cl}$	3	2.0	$\mathbf{1 1 1}$	$6 \%^{b}$
7	$p-\mathrm{Me}$	3	2.0	$\mathbf{1 1 2}$	33%
8	$p-\mathrm{F}$	3	2.0	$\mathbf{1 1 3}$	37%
9	$m-\mathrm{Me}$	3	2.0	$\mathbf{1 1 4}$	20%
10	$\mathrm{H}-$	3	0.5	$\mathbf{2 4}$	43%

${ }^{a}$ Isolated yields. ${ }^{b}$ Crude analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standard, yields referred to trimers 107.

The reaction with ethynylbenzene could be improved to 40% yield of 24 with $3 \mathrm{~mol} \%$ of catalyst (entry 4). Only traces of products $\mathbf{1 1 0}$ and $\mathbf{1 1 1}$ were observed with m-methoxy or m-chloro substitution (entries 5 and 6). Moderate yields were obtained for p-methyl, p fluoro and m-methyl substitution (entries 7, 8 and 9). Thus, terphenyl 112 was obtained in 33% isolated yield, $\mathbf{1 1 3}$ in 37% and $\mathbf{1 1 4}$ only in 20%. Decrease of the concentration did not avoid the oligomerization and showed minimum improvement in the formation of 24 (entry 10).

6. Conclusions

Gold-catalyzed intramolecular cycloisomerizations have been the benchmark of the expansion of this type of chemistry whereas intermolecular transformations proved to the more challenging and related reports were rather limited. Therefore, we have developed a new intermolecular gold-catalyzed transformation based on a cascade [2+2+2] cycloaddition of an alkyne, an alkene and a carbonyl group. ${ }^{31}$ As an example, we optimized the reaction between m-methoxyethynylbenzene and 5-methylhex-5-en-2-one to furnish oxabicycle 34 in 91% isolated yield (Scheme 20), which proceeded with $5 \mathrm{~mol} \%$ of $\left[{ }^{t}\right.$ BuXPhosAuNCMe] $\mathrm{SbF}_{6}(\mathbf{E})$ in DCE at $50^{\circ} \mathrm{C}$.

Scheme 20. Gold-catalyzed [2+2+2] cycloaddition to furnish 34.
The methodology showed a broad scope in the aryl substitution leading to the cycloadducts in moderate to excellent yields. Derivatization of the oxabicycle products showed the robustness of these scaffolds.

We also screened the effect of the alkene substitution pattern and the α-position of the carbonyl moiety. Interestingly, when the oxonium cation was not entropically favoured or the nucleophilicity of the carbonyl decreased, a cyclobutene scaffold was obtained instead. Thus, products 69 (54%) and 74 (47%) were formed from 6-methylhept-5-en-2-one and ethyl 4-methylpent-4-enoate, respectively (Figure 10).

Figure 10. Cyclobutenes 69 and 74 formed as exceptions to the [2+2+2].
For similar reasons, cycloaddition with a cyclic oxoalkene such as $\mathbf{7 8}$ led to the tricyclic structure $\mathbf{8 2}$ only in 31% isolated yield (Scheme 12)

[^30]

Scheme 12. Gold-catalyzed formation of a tricyclic scaffold.
Moreover, we could tune the reaction pathway towards the formation of a tetrahydrofuran scaffold by adding $10 \mathrm{~mol} \%$ of p-toluenesulfonic acid. Thus, structure 39 was obtained in 51% isolated yield (Scheme 17).

Scheme 17. Optimized conditions for the formation of tetrahydrofurans.

Analogously, trimerization of terminal alkynes was refined to give 43% yield of terphenyl 24 in the case of ethynylbenzene (Scheme 21).

Scheme 21. Optimized trimerization of terminal alkynes.
Overall, we could selectively and effectively control the reaction pathways towards an oxabicycle, a cyclobutene, a tetrahydrofuran or a terphenyl starting from exactly the same commercially available building blocks by digging into a mechanistic reasoning and finely tuning the reaction conditions.

UNIVERSITAT ROVIRA I VIRGILI

Chapter 3:

Mechanistic Study of a [2+2+2] Cycloaddition: Role of Digold Complexes

1. Introduction

As explained in the General Introduction, numerous transformations catalyzed by gold have been developed during the last decade nourishing the field of organic synthesis. ${ }^{1}$ In most cases, these reactions proceed by multistep pathways that are rather complex. Therefore, a mechanistic understanding has been based often on analogy and speculation. Although coherent mechanistic schemes have been proposed by means of DFT calculations, as well as isotopic labelling and kinetic experiments, isolation of key intermediates has proven to be challenging. ${ }^{2}$

In Chapter 2, we presented the intramolecular cascade [2+2+2] reaction between an alkyne, an alkene and a carbonyl group. 1,6-Enyne bearing a ketone moiety 1 was synthesized and cyclized using AuCl (Scheme 1). ${ }^{3}$ This reaction afforded the tricyclic scaffold 2 via two $\mathrm{C}-\mathrm{C}$ and one $\mathrm{C}-\mathrm{O}$ bond in 84% isolated yield (diastereoselectivity $50: 1$), together with diene 3 as a minor by-product.

Scheme 1. Gold-catalyzed [2+2+2] cyclization of 1,6-enyne 1 .
The gold catalyst presumably activated preferentially the alkyne of 1,6-enyne $\mathbf{1}$, which could suffer a nucleophilic attack from the alkene forming cyclopropyl gold carbene 4 . The intermediate could be trapped via intramolecular nucleophilic attack of the ketone followed by a Prins-type cyclization. The stereochemistry of the final product 2 suggested that the intramolecular attack of the ketone proceeded through the lower face of the cyclopropyl ring (4). However, no further evidence to support this hypothesis was provided.

In general, alkynes are selectively activated by gold(I) in the presence of alkenes. This high site-selectivity of gold(I) is not directly related to a thermodynamic preference for the coordination to the alkynes, but to a higher reactivity of the $\left(\eta^{2}\right.$-alkyne) gold(I) complexes towards nucleophilic attack. ${ }^{4}$ Thus, NMR studies, supported by DFT calculations,

[^31]confirmed that both 5 and $\mathbf{6}$ bearing [JohnPhosAu] ${ }^{+}$coexisted with free 1,7-enyne $\mathbf{7}$ and catalyst B (Scheme 2). However, this class of substrates exclusively reacted by intramolecular attack of the alkene to (η^{2}-alkyne)gold(I) species such as 5.

Scheme 2. Competitive coordination of gold to alkynes and alkenes.
Nucleophilic attack of (η^{2}-alkyne)gold complexes to give trans-alkenyl species via an outer-sphere mechanism is widely accepted. ${ }^{5}$ The first stable organogold intermediate (8) was isolated in an intramolecular reaction between an allene and an ester in compound 9 (Scheme 3). ${ }^{6}$ This result demonstrated the formation of a vinyl gold complex by nucleophilic attack onto an allene-gold complex.

Scheme 3. Isolation of the first vinyl gold complex (8).
However, more complex carbenoid intermediates were suggested based on DFT calculations, for example, in the 1,2- or 1,3-acyloxy migrations of propargylic carboxylates or in the cycloisomerizations of $1, n$-enynes. ${ }^{1,3,7}$ Consequently, an interesting debate was

[^32]centred on the nature of the gold-carbon bond in complexes of type [LAuCHR]. ${ }^{8}$ The intermolecular cycloaddition between alkynes and alkenes led to cyclobutenes such as $\mathbf{1 0}$ using bulky phosphines as ligands, for example [${ }^{t}$ BuXPhosAuNCMe] SbF_{6} (E). Gold(I) carbene $\mathbf{1 1}$ or gold(I) stabilized carbocation 11' could be conceived as intermediates, which explained the regioselectivity of the transformation (Scheme 4). ${ }^{9}$ Although seldom reports with spectroscopic or structural data are presented in the literature, highly distorted cyclopropyl gold carbenes 11/11' were also proposed in the reaction of propiolic acid with alkenes as well as in the cascade cyclizations of $1, n$-enynes. ${ }^{10}$

Scheme 4. [2+2] Cycloaddition of alkynes with alkenes.
On the other hand, the regioselective cyclization of enynes $\mathbf{1 2}$ with a pendant carboxylic acid formed selectively lactones $\mathbf{1 3}$ and/or $\mathbf{1 4}$ (Scheme 5). ${ }^{11}$

Scheme 5. Cascade cyclization of 1,6-enyne 12.

[^33]Following the Stork-Eschenmoser model for cyclizations of squalene and oxidosqualene, ${ }^{12}$ these types of cascade cyclizations were rationalized as proceeding through concerted transition states such as $\mathbf{1 5}$, not involving cyclopropyl gold(I) carbenes as discrete intermediates. ${ }^{13}$

However, other studies strongly suggested that gold-catalyzed 1,n-enyne cyclizations occurred in a step-wise fashion. ${ }^{1,3,7,10}$ As an example, reaction of 1,6-enyne $\mathbf{1 6}$ with indole afforded adducts $\mathbf{1 7}$ and $\mathbf{1 8}$ by nucleophilic attack at the carbene (a) of intermediate $\mathbf{1 9}$ or the cyclopropyl ring (b) with retention of the configuration (Scheme 6). ${ }^{14}$ The use of complex $\left[\mathrm{IPrAu}(\mathrm{NCPh}) \mathrm{SbF}_{6}(\mathbf{C})\right.$ as catalyst, with a highly donating NHC ligand, enhanced the carbene-like nature of this intermediate, favouring nucleophilic attack at the carbene carbon leading to $\mathbf{1 8}$.

Scheme 6. Nucleophilic addition to the gold carbene position.
Furthermore, the carbene-like character of the intermediates generated by reaction of $1, n$ enynes with gold was more clearly revealed by their trapping with alkenes. ${ }^{7 \mathrm{~g}}$ Thus, for example, reaction of dienyne 20 with $\left[\mathrm{Ph}_{3} \mathrm{PAuNCMe}^{2}\right] \mathrm{SbF}_{6}$ led stereoselectively to tetracyclic compound 21 (Scheme 7).

Scheme 7. Intramolecular cyclopropanation of 1,6-enyne 20.

[^34]DFT calculations were consistent with a concerted, asynchronous cyclopropanation through intermediate 22. A similar model was proposed for the intermolecular cyclopropanation of 1,6 -enynes by alkenes. ${ }^{15}$ The cyclopropanation was found to be concerted for symmetrical or less polarized alkenes whereas styrenes reacted in a stepwise manner. Nevertheless, the overall process was stereospecific since formation of the second carbon-carbon occurred through a very small energy barrier.

Oxygen transfer from diphenylsulfoxide to the carbene-like carbon of intermediate 23, formed during the reaction of 1,6-enyne 24 with gold, led to the corresponding aldehyde 25 (Scheme 8). ${ }^{16}$

Scheme 8. Oxidation of the gold carbene intermediate.
Then, opening of cyclopropenone acetal $\mathbf{2 6}$ with $\mathrm{Ph}_{3} \mathrm{PAuNTf}_{2}$ led to $\boldsymbol{Z} \mathbf{- 2 7}$ that isomerised to $\boldsymbol{E} \mathbf{- 2 7}$ presumably through gold carbene $\mathbf{2 8}$ (Scheme 9). ${ }^{17}$ The spectroscopic data of $\boldsymbol{Z} \mathbf{- 2 7}$ and $\boldsymbol{E}-\mathbf{2 7}$ revealed an oxocarbenium cationic structure.

Scheme 9. Bond rotation analysis of organogold species (relative energies in kcal/mol).
An in-depth theoretical analysis of the bond rotation energy for different carbocations demonstrated that LAu- has a similar stabilizing effect as MeO - on an allyl carbocation (M06, 6-31G** (C, H, O, P, N, S, F) and LACVP** (Au) in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{8}$ Moreover, the bond length between gold and the carbene carbon decreased with strong σ-donating ligands such as chloride or N-heterocyclic carbenes but it increased with less donating, π-acidic ligands such as phosphines or phosphites by reducing the back-donation to the substrate. This study concluded a continuum character of the organogold species ranging from metal stabilized singlet carbene to metal coordinated carbocation depending on the substitution pattern and the ligand on gold.

[^35]Finally, digold species were proposed to be involved as key intermediates in the cyclization of 1,5 -allenynes such as 29 towards 30 using [$\left.\left(\mathrm{Ph}_{3} \mathrm{PAu}\right)_{3} \mathrm{O}\right] \mathrm{BF}_{4} .{ }^{18,19}$ The transformation proceeded by a stereospecific intramolecular hydrogen atom transfer from the allene to the alkyne based on deuterium labeling experiments (Scheme 10). According to DFT calculations, gold coordinated to the alkyne making the proton more acidic and leading to an alkynyl gold complex that reacted with a second equivalent of the catalyst to form 31. Nucleophilic attack of the allene generated the allyl stabilized carbocation 32 in the rate-determining step, which was followed by an intramolecular 1,5-hydrogen shift leading to $\mathbf{3 0}$ through germinal diaurated species $\mathbf{3 3}$.

Scheme 10. Involvement of digold species as key intermediates.
Digold complexes related to $\mathbf{3 1}, \mathbf{3 2}$ or $\mathbf{3 3}$ were later found to play relevant roles in catalysis. As an example, during the intramolecular hydroarylation of allenes, complex 34 was isolated as the catalyst resting state (Figure 1). ${ }^{20}$ A species of type $\mathbf{3 5}$ was also generated by gold-boron transmetallation from a vinyl boronate. ${ }^{21}$ The analysis of structure 35 revealed an important stabilization from the oxygen atom and two almost regular carbon-gold σ-bonds.

Figure 1. Isolated digold complexes.

[^36]
2. Objectives

As reported in Chapter 2, the intermolecular gold-catalyzed [2+2+2] of an alkyne with an alkene bearing a carbonyl moiety was developed (Scheme 11). ${ }^{22}\left[{ }^{t} \mathrm{BuXPhosAuNCMe} \mathrm{SbF}_{6}\right.$ (E) was used in DCE at $50^{\circ} \mathrm{C}$. Thus, ethynlbenzene and 6-methylhept-5-en-2-one afforded oxabicycle 36 in 68% isolated yield.

Scheme 11. Gold-catalyzed [2+2+2] cycloaddition of ethynylbenzene and 6-methylhept-5-en-2-one .

The preferential binding of the gold catalyst to the alkyne was suggested based on the precedents in other gold-catalyzed transformations (Scheme 12). Then, complex 37 would undergo nucleophilic attack of the alkene building the cyclopropyl gold carbene intermediate 38 regio- and stereoselectively. An intramolecular nucleophilic attack from the carbonyl could occur and the oxonium cation 39 would be formed, which could further experience a Prins-type cyclization. The carbocation $\mathbf{4 0}$ could proceed via demetalation to 41 and recover complex 37 after ligand exchange with ethynylbenzene releasing 36. Therefore, a step-wise process was initially convieved.

Scheme 12. Mechanistic proposal ($L^{=}{ }^{t}$ BuXPhos).
Due to the lack of evidence in such transformations, we were challenged to study this cycloaddition more in depth to provide some insights that would allow the design of better catalysts to improve this type of reactions.

[^37]
3. Theoretical Approach

First, we decided to check the feasibility of the proposal computationally. DFT calculations of the suggested pathway were performed $(\mathrm{M} 06,6-31 \mathrm{G}(\mathrm{d})(\mathrm{C}, \mathrm{H}, \mathrm{P}, \mathrm{O})$ and $\operatorname{SDD}(\mathrm{Au})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Gold complex $\mathbf{3 7}$ was simplified to $\mathbf{4 2}$ bearing PMe_{3} as ligand instead of ${ }^{t} \mathrm{BuXPhos}$ for time-consuming concerns. We analysed the competitive binding to the metal between the alkyne, the alkene and the carbonyl moiety by comparing the energies of the different complexes (Figure 2). ${ }^{1,4,9}$

Figure 2. $\mathrm{Me}_{3} \mathrm{PA}^{+}$competitive coordination.
Thus, we could observe that $\mathrm{Me}_{3} \mathrm{PAu}^{+}(\mathbf{4 3})$ is at least $15.0 \mathrm{kcal} / \mathrm{mol}$ less stable than complexes as $\left[\mathrm{Me}_{3} \mathrm{PAuL}\right]^{+}$in which L^{\prime} could be any substrate. ${ }^{23}$ Coordination to the ketone (45) was $1 \mathrm{kcal} / \mathrm{mol}$ less stable for in the presence of unsaturated $\mathrm{C}-\mathrm{C}$ bonds. Furthermore, we could determine that, when using PMe_{3} as ligand, the coordination of the alkene was preferred by $0.4 \mathrm{kcal} / \mathrm{mol}(44)$. Nevertheless, when PMe_{2} (biphenyl) was used as ligand the difference in energy decreased (Figure 3).

[^38]

$0.0 \mathrm{kcal} / \mathrm{mol}$
46

$3.4 \mathrm{kcal} / \mathrm{mol}$

Figure 3. $\mathrm{Me}_{2}($ biphenyl $) \mathrm{PAu}{ }^{+}$competitive coordination.
Hence, the coordination of the alkyne (46) or the alkene (47) differed only by $0.1 \mathrm{kcal} / \mathrm{mol}$. Therefore, the selectivity towards a triple bond observed experimentally when using bulky catalysts was unlikely due to its preferential binding. ${ }^{9}$ In this case, coordination of the ketone (48) was $3.4 \mathrm{kcal} / \mathrm{mol}$ less stable.

Finally, we checked the coordination energies using ${ }^{t} \mathrm{BuXPhosAu}{ }^{+}$(Figure 4). The alkene binding (49) was $0.5 \mathrm{kcal} / \mathrm{mol}$ more favoured comparing to the alkyne (37) and the corresponding ketone complex (50) was $5.0 \mathrm{kcal} / \mathrm{mol}$ less stable.

$0.0 \mathrm{kcal} / \mathrm{mol}$
37

$-0.5 \mathrm{kcal} / \mathrm{mol}$
49

$5.0 \mathrm{kcal} / \mathrm{mol}$

Figure 4. ${ }^{t}$ BuXPhosAu ${ }^{+}$competitive coordination.

We analysed the nucleophilic attack of the alkene towards the activated alkyne $\mathbf{4 2}$. We considered the initial regioselective formation of a cyclopropyl gold carbene in order to check if a step-wise process was possible (Figure 5). ${ }^{1,3,9}$ The activation energy of this step was $15.9 \mathrm{kcal} / \mathrm{mol}$ towards $\mathbf{T S}^{\neq}{ }_{42-51}$, which was both kinetically and thermodynamically feasible. Intermediate $\mathbf{5 1}$ was $1.2 \mathrm{kcal} / \mathrm{mol}$ less stable than its precursors so this step was endothermic.

Moreover, we contemplated that two stereogenic centres would be formed, which could lead to two diastereoisomers: 51 and 52 (Figure 6). In the case of intermediate 52, 16.2 $\mathrm{kcal} / \mathrm{mol}$ were necessary to build $\mathbf{T S}^{\boldsymbol{4} 2-52}$ and it was $2.2 \mathrm{kcal} / \mathrm{mol}$ less stable than $\mathbf{5 1}$.

$\Delta \mathrm{G} \neq 15.9 \mathrm{kcal} / \mathrm{mol}$ $\Delta G=1.2 \mathrm{kcal} / \mathrm{mol}$

51

$\Delta \mathrm{G}^{\neq}=16.2 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{G}=3.5 \mathrm{kcal} / \mathrm{mol}$

52

Figure 5. Cyclopropylgold carbene 51.
Figure 6. Cyclopropyl gold carbene 52.
Alternatively, we also considered the opposite configuration of the gold carbene. ${ }^{10 \mathrm{c}}$ Thus, cyclopropyl gold carbenes $\mathbf{5 3}$ and $\mathbf{5 4}$ were calculated (Figure 7). Intermediate $\mathbf{5 3}$ was 0.9 $\mathrm{kcal} / \mathrm{mol}$ more stable than $\mathbf{5 1}$ and $\mathbf{5 4} 3.0 \mathrm{kcal} / \mathrm{mol}$ less stable. However, the activation energies were 19.4 and $22.3 \mathrm{kcal} / \mathrm{mol}$, respectively.

$\begin{aligned} \Delta \mathrm{G}^{\neq} & =19.4 \mathrm{kcal} / \mathrm{mol} \\ \Delta \mathrm{G} & =0.3 \mathrm{kcal} / \mathrm{mol}\end{aligned}$

53

$\Delta \mathrm{G}^{\neq}=22.3 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{G}=4.2 \mathrm{kcal} / \mathrm{mol}$
54

Figure 7. Cyclopropyl gold carbenes 53 and 54.

Although the differences were rather low, we could assume that the transformation started with the stereoselective formation of the cyclopropyl gold carbene 51. Furthermore, these results suggested a step-wise process towards the construction of the oxabicycle, as the C C bond preceded the formation of the $\mathrm{C}-\mathrm{O}$ bond.

Interestingly, we obtained the same type of scaffold for all the cyclopropyl gold carbene intermediates and we could confirm that those are highly unsymmetrical structures. ${ }^{7 f}$ Thereby, the new $\mathrm{C}-\mathrm{C}$ bond lengths were $1.58 \AA$ and $1.73 \AA$ for $\mathbf{5 1}, 1.58 \AA / 1.72 \AA$ for $\mathbf{5 2}$, $1.59 \AA / 1.76 \AA$ for 53 and $1.57 \AA / 1.75 \AA$ for 54 . The largest bond length was in the substituted carbon atom in all the cases.

Subsequently, we studied the intramolecular regioselective nucleophilic attack of the ketone to the more substituted carbon of the cyclopropyl gold carbene 51. ${ }^{14}$ Beside the entropic factors, the bond lengths difference would imply an important positive charge in that position. Nevertheless, the nucleophilic attack could occur from both sides of the cyclopropyl ring. Consequently, we calculated both transition states, named TS(up) ${ }^{\neq 1-55}$ and TS(down) ${ }_{51-55}{ }^{\text {, (Figure 8). }}$

$\Delta \mathrm{G}^{\neq}=3.4 \mathrm{kcal} / \mathrm{mol}$

$\Delta \mathrm{G}^{\neq}=4.1 \mathrm{kcal} / \mathrm{mol}$

TS(down) ${ }^{\neq 51-55}$

Figure 8. Intramolecular attack of the ketone to the cyclopropyl ring through the upper or the lower face.

According to the configuration of the final product (2), attack through the lower face of $\mathbf{4}$ was suggested in the case of the intramolecular gold-catalyzed [2+2+2] cyclization of $\mathbf{1}$ (Scheme 2). However, in the absence of the strains induced by the carbon tether, ${ }^{3}$ the attack through the upper face of $\mathbf{5 1}$ was $3.4 \mathrm{kcal} / \mathrm{mol}, 0.7 \mathrm{kcal} / \mathrm{mol}$ below than though the lower face. Oxonium cation $\mathbf{5 5}$ was $10.1 \mathrm{kcal} / \mathrm{mol}$ more stable than the cyclopropyl gold carbene 51 (Figure 9).

Afterwards, the Prins-type cyclization of 55 required 9.1 $\mathrm{kcal} / \mathrm{mol}$ to afford the carbocation 56, which was 6.4 $\mathrm{kcal} / \mathrm{mol}$ less stable but evolved to $57,40.5 \mathrm{kcal} / \mathrm{mol}$ more stable than 56 (Figure 10). ${ }^{24}$

$\Delta G=-10.1 \mathrm{kcal} / \mathrm{mol}$

Figure 9. Oxonium cation 55.

$\Delta \mathrm{G}^{\neq}=9.1 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{TS}^{\neq 55-56}$

$\Delta \mathrm{G}=6.4 \mathrm{kcal} / \mathrm{mol}$

56

$\Delta \mathrm{G}=-40.5 \mathrm{kcal} / \mathrm{mol}$

Figure 10. Prins cyclization of 55 to 57 through 56.
Accordingly, we suggested the most favoured pathway towards the formation of oxabicycle 36. Using ethynylbenzene and 6-methylhept-5-en-2-one with gold catalysis, the metal would compete for the coordination of the alkyne and the alkene (Figure 2, 3 and 4). Then, complex 42 could undergo a regioselective nucleophilic attack from the alkene forming a cyclopropyl gold carbene $\mathbf{5 1}$ with anti-configuration in the rate-determining step of the process (Scheme 13). Regioselective intramolecular nucleophilic attack of the ketone to the more substituted carbon occurs preferentially at the upper face to form oxonium cation 55. However, attack from the lower face is only $0.7 \mathrm{kcal} / \mathrm{mol}$ less favourable. Prins-type cylclization proceeds with $9.1 \mathrm{kcal} / \mathrm{mol}$ activation energy to form $\mathbf{5 6}$ and then the coordinated product $57,34.1 \mathrm{kcal} / \mathrm{mol}$ more stable than $\mathbf{5 5}$. Ligand exchange with ethynylbenzene would restart the catalytic cycle.

[^39]

Scheme 13. Calculated mechanism of the [2+2+2] cycloaddition (relative energies in kcal/mol).

Finally, we also considered the formation of a cyclobutene 58 via a [2+2] cycloaddition between the alkyne and the alkene as a competitive pathway (Scheme 14). ${ }^{9}$ However, ring expansion of the cyclopropyl gold carbene $\mathbf{5 1}$ would require $7.4 \mathrm{kcal} / \mathrm{mol}$, compared to 3.4 , and the coordinated product would be $22.6 \mathrm{kcal} / \mathrm{mol}$ more stable than $\mathbf{5 1}$, compared to 44.1. Therefore, these results explained that the cyclobutene $\mathbf{5 8}$ was not usually observed during the $[2+2+2]$ cycloaddition.

Scheme 14. Theoretical formation of cyclobutene 58.

4. Isotopic Labelling Experiments

We decided to study the deuterium incorporation in the final products when the goldcatalyzed $[2+2+2]$ cycloaddition was performed between deuterated p bromoethynylbenzene and 6-methylhept-5-en-2-one (Scheme 15). As explained in Chapter 2, the oxabicycle product 59 was formed in 56% isolated yield together with 17% of the tetrahydrofuran byproduct $\mathbf{6 0} .{ }^{22}$

Scheme 15. Deuterium incorporation during the $[2+2+2]$ cycloaddition.

The isotopic transfer was totally selective during the formation of the oxabicycle 59. Deuterium incorporation was observed only in the olefin moiety, which supported the theoretical results. However, the isotopic labelling was only 75% in contrast of 96% in the p bromoethynylbenzene (Figure 11).

Figure 11. ${ }^{1}$ H NMR spectra of deuterated oxabicycle 59.
On the other hand, the tetrahydrofuran $\mathbf{6 0}$ showed 100% of deuterium incorporation in the terminal position of the alkene and 55% for each of the diastereotopic CH_{2} hydrogens in the fivemembered ring (Figure 12).

Figure 12. ${ }^{1}$ H NMR spectra of deuterated tetrahydrofuran 60.

We reasoned that the formation of tetrahydrofurans such as $\mathbf{6 0}$ could be explained due to the ability of gold complexes to deprotonate terminal alkynes (Scheme 16). ${ }^{19 f, 25}$ Simultaneously, the presence of an acid in the reaction conditions can promote the cationic cyclization of the oxoalkene. Thus, complex $\mathbf{6 1}$ evolved to $\mathbf{6 2}$ generating acid, which reacted with 5 -methylhex-5-en-2-one to form oxonium cation 63/63'. This could be easily trapped with complex 62 forming the tetrahydrofuran product $\mathbf{6 0}$ along with the regeneration of 61 .

Scheme 16. Formation of tetrahydrofuran $60\left(L^{=}{ }^{t}\right.$ BuXPhos).
Nevertheless, this proposal only explained the deuterium incorporation to the terminal position of the alkene. If we assumed that the acid-promoted cyclization of the oxoalkene was a reversible reaction, the incorporation in the five-membered ring could be explained as well (Scheme 17). Hence, the equilibrium towards the more substituted alkene 64 would be more favored than 6 -methylhept-5-en-2-one. The re-cyclization to $\mathbf{6 3} / \mathbf{6 3}$ ' would involve the incorporation of deuterium in the five-membered ring with no diastereoselectivity.

Scheme 17. Reversible cyclization of the oxoalkene.

Therefore, the formation of the tetrahydrofuran $\mathbf{6 0}$ presented a more complex scenario that was still consistent with the initial proposal.

[^40]
5. Formation of Digold Complexes

Monitoring of the $[2+2+2]$ Cycloaddition

Attempts to detect any of the gold intermediates proposed were performed by monitoring the $[2+2+2]$ cycloaddition between an excess of ethynylbenzene with 6 -methylhept-5-en-2one via ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{2}$ The reaction was performed in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M})$ at $30{ }^{\circ} \mathrm{C}$ using $5 \mathrm{~mol} \%$ of complex \mathbf{E} (Scheme 18). The residual peak of the solvent was used as the internal standard. ${ }^{10 \mathrm{c}}$

Scheme 18. [2+2+2] Cycloaddition followed by ${ }^{1}$ H NMR spectroscopy.
Under these conditions, the oxabicycle product 36 was formed, along with tetrahydrofuran byproduct 65 , the trimerization product 66 and traces of the corresponding cyclobutene, dienes and alkyne di- or oligomerization. ${ }^{9,22,25 \mathrm{~d}}$ We could quantify the formation of oxabicycle 36 and trimer 66 as well as the consumption of the alkyne and the oxoalkene (Figure 13). However, the quantification of the tetrahydrofuran $\mathbf{6 5}$ was not reliable due to signal overlapping.

Figure 13. Variation of products with time.
In the variation of the amount of the different products with time, we could observe that the consumption of the alkyne was indeed much faster than the oxoalkene. Moreover, the oxabicycle 36 was the major product and no intermediates could be identified. This pattern was clearer when the percentage of formation or consumption were analysed (Figure 14).

Figure 14. Percentages of products with time.
Attempts to determine the order of the reagents led to non-conclusive results due to the competitive pathways. ${ }^{26}$ Furthermore, a single signal at $\delta=65.22 \mathrm{ppm}$ was observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy over the whole process, which did not correspond to ${ }^{t}{ }^{\prime} \mathrm{BuXPhosAuNCMe}^{2} \mathrm{SbF}_{6}(\mathbf{E})$.

Crystallization of the Resting State

According to the DFT calculations, the nucleophilic attack of the alkene towards gold complex 37 was the rate-determining step due to the highest activation energy (Scheme 14). Therefore, complex 37 could be the resting state of the catalytic cycle. Nevertheless, the theoretical approach did not consider the formation of such species, which could involve a more complicated scenario. Addition of pentane to the reaction mixture allowed to isolate digold complex 67 (Figure 15). ${ }^{18-21}$

Figure 15. X-Ray crystal structure of digold complex 67.
In the solid state, ${ }^{t} \mathrm{BuXPhos} \mathrm{Au}^{+}$was bonded in the σ-position of the deprotonated ethynylbenzene whereas the second fragment was coordinated in the π-cloud of the triple bond. The distance $\mathrm{C}-\mathrm{Au}$ for the first one was $2.05 \AA$ and for the second one, $2.22 \AA$ in the terminal position and $2.27 \AA$ to the phenyl substituted one. However, both phosphorous atoms are chemically equivalent in solution after NMR scale, which corresponds to a fluxional dinuclear complex.

[^41]Analogously to the formation of the tetrahydrofuran byproduct (Scheme 16), we reasoned that, after ligand exchange, complex 37 could undergo deprotonation of ethynylbenzene building alkynyl gold complex 68 (Scheme 19). ${ }^{19 f, 25}$ Apparently, reaction of 68 with another equivalent of $\left[{ }^{t} \mathrm{BuXPhosAuNCMe} \mathrm{SbF}_{6}(\mathbf{E})\right.$ could form the more stable digold complex 67.

Scheme 19. Formation of digold complex 67 ($L==^{t}$ BuXPhos).
We verified the involvement of digold complex $\mathbf{6 8}$ by synthesizing it though an alternative route (Scheme 20). Ethynylbenzene was deprotonated with LiHMDS at $0{ }^{\circ} \mathrm{C}$, which reacted with ${ }^{t} \mathrm{BuXPhosAuCl}$ at $25{ }^{\circ} \mathrm{C}$ for 12 h forming the alkynyl gold complex $\mathbf{6 8}$. The crude mixture was concentrated and added to a solution of one equivalent of ${ }^{t} \mathrm{BuXPhosAuCl}$ followed by AgSbF_{6}. Digold complex 67 was obtained after recrystallization in 99% isolated yield.

68

Scheme 20. Synthesis of digold complex 67.

Low Temperature NMR Experiments

Beside the role of digold complex 67, we decided to prove the presence of complex 37 as it was theoretically the active species towards the nucleophilic attack of the alkene. Although gold forms stable monomeric dicoordinate π-complexes with alkenes, ${ }^{27} 1,3$-dienes, ${ }^{28}$

[^42]allenes ${ }^{29}$ and substituted alkynes, ${ }^{30}$ no examples with terminal alkynes were reported so far (see General Introduction). Therefore, 10 equiv. of ethynylbenzene were added over [${ }^{t}$ BuXPhosAuNCMe] $\mathrm{SbF}_{6}(\mathbf{E})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.04 \mathrm{M})$ at $-78{ }^{\circ} \mathrm{C}$ and analysed by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy (Scheme 21).

Scheme 21. Detection of gold complex 37.
At $-60{ }^{\circ} \mathrm{C}$, [${ }^{t} \mathrm{BuXPhosAuNCMe} \mathrm{SbF}_{6}(\mathbf{E})$ and complex 37 could be detected as well as digold complex 67. The ${ }^{31} \mathrm{P}$ resonance of complex 37 appeared at $\delta=65.43 \mathrm{ppm}$ and it could be identified via the correlation proton-phosphorous performing a ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC experiment (Figure 16). Thus, we could observe a cross peak between the phosphorous signal and the acetylene proton of the coordinated ethynylbenzene, which appeared at $\delta=$ 3.39 ppm splitted into a doublet $\left(J\left({ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}\right)=4.4 \mathrm{~Hz}\right)$. No cross peak could be observed
 when a ${ }^{1} \mathrm{H}$ COSY experiment was performed. The same result with lower resolution spectra was obtained when ${ }^{t}$ BuXPhosAu ${ }^{+}$was generated in situ with one equivalent of ethynylbenzene.

Figure 16. ${ }^{1} \mathrm{H}_{-}{ }^{31} \mathrm{P}$ HMBC experiment of complex 37.

Furthermore, we analysed the evolution of those species when increasing the temperature by ${ }^{31} \mathrm{P}$ NMR spectroscopy recording the spectra every $20^{\circ} \mathrm{C}$ from $-60^{\circ} \mathrm{C}(213 \mathrm{~K})$ to room temperature (Figure 17).

[^43]\square

Figure 17. ${ }^{31}$ P NMR spectroscopy from - 60 to $25{ }^{\circ} \mathrm{C}$: a) Pure E at 213 K ; b) Pure 67 at 213 K ; c) Reaction at 213 K ; d) Reaction at 213 K after 15 min ; e) Reaction at 233 K ; f) Reaction at $253 \mathrm{~K} ;$ g) Reaction at 273 K ; h) Reaction at 298 K ; i) Reaction at 298 K after 30 min.

In this manner, we could observe the consumption of [${ }^{t}$ BuXPhosAuNCMe] $\mathrm{SbF}_{6}(\mathbf{E})$ while digold complex 67 was formed. On the other hand, complex 37 was no longer observed at $-20^{\circ} \mathrm{C}(253 \mathrm{~K})$.

Determination of the Equilibrium Constant

Later on, we checked that the formation of digold complex 67 was a reversible process by calculating the equilibrium constant with complex \mathbf{E} (Scheme 22). ${ }^{31}$ In this manner, we could prove that the resting state was coexisting with complex 37 (Scheme 19). Otherwise, we should consider an alternative active species and therefore a new catalytic cycle.

[^44]

Scheme 22. Equilibrium between complex E and digold complex 67.
Thus, we decided to apply the Van't Hoff equation in order to calculate the equilibrium constant. Considering that Gibbs energy can be decomposed in enthalpy and entropy factors (Equation 1) as well as be related to the equilibrium constant of the same process (Equation 2), Van't Hoff equation represents the relationship between this equilibrium constant and its enthalpy/entropy factors (Equation 3). Therefore, the ratio between reagents and products would vary only depending on the temperature.

$$
\Delta G^{0}=\Delta H^{0}-T \Delta S^{0}
$$

Equation 1. Decomposition of Gibbs energy in ΔH^{0} and ΔS^{0}.

$$
\Delta G^{0}=-R T \cdot \ln K_{e q}
$$

Equation 2. Relationship between Gibbs energy and $K_{e q}$.

$$
\ln K_{e q}=-\frac{\Delta H^{0}}{R T}+\frac{\Delta S^{0}}{R}
$$

Equation 3. Van't Hoffe equation.

Concurrently, the equilibrium constant between [${ }^{t} \mathrm{BuXPhosAuNCMe}^{2} \mathrm{SbF}_{6}(\mathbf{E})$ and digold complex 67 could be represented as the quotient of their concentrations (Equation 4).

$$
\begin{aligned}
& K_{e q}=\frac{[\text { Digold Complex } \mathbf{6 7}] \cdot\left[\mathrm{HSbF}_{6}\right] \cdot\left[\mathrm{CH}_{3} \mathrm{CN}\right]^{2}}{[\text { Complex } \boldsymbol{E}]^{2} \cdot[\text { Ethynylbenzene }]} \\
= & \frac{4 \cdot[\mathbf{6 7}]^{4}}{\left.[\text { Complex } \mathbf{E}]_{0}-2 \cdot[\mathbf{6 7}]\right)^{2} \cdot\left([\text { Ethynylbenzene }]_{0}-[\mathbf{6 7}]\right)}
\end{aligned}
$$

Equation 4. Equilibrium constant as a function of [67].

Therefore, reaction between [${ }^{t} \mathrm{BuXPhosAuNCMe}^{2} \mathrm{SbF}_{6}(\mathbf{E})$ with $0.5,1,2,3.5$ and 5 equiv. of ethynylbenzene in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M})$ was analysed by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy at $10,5,20$ and $35^{\circ} \mathrm{C}$. Considering that we could measure the ratio between complex \mathbf{E} and digold complex 67 under the different conditions, we could also determine their concentrations in the equilibrium (Equation 5).

$$
\text { Integrals Ratio }=\frac{[\text { Complex } \boldsymbol{E}]_{0}-2 \cdot[\mathbf{6 7}]}{[\mathbf{6 7}]}
$$

Equation 5. Relationship between catalyst E and digold complex 67.

Accordingly, we could calculate the equilibrium constant at each temperature (Table 1).

> Table 1. Equilibrium constants depending on the temperature with increasing equiv. of ethynylbenzene. ${ }^{, b}$

$-10{ }^{\circ} \mathrm{C}$	$1.79 \cdot 10^{-8}$	$6.67 \cdot 10^{-9}$	$6.38 \cdot 10^{-9}$	$6.99 \cdot 10^{-9}$	$1.82 \cdot 10^{-8}$
$5{ }^{\circ} \mathrm{C}$	$3.53 \cdot 10^{-8}$	$1.10 \cdot 10^{-8}$	$1.07 \cdot 10^{-8}$	$7.64 \cdot 10^{-9}$	$5.51 \cdot 10^{-8}$
$20{ }^{\circ} \mathrm{C}$	$4.84 \cdot 10^{-8}$	$3.77 \cdot 10^{-8}$	$2.97 \cdot 10^{-8}$	$1.77 \cdot 10^{-8}$	$1.03 \cdot 10^{-7}$
$35{ }^{\circ} \mathrm{C}$	$6.37 \cdot 10^{-8}$	$9.16 \cdot 10^{-8}$	$3.76 \cdot 10^{-8}$	$2.81 \cdot 10^{-8}$	$1.59 \cdot 10^{-7}$

${ }^{a}$ Scheme 22, equations 4 and $5 .{ }^{b}$ Equilibium constants (M).
Afterwards, we used these data for the Van't Hoff equation and we checked that fit in a linear regression with $\mathrm{R}^{2}=0.991$ (Figure 18). Thus, we concluded that the formation of digold complex 67 was indeed reversible and determined that the equilibrium constant at $50{ }^{\circ} \mathrm{C}$ was $1.08 \cdot 10^{-7} \mathrm{M}$. Moreover, we could calculate that the enthalpy of the process was $6.8 \mathrm{kcal} / \mathrm{mol}$ and the entropy $-11 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$.

Figure 18. Relationship between the equilibrium constant towards 67 and the temperature.

6. Reactivity of Digold Complexes

Tests of the catalytic activity

Thereupon, we decided to prove whether digold complex 67 was catalytically involved in the formation of oxabicycle $\mathbf{3 6}$ (Table 2). The reaction was performed under the optimized conditions varying the stoichiometry and using half of the catalyst loading. No reaction was observed between 67 and 6 -methylhept-5-en-2-one under stoichiometric conditions (entry 1). Furthermore, under catalytic conditions using $2.5 \mathrm{~mol} \%$ of 67 , only 9% of $\mathbf{3 6}$ was observed after 19 h at $50^{\circ} \mathrm{C}$ (entry 2). Similarly, when switching the stoichiometry, only 8% was obtained after 4 days (entry 3).

Table 2. [2+2+2] Cycloaddition catalyzed by digold complex 67.

Entry	Y mol\%	X equiv.	Additive	Yield a
1	100	0	-	-
2^{b}	2.5	3.5	-	9%
3^{c}	2.5	0.5	-	8%
4	2.5	5^{d}	$\mathrm{HSbF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$45 \%^{e}$
5	-	5^{d}	$\left(2.5 \mathrm{~mol}^{d} \%\right.$ $\mathrm{HSbF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $\left(2.5 \mathrm{~mol}^{d}\right)$	-

${ }^{a}$ Crude analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standard, yield referred to oxabicycle 36. ${ }^{b}$ Dimerization of the alkyne was detected. ${ }^{c}$ Reaction time of 4 days. ${ }^{d}$ Proportion of the alkyne was increased to account for the competitive hydration. ${ }^{e}$ Isolated yield.

Nevertheless, when HSbF_{6} was added substoichiometrically, the equilibrium between the gold species was re-established allowing the formation of the active complex 37 and then, the reaction proceeded to give product $\mathbf{3 6}$ with slightly lower yield (Scheme 23).

Scheme 23. Regeneration of gold complex 37 ($L^{t}{ }^{t}$ BuXPhos).

Moreover, the same behaviour was observed in the reaction between 6-methylhept-5-en-2one and ethynylbenzene to form cyclobutene 69 and oxabicycle 70, which were described in Chapter 2 (Table 3). ${ }^{22}$ Traces of product 69 were observed performing the reaction with 67, stoichiometrically or catalytically, and the equilibrium was re-established in the presence of substoichiometric amounts of HSbF_{6} (entry 3).

Table 3. [2+2] Cycloaddition catalyzed by digold complex 67.

Entry	Y mol\%	X equiv.	Additive	Yields (69:70) $^{\boldsymbol{a}}$
1^{b}	2.5	3.5	-	$6 \%(6: 1)$
2^{c}	2.5	0.5	-	$9 \%(3.5: 1)$
3	2.5	5^{d}	$\mathrm{HSbF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $\left(2.5 \mathrm{~mol}^{c} \%\right)$	$44 \%^{e}(2.1: 1)$
4	-	5^{d}	$\mathrm{HSbF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $\left(2.5 \mathrm{~mol}^{\mathrm{O}}\right)$	-

${ }^{a}$ Crude analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standard, yields referred to cyclobutene 69 and oxabicycle 70. ${ }^{b}$ Dimerization of the alkyne was detected. ${ }^{c}$ Reaction time of 4 days. ${ }^{d}$ Proportion of the alkyne was increased to account for the competitive hydration. ${ }^{e}$ Isolated yield.

Finally, we attempted the gold-catalyzed reaction between 6-methylhept-5-en-2-one and other nucleophilies in order to exclude the activation of the oxoalkene as the key step of the process (Scheme 24). ${ }^{14}$ Thus, we used allyltrimethylsilane, indole, 1,3,5trimethoxybenzene and 1,3-diphenylpropane-1,3-dione but no reaction was observed in any case.

Scheme 24. Oxoalkene activation towards nucleophilic attack.
Therefore, we suggest the existence of a pre-equilibrium between [${ }^{t}$ BuXPhosAuNCMe] $\mathrm{SbF}_{6}(\mathbf{E})$ and ethynylbenzene with complex 37 and digold complex 67 (Scheme 25). Complex 37 was the active species towards the nucleophilic attack of the oxoalkene to enter the catalytic cycle that led to oxabicycle 36. Thus, our results indicated that digold complex 67 acted as an unreactive resting state outside the catalytic cycle, sequestering most of the active gold(I) and lengthening the reaction times. This proposal could also explain the formation of the tetrahydrofuran byproduct 65 .

Scheme 25. Digold complex 67 as an off-cycle resting state.

DFT calculations

Computationally, we determined the activation energy for the key nucleophilic attack of the oxoalkene to the ethynylbenzene moiety of the model digold complex 71 with PMe_{3} as ligand (Scheme 26). In this case, the activation energy was $25 \mathrm{kcal} / \mathrm{mol}, 10 \mathrm{kcal} / \mathrm{mol}$ higher than the attack to complex 42.

Scheme 26. Attack of the oxoalkene towards digold complex 71.
Moreover, the corresponding cyclopropyl gold carbene 72 would be $18.1 \mathrm{kcal} / \mathrm{mol}$ less stable than 71, in contrast to $1.2 \mathrm{kcal} / \mathrm{mol}$ for $\mathbf{5 1}$. Therefore, these results also suggested that digold complex 67 acts as a dead end.

7. Simultaneous Findings

While we were performing this study, other digold scaffolds were reported in the literature. An early example was digold complex 74 bearing an IPr ligand (Scheme 27). ${ }^{32,33}$ This was isolated when increasing the temperature of complex 73, which was generated in situ with ethynylbenzene, $\operatorname{IPrAuCl}$ and AgSbF_{6} and detected spectroscopically at $-78^{\circ} \mathrm{C}$.

Scheme 27. Generation of digold complex 74.

Interestingly, digold complex 74 did not react with triflic acid but the corresponding alkynyl gold complex 75, generated by the addition of pyridine to form 76, led to the regeneration of ethynylbenzene building $\operatorname{IPrAuOTf}$ (Scheme 28). This result showed the robustness of this type of digold complexes.

Scheme 28. Tests of the catalytic activity of 74.

Similar digold complexes with phosphine ligands were also detected in the intermolecular [2+2] cycloadditions of alkynes with alkenes. ${ }^{34}$ However, their role in catalysis was still unclear. Their involvement in the cycloisomerization of 1,6 -enynes was also examined. Experimental and computational work suggested that these types of σ, π-digold complexes were unreactive in these type of processes. ${ }^{3}$

The nature of the 3-centre 2 -electron interaction between $\mathrm{C}-\mathrm{Au}$ was also investigated by studying the equilibrium between aryl gold 77 and digold complexes 78 as a function of the electronic effects of the R - substituents in the aromatic ring and the counterions \mathbf{A}^{-}of the gold complex (Scheme 29). ${ }^{36,37}$ For this case, it was found that formation of $\mathbf{7 8}$ was

[^45]favoured with less coordinating counterions as well as with more electron-rich substrates supporting the proposal of an electrondeficient $\mathrm{Au}_{2} \mathrm{C}$ bond.

Scheme 29. Electronic effects in the formation of digold complexes 78.

Afterwards, a mechanistic investigation of the gold-catalyzed intramolecular allene hydroalkoxylation revealed a reversible $\mathrm{C}-\mathrm{O}$ bond formation followed by a ratedetermining protodeauration (Scheme 30). ${ }^{38}$ Thus, in the transformation of $\mathbf{7 9}$ to 81, vinyl gold complex 82 and vinyl digold complex 83 were detected. After testing their reactivity, it was reasoned that digold complex $\mathbf{8 3}$ was an off-cycle catalyst reservoir.

Scheme 30. Mechanistic study of allene 80 hydroxylation.
Later on, reactions of o-alkynyl gold complexes with alkynes in intramolecular transformations leading to a new variety of interesting cyclic systems were also developed. ${ }^{39}$ As an example, dyine $\mathbf{8 4}$ was cyclized with BrettPhosAuNTf $\mathrm{F}_{2}(\mathbf{P})$ to form 1,2dihydrocyclopenta $[a]$ indene 85 (Scheme 31). ${ }^{40}$ The reaction was proposed to proceed by formation of alkynyl species $\mathbf{8 6}$, which evolved by attack of the σ-alkynyl gold to the π activated non-terminal alkyne in a 5-endo-dig cyclization. The resulting gold vinylidene $\mathbf{8 7}$ could undergo a $\mathrm{C}-\mathrm{H}$ insertion followed by protodemetallation to form tricyclic structure 85.

[^46]It is interesting that, in contrast to the reactions between alkynes and alkenes, these type of diyne cyclizations were smoothly catalyzed with digold complexes via this novel alkyne dual activation.

Scheme 31. Dual activation of dyine 84.

8. Conclusions

In spite of the advances of gold catalysis, very little evidence had been provided regarding the mechanistic aspects of these transformations. This lacking was due to the challenge in the identification of the key intermediates involved in the complex pathways proposed. Therefore, we performed a detailed mechanistic study of the gold-catalyzed intermolecular $[2+2+2]$ cycloaddition of alkynes and oxoalkenes described in Chapter 2.

Monitoring of the reaction between ethynylbenzene and 6-methylhept-5-en-2one by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy showed the formation of digold complex 67 as the resting state of the process (Figure 15). ${ }^{22}$ Nevertheless, the tests performed to study the catalytic activity of 67 demonstrated that the structure was an unreactive structure outside the main catalytic cycle.

Figure 15. X-Ray crystal structure of digold complex 67.

Therefore, we checked that the formation of this digold complex was a reversible process by determining the equilibrium constant with catalyst $\mathbf{E}\left(\mathrm{K}_{\text {eq }}\left(50{ }^{\circ} \mathrm{C}\right)=1.08 \cdot 10^{-7} \mathrm{M}\right)$. Furthermore, we could detect the formation of complex 37 via low temperature NMR experiments. In this manner, we suggested a pre-equilibrium between those gold species before complex 37 entered the catalytic cycle (Scheme 19).

Scheme 19. Formation of digold complex 67 ($L={ }^{t}$ BuXPhos).
Finally, complex 37 was simplified with PMe_{3} as ligand (42) in order to use DFT calculations to analyse the main catalytic cycle (Scheme 32). Thus, complex 42 suffered nucleophilic attack from the oxoalkene in the rate-determining step of the process (15.9 $\mathrm{kcal} / \mathrm{mol})$. The anti cyclopropyl gold carbene $\mathbf{5 1}$ was formed regio- and stereoselectively and underwent intramolecular nucleophilic attack of the ketone from the upper face of the ring building the oxonium cation 55.

Scheme 32. DFT calculations of the main catalytic cycle with PMe $_{3}$ (relative energies in kcal/mol).

The transformation was followed by a Prins-type cyclization towards the carbocation 56, which evolved to the coordinated product $57(-40.5 \mathrm{kcal} / \mathrm{mol})$. Ligand exchange with ethynylbenzene would regenerate complex 42 whereas releasing oxabicycle 36.

Isotopic labelling experiments also confirmed these results. Furthermore, they supported the formation of tetrahydrofuran $\mathbf{6 5}$ via an acid promoted cyclization of 6-methylhept-5-en-2-one to $\mathbf{6 3} / \mathbf{6 3}$ ' and $\mathbf{6 4}$ followed by trapping with alkynyl gold complex 68 (Scheme 33).

Scheme 33. Formation of tetrahydrofuran 65.

In summary, we suggest a stepwise process preceded by an equilibrium between different gold species towards the formation of 37 .

UNIVERSITAT ROVIRA I VIRGILI
DISSECTING INTERMOLECULAR GOLD CATALYSIS: APPLICATION TO THE TOTAL SYNTHESIS OF RUMPHELLAONE A.
Carla Obradors Llobet
Dipòsit Legal: T 75-2015
\square

UNIVERSITAT ROVIRA I VIRGILI

Chapter 4:

Anion Effects in Gold-Catalyzed Intermolecular Cycloadditions

1. Introduction

As mentioned in the General Introduction, the development of gold-catalyzed transformations relied on intramolecular reactions of functionalized $1, n$-enynes and their allene analogues. ${ }^{1}$ In contrast, the corresponding intermolecular processes were showed to be more challenging. ${ }^{2}$ Thus, involvement of different unsaturated substrates would imply competitive binding with the gold complex. Moreover, gold catalysts are inherently acidic and could promote polymerization of alkenes by cationic mechanisms. ${ }^{3}$

Therefore, the first intermolecular gold-catalyzed cycloaddition, developed in 2010, was based on the reaction of electron-rich alkynes and alkenes to build regioselective cyclobutenes (Scheme 1). ${ }^{4}$ Thus, ethynylbenzene and α-methylstyrene formed cyclobutene 1 in 80% isolated yield when treated with a sterically hindered gold catalyst such as [$\left.{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{SbF}_{6}(\mathbf{E})$.

Scheme 1. Gold-catalyzed [2+2] cycloaddition of alkynes with alkenes.
In Chapter 2, we presented the development of the intermolecular cascade [2+2+2] reaction between an alkyne, an alkene and a carbonyl group catalyzed by the same gold complex. ${ }^{5}$ As an example, the cycloaddition of m-methoxyethynylbenzene with 5-methylhex-5-en-2-one led to the oxabicycle scaffold $\mathbf{2}$ in 91% isolated yield (Scheme 2).

Scheme 2. Gold-catalyzed [2+2+2] cycloaddition towards oxabicycle 2.

[^47]It is interesting to note the differences between both optimized conditions: increased catalyst loading and temperature were required but also switching of the reaction stoichiometry. Thus, in the first case, an excess of the alkene was necessary partially due to its dimerization to $\mathbf{3}$ as a side-process and, in the second one, an excess of the alkyne due to the formation of trimer 4 as a side-product (Figure 1).

Figure 1. Side-products of the gold-catalyzed cycloadditions.
Based on analogy, the $[2+2]$ cycloaddition between alkynes and alkenes was proposed to proceed via highly distorted cyclopropyl gold carbenes such as $\mathbf{5 / 5}$ (Figure 2). ${ }^{6}$ The contribution of resonance form 5^{\prime} (a gold(I) stabilized carbocation) explained the regioselectivity of the transformation.

Figure 2. Highly distorted cyclopropyl gold carbene intermediate 5/5'($\left.L^{\prime}={ }^{t} \boldsymbol{B u X P h o s}\right)$.
In Chapter 3, we presented a detailed mechanistic study of the intermolecular goldcatalyzed $[2+2+2]$ cycloaddition between ethynylbenzene and 5-methylhex-5-en-2-one. ${ }^{5} \mathrm{~A}$ step-wise catalytic cycle starting from gold complex 6 was suggested via DFT calculations and supported by monitoring of the reaction, low-temperature NMR studies, determination of equilibrium constants and isotopic labelling experiments (Scheme 3).

Scheme 3. Pre-equilibrium between gold species ($L^{=}={ }^{\boldsymbol{B}}$ uXPhos).
Unreactive digold complex 7 was identified as the resting state of the transformation and we suggested a pre-equilibrium between the different gold species. Thus, we reasoned that

[^48]coordination of ethynylbenzene with gold formed complex 6, which made the terminal proton very acidic. Deprotonation of terminal alkynes with gold catalysts towards complexes such as $\mathbf{8}$ was already known. ${ }^{7}$ Coordination with a second molecule of the gold(I) complex formed the digold structure $7 .{ }^{8}$ This equilibrium could be modified by the ligand, the substrate and the counterion.

Tuning of the gold intermediates by the counterion has been used many times. In some examples, their influence could even modify the outcome of a transformation. This is the case of the gold-catalyzed synthesis of pyrroles from alkynyl aziridines (Scheme 4). ${ }^{9}$ Substrate 9 cyclized towards 2,5-substituted pyrrol 10 or 2,4-11 depending on the counterion of the gold catalyst.

Scheme 4. Anion controlled regioselective synthesis of pyrroles.

The gold complex presumably coordinated to the alkyne (12), which would undergo intramolecular attack from the aziridine generating carbocation 13 (Scheme 5). Pyrrol 10 could be formed via direct proton elimination whereas pyrrole 11 via 1,2-aryl shift.

Scheme 5. Common carbocationic intermediate $13\left(L=P h_{3} P\right)$.

The lower activity of tosylate was assigned to the tighter ion pair. Thus, in the presence of a basic counterion, proton elimination of $\mathbf{1 3}$ was facilitated and pyrrol $\mathbf{1 0}$ was favoured. In the absence of it, the proton transfer pathway was suggested to proceed mediating an aromatic or a weakly Lewis basic solvent. Consequently, triflate in toluene also formed $\mathbf{1 0}$ preferentially. On the other hand, triflate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ would be insufficiently basic and the

[^49]1,2 -aryl shift took place towards $\mathbf{1 1}$. However, this behavior could also be related to the different dielectric constants. ${ }^{10}$

In other cases, the counterion could also influence in the efficiency of a transformation by increasing the yield towards the desired product or by changing the reaction rate. As an example, the gold-catalyzed hydroarylating aromatization of diyne $\mathbf{1 4}$ led to phenylnaphthalenes $\mathbf{1 5}$ and $\mathbf{1 6}$ when treated with catalysts $\mathbf{1 7}$ in benzene at $80^{\circ} \mathrm{C}$ (Scheme 6). ${ }^{11}$

Scheme 6. Gold-catalyzed hydroarylating aromatization.
Very different reaction rates towards 2-phenylnaphthalene 16 were observed when changing the counterion of catalyst $\mathbf{1 7}$. Monitoring the transformation with the different complexes showed great effiency for $\mathrm{PF}_{6}{ }^{-}$(Figure 3).

Figure 3. Reaction rates depending on the counterion of the catalyst 17.
Slightly lower reaction rates were detected for BF_{4}^{-}or $\mathrm{NNf}_{2}{ }^{-} . \mathrm{NTf}_{2}^{-}$and TsO^{-}still led to acceptable results, and very a slow conversion was detected for $\mathrm{SbF}_{6}{ }^{-}$. Very fast transformation was observed for TfO^{-}but the reactivity drastically stopped around 60% yield.

[^50]Furthermore, important anion effects were observed in the enantioselectivity of several gold-catalyzed reactions. ${ }^{12}$ As an example, the hydroamination of allenes, $\mathbf{1 8}$ to $\mathbf{1 9}$, proceeded in very good yields when the cyclization was performed with (R)-xylylBINAP as the gold ligand in nitromethane at $50^{\circ} \mathrm{C}$ (Scheme 7). ${ }^{13}$

$3 \mathrm{~mol} \%(\mathrm{R})$-xylylBINAP(AuCl$)_{2} / 6 \mathrm{~mol} \% \mathrm{AgBF}_{4}: 82 \%, 1 \%$ ee $3 \mathrm{~mol} \%(R)$-xylyIBINAP(AuCl) ${ }_{2} / 3 \mathrm{~mol} \% \mathrm{AgBF}_{4}: 81 \%, 51 \%$ ee $3 \mathrm{~mol} \%(R)$-xylyIBINAP(AuOPNB) $2: 88 \%, 98 \%$ ee

Scheme 7. Counterion-mediated enantioselective gold-catalyzed hydroamination of allenes.

However, the enatioselectivity of the reaction towards 19 was increased from 1 to $51 \% \mathrm{ee}$ when $3 \mathrm{~mol} \%$ of AgBF_{4} instead of 6 was added. Noteworthy, when p-nitrobenzoate (PNBO^{-}) was used as the counterion of the gold complex, the enantioselectivity of $\mathbf{1 9}$ increased to 98% ee. A detailed mechanistic study, based on DFT calculations, showed an important interaction between the substrate and the anion via hydrogen bonding, which explained the large effect in the enantioselectivity of the process.

Later on, the development and study of new weakly coordinating anions was expanded. ${ }^{14}$ These structures allowed the formation of highly soluble complexes due to the ion size prone to stabilize low charge species. These properties, along with the weak basicity and the stability in front of oxidation, formed robust Lewis acid-base adducts $\left[(L)_{n} M\right]^{+} X^{-}$.

The interionic structure of several (π-alkyne)gold(I) ion pairs (20) was studied by ${ }^{1} \mathrm{H}^{-19} \mathrm{~F}$ HOESY NMR spectroscopy combined with DFT calculations. ${ }^{15}$ In all cases, the counterion was located close to the substrate but the specific distance strongly depended on the ligand on the metal. A new methodology, derived from diffusion NMR experiments and conductometry, was developed to determine the hydrodynamic volume of single ions as well as ion pairs. ${ }^{16}$ This showed that complexes bearing poorly electron donating ligands as 21 formed stronger ion pairs whereas lower interactions were observed for strongly electron donating ligands as 23 (Figure 4).

Figure 4. Distances between the anion and the substrate depending on the ligand.

[^51]These results were rationalized claiming that the electronic properties of the ligand finely tuned the charge accumulation on the alkyne and, consequently, its ability of attracting the anion.

Finally, when the same study was performed for NHC carbene ligands, it was observed that the position of that anion could be radically different. ${ }^{17}$ Thus, $\mathrm{BF}_{4}{ }^{-}$was placed next to the substrate in complex $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\eta^{2} \text {-alkene }\right)\right]^{+} 24$ but on the other side of the ligand in complex $\left[\operatorname{IPAu}\left(\eta^{2} \text {-alkene) }\right]^{+} \mathbf{2 5}\right.$ (Figure 5).

24

25

Figure 5. Distinct positions of the anion depending on the ligand.

[^52]
2. Objectives

In this context, we focused on tuning the catalyst structure to minimize the generation of digold(I) complexes such as 7 during an intermolecular transformation, which are deadends of the catalytic cycle. In the cycloadditions involving alkynes, we reasoned that the use of more bulky, non-coordinating and less basic couterions could slow down the deprotonation and hamper the formation of the σ-acetylide gold(I) intermediates. Hence, we designed the synthesis of new gold complexes using $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$ as the anion, for example, \mathbf{Q} or \mathbf{R} bearing ${ }^{t} \mathrm{BuXPhos}$ and IPr ligands, respectively (Figure 6).

Figure 6. New gold(I) complexes using BAr ${ }_{4}{ }_{4}$.
We also performed a mechanistic study of the intermolecular [2+2] cycloaddition of alkynes with alkenes in order to further understand the influence of the counterion on the reactivity of these processes.

3. Synthesis and Reactivity of New Catalysts

Anion Effect in the [2+2] Cycloaddition

The [2+2] cycloaddition of alkynes with alkenes towards cyclobutene $\mathbf{1}$ was originally developed using catalyst \mathbf{E} (Scheme 1). ${ }^{4}$ As expected, the ligand had a strong influence on the selectivity but we decided to examine also the effect of changing the counterion (Table $1)$. The reaction was performed between ethynylbenzene and 2 equiv. of α-methylstyrene under the optimized conditions. We synthesized successfully gold complex \mathbf{Q} from the corresponding chloride and $\mathrm{NaBAr}_{4}{ }_{4}$ in 97% isolated yield as well as complexes bearing $\mathrm{BF}_{4}{ }^{-}(\mathbf{S})$ and $\mathrm{PF}_{6}{ }^{-}(\mathbf{T})$. Thus, we could observe notable differences between them in the synthesis of cyclobutene $\mathbf{1}$. Replacement of SbF_{6}^{-}by $\mathrm{BAr}_{4}{ }_{4}^{-}$led to an increase of the isolated yield from 80 to 95% (entries 1 and 2).

Table 1. Screening of anions in the [2+2] cycloaddition.

Entry	\mathbf{A}^{-}	Yield $^{\boldsymbol{a}}$
1	$\mathrm{SbF}_{6}{ }^{-}$	80%
2	$\mathrm{BAr}^{-}{ }_{4}^{-}$	95%
3	$\mathrm{BF}_{4}{ }^{-}$	62%
4	$\mathrm{PF}_{6}{ }^{-}$	19%
5^{b}	$\mathrm{NTf}_{2}{ }^{-}$	26%
6^{b}	TfO^{-}	18%

${ }^{a}$ Crude analyzed by ${ }^{\mathrm{I}} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standard, yields referred to cyclobutene 1. ${ }^{b}$ Catalysts generated in situ with ${ }^{t} \mathrm{BuXPhosAuCl}$ and the corresponding silver salts.

The use of $\mathrm{BF}_{4}{ }^{-}$gave 1 in lower but still acceptable yield (entry 3). However, more coordinating couterions as NTf_{2}^{-}or TfO^{-}afforded the [2+2] cycloaddition product very inefficiently (entries 5 and 6). Surprisingly, the use of $\mathrm{PF}_{6}{ }^{-}$formed cyclobutene 1 only in 19% yield (entry 4).

These results suggested that the anion has a significant effect in this reaction. Therefore, we examined the scope of the improvement achieved with gold complex \mathbf{Q}. The [2+2] cycloaddition between different terminal alkynes with α-methylstyrene towards cyclobutenes such as 26 was performed changing $\mathrm{SbF}_{6}{ }^{-}$by $\mathrm{BAr}^{\mathrm{F}}{ }_{4}{ }^{-}$(Table 2). In most cases, yields using $\mathrm{BAr}_{4}^{\mathrm{F}}$ - were $10-30 \%$ higher (Table 2), with the exception of MeOsubstituted alkynes (entries 6,14 and 24) and with 3-thienyl alkyne (entry 26). Moreover, in the case of the cyclopropyl ring, a lower yield was obtained (entry 28).

Table 2. Alkyne scope in the [2+2] cycloadditon. ${ }^{a}$

Entry	R-	A^{-}	Product	Yield ${ }^{\text {b }}$
1	Ph-	$\mathrm{SbF}_{6}{ }^{-}$	1	80\%
2		$\mathrm{BAr}_{4}^{\mathrm{F}}{ }^{-}$	1	95\%
3	p-Tol-	$\mathrm{SbF}_{6}{ }^{-}$	27	74\%
4		$\mathrm{BAr}{ }_{4}{ }^{-}$	27	86\%
5	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ -	SbF_{6}^{-}	28	68\%
6		$\mathrm{BAr}_{4}{ }_{4}-$	28	64\%
7	$p-\mathrm{FC}_{6} \mathrm{H}_{4}-$	$\mathrm{SbF}_{6}{ }^{-}$	29	75\%
8		$\mathrm{BAr}{ }_{4}{ }^{-}$	29	84\%
9	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}-$	$\mathrm{SbF}_{6}{ }^{-}$	30	61\%
10		$\mathrm{BAr}{ }_{4}{ }^{\text {- }}$	30	91\%
11	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}-$	$\mathrm{SbF}_{6}{ }^{-}$	31	74\%
12		$\mathrm{BAr}{ }_{4}{ }^{-}$	31	97\%
13	m - $\mathrm{MeOC}_{6} \mathrm{H}_{4}-$	SbF_{6}	32	80\%
14		$\mathrm{BAr}_{4}^{\mathrm{F}}{ }_{4}$	32	78\%
15	m-Tol-	$\mathrm{SbF}_{6}{ }^{-}$	33	78\%
16		$\mathrm{BAr}{ }_{4}{ }^{\text {- }}$	33	91\%
17	$m-\mathrm{HOC}_{6} \mathrm{H}_{4}-$	$\mathrm{SbF}_{6}{ }^{-}$	34	74\%
18		$\mathrm{BAr}{ }_{4}{ }^{\text {- }}$	34	98\%
19	$m-\mathrm{FC}_{6} \mathrm{H}_{4}-$	SbF_{6}^{-}	35	67\%
20		$\mathrm{BAr}{ }_{4}{ }^{\text {- }}$	35	77\%
21	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}-$	SbF_{6}	36	60\%
22		$\mathrm{BAr}{ }_{4}{ }^{-}$	36	83\%
23	$o-\mathrm{MeOC}_{6} \mathrm{H}_{4}{ }^{-}$	$\mathrm{SbF}_{6}{ }^{-}$	37	30\%
24		$\mathrm{BAr}{ }_{4}{ }^{-}$	37	24\%
25	3-Thienyl-	$\mathrm{SbF}_{6}{ }^{-}$	38	84\%
26		$\mathrm{BAr}_{4}{ }^{-}$	38	86\%
27	Cyclopropyl-	SbF_{6}	39	46\%
28		$\mathrm{BAr}_{4}^{\mathrm{F}}{ }^{-}$	39	35\%

${ }^{a}$ These experiments were performed by Anna Homs. ${ }^{b}$ Isolated yields.
Cyclobutene 1 could also be obtained in 95% yield by performing the reaction with complex \mathbf{Q} on a larger scale (2.00 mmol). Furthermore, generating the catalyst in situ by mixing ${ }^{t} \mathrm{BuXPhosAuCl}$ and $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}$ did not affect the yield.

We attempted the $[2+2]$ cycloaddition between novel alkynes and α-methylstyrene using catalyst \mathbf{Q}. However, very complex mixtures were obtained for o-methylethynylbenzene, (bromoethynyl)benzene and ethynyltrimethylsilane (Figure 7). Only 11% of the cyclobutene product was detected for the 1,3-enyne 2-methylut-1-n-3-yne. And, in the case
of non-terminal alkynes, no reaction was observed for hex-3-yne, 1,2-diphenylethyne or prop-1-yn-1-ylbenzene. ${ }^{18}$

Figure 7. Expansion of the alkyne scope.
Improved yields were also obtained in general when ethynylbenzene was used with different alkenes to cyclobutenes 40 (Table 3). In these cases, the improvement ranged from 5 to 20% isolated yields. The reaction was also extended to allylsilanes (entries 5 and 6), allyl ethers (entries 7 and 8) and allylsilyl ethers (entries 9 and 10).

Table 3. Alkene scope of the [2+2] cycloaddition. ${ }^{a}$

Entry	Alkene	A^{-}	Product	Yields
1	Et Me	$\mathrm{SbF}_{6}{ }^{-}$	41	$74 \%{ }^{\text {b }}$
2		$\mathrm{BAr}{ }_{4}^{\mathrm{F}}{ }^{-}$	41	$79 \%{ }^{\text {b }}$
3	\cdots	$\mathrm{SbF}_{6}{ }^{-}$	42	$53 \%{ }^{\text {b }}$
4		BAr ${ }_{4}{ }^{-}$	42	$69 \%{ }^{\text {b }}$
5	Si($\mathrm{Pr}_{1}{ }_{3}$	$\mathrm{SbF}_{6}{ }^{-}$	43	$48 \%{ }^{\text {c }}$
6		$\mathrm{BAr}{ }_{4}^{\mathrm{F}}{ }^{-}$	43	$71 \%{ }^{\text {c }}$
7	Me	$\mathrm{SbF}_{6}{ }^{-}$	44	26\% ${ }^{\text {c }}$
8	d OPh	$\mathrm{BAr}{ }_{4}^{\mathrm{F}}{ }^{-}$	44	$31 \%{ }^{\text {c }}$
9	Me	$\mathrm{SbF}_{6}{ }^{-}$	45	$21 \%{ }^{\text {c }}$
10	COSiPh_{3}	$\mathrm{BAr}{ }_{4}{ }^{-}$	45	$31 \%{ }^{\text {c }}$

${ }^{a}$ These experiments were performed by Anna Homs. ${ }^{b}$ Isolated yields. ${ }^{c}$ Crude analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standard, yields referred to cyclobutenes 40.

Finally, the yield of the gold-catalyzed macrocyclization of 1,14-enyne 46 to form the 13membered derivative 47 was also improved from 57% isolated yield when using $\mathrm{SbF}_{6}{ }^{-}$to 82% with $\mathrm{BAr}^{\mathrm{F}}{ }_{4}{ }^{-}$maintaining the optimized conditions (Scheme 8). ${ }^{19}$

[^53]

Scheme 8. Improved macrocyclization of 1,14-enyne 46.

Expansion to Other Transformations

At the same time, the intermolecular gold-catalyzed synthesis of phenols 48 from terminal alkynes and an excess of furans, using IPr as ligand, was developed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ (Table 4). ${ }^{20}$ Thus, the cycloaddition proceeded under very mild conditions and with moderate to good yields when using $[\operatorname{IPrAuNCMe}] \mathrm{SbF}_{6}(\mathbf{C})$. Then, the yields increased up to 36% for catalyst \mathbf{R} bearing $\mathrm{BAr}^{\mathrm{F}}{ }_{4}^{-}$(entry 4).

Table 4. Gold-catalyzed synthesis of phenols 48. ${ }^{\text {a }}$

Entry	R-	A^{-}	Product	Yield ${ }^{\text {b }}$
1	Ph-	$\mathrm{SbF}_{6}{ }^{-}$	49	70\%
2		$\mathrm{BAr}^{\mathrm{F}}{ }_{4}$ -	49	85\%
3	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}-$	SbF_{6}^{-}	50	50\%
4		$\mathrm{BAr}_{4}^{\mathrm{F}}{ }_{4}^{-}$	50	86\%
5	$m-\mathrm{MeOC}_{6} \mathrm{H}_{4}{ }^{-}$	$\mathrm{SbF}_{6}{ }^{-}$	51	77\%
6		BAr ${ }_{4}{ }_{4}$	51	85\%
7^{c}	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-$	$\mathrm{SbF}_{6}{ }^{-}$	52	37\%
8		$\mathrm{BAr}{ }_{4}^{\mathrm{F}}{ }^{-}$	52	66\%
9	$o-\mathrm{BrC}_{6} \mathrm{H}_{4}-$		53	45\%
10		$\mathrm{BAr}_{4}^{\mathrm{F}}-$	53	76\%

${ }^{a}$ These experiments were performed by Núria Huguet and Dr. David Leboeuf. ${ }^{b}$ Isolated yields. ${ }^{c} 2,5-$ Dimethyl-3-(1-(4-nitrophenyl)vinyl)furan formed as a side-product.

Therefore, both the $[2+2]$ cycloaddition and the synthesis of phenols followed the same trend when using $\mathrm{BAr}^{\mathrm{F}} 4^{-}$. We also examined its influence in the $[2+2+2]$ cycloaddition of alkynes with oxoalkenes. ${ }^{5}$ We performed the reaction between ethynylbenzene and 5-methylhex-5-en-2-one towards the oxabicycle 54 under the optimized conditions screening different counterions (Table 5). In this case, very similar results were obtained with $\mathrm{SbF}_{6}{ }^{-}$ and $\mathrm{BAr}_{4}{ }_{4}^{-}$(Table 5). Moderate yields were observed for $\mathrm{BF}_{4}{ }^{-}$and NTf_{2}^{-}and only traces of oxabicycle 54 were detected with TfO^{-}.

[^54]Table 5. Screening of anions in the [2+2+2] cycloaddition.

Entry	\mathbf{A}^{-}	Yield $^{\boldsymbol{a}}$
1	SbF_{6}^{-}	68%
2	$\mathrm{BAr}^{-}{ }^{-}$	72%
3	BF_{4}^{-}	43%
5^{b}	NTf_{2}^{-}	40%
6^{b}	TfO^{-}	3%

${ }^{a}$ Crude analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standard, yields referred to oxabicycle 54. ${ }^{b}$ Catalysts generated in situ with 'BuXPhosAuCl and the corresponding silver salts.

Furthermore, we analysed the effect of other parameters of the reaction combined with $\mathrm{BAr}_{4}{ }_{4}{ }^{-}$(Table 6). Use of JohnPhos and IPr as ligands led to lower yields although they also improved with respect of $\mathrm{SbF}_{6}{ }^{-}$(entries 1 to 4). Use of 3 instead of $5 \mathrm{~mol} \%$ of catalyst \mathbf{Q} dropped the yield to 52% (entry 5).

Table 6. Effect of other parameters. ${ }^{a}$

Entry	Modification	A^{-}	Yield ${ }^{\text {b }}$
I	JohnPhos	$\mathrm{SbF}_{6}{ }^{-}$	15\%
2	JohnPhos	$\mathrm{BAr}{ }_{4}^{\mathrm{F}}{ }^{-}$	33\%
3	IPr	$\mathrm{SbF}_{6}{ }^{-}$	15\%
4	IPr	$\mathrm{BAr} \mathrm{F}_{4}{ }^{-}$	27\%
5	$3 \mathrm{~mol} \%$	$\mathrm{BAr} \mathrm{F}_{4}{ }^{-}$	52\%
6	$25^{\circ} \mathrm{C}$	$\mathrm{BAr} \mathrm{F}_{4}{ }^{-}$	22\%
7	1 equiv.	BAr ${ }_{4}{ }_{4}$	38\%
8	0.25 equiv.	$\mathrm{SbF}_{6}{ }^{-}$	13\%
9	0.25 equiv.	BAr ${ }_{4}{ }_{4}$	12\%

${ }^{a}$ Continuation of Table $5 .{ }^{b}$ Crude analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using $1,4-$
diacetylbenzene as internal standard, yields referred to oxabicycle $\mathbf{5 4}$.
Decreasing the temperature to $25^{\circ} \mathrm{C}$ formed the oxabicycle $\mathbf{5 4}$ only in 22% yield (entry 6). Finally, performing the reaction with 1 equivalent of ethynylbenzene led to 38% yield and with an excess of oxoalkene only to 12%, which was already observed for $\mathrm{SbF}_{6}{ }^{-}$(entries 7 , 8 and 9).

We examined the anion effect in the $[2+2+2]$ cycloaddition between different alkynes with 5 -methylhex-5-en-2-one towards 55 under the optimized conditions comparing $\mathrm{SbF}_{6}{ }^{-}$and $\mathrm{BAr}^{\mathrm{F}}{ }_{4}{ }^{-}$with catalyst \mathbf{E} and \mathbf{Q} (Table 7). In most of the examples, the yields varied very little (Table 7). A significant improvement was observed for p-chloroethynylbenzene and
m-ethynylphenol (entries 4 and 12). However, a drop of the yield was observed for o ethynyltoluene (entries 22).

Table 7. Alkyne scope of the $[2+2+2]$ cycloaddition.

Entry	R-	\mathbf{A}^{-}	Product	Yield ${ }^{\text {a,b }}$
1	Ph-	$\mathrm{SbF}_{6}{ }^{-}$	54	68\%
2	Ph-	$\mathrm{BAr}{ }_{4}{ }_{4}$	54	72\%
3	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}{ }^{-}$	$\mathrm{SbF}_{6}{ }^{-}$	56	51\%
4	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}-$	$\mathrm{BAr} \mathrm{F}_{4}{ }^{-}$	56	62\%
5	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	$\mathrm{SbF}_{6}{ }^{-}$	57	49\%
6	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}-$	$\mathrm{BAr}{ }_{4}{ }^{-}$	57	$53 \%^{c}(85 \%)$
7	p-Tol-	$\mathrm{SbF}_{6}{ }^{-}$	58	55\%
8	p-Tol-	$\mathrm{BAr}{ }_{4}{ }^{-}$	58	$40 \%{ }^{\text {c }}$ (80\%)
9	$p-\mathrm{FC}_{6} \mathrm{H}_{4}-$	$\mathrm{SbF}_{6}{ }^{-}$	59	68\%
10	$p-\mathrm{FC}_{6} \mathrm{H}_{4}-$	$\mathrm{BAr}{ }_{4}{ }^{-}$	59	68\% ${ }^{\text {c }}$ (83\%)
11	m - $\mathrm{HOC}_{6} \mathrm{H}_{4}-$	$\mathrm{SbF}_{6}{ }^{-}$	60	65\%
12	$m-\mathrm{HOC}_{6} \mathrm{H}_{4}-$	$\mathrm{BAr}{ }_{4}{ }^{-}$	60	81\%
13	m-Tol-	$\mathrm{SbF}_{6}{ }^{-}$	61	70\%
14	m-Tol-	$\mathrm{BAr}{ }_{4}{ }_{4}$	61	72\%
15	$m-\mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{SbF}_{6}{ }^{-}$	62	49\%
16	$m-\mathrm{FC}_{6} \mathrm{H}_{4}$ -	$\mathrm{BAr}{ }_{4}{ }^{-}$	62	49\% ${ }^{\text {c }}$
17	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}-$	$\mathrm{SbF}_{6}{ }^{-}$	63	55\%
18	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}-$	$\mathrm{BAr}{ }_{4}{ }^{-}$	63	54\% ${ }^{\text {c }}$ (95\%)
19	3-Thihenyl-	$\mathrm{SbF}_{6}{ }^{-}$	64	40\% (79\%)
20	3-Thihenyl-	$\mathrm{BAr}{ }_{4}{ }^{-}$	64	41\% ${ }^{\text {c }}$ (56\%)
21	o-Tol-	$\mathrm{SbF}_{6}{ }^{-}$	65	41\% (100\%)
22	o-Tol-	$\mathrm{BAr}{ }_{4}{ }^{-}$	65	26\% ${ }^{\text {c }}$ (86\%)
23	p - $\mathrm{MeOC}_{6} \mathrm{H}_{4}$ -	$\mathrm{SbF}_{6}{ }^{-}$	66	$13 \%^{c}$ (100%)
24	p - $\mathrm{MeOC}_{6} \mathrm{H}_{4}$ -	$\mathrm{BAr} \mathrm{F}_{4}{ }^{-}$	66	$13 \%{ }^{\text {c }}$ (100\%)
25^{d}	p - $\mathrm{MeOC}_{6} \mathrm{H}_{4}$ -	$\mathrm{SbF}_{6}{ }^{-}$	66	43\% (100\%)
$26^{\text {d }}$	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}{ }^{-}$	$\mathrm{BAr} \mathrm{F}_{4}{ }^{-}$	66	$8 \%^{c}(100 \%)$

a Isolated yields. ${ }^{b}$ Conversion in brackets, 100% if not stated. ${ }^{c}$ Crude analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standard, yields referred to oxabicycle $\mathbf{5 5}$. ${ }^{d}$ Switched reaction stoichiometry.

In the case of p-methoxyethynylbenzene, the same result was obtained with the standard excess but no improvement was observed when switching the stoichiometry of the reaction (entries $23 / 24$ and $25 / 26$). Therefore, the improvement was moderate for this more challenging cascade transformation. In general, a lower reaction conversion was observed, presumably as a result of a faster catalyst decay with $\mathrm{BAr}^{\mathrm{F}}{ }_{4}{ }^{-}$than with $\mathrm{SbF}_{6}{ }^{-}$.

Finally, we tested the catalytic activity of $\mathrm{LAuCl} / \mathrm{NaBAr}_{4}^{\mathrm{F}}$ with several known intramolecular transformations. In the gold-catalyzed single cleavage rearrangement of 1,6-enyne 67 at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the cyclized product $\mathbf{6 8}$ and its isomer $\mathbf{6 9}$ were obtained in 67% yield (1:1.4) for $\mathrm{SbF}_{6}{ }^{-}$and 85% (11:1) for $\mathrm{BAr}^{\mathrm{F}}{ }_{4}{ }^{-}$(Scheme 9). ${ }^{21}$ Thus, both the yield and the selectivity were improved under these conditions.

Scheme 9. Gold-catalyzed single cleavage rearrangement of 67.
Later, dienyne 70 cyclized using $\mathrm{Ph}_{3} \mathrm{PAuCl}$ via the intramolecular cyclopropanation of the corresponding cyclopropyl gold carbene intermediate (Scheme 10). ${ }^{22}$ The reaction was performed at $-30^{\circ} \mathrm{C}$ for 20 min and tetracycle 71 was obtained quantitavely with $\mathrm{SbF}_{6}{ }^{-}$ and in 63% yield with $\mathrm{BAr}_{4}{ }_{4}{ }^{-}$. This transformation using PPh_{3} as the phosphine ligand was not more efficient by changing the counterion.

Scheme 10. Cascade cyclization of dienyne 70.

Furthermore, we attempted the [4+2] cyclization of enyne 72 using phosphite 21 gold chloride under mild conditions to afford the tricyclic structure 73 (Scheme 11). ${ }^{6 \mathrm{a}}$ Interestingly, the reaction proceeded in very good yield with $\mathrm{SbF}_{6}{ }^{-}$but no reaction was observed when $\mathrm{BAr}^{\mathrm{F}}{ }_{4}^{-}$was used.

Scheme 11. [4+2] Cycloaddition of enyne 72.

[^55]We reasoned that the sodium salt could not abstract the chloride from this gold complex, which would impede the generation of the active species. However, catalyst (21) AuCl could cyclize cycloheptatriene 74 to indene 75 using $\mathrm{SbF}_{6}{ }^{-}$or $\mathrm{BAr}^{\mathrm{F}}{ }_{4}{ }^{-}$with the same efficiency (Scheme 12). ${ }^{23}$ The reaction proceeded quantitavely in toluene at $0{ }^{\circ} \mathrm{C}$ via a complex mechanism through a gold-barbaralyl cation.

74
75
Scheme 12. Cyclization of cycloheptatriene 74.

[^56]
4. Kinetic Study of the [2+2] Cycloaddition

Monitoring of the Transformation

Subsequently, we decided to study the particular involvement of the counterion in the $[2+2]$ cycloaddition of alkynes and alkenes. According to the previous theoretical work, ${ }^{6}$ the catalytic cycle was expected to proceed by a rate-determining attack of the electronrich alkene to the (π-alkyne)gold complex 6 forming the cyclopropyl gold carbene 5/5' (Scheme 13). Then, the ring expansion would occur leading to benzylic carbocation 76, which would form the coordinated cyclobutene 77 after demetallation. A presumably associative ligand exchange with ethynylbenzene would close the catalytic cycle to cyclobutene $\mathbf{1}$ and complex $\mathbf{6}$.

Scheme 13. Initial proposal for the [2+2] cycloaddition ($L^{=}{ }^{t}$ BuXPhos).
However, this approach did not contemplate the formation of digold complexes 7 and did not explain the counterion effect observed. ${ }^{5}$ Therefore, we monitored the [2+2] cycloaddition by ${ }^{1} \mathrm{H}$ NMR spectroscopy using ethynylbenzene and α-methylstyrene under the optimized conditions, along with diphenylmethane as internal standard (Scheme 14).

Scheme 14. Kinetic study of the [2+2] cycloaddition.

We performed these experiments using $\mathrm{SbF}_{6}^{-}(\mathbf{E}), \mathrm{BAr}_{4}{ }_{4}^{-}(\mathbf{Q})$ and $\mathrm{BF}_{4}{ }^{-}(\mathbf{S})$. The results confirmed a great dependence on the anion (Figure 8). Beside the differences in the final yields, the reaction rate increased with the bulkiness and the softness of the counterion.

Thus, $\mathrm{BAr}^{\mathrm{F}}{ }_{4}^{-}$(Q) was faster than $\mathrm{SbF}_{6}{ }^{-}(\mathbf{E})$, which was faster than BF_{4}^{-} (S). In this case, no intermediates could be detected either, only the starting substrates and the final products could be observed.

Figure 8. Kinetic study of the [2+2] cycloaddition ($L={ }^{t}$ BuXPhos).

Order of the Reagents

We determined the order of the reagents of the rate equation to gain further insight into the mechanism applying the method of initial rates. ${ }^{24}$ In chemical kinetics, the rate of a reaction is proportional to the concentration of each reagent with specific exponents (Equation 1). Therefore, when all the components remain constant except one, it is possible to determine these values right in the beginning of the transformation.

$$
\begin{gathered}
A+B \rightarrow C \\
v_{0}=k \cdot[A]_{0}{ }^{a} \cdot[B]_{0}{ }^{b} \\
{[B]_{0}=\text { Constant }} \\
v_{0}=k^{\prime} \cdot[A]_{0}{ }^{a}
\end{gathered}
$$

Equation 1. Rate equation of a reaction.

Then, when the initial rates $\left(v_{0}\right)$ are determined, it is possible to calculate the order of the reagents by gradually modifying the initial concentration of the substrate ($[\mathrm{A}]_{0}$) and plotting the logarithm of the results (Equation 2).

$$
\ln \left(v_{0}\right)=\ln \left(k^{\prime}\right)+a \cdot \ln \left([A]_{0}\right)
$$

Equation 2. Determination of the order of the reagents.

The initial rates can be measured as the variation of the product concentration in time when the conversion is smaller than 10-15\% (Equation 3).

[^57]$$
v_{0}=\frac{d[C]}{d t} \text { where }[C] \sim 10-15 \%
$$

Equation 3. Determination of the initial rate.

Thus, we monitored the [2+2] cycloaddition between ethynylbenzene and α-methylstyrene using catalyst \mathbf{Q} under the optimized conditions in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy with dipheylmethane as internal standard (Scheme 15). Methods using IR, GC or HPLC led to less reliable results.

Scheme 15. Method of the initial rates.

To start, we used 0.50 mmol of alkene together with $7.2 \mu \mathrm{~mol}$ of catalyst in 0.56 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ varying the quantities of ethynylbenzene and we determined the formation of cyclobutene 1 with time (Figure 9). We could observe that the reaction was faster by increasing the initial amount of ethynylbenzene.

Figure 9. Variation of the alkyne.
Then, we performed the reaction with 0.25 mmol of alkyne and modifying the excess of α methylstyrene (Figure 10). Although it was assumed that the nucleophilic attack of the alkene towards the activated alkyne was the rate-determining step of the process, the effect of α-methylstyrene was almost non-existent.

Figure 10. Variation of the alkene.
Finally, we kept 0.25 mmol of ethynylbenzene and 0.50 mmol of α-methylstyrene in order to determine the effect of the catalyst loading (Figure 11). In this case, the differences in the formation of cyclobutene 1 were significant.

Figure 11. Variation of the catalyst.
With these results and according to the method described, we plotted the initial rates depending on the initial concentration of each substrate (Figure 12). We could observe first order for both ethynylbenzene and for catalyst \mathbf{Q}, whereas the reaction showed zero order dependence for α-methylstyrene. This result contradicted the initial proposal, which involved the alkene in the rate-determining step of the catalytic cycle.

Figure 12. Order of the reagents in the [2+2] cycloaddition.
Furthermore, to confirm these results, we performed a kinetic experiment studying the effect of the ratio alkene:alkyne under the optimized conditions (Scheme 16).

Scheme 16. Kinetic study depending on the stoichiometry.

Thus, the $[2+2]$ cycloaddition between ethynylbenzene and α-methylstyrene was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy using dipheylmethane as internal standard. The rate of cyclobutene 1 formation was compared with the ratio alkene:alkyne using 5:1, 2:1 and 5:2 as examples (Figure 13). We could observe that the rate between the two first experiments was almost the same but they showed a significant difference with the last one, therefore, the rate of the [2+2] cycloaddition did not depend on the concentration of α-methylstyrene.

Figure 13. Kinetic study depending on the stoichiometry.
Accordingly, further studies were necessary to resolve the formation of cyclobutene $\mathbf{1}$ as the kinetic experiments showed a more complicated scenario than the DFT calculations had provided (Scheme 13). ${ }^{4}$

5. Involvement of Digold Complexes

Crystallization of Intermediates

Analysis of the reaction mixture by ${ }^{31} \mathrm{P}$ NMR spectroscopy showed a digold scaffold analogous to 7, along with another new gold(I) complex. Crystallization of the reaction mixture with pentane led to $\left[\left({ }^{t} \mathrm{BuXPhosAu}\right)_{2} \mathrm{CCPh}\right] \mathrm{BAr}^{\mathrm{F}}$ (78) together with (π-alkene) gold(I) complex 79 (Figures 14 and 15, respectively).

Figure 14. X-Ray crystal structure of digold complex 78.

Figure 15. X-Ray
crystal structure of $(\pi-$ alkene)gold complex 79.

The main divergence between digold complex with $\mathrm{SbF}_{6}{ }^{-} 7$ (Figure 16, see Chapter 3 for further information) and structure $\mathbf{7 8}$ in the solid state was the radically different position of the counterions. Whereas $\mathrm{SbF}_{6}{ }^{-}$was located between both gold atoms bending slightly the cation entity, $\mathrm{BAr}^{\mathrm{F}}{ }_{4}^{-}$was located alongside the ethynylbenzene moiety in the same plane. Thus, the angle of the π-coordinated gold(I) atom, the alkyne and the counterion was 130.3° for $\mathrm{BAr}_{4}{ }_{4}^{-}$ and 77.3° for SbF_{6}^{-}leading to rather significantly distinct distances with the metal: $\mathrm{Au}-\mathrm{B}$ was $10.22 \AA$ while $\mathrm{Au}-\mathrm{Sb}$ was $8.23 \AA$. On the other hand, the angle with the σ-gold(I) atom was 210.0° for $\mathrm{BAr}_{4}{ }_{4}^{-}$and 60.6° for $\mathrm{SbF}_{6}{ }^{-}$leading even more different distances: $\mathrm{Au}-\mathrm{B}$ was $11.52 \AA$ and $\mathrm{Au}-\mathrm{Sb}, 7.34 \AA$.

Figure 16. X-Ray crystal structure of digold complex 7

To recapitulate, the digold complex as well as the (π-alkene) gold coordination were observed during the monitoring of the [2+2] cycloaddition when using $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$ ($\mathbf{7 8}$ and 79, respectively) but also with SbF_{6}^{-}(7 and $\mathbf{8 0}$, respectively) and BF_{4}^{-}($\mathbf{8 1}$ and 82, respectively).25 Nevertheless, the ratios changed dramatically with the counterion: $[80] /[7]$ $\left(\mathrm{SbF}_{6}{ }^{-}\right)$dropped to 30 from $[\mathbf{7 9}] /[\mathbf{7 8}]=115\left(\mathrm{BAr}_{4}{ }_{4}^{-}\right)$and finally to 4 for $[\mathbf{8 2}] /[\mathbf{8 1}]\left(\mathrm{BF}_{4}^{-}\right)$. Thus, the ratio between those species grew following a clear trend: $\mathrm{BAr}_{4}{ }_{4}^{-}>\mathrm{SbF}_{6}{ }^{-}>\mathrm{BF}_{4}{ }^{-}$, resulting in a larger reservoir of the cationic gold(I) species by increasing the bulkiness and the softness of the counterion (Figure 17).

$78\left(\mathbf{A}^{-}=\mathrm{BArF}_{4}^{-}\right)$
$7\left(\mathbf{A}^{-}=\mathrm{SbF}_{6}^{-}\right)$
$81\left(\mathbf{A}^{-}=\mathrm{BF}_{4}^{-}\right)$

$79\left(\mathrm{~A}^{-}=\mathrm{BAr}^{-}{ }^{-}\right)$
$80\left(\mathrm{~A}^{-}=\mathrm{SbF}_{6}{ }^{-}\right)$
$82\left(\mathrm{~A}^{-}=\mathrm{BF}_{4}{ }^{-}\right)$

Figure 17. Ratio of the gold species dependant on the counterion.
Moreover, we prepared independently alkynyl gold complex 8 in 99% isolated yield by reaction of the gold chloride with pre-formed lithium phenylacetylide in THF (Scheme 17).

Scheme 17. Synthesis of alkynyl gold complex 8.

Crystallization in pentane showed a neutral structure with Au-C $2.04 \AA$ (Figure 18).

Figure 18. X-Ray crystal structure of alkynyl gold complex 8.

[^58]Anion Effects in Gold-Catalyzed Intermolecular Cycloadditions

Low Temperature NMR Experiments

These results suggested that the concentration of the catalytically active species 6 changed with the counterion, which should be higher with more bulky anions as $\mathrm{BAr}^{\mathrm{F}}{ }_{4}^{-}$(83). In order to study the evolution between the different gold complexes $\mathbf{Q}, \mathbf{8 3}, 78$ and $\mathbf{8}$, we analysed the reaction between 10 equiv. of ethynylbenzene and catalyst \mathbf{Q} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (0.04 M) at $-78{ }^{\circ} \mathrm{C}$ by ${ }^{31} \mathrm{P}$ NMR spectroscopy (Scheme 18). ${ }^{8 \mathrm{~d}}$

Scheme 18. Study of gold complex 83.
At $-60^{\circ} \mathrm{C}$, complexes \mathbf{Q} and $\mathbf{8 3}$ could be detected but no digold complex $\mathbf{7 8}$ was observed (Figure 19). The temperature was increased slowly to $20^{\circ} \mathrm{C}$ while catalyst \mathbf{Q} was consumed. Digold complex 78 was not observed until $0^{\circ} \mathrm{C}$ and the catalytically active species 83 was clearly observed up to the same temperature. On the other hand, when using SbF_{6}-, we could observe complex 7 at $-60^{\circ} \mathrm{C}$, becoming the only species at $-20^{\circ} \mathrm{C}$ (Figure 20, see Chapter 3 for further information). ${ }^{5}$

Figure 19. ${ }^{31} \mathrm{P}$ NMR spectroscopy from - 60 to $25{ }^{\circ} \mathrm{C}\left(\mathrm{BAFr}^{\mathrm{F}}{ }_{4}\right)$: a) Reaction at 213 K ; b) Reaction at 233 K ; c) Reaction at 253 K ; d) Reaction at 273 K ; e) Reaction at 293 K.

Figure 20. ${ }^{31}$ P NMR spectroscopy from - 60 to $25{ }^{\circ} \mathrm{C}\left(\mathrm{SbF}_{6}^{-}\right)$: a) Pure E at 213 K ; b) Pure 7 at 213 K ; c) Reaction at 213 K ; d) Reaction at 213 K after 15 min ; e) Reaction at 233 K; f) Reaction at 253 K ; g) Reaction at 273 K ; h) Reaction at 298 K; i) Reaction at 298 K after 30 min.

Therefore, the deprotonation of terminal alkynes was more favoured when SbF_{6}^{-}was used as the counterion and digold structure 7 was the predominant species (Scheme 19). Otherwise, the life-time of the π-coordinated alkyne complex was longer with $\mathrm{BAr}^{\mathrm{F}}{ }_{4}^{-}(\mathbf{8 3})$.

Scheme 19. Gold species formed with ethynylbenzene ($L==^{t}$ BuXPhos).

DFT Calculations

Firstly, in order to gain further information of the nature of the (π-alkyne) gold complexes 6 and 83, we performed DOSY and ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}$ HOESY NMR spectroscopy experiments. ${ }^{14,15,16}$ However, all the attempts led to non-conclusive results because of the low resolution spectra obtained.

Afterwards, by means of DFT calculations (M06, 6-31G(d) (C, H, P, B, F) and SDD (Au, Sb) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), we studied these complexes to determine their steric and electronic features. We also calculated [${ }^{t} \mathrm{BuXPhosAu}\left(\eta^{2}\right.$-ethynylbenzene $\left.)\right] \mathrm{BF}_{4}$ (84) in order to determine a trend. First, we evidenced the steric congestion around the substrate hampering its deprotonation depending on the counterion. Later, we analysed the charge distribution by the electron density of the complexes mapped with ESP ($\rho=0.03 \mathrm{e}^{3}$) and the positive charge was widely distributed around the ligand instead of being concentrated in the metal centre for 83, 6 and 84 (Figures 21, 22 and 23, respectively).

Figure 21. ESP of (η^{2}-ethynylbenezene)gold complex 83 (δ^{+}in blue and δ^{-}in red).

Figure 22. ESP of complex 6 (δ^{+}in blue and δ^{-}in red).

Figure 23. ESP of complex 84 (δ^{+}in blue and δ^{-}in red).

We also checked the pattern between the bulkiness of the counterion and the acidity of ethynylbenzene by determining the Mulliken atomic charges. The electron density decreased with the anion size $\left(\mathrm{BF}_{4}^{-}<\mathrm{SbF}_{6}^{-}<\mathrm{BAr}_{4}{ }_{4}^{-}\right)$, although the differences were modest: $0.250(\mathbf{8 4}), 0.243(\mathbf{6})$ and $0.237(\mathbf{8 3})$. Therefore, we reasoned that the large cation formed a more stable (π-alkyne)complex with a softer counterion, for example, $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$.

Determination of the Equilibrium Constants

Therefore, we decided to determine the equilibrium constant between catalyst \mathbf{Q} and digold complex 78 using the Van't Hoff equation (Table 8). ${ }^{26}$ In the case of $\mathrm{SbF}_{6}{ }^{-}, \mathrm{K}_{\mathrm{eq}}$ $\left(50^{\circ} \mathrm{C}\right)=1.08 \cdot 10^{-7} \mathrm{M}$ and $\mathrm{K}_{\mathrm{eq}}\left(25^{\circ} \mathrm{C}\right)=4.44 \cdot 10^{-8} \mathrm{M}$ (see Chapter 3). ${ }^{5}$ Thus, we performed the reaction between gold complex \mathbf{Q} and $0.5,1,2,3.5$ or 5 equiv. of ethynylbenzene in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M})$ analysing the formation of 78 at $-10,5,20$ and $35{ }^{\circ} \mathrm{C}$ by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy. Then, we calculated the equilibrium constant at each temperature, and we used these data for the Van't Hoff equation by plotting the logarithm of K_{eq} with the inversed temperature and we checked that fit in a linear regression with $\mathrm{R}^{2}=0.987$ (Figure 24).

Table 8. Equilibrium constants between catalyst Q and digold complex 78 depending on the temperature with increasing equivalents of
ethynylbenzene. ${ }^{a}$

$$
\begin{aligned}
& \text { Q } \\
& +\mathrm{HSbF}_{6}+2 \mathrm{CH}_{3} \mathrm{CN}
\end{aligned}
$$

In that case, the equilibrium constant at $25^{\circ} \mathrm{C}$ towards the digold complex 78 was $2.44 \cdot 10^{-8}$ M . Therefore, we could observe that, although the difference is rather small, the deprotonation of the alkyne was more favoured with $\mathrm{SbF}_{6}{ }^{-}$than with $\mathrm{BAr}^{\mathrm{F}}{ }_{4}^{-}$, probably due to the lower stability of the bulkier conjugated acid. Moreover, we could calculate that the difference of enthalpy of the process was $13.4 \mathrm{kcal} / \mathrm{mol}$ and the entropy $10 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$. Indeed, the enthalpy of this reaction was higher than with $\mathrm{SbF}_{6}{ }^{-}(6.8 \mathrm{kcal} / \mathrm{mol})$ although the entropy was slightly larger ($-11 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$).

[^59]

Figure 24. Relationship between the equilibrium constant towards 78 and the temperature.

Furthermore, using the same methodology, we compared the tendency of the cationic gold complex to coordinate to α-methylstyrene by determining the equilibrium constant towards 79 and $\mathbf{8 0}$. Reaction between \mathbf{E} or \mathbf{Q} and $0.5,1,2,3.5$ or 5 equiv. of the alkene in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ $(0.5 \mathrm{M})$ were also examined at $-10,5,20$ and $35^{\circ} \mathrm{C}$ by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy (Scheme 20).

Scheme 20. Equilibrium between the cationic gold complex and the π-alkene coordination.

Accordingly, the equilibrium constant towards 79, or 80, was simpler (Equation 4). Considering that we could measure the ratio between complex 79 and catalyst \mathbf{Q} under the different conditions, we could also determine their concentrations in the equilibrium (Equation 5). Analogously, we determined them for $\mathbf{8 0}$ as well.

$$
\begin{gathered}
K_{\text {eq }}=\frac{[\mathbf{7 9}] \cdot\left[C H_{3} \mathrm{CN}\right]}{[\mathbf{Q}] \cdot[\alpha-\text { methylstyrene }]} \\
=\frac{[\mathbf{7 9}]^{2}}{\left([\mathbf{Q}]_{0}-[\mathbf{7 9}]\right) \cdot\left([\alpha-\text { methylstyrene }]_{0}-[\mathbf{7 9}]\right)}
\end{gathered}
$$

Equation 4. Equilibrium constant as a function of [79].

$$
\text { Integrals Ratio }=\frac{[79]}{[\mathbf{Q}]_{0}-[79]}
$$

Equation 5. Relationship between catalyst Q and alkene complex 79.

Thus, we calculated the equilibrium constants at each temperature for $\mathrm{BAr}_{{ }_{4}}{ }^{-}$and $\mathrm{SbF}_{6}{ }^{-}$ (Tables 9 and 10, respectively). Then, we plotted the Van't Hoff equation and checked that it fit in a linear regression with $\mathrm{R}^{2}=0.964$ for $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$ and $\mathrm{R}^{2}=0.927$ for $\mathrm{SbF}_{6}{ }^{-}$(Figures 25 and 26 , respectively).

Table 9. Equilibrium constants towards 79 depending on the temperature with increasing equivalents of α-methylstyrene. ${ }^{a, b}$

Equiv. $=$	$\mathbf{0 . 5}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 5}$	$\mathbf{5 . 0}$
$-\mathbf{1 0}{ }^{\mathbf{}} \mathbf{C}$	0.108	0.110	0.115	0.106	0.115
$\mathbf{5}^{\circ} \mathbf{C}$	0.105	0.109	0.102	0.101	0.101
$\mathbf{2 0}^{\mathbf{}} \mathbf{C}$	0.101	0.091	0.096	0.090	0.093
$\mathbf{3 5}^{\mathbf{}} \mathbf{C}$	0.098	0.080	0.085	0.080	0.071

${ }^{a}$ Scheme 20 with $\mathrm{A}^{-}=\mathrm{BAr}^{\mathrm{F}} 4^{-} \cdot{ }^{b}$ Equilibium constants (no units).
Table 10. Equilibrium constants towards 80 depending on the temperature with increasing equivalents of α-methylstyrene. ${ }^{a, b}$

Equiv. $=$	$\mathbf{0 . 5}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 5}$	$\mathbf{5 . 0}$
$-\mathbf{1 0}^{\circ} \mathbf{C}$	0.068	0.062	0.055	0.064	0.059
$\mathbf{5 ~}^{\circ} \mathbf{C}$	0.068	---	0.055	0.055	0.054
$\mathbf{2 0}^{\mathbf{}} \mathbf{C}$	0.058	0.044	0.055	0.053	0.047
$\mathbf{3 5}^{\mathbf{0}} \mathbf{C}$	0.049	0.029	0.033	0.054	0.045

${ }^{a}$ Scheme 20 with $\mathrm{A}^{-}=\mathrm{SbF}_{6} \cdot{ }^{-b}$ Equilibium constants (no units).
With these results we could determine the equilibrium constants at $25^{\circ} \mathrm{C}$: $\mathrm{K}_{\mathrm{eq}}\left(\mathrm{BAr}^{\mathrm{F}}{ }_{4}{ }^{-}\right)=$ 0.090 and $\mathrm{K}_{\mathrm{eq}}\left(\mathrm{SbF}_{6}{ }^{-}\right)=0.047$. In this case, we observed that the binding to α methylstyrene was stronger with bulky counterions, although the differences were small again. However, their comparison with respect to the formation of the digold complexes was remarkably distinct: the constants increased from 10^{-8} to 10^{-2}.

Figure 25. Relationship between the equilibrium constant towards 79 and the temperature.

Figure 26. Relationship between the equilibrium constant towards 80 and the temperature.

In this case, the equilibrium was an exothermic process and the difference rather minor: $\Delta \mathrm{H}=-1.4 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{BAr}^{\mathrm{F}}{ }_{4}{ }^{-}$and $\Delta \mathrm{H}=-1.0 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{SbF}_{6}{ }^{-}$. The entropy was -11 and $-8 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$, respectively .

Consequently, the initial proposal should be modified considering this pre-equilibrium described. According to the equilibrium constants, catalyst \mathbf{Q} ought to bind preferentially to α-methylstyrene forming 79 in the presence of ethynylbenzene decreasing the concentration of $\mathbf{8 3}$ and $\mathbf{7 8}$ (Scheme 21). The extent of this effect would depend on the nucleophilicity of the alkene as well as the ratio of reagents of the reaction, as observed.

Scheme 21. Equilibrium between gold species including π-alkene coordination ($L={ }^{t} \boldsymbol{B} \boldsymbol{u X P h o s}$).

The same scenario must be expected with $\mathrm{SbF}_{6}{ }^{-}$but the equilibrium between the corresponding gold species $(\mathbf{E}, \mathbf{8 0}, \mathbf{6}, \mathbf{8}$ and 7) would be more shifted towards the digold complex 7, which would explain the results observed during the kinetic study and the low temperature NMR experiments.

At this point, we decided to determine if complex 79 and $\mathbf{8 3}$ were also in direct equilibrium, which would clarify if the coordination of the alkene was inhibiting the [2+2] cycloaddition or storing cationic gold(I) reservoirs.

Test of the Catalytic Activity

We performed some additional experiments to exclude other mechanistic pathways. We started by reacting the isolated intermediates under stoichiometric conditions with α methlstyrene. Thus, gold complex $\mathbf{8}$ was submitted to the [2+2] cycloaddition with 2 equiv. of the alkene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ and no reaction was observed (Scheme 22). The same result was observed when the reaction was performed in the presence of $3 \mathrm{~mol} \%$ of catalyst Q.

Scheme 22. Stoichiometric experiments with gold complex 8.
The same tests were performed with digold complex 78 and no [2+2] cycloaddition was observed either (Scheme 23).

Scheme 23. Stoichiometric experiments with digold complex 78.
On the other hand, (π-alkene) gold complex 79 reacted with ethynylbenzene under the optimized conditions in the absence of catalytic \mathbf{Q} and afforded cyclobutene $\mathbf{1}$ in 72% isolated yield (Scheme 24).

Scheme 24. Stoichiometric experiment with gold complex 79 ($L={ }^{t}$ BuXPhos).

However, no cycloaddition was observed between 79 with alkynyl gold complex 8 (Scheme 25). These results demonstrated that (π-alkene)gold species 79 could exchange with ethynylbenzene to regenerate the reaction towards π-coordination of the alkyne (83).

Scheme 25. Ending of the reactivity of gold complex 79 ($L=^{t}$ BuXPhos).

Subsequently, we used complexes 8, 78 and 7 as catalysts for the [2+2] cycloaddition between ethynylbenzene with 2 equiv. α-methylstyrene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Table 11). These experiments proved that digold complex 7 was an unreactive resting state in the intermolecular gold-catalyzed $[2+2+2]$ cycloaddition between alkynes and oxoalkenes (see Chapter 3 for further information). In this case, complexes 8, 78 and 7 were very inefficient in the absence of any additive. Complex $\mathbf{8}$ was completely inactive (entry 1) and digold complexes 78 and 7 were very poor catalysts (entries 2 and 3). Nevertheless, the catalytic activity was restored upon addition of HSbF_{6}, which cleaved the $\mathrm{Au}-\mathrm{C}$ bond regenerating the equilibrium between the gold(I) species towards 6 . Thus, reaction between ethynylbenzene and α-methylstyrene with $\mathbf{8}$ or $\mathbf{7}$ and substoichiometric amounts of HSbF_{6} proceeded smoothly under the optimized conditions towards cyclobutene 1 in 75 and 79% isolated yield, respectively (entries 4 and 5).

Table 11. [2+2] Cycloaddition catalyzed by the isolated gold intermediates.

Entry	[Au]	X mol\%	Additive	Yield ${ }^{\text {a }}$
1	8	3	-	-
2	78	1.5	-	13\%
3	7	1.5	-	13\%
4	8	3	$\begin{gathered} \mathrm{HSbF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O} \\ (3 \mathrm{~mol} \%) \end{gathered}$	$75 \%{ }^{\text {b }}$
5	7	1.5	$\begin{gathered} \mathrm{HSbF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O} \\ (1.5 \mathrm{~mol} \%) \\ \hline \end{gathered}$	$79 \%{ }^{\text {b }}$

${ }^{a}$ Crude analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-diacetylbenzene as internal standard, yield referred to cyclobutene $\mathbf{1}$. ${ }^{b}$ Isolated yield.

On the other hand, when ${ }^{t} \mathrm{BuXPhosAuCl}$ reacted with $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}$ in the absence of a substrate, only one chloride abstraction occurred and digold complex $\mathbf{8 5}$ with a chloride bridge could be crystallized (Figure 27). ${ }^{27}$

[^60]

Figure 27. Formation of digold chloride bridge 85.
Finally, we attempted the gold-catalyzed reaction between α-methylstyrene and other nucleophilies in order to exclude the activation of the alkene as the key step of the process (Scheme 26). Thus, we used 0.5 equiv. allyltrimethylsilane, indole, 1,3,5trimethoxybenzene or 1,3-diphenylpropane-1,3-dione in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ but no reaction was observed in any case.

Scheme 26. Alkene activation towards nucleophilic attack.
These results suggested that the active gold species was $\left[{ }^{t} \operatorname{BuXPhosAu}\left(\eta^{2}\right.\right.$ ethynylbenzene) $\mathrm{BAr}_{4}{ }_{4}(83)$, which entered the catalytic cycle via nucleophilic attack of α methylstyrene to $\mathbf{8 6}$ followed by ring expansion (87) and demetallation (88). Thus, the coordinated product would enter into the equilibrium and 79 would be recovered after ligand exchange with α-methylstyrene releasing cyclobutene 1 (Scheme 27). Analogously, complexes $\mathbf{6}$ and $\mathbf{8 4}$ would be the active species when using $\mathrm{SbF}_{6}{ }^{-}$and $\mathrm{BF}_{4}{ }^{-}$, respectively.

Scheme 27. Complete proposal for the [2+2] cycloaddition ($L={ }^{t} \boldsymbol{B} \boldsymbol{B}$ XPhos).
Accordingly, the ligand exchange between complex 79 and ethynylbenzene to form the key intermediate $\mathbf{8 3}$ was the rate-determining step of the catalytic cycle. Therefore, the orders for the catalyst and the alkyne were close to 1 and we observed zero-dependence for α-methylstyrene. Thus, the coordination of the alkene would be more favoured (order 1) but exchange with the alkyne would be necessary to continue the catalytic cycle (order -1), which would formally be order 0 . Simultaneously, digold complex 78 would be competitively formed as a minor inactive byproduct via a side-pathway based on the deprotonation of the alkyne. Hence, this was an off-cycle intermediate decreasing the concentration of the active species.

6. Conclusions

During the mechanistic study of the gold-catalyzed intermolecular [2+2+2] cycloaddition of alkynes with oxoalkenes described in Chapter 3, the formation of unreactive digold species outside the main catalytic cycle was revealed. ${ }^{5}$ Thus, the activation of alkynes could competitively undergo deprotonation to form an alkynyl gold complex, which was detrimental for the efficiency of the transformation. Therefore, a new generation of gold(I) complexes bearing bulky, non-coordinating and less basic counterions, for example catalyst \mathbf{Q}, were designed in order to refine the selectivity in the intermolecular cycloadditions (Figure 28). ${ }^{28}$ Study of its efficiency showed improvements of the yields up to 36%. The reactivity was compared in the [2+2] cycloaddition between alkynes and alkenes, the macrocyclization of large enynes, the $[2+2+2]$ cycloaddition of alkynes and oxoalkenes, the synthesis of phenols as well as in intramolecular reactions.

Figure 28. New gold complex Q using $\mathrm{BAr}^{\mathrm{F}} \mathrm{i}_{4}$.
A detailed mechanistic study of the $[2+2]$ cycloaddition between ethynylbenzene and α methylstyrene using catalyst \mathbf{Q} revealed a complex pre-equilibrium between different gold species before the π-coordinated alkyne $\mathbf{8 3}$ entered the catalytic cycle (Scheme 28). Preferential coordination of the alkene (79) was observed under the reaction conditions. Determination of the equilibrium constants with \mathbf{Q}, contrasting it with digold 78 formation, showed that this was indeed more favoured. Nevertheless, we could prove this was not inhibiting the formation of cyclobutene $\mathbf{1}$ by performing tests of the catalytic activity with the isolated gold intermediates. This scenario was confirmed by studying the evolution of these species with low-temperature NMR experiments, monitoring of the reaction and55 determination the order of the reagents. Thus, the formation of cyclobutene $\mathbf{1}$ was first order dependant with ethynylbenzene and catalyst \mathbf{Q} but did not change with the concentration of α-methylstyrene concentration. These results suggested that the ligand exchange to form complex $\mathbf{8 3}$ was the rate-determining step of the transformation.

[^61]

Scheme 28. Gold species involved during the [2+2] cycloaddition.
In this context, we could observe a significant effect of the counterion in the preequilibrium between these gold species and therefore in the efficiency of the cyclobutene $\mathbf{1}$ synthesis. Thus, kinetic studies showed that the reaction rate as well as the final yield increased with more bulky and less basic counterions, such as $\mathrm{BAr}_{4}{ }_{4}{ }^{-}$. DFT calculations confirmed that large cations form more stable complexes with softer counterions.

UNIVERSITAT ROVIRA I VIRGILI
DISSECTING INTERMOLECULAR GOLD CATALYSIS: APPLICATION TO THE TOTAL SYNTHESIS OF RUMPHELLAONE A.
Carla Obradors Llobet
Dipòsit Legal: T 75-2015

UNIVERSITAT ROVIRA I VIRGILI

Chapter 5:

Towards the Total Synthesis of Rumphellaone A

1. Introduction

As explained in the General Introduction, the application of gold catalysis in the total synthesis of natural products with interesting biological properties has grown during the last decade together with the development of new catalysts and methodologies. ${ }^{1}$ Cycloisomerizations and cycloadditons attracted particular attention for the construction of polycyclic structures in an atom economy strategy and under mild conditions. As representative examples, (-)-englerin A, (-)-GSK1360707 and (+)-schisanwilsonene have been recently synthesized using gold catalysis in the key step of their total synthesis (Figure 1). In the first case, (-)-englerin A was isolated from Phylanthus engleri and showed selective inhibition of renal cancer cells growth. A gold-catalyzed [2+2+2] cyclization of an alkyne, an alkene and a ketone was used to build the main core of the natural product. ${ }^{2}$ (-)-GSK1360707 represents a particularly promising "triple-uptake inhibitor" of neurotransmitters related to symptoms of depression, since the more advanced medication strategy nowadays is to interfere them simultaneously. The construction of the fused cyclopropyl piperidine was achieved enantioselectively from a 1,6-enyne using a chiral phosphoramidite gold catalyst. ${ }^{3}$ Finally, (+)-schisanwilsonene was isolated from Schisandra wilsoniana used in the treatment of hepatitis. The scaffold was formed via a gold-catalyzed tandem cyclization of a 1,6-enyne followed by an acetate 1,5-migration and an intermolecular cyclopropanation. ${ }^{4}$

(-)-Englerin A (Renal cancer)

(-)-GSK1360707
(Depression)

(+)-Schisanwilsonene (Hepatitis)

Figure 1. Natural products synthesized via gold catalysis.
This time we focused our attention to the presence of a cyclobutane moiety in natural products, some of them with significant biological activity. The four-membered ring carbocycle can be found from pretty simple to more complex structures, for example, in $(-)$-biyouyanagin A, nervonin A and (+)-kelsoene (Figure 2). ${ }^{5}$

[^62]
(-)-Biyouyanagin A

Nervonin A

(+)-Kelsoene

Figure 2. Natural products containing a cyclobutane moiety.
However, the assembly of cyclobutanes and the related cyclobutenes is not synthetically straightforward. Traditionally, four-member rings have been obtained via [2+2] photocycloadditions of α, β-unsaturated ketones or esters to alkenes, alkynes or allenes. ${ }^{6}$ This transformation usually proceeds by photochemical reactions challenging the stereochemical control. A few examples have been reported in the synthesis of cyclobutenes using metal-catalysis, for example, with palladium or platinum. ${ }^{7}$

Our interest was centred in the caryophyllene-related sesquiterpenes, specifically rumphellaone A (Figure 3). ${ }^{8}$ These natural products were isolated by the group of Sung in 2010 from the gorgonian coral Rumphella antipathies. ${ }^{9}$ Rumphellaone A showed cytotoxicity towards CCRF-CEM (human T-cell acute lymphoblastic leukemia) tumor cells ($\mathrm{IC}_{50}=12.6 \mu \mathrm{~g} / \mathrm{mL}$).

Caryophyllene

Figure 3. Caryophyllene and related natural products.
So far, one total synthesis of rumphellaone A has been reported by Kuwahara in 2012 (Scheme 1). ${ }^{10}$ Their approach consisted in a stereospecific Stork epoxy nitrile cyclization. Hence, intermediate 7 was prepared from alcohol 1 by installing the nitrile group and performing a Horner-Wadsworth-Emmons reaction followed by an enantioselective Sharpless epoxidation. The Stork protocol employs a strong base to generate the delocalized anion that can undergo ring opening of the epoxide building simultaneously the three contiguous stereocenters of cyclobutane 9 . Subsequent carbon elongations led to

[^63]intermediate 15, which was hydrogenated followed by an acid-catalyzed lactonization to obtain the final product.

Reagents and conditions: a) TsCl, $\mathrm{NEt}_{3}, \mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, 18 h ; b) $\left.\mathrm{NaCN}, \mathrm{DMSO}, 50^{\circ} \mathrm{C}, 19 \mathrm{~h} ; \mathrm{c}\right) \mathrm{O}_{3}$, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then $\mathrm{Me}_{2} \mathrm{~S},-78^{\circ} \mathrm{C}$ to rt, overnight; d) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Et}, \mathrm{THF}, 40^{\circ} \mathrm{C}, 20$ $\mathrm{h}\left(51 \%\right.$ from 1); e) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, -78 to $-30^{\circ} \mathrm{C}, 4 \mathrm{~h}$; f) TBHP, $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}, \mathrm{~L}-(+)$-DIPT, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 17 \mathrm{~h}$ (64% from 5); g) TBSCl, imidazole, DMF, $0^{\circ} \mathrm{C}$ to rt, $1.5 \mathrm{~h}(96 \%)$; h) NaHMDS, PhMe, reflux, $2.5 \mathrm{~h}(90 \%)$; i) TMSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 45 \mathrm{~min}(80 \%) ;$ j) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C}$ to $\left.\mathrm{rt}, 25 \mathrm{~h}(85 \%) ; \mathrm{k}\right)$ $\mathrm{MeCOCH}_{2} \mathrm{PO}(\mathrm{OMe})_{2}, \mathrm{NaH}, \mathrm{DME}, \mathrm{rt}, 5$ days (84%); 1) TBAF, THF, rt, $1 \mathrm{~h}(84 \%)$; m) $\mathrm{SO}_{3} \cdot \mathrm{Py}, \mathrm{EtN}\left({ }^{(} \operatorname{Pr}\right)_{2}, \mathrm{DMSO}$, $\mathrm{rt}, 1 \mathrm{~h}(83 \%)$; n) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{THF}, 5{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}(71 \%)$; o) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{~h}(87 \%)$; p) CSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 15 \mathrm{~min}(73 \%)$.

Scheme 1. Total synthesis of Rumphellaone A.

This approach requires of sixteen steps (5% overall yield) involving several protectiondeprotection reactions. Therefore, we considered we could improve the synthetic route to rumphellaone A. Specifically, we reasoned that we could use an intermolecular goldcatalyzed $[2+2]$ cycloaddition of an alkyne and an alkene to build a cyclobutene moiety, which could be derivatized towards the main core of this natural product. Thus, reaction of ethynylbenzene and α-methylstyrene with [$\left.{ }^{t} \mathrm{BuXPhosAuNCMe}\right]^{2} \mathrm{SbF}_{6}$ (E) afforded cyclobutene 17 regioselectively via a distorted cyclopropyl gold carbene 18/18' (Scheme 2). ${ }^{11}$

[^64]

Scheme 2. Gold-catalyzed [2+2] cycloaddition of alkynes and alkenes.
Later, we also developed the gold-catalyzed [$2+2+2$] cycloaddition between alkynes and oxoalkenes where a carbonyl group opened an analogous cyclopropyl ring via an intramolecular nucleophilic attack (see Chapter 2). ${ }^{12}$ Considering the result observed for 6 -methylhept-5-en-2-one when studying the effect of the substitution pattern in the alkene, we envisioned we could use this particular example for the total synthesis of rumphellaone A (Scheme 3). Hence, when the terminal carbon is the more substituted one, oxonium cation 23 would be formed by the nucleophilic attack of the ketone. However, cyclobutene product 19 was more favoured by ring expansion of the cyclopropyl gold(I) carbene intermediate 22 towards 21. Moreover, a detailed mechanistic study of this transformation was performed and allowed its improvement by tunning the counterion of the catalyst (see Chapter 3 and 4).

Scheme 3. Reaction of ethynylbenzene and 6-methylhept-5-en-2-one.

[^65]
2. Objectives

Therefore, we designed a novel route to the natural product comprising a gold-catalyzed [2+2] cycloaddition of a suitable alkyne 24 and 6 -methylhept-5-en-2-one to first form cyclobutene 25 followed by a diastereoselective hydrogenation to trans-26 and, finally, derivatization of the R-group to the appropriate lactone (Scheme 4).

Scheme 4. Synthetic route to rumphellaone A.

3. Silyloxyalkynylfuran Approach

Retrosynthetic Analysis

First, we reasoned we could build a cyclobutene through a gold-catalyzed [2+2] cycloaddition between silyloxyalkynylfuran 27 and 6-methylhept-5-en-2-one (Scheme 5). The resulting intermediate 28 could undergo a vinylogous methylation and hydrogenation of $\mathbf{2 9}$ would lead to the natural product.

Scheme 5. Retrosynthetic analysis of rumphellaone A.

Beforehand, several challenges of the route could be already conceived. To start, the diastereoselective hydrogenation of cyclobutene 29 would require the attack through the sterically more hindered face of the four-membered ring. The same would occur in the methylation step of 28. Nevertheless, similar transformations have been reported with additions to aldehydes, α, β-unsaturated ketones, allylacetates, hydroxylamines or acetals in the presence of an organocatalyst, a Lewis acid or a fluoride source. ${ }^{13}$ Finally, the goldcatalyzed [2+2] cycloaddition between silyloxyalkynylfuran 27 and 6-methylhept-5-en-2one would require an exquisite selectivity towards the cyclobutene.

30

31

33

34

Figure 4. Possible by-products of the gold-catalyzed [2+2] cycloaddition.

[^66]Thus, there is the possibility that oxabicycle 30, tetrahydrofuran 31, trimer 32 and phenols 33/34, among others, are also formed (Figure 4). ${ }^{12,14}$

Synthesis of the Silyloxyalkynylfuran

We designed various pathways to synthesize the desired silyloxyalkynylfuran 27. We started using trimethylsilyloxyfuran and attempting a deprotonation followed by the trapping with an electrophile to form either the iodo- or the aldehyde derivative 35 (Scheme 6). ${ }^{15}$

Scheme 6. Reaction of trimethylsilyloxyfuran with a base and an electrophile.

Attempts of deprotonation with ${ }^{n} \mathrm{BuLi}$, LiHMDS or KHMDS and trapping with I_{2}, 1,2diiodoethane or DMF from $-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ in diethyl ether led only to decomposition of the starting furan. Similar results were observed when a proton sponge, to avoid protonation, or 18 -Crown ether, to stabilize the cation, were added. On the other hand, when $\mathrm{Et}_{3} \mathrm{~N}$ was used as a base, no reaction was observed. Decomposition was observed as well when I_{2} or NIS were used in the absence of a base. ${ }^{16}$ In the case of 1,2-diiodoethane, no reaction occurred.

Considering the instability of the silyloxy protecting group, ${ }^{17}$ we reasoned that we could perform the cleavage of the TMS group followed by trapping with DMF forming the aldehyde 36 in situ. ${ }^{18}$ The reaction was attempted in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried DMF in the presence of a fluoride source at room temperature. In particular, we screened $\mathrm{KF}, \mathrm{CsF}$, $\mathrm{AgF}, \mathrm{ZnF}_{2}$ and $\mathrm{KF} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ but all the reactions led to the protonated lactone (Scheme 7).

Scheme 7. Reaction of trimethylsilyloxyfuran with a fluorine source.

We continued with the synthesis of ethynylfuran, which could be further oxidized with LiHMDS/TBHP and enolized to build the desired silyloxyalkynylfuran. ${ }^{19}$ Treatment of 2acetylfuran with pyridine $/ \mathrm{PCl}_{3}$ at $110{ }^{\circ} \mathrm{C}$ under microwave irradiation to dehydrate the ketone led to complete polymerization after 30 seconds. ${ }^{20}$ Processing furan-2-carbaldehyde with the Bestman-Ohira reagent in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol to undergo an

[^67]homologation reaction resulted in the hydrolysis of the starting material. ${ }^{21}$ Eventually, treatment of furan with ${ }^{n} \mathrm{BuLi}$ and I_{2} afforded iodofuran in 65% isolated yield but the subsequent Negishi coupling reaction with ethynylmagnesium chloride, ZnBr_{2} and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}$ led to decomposition. ${ }^{22,23}$

We later tried to oxidize 2-(diethoxymethyl)furan to further hydrolyze the acetal and build a terminal alkyne from the corresponding aldehyde. ${ }^{24}$ Treatment with ${ }^{n} \mathrm{BuLi}$ and a mixture of BCl_{3} and $\mathrm{B}(\mathrm{OMe})_{3}$ would presumably generate the boronate intermediate 37 that could be oxidized in one pot to the corresponding lactone 38. However, only traces of the desired product were observed (Scheme 8).

Scheme 8. Oxidation of 2-(diethoxymethyl)furan.

Moreover, we examined the possibility of oxidizing furan-2-carboxylic acid to 5-hydroxyfuran- $2(5 \mathrm{H})$-one with air in the presence of rose Bengal with 450 nm light in CHCl_{3} (Scheme 9). ${ }^{25} \mathrm{We}$ reasoned it could further undergo alkynylation and relactonization to intermediate 39. ${ }^{26}$ However, furan-2-carboxylic acid was recovered unchanged.

Scheme 9. Oxidation of furan-2-carboxylic acid.
Finally, we decided to attempt the synthesis of silyloxyalkynylfuran 27 avoiding the involvement of the furan scaffold in the early steps. We reasoned that we could selectively obtain the monoalkyne from either maleic anhydride or dimethyl maleate using 1 equivalent of ethynylmagnesium bromide and quenching with diluted HCl . Then, this could be selectively reduced with NaBH_{4}, cyclized and enolized to obtain the key furan. However, a very complex mixture was observed when the reactions were performed either at $0,-50$ or $-78^{\circ} \mathrm{C} .{ }^{27}$

The same outcome was obtained when the reaction was attempted in the presence of LiCl , TMEDA, bis(methoxymethyl)ether or bis(2-dimethylaminoethyl)ether to stabilize the

[^68]Grignard reagent as well as when it was performed by slow addition. ${ }^{28}$ Still, if ethynyltrimethylsilane with ${ }^{n} \mathrm{BuLi}$ was used at $-60^{\circ} \mathrm{C}$, the ring-opening product 40 was obtained in 40% isolated yield (Scheme 10).

Scheme 10. Monoalkynylation of maleic anhydride.
Alternatively, the same carboxylic acid 40 could be synthesized using 1,2bis(trimethylsilyl)ethyne and AlCl_{3} in 25% isolated yield. ${ }^{29,30}$

2-Ethynyl-5-methylfuran as Model Substrate

In order to move forward, we synthesized 2-ethynyl-5-methylfuran as a model substrate and checked its reactivity towards the gold-catalyzed [2+2] cycloaddition with 6-methylhept-5-en-2-one. In this case, Negishi coupling from the iodo- derivative also failed to build the furan/alkyne $\mathrm{C}-\mathrm{C}$ bond (Scheme 11). ${ }^{22}$

Scheme 11. Synthesis of 2-ethynyl-5-methylfuran via Negishi coupling.
Therefore, we build the protected alkyne 41 via Sonogashira reaction in 35% isolated yield over three steps (Scheme 12). ${ }^{31}$ Although the deprotection led to decomposition when KOH was used, the desired alkynylfuran could be obtained with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol in 60% isolated yield. Unfortunately, the route was not productive when it was applied either to 2-methoxyfuran, 2-tert-butyldimethylsilyloxyfuran nor 2-triisopropylsilyloxyfuran. ${ }^{13 \mathrm{~g}}$

[^69]

Scheme 12. Synthesis via Sonogashira coupling.

First, we performed the reaction between the alkynylfuran and α-methystyrene using ${ }^{t} \mathrm{BuXPhosAuCl} / \mathrm{NaBAr}_{4}{ }_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$ for 24 h (Scheme 13). The desired cyclobutene $\mathbf{4 2}$ was obtained in 64% isolated yield.

Scheme 13. [2+2] Cycloaddition using α-methylstyrene.
Then, we started the optimization of the gold cycloaddition with 6-methylhept-5-en-2-one by screening several ligands and counterions in the metal centre and maintaining the rest of conditions as in the original protocol (Table 1). ${ }^{11}$

Traces of the cyclobutene 43 were observed when JohnPhosAuCl, ${ }^{\dagger} \mathrm{BuXPhosAuCl}$ or IPrAuCl (Figure 5) combined with $\mathrm{NaBAr}_{4}{ }_{4}$ were used as the catalytic system (entries 1,2 and 3). ${ }^{32}$ A complex mixture was obtained with $\mathrm{Ph}_{3} \mathrm{PAuCl}$ (entry 4) but no reaction was observed with AuCl , (THT) AuCl or the gold complex with 44 (entries 5, 6 and 7). Interestingly, complete conversion with traces of the desired product was obtained when complex with 44 was activated with AgSbF_{6} (entry 8). We also analyzed the reaction of ${ }^{t} \mathrm{BuXPhosAuCl}$ with $\mathrm{AgSbF}_{6}, \mathrm{AgBF}_{4}$ and AgNTf_{2}, which led to very complex mixtures (entries 9,10 and 11) and NaSbF_{6} did not show any reactivity (entry 12).

[^70]Table 1. Screening of catalysts for the [2+2] cycloaddition.

Entry	Ligand	Halide scavenger	Outcome ${ }^{\text {a }}$
1	JohnPhos	$\mathrm{NaBAr}^{\mathrm{F}} 4$	7\%
2	${ }^{t} \mathrm{BuXPhos}$	$\mathrm{NaBAr}{ }_{4}$	7\%
3	IPr	$\mathrm{NaBAr}{ }_{4}$	12\%
4	$\mathrm{Ph}_{3} \mathrm{P}$	$\mathrm{NaBAr}{ }_{4}$	Complex mixture
5	-	$\mathrm{NaBAr}{ }_{4}$	No reaction
6	THT	$\mathrm{NaBAr}{ }_{4}$	No reaction
7	44	NaBAr_{4}	No reaction
8	44	AgSbF_{6}	6\%
9	${ }^{t} \mathrm{BuXPhos}$	AgSbF_{6}	Complex mixture
10	${ }^{t}$ BuXPhos	AgBF_{4}	Complex mixture
11	${ }^{t}$ BuXPhos	AgNTf_{2}	4%
12	${ }^{t}$ BuXPhos	NaSbF_{6}	No reaction

${ }^{\text {a }}$ Crude analysed by ${ }^{1} \mathrm{H}$ NMR using 1,4-diacetylbenzene as internal standard, yields referred to cyclobutene 43.

JohnPhos

IPr

44

Figure 5. Ligands screened for the [2+2] cycloaddition.
We then tuned the stoichiometry, the concentration, the temperature and the reaction time (Table 2). Very low yields were observed at high concentrations (entries 1 to 4). No reaction was observed either at -20 or $0^{\circ} \mathrm{C}$ (entries 5 and 6). However, a slight increment in the yield to 43 was observed by increasing the temperature and/or performing the reaction under more diluted conditions when using an excess of the oxoalkene (entries 7, 8 and 9). Further equivalents of the oxoalkene or decreasing the concentration did not improve the results (entries 10 to 13). The cycloaddition could be optimized to 31% isolated yield within 2 h reaction at $80^{\circ} \mathrm{C}$ (entry 16).

We also analysed the effect of the concentration, temperature and reaction time when using an NHC ligand on gold (Table 3). In this case, the optimum concentration was also 0.2 M (entry 1) but no further improvement was observed with the increment of the temperature (entries 4 and 5).

Table 2. Optimization for the [2+2] cycloaddition.

Entry	X equiv.	Concentration (\mathbf{M})	Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Reaction time (h)	${\text { Outcome }{ }^{\boldsymbol{a}, \boldsymbol{b}}}$
1	2	1	25	12	Complex mixture
2	2	0.5	25	12	7%
3	1	0.5	25	12	5%
4	0.5	0.5	25	12	No reaction
5	2	0.5	0	12	No reaction
6	2	0.5	-20	12	No reaction
7	2	0.5	50	12	13%
8	2	0.2	25	12	14%
9	2	0.2	50	12	21%
10	10	0.2	50	12	$5 \%(80 \%)$
11	2	0.04	50	12	$10 \%(90 \%)$
12	10	0.04	50	12	$10 \%(65 \%)$
13	2	0.02	50	12	$9 \%(92 \%)$
14	2	0.2	80	6	21%
15	2	0.02	80	6	21%
16	2	0.2	80	2	$31 \%{ }^{c}$
17	2	0.2	100	2	13%

${ }^{b}$ Reaction conversion in brackets, 100% if not stated. ${ }^{c}$ Isolated yield.

Table 3. Optimization using IPrAuCl for the [2+2] cycloaddition.

		DCE (Concen T, tim		
Entry	Concentration (M)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Reaction time (h)	Yield ${ }^{\text {a }}$
1	0.20	50	12	21\%
2	0.04	50	12	16\%
3	0.02	50	12	8\%
4	0.20	80	2	14\%
5	0.20	100	2	13\%

Thereby, the best result in the synthesis of cyclobutene 43 was obtained with ${ }^{t}$ BuXPhosAuCl and $\mathrm{NaBAr}_{4}^{\mathrm{F}}(5 \mathrm{~mol} \%)$ in DCE $(0.2 \mathrm{M})$ at $80{ }^{\circ} \mathrm{C}$ for 2 h between 2-ethynyl-5-methylfuran and 6-methylhept-5-en-2-one (Scheme 14).

Scheme 14. Gold-catalyzed [2+2] cycloaddition of 2-ethynyl-5-methylfuran and 6-methylhept-5-en-2-one.

4. Oxidation Approach

Retrosynthetic Analysis

We considered an alternative approach based on the possibility of oxidizing an aromatic ring to a carboxylic acid. ${ }^{33} \mathrm{We}$ reasoned that we could perform the gold-catalyzed [2+2] cycloaddition between ethynylbenzene and 6-methylhept-5-en-2-one followed by a diastereoselective hydrogenation of the cyclobutene 19 to trans-45 (Scheme 15). Then, the phenyl moiety could be oxidized with RuO_{4}. In this manner, the carboxylic acid trans-46 could undergo a methylation reaction and a subsequent stereoselective allylation of the resulting ketone to 47 .

Scheme 15. Alternative retrosynthetic analysis of Rumphellaone A.
The feasibility of building a lactone from an homoallylic alcohol (47) was also a critical transformation in the design of our new synthetic route. ${ }^{34}$ Hence, we planned a reverse Wacker oxidation to afford hemiacetal 48 followed by silver oxidation to form the lactone moiety present in rumphellaone A (Scheme 16).

Scheme 16. Planned reverse Wacker oxidation.

Besides, we had to consider performing a gold-catalyzed [2+2] cycloaddition enantioselectively. Although several asymmetric gold catalysts have been developed recently using chiral ligands and/or counterions, these have been limited mainly to

[^71]intramolecular reactions. Otherwise, most of the gold-catalyzed transformations are stereospecific and enantioenriched products have been obtained via substrate-induced enantioselective reactions. ${ }^{35}$

Use of a Chiral Acetal

Since substrate-induced enantioselectivity has proved to be much more effective in gold catalysis, we reasoned we could attempt the $[2+2]$ cycloaddition introducing a chiral element either in the oxoalkene or the alkyne. We considered that the more promising approach was to use an asymmetric protecting group in the ketone moiety like in 49 to build enantioenrich cyclobutene 50 (Scheme 17). Therefore, we seek for diols bulky enough to form an acetal that could influence the stereoselectivity occurring in the alkene group.

Scheme 17. Substrate-controlled enantioselective [2+2] gold cycloaddition.

First, we imagined an acetal derived from BINOL derivatives such as 51, 52, 53 and $\mathbf{5 4}$ (Figure 6).

Figure 6. BINOL derivatives as protecting groups.
We calculated the optimized structures of the corresponding acetals with 6-methylhept-5-en-2-one using DFT analysis (M06, 6-31 $\mathrm{G}(\mathrm{d})(\mathrm{C}, \mathrm{H}, \mathrm{O})$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). In the case of the antracene-substituted BINOL 51, we could observe a distance between the chiral unit and the alkene of $3.48 \AA$ in the external position and $3.94 \AA$ for the internal one after the acetal formation (Figure 7).

[^72]

Figure 7. Chiral acetal with 51.
In the presence of triphenylsilyl groups (52) the distances were $3.37 \AA$ and $3.81 \AA$, which are reasonably similar (Figure 8). Conversely, for the trifluoromethyl groups (54), $3.95 \AA$ and $3.75 \AA$ so in this case the internal position would be more crowded.

Figure 8. Chiral acetals with 52 and 54.
Finally, in the case of isopropyl groups (53), the distances were $2.70 \AA$ and $2.75 \AA$. Both carbons are quite comparable and notably shorter than the rest of protecting groups (Figure 9).

Figure 9. Chiral acetal with 53.

We first synthesized acetal 55 using butane-1,4-diol. Reaction with p-toluensulfonic acid in toluene under reflux led to decomposition of 6-methylhept-5-en-2-one. ${ }^{36}$ Similar results were obtained with propane-1,3-diol or ethane-1,2-diol. However, acetal 55 was obtained in 65% isolated yield when treated with $\mathrm{NH}_{4} \mathrm{Cl}$ and hydroquinone in a Dean-Stark apparatus. Purification difficulties forced us to attempt the reaction employing a Lewis acid and triethyl orthoformate (Table 4). ${ }^{37}$ Then, acetal 55 was easily purified by distillation. CeCl_{3} and AuBr_{3} forged product 55 in modest yields (entries 1 and 2) whereas ZrCl_{4} only afforded traces of it (entry 3). The best results were obtained using FeCl_{3} (entry $4)$. No reaction was observed with CuSO_{4} (entry 6).

Table 4. Screening of Lewis acids for an alternative synthesis of 55 .

Entry	Lewis acid	Outcome $^{\boldsymbol{a}}$
1	CeCl_{3}	38%
2	AuBr_{3}	51%
3	ZrCl_{4}	8%
4	FeCl_{3}	$83 \%{ }^{b}$
5^{c}	FeCl_{3}	No reaction
6	CuSO_{4}	No reaction
Crude analysed by ${ }^{1} \mathrm{H}$ NMR using	1,4-diacetylbenzene as	
internal standard, yields referred to acetal		
55. ${ }^{\text {I }}$ Isolated yield.		

We performed the gold-catalyzed $[2+2]$ cycloaddition between ethynylbenzene and acetal 55 to construct cyclobutene 56 (Table 5). Keeping ${ }^{t}$ BuXPhos as the ligand for gold and DCE as solvent, we screened the reaction conditions. Interestingly, the cationic catalyst was required in this case as the generation in situ of the active species with the corresponding gold chloride and $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}$ was partially cleaving the acetal in $\mathbf{5 5}$ and $\mathbf{5 6}$.

Very low yields to the desired product were observed when the reaction was performed at $50{ }^{\circ} \mathrm{C}$ (entries 1 to 4). Gradual increment of the stoichiometry at $25^{\circ} \mathrm{C}$ showed higher yields with an excess of the alkyne and $\mathrm{BAr}^{\mathrm{F}}{ }_{4}{ }^{-}$as the counterion (entries 5 to 8). Parallel experiments at $0{ }^{\circ} \mathrm{C}$ led to lower yields and conversions (entries 9, 10 and 11). However, longer reaction times with larger amounts of ethynylbenzene slowly improved the result (entries 12, 13 and 14).

[^73]Table 5. Optimization of the [2+2] cycloaddition using acetal 55.

		$\int_{\mathrm{Me}}^{\mathrm{Me}^{+} \mathrm{Ph}-\mathrm{Xeq}}$	$=\frac{[\text { 'BuXPhosAuNC }}{=} \begin{gathered} 5 \mathrm{~mol} \% \\ \text { Liv. } \end{gathered}$		 56
Entry	A^{-}	X equiv.	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Reaction time (h)	Yield ${ }^{\text {a,b }}$
1	$\mathrm{SbF}_{6}{ }^{-}$	5.0	50	20	12\%
2	$\mathrm{BAr}_{\mathrm{F}}{ }^{-}$	5.0	50	20	16\%
3	$\mathrm{SbF}_{6}{ }^{-}$	0.5	50	20	7\%
4	$\mathrm{BAr}_{\mathrm{F}}{ }^{-}$	0.5	50	20	12\%
5	$\mathrm{BAr}_{\mathrm{F}}{ }^{-}$	0.5	25	5	22\%
6	$\mathrm{BAr}_{\mathrm{F}}{ }^{-}$	1.0	25	5	21\% (89\%)
7	$\mathrm{BAr}_{\mathrm{F}}{ }^{-}$	2.0	25	5	33\% (73\%)
8	$\mathrm{SbF}_{6}{ }^{-}$	2.0	25	5	16\% (74\%)
9	$\mathrm{BAr}_{\mathrm{F}}{ }^{-}$	0.5	0	5	10\% (55\%)
10	$\mathrm{BAr}_{\mathrm{F}}{ }^{-}$	1.0	0	5	10\% (74\%)
11	$\mathrm{BAr}_{\mathrm{F}}{ }^{-}$	2.0	0	5	13\% (38\%)
12	$\mathrm{SbF}_{6}{ }^{-}$	2.0	0	48	30\% (70\%)
13	$\mathrm{SbF}_{6}{ }^{-}$	5.0	0	48	29\% (78\%)
14	$\mathrm{SbF}_{6}{ }^{-}$	10	0	48	31\% (69\%)
15	$\mathrm{BAr}_{\mathrm{F}}{ }^{-}$	2.0	0	48	42\% (74\%)
16	$\mathrm{BAr}_{\mathrm{F}}{ }^{-}$	5.0	0	48	45\% (86\%)
17	$\mathrm{BAr}_{\mathrm{F}}{ }^{-}$	10	0	48	50\% ${ }^{\text {c }}$ (89\%)
18	$\mathrm{BAr}_{\mathrm{F}}{ }^{-}$	10	-20	20	21\% (41\%)

Therefore, the most efficient result was obtained when 10 equiv. of ethynylbenzene and $\left[{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{Q})$ were added at $0{ }^{\circ} \mathrm{C}$ for 48 h in which cyclobutene $\mathbf{5 6}$ was obtained in 50% isolated yield (Scheme 18). Further decrease of the temperature to $-20^{\circ} \mathrm{C}$ did not improve the result (entry 18).

Scheme 18. Gold-catalyzed [2+2] cycloaddition of ethynylbenzene and acetal 55.
We attempted the formation of a chiral acetal such as 57 from 6-methylhept-5-en-2-one and BINOL to build the corresponding cyclobutene 58 with ethynylbenzene and [${ }^{t}$ BuXPhosAuNCMe] $\mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{Q})$ under the optimized conditions (Scheme 19).

Scheme 19. Synthesis of acetal 57 and substrate - controlled
enantioselective $[2+2]$ cycloaddition.
Nevertheless, acetal 57 could not be prepared using the methodologies applied for the standard acetal 55. Other Lewis acids such as InCl_{3} or $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were also tested but unreacted BINOL was recovered. ${ }^{38}$ Finally, the reaction was attempted with $\mathrm{P}_{2} \mathrm{O}_{5}$ in toluene at $75^{\circ} \mathrm{C}$ but complete decoposition of the oxoalkene was obtained. ${ }^{39}$

Due to the failure in forming a chiral acetal, a substrate - controlled gold-catalyzed asymmetric [2+2] cycloaddition to build an enantioenrich cyclobutene was dismissed.

Enantioselective Gold-Catalyzed [2+2] Cycloaddition

Consequently, we essayed several chiral gold complexes in the [2+2] cycloaddition of ethynylbenzene and 6-methylhept-5-en-2-one. We started by testing complex \mathbf{V} and tuning the counterion, the stoichiometry and the temperature of the reaction (Scheme 20). ${ }^{40}$

Scheme 20. [2+2] Cycloaddition using V.
A complex mixture was obtained at $50{ }^{\circ} \mathrm{C}$ with 4 equiv. of ethynylbenzene either using $\mathrm{SbF}_{6}{ }^{-}$or $\mathrm{BAr}^{\mathrm{F}} 4^{-}$. The same outcome was observed at lower temperature $\left(25^{\circ} \mathrm{C}\right)$ or when switching the stoichiometry. With the protected oxoalkene 55, we obtained the same result altough at $0^{\circ} \mathrm{C}$ only cleavage of the acetal was observed.

We attempted the reaction with another ferrocene-based gold catalyst (\mathbf{W}) with $\mathrm{BAr}^{\mathrm{F}}{ }_{4}^{-}$and at $25{ }^{\circ} \mathrm{C}$ (Scheme 21). ${ }^{41}$ Under these conditions we observed the formation of enantioenriched cyclobutene 19 in 13% yield (57% conversion) and 33% ee. This result is

[^74]still rather poor but it is one of the few examples of inducing enantioselectivity in an intermolecular cycloaddition to an alkyne.

Scheme 21. [2+2] Cycloaddition using W.
Performing the reaction in the same conditions using complex \mathbf{X} led to no reaction, even when heating at $50{ }^{\circ} \mathrm{C}$ (Figure 10). ${ }^{42} \mathrm{As}$ observed before, $\mathrm{NaBAr}_{4}{ }_{4}$ is not always productive in the chloride abstraction of a phosphite gold complex.

Figure 10. Complex X.
Simultaneously, it was determined by NMR experiments that triflimide could be a useful counterion for gold cycloadditions at low temperatures. ${ }^{43}$ Thus, ligand exchange with ethynylbenzene was observed from $-78{ }^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ when the corresponding digold scaffold started to abound significantly. Therefore, multiple attempts were essayed using AgNTf_{2} as the halide scavenger (Scheme 22).

Scheme 22. Screening of ligands with NTf $_{2}$.
This time we focused in bidentate phosphines and a phosphoramidite as they have been more commonly and successfully used in enantioselective gold catalysis. ${ }^{44}$ We started our screening using gold complexes $\mathbf{Y}, \mathbf{Z}, \mathbf{L L}$ and $\mathbf{S S}$ (Figure 11).

[^75]

Figure 11. Other chiral gold complexes.
No cyclobutene 19 was observed when the reactions were performed at 0,25 or $50{ }^{\circ} \mathrm{C}$ using 1:4 or 4:1stoichiometries. Interestingly, we detected the formation of a new product that we identified as tetrahydropyran $\mathbf{5 9}$, analogous to the tetrahydrofurans isolated during the formation of oxabicycles (see Chapter 2). ${ }^{12}$ Thus, byproduct 59 was obtained in 38% isolated yield when the cycloaddition of ethynylbenzene and an excess of 6-methylhept-5-en-2-one was performed with complex \mathbf{Z} and triflimide at $25^{\circ} \mathrm{C}$ (Scheme 23).

Scheme 23. Formation of by-product 59.
Therefore, we decided to continue the screening for the formation of the enantioenriched cyclobutene 19 using $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$ as the counterion (Table 6). ${ }^{32}$

Table 6. Screening of ligands with BAr $_{F}{ }^{-}$.

Entry	$[\mathbf{A u}]$	X equiv.	Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Outcome $^{\boldsymbol{a}, \boldsymbol{b}}$	$\boldsymbol{e e}^{\boldsymbol{c}}$
1	\mathbf{Y}	4	50	$61 \%{ }^{\boldsymbol{c}}(69 \%)$	30%
2	\mathbf{Z}	4	50	No reaction	Not determined
3	$\mathbf{L L}$	4	50	$6 \%(74 \%)$	Not determined
4	$\mathbf{S S}$	4	50	$7 \%(68 \%)$	Not determined
5	$\mathbf{L L}$	4	25	Complex mixture	Not determined
6	$\mathbf{S S}$	4	25	Complex mixture	Not determined
7	$\mathbf{S S}$	4	0	No reaction	Not determined
8	$\mathbf{L L}$	0.25	25	No reaction	Not determined
9	$\mathbf{L L}$	0.25	0	No reaction	Not determined

[^76]We could observe the clean formation of the desired product $\mathbf{1 9}$ when complex \mathbf{Y} was used at $50^{\circ} \mathrm{C}$ (entry 1). No product was observed for \mathbf{Z} (entry 2) and only traces for $\mathbf{L L}$ and $\mathbf{S S}$. No improvements were observed for $\mathbf{Z}, \mathbf{L} \mathbf{L}$ or $\mathbf{S S}$ at lower temperatures or when switching the stoichiometry (entries 7 to 11).

Chiral HPLC determined that the cyclobutene 19 obtained with catalyst \mathbf{Y} had 30% ee at $50^{\circ} \mathrm{C}$ (Scheme 24).

Scheme 24. Enantioselective [2+2] cycloaddition.
With these results result, we envisioned the study related BIPHEP bis-phosphine scaffolds tuning the backbond of the complex as well as the substituents of the phosphine: Y2, Y3, Y4 and Y5 (Figure 12).

Figure 12. BIPHEP gold complexes related to Y.
Simultaneously, the effect of the reaction conditions is also on-going work. ${ }^{45}$ Although the results are still modest, we proved that an intermolecular, enantioselective [2+2] cycloaddition between an alkyne and an alkene is certainly feasible.

Synthesis of the Racemic Rumphellaone A

Concurrently, we continued towards the total synthesis of rumphellaone A working on the racemic version.

- Gold-Catalyzed [2+2] Cycloaddition

As mentioned before, cyclobutene 19 could be obtained in 54% isolated yield using 6-methylhept-5-en-2-one and 3.5 equiv. of ethynylbenzene with $5 \mathrm{~mol} \%$ of [${ }^{t}$ BuXPhosAuNCMe] $\operatorname{SbF}_{6}(\mathbf{E})$ in $\operatorname{DCE}(0.5 \mathrm{M})$ at $50{ }^{\circ} \mathrm{C}$ for 19 h (Scheme 3). ${ }^{12}$ The

[^77]reaction yield could be improved to 78% when [${ }^{t}$ BuXPhosAuNCMe] $\mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{Q})$ was used (Scheme 25). ${ }^{32}$ In this case, just 18% of the corresponding oxabicycle (20) was observed.

Scheme 25. Optimized synthesis of cyclobutene 19.
In order to explore the effect of the aromatic ring's substituents in the oxidation to carboxylic acid 46, we also synthesized cyclobutenes $\mathbf{6 0}, 61$ and 62 using 3-ethynylphenol, 1-ethynyl-3-methoxybenzene and 1-ethynyl-3-methylbenzene under the optimized conditions in 40,65 and 44% isolated yields, respectively (Figure 13). Although the yields were lower than with ethynylbenzene, they could be useful substrates in the oxidation step.

Figure 13. Alternative precursors of rumphellaone A.

- Hydrogenation of the Cyclobutene.

First, we reduced the alkene moiety of 19 using $10 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{C}$ in methanol at $25{ }^{\circ} \mathrm{C}$ stirring for 5 h under 1 atm of H_{2} to obtain the cyclobutane moiety (45) in 90% isolated yield (Scheme 26). ${ }^{46}$ However, this conditions led to a $1.6: 1$ mixture of diastereoisomers.

Scheme 26. Hydrogenation of 19 with Pd/C and H_{2}.
As suspected, the steric factors were not significant enough to undergo a diastereoselective hydrogenation. Hence, we reasoned we could use the carbonyl moiety as a directing group. We attempted the hydrogenation using Crabtree's catalyst, $\left[\operatorname{Ir}(\operatorname{cod}) \mathrm{PCy}_{3}(\mathrm{py})\right] \mathrm{PF}_{6}$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 27). ${ }^{47,48}$ Although there are examples of free alcohols, ketones, ethers and

[^78]esters behaving as directing groups up to four carbons distance by coordination to the metal, which slightly resembles our case, no reaction was observed.

Scheme 27. Directing effect using Crabtree's catalyst.
The most promising alternatives relied on radical-based protocols as the thermodynamic product would be formed. However, these methodologies are rarely applied in styrenes. Very recently, a new procedure to reduce inactivated alkenes with thermodynamic stereocontrol was reported using a manganese complex with phenylsilane and TBHP in isopropanol. ${ }^{49}$ Presumably, a metal-hydride is formed and undergoes a hydrogen atom transfer reaction to the alkene. Therefore, a carbon centred radical is formed and builds the more stable product when is finally reduced. We tested this reaction with cyclobutene $\mathbf{1 9}$ but only polymerization was observed (Scheme 28). Further attempts based on decreasing the concentration, increment of the equivalents of the silane or TBHP (decane) or use of THF as co-solvent led to the same result.

Scheme 28. Alkene reduction with thermodynamic stereocontrol.
Later, we applied the Birch reduction conditions as there are a few examples reported on the selective reduction of styrene's double bond. ${ }^{50,51}$ After screening, the best results were obtained when cyclobutene 64, synthesized analogously to 56 but with the six-membered ring acetal 63, was treated with sodium metal in liquid ammonia at $-78^{\circ} \mathrm{C}$ for 30 min to obtain cyclobutane $\mathbf{6 5}$ in 40% yield with a 1:5 diastereoselectivity (Scheme 29). In spite of the improvement, the yield was still low.

[^79]

Scheme 29. Birch reduction of styrenes.

An alternative protocol consisted in adding magnesium turnings to cyclobutene $\mathbf{1 9}$ in methanol (Scheme 30). ${ }^{52}$ However, no 45 was obtained as the double bond was recovered intact but partial reduction of the ketone to the secondary alcohol was observed.

Scheme 30. Reduction with $\mathrm{Mg} / \mathrm{MeOH}$.

On the other hand, when potassium metal in dimethylamine was used, no reaction was occurred (Scheme 31).

Scheme 31. Reduction with $\mathrm{K} / \mathrm{Me}_{2} \mathrm{NH}$.
Finally, reaction with $\mathrm{Li} /$ naphthalene in the presence of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in THF at $25^{\circ} \mathrm{C}$ did not lead to the desired product (Scheme 32). ${ }^{53}$ Using DTBB as initiator led to no reaction as well as anhydrous NiCl_{2} under H_{2} atmosphere.

Scheme 32. Reduction with Li/naphthalene and $\mathrm{NiCl}_{2} \cdot \mathbf{6 H} \mathrm{H}_{2} \mathrm{O}$.

[^80]Regarding the challenge of the stereoselectivity, we reasoned that we could attempt the isomerization towards the trans-cyclobutane in a late stage of the total synthesis. After the oxidation of the phenyl ring and esterification, we could use a base to deprotonate the α position of the ester 66. The desired diastereoisomer would be obtained under thermodynamic conditions (Scheme 33).

Scheme 33. Possible late stage isomerization.
Furthermore, we optimized both the cis- and the trans-cyclobutane by means of DFT calculations ($\mathrm{M} 06,6-31 \mathrm{G}(\mathrm{d})(\mathrm{C}, \mathrm{H}, \mathrm{O})$, in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Our calculations indicated that trans66 is $2.8 \mathrm{kcal} / \mathrm{mol}$ more stable than cis-66 (Figure 14).

$0.0 \mathrm{kcal} / \mathrm{mol}$

$2.8 \mathrm{kcal} / \mathrm{mol}$

Figure 14. Diastereoisomers of ester 66.
We also submitted cyclobutenes $\mathbf{6 0}, 61$ and $\mathbf{6 2}$ to the hydrogenation conditions with catalytic Pd/C in methanol (Figure 15). Cyclobutanes 67, 68 and 69 were obtained in 86, 53 and 84% respectively.

86\%

54\%

84\%

Figure 15. Synthesis of alternative cyclobutanes 67, 68 and 69.

- Phenyl Oxidation Followed by Esterification

Acconding to the literature, the oxidation of aryl rings is commonly carried out using catalytic RuCl_{3} with an excess of $\mathrm{NaIO}_{4} \cdot{ }^{54,55}$ The transformation to carboxylic acids proceeds through the generation of RuO_{4} in situ, which oxidizes any unsaturated $\mathrm{C}-\mathrm{C}$ bond. We first performed the reaction with cyclobutane 45 using $3 \mathrm{~mol} \%$ catalyst testing different solvent mixtures (Table 7). Only traces of the carboxylic acid 46 were observed when 15 equiv. of NaIO_{4} were used in a mixture of $\mathrm{CCl}_{4}: \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(2: 2: 3)$ for 4 h (entry 2). No reaction was observed with $\mathrm{H}_{5} \mathrm{IO}_{6}$ (entry 3) and very low reactivity was also obtained if NaIO_{4} was combined with NaHCO_{3} (entry 4).

Table 7. Screening for the phenyl oxidation using $\mathrm{RuCl}_{3} / \mathrm{NaIO}_{4}$.

		$\text { Me } \xrightarrow[\substack{\text { Solvents }(0.1 \mathrm{M}), \\ \text { rt, time }}]{\begin{array}{c} 3 \mathrm{~mol} \% \mathrm{RuCl}_{3} \\ \text { X equiv. } \mathrm{NaO}_{4} \end{array}}$		
Entry	X equiv.	Solvents	Reaction time (h)	Outcome ${ }^{\text {a }}$
1	5	$\begin{gathered} \mathrm{CCl}_{4}: \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \\ (2: 2: 3) \end{gathered}$	4	No reaction
2	15	$\begin{gathered} \mathrm{CCl}_{4}: \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \\ (2: 2: 3) \end{gathered}$	4	Traces
3^{b}	15	$\begin{gathered} \mathrm{CCl}_{4}: \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \\ (2: 2: 3) \end{gathered}$	4	No reaction
4^{c}	5	$\begin{gathered} \text { EtOAc: } \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \\ (1: 1: 8) \\ \hline \end{gathered}$	144	Traces

${ }^{a}$ Crude analysed by ${ }^{1} \mathrm{H}$ NMR using 1,4-diacetylbenzene as internal standard, yields referred to carboxylic acid 46. ${ }^{b} \mathrm{H}_{5} \mathrm{IO}_{6}$ used as the oxidant. ${ }^{c} 1.2$ equiv. of NaHCO_{3} added.

On the other hand, we changed the protocol to $10 \mathrm{~mol} \% \mathrm{RuO}_{2}$ with an excess of NaIO_{4} in EtOAc: $\mathrm{H}_{2} \mathrm{O}$ (1:3) under highly diluted conditions. ${ }^{56}$ The transformation was performed from 4 to $25^{\circ} \mathrm{C}$ for 24 h to afford the carboxylic acid 46 in 80% isolated yield (Scheme 34).

Scheme 34. Phenyl oxidation using $\mathrm{RuO}_{2} / \mathrm{NaIO}_{4}$.
Moreover, carboxylic acid 46 could be obtained from cyclobutane 67 in 83% isolated yield, 68 in 90% and 69 in 92%.

[^81]Afterwards, the esterification of $\mathbf{4 6}$ with TMS-diazomethane in a mixture of toluene and methanol at $0{ }^{\circ} \mathrm{C}$ afforded the methyl ester 66 in 91% isolated yield (Scheme 35). ${ }^{57}$

Scheme 35. Esterification of carboxylic acid 46.

- Protection via Acetalization

We first attempted the protection of the ketone functionality in 66 with propane-1,3-diol under the optimized conditions used to synthesize acetal 55. ${ }^{37 \mathrm{~b}}$ We submitted the substrates to catalytic FeCl_{3} and an excess of triethyl orthoformate in order to form a six-membered ring as in acetal 70 (Scheme 36).

Scheme 36. Acetalization of ester 66.
Surprisingly, no reaction was observed under these circumstances. We performed the acetalization of ester 66 using 2 equiv. of TMS-protected ethylene glycol and catalytic TMSOTf in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ (Scheme 37). ${ }^{58}$ In this manner, acetal 71 was obtained quantitavely. Due to decomposition on silica gel, we optimized the purification by quenching the crude reaction mixture with pyridine and washing sequentially with saturated $\mathrm{NaHCO}_{3}, \mathrm{CuSO}_{4} 1 \%$ and water. ${ }^{59}$ However, when the reaction was tested at larger scale, removal of the unreacted TMS-protected ethylene glycol was difficult. Consequently, cleavage of the silyl groups with TBAF was necessary, which was slightly detrimental for the final yield

Scheme 37. Alternative acetalization of ester 66.

[^82]
- Isomerization to the Thermodynamic Cyclobutane

We started testing the isomerization using ester 66 with 1 equivalent of sodium methoxide in a mixture of THF:methanol (1:1) at $45{ }^{\circ} \mathrm{C}$ for 48 h , which led to a complex mixture (Scheme 38). ${ }^{56}$

Scheme 38. Isomerization of ester 66.
On the other hand, applying the same conditions on protected ester $\mathbf{7 1}$ led to isomerization when modifying gradually the temperature and the reaction time (Table 8).

Table 8. Screening of the temperature and the reaction time for the isomerization of the protected ester 71.

Entry	Experiment	Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Reaction time (h)	Ratio $^{\boldsymbol{a}}$
1	1	45	1	$53: 47$
2	1	45	12	$61: 39$
3	1	25	8	$61: 39$
4	1	65	1	$63: 37$
5	1	65	12	$77: 23$
6	2	70	2	$63: 37$
7	2	70	12	$91: 9$
8	3	70	20	$97: 3$

${ }^{a}$ Reaction monitored by GC-MS.
Almost no change was observed after 1 h at $45^{\circ} \mathrm{C}$ but it varied to $61: 39$ after 12 h (entries 1 and 2). Interestingly, if the reaction mixture was stirred for 8 h more at $25^{\circ} \mathrm{C}$, this result was maintained (entry 3). When the temperature was further increased to $65^{\circ} \mathrm{C}$, the ratio was $63: 37$ after 1 h and 77:23 after 12 h (entries 4 and 5). On the other hand, if the reaction was settled at $70^{\circ} \mathrm{C}$, we could observe a mixture $63: 37$ after $2 \mathrm{~h}, 91: 9$ after 12 h and 97:3 after 20 h (entries 6, 7 and 8). Quenching with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$ followed with extraction with ethyl acetate afforded the pure product in 77% isolated yield. NOESY experiments confirmed that the isomer obtained is the protected ester trans-71 (Figure 16: protons of the cyclobutane junction labeled with a circle and a star).

Figure 16. NOESY experiment of trans-71.
Thus, no interaction was observed between the hydrogens in the cyclobutane ring. Otherwise, when we analyzed the $1: 1$ cis:trans mixture of the protected ester 71, we could identify cis-71 with the cross-peak between the hydrogens in the cyclobutane ring (Figure 17: protons of the cyclobutane junction labeled with a triangle and a square).

Figure 17. NOESY experiment of both diastereoisomers of 71.

- Weinreb Amide and Methylation.

In order to form the methyl ketone from ester trans-71, we decided to generate the corresponding Weinreb amide, which could later undergo nucleophilic attack with methyl magnesium bromide. Thus, we treated it with N, O-dimethylhydroxylamine hydrochloride and isopropyl magnesium chloride in THF at $0^{\circ} \mathrm{C}$ (Scheme 39). ${ }^{60}$

[^83]

Scheme 39. Formation of the Weinreb amide trans-72.
The desired product trans-72 was obtained in 81% yield as a single diastereoisomer. The methylation reaction was performed immediately with no further putification. Specifically, the Weinreb amide was dissolved in THF and treated with methyl magnesium bromide from $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ for 1.5 h to give methyl ketone trans- 73 as a single diastereoisomer in 65% isolated yield (Scheme 40). ${ }^{61}$

Scheme 40. Methylation of the Weinreb amide trans-73.

[^84]
5. Outline

Final Steps Towards Rumphellaone \mathbf{A}^{62}

- Stereoselective Allylation Reaction

First, we considered the possibility to perform a diastereoselective allylation of trans-73. ${ }^{63}$ As an example, an allyl boronate could undergo transmetallation to finally promote a nucleophilic attack to the ketone moiety via a Zimmerman-Traxler transition state (74) and build trans-75 (Scheme 41). ${ }^{64}$

Scheme 41. Diastereoselective allylation of trans-73.
Due to the small steric difference between both faces of the cyclobutane, we also analyzed the feasibility of using a chiral reagent to perform the stereoselcetive allylation. However, we should take into consideration a match-mismatch situation with the asymmetric substrate during the process.

Although many efforts have been centered in developing enantioselective methodologies to add an allyl group to a wide variety of aldehydes, the examples on ketones are still rare. Several protocols using zinc, silver, iridium, nickel and titanium have been reported. ${ }^{65,66,67}$

[^85]Therefore, for the completion of the total synthesis, we planned to perform an enantioselective allylation of trans-73 to trans-75 by treating the methyl ketone with an allyl boronate and a metal in the presence of a chiral ligand (Scheme 42). ${ }^{68}$

Scheme 42. Enantioselective allylation of trans-73.
Alternatively, a stereoselective reduction of the methyl ketone trans-73 could be performed with a chiral aluminium or borohydride to obtain a secondary alcohol. ${ }^{69} \mathrm{~A}$ ruthenium or rhodium catalyzed hydrogenation could be performed as well. ${ }^{70}$ This could be transformed to the enantioenrich tertiary alcohol trans-75 via a stereospecific lithiation/borylation reaction followed by hydrolysis . ${ }^{71}$

It is important to note that, until the first gold-catalyzed [2+2] cycloaddition is not enantioselective, ${ }^{72}$ two different diastereoisomers will be obtained at this point. Thus, the enantiomer $(\boldsymbol{S}, \boldsymbol{R})$ - $\mathbf{- 7 3}$ would lead to $(\boldsymbol{S}, \boldsymbol{S}, \boldsymbol{R}) \mathbf{- 7 5}$ but the $(\boldsymbol{R}, \boldsymbol{S})$ - $\mathbf{7 3}$ to $(\boldsymbol{S}, \boldsymbol{R}, \boldsymbol{S}$,)-75 (Figure 18).

Figure 18. Diastereoisomers of alcohol 75.

[^86]Towards the Total Synthesis of Rumphellaone A

- Reverse Wacker Oxidation

Finally, as mentioned in Scheme 16, a reverse Wacker oxidation has been reported for homoallylic alcohols to generate an acetal that is further oxidized to a lactone. Thus, alcohol trans- 75 could cyclize to acetal 48 using catalytic $\mathrm{Pd}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ and CuCl_{2} in tert-butanol and then treated with trifluoroacetic acid (Scheme 45). ${ }^{73}$ It is expected that this could also cleave the five-membered ring acetal used to protect the ketone. Without further purification, acetal $\mathbf{4 8}$ could be oxidized to a lactone with $\mathrm{Ag}_{2} \mathrm{CO}_{3}$-Celite in toluene under reflux. These conditions would afford at last rumphellaone A.

Scheme 45. Reverse Wacker oxidation to afford rumphellaone \boldsymbol{A}.

[^87]
6. Conclusions

Based on the results obtained in Chapters 2, 3 and 4 about the possible formation of a cyclobutene scaffold in a gold-catalyzed intermolecular [2+2] cycloaddition between an alkyne and an oxoalkene, we envisioned its application to the total synthesis of rumphellaone A. Our first approach consisted in using a silyloxyalkynylfuran, which led to the key cyclobutene 43 in only 31% isolated yield (Scheme 14).

Scheme 14. Gold-catalyzed [2+2] cycloaddition of 2-ethynyl-5-methylfuran and 6-methylhept-5-en-2-one.

Therefore, we changed the strategy based on the oxidation of a phenyl ring to a carboxylic acid (Scheme 46).

Scheme 56. Towards Rumphellaone A.
Thus, we performed the gold-catalyzed [2+2] cycloaddition of ethynylbenzene and 6-methylhept-5-en-2-one using complex \mathbf{Q} (78% yield) followed by a non-diastereoselective hydrogenation of cyclobutene 19 with Pd / C in 90% yield. Oxidation afforded the carboxylic acid 46 in 80% isolated yield. Further esterification (66, 90\%) and protection of the ketone (71, quantitative) allowed a late stage isomerization towards trans-71 in 77\% yield (97:3). Generation of the Weinreb amide (trans-72) followed by methylation afforded our last intermediate trans-73. A consequent stereoselective allylation to trans-75 followed by an oxidative cyclization are suggested to finally synthesize rumphellaone A .

A current challenge is still the enantioselective gold-catalyzed [2+2] cycloaddition of alkynes with alkenes. Although several asymmetric gold catalysts have been recently developed, their application has been mainly limited to intramolecular transformations. In our case, we first designed a substrate-induced enantioselective reaction via an asymmetric acetal since the transfer of chirality has proven to be much more effective in these reactions (Scheme 18).

Scheme 18. Gold-catalyzed [2+2] cycloaddition of ethynylbenzene and acetal 55.

Acetal 55 could form the corresponding cyclobutene 56 in 50% isolated yield. However, the BINOL analogous could not be formed. Thus, preliminar screenings of chiral gold complexes have been performed.

For the moment, cyclobutene 19 has been obtained in 61% isolated yield (67% conversion) with 30% ee using catalyst \mathbf{Y} and 1 equiv. of $\mathrm{NaBAr}_{4}{ }_{4}$ in the optimized conditions (Scheme 47). This result proves that the enantioselective [2+2] cycloaddition and its application to the total synthesis of rumphellaone A are possible and encourage us to continue this work.

Scheme 47. Enantioselective [2+2] cycloaddition.
Although two steps are still remaining in order to accomplish the synthesis of this natural product, we have designed a straightforward synthetic route towards rumphellaone A and proved its feasibility by reaching a late-satge intermediate stereoselectively and in excellent yields.

UNIVERSITAT ROVIRA I VIRGILI
DISSECTING INTERMOLECULAR GOLD CATALYSIS: APPLICATION TO THE TOTAL SYNTHESIS OF RUMPHELLAONE A.
Carla Obradors Llobet
Dipòsit Legal: T 75-2015

General Conclusions

As explained in the General Introduction, gold-catalyzed transformations via the activation of unsaturated moieties towards nucleophilic attack emerged as a powerful tool for the construction of $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ bonds due to the remarkable carbophilic properties of this metal. ${ }^{1,2}$ Thus, gold complexes allowed the construction of complex architectures under mild conditions from readily assembled starting materials. The understanding and combination of these new reactivities led to the discovery of complex cascade processes in a full atom economy, completely stereoselective fashion.

The cycloisomerizations of $1, n$-enynes in the absence of nucleophiles underwent a wide variety of skeletal rearrangements affording very different carbo- and heterocyclic products. ${ }^{3}$ However, these trasnsformations were limited from 1,5- to 1,8 -enynes, which are entropically favoured. In the absence of a tether strain, very few intermolecular reactions were described. ${ }^{4}$ As an example, the [2+2] cycloaddition between alkynes and alkenes using [$\left.{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{SbF}_{6}(\mathbf{E})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$ led to the regioselective formation of cyclobutene scaffolds such as $\mathbf{1}$ in good yields (Scheme 1). ${ }^{5}$

Scheme 1. [2+2] Cycloaddition of alkynes and alkenes.
These transformations were suggested to proceed through cyclopropyl gold carbenes like 2. An interesting debate was centred on the nature of these intermediates as a goldstabilized homoallyl carbocation ($\mathbf{2}^{\prime}$) could be also conceived. Further studies indicated the involvement of gradually distorted carbenes depending on the substitution pattern and the ligand on the metal. ${ }^{6}$

In Chapter 1, we developed the gold-catalyzed macrocyclization of large $1, n$-enynes ($n \geq$ 9) via a $\left[2+2\right.$] cycloaddition. ${ }^{7}$ In organic synthesis, forging 8 - to 16 - membered rings is not

[^88]a straightforward process and the methodology presented several challenges. ${ }^{8}$ Optimization of the reaction conditions allowed the cyclization of 1,14-enyne $\mathbf{3}$, bearing a spacer between both reacting partners, towards the macrocyclic structure $\mathbf{4}$ in good isolated yield (Scheme 2).

Scheme 2. Macrocyclization of large enynes.

In general, the reactions were carried out under mild conditions although some substrates required an increment of the temperature and/or the reaction concentration; for example, 1,10 -enyne 5 demanded $45^{\circ} \mathrm{C}$ to form macrocycle 6 (Scheme 3). Nevertheless, expansion of the reaction scope showed that the macrocyclization proceeded in moderate to good yields drastically depending on each substrate: the chain length, the spacer and the substituents.

Scheme 3. Macrocyclization under harsher conditions.

This methodology also provided access to m-cyclophanes such as $\mathbf{7}$ or $\mathbf{8}$, which exhibit interesting chemical and physical properties applied in supramolecular chemistry and material science (Figure 1). ${ }^{9}$

7

8

Figure 1. m-Cyclophanes synthesized via gold catalysis.
Subsequently to the gold activation and the nucleophilic attack, the intermediates formed could evolve though many different pathways affording a wide variety of products, for example, via trapping with nucleophiles or cyclopropanation. ${ }^{1,3,10}$ Despite these major

[^89]advances, the presence of intermolecular cycloadditions in the literature was rather limited due to the competitive binding of the different unsaturated substrates with the gold complex. Striding forward, in Chapter 2 we developed an intermolecular gold-catalyzed cascade $[2+2+2]$ cycloaddition of an alkyne, an alkene and a carbonyl group. ${ }^{11}$ Thus, m methoxyethynylbenzene reacted with 5-methylhex-5-en-2-one and catalyst \mathbf{E} at $50^{\circ} \mathrm{C}$ to form oxabicycle 9 in 91% isolated yield (Scheme 4).

Scheme 4. [2+2+2] Cycloaddition of alkynes and oxoalkenes.
In most cases, the multistep mechanistic proposals of these reactions were rather complex and the isolation of key intermediates was proven to be challenging. ${ }^{12}$ Therefore, its understanding was based often on analogy and speculation. Thus, in Chapter 3 we performed a detailed mechanistic study of the intermolecular [2+2+2] cycloaddition of alkynes and oxoalkenes. ${ }^{11}$ The initial framework was the selective π-coordination of the gold complex to the alkyne (10) allowing the nucleophilic attack of the oxoalkene to build the cyclopropyl gold carbene 11 (Scheme 5).

Scheme 5. Mechanistic proposal supported computationally (relative energies in kcal/mol).

This intermediate would undergo an intramolecular nucleophilic attack of the carbonyl group to form an oxonium cation (12) followed by a Prins-type cyclization with the alkenyl gold scaffold to 13. Demetalation would afford the coordinated product $\mathbf{1 4}$ and complex 10 after ligand exchange. This proposal was supported by DFT calculations $\left(\mathrm{M} 06,6-31 \mathrm{G}(\mathrm{d})(\mathrm{C}, \mathrm{H}, \mathrm{P}, \mathrm{O})\right.$ and $\mathrm{SDD}(\mathrm{Au})$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, which suggested that the rate-

[^90]detemining step of the process was the nucleophilic attack of the alkene towards the activated alkyne.

The scope of this methodology was expanded to 24 examples with good to excellent yields. The process showed a broad functional tolerance in the substitution of the aryl ring with both electron-deficient and electron-donating groups and including hetero- and polyaromatic moieties. Furthermore, varying the substituents in the alkene group and in the α-position of the ketone was also possible leading to a better efficiency by increasing their nucleophilicity. Interestingly, changing the substitution pattern of the olefin or utilization of an ester headed to the preferential formation of cyclobutenes such as $\mathbf{1 5}$ or $\mathbf{1 6}$ in 54% and 47% yield, respectively (Figure 2).

Figure 2. Preferential formation of cyclobutenes.
Therefore, the intramolecular nucleophilic attack of the carbonyl to a cyclopropyl gold carbene analogous to $\mathbf{1 1}$ was not favoured in those cases. Similarly, the reaction with the cyclic oxoalkene $\mathbf{1 7}$ afforded tricyclic structure $\mathbf{1 8}$ only in 31% isolated yield (Scheme 6).

Scheme 6. Formation of a tricyclic scaffold.

Simultaneously, we could optimize the transformation towards a new reaction pathway that led to the formation of tetrahydrofurans such as $\mathbf{1 9}$ (Scheme 7). ${ }^{11}$ Thus, reaction between p-bromoethynylbenzene and 5-methylhex-5-en-2-one with substoichiometric amounts of p-toluenesulfonic acid built 19 in 51% isolated yield.

Scheme 7. Tuning of the reaction towards tetrahydrofurans.

We suggested that the π-coordinated gold complex with the alkyne (20) could undergo deprotonation forming 21 and releasing acid in the reaction media. ${ }^{13}$ A proton-catalyzed cyclization of the oxoalkene would form cation 22/22', which would be in equilibrium with 23. This intermediate could be easily trapped with 21 affording the tetrahydrofuran product 19 (Scheme 8). This proposal was supported with deuterium labelling experiments.

Scheme 8. Mechanistic proposal supported by deuterium labelling experiments.
Moreover, we developed an unprecedented gold-catalyzed trimerization of alkynes that led to $1,3,5$-substituted benzenes such as $\mathbf{2 4}$ in moderate yields (Scheme 9). ${ }^{11}$

Scheme 9. Gold-catalyzed trimerization of alkynes.

Monitoring of the $[2+2+2]$ cycloaddition by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy revealed a single gold species during the whole transformation. Crystallization of the resting state revealed digold complex 25 (Figure 3). ${ }^{11,14}$

[^91]

Figure 3. Digold complex 25 as the resting state.
This result suggested a more complex scenario. The formation was suggested to proceed via a competitive deprotonation of $\mathbf{1 0}$ to build $\mathbf{2 6}$ and reaction with another unit of catalyst \mathbf{E} (Scheme 10). Determination of the equilibrium constant by the Van't Hoff equation proved this is a reversible process $\left(\mathrm{K}_{\mathrm{eq}}\left(50^{\circ} \mathrm{C}\right)=1.08 \cdot 10^{-7} \mathrm{M} ; \Delta \mathrm{H}=6.79 \mathrm{kcal} / \mathrm{mol} ; \Delta \mathrm{S}=\right.$ $-11 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K})$.

Scheme 10. Equilibrium between the involved gold species ($L==^{t}$ BuXPhos).
Furthemore, we could detect complex 10 spectroscopically at $-78^{\circ} \mathrm{C}$ by observing the correlation between the proton of the alkyne and the phosphorous of the ligand. ${ }^{15}$ Low temperature NMR studies revealed that this complex coexists with digold scaffold $\mathbf{2 5}$ to $-20^{\circ} \mathrm{C}$, when it disappeared. Attempts to disclose the role of the digold complex in catalysis showed that this species were outside the catalytic cycle, which lowers the concentration of the active species $\mathbf{1 0}$ and explains the rather long reaction times. Digold complex 25 was unreactive until HSbF_{6} was added to re-establish the equilibrium between the gold species, for example, in the synthesis of oxabicycle 27 (Scheme 11).

Scheme 11. Regeneration of the catalytic activity ($L={ }^{t}$ BuXPhos).
These results shed light into the complex scenario composed in a gold-catalyzed intermolecular cycloaddition. In this context, we focused on tuning the catalyst structure to

[^92]minimize the generation of digold complexes such as $\mathbf{2 5}$ and we reasoned that the use of more bulky, non-coordinating and less basic counterions could slow down the deprotonation of the alkynes and hamper the formation of the σ-alkynyl gold intermediates such as 26. ${ }^{16,17}$ Hence, we designed new gold complexes using $\mathrm{BAr}_{4}{ }_{4}{ }^{-}$as the anion, for example, catalyst \mathbf{Q} (Figure 4).

Figure 4. New gold complex Q bearing $\boldsymbol{B A r}^{F}{ }_{4}-$
This hypothesis was validated by performing a study of the anion effect in several goldcatalyzed intermolecular cycloadditions, which led to improvements up to 36% isolated yield. As an example, p-chloroethynylbenzene reacted with a slight excess of α methylstyrene under the optimized conditions and led to cyclobutene 28 in 61% when using $\mathrm{SbF}_{6}{ }^{-}$and 91% with $\mathrm{BAr}^{\mathrm{F}}{ }_{4}{ }^{-}$(Scheme 12). ${ }^{5}$ Moreover, the same trend was observed in the macrocyclization of large enynes, ${ }^{7}$ the gold-catalyzed synthesis of phenols ${ }^{18}$ and the $[2+2+2]$ cycloaddition of alkynes with oxoalkenes. ${ }^{11}$ On the other hand, no pattern was observed in the intramolecular cyclizations. ${ }^{3,10 a, 19}$

Scheme 12. Anion effect in the intermolecular cycloadditions.
In order to further understand this influence, we studied mechanistically the particular involvement of the couterion in the intermolecular [2+2] cycloaddition of alkynes with alkenes. ${ }^{17}{ }^{1} \mathrm{H}$ NMR monitoring of the transformation between ethynylbenzene and α methylstyrene afforded the kinetic profile of the reaction and showed the great dependence with the anion. Thus, the final yield and the reaction rate increased along with its bulkiness: $\mathrm{BAr}_{4}{ }_{4}^{-}>\mathrm{SbF}_{6}^{-}>\mathrm{BF}_{4}^{-}$. Additionally, ${ }^{31} \mathrm{P}$ NMR spectroscopy showed the presence of digold scaffolds analogous to $\mathbf{2 5}$ together with a major new gold species, which could be crystallized as the π-coordinated gold complex with α-methylstyrene 29 (Figure 5). ${ }^{11}$

[^93]

Figure 5. (α-Methylstyrene)gold(I) complex 29.
Interestingly, the ratios between the alkene versus the alkyne coordination changed dramatically with the counterion following the same trend: $\mathrm{BAr}_{4}^{-}>\mathrm{SbF}_{6}^{-}>\mathrm{BF}_{4}^{-}$. These results implied a larger reservoir of the cationic gold species in the reaction media. Determination of the equilibrium constant towards the digold complex showed it is slightly more favoured with smaller counterions: $\operatorname{Keq}\left(25{ }^{\circ} \mathrm{C}\right)=4.44 \cdot 10^{-8} \mathrm{M}$ for $\mathrm{SbF}_{6}{ }^{-}$and $\operatorname{Keq}(25$ $\left.{ }^{\circ} \mathrm{C}\right)=2.44 \cdot 10^{-8} \mathrm{M}$ for $\mathrm{BAr}^{\mathrm{F}}{ }_{4}^{-}$. Notably, the enthalpy increased to $13.4 \mathrm{kcal} / \mathrm{mol}$ whereas the entropy turned $10 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$. Performing the low temperature NMR studies with [$\left.{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{BAr}^{\mathrm{F}}(\mathbf{Q})$ showed that the π-coordinated gold complex with the alkyne analogous to $\mathbf{1 0}$ was this time stable up to $0^{\circ} \mathrm{C}$, when the digold complex $\mathbf{2 5}$-type was also formed (Scheme 13). These results were supported by DFT calculations as well.

Scheme 13. Evolution of the different gold species by increasing the temperature ($L==^{t}$ BuXPhos).

Furthermore, we measured the equilibrium constants towards the alkene complexes like 29 to observe that the binding to α-methylstyrene was stronger with bulky counterions, although the differences were small again: $\operatorname{Keq}\left(25{ }^{\circ} \mathrm{C}\right)=0.047$ for $\mathrm{SbF}_{6}{ }^{-}$and $\operatorname{Keq}\left(25{ }^{\circ} \mathrm{C}\right)$ $=0.090$ for $\mathrm{BAr}_{4}{ }_{4}$. Nevertheless, their comparison with the formation of the digold complexes was remarkably distinct: the constants increased from 10^{-8} to 10^{-2}.

Concurrently, the method of the initial rates showed order one for both the alkyne and the gold catalyst but zero-dependance for α-methylstyrene. In the initial mechanistic proposal, the alkyne complex $\mathbf{1 0}$ was formed straightforward to undergo a rate-determining nucleophilic attack of the alkene and build a cyclopropyl gold carbene (30), analogous to 11 (Scheme 14). This intermediate was formed regioselectively and proceeded via ring expansion to form the stabilized carbocation 31 and the coordinated final product $\mathbf{3 2}$ after demetallation.

However, this proposal did not consider the pre-equilibrium described and did not explain the zero order observed for α-methylstyrene. Therefore, according to the equilibrium constants, the gold catalyst should bind preferentially to α-metylstyrene forming complex 29 in the presence of the ethynylbenzene, also decreasing 25 and 26 . The extent of this effect would depend on the nucleophilicity of the alkene as well as the stoichiometry of the reaction, as observed.

Therefore, it was mechanistically crucial to determine if complex 29 could lead directly to complex $\mathbf{1 0}$ as well, which would circumscribe if the coordination of the alkene was inhibiting the $[2+2]$ cycloaddition or storing cationic gold(I) reservoirs.

Scheme 14. Mechanistic proposal considering the counterion effect ($L^{=}{ }^{t}$ BuXPhos).
Tests on the catalytic activity confirmed that digold complex 25 and 26 are off-cycle species, whose reactivity was restored upon an acid addition. Remarkably, complex 29 reacted stoichiometrically with ethynylbenzene in the absence of catalyst to forge cyclobutene 1 in 72% isolated yield (Scheme 15). Accordingly, the ligand exchange between complex 29 and ethynylbenzene to form the key intermediate $\mathbf{1 0}$ was the ratedetemining step of the catalytic cycle.

Scheme 15. Catalytic activity of (α-methylstyrene)gold complex 29.

Finally, we envisioned we could apply our findings in the total synthesis of rumphellaone A, a natural product that showed cytotoxicity towards leukemia tumor cells (Figure 6). ${ }^{20,21}$ This scaffold contains a trans cyclobutane that could be built via an asymmetric goldcatalyzed [2+2] cycloaddition of an alkyne and an oxoalkene followed by a diastereoselective hydrogenation.

Figure 6. Application of gold chemistry to total synthesis.
Our first approach consisted on using a silyloxyalkynylfuran (33) to perform the key goldcatalyzed reaction to obtain 34, $\mathbf{3 5}$ after a vinyligous methylation and the natural product after hydrogenation (Scheme 16). ${ }^{22,23}$ However, the cycloaddition was not very efficient and intermediate 34 was obtained only in 31% isolated yield.

Mel

[Au]

Scheme 16. Silyloxyalkynylfuran approach.

Therefore, we changed the strategy towards a gold-catalyzed [2+2] cycloaddition with ethynylbenzene followed by the oxidation of the aromatic ring to obtain a carboxylic acid, which could be transformed to the desired lactone via stereoselective allylation and an intramolecular reverse Wacker oxidation. ${ }^{24,25}$

[^94]Thus, reaction of ethynylbenzene with 5-methylhex-5-en-2-one and $5 \mathrm{~mol} \%$ of catalyst \mathbf{Q} afforded cyclobutene 15 in 78% isolated yield under the optimized conditions (Scheme 17). Attempts to perform a diastereoselective hydrogenation were unsuccessful and 90% cyclobutane 36 (1.6:1) was obtained with $10 \mathrm{~mol} \%$ of Pd / C in methanol under 1 atm of H_{2}. Oxidation with RuO_{2} afforded the carboxylic acid 37 in 80% isolated yield, which was followed by esterification (91% to $\mathbf{3 8}$) and protection of the ketone moiety (quantitatively to 39). A late stage isomerization afforded trans-39 in 77% isolated yield (97:3) after treatment with sodium methoxide in THF:methanol (1:1) at $70{ }^{\circ} \mathrm{C}$ for 20 h under strict anhydrous conditions. Formation in situ of the corresponding Weinreb amide trans-40 followed by a methylation reaction afforded our last intermediate trans-41 in 65% isolated yield. The already mentioned stereoselective allylation to $\mathbf{4 2}$ followed by a reverse Wacker oxidation to obtain rumphellaone A are on going work.

Scheme 17. Towards the total synthesis of Rumphellaone A.

Furthermore, attempts to perform an enantioselective intermolecular gold-catalyzed [2+2] cycloaddition between an alkyne and an oxoalkene were carried out. Initially, we designed a substrate-induced asymmetric reaction via a chiral acetal protecting the carbonyl group (Scheme 18). ${ }^{26}$

[^95]

Scheme 18. Substrate-induced gold-catalyzed [2+2] cycloaddition.

Although acetal 43 afforded cyclobutene 44 in 50% isolated yield, the corresponding BINOL-derivative could not be formed.

Therefore, preliminar screenings of chiral gold complexes were performed. So far, cyclobutene 15 could be forged in 61% isolated yield (69% conversion) with 30% ee using catalyst \mathbf{Y} under the optimized conditions (Scheme 19). ${ }^{27}$ Although this result is still modest, it proved the feasibility of this approach and encouraged us to continue this project.

Scheme 19. Enantioselective gold-catalyzed [2+2] cycloaddition.

[^96]UNIVERSITAT ROVIRA I VIRGILI
DISSECTING INTERMOLECULAR GOLD CATALYSIS: APPLICATION TO THE TOTAL SYNTHESIS OF RUMPHELLAONE A.
Carla Obradors Llobet
Dipòsit Legal: T 75-2015

Experimental Section

Unless otherwise stated, reactions were carried out under argon atmosphere in solvents dried by passing through an activated alumina column on a PureSolv ${ }^{\mathrm{TM}}$ solvent purification system (Innovative Technologies, Inc., MA). Analytical thin layer chromatography was carried out using TLC-aluminium sheets with 0.2 mm of silica gel (Merck GF_{234}) using UV light as the visualizing agent and an acidic solution of vanillin in ethanol as the developing agent. Chromatograpy purifications were carried out using flash grade silica gel (SDS Chromatogel 60 ACC, $40-60 \mathrm{~mm}$) or automated flash chromatographer CombiFlash Companion. Preparative TLC was performed on $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel plates (2.0 mm thick, catalogue number 02015, Analtech). Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

NMR spectra was recorded at 298 K on a Bruker Avance 400 Ultrashield and Bruker Avance 500 Ultrashield apparatus. Mass spectra was recorded on a Waters Micromass LCT Premier (ESI), Waters Micromass GCT (EI, CI) and Bruker Daltonics Autoflex (MALDI) spectrometers. Elemental analyses were performed on a LECO CHNS 932 micro-analyzer at the Universidad Complutense de Madrid. Melting points were determined using a Büchi melting point apparatus and are uncorrected.

Crystal structure determinations were carried out using a Bruker-Nonius diffractomer equipped with an APPEX 24 K CCD area detector, a FR591 rotating anode with $\mathrm{MoK}_{\mathrm{a}}$ radiation, Montel mirrors as monochromator and a Kryoflex low temperature device ($\mathrm{T}=$ $173{ }^{\circ} \mathrm{C}$). Full-sphere data collection was used with w and j scans. Programs used: Data collection APEX-2, data reduction Bruker Saint V/.60A and absorption correction SADABS. Structure Solution and Refinement: Crystal structure solution was achieved using direct methods as implement in SHELXTL and visualized using the program XP. Missing atoms were subsequently located from difference Fourier synthesis and added to the atom list. Least-squares refinement on F2 using all measured intensities was carried out using the program SHELXTL. All non hydrogen atoms were refined including anisotropic displacement parameters.

Calculations were carried out with DFT using the M06 functional ${ }^{1}$ as implemented in Gaussian $09 .{ }^{2}$ The $6-31 \mathrm{G}(\mathrm{d})$ basis set ${ }^{3}$ was used for all atoms except gold, which was treated with SDD and the associated effective core potential. ${ }^{4}$ Frequency calculations were performed to characterize the stationary points as minima. The solvent effect was taken into account by single-point calculations using the polarizable continuum model (PCM), ${ }^{5,6,7,8}$ in particular IEF-PCM as implemented in Gaussian 09. Default options were

[^97]used, except that individual spheres were placed on all hydrogen atoms to get a more accurate cavity. The calculations were performed using $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\varepsilon=8.93)$ as solvent. The standard Gibbs energies in dichloromethane $\left(\Delta \mathrm{G}_{\mathrm{DCM}}\right)$ were obtained by adding the solvation energies to the gas-phase Gibbs energies computed at 298 K . The same procedure was employed to calculate zero-point corrected energies in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

[^98]
1. Gold-Catalyzed Macrocyclization via Cycloaddition of $1, n$-Enynes ${ }^{1}$

All the reactants, ligands and the following reagents were purchased from commercial sources and used without further purification: 3,7-dimethyloct-6-en-1-ol, 2(hydroxymethyl)phenol, 3-bromoprop-1-yne, 2-hydroxybenzaldehyde, 2-(2-Methylprop-1-en-1-yl)phenol, (2-(prop-2-yn-1-yloxy)phenyl)methanol, 6-methylhept-5-en-2-ol, 1-(bromomethyl)-2-iodobenzene, 2-(3-methylbut-2-en-1-yl)phenol, 1-(bromomethyl)-2ethynylbenzene, 2-iodophenol, 1-bromo-3-methylbut-2-ene, (2-(pent-4-yn-1yloxy)phenyl)methanol, 1-(bromomethyl)-2-ethynylbenzene, (2-(hex-5-yn-1yloxy)phenyl)methanol, 7-bromo-2-methylhept-2-ene, 8-bromo-2-methyloct-2-ene, 5-iodopent-1-yne, 6-iodohex-1-yne, dimethyl 2-(but-3-yn-1-yl)malonate, pent-4-yn-1-ol and 3-ethynylphenol. (THT)AuCl and (2-(hex-5-yn-1-yloxy)phenyl)methanol were synthesized as reported. ${ }^{2,3}$ Enynes 19 and 27 were prepared according to the literature as well metal complexes $\mathbf{B}, \mathbf{C}, \mathbf{E}, \mathbf{I},\left[\mathbf{P t}^{\mathrm{II}}\right]$ and $\left[\mathbf{C u} \mathbf{u}^{\mathbf{I}}\right]^{4,5,6,7}$

Preparation of Gold Complexes

Chloro[(2',4',6'-triisopropyl-3,6-dimethoxy-1,1'-biphenyl-2-yl)di-tertbutylphosphinelgold(I)

Chloro(tetrahydrothiophene) gold(I) ($66.1 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{ml})$ and a solution of 2-(di-tert-butylphosphino)-2', $4^{\prime}, 6$ '-triisopropyl-3,6-dimethoxy-1,1'biphenyl ($100.0 \mathrm{mg}, 0.21 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{ml})$ was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h and the solvent was removed under reduced pressure. The crude was purified with a chromatographic column using a mixture $2: 1$ of cyclohexane:ethyl acetate to obtain the product as a white powder in 92% isolated yield ($136.0 \mathrm{mg}, 0.19 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta 7.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}), 6.99\left(\mathrm{dd}, J=8.9 \mathrm{~Hz}, J\left({ }^{1} \mathrm{H}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.97$ (quintet, $\left.J=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38$ (quintet, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.41\left(\mathrm{~d}, J\left({ }^{1} \mathrm{H}^{31} \mathrm{P}\right)=16.5 \mathrm{~Hz}, 18 \mathrm{H}\right), 1.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.27(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$. DEPTQ-135 NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 155.4$ $(\mathrm{s}, \mathrm{C}), 153.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=12.0 \mathrm{~Hz}, \mathrm{C}\right), 150.1(\mathrm{~s}, \mathrm{C}), 146.9(\mathrm{~s}, \mathrm{C}), 139.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=\right.$ $15.2 \mathrm{~Hz}, \mathrm{C}), 131.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.5 \mathrm{~Hz}, \mathrm{C}\right), 122.4(\mathrm{~s}, \mathrm{CH}), 119.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=37.4\right.$ $\mathrm{Hz}, \mathrm{C}), 114.7(\mathrm{~s}, \mathrm{CH}), 109.9(\mathrm{~d}, J=5.4 \mathrm{~Hz}, \mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 54.7\left(\mathrm{CH}_{3}\right), 40.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=25.5 \mathrm{~Hz}, \mathrm{C}\right), 34.5(\mathrm{CH}), 32.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{3} \mathrm{P}\right)=8.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 31.4(\mathrm{~s}, \mathrm{CH}), 25.5$ $\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta 73.10$ (s). MALDI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{AuClO}_{2} \mathrm{P}^{+}[\mathrm{M}]^{+} 716.2819$, found 716.2728 (13 ppm).

[^99](Acetonitrile) $\left[\left(2^{\prime}, 4^{\prime}, 6^{\prime}\right.\right.$-triisopropyl-3,6-dimethoxy-1,1'-biphenyl-2-yl)di-tertbutylphosphinelgold(I) hexafluoroantimonate (G)

This synthesis was realized inside the glove box and in the dark (aluminium foil). Chloro[(2',4',6'-triisopropyl-3,6-dimethoxy-1,1'-biphenyl-2-yl)di-tert-butylphosphine] gold(I) $(88.3 \mathrm{mg}, 0.13 \mathrm{mmol})$ and acetonitrile ($0.2 \mathrm{ml}, 3.38$ $\mathrm{mmol})$ were added in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{ml})$. Then, a suspension of $\mathrm{AgSbF}_{6}(43.0 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{ml})$ was added and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 15 min . The crude was filtered twice through Teflon 0.22 and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to afford complex \mathbf{G} as a white powder in 94% isolated yield (111.0 $\mathrm{mg}, 0.17 \mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right): \delta 7.07(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1$ H), $6.99\left(\mathrm{dd}, J=8.9 \mathrm{~Hz}, J\left({ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}\right)=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.88$ (quintet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29 (quintet, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.21(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.34\left(\mathrm{~d}, J\left({ }^{1} \mathrm{H}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=17.3 \mathrm{~Hz}, 18 \mathrm{H}\right), 1.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.81(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 155.3(\mathrm{~s}), 153.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=11.9 \mathrm{~Hz}\right.$), $149.8(\mathrm{~s}), 148.5(\mathrm{~s}), 137.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=13.6 \mathrm{~Hz}\right), 132.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.6 \mathrm{~Hz}\right), 122.5$ (s$), 119.3(\mathrm{~s}), 117.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=37.4 \mathrm{~Hz}\right), 116.1(\mathrm{~s}), 111.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}^{31} \mathrm{P}\right)=5.9 \mathrm{~Hz}\right)$, $55.3(\mathrm{~s}), 55.1(\mathrm{~s}), 41.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=27.3 \mathrm{~Hz}\right), 34.2(\mathrm{~s}), 32.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.1 \mathrm{~Hz}\right)$, 31.4 (s), 25.4 (s), 24.5 (s), 24.3 (s), 3.3 (s). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): δ 70.5 (s). Structure confirmed by HMQC ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ NMR and $\mathrm{HMBC}^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ NMR. MALDI ${ }^{+}$ m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{AuO}_{2} \mathrm{P}^{+}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~F}_{6} \mathrm{NSb}\right]^{+} 681.3130$, found 681.3485 (52 ppm). Anal. calcd. for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{AuF}_{6} \mathrm{NO}_{2} \mathrm{PSb}$: C, $41.35 ; \mathrm{H}, 5.47$; N, 1.46; found: C, 42.46; H, 5.44; N, 1.35. Structure confirmed also by X-Ray crystallography, CCDC 912986.

Chloro[(2',4',6'-triisopropyl-3,4,5,6-tetramethyl-1,1'-biphenyl-2-yl)di-tertbutylphosphinelgold(I)

Chloro(tetrahydrothiophene) gold(I) ($66.7 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{ml})$ and a solution of 2-(di-tert-butylphosphino)-2', $4^{\prime}, 6^{\prime}$-triisopropyl-3,4,5,6-tetramethyl-1,1'biphenyl ($100.0 \mathrm{mg}, 0.21 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{ml})$ was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h and the solvent was removed under reduced pressure. The crude was purified with a chromatographic column using a mixture $2: 1$ of cyclohexane:ethyl acetate to obtain the product as a white powder in 95% isolated yield ($140.6 \mathrm{mg}, 0.20 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta 6.95(\mathrm{~s}, 2 \mathrm{H}), 2.87$ (quintet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.53(\mathrm{~s}, 3 \mathrm{H}), 2.31$ (quintet, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.43\left(\mathrm{~d}, J\left({ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}\right)=16.2 \mathrm{~Hz}, 18 \mathrm{H}\right)$, $1.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$. DEPTQ-135 NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta 151.6$ ($\left.\mathrm{s}, \mathrm{C}\right), 146.7$ (s, C), 146.3 (s, C), 140.9 (d, $J=3.0 \mathrm{~Hz}, \mathrm{C}), 138.9$ (d, $J=4.0 \mathrm{~Hz}, \mathrm{C}), 138.5$ (d, $J=8.8 \mathrm{~Hz}, \mathrm{C}), 137.9$ (d, $J=$ $8.0 \mathrm{~Hz}, \mathrm{C}), 136.4(\mathrm{~d}, J=8.0 \mathrm{~Hz}, \mathrm{C}), 128.7(\mathrm{~s}, \mathrm{C}), 122.9(\mathrm{~s}, \mathrm{CH}), 42.4(\mathrm{~d}, J=20.9 \mathrm{~Hz}, \mathrm{C})$, $34.9(\mathrm{~s}, \mathrm{CH}), 33.8\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 31.2(\mathrm{~s}, \mathrm{CH}), 28.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 25.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 25.2(\mathrm{~s}$, $\left.\mathrm{CH}_{3}\right), 24.9\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 22.5\left(\mathrm{~d}, J=2.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 18.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 17.6\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta 80.52$ (s). MALDI ${ }^{+} m / z$ calc for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{AuClP}^{+}[\mathrm{M}]^{+} 712.3233$, found 712.3341 (15 ppm).

(Acetonitrile)[($2^{\prime}, 4^{\prime}, 6^{\prime}$-triisopropyl-3,4,5,6-tetramethyl-1,1'-biphenyl-2-yl)di-tertbutylphosphinelgold(I) hexafluoroantimonate (H)

This synthesis was realized inside the glove box and in the dark (aluminum foil). Chloro[($2^{\prime}, 4^{\prime}, 6^{\prime}$ 'triisopropyl-3,4,5,6-tetramethyl-1,1'-biphenyl-2-yl)di-tertbutylphosphine] gold(I) ($120.7 \mathrm{mg}, 0.17 \mathrm{mmol}$) and acetonitrile ($0.3 \mathrm{ml}, 5.74 \mathrm{mmol}$) were added in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.25 \mathrm{ml})$. Then, a suspension of $\mathrm{AgSbF}_{6}(58.2 \mathrm{mg}, 0.17$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{ml})$ was added and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min . The crude was filtered twice through Teflon 0.22 and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to afford complex \mathbf{H} as a white powder in 98% isolated yield ($159.1 \mathrm{mg}, 0.167 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta 7.18(\mathrm{~s}, 2 \mathrm{H}), 2.99$ (quintet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.40$ (quintet, $J=6.7 \mathrm{~Hz}, 2$ H), $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.52\left(\mathrm{~d}, J\left({ }^{1} \mathrm{H}^{31}{ }^{31} \mathrm{P}\right)=17.0 \mathrm{~Hz}, 18 \mathrm{H}\right), 1.47$ $(\mathrm{s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta 150.5(\mathrm{~s}), 148.2(\mathrm{~s}), 144.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}^{-31} \mathrm{P}\right)=19.3 \mathrm{~Hz}\right)$, $142.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.3 \mathrm{~Hz}\right), 139.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=5.4 \mathrm{~Hz}\right), 139.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=8.6\right.$ $\mathrm{Hz}), 138.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}^{31}{ }^{13} \mathrm{P}\right)=8.6 \mathrm{~Hz}\right), 137.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=8.6 \mathrm{~Hz}\right), 126.7(\mathrm{~s}), 126.4(\mathrm{~s})$, $123.1(\mathrm{~s}), 42.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=22.6 \mathrm{~Hz}\right), 34.4(\mathrm{~s}), 33.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.5 \mathrm{~Hz}\right), 31.3(\mathrm{~s})$, $28.5(\mathrm{~s}), 25.6(\mathrm{~s}), 25.1(\mathrm{~s}), 24.5(\mathrm{~s}), 22.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.8 \mathrm{~Hz}\right), 18.1(\mathrm{~s}), 17.6(\mathrm{~s}) .{ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 78.2$ (s). Structure confirmed by HMBC ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ NMR. MALDI ${ }^{+} m / z$ calcd for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{AuP}^{+}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~F}_{6} \mathrm{NSb}\right]^{+} 677.3545$, found 677.3857 (46 ppm). Anal. calcd for $\mathrm{C}_{35} \mathrm{H}_{56} \mathrm{AuF}_{6} \mathrm{NPSb}$: C, 44.04 ; H, 5.91 ; N, 1.47; found: C, 48.13; H, 6.26 ; N, 1.65. Structure confirmed also by X-Ray crystallography, CCDC 912987.

Procedures for the Preparation of $\mathbf{1 , n}$-Enynes

8-Bromo-2,6-dimethyloct-2-ene

Triphenylphosphine ($4.310 \mathrm{~g}, 16.43 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40.0 \mathrm{ml})$ to give a colourless solution that was cooled in an ice bath. A solution of dibromine ($0.77 \mathrm{ml}, 15.06 \mathrm{mmol}$) in tetrachloromethane (4.0 ml) was added and the reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h . Then, a solution of pyridine ($1.2 \mathrm{ml}, 15.06 \mathrm{mmol}$) and 3,7-dimethyloct-6-en-1-ol ($2.5 \mathrm{ml}, 13.69 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml})$ was added and it was stirred 5.5 h more. The crude was concentrated under reduced pressure and it was filtered through a plug of silica gel with cyclohexane to obtain 8-bromo-2,6-dimethyloct-2-ene as a colourless oil in 94% isolated yield ($2.8226 \mathrm{~g}, 12.88 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 5.11-5.07(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 2 \mathrm{H})$, $1.93-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.38-$ $1.31(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.14(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}) \delta 131.6(\mathrm{~s}), 124.6(\mathrm{~s}), 40.2(\mathrm{~s}), 36.7(\mathrm{~s}), 32.2(\mathrm{~s}), 31.5(\mathrm{~s}), 25.9(\mathrm{~s}), 25.5(\mathrm{~s}), 19.0(\mathrm{~s})$, 17.8 (s).

(2-((3,7-Dimethyloct-6-en-1-yl)oxy)phenyl)methanol

8-Bromo-2,6-dimethyloct-2-ene ($2.506 \mathrm{~g}, 11.43 \mathrm{mmol}$), 2(hydroxymethyl)phenol ($1.561 \mathrm{~g}, 12.57 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(7.90 \mathrm{~g}$, $57.2 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1.118 \mathrm{~g}, 3.43 \mathrm{mmol})$ and tetrabutylammonium iodide ($42.0 \mathrm{mg}, 0.114 \mathrm{mmol}$) were dissolved in anhydrous acetone (18.0 ml) to give a white suspension that was stirred at $60^{\circ} \mathrm{C}$ for 30 h . Then, the solvent was removed under reduced pressure and the crude was filtered in vacuum through celite washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed again and the product was purified with a silica gel column and eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford (2-((3,7-dimethyloct-6-en-1-yl)phenyl)methanol as a colourless oil in 90% isolated yield ($2.703 \mathrm{~g}, 10.30 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.24$ (dd, $J=7.4 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=8.0 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{td}, J=7.4 \mathrm{~Hz}$, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.00-3.90(\mathrm{~m}$, $2 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 2.07-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=0.84 \mathrm{~Hz}, 3 \mathrm{H}), 1.65$ $-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.16(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 156.5$ (s), 131.1 (s), 129.3 (s), 128.3 (s), 128.1
 $25.3(\mathrm{~s}), 19.4(\mathrm{~s}), 17.5(\mathrm{~s}) . \mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+} 285.1831$, found 285.1823.

1-((3,7-Dimethyloct-6-en-1-yl)oxy)-2-((prop-2-yn-1-yloxy)methyl)benzene (29)

A solution of (2-((3,7-dimethyloct-6-en-1yl)oxy)phenyl)methanol ($4.25 \mathrm{~g}, 16.2 \mathrm{mmol}$) in THF (20.0 ml) was added to a suspension of $\mathrm{NaH} 60 \% \mathrm{wt}(972 \mathrm{mg}, 24.3 \mathrm{mmol})$ in THF (20.0 ml) at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 30 min . Then, a solution of 3-bromoprop-1yne 80% wt ($2.345 \mathrm{ml}, 21.1 \mathrm{mmol}$) was added dropwise at 25 ${ }^{\circ} \mathrm{C}$. The solution was stirred under reflux for 12 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO_{4} and filtered. The solvent was removed by rotary evaporation. The crude product was purified with a silica gel column and eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 1,14 enyne 29 as an orange oil in 93% isolated yield ($4.5 \mathrm{~g}, 15 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1$ H), $6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.14-4.05(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.88-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{dd}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 156.8(\mathrm{~s}), 131.1$ (s), 129.3 (s), 128.9
 37.3 (s), 36.3 (s), 29.7 (s), 25.8 (s), 25.7 (s), 19.7 (s), 17.8 (s). $\mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$323.1987, found 323.1981.

2-(1-Hydroxy-2-methylpropyl)phenol

Dissolve 2-hydroxybenzaldehyde ($10.99 \mathrm{~g}, 90.00 \mathrm{mmol}$) in diethyl ether $(200.0 \mathrm{ml})$ and cool the solution to $-78^{\circ} \mathrm{C}$. Isopropylmagnesium chloride ($100 \mathrm{ml}, 200 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . It was quenched with $\mathrm{HCl} 10 \%$ wt and an extraction
with acidic water and a mixture of diethyl ether and ethyl acetate was carried out. The organic layers were collected and the solvent was removed. The product was purified with a silica gel column and eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 2-(1-hydroxy-2-methylpropyl)phenol as a colourless oil in 24% isolated yield ($3.517 \mathrm{~g}, 21.16 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 8.33$ (broad s, 1H), $7.10(\mathrm{td}, J=7.5 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.3,1 \mathrm{H}), 6.78(\mathrm{td}, J=7.3 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.54($ broad s, 1H), 2.08-1.99 (m, 1H) , $1.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 155.6$ (s), 128.7 (s), 128.4 (s), 126.3 (s), 119.5 (s), 117.0 (s), 81.8 (s$), 34.4$ (s), 19.3 (s), 18.2 (s).

2-(2-Methylprop-1-en-1-yl)phenol

2-(1-Hydroxy-2-methylpropyl)phenol (3.417 g, 20.56 mmol$)$ was dissolved in hexane $(100.0 \mathrm{ml})$ and the solution was transferred into a high pressure reactor. Then, it was heated to $170^{\circ} \mathrm{C}$ for 17 h . The solvent was removed and the product was purified with a silica gel column and eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 2-(2-methylprop-1-en-1-yl)phenol as an orange oil in 54% isolated yield ($1.638 \mathrm{~g}, 11.05 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.10(\mathrm{td}, J=8.0$ $\mathrm{Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.3,1 \mathrm{H}), 6.85(\mathrm{td}, J=7.4 \mathrm{~Hz}, J$ $=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 152.9(\mathrm{~s}), 140.0(\mathrm{~s}), 130.0(\mathrm{~s}), 128.1$ (s), 124.8 (s), 120.1 (s), 118.9 (s), 114.9 (s), 25.8 (s), 19.4 (s).

1-(2-Methylprop-1-en-yl)-2-(pent-4-yn-1-yloxy)benzene (32)

2-(2-Methylprop-1-en-1-yl)phenol ($500.0 \mathrm{mg}, 3.37 \mathrm{mmol}$), 5-chloropent1 -yne ($0.39 \mathrm{ml}, 3.71 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.331 \mathrm{~g}, 16.87 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(1.099 \mathrm{~g}, 3.37 \mathrm{mmol})$ and $\mathrm{NaI}(55.6 \mathrm{mg}, 3.71 \mathrm{mmol})$ were dissolved in acetone $(20.0 \mathrm{ml})$ to give a white suspension. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for four days. The solvent was removed and the crude was filtered in vacuum and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was purified with a silica gel column and eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 1,9-enyne $\mathbf{3 2}$ as an slightly pink oil in 56% isolated yield (404.3 $\mathrm{mg}, 1.887 \mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.17(\mathrm{dd}, J=7.3 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{td}, J=7.9 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=7.4, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=$ $8.3 \mathrm{~Hz}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{td}, J=7.1 \mathrm{~Hz}, J=2.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 156.2(\mathrm{~s}), 135.0(\mathrm{~s}), 130.4(\mathrm{~s}), 127.8(\mathrm{~s})$, 127.3 (s), 120.6 (s), 120.1 (s), 111.7 (s), 83.5 (s), 68.8 (s), 66.5 (s), 28.3 (s), 26.6 (s), 19.5 (s), $15.2(\mathrm{~s}) . \mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$215.1436, found 215.1438 .

1-(Hex-5-yn-1-yloxy)-2-(2-methylprop-1-en-1-yl)benzene (34)

2-(2-Methylprop-1-en-1-yl)phenol ($500.1 \mathrm{mg}, 3.37 \mathrm{mmol}$), 6-chlorohex-1-yne ($0.45 \mathrm{ml}, 3.71 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.331 \mathrm{~g}, 16.87 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(1.099 \mathrm{~g}, 3.37 \mathrm{mmol})$ and $\mathrm{NaI}(55.6 \mathrm{mg}, 3.71 \mathrm{mmol})$ were dissolved in acetone (20.0 ml) to give a white suspension. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for four days. The solvent was removed and the crude was filtered in vacuum and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was purified with a silica gel column and
eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 1,10-enyne 34 as a yellow oil in 46% isolated yield ($354.8 \mathrm{mg}, 1.554 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.17(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=7.7$ $\mathrm{Hz}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.5,1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{td}, J=7.1 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 156.3$ (s), 134.8 (s), 130.3 (s), 127.7 (s), 127.2 (s), 120.7 (s), 119.9 (s), 111.5 (s), $84.0(\mathrm{~s}), 68.6(\mathrm{~s}), 67.5(\mathrm{~s}), 28.2(\mathrm{~s}), 26.6(\mathrm{~s}), 25.2(\mathrm{~s}), 19.5(\mathrm{~s}), 18.1(\mathrm{~s})$. $\mathrm{APCI}^{+} m / z$ calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$229.1592, found 229.1581.

1-(((3-Methylbut-2-en-1-yl)oxy)methyl)-2-(prop-2-yn-1-yloxy)benzene (36)

A suspension of $\mathrm{NaH} 60 \%$ wt ($136.0 \mathrm{mg}, 3.39 \mathrm{mmol}$) in THF $(9.0$ ml) was cooled in an ice bath and a solution of (2-(prop-2-yn-1yloxy)phenyl)methanol ($500.0 \mathrm{mg}, 3.08 \mathrm{mmol}$) in THF (2.0 ml) was added dropwise. The solution was stirred at $25^{\circ} \mathrm{C}$ for 20 min . Then, 1-bromo-3-methylbut-2-ene ($0.36 \mathrm{ml}, 3.08 \mathrm{mmol}$) and tetrabutylammonium iodide ($11.0 \mathrm{mg}, 0.031 \mathrm{mmol}$) in THF (2.0 ml) was added carefully and it was stirred at $70^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was quenched with 1 ml of methanol and the crude was filtered in vacuum through celite washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was purified with a silica gel column and eluted with cyclohexane:ethyl acetate (0 100%) using a CombiFlash chromatographer to afford 1,10 -enyne 36 as a slightly yellowish oil in 72% isolated yield ($510.6 \mathrm{mg}, 2.217 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 7.40(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.8 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ ($\mathrm{td}, J=7.3 \mathrm{~Hz}, J=1.0,1 \mathrm{H}), 6.94(\mathrm{dd}, J=8.3 \mathrm{~Hz}, J=0.8,1 \mathrm{H}), 5.44-5.39(\mathrm{~m}, 1 \mathrm{H}), 4.65$ (d, $J=2.4,2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=6.9,2 \mathrm{H}), 2.47(\mathrm{t}, J=2.3,1 \mathrm{H}), 1.73(\mathrm{~d}, J=0.8$, $3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 155.0(\mathrm{~s}), 136.6$ (s), 128.9 (s), 128.2 (s), 127.7 (s), 121.3 (s), 111.8 (s), 78.7 (s), 75.3 (s), 66.8 (s$), 66.5$ (s$), 55.9$ (s), 25.6 (s), 17.9 (s). $\mathrm{APCI}^{+} m / z$ calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$253.1204, found 253.1192.

1-Ethynyl-2-(((6-methylhept-5-en-2-yl)oxy)methyl)benzene (38)

To a slurry of $\mathrm{NaH} 60 \%$ wt $(88.0 \mathrm{mg}, 2.20 \mathrm{mmol})$ in THF $(10.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, a solution of 6-methylhept-5-en-2-ol (282.0 $\mathrm{mg}, 2.20 \mathrm{mmol}$) in THF (10.0 mL) was added dropwise and stirred for 15 min . Thereafter, 1-(bromomethyl)-2-iodobenzene $(594.0 \mathrm{mg}, 2.00 \mathrm{mmol})$ in THF (10.0 mL) was added over 10 minutes $0{ }^{\circ} \mathrm{C}$. The mixture was then stirred for 30 min at $0{ }^{\circ} \mathrm{C}$ and subsequently the temperature was increased to $75^{\circ} \mathrm{C}$ and further stirred for 17 h . The reaction was quenched by addition of methanol followed by water and acidification with $\mathrm{HCl} 10 \%$. After complete evaporation of solvents and water, the residue was filtered through a plug of silica and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was concentrated and the crude was dissolved in $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL})$. Bis(triphenylphosphine)palladium(II)dichloride ($46.7 \mathrm{mg}, 0.07 \mathrm{mmol}$) and $\mathrm{CuI}(25.4 \mathrm{mg}, 0.13 \mathrm{mmol})$ were added and the mixture was degassed with argon. Ethynyltrimethylsilane $(0.30 \mathrm{~mL}, 2.00 \mathrm{mmol})$ was added via syringe and the solution was allowed to stir at $25^{\circ} \mathrm{C}$ for 20 h . After filtration through a plug of silica the solution was concentrated under reduced pressure. Finally, the residue was dissolved in THF (3.0 mL) and methanol $(3.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(900.0 \mathrm{mg}, 6.52 \mathrm{mmol})$ was added portionwise. Then, the solution was allowed to reach $25{ }^{\circ} \mathrm{C}$ and stirred for 12 h . The crude was thereafter extracted using saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and diethylether and dried over MgSO_{4}. The crude product was purified with a silica gel column and eluted with cyclohexane:ethyl
acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 1,10 -enyne 38 as an orange oil in 44% isolated yield ($216.3 \mathrm{mg}, 0.89 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23 (td, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=$ $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 4$ H), $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 141.7$ (s), 132.6 (s), 131.5 (s), 129.0 (s), 127.6 (s), 127.0 (s), 124.4 (s), 120.4 (s), 81.6 (s), 81.5 (s$), 75.0(\mathrm{~s}), 68.2$ (s$), 36.8(\mathrm{~s}), 25.7$ (s$), 24.2$ (s$), 19.7$ (s), 17.7 (s). $\mathrm{APCI}^{+} m / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$243.1743, found 243.1751.

1-Ethynyl-2-((2-(3-methylbut-2-en-1-yl)phenoxy)methyl)benzene (40)

To a solution of 2-(3-methylbut-2-en-1-yl)phenol ($2.039 \mathrm{~g}, 12.50$ mmol) in acetone (18.0 mL) were added 1-(bromomethyl)-2ethynylbenzene ($2.230 \mathrm{~g}, 11.42 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(7.90 \mathrm{~g}, 57.2 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.118 \mathrm{~g}, 3.43 \mathrm{mmol})$ and $\mathrm{NaI}(17.0 \mathrm{mg}, 0.11 \mathrm{mmol})$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 30 h and then filtered through a pad of celite washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed and the product was purified with a silica gel column eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford $1,10-$ enyne 40 as a pale yellow oil in 62% isolated yield ($1.959 \mathrm{~g}, 7.09 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, 7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=$ $7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.37$ (m, 2 H), 7.33 (td, $J 7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.12-7.08$ (m, 2 H$)$, $5.61-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H})$, $1.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 156.5$ (s), 140.1 (s), 132.9 (s), 132.4 (s), 130.6 (s), 129.7 (s), 129.3 (s), 127.5 (s$), 127.2$ (s$), 127.1$ (s$), 123.0$ (s$), 121.1$ (s$), 120.4$ (s), 111.8 (s), 82.7 (s), 81.2 (s), 68.1 (s), 29.1 (s), 26.0 (s), 18.0 (s). $\mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$277.1587, found 277.1598.

1-((3,7-Dimethyloct-6-en-1-yl)oxy)-2-iodobenzene

To a solution of 2-iodophenol ($2.761 \mathrm{~g}, 12.55 \mathrm{mmol}$) in acetone (18.0 mL) were added 8-bromo-2,6-dimethyloct-2ene ($2.504 \mathrm{~g}, 11.43 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(7.90 \mathrm{~g}, 57.2 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.118 \mathrm{~g}, 3.43 \mathrm{mmol})$ and tetrabutylammonium iodide $(42.0 \mathrm{mg}, 0.114 \mathrm{mmol})$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 30 h and then filtered through a pad of celite washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed and the product was purified with a silica gel column eluted with cyclohexane:ethyl acetate (0 100%) using a CombiFlash chromatographer to afford 1-((3,7-dimethyloct-6-en-1-yl)oxy)-2-iodobenzene as a pale yellow oil in 99% isolated yield ($4.054 \mathrm{~g}, 11.32 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.78(\mathrm{dd}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{td}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{td}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.10$ - $4.00(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3$ H), $1.69-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 157.7$ (s), 139.4 (s), 131.3 (s), 129.4 (s$), 124.7$ (s$), 122.3$ (s$), 112.1$ (s$), 86.8$ (s$), 67.5$ (s$), 37.1$ (s$), 36.0$ (s), 29.5 (s), 25.8 (s), 25.5 (s), 19.6 (s), 17.7 (s).

((2-((3,7-Dimethyloct-6-en-1-yl)oxy)phenyl)ethynyl)trimethylsilane

To a solution of 1-((3,7-dimethyloct-6-en-1-yl)oxy)-2iodobenzene ($0.71 \mathrm{~g}, 1.98 \mathrm{mmol}$) in $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL})$ was added bis(triphenylphosphine)palladium dichloride (70 mg , 0.099 mmol) and $\mathrm{CuI}(38 \mathrm{mg}, 0,198 \mathrm{mmol})$ under argon. Then, ethynyltrimethylsilane ($0.43 \mathrm{~mL}, 2.97 \mathrm{mmol}$) was added to the reaction mixture. The solution was stirred at $25^{\circ} \mathrm{C}$ for 12 h . After filtration over a pad of celite, the solvent was removed by rotary evaporation. The crude product was purified by flashed chromatography over silica gel (cyclohexane:ethyl acetate 98:2) to afford the product as an yellow oil in 99% isolated yield ($648 \mathrm{mg}, 1.97 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.47$ (dd, $J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.28(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.81-6.70(\mathrm{~m}, 2 \mathrm{H}), 5.22-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.04(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 2 \mathrm{H})$, $1.98-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 1$ H), $1.35-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 160.3$ (s), 133.7 (s), 131.0 (s), 129.9 (s), 124.9 (s), 120.2 (s), 112.9 (s),
 (s), 17.7 (s), 0.1 (s).

1-((3,7-Dimethyloct-6-en-1-yl)oxy)-2-ethynylbenzene (42)

To a solution of ($648 \mathrm{mg}, 1.97 \mathrm{~m}$ ((2-((3,7-dimethyloct-6-en1 -yl)oxy)phenyl)ethynyl)trimethylsilane mol) in methanol $(5.0 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.37 \mathrm{~g}, 9.87 \mathrm{mmol})$. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 12 h and then quenched with quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO_{4} and filtered. The solvent was removed by rotary evaporation. The crude product was purified with a silica gel column and eluted with hexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 1,11-enyne $\mathbf{4 2}$ as a yellow oil in 75% isolated yield (380 mg , $1.48 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.48$ (dd, $J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (td, J $=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.18-5.14(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.28$ (s, 1 H$), 2.13-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, $1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.01$ (dd, J $=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 160.3$ (s), 134.1 (s), 131.1 (s), 130.1
 $29.6(\mathrm{~s}), 25.8(\mathrm{~s}), 25.6(\mathrm{~s}), 19.7(\mathrm{~s}), 17.7(\mathrm{~s}) . \mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 257.1900, found 257.1907.

1-(((3-Methylbut-2-en-1-yl)oxy)methyl)-2-(pent-4-yn-1-yloxy)benzene (44)

A suspension of $\mathrm{NaH} 60 \%$ wt $(116.0 \mathrm{mg}, 2.89 \mathrm{mmol})$ in THF (7.0 ml) was cooled in an ice bath and a solution of (2-(pent-4-yn-1yloxy)phenyl)methanol ($500.0 \mathrm{mg}, 2.63 \mathrm{mmol}$) in THF (2.0 ml) was added dropwise. The solution was stirred at $25^{\circ} \mathrm{C}$ for 20 min . Then, 1-bromo-3-methylbut-2-ene ($0.30 \mathrm{ml}, 2.63 \mathrm{mmol})$ and tetrabutylammonium iodide $(9.0 \mathrm{mg}, 0.026 \mathrm{mmol})$ in THF (2.0 ml) was added carefully and it was stirred at $70^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was quenched with 1 ml of methanol and the crude was filtered in vacuum through celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was purified with a silica gel column and eluted with cyclohexane:ethyl acetate ($0-100 \%$)
using a CombiFlash chromatographer to afford 1,12-enyne 44 as a slightly yellowish oil in 75% isolated yield ($509.3 \mathrm{mg}, 1.971 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.37$ (dd, $J=7.7 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.8 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=7.5 \mathrm{~Hz}, J=$ $1.0,1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.3 \mathrm{~Hz}, J=0.7,1 \mathrm{H}), 5.45-5.39(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=$ $7.0,2 \mathrm{H}), 4.02(\mathrm{t}, J=5.9,2 \mathrm{H}), 2.38(\mathrm{td}, J=7.1, J=2.6,1 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.95(\mathrm{t}, J$ $=2.7,1 \mathrm{H}), 1.74(\mathrm{~d}, J=0.9,3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 156.2$ (s), 136.4 (s), $128.8(\mathrm{~s}), 128.3(\mathrm{~s}), 127.1$ (s), 121.3 (s), 120.4 (s), 111.0 (s), 83.3 (s), 68.8 (s), $66.8(\mathrm{~s}), 66.6(\mathrm{~s}), 66.0(\mathrm{~s}), 28.2(\mathrm{~s}), 25.6(\mathrm{~s}), 17.9(\mathrm{~s}), 15.1(\mathrm{~s}) . \mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$259.1698, found 259.1688.

1-(((3,7-Dimethyloct-6-en-1-yl)oxy)methyl)-2-ethynylbenzene (46)

A solution of citronellol ($1.69 \mathrm{~mL}, 9.23 \mathrm{mmol}$) in THF (5.0 ml) was added to a suspension of $\mathrm{NaH} 60 \%$ wt (369 mg , $9.23 \mathrm{mmol})$ in THF (5.0 ml) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min and then, a solution of 1-(bromomethyl)-2-ethynylbenzene ($1.5 \mathrm{~g}, 7.69 \mathrm{mmol}$) in THF (5.0 mL) was added dropwise. The solution was stirred under reflux for 12 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO_{4} and filtered. The solvent was removed by rotary evaporation. The crude product was purified by flashed chromatography (eluent cyclohexane:ethyl acetate $97: 3$) to afford 1,12-enyne 46 as an orange oil in 72% isolated yield $(1.5 \mathrm{~g}, 5.5 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) δ $7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{td}, J=7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.09(\mathrm{~m}, 1$ $\mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 3.61-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 1 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.67(\mathrm{~m}$, $1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.32$ $(\mathrm{m}, 1 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 141.3$ (s), 132.6 (s), 131.1 (s), 129.0 (s), 127.3 (s), 127.0 (s), 124.9 (s), 120.5 (s),
 17.6 (s). $\mathrm{APCI}^{+} m / z$ calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 271.2056$, found 271.2057.

1-(Hex-5-yn-1-yloxy)-2-(((3-methylbut-2-en-1-yl)oxy)methyl)benzene (48)

A suspension of $\mathrm{NaH} 60 \% \mathrm{wt}(108.0 \mathrm{mg}, 2.69 \mathrm{mmol})$ in THF (6.0 ml) was cooled in an ice bath and a solution of (2-(hex-5-yn-1yloxy)phenyl)methanol ($500.0 \mathrm{mg}, 2.45 \mathrm{mmol}$) in THF (2.0 ml) was added dropwise. The solution was stirred at $25^{\circ} \mathrm{C}$ for 20 min . Then, 1-bromo-3-methylbut-2-ene $(0.28 \mathrm{ml}, \quad 2.45 \mathrm{mmol})$ and tetrabutylammonium iodide ($9.0 \mathrm{mg}, 0.024 \mathrm{mmol}$) in THF (2.0 ml) was added carefully and it was stirred at $70^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was quenched with 1 ml of methanol and the crude was filtered in vacuum through celite washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was purified with a silica gel column and eluted with cyclohexane:ethyl acetate $(0-100 \%)$ using a CombiFlash chromatographer to afford 1,13-enyne 48 as a slightly yellowish oil in 73% isolated yield ($487.7 \mathrm{mg}, 1.791 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.37(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.9$ $\mathrm{Hz}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.5 \mathrm{~Hz}, J=1.0,1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.2 \mathrm{~Hz}, J=0.9,1 \mathrm{H})$, $5.44-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=6.8,2 \mathrm{H}), 3.94(\mathrm{t}, J=6.2,2 \mathrm{H}), 2.24(\mathrm{td}, J=$ $7.0, J=2.6,2 \mathrm{H}), 1.95(\mathrm{t}, J=2.7,1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~d}, J=0.9,3 \mathrm{H}), 1.72-$ $1.68(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 156.3(\mathrm{~s}), 136.3(\mathrm{~s}), 128.7$ (s$), 128.2(\mathrm{~s}), 127.0(\mathrm{~s}), 121.4(\mathrm{~s}), 120.2(\mathrm{~s}), 110.8(\mathrm{~s}), 83.8(\mathrm{~s}), 68.6(\mathrm{~s}), 67.1(\mathrm{~s}), 66.8(\mathrm{~s})$,
66.6 (s), 28.1 (s), 25.6 (s), 25.0 (s), 18.0 (s), 17.8 (s). $\mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$295.1674, found 295.1670.

1-((6-Methylhept-5-en-1-yl)oxy)-2-((prop-2-yn-1-yloxy)methyl)benzene (50)

To a solution of 2-(hydroxymethyl)phenol ($1.561 \mathrm{~g}, 12.57 \mathrm{mmol}$) in acetone (18.0 mL) were added 7-bromo-2-methylhept-2-ene $(2.184 \mathrm{~g}, 11.43 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(7.90 \mathrm{~g}, 57.2 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(1.118 \mathrm{~g}, 3.43 \mathrm{mmol})$ and tetrabutylammonium iodide $(42.0 \mathrm{mg}$, 0.114 mmol). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 30 h and then filtered through a pad of celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed and the crude was used directly in the next step ($2.286 \mathrm{mg}, 9.72 \mathrm{mmol}$). A solution of (2-((6-methylhept-5-en-1-yl)oxy)phenyl)methanol ($3.796 \mathrm{~g}, 16.2 \mathrm{mmol}$) in THF (20.0 ml) was added to a suspension of $\mathrm{NaH} 60 \%$ wt ($972 \mathrm{mg}, 24.3 \mathrm{mmol}$) in THF $(20.0 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 30 min . Then, a solution of 3-bromoprop-1-yne 80% wt $(2.345 \mathrm{ml}, 21.1 \mathrm{mmol})$ was added dropwise at 25 ${ }^{\circ} \mathrm{C}$. The solution was stirred under reflux for 12 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO_{4} and filtered. The solvent was removed by rotary evaporation. The crude product was purified with a silica gel column and eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 1,13enyne 50 as an yellow oil in 75% isolated yield ($3.309 \mathrm{~g}, 12.15 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.44(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (td, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2$ H), $4.27(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.09$ $(\mathrm{m}, 2 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 156.9$ (s), 131.7 (s), 129.4 (s), 128.9 (s), 126.1 (s), 124.5 (s), $120.3(\mathrm{~s}), 111.3(\mathrm{~s}), 80.2(\mathrm{~s}), 74.4(\mathrm{~s}), 68.0(\mathrm{~s}), 66.7(\mathrm{~s}), 57.5(\mathrm{~s}), 29.0(\mathrm{~s}), 27.8(\mathrm{~s}), 26.4(\mathrm{~s})$, 25.8 (s), $17.8(\mathrm{~s}) . \mathrm{ESI}^{+} m / z$ calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$295.1674, found 295.1674.

1-((7-Methyloct-6-en-1-yl)oxy)-2-((prop-2-yn-1-yloxy)methyl)benzene (52)

To a solution of 2-(hydroxymethyl)phenol ($1.561 \mathrm{~g}, 12.57$ $\mathrm{mmol})$ in acetone $(18.0 \mathrm{~mL})$ were added 8 -bromo-2-methyloct-2-ene ($2.345 \mathrm{~g}, 11.43 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(7.90 \mathrm{~g}, 57.2 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.118 \mathrm{~g}, 3.43 \mathrm{mmol})$ and tetrabutylammonium iodide $(42.0 \mathrm{mg}, 0.114 \mathrm{mmol})$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 30 h and then filtered through a pad of celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed and the crude was used directly in the next step ($2.356 \mathrm{mg}, 9.47 \mathrm{mmol}$). A solution of (2-((7-methyloct-6-en-1-yl)oxy)phenyl)methanol ($4.023 \mathrm{~g}, 16.2 \mathrm{mmol}$) in THF $(20.0 \mathrm{ml})$ was added to a suspension of $\mathrm{NaH} 60 \% \mathrm{wt}(972 \mathrm{mg}, 24.3 \mathrm{mmol})$ in THF (20.0 $\mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 30 min . Then, a solution of 3-bromoprop-1-yne 80% wt $(2.345 \mathrm{ml}, 21.1 \mathrm{mmol})$ was added dropwise at 25 ${ }^{\circ} \mathrm{C}$. The solution was stirred under reflux for 12 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO_{4} and filtered. The solvent was removed by rotary evaporation. The crude product was purified with a silica gel column and eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 1,14enyne 52 as an yellow oil in 69% isolated yield ($3.201 \mathrm{~g}, 11.18 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.45(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (dt, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2$
H), 4.29 (d, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.04(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.07$ $(\mathrm{m}, 2 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 156.9$ (s), 131.4 (s), 129.4 (s), 128.9 (s), 126.1 (s), 124.7 (s),
 $17.8(\mathrm{~s})$. $\mathrm{APCI}^{+} m / z$ calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$287.2006, found 287.2005.

1-(Bromomethyl)-2-((3,7-dimethyloct-6-en-1-yl)oxy)benzene

To a solution of (2-((3,7-dimethyloct-6-en-1yl)oxy)phenyl)methanol ($1.020 \mathrm{~g}, 3.89 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100.0 \mathrm{~mL})$ was added triphenylphosphine (1.835 g , 7.00 mmol) under argon. The resulting solution was cooled in an ice bath and a solution of 1-bromopyrrolidine-2,5-dione ($1.245 \mathrm{~g}, 7.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100.0 \mathrm{ml})$ was added. The reaction mixture was stirred for 12 h at $25^{\circ} \mathrm{C}$. Then, the solvent was removed and the product was purified with a silica gel column eluted with cyclohexane:ethyl acetate $(0-100 \%)$ using a CombiFlash chromatographer to afford 1-(bromomethyl)-2-((3,7-dimethyloct-6-en-1-yl)oxy)benzene as a yellow oil quantitatively ($1.265 \mathrm{~g}, 3.89 \mathrm{mmol})$. This compound was not very stable so it was kept in the freezer. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.31(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26 (td, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{td}, J=7.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.14-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.10-4.02(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.86$ $(\mathrm{m}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=0.40 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3$ H), $1.46-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 157.1$ (s), 131.4 (s), 130.9 (s), 130.2 (s), 126.3 (s), 124.8 (s), 120.5 (s), 111.8 (s), 66.6 (s), 37.2 (s), 36.3 (s), 29.6 (s), 29.2 (s), 25.9 (s), 25.6 (s), 19.7 (s), 17.8 (s).

Dimethyl 2-(but-3-yn-1-yl)-2-(2-((3,7-dimethyloct-6-en-1-yl)oxy)benzyl)malonate (54)

To a suspension of $\mathrm{NaH} 60 \%$ wt ($49.0 \mathrm{mg}, 1.23 \mathrm{mmol}$) in DMF (10.0 mL) at $0^{\circ} \mathrm{C}$ under argon was added a solution of dimethyl 2-(but-3-yn-1-yl)malonate ($249.0 \mathrm{mg}, 1.35 \mathrm{mmol}$) in DMF (2.5 mL). The mixture was stirred for 10 min and then, a solution of 1-(bromomethyl)-2-((3,7-dimethyloct-6-en-1-yl)oxy)benzene ($400.0 \mathrm{mg}, 1.23 \mathrm{mmol}$) in DMF (2.5 mL) was added dropwise. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 19 h . The solution was extracted with diethyl ether and brine and the combined organic layers were dried over MgSO_{4} and filtered. The solvent was removed by rotary evaporation. The crude product was purified with a silica gel column and eluted with hexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 1,15-enyne 54 as a pale yellow oil in 55% isolated yield ($288.7 \mathrm{mg}, 0.67 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.18$ (ddd, $J=$ $8.2,7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (dd, $J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.11$ (ddt, $J=$ $8.4,5.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 2.30$ - 2.21 (m, 2 H), $2.12-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.61(\mathrm{~s}, 3$ H), $1.43-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.14(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 171.3$ (s), 157.6 (s), 131.3 (s), 131.1 (s), 128.4 (s), 124.7 (s), 124.2 (s), $120.2(\mathrm{~s}), 111.3(\mathrm{~s}), 83.8(\mathrm{~s}), 68.5(\mathrm{~s}), 66.5(\mathrm{~s}), 58.7(\mathrm{~s}), 52.3(\mathrm{~s}), 37.2(\mathrm{~s}), 35.9(\mathrm{~s}), 31.8$ (s), 31.3 (s), 29.7 (s), 25.7 (s), 25.5 (s), 19.6 (s), 17.7 (s), $14.5(\mathrm{~s}) . \mathrm{ESI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 451.2455$, found 451.2457.

1-((3,7-Dimethyloct-6-en-1-yl)oxy)-2-((pent-4-yn-1-yloxy)methyl)benzene (56)

A solution of pent-4-yn-1-ol ($160.6 \mathrm{mg}, 1.909 \mathrm{mmol}$) in THF $(5.0 \mathrm{ml})$ was added to a suspension of $\mathrm{NaH} 60 \%$ wt $(74.8 \mathrm{mg}$, 1.870 mmol) in THF (10.0 ml) and the reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 30 min . Then, a solution of $1-$ (bromomethyl)-2-((3,7-dimethyloct-6-en-1-yl)oxy)benzene ($599.4 \mathrm{mg}, 1.843 \mathrm{mmol}$) and tetrabutylammonium iodide ($10.0 \mathrm{mg}, 0.027 \mathrm{mmol}$) in THF $(5.0 \mathrm{ml})$ was added dropwise and it was stirred again at $25^{\circ} \mathrm{C}$ for four days. The reaction was quenched with 1 ml of methanol and the crude was filtered in vacuum through celite washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then, the product was purified with a silica gel column and eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 1,16-enyne 56 as a yellowish oil in 26% isolated yield ($154.8 \mathrm{mg}, 0.471 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.37(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.8 \mathrm{~Hz}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~s}$, $2 \mathrm{H}), 4.04-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.1,2 \mathrm{H}), 2.32(\mathrm{td}, J=7.1, J=2.6,2 \mathrm{H}), 2.08-1.95$ $(\mathrm{m}, 2 \mathrm{H}), 1.92(\mathrm{t}, J=2.7,1 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.65$ - $1.57(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.19(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 156.6$ (s), 131.4 (s), 128.7 (s), 128.5 (s), 127.1 (s), 124.8 (s), 120.3 (s), 111.1 (s), 84.2 (s), 69.0 (s$), 68.4$ (s), 67.7 (s), 66.3 (s), 37.2 (s), 36.3 (s), 29.7 (s , 28.9 (s), 25.8 (s$), 25.6$ (s$), 19.7$ (s$), 17.8$ (s$), 15.4$ (s$)$.

1-((3,7-Dimethyloct-6-en-1-yl)oxy)-2-((hex-5-yn-1-yloxy)methyl)benzene (58)

A solution of (2-((3,7-dimethyloct-6-en-1yl)oxy)phenyl)methanol ($500.0 \mathrm{mg}, 1.906 \mathrm{mmol}$) in THF (2.0 ml) was added to a suspension of $\mathrm{NaH} 60 \%$ wt (99.0 mg , $2.477 \mathrm{mmol})$ in THF (4.0 ml) and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 30 min . When the solution had cooled down to $25^{\circ} \mathrm{C}$, a solution of 6-iodohex-1-yne ($430.0 \mathrm{mg}, 2.067 \mathrm{mmol}$) in THF (2.0 ml) was added dropwise and it was stirred again at $70^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with 1 ml of methanol, the solvent was removed under reduced pressure and the crude was filtered through a plug of silica with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then, the product was purified with a silica gel column and eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 1,17-enyne $\mathbf{5 8}$ as a yellowish oil in 28% isolated yield (184.3 $\mathrm{mg}, 0.538 \mathrm{mmol}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.37(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{td}, J=7.9 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{t}, J=6.3,2 \mathrm{H}), 2.02(\mathrm{td}$, $J=7.0, J=2.6,2 \mathrm{H}), 2.08-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{t}, J=2.7,1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.76-$ $1.70(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.37(\mathrm{~m}$, $1 \mathrm{H}), 1.26-1.19(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 156.5$ (s), 131.2 (s), 128.5 (s), 128.3 (s), 127.2 (s), 124.7 (s), 120.2 (s), 111.0 (s), 84.3 (s), 70.0 (s), 68.4 (s), 67.5 (s), 66.2 (s), 37.1 (s), 36.2 (s), 29.6 (s), 28.9 (s), 25.7 (s), 25.5 (s), 25.3 (s), 19.6 (s), $18.2(\mathrm{~s}), 17.7(\mathrm{~s}) . \mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+} 343.2637$, found 343.2633 .

1-Ethynyl-3-((7-methyloct-6-en-1-yl)oxy)benzene (60)

To a solution of 3-ethynylphenol ($1.485 \mathrm{~g}, 12.57 \mathrm{mmol})$ in acetone $(18.0 \mathrm{~mL})$ were added 8 -bromo-2-methyloct-2-ene ($2.345 \mathrm{~g}, 11.43$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(7.90 \mathrm{~g}, 57.2 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1.118 \mathrm{~g}, 3.43 \mathrm{mmol})$ and tetrabutylammonium iodide ($42.0 \mathrm{mg}, 0.114 \mathrm{mmol}$). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 30 h and then filtered through a pad of celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed and the product was purified with a silica gel column eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 1,12 -enyne $\mathbf{6 0}$ as a colourless oil in 82% isolated yield (2.271 g , $9.37 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.11(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 2 \mathrm{H}) 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}$, $3 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 158.9$ (s), 131.5 (s), 129.4
 29.2 (s), 28.0 (s), 25.8 (s), 25.7 (s), 17.7 (s). $\mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 243.1743, found 243.1747.

1-Ethynyl-3-((11-methyldodec-10-en-1-yl)oxy)benzene (62)

To a solution of 3-ethynylphenol $(1.484 \mathrm{~g}, 12.57 \mathrm{mmol})$ in acetone (18.0 mL) were added 12-bromo-2-methyldodec-2-ene ($2.985 \mathrm{~g}, 11.43 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(7.90 \mathrm{~g}, 57.2 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1.118 \mathrm{~g}, 3.43 \mathrm{mmol})$ and tetrabutylammonium iodide $(42.0 \mathrm{mg}, 0.114 \mathrm{mmol})$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 30 h and then filtered through a pad of celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed and the product was purified with a silica gel column eluted with cyclohexane:ethyl acetate ($0-100 \%$) using a CombiFlash chromatographer to afford 1,16-enyne 62 as a colourless oil in 57% isolated yield $(1.946 \mathrm{~g}, 6.52 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 7.21(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.4$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 2.00-1.94$ (m, 2 H), 1.82-1.73 (m, 2 H), $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.29$ (m, 10 H). ${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 158.9(\mathrm{~s}), 131.1(\mathrm{~s}), 129.3(\mathrm{~s}), 124.9(\mathrm{~s})$, 124.4 (s), 123.0 (s), 117.6 (s), 116.0 (s), 83.7 (s), 76.8 (s), 68.1 (s), 29.9 (s), 29.6 (s$), 29.5$ (s), 29.5 (s), 29.4 (s), 29.3 (s), 29.2 (s), 28.1 (s), 26.0 (s$), 25.7$ (s$) . \mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$299.2369, found 299.2368.

General Procedure for the Preparation of Macrocycles

To a solution of the $1, n$-enyne (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, gold(I) complex \mathbf{C} ($3 \mathrm{~mol} \%$) was added. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ or under reflux until complete consumption of the starting material. The reaction was quenched with $0.05 \mathrm{ml}_{\text {of }} \mathrm{Et}_{3} \mathrm{~N}$, the solvent was removed under reduced pressure and the crude was analysed by quantitative ${ }^{1} \mathrm{H}$ NMR using 1,4-diacetylbenzene as internal standard. The product was purified by preparative-TLC using different gradients of cyclohexane and ethyl acetate to obtain the pure macrocycle as a mixture of diastereoisomers.

8,11,11-Trimethyl-7,8,9,10,10a,11,13,15-octahydro-6Hbenzo[b]cyclobuta[g/[1,5]dioxacyclotridecine (30)

Macrocycle 30 was synthesized following the general procedure using 1,14-enyne 29 ($78.1 \mathrm{mg}, 0.26 \mathrm{mmol}$) and catalyst $\mathbf{C}(7.0$ $\mathrm{mg}, 7.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.007 \mathrm{M})$ at $25^{\circ} \mathrm{C}$. After 12 h , the product was obtained as a yellow oil in 57% isolated yield (44.5 $\mathrm{mg}, 0.15 \mathrm{mmol}$), diastereoselectivity $2.3: 1 .{ }^{1} \mathrm{H}$ NMR for the mixture of diastereoisomers ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.30-7.22$ (m, 2 H), 6.89-6.84 (m, 2 H), $6.10(\mathrm{~s}, 0.3 \mathrm{H}), 6.03(\mathrm{~s}, 0.7 \mathrm{H}), 4.59-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~d}$, $J=9.3 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.22-4.12(\mathrm{~m}, 1.3 \mathrm{H}), 4.05-3.90(\mathrm{~m}, 3 \mathrm{H}), 2.47-2.43(\mathrm{~m}, 0.7 \mathrm{H})$, 2.26-2.22 (m, 0.3 H), 2.05-1.89 (m, 1H), 1.75-1.47 (m, 6 H$), 1.13$ (s, 2.1 H$), 1.12$ (s, 0.9 H), $1.06(\mathrm{~s}, 0.9 \mathrm{H}), 1.05(\mathrm{~s}, 2.1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2.1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR for the major diastereoisomer ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 158.2$ (s), 146.8 (s), 141.2 (s$), 131.8(\mathrm{~s}), 129.9(\mathrm{~s}), 126.3(\mathrm{~s}), 120.0(\mathrm{~s}), 111.3$ (s), 69.8 (s), 68.5 (s), 67.7 (s), 52.1 (s), 42.9 (s), 35.9 (s), 33.3 (s), 30.2 (s), 27.0 (s), 24.7 (s), 22.4 (s), 20.7 (s). ${ }^{13} \mathrm{C}$ NMR for the minor diastereoisomer ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 158.1$ (s), 146.6 (s), 142.8 (s), 130.1 (s), 130.0 (s), 126.0 (s), 119.9 (s), 110.9 (s), 69.8 (s), 68.9 (s), 67.0 (s), 55.8 (s), 42.7 (s), 35.2 (s), 34.9 (s), 34.1 (s), 30.5 (s), 29.1 (s), 22.2 (s), 21.0 (s). $\mathrm{ESI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 323.1982$; found 323.1989.

2,2,5-Trimethyl-2,2a,3,4,5,7-hexahydrobenzo[c]cyclobuta[e]oxonine (39)

Macrocycle 39 was synthesized following the general procedure using 1,10-enyne $38(63.0 \mathrm{mg}, 0.26 \mathrm{mmol})$ and catalyst $\mathbf{C}(7.0 \mathrm{mg}, 7.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{M})$ at $25^{\circ} \mathrm{C}$. After 19 h , the product was obtained as a yellow oil in 51% isolated yield ($32.1 \mathrm{mg}, 0.13 \mathrm{mmol}$), diastereoselectivity 5:1. ${ }^{1} \mathrm{H}$ NMR for the major diastereoisomer (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.49(\mathrm{~s}, 1$ H), $4.99(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.04$ (m, 1 H), 1.93-1.79 (m, 2 H), 1.71-1.62 (m, 2 H), 1.24 (s, 3 H), 1.13 (d, J=6.6 Hz, 3 H), $1.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR for the major diastereoisomer $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 148.0(\mathrm{~s})$, 140.0 (s), 136.1 (s), 133.7 (s), 131.2 (s), 127.8 (s), 127.7 (s), 127.6 (s), 71.6 (s), 66.5 (s), 57.2 (s), 42.6 (s), 37.1 (s), 28.7 (s), 27.1 (s), 22.6 (s), 22.4 (s). $\mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$243.1743, found 243.1747.

1,1-Dimethyl-1,7,13,13a-tetrahydrodibenzo[b,glcyclobutaleloxonine (41)

Macrocycle 41 was synthesized following the general procedure using 1,10-enyne $40(71.9 \mathrm{mg}, 0.26 \mathrm{mmol})$ and catalyst $\mathbf{C}(7.0 \mathrm{mg}, 7.8$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{M})$ at $45{ }^{\circ} \mathrm{C}$. After 23 h , the product was obtained as a dark yellow solid in 66% isolated yield $(47.4 \mathrm{mg}, 0.17$ mmol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.42-7.40(\mathrm{~m}, 1 \mathrm{H})$, 7.29-7.27 (m, 1 H), 7.25-7.18 (m, 2 H), 7.15-7.08 (m, 2 H), 7.01 (dd, $J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (td, $J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.40 (s, 1 H), 5.12 (d, $J=10.8 \mathrm{~Hz}, 1$ H), $5.07(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=13.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=9.7,2.9 \mathrm{~Hz}, 1$ H), $2.74(\mathrm{dd}, J=14.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 157.4$ (s), 147.4 (s), 140.1 (s), 136.4 (s), 136.0 (s), 133.0 (s), 130.7 (s), 130.6 (s), 128.7 (s), 128.2 (s), 127.5 (s), 127.3 (s), 123.8 (s), 121.2 (s), 74.7 (s), 56.9 (s), $43.7(\mathrm{~s}), 31.4(\mathrm{~s}), 27.1(\mathrm{~s}), 23.5(\mathrm{~s}) . \mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 277.1587$, found
277.1591. Structure confirmed by X-Ray crystallography, CCDC 912988. $\mathrm{Mp}=112.8$ $115.6^{\circ} \mathrm{C}$.

8,11,11-Trimethyl-7,8,9,10,10a,11-hexahydro-6H-benzo[b]cyclobuta[d]oxecine (43)

Macrocycle 43 was synthesized following the general procedure using 1,11-enyne 42 ($66.7 \mathrm{mg}, 0.26 \mathrm{mmol}$) and catalyst $\mathbf{C}(7.0 \mathrm{mg}, 7.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{M})$ at $70{ }^{\circ} \mathrm{C}$. After 2 h , the product was obtained as a yellow oil in 20% isolated yield ($13.3 \mathrm{mg}, 0.05 \mathrm{mmol}$), diastereoselectivity $4: 1$. ${ }^{1} \mathrm{H}$ NMR for the major diastereoisomer (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 1 \mathrm{H})$, 6.84-6.81 (m, 1 H), $6.21(\mathrm{~s}, 1 \mathrm{H}), 4.40-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=$ $11.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 1 \mathrm{H}), 3.44-1.39$ $(\mathrm{m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR for the major diastereoisomer ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 156.8$ (s), 147.8 (s), 139.6 (s), 129.5 (s), 128.6 (s$), 128.2$ (s$), 120.8(\mathrm{~s}), 113.0(\mathrm{~s}), 69.4(\mathrm{~s}), 56.1$ (s), 42.8 (s), 33.1 (s), 32.3 (s), 32.1 (s), $27.0(\mathrm{~s}), 23.0(\mathrm{~s}), 22.9$ (s), 20.8 (s). $\mathrm{ESI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$279.1719; found 279.1724 .

10,10-Dimethyl-6,7,8,9,9a,10,12,14-
 octahydrobenzo[b]cyclobuta[g][1,5]dioxacyclododecine (51)

Macrocycle 51 was synthesized following the general procedure using 1,13-enyne $50(70.8 \mathrm{mg}, 0.26 \mathrm{mmol})$ and catalyst $\mathbf{C}(7.0 \mathrm{mg}$, $7.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{M})$ at $25^{\circ} \mathrm{C}$. After 16 h , the product was obtained as a yellow oil in 29% isolated yield $(20.5 \mathrm{mg}, 0.08$ mmol). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.30-7.22(\mathrm{~m}, 2 \mathrm{H})$, 7.02-6.98 (m, 1 H), $6.92(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.30(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{dt}, J=11.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.94$ (m, 2 H), 2.42 (dd, $J=10.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07-2.00 (m, 1 H), $1.91-1.83$ (m, 1 H), $1.59-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 158.9$ (s), 146.5 (s$), 140.7$ (s$), 131.5$ (s$), 129.8$ (s$), 128.6$ (s$), 121.4$ (s), 116.2 (s), 69.9 (s), 69.8 (s), $68.4(\mathrm{~s}), 53.4(\mathrm{~s}), 42.6(\mathrm{~s}), 28.4(\mathrm{~s}), 28.0(\mathrm{~s}), 27.0(\mathrm{~s}), 24.0(\mathrm{~s}), 21.9(\mathrm{~s}) . \mathrm{ESI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$295.1669; found 295.1665.

11,11-Dimethyl-7,8,9,10,10a,11,13,15-octahydro-6Hbenzo[b]cyclobuta[g/[1,5]dioxacyclotridecine (53)

Macrocycle 53 was synthesized following the general procedure using 1,14-enyne $52(74.4 \mathrm{mg}, 0.26 \mathrm{mmol})$ and catalyst $\mathbf{C}(7.0 \mathrm{mg}$, $7.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{M})$ at $25^{\circ} \mathrm{C}$. After 19 h , the product was obtained as a yellow oil in 57% isolated yield ($42.4 \mathrm{mg}, 0.15 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.27-7.23$ (m, 2 H), 6.89-6.83 (m, 2 H), 6.06 (s, 1 H), 4.47 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 2.39$ (dd, $J=12.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.49-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 158.1$ (s), 146.6 (s). 141.7 (s), 131.9 (s), 129.8 (s), 125.9 (s), 119.8 (s), 110.9 (s), 69.8 (s), 69.2 (s), $68.6(\mathrm{~s}), 53.6(\mathrm{~s}), 42.6(\mathrm{~s}), 29.5(\mathrm{~s}), 28.2(\mathrm{~s}), 27.5(\mathrm{~s}), 27.1(\mathrm{~s}), 26.9(\mathrm{~s}), 22.1(\mathrm{~s}) . \mathrm{APCI}^{+}$ m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$287.2006, found 287.2009.

Macrocycle 55 was synthesized following the general procedure using 1,14-enyne 54 ($111.5 \mathrm{mg}, 0.26 \mathrm{mmol}$) and catalyst $\mathbf{C}(7.0$ $\mathrm{mg}, 7.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{M})$ at $25{ }^{\circ} \mathrm{C}$. After 16 h , the product was obtained as a pale yellow oil in 70% isolated yield ($79.0 \mathrm{mg}, 0.18 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR for the major diastereoisomer ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.16$ (ddd, $J=8.5,7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.88 (dd, $J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (s, 1 H$), 4.17-4.08$ (m, 1 H), 3.99 (td, $J=10.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (s, 3 H), 3.68 (s, 3 H), 3.56 (d, $J=14.0 \mathrm{~Hz}, 1$ H), $3.22(\mathrm{~d}, ~ J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=10.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 3 \mathrm{H}), 2.03-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.36(\mathrm{~m}$, $1 \mathrm{H}), 1.18-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR for the major diastereoisomer ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 172.5$ (s), 172.2 (s), 157.8 (s), 149.8 (s), 136.7 (s), 130.8 (s), 128.3 (s), 124.8 (s), 120.4 (s), 111.6 (s), 65.8 (s), 59.3 (s), 52.4 (s), 52.3 (s), 50.3 (s), 42.2 (s), 37.4 (s), 32.0 (s), 31.9 (s), 30.0 (s), 27.4 (s), 27.4 (s), 25.3 (s), 25.0 (s), 22.6 (s), 19.9 (s). $\mathrm{ESI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 451.2455$; found 451.2453.

4,4-Dimethyl-11-oxatricyclo[10.3.1.0 ${ }^{2,5}$ hexadeca-1(16),2,12,14-tetraene (61)

Macrocycle 61 was synthesized following the general procedure using 1,12-enyne $60(63.0 \mathrm{mg}, 0.26 \mathrm{mmol})$ and catalyst $\mathbf{C}(7.0 \mathrm{mg}, 7.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.45 \mathrm{M})$ at $25^{\circ} \mathrm{C}$. After 1 day, the product was obtained as a yellow oil in 70% isolated yield ($44.1 \mathrm{mg}, 0.18 \mathrm{mmol}$), mixture $5: 1$ of conformers. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.23-7.17(\mathrm{~m}, 1 \mathrm{H})$, 6.91-6.84 (m, 2 H), 6.79-6.73 (m, 1 H), 6.28 ($\mathrm{s}, 1 \mathrm{H}$), 4.00-3.91 (m, 2 H), 2.75-2.69 (m, 1 H), 1.82-1.75 (m, 3 H), 1.52-1.44 (m, 5 H$), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 159.2$ (s), 145.8 (s), 136.6 (s), 136.2 (s), 129.3 (s), 124.6 (s), 117.5 (s), 113.4 (s), 67.9 (s), 51.9 (s), 42.9 (s), 29.3 (s), 28.7 (s), 27.9 (s), 26.5 (s), 25.7 (s), 21.9 (s). $\mathrm{APCI}^{+} m / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$243.1743, found 243.1745.

4,4-Dimethyl-15-oxatricyclo[14.3.1.0 ${ }^{2,5}$]eicosa-1(20),2,16,18-tetraene (63)

Macrocycle 63 was synthesized following the general procedure using 1,12-enyne $62(77.6 \mathrm{mg}, 0.26 \mathrm{mmol})$ but $5 \mathrm{~mol} \%$ of catalyst $\mathbf{C}(11.7 \mathrm{mg}$, $13.0 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{M})$ at $45{ }^{\circ} \mathrm{C}$. After 2 days, the product was obtained as a yellow oil in 71% isolated yield ($55.1 \mathrm{mg}, 0.18 \mathrm{mmol}$), mixture $4: 1$ of conformers. ${ }^{1} \mathrm{H}$ NMR for the major diastereoisomer (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.21(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.77$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.67(\mathrm{~m}$, $1 \mathrm{H})$, 1.81-1.75 (m, 3 H), 1.46-1.30 (m, 13 H$), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR for the major diastereoisomer ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 159.2$ (s), 145.9 (s), 136.5 (s), 136.3
 $29.6(\mathrm{~s}), 29.5(\mathrm{~s}), 29.4(\mathrm{~s}), 29.3(\mathrm{~s}), 28.9(\mathrm{~s}), 27.9(\mathrm{~s}), 26.1(\mathrm{~s}), 21.8(\mathrm{~s}) . \mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$299.2369, found 299.2369.

Procedures for the Derivatization of Macrocycles

(3,3-Dimethyl-2-(3-methyl-5-(o-tolyloxy)pentyl)cyclobutyl)methanol (64)

A solution of macrocycle $30(50.0 \mathrm{mg}, 0.17 \mathrm{mmol})$ in methanol $(2.0 \mathrm{~mL})$ was added over $\mathrm{Pd} / \mathrm{C} 10 \%(18.0 \mathrm{mg}, 0.02 \mathrm{mmol})$. The resulting suspension was stirred at $25^{\circ} \mathrm{C}$ under H_{2} atm for 8 h . Then, it was filtered through Teflon 0.22 and the solvent was removed under reduced pressure. The crude product was purified with Preparative-TLC and eluted with hexane:ethyl acetate (2:1) to afford compound $\mathbf{6 4}$ as a colourless oil in 79% isolated yield ($39.9 \mathrm{mg}, 0.13 \mathrm{mmol}$), diastereoselectivity retained to $2.4: 1 .{ }^{1} \mathrm{H}$ NMR for the major diastereoisomer (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.76(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.59(\mathrm{~m}$, $1 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.64$ $(\mathrm{m}, 2 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.13(\mathrm{~m}, 1 \mathrm{H})$, $1.05-0.99(\mathrm{~m}, 6 \mathrm{H}), 0.97-0.92(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR for the major diastereoisomer (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 157.3(\mathrm{~s}), 130.7(\mathrm{~s}), 126.9(\mathrm{~s}), 126.8(\mathrm{~s}), 120.2(\mathrm{~s}), 111.0(\mathrm{~s}), 67.6(\mathrm{~s})$,
 22.9 (s), 19.8 (s), $16.4(\mathrm{~s}) . \mathrm{ESI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 327.2295$; found 327.2297 .

8,11,11-Trimethyl-7,8,9,10,10a,11,12,12a,13,15-decahydro-6Hbenzo[b]cyclobuta[g][1,5]dioxacyclotridecine (65)

A solution of macrocycle $\mathbf{3 0}(50.0 \mathrm{mg}, 0.17 \mathrm{mmol})$ and pyridine ($6.7 \mu \mathrm{~L}, 0.08 \mathrm{mmol}$) in methanol $(2.0 \mathrm{~mL})$ was added over Pd / C $10 \%(18.0 \mathrm{mg}, 0.02 \mathrm{mmol})$. The resulting suspension was stirred at $25{ }^{\circ} \mathrm{C}$ under H_{2} atm for 5 h . Then, it was filtered through Teflon 0.22 and the solvent was removed under reduced pressure. The crude product was purified with Preparative-TLC and eluted with hexane:ethyl acetate ($9: 1$) to afford compound $\mathbf{6 5}$ as a colourless oil in 82% isolated yield ($41.1 \mathrm{mg}, 0.14 \mathrm{mmol}$), diastereoselectivity $6.0: 1.6: 1.4: 1.0$. It was possible to assign trans configuration in the cyclobutane ring for the major diastereoisomer through ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC phase edited, ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY. ${ }^{1} \mathrm{H}$ NMR for the major diastereoisomer ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1$ H), 6.91-6.85 (m, 2 H), $4.56(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.15(\mathrm{~m}$, $1 \mathrm{H}), 4.01-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=9.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-$ $2.06(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.65(\mathrm{~m}$, $1 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 1 \mathrm{H})$, $1.17-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR for the major diastereoisomer ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 158.4$ (s), 131.6 (s), 129.8 (s), 127.0 (s), 120.4 (s), 112.4 (s), 76.8 (s), 70.3 (s), 66.1 (s), 49.2 (s), 37.1 (s), 37.0 (s), 35.7 (s), 34.0 (s), 30.9 (s), 30.3 (s), 27.4 (s), 25.5 (s), 22.8 (s), 19.1 (s). $\mathrm{ESI}^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+} 325.2138$; found 325.2140 .

X-Ray Crystallographic Data

(Acetonitrile)[(2',4',6'-triisopropyl-3,6-dimethoxy-1,1'-biphenyl-2-yl)di-tertbutylphosphinelgold(I) hexafluoroantimonate (G)

Table 1. Crystal data and structure
refinement for complex G. refinement for complex \boldsymbol{G}.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta $=30.01^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

C34.75 H56 Au
Cl F6 N O2 P Sb
4075.83

100(2) K
$0.71073 \AA$
Monoclinic
P2(1)/n
$\mathrm{a}=20.9905(9) \AA$
$\alpha=90.00^{\circ}$.
$\mathrm{b}=8.7006(4) \AA$
$\beta=114.731(2)^{\circ}$.
$\mathrm{c}=24.1270(11) \AA$
$\gamma=90.00^{\circ}$.
4002.2(3) \AA^{3}

4
$1.691 \mathrm{Mg} / \mathrm{m}^{3}$
$4.501 \mathrm{~mm}^{-1}$
2014
$0.35 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$
1.08 to 30.01°.
$-29<=\mathrm{h}<=29$,
$-11<=\mathrm{k}<=11$,
$-33<=1<=33$
43067
10446
$[\mathrm{R}(\mathrm{int})=0.0291]$
0.895 \%

Empirical
0.8715 and 5421

Full-matrix
least-squares on F^{2}
10446 / 89 / 557
1.102
$\mathrm{R} 1=0.0262$,
$\mathrm{wR} 2=0.0681$
$\mathrm{R} 1=0.0314$,
$\mathrm{wR} 2=0.0747$
1.328 and -0.805 e. \AA^{-3}

Table 2. Bond lengths [Å] and angles [T for complex G.

Bond lengths:		C5P-C1P\#2	1.75(3)
Au1-N1	2.040(3)	Angles:	
Au1-P1	2.2534(8)		
P1-C1	1.854(3)	N1-Au1-P1	170.76(8)
P1-C24	$1.895(3)$	C1-P1-C24	110.89(14)
P1-C28	1.896 (3)	C1-P1-C28	109.53(12)
N1-C32	1.129(4)	C24-P1-C28	113.30(13)
O1-C2	$1.350(4)$	C1-P1-Au1	110.59(9)
O1-C7	1.423(4)	C24-P1-Au1	105.49(9)
O2-C5	1.374 (3)	C28-P1-Au1	106.90(10)
O2-C8	$1.430(3)$	C32-N1-Au1	166.9(3)
C1-C2	1.408(4)	C2-O1-C7	119.1(3)
C1-C6	$1.415(4)$	C5-O2-C8	116.5(2)
C2-C3	$1.376(4)$	C2-C1-C6	118.6(2)
C3-C4	1.387(4)	C2-C1-P1	117.6(2)
C4-C5	1.373(4)	C6-C1-P1	123.8(2)
C5-C6	$1.412(4)$	O1-C2-C3	122.5(3)
C6-C9	$1.508(4)$	O1-C2-C1	115.6(3)
C9-C14	$1.406(5)$	C3-C2-C1	121.9(3)
C9-C10	1.414(4)	C2-C3-C4	119.7(3)
C10-C11	$1.390(5)$	C5-C4-C3	119.9(3)
C10-C15	$1.509(5)$	C4-C5-O2	122.8(3)
C11-C12	$1.374(6)$	C4-C5-C6	122.0(3)
C12-C13	$1.394(5)$	O2-C5-C6	115.2(3)
C12-C18	1.503(5)	C5-C6-C1	118.0(3)
C13-C14	1.397(4)	C5-C6-C9	115.4(2)
C14-C21	1.521(4)	C1-C6-C9	126.6(2)
C15-C16	$1.532(5)$	C14-C9-C10	119.1(3)
C15-C17	$1.535(5)$	C14-C9-C6	120.3(2)
C18-C20	1.464 (8)	C10-C9-C6	120.2(3)
C18-C20'	$1.465(8)$	C11-C10-C9	118.4(3)
C18-C19	$1.493(6)$	C11-C10-C15	119.0(3)
C21-C23	$1.525(5)$	C9-C10-C15	122.5(3)
C21-C22	$1.534(5)$	C12-C11-C10	123.6(3)
C24-C27'	1.502(6)	C11-C12-C13	117.4(3)
C24-C25	$1.518(6)$	C11-C12-C18	118.2(4)
C24-C26	$1.532(6)$	C13-C12-C18	124.4(4)
C24-C25'	1.540(7)	C12-C13-C14	121.7(4)
C24-C26'	$1.564(6)$	C13-C14-C9	119.6(3)
C24-C27	$1.569(6)$	C13-C14-C21	117.9(3)
C28-C31	$1.475(6)$	C9-C14-C21	122.4(3)
C28-C30'	1.516 (6)	C10-C15-C16	110.1(3)
C28-C29'	$1.536(6)$	C10-C15-C17	112.1(4)
C28-C30	$1.537(6)$	C16-C15-C17	110.2(3)
C28-C29	$1.565(5)$	C20-C18-C20'	48.1(8)
C28-C31'	$1.606(6)$	C20-C18-C19	113.6(6)
C32-C33	$1.457(5)$	C20'-C18-C19	123.7(6)
Sb1-F3	$1.856(2)$	C20-C18-C12	113.6(4)
Sb1-F1	1.857(2)	C20'-C18-C12	121.5(6)
Sb1-F5	1.864(2)	C19-C18-C12	114.4(3)
Sb1-F2	1.867(2)	C14-C21-C23	114.1(3)
Sb1-F6	1.872(2)	C14-C21-C22	109.1(3)
Sb1-F4	1.874(2)	C23-C21-C22	109.2(3)
C1S-Cl2S	1.599(13)	C27'-C24-C25	129.4(5)
C1S-Cl1S	1.838(13)	C27'-C24-C26	78.8(5)
C1P-C2P	$1.532(5)$	C25-C24-C26	110.1(4)
C1P-C5P\#1	1.75(3)	C27'-C24-C25'	108.8(6)
C2P-C3P	$1.536(5)$	C25-C24-C25'	25.1(3)
C3P-C4P	$1.538(5)$	C26-C24-C25'	125.2(4)
C4P-C5P	$1.535(5)$	C27'-C24-C26'	108.9(5)

Experimental Section

C25-C24-C26'	$84.6(5)$	C31-C28-P1	$117.4(3)$
C26-C24-C26'	$31.1(3)$	C30'-C28-P1	$110.8(3)$
C25'-C24-C26'	$106.4(5)$	C29'-C28-P1	$110.6(3)$
C27'-C24-C27	$29.8(4)$	C30-C28-P1	$104.5(3)$
C25-C24-C27	$108.1(5)$	C29-C28-P1	$103.0(3)$
C26-C24-C27	$106.6(5)$	C31'-C28-P1	$116.4(3)$
C25'-C24-C27	$83.9(5)$	N1-C32-C33	$179.1(4)$
C26'-C24-C27	$133.6(5)$	F3-Sb1-F1	$90.38(12)$
C27'-C24-P1	$107.0(3)$	F3-Sb1-F5	$179.16(12)$
C25-C24-P1	$115.9(3)$	F1-Sb1-F5	$90.01(13)$
C26-C24-P1	$108.2(3)$	F3-Sb1-F2	$89.90(13)$
C25'-C24-P1	$119.7(4)$	F1-Sb1-F2	$89.87(11)$
C26'-C24-P1	$105.7(3)$	F5-Sb1-F2	$90.84(14)$
C27-C24-P1	$107.6(3)$	F3-Sb1-F6	$89.32(12)$
C31-C28-C30'	$128.4(4)$	F1-Sb1-F6	$91.05(11)$
C31-C28-C29'	$68.5(4)$	F5-Sb1-F6	$89.93(13)$
C30'-C28-C29'	$110.7(4)$	F2-Sb1-F6	$178.80(12)$
C31-C28-C30	$114.6(4)$	F3-Sb1-F4	$89.42(12)$
C30'-C28-C30	$32.0(3)$	F1-Sb1-F4	$179.53(12)$
C29'-C28-C30	$137.8(4)$	F5-Sb1-F4	$90.19(13)$
C31-C28-C29	$109.7(4)$	F2-Sb1-F4	$89.70(12)$
C30'-C28-C29	$74.7(4)$	F6-Sb1-F4	$89.37(11)$
C29'-C28-C29	$43.5(4)$	C12S-C1S-C11S	$114.2(8)$
C30-C28-C29	$106.6(4)$	C2P-C1P-C5P\#1	$103.2(18)$
C31-C28-C31'	$37.4(3)$	C1P-C2P-C3P	$119(2)$
C30'-C28-C31'	$104.3(4)$	C2P-C3P-C4P	$99.6(4)$
C29'-C28-C31'	$103.6(4)$	C5P-C4P-C3P	$99.6(4)$
C30-C28-C31'	$80.1(4)$	C4P-C5P-C1P\#2	$78.4(15)$
C29-C28-C31'	$137.2(4)$		

(Acetonitrile) $\left[\left(2^{\prime}, 4^{\prime}, 6^{\prime}\right.\right.$-triisopropyl-3,4,5,6-tetramethyl-1,1'-biphenyl-2-yl)di-tertbutylphosphinelgold(I) hexafluoroantimonate (H)

Table 3. Crystal data and structure

 refinement for complex \boldsymbol{H}.

C35.50 H57 Au Cl F6 N P Sb
996.96

100(2) K
$0.71073 \AA$
Triclinic
P-1
$\mathrm{a}=8.7592(3) \AA$
$\alpha=88.1480(10)^{\circ}$.
$\mathrm{b}=19.0004(7) \AA$
$\beta=84.8950(10)^{\circ}$.
$\mathrm{c}=23.7485(8) \AA$
$\gamma=84.2550(10)^{\circ}$.
3915.9(2) \AA^{3}

Z	4
Density (calculated)	$1.691 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.595 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	1972
Crystal size	$0.40 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$
Theta range for data collection	0.86 to 30.07°.
Index ranges	$-11<=\mathrm{h}<=11$,
	$-26<=\mathrm{k}<=26$,
	$-31<=1<=33$
Reflections collected	87942
Independent reflections	20142
	$[\mathrm{R}($ int $)=0.0306]$
Completeness to theta $=30.07^{\circ}$	0.876%
Absorption correction	Empirical
Max. and min. transmission	0.4601 and 0.2608
Refinement method	Full-matrix
	least-squares on F^{2}
Data / restraints / parameters	$20142 / 341 / 1009$
Goodness-of-fit on F^{2}	1.093
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0249$,
	wR2 $=0.0630$
R indices (all data)	$\mathrm{R} 1=0.0273$,
	wR2 $=0.0683$
Largest diff. peak and hole	$2.409 \mathrm{and}-1.370 \mathrm{e} . \AA^{-3}$

Table 4. Bond lengths [A]] and angles [\bigcirc I for complex H .

Bond lengths:		C14A-C15A	$1.390(4)$
		C14A-C23A	$1.522(3)$
Au1A-N1A	$2.049(2)$	C15A-C16A	$1.394(3)$
Au1A-P1A	$2.2656(6)$	C16A-C20A	$1.521(3)$
Au1B-N1B	$2.050(3)$	C17A-C18A	$1.528(4)$
Au1B-P1B	$2.2658(7)$	C17A-C19A	$1.536(4)$
N1A-C34A	$1.128(4)$	C20A-C22A	$1.532(4)$
N1B-C34B	$1.135(4)$	C20A-C21A	$1.533(4)$
P1A-C1A	$1.866(3)$	C26A-C27A	$1.526(4)$
P1A-C26A	$1.898(3)$	C26A-C28A	$1.536(4)$
P1A-C30A	$1.918(3)$	C26A-C29A	$1.540(4)$
P1B-C1B	$1.866(3)$	C30A-C33A	$1.527(4)$
P1B-C26B	$1.913(3)$	C30A-C32A	$1.537(4)$
P1B-C30B	$1.917(3)$	C30A-C31A	$1.546(4)$
C1A-C2A	$1.414(3)$	C34A-C35A	$1.462(4)$
C1A-C6A	$1.430(4)$	C23A-C25A	$1.527(4)$
C2A-C3A	$1.402(4)$	C23A-C24A	$1.534(4)$
C2A-C7A	$1.504(4)$	C1B-C2B	$1.415(3)$
C3A-C4A	$1.397(4)$	C1B-C6B	$1.421(3)$
C3A-C8A	$1.512(4)$	C2B-C3B	$1.402(3)$
C4A-C5A	$1.407(4)$	C2B-C7B	$1.503(4)$
C4A-C9A	$1.512(4)$	C3B-C4B	$1.395(3)$
C5A-C6A	$1.412(4)$	C3B-C8B	$1.513(4)$
C5A-C10A	$1.522(4)$	C4B-C5B	$1.401(3)$
C6A-C11A	$1.511(3)$	C4B-C9B	$1.511(4)$
C11A-C12A	$1.414(3)$	C5B-C6B	$1.409(3)$
C11A-C16A	$1.416(3)$	C5B-C10B	$1.515(4)$
C12A-C13A	$1.393(4)$	C6B-C11B	$1.518(3)$
C12A-C17A	$1.524(3)$	C11B-C16B	$1.414(3)$
C13A-C14A	$1.393(4)$	C11B-C12B	$1.414(3)$

Experimental Section

C12B-C13B	1.400 (3)	C1B-P1B-C30B	111.57(14)
C12B-C17B	1.494(13)	C26B-P1B-C30B	112.25(16)
C12B-C17'	1.59(2)	C1B-P1B-Au1B	108.88(8)
C13B-C14B	1.390(3)	C26B-P1B-Au1B	106.09(11)
C14B-C15B	1.392(3)	C30B-P1B-Au1B	105.95(11)
C14B-C20B	1.518(3)	C2A-C1A-C6A	118.2(2)
C15B-C16B	$1.398(3)$	C2A-C1A-P1A	121.4(2)
C16B-C23B	1.514(4)	C6A-C1A-P1A	120.37(18)
C17B-C18B	1.526(14)	C3A-C2A-C1A	121.0(2)
C17B-C19B	1.553(11)	C3A-C2A-C7A	116.1(2)
C17'-C19'	1.486 (19)	C1A-C2A-C7A	122.8(2)
C17'-C18'	1.51(2)	C4A-C3A-C2A	120.7(2)
C20B-C21B	1.528(4)	C4A-C3A-C8A	120.0(3)
C20B-C22B	$1.528(4)$	C2A-C3A-C8A	119.3(3)
C23B-C25B	$1.528(4)$	C3A-C4A-C5A	119.3(2)
C23B-C24B	$1.536(4)$	C3A-C4A-C9A	120.1(2)
C26B-C28 ${ }^{\prime}$	1.418(14)	C5A-C4A-C9A	120.6(2)
C26B-C27 ${ }^{\prime}$	1.515(16)	C4A-C5A-C6A	120.8(2)
C26B-C27B	$1.534(6)$	C4A-C5A-C10A	117.6(2)
C26B-C29B	1.541(6)	C6A-C5A-C10A	121.6(2)
C26B-C28B	$1.571(6)$	C5A-C6A-C1A	119.8(2)
C26B-C29'	1.577(14)	C5A-C6A-C11A	113.4(2)
C30B-C31'	1.403(14)	C1A-C6A-C11A	126.8(2)
C30B-C33B	1.490 (7)	C12A-C11A-C16A	118.6(2)
C30B-C32B	$1.495(6)$	C12A-C11A-C6A	120.5(2)
C30B-C33'	1.552(19)	C16A-C11A-C6A	119.0(2)
C30B-C31B	$1.598(6)$	C13A-C12A-C11A	119.3(2)
C30B-C32'	1.790 (16)	C13A-C12A-C17A	118.3(2)
C34B-C35B	$1.458(4)$	C11A-C12A-C17A	122.2(2)
Sb1A-F6A	1.8653(19)	C14A-C13A-C12A	122.5(2)
Sb1A-F3A	1.8694(18)	C15A-C14A-C13A	117.6(2)
Sb1A-F1A	1.8714(17)	C15A-C14A-C23A	121.5(2)
Sb1A-F4A	1.8740 (18)	C13A-C14A-C23A	120.9(2)
Sb1A-F2A	$1.8767(17)$	C14A-C15A-C16A	122.0(2)
Sb1A-F5A	1.8775(18)	C15A-C16A-C11A	119.7(2)
Sb1B-F3B	1.867(2)	C15A-C16A-C20A	117.7(2)
Sb1B-F6B	$1.868(2)$	C11A-C16A-C20A	122.4(2)
Sb1B-F1B	1.871(2)	C12A-C17A-C18A	112.1(2)
Sb1B-F4B	1.873(2)	C12A-C17A-C19A	111.1(2)
Sb1B-F2B	1.874(2)	C18A-C17A-C19A	109.5(2)
Sb1B-F5B	1.877(2)	C16A-C20A-C22A	112.2(2)
Sb1'-F3'	$1.863(4)$	C16A-C20A-C21A	110.8(2)
Sb1'-F6'	$1.866(4)$	C22A-C20A-C21A	109.1(2)
Sb1'-F4'	1.871(4)	C27A-C26A-C28A	109.1(2)
Sb1'-F1'	$1.873(4)$	C27A-C26A-C29A	106.7(2)
Sb1'-F2'	$1.878(4)$	C28A-C26A-C29A	107.6(2)
Sb1'-F5'	1.880(4)	C27A-C26A-P1A	119.4(2)
C1S-Cl2'	$1.732(5)$	C28A-C26A-P1A	107.63(19)
C1S-Cl1S	1.749 (4)	C29A-C26A-P1A	105.75(19)
C1S-Cl2S	1.800(6)	C33A-C30A-C32A	109.5(3)
		C33A-C30A-C31A	109.1(2)
Angles:		C32A-C30A-C31A	105.9(2)
		C33A-C30A-P1A	108.37(19)
N1A-Au1A-P1A	171.06(7)	C32A-C30A-P1A	106.89(19)
N1B-Au1B-P1B	170.96(8)	C31A-C30A-P1A	117.0(2)
C34A-N1A-Au1A	172.5(2)	N1A-C34A-C35A	178.6(3)
C34B-N1B-Au1B	168.7(3)	C14A-C23A-C25A	111.7(2)
C1A-P1A-C26A	111.50(12)	C14A-C23A-C24A	111.8(2)
C1A-P1A-C30A	112.13(12)	C25A-C23A-C24A	110.2(2)
C26A-P1A-C30A	112.02(13)	C2B-C1B-C6B	118.9(2)
C1A-P1A-Au1A	109.20(8)	C2B-C1B-P1B	120.78(18)
C26A-P1A-Au1A	103.67(9)	C6B-C1B-P1B	120.30(18)
C30A-P1A-Au1A	107.88(9)	C3B-C2B-C1B	120.7(2)
C1B-P1B-C26B	111.73(13)	C3B-C2B-C7B	116.3(2)

C1B-C2B-C7B	123.0(2)	C31'-C30B-C32B	62.3(7)
C4B-C3B-C2B	120.3(2)	C33B-C30B-C32B	112.2(4)
C4B-C3B-C8B	120.0(2)	C31'-C30B-C33'	116.1(10)
C2B-C3B-C8B	119.6(2)	C33B-C30B-C33'	22.1(7)
C3B-C4B-C5B	119.7(2)	C32B-C30B-C33'	130.9(8)
C3B-C4B-C9B	120.3(2)	C31'-C30B-C31B	44.8(7)
C5B-C4B-C9B	120.0(2)	C33B-C30B-C31B	105.4(4)
C4B-C5B-C6B	121.0(2)	C32B-C30B-C31B	107.1(3)
C4B-C5B-C10B	116.9(2)	C33'-C30B-C31B	87.0(8)
C6B-C5B-C10B	122.2(2)	C31'-C30B-C32'	101.7(8)
C5B-C6B-C1B	119.4(2)	C33B-C30B-C32'	73.3(5)
C5B-C6B-C11B	112.9(2)	C32B-C30B-C32'	45.1(5)
C1B-C6B-C11B	127.6(2)	C33'-C30B-C32'	95.3(9)
C16B-C11B-C12B	118.6(2)	C31B-C30B-C32'	141.1(5)
C16B-C11B-C6B	120.2(2)	C31'-C30B-P1B	128.3(6)
C12B-C11B-C6B	119.1(2)	C33B-C30B-P1B	108.5(3)
C13B-C12B-C11B	120.0(2)	C32B-C30B-P1B	109.0(2)
C13B-C12B-C17B	118.6(6)	C33'-C30B-P1B	106.6(8)
C11B-C12B-C17B	121.4(6)	C31B-C30B-P1B	114.6(3)
C13B-C12B-C17'	114.5(8)	C32'-C30B-P1B	101.9(4)
C11B-C12B-C17'	124.0(9)	N1B-C34B-C35B	179.2(4)
C17B-C12B-C17'	15.4(8)	F6A-Sb1A-F3A	90.10(10)
C14B-C13B-C12B	121.7(2)	F6A-Sb1A-F1A	90.40(10)
C13B-C14B-C15B	117.9(2)	F3A-Sb1A-F1A	179.39(9)
C13B-C14B-C20B	121.6(2)	F6A-Sb1A-F4A	90.57(10)
C15B-C14B-C20B	120.5(2)	F3A-Sb1A-F4A	90.27(9)
C14B-C15B-C16B	122.4(2)	F1A-Sb1A-F4A	90.07(9)
C15B-C16B-C11B	119.3(2)	F6A-Sb1A-F2A	90.43(10)
C15B-C16B-C23B	117.6(2)	F3A-Sb1A-F2A	89.97(9)
C11B-C16B-C23B	123.1(2)	F1A-Sb1A-F2A	89.68(8)
C12B-C17B-C18B	115.9(7)	F4A-Sb1A-F2A	178.96(10)
C12B-C17B-C19B	108.5(8)	F6A-Sb1A-F5A	179.09(10)
C18B-C17B-C19B	107.5(9)	F3A-Sb1A-F5A	89.89(9)
C19'-C17'-C18'	109.7(15)	F1A-Sb1A-F5A	89.60(9)
C19'-C17'-C12B	113.8(14)	F4A-Sb1A-F5A	90.34(10)
C18'-C17'-C12B	107.7(12)	F2A-Sb1A-F5A	88.65(9)
C14B-C20B-C21B	112.0(2)	F3B-Sb1B-F6B	89.69(14)
C14B-C20B-C22B	111.4(2)	F3B-Sb1B-F1B	179.77(16)
C21B-C20B-C22B	110.3(2)	F6B-Sb1B-F1B	90.13(14)
C16B-C23B-C25B	112.4(3)	F3B-Sb1B-F4B	90.54(14)
C16B-C23B-C24B	111.0(2)	F6B-Sb1B-F4B	90.47(15)
C25B-C23B-C24B	108.3(3)	F1B-Sb1B-F4B	89.61(13)
C28'-C26B-C27'	116.0(10)	F3B-Sb1B-F2B	90.08(14)
C28'-C26B-C27B	134.1(7)	F6B-Sb1B-F2B	89.78(14)
C27'-C26B-C27B	26.8(6)	F1B-Sb1B-F2B	89.77(14)
C28'-C26B-C29B	75.5(6)	F4B-Sb1B-F2B	179.33(15)
C27'-C26B-C29B	129.5(7)	F3B-Sb1B-F5B	90.52(13)
C27B-C26B-C29B	109.1(4)	F6B-Sb1B-F5B	179.72(18)
C28'-C26B-C28B	34.5(6)	F1B-Sb1B-F5B	89.65(14)
C27'-C26B-C28B	83.2(7)	F4B-Sb1B-F5B	89.72(14)
C27B-C26B-C28B	106.3(4)	F2B-Sb1B-F5B	90.03(14)
C29B-C26B-C28B	104.5(4)	F3'-Sb1'-F6'	90.5(3)
C28'-C26B-C29'	114.2(8)	F3'-Sb1'-F4'	90.9(3)
C27'-C26B-C29'	107.0(9)	F6'-Sb1'-F4'	90.7(3)
C27B-C26B-C29'	80.6(6)	F3'-Sb1'-F1'	179.0(4)
C29B-C26B-C29'	38.8(6)	F6'-Sb1'-F1'	90.0(3)
C28B-C26B-C29'	139.3(6)	F4'-Sb1'-F1'	89.9(3)
C28'-C26B-P1B	106.9(6)	F3'-Sb1'-F2'	89.6(3)
C27'-C26B-P1B	102.7(7)	F6'-Sb1'-F2'	89.7(3)
C27B-C26B-P1B	108.1(3)	F4'-Sb1'-F2'	179.3(4)
C29B-C26B-P1B	121.5(3)	F1'-Sb1'-F2'	89.6(3)
C28B-C26B-P1B	106.4(2)	F3'-Sb1'-F5'	90.5(3)
C29'-C26B-P1B	109.3(6)	F6'-Sb1'-F5'	178.7(4)
C31'-C30B-C33B	122.1(6)	F4'-Sb1'-F5'	90.2(3)

F1'-Sb1'-F5'	$89.0(3)$	Cl2'-C1S-Cl2S	$15.7(2)$
F2'-Sb1'-F5'	$89.4(3)$	Cl1S-C1S-Cl2S	$112.8(3)$
Cl2'-C1S-Cl1S	$109.7(3)$		

1,1-Dimethyl-1,7,13,13a-
 tetrahydrodibenzo[b,g]cyclobuta[e]oxonine (41)

Table 5. Crystal data and structure refinement for macrocycle 41.

Empirical formula	C 20 H 20 O
Formula weight	276.36
Temperature	$100(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Monoclinic
Space group	$\mathrm{P} 2(1) / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=11.8987(3) \AA$
	$\alpha=90.00^{\circ}$.
	$\mathrm{b}=6.0503(2) \AA$
	$\beta=104.9450(10)^{\circ}$.
	$\mathrm{c}=21.0067(5) \AA$
	$\gamma=90.00^{\circ}$.
Volume	$1461.13(7) \AA^{3}$
Z	4
Density (calculated)	$1.256 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.075 \mathrm{~mm} \mathrm{~m}^{-1}$
$\mathrm{~F}(000)$	592
Crystal size	$0.15 \mathrm{x} 0.10 \mathrm{x} 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	$1.77 \mathrm{to} 33.26^{\circ}$.
Index ranges	$-17<=\mathrm{h}<=16$,
	$-8<=\mathrm{k}<=8$,
Reflections collected	$-31<=1<=31$
Independent reflections	12256
	5049
Completeness to theta $=33.26^{\circ}$	$[\mathrm{R}($ int $)=0.0175]$
Absorption correction	0.896%
Max. and min. transmission	Empirical
Refinement method	0.9925 and 0.9888
Data / restraints / parameters	Full-matrix
Goodness-of-fit on F^{2}	least-squares on F^{2}
Final R indices [I>2sigma(I)]	$5049 / 0 / 192$
	0.966
	$\mathrm{R} 1=0.0440$,
	wR2=0.1165

R indices (all data)	$\mathrm{R} 1=0.0521$,
Largest diff. peak and hole	wR2 $=0.1235$
0.535 and $-0.191 \mathrm{e} . \AA^{-3}$	

Table 6. Bond lengths [A]] and angles [`] for macrocycle 41.

Bond lengths:		C2-C3-C4	$119.75(8)$
		C5-C4-C3	$119.92(8)$
C1-O1	$1.3813(10)$	C4-C5-C6	$121.67(8)$
C1-C2	$1.3954(11)$	C1-C6-C5	$117.33(7)$
C1-C6	$1.3984(12)$	C1-C6-C7	$123.85(7)$
C2-C3	$1.3881(13)$	C5-C6-C7	$118.81(7)$
C3-C4	$1.3909(13)$	C6-C7-C8	$116.98(7)$
C4-C5	$1.3880(12)$	C7-C8-C11	$117.55(7)$
C5-C6	$1.3993(12)$	C7-C8-C9	$117.78(7)$
C6-C7	$1.5156(11)$	C11-C8-C9	$85.58(6)$
C7-C8	$1.5302(12)$	C10-C9-C19	$115.51(7)$
C8-C11	$1.5304(11)$	C10-C9-C20	$113.90(8)$
C8-C9	$1.5896(12)$	C19-C9-C20	$109.75(7)$
C9-C10	$1.5168(12)$	C10-C9-C8	$85.20(6)$
C9-C19	$1.5196(12)$	C19-C9-C8	$118.24(7)$
C9-C20	$1.5272(13)$	C20-C9-C8	$112.52(7)$
C10-C11	$1.3450(12)$	C11-C10-C9	$95.41(7)$
C11-C12	$1.4720(11)$	C10-C11-C12	$130.90(8)$
C12-C13	$1.4049(12)$	C10-C11-C8	$93.80(7)$
C12-C17	$1.4094(12)$	C12-C11-C8	$135.28(7)$
C13-C14	$1.3895(12)$	C13-C12-C17	$118.22(7)$
C14-C15	$1.3855(15)$	C13-C12-C11	$117.41(8)$
C15-C16	$1.3896(14)$	C17-C12-C11	$124.35(7)$
C16-C17	$1.3955(11)$	C14-C13-C12	$121.48(9)$
C17-C18	$1.5048(12)$	C15-C14-C13	$119.99(9)$
C18-O1	$1.4396(10)$	C14-C15-C16	$119.31(8)$
		C15-C16-C17	$121.53(9)$
Angles:		C16-C17-C12	$119.46(8)$
		C16-C17-C18	$117.38(8)$
O1-C1-C2	$120.64(8)$	C12-C17-C18	$123.12(7)$
O1-C1-C6	$117.75(7)$	O1-C18-C17	$114.66(7)$
C2-C1-C6	$121.58(8)$	C1-O1-C18	$116.22(6)$
C3-C2-C1	$119.75(8)$		

Table 7. Torsion angles [ๆ for macrocycle 41.

	C11-C8-C9-C20	$114.38(8)$
O1-C1-C2-C3	$-176.90(8)$	C19-C9-C10-C11
C6-C1-C2-C3	$0.73(13)$	C20-C9-C10-C11

```
C13-C12-C17-C16 -1.10(13)
C11-C12-C17-C16 177.21(8)
C13-C12-C17-C18 -178.50(8)
C11-C12-C17-C18 -0.19(13)
C17-C18-O1-C1 -38.94(10)
```

C16-C17-C18-O1 127.77(8)
C12-C17-C18-O1 $-54.79(11)$
C2-C1-O1-C18 -63.00(10)
C6-C1-O1-C18 119.29(8)

DFT Calculations Data

Trans,trans-(3,3-Dimethyl-2-(3-methyl-5-(otolyloxy)pentyl) cyclobutyl)methanol ($64_{\text {TransTrans }}$)
$G=-930.687472$ Hartree/particle

Row	Symbol	X
1	C	5.9416150
2	C	4.5727570
3	C	3.6643130
4	C	4.1128920
5	C	5.4829410
6	C	6.4036330
7	H	6.6439640
8	H	4.2274100
9	H	5.8343330
10	H	7.4710340
11	C	3.1200620
12	H	2.5092420
13	H	2.4162310
14	H	3.6249890
15	O	2.3158340
16	C	1.7866390
17	H	2.0992010
18	H	2.1860400
19	C	0.2806250
20	H	-0.0193340
21	H	-0.0093860
22	C	-0.4513260
23	C	-1.9718350
24	H	-2.4129040
25	H	-2.2429720
26	C	-2.5870410
27	H	-3.5635060
28	H	-1.9575280
29	C	-2.7792250
30	C	-3.9592470
31	C	-3.2377850
32	H	-1.8566600
33	C	-4.0369290
34	H	-5.0308630
35	H	-3.4506550
36	C	-4.1671340
37	H	-3.6289040
38	H	-4.6104500
39	H	-4.9951530
40	C	-2.1163790
41	H	-1.4884850
42	H	-1.4667500
43	H	-2.5024270

$\begin{array}{r}\mathrm{Y} \\ 0.6071870 \\ 0.8758550 \\ -0.1471520 \\ -1.4509810 \\ -1.6861130 \\ -0.6710850 \\ 1.4128400 \\ 1.8822250 \\ -2.6951300 \\ -0.8832900 \\ -2.5348160 \\ -2.2978200 \\ -2.6687350 \\ -3.4909510 \\ 0.0158180 \\ 1.3018820 \\ 1.6345360 \\ 2.0273530 \\ 1.1972000 \\ 0.3160700 \\ 0.9941530 \\ 2.4394120 \\ 2.3017400 \\ 3.2373470 \\ 2.2577870 \\ 1.1099920 \\ 1.4023770 \\ 0.8606070 \\ -0.1337390 \\ -0.2455190 \\ -1.4660750 \\ -0.3521140 \\ -1.7457320 \\ -2.2010320 \\ -2.3404700 \\ -1.2716010 \\ -0.8764700 \\ -2.2349270 \\ -0.5844630 \\ -2.4215230 \\ -1.9996860 \\ -2.6143810 \\ -3.3878700 \\ \\ \hline\end{array}$
0.1547130 -0.1717520 0.0955000 0.3799600 0.3877890 0.1245870 -0.3632400 -0.3942360 0.6076620 0.1382310 0.6656340
1.5477110 -0.1671970 0.8458780 0.1032800 -0.1680750 -1.1745770 0.5596760 -0.0836410 -0.6714120 0.9624780 -0.5876810 -0.4742220 -0.8505300 0.5968180 -1.2159640 -1.6322650 -2.0903140 -0.3681140 0.6190680 -1.0222720 0.1970190 0.2742990 0.1686480 0.9923430 -2.2112290 -3.0852740 -2.5030320 -1.9870070 -1.3781400 -2.1792850 -0.5118390 -1.7348190

44	H	-4.8436170	0.2943180	0.2434850
45	C	-3.7182950	0.1199900	2.0588650
46	H	-3.5602190	1.2101430	2.1605430
47	H	-2.7884330	-0.3748680	2.4027320
48	O	-4.8339310	-0.3059370	2.8133970
49	H	-4.6725380	-0.0850650	3.7402670
50	C	0.0070930	3.6957720	0.1445890
51	H	-0.5867950	4.5675670	-0.1609990
52	H	-0.1150900	3.5741880	1.2321630
53	H	1.0611550	3.9336200	-0.0486930
54	H	-0.2103950	2.5549340	-1.6612870

Cis,trans-(3,3-Dimethyl-2-(3-methyl-5-(otolyloxy)pentyl) cyclobutyl)methanol (64 CisTrans)

$G=-930.686361$ Hartree/particle

Row	Symbol	X	Y	Z
1	C	-5.9634430	0.7172540	0.0127670
2	C	-4.5911410	0.9265960	-0.1271780
3	C	-3.7113850	-0.1470050	0.0041430
4	C	-4.1928270	-1.4417700	0.2755830
5	C	-5.5654300	-1.6167270	0.4096470
6	C	-6.4573010	-0.5514210	0.2808260
7	H	-6.6430570	1.5617010	-0.0912660
8	H	-4.2201410	1.9263700	-0.3384050
9	H	-5.9425220	-2.6181990	0.6211400
10	H	-7.5274550	-0.7166190	0.3908050
11	C	-3.2329560	-2.5827730	0.4111200
12	H	-2.6684670	-2.7480220	-0.5169670
13	H	-2.4873710	-2.3918240	1.1947490
14	H	-3.7619340	-3.5106130	0.6580370
15	O	-2.3621280	-0.0452140	-0.1156920
16	C	-1.7960590	1.2306440	-0.3580210
17	H	-2.1003900	1.9275600	0.4402310
18	H	-2.1711990	1.6358150	-1.3150520
19	C	-0.2940920	1.0604750	-0.4007520
20	H	0.0477650	0.7320230	0.5944000
21	H	-0.0638640	0.2413990	-1.1014110
22	C	0.4468640	2.3268170	-0.8261920
23	C	1.9381480	2.0836520	-1.0940340
24	H	2.3529900	3.0334680	-1.4660100
25	H	2.0406250	1.3701260	-1.9290820
26	C	2.7920240	1.5978880	0.0831360
27	H	3.8152340	1.9826490	-0.0487030
28	H	2.4313010	2.0447300	1.0266820
29	C	2.8685020	0.0908020	0.2459040
30	C	3.6533240	-0.7716960	-0.7664960
31	C	3.7288470	-0.5201270	1.3904800
32	H	1.8548400	-0.3356810	0.3361920
33	C	4.1097090	-1.6553190	0.4103820
34	H	5.1519790	-2.0014180	0.4213640
35	H	3.4482400	-2.5290540	0.5181920
36	C	4.9429560	0.3175780	1.7624010
37	H	4.6539030	1.2402110	2.2868670
38	H	5.5993740	-0.2550970	2.4338910
39	H	5.5410480	0.6020380	0.8852250
40	C	2.9558660	-0.9075390	2.6354100
41	H	2.5657860	-0.0121100	3.1448880

42	H	2.0996890	-1.5518550	2.3887600
43	H	3.5897870	-1.4478750	3.3539070
44	C	0.2314010	3.4701960	0.1627240
45	H	0.4864010	3.1717500	1.1900000
46	H	0.8542490	4.3369220	-0.0975460
47	H	-0.8122130	3.8105930	0.1732740
48	H	0.0158710	2.6446240	-1.7931260
49	H	4.4963030	-0.2096160	-1.2007180
50	C	2.8850240	-1.4586180	-1.8640580
51	H	2.4922370	-0.7222530	-2.5905980
52	H	2.0094800	-1.9703350	-1.4173860
53	O	3.7507080	-2.3819290	-2.4911790
54	H	3.2546840	-2.8377020	-3.1841190

Trans,cis-(3,3-Dimethyl-2-(3-methyl-5-(otolyloxy)pentyl)cyclobutyl)methanol ($64_{\text {TransCis }}$)
$G=-930.683260$ Hartree/particle

Row	Symbol	X
1	C	-6.1019220
2	C	-4.7259290
3	C	-3.8717320
4	C	-4.3821220
5	C	-5.7575470
6	C	-6.6244910
7	H	-6.7609520
8	H	-4.3328530
9	H	-6.1569000
10	H	-7.6974970
11	C	-3.4468080
12	H	-2.8519620
13	H	-2.7255840
14	H	-3.9985680
15	O	-2.5212410
16	C	-1.9294160
17	H	-2.1688660
18	H	-2.3439180
19	C	-0.4354040
20	H	-0.1370700
21	H	-0.2122480
22	C	0.3683640
23	C	1.8742480
24	H	2.3824730
25	H	2.1003540
26	C	2.4393280
27	H	3.3634430
28	H	1.7367020
29	C	2.6992030
30	C	3.9321560
31	C	3.1122540
32	H	1.8051310
33	C	4.1089590
34	H	3.7066390
35	H	5.1317090
36	H	3.7344910
37	C	-0.0550490
38	H	0.5812420
39	H	0.0362050
40	H	-1.0939320
1		

Z
0.3196400
0.2618320 -0.1027870 -0.4125460 -0.3448560 0.0177560 0.6050240 0.5026000 -0.5838320 0.0624510 -0.8016610 -1.6846200 -0.0022490 -1.0274670 -0.1874360 0.1072480 1.1447000 -0.5627760 -0.0717800 0.4501560 -1.1411590 0.4546960 0.2803980 0.6580990 -0.8014350 0.9695310 1.5088900 1.7513400 0.0139310 -0.9262310 0.5532860 -0.6153570 -0.6304800 -1.9758890 -0.3812290 -1.4398950 -0.2112540 0.1158470 0.0183540

41	H	0.1698500	2.4071690	1.5400170
42	C	3.8044890	-1.6850980	1.9086290
43	H	3.1023110	-1.4364020	2.7180020
44	H	4.2122530	-2.6847510	2.1194920
45	H	4.6414070	-0.9764880	1.9622690
46	C	1.9769300	-2.6952510	0.5661430
47	H	1.2082740	-2.4023180	1.2994290
48	H	1.4909650	-2.7630180	-0.4178980
49	H	2.3296040	-3.7009730	0.8388740
50	C	5.1022990	0.5745940	-0.5120840
51	H	4.8116810	1.6420170	-0.5297990
52	H	5.4121550	0.3434220	0.5235710
53	O	6.1552450	0.3165730	-1.4184570
54	H	6.9245630	0.8304220	-1.1391760

Cis,cis-(3,3-Dimethyl-2-(3-methyl-5-(otolyloxy)pentyl)cyclobutyl)methanol ($6_{4_{\text {CisCis }}}$)

$G=-930.68221$ Hartree/particle

Row	Symbol	X	Y	Z
1	C	-6.1341260	0.7899280	0.2173280
2	C	-4.7564070	0.9834280	0.1099270
3	C	-3.9291760	-0.0961650	-0.1958370
4	C	-4.4681890	-1.3803330	-0.3991600
5	C	-5.8446430	-1.5396640	-0.2849560
6	C	-6.6846900	-0.4684990	0.0212330
7	H	-6.7720210	1.6391650	0.4577450
8	H	-4.3391440	1.9757890	0.2629990
9	H	-6.2664540	-2.5338040	-0.4391170
10	H	-7.7589390	-0.6215370	0.1057730
11	C	-3.5628660	-2.5263070	-0.7287340
12	H	-3.0371070	-2.3642270	-1.6798380
13	H	-2.7839020	-2.6568410	0.0346060
14	H	-4.1288980	-3.4617460	-0.8072400
15	O	-2.5795490	-0.0087890	-0.3227230
16	C	-1.9556680	1.2406050	-0.0844200
17	H	-2.2228070	1.5989880	0.9232640
18	H	-2.3175900	1.9900610	-0.8113330
19	C	-0.4643480	1.0342970	-0.2228120
20	H	-0.1310400	0.3472640	0.5729260
21	H	-0.2806480	0.5198830	-1.1795480
22	C	0.3409130	2.3320370	-0.1781750
23	C	1.8352590	2.0821950	-0.4175040
24	H	2.3392420	3.0609950	-0.4168870
25	H	1.9674410	1.6770330	-1.4353870
26	C	2.5187140	1.1408610	0.5876310
27	H	3.4848120	1.5640240	0.9008500
28	H	1.9231490	1.0762940	1.5145770
29	C	2.7207630	-0.2645870	0.0494160
30	C	3.8289540	-0.5717970	-0.9917250
31	C	3.2759170	-1.3886670	0.9719690
32	H	1.7641360	-0.6201740	-0.3677180
33	C	4.1293040	-1.8798900	-0.2260180
34	H	3.4614810	-0.7146430	-2.0188530
35	H	5.1911780	-2.0783040	-0.0196350
36	H	3.7002910	-2.7665170	-0.7118820
37	C	4.1236290	-0.9048530	2.1390090
38	H	3.5084850	-0.4070740	2.9030120
39	H	4.6220380	-1.7595380	2.6196850

40	H	4.9079290	-0.2012900	1.8307390
41	C	2.2123450	-2.3469620	1.4752920
42	H	1.5157960	-1.8287550	2.1539350
43	H	1.6234810	-2.7610400	0.6442160
44	H	2.6536390	-3.1883500	2.0299960
45	C	4.9870100	0.3551000	-1.0638920
46	H	4.6331680	1.3851680	-1.4086780
47	H	5.4383480	0.5453600	-0.0660240
48	O	5.9333800	-0.1475340	-1.9627220
49	H	6.6996350	0.4409000	-1.9824390
50	C	0.1029060	3.1134980	1.1113570
51	H	0.2922390	2.4959730	2.0015730
52	H	0.7652440	3.9482390	1.1648700
53	H	-0.9290360	3.4810180	1.1830750
54	H	-0.0083970	2.9628760	-1.0152880

Trans,trans-8,11,11-Trimethyl-
7,8,9,10,10a,11,12,12a,13,15-decahydro-6Hbenzo[b]cyclobuta[g][1,5]dioxacyclotridecine ($65_{\text {TransTrans }}$)

$G=-929.486054$ Hartree/particle

Row		Symbol	X	Y
1	C	-4.1041020	0.8094150	0.4724660
2	C	-2.8228470	0.2676100	0.5951100
3	C	-2.5955310	-1.0803900	0.2895180
4	C	-3.6720340	-1.8553560	-0.1473450
5	C	-4.9461860	-1.3193920	-0.2834560
6	C	-5.1592690	0.0212150	0.0307280
7	H	-4.2656750	1.8519190	0.7437460
8	H	-3.4897300	-2.9035260	-0.3886040
9	H	-5.7705960	-1.9424890	-0.6246330
10	H	-6.1543440	0.4543900	-0.0577530
11	C	-1.2318800	-1.6950400	0.3646880
12	H	-0.6005290	-1.1567730	1.0860140
13	H	-1.3092260	-2.7434190	0.7064990
14	C	0.6475760	-2.1976600	-0.9972350
15	H	0.7671270	-3.0101690	-0.2539510
16	H	0.7472660	-2.6570030	-1.9931510
17	C	1.7562370	-1.1825050	-0.8180310
18	C	2.1305780	-0.6743330	0.5975400
19	H	1.8906690	-1.5087250	1.2849540
20	C	3.6358620	-0.8563830	0.2396490
21	O	-0.6627160	-1.6700370	-0.9334300
22	C	3.1778910	-1.7721070	-0.9199440
23	H	3.7053000	-1.6694320	-1.8779580
24	H	3.1870510	-2.8342090	-0.6271190
25	C	4.4792300	-1.5008690	1.3233400
26	H	5.4916680	-1.7317940	0.9598940
27	H	4.5843810	-0.8276490	2.1882360
28	H	4.0266170	-2.4374980	1.6791630
29	C	4.3408310	0.3828410	-0.2908000
30	H	4.5653770	1.0964150	0.5151500
31	H	5.2981190	0.0934690	-0.7498290
32	H	3.7538250	0.9087830	-1.0570580
33	C	1.5767290	0.5785610	1.2709120
34	C	1.6747130	1.9660090	0.6291810
35	H	1.2472910	2.6720760	1.3628280
36	H	2.7272610	2.2699560	0.5356930
37	C	1.0030040	2.2283000	-0.7227070
2				

38	H	1.5881310	1.7107840	-1.5026450
39	C	1.0735450	3.7212010	-1.0300940
40	H	0.6997770	3.9398130	-2.0395380
41	H	0.4665940	4.3016600	-0.3181660
42	H	2.1038100	4.0967860	-0.9609540
43	C	-0.4383020	1.7190190	-0.8574940
44	H	-0.8216570	2.0714240	-1.8276770
45	H	-0.4544500	0.6213160	-0.9155590
46	C	-1.4033970	2.1425130	0.2514000
47	O	-1.7979930	1.0384820	1.0754670
48	H	1.6132770	-0.3609700	-1.5343940
49	H	-2.3036140	2.6192690	-0.1628220
50	H	-0.9482590	2.8648980	0.9414920
51	H	2.0852100	0.6504080	2.2489400
52	H	0.5191230	0.3968450	1.5183520

Cis,trans-8,11,11-Trimethyl-7,8,9,10,10a,11,12,12a,13,15-decahydro-6Hbenzo[b]cyclobuta[g][1,5]dioxacyclotridecine (65 CisTran.)

$G=-929.482220$ Hartree/particle

Row	Symbol	X
1	C	4.1376540
2	C	2.8970660
3	C	2.6400630
4	C	3.6495080
5	C	4.8848260
6	C	5.1260890
7	H	4.3240480
8	H	3.4452110
9	H	5.6582240
10	H	6.0932630
11	C	1.2991300
12	H	0.7356070
13	H	1.4259640
14	C	-0.6899590
15	H	-0.7923910
16	H	-0.7849040
17	C	-1.8067240
18	C	-2.2003630
19	H	-2.0134230
20	C	-3.6994820
21	O	0.6030510
22	C	-3.2305950
23	H	-3.7358070
24	H	-3.2562840
25	C	-4.6083150
26	H	-5.6104950
27	H	-4.7313230
28	H	-4.2009890
29	C	-4.3344040
30	H	-4.5603000
31	H	-5.2846460
32	H	-3.6968520
33	C	-1.6306730
34	C	-1.6740500
35	H	-1.4959270
36	H	-2.6919050
37	C	-0.6852140

Y	Z
0.8344240	-0.4352710
0.2511890	-0.6976260
-1.0707250	-0.3153550
-1.7844440	0.3334580
-1.2094310	0.6039130
0.1072260	0.2163730
1.8565330	-0.7619990
-2.8127180	0.6352120
-1.7834800	1.1105730
0.5678560	0.4114130
-1.7090400	-0.5157720
-1.2024290	-1.3153660
-2.7655640	-0.8142090
-2.2245780	0.6900560
-2.9004930	-0.1796540
-2.8505980	1.5925500
-1.2069640	0.6805760
-0.4905810	-0.6324110
-1.2370930	-1.4293810
-0.6836390	-0.2537920
-1.6494320	0.7170680
-1.7968120	0.7131200
-1.8660340	1.6860150
-2.7870130	0.2307890
-1.1026460	-1.3928450
-1.3709500	-1.0267680
-0.2845820	-2.1192910
-1.9714040	-1.9293860
0.4618720	0.5204050
1.3166640	-0.1329430
0.1248950	0.9613180
0.8174640	1.3418260
0.8133930	-1.1888840
2.1724790	-0.4644930
2.9118700	-1.2612690
2.3904980	-0.1141870
2.4947310	0.6813130

38	C	0.6534630	1.7707230	0.5520470
39	H	1.2752790	2.0063860	1.4296630
40	H	0.4825020	0.6842830	0.5938160
41	C	1.4167040	2.1054380	-0.7289160
42	O	1.9360140	0.9454340	-1.3819720
43	H	-1.6545960	-0.5014000	1.5092830
44	H	2.2306410	2.8217490	-0.5353800
45	H	0.7606960	2.5649270	-1.4789280
46	H	-2.1710730	0.9723160	-2.1390610
47	H	-0.5911520	0.6161340	-1.4983250
48	C	-1.2679390	2.2783060	2.0723160
49	H	-1.4376720	1.2143540	2.2865450
50	H	-0.5834620	2.6554140	2.8448040
51	H	-2.2276110	2.8001090	2.1908810
52	H	-0.4838550	3.5787570	0.6014210

Cis,cis-8,11,11-Trimethyl-

7,8,9,10,10a,11,12,12a,13,15-decahydro-6Hbenzo[b]cyclobuta[g][1,5]dioxacyclotridecine ($65_{\text {CisCis }}$)

$G=-929.481564$ Hartree/particle

Row	Symbol	X	Y	Z
1	C	4.3009290	0.3550260	0.6164410
2	C	3.1869230	0.1512130	-0.1923680
3	C	2.6343220	-1.1256020	-0.3501180
4	C	3.2304690	-2.1913630	0.3247770
5	C	4.3410610	-1.9980140	1.1404920
6	C	4.8797270	-0.7215710	1.2812820
7	H	4.7028450	1.3631160	0.7092720
8	H	2.8133880	-3.1911510	0.1978620
9	H	4.7927170	-2.8431480	1.6565710
10	H	5.7532800	-0.5617610	1.9111030
11	C	1.4713410	-1.3504890	-1.2655840
12	H	1.5446270	-0.6879890	-2.1462270
13	H	1.5044880	-2.3922890	-1.6353150
14	C	-0.8193430	-1.5462270	-1.4625760
15	H	-0.8413810	-0.9113200	-2.3722210
16	H	-0.5930420	-2.5715260	-1.8130780
17	C	-2.1820480	-1.5551000	-0.8024970
18	H	-2.7544090	-2.3166430	-1.3529920
19	C	-3.1064330	-0.3068390	-0.6814980
20	H	-3.9119320	-0.3400120	-1.4340140
21	C	-3.5965900	-0.8945020	0.6894380
22	O	0.2317610	-1.1334230	-0.6138520
23	C	-2.3451070	-1.8052120	0.7037820
24	H	-1.5243020	-1.3482470	1.2727530
25	H	-2.4770250	-2.8430740	1.0423910
26	C	-4.8718550	-1.7025830	0.4687960
27	H	-5.1061570	-2.3102290	1.3551140
28	H	-5.7259790	-1.0337640	0.2849470
29	H	-4.7942520	-2.3832450	-0.3906140
30	C	-3.8020190	0.0122340	1.8911810
31	H	-4.4711990	0.8522240	1.6496810
32	H	-4.2686390	-0.5496590	2.7139620
33	H	-2.8618360	0.4242330	2.2737850
34	C	-2.4945050	1.0854900	-0.8127050
35	H	-1.9757790	1.1063390	-1.7887700

36	H	-3.3164020	1.8136280	-0.9194540
37	C	-1.5427780	1.6216270	0.2535160
38	H	-2.1218830	1.9374680	1.1320310
39	H	-0.8646120	0.8251610	0.5966070
40	C	-0.7319970	2.8269380	-0.2468280
41	C	0.5311090	2.3911550	-0.9970900
42	H	0.2839110	1.5991370	-1.7223470
43	H	0.9427270	3.2336010	-1.5739320
44	C	1.5965760	1.8467580	-0.0735860
45	H	1.1631810	1.1081810	0.6180410
46	H	2.0581120	2.6416860	0.5356510
47	O	2.6151520	1.2086180	-0.8463940
48	H	-1.3653850	3.3719540	-0.9688380
49	C	-0.4086660	3.7888190	0.8927570
50	H	0.2382460	4.6128770	0.5596850
51	H	-1.3279440	4.2264140	1.3041210
52	H	0.1026180	3.2759230	1.7205230

Trans,cis-8,11,11-Trimethyl-

 7,8,9,10,10a,11,12,12a,13,15-decahydro-6Hbenzo[b]cyclobuta[g][1,5]dioxacyclotridecine ($65_{\text {TransCi. }}$)
$G=-929.480212$ Hartree/particle

Row	Symbol	X	Y	Z
1	C	4.3486180	0.4719870	0.7750360
2	C	3.2345020	0.3590050	-0.0505400
3	C	2.7684670	-0.8953950	-0.4644420
4	C	3.4509710	-2.0309720	-0.0273590
5	C	4.5637920	-1.9294840	0.8020280
6	C	5.0155960	-0.6736570	1.1987820
7	H	4.6794960	1.4661780	1.0718510
8	H	3.1013020	-3.0107020	-0.3551700
9	H	5.0836270	-2.8278510	1.1295090
10	H	5.8894760	-0.5845880	1.8420240
11	C	1.6021430	-1.0115350	-1.3962890
12	H	1.6125240	-0.1822370	-2.1263220
13	H	1.6934780	-1.9538430	-1.9678090
14	C	-0.6759970	-1.3362260	-1.5950450
15	H	-0.7602410	-0.5510420	-2.3746470
16	H	-0.3957290	-2.2643100	-2.1291360
17	C	-2.0187790	-1.5487810	-0.9265740
18	H	-2.5474450	-2.2609040	-1.5778960
19	C	-3.0296300	-0.4048560	-0.6116060
20	H	-3.8466020	-0.3922870	-1.3519790
21	C	-3.4449350	-1.2242910	0.6626100
22	O	0.3674160	-1.0145410	-0.6999580
23	C	-2.1302490	-2.0308390	0.5272300
24	H	-1.3307160	-1.6061970	1.1491100
25	H	-2.1813400	-3.1144650	0.7073950
26	C	-4.6608120	-2.0867330	0.3369260
27	H	-4.8233900	-2.8418790	1.1199370
28	H	-5.5683030	-1.4679060	0.2727340
29	H	-4.5530960	-2.6165480	-0.6197850
30	C	-3.6915510	-0.5279400	1.9901510
31	H	-4.4456810	0.2676480	1.8898220
32	H	-4.0746650	-1.2491650	2.7274200

33	H	-2.7822790	-0.0852560	2.4105840
34	C	-2.5287650	1.0389430	-0.5476700
35	H	-1.9913900	1.2182810	-1.4964790
36	H	-3.4090080	1.6996960	-0.5964100
37	C	-1.6595440	1.4980270	0.6228970
38	H	-2.3061980	1.6966380	1.4887330
39	H	-0.9764390	0.6912000	0.9277150
40	C	-0.8502050	2.7769310	0.3507600
41	H	-0.5081170	3.1466720	1.3347130
42	C	-1.7000220	3.8781190	-0.2712750
43	H	-1.1473700	4.8264990	-0.3021040
44	H	-1.9858460	3.6314440	-1.3035510
45	H	-2.6243810	4.0440360	0.2999560
46	C	0.4050070	2.5065210	-0.4799120
47	H	0.1670360	1.8708080	-1.3496050
48	H	0.8120170	3.4488380	-0.8789890
49	C	1.4606390	1.8153860	0.3473360
50	H	1.0547180	0.8890950	0.7797680
51	H	1.7947990	2.4590410	1.1803890
	52	O	2.5843710	1.4880210

2. Gold-Catalyzed Intermolecular Cycloaddition of Alkynes and Oxoalkenes ${ }^{1}$

All the reactants, ligands and the following reagents were purchased from commercial sources and used without further purification: ethynylbenzene, 1-ethynyl-4-fluorobenzene, 1-ethynyl-4-chlorobenzene, 1-ethynyl-4-bromobenzene, 1-ethynyl-3-methylbenzene, 1-ethynyl-3-fluorobenzene, 1-ethynyl-3-chlorobenzene, 3-ethynylphenol, 1-ethynyl-3methoxybenzene, 1-ethynyl-2-methylbenzene, 2-ethynylnaphthalene, 3-ethynylthiophene, 1-ethynyl-4-nitrobenzene, 4-ethynylaniline, ethynylcyclohexane, ethynylcyclopropane, prop-2-yn-1-ylbenzene, 1-(4-ethynylphenyl)ethanone, 1-ethynyl-3,5bis(trifluoromethyl)benzene, 1-ethynyl-4-methoxybenzene, 1-ethynyl-4-methylbenzene, 5-methylhex-5-en-2-one, hex-5-en-2-one 53, ($5 E, 9 E$)-6,10,14-trimethylpentadeca-5,9,13-trien-2-one 57, 2,6-dimethylhept-5-enal 59, (Z)-dec-4-enal $\quad \mathbf{6 0}, \quad 3$-(2-methylallyl)dihydrofuran-2,5-dione 61, dimethyl 2-(2-phenylallyl)malonate 62, 6-methylhept-5-en-2-one, ethyl 4-methylpent-4-enoate and 1-(2-(prop-1-en-2yl)phenyl)ethanone 76. Catalysts \mathbf{G} and \mathbf{H} were described in Chapter 1. ${ }^{2}$ Gold complexes $\mathbf{A}, \mathbf{B}, \mathbf{E}, \mathbf{K}, \mathbf{L}, \mathbf{M}, \mathbf{N}, \mathbf{O}, \mathbf{9 4}(\mathrm{AuCl})_{2}, \mathbf{9 8}(\mathrm{AuCl})$ and $\mathbf{1 0 1}(\mathrm{AuCl})_{2}$ were synthesized according to the literature. ${ }^{34}$

Procedures for the Preparation of Starting Materials

5-Phenylhex-5-en-2-one

Dry 1-butyl-3-methylimidazolium tetrafluoroborate $\left(\mathrm{BmimBF}_{4}\right)$ by setting it under vacuum at $80{ }^{\circ} \mathrm{C}$ for 24 h . Then, an oven-dried flask containing a stirring bar was charged with bromobenzene ($1.57 \mathrm{~g}, 10.0$ mmol) in $\mathrm{BmimBF}_{4}(20 \mathrm{ml})$, diacetoxypalladium ($56.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 1,3-bis(diphenylphosphino)propane ($0.21 \mathrm{~g}, 0.50 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. After degassing the solution with N_{2} three times, hex-5-en-2-one ($1.28 \mathrm{ml}, 11.0 \mathrm{mmol}$) and diisopropylamine $(1.70 \mathrm{ml}, 12.0 \mathrm{mmol})$ were injected sequentially. The reaction mixture was stirred at 115 ${ }^{\circ} \mathrm{C}$ for 36 h . The flask was cooled down to $25^{\circ} \mathrm{C}$ and the crude was extracted with diethyl ether washing with water and brine. The organic layers were dried with MgSO_{4}, concentrated and the residue was purified with silica gel column chromatography using cyclohexane:ethyl acetate (30:1) as eluent. 5-Phenylhex-5-en-2-one was obtained in 23% isolated yield $(0.41 \mathrm{~g}, 2.32 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 7.40-7.38(\mathrm{~m}$, $2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{q}, J=1.29 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ $-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 208.27 (s), 147.30 (s), 140.74 (s), 128.55 (s), 127.75 (s), 126.23 (s), 112.90 (s), 42.56 (s), 30.19 (s), 29.42 (s).

[^100]
Ethyl 2-benzoyl-4-methylpent-4-enoate

To a suspension of $\mathrm{NaH} 60 \%(125 \mathrm{mg}, 3.12 \mathrm{mmol})$ in tetrehydrofuran (8
 ml) at $0{ }^{\circ} \mathrm{C}$, ethyl 3-oxo-3-phenylpropanoate ($0.45 \mathrm{ml}, 2.60 \mathrm{mmol}$) was added slowly. The solution was stirred for 10 min and then, 3-bromo-2-methylprop-1-ene ($0.26 \mathrm{ml}, 2.60 \mathrm{mmol}$) was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 16 h and quenched with water (2 ml). After extraction with ethyl acetate, the organic layers were washed with brine and dried with MgSO_{4}. The residue was purified by silica gel column chromatography with cyclohexane:ethyl acetate ($25: 1$) to obtain ethyl 2-benzoyl-4-methylpent-4-enoate in 49% isolated yield $(0.31 \mathrm{~g}, 1.27 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 8.03-8.00(\mathrm{~m}$, $2 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 4.78(\operatorname{broad~s}, 1 \mathrm{H}), 4.72(\operatorname{broad~s}, 1 \mathrm{H}), 4.55$ (dd, $J=8.14,6.66 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{qd}, J=7.15,0.87 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}$, $3 \mathrm{H}), 1.17(\mathrm{t}, J=7.23 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 194.42(\mathrm{~s}), 169.50(\mathrm{~s})$, 142.21 (s), 136.56 (s), 133.47 (s), 128.92 (s), 128.72 (s), 112.30 (s), 61.34 (s), 52.93 (s), 36.65 (s), 21.69 (s), 14.01 (s).

4-Methyl-1-phenylpent-4-en-1-one (54)

Ethyl 2-benzoyl-4-methylpent-4-enoate ($100 \mathrm{mg}, 0.41 \mathrm{mmol}$) was dissolved in a mixture 1:1 of water and THF $(2 \mathrm{ml})$. $\mathrm{LiOH}(30 \mathrm{mg}, 1.23$ mmol) was added and the reaction mixture was stirred for 15 h at $50^{\circ} \mathrm{C}$. After quenching with aqueous $0.1 \mathrm{M} \mathrm{HCl}(3 \mathrm{ml})$, the solution was extracted with diethyl ether. The organic layers were washed with brine, dried over MgSO_{4} and concentrated. The residue was purified with silica gel column chromatography with hexane:ethyl acetate (30:1) to obtain 4-methyl-1-phenylpent-4-en-1one 54 in 84% isolated yield ($60 \mathrm{mg}, 0.35 \mathrm{mmol}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ $7.99-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 4.77$ (broad s, 1H), 4.73 (broad s, 1H), $3.15-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=7.77 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~d}, J=0.49 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 199.71$ (s), 144.70 (s), 136.97 (s), 132.98 (s), 128.59 (s), 128.03 (s), 110.19 (s), 36.85 (s , 31.90 (s), 22.76 (s).

4-Methylpent-4-enal (55)

To an anhydrous solution of ethyl 4-methylpent-4-enoate ($0.56 \mathrm{ml}, 3.52$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, diisobutylaluminium hydride 1 M in toluene ($5.3 \mathrm{ml}, 5.3 \mathrm{mmol}$) was added over 5 min . The reaction mixture was stirred for 40 min and then quenched with a solution $1: 1$ of water and methanol $(20 \mathrm{ml})$. The solution was stirred for 3 h at $25^{\circ} \mathrm{C}$ and the resulting gel was filtered over a plug of $\mathrm{Na}_{2} \mathrm{SO}_{4} /$ celite washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed carefully (150 Torr, $25^{\circ} \mathrm{C}$) and the residue was purified with a silica gel column chromatography eluting with pentane - pentane:diethyl ether (20:1) to obtain 4-methylpent-4-enal 55 in 97% isolated yield ($0.33 \mathrm{~g}, 3.41 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.74(\mathrm{t}, J=1.71 \mathrm{~Hz}, 1 \mathrm{H}), 4.76($ broad s, 1 H$), 4.68$ (broad s, 1H), $2.57-$ $2.53(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=7.41 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-174(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}) \delta 202.57(\mathrm{~s}), 158.84(\mathrm{~s}), 110.76(\mathrm{~s}), 42.34$ (s$), 30.37$ (s), $22.86(\mathrm{~s})$.

Methyl 4-methyl-2-pivaloylpent-4-enoate

To a suspension of $\mathrm{NaH} 60 \%$ ($152 \mathrm{mg}, 3.79 \mathrm{mmol}$) in tetrehydrofuran $(9.5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$, methyl 3-oxo-3-phenylpropanoate $(0.51 \mathrm{ml}, 3.16 \mathrm{mmol})$ was added slowly. The solution was stirred for 10 min and then, 3-bromo-2-methylprop-1-ene ($0.32 \mathrm{ml}, 3.16 \mathrm{mmol}$) was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 15 h and quenched with water $(2 \mathrm{ml})$. After extraction with ethyl acetate, the organic layers were washed with brine and dried with MgSO_{4}. The residue was purified by silica gel column chromatography with cyclohexane:ethyl acetate (50:1) to obtain methyl 4-methyl-2-pivaloylpent-4-enoate in 75% isolated yield $(0.51 \mathrm{~g}, 2.39 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 4.77$ (broad s, $1 \mathrm{H}), 4.71$ (broad s, 1H), 4.13 (dd, $J=7.91,6.17 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (s, 3H), 2.61 (dd, $J=15.12$, $8.31 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=14.90,6.36 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 209.26$ (s), 169.93 (s), 142.17 (s), 112.74 (s), 52.48 (s), 51.26 (s), 45.57 (s), 37.61 (s), 26.31 (s), 22.65 (s).

2,2,6-Trimethylhept-6-en-3-one (56)

Methyl 4-methyl-2-pivaloylpent-4-enoate ($204 \mathrm{mg}, 0.96 \mathrm{mmol}$) was dissolved in a mixture $1: 1$ of water and THF $(5 \mathrm{ml})$. $\mathrm{LiOH}(69 \mathrm{mg}, 2.88$ mmol) was added and the reaction mixture was stirred for 17 h at $50^{\circ} \mathrm{C}$. After quenching with aqueous $0.1 \mathrm{M} \mathrm{HCl}(9 \mathrm{ml})$, the solution was extracted with diethyl ether. The organic layers were washed with brine, dried over MgSO_{4} and concentrated. The residue was purified with silica gel column chromatography with hexane:ethyl acetate (30:1) to obtain 2,2,6-trimethylhept-6-en-3-one 56 in 16% isolated yield ($23 \mathrm{mg}, 0.15 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 4.72$ (broad s, 1H), $4.66($ broad s, 1H), $2.65-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=7.73 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}$, $3 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 215.40(\mathrm{~s}), 145.22(\mathrm{~s}), 110.01(\mathrm{~s})$, 44.32 (s , 34.96 (s$), 31.76$ (s), 26.62 (s$), 22.89$ (s$).$

(E)-Ethyl 2-benzoylhex-4-enoate

To a suspension of $\mathrm{NaH} 60 \%(125 \mathrm{mg}, 3.12 \mathrm{mmol})$ in tetrehydrofuran (8 ml) at $0{ }^{\circ} \mathrm{C}$, ethyl 3-oxo-3-phenylpropanoate ($0.45 \mathrm{ml}, 2.60 \mathrm{mmol}$) was added slowly. The solution was stirred for 10 min and then, $(E)-1-$ bromobut-2-ene ($0.26 \mathrm{ml}, 2.55 \mathrm{mmol}$) was added. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 19 h and quenched with water (2 ml). After extraction with ethyl acetate, the organic layers were washed with brine and dried with MgSO_{4}. The residue was purified by silica gel column chromatography with cyclohexane:ethyl acetate (30:1) to obtain (E)-ethyl 2-benzoylhex-4enoate in 57% isolated yield $(0.36 \mathrm{~g}, 1.47 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.00$ $-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 5.59-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.38$ $(\mathrm{m}, 1 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.11(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.61(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{dd}, J=6.25$, $1.40 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 194.91(\mathrm{~s})$, 169.71 (s), 136.45 (s), 133.58 (s), 128.84 (s$), 128.76$ (s$), 128.35$ (s$), 127.09$ (s$), 61.50$ (s), 54.74 (s), 32.15 (s), 18.03 (s), 14.19 (s).

(E)-1-Phenylhex-4-en-1-one (58)

(E)-Ethyl 2-benzoylhex-4-enoate $(0.37 \mathrm{~g}, 1.45 \mathrm{mmol})$ was dissolved in a mixture $1: 1$ of water and THF (6 ml). $\mathrm{LiOH}(0.10 \mathrm{~g}, 4.36 \mathrm{mmol})$
was added and the reaction mixture was stirred for 15 h at $50^{\circ} \mathrm{C}$. After quenching with aqueous $0.1 \mathrm{M} \mathrm{HCl}(9 \mathrm{ml})$, the solution was extracted with diethyl ether. The organic layers were washed with brine, dried over MgSO_{4} and concentrated. The residue was purified with silica gel column chromatography with hexane:ethyl acetate ($2: 1$) to obtain (E)-1-phenylhex-4-en-1-one 58 in 80% isolated yield ($0.20 \mathrm{~g}, 0.16 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.97-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 5.54-$ $5.48(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=7.51 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.64(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, ppm) $\delta 199.95$ (s), 137.19 (s), 133.07 (s), 129.90 (s), 128.71 (s), 128.19 (s), 126.09 (s), 38.71 (s), 27.33 (s), 18.05 (s).

N-(5-Methylhex-5-en-2-ylidene)benzamide (63)

Benzylamine ($0.32 \mathrm{ml}, 2.94 \mathrm{mmol}$), 5-methyl-5-hexen-2-one (0.35 ml , $2.67 \mathrm{mmol})$ and 4 -methylbenzenesulfonic acid ($10 \mathrm{mg}, 0.06 \mathrm{mmol}$) were dissolved in toluene (10 ml). Molecular sieves $4 \AA$ were added and the reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 24 h . Then, the solution was cooled down and concentrated. The residue was dissolved in cyclohexane, filtered though filter paper and washed with saturated NaHCO_{3} and brine sequentially. The organic layers were dried over MgSO_{4} and concentrated. N-(5-Methylhex-5-en-2ylidene)benzamide 63 was obtained in 54% isolated yield ($0.29 \mathrm{~g}, 1.44 \mathrm{mmol}$) and used immediately in the gold-catalyzed $[2+2+2]$ cycloaddition. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}) \delta 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H})$, $2.58(\mathrm{t}, J=7.73 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=7.73 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$.

4-Methoxy-N-(5-methylhex-5-en-2-ylidene)aniline (64)

4-Methoxyaniline ($0.36 \mathrm{~g}, 2.94 \mathrm{mmol}$), 5-methyl-5-hexen-2-one (0.35 ml , 2.67 mmol) and 4-methylbenzenesulfonic acid ($10 \mathrm{mg}, 0.06 \mathrm{mmol}$) were dissolved in toluene $(10 \mathrm{ml})$. Molecular sieves $4 \AA$ were added and the reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 24 h . Then, the solution was cooled down and concentrated. The residue was dissolved in cyclohexane, filtered though filter paper and washed with saturated NaHCO_{3} and brine sequentially. The organic layers were dried over MgSO_{4} and concentrated. 4-Methoxy- N -(5-methylhex-5-en-2ylidene) aniline 64 was obtained in 50% isolated yield ($0.29 \mathrm{~g}, 1.34 \mathrm{mmol}$) and used immediately in the gold-catalyzed $[2+2+2]$ cycloaddition. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 6.85-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.62(\mathrm{~m}, 2 \mathrm{H}), 4.76($ broad s, 2 H$), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.57-$ $2.53(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 1-(2-methylallyl)-2-oxocyclohexanecarboxylate

To a suspension of $\mathrm{NaH} 60 \%(338 \mathrm{mg}, 8.45 \mathrm{mmol})$ in tetrehydrofuran (20 ml) at $0{ }^{\circ} \mathrm{C}$, methyl 2-oxocyclohexanecarboxylate ($1.00 \mathrm{ml}, 7.04 \mathrm{mmol}$) was added slowly. The solution was stirred for 10 min and then, 3-bromo-2-methylprop-1-ene ($0.85 \mathrm{ml}, 8.45 \mathrm{mmol}$) was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 19 h and quenched with water $(2 \mathrm{ml})$. After extraction with ethyl acetate, the organic layers were washed with brine and dried with MgSO_{4}. The residue was purified by silica gel column chromatography with cyclohexane:ethyl acetate (20:1) to obtain methyl 1-(2-methylallyl)-2-oxocyclohexanecarboxylate in 37\% isolated yield (0.54 $\mathrm{g}, 3.46 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 4.82(\mathrm{dq}, J=2.32,1.46 \mathrm{~Hz}, 1 \mathrm{H}), 4.65$ (broad s, 1H), $3.71(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~d}, J=13.88 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dq}, J=13.81,2.80 \mathrm{~Hz}, 1 \mathrm{H})$, $2.49-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=13.81 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 1 \mathrm{H})$,
$1.79-1,71(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 207.32$ (s), 172.16 (s), 141.37 (s), 115.41 (s), 61.03 (s), 52.34 (s), 42.44 (s), 41.27 (s), 36.17 (s), 27.77 (s), 23.81 (s), 22.66 (s).

2-(2-Methylallyl) cyclohexanone (75)

Methyl 1-(2-methylallyl)-2-oxocyclohexanecarboxylate (162 mg, 0.78 mmol) was dissolved in a mixture $1: 1$ of water and THF (4 ml). LiOH (37 $\mathrm{mg}, 1.54 \mathrm{mmol}$) was added and the reaction mixture was stirred for 23 h at $50{ }^{\circ} \mathrm{C}$. After quenching with aqueous $0.1 \mathrm{M} \mathrm{HCl}(6 \mathrm{ml})$, the solution was extracted with diethyl ether. The organic layers were washed with brine, dried over MgSO_{4} and concentrated. 2-(2-Methylallyl)cyclohexanone 75 was obtained in 67% isolated yield ($78 \mathrm{mg}, 0.51 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 4.79(\operatorname{broad~s,~} 1 \mathrm{H}), 4.74$ (broad s, $1 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.13(\mathrm{dd}, J=14.95,7.47 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-$ $1.68(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ $\delta 180.60$ (s), 142.56 (s), 112.64 (s), 43.99 (s), 40.60 (s), 33.94 (s), 31.77 (s), 26.36 (s), 24.75 (s), 22.33 (s).

Cyclohex-1-en-1-ylmethanol

To a solution of $\mathrm{LiAlH}_{4}(0.34 \mathrm{~g}, 9.00 \mathrm{mmol})$ in diethyl ether (17 ml), cyclohex-1-enecarboxylic acid ($1.00 \mathrm{~g}, 7.93 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h and then quenched with a saturated solution of sodium potassium tartrate $(20 \mathrm{ml})$. The solution was stirred at $25^{\circ} \mathrm{C}$ for 1.5 h and then extracted with diethyl ether. The organic layers were dried with MgSO_{4} and concentrated. Cyclohex-1-en-ylmethanol was obtained in 87% isolated yield ($0.78 \mathrm{~g}, 6.93$ mmol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 5.69-5.67(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 2.06-1.99$ $(\mathrm{m}, 4 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 137.70 (s), 123.19 (s), 67.88 (s$), 25.77$ (s$), 25.07$ (s$), 22.69$ (s$), 22.59$ (s).

1-(Bromomethyl)cyclohex-1-ene

Cyclohex-1-en-1-ylmethanol ($0.44 \mathrm{~g}, 3.88 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(7 \mathrm{ml})$, cooled to $0{ }^{\circ} \mathrm{C}$ and tribromophosphine $(0.16 \mathrm{ml}, 1.75 \mathrm{mmol})$ was added carefully. The reaction mixture was stirred for 3 h and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with saturated NaHCO_{3} and brine. The organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography using pure cyclohexane to obtain 1-(bromomethyl)cyclohex-1-ene in 63% isolated yield ($0.43 \mathrm{~g}, 2.43 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 5.88$ (broad s, 1H), $3.94(\mathrm{~s}, 2 \mathrm{H}), 2.13-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 2 \mathrm{H})$, $1.60-1.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 134.81(\mathrm{~s}), 128.32(\mathrm{~s}), 40.04(\mathrm{~s})$, 26.53 (s), 25.65 (s), 22.56 (s , 22.08 (s$).$

3-(Cyclohex-1-en-1-yl)-1-phenylpropan-1-one (77)

Acetophenone ($67 \mu 1,0.57 \mathrm{mmol}$) was dissolved in benzene (2 ml) and potassium tert-butoxide ($64 \mathrm{mg}, 0.57 \mathrm{mmol}$) was added slowly. After stirring for 30 min at $25{ }^{\circ} \mathrm{C}$, 1-(bromomethyl)cyclohex-1-ene in benzene (1 ml) was added. The reaction mixture was then stirred at 25 ${ }^{\circ} \mathrm{C}$ for 1.5 h . It was quenched with brine, extracted with cyclohexane and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified with silica gel preparative TLC with cyclohexane:ethyl
acetate (20:1) to obtain 3-(cyclohex-1-en-1-yl)-1-phenylpropan-1-one 77 in 23% isolated yield ($14 \mathrm{mg}, 0.07 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.95(\mathrm{t}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55(\mathrm{t}, J=7.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.89 \mathrm{~Hz}, 2 \mathrm{H}), 5.45-5.44(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.05(\mathrm{~m}$, $2 \mathrm{H}), 2.36(\mathrm{t}, J=7.53 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.53(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 200.80(\mathrm{~s}), 137.70(\mathrm{~s}), 137,18$ (s), 133.53 (s),
 (s).

Cyclohex-1-en-1-ylmethyl acetate

To an ice-cooled solution of cyclohex-1-en-1-ylmethanol (1.65 g, $14.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ were added $\mathrm{Et}_{3} \mathrm{~N}(4.10 \mathrm{ml}, 29.4 \mathrm{mmol})$ and a solution of N, N-dimethylpyridin-4-amine ($18 \mathrm{mg}, 0.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{ml})$. After 2 min , acetyl chloride ($1.26 \mathrm{ml}, 17.62 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . The ice-bath was removed and the solution was stirred for an additional 30 min at $25^{\circ} \mathrm{C}$. Then, it was quenched with cold $5 \% \mathrm{HCl}(80 \mathrm{ml})$ and the phases were separated. The organic layers were washed with water, saturated NaHCO_{3} and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Cyclohex-1-en-1-ylmethyl acetate was obtained in quantitative yield (2.26 g , $14.67 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 5.74($ broad s, 1 H$), 4.43(\mathrm{~s}, 2 \mathrm{H}), 2.07(\mathrm{~s}$, $3 \mathrm{H}), 2.06-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.56(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 171.99$ (s), 133.72 (s), 127.38 (s), 69.83 (s), 26.77 (s), 25.86 (s), 23.24 (s), 22.95 (s), 21.90 (s).

2-(2-Methylenecyclohexyl)acetic acid

Lithium diisopropylamide ($3.14 \mathrm{~g}, 29.3 \mathrm{mmol}$) was dissolved in THF (45 ml)and cooled down to $-78^{\circ} \mathrm{C}$. Cyclohex-1-en-1-ylmethyl acetate (2.26 $\mathrm{g}, 14.67 \mathrm{mmol})$ in THF (4.5 ml) was added over 5 min . After 10 min , chlorotrimethylsilane ($4.15 \mathrm{ml}, 32.3 \mathrm{mmol}$) was added in one portion and, 2 min later, the solution was warmed up to $25^{\circ} \mathrm{C}$. The reaction mixture was heated to reflux for 2.5 h and cooled down again to $25^{\circ} \mathrm{C}$. Methanol (15 ml) was added and the solution was stirred for an additional 15 min . Then, it was quenched with aqueous 5% $\mathrm{NaOH}(250 \mathrm{ml})$ and washed with diethyl ether. The aqueous layer was cooled down to 0 ${ }^{\circ} \mathrm{C}$, acidified with concentrated HCl and extracted five times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were collected, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. 2-(2Methylenecyclohexyl)acetic acid was obtained in 53% isolated yield ($1.21 \mathrm{~g}, 7.84 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 4.69($ broad s, 1 H$), 4.56(\operatorname{broad~s}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=$ $15.10,6.33 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=15.10,8.03 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.27$ $(\mathrm{m}, 1 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.46(\mathrm{~m}$, $1 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.17(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}, \mathrm{ppm}\right) \delta$ 179.82 (s), 151.61 (s), 105.89 (s), 39.97 (s), 38.21 (s), 35.96 (s), 34.45 (s), 28.83 (s), 25.43 (s).

1-(2-Methylenecyclohexyl)propan-2-one (78)

A stirred solution of 2-(2-methylenecyclohexyl)acetic acid ($0.40 \mathrm{~g}, 2.59$ mmol) in THF (26 ml) was cooled down to $0{ }^{\circ} \mathrm{C}$ and treated rapidly with methyllithium 1.6 M in diethyl ether ($13 \mathrm{ml}, 20.75 \mathrm{mmol}$). The reaction mixture was stirred for 2 h and chlorotrimethylsilane $(6.58 \mathrm{ml}, 51.90$ $\mathrm{mmol})$ was added. The solution was warmed up to $25^{\circ} \mathrm{C}$ and quenched with $1 \mathrm{M} \mathrm{HCl}(70$
$\mathrm{ml})$. The phases were stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h and separated. The aqueous phase was extracted with diethyl ether and the combined organic layers were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified with silica gel column chromatography using cyclohexane:ethyl acetate (20:1) to obtain 1-(2-methylenecyclohexyl)propan-2-one 78 in 55% isolated yield ($0.22 \mathrm{~g}, 1.43 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 4.65$ (broad s, 1 H), 4.45 (broad s, 1 H$), 2.69$ (dd, $J=15.97,6.52$ $\mathrm{Hz}, 1 \mathrm{H}), 2.62-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=16.20,7.20 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.15$ $(\mathrm{s}, 3 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 1 \mathrm{H}$, $1.17-1.09(\mathrm{~m}, 1 \mathrm{H})$.

3-Methyl-1-(2-methylenecyclohexyl)butan-2-one (79)

A stirred solution of 2-(2-methylenecyclohexyl)acetic acid ($0.25 \mathrm{~g}, 1.62$ mmol) in THF (16 ml) was cooled down to $0^{\circ} \mathrm{C}$ and treated rapidly with isopropyllithium 0.7 M in pentane ($46 \mathrm{ml}, 32.40 \mathrm{mmol}$). The reaction mixture was stirred for 2 h and chlorotrimethylsilane $(8.23 \mathrm{ml}, 64.81$ $\mathrm{mmol})$ was added. The solution was warmed up to $25^{\circ} \mathrm{C}$ and quenched with $1 \mathrm{M} \mathrm{HCl}(80$ ml). The phases were stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h and separated. The aqueous phase was extracted with diethyl ether and the combined organic layers were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified with silica gel column chromatography using cyclohexane:ethyl acetate (40:1) to obtain 3-methyl-1-(2-methylenecyclohexyl)butan-2-one 79 in 37% isolated yield ($0.11 \mathrm{~g}, 0.60 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=16.03,5.84 \mathrm{~Hz}, 1 \mathrm{H})$, $2.67-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{dd}, J=16.03,7.34 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.06$ $(\mathrm{m}, 1 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.13(\mathrm{~m}$, $1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.90 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 214.09(\mathrm{~s}), 152.20(\mathrm{~s})$, 105.15 (s), 43.77 (s), 41.33 (s), 38.65 (s), 35.84 (s), 34.36 (s), 28.72 (s), 25.28 (s), 18.41 (s), $18.26(\mathrm{~s}) . \mathrm{ESI}^{+} m / z$ calc for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$203.1406, found 203.1408 (0.2 $\mathrm{ppm})$.

General Procedure for the Preparation of Oxabicycles

To a solution of the oxoalkene (1 equiv.) and the arylalkyne (3.5 equiv.) in DCE (0.5 M), the cationic gold (I) catalyst $\mathbf{A}(5 \mathrm{~mol} \%)$ was added. Then, the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ and followed by TLC. When it was finished, the catalyst was quenched by adding 0.05 ml of $\mathrm{Et}_{3} \mathrm{~N}$, the solvent was removed and the crude was analysed by quantitative ${ }^{1} \mathrm{H}$ NMR using 1,4-diacetylbenzene as internal standard. Finally, the oxabicycle product was purified by preparative TLC and fully characterized.

1,5-Dimethyl-3-phenyl-8-oxabicyclo[3.2.1]oct-2-ene (23)

Compound 23 was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and ethynylbenzene ($77.0 \mu \mathrm{l}, 0.7 \mathrm{mmol}$) with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction time was 19 h and pure $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as eluent in the separation to obtain pure 1,5-dimethyl-3-phenyl-8-oxabicyclo[3.2.1]oct-3-ene as a yellow oil in 68% isolated yield ($29.1 \mathrm{mg}, 0.14 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.38(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}$, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=16.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}$, $1 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$
139.93 (s), 133.61 (s), 131.09 (s), 128.46 (s), 127.44 (s), 125.01 (s), 79.73 (s), 79.49 (s), 42.34 (s), 42.21 (s), 37.53 (s), 27.42 (s), 23.78 (s). Structure confirmed by ${ }^{1}$ H COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$215.1436, found 215.1438 (0.9 ppm).

1,5-Dimethyl-3-(naphthalen-2-yl)-8-oxabicyclo[3.2.1]oct-2-ene (26)

Compound 26 was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and 2ethynylnaphthalene ($107.0 \mathrm{mg}, 0.7 \mathrm{mmol}$) with catalyst $\mathbf{A}(9.0 \mathrm{mg}$, $0.01 \mathrm{mmol})$. The reaction time was 20 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:99) was used as eluent in the separation to obtain pure 1,5-dimethyl-3-(naphthalen-2-yl)-8-oxabicyclo[3.2.1]oct-3-ene as a yellowish powder in 62% isolated yield $(32.5 \mathrm{mg}, 0.12 \mathrm{mmol})$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.84-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.60(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 2 \mathrm{H})$, $6.39(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=16.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-$ $2.08(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 137.06$ (s), 133.59 (s), 133.38 (s), 132.91 (s), 131.70 (s), 128.23 (s), 127.93 (s), 127.65 (s), 126.29 (s) 125.88 (s$), 123.55$ (s$), 123.43$ (s), 79.83 (s), 79.55 (s), 42.33 (s), 42.19 (s), 37.56 (s), 27.48 (s), 23.85 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$265.1592, found 265.1588 (-1.5 ppm). Mp $128.5-129.3^{\circ} \mathrm{C}$.

3-(4-Fluorophenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-2-ene (27)

Compound 27 was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and 1-ethynyl-4-fluorobenzene ($80.0 \mu \mathrm{l}, 0.7 \mathrm{mmol}$) with catalyst $\mathbf{A}(9.0 \mathrm{mg}$, $0.01 \mathrm{mmol})$. The reaction time was 20 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ was used as eluent in the separation to obtain pure 3-(4-fluorophenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-3-ene as a yellow oil in 68% isolated yield ($31.6 \mathrm{mg}, 0.14 \mathrm{mmol}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.37-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (dd, $J=16.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 2 \mathrm{H})$, $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 162.32\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=\right.$ $243.7 \mathrm{~Hz}), 136.02\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{-19} \mathrm{~F}\right)=3.7 \mathrm{~Hz}\right), 132.72(\mathrm{~s}), 130.96(\mathrm{~s}), 126.56\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=\right.$ $7.8 \mathrm{~Hz}), 115.25\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=21.4 \mathrm{~Hz}\right), 79.69(\mathrm{~s}), 79.42(\mathrm{~s}), 42.36(\mathrm{~s}), 42.29(\mathrm{~s}), 37.51$ (s), 27.38 (s), 23.76 (s). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta-115.05$ (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }_{-}^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{OF}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 233.1342$, found $233.1342(0.0 \mathrm{ppm})$.

3-(4-Chlorophenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-2-ene (28)

Compound 28 was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and 1-chloro-4-ethynylbenzene $(96.0 \mathrm{mg}, 0.7 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0$ $\mathrm{mg}, 0.01 \mathrm{mmol}$). The reaction time was 18 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:10) was used as eluent in the separation to obtain pure 3-(4-chlorophenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-3-ene as a yellow oil in 55% isolated yield ($27.4 \mathrm{mg}, 0.11 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.65(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}$, $1 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 138.34 (s), 133.11 (s), 132.63 (s), 131.62 (s), 128.56 (s), 126.27 (s), 79.69 (s), 79.42 (s), 42.25 (s), 42.12 (s), 37.50 (s), 27.36 (s), 23.71 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{OCl}^{+}[\mathrm{M}+\mathrm{H}]^{+}$249.1046, found 249.1039 (-2.8 ppm).

3-(4-Bromophenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-2-ene (29)

Compound 29 was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and 1-bromo-4-ethynylbenzene ($127.0 \mathrm{mg}, 0.7 \mathrm{mmol}$) with catalyst \mathbf{A} (9.0 $\mathrm{mg}, 0.01 \mathrm{mmol}$). The reaction time was 20 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:2) was used as eluent in the separation to obtain pure 3-(4-bromophenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-3-ene as a yellow oil in 49% isolated yield ($28.7 \mathrm{mg}, 0.10 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=16.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.86$ $(\mathrm{m}, 1 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
 79.43 (s), 42.23 (s), 42.06 (s), 37.50 (s), 27.36 (s), 23.70 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }_{-}^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{OBr}^{+}[\mathrm{M}+\mathrm{H}]^{+}$293.0541, found 293.0527 (-4.8 ppm).

1,5-Dimethyl-3-(m-tolyl)-8-oxabicyclo[3.2.1]oct-2-ene (30)

Compound $\mathbf{3 0}$ was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and 1-ethynyl-3methylbenzene $(90.0 \mu \mathrm{l}, 0.7 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01$ mmol). The reaction time was 19 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:10) was used as eluent in the separation to obtain pure 1,5-dimethyl-3-(m-tolyl)-8-oxabicyclo[3.2.1]oct-3-ene as a yellow oil in 70% isolated yield ($31.9 \mathrm{mg}, 0.14 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=16.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{dd}, J=16.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.84(\mathrm{~m}$, $1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 139.93 (s), 137.95 (s), 133.65 (s$), 130.91$ (s$), 128.35$ (s$), 128.18$ (s), 125.76 (s$), 122.14$ (s), 79.71 (s), 79.47 (s), 42.35 (s), 42.26 (s), 37.51 (s), 27.41 (s), 23.78 (s), 21.64 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 229.1592$, found $229.1588(-1.7 \mathrm{ppm})$.

3-(3-Fluorophenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-2-ene (31)

Compound $\mathbf{3 1}$ was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and 1-ethynyl-3fluorobenzene ($81.0 \mu \mathrm{l}, 0.7 \mathrm{mmol}$) with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction time was 20 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 2)$ was used as eluent in the separation to obtain pure 3-(3-fluorophenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-3-ene as a yellow oil in 49\% isolated yield ($22.6 \mathrm{mg}, 0.10 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$)
$\delta 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{tdd}, J=8.3,2.6,0.8$
$\mathrm{Hz}, 1 \mathrm{H}), 6.28(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=16.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.17-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 163.14\left(\mathrm{~s}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=245.4 \mathrm{~Hz}\right), 142.29(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}^{19} \mathrm{~F}\right)=9.6 \mathrm{~Hz}\right), 132.69(\mathrm{~s}), 132.19(\mathrm{~s}), 129.83\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=9.7 \mathrm{~Hz}\right), 120.58(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=3.7 \mathrm{~Hz}\right), 114.15\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=21.7 \mathrm{~Hz}\right), 111.92\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=22.8 \mathrm{~Hz}\right)$, 79.67 (s), 79.44 (s), 42.23 (s), 42.11 (s), 37.49 (s), 27.35 (s), 23.68 (s). ${ }^{19}$ F NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta-113.66$ (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{OF}^{+}[\mathrm{M}+\mathrm{H}]^{+}$233.1342, found 233.1339 (-1.3 ppm).

3-(3-Chlorophenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-2-ene (32)

Me

Compound $\mathbf{3 2}$ was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and 1-chloro-3ethynylbenzene ($86.0 \mu \mathrm{l}, 0.7 \mathrm{mmol}$) with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01$ mmol). The reaction time was 20 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:2) was used as eluent in the separation to obtain pure 3-(3-chlorophenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-3-ene as a yellow oil in 55% isolated yield ($27.4 \mathrm{mg}, 0.11 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.25(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}$, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=16.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.87(\mathrm{~m}$, $1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 141.81 (s), 134.49 (s), 132.59 (s), 132.34 (s), 129.66 (s), 127.37 (s), 125.25 (s), 123.13 (s), 79.69 (s), 79.44 (s), 42.24 (s), 42.08 (s), 37.49 (s), 27.34 (s), 23.67 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{OCl}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 249.1046, found 249.1041 (-2.0 ppm).

1,5-Dimethyl-8-oxabicyclo[3.2.1]oct-2-en-3-yl)phenol (33)

Compound 33 was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and 3-ethynylphenol $(76.0 \mu 1,0.7 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction time was 37 h and a mixture of cyclohexane and ethyl acetate (2:1) was used as eluent in the separation to obtain pure 3-(1,5-dimethyl-8-oxabicyclo[3.2.1]oct-3-en-3-yl)phenol as a yellowish powder in 65% isolated yield ($22.8 \mathrm{mg}, 0.10 \mathrm{mmol}$). Moreover, this compound was synthesized in larger scale. To a solution of 5-methylhex-5-en-2-one ($0.26 \mathrm{ml}, 2.00 \mathrm{mmol}$) and 3-ethynylphenol ($1.0 \mathrm{~g}, 8.50 \mathrm{mmol}$) in DCE $(5.6 \mathrm{ml})$ at $25^{\circ} \mathrm{C}$, the cationic gold (I) catalyst $(75.0 \mathrm{mg}, 4 \mathrm{~mol} \%)$ was added. Then, the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 39 h and followed by TLC. When it was finished, it was quenched by adding 0.5 ml of $\mathrm{Et}_{3} \mathrm{~N}$ and the solvent was removed. Finally, the crude was purified by column chromatography using a mixture of cyclohexane and ethyl acetate (9:1) as eluent in the separation to obtain pure 3-(1,5-dimethyl-8-oxabicyclo[3.2.1]oct-3-en-3-yl)phenol as a yellowish powder in 74% isolated yield ($339.2 \mathrm{mg}, 1.47 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}, \mathrm{ppm}\right) \delta 7.12(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{ddd}, J=7.8,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (ddd, $J=8.0,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=16.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.73$ $(\mathrm{m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{ppm}\right) \delta 158.44(\mathrm{~s})$, 142.44 (s), 134.95 (s), 131.23 (s), 130.35 (s), 117.34 (s), 115.38 (s), 112.75 (s), 81.22 (s), 81.04 (s), 43.10 (s), 42.95 (s), 38.08 (s), 27.41 (s), 23.78 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HMQC NMR. ESI m / z calc for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}$229.1229,
found $229.1223(-2.6 \mathrm{ppm})$. Mp $129.8-130.5{ }^{\circ} \mathrm{C}$. Structure confirmed by X-Ray crystallography, CCDC 913001.

3-(3-Methoxyphenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-2-ene (34)

Compound 34 was synthesized following the general procedure starting from 5 -methylhex-5-en-2-one ($26.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and 1-ethynyl-3-methoxybenzene $(89.0 \mu \mathrm{l}, 0.7 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0$ $\mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction time was 19 h and pure $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as eluent in the separation to obtain pure 3-(3-methoxyphenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-3-ene as a yellow oil in 91\% isolated yield ($44.6 \mathrm{mg}, 0.18 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.77(\mathrm{~m}$, $1 \mathrm{H}), 6.22(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (s, 3H), 2.68 (d, $J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ (dd, $J=16.7,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.48$ (s, 3H). DEPTQ-135 NMR (101 MHz, CDCl_{3}, ppm) $\delta 159.78$ (s, C), 141.51 (s, C), 133.50 (s, C), $131.36(\mathrm{~s}, \mathrm{CH}), 129.37(\mathrm{~s}, \mathrm{CH}), 117.58(\mathrm{~s}, \mathrm{CH}), 112.67(\mathrm{~s}, \mathrm{CH}), 110.97(\mathrm{~s}, \mathrm{CH})$, 79.68 (s, C), 79.46 (s, C), $55.35\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 42.31\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.27\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 37.49\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $27.38\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 23.74\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. $\mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+} 245.1542$, found 245.1532 (-4.1 ppm).

1,5-Dimethyl-3-(o-tolyl)-8-oxabicyclo[3.2.1]oct-2-ene (35)

Compound 35 was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and 1-ethynyl-2methylbenzene ($88.0 \mu \mathrm{l}, 0.7 \mathrm{mmol}$) with catalyst A $(9.0 \mathrm{mg}, 0.01$ mmol). The reaction time was 20 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) was used as eluent in the separation to obtain pure 1,5-dimethyl-3-(o-tolyl)-8-oxabicyclo[3.2.1]oct-3-ene as a yellow oil in 41% isolated yield ($18.5 \mathrm{mg}, 0.08 \mathrm{mmol}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.18-7.11$ $(\mathrm{m}, 3 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H}), 5.70-5.62(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, $2.14-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$. DEPTQ-135 NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 141.64$ (s, C), 135.70 (s, C), 135.16 (s, C), 133.39 (s, CH), 130.31 (s, CH), 128.24 (s, CH), 127.01 (s, CH), 125.74 (s, CH), 79.61 (s, C), 45.11 (s, $\left.\mathrm{CH}_{2}\right), 42.62\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 37.66\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.21\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 23.61\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 19.88\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{16} \mathrm{H}_{19}{ }^{+}[\mathrm{MOH}]^{+}$211.1487, found 211.1487 (0.0 ppm).

1,5-Dimethyl-3-(thiophen-3-yl)-8-oxabicyclo[3.2.1]oct-2-ene (36)

Compound 36 was synthesized following the general procedure starting from 5-methylhex-5-en-2-one (26.0 $\mu \mathrm{l}, \quad 0.2 \mathrm{mmol})$ and 3ethynylthiophene $(69.0 \mu \mathrm{l}, 0.7 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01$ mmol). The reaction time was 19 h (no complete conversion was observed after after 67 h) and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:5) was used as eluent in the separation to obtain pure 1,5-dimethyl-3-(thiophen-3-yl)-8oxabicyclo[3.2.1] oct-3-ene as a brownish oil in 40% isolated yield ($17.5 \mathrm{mg}, 0.08 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=5.1,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{dd}, J=2.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (dd, $J=16.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.49$ (s, 3H), $1.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 142.04(\mathrm{~s}), 130.22(\mathrm{~s}), 129.15$
(s), 125.69 (s), 124.68 (s), 119.25 (s), 79.57 (s$), 79.39$ (s$), 42.43$ (s), 42.26 (s), 37.51 (s), 27.38 (s), 23.83 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. $\mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$221.1000, found 221.1003 (1.4 ppm).

3-(4-Methoxyphenyl)-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-2-ene (44)

In this case, compound 44 was synthesized following the general procedure but switching the stoichiometry starting from 5-methylhex-5-en-2-one ($112.0 \mu \mathrm{l}, 0.99 \mathrm{mmol}$) and 1-ethynyl-4methoxybenzene $(28.4 \mathrm{mg}, 0.22 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0 \mathrm{mg}$, $0.01 \mathrm{mmol})$. The reaction time was 20 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) was used as eluent in the separation. If the starting material was not anhydrous, 1-(4-methoxyphenyl)ethanone was also formed and it had to be separated using an aluminium oxide preparative TLC plate and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) to obtain pure 3-(4-methoxyphenyl)-1,5-dimethyl-8oxabicyclo[3.2.1] oct-3-ene as a yellowish doughy powder in 43% isolated yield (22.3 mg , $0.09 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.32(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.13(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=$ $16.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}$, $3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H})$. DEPTQ-135 NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 159.12(\mathrm{~s}, \mathrm{C}), 132.93$ (s, C), $132.53(\mathrm{~s}, \mathrm{C}), 129.38(\mathrm{~s}, \mathrm{CH}), 126.06(\mathrm{~s}, \mathrm{CH}), 113.82(\mathrm{~s}, \mathrm{CH}), 79.72(\mathrm{~s}, \mathrm{C}), 79.44$ (s, C), $55.43\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 42.38\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.31\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 37.53\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.44\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 23.87(\mathrm{~s}$, CH_{3}). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$245.1542, found 245.1532 (-4.1 ppm).

1,5-Dimethyl-3-(p-tolyl)-8-oxabicyclo[3.2.1]oct-2-ene (45)

In this case, compound 45 was synthesized following the general procedure but switching the stoichiometry starting from 5-methylhex-5-en-2-one ($104.0 \mu \mathrm{l}, 0.80 \mathrm{mmol}$) and 1-ethynyl-4methylbenzene $(23.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01$ $\mathrm{mmol})$. The reaction time was 20 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:3) was used as eluent in the separation to obtain pure 1,5-dimethyl-3-(p-tolyl)-8-oxabicyclo[3.2.1]oct-3-ene as a yellow oil in 52% isolated yield $(23.7 \mathrm{mg}, 0.10 \mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.26$ (dd, $J=16.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 2 \mathrm{H})$, $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H})$. DEPTQ-135 NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 137.15(\mathrm{~s}, \mathrm{C})$, 137.07 (s, C), $133.38(\mathrm{~s}, \mathrm{C}), 130.20(\mathrm{~s}, \mathrm{CH}), 129.13(\mathrm{~s}, \mathrm{CH}), 124.86(\mathrm{~s}, \mathrm{CH}), 79.70(\mathrm{~s}, \mathrm{C})$, 79.45 (s, C), $42.36\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.23\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 37.52\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.42\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 23.81\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, $21.20\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+}$ m / z calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 229.1592$, found 229.1587 (-4.1 ppm).

1-Methyl-3,5-diphenyl-8-oxabicyclo[3.2.1]oct-2-ene (47)

Compound 47 was synthesized following the general procedure starting from 5-phenyl-5-hexen-2-one ($35.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethynylbenzene $(77.0 \mu \mathrm{l}, 0.7 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction time was 19 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ was used as eluent in the separation to obtain pure 1-methyl-3,5-diphenyl-8-oxabicyclo[3.2.1]oct2 -ene as a yellowish powder in 67% isolated yield ($37.9 \mathrm{mg}, 0.14 \mathrm{mmol}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.52(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.90(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.16(\mathrm{~m}$, $2 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 147.34(\mathrm{~s})$, 139.80 (s), 133.47 (s), 131.02 (s), 128.51 (s), 128.40 (s), 127.55 (s), 126.81 (s), 125.06 (s), 124.46 (s), 82.85 (s), 79.88 (s), 43.25 (s), 42.18 (s), 38.82 (s), 23.72 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 277.1592$, found $277.1586(-2.2 \mathrm{ppm})$. Mp $113.8-114.9^{\circ} \mathrm{C}$.

3-(4-Fluorophenyl)-1-methyl-5-phenyl-8-xabicyclo[3.2.1]oct-2-ene (48)

Compound 48 was synthesized following the general procedure starting from 5 -phenyl-5-hexen-2-one ($37.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-ethynyl-4-fluorobenzene ($80.0 \mu 1,0.7 \mathrm{mmol}$) with catalyst $\mathbf{A}(9.0 \mathrm{mg}$, $0.01 \mathrm{mmol})$. The reaction time was 20 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ was used as eluent in the separation to obtain pure 3-(4-fluorophenyl)-1-methyl-5-phenyl-8-oxabicyclo[3.2.1]oct-2-ene as a yellow oil in 65% isolated yield ($40.9 \mathrm{mg}, 0.14 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.51(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{tt}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=16.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$. DEPTQ135 NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 163.37\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=246.5 \mathrm{~Hz}, \mathrm{C}\right), 147.20(\mathrm{~s}, \mathrm{C})$, $135.88\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=3.4 \mathrm{~Hz}, \mathrm{C}\right), 132.57(\mathrm{~s}, \mathrm{C}), 130.89(\mathrm{~s}, \mathrm{CH}), 128.40(\mathrm{~s}, \mathrm{CH}), 126.74$ $\left(\mathrm{d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=25.7 \mathrm{~Hz}, \mathrm{CH}\right), 126.57(\mathrm{~s}, \mathrm{CH}), 124.42(\mathrm{~s}, \mathrm{CH}), 115.31\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=\right.$ $21.5 \mathrm{~Hz}, \mathrm{CH}), 82.77(\mathrm{~s}, \mathrm{C}), 79.81(\mathrm{~s}, \mathrm{C}), 43.41\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.10\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 38.78\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $23.70\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}, \mathrm{CDCl} 3, \mathrm{ppm}) \delta-115.17(\mathrm{~s})$. Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{OF}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 295.1498, found 295.1495 (-4.4 ppm).

3-(4-Chlorophenyl)-1-methyl-5-phenyl-8-xabicyclo[3.2.1]oct-2-ene (49)

Compound 49 was synthesized following the general procedure starting from 5 -phenyl-5-hexen-2-one ($35.7 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-chloro-4-ethynylbenzene $(96.0 \mathrm{mg}, 0.7 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0$ $\mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction time was 18 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:10) was used as eluent in the separation to obtain pure 3-(4-chlorophenyl)-1-methyl-5-phenyl-8oxabicyclo[3.2.1] oct-2-ene as a yellow oil in 62% isolated yield ($38.9 \mathrm{mg}, 0.13 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.51$ (dd, $\left.J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.31(\mathrm{t}, J=8.3 \mathrm{~Hz} 1 \mathrm{H}), 2.84(\mathrm{~d}, J=16.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.62(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.59$ (s, 3H). DEPTQ-135 NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 147.13$ (s, C), 138.20 (s, C), 133.23 ($\mathrm{s}, \mathrm{C}), 132.49(\mathrm{~s}, \mathrm{C}), 131.55(\mathrm{~s}, \mathrm{CH}), 128.61(\mathrm{~s}, \mathrm{CH}), 128.42(\mathrm{~s}, \mathrm{CH}), 126.87(\mathrm{~s}$, $\mathrm{CH}), 126.31(\mathrm{~s}, \mathrm{CH}), 124.41(\mathrm{~s}, \mathrm{CH}), 82.77(\mathrm{~s}, \mathrm{C}), 79.82(\mathrm{~s}, \mathrm{C}), 43.20\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.06(\mathrm{~s}$, $\left.\mathrm{CH}_{2}\right), 38.76\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.66\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{OCl}^{+}[\mathrm{M}+\mathrm{H}]^{+}$311.1203, found 311.1217 (4.5 ppm).

3-(4-Bromophenyl)-1-methyl-5-phenyl-8-xabicyclo[3.2.1]oct-2-ene (50)

Compound 50 was synthesized following the general procedure starting from 5 -phenyl-5-hexen-2-one ($34.5 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-bromo-4-ethynylbenzene ($125.0 \mathrm{mg}, 0.7 \mathrm{mmol}$) with catalyst $\mathbf{A}(9.0$ $\mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction time was 15 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) was used as eluent in the separation to obtain pure 3-(4-bromophenyl)-1-methyl-5-phenyl-8oxabicyclo[3.2.1] oct-2-ene as a yellow oil in 70% isolated yield ($48.2 \mathrm{mg}, 0.14 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.56(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.37(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.67(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.87(\mathrm{~m}$, $1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 147.09(\mathrm{~s}), 138.65(\mathrm{~s}), 132.54$ (s), 131.62 (s), 131.55 (s), 128.42 (s), 126.88 (s), 126.64 (s), 124.40 (s), 121.37 (s), 82.77 (s), 79.83 (s), 43.12 (s), 42.04 (s), 38.75 (s), 23.64 (s). Structure confirmed by ${ }^{1}$ H COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI m / z calc for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{OBr}^{+}[\mathrm{M}+\mathrm{H}]^{+} 355.0698$, found 355.0705 (2.0 ppm).

3-(3-fluorophenyl)-1-methyl-5-phenyl-8-xabicyclo[3.2.1]oct-2-ene (51)

Compound $\mathbf{5 1}$ was synthesized following the general procedure starting from 5-phenyl-5-hexen-2-one ($34.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-ethynyl-3fluorobenzene ($81.0 \mu \mathrm{l}, 0.7 \mathrm{mmol}$) with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction time was 20 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) was used as eluent in the separation to obtain pure 3-(3-fluorophenyl)-1-methyl-5-phenyl-8-oxabicyclo[3.2.1]oct-2-ene as a yellow oil in 59\% isolated yield ($34.4 \mathrm{mg}, 0.12 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.51(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{dt}, J=$ $7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dt}, J=10.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{td}, J=8.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{t}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.25$ $-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$. DEPTQ-135 NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm $) \delta 163.15\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=244.5 \mathrm{~Hz}, \mathrm{C}\right), 147.09(\mathrm{~s}, \mathrm{C}), 142.14\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=7.5\right.$ $\mathrm{Hz}, \mathrm{C}), 132.56(\mathrm{~s}, \mathrm{C}), 132.12(\mathrm{~s}, \mathrm{CH}), 129.89\left(\mathrm{~d}, \mathrm{~J}\left({ }^{13} \mathrm{C}-{ }^{-19} \mathrm{~F}\right)=9.5 \mathrm{~Hz}, \mathrm{CH}\right), 128.43$ ($\left.\mathrm{s}, \mathrm{CH}\right)$, $126.89(\mathrm{~s}, \mathrm{C}), 124.42(\mathrm{~s}, \mathrm{C}), 120.62\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=2.6 \mathrm{~Hz}, \mathrm{CH}\right), 114.28\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=\right.$ $21.6 \mathrm{~Hz}, \mathrm{CH}), 111.97\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=22.5 \mathrm{~Hz}, \mathrm{CH}\right), 82.77(\mathrm{~s}, \mathrm{C}), 79.81(\mathrm{~s}, \mathrm{C}), 43.16(\mathrm{~s}$, CH_{2}), $42.05\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 38.77\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.62\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta-$ 113.50 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{OF}^{+}[\mathrm{M}+\mathrm{H}]^{+} 295.1498$, found 295.1486 (-4.1 ppm).

3-(3-Chlorophenyl)-1-methyl-5-phenyl-8-oxabicyclo[3.2.1]oct-2-ene (52)

Compound 52 was synthesized following the general procedure starting from 5-phenyl-5-hexen-2-one ($35.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-chloro-3ethynylbenzene ($86.0 \mathrm{ml}, 0.7 \mathrm{mmol}$) with catalyst A $(9.0 \mathrm{mg}, 0.01$ mmol). The reaction time was 20 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) was used as eluent in the separation to obtain pure 3-(3-chlorophenyl)-1-methyl-5-phenyl-8-oxabicyclo[3.2.1]oct-2-ene as a yellow oil in 60% isolated yield ($38.3 \mathrm{mg}, 0.12 \mathrm{mmol}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.51$ (dd, $J=8.3$, $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.34(\mathrm{t}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.06(\mathrm{~m}, 2 \mathrm{H})$, $1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$. DEPTQ-135 NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 147.05(\mathrm{~s}$,
C), 141.66 (s, C), 134.54 (s, C), 132.45 (s, C), 132.26 (s, CH), 129.71 ($\mathrm{s}, \mathrm{CH}), 128.43$ (s , CH), 127.48 (s, CH), 126.89 (s, CH), 125.28 ($\mathrm{s}, \mathrm{CH}), 124.41$ ($\mathrm{s}, \mathrm{CH}), 123.15$ ($\mathrm{s}, \mathrm{CH})$, $82.76(\mathrm{~s}, \mathrm{C}), 79.81(\mathrm{~s}, \mathrm{C}), 43.13\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.05\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 38.75\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.62\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{OCl}^{+}[\mathrm{M}+\mathrm{H}]^{+} 311.1203$, found 311.1218 (4.8 ppm).

5-Methyl-1,3-diphenyl-8-oxabicyclo[3.2.1]oct-2-ene (66)

Compound 66 was synthesized following the general procedure starting from 4-methyl-1-phenyl-4-penten-1-one ($34.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethynylbenzene ($77.0 \mu \mathrm{l}, 0.7 \mathrm{mmol}$) with catalyst \mathbf{A} ($9.0 \mathrm{mg}, 0.01 \mathrm{mmol}$). The reaction time was 19 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) was used as eluent in the separation to obtain pure 1-methyl-3,5-diphenyl-8oxabicyclo[3.2.1] oct-3-ene as a yellowish powder in 87% isolated yield ($48.0 \mathrm{mg}, 0.17$ mmol). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.54(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 4 \mathrm{H})$, $7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=16.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.00(\mathrm{~m}$, $1 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$. DEPTQ-135 NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) δ 143.49 (s, C), 139.76 (s, C), 133.50 (s, C), 131.16 (s, CH), 128.48 (s, CH), 128.45 (s, CH), $127.54(\mathrm{~s}, \mathrm{CH}), 127.22(\mathrm{~s}, \mathrm{CH}), 125.46(\mathrm{~s}, \mathrm{CH}), 125.08(\mathrm{~s}, \mathrm{CH}), 83.66(\mathrm{~s}, \mathrm{C}), 79.52(\mathrm{~s}, \mathrm{C})$, $42.33\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.14\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 37.05\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.45\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$277.1592, found 277.1587 (-1.8 ppm). Mp $78.9-79.5^{\circ} \mathrm{C}$.

5-Methyl-3-phenyl-8-oxabicyclo[3.2.1]oct-2-ene (67)

Compound 67 was synthesized following the general procedure starting from 4-methyl-4-pentenal ($19.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethynylbenzene ($77.0 \mu \mathrm{l}$, $0.7 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction time was 21 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ was used as eluent in the separation to obtain pure 1-methyl-3-phenyl-8-oxabicyclo[3.2.1]oct-3-ene as a yellow oil in 16% isolated yield ($6.4 \mathrm{mg}, 0.03 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.37(\mathrm{dt}, J=4.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=17.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 1 \mathrm{H})$, 1.51 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 139.88$ (s), 133.58 (s), 128.48 (s), 127.68 (s), 127.47 (s), 124.96 (s), 78.95 (s), 74.76 (s), 42.78 (s), 36.04 (s), 35.75 (s), 27.20 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$201.1279, found 201.1284 (2.5 ppm).

1-(Tert-butyl)-5-methyl-3-phenyl-8-oxabicyclo[3.2.1]oct-2-ene (68)

Compound 68 was synthesized following the general procedure starting from 2,2,6-trimethyl-6-hepten-3-one ($23.3 \mathrm{mg}, \quad 0.15 \mathrm{mmol}$) and ethynylbenzene $(58.1 \mu \mathrm{l}, 0.53 \mathrm{mmol})$ with catalyst $\mathbf{A}(6.8 \mathrm{mg}, 0.007$ $\mathrm{mmol})$. The reaction time was 19 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1) was used as eluent in the separation to obtain pure 1-(tert-butyl)-5-methyl-3-phenyl-8-oxabicyclo[3.2.1] oct-2-ene as a yellow oil in 54\% isolated yield (27.9 $\mathrm{mg}, 0.11 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.39(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.53-6.42(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J$ $=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}$,
$3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 140.68(\mathrm{~s}), 133.51(\mathrm{~s}), 129.22(\mathrm{~s})$, 128.45 (s), 127.21 (s), 124.98 (s$), 87.11$ (s$), 78.96$ (s), 42.37 (s), 37.08 (s$), 35.56$ (s), 34.74 (s), 27.47 (s), 25.62 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. $\mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 257.1905$, found 257.1904 (-0.4 ppm).

4-(4,4-Dimethyl-2-phenylcyclobut-2-en-1-yl)butan-2-one (69)

Compound 69 was synthesized following the general procedure starting from 6-mehtyl-5-hepten-2-one ($30.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and ethynylbenzene $(77.0 \mu \mathrm{l}, 0.7 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction time was 19 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 3)$ was used as eluent in the separation to obtain a 1:3.6 mixture of 1,4,4-trimethyl-3-phenyl-8-oxabicyclo[3.2.1]oct-2-ene (70) and 4-(4,4-dimethyl-2-phenylcyclobut-2-en-1-yl)butan-2-one in 77% isolated yield. The isomers were separated by preparative TLC using a mixture of cyclohexane and ethyl acetate ($9: 1$) as eluent to obtain 4-(4,4-dimethyl-2-phenylcyclobut-2-en-1-yl)butan-2-one as a yellow oil in 53% isolated yield ($24.2 \mathrm{mg}, 0.11 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.37-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=10.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.45(\mathrm{~m}$, $2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 208.83$ (s), 145.58 (s), 136.48 (s), 134.71 (s), 128.49 (s), 127.53 (s), 125.22 (s), 51.04 (s), 42.92 (s), 42.88 (s), 30.10 (s), 27.97 (s), 23.44 (s), 21.95 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 229.1592$, found 229.1594 (0.9 ppm).

1,4,4-Trimethyl-3-phenyl-8-oxabicyclo[3.2.1]oct-2-ene (70)

Compound 70 was synthesized following the general procedure starting from 6-mehtyl-5-hepten-2-one ($30.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) and ethynylbenzene $(77.0 \mu \mathrm{l}, 0.7 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction time was 19 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 3)$ was used as eluent in the separation to obtain a 1:3.6 mixture of 1,4,4-trimethyl-3-phenyl-8-oxabicyclo[3.2.1]oct-2-ene and 4-(4,4-dimethyl-2-phenylcyclobut-2-en-1-yl)butan-2-one (69) in 77% isolated yield. The isomers were separated by preparative TLC using a mixture of cyclohexane and ethyl acetate (9:1) as eluent to obtain 1,4,4-trimethyl-3-phenyl-8-oxabicyclo[3.2.1] oct-2-ene as a yellow oil in 16% isolated yield ($7.5 \mathrm{mg}, 0.03$ mmol). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.46$ $(\mathrm{s}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=7.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{td}, J$ $=11.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}) \delta 143.92$ (s), 140.88 (s), 131.67 (s), 129.01 (s), 127.72 (s), 126.75 (s), 85.00 (s), 78.97 (s), 40.37 (s), 39.84 (s), $28.50(\mathrm{~s}), 25.80(\mathrm{~s}), 23.09(\mathrm{~s}), 22.21$ (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR and ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HMBC NMR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 229.1592$, found 229.1594 (0.9 ppm).

Ethyl 3-(1-methyl-3-phenylcyclobut-2-en-1-yl)propanoate (74)

Compound 70 was synthesized following the general procedure starting from ethyl 4-methyl-4-pentenoate ($32.0 \mathrm{ml}, 0.2 \mathrm{mmol}$) and ethynylbenzene $(77.0 \mathrm{ml}, 0.7 \mathrm{mmol})$ with catalyst $\mathbf{A}(9.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction time was 20 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 1)$ was used as eluent in the separation to obtain pure ethyl 3-(1-methyl-3-phenylcyclobut-2-en-1yl)propanoate as a yellow oil in 47% isolated yield ($23.0 \mathrm{mg}, 0.09 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.36-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H})$, $4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (ddd, J $=8.7,7.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. DEPTQ-135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 174.28$ (s, C), 143.08 (s, C), 134.94 (s, C), 134.60 (s, CH), 128.41 (s, CH), 127.78 (s, CH), $124.56(\mathrm{~s}, \mathrm{CH}), 60.42\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.31$ (s, C), 40.38 $\left(\mathrm{s}, \mathrm{CH}_{2}\right), 34.79\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 31.20\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.30\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 14.36\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR and IR. APCI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 245.1542$, found $245.1541(-0.4 \mathrm{ppm})$.

8-Methyl-6-phenyl-1,2,3,4,5,8,9,9a-octahydro-4a,8-epoxybenzo[7]annulene (82)

Compound 82 was synthesized following the general procedure starting from 1-(2-methylenecyclohexyl)propan-2-one $78(30.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and ethynylbenzene $(110.0 \mu \mathrm{l}, 1.0 \mathrm{mmol})$ with $10 \mathrm{~mol} \%$ of catalyst $\mathbf{A}(18.0$ $\mathrm{mg}, 0.02 \mathrm{mmol}$). The reaction time was 22 h and a silica gel column with pentane and diethyl ether (100:1) as eluent was used in the separation to obtain pure 8-methyl-6-phenyl-1,2,3,4,5,8,9,9a-octahydro-4a, 8 epoxybenzo[7]annulene as a yellow oil in 31% isolated yield ($15.7 \mathrm{mg}, 0.06 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}$, $1 \mathrm{H}), 6.23(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=17.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.99-$ $1.93(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.39-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 140.03(\mathrm{~s})$, 133.44 (s), 132.44 (s), 128.43 (s), 127.35 (s), 124.97 (s), 80.17 (s), 77.73 (s), 50.17 (s), 43.31 (s), 41.99 (s), 32.72 (s), 29.48 (s), 24.31 (s), 20.37 (s), 18.77 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR and ${ }^{1} \mathrm{H}$ NOESY NMR (Figure 11). $\mathrm{ESI}^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 277.1563$, found 277.1563 (0.0 ppm).

Figure 1. ${ }^{1}$ H NOESY NMR spectra of 82, aliphatic region.

8-Isopropyl-6-(3-methoxyphenyl)-1,2,3,4,5,8,9,9a-octahydro-4a,8epoxybenzo[7]annulene (84)

Compound 84 was synthesized following the general procedure starting from 3-methyl-1-(2-methylenecyclohexyl)butan-2-one 79 $(36.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and m-methoxyethynylbenzene $(102.0 \mu 1,1.0$ $\mathrm{mmol})$ with $10 \mathrm{~mol} \%$ of catalyst $\mathbf{A}(18.0 \mathrm{mg}, 0.02 \mathrm{mmol})$. The reaction time was 21 h and a silica gel Prep-TLC with pentane and
diethyl ether (10:1) as eluent was used in the separation to obtain pure 8-isopropyl-6-(3-methoxyphenyl)-1,2,3,4,5,8,9,9a-octahydro-4a,8-epoxybenzo[7]annulene as a yellow oil in 19% isolated yield ($10.5 \mathrm{mg}, 0.03 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.23(\mathrm{~d}, J=$ $7.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (ddd, $J=7.74,1.72,0.96 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.79$ (ddd, $J=$ $8.20,2.54,0.82 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{t}, J=1.64 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{dd}, J=16.94 \mathrm{~Hz}$, $1.48 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=17.04,1.56 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=11.44,8.09 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-$ $1.92(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{dd}, J=11.79,5.14 \mathrm{~Hz}, 1 \mathrm{H})$, $1.30-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.82 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 159.78$ (s), 142.13 (s), 133.96 (s), 130.18 (s), 129.36 (s), 117.59 (s), 112.29 (s), 111.13 (s), 83.24 (s), 79.71 (s), 55.41 (s), 45.84 (s), 42.59 (s), 42.56 (s), 34.33 (s), 32.96 (s), 29.66 (s), 20.69 (s), 19.06 (s), 18.13 (s), 17.67 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR, ${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HMQC NMR, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR and ${ }^{1} \mathrm{H}$ NOESY NMR. ESI ${ }^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 335.1982$, found $335.1980(0.3 \mathrm{ppm})$.

Procedures for the Derivatization of Oxabicycles

3-(1,5-Dimethyl-8-oxabicyclo[3.2.1]octan-3-yl)cyclohexanol (92)

A high pressure steel autoclave was charged with 3-(1,5-dimethyl-8-oxabicyclo[3.2.1]oct-3-en-3-yl)phenol $33(23 \mathrm{mg}, 0.10 \mathrm{mmol})$ in ethanol (1.3 ml) and Ni-Raney ($0.60 \mathrm{mg}, 0.01 \mathrm{mmol}$). The autoclave was pressurized to 80 atm with H_{2} and the reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 12 h . Then, the pressure was released slowly and the suspension was filtered though Celite washing with ethanol. The residue was concentrated and purified by silica gel column chromatography using cyclohexane:ethynl acetate (5:1) to obtain 3-(1,5-dimethyl-8-oxabicyclo[3.2.1]octan-3-yl)cyclohexanol 92 in 59% isolated yield as a mixture of diastereoisomers ($14 \mathrm{mg}, 0.06 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR for the mixture of diastereoisomers (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 3.56-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 1.2 \mathrm{H}), 1.97-1.95(\mathrm{~m}, 1.1 \mathrm{H})$, $1.81-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 4.3 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 2.5 \mathrm{H})$, $1.39-1.34(\mathrm{~m}, 1.6 \mathrm{H}), 1.32-1.31(\mathrm{~m}, 4.5 \mathrm{H}), 1.29(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.19(\mathrm{~m}, 0.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR for the major diastereoisomer ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 79.08$ (s), 71.20 (s), 40.98 (s), 40.08 (s), 39.46 (s), 39.15 (s), 38.66 (s$), 38.63$ (s$), 36.67$ (s), 35.93 (s), 35.31 (s), 30.49 (s), 27.95 (s), 27.07 (s), 24.22 (s). ${ }^{13} \mathrm{C}$ NMR for a minor diastereoisomer (126 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 80.45$ (s), 66.82 (s), 42.08 (s), 41.31 (s), 41.20 (s), 39.87 (s), 38.66 (s), 36.70 (s), 35.96 (s), 35.77 (s), 29.15 (s), 27.99 (s), 27.07 (s), 24.15 (s), 20.18 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR.

3-(1,5-Dimethyl-8-oxabicyclo[3.2.1]octan-3-yl)phenol (93)

3-(1,5-Dimethyl-8-oxabicyclo[3.2.1]oct-3-en-3-yl)phenol 33 (23 mg, $0.10 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C} 10 \%(11 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in methanol $(1.2 \mathrm{ml})$. The solution was degassed three times with H_{2} and stirred at 1 atm for 24 h at $25{ }^{\circ} \mathrm{C}$. The reaction mixture was filtered though Teflon 0.22 washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ethyl acetate. The combined filtrates were concentrated and the residue was purified with preparative TLC using cyclohexane:ethyl acetate (2:1) to obtain 3-(1,5-dimethyl-8-oxabicyclo[3.2.1]octan-3-yl)phenol 93 in 95% isolated yield as a $2: 1$ mixture of diastereoisomers ($22 \mathrm{mg}, 0.10 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR for the mixture of diastereoisomers (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.67(\mathrm{~m}, 1 \mathrm{H}), 3.10-$ $2.96(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1.5 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 0.6 \mathrm{H}), 1.85-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.40-$ $1.38(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR for the major diastereoisomer ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 156.05$ (s), 147.14 (s), 129.50 (s), 119.09 (s), 114.54 (s), 112.98 (s), 79.50 (s), 42.86 (s$), 38.68$ (s), 34.87 (s), 27.70 (s). ${ }^{13} \mathrm{C}$ NMR for the minor diastereoisomer ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) δ 156.61 (s$), 147.20$ (s), 129.78 (s$), 119.70$ (s$), 113.74$ (s), 113.58 (s), 81.46 (s), 44.64 (s), 37.37 (s), 36.64 (s), 26.73 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR.

General Procedure for the Preparation of Tetrahydrofurans

To a solution of the oxoalkene (1 equiv.) and the arylalkyne (3.5 equiv.) in DCE (0.5 M), p-toluensulphonic acid monohydrate ($10 \mathrm{~mol} \%$) and the cationic gold (I) catalyst \mathbf{C} (3 $\mathrm{mol} \%$) were added. Then, the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ and followed by TLC. When it was finished, the catalyst was quenched by adding 0.05 ml of $\mathrm{Et}_{3} \mathrm{~N}$, the solvent was removed and the crude was analysed by quantitative ${ }^{1} \mathrm{H}$ NMR using 1,4diacetylbenzene as internal standard. Finally, the (arylehtynyl)tetrahydrofurane product was purified by Prep-TLC and fully characterized.

2,2,5-Trimethyl-5-(phenylethynyl)tetrahydrofuran (37)

Compound 37 was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mathrm{ml}, 0.2 \mathrm{mmol}$) and ethynylbenzene $(77.0 \mathrm{ml}, 0.7 \mathrm{mmol})$ with p-toluensulphonic acid monohydrate (3.8 mg , $0.02 \mathrm{mmol})$ and catalyst $\mathbf{A}(5.4 \mathrm{mg}, 0.006 \mathrm{mmol})$. The reaction time was 21 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ was used as eluent in the separation to obtain pure 2,2,5-trimethyl-5(phenylethynyl)tetrahydrofuran as a yellow oil in 50% isolated yield ($21.3 \mathrm{mg}, 0.10$ mmol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 2.34$ (ddd, $J=11.7,6.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13$ (ddd, $J=11.6,9.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (ddd, $J=11.8$, $9.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.87 (ddd, $J=11.4,7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.61 (s, 3H), 1.43 (s, 3H), 1.26 (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 131.68$ (s), 128.29 (s), 128.05 (s), 123.43 (s), 93.93 (s), 82.53 (s$), 82.45(\mathrm{~s}), 76.55(\mathrm{~s}), 40.91(\mathrm{~s}), 39.00(\mathrm{~s}), 29.71(\mathrm{~s}), 29.47(\mathrm{~s}), 29.27(\mathrm{~s})$. Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} m / z$ calc for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$215.1436, found $215.1436(0.0 \mathrm{ppm})$.

2-((4-Chlorophenyl)ethynyl)-2,5,5-trimethyltetrahydrofuran (38)

Compound 38 was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mathrm{ml}, 0.2 \mathrm{mmol}$) and 1-chloro-4-ethynylbenzene $(96.0 \mathrm{mg}, \quad 0.7 \mathrm{mmol})$ with p toluensulphonic acid monohydrate $(3.8 \mathrm{mg}, 0.02 \mathrm{mmol})$ and catalyst A $(5.4 \mathrm{mg}, 0.006 \mathrm{mmol})$. The reaction time was 21 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 10)$ was used as eluent in the separation to obtain pure 2-((4-chlorophenyl)ethynyl)-2,5,5trimethyltetrahydrofuran as a yellow oil in 48% isolated yield ($23.9 \mathrm{mg}, 0.10 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.33$ (ddd, $J=11.6,6.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddd}, J=11.3,9.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (ddd, $J=11.9$, $9.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87$ (ddd, $J=11.1,7.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}$,
$3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 134.06$ (s), 132.92 (s), 128.62 (s), 121.93 (s), 94.98 (s), 82.59 (s), 81.35 (s), 76.47 (s$), 40.83$ (s$), 38.98$ (s$), 29.69$ (s$), 29.45$ (s$), 29.26$ (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}_{-}^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} \mathrm{m} / z$ calc for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}^{+}[\mathrm{M}-\mathrm{OH}]^{+}$231.0941, found 231.0940 (-0.4 ppm).

2-((4-Bromophenyl)ethynyl)-2,5,5-trimethyltetrahydrofuran (39)

Compound 39 was synthesized following the general procedure starting from 5 -methylhex-5-en-2-one ($26.0 \mathrm{ml}, 0.2 \mathrm{mmol}$) and 1-bromo-4-ethynylbenzene ($127.0 \mathrm{mg}, \quad 0.7 \mathrm{mmol}$) with p toluensulphonic acid monohydrate ($3.8 \mathrm{mg}, 0.02 \mathrm{mmol}$) and catalyst A $(5.4 \mathrm{mg}, 0.006 \mathrm{mmol})$. The reaction time was 21 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ was used as eluent in the separation to obtain pure 2-((4-bromophenyl)ethynyl)-2,5,5trimethyltetrahydrofuran as yellow oil in 50% isolated yield ($29.4 \mathrm{mg}, 0.10 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-$ $2.31(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{ddd}, J=11.3,9.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{ddd}, J=11.8,9.3,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.89 (ddd, $J=11.1,7.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 133.15$ (s), 131.56 (s), 122.40 (s), 122.26 (s), 95.18 (s), 82.60 (s), 81.42 (s), 76.49 (s), 40.81 (s), 38.98 (s), 29.69 (s), 29.45 (s), 29.24 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} m / z$ calc for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{OBr}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 293.0541$, found $293.0555(-0.4 \mathrm{ppm})$.

2-((3-Fluorophenyl)ethynyl)-2,5,5-trimethyltetrahydrofuran (40)

Compound 40 was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mathrm{ml}, 0.2 \mathrm{mmol}$) and 1-ethynyl-3-fluorobenzene ($81.0 \mathrm{ml}, 0.7 \mathrm{mmol}$) with p-toluensulphonic acid monohydrate $(3.8 \mathrm{mg}, 0.02 \mathrm{mmol})$ and catalyst $\mathbf{A}(5.4 \mathrm{mg}, 0.006$ $\mathrm{mmol})$. The reaction time was 21 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:2) was used as eluent in the separation to obtain pure 2-((3-fluorophenyl)ethynyl)-2,5,5-trimethyltetrahydrofuran as a yellow oil in 47% isolated yield ($21.8 \mathrm{mg}, 0.09 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 7.24(\mathrm{td}, J=7.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dt}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (ddd, $J=9.6,2.5$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{tdd}, J=8.5,2.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{ddd}, J=11.3$, $9.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=11.8,9.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (ddd, $J=11.1,7.0,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 163.44$ $\left(\mathrm{d}, J\left({ }^{13} \mathrm{C}^{-19} \mathrm{~F}\right)=246.9 \mathrm{~Hz}, 129.84\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=7.9 \mathrm{~Hz}\right), 127.56\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=3.1\right.\right.$ $\mathrm{Hz}), 125.28\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=9.4 \mathrm{~Hz}\right), 118.48\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=22.1 \mathrm{~Hz}\right), 115.40\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{19} \mathrm{~F}\right)=20.4 \mathrm{~Hz}\right), 94.98(\mathrm{~s}), 82.62(\mathrm{~s}), 81.28\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=3.6 \mathrm{~Hz}\right), 76.43(\mathrm{~s}), 40.83(\mathrm{~s})$, 38.97 (s), 29.68 (s), 29.45 (s), 29.21 (s). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta-113.42$ (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+} m / z$ calc for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}^{+}[\mathrm{M}-\mathrm{OH}]^{+}$215.1236, found 215.1237 (0.5 ppm).

2-((3-Chlorophenyl)ethynyl)-2,5,5-trimethyltetrahydrofuran (41)

Compound 41 was synthesized following the general procedure starting from 5-methylhex-5-en-2-one ($26.0 \mathrm{ml}, 0.2 \mathrm{mmol}$) and 1-chloro-3-ethynylbenzene ($86.0 \mathrm{ml}, 0.7 \mathrm{mmol}$) with p-toluensulphonic acid monohydrate $(3.8 \mathrm{mg}, 0.02 \mathrm{mmol})$ and catalyst $\mathbf{A}(5.4 \mathrm{mg}, 0.006$ $\mathrm{mmol})$. The reaction time was 21 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:2) was used as eluent in the separation to obtain pure 2-((3-chlorophenyl)ethynyl)-2,5,5-trimethyltetrahydrofuran as a yellowish doughy powder in 55% isolated yield ($27.3 \mathrm{mg}, 0.11 \mathrm{mmol}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 7.39(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{ddd}, J=$ $11.7,6.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (ddd, $J=11.3,9.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ (ddd, $J=11.9,9.4,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.87(\mathrm{ddd}, J=11.1,7.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 134.12$ (s), 131.56 (s), 129.83 (s$), 129.53$ (s), 128.36 (s), 125.14 (s), 95.28 (s), 82.63 (s), 81.09 (s), 76.42 (s), 40.83 (s), 38.97 (s), 29.68 (s), 29.46 (s), 29.20 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. APCI ${ }^{+}$ m / z calc for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}^{+}[\mathrm{M}-\mathrm{OH}]^{+}$231.0941, found 231.0941 (0.0 ppm).

General Procedure for the Preparation of 1,3,5-Substituted Benzenes

To a solution of the arylalkyne (0.20 mmol) in DCE (2 M), the cationic gold (I) catalyst \mathbf{C} ($3 \mathrm{~mol} \%$) was added. Then, the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ and followed by TLC. When it was finished, the catalyst was quenched by adding 0.02 ml of $\mathrm{Et}_{3} \mathrm{~N}$, the solvent was removed and the crude was analysed by quantitative ${ }^{1} \mathrm{H}$ NMR using 1,4 diacetylbenzene as internal standard. Finally, the 1,3,5-triarylbenzene product was purified by preparative TLC and fully characterized.

5'-Phenyl-1,1':3',1'-terphenyl (24)

Compound 24 was synthesized following the general procedure starting from ethynylbenzene ($22.0 \mathrm{ml}, 0.2 \mathrm{mmol}$) with catalyst A $(5.4 \mathrm{mg}, 0.006 \mathrm{mmol})$. The reaction time was 16 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1) was used as eluent in the separation to obtain pure 5^{\prime}-phenyl-1, $1^{\prime}: 3^{\prime}, 1$ "-terphenyl as a yellow oil in 40% isolated yield ($8.0 \mathrm{mg}, 0.03 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 7.79(\mathrm{~s}, 3 \mathrm{H}), 7.70(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.48(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 6 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 142.50(\mathrm{~s}), 141.31(\mathrm{~s})$, 129.00 (s), 127.69 (s), 127.51 (s), 125.33 (s). Structure confirmed by ${ }^{1}$ H COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR.

4,4"-Dimethyl-5'-(p-tolyl)-1,1':3',1'-terphenyl (112)

Compound 113 was synthesized following the general procedure starting from 1-ethynyl-4-methylbenzene $(25.4 \mathrm{ml}$, 0.2 mmol) with catalyst $\mathbf{A}(5.4 \mathrm{mg}, 0.006 \mathrm{mmol})$. The reaction time was 16 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1) was used as eluent in the separation to obtain pure 4,4"-dimethyl-5'-(p-tolyl)-1,1':3',1"-terphenyl as a yellow oil in 33% isolated yield ($7.6 \mathrm{mg}, 0.02 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.73(\mathrm{~s}, 3 \mathrm{H}), 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 7.28(\mathrm{~d}$,
$J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.42(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 142.31(\mathrm{~s}), 138.55(\mathrm{~s})$, 137.41 (s), 129.68 (s), 127.33 (s), 124.72 (s), 21.29 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HMQC NMR.

4,4'-Difluoro-5'-(4-fluorophenyl)-1,1':3',1'-terphenyl (113)

Compound 114 was synthesized following the general procedure starting from 1-ethynyl-4-fluorobenzene ($22.9 \mathrm{ml}, 0.2$ $\mathrm{mmol})$ with catalyst $\mathbf{A}(5.4 \mathrm{mg}, 0.006 \mathrm{mmol})$. The reaction time was 16 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 1)$ was used as eluent in the separation to obtain pure 4,4"-difluoro-5'-(4-fluorophenyl)-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl as a yellow oil in 37% isolated yield ($8.8 \mathrm{mg}, 0.02 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 7.66(\mathrm{~s}, 3 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 162.84\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)\right.$ $=246.83 \mathrm{~Hz}), 141.69(\mathrm{~s}), 137.16\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=3.41 \mathrm{~Hz}\right), 129.05\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=7.97\right.$ $\mathrm{Hz}), 125.01(\mathrm{~s}), 115.98\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=21.37 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta-$ 115.15 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR.

3,3'-Dimethyl-5'-(m-tolyl)-1,1':3',1'-terphenyl (114)

Compound 115 was synthesized following the general procedure starting from 1-ethynyl-3-methylbenzene $(26.0 \mathrm{ml}$, $0.2 \mathrm{mmol})$ with catalyst $\mathbf{A}(5.4 \mathrm{mg}, 0.006 \mathrm{mmol})$. The reaction time was 16 h and a mixture of pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 1)$ was used as eluent in the separation to obtain pure 3,3"-dimethyl-5'(m-tolyl)-1, $1^{\prime}: 3^{\prime}, 1$ "-terphenyl as a yellowish doughy powder in 20% isolated yield ($4.5 \mathrm{mg}, 0.01 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.75(\mathrm{~s}, 3 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.37(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
$\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 142.49$ (s), 141.38 (s), 138.58 (s), 128.88 (s), 128.38 (s), 128.30 (s), 125.27 (s), 124.61 (s), 21.72 (s). Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR.

X-Ray Crystallographic Data

1,5-Dimethyl-8-oxabicyclo[3.2.1]oct-2-en-3yl)phenol (33)

Table 1. Crystal data and structur refinement for 33.

C15 H18 O2
230.29

100(2) K
$0.71073 \AA$

Crystal system	Monoclinic Space group
Unit cell dimensions	$\mathrm{a}=8.0849(16) \AA$
	$\alpha=90.00^{\circ}$
	$\mathrm{b}=7.3813(13) \AA$
	$\beta=99.419(7)^{\circ}$
	$\mathrm{c}=21.133(4) \AA$
	$\gamma=90.00^{\circ}$
	$1244.1(4) \AA^{3}$
Volume	4
Z	$1.229 \mathrm{Mg} / \mathrm{m}^{3}$
Density (calculated)	$0.080 \mathrm{~mm}^{-1}$
Absorption coefficient	496
F(000)	$0.40 \mathrm{x} 0.20 \times 0.20 \mathrm{~mm}^{3}$
Crystal size	1.95 to $36.37{ }^{\circ}$.
Theta range for data collection	$-10<=\mathrm{h}<=12$,
Index ranges	$-12<=\mathrm{k}<=9$,
	$-31<=1<=32$
Reflections collected	17479
Independent reflections	4905
	$[\mathrm{R}(\mathrm{int})=0.0391]$
Completeness to theta $=36.37^{\circ}$	0.808%
Absorption correction	Empirical
Max. and min. transmission	0.9888 and 0.9701
Refinement method	Full-matrix
	least-squares on F^{2}
Data / restraints / parameters	$4905 / 0 / 175$
Goodness-of-fit on F^{2}	1.035
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0484$,
	wR2=0.1354
R indices (all data)	$\mathrm{R} 1=0.0638$,
	$\mathrm{wR} 2=0.1459$
Largest diff. peak and hole	0.550 and $-0.295 \mathrm{e} . \AA^{-3}$

Table 2. Bond lengths [A]] and angles [`] for 33.

		C9-C10	$1.5451(15)$
Bond lengths:		C10-C11	$1.5292(16)$
		C11-C12	$1.5409(14)$
C1-C2	$1.4028(12)$	C12-O1	$1.4491(11)$
C1-C6	$1.4062(12)$	C12-C13	$1.494(4)$
C1-C7	$1.4866(11)$	C12-C15	$1.5112(13)$
C2-C3	$1.3920(12)$	C12-C13'	$1.586(7)$
C3-C4	$1.3876(13)$		
C4-C5	$1.3972(12)$	Angles:	
C5-O2	$1.3638(11)$		$118.47(7)$
C5-C6	$1.3942(11)$	C2-C1-C6	$120.32(7)$
C7-C8	$1.334(9)$	C2-C1-C7	$121.20(7)$
C7-C13	$1.346(4)$	C6-C1-C7	$120.31(8)$
C7-C13'	$1.505(7)$	C3-C2-C1	$121.00(8)$
C7-C8	$1.512(3)$	C4-C3-C2	$119.33(8)$
C8-C9	$1.542(4)$	C3-C4-C5	$122.77(8)$
C8'-C9	$1.496(10)$	O2-C5-C6	$117.14(7)$
C9-O1	$1.4518(11)$	O2-C5-C4	$120.09(8)$
C9-C14	$1.5128(14)$	C6-C5-C4	$120.80(8)$

Experimental Section

C8'-C7-C13	$111.6(4)$	C8'-C9-C10	$100.8(2)$
C8'-C7-C1	$122.8(4)$	C14-C9-C10	$114.65(8)$
C13-C7-C1	$124.24(17)$	C8-C9-C10	$114.29(13)$
C8'-C7-C13'	$119.4(5)$	C11-C10-C9	$104.39(8)$
C13-C7-C13'	$14.3(2)$	C10-C11-C12	$103.71(8)$
C1-C7-C13'	$117.8(3)$	O1-C12-C13	$108.27(16)$
C8'-C7-C8	$13.7(3)$	O1-C12-C15	$108.30(7)$
C13-C7-C8	$118.3(2)$	C13-C12-C15	$115.70(13)$
C1-C7-C8	$117.49(16)$	O1-C12-C11	$101.88(8)$
C13'-C7-C8	$122.9(3)$	C13-C12-C11	$106.47(11)$
C7-C8-C9	$110.9(2)$	C15-C12-C11	$115.18(8)$
C7-C8'-C9	$125.3(7)$	O1-C12-C13'	$107.7(3)$
O1-C9-C8'	$107.2(4)$	C13-C12-C13'	$14.1(2)$
O1-C9-C14	$108.03(7)$	C15-C12-C13'	$103.5(2)$
C8'-C9-C14	$121.2(3)$	C11-C12-C13'	$119.7(2)$
O1-C9-C8	$107.12(16)$	C7-C13-C12	$123.6(3)$
C8'-C9-C8	$14.3(2)$	C7-C13'-C12	$108.2(4)$
C14-C9-C8	$108.82(13)$	C12-O1-C9	$104.02(6)$
O1-C9-C10	$103.36(8)$		

Table 3. Torsion angles [ํ for 33.

C6-C1-C2-C3 0	0.96(12)
C7-C1-C2-C3 -17	-179.92(8)
C1-C2-C3-C4 -0.6	-0.66(13)
C2-C3-C4-C5 0	0.07(13)
C3-C4-C5-O2 -	-179.15(8)
C3-C4-C5-C6 0	0.19(13)
O2-C5-C6-C1 17	179.43(8)
C4-C5-C6-C1	0.13(13)
C2-C1-C6-C5	-0.70(12)
C7-C1-C6-C5 -	-179.82(7)
C2-C1-C7-C8'	9.7(4)
C6-C1-C7-C8'	-171.2(4)
C2-C1-C7-C13	174.97(15)
C6-C1-C7-C13	-5.93(18)
C2-C1-C7-C13'	-170.1(3)
C6-C1-C7-C13'	9.0 (3)
C2-C1-C7-C8 -4	-4.89(18)
C6-C1-C7-C8 17	174.21(16)
C8'-C7-C8-C9	55(2)
C13-C7-C8-C9	-8.6(3)
C1-C7-C8-C9 1	171.29(14)
C13'-C7-C8-C9	-24.3(4)
C13-C7-C8'-C9	17.1(7)
C1-C7-C8'-C9 -	-176.0(3)
C13'-C7-C8'-C9	3.8(7)
C8-C7-C8'-C9 -	-105(3)
C7-C8'-C9-O1 2	23.2(6)
C7-C8'-C9-C14	147.7(4)
C7-C8'-C9-C8 1	$115(2)$
C7-C8'-C9-C10	-84.6(6)
C7-C8-C9-O1 4	48.2(2)
C7-C8-C9-C8' -	-44(2)
C7-C8-C9-C14	164.79(16)
C7-C8-C9-C10	-65.6(3)
O1-C9-C10-C11	-21.00(10)
C8'-C9-C10-C11	1 89.8(4)
C14-C9-C10-C11	$1-138.33(9)$
C8-C9-C10-C11	95.05(18)
C9-C10-C11-C12	$2-7.22(10)$
C10-C11-C12-O1	$133.00(9)$
C10-C11-C12-C13	$13-80.33(17)$

C10-C11-C12-C15 149.97(8)
C10-C11-C12-C13' -85.6(4)
C8'-C7-C13-C12 -16.1(4)
C1-C7-C13-C12 177.23(13)
C13'-C7-C13-C12 110(2)
C8-C7-C13-C12 -2.9(3)
O1-C12-C13-C7 -25.0(2)
C15-C12-C13-C7 -146.77(16)
C11-C12-C13-C7 83.8(2)
C13'-C12-C13-C7 -115.1(19)
C8'-C7-C13'-C12 8.7(6)
C13-C7-C13'-C12 $-51.0(16)$
C1-C7-C13'-C12 -171.5(2)
C8-C7-C13'-C12 24.2(5)
O1-C12-C13'-C7 -49.3(4)
C13-C12-C13'-C7 45.3(15)
C15-C12-C13'-C7 -163.8(3)
C11-C12-C13'-C7 66.3(5)
C13-C12-O1-C9 64.02(12)
C15-C12-O1-C9 -169.82(7)
C11-C12-O1-C9 -47.98(8)
C13'-C12-O1-C9 78.8(2)
C8'-C9-O1-C12 -62.6(2)
C14-C9-O1-C12 165.27(7)
C8-C9-O1-C12 -77.65(12)
C10-C9-O1-C12 43.38(8)

3. Mechanistic Study of A [2+2+2] Cycloaddition: Role of Digold Complexes ${ }^{1}$

Preparation of the Starting Materials

All the substrates and gold complexes used were already described in Chapter 2 except for the following.

Deuterated para-bromoethynylbenzene

A flame-dried flask was charged with p-bromoethynylbenzene (0.47 $\mathrm{g}, 2.58 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.60 \mathrm{~g}, 3.87 \mathrm{mmol})$ in acetonitrile (5 ml). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ under N_{2} atmosphere for 45 min . Then, deuterated water (2 ml) was added and the solution was stirred for 1 h . The crude was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the phases were separated. The organic layers were dried with MgSO 4 , filtered and concentrated under reduced pressure. Deuterated p bromoethynylbenzene was obtained [D] 96% in 72% isolated yield ($0.34 \mathrm{~g}, 1.85 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.46(\mathrm{~d}, J=8.58 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 2 \mathrm{H})$, $3.13(\mathrm{~s}, 0.04 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 133.6$ (s), 131.7 (s), 123.2 (s), 121.1 $(\mathrm{s}), 82.3\left(\mathrm{t}, J\left({ }^{2} \mathrm{H}{ }^{13} \mathrm{C}\right)=7.60 \mathrm{~Hz}\right), 78.2\left(\mathrm{t}, J\left({ }^{2} \mathrm{H}-{ }^{13} \mathrm{C}\right)=38.58 \mathrm{~Hz}\right)$.
\{Phenylethynyl[(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphinelgold(I) [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) hexafluoroantimonate (67)

Ethynylbenzene ($61.5 \mu \mathrm{l}, 0.56 \mathrm{mmol}$) was dissolved in THF (10 ml) and the solution was cooled to $0^{\circ} \mathrm{C}$. Then, LiHMDS ($110 \mathrm{mg}, 0.67 \mathrm{mmol}$) was added and the solution was stirred for 30 min . Afterwards, 1 ml of this stock solution was added to chloro[($2^{\prime}, 4^{\prime}, 6^{\prime}$-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) (50 $\mathrm{mg}, 0.06 \mathrm{mmol})$ dissolved in THF $(1 \mathrm{ml})$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . The solution was concentrated under vacuum and the residue was added to a solution of chloro[(2', $4^{\prime}, 6^{\prime}$-triisopropyl-1, 1^{\prime}-biphenyl-2-yl)di-tert-butylphosphine]gold(I) ($40 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. Then, $\mathrm{AgSbF}_{6}(21 \mathrm{mg}, 0.06 \mathrm{mmol})$ was added and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 5 min and afterwards filtered through celite. The solution was concentrated under reduced pressure to 1 ml approximately and the residue was diluted with pentane (6 ml) and cooled to $6^{\circ} \mathrm{C}$ for 12 h . The precipitate was washed with pentane and pure \{phenylethynyl[($2^{\prime}, 4^{\prime}, 6^{\prime}$-triisopropyl-1, 1^{\prime}-biphenyl-2-yl)di-tert-butylphosphine]gold(I)\}
[($2^{\prime}, 4^{\prime}, 6^{\prime}$-triisopropyl-1, 1^{\prime}-biphenyl-2-yl)di-tertbutylphosphine]gold(I) hexafluoroantimonate (67) was obtained as a white powder in 99% isolated yield ($87.0 \mathrm{mg}, 0.06 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta 7.95-7.86(\mathrm{~m}$, $2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H})$, $6.84(\mathrm{~s}, 4 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 36 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H})$, $1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta$ $149.9(\mathrm{~s}), 148.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=14.2 \mathrm{~Hz}\right), 147.1(\mathrm{~s}), 136.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=5.9 \mathrm{~Hz}\right), 135.5$

[^101]$\left(\mathrm{d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.9 \mathrm{~Hz}\right), 135.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=8.6 \mathrm{~Hz}\right), 133.1(\mathrm{~s}), 131.3(\mathrm{~s}), 130.5(\mathrm{~s})$, $128.9(\mathrm{~s}), 127.9(\mathrm{~s}), 127.6(\mathrm{~s}), 127.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.9 \mathrm{~Hz}\right), 122.2(\mathrm{~s}), 122.1(\mathrm{~s}), 121.3$ (s), $39.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=24.6 \mathrm{~Hz}\right.$), $33.9(\mathrm{~s}), 31.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.8 \mathrm{~Hz}\right), 31.3(\mathrm{~s}), 26.3$ (s), 24.2 (s), 23.6 (s). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta 65.17 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, ppm) δ not conclusive. Structure confirmed by ${ }^{1} \mathrm{H}$ COSY NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC NMR. MALDI ${ }^{+} m / z$ calc for $\mathrm{C}_{66} \mathrm{H}_{95} \mathrm{Au}_{2} \mathrm{P}_{2}{ }^{+}\left[\mathrm{M}_{-} \mathrm{SbF}_{6}\right]^{+} 1343.6235$, found 1343.6238 (0.3 ppm). Structure confirmed by X-Ray crystallography, CCDC 913002.

X-Ray Crystallographic Data

\{Phenylethynyl[(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphinelgold(I) [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphinelgold(I) hexafluoroantimonate (67)

Table 1. Crystal data and structure refinement for 67.

C72 H109 Au2 Cl2
F6 P2 Sb
1737.11

100(2)K
$0.71073 \AA$
Monoclinic
P2(1)
$\mathrm{a}=13.6257(13) \AA$
$\alpha=90.00^{\circ}$.
$\mathrm{b}=15.1869(13) \AA$
$\beta=107.095(3)^{\circ}$.
$\mathrm{c}=18.6156(19) \AA$
$\gamma=90.00^{\circ}$.
3682.0(6) \AA^{3}

2
$1.567 \mathrm{Mg} / \mathrm{m}^{3}$
$4.509 \mathrm{~mm}^{-1}$
1736
$0.25 \times 0.12 \times 0.12 \mathrm{~mm}^{3}$
1.14 to 29.97°.
$-18<=\mathrm{h}<=19$,
$-19<=\mathrm{k}<=20$,
$-25<=1<=24$
Reflections collected

37284

Independent reflections	17602 Completeness to theta $=29.97^{\circ}$
Absorption correction	0.879%
Max. and min. transmission	Empirical
Refinement method	0.6137 and 0.3986
	Full-matrix
Data / restraints / parameters	least-squares on F^{2}
Goodness-of-fit on F^{2}	$17602 / 488 / 859$
Final R indices [I>2sigma(I)]	0.998
	$\mathrm{R} 1=0.0515$,
R indices (all data)	$\mathrm{wR} 2=0.0968$
	$\mathrm{R} 1=0.0736$,
Flack parameter	$\mathrm{wR} 2=0.1082$
Largest diff. peak and hole	$\mathrm{x}=-0.017(5)$
	1.613 and $-1.185 \mathrm{e} . \AA^{3}$

Table 2. Bond lengths [A] and angles [٪ for 67.

Bond lengths:		C30-C31	$1.405(12)$
		C30-C35	$1.429(12)$
Au1-C59	$2.051(9)$	C31-C32	$1.370(12)$
Au1-P1	$2.292(2)$	C32-C33	$1.375(12)$
Au2-C59	$2.228(8)$	C33-C34	$1.375(12)$
Au2-P2	$2.274(2)$	C34-C35	$1.391(13)$
Au2-C60	$2.275(9)$	C35-C36	$1.501(11)$
P1-C1	$1.855(8)$	C36-C41	$1.395(12)$
P1-C22	$1.869(8)$	C36-C37	$1.431(11)$
P1-C26	$1.894(8)$	C37-C38	$1.395(11)$
P2-C30	$1.818(9)$	C37-C42	$1.474(12)$
P2-C55	$1.870(10)$	C38-C39	$1.388(12)$
P2-C51	$1.886(9)$	C39-C40	$1.382(11)$
C1-C2	$1.391(11)$	C39-C45	$1.526(11)$
C1-C6	$1.411(11)$	C40-C41	$1.384(11)$
C2-C3	$1.384(12)$	C41-C48	$1.521(11)$
C3-C4	$1.376(12)$	C42-C43	$1.529(12)$
C4-C5	$1.367(12)$	C42-C44	$1.533(12)$
C5-C6	$1.398(12)$	C45-C46	$1.498(12)$
C6-C7	$1.483(11)$	C45-C47	$1.524(12)$
C7-C12	$1.398(11)$	C48-C49	$1.508(13)$
C7-C8	$1.409(12)$	C48-C50	$1.512(13)$
C8-C9	$1.395(12)$	C51-C52	$1.497(13)$
C8-C13	$1.520(11)$	C51-C54	$1.529(13)$
C9-C10	$1.365(12)$	C51-C53	$1.535(12)$
C10-C11	$1.371(13)$	C55-C57	$1.535(12)$
C10-C16	$1.528(8)$	C55-C58	$1.544(12)$
C11-C12	$1.411(12)$	C55-C56	$1.549(13)$
C12-C19	$1.533(13)$	C59-C60	$1.180(12)$
C13-C15	$1.509(13)$	C60-C61	$1.460(13)$
C13-C14	$1.535(13)$	C61-C66	$1.389(12)$
C16-C18	$1.52(2)$	C61-C62	$1.391(12)$
C16-C17	$1.555(17)$	C62-C63	$1.319(13)$
C19-C21	$1.524(12)$	C63-C64	$1.416(14)$
C19-C20	$1.546(14)$	C64-C65	$1.369(14)$
C22-C23	$1.522(11)$	C65-C66	$1.369(13)$
C22-C25	$1.536(12)$	Sb1-F6	$1.832(6)$
C22-C24	$1.540(13)$	Sb1-F2	$1.864(6)$
C26-C27	$1.516(13)$	Sb1-F4	$1.867(6)$
C26-C29	$1.525(13)$	Sb1-F1	$1.867(5)$
C26-C28	$1.539(12)$	Sb1-F5	$1.870(6)$

Experimental Section

Sb1-F3	1.878(6)	C21-C19-C12	112.8(8)
C1S-Cl1S	1.740 (9)	C21-C19-C20	110.6(8)
C1S-Cl2S	1.754(10)	C12-C19-C20	110.5(8)
C1T-C2T	1.555(10)	C23-C22-C25	106.4(8)
C2T-C3T	1.544(10)	C23-C22-C24	109.4(8)
C3T-C4T	1.552(10)	C25-C22-C24	107.1(7)
C4T-C5T	1.551(10)	C23-C22-P1	117.8(6)
C1T'-C2T'	1.545(10)	C25-C22-P1	106.2(6)
C2T'-C3T'	1.551(10)	C24-C22-P1	109.4(6)
C3T'-C4T'	1.555(10)	C27-C26-C29	108.5(9)
C4T'-C5T'	1.551(10)	C27-C26-C28	109.4(8)
C1T"-C2T"	1.558(10)	C29-C26-C28	107.0(8)
C2T"-C3T"	1.555(10)	C27-C26-P1	106.4(9)
C3T"-C4T"	1.548(10)	C29-C26-P1	107.4(10)
C4T"-C5T"	1.557(10)	C28-C26-P1	117.9(10)
		C31-C30-C35	117.6(8)
Angles:		C31-C30-P2	117.3(6)
		C35-C30-P2	125.1(6)
C59-Au1-P1	174.4(2)	C32-C31-C30	122.2(8)
C59-Au2-P2	169.1(2)	C31-C32-C33	120.3(8)
C59-Au2-C60	30.4(3)	C34-C33-C32	119.0(9)
P2-Au2-C60	157.4(2)	C33-C34-C35	122.9(9)
C1-P1-C22	106.9(4)	C34-C35-C30	118.1(8)
C1-P1-C26	105.9(4)	C34-C35-C36	115.6(8)
C22-P1-C26	112.6(4)	C30-C35-C36	126.4(8)
C1-P1-Au1	113.8(3)	C41-C36-C37	119.7(7)
C22-P1-Au1	110.4(3)	C41-C36-C35	121.6(7)
C26-P1-Au1	107.2(3)	C37-C36-C35	118.0(8)
C30-P2-C55	109.1(4)	C38-C37-C36	118.0(8)
C30-P2-C51	106.7(4)	C38-C37-C42	120.3(8)
C55-P2-C51	111.1(4)	C36-C37-C42	121.6(7)
C30-P2-Au2	114.3(3)	C39-C38-C37	122.5(8)
C55-P2-Au2	108.1(3)	C40-C39-C38	117.6(8)
C51-P2-Au2	107.7(3)	C40-C39-C45	120.8(8)
C2-C1-C6	120.0(8)	C38-C39-C45	121.6(7)
C2-C1-P1	115.5(6)	C39-C40-C41	122.9(9)
C6-C1-P1	124.4(6)	C40-C41-C36	119.2(8)
C3-C2-C1	121.3(8)	C40-C41-C48	119.1(8)
C4-C3-C2	119.2(8)	C36-C41-C48	121.5(7)
C5-C4-C3	119.8(9)	C37-C42-C43	113.1(8)
C4-C5-C6	123.1(8)	C37-C42-C44	112.5(8)
C5-C6-C1	116.5(8)	C43-C42-C44	109.3(7)
C5-C6-C7	117.1(8)	C46-C45-C47	109.3(7)
C1-C6-C7	126.3(8)	C46-C45-C39	113.6(7)
C12-C7-C8	119.2(8)	C47-C45-C39	110.8(7)
C12-C7-C6	119.5(8)	C49-C48-C50	110.0(8)
C8-C7-C6	120.8(7)	C49-C48-C41	112.0(8)
C9-C8-C7	118.2(8)	C50-C48-C41	111.6(8)
C9-C8-C13	119.8(8)	C52-C51-C54	110.2(8)
C7-C8-C13	121.5(8)	C52-C51-C53	109.5(8)
C10-C9-C8	123.5(9)	C54-C51-C53	106.0(8)
C9-C10-C11	118.1(8)	C52-C51-P2	109.4(7)
C9-C10-C16	121.7(9)	C54-C51-P2	105.1(6)
C11-C10-C16	120.2(9)	C53-C51-P2	116.4(6)
C10-C11-C12	121.6(8)	C57-C55-C58	108.6(8)
C7-C12-C11	119.4(9)	C57-C55-C56	108.1(8)
C7-C12-C19	122.8(8)	C58-C55-C56	106.4(8)
C11-C12-C19	117.5(8)	C57-C55-P2	115.6(7)
C15-C13-C8	112.4(8)	C58-C55-P2	109.2(6)
C15-C13-C14	110.3(8)	C56-C55-P2	108.6(6)
C8-C13-C14	112.3(8)	C60-C59-Au1	165.8(8)
C18-C16-C10	108.5(10)	C60-C59-Au2	77.0(6)
C18-C16-C17	105.4(13)	Au1-C59-Au2	116.9(4)
C10-C16-C17	108.9(9)	C59-C60-C61	168.3(9)

C59-C60-Au2	72.6(6)	F4-Sb1-F5	88.5(3)
C61-C60-Au2	119.0(6)	F1-Sb1-F5	89.3(3)
C66-C61-C62	118.0(9)	F6-Sb1-F3	89.6(3)
C66-C61-C60	122.2(8)	F2-Sb1-F3	89.4(3)
C62-C61-C60	119.7(8)	F4-Sb1-F3	89.6(3)
C63-C62-C61	121.6(10)	F1-Sb1-F3	179.3(3)
C62-C63-C64	120.2(10)	F5-Sb1-F3	90.0(3)
C65-C64-C63	119.7(9)	Cl1S-C1S-C12S	111.8(6)
C66-C65-C64	119.0(9)	C3T-C2T-C1T	120(2)
C65-C66-C61	121.6(10)	C2T-C3T-C4T	112.0(18)
F6-Sb1-F2	90.2(4)	C5T-C4T-C3T	119(2)
F6-Sb1-F4	92.9(4)	C1T'-C2T'-C3T'	107.6(9)
F2-Sb1-F4	176.7(4)	C2T'-C3T'-C4T'	122(3)
F6-Sb1-F1	91.1(3)	C5T'-C4T'-C3T'	112(3)
F2-Sb1-F1	90.6(3)	C3T"-C2T"-C1T"	107.1(9)
F4-Sb1-F1	90.4(3)	C4T"-C3T"-C2T"	94(3)
F6-Sb1-F5	178.5(4)	C3T"-C4T"-C5T"	163(4)
F2-Sb1-F5	88.4(3)		

Table 3. Torsion angles [1 for 67.

C59-Au1-P1-C1 94(3)	C8-C7-C12-C19 -171.1(8)
C59-Au1-P1-C22 -146(3)	C6-C7-C12-C19 1.4(13)
C59-Au1-P1-C26 -23(3)	C10-C11-C12-C7 -2.2(14)
C59-Au2-P2-C30 -135.5(12)	C10-C11-C12-C19 172.1(9)
C60-Au2-P2-C30 97.8(7)	C9-C8-C13-C15 75.3(11)
C59-Au2-P2-C55 -13.9(13)	C7-C8-C13-C15 -96.9(10)
C60-Au2-P2-C55 -140.5(7)	C9-C8-C13-C14 -49.6(12)
C59-Au2-P2-C51 106.2(12)	C7-C8-C13-C14 138.2(9)
C60-Au2-P2-C51 -20.5(8)	C9-C10-C16-C18 139.4(12)
C22-P1-C1-C2 65.4(7)	C11-C10-C16-C18 -37.9(15)
C26-P1-C1-C2 -54.9(7)	C9-C10-C16-C17 -106.4(12)
Au1-P1-C1-C2 -172.4(5)	C11-C10-C16-C17 76.3(13)
C22-P1-C1-C6 -118.2(7)	C7-C12-C19-C21 -142.7(9)
C26-P1-C1-C6 121.5(7)	C11-C12-C19-C21 43.2(12)
Au1-P1-C1-C6 4.1(8)	C7-C12-C19-C20 92.9(11)
C6-C1-C2-C3 -0.5(12)	C11-C12-C19-C20 -81.2(10)
P1-C1-C2-C3 176.1(6)	C1-P1-C22-C23 -44.7(8)
C1-C2-C3-C4 -0.9(12)	C26-P1-C22-C23 71.2(9)
C2-C3-C4-C5 1.8(13)	Au1-P1-C22-C23 -169.1(7)
C3-C4-C5-C6 -1.3(14)	C1-P1-C22-C25 74.3(7)
C4-C5-C6-C1 -0.2(13)	C26-P1-C22-C25 -169.7(6)
C4-C5-C6-C7 177.1(8)	Au1-P1-C22-C25 -50.0(7)
C2-C1-C6-C5 1.0(12)	C1-P1-C22-C24 -170.4(6)
P1-C1-C6-C5 -175.2(6)	C26-P1-C22-C24 -54.5(7)
C2-C1-C6-C7 -175.9(8)	Au1-P1-C22-C24 65.2(7)
P1-C1-C6-C7 7.8(12)	C1-P1-C26-C27 -54.3(9)
C5-C6-C7-C12 -84.8(10)	C22-P1-C26-C27 -170.9(8)
C1-C6-C7-C12 92.1(11)	Au1-P1-C26-C27 67.5(8)
C5-C6-C7-C8 87.6(10)	C1-P1-C26-C29 -170.3(8)
C1-C6-C7-C8 -95.5(11)	C22-P1-C26-C29 73.1(9)
C12-C7-C8-C9 -2.2(13)	Au1-P1-C26-C29 -48.5(9)
C6-C7-C8-C9 -174.6(8)	C1-P1-C26-C28 68.8(10)
C12-C7-C8-C13 170.2(8)	C22-P1-C26-C28 -47.7(10)
C6-C7-C8-C13 -2.2(13)	Au1-P1-C26-C28 -169.3(9)
C7-C8-C9-C10 1.0(14)	C55-P2-C30-C31 53.6(8)
C13-C8-C9-C10 -171.5(9)	C51-P2-C30-C31 -66.4(8)
C8-C9-C10-C11 -0.3(14)	Au2-P2-C30-C31 174.8(6)
C8-C9-C10-C16 -177.7(9)	C55-P2-C30-C35 -125.7(8)
C9-C10-C11-C12 0.9(14)	C51-P2-C30-C35 114.3(8)
C16-C10-C11-C12 178.3(9)	Au2-P2-C30-C35 -4.6(9)
C8-C7-C12-C11 2.8(13)	C35-C30-C31-C32 -0.5(13)
C6-C7-C12-C11 175.3(8)	P2-C30-C31-C32 -179.9(7)

C30-C31-C32-C33	$0.0(14)$
C31-C32-C33-C34	$0.5(14)$
C32-C33-C34-C35	$-0.4(15)$
C33-C34-C35-C30	$-0.2(14)$
C33-C34-C35-C36	$178.5(9)$
C31-C30-C35-C34	$0.6(13)$
P2-C30-C35-C34	$179.9(7)$
C31-C30-C35-C36	$-177.9(8)$
P2-C30-C35-C36	$1.4(13)$
C34-C35-C36-C41	$79.1(11)$
C30-C35-C36-C41	$-102.4(11)$
C34-C35-C36-C37	$-90.9(10)$
C30-C35-C36-C37	$87.6(11)$
C41-C36-C37-C38	$2.8(13)$
C35-C36-C37-C38	$173.1(8)$
C41-C36-C37-C42	$-175.3(8)$
C35-C36-C37-C42	$-5.1(12)$
C36-C37-C38-C39	$-1.7(13)$
C42-C37-C38-C39	$176.4(8)$
C37-C38-C39-C40	$-0.4(13)$
C37-C38-C39-C45	$-179.0(8)$
C38-C39-C40-C41	$1.6(14)$
C45-C39-C40-C41	$-179.8(8)$
C39-C40-C41-C36	$-0.5(14)$
C39-C40-C41-C48	$-176.0(9)$
C37-C36-C41-C40	$-1.8(13)$
C35-C36-C41-C40	$-171.6(8)$
C37-C36-C41-C48	$173.6(8)$
C35-C36-C41-C48	$3.7(13)$
C38-C37-C42-C43	$43.2(11)$
C36-C37-C42-C43	$-138.7(9)$
C38-C37-C42-C44	$-81.3(10)$
C36-C37-C42-C44	$96.8(10)$
C40-C39-C45-C46	$140.2(9)$
C38-C39-C45-C46	$-41.3(11)$
C40-C39-C45-C47	$-96.4(10)$
C38-C39-C45-C47	$82.1(10)$
C40-C41-C48-C49	$-47.0(12)$
C36-C41-C48-C49	$137.7(9)$
C40-C41-C48-C50	$76.8(11)$
C36-C41-C48-C50	$-98.5(10)$
C30-P2-C51-C52	$174.7(6)$
C55-P2-C51-C52	$56.0(7)$
Au2-P2-C51-C52	$-62.3(7)$
C30-P2-C51-C54	$-67.0(7)$
	(1)

DFT Calculations Data

Ethynylbenzene

$G=-308,060068$ Hartree/particle.

Row	Symbol	X
1	C	0.1197040
2	C	-0.5888830
3	C	0.1197110
4	C	1.5083950
5	C	2.2057000
6	C	1.5083750

C55-P2-C51-C54 174.3(6)
Au2-P2-C51-C54 56.1(6)
C30-P2-C51-C53 49.9(8)
C55-P2-C51-C53 -68.8(8)
Au2-P2-C51-C53 173.0(6)
C30-P2-C55-C57 -81.7(8)
C51-P2-C55-C57 35.6(9)
Au2-P2-C55-C57 153.5(6)
C30-P2-C55-C58 41.1(7)
C51-P2-C55-C58 158.4(6)
Au2-P2-C55-C58 -83.7(6)
C30-P2-C55-C56 156.7(6)
C51-P2-C55-C56 -86.0(7)
Au2-P2-C55-C56 31.9(7)
P1-Au1-C59-C60 -58(5)
P1-Au1-C59-Au2 132(2)
P2-Au2-C59-C60 -142.3(10)
P2-Au2-C59-Au1 35.0(15)
C60-Au2-C59-Au1 177.4(9)
Au1-C59-C60-C61 8(8)
Au2-C59-C60-C61 178(5)
Au1-C59-C60-Au2 -170(3)
P2-Au2-C60-C59 162.6(5)
C59-Au2-C60-C61 -179.7(12)
P2-Au2-C60-C61 -17.1(12)
C59-C60-C61-C66 -127(5)
Au2-C60-C61-C66 51.2(12)
C59-C60-C61-C62 48(5)
Au2-C60-C61-C62 -133.4(8)
C66-C61-C62-C63 -0.2(15)
C60-C61-C62-C63 -175.8(9)
C61-C62-C63-C64 0.2(16)
C62-C63-C64-C65 0.6(17)
C63-C64-C65-C66 -1.2(18)
C64-C65-C66-C61 1.2(18)
C62-C61-C66-C65 -0.5(16)
C60-C61-C66-C65 175.0(10)
C1T-C2T-C3T-C4T 65(3)
C2T-C3T-C4T-C5T 170(2)
C1T'-C2T'-C3T'-C4T' $-64(6)$
C2T'-C3T'-C4T'-C5T' -164(4)
C1T"-C2T"-C3T"-C4T" -42(5)
C2T"-C3T"-C4T"-C5T" 137(15)

-0.0000070 -0.0000110 0.0000100 0.0000180 0.0000060 -0.0000080 -0.0000040 0.0001100

6-Methylhept-5-en-2-one

$G=-348,775383$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	2.6987830	1.0479830	0.3578270
2	H	2.8821240	1.1146360	1.4391660
3	H	2.1146180	1.9388000	0.0872750
4	H	3.6536920	1.0500010	-0.1755140
5	C	1.9187710	-0.1989370	0.0551430
6	C	0.4994190	-0.2486500	0.5711890
7	H	0.3558890	0.4426320	1.4139620
8	H	0.2952690	-1.2708780	0.9159010
9	O	2.3735380	-1.1123530	-0.6083670
10	C	-0.4614500	0.1212580	-0.5713740
11	H	-0.1771760	1.0996530	-0.9883200
12	H	-0.3254650	-0.6216160	-1.3746560
13	C	-1.9007120	0.1536490	-0.1408740
14	C	-2.6219810	1.2743440	-0.2114580
15	H	-2.1952010	2.2074020	-0.5794820
16	H	-3.6684270	1.2991280	0.0923600
17	C	-2.4760820	-1.1347460	0.3634800
18	H	-2.3151340	-1.9480610	-0.3599040
19	H	-1.9965300	-1.4534350	1.3004650
20	H	-3.5524440	-1.0488490	0.5520800

Naked gold complex, $\mathrm{Me}_{3} \mathrm{PAu}^{+}$(43)

$G=-596,507693$ Hartree/particle.

Row	Symbol	X
1	P	-1.3272210
2	C	-2.0108940
3	H	-3.1072900
4	H	-1.6880810
5	H	-1.6581850
6	C	-2.0152700
7	H	-1.6911920
8	H	-1.6696810
9	H	-3.1113760
10	C	-2.0200460
11	H	-1.6868160
12	H	-1.6883100
13	H	-3.1159800
14	Au	0.9569940

Y	Z
0.0012850	0.0000090
1.6764000	-0.1379550
1.6217800	-0.1518810
2.2810430	0.7160080
2.1460340	-1.0619710
-0.9557440	-1.3795340
-0.5245020	-2.3324540
-1.9930920	-1.3209290
-0.9337280	-1.3218360
-0.7178910	1.5148210
-1.7556430	1.6188650
-0.1458350	2.3876960
-0.6912950	1.4556620
-0.0005140	0.0003380

Alkyne coordination, $\mathrm{Me}_{3} P \mathrm{Pu}^{+}$(ethynylbenzene) (42)

$G=-904,593267$ Hartree/particle.

Row	Symbol	X	Y	Z
1	P	2.4228630	0.8568470	-0.0749760
2	C	3.9850850	0.0323230	-0.5113380
3	H	4.7958600	0.7709280	-0.5511450
4	H	4.2253700	-0.7300150	0.2373340
5	H	3.8878430	-0.4513000	-1.4894400
6	C	2.2127880	2.1694670	-1.3179190
7	H	2.0799760	1.7228030	-2.3091450
8	H	1.3284700	2.7699910	-1.0794920
9	H	3.0990620	2.8168350	-1.3270740
10	C	2.7555160	1.7236690	1.4901330
11	H	1.8819050	2.3196250	1.7756920
12	H	2.9593720	0.9945990	2.2816980
13	H	3.6236300	2.3847970	1.3727690
14	Au	0.6245840	-0.6207260	0.0341720
15	C	-2.9826680	0.3487790	1.1984670
16	C	-3.9534980	1.3362740	1.1330640
17	C	-4.6300570	1.5702950	-0.0638370
18	C	-4.3393120	0.8199830	-1.2022750
19	C	-3.3673940	-0.1679090	-1.1523320
20	C	-2.6864730	-0.4076850	0.0522280
21	H	-2.4458760	0.1498770	2.1245650
22	H	-4.1879470	1.9253700	2.0165860
23	H	-5.3917110	2.3458910	-0.1103170
24	H	-4.8717830	1.0084840	-2.1315480
25	H	-3.1264240	-0.7620280	-2.0314590
26	C	-1.6951550	-1.4258160	0.1130710
27	C	-0.8211560	-2.2981370	0.1600700
28	H	-0.4089170	-3.2886390	0.2500500

Alkene coordination, $\mathrm{Me}_{3} \mathrm{PA}^{+}(6-m e t h y l h e p t-5-e n-2-o n e)$ (44)
$G=-945,309177$ Hartree/particle.

Row	Symbol	X	Y
1	C	-0.9445200	-1.5945610
2	H	-1.1446150	-1.0633760
3	H	-0.5089920	-2.5916590
4	C	-1.5415800	-1.1897210
5	C	-1.5125180	-2.0371720
6	H	-1.2702270	-1.4390440
7	H	-2.5080510	-2.4707820
8	H	-0.7966920	-2.8614070
9	C	-2.3893920	0.0521500
10	H	-2.1707560	0.6174100
11	H	-2.1389800	0.6977780
12	C	-3.8809570	-0.3082470
13	H	-4.1590200	-0.9905010
14	Au	0.7778210	-0.3912050
15	P	2.7694500	0.7261590
16	C	2.9550760	1.1262810

Z
-1.1144560
-2.0471500
-1.1981240
0.0558600
1.2877670
2.1760400
1.4588090
1.2026610 0.0970080
1.0161740 -0.7556880
0.0551550
0.8670250
-0.2510590
0.2510390
2.0169570

17	H	2.9397090	0.2059860	2.6107000
18	H	3.9077430	1.6465880	2.1795750
19	H	2.1301910	1.7698940	2.3408250
20	C	4.2581740	-0.2276650	-0.1795610
21	H	4.2681110	-0.4391930	-1.2542590
22	H	5.1538600	0.3487660	0.0856250
23	H	4.2641430	-1.1771140	0.3664900
24	C	2.9540730	2.3148070	-0.6180990
25	H	3.9177920	2.7696200	-0.3556110
26	H	2.9123610	2.1559920	-1.7008690
27	H	2.1436220	2.9930020	-0.3296440
28	H	-4.0938270	-0.8242300	-0.8961220
29	C	-4.8103680	0.8874670	0.1398870
30	C	-4.4797210	2.0840490	-0.7075260
31	H	-3.6284280	2.6264330	-0.2723360
32	H	-4.1871660	1.7893810	-1.7236360
33	H	-5.3383830	2.7600830	-0.7445470
34	O	-5.7914510	0.8556090	0.8555270

Ketone coordination, $\mathrm{Me}_{3} \mathrm{PAu}^{+}$(6-methylhept-5-en-2-one') (45)

$G=-945,306931$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	5.2668890	1.8701210	0.7043780
2	H	5.9075050	1.0870590	1.1093250
3	H	5.5456830	2.8986760	0.9317100
4	C	4.1954130	1.5864230	-0.0380850
5	C	3.3116870	2.6537990	-0.6087930
6	H	3.7185090	3.6536830	-0.4198970
7	H	3.1953910	2.5295110	-1.6957680
8	H	2.2987720	2.6229190	-0.1807720
9	C	3.8256560	0.1613920	-0.3519550
10	H	3.7452550	0.0325460	-1.4441470
11	H	4.6245060	-0.5082500	-0.0055860
12	C	2.4945210	-0.2418900	0.2915310
13	H	1.6778510	0.4349280	-0.0019550
14	H	2.5870030	-0.1568810	1.3891480
15	C	2.0467170	-1.6437800	0.0305750
16	C	3.0539890	-2.7335760	-0.0504080
17	H	3.6347450	-2.6197720	-0.9766060
18	H	3.7693410	-2.6621250	0.7784320
19	H	2.5655720	-3.7107710	-0.0518310
20	O	0.8477040	-1.9320800	-0.0960910
21	Au	-0.8450870	-0.5673220	-0.0133270
22	P	-2.6669130	0.8126340	0.0483130
23	C	-4.2535550	-0.0720660	-0.0247350
24	H	-4.3362970	-0.7613330	0.8222460
25	H	-5.0789610	0.6504440	0.0119970
26	H	-4.3151390	-0.6457320	-0.9556110
27	C	-2.7136800	1.9952600	-1.3325180
28	H	-3.6039750	2.6308470	-1.2429440
29	H	-1.8167000	2.6236740	-1.3164370
30	H	-2.7489230	1.4535470	-2.2838880
31	C	-2.7452010	1.8283690	1.5542800
32	H	-3.6447980	2.4565270	1.5294420
33	H	-2.7775030	1.1832780	2.4387230
34	H	-1.8585190	2.4684610	1.6156580

Alkyne coordination, $\mathrm{Me}_{2}\left(\right.$ biphenyl)PAu ${ }^{+}$(ethynylbenzene) (46)
$G=-1326,923356$ Hartree/particle.

Row	Symbol	X	Y
1	P	-0.9947230	-1.6379490
2	C	-0.5667800	-3.1028990
3	H	-0.7366800	-2.8888300
4	H	0.4975960	-3.3173410
5	H	-1.1462970	-3.9856380
6	C	-0.9630780	-2.2588210
7	H	0.0333650	-2.6604630
8	H	-1.1796960	-1.4513390
9	H	-1.7097540	-3.0535780
10	Au	0.4863700	0.1281660
11	C	4.2278000	-0.0801360
12	C	5.3533140	-0.8835890
13	C	6.0649950	-1.2284850
14	C	5.6540280	-0.7731720
15	C	4.5272080	0.0280380
16	C	3.8105350	0.3787110
17	H	3.6605200	0.2002230
18	H	5.6810100	-1.2422810
19	H	6.9482860	-1.8585580
20	H	6.2149840	-1.0452360
21	H	4.1928700	0.3919780
22	C	2.6616220	1.2132000
23	C	1.6700680	1.9440020
24	H	1.0835840	2.8454200
25	C	-2.7417020	-1.2595950
26	C	-3.5939910	-2.3541660
27	C	-3.2506370	0.0483680
28	C	-4.9248690	-2.1782720
29	H	-3.2148490	-3.3692730
30	C	-4.5910870	0.2020140
31	C	-5.4216870	-0.8906260
32	H	-5.5662210	-3.0441000
33	H	-4.9867960	1.2110430
34	H	-6.4606790	-0.7349720
35	C	-2.4807710	1.2927810
36	C	-2.3969880	2.2670770
37	C	-1.9128430	1.5668440
38	C	-1.7574870	3.4799990
39	H	-2.8420720	2.0685920
40	C	-1.2795170	2.7836170
41	H	-2.0127550	0.8383840
42	C	-1.2008980	3.7432450
43	H	-1.7045110	4.2272430
45	H	-0.8598900	2.9850210
45	H	-0.7178120	4.6995630
2			

Z
0.3458670
-0.6548340
-1.7153890
-0.5060560
-0.3608230
2.0625240
2.2799010
2.7693380
2.1850150
-0.0468130 0.9972460 1.0942420 -0.0544610 -1.3060240 -1.4178650 -0.2630570 1.8835070 2.0672910 0.0265010 -2.1971240 -2.3873200 -0.3680140 -0.4663250 -0.5657430 -0.0267760 -0.2277350 -0.1690270 -0.5796500 -0.1157410 -0.5455700 -0.7499010 -0.7277140 -0.6540130 -1.0328830 0.0753730 -0.9265930 1.3278770 -0.6865400 -1.9014690 1.5704310 2.1329810 0.5638280 -1.4761180 2.5543200

Alkene coordination, Me \boldsymbol{M}_{2} (biphenyl)PAu ${ }^{+}$(6-methylhept-5-en-2-one) (47)
$G=-1367,638453$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	-1.9503500	1.3630900	-0.9308620
2	H	-1.8068200	1.9491560	-0.0200130
3	H	-1.7253010	1.8605030	-1.8764950
4	C	-2.7095230	0.2152910	-0.9089930
5	C	-3.1623360	-0.4492980	-2.1699410
6	H	-3.0841120	-1.5415810	-2.0947310
7	H	-4.2221090	-0.2155880	-2.3458940
8	H	-2.5952220	-0.1064580	-3.0417730
9	C	-3.2680420	-0.3137110	0.3839710
10	H	-3.1193140	-1.4034170	0.4314600
11	H	-2.7221870	0.1308680	1.2272970
12	C	-4.7648580	0.0028780	0.5037290
13	H	-5.3388400	-0.4259710	-0.3262960
14	Au	-0.2798230	-0.1481360	-0.7602870
15	P	1.6277520	-1.5103360	-0.6035910
16	C	2.4660130	-1.7710510	-2.2049020
17	H	2.7750890	-0.8163920	-2.6427750
18	H	3.3512120	-2.4041140	-2.0626350
19	H	1.7728410	-2.2671130	-2.8940480
20	C	1.1999220	-3.2035540	-0.0723250
21	H	2.0445290	-3.8940370	-0.1787290
22	H	0.8605090	-3.1961030	0.9687920
23	H	0.3797320	-3.5584760	-0.7068050
24	H	-4.9008620	1.0967920	0.4705700
25	C	-5.3975420	-0.4957340	1.7890570
26	C	-4.6635730	-0.2221700	3.0721510
27	H	-3.7876580	-0.8815330	3.1499800
28	H	-4.2912590	0.8100480	3.1088030
29	H	-5.3209220	-0.4155210	3.9242840
30	O	-6.4656670	-1.0741250	1.7683930
31	C	2.8998460	-0.9095610	0.5598060
32	C	2.9820010	0.4285860	1.0008930
33	C	3.7907490	-1.8601010	1.0754660
34	C	3.9317670	0.7470380	1.9796670
35	C	4.7394320	-1.5170890	2.0288460
36	H	3.7437350	-2.8943070	0.7371510
37	C	4.7994380	-0.2071930	2.4921900
38	H	3.9988190	1.7794720	2.3202560
39	H	5.4221690	-2.2721570	2.4120410
40	H	5.5309690	0.0761820	3.2460470
41	C	2.1494040	1.5388620	0.4799270
42	C	1.4361530	2.3543630	1.3675720
43	C	2.1236500	1.8528800	-0.8862170
44	C	0.7171280	3.4513280	0.9032300
45	H	1.4516260	2.1224330	2.4324060
46	C	1.4048470	2.9522910	-1.3507060
47	H	2.7155900	1.2611500	-1.5851470
48	C	0.7009990	3.7545600	-0.4563730
49	H	0.1731130	4.0770840	1.6084170
50	H	1.4111990	3.1898530	-2.4129950
51	H	0.1477980	4.6197400	-0.8169060

Ketone coordination,
 Me $_{2}$ (biphenyl) $\mathbf{P A u}^{+}$(6-methylhept-5-en-2-one') (48)

$G=-1367,633211$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	6.5529920	-1.7323670	-0.6154690
2	H	6.9519770	-1.1602010	-1.4527080
3	H	6.9557080	-2.7343830	-0.4700050
4	C	5.6211970	-1.2301600	0.1966120
5	C	5.0670970	-2.0049290	1.3539060
6	H	5.6018760	-2.9506910	1.4967370
7	H	5.1354700	-1.4253310	2.2866510
8	H	4.0027080	-2.2462020	1.2139030
9	C	5.0811890	0.1603140	-0.0069650
10	H	5.2438840	0.7534050	0.9083770
11	H	5.6410410	0.6522810	-0.8138790
12	C	3.5890590	0.1540330	-0.3335510
13	H	3.0015390	-0.3173820	0.4703980
14	H	3.4057210	-0.4654530	-1.2303330
15	C	2.9475060	1.4751710	-0.6252570
16	C	3.7783270	2.6504910	-0.9901530
17	H	4.4932790	2.8716120	-0.1868530
18	H	4.3774280	2.4135050	-1.8802490
19	H	3.1511290	3.5228440	-1.1864730
20	O	1.7139500	1.5999700	-0.6031510
21	Au	0.2792920	0.0214030	-0.1791960
22	P	-1.2451580	-1.6316860	0.2727370
23	C	-1.1755190	-2.2052340	2.0038630
24	H	-1.9452440	-2.9703200	2.1675640
25	H	-0.1867570	-2.6384420	2.1955640
26	H	-1.3372110	-1.3744800	2.6976640
27	C	-0.8790300	-3.1406190	-0.6825950
28	H	-1.4737920	-3.9948820	-0.3387610
29	H	-1.0618410	-2.9670640	-1.7482510
30	H	0.1818770	-3.3769410	-0.5418940
31	C	-2.9804260	-1.1927500	-0.0835020
32	C	-3.8524160	-2.2356460	-0.4224800
33	C	-3.4538610	0.1366080	-0.0895440
34	C	-5.1694330	-1.9823850	-0.7815320
35	H	-3.5043820	-3.2671950	-0.4182690
36	C	-4.7765750	0.3710330	-0.4803090
37	C	-5.6285470	-0.6705300	-0.8230950
38	H	-5.8286110	-2.8085580	-1.0384570
39	H	-5.1393070	1.3981910	-0.4906760
40	H	-6.6549690	-0.4567510	-1.1141790
41	C	-2.6352710	1.3084260	0.3065220
42	C	-2.1349790	1.4342260	1.6074460
43	C	-2.3992630	2.3402890	-0.6098220
44	C	-1.3939060	2.5537200	1.9770590
45	H	-2.3591490	0.6638500	2.3457080
46	C	-1.6561070	3.4574540	-0.2412590
47	H	-2.7980340	2.2555130	-1.6209020
48	C	-1.1489680	3.5652970	1.0517860
49	H	-1.0198480	2.6414170	2.9954890
50	H	-1.4775560	4.2490620	-0.9666670
51	H	-0.5736260	4.4426680	1.3412220

Alkyne coordination, ${ }^{t}$ BuXPhosAu ${ }^{+}$(ethynylbenzene) (37)
$G=-1915,731964$ Hartree/particle.

Row	Symbol	X	Y	Z
1	P	-0.8600140	1.7827480	0.0364240
2	C	-1.5771190	2.7452660	-1.4451540
3	C	-1.9903060	1.8896530	1.5607740
4	Au	-0.6473370	-0.4878300	-0.5552460
5	C	-3.2822320	-2.8180410	1.1213910
6	C	-4.5753410	-2.7376810	1.6171410
7	C	-5.6298200	-2.4117280	0.7650010
8	C	-5.3978350	-2.1662250	-0.5879900
9	C	-4.1095950	-2.2435270	-1.0966850
10	C	-3.0474470	-2.5733120	-0.2404290
11	H	-2.4434240	-3.0610760	1.7726070
12	H	-4.7638650	-2.9281240	2.6712400
13	H	-6.6418180	-2.3475620	1.1594150
14	H	-6.2255260	-1.9120370	-1.2461070
15	H	-3.9084670	-2.0477650	-2.1489420
16	C	-1.7148060	-2.6163730	-0.7478520
17	C	-0.5564990	-2.6332570	-1.1784940
18	H	0.3593220	-2.9963940	-1.6147510
19	C	0.7681620	2.5136430	0.4737120
20	C	0.8068280	3.8919010	0.7453380
21	C	1.9784830	1.7776830	0.5060930
22	C	1.9892840	4.5505920	1.0488580
23	H	-0.1094060	4.4776760	0.7144910
24	C	3.1594270	2.4694670	0.8122350
25	C	3.1768360	3.8306480	1.0823890
26	H	1.9787520	5.6187850	1.2531540
27	H	4.0925330	1.9059280	0.8286070
28	H	4.1178300	4.3260560	1.3127870
29	C	2.1669490	0.3118490	0.2373350
30	C	2.4718210	-0.1360060	-1.0682270
31	C	2.2374380	-0.5987140	1.3165650
32	C	2.7947180	-1.4810780	-1.2648470
33	C	2.5647550	-1.9313250	1.0644190
34	C	2.8403400	-2.3984920	-0.2186980
35	H	3.0349290	-1.8289880	-2.2725550
36	H	2.6220910	-2.6221090	1.9064780
37	C	-3.3965010	1.4382190	1.1648160
38	H	-3.3917310	0.4527450	0.6759090
39	H	-4.0032070	1.3498580	2.0777810
40	H	-3.9046980	2.1540810	0.5077730
41	C	-2.0429710	3.2710120	2.2108720
42	H	-2.7318360	3.2203650	3.0663140
43	H	-1.0638690	3.5750430	2.6004320
44	H	-2.4144070	4.0537950	1.5412520
45	C	-1.4391680	0.9050650	2.5896190
46	H	-1.4326640	-0.1265280	2.2106150
47	H	-0.4217620	1.1684030	2.9063230
48	H	-2.0795520	0.9296040	3.4834650
49	C	-0.4287560	3.0729590	-2.3980410
50	H	0.1221170	2.1734320	-2.6994320
51	H	-0.8504970	3.5194050	-3.3098820
52	H	0.2837970	3.7914020	-1.9735660
53	C	-2.5537470	1.8160270	-2.1771890
54	H	-2.9579570	2.3508550	-3.0489290
55	H	-2.0549910	0.9068460	-2.5422440
56	H	-3.4027420	1.5081930	-1.5547740
57	C	-2.3096800	4.0390280	-1.0891440
58	H	-2.6556470	4.5007030	-2.0252700
59	H	-3.1984270	3.8704390	-0.4696880
60	H	-1.6679070	4.7758760	-0.5922170
61	C	2.0391430	-0.1651780	2.7547600
62	H	1.5396060	0.8152990	2.7494500

63	C	1.1716150	-1.1378810	3.5525000
64	H	1.7200720	-2.0571950	3.7997960
65	H	0.8631290	-0.6814000	4.5024790
66	H	0.2670920	-1.4287440	2.9999370
67	C	3.3880980	0.0200950	3.4529170
68	H	3.2416580	0.3348600	4.4949850
69	H	3.9526190	-0.9232780	3.4619860
70	H	4.0056560	0.7773800	2.9532620
71	C	2.5305390	0.8071740	-2.2526210
72	H	2.0802500	1.7643630	-1.9502490
73	C	1.7533160	0.2883230	-3.4606820
74	H	1.7165470	1.0533800	-4.2482480
75	H	2.2243480	-0.6024780	-3.8985570
76	H	0.7181130	0.0198180	-3.1964810
77	C	3.9829770	1.0926420	-2.6368410
78	H	4.4941190	0.1721510	-2.9527910
79	H	4.0281080	1.8049880	-3.4714350
80	H	4.5466620	1.5173780	-1.7958860
81	C	3.2424930	-3.8329600	-0.4790880
82	H	3.0513410	-4.0354180	-1.5469990
83	C	2.4462450	-4.8426610	0.3405680
84	H	2.6768970	-4.7639040	1.4121370
85	H	1.3626980	-4.7055730	0.2211500
86	H	2.6962640	-5.8655180	0.0311850
87	C	4.7414810	-4.0071090	-0.2330770
88	H	5.0575880	-5.0356160	-0.4526970
89	H	5.3323650	-3.3245100	-0.8576480
90	H	4.9830060	-3.7957080	0.8189780

Alkene coordination,

${ }^{t}$ BuXPhosAu ${ }^{+}$(6-methylhept-5-en-2-one) (49)
$G=-1956,448140$ Hartree/particle.

Row	Symbol	X
1	C	-2.0627850
2	H	-2.3123390
3	H	-1.3861350
4	C	-2.8244920
5	C	-2.6822030
6	H	-2.6711230
7	H	-3.5453210
8	H	-1.7724760
9	C	-3.9670450
10	H	-4.0095930
11	H	-3.8036300
12	C	-5.2950720
13	H	-5.4727770
14	Au	-0.7718540
15	P	0.5209650
16	C	0.2287910
17	C	0.0104060
18	H	-5.2512420
19	C	-6.5101260
20	C	-6.4129900
21	H	-5.7980900
22	H	-5.9299180
23	H	-7.4103080
24	O	-7.5220950
25	C	2.3189850

Y
1.7250990
1.6299210
2.5380580
1.0898060
1.4114830
0.4970160
2.0056240
1.9892890
0.1951770
-0.6797730
-0.1775420
0.9612640
1.3814410
-0.1008550
-2.0757540
-2.8031310
-3.2835070
1.8048790
0.1300340
-0.7409440
-1.6252640
-0.2148110
-1.0780810
0.1903790
-1.7367640

Z
0.4261710
1.4860610
1.4860610
0.1511130
-0.5277220
-1.9834070
-2.5924360
-2.3168730
-2.1878750
-0.1285690
-0.7961410
0.8922470
-0.1953120
-1.1924640
0.0452250
-0.1626870
-1.8893940
1.2237680
0.5139110
0.1658870
1.3874290
1.1661390
2.2212000
1.6831040
-0.5037070
0.0122640

26	C	2.8596210	-0.4395330	0.1869830
27	C	3.1884380	-2.8403870	0.0223290
28	C	4.2452680	-0.3248390	0.3706520
29	C	4.5565940	-2.6982460	0.2016170
30	H	2.7880640	-3.8437220	-0.1053620
31	C	5.0881820	-1.4271700	0.3796840
32	H	4.6650390	0.6714010	0.5128340
33	H	5.1975560	-3.5769590	0.2059250
34	H	6.1575740	-1.2909370	0.5272370
35	C	2.1149950	0.8643390	0.2066230
36	C	1.6721870	1.4068180	1.4354920
37	C	2.0393560	1.6500990	-0.9657060
38	C	1.1314690	2.6933630	1.4511590
39	C	1.4731000	2.9250960	-0.8964170
40	C	1.0113870	3.4676550	0.2999900
41	H	0.7910970	3.1184470	2.3985400
42	H	1.4217320	3.5231830	-1.8069890
43	C	-1.4872710	-3.0885740	1.4890800
44	H	-1.7963890	-3.7837420	2.2831820
45	H	-1.7083140	-2.0672670	1.8318640
46	H	-2.1105270	-3.2933510	0.6097060
47	C	0.7720430	-2.8967970	2.4915960
48	H	0.5979660	-1.8505700	2.7725230
49	H	0.4092360	-3.5226970	3.3195270
50	H	1.8536800	-3.0569880	2.3996930
51	C	0.2704470	-4.7607280	0.9270470
52	H	1.3298330	-4.9834510	0.7508990
53	H	-0.0320990	-5.3420110	1.8100780
54	H	-0.3160440	-5.1387800	0.0812760
55	C	1.1411420	-3.9721350	-2.2599860
56	H	1.0384240	-4.8362280	-1.5952480
57	H	0.8693110	-4.3066240	-3.2714570
58	H	2.1959870	-3.6734160	-2.2914740
59	C	-1.2363810	-3.2248790	-2.0013870
60	H	-1.4368500	-3.5164950	-3.0422760
61	H	-1.4819250	-4.0867590	-1.3697820
62	H	-1.9207830	-2.4002810	-1.7525320
63	C	0.4840630	-1.6767930	-2.8891540
64	H	-0.1824580	-0.8189920	-2.7221200
65	H	1.5234300	-1.3250840	-2.8574310
66	H	0.2950340	-2.0547440	-3.9045770
67	C	0.4618250	4.8741630	0.3973330
68	H	-0.2291630	4.8910490	1.2575290
69	C	-0.3123800	5.3252500	-0.8352460
70	H	0.3465270	5.4429910	-1.7067490
71	H	-1.1090590	4.6190820	-1.1093220
72	H	-0.7777730	6.3019860	-0.6515570
73	C	1.6005500	5.8513430	0.6944470
74	H	1.2182780	6.8735440	0.8165760
75	H	2.1402190	5.5739240	1.6093180
76	H	2.3225870	5.8553600	-0.1351280
77	C	1.8315120	0.6702220	2.7509360
78	H	2.1282140	-0.3661840	2.5300710
79	C	2.9526260	1.2966940	3.5814670
80	H	2.7148210	2.3386560	3.8384230
81	H	3.0940010	0.7435970	4.5195520
82	H	3.9064810	1.2960450	3.0382770
83	C	0.5365820	0.6242710	3.5598710
84	H	0.6703340	0.0087860	4.4600080
85	H	0.2286200	1.6250770	3.8927810
86	H	-0.2952110	0.1986330	2.9760340
87	C	2.6482650	1.1998750	-2.2791480
88	H	2.8217300	0.1152540	-2.2192630
89	C	1.7561680	1.4739950	-3.4878920

90	H	1.7159260	2.5454820	-3.7265750
91	H	2.1551570	0.9630230	-4.3743610
92	H	0.7263200	1.1265630	-3.3290870
93	C	4.0123340	1.8626290	-2.4845120
94	H	4.4644840	1.5256640	-3.4269790
95	H	3.9083340	2.9559960	-2.5320660
96	H	4.7088120	1.6261470	-1.6701820

Ketone coordination, ${ }^{t}$ ВиXPhosAu ${ }^{+}$(6-methylhept-5-en-2-one') (50)
$G=-1956,439283$ Hartree/particle.

Row	Symbol	X	Y
1	C	-6.6346890	-0.4944790
2	H	-6.7470340	0.4163570
3	H	-7.0767580	-1.4018670
4	C	-5.9935060	-0.4994100
5	C	-5.8463970	-1.7418650
6	H	-6.3586130	-2.5931830
7	H	-6.2631370	-1.5957560
8	H	-4.7920920	-2.0258600
9	C	-5.3749630	0.7579840
10	H	-5.7092640	0.9113100
11	H	-5.7197500	1.6231570
12	C	-3.8500510	0.6815000
13	H	-3.4769070	-0.1794420
14	H	-3.5181840	0.5003210
15	C	-3.0755330	1.8771050
16	C	-3.7378320	3.2008270
17	H	-4.5605730	3.1423980
18	H	-4.1910770	3.4836530
19	H	-3.0213390	3.9648160
20	O	-1.8648940	1.7834820
21	Au	-0.6663720	-0.0411740
22	P	0.5257200	-2.0258390
23	C	0.8526920	-2.6907780
24	C	-0.4865530	-3.2485060
25	C	2.1541210	-1.7858450
26	C	2.8923390	-2.9446980
27	C	2.6741090	-0.5308250
28	C	4.1006290	-2.8977550
29	H	2.5156510	-3.9183020
30	C	3.8895110	-0.5125870
31	C	4.5992750	-1.6691460
32	H	4.6406310	-3.8184000
33	H	4.2797910	0.4523660
34	H	5.5385070	-1.6088340
35	C	2.0590710	0.8098160
36	C	2.4854080	1.5723210
37	C	1.1491050	1.3685330
38	C	1.9254260	2.8337430
39	C	0.6233910	2.6355600
40	C	0.9733290	3.3733190
41	H	2.2513600	3.4171150
42	H	-0.0920930	3.0673850
43	C	-1.9738520	-3.0139850
44	H	-2.5615990	-3.7439440
45	H	-2.2919680	-2.0104810
46	H	-2.2339760	-3.1411190

Z
1.6051100
2.1930150 2.0155850 0.4348330 -0.3904330
0.0720930
-1.3981100
-0.5292790
-0.1179530
-1.1570540
0.4650550
-0.0842970
-0.6628660
0.9548080
-0.5476530
-0.6772890
-1.4022510
0.2827040
-0.9898860
-0.7940290
-0.5091640
-0.3076580
-2.0520910
0.7539900
0.5189540
0.8134360
0.9203250
1.4932710 0.5097680 1.6186600 1.9076540 1.7028280 1.9420590 2.4536830 0.6606650 -0.4494620 1.5846570 -0.6567960 1.3314310 0.2050820 -1.5191470 2.0348540 0.4651550 1.0407460 0.7795730 -0.5931120

Transition state to anti trans-cyclopropyl gold carbene 51 ($\left.\mathrm{TS}^{\neq}{ }_{42-51}\right)$
$G=-1253,343287$ Hartree/particle.

Row	Symbol	X
1	C	0.8685360
2	C	0.4216020
3	H	0.9657430
4	C	0.6593250

> Y
> 0.7910770 -0.4094400
> -1.2805420
> 2.1209110

5	C	0.6133670	2.3138310	1.2098330
6	C	0.4925200	3.2161270	-1.0410860
7	C	0.4005140	3.5847950	1.7273020
8	H	0.7458120	1.4556180	1.8684790
9	C	0.2839140	4.4828340	-0.5161360
10	H	0.5245620	3.0621300	-2.1187020
11	C	0.2417130	4.6681110	0.8659830
12	H	0.3638260	3.7317560	2.8044430
13	H	0.1521470	5.3306050	-1.1845940
14	H	0.0840210	5.6643770	1.2742070
15	Au	-1.6044720	-0.6343150	-0.2732610
16	P	-3.8542280	-0.9815340	0.3045080
17	C	-4.6099590	-2.4124010	-0.5352160
18	H	-5.6558820	-2.5222890	-0.2211400
19	H	-4.5707090	-2.2684620	-1.6204520
20	H	-4.0587850	-3.3247620	-0.2819900
21	C	-4.1334500	-1.2993300	2.0778030
22	H	-3.8032480	-0.4367670	2.6669650
23	H	-5.2006890	-1.4783390	2.2626570
24	H	-3.5599990	-2.1787900	2.3907080
25	C	-4.9598410	0.4133800	-0.0896940
26	H	-4.9281660	0.6190200	-1.1652820
27	H	-5.9897910	0.1703080	0.2019400
28	H	-4.6338660	1.3102410	0.4483990
29	C	3.4092440	0.7121350	-0.5328960
30	C	2.8128450	0.9345820	-1.7372330
31	H	2.6500610	0.1215270	-2.4419880
32	H	2.7075770	1.9447330	-2.1299600
33	C	3.8025340	1.8384620	0.3590270
34	H	3.3751920	2.7960570	0.0389250
35	H	3.5124690	1.6435850	1.4015050
36	H	4.8975170	1.9461840	0.3536000
37	C	3.7025490	-0.6754690	-0.0607530
38	H	3.2347470	-0.8393370	0.9230150
39	H	3.2691960	-1.4148930	-0.7469230
40	C	5.2000500	-0.9362270	0.0613380
41	H	5.6636340	-0.2752990	0.8110710
42	H	5.7213010	-0.7124750	-0.8833370
43	C	5.5086650	-2.3630410	0.4586400
44	C	6.9638450	-2.7370620	0.4703120
45	H	7.3485620	-2.7448330	-0.5587300
46	H	7.5571890	-1.9975830	1.0230000
47	H	7.0984560	-3.7293910	0.9098420
48	O	4.6284990	-3.1522710	0.7420190

Transition state to anti cis-cyclopropyl gold carbene $52\left(T S^{\neq}{ }_{42-52}\right)$
$G=-1253,342760$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	0.7303400	-0.5377760	0.7135990
2	C	3.0147680	-1.6200620	0.2855130
3	C	2.4935800	-1.5606420	1.5433550
4	H	2.8159880	-0.7862410	2.2391820
5	H	1.9619940	-2.4071170	1.9730720
6	C	2.7082880	-2.7393560	-0.6478960
7	H	2.0870120	-3.5153510	-0.1892140

8	H	2.1996920	-2.3545910	-1.5445540
9	H	3.6368670	-3.2094970	-1.0015210
10	C	3.9301540	-0.5515720	-0.2180540
11	H	3.7024050	-0.3123790	-1.2678370
12	H	3.8080770	0.3765050	0.3583680
13	C	5.3875970	-0.9976110	-0.1201600
14	H	5.5634610	-1.9346440	-0.6725880
15	H	5.6588170	-1.2246020	0.9233280
16	C	6.3495410	0.0407010	-0.6568720
17	C	7.8091720	-0.2891900	-0.5168390
18	H	8.0838040	-0.3184660	0.5463010
19	H	8.0264920	-1.2838640	-0.9267870
20	H	8.4180740	0.4635070	-1.0251310
21	O	5.9586260	1.0737020	-1.1636510
22	C	1.1524440	0.8301590	0.5690570
23	C	1.2632040	1.3668160	-0.7236660
24	C	1.4525510	1.6266830	1.6836550
25	C	1.6645710	2.6849360	-0.8944740
26	H	1.0313490	0.7349060	-1.5812240
27	C	1.8547200	2.9424610	1.5040620
28	H	1.3644850	1.2043200	2.6836860
29	C	1.9645410	3.4692440	0.2171260
30	H	1.7514250	3.1005450	-1.8958730
31	H	2.0862320	3.5606420	2.3685530
32	H	2.2880760	4.4991400	0.0810840
33	C	-0.2154280	-1.4001980	0.5768550
34	H	-0.1396040	-2.4806700	0.6636140
35	Au	-2.0917610	-0.5438390	0.1355310
36	P	-4.2079780	0.3106560	-0.4204380
37	C	-5.3787550	0.4167750	0.9731170
38	H	-6.3431060	0.8065300	0.6219870
39	H	-5.5275520	-0.5770450	1.4094490
40	H	-4.9794020	1.0830430	1.7454460
41	C	-5.0832250	-0.6846940	-1.6726230
42	H	-6.0604570	-0.2359730	-1.8925830
43	H	-4.4897210	-0.7273730	-2.5925390
44	H	-5.2290050	-1.7048510	-1.3008410
45	C	-4.1808080	1.9940140	-1.1199940
46	H	-5.2019040	2.3123410	-1.3670710
47	H	-3.7495070	2.6922120	-0.3942170
48	H	-3.5677740	2.0086670	-2.0277960

Transition state to syn trans-cyclopropyl gold carbene 53 ($\boldsymbol{T S}^{\neq}{ }_{42-53}$)
$G=-1253,337747$ Hartree/particle.

Row	Symbol	X
1	C	2.2258790
2	C	1.1422400
3	C	3.6452150
4	C	4.2578180
5	C	4.4357010
6	C	5.6386930
7	H	3.6374170
8	C	5.8115820
9	H	3.9566750
10	C	6.4124950
11	H	6.1114200
12	H	6.4229150

Y
-0.8151450
-1.4019890
-0.6491260
-0.1931960
-0.9647750
-0.0588050
0.0455330
-0.8203270
-1.3218930
-0.3640080
0.2903890
-1.0666870

13	H	7.4935520	-0.2487870	-0.2013630
14	C	1.7261430	1.7482710	0.5054790
15	C	1.6209050	0.7943100	1.4709970
16	H	0.6599910	0.3447270	1.7169890
17	H	2.4293700	0.6250460	2.1803560
18	C	2.9992490	2.4736400	0.2574800
19	H	3.8158280	2.1474610	0.9120570
20	H	3.3153820	2.3616530	-0.7907130
21	H	2.8351660	3.5515050	0.4103110
22	C	0.5503630	2.1203210	-0.3417220
23	H	0.8780080	2.6615240	-1.2404520
24	H	0.0410880	1.2047040	-0.6875670
25	C	-0.4726770	2.9600630	0.4149020
26	H	-0.0886120	3.9630180	0.6536090
27	H	-0.7012260	2.4964540	1.3920950
28	C	-1.7992820	3.0676560	-0.3031020
29	C	-2.7004570	4.1807090	0.1430900
30	H	-2.7364650	4.2418340	1.2389640
31	H	-2.2962930	5.1389160	-0.2117120
32	H	-3.7075680	4.0458770	-0.2622860
33	O	-2.1298040	2.2666790	-1.1603210
34	H	1.3555760	-2.3343120	-0.9319220
35	Au	-0.9152560	-1.0797590	-0.1525890
36	P	-3.2325230	-0.8377620	0.1725800
37	C	-3.7017190	0.4261710	1.4010200
38	H	-4.7894690	0.4207340	1.5479780
39	H	-3.2059200	0.2277510	2.3575740
40	H	-3.3960230	1.4134570	1.0372730
41	C	-4.1885210	-0.3944700	-1.3131540
42	H	-4.0269090	-1.1409290	-2.0985140
43	H	-5.2578710	-0.3508910	-1.0684500
44	H	-3.8531950	0.5838460	-1.6723390
45	C	-4.0228240	-2.3645550	0.7828500
46	H	-3.5700550	-2.6658810	1.7339940
47	H	-5.0979740	-2.1988580	0.9298440
48	H	-3.8780980	-3.1706870	0.0552010

Tranisiotn state to syn cis-cyclopropyl gold carbene 54 ($\mathrm{TS}^{\neq}{ }_{42-54}$)
$G=-1253,333136$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	-0.8865860	-1.5271570	0.0996800
2	C	-1.5127910	1.0428660	0.3760950
3	C	-1.0295560	0.2944970	1.4071820
4	H	-1.7068860	-0.1494240	2.1354390
5	H	0.0235520	0.3254160	1.6800490
6	C	-0.6163540	1.8399650	-0.5080040
7	H	0.4266600	1.4950400	-0.4569940
8	H	-0.9535300	1.8108510	-1.5533140
9	H	-0.6246890	2.8957020	-0.1971820
10	C	-2.9750100	1.0923000	0.0834040
11	H	-3.1511360	0.7449670	-0.9484270
12	H	-3.5319470	0.4105350	0.7396830
13	C	-3.5590160	2.4943840	0.2125850
14	H	-3.0683210	3.2023880	-0.4743190
15	H	-3.3948610	2.9071010	1.2206100
16	C	-5.0428470	2.5182730	-0.0879390
17	C	-5.7289490	3.8379860	0.1241450
18	H	-5.7175120	4.0936690	1.1924370

19	H	-5.1969780	4.6435380	-0.3983270
20	H	-6.7647130	3.7895510	-0.2232910
21	O	-5.6324520	1.5273070	-0.4727870
22	C	-2.2486550	-1.9580250	0.0372970
23	C	-2.9319670	-1.8659120	-1.1877500
24	C	-2.9076940	-2.4738850	1.1666200
25	C	-4.2563300	-2.2729720	-1.2756880
26	H	-2.4096770	-1.4672630	-2.0568540
27	C	-4.2284430	-2.8790410	1.0690460
28	H	-2.3725910	-2.5470810	2.1122330
29	C	-4.9046820	-2.7694240	-0.1479190
30	H	-4.7856760	-2.1960510	-2.2225330
31	H	-4.7388600	-3.2796150	1.9419270
32	H	-5.9462040	-3.0768380	-0.2149750
33	C	0.3563090	-1.6777900	-0.2116520
34	H	0.5296590	-2.6738940	-0.6456700
35	Au	2.0962130	-0.5327050	-0.0830790
36	P	4.0512170	0.7712770	0.0239730
37	C	5.0301480	0.5811970	1.5498620
38	H	5.3616870	-0.4579920	1.6509520
39	H	5.9082980	1.2386760	1.5160910
40	H	4.4173550	0.8402990	2.4202810
41	C	5.2422330	0.4607930	-1.3207280
42	H	4.7613050	0.6319750	-2.2900040
43	H	6.1039840	1.1330000	-1.2202350
44	H	5.5869250	-0.5782130	-1.2796320
45	C	3.7069820	2.5597060	-0.0775080
46	H	4.6435770	3.1312080	-0.0442710
47	H	3.1800720	2.7817480	-1.0127120
48	H	3.0702960	2.8602080	0.7626170

Anti trans-cyclopropyl gold carbene (51)

$G=-1253,366678$ Hartree/particle.

Row	Symbol	X
1	C	2.5820290
2	C	2.9177830
3	C	1.2697450
4	H	2.6439180
5	H	2.7710230
6	C	3.1922270
7	H	2.8536390
8	H	4.2792290
9	H	2.7400510
10	C	3.5135020
11	H	3.2008340
12	H	3.1831960
13	C	5.0354410
14	H	5.4752990
15	H	5.3670930
16	C	5.6612330
17	C	7.1603830
18	H	7.6134560
19	H	7.4747940
20	H	7.5310970
21	O	4.9878970
22	C	0.6731840
23	H	1.3288260

Y
1.1667120
0.8717580
0.9172010
2.1999310
0.4198070
1.9861280
1.7320170
2.1390830
2.9353150
-0.4634730
-0.7552250
-1.2575960
-0.4144200
0.2270080
0.0219150
-1.7895190
-1.8140970
-1.1727550
-1.4134240
-2.8379870
-2.8008940
-0.3284950
-1.1352530
(

24	C	0.4659690	2.0965440	-0.2027810
25	C	0.2115330	3.1670860	-1.0601370
26	C	-0.1008040	2.1025510	1.0773830
27	C	-0.6045780	4.2196630	-0.6516310
28	H	0.6341420	3.1740470	-2.0646450
29	C	-0.9133560	3.1535070	1.4863310
30	H	0.1066990	1.2735720	1.7562760
31	C	-1.1685280	4.2150240	0.6202860
32	H	-0.8021770	5.0436930	-1.3344640
33	H	-1.3425280	3.1474750	2.4866900
34	H	-1.8024000	5.0401360	0.9392710
35	Au	-1.2920570	-0.7409860	-0.2692000
36	P	-3.5662610	-1.1660350	0.2425760
37	C	-4.4087450	0.2834610	0.9612440
38	H	-5.4443400	0.0322810	1.2244320
39	H	-3.8739420	0.6141910	1.8591830
40	H	-4.4098150	1.1041170	0.2350690
41	C	-3.8388570	-2.4996320	1.4567060
42	H	-3.3244670	-2.2605360	2.3939530
43	H	-4.9124250	-2.6158470	1.6529050
44	H	-3.4387310	-3.4427440	1.0685610
45	C	-4.6053140	-1.6344950	-1.1812330
46	H	-4.2311600	-2.5642670	-1.6237530
47	H	-5.6436780	-1.7801070	-0.8565300
48	H	-4.5714510	-0.8462980	-1.9415640

Anti cis-cyclopropyl gold carbene (52)

$G=-1253,363129$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	2.3683560	-1.2202850	-1.7776850
2	C	2.6573510	-1.4326060	-0.3859500
3	C	1.2105160	-0.6442300	-0.8743980
4	H	2.8943560	-0.4211200	-2.3011370
5	H	2.080180	-2.0637950	-2.4021200
6	C	2.5469090	-2.7951300	0.2377070
7	H	3.5485180	-3.2444330	0.2517790
8	H	2.1961280	-2.7365770	1.2749410
9	H	1.9077290	-3.4812570	-0.3241870
10	C	3.5768630	-0.4708410	0.3285030
11	H	3.2779330	-0.3848190	1.3839720
12	H	3.4895320	0.5269590	-0.1174350
13	C	5.0319240	-0.9428750	0.2320250
14	H	5.1847520	-1.9130520	0.7180580
15	H	5.3003730	-1.0580330	-0.8317390
16	C	6.0279310	0.0220910	0.8484130
17	C	5.9137520	1.4725090	0.4700490
18	H	5.7349900	1.5958390	-0.6061270
19	H	5.0606890	1.9303270	0.9906810
20	H	6.8230830	2.0043790	0.7630410
21	O	6.8926150	-0.3813830	1.6001570
22	C	1.1311550	0.8320450	-0.6529990
23	C	0.8164080	1.3207860	0.6207560
24	C	1.2916390	1.7340610	-1.7049280
25	C	0.6579560	2.6848080	0.8349750
26	H	0.7014180	0.6185100	1.4481290
27	C	1.1293790	3.1013410	-1.4912350
28	H	1.5237970	1.3691460	-2.7053680

29	C	0.8132730	3.5787250	-0.2232230
30	H	0.4209980	3.0521860	1.8318720
31	H	1.2488540	3.7946400	-2.3214780
32	H	0.6920660	4.6473890	-0.0570820
33	C	0.0745510	-1.4169150	-0.6963870
34	H	0.2098520	-2.4860730	-0.8874690
35	Au	-1.7637110	-0.6871300	-0.1341360
36	P	-3.8394390	0.2626560	0.5039840
37	C	-3.7766270	1.0529720	2.1468300
38	H	-2.9848360	1.8113360	2.1585260
39	H	-4.7386240	1.5295420	2.3749200
40	H	-3.5550150	0.3023140	2.9134790
41	C	-4.3820630	1.5997720	-0.6116650
42	H	-5.3225530	2.0355290	-0.2503580
43	H	-3.6124920	2.3791750	-0.6509370
44	H	-4.5314420	1.2038460	-1.6220940
45	C	-5.2697650	-0.8643660	0.5938580
46	H	-5.0799360	-1.6479160	1.3354060
47	H	-6.1691790	-0.3046320	0.8816050
48	H	-5.4343390	-1.3361000	-0.3810370

Syn trans-cyclopropyl gold carbene (53)

$G=-1253,368096$ Hartree/particle.

Row	Symbol	X
1	C	1.8101580
2	C	1.7612980
3	C	2.0726400
4	H	2.6884900
5	H	0.8800470
6	C	2.9760100
7	H	3.1230820
8	H	2.8102600
9	H	3.8929750
10	C	0.4520550
11	H	-0.3910330
12	H	0.3670640
13	C	0.3256980
14	H	0.7050190
15	H	0.9353160
16	C	-1.1017510
17	C	-1.2635090
18	H	-0.9149130
19	H	-0.6428630
20	H	-2.3126390
21	O	-2.0575260
22	C	3.4847400
23	C	4.4142740
24	C	3.8756240
25	C	5.7078060
26	H	4.1246450
27	C	5.1682330
28	H	3.1556150
29	C	6.0890780
30	H	6.4190350
31	H	5.4588380
32	H	7.1022260

Y	Z
-0.2778740	1.9931680
1.0405660	1.4279200
-0.3914670	0.4505490
-0.5591710	2.5734730
-0.7470140	2.3102930
1.9195470	1.4410910
2.4359340	0.4839550
2.6918690	2.2060660
1.3803880	1.6934940
1.7600650	1.2713230
1.0627730	1.3248270
2.3896570	2.1731730
2.6299710	0.0333060
2.0947230	-0.8567620
3.5433820	0.0975050
3.0179880	-0.2906170
4.0841170	-1.3328300
5.0449760	-0.9300610
3.8685050	-2.2122170
4.1771010	-1.6271700
2.4855420	0.2465630
-0.5219900	-0.0241020
-1.3176960	0.6489480
0.1271800	-1.1996960
-1.4606740	0.1557630
-1.8482500	1.5556340
-0.0121020	-1.6907010
0.7564550	-1.7267940
-0.8059940	-1.0114050
-2.0910480	0.6860210
0.5062030	-2.6025340
-0.9149620	-1.3934370

33	C	1.0354120	-0.7593930	-0.3919350
34	H	1.4210040	-1.1029890	-1.3623750
35	Au	-1.0169570	-0.8371860	-0.2018500
36	P	-3.3761150	-0.7767900	0.0078370
37	C	-4.1775550	0.2771560	-1.2452470
38	H	-3.9821040	-0.1141120	-2.2496860
39	H	-5.2610390	0.3122850	-1.0731200
40	H	-3.7626400	1.2886540	-1.1645920
41	C	-4.2678710	-2.3654290	-0.0800770
42	H	-3.8955170	-3.0478150	0.6917760
43	H	-5.3426260	-2.2016850	0.0708090
44	H	-4.1089890	-2.8260190	-1.0612900
45	C	-3.8798350	-0.0357730	1.5952040
46	H	-4.9721330	0.0601640	1.6452050
47	H	-3.5333370	-0.6595920	2.4268900
48	H	-3.4173100	0.9556360	1.6729910

Syn cis-cyclopropyl gold carbene (54)
$G=-1253,361936$ Hartree/particle.

Row	Symbol	X	Y	
1	C	-1.2449160	-0.4138710	1.3227800
2	C	-1.6206200	-0.9604350	0.0474140
3	C	-1.1663120	0.7217630	0.2460170
4	H	-2.0340370	-0.2268840	2.0518950
5	H	-0.2781690	-0.6814470	1.7463890
6	C	-3.0786880	-1.0658610	-0.3132880
7	H	-3.2161460	-0.9202720	-1.3945300
8	H	-3.6695750	-0.2909640	0.1868860
9	C	-0.7101220	-1.8670920	-0.7225680
10	H	0.3434010	-1.7497350	-0.4541340
11	H	-0.9923930	-2.9018640	-0.4817520
12	C	-2.2857170	1.7099330	0.1602230
13	C	-2.8715990	2.2368810	1.3129420
14	C	-2.7165650	2.1661510	-1.0894190
15	C	-3.8707980	3.2012150	1.2175550
16	H	-2.5355800	1.9067610	2.2958460
17	C	-3.7170960	3.1257720	-1.1846980
18	H	-2.2673530	1.7514460	-1.9933550
19	C	-4.2978190	3.6449550	-0.0300240
20	H	-4.3131990	3.6090630	2.1244940
21	H	-4.0490080	3.4657900	-2.1638510
22	H	-5.0825450	4.3952450	-0.1045430
23	C	0.0652140	1.0470950	-0.2995110
24	H	0.0248230	2.0141600	-0.8199470
25	Au	1.9604660	0.2499740	-0.1404460
26	P	4.2017680	-0.4777220	0.1236430
27	C	4.8712990	-1.4235650	-1.2846490
28	H	4.8396800	-0.8102270	-2.1918830
29	H	5.9104390	-1.7124080	-1.0803040
30	H	4.2719670	-2.3254910	-1.4499830
31	C	5.3852930	0.8930530	0.3465550
32	H	5.1117180	1.4814620	1.2294650
33	H	6.4007930	0.4968570	0.4760110
34	H	5.3625600	1.5478470	-0.5314610
35	C	4.4825460	-1.5536430	1.5689970
36	H	5.5407030	-1.8396480	1.6253670
37	H	4.2035510	-1.0217490	2.4853430
38	H	3.8688830	-2.4575710	1.4878330
39	H	-0.8251440	-1.7338430	-1.8049130

40	C	-3.6348620	-2.4261850	0.0975770
41	H	-3.1947550	-3.2489900	-0.4858180
42	H	-3.3922910	-2.6524700	1.1492920
43	C	-5.1387760	-2.5059740	-0.0702220
44	C	-5.7682610	-3.8035930	0.3522530
45	H	-5.2953670	-4.6494510	-0.1635900
46	H	-5.6135160	-3.9632920	1.4278020
47	H	-6.8402950	-3.7922890	0.1376630
48	O	-5.7844580	-1.5789690	-0.5164090

Transition state to oxonium cation 55 thourgh the upper face
$G=-1253,361233$ Hartree/particle.

Row	Symbol	X
1	C	2.8198800
2	C	3.7654120
3	C	1.4311480
4	H	3.1323640
5	H	2.7528000
6	C	4.4494620
7	H	5.0138800
8	H	5.1465540
9	H	3.7363480
10	C	4.1977300
11	H	3.4449110
12	H	5.0893450
13	C	4.5335040
14	H	5.4602220
15	H	4.6966220
16	C	3.4040170
17	C	3.2613610
18	H	2.9000130
19	H	4.2357830
20	H	2.5533630
21	O	2.6538620
22	C	0.5401750
23	H	0.8860510
24	C	1.2041610
25	C	1.4738600
26	C	0.6815550
27	C	1.1928930
28	H	1.8799220
29	C	0.4001130
30	H	0.5151810
31	C	0.6508820
32	H	1.3937540
33	H	-0.0070150
34	H	0.4328700
35	Au	-1.3824100
36	P	-3.5575060
37	C	-3.8440990
38	H	-4.8459960
39	H	-3.0908610
40	H	-3.7479840
41	C	-3.9443270
42	H	-3.2090160
43	H	-4.9482290
		0

Y	Z
0.5325130	-1.8102120
-0.0384750	-0.8435520
0.5821620	-1.1148270
1.5473380	-2.0888560
-0.0873820	-2.7099450
0.8810810	0.0757770
0.3967850	0.8750050
1.4738890	-0.5407940
1.6053330	0.4948910
-1.4360550	-1.0278450
-1.9726130	-1.6206210
-1.3596850	-1.6793990
-2.2015020	0.2366830
-1.8493740	0.7155960
-3.2654980	0.0259610
-2.0077160	1.2189390
-2.9845020	2.3358310
-3.9382090	1.9269270
-3.1877970	2.7971610
-2.6211640	3.0839550
-1.0559440	1.0630620
-0.4006760	-1.3365400
-1.2181260	-1.9813590
1.7405050	-0.2181700
3.0501700	-0.6378890
1.5544800	1.0703780
4.1375800	0.1829950
3.2288610	-1.6341560
2.6408120	1.8918140
0.5388880	1.4260840
3.9374610	1.4499540
5.1467540	-0.1725130
2.4721480	2.8878800
4.7883330	2.0928280
-0.4505210	-0.5791070
-0.4382980	0.3590940
1.0268650	1.4120680
0.9913140	1.8593350
1.0597710	2.2083010
1.9376960	0.8098030
-1.8445170	1.4593250
-1.8934920	2.2703140
-1.7277390	1.8881420

44	H	-3.9008400	-2.7818770	0.8933570
45	C	-4.9588930	-0.4120510	-0.8121730
46	H	-4.9389110	-1.3123430	-1.4362450
47	H	-5.9098390	-0.3728710	-0.2647570
48	H	-4.8812080	0.4653840	-1.4636390

Transition state to oxonium cation 55 thourgh the lower face (TS(down) ${ }_{51-55}$)

$G=-1253,360076$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	2.8298250	0.4543510	-1.1238350
2	C	2.9752090	0.2464010	0.2868930
3	C	1.4064960	0.4299330	-0.4453670
4	H	3.0634020	1.4405990	-1.5248980
5	H	3.0160480	-0.3720250	-1.8083110
6	C	3.2883980	1.4076650	1.1794710
7	H	2.9261100	1.2487270	2.2027990
8	H	4.3824320	1.4964840	1.2040160
9	H	2.8928050	2.3533430	0.7989930
10	C	3.3162030	-1.1187460	0.8443180
11	H	2.7093030	-1.3203570	1.7371050
12	H	3.0925420	-1.9050760	0.1118020
13	C	4.7987910	-1.2405580	1.2394380
14	H	4.9562540	-2.2487940	1.6424300
15	H	5.0438070	-0.5236020	2.0331150
16	C	5.7041420	-0.9814800	0.0515100
17	C	6.3416230	-2.1778570	-0.5866170
18	H	7.0192100	-2.6637270	0.1289160
19	H	5.5750410	-2.9240050	-0.8410420
20	H	6.8970880	-1.8913200	-1.4837750
21	O	5.8595320	0.1505500	-0.3706950
22	C	0.6696400	-0.7393330	-0.4844460
23	H	1.2451310	-1.6485850	-0.6847420
24	C	0.7038610	1.7282240	-0.2109580
25	C	0.6392190	2.6988050	-1.2104390
26	C	0.0242600	1.9464240	0.9934340
27	C	-0.1021190	3.8626710	-1.0170970
28	H	1.1526580	2.5384700	-2.1584680
29	C	-0.7121100	3.1090790	1.1888290
30	H	0.0853280	1.1967110	1.7842300
31	C	-0.7792400	4.0694480	0.1805420
32	H	-0.1524320	4.6074520	-1.8089890
33	H	-1.2275390	3.2701090	2.1341390
34	H	-1.3535280	4.9812430	0.3327330
35	Au	-1.3684380	-0.8103830	-0.2080970
36	P	-3.7069440	-0.7037750	0.1530080
37	C	-4.1254070	-0.3966030	1.9021600
38	H	-5.2110770	-0.2823030	2.0167150
39	H	-3.7822210	-1.2315230	2.5228110
40	H	-3.6268070	0.5199090	2.2403060
41	C	-4.7172230	-2.1478590	-0.3113130
42	H	-4.3877510	-3.0294050	0.2494320
43	H	-5.7735930	-1.9514070	-0.0872940
44	H	-4.6070570	-2.3511800	-1.3819130
45	C	-4.4690890	0.6990460	-0.7297780

46	H	-4.3554440	0.5659360	-1.8112150
47	H	-5.5359440	0.7714640	-0.4820950
48	H	-3.9641220	1.6276840	-0.4371880

Oxonium cation (55)

$G=-1253,382691$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	3.8355820	0.0614670	-0.1596400
2	O	3.4908590	-1.3232950	0.4118460
3	C	4.5178390	-2.0498140	0.5130370
4	C	5.7557350	-1.3980090	0.0375290
5	C	5.2358210	-0.1811610	-0.7255440
6	H	6.3477460	-1.1403350	0.9315800
7	H	6.3769800	-2.0887090	-0.5441230
8	H	5.8686510	0.7013380	-0.5921820
9	H	5.1806290	-0.4018130	-1.7984790
10	C	2.7902380	0.3430000	-1.2243930
11	H	3.1465350	1.2500180	-1.7386420
12	H	2.8465550	-0.4663010	-1.9664030
13	C	3.8096240	0.9800880	1.0364650
14	H	3.9231200	2.0153950	0.6924180
15	H	2.8571460	0.9032110	1.5717650
16	H	4.6283770	0.7556420	1.7316400
17	C	1.3672730	0.4974580	-0.7265880
18	C	0.5188120	-0.5523570	-0.7605350
19	H	0.9662720	-1.4770230	-1.1498800
20	C	0.9707930	1.8396140	-0.2246820
21	C	1.3022730	3.0063880	-0.9260660
22	C	0.2492970	1.9799490	0.9702690
23	C	0.9013290	4.2591660	-0.4714240
24	H	1.8563700	2.9366380	-1.8625750
25	C	-0.1473250	3.2307410	1.4310390
26	H	0.0172780	1.0864470	1.5508690
27	C	0.1740830	4.3778830	0.7094070
28	H	1.1586280	5.1477110	-1.0461110
29	H	-0.6980640	3.3107360	2.3674250
30	H	-0.1336390	5.3579660	1.0697230
31	Au	-1.4878510	-0.5937130	-0.2770230
32	P	-3.8148920	-0.6431710	0.1974770
33	C	-4.2627000	-0.9271620	1.9462000
34	H	-3.8204020	-0.1438680	2.5721100
35	H	-5.3537480	-0.9128090	2.0670720
36	H	-3.8757300	-1.8971720	2.2781330
37	C	-4.7655900	-1.9201760	-0.6990440
38	H	-5.8293590	-1.8623130	-0.4340180
39	H	-4.6538590	-1.7723410	-1.7791280
40	H	-4.3836980	-2.9150570	-0.4438230
41	C	-4.6922830	0.9063930	-0.2151080
42	H	-5.7577640	0.8235350	0.0368620
43	H	-4.2515160	1.7399890	0.3435670
44	H	-4.5892480	1.1148720	-1.2860230
45	C	4.4055760	-3.3987400	1.0690660
46	H	3.4136090	-3.5835000	1.4861780

Experimental Section

47	H	4.6120730	-4.1196050	0.2648670
48	H	5.1855200	-3.5537970	1.8251240

Transition state to carbocation 56 (TS $\left.{ }_{55-56}^{\neq}\right)$
$G=-1253,368244$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	3.7404960	-1.1829840	-0.2367620
2	O	3.1335710	-0.6940930	0.9882660
3	C	1.8992650	-1.2132190	1.0294370
4	C	2.0255220	-2.6617680	0.6459840
5	C	3.2117070	-2.6334580	-0.3307770
6	H	2.2915500	-3.1915140	1.5752890
7	H	1.1036170	-3.1116780	0.2684000
8	H	3.9924740	-3.3385080	-0.0245490
9	C	3.1734680	-0.2325760	-1.3414290
10	C	0.8182060	-0.6947300	-0.7554330
11	C	1.8142500	0.2535320	-0.9284810
12	C	5.2372840	-1.0788950	-0.1179260
13	H	5.7000190	-1.3996380	-1.0593330
14	H	5.5504670	-0.0471020	0.0833320
15	H	5.6083110	-1.7245980	0.6865820
16	H	3.8711390	0.5950170	-1.5130200
17	H	3.1004220	-0.7954580	-2.2821140
18	C	1.0800400	-0.7213510	2.1638800
19	H	0.1111320	-1.2278460	2.2001490
20	H	1.6310720	-0.9366350	3.0916600
21	H	0.9286920	0.3631640	2.1048740
22	C	1.6735310	1.6388990	-0.4766840
23	C	0.4560620	2.3261690	-0.6365800
24	C	2.7417630	2.3154320	0.1381090
25	C	0.3051890	3.6258210	-0.1752800
26	H	-0.3641900	1.8410390	-1.1654520
27	C	2.5808860	3.6060620	0.6230220
28	H	3.6976610	1.8155720	0.2765780
29	C	1.3632730	4.2645530	0.4679350
30	H	-0.6386260	4.1463550	-0.3266220
31	H	3.4115270	4.1032040	1.1195180
32	H	1.2434690	5.2815760	0.8363070
33	H	2.9242400	-2.8931380	-1.3551510
34	H	1.0478480	-1.6197380	-1.2933760
35	Au	-1.2043110	-0.4651890	-0.2828010
36	P	-3.5001240	-0.1317290	0.1644660
37	C	-4.6679380	-1.0426550	-0.9011030
38	H	-5.7018400	-0.7726730	-0.6498770
39	H	-4.4763470	-0.7996440	-1.9522390
40	H	-4.5329370	-2.1210790	-0.7628280
41	C	-3.9630240	1.6205490	-0.0605630
42	H	-5.0262210	1.7769230	0.1633130
43	H	-3.3555410	2.2481130	0.6026750
44	H	-3.7644460	1.9195550	-1.0965960
45	C	-4.0443750	-0.5248400	1.8611150
46	H	-3.4591300	0.0591730	2.5802160
47	H	-5.1092040	-0.2893490	1.9854030
48	H	-3.8849400	-1.5897320	2.0642450

Z
0.2367620 1.0294370 0.6459840 5752890 0.2684000 .0245490 0.7554330 9284810 1.0593330 0.0833320 1.5130200 2.1638800 2.2001490 1048740 0.4766840 0.6381090 0.1752800 1654520 0.2765780 0.4679350 1.1195180 0.8363070
1.351510 0.2828010 0.1644660 0.6498770 .9522390 0.0605630 0.6026750 .0965960 2.5802160 2.0642450

$G=-1253,372438$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	3.4432950	-1.5559020	-0.2617860
2	O	2.9077590	-1.0139260	0.9404750
3	C	1.5198380	-1.3415170	0.8979390
4	C	1.5781550	-2.8426050	0.6283960
5	C	2.7547190	-2.9421610	-0.3624300
6	H	1.8152160	-3.3521200	1.5728480
7	H	0.6331910	-3.2492420	0.2486270
8	H	3.4597040	-3.7260360	-0.0605420
9	C	3.0295640	-0.5492710	-1.4252440
10	C	0.8205790	-0.6977470	-0.4504990
11	C	1.8753440	0.1973930	-0.8675430
12	C	4.9450830	-1.6251500	-0.1502860
13	H	5.3757110	-2.0196720	-1.0790750
14	H	5.3752180	-0.6330820	0.0368340
15	H	5.2310540	-2.2881000	0.6753660
16	H	3.8739890	0.0776370	-1.7288150
17	H	2.7114050	-1.1215120	-2.3068970
18	C	0.9073070	-0.8863560	2.1927300
19	H	-0.1189830	-1.2623690	2.2860780
20	H	1.5039080	-1.2684150	3.0320620
21	H	0.8833370	0.2100100	2.2501450
22	C	2.0041550	1.5588160	-0.4402370
23	C	0.8644200	2.3442150	-0.1510260
24	C	3.2806790	2.1464550	-0.2633950
25	C	0.9928290	3.6444050	0.3029960
26	H	-0.1258470	1.9281430	-0.3322730
27	C	3.4040080	3.4374680	0.2127290
28	H	4.1813910	1.5687240	-0.4507120
29	C	2.2615980	4.1901680	0.4917670
30	H	0.1059010	4.2403150	0.5044030
31	H	4.3909600	3.8659100	0.3685020
32	H	2.3630250	5.2118430	0.8521770
33	H	2.4369560	-3.1767400	-1.3847830
34	H	0.8245050	-1.5285470	-1.1675820
35	Au	-1.2467840	-0.2614810	-0.1928710
36	P	-3.5769950	0.0490520	0.0106870
37	C	-4.4740500	-1.4180200	0.6202770
38	H	-4.0979980	-1.6988240	1.6104360
39	H	-5.5484980	-1.2041760	0.6883480
40	H	-4.3159700	-2.2584370	-0.0645970
41	C	-4.4240760	0.4698000	-1.5501770
42	H	-5.5014600	0.5869030	-1.3748220
43	H	-4.0198790	1.4065910	-1.9498960
44	H	-4.2626180	-0.3232270	-2.2887840
45	C	-4.0765210	1.3826700	1.1521320
46	H	-5.1711060	1.4554400	1.1930550
47	H	-3.6904120	1.1772390	2.1566890
48	H	-3.6654450	2.3383950	0.8078820

Experimental Section

Coordinated product (57)
$G=-1253,436946$ Hartree/particle.

Row	Symbol	X	Y
1	C	2.6696890	-1.3612080
2	O	1.7435720	-2.1445840
3	C	1.8738590	-1.6613680
4	C	3.3974110	-1.6328230
5	C	3.9167240	-1.2610850
6	H	3.7314320	-2.6346600
7	H	3.7050290	-0.9296890
8	H	4.6897770	-1.9625910
9	C	2.0406930	0.0157160
10	C	1.3572120	-0.2361480
11	H	1.1510740	0.1812020
12	C	1.4792390	0.5937940
13	C	2.9216290	-2.0697050
14	H	3.6270210	-1.4956960
15	H	1.9881430	-2.1866990
16	H	3.3483560	-3.0636480
17	H	1.2571510	-0.0518070
18	H	2.7975250	0.7096860
19	C	1.1335190	-2.5841570
20	H	1.2415580	-2.2418670
21	H	1.5419030	-3.5988340
22	H	0.0623430	-2.6205460
23	C	1.2216050	2.0516670
24	C	1.3002200	2.7626370
25	C	0.8880240	2.7457060
26	C	1.0416360	4.1264480
27	H	1.5910230	2.2507700
28	C	0.6228270	4.1090500
29	H	0.8226690	2.2119480
30	C	0.6977170	4.8031440
31	H	1.1194240	4.6662870
32	H	0.3597910	4.6320140
33	H	0.4975010	5.8722790
34	H	4.3573130	-0.2566400
35	Au	-0.7910880	-0.2142720
36	P	-3.0585620	-0.5780130
37	C	-3.6965660	0.3047840
38	H	-4.7590760	0.0680250
39	H	-3.1376040	0.0025090
40	H	-3.5808250	1.3848900
41	C	-3.4472920	-2.3315250
42	H	-4.5262670	-2.4503490
43	H	-3.1433740	-2.9290130
44	H	-2.9048210	-2.6895230
45	C	-4.1399230	-0.0743640
46	H	-3.8691510	-0.6253980
47	H	-5.1854090	-0.2898190
48	H	-4.0260450	0.9981240

Transition state to cyclobutene $58\left(\right.$ TS $\left.^{\neq}{ }_{51-58}\right)$
$G=-1253,354943$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	2.6350610	1.6836740	-0.8556020
2	C	2.2777110	0.6172540	0.1530190
3	C	1.1460140	1.5976260	-0.8175320
4	H	3.0687400	2.6072110	-0.4713440
5	H	3.1405010	1.2994480	-1.7439640
6	C	2.0968860	0.9884700	1.6011760
7	H	1.5234330	0.2140200	2.1275870
8	H	3.0842150	1.0558040	2.0757330
9	H	1.6044850	1.9537640	1.7484690
10	C	2.9073210	-0.7614000	-0.0406470
11	H	2.2697140	-1.5377010	0.4051180
12	H	3.0121800	-1.0066500	-1.1025460
13	C	4.2988070	-0.8102190	0.5785870
14	H	4.2677590	-0.8042140	1.6782470
15	H	4.8914990	0.0772160	0.2974410
16	C	5.0686260	-2.0429520	0.1478550
17	C	6.4529320	-2.1765560	0.7154170
18	H	7.0666300	-1.3121240	0.4291330
19	H	6.4169070	-2.1880900	1.8125840
20	H	6.9229060	-3.0952560	0.3538710
21	O	4.5897270	-2.8655470	-0.6078920
22	C	0.6721580	0.2946640	-0.9755070
23	H	1.2769590	-0.3069770	-1.6531990
24	C	0.3746920	2.7278210	-0.2574370
25	C	0.7504840	4.0187820	-0.6497430
26	C	-0.7465840	2.5741930	0.5692040
27	C	0.0075330	5.1247810	-0.2523890
28	H	1.6133850	4.1584680	-1.2992470
29	C	-1.4730010	3.6810910	0.9849040
30	H	-1.0407440	1.5801350	0.9089650
31	C	-1.1025240	4.9586940	0.5689820
32	H	0.3024960	6.1187020	-0.5817860
33	H	-2.3321540	3.5458450	1.6389750
34	H	-1.6788260	5.8244840	0.8889970
35	Au	-1.0894790	-0.6250760	-0.3730530
36	P	-3.0893250	-1.7002320	0.2846710
37	C	-4.1866640	-0.6268650	1.2714300
38	H	-5.1031330	-1.1657690	1.5444390
39	H	-3.6699300	-0.3086650	2.1841330
40	H	-4.4506320	0.2645270	0.6906970
41	C	-2.8723840	-3.1903930	1.3134100
42	H	-2.3231590	-2.9342470	2.2261230
43	H	-3.8503770	-3.6079470	1.5854060
44	H	-2.3002220	-3.9435760	0.7604000
45	C	-4.1363820	-2.2553570	-1.1014340
46	H	-3.5935800	-2.9884020	-1.7080990
47	H	-5.0585080	-2.7118760	-0.7193400
48	H	-4.3937300	-1.3990990	-1.7347080

Cyclobutene (58)
$G=-1253,402721$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	1.4022890	0.6624210	1.7063330
2	C	2.0338170	-0.4919690	0.8597090
3	C	1.2158400	0.0658270	-0.3108780
4	C	0.7395730	1.1380050	0.4314550
5	H	0.7327150	0.3529870	2.5197700
6	H	2.1307140	1.3824670	2.1054920
7	H	1.3286940	-0.0744670	-1.3893720
8	C	0.0588690	2.3898970	0.1397290
9	C	-0.2935040	3.2346400	1.1995550
10	C	-0.2467140	2.7681230	-1.1773880
11	C	-0.9459230	4.4357890	0.9493900
12	H	-0.0514060	2.9428590	2.2212600
13	C	-0.8958310	3.9682930	-1.4224630
14	H	0.0323780	2.1177340	-2.0068340
15	C	-1.2482510	4.8018440	-0.3594610
16	H	-1.2170590	5.0881330	1.7766140
17	H	-1.1275260	4.2603590	-2.4445420
18	H	-1.7573640	5.7434160	-0.5555570
19	Au	-0.9925720	-0.5353760	-0.0644980
20	P	-3.1201990	-1.4931840	-0.1687720
21	C	-3.0910030	-3.2939150	-0.4314250
22	H	-2.5590090	-3.7825510	0.3919890
23	H	-4.1189800	-3.6758210	-0.4767390
24	H	-2.5773900	-3.5254550	-1.3708100
25	C	-4.1447480	-0.8329680	-1.5205910
26	H	-5.1250760	-1.3266370	-1.5150470
27	H	-4.2816020	0.2458680	-1.3895400
28	H	-3.6543750	-1.0121640	-2.4835670
29	C	-4.1104070	-1.2472330	1.3381660
30	H	-4.2354080	-0.1761040	1.5297770
31	H	-5.0970170	-1.7109470	1.2099180
32	H	-3.6044090	-1.7037040	2.1956570
33	C	1.7213370	-1.9018030	1.3257880
34	H	0.6708260	-1.9896840	1.6397640
35	H	1.8872010	-2.6381520	0.5284790
36	H	2.3526760	-2.1790320	2.1817730
37	C	3.5338680	-0.2637880	0.6554590
38	H	3.6918640	0.7891540	0.3717980
39	H	4.0387500	-0.4055120	1.6251000
40	C	4.1588500	-1.1790180	-0.3931740
41	H	4.0088350	-2.2382880	-0.1502100
42	H	3.6765560	-0.9991830	-1.3701640
43	C	5.6457480	-0.9793580	-0.5954860
44	C	6.1424610	0.4347310	-0.7262370
45	H	5.4848450	1.0384750	-1.3650260
46	H	6.1567260	0.9155790	0.2621980
47	H	7.1605990	0.4353900	-1.1256320
48	O	6.4014750	-1.9299260	-0.6625680

Digold complex 71

$G=-1500,716605$ Hartree/particle.

Row	Symbol	X
1	P	1.4473830
2	C	-0.0614060
3	H	0.1990600
4	H	-0.5773660
5	H	-0.7346250
6	C	2.2590870
7	H	1.6395930
8	H	3.2315390
9	H	2.4063960
10	C	2.5209640
11	H	3.4979600
12	H	2.0666600
13	H	2.6557200
14	Au	1.0063630
15	C	3.7688390
16	C	5.0513960
17	C	5.3878050
18	C	4.4411120
19	C	3.1586660
20	C	2.8120900
21	H	3.4917940
22	H	5.7914500
23	H	6.3930970
24	H	4.7046190
25	H	2.4139670
26	C	1.4866540
27	C	0.3105650
28	Au	-1.7070200
29	P	-4.0236720
30	C	-4.6185510
31	H	-5.7079220
32	H	-4.1458870
33	H	-4.3630650
34	C	-5.0217930
35	H	-4.8096120
36	H	-6.0899350
37	H	-4.7707130
38	C	-4.6544250
39	H	-4.1828290
40	H	-5.7423430
41	H	-4.4172940

Y	Z
3.1111290	0.0819970
4.1234600	-0.0532480
5.1896330	-0.0330710
3.8953120	-0.9925600
3.8990090	0.7816370
3.6919180	1.6051360
3.4481920	2.4750030
3.2002500	1.7175940
4.7785520	1.5556320
3.7071940	-1.2634460
3.2151980	-1.2054380
3.4770160	-2.2332470
4.7929640	-1.1743290
0.8291550	0.0333310
-1.7136650	-0.9476400
-2.2440320	-0.9503860
-3.2644740	-0.0627900
-3.7517910	0.8357230
-3.2201010	0.8550640
-2.1980030	-0.0417500
-0.9197680	-1.6404890
-1.8628400	-1.6510160
-3.6809300	-0.0708840
-4.5486710	1.5279780
-3.5904820	1.5571160
-1.6661640	-0.0349000
-1.2643480	-0.0210520
-0.8764780	-0.0314170
-0.4957610	-0.0359280
0.5580180	-1.4000420
0.6740740	-1.3321180
1.5447490	-1.3422540
0.1018280	-2.3626560
-2.0146590	-0.1750230
-2.6772500	0.6712910
-1.7617910	-0.1792710
-2.5407850	-1.1026050
0.3232040	1.4660900
1.3058850	1.5780260
0.4500020	1.3947640
-0.2814690	2.3482540

Transition state to the cyclopropyl digold carbene 72 ($\boldsymbol{T S}^{\neq}{ }_{71-72}$)
$G=-1849,452114$ Hartree/particle.

Row	Symbol	X	Y	Z
1	C	-0.5444700	1.9566510	-0.4939640
2	C	-0.3106020	0.7017230	-0.3217100
3	C	-1.5960970	2.9524380	-0.2787730
4	C	-2.1415510	3.0895120	1.0054590
5	C	-2.0926600	3.7555430	-1.3130020
6	C	-3.1546300	4.0100340	1.2486780
7	H	-1.7529340	2.4655390	1.8103880
8	C	-3.1086590	4.6714810	-1.0685770
9	H	-1.6870770	3.6504680	-2.3190440
10	C	-3.6386410	4.8053920	0.2131400
11	H	-3.5644350	4.1099390	2.2522450
12	H	-3.4891830	5.2845260	-1.8834260
13	H	-4.4281420	5.5299700	0.4034370
14	Au	-1.8915420	-0.6564520	-0.0524290
15	P	-3.5996770	-2.2430450	0.2617920
16	C	-2.9889030	-3.9416520	0.5341950
17	H	-3.8303170	-4.6342740	0.6667270
18	H	-2.3889910	-4.2612180	-0.3255600
19	H	-2.3567660	-3.9662600	1.4291160
20	C	-4.6796700	-1.9256260	1.6976460
21	H	-5.1639660	-0.9488570	1.5882840
22	H	-5.4485580	-2.7054430	1.7729530
23	H	-4.0816330	-1.9177710	2.6158440
24	C	-4.7589970	-2.4068980	-1.1376770
25	H	-4.2100110	-2.6919920	-2.0419930
26	H	-5.5136500	-3.1724960	-0.9156140
27	H	-5.2577190	-1.4484270	-1.3193850
28	C	1.4887380	3.3671000	0.0161130
29	C	0.9953260	2.9749260	-1.2093930
30	H	1.4939130	2.1809210	-1.7619950
31	H	0.4612570	3.6970230	-1.8252590
32	C	0.9903730	4.5773040	0.7178800
33	H	0.2648690	5.1495050	0.1298480
34	H	0.5312440	4.3063940	1.6817740
35	H	1.8408790	5.2318270	0.9630440
36	C	2.4895550	2.5208770	0.7199260
37	H	2.6181530	2.8493350	1.7605000
38	H	2.0958630	1.4839720	0.7548730
39	C	3.8441850	2.4707530	0.0240260
40	H	4.3542000	3.4454430	0.0492760
41	H	3.7232020	2.2380400	-1.0483950
42	C	4.7612360	1.4069550	0.5794640
43	C	6.2020230	1.5060700	0.1710110
44	H	6.7555310	0.6178640	0.4896590
45	H	6.2902810	1.6355550	-0.9158900
46	H	6.6528460	2.3965860	0.6297360
47	O	4.3478970	0.5066390	1.2900010
48	Au	1.2389830	-0.6733500	-0.2375270
49	P	2.8898690	-2.3564550	-0.0939400
50	C	2.3231350	-3.9852630	-0.6969040
51	H	3.1182730	-4.7333860	-0.5807720
52	H	1.4418330	-4.3042810	-0.1285260
53	H	2.0473420	-3.9138300	-1.7552030
54	C	4.4173770	-2.0486620	-1.0431180
55	H	4.9039570	-1.1480190	-0.6519300
56	H	5.1028630	-2.9003150	-0.9440340
57	H	4.1803770	-1.8964740	-2.1020180
58	C	3.4855680	-2.6888770	1.5975060
59	H	2.6426530	-2.9606090	2.2426390
60	H	4.2131990	-3.5109920	1.5853960
61	H	3.9609170	-1.7832280	1.9904950

Cyclopropyl digold carbene (72)

$G=-1849,463118$ Hartree/particle.

Row	Symbol	X
1	C	0.3899390
2	C	0.5730830
3	C	-0.4791670
4	H	-0.2170470
5	H	1.1595980
6	C	-0.1022930
7	H	-0.4274090
8	H	0.6274670
9	H	-0.9687370
10	C	1.8580230
11	H	2.3962260
12	H	2.5009180
13	C	1.6808010
14	H	0.8315710
15	H	1.4217410
16	C	2.8706060
17	C	2.9192810
18	H	3.1789610
19	H	1.9354730
20	H	3.6685830
21	O	3.7233420
22	C	-1.9416490
23	C	-2.7191450
24	C	-2.5701210
25	C	-4.1009660
26	H	-2.2435430
27	C	-3.9479510
28	H	-1.9702620
29	C	-4.7195310
30	H	-4.6952600
31	H	-4.4221100
32	H	-5.7984910
33	C	-0.1150450
34	Au	1.7033670
35	P	3.8040930
36	C	4.3532290
37	H	3.6380590
38	H	5.3438200
39	H	4.4050140
40	C	3.9551110
41	H	3.7335790
42	H	4.9725300
43	H	3.2411080
44	C	5.1549230
45	H	6.1195060
46	H	4.9734920
47	H	5.1812970
48	Au	-1.5693320
49	P	-3.2803060
50	C	-2.8262530

Y	Z
2.6756700	-1.8398790
3.1241680	-0.4780100
1.9005570	-0.7744100
3.2801300	-2.5139160
2.0737910	-2.3180040
4.4005050	-0.0395400
4.3598540	1.0077360
5.2175090	-0.1279690
4.6577310	-0.6568430
2.8231060	0.2577980
1.9991880	-0.2252810
3.7106100	0.1429710
2.5119690	1.7340820
1.8158540	1.8738210
3.4035630	2.3241970
1.8257190	2.3697150
1.8677850	3.8688070
2.8857070	4.1911460
1.6441180	4.3012830
1.1699210	4.2530190
1.2560280	1.7102980
2.2526370	-0.7021970
2.3031820	-1.8589350
2.3955380	0.5392660
2.4655290	-1.7799240
2.1850050	-2.8333760
2.5650620	0.6218180
2.3497660	1.4505030
2.5925700	-0.5396030
2.4890480	-2.6918990
2.6754400	1.5959840
2.7214230	-0.4759680
0.5664880	-0.4899930
-0.3915600	-0.5597320
-1.4998930	-0.5647200
-2.0636300	1.0808930
-2.7859520	1.4898400
-2.5317130	1.0095660
-1.1949190	1.7463860
-2.9791120	-1.6236670
-2.7176130	-2.6644720
-3.3868060	-1.5625160
-3.7434020	-1.2968470
-0.4073040	-1.1215810
-0.9286860	-1.0679140
-0.0880410	-2.1542630
0.4786740	-0.4768310
-0.7916630	0.0637490
-2.3277460	0.6834870
-4.0853190	0.8736910

UNIVERSITAT ROVIRA I VIRGILI
DISSECTING INTERMOLECULAR GOLD CATALYSIS: APPLICATION TO THE TOTAL SYNTHESIS OF RUMPHELLAONE A.

51	H	-3.7073000	-4.6761390	1.1563860
52	H	-2.4243100	-4.4676720	-0.0712050
53	H	-2.0583500	-4.1908090	1.6479590
54	C	-4.6644940	-2.3531160	-0.5070010
55	H	-5.4591830	-3.0237800	-0.1552200
56	H	-5.0675250	-1.3396980	-0.6207120
57	H	-4.3077030	-2.6974650	-1.4843080
58	C	-4.0799980	-1.8975430	2.2675980
59	H	-4.4721110	-0.8751080	2.2102710
60	H	-4.9045400	-2.5903100	2.4803410
61	H	-3.3476460	-1.9450220	3.0813060

4. Anion Effects in Gold-Catalyzed Intermolecular Cycloadditions ${ }^{1}$

All the reactants, ligands and the following reagents were purchased from commercial sources and used without further purification: ethynylbenzene, 1-ethynyl-4-fluorobenzene, 1-ethynyl-4-chlorobenzene, 1-ethynyl-4-bromobenzene, 1-ethynyl-3-methylbenzene, 1-ethynyl-3-fluorobenzene, 1-ethynyl-3-chlorobenzene, 3-ethynylphenol, 1-ethynyl-3methoxybenzene, 1-ethynyl-2-methylbenzene, 3-ethynylthiophene, 1-ethynyl-4nitrobenzene, ethynylcyclopropane, 1-ethynyl-4-methoxybenzene, 1-ethynyl-4methylbenzene, 1-ethynyl-2-methoxybenzene, 1-ethynyl-2-bromobenzene, ethynyltrimethylsilane, 2-methylbut-1-en-3-yne, hex-3-yne, prop-1-yn-1-ylbenzene, 1,2diphenylethyne, , α-methylstyrene, 2,5-dimethylfuran, 5-methylhex-5-en-2-one, 2-methylpent-2-ene, methylenecyclohexane, (2-bromoethynyl)benzene, tris(1-methylethyl)-2-propen-1-yl-silane, [(2-methyl-2-propen-1-yl)oxy]benzene, allyltrimethylsilane, indole, 1,3,5-trimethoxybenzene and 1,3-diphenylpropane-1,3-dione. Cyclobutenes 26 and 40 agreed as reported in the literature ${ }^{2}$ as well as phenols $48,{ }^{3}$ enynes 67, 70, 72, 74 and the cyclized polycycles $\mathbf{6 8} / \mathbf{6 9},{ }^{4} \mathbf{7 1},{ }^{5} \mathbf{7 3}{ }^{6}$ and $75 .{ }^{7}$ Gold chlorides with JohnPhos, ${ }^{t}$ BuXPhos, $\mathrm{IPr}, \mathrm{Ph}_{3} \mathrm{P}$ and phosphite 21 were prepared according to the literature. ${ }^{8}$ Catalyst \mathbf{R} was prepared as described. ${ }^{3}$ Enyne 46 and the corresponding macrocycles 47 were characterized in Chapter 1, ${ }^{9}$ oxabicycles 55 in Chapter 2 and digold complex 7 in Chapter 3. ${ }^{10}$

Preparation of Gold Complexes

(Acetonitrile) [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl) di-tert-butylphosphine] gold(I) tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (Q)

Chloro $\quad\left[\left(2^{\prime}, 4^{\prime}, 6^{\prime}\right.\right.$-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine] $\operatorname{gold}(\mathrm{I})(100.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ and acetonitrile ($9.5 \mu 1,0.18 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.6 \mathrm{ml})$. Then, $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(135.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added and the reaction mixture was

[^102]stirred at $25^{\circ} \mathrm{C}$ for 30 min . The crude was filtered through Celite and concentrated. Finally, it was filtered through Teflon 0.22 and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to afford [$\left.{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4} \mathbf{Q}$ as a white powder in 97% isolated yield (224.3 mg , $0.15 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta 7.92-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.70(\mathrm{~m}$, $8 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 4 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.33 (dt, $J=13.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\operatorname{broad} \mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 18 \mathrm{H}), 1.32(\mathrm{~d}, J=$ 6.9 Hz, 6 H), $1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta 162.3\left(\mathrm{q}, J\left({ }^{13} \mathrm{C}-{ }^{-11} \mathrm{~B}\right)=50.1 \mathrm{~Hz}\right), 150.4(\mathrm{~s}), 148.0(\mathrm{~s}), 147.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)\right.$ $=12.8 \mathrm{~Hz}), 136.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.1 \mathrm{~Hz}\right), 135.5(\mathrm{~s}), 135.4(\mathrm{~s}), 134.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.6\right.$ $\mathrm{Hz}), 132.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{-11} \mathrm{P}\right)=2.6 \mathrm{~Hz}\right), 129.5\left(\mathrm{q}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=28.6 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=\right.$ $8.1 \mathrm{~Hz}), 126.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=50.2 \mathrm{~Hz}\right), 125.2\left(\mathrm{q}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=272.3 \mathrm{~Hz}\right), 122.5,118.1(\mathrm{p}$, $\left.J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=4.0 \mathrm{~Hz}\right), 39.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=29.3 \mathrm{~Hz}\right), 34.6(\mathrm{~s}), 31.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.3\right.$ Hz), 31.5 (s), 26.3 (s), 24.5 (s), 23.4 (s), $3.3(\mathrm{~s}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta$ 58.68 (s). ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) δ-62.97 (s). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (128 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta-6.68(\mathrm{~s})$. MALDI ${ }^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{AuNP}^{+}\left[\mathrm{M}-\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}\right]^{+}$: 662.3175, found 662.3184. Anal. calcd for $\mathrm{C}_{63} \mathrm{H}_{60} \mathrm{AuBF}_{24} \mathrm{NP}: \mathrm{C}, 49.59 ; \mathrm{H}, 3.97$; N, 0.92 ; found: C, 49.56; H, 3.94; N, 0.97.
(Acetonitrile) [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl) di-tert-butylphosphine] gold(I) tetrafluoroborate (S)
$\underbrace{{ }^{t} \mathrm{Bu} u}$

Chloro [(2', 4', 6^{\prime}-triisopropyl-1,1'-biphenyl-2-yl)di-tertbutylphosphine] gold(I) $(100.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ and acetonitrile ($9.5 \mu \mathrm{l}, 0.18 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.6 \mathrm{ml})$. Then, $\mathrm{AgBF}_{4}(29.6 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 min . The crude was filtered through and concentrated. Finally, it was filtered through Teflon 0.22 and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to afford [${ }^{t} \mathrm{BuXPhosAuNCMe} \mathrm{BF}_{4} \mathbf{S}$ as a white powder in quantitative isolated yield (113.9 mg , $0.152 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta 7.90(\mathrm{td}, J=8.9,8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ $-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.32$ (ddd, $J=6.9,4.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 2.97$ (hept, $J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.33$ (hept, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 18 \mathrm{H}), 1.33(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 6 \mathrm{H}), 1.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, ppm) $\delta 150.5(\mathrm{~s}), 147.8(\mathrm{~s}), 147.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=12.7 \mathrm{~Hz}\right), 136.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.0\right.$ Hz), $135.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=8.1 \mathrm{~Hz}\right), 134.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.3 \mathrm{~Hz}\right), 132.0(\mathrm{~s}), 128.0(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.8 \mathrm{~Hz}\right), 126.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=47.8 \mathrm{~Hz}\right), 122.5(\mathrm{~s}), 120.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.4\right.$ $\mathrm{Hz}), 39.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=28.2 \mathrm{~Hz}\right), 34.5(\mathrm{~s}), 31.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=5.8 \mathrm{~Hz}\right), 31.5(\mathrm{~s}), 26.4$ (s), 24.5 (s), 23.4 (s), 3.3 (s). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 58.58$ (s) ${ }^{19} \mathrm{~F}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta-153.10(\mathrm{~s}) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\mathrm{ppm}) \delta-1.23(\mathrm{~s})$. MALDI ${ }^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{AuNP}^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$662.3184, found 662.3180. Anal. calcd for $\mathrm{C}_{63} \mathrm{H}_{60} \mathrm{AuBF}_{24} \mathrm{NP}$: C, $49.68 ; \mathrm{H}, 6.46 ; \mathrm{N}, 1.87$; found: C, 48.89; H, 6.20; N, 1.64.
(Acetonitrile) [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl) di-tert-butylphosphine] gold(I) hexafluorophosphate (T)

Chloro [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl)di-tertbutylphosphine] gold(I) ($350.0 \mathrm{mg}, 0.53 \mathrm{mmol}$) and acetonitrile ($33.0 \mu \mathrm{l}, 0.64 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{ml})$. Then, $\mathrm{AgPF}_{6}(135.0 \mathrm{mg}, 0.53 \mathrm{mmol})$ was added and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 min . The crude was filtered through Celite and concentrated. Finally, it was filtered through Teflon 0.22 and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to afford [${ }^{t} \mathrm{BuXPhosAuNCMe} \mathrm{PF}_{6} \mathbf{E}$ as a white powder in 51% isolated yield ($221.0 \mathrm{mg}, 0.27$ mmol, 51%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta 7.90$ (ddd, $J=9.0,7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.60 (dq, $J=7.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 (td, $J=6.6,5.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (s, 1H), 2.95 (hept, J $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 18 \mathrm{H}), 1.33(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$, $1.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta$ $149.9(\mathrm{~s}), 147.8(\mathrm{~s}), 136.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.1 \mathrm{~Hz}\right), 135.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=9.3 \mathrm{~Hz}\right), 134.8$ $\left(\mathrm{d}, J\left({ }^{13} \mathrm{C}^{-31} \mathrm{P}\right)=4.2 \mathrm{~Hz}\right), 132.0(\mathrm{~s}), 128.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}^{-31} \mathrm{P}\right)=7.2 \mathrm{~Hz}\right), 122.4(\mathrm{~s}), 117.9(\mathrm{~s})$, $39.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=29.2 \mathrm{~Hz}\right), 34.55(\mathrm{~s}), 31.56(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 26.35(\mathrm{~s}), 24.47(\mathrm{~s}), 23.39$ (s), 3.23 (s). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta 58.53$ (s), -139.23 (hept, $J\left({ }^{31} \mathrm{P}-{ }^{19} \mathrm{~F}\right.$ $)=715.0 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta-73.46\left(\mathrm{~d}, J\left({ }^{19} \mathrm{~F}-{ }^{31} \mathrm{P}\right)=710.3\right.$ Hz). $\mathrm{ESI}^{+} m / z$ calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{AuNP}^{+}\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}$662.3184, found: 662.3176.

[(2',4',6'-Triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine](2phenylethynyl)gold(I) (8)

LiHMDS ($53.5 \mathrm{mg}, 0.32 \mathrm{mmol}$) was dissolved in THF (4.0 ml) and cooled to $0{ }^{\circ} \mathrm{C}$. Ethynylbenzene ($35.1 \mu 1,0.32 \mathrm{mmol}$) was added and the solution was stirred for 30 min . Afterwards, chloro [(2',4', 6^{\prime}-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine] gold(I) ($200.0 \mathrm{mg}, 0.30 \mathrm{mmol}$) dissolved in THF (3.0 ml) was added and the solution was stirred overnight at $25^{\circ} \mathrm{C}$. The crude was concentrated, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through Teflon 0.22 . The solvent was removed to afford complex 8 as a white powder in 99% isolated yield ($219.0 \mathrm{mg}, 0.30$ $\mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta 7.92(\mathrm{td}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.46$ (m, $2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{p}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{p}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 18 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.27(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta 150.0(\mathrm{~s})$, $148.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=15.6 \mathrm{~Hz}\right), 146.4(\mathrm{~s}), 137.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=133.1 \mathrm{~Hz}\right), 136.6(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}^{-31} \mathrm{P}\right)=5.1 \mathrm{~Hz}\right), 136.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=1.6 \mathrm{~Hz}\right), 135.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.9 \mathrm{~Hz}\right), 132.2$ (s), $130.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.2 \mathrm{~Hz}\right), 129.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=37.0 \mathrm{~Hz}\right), 128.3(\mathrm{~s}), 127.4(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}^{31} \mathrm{P}\right)=2.7 \mathrm{~Hz}\right), 126.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.0 \mathrm{~Hz}\right), 126.0(\mathrm{~s}), 122.3(\mathrm{~s}), 101.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=23.9 \mathrm{~Hz}\right), 38.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=23.2 \mathrm{~Hz}\right), 34.5(\mathrm{~s}), 31.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.8 \mathrm{~Hz}\right)$, 31.4 (s), 26.5 (s), 24.4 (s), 23.2 (s). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta 66.89$ (s). MALDI ${ }^{+} m / z$ calcd for $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{AuPNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 745.3208$, found 745.3216. Structure confirmed by X-ray crystallography: CCDC 953709.
\{Phenylethynyl [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl) di-tert-butylphosphine] gold(I)\} [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl) di-tert-butylphosphine] gold(I) tetrakis[3,5bis(trifluoromethyl)phenyl] borate (78)

Chloro [(2', 4', 6^{\prime}-triisopropyl-1,1'-biphenyl-2-yl)di-tertbutylphosphine] gold(I) $(68.2 \mathrm{mg}$, $0.10 \mathrm{mmol})$ and $\left[\left(2^{\prime}, 4^{\prime}, 6^{\prime}-\right.\right.$ triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine](2phenylethynyl) gold(I) (75 mg , 0.10 mmol) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.4 \mathrm{ml})$. Then, $\mathrm{NaBAr}_{4}{ }_{4}$ $(92 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min . The crude was filtered through Celite and concentrated. Finally, it was filtered through Teflon 0.22 and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to afford complex $\mathbf{7 8}$ as a white powder in 97% isolated yield ($223.0 \mathrm{mg}, 0.10 \mathrm{mmol}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta 7.95-7.87(\mathrm{~m}, 2 \mathrm{H})$, 7.73 (dd, $J=4.2,2.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.57($ broad s, 4 H$), 7.56-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.42(\mathrm{~m}$, $1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 4 \mathrm{H}), 2.39-$ $2.29(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 36 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $12 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta 162.3\left(\mathrm{q}, J\left({ }^{13} \mathrm{C}-{ }^{11} \mathrm{~B}\right)\right.$ $=50.0 \mathrm{~Hz}), 150.0(\mathrm{~s}), 148.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}^{-31} \mathrm{P}\right)=14.3 \mathrm{~Hz}\right), 147.1(\mathrm{~s}), 136.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=5.6\right.$ $\mathrm{Hz}), 135.5(\mathrm{~s}), 135.4(\mathrm{~s}), 135.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}^{31} \mathrm{P}\right)=1.2 \mathrm{~Hz}\right), 133.1(\mathrm{~s}), 131.4(\mathrm{~s}), 130.6(\mathrm{~s})$, $130.0-129.0(\mathrm{~m}), 129.0(\mathrm{~s}), 127.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=42.5 \mathrm{~Hz}\right), 127.6(\mathrm{~s}), 127.5(\mathrm{~s}), 125.2(\mathrm{q}$, $J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=272.6 \mathrm{~Hz}$), $122.2(\mathrm{~s}), 121.3(\mathrm{~s}), 118.2-118.0(\mathrm{~m}), 39.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=24.6\right.$ Hz), $34.0(\mathrm{~s}), 31.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.8 \mathrm{~Hz}\right), 31.4(\mathrm{~s}), 26.4(\mathrm{~s}), 24.3(\mathrm{~s}), 23.6(\mathrm{~s}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, ppm) $\delta 65.09$ (s). ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, ppm) δ $62.95(\mathrm{~s}) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta-6.67$ (s). MALDI ${ }^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{66} \mathrm{H}_{95} \mathrm{Au}_{2} \mathrm{P}_{2}^{+}\left[\mathrm{M}-\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}\right]^{+}$1343.6235, found: 1343.5751. Structure confirmed by Xray crystallography: CCDC 953710.
(α-Methylstyrene) $\quad\left[\left(2^{\prime}, 4^{\prime}, 6^{\prime}\right.\right.$-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine] gold(I) tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (79)

Chloro [(2', $4^{\prime}, 6^{\prime}$-triisopropyl-1, 1^{\prime} -biphenyl-2-yl)di-tert-butylphosphine] $\operatorname{gold}(\mathrm{I})(100.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $\alpha-$ methylstyrene ($30.0 \quad \mu \mathrm{l}, 0.23 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{ml})$. Then, $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(135.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added and the reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 30 min . The crude was filtered through Celite and concentrated. Finally, it was filtered through Teflon 0.22 and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to afford complex 79 as a white powder in 86% isolated yield ($210.4 \mathrm{mg}, 0.131 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298\right.$ $\mathrm{K}, \mathrm{ppm}) \delta 7.82(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 8 \mathrm{H}), 7.63-7.53(\mathrm{~m}, 6 \mathrm{H}), 7.50-$ 7.39 (m, 5H), 7.29 (s, 2H), 7.21 (ddd, $J=7.3,3.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (dd, $J=4.5,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.19(\mathrm{~m}, 2 \mathrm{H})$, $1.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.39-1.03(\mathrm{~m}, 24 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101
$\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 213 \mathrm{~K}, \mathrm{ppm}\right) \delta 162.9,162.5,162.1,161.7,155.9,151.7,149.0,147.0$, $146.9,135.9,135.7,135.4,135.3,135.0,133.4,132.9,132.6,132.2,130.2,129.7,129.6$, 129.3, 129.0, 128.4, 127.1, 126.6, 126.2, 124.1, 123.6, 123.1, 121.9, 118.5, 118.2, 117.8, $117.5,89.0,88.6,38.6,38.4,34.7,31.6,31.4,31.1,26.2,26.0,25.9,25.0,24.8,24.6,24.4$, 23.8. It was not possible to properly assign all the signals due to the broadening of some peaks because of the weak coordination of the metal to the alkene combined with the complexity of the heterocouplings with ${ }^{31} \mathrm{P},{ }^{19} \mathrm{~F}$ and ${ }^{11} \mathrm{~B}$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}, \mathrm{ppm}\right) \delta 69.34 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}, \mathrm{ppm}\right) \delta-62.83$ (s). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}, \mathrm{ppm}$) $\delta-6.67$ (s). ESI ${ }^{+} m / z$ calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{AuP}^{+}\left[\mathrm{M}-\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{BF}_{24}\right]^{+}$621.2919, found: 621.2916. Structure confirmed by X-ray crystallography: CCDC 953708.

General Procedure for the Preparation of Cyclobutenes ${ }^{11}$

To a solution of the alkyne (1 equiv.) and the alkene (2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M})$, the cationic gold (I) catalyst ['BuXPhosAuNCMe]X ($3 \mathrm{~mol} \%$) was added. Then, the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ and followed by TLC. When it was finished, the catalyst was quenched by adding 0.05 ml of $\mathrm{Et}_{3} \mathrm{~N}$, the solvent was removed and the crude was analysed by quantitative ${ }^{1} \mathrm{H}$ NMR using 1,4-diacetylbenzene as internal standard. Finally, the cyclobutene product was purified by preparative TLC and fully characterized.

1-Methoxy-3-(3-methyl-3-phenylcyclobut-1-en-1-yl)benzene (32)

Cyclobutene 32 was synthetized following the general procedure starting from 1-ethynyl-3-methoxybenzene ($21 \mu \mathrm{l}, 0.17 \mathrm{mmol}$) and α methylstyrene ($44 \mu \mathrm{l}, 0.34 \mathrm{mmol}$) with [BuXPhosAuNCMe$] \mathrm{BAr}^{\mathrm{F}}{ }_{4} \mathbf{B}$ $(7.7 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction time was 8 h and a mixture of pentane and diethyl ether ($9: 1$) was used as eluent in the separation to obtain cyclobutene $\mathbf{3 2}$ as a colorless oil in 78% isolated yield (33 mg , 0.13 mmol). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.47-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{dt}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=7.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}$, $1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 159.8$ (s), 147.7 (s), 143.8 (s), 136.2 (s), 134.2 (s), 129.5 (s), 128.2 (s), 125.9 (s), 125.8 (s), 117.3 (s), 113.7 (s), 109.9 (s), 55.3 (s), 46.0 (s), 44.4 (s), 27.6 (s). HRMS-APCI m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$251.1430, found 251.1434.

1-Fluoro-3-(3-methyl-3-phenylcyclobut-1-en-1-yl)benzene (35)

Cyclobutene 35 was synthetized following the general procedure starting from 1-ethynyl-3-fluorobenzene ($21 \mu \mathrm{l}, 0.17 \mathrm{mmol}$) and α methylstyrene ($44 \mu \mathrm{l}, 0.34 \mathrm{mmol}$) with [$\left.{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}$ B $(7.7 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction time was 24 h and a mixture of pentane and diethyl ether ($90: 1$) was used as eluent in the separation to obtain cyclobutene $\mathbf{3 5}$ as a yellowish oil in 77% isolated yield (31 mg , 0.13 mmol). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.40-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{dt}, J=7.7,1.2 \mathrm{~Hz}$,

[^103]$1 \mathrm{H}), 7.05$ (ddd, $J=9.8,2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{tdd}, J=8.3,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H})$, $2.95(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 163.1(\mathrm{~d}, J=245.8 \mathrm{~Hz}), 147.4(\mathrm{~s}), 142.9(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 137.0(\mathrm{~d}, J=7.6$ Hz), 135.3 (s$), 129.9$ (d, $J=8.3 \mathrm{~Hz}$), 128.3 (s$), 125.9$ (s), 125.9 (s), 120.4 (d, $J=2.8 \mathrm{~Hz}$), $114.7(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 111.5(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 46.2(\mathrm{~s}), 44.3(\mathrm{~s}), 27.6(\mathrm{~s})$. HRMS-APCI m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$239.1234, found 239.1231.

1-Chloro-3-(3-methyl-3-phenylcyclobut-1-en-1-yl)benzene (36)

Cyclobutene 36 was synthetized following the general procedure starting from 1-ethynyl-3-chlorobenzene ($21 \mu \mathrm{l}, 0.17 \mathrm{mmol}$) and α methylstyrene ($44 \mu \mathrm{l}, 0.34 \mathrm{mmol}$) with [$\left.{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4} \mathbf{B}$ $(7.7 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction time was 24 h and a mixture of pentane and diethyl ether ($90: 1$) was used as eluent in the separation to obtain cyclobutene 36 as a yellowish oil in 83% isolated yield (36 mg , $0.141 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.40-7.35(\mathrm{~m}, 3 \mathrm{H})$, $7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 4 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\left.{ }_{3}, \mathrm{ppm}\right) \delta$ 147.3 (s), 142.7 (s), 136.6 (s), 135.5 (s), 134.5 (s), 129.7 (s), 128.3 (s), 127.8 (s), 125.9 (s), 124.9 (s), 122.8 (s), 46.3 (s), 44.3 (s), 27.6 (s). HRMS-APCI m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}$ $[\mathrm{M}+\mathrm{H}]^{+} 255.0935$, found 255.0935 .

1-Methoxy-3-(3-methyl-3-phenylcyclobut-1-en-1-yl)benzene (37)

Cyclobutene 37 was synthetized following the general procedure starting from 1-ethynyl-2-methoxybenzene ($22 \quad \mu \mathrm{l}, \quad 0.17 \mathrm{mmol}$) and α methylstyrene $(44 \mu l, 0.34 \mathrm{mmol})$ with [$\left.{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4} \mathbf{B}(7.7$ $\mathrm{mg}, 0.05 \mathrm{mmol}$). The reaction time was 48 h and a mixture of pentane and diethyl ether ($9: 1$) was used as eluent in the separation to obtain cyclobutene 37 as a colorless oil in 24% isolated yield ($11 \mathrm{mg}, 0.044$ mmol). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.47-7.39$ (m, 2H), $7.36-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ $\delta 158.6$ (s), 148.2 (s), 140.2 (s), 138.7 (s), 128.9 (s), 128.1 (s), 127.1 (s), 126.0 (s), 125.6 (s), 123.5 (s), 120.3 (s), 110.5 (s), 55.2 (s), $46.8(\mathrm{~s}), 45.4(\mathrm{~s}), 27.8(\mathrm{~s})$. HRMS-APCI m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$251.1430, found 251.1433.

3-(3-Methyl-3-phenylcyclobut-1-en-1-yl)thiophene (38)

Cyclobutene 38 was synthetized following the general procedure starting from 3-ethynylthiophene ($17 \mu \mathrm{l}, 0.17 \mathrm{mmol}$) and α-methylstyrene ($44 \mu \mathrm{l}$, $0.34 \mathrm{mmol})$ with [$\left.{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{BAF}^{\mathrm{F}}{ }_{4} \mathbf{B}(7.7 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction time was 24 h and a mixture of pentane and diethyl ether ($90: 1$) was used as eluent in the separation to obtain cyclobutene $\mathbf{3 8}$ as a brownish oil in 86% yield ($33 \mathrm{mg}, 0.146 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=$ $5.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 2.97$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}) \delta 147.8(\mathrm{~s}), 139.3(\mathrm{~s}), 137.8(\mathrm{~s}), 132.7$ (s), 128.2 (s), $126.0(\mathrm{~s}), 125.9(\mathrm{~s}), 125.8(\mathrm{~s})$, 125.1 (s), 121.1 (s), 47.1 (s), 45.2 (s), 27.7 (s). HRMS-APCI m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$239.0889, found 239.0896.

Triisopropyl((1-methyl-3-phenylcyclobut-2-en-1-yl)methyl)silane (43)

Cyclobutene 43 was synthetized following the general procedure starting from phenylacetylene (19 $\mu \mathrm{l}, 0.17 \mathrm{mmol})$ and allyltriisopropylsilane (81 $\mu \mathrm{l}, \quad 0.34 \mathrm{mmol})$ with $\left[{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4} \mathbf{B}(7.7 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction time was 72 h and a mixture of pentane 100% was used as eluent in the separation. Cyclobutene 43 was isolated as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.38-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.07-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{dd}, J=12.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 23 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 143.8$ (s), 135.2 (s), 133.7 (s), 128.4 (s), 127.5 (s), 124.4 (s), 38.6 (s), 35.5 (s), 19.0 (s), 15.3 (s), 11.4 (s). HRMS-APCI m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+} 301.2346$, found 301.2352 .

(3-Methyl-3-(phenoxymethyl)cyclobut-1-en-1-yl)benzene (44)

Cyclobutene 44 was synthetized following the general procedure starting from phenylacetylene $(19 \quad \mu \mathrm{l}, 0.17 \mathrm{mmol})$ and ((2methylallyl)oxy)benzene $(52 \quad \mu \mathrm{l}, \quad 0.34 \quad \mathrm{mmol}) \quad$ with ['BuXPhosAuNCMe]BAr ${ }_{4}{ }^{t} \mathbf{B}(7.7 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction time was 72 h and a mixture of pentane and diethyl ether (20:1) was used as eluent in the separation in a preparative TLC in alumina oxide. Cyclobutene 44 was isolated as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}$, $3 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.74(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 159.6$ (s), 144.3 (s), 134.8 (s), 132.9 (s), 129.5 (s), 128.4 (s), 128.0 (s), 124.7 (s), 120.6 (s), 114.7 (s), 75.4 (s), 42.9 (s), 38.9 (s), 21.7 (s). HRMS-APCI m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$251.1426, found 251.1430.

((1-methyl-3-phenylcyclobut-2-en-1-yl)methoxy)triphenylsilane (45)

Cyclobutene 45 was synthetized following the general procedure starting from phenylacetylene $(19 \quad \mu 1, \quad 0.17 \mathrm{mmol})$ and ((2methylallyl)oxy)triphenylsilane ($112 \mathrm{mg}, \quad 0.34 \mathrm{mmol}$) with [$\left.{ }^{t} \mathrm{BuXPhosAuNCMe}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4} \mathbf{B}(7.7 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction time was 72 h and a mixture of pentane and diethyl ether (20:1) was used as eluent in the separation in a preparative TLC in alumina oxide. Cyclobutene 45 was isolated as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.68-7.57(\mathrm{~m}, 6 \mathrm{H}), 7.46-7.28(\mathrm{~m}, 14 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 2.61$ $(\mathrm{d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 143.9$ (s), 135.6 (s), 135.0 (s), 134.6 (s), 133.5 (s), 130.0 (s), 128.3 (s), 127.9 (s), 127.7 (s), 124.6 (s), $71.0(\mathrm{~s}), 44.6$ (s), 38.3 (s), 21.5 (s). HRMS-APCI m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+} 433.1982$, found 433.1984.

X-Ray Crystallographic Data

```
[(2',4',6'-Triisopropyl-1,1'-biphenyl-2-
yl)di-tert-butylphosphine](2-
phenylethynyl)gold(I) (8)
```

Table 1. Crystal data and structure refinement for complex 8.

C37 H50 Au P
724.71

100(2) K
0.71073 £

Triclinic
P-1
$\mathrm{a}=10.8245(8) \AA$
$\alpha=101.506(2)^{\circ}$.
$\mathrm{b}=12.6401(9) \AA$
$\beta=95.285(2)^{\circ}$.
$\mathrm{c}=13.3697(10) \AA$
$\gamma=112.126(2)^{\circ}$.
1632.1(2) \AA^{3}

2
$1.475 \mathrm{Mg} / \mathrm{m}^{3}$
$4.580 \mathrm{~mm}^{-1}$
734
$0.25 \times 0.12 \times 0.10 \mathrm{~mm}^{3}$
1.80 to 30.39°.
$-14<=h<=13$,
$-14<=k<=17$,
$-17<=1<=17$
26200
8605
$[\mathrm{R}($ int $)=0.0279]$
87.1\%

Empirical
0.6573 and 0.3939

Full-matrix
least-squares on F^{2}
8605 / 0 / 364
1.039

R1 = 0.0196,
$\mathrm{wR} 2=0.0483$
$\mathrm{R} 1=0.0213$,
$\mathrm{wR} 2=0.0490$
1.618 and
-1.437 e. \AA^{-3}

Table 2. Bond lengths [$\AA \circ$] and angles $[\circ]$ for complex 8.

Bond lengths:		C2-C1-C6	117.98(17)
		C2-C1-P1	118.07(14)
Au1-P1	2.2890(5)	C6-C1-P1	123.87(14)
Au1-C37	2.042(2)	C3-C2-C1	122.56(19)
P1-C1	1.8389(19)	C2-C3-C4	119.63(18)
P1-C26	$1.888(2)$	C5-C4-C3	118.96(18)
P1-C22	1.8954(19)	C4-C5-C6	122.76(18)
C1-C2	$1.405(3)$	C5-C6-C1	118.08(17)
C1-C6	$1.419(3)$	C5-C6-C7	113.96(17)
C2-C3	1.384 (3)	C1-C6-C7	127.96(16)
C3-C4	$1.385(3)$	C8-C7-C12	119.20 (17)
C4-C5	$1.384(3)$	C8-C7-C6	119.68(15)
C5-C6	$1.407(3)$	C12-C7-C6	120.16(15)
C6-C7	$1.504(3)$	C9-C8-C7	119.51(17)
C7-C8	$1.408(2)$	C9-C8-C13	118.61(16)
C7-C12	$1.413(2)$	C7-C8-C13	121.84(17)
C8-C9	$1.394(3)$	C10-C9-C8	122.00(17)
C8-C13	1.521(2)	C9-C10-C11	117.70(18)
C9-C10	$1.388(3)$	C9-C10-C16	122.61(17)
C10-C11	$1.398(3)$	C11-C10-C16	119.67(18)
C10-C16	1.520 (3)	C12-C11-C10	122.31(17)
C11-C12	$1.385(3)$	C11-C12-C7	119.27(16)
C12-C19	$1.523(2)$	C11-C12-C19	119.91(16)
C13-C15	$1.532(3)$	C7-C12-C19	120.79(17)
C13-C14	1.536 (3)	C8-C13-C15	111.50 (16)
C16-C17	1.518 (3)	C8-C13-C14	112.06(16)
C16-C18	$1.521(4)$	C15-C13-C14	109.84(15)
C19-C21	1.530 (3)	C17-C16-C10	114.12(18)
C19-C20	$1.530(3)$	C17-C16-C18	111.6(2)
C22-C24	1.531(3)	C10-C16-C18	109.27(19)
C22-C25	1.533 (3)	C12-C19-C21	112.51(16)
C22-C23	1.545 (3)	C12-C19-C20	$111.52(15)$
C26-C27	1.530 (3)	C21-C19-C20	110.20(16)
C26-C29	$1.538(3)$	C24-C22-C25	108.75(18)
C26-C28	$1.538(3)$	C24-C22-C23	107.65(17)
C30-C31	$1.434(3)$	C25-C22-C23	106.78(18)
C31-C32	1.396 (3)	C24-C22-P1	117.21(14)
C31-C36	1.400 (3)	C25-C22-P1	107.41(14)
C32-C33	$1.375(4)$	C23-C22-P1	108.58(14)
C33-C34	$1.404(4)$	C27-C26-C29	109.42(17)
C34-C35	$1.345(4)$	C27-C26-C28	107.92(16)
C35-C36	$1.395(4)$	C29-C26-C28	108.85(16)
C37-C30	1.170(3)	C27-C26-P1	116.13(14)
		C29-C26-P1	108.27(14)
Angles:		C28-C26-P1	106.02(14)
		C31-C30-C37	177.4(2)
P1-Au1-C37	173.31(6)	C32-C31-C36	117.2(2)
C1-P1-C26	106.92(8)	C32-C31-C30	121.2(2)
C1-P1-C22	106.31(8)	C36-C31-C30	121.6(2)
C26-P1-C22	111.07(9)	C33-C32-C31	121.9(2)
C1-P1-Au1	115.61(6)	C32-C33-C34	119.3(3)
C26-P1-Au1	108.82(6)	C35-C34-C33	120.0(2)
C22-P1-Au1	108.10(7)	C34-C35-C36	120.8(2)
C30-C37-Au1	178.3(2)	C35-C36-C31	120.7(2)

Table 3. Torsion angles [${ }^{\circ}$] for complex 8.

P1-Au1-C37-C30	$103(7)$	C37-Au1-P1-C22	$48.7(5)$
C37-Au1-P1-C1	$167.7(5)$	C26-P1-C1-C2	$67.63(16)$
C37-Au1-P1-C26	$-72.0(5)$	C22-P1-C1-C2	$-51.09(16)$

Au1-P1-C1-C2	-171.05(12)
C26-P1-C1-C6	-115.65(15)
C22-P1-C1-C6	125.62(15)
Au1-P1-C1-C6	5.67(16)
C6-C1-C2-C3 -1	-1.5(3)
P1-C1-C2-C3 17	175.37(14)
C1-C2-C3-C4 0	0.9(3)
C2-C3-C4-C5 0	0.2(3)
C3-C4-C5-C6 -0	-0.6(3)
C4-C5-C6-C1 0	0.0(3)
C4-C5-C6-C7 17	179.74(16)
C2-C1-C6-C5 1	1.1(2)
P1-C1-C6-C5 -1	-175.66(13)
C2-C1-C6-C7 -17	-178.66(16)
P1-C1-C6-C7 4	4.6(2)
C5-C6-C7-C8 -8	-81.0(2)
C1-C6-C7-C8 98	98.8(2)
C5-C6-C7-C12	87.7(2)
C1-C6-C7-C12	-92.6(2)
C12-C7-C8-C9	1.3(3)
C6-C7-C8-C9 1	170.14(17)
C12-C7-C8-C13	-176.54(17)
C6-C7-C8-C13	-7.8(3)
C7-C8-C9-C10	-1.0(3)
C13-C8-C9-C10	177.00(18)
C8-C9-C10-C11	0.3(3)
C8-C9-C10-C16	178.61(19)
C9-C10-C11-C12	$2-0.1(3)$
C16-C10-C11-C1	12-178.44(18)
C10-C11-C12-C7	(7 0.5(3)
C10-C11-C12-C1	19-177.69(18)
C8-C7-C12-C11	-1.1(3)
C6-C7-C12-C11	-169.87(17)
C8-C7-C12-C19	177.06(17)
C6-C7-C12-C19	8.3(3)
C9-C8-C13-C15	-76.2(2)
C7-C8-C13-C15	101.7(2)
C9-C8-C13-C14	47.4(2)

\{Phenylethynyl [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl) di-tertbutylphosphine] gold(I)\} [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl) di-tertbutylphosphine] gold(I) tetrakis[3,5bis(trifluoromethyl)phenyl] borate (78)

Table 4. Crystal data and structure refinement for complex 78.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

C7-C8-C13-C14 -134.72(18)
C9-C10-C16-C17 31.3(3)
C11-C10-C16-C17 -150.4(2)
C9-C10-C16-C18 -94.4(3)
C11-C10-C16-C18 83.9(3)
C11-C12-C19-C21 -41.6(2)
C7-C12-C19-C21 140.18(18)
C11-C12-C19-C20 82.8(2)
C7-C12-C19-C20 -95.4(2)
C1-P1-C22-C24 74.18(17)
C26-P1-C22-C24 -41.78(18)
Au1-P1-C22-C24 -161.10(14)
C1-P1-C22-C25 -48.51(17)
C26-P1-C22-C25 -164.47(15)
Au1-P1-C22-C25 76.21(16)
C1-P1-C22-C23 -163.64(14)
C26-P1-C22-C23 80.40(16)
Au1-P1-C22-C23 -38.92(15)
C1-P1-C26-C27 -45.30(17)
C22-P1-C26-C27 70.29(17)
Au1-P1-C26-C27 -170.82(13)
C1-P1-C26-C29 -168.80(13)
C22-P1-C26-C29 -53.22(16)
Au1-P1-C26-C29 65.67(14)
C1-P1-C26-C28 74.53(15)
C22-P1-C26-C28 -169.89(13)
Au1-P1-C26-C28 -51.00(14)
Au1-C37-C30-C31 -77(10)
C37-C30-C31-C32 74(6)
C37-C30-C31-C36 -104(6)
C36-C31-C32-C33 1.9(4)
C30-C31-C32-C33 -176.8(2)
C31-C32-C33-C34 -0.3(4)
C32-C33-C34-C35 -1.6(4)
C33-C34-C35-C36 1.9(4)
C34-C35-C36-C31 -0.3(4)
C32-C31-C36-C35 -1.6(3)
C30-C31-C36-C35 177.1(2)

C98.25 H108.50 Au2
B Cl0.50 F24 P2
2229.76

100(2) K
0.71073 A

Triclinic
P-1

Unit cell dimensions	$a=12.7748(13) \AA$
	$\begin{aligned} & \alpha=107.801(3)^{\circ} . \\ & b=17.3827(17) \AA \end{aligned}$
	$\beta=95.994(4)^{\circ} \text {. }$
	$\mathrm{c}=22.973(2) \mathrm{A}$
	$\gamma=93.979(3)^{\circ} .$ $4802.8(8) \AA^{3}$
Z	2
Density (calculated)	$1.542 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.190 \mathrm{~mm}^{-1}$
F(000)	2231
Crystal size	$0.20 \times 0.12 \times 0.02 \mathrm{~mm}^{3}$
Theta range for data collection	0.94 to $26.48{ }^{\circ}$.
Index ranges	-15<=h<=16,
	$\begin{aligned} & -21<=k<=21, \\ & -28<=1<=28 \end{aligned}$
Reflections collected	138270
Independent reflections	19731
	[$\mathrm{R}(\mathrm{int}$) $=0.0485$]
Completeness to theta $=26.48{ }^{\circ}$	99.4\%
Absorption correction	Empirical
Max. and min. transmission	0.9390 and 0.5679
Refinement method	Full-matrix
	least-squares on F^{2}
Data / restraints / parameters	19731 / 108 / 1263
Goodness-of-fit on F^{2}	1.046
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\begin{aligned} & \mathrm{R} 1=0.0275, \\ & \text { wR2 }=0.0615 \end{aligned}$
R indices (all data)	$\mathrm{R} 1=0.0397$,
	$\mathrm{wR} 2=0.0670$
Largest diff. peak and hole	1.871 and
	-0.734 e. \AA^{-3}

Table 5. Bond lengths [Aㄱ] and angles [$\left.{ }^{\circ}\right]$ for complex 78.

Bond lengths:		C6-C7 C7-C12	$1.513(5)$
Au1-C59	$2.021(3)$	C7-C8	$1.409(5)$
Au1-P1	$2.2892(9)$	C8-C9	$1.413(5)$
Au2-C59	$2.212(3)$	C8-C13	$1.383(5)$
Au2-C60	$2.265(3)$	C9-C10	$1.525(5)$
Au2-P2	$2.2690(9)$	C10-C11	$1.386(5)$
P1-C1	$1.837(4)$	C10-C16	$1.379(5)$
P1-C26	$1.887(4)$	C11-C12	$1.528(5)$
P1-C22	$1.892(4)$	C12-C19	$1.397(5)$
P2-C30	$1.833(3)$	C13-C14	$1.514(5)$
P2-C55	$1.891(3)$	C13-C15	$1.529(5)$
P2-C51	$1.892(4)$	C16-C17	$1.529(5)$
C1-C2	$1.410(5)$	C16-C18	$1.520(6)$
C1-C6	$1.412(5)$	C19-C21	$1.532(5)$
C2-C3	$1.375(5)$	C19-C20	$1.526(6)$
C3-C4	$1.376(6)$	C22-C23	$1.536(6)$
C4-C5	$1.385(6)$	C22-C25	$1.520(6)$
C5-C6	$1.402(5)$	C22-C24	$1.540(5)$
			$1.544(5)$

Experimental Section

C26-C27	1.530(5)	C11A-C15A	$1.487(5)$
C26-C28	$1.536(5)$	C12A-C13A	$1.379(5)$
C26-C29	1.540 (6)	C13A-C14A	$1.392(5)$
C30-C31	$1.405(5)$	C13A-C16A	$1.493(5)$
C30-C35	$1.415(5)$	C15A-F9A	$1.336(4)$
C31-C32	$1.384(5)$	C15A-F7A	$1.344(4)$
C32-C33	$1.383(5)$	C15A-F8A	$1.345(4)$
C33-C34	1.370 (5)	C16A-F10'	1.216 (14)
C34-C35	$1.399(5)$	C16A-F12A	$1.318(5)$
C35-C36	$1.506(5)$	C16A-F11A	1.333(17)
C36-C37	$1.408(5)$	C16A-F11'	1.34(3)
C36-C41	$1.409(5)$	C16A-F10A	$1.397(6)$
C37-C38	$1.385(5)$	C16A-F12'	1.403(11)
C37-C42	$1.528(5)$	C17A-C22A	$1.395(5)$
C38-C39	$1.387(5)$	C17A-C18A	$1.414(5)$
C39-C40	$1.385(5)$	C18A-C19A	$1.373(5)$
C39-C45	1.511(5)	C19A-C20A	$1.386(5)$
C40-C41	$1.398(5)$	C19A-C23A	1.491 (5)
C41-C48	1.511(5)	C20A-C21A	$1.384(5)$
C42-C44	1.530 (6)	C21A-C22A	$1.396(5)$
C42-C43	$1.533(6)$	C21A-C24A	$1.498(5)$
C45-C47	$1.529(6)$	C23A-F15A	$1.322(5)$
C45-C46	1.532(6)	C23A-F13A	1.327 (5)
C48-C49	$1.532(5)$	C23A-F14A	$1.355(5)$
C48-C50	$1.534(5)$	C24A-F18A	$1.328(5)$
C51-C54	$1.528(5)$	C24A-F17A	$1.333(4)$
C51-C53	$1.530(5)$	C24A-F16A	$1.339(4)$
C51-C52	$1.533(5)$	C25A-C30A	$1.398(5)$
C55-C58	$1.532(5)$	C25A-C26A	$1.404(5)$
C55-C57	$1.536(5)$	C26A-C27A	$1.387(5)$
C55-C56	$1.537(5)$	C27A-C28A	$1.386(5)$
C59-C60	$1.218(5)$	C27A-C31A	$1.493(5)$
C60-C61	$1.443(5)$	C28A-C29A	$1.386(5)$
C61-C62	$1.386(5)$	C29A-C30A	$1.394(5)$
C61-C66	$1.392(5)$	C29A-C32A	$1.499(5)$
C62-C63	$1.379(5)$	C31A-F20'	1.293 (8)
C63-C64	$1.372(6)$	C31A-F19A	$1.294(5)$
C64-C65	1.372(6)	C31A-F21'	$1.318(9)$
C65-C66	$1.377(5)$	C31A-F21A	$1.332(6)$
B1A-C17A	$1.633(5)$	C31A-F20A	$1.383(5)$
B1A-C1A	1.644(5)	C31A-F19'	1.398 (8)
B1A-C9A	$1.647(5)$	C32A-F23A	$1.321(4)$
B1A-C25A	$1.650(5)$	C32A-F22A	1.330 (4)
C1A-C2A	$1.394(5)$	C32A-F24A	$1.332(4)$
C1A-C6A	$1.399(5)$	Cl1S-C1S	1.7545
C2A-C3A	$1.389(5)$	C12S-C1S	1.7892
C3A-C4A	1.383(5)		
C3A-C7A	$1.489(5)$	Angles:	
C4A-C5A	1.381(5)		
C5A-C6A	$1.388(5)$	C59-Au1-P1	174.73(10)
C5A-C8A	$1.485(5)$	C59-Au2-C60	31.54(13)
C7A-F1A	1.275 (6)	C59-Au2-P2	163.24(9)
C7A-F2'	1.279(7)	C60-Au2-P2	163.13(10)
C7A-F3'	1.318(9)	C1-P1-C26	108.05(17)
C7A-F3A	1.319 (7)	C1-P1-C22	106.12(17)
C7A-F2A	$1.422(6)$	C26-P1-C22	111.77(18)
C7A-F1'	1.461(7)	C1-P1-Au1	111.37(12)
C8A-F6A	$1.334(5)$	C26-P1-Au1	111.09 (12)
C8A-F4A	$1.337(5)$	C22-P1-Au1	108.34(12)
C8A-F5A	1.352(5)	C30-P2-C55	$106.35(15)$
C9A-C10A	$1.393(5)$	C30-P2-C51	108.88(15)
C9A-C14A	1.404(5)	C55-P2-C51	111.44(16)
C10A-C11A	1.390 (5)	C30-P2-Au2	113.92(11)
C11A-C12A	1.394(5)	C55-P2-Au2	110.39(12)

C51-P2-Au2	105.95(12)	C40-C39-C45	121.6(3)
C2-C1-C6	118.1(3)	C38-C39-C45	120.9(3)
C2-C1-P1	117.6(3)	C39-C40-C41	122.4(3)
C6-C1-P1	124.1(3)	C40-C41-C36	118.6(3)
C3-C2-C1	122.2(4)	C40-C41-C48	119.4(3)
C2-C3-C4	119.8(4)	C36-C41-C48	122.0(3)
C3-C4-C5	119.3(4)	C37-C42-C44	111.9(3)
C4-C5-C6	122.4(4)	C37-C42-C43	109.9(3)
C5-C6-C1	118.1(3)	C44-C42-C43	110.7(4)
C5-C6-C7	113.7(3)	C39-C45-C47	113.5(3)
C1-C6-C7	128.2(3)	C39-C45-C46	110.2(3)
C12-C7-C8	119.5(3)	C47-C45-C46	111.2(4)
C12-C7-C6	119.2(3)	C41-C48-C49	112.8(3)
C8-C7-C6	120.3(3)	C41-C48-C50	111.1(3)
C9-C8-C7	119.1(3)	C49-C48-C50	110.1(3)
C9-C8-C13	119.0(3)	C54-C51-C53	110.2(3)
C7-C8-C13	121.9(3)	C54-C51-C52	107.1(3)
C8-C9-C10	122.3(3)	C53-C51-C52	107.8(3)
C11-C10-C9	118.2(3)	C54-C51-P2	116.1(3)
C11-C10-C16	121.9(4)	C53-C51-P2	108.7(2)
C9-C10-C16	119.8(3)	C52-C51-P2	106.5(2)
C10-C11-C12	122.2(4)	C58-C55-C57	108.4(3)
C11-C12-C7	118.7(3)	C58-C55-C56	108.9(3)
C11-C12-C19	118.4(3)	C57-C55-C56	108.1(3)
C7-C12-C19	122.6(3)	C58-C55-P2	107.7(2)
C8-C13-C14	112.4(3)	C57-C55-P2	114.7(3)
C8-C13-C15	110.0(3)	C56-C55-P2	109.0(2)
C14-C13-C15	110.2(3)	C60-C59-Au1	165.9(3)
C17-C16-C10	113.1(3)	C60-C59-Au2	76.6(2)
C17-C16-C18	109.9(4)	Au1-C59-Au2	115.65(15)
C10-C16-C18	109.8(3)	C59-C60-C61	165.8(3)
C12-C19-C21	110.5(3)	C59-C60-Au2	71.8(2)
C12-C19-C20	113.3(4)	C61-C60-Au2	122.3(2)
C21-C19-C20	109.2(4)	C62-C61-C66	118.5(3)
C23-C22-C25	108.0(3)	C62-C61-C60	122.1(3)
C23-C22-C24	108.8(3)	C66-C61-C60	119.4(3)
C25-C22-C24	108.0(3)	C63-C62-C61	120.9(4)
C23-C22-P1	107.4(3)	C64-C63-C62	119.8(4)
C25-C22-P1	108.7(3)	C63-C64-C65	120.3(3)
C24-C22-P1	115.7(3)	C64-C65-C66	120.3(4)
C27-C26-C28	110.0 (3)	C65-C66-C61	120.3(4)
C27-C26-C29	107.7(3)	C17A-B1A-C1A	105.3(3)
C28-C26-C29	107.6(3)	C17A-B1A-C9A	110.5(3)
C27-C26-P1	115.8(3)	C1A-B1A-C9A	111.3(3)
C28-C26-P1	109.6(3)	C17A-B1A-C25A	115.7(3)
C29-C26-P1	105.8(2)	C1A-B1A-C25A	110.5(3)
C31-C30-C35	118.0(3)	C9A-B1A-C25A	103.7(3)
C31-C30-P2	117.7(3)	C2A-C1A-C6A	115.1(3)
C35-C30-P2	124.1(3)	C2A-C1A-B1A	122.5(3)
C32-C31-C30	122.6(3)	C6A-C1A-B1A	122.3(3)
C33-C32-C31	118.9(3)	C3A-C2A-C1A	122.7(3)
C34-C33-C32	119.6(3)	C4A-C3A-C2A	120.6(3)
C33-C34-C35	123.0(3)	C4A-C3A-C7A	118.8(3)
C34-C35-C30	117.9(3)	C2A-C3A-C7A	120.5(3)
C34-C35-C36	114.6(3)	C5A-C4A-C3A	118.2(3)
C30-C35-C36	127.5(3)	C4A-C5A-C6A	120.6(3)
C37-C36-C41	119.9(3)	C4A-C5A-C8A	119.4(3)
C37-C36-C35	120.1(3)	C6A-C5A-C8A	120.0(3)
C41-C36-C35	119.3(3)	C5A-C6A-C1A	122.7(3)
C38-C37-C36	118.5(3)	F1A-C7A-F2'	58.5(6)
C38-C37-C42	119.3(3)	F1A-C7A-F3'	117.5(10)
C36-C37-C42	122.2(3)	F2'-C7A-F3'	117.6(10)
C37-C38-C39	123.0(3)	F1A-C7A-F3A	112.8(6)
C40-C39-C38	117.4(3)	F2'-C7A-F3A	127.9(7)

Experimental Section

F3'-C7A-F3A	13.9(12)	C18A-C17A-B1A	119.2(3)
F1A-C7A-F2A	102.6(5)	C19A-C18A-C17A	122.8(3)
F2'-C7A-F2A	46.0(5)	C18A-C19A-C20A	120.9(3)
F3'-C7A-F2A	87.2(8)	C18A-C19A-C23A	121.0(3)
F3A-C7A-F2A	101.1(6)	C20A-C19A-C23A	118.1(3)
F1A-C7A-F1'	36.4(4)	C21A-C20A-C19A	117.9(3)
F2'-C7A-F1'	94.7(6)	C20A-C21A-C22A	121.1(3)
F3'-C7A-F1'	99.7(10)	C20A-C21A-C24A	118.9(3)
F3A-C7A-F1'	89.0(6)	C22A-C21A-C24A	120.0(3)
F2A-C7A-F1'	136.3(5)	C17A-C22A-C21A	122.0(3)
F1A-C7A-C3A	116.8(4)	F15A-C23A-F13A	107.0(4)
F2'-C7A-C3A	115.4(5)	F15A-C23A-F14A	106.1(4)
F3'-C7A-C3A	117.8(10)	F13A-C23A-F14A	105.0(3)
F3A-C7A-C3A	113.2(5)	F15A-C23A-C19A	112.6(3)
F2A-C7A-C3A	108.3(4)	F13A-C23A-C19A	114.0(3)
F1'-C7A-C3A	106.2(4)	F14A-C23A-C19A	111.5(4)
F6A-C8A-F4A	107.3(4)	F18A-C24A-F17A	105.6(3)
F6A-C8A-F5A	105.0(3)	F18A-C24A-F16A	106.4(3)
F4A-C8A-F5A	106.0(3)	F17A-C24A-F16A	106.4(3)
F6A-C8A-C5A	113.5(3)	F18A-C24A-C21A	112.7(3)
F4A-C8A-C5A	113.0(3)	F17A-C24A-C21A	112.8(3)
F5A-C8A-C5A	111.5(4)	F16A-C24A-C21A	112.3(3)
C10A-C9A-C14A	115.9(3)	C30A-C25A-C26A	115.5(3)
C10A-C9A-B1A	122.7(3)	C30A-C25A-B1A	124.3(3)
C14A-C9A-B1A	121.3 (3)	C26A-C25A-B1A	119.6(3)
C11A-C10A-C9A	122.3(3)	C27A-C26A-C25A	122.7(3)
C10A-C11A-C12A	120.6(3)	C28A-C27A-C26A	120.5(3)
C10A-C11A-C15A	119.3(3)	C28A-C27A-C31A	118.9(3)
C12A-C11A-C15A	120.0(3)	C26A-C27A-C31A	120.6(3)
C13A-C12A-C11A	118.2(3)	C29A-C28A-C27A	118.4(3)
C12A-C13A-C14A	120.8(3)	C28A-C29A-C30A	120.7(3)
C12A-C13A-C16A	120.1(3)	C28A-C29A-C32A	117.8(3)
C14A-C13A-C16A	119.2(3)	C30A-C29A-C32A	121.5(3)
C13A-C14A-C9A	122.2(3)	C29A-C30A-C25A	122.3(3)
F9A-C15A-F7A	106.5(3)	F20'-C31A-F19A	68.1(7)
F9A-C15A-F8A	106.9(3)	F20'-C31A-F21'	115.4(11)
F7A-C15A-F8A	105.5(3)	F19A-C31A-F21'	121.4(9)
F9A-C15A-C11A	113.1(3)	F20'-C31A-F21A	124.9(7)
F7A-C15A-C11A	112.0(3)	F19A-C31A-F21A	109.2(6)
F8A-C15A-C11A	112.3(3)	F21'-C31A-F21A	17.3(10)
F10'-C16A-F12A	83.7(6)	F20'-C31A-F20A	37.5(6)
F10'-C16A-F11A	113.9(9)	F19A-C31A-F20A	103.8(4)
F12A-C16A-F11A	114.3(8)	F21'-C31A-F20A	87.7(8)
F10'-C16A-F11'	122.0(13)	F21A-C31A-F20A	103.1(5)
F12A-C16A-F11'	105.0(13)	F20'-C31A-F19'	99.9(8)
F11A-C16A-F11'	12.0(15)	F19A-C31A-F19'	32.9(4)
F10'-C16A-F10A	21.9(6)	F21'-C31A-F19'	100.9(9)
F12A-C16A-F10A	104.1(4)	F21A-C31A-F19'	84.7(6)
F11A-C16A-F10A	97.6(6)	F20A-C31A-F19'	132.3(6)
F11'-C16A-F10A	107.9(11)	F20'-C31A-C27A	116.3(6)
F10'-C16A-F12'	108.7(7)	F19A-C31A-C27A	114.3(4)
F12A-C16A-F12'	25.9(4)	F21'-C31A-C27A	113.9(9)
F11A-C16A-F12'	96.8(8)	F21A-C31A-C27A	114.1(5)
F11'-C16A-F12'	85.5(12)	F20A-C31A-C27A	111.2(3)
F10A-C16A-F12'	127.3(5)	F19'-C31A-C27A	107.7(5)
F10'-C16A-C13A	114.5(7)	F23A-C32A-F22A	106.2(3)
F12A-C16A-C13A	114.7(3)	F23A-C32A-F24A	106.5(3)
F11A-C16A-C13A	112.8(8)	F22A-C32A-F24A	105.2(3)
F11'-C16A-C13A	112.8(14)	F23A-C32A-C29A	112.7(3)
F10A-C16A-C13A	$111.6(3)$	F22A-C32A-C29A	113.5(3)
F12'-C16A-C13A	108.6(5)	F24A-C32A-C29A	112.1(3)
C22A-C17A-C18A	115.2(3)	Cl1S-C1S-Cl2S	109.3

Table 6. Torsion angles [${ }^{\circ}$] for complex 78.

C59-Au1-P1-C1 -80.2(10)	C26-P1-C22-C25	-82.3(3)
C59-Au1-P1-C26 159.3(10)	Au1-P1-C22-C25	40.4(3)
C59-Au1-P1-C22 36.2(10)	C1-P1-C22-C24	-78.2(3)
C59-Au2-P2-C30 118.1(3)	C26-P1-C22-C24	39.3(3)
C60-Au2-P2-C30 -102.0(3)	Au1-P1-C22-C24	162.1(3)
C59-Au2-P2-C55 -122.3(3)	C1-P1-C26-C27	43.8(3)
C60-Au2-P2-C55 17.6(4)	C22-P1-C26-C27	-72.6(3)
C59-Au2-P2-C51 -1.6(3)	Au1-P1-C26-C27	166.3(3)
C60-Au2-P2-C51 138.3(3)	C1-P1-C26-C28	168.9(3)
C26-P1-C1-C2 -66.2(3)	C22-P1-C26-C28	52.5(3)
C22-P1-C1-C2 53.8(4)	Au1-P1-C26-C28	-68.6(3)
Au1-P1-C1-C2 171.6(3)	C1-P1-C26-C29	-75.4(3)
C26-P1-C1-C6 118.8(3)	C22-P1-C26-C29	168.2(2)
C22-P1-C1-C6 -121.1(3)	Au1-P1-C26-C29	47.1(3)
Au1-P1-C1-C6 -3.4(4)	C55-P2-C30-C31	58.7(3)
C6-C1-C2-C3 2.6(6)	C51-P2-C30-C31	-61.4(3)
P1-C1-C2-C3 -172.7(4)	Au2-P2-C30-C31	-179.4(2)
C1-C2-C3-C4 -1.6(7)	C55-P2-C30-C35	-116.5(3)
C2-C3-C4-C5 0.0(7)	C51-P2-C30-C35	123.3(3)
C3-C4-C5-C6 0.7(7)	Au2-P2-C30-C35	5.3(3)
C4-C5-C6-C1 0.3(6)	C35-C30-C31-C32	0.8(5)
C4-C5-C6-C7 -179.2(4)	P2-C30-C31-C32	-174.8(3)
C2-C1-C6-C5 -1.9(6)	C30-C31-C32-C33	-1.2(5)
P1-C1-C6-C5 173.1(3)	C31-C32-C33-C34	0.9(5)
C2-C1-C6-C7 177.5(4)	C32-C33-C34-C35	-0.2(5)
P1-C1-C6-C7 -7.5(6)	C33-C34-C35-C30	-0.2(5)
C5-C6-C7-C12 86.7(4)	C33-C34-C35-C36	179.4(3)
C1-C6-C7-C12 -92.7(5)	C31-C30-C35-C34	-0.1(5)
C5-C6-C7-C8 -81.6(4)	P2-C30-C35-C34	175.2(2)
C1-C6-C7-C8 99.0(5)	C31-C30-C35-C36	-179.6(3)
C12-C7-C8-C9 1.2(5)	P2-C30-C35-C36	-4.4(5)
C6-C7-C8-C9 169.4(3)	C34-C35-C36-C37	-79.6(4)
C12-C7-C8-C13 -174.7(3)	C30-C35-C36-C37	99.9(4)
C6-C7-C8-C13 -6.5(5)	C34-C35-C36-C41	90.6(4)
C7-C8-C9-C10 -0.2(5)	C30-C35-C36-C41	-89.8(4)
C13-C8-C9-C10 175.9(3)	C41-C36-C37-C38	4.8(5)
C8-C9-C10-C11 -0.5(5)	C35-C36-C37-C38	175.0(3)
C8-C9-C10-C16 -176.2(3)	C41-C36-C37-C42	-172.3(3)
C9-C10-C11-C12 0.2(5)	C35-C36-C37-C42	-2.1(5)
C16-C10-C11-C12 175.7(3)	C36-C37-C38-C39	-2.5(5)
C10-C11-C12-C7 0.9(5)	C42-C37-C38-C39	174.8(3)
C10-C11-C12-C19 -172.9(3)	C37-C38-C39-C40	-0.9(5)
C8-C7-C12-C11 -1.6(5)	C37-C38-C39-C45	-177.5(3)
C6-C7-C12-C11 -169.9(3)	C38-C39-C40-C41	1.9(5)
C8-C7-C12-C19 172.0(3)	C45-C39-C40-C41	178.5(3)
C6-C7-C12-C19 3.7(5)	C39-C40-C41-C36	0.5(5)
C9-C8-C13-C14 53.2(4)	C39-C40-C41-C48	-176.0(3)
C7-C8-C13-C14 -130.8(4)	C37-C36-C41-C40	-3.9(5)
C9-C8-C13-C15 -70.0(4)	C35-C36-C41-C40	-174.2(3)
C7-C8-C13-C15 106.0(4)	C37-C36-C41-C48	172.5(3)
C11-C10-C16-C17 33.3(5)	C35-C36-C41-C48	2.2(5)
C9-C10-C16-C17 -151.3(4)	C38-C37-C42-C44	50.0(5)
C11-C10-C16-C18 -89.9(5)	C36-C37-C42-C44	-132.9(4)
C9-C10-C16-C18 85.6(5)	C38-C37-C42-C43	-73.5(5)
C11-C12-C19-C21 76.3(5)	C36-C37-C42-C43	103.7(4)
C7-C12-C19-C21 -97.3(4)	C40-C39-C45-C47	36.8(5)
C11-C12-C19-C20 -46.6(5)	C38-C39-C45-C47	-146.7(4)
C7-C12-C19-C20 139.8(4)	C40-C39-C45-C46	-88.7(5)
C1-P1-C22-C23 43.5(3)	C38-C39-C45-C46	87.8(4)
C26-P1-C22-C23 161.0(3)	C40-C41-C48-C49	-41.8(4)
Au1-P1-C22-C23 -76.2(3)	C36-C41-C48-C49	141.8(3)
C1-P1-C22-C25 160.1(3)	C40-C41-C48-C50	82.4(4)

Experimental Section

C36-C41-C48-C50	-94.0(4)	C4A-C3A-C7A-F3' 22.5	22.5(11)
C30-P2-C51-C54 4	45.9(3)	C2A-C3A-C7A-F3' -160	-160.4(10)
C55-P2-C51-C54 -7	-71.1(3)	C4A-C3A-C7A-F3A 37	37.0(7)
Au2-P2-C51-C54 1	168.8(2)	C2A-C3A-C7A-F3A -14	-145.9(6)
C30-P2-C51-C53 170	170.8(2)	C4A-C3A-C7A-F2A -74	-74.2(5)
C55-P2-C51-C53 53.	53.8(3)	C2A-C3A-C7A-F2A 102	102.9(5)
Au2-P2-C51-C53 -66	-66.3(3)	C4A-C3A-C7A-F1' 133.	133.0(4)
C30-P2-C51-C52 -73	-73.3(3)	C2A-C3A-C7A-F1' -49.9	-49.9(5)
C55-P2-C51-C52 1	169.7(2)	C4A-C5A-C8A-F6A 149	149.8(4)
Au2-P2-C51-C52 4	49.6(2)	C6A-C5A-C8A-F6A -31.0	-31.0(6)
C30-P2-C55-C58 40	40.7(3)	C4A-C5A-C8A-F4A 27	27.3(6)
C51-P2-C55-C58 15	159.2(3)	C6A-C5A-C8A-F4A -153	-153.5(4)
Au2-P2-C55-C58 -8	-83.3(3)	C4A-C5A-C8A-F5A -91.	-91.9(4)
C30-P2-C55-C57 -80	-80.1(3)	C6A-C5A-C8A-F5A 87	87.3(4)
C51-P2-C55-C57 38	38.5(3)	C17A-B1A-C9A-C10A	A 150.9(3)
Au2-P2-C55-C57 1	155.9(2)	C1A-B1A-C9A-C10A 3	A 34.3(4)
C30-P2-C55-C56 158	158.7(2)	C25A-B1A-C9A-C10A	0A -84.5(4)
C51-P2-C55-C56 -8	-82.8(3)	C17A-B1A-C9A-C14A	4A -34.0(4)
Au2-P2-C55-C56 3	34.7(3)	C1A-B1A-C9A-C14A -	A -150.6(3)
P1-Au1-C59-C60 5	57(2)	C25A-B1A-C9A-C14A	4 A 90.6(4)
P1-Au1-C59-Au2 -1	-153.3(9)	C14A-C9A-C10A-C11A	11 A 0.9(5)
P2-Au2-C59-C60 1	159.1(2)	B1A-C9A-C10A-C11A	1A 176.3(3)
C60-Au2-C59-Au1	-172.7(3)	C9A-C10A-C11A-C12A	12 A 0.1(5)
P2-Au2-C59-Au1 -1	-13.6(4)	C9A-C10A-C11A-C15A	15A -179.7(3)
Au1-C59-C60-C61	-25(3)	C10A-C11A-C12A-C13A	C13A -0.7(5)
Au2-C59-C60-C61	-176.7(16)	C15A-C11A-C12A-C13A	C13A 179.0(3)
Au1-C59-C60-Au2	151.8(13)	C11A-C12A-C13A-C14A	C14A 0.3(5)
P2-Au2-C60-C59 -1	-159.2(3)	C11A-C12A-C13A-C16A	C16A -178.6(3)
C59-Au2-C60-C61	179.1(4)	C12A-C13A-C14A-C9A	C9A 0.7(5)
P2-Au2-C60-C61 19.	19.8(5)	C16A-C13A-C14A-C9A	C9A 179.6(3)
C59-C60-C61-C62	140.2(15)	C10A-C9A-C14A-C13A	13A -1.3(5)
Au2-C60-C61-C62	-36.1(5)	B1A-C9A-C14A-C13A	3A -176.7(3)
C59-C60-C61-C66	-38.0(17)	C10A-C11A-C15A-F9A	F9A -174.5(3)
Au2-C60-C61-C66	145.6(3)	C12A-C11A-C15A-F9A	F9A 5.7(5)
C66-C61-C62-C63	-0.2(6)	C10A-C11A-C15A-F7A	7A 65.1(4)
C60-C61-C62-C63	-178.5(4)	C12A-C11A-C15A-F7A	7A -114.7(4)
C61-C62-C63-C64	-0.9(6)	C10A-C11A-C15A-F8A	F8A -53.5(4)
C62-C63-C64-C65	1.7(6)	C12A-C11A-C15A-F8A	F8A 126.8(3)
C63-C64-C65-C66	-1.3(6)	C12A-C13A-C16A-F10'	10' -120.6(7)
C64-C65-C66-C61	0.2(6)	C14A-C13A-C16A-F10'	F10' 60.4(7)
C62-C61-C66-C65	0.5(5)	C12A-C13A-C16A-F12A	12A -26.2(6)
C60-C61-C66-C65	178.8(3)	C14A-C13A-C16A-F12A	F12A 154.9(4)
C17A-B1A-C1A-C2A	2A 91.5(4)	C12A-C13A-C16A-F11A	11A 107.0(7)
C9A-B1A-C1A-C2A	A -148.8(3)	C14A-C13A-C16A-F11A	11A -71.9(7)
C25A-B1A-C1A-C2A	2A -34.1(5)	C12A-C13A-C16A-F11'	F11' 94.0(12)
C17A-B1A-C1A-C6A	6A -85.2(4)	C14A-C13A-C16A-F11'	F11' $-84.9(12)$
C9A-B1A-C1A-C6A	A 34.6(4)	C12A-C13A-C16A-F10A	10A -144.3(4)
C25A-B1A-C1A-C6A	6A 149.2(3)	C14A-C13A-C16A-F10A	F10A 36.7(5)
C6A-C1A-C2A-C3A	A -3.0(5)	C12A-C13A-C16A-F12'	F12' 1.0(6)
B1A-C1A-C2A-C3A	A -179.9(3)	C14A-C13A-C16A-F12'	F12'-177.9(5)
C1A-C2A-C3A-C4A	A 2.2(6)	C1A-B1A-C17A-C22A	2A -92.8(4)
C1A-C2A-C3A-C7A	A -174.8(4)	C9A-B1A-C17A-C22A	A 147.0(3)
C2A-C3A-C4A-C5A	A -0.2(6)	C25A-B1A-C17A-C22A	22A 29.5(5)
C7A-C3A-C4A-C5A	A 176.9(4)	C1A-B1A-C17A-C18A	8A 81.2(4)
C3A-C4A-C5A-C6A	A -0.9(5)	C9A-B1A-C17A-C18A	8A -39.0(4)
C3A-C4A-C5A-C8A	A 178.4(4)	C25A-B1A-C17A-C18A	18A -156.4(3)
C4A-C5A-C6A-C1A	A -0.1(6)	C22A-C17A-C18A-C19A	C19A -1.3(5)
C8A-C5A-C6A-C1A	A -179.3(4)	B1A-C17A-C18A-C19A	19A -175.9(3)
C2A-C1A-C6A-C5A	A 1.9(5)	C17A-C18A-C19A-C20A	C20A -0.1(6)
B1A-C1A-C6A-C5A	A 178.8(3)	C17A-C18A-C19A-C23A	C23A -179.8(3)
C4A-C3A-C7A-F1A	A 170.6(6)	C18A-C19A-C20A-C21A	C21A 1.6(5)
C2A-C3A-C7A-F1A	A -12.3(7)	C23A-C19A-C20A-C21A	C21A -178.7(3)
C4A-C3A-C7A-F2'	-123.5(7)	C19A-C20A-C21A-C22A	C22A -1.7(5)
C2A-C3A-C7A-F2'	53.6(8)	C19A-C20A-C21A-C24A	24A 179.3(3)

Table 7. Crystal data and structure refinement for complex 79.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

C70 H67 Au B F24 P
1602.98

100(2) K
$0.71073 \AA$
Monoclinic
P2(1)/n
$\mathrm{a}=12.876(11) \AA$
$\alpha=90.00^{\circ}$.
$\mathrm{b}=14.771(3) \AA$
$\beta=90.39(2)^{\circ}$.
$\mathrm{c}=36.339(8) \AA$
$\gamma=90.00^{\circ}$.
6911(6) \AA^{3}

Experimental Section

Z	4
Density (calculated)	$1.541 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.257 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	3208
Crystal size	$0.20 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$
Theta range for data collection	2.37 to 36.40°.
Index ranges	$-20<=\mathrm{h}<=21$,
	$0<=\mathrm{k}<=24$,
	$0<=<=59$
Reflections collected	31125
Independent reflections	31125
	$[\mathrm{R}($ int $)=0.0000]$
Completeness to theta $=36.40^{\circ}$	92.299995%
Absorption correction	Empirical
Max. and min. transmission	0.6610 and 0.6610
Refinement method	Full-matrix
	least-squares on F^{2}
Data / restraints / parameters	$31125 / 790 / 1353$
Goodness-of-fit on F^{2}	1.035
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0347$,
	wR2 $=0.0866$
R indices (all data)	$\mathrm{R} 1=0.0506$,
	wR2 $=0.0902$
Largest diff. peak and hole	2.035 and
	-0.829 e. \AA^{-3}

Table 8. Bond lengths [Aㄱ] and angles [$\left.{ }^{\circ}\right]$ for complex 79.

Bond lengths:	
Au1A-C1A	$2.247(2)$
Au1A-P1A	$2.3125(14)$
Au1A-C2A	$2.405(3)$
C1A-C2A	$1.389(3)$
C2A-C4A	$1.498(3)$
C2A-C3A	$1.524(3)$
C4A-C9A	$1.398(3)$
C4A-C5A	$1.409(3)$
C5A-C6A	$1.392(3)$
C6A-C7A	$1.390(4)$
C7A-C8A	$1.406(4)$
C8A-C9A	$1.391(3)$
C10A-C15A	$1.421(2)$
C10A-C11A	$1.422(3)$
C10A-P1A	$1.852(2)$
C11A-C12A	$1.410(3)$
C12A-C13A	$1.392(3)$
C13A-C14A	$1.401(3)$
C14A-C15A	$1.429(3)$
C15A-C16A	$1.523(2)$
C16A-C21A	$1.416(2)$
C16A-C17A	$1.426(2)$
C17A-C18A	$1.407(2)$
C17A-C22A	$1.530(3)$
C18A-C19A	$1.398(3)$
C19A-C20A	$1.404(3)$

C19A-C25A	$1.531(3)$
C20A-C21A	$1.405(3)$
C21A-C28A	$1.536(3)$
C22A-C23A	$1.548(3)$
C22A-C24A	$1.556(3)$
C25A-C27A	$1.542(3)$
C25A-C26A	$1.552(3)$
C28A-C30A	$1.552(3)$
C28A-C29A	$1.553(3)$
C31A-C32A	$1.535(4)$
C31A-C33A	$1.544(3)$
C31A-C34A	$1.568(4)$
C31A-P1A	$1.906(2)$
C35A-C37A	$1.540(4)$
C35A-C36A	$1.559(3)$
C35A-C38A	$1.560(3)$
C35A-P1A	$1.892(2)$
Au1'-C1'	$2.255(3)$
Au1'-P1'	$2.318(3)$
Au1'-C2'	$2.404(4)$
C1'-C2'	$1.389(4)$
C2'-C4'	$1.501(4)$
C2'-C3'	$1.523(4)$
C4'-C9'	$1.401(4)$
C4'-C5'	$1.412(4)$
C5'-C6'	$1.392(4)$
C6'-C7'	$1.391(5)$
C7'-C8'	$1.407(5)$

C8'-C9'	1.391(5)	C15B-F11"	1.393(10)
C10'-C15'	1.421(4)	C15B-F12"	$1.412(7)$
C10'-C11'	1.424(4)	C15B-F12'	$1.473(7)$
C10'-P1'	1.851(3)	C16B-F8B	1.353(2)
C11'-C12'	1.411(4)	C16B-F7B	$1.358(3)$
C12'-C13'	$1.393(4)$	C16B-F9B	$1.358(2)$
C13'-C14'	1.403(4)	C17B-C18B	1.413(2)
C14'-C15'	1.431(4)	C17B-C22B	1.416(2)
C15'-C16'	1.525(4)	C18B-C19B	1.410 (3)
C16'-C21'	1.417(4)	C19B-C20B	$1.404(3)$
C16'-C17'	$1.427(4)$	C19B-C23B	$1.502(3)$
C17'-C18'	$1.408(4)$	C20B-C21B	1.396(2)
C17'-C22'	$1.529(4)$	C21B-C22B	1.419(3)
C18'-C19'	$1.398(4)$	C21B-C24B	1.514(3)
C19'-C20'	$1.405(4)$	C23B-F15B	1.327(7)
C19'-C25'	1.531(4)	C23B-F14'	1.33(2)
C20'-C21'	$1.405(4)$	C23B-F14B	1.340 (6)
C21'-C28'	$1.536(4)$	C23B-F13'	1.340 (18)
C22'-C23'	$1.547(4)$	C23B-F13B	$1.369(7)$
C22'-C24'	$1.556(4)$	C23B-F15'	$1.418(16)$
C25'-C27'	1.541(4)	C24B-F18B	$1.328(2)$
C25'-C26'	$1.551(4)$	C24B-F16B	1.328(3)
C28'-C30'	$1.552(4)$	C24B-F17B	1.333(3)
C28'-C29'	1.554(4)	C25B-C26B	1.404(2)
C31'-C32'	$1.536(5)$	C25B-C30B	1.411(2)
C31'-C33'	$1.542(4)$	C26B-C27B	1.410 (3)
C31'-C34'	$1.569(5)$	C27B-C28B	$1.398(3)$
C31'-P1'	$1.906(4)$	C27B-C31B	1.503(3)
C35'-C37'	1.540 (5)	C28B-C29B	1.401(3)
C35'-C38'	1.560 (4)	C29B-C30B	1.403(2)
C35'-C36'	$1.559(4)$	C29B-C32B	1.507(3)
C35'-P1'	1.890(4)	C31B-F20B	1.324(3)
B1B-C1B	1.645(3)	C31B-F19B	1.330 (3)
B1B-C9B	1.653(3)	C31B-F21B	1.333(3)
B1B-C25B	1.656 (3)	C32B-F23B	1.351(3)
B1B-C17B	1.664(3)	C32B-F22B	1.351(2)
C1B-C6B	1.415 (3)	C32B-F24B	1.358(2)
C1B-C2B	1.417(2)		
C2B-C3B	1.395(3)	Angles:	
C3B-C4B	$1.405(3)$		
C3B-C7B	1.510 (3)	C1A-Au1A-P1A	174.45(6)
C4B-C5B	1.393(3)	C1A-Au1A-C2A	34.53(7)
C5B-C6B	1.400 (3)	P1A-Au1A-C2A	148.15(5)
C5B-C8B	1.512(3)	C2A-C1A-Au1A	78.96(12)
C7B-F1B	1.335(3)	C1A-C2A-C4A	120.71(19)
C7B-F3B	1.341(3)	C1A-C2A-C3A	121.04(19)
C7B-F2B	1.361(4)	C4A-C2A-C3A	117.64(17)
C8B-F6B	1.326 (3)	C1A-C2A-Au1A	66.52(11)
C8B-F4B	1.327(3)	C4A-C2A-Au1A	102.34(12)
C8B-F5B	1.366 (3)	C3A-C2A-Au1A	108.70(14)
C9B-C14B	1.409(2)	C9A-C4A-C5A	118.9(2)
C9B-C10B	1.433(3)	C9A-C4A-C2A	120.60(18)
C10B-C11B	1.398 (3)	C5A-C4A-C2A	120.52(19)
C11B-C12B	1.404(3)	C6A-C5A-C4A	120.6(2)
C11B-C15B	1.526 (3)	C7A-C6A-C5A	119.8(2)
C12B-C13B	1.410 (3)	C6A-C7A-C8A	120.4(2)
C13B-C14B	1.410 (3)	C9A-C8A-C7A	119.4(2)
C13B-C16B	1.509(3)	C8A-C9A-C4A	120.9(2)
C15B-F10"	1.171(7)	C15A-C10A-C11A	118.54(17)
C15B-F11'	1.232(8)	C15A-C10A-P1A	123.73(13)
C15B-F12B	$1.315(4)$	C11A-C10A-P1A	117.72(15)
C15B-F11B	$1.362(5)$	C12A-C11A-C10A	122.33(19)
C15B-F10'	1.365(14)	C13A-C12A-C11A	119.20(18)
C15B-F10B	$1.367(5)$	C12A-C13A-C14A	119.38(18)

Experimental Section

C13A-C14A-C15A	122.67(18)	C15'-C10'-P1'	124.3(4)
C10A-C15A-C14A	117.85(16)	C11'-C10'-P1'	117.4(4)
C10A-C15A-C16A	126.90(15)	C12'-C11'-C10'	122.0(5)
C14A-C15A-C16A	115.25(15)	C13'-C12'-C11'	118.7(6)
C21A-C16A-C17A	119.16(15)	C12'-C13'-C14'	118.9(5)
C21A-C16A-C15A	119.88(15)	C13'-C14'-C15'	122.3(5)
C17A-C16A-C15A	119.90(15)	C10'-C15'-C14'	117.5(5)
C18A-C17A-C16A	119.65(15)	C10'-C15'-C16'	126.8(4)
C18A-C17A-C22A	118.46(16)	C14'-C15'-C16'	114.9(4)
C16A-C17A-C22A	121.77(15)	C21'-C16'-C17'	118.9(4)
C19A-C18A-C17A	121.85(16)	C21'-C16'-C15'	119.3(5)
C18A-C19A-C20A	117.64(16)	C17'-C16'-C15'	119.6(5)
C18A-C19A-C25A	122.11(16)	C18'-C17'-C16'	119.6(4)
C20A-C19A-C25A	120.16(16)	C18'-C17'-C22'	118.6(4)
C19A-C20A-C21A	122.67(16)	C16'-C17'-C22'	121.8(4)
C20A-C21A-C16A	118.98(16)	C19'-C18'-C17'	121.6(4)
C20A-C21A-C28A	119.21(15)	C18'-C19'-C20'	$117.5(5)$
C16A-C21A-C28A	121.71(15)	C18'-C19'-C25'	122.5(4)
C17A-C22A-C23A	110.51(17)	C20'-C19'-C25'	119.9(4)
C17A-C22A-C24A	111.43(16)	C21'-C20'-C19'	122.4(4)
C23A-C22A-C24A	110.50(18)	C20'-C21'-C16'	118.9(4)
C19A-C25A-C27A	114.21(17)	C20'-C21'-C28'	119.2(5)
C19A-C25A-C26A	109.22(17)	C16'-C21'-C28'	121.6(4)
C27A-C25A-C26A	111.09 (19)	C17'-C22'-C23'	110.6(5)
C21A-C28A-C30A	112.13(16)	C17'-C22'-C24'	$111.5(5)$
C21A-C28A-C29A	110.54(17)	C23'-C22'-C24'	110.5(5)
C30A-C28A-C29A	111.04(18)	C19'-C25'-C27'	114.3(5)
C32A-C31A-C33A	109.0(2)	C19'-C25'-C26'	109.2(5)
C32A-C31A-C34A	108.9(2)	C27'-C25'-C26'	$111.4(5)$
C33A-C31A-C34A	108.3(2)	C21'-C28'-C30'	112.1(5)
C32A-C31A-P1A	108.07(15)	C21'-C28'-C29'	110.5(5)
C33A-C31A-P1A	114.16(19)	C30'-C28'-C29'	111.0(5)
C34A-C31A-P1A	108.22(18)	C32'-C31'-C33'	109.0(4)
C37A-C35A-C36A	106.6(2)	C32'-C31'-C34'	108.8(5)
C37A-C35A-C38A	108.1(2)	C33'-C31'-C34'	108.4(4)
C36A-C35A-C38A	111.4(2)	C32'-C31'-P1'	107.9(4)
C37A-C35A-P1A	106.62(15)	C33'-C31'-P1'	114.4(4)
C36A-C35A-P1A	115.58(18)	C34'-C31'-P1'	108.2(4)
C38A-C35A-P1A	108.20(18)	C37'-C35'-C38'	108.0(4)
C10A-P1A-C35A	107.93(10)	C37'-C35'-C36'	106.5(4)
C10A-P1A-C31A	107.73(11)	C38'-C35'-C36'	111.4(4)
C35A-P1A-C31A	111.80(11)	C37'-C35'-P1'	106.7(4)
C10A-P1A-Au1A	112.17(7)	C38'-C35'-P1'	108.3(4)
C35A-P1A-Au1A	108.96(8)	C36'-C35'-P1'	115.6(4)
C31A-P1A-Au1A	108.29(8)	C10'-P1'-C35'	108.0(3)
C1'-Au1'-P1'	163.3(5)	C10'-P1'-C31'	107.7(3)
C1'-Au1'-C2'	34.49(10)	C35'-P1'-C31'	112.2(3)
P1'-Au1'-C2'	147.8(4)	C10'-P1'-Au1'	112.4(3)
C2'-C1'-Au1'	78.6(2)	C35'-P1'-Au1'	109.0(3)
C1'-C2'-C4'	120.5(5)	C31'-P1'-Au1'	107.7(3)
C1'-C2'-C3'	$121.2(5)$	C1B-B1B-C9B	103.03(13)
C4'-C2'-C3'	117.7(4)	C1B-B1B-C25B	111.43 (13)
C1'-C2'-Au1'	66.86(19)	C9B-B1B-C25B	112.61(14)
C4'-C2'-Au1'	101.9(3)	C1B-B1B-C17B	115.18(15)
C3'-C2'-Au1'	108.8(4)	C9B-B1B-C17B	112.54(13)
C9'-C4'-C5'	118.2(5)	C25B-B1B-C17B	102.41(13)
C9'-C4'-C2'	$119.5(5)$	C6B-C1B-C2B	116.17(15)
C5'-C4'-C2'	119.3(5)	C6B-C1B-B1B	120.47(15)
C6'-C5'-C4'	120.3(5)	C2B-C1B-B1B	122.98(15)
C7'-C6'-C5'	$119.5(6)$	C3B-C2B-C1B	121.61(17)
C6'-C7'-C8'	119.9(5)	C2B-C3B-C4B	121.13(18)
C9'-C8'-C7'	119.1(5)	C2B-C3B-C7B	121.71(18)
C8'-C9'-C4'	120.9(5)	C4B-C3B-C7B	117.03(18)
C15'-C10'-C11'	118.1(4)	C5B-C4B-C3B	118.22(17)

C4B-C5B-C6B	120.74(17)	F10"-C15B-C11B	115.1(4)
C4B-C5B-C8B	120.13(17)	F11'-C15B-C11B	118.0(4)
C6B-C5B-C8B	119.13(18)	F12B-C15B-C11B	115.7(2)
C5B-C6B-C1B	122.09(17)	F11B-C15B-C11B	113.3(3)
F1B-C7B-F3B	106.7(2)	F10'-C15B-C11B	115.1(7)
F1B-C7B-F2B	107.7(2)	F10B-C15B-C11B	112.8(3)
F3B-C7B-F2B	105.2(2)	F11"-C15B-C11B	108.9(5)
F1B-C7B-C3B	112.1(2)	F12"-C15B-C11B	106.7(3)
F3B-C7B-C3B	114.12(18)	F12'-C15B-C11B	109.1(3)
F2B-C7B-C3B	110.5(2)	F8B-C16B-F7B	107.89(16)
F6B-C8B-F4B	107.3(2)	F8B-C16B-F9B	106.62(16)
F6B-C8B-F5B	104.6(2)	F7B-C16B-F9B	104.56(16)
F4B-C8B-F5B	106.9(2)	F8B-C16B-C13B	112.59(17)
F6B-C8B-C5B	112.81(17)	F7B-C16B-C13B	112.46(16)
F4B-C8B-C5B	112.8(2)	F9B-C16B-C13B	112.22(15)
F5B-C8B-C5B	112.01(19)	C18B-C17B-C22B	115.08(16)
C14B-C9B-C10B	115.47(16)	C18B-C17B-B1B	118.49(15)
C14B-C9B-B1B	122.95(15)	C22B-C17B-B1B	126.00(14)
C10B-C9B-B1B	121.32(15)	C19B-C18B-C17B	122.25(16)
C11B-C10B-C9B	122.89(17)	C20B-C19B-C18B	121.55(16)
C10B-C11B-C12B	120.60(17)	C20B-C19B-C23B	119.63(17)
C10B-C11B-C15B	120.46(17)	C18B-C19B-C23B	118.75(17)
C12B-C11B-C15B	118.94(18)	C21B-C20B-C19B	117.57(16)
C11B-C12B-C13B	117.69(17)	C20B-C21B-C22B	120.60(16)
C12B-C13B-C14B	121.49(16)	C20B-C21B-C24B	118.88(16)
C12B-C13B-C16B	120.71(17)	C22B-C21B-C24B	120.52(15)
C14B-C13B-C16B	117.77(17)	C17B-C22B-C21B	122.92(15)
C9B-C14B-C13B	121.85(16)	F15B-C23B-F14'	88.8(7)
F10"-C15B-F11'	123.8(6)	F15B-C23B-F14B	108.0(4)
F10"-C15B-F12B	74.5(7)	F14'-C23B-F14B	117.4(8)
F11'-C15B-F12B	67.2(6)	F15B-C23B-F13'	118.4(8)
F10"-C15B-F11B	125.0(6)	F14'-C23B-F13'	103.3(10)
F11'-C15B-F11B	41.7(6)	F14B-C23B-F13'	16.5(7)
F12B-C15B-F11B	106.1(4)	F15B-C23B-F13B	106.0(3)
F10"-C15B-F10'	53.5(8)	F14'-C23B-F13B	18.1(8)
F11'-C15B-F10'	114.2(9)	F14B-C23B-F13B	105.6(3)
F12B-C15B-F10'	118.2(7)	F13'-C23B-F13B	89.8(6)
F11B-C15B-F10'	83.2(6)	F15B-C23B-F15'	14.6(8)
F10"-C15B-F10B	35.9(6)	F14'-C23B-F15'	103.1(9)
F11'-C15B-F10B	125.6(6)	F14B-C23B-F15'	98.6(7)
F12B-C15B-F10B	106.8(5)	F13'-C23B-F15'	111.5(9)
F11B-C15B-F10B	100.8(3)	F13B-C23B-F15'	119.9(7)
F10'-C15B-F10B	18.6(6)	F15B-C23B-C19B	113.9(3)
F10"-C15B-F11"	113.9(8)	F14'-C23B-C19B	114.6(8)
F11'-C15B-F11"	64.1(8)	F14B-C23B-C19B	111.9(3)
F12B-C15B-F11"	124.9(5)	F13'-C23B-C19B	114.5(7)
F11B-C15B-F11"	22.6(4)	F13B-C23B-C19B	111.0(3)
F10'-C15B-F11"	64.2(7)	F15'-C23B-C19B	109.2(5)
F10B-C15B-F11"	82.7(5)	F18B-C24B-F16B	105.8(2)
F10"-C15B-F12"	111.9(7)	F18B-C24B-F17B	105.25(19)
F11'-C15B-F12"	35.0 (6)	F16B-C24B-F17B	106.0(2)
F12B-C15B-F12"	38.8(4)	F18B-C24B-C21B	111.94(16)
F11B-C15B-F12"	76.5(4)	F16B-C24B-C21B	114.44(16)
F10'-C15B-F12'	137.9(7)	F17B-C24B-C21B	112.72(17)
F10B-C15B-F12"	137.5(5)	C26B-C25B-C30B	116.10(16)
F11"-C15B-F12"	99.0(5)	C26B-C25B-B1B	124.50(15)
F10"-C15B-F12'	44.9(6)	C30B-C25B-B1B	118.96(15)
F11'-C15B-F12'	99.4(6)	C25B-C26B-C27B	121.87(17)
F12B-C15B-F12'	33.6(4)	C28B-C27B-C26B	121.05(17)
F11B-C15B-F12'	132.7(4)	C28B-C27B-C31B	120.17(17)
F10'-C15B-F12'	97.1(7)	C26B-C27B-C31B	118.78(18)
F10B-C15B-F12'	80.6(4)	C27B-C28B-C29B	117.96(17)
F11"-C15B-F12'	141.9(6)	C28B-C29B-C30B	120.57(17)
F12"-C15B-F12'	72.1(5)	C28B-C29B-C32B	120.47(16)

Experimental Section

C30B-C29B-C32B	$118.96(16)$	F21B-C31B-C27B	$113.73(18)$
C29B-C30B-C25B	$122.43(16)$	F23B-C32B-F22B	$107.45(17)$
F20B-C31B-F19B	$106.4(3)$	F23B-C32B-F24B	$105.77(16)$
F20B-C31B-F21B	$104.5(2)$	F22B-C32B-F24B	$105.91(16)$
F19B-C31B-F21B	$106.2(2)$	F23B-C32-C2BB	$111.61(16)$
F20B-C31B-C27B	$12.1(2)$	F22B-C22B-C9BB	$112.60(16)$
F19B-C31B-C27B	$113.2(2)$	F24B-C32B-C29B	$113.02(15)$

Table 9. Torsion angles [${ }^{\circ}$] for complex 79.

P1A-Au1A-C1A-C2A 122.5(5)
Au1A-C1A-C2A-C4A 90.74(17)
Au1A-C1A-C2A-C3A -98.42(18)
P1A-Au1A-C2A-C1A $\quad-171.10(10)$
C1A-Au1A-C2A-C4A -118.36(19)
P1A-Au1A-C2A-C4A 70.54(17)
C1A-Au1A-C2A-C3A 116.5(2)
P1A-Au1A-C2A-C3A -54.58(19)
C1A-C2A-C4A-C9A 26.7(3)
C3A-C2A-C4A-C9A -144.4(2)
Au1A-C2A-C4A-C9A 96.55(19)
C1A-C2A-C4A-C5A $-153.46(19)$
C3A-C2A-C4A-C5A 35.4(3)
Au1A-C2A-C4A-C5A -83.61(19)
C9A-C4A-C5A-C6A -2.3(3)
C2A-C4A-C5A-C6A 177.8(2)
C4A-C5A-C6A-C7A 1.5(4)
C5A-C6A-C7A-C8A 0.4(4)
C6A-C7A-C8A-C9A -1.4(4)
C7A-C8A-C9A-C4A 0.6(4)
C5A-C4A-C9A-C8A 1.3(3)
C2A-C4A-C9A-C8A -178.9(2)
C15A-C10A-C11A-C12A 1.0(3)
P1A-C10A-C11A-C12A 179.7(2)
C10A-C11A-C12A-C13A $\quad 0.3(4)$
C11A-C12A-C13A-C14A -1.5(4)
C12A-C13A-C14A-C15A 1.5(4)
C11A-C10A-C15A-C14A -1.0(3)
P1A-C10A-C15A-C14A $-179.67(16)$
C11A-C10A-C15A-C16A 178.39(19)
P1A-C10A-C15A-C16A -0.2(3)
C13A-C14A-C15A-C10A $-0.1(3)$
C13A-C14A-C15A-C16A -179.6(2)
C10A-C15A-C16A-C21A 97.9(2)
C14A-C15A-C16A-C21A $-82.6(2)$
C10A-C15A-C16A-C17A -93.9(2)
C14A-C15A-C16A-C17A 85.5(2)
C21A-C16A-C17A-C18A $-1.3(3)$
C15A-C16A-C17A-C18A -169.53(18)
C21A-C16A-C17A-C22A 174.54(18)
C15A-C16A-C17A-C22A 6.3(3)
C16A-C17A-C18A-C19A $\quad 0.0(3)$
C22A-C17A-C18A-C19A -176.05(19)
C17A-C18A-C19A-C20A $\quad 0.0(3)$
C17A-C18A-C19A-C25A 176.61(19)
C18A-C19A-C20A-C21A 1.4(3)
C25A-C19A-C20A-C21A $-175.24(19)$
C19A-C20A-C21A-C16A -2.8(3)
C19A-C20A-C21A-C28A 173.48(18)
C17A-C16A-C21A-C20A 2.7(3)
C15A-C16A-C21A-C20A 170.88(17)
C17A-C16A-C21A-C28A $-173.49(18)$ C15A-C16A-C21A-C28A -5.3(3)

C18A-C17A-C22A-C23A 68.8(2)
C16A-C17A-C22A-C23A -107.1(2)
C18A-C17A-C22A-C24A $-54.5(3)$
C16A-C17A-C22A-C24A 129.6(2)
C18A-C19A-C25A-C27A 40.6(3)
C20A-C19A-C25A-C27A -142.9(2)
C18A-C19A-C25A-C26A $\quad-84.5(2)$
C20A-C19A-C25A-C26A 92.0(2)
C20A-C21A-C28A-C30A 47.1(2)
C16A-C21A-C28A-C30A -136.7(2)
C20A-C21A-C28A-C29A -77.4(2)
C16A-C21A-C28A-C29A 98.8(2)
C15A-C10A-P1A-C35A -115.92(18)
C11A-C10A-P1A-C35A $65.45(19)$
C15A-C10A-P1A-C31A $123.20(18)$
C11A-C10A-P1A-C31A $-55.43(19)$
C15A-C10A-P1A-Au1A 4.12 (19)
C11A-C10A-P1A-Au1A -174.51(15)
C37A-C35A-P1A-C10A 71.13(18)
C36A-C35A-P1A-C10A -47.1(2)
C38A-C35A-P1A-C10A -172.82(17)
C37A-C35A-P1A-C31A $-170.56(16)$
C36A-C35A-P1A-C31A 71.2(2)
C38A-C35A-P1A-C31A -54.5(2)
C37A-C35A-P1A-Au1A -50.91(17)
C36A-C35A-P1A-Au1A -169.16(17)
C38A-C35A-P1A-Au1A 65.14(19)
C32A-C31A-P1A-C10A -36.82(19)
C33A-C31A-P1A-C10A 84.7(2)
C34A-C31A-P1A-C10A $-154.65(18)$
C32A-C31A-P1A-C35A -155.24(17)
C33A-C31A-P1A-C35A -33.8(2)
C34A-C31A-P1A-C35A 86.9(2)
C32A-C31A-P1A-Au1A 84.71(18)
C33A-C31A-P1A-Au1A -153.81(18)
C34A-C31A-P1A-Au1A -33.1(2)
C1A-Au1A-P1A-C10A 91.7(6)
C2A-Au1A-P1A-C10A -153.31(12)
C1A-Au1A-P1A-C35A $-148.9(6)$
C2A-Au1A-P1A-C35A $-33.87(13)$
C1A-Au1A-P1A-C31A -27.1(6)
C2A-Au1A-P1A-C31A 87.94(14)
P1'-Au1'-C1'-C2' 110.6(15)
Au1'-C1'-C2'-C4' 90.5(5)
Au1'-C1'-C2'-C3' -98.7(5)
P1'-Au1'-C2'-C1' -149.7(10)
C1'-Au1'-C2'-C4' -118.3(5)
P1'-Au1'-C2'-C4' 92.1(10)
C1'-Au1'-C2'-C3' 116.7(5)
P1'-Au1'-C2'-C3' -32.9(11)
C1'-C2'-C4'-C9' 11(2)
C3'-C2'-C4'-C9' -160(2)
Au1'-C2'-C4'-C9' 81(2)

C1'-C2'-C4'-C5' -1	$-149(2)$
C3'-C2'-C4'-C5' 40	40(2)
Au1'-C2'-C4'-C5'	-79(2)
C9'-C4'-C5'-C6' -2	-2(4)
C2'-C4'-C5'-C6' 158	158(3)
C4'-C5'-C6'-C7' 13	13(5)
C5'-C6'-C7'-C8' -1	-12(6)
C6'-C7'-C8'-C9' 0(7)	0 (7)
C7'-C8'-C9'-C4' 11	11(7)
C5'-C4'-C9'-C8' -1	-10(5)
C2'-C4'-C9'-C8' -1	-170(3)
C15'-C10'-C11'-C12	12' -4(5)
P1'-C10'-C11'-C12'	2' 171(3)
C10'-C11'-C12'-C13	13 15(5)
C11'-C12'-C13'-C14	14'-11(7)
C12'-C13'-C14'-C15	15' $-3(8)$
C11'-C10'-C15'-C14	$14^{\prime}-10(4)$
P1'-C10'-C15'-C14'	4^{1} 175(3)
C11'-C10'-C15'-C16	16'-179(3)
P1'-C10'-C15'-C16'	6' 6(3)
C13'-C14'-C15'-C10	10' 13(6)
C13'-C14'-C15'-C16	16' -176(4)
C10'-C15'-C16'-C21	21^{\prime} 88(3)
C14'-C15'-C16'-C21	21' -82(4)
C10'-C15'-C16'-C17	17'-109(3)
C14'-C15'-C16'-C17	171 81(4)
C21'-C16'-C17'-C18	18' -8(5)
C15'-C16'-C17'-C18	18' -171(4)
C21'-C16'-C17'-C22	22' 174(3)
C15'-C16'-C17'-C22	$22^{1} 11(4)$
C16'-C17'-C18'-C19	19' 0(7)
C22'-C17'-C18'-C19	19'178(4)
C17'-C18'-C19'-C20	20' 9(7)
C17'-C18'-C19'-C25	25' -175(4)
C18'-C19'-C20'-C21	21'-10(6)
C25'-C19'-C20'-C21	21' 174(4)
C19'-C20'-C21'-C16	16' 2(6)
C19'-C20'-C21'-C28	28'176(4)
C17'-C16'-C21'-C20	20' 7(4)
C15'-C16'-C21'-C20	20' 170(3)
C17'-C16'-C21'-C28	28'-167(3)
C15'-C16'-C21'-C28	28' -4(3)
C18'-C17'-C22'-C23	$23171(4)$
C16'-C17'-C22'-C23	23' -110(4)
C18'-C17'-C22'-C24	24'-52(4)
C16'-C17'-C22'-C24	24^{\prime} 126(4)
C18'-C19'-C25'-C27	$27138(4)$
C20'-C19'-C25'-C27	27' -147(4)
C18'-C19'-C25'-C26	26'-88(4)
C20'-C19'-C25'-C26	$26^{\prime} 88(4)$
C20'-C21'-C28'-C30	30^{\prime} 52(4)
C16'-C21'-C28'-C30	30' -134(3)
C20'-C21'-C28'-C29	29'-72(4)
C16'-C21'-C28'-C29	29' 102(3)
C15'-C10'-P1'-C35'	5'-130.7(19)
C11'-C10'-P1'-C35'	' 54(3)
C15'-C10'-P1'-C31'	1' 107.9(19)
C11'-C10'-P1'-C31'	1' -67(3)
C15'-C10'-P1'-Au1'	(10 -10.5(19)
C11'-C10'-P1'-Au1'	1^{\prime} 174(3)
C37'-C35'-P1'-C10'	' 47.2(13)
C38'-C35'-P1'-C10'	0^{\prime} 163.2(13)
C36'-C35'-P1'-C10'	$0^{\prime}-71.0(13)$
C37'-C35'-P1'-C31'	1' 165.7(13)

C38'-C35'-P1'-C31'	$-78.2(13)$
C36'-C35'-P1'-C31'	$47.6(13)$
C37'-C35'-P1'-Au1'	$-75.1(12)$
C38'-C35'-P1'-Au1'	$41.0(12)$
C36'-C35'-P1'-Au1'	$166.7(13)$
C32'-C31'-P1'-C10'	$-71.6(12)$
C33'-C31'-P1'-C10'	$49.9(12)$
C34'-C31'-P1'-C10'	$170.8(12)$
C32'-C31'-P1'-C35'	$169.8(12)$
C33'-C31'-P1'-C35'	$-68.8(12)$
C34'-C31'-P1'-C35'	$52.1(12)$
C32'-C31'-P1'-Au1'	$49.8(12)$
C33'-C31'-P1'-Au1'	$171.3(12)$
C34'-C31'-P1'-Au1'	$-67.8(12)$
C1'-Au1'-P1'-C10'	$93.9(19)$
C2'-A1'-P1'-C10'	$179.0(10)$
C1'-Au1'-P1'-C35'	$-146.5(19)$
C2'-Au1'-P1'-C35'	$-61.4(10)$
C1'-Au1'-P1'-C31'	$-24.5(19)$
C2'-Au1'-P1'-C31'	$60.5(10)$
C9B-B1B-C1B-C6B	$90.35(18)$
C25B-B1B-C1B-C6B	$-30.6(2)$
C17B-B1B-C1B-C6B	$-146.72(16)$
C9B-B1B-C1B-C2B	$-82.32(19)$
C25B-B1B-C1B-C2B	$156.69(16)$
C17B-B1B-C1B-C2B	$40.6(2)$
C6B-C1B-C2B-C3B	$1.9(3)$
B1B-C1B-C2B-C3B	$174.89(17)$
C1B-C2B-C3B-C4B	$-2.3(3)$
C1B-C2B-C3B-C7B	$173.4(2)$
C2B-C3B-C4B-C5B	$1.0(3)$
C7B-C3B-C4B-C5B	$-174.9(2)$
C3B-C4B-C5B-C6B	$0.6(3)$
C3B-C4B-C5B-C8B	$-178.60(19)$
C4B-C5B-C6B-C1B	$-0.9(3)$
C8B-C5B-C6B-C1B	$178.28(18)$
C2B-C1B-C6B-C5B	$-0.3(3)$
B1B-C1B-C6B-C5B	$-173.49(17)$
C2B-C3B-C7B-F1B	$127.2(2)$
C4B-C3B-C7B-F1B	$-56.9(3)$
C2B-C3B-C7B-F3B	$5.7(3)$
C4B-C3B-C7B-F3B	$-178.4(2)$
C2B-C3B-C7B-F2B	$-112.7(3)$
C4B-C3B-C7B-F2B	$63.2(3)$
C4B-C5B-C8B-F6B	$-141.4(2)$
C6B-C5B-C8B-F6B	$39.4(3)$
C4B-C5B-C8B-F4B	$-19.7(3)$
C6B-C5B-C8B-F4B	$161.1(2)$
C4B-C5B-C8B-F5B	$101.0(2)$
C6B-C5B-C8B-F5B	$-78.3(2)$
C1B-B1B-C9B-C14B	$99.02(18)$
C25B-B1B-C9B-C14B	$-140.80(16)$
C17B-B1B-C9B-C14B	$-25.6(2)$
C1B-B1B-C9B-C10B	$-74.85(19)$
C25B-B1B-C9B-C10B	$45.3(2)$
C17B-B1B-C9B-C10B	$160.48(15)$
C14B-C9B-C10B-C11B	$1.2(3)$
B1B-C9B-C10B-C11B	$175.50(16)$
C9B-C10B-C11B-C12B	$-0.3(3)$
C9B-C10B-C11B-C15B	$-179.88(18)$
C10B-C11B-C12B-C13B	$-0.9(3)$
C15B-C11B-C12B-C13B	$178.64(18)$
C11B-C12B-C13B-C14B	$1.3(3)$
C11B-C12B-C13B-C16B	$-176.67(16)$
C13	

C10B-C9B-C14B-C13B -0.9(2)
B1B-C9B-C14B-C13B -175.06(15)
C12B-C13B-C14B-C9B $\quad-0.4(3)$
C16B-C13B-C14B-C9B 177.64(16)
C10B-C11B-C15B-F10" 77.4(8) C12B-C11B-C15B-F10" -102.1(8)
C10B-C11B-C15B-F11' -83.3(9)
C12B-C11B-C15B-F11' 97.2(9)
C10B-C11B-C15B-F12B -6.6(6)
C12B-C11B-C15B-F12B 173.8(5)
C10B-C11B-C15B-F11B -129.5(3)
C12B-C11B-C15B-F11B 50.9(4)
C10B-C11B-C15B-F10' 137.0(6)
C12B-C11B-C15B-F10' $-42.6(7)$
C10B-C11B-C15B-F10B 116.8(4)
C12B-C11B-C15B-F10B -62.8(4)
C10B-C11B-C15B-F11" -153.3(5)
C12B-C11B-C15B-F11" 27.1(5)
C10B-C11B-C15B-F12" -47.3(5)
C12B-C11B-C15B-F12" 133.1(4)
C10B-C11B-C15B-F12' 29.1(5)
C12B-C11B-C15B-F12' -150.4(4)
C12B-C13B-C16B-F8B -16.7(2)
C14B-C13B-C16B-F8B 165.31(16)
C12B-C13B-C16B-F7B -138.81(18)
C14B-C13B-C16B-F7B 43.2(2)
C12B-C13B-C16B-F9B 103.6(2)
C14B-C13B-C16B-F9B -74.4(2)
C1B-B1B-C17B-C18B $\quad-169.22(15)$
C9B-B1B-C17B-C18B -51.5(2)
C25B-B1B-C17B-C18B 69.66(18)
C1B-B1B-C17B-C22B 18.7(2)
C9B-B1B-C17B-C22B 136.45(17)
C25B-B1B-C17B-C22B $-102.38(18)$
C22B-C17B-C18B-C19B 0.1(2)
B1B-C17B-C18B-C19B -172.79(16)
C17B-C18B-C19B-C20B -1.5(3)
C17B-C18B-C19B-C23B 175.43(17)
C18B-C19B-C20B-C21B 1.3(3)
C23B-C19B-C20B-C21B -175.53(17)
C19B-C20B-C21B-C22B 0.1(3)
C19B-C20B-C21B-C24B 179.39(17)
C18B-C17B-C22B-C21B 1.3(2)
B1B-C17B-C22B-C21B 173.60(16)
С20B-C21B-C22B-C17B -1.5(3)
C24B-C21B-C22B-C17B 179.23(17)
C20B-C19B-C23B-F15B -5.4(4)

C18B-C19B-C23B-F15B 177.7(3)
C20B-C19B-C23B-F14' 94.9 (8
C18B-C19B-C23B-F14' -82.1(8)
C20B-C19B-C23B-F14B -128.3(3)
C18B-C19B-C23B-F14B 54.8(3)
C20B-C19B-C23B-F13' $-146.0(7)$
C18B-C19B-C23B-F13' 37.0(7)
C20B-C19B-C23B-F13B 114.1(3)
C18B-C19B-C23B-F13B -62.8(3)
C20B-C19B-C23B-F15' -20.2(7)
C18B-C19B-C23B-F15' 162.8(7)
C20B-C21B-C24B-F18B 137.2(2)
C22B-C21B-C24B-F18B -43.4(3) C20B-C21B-C24B-F16B 16.9(3) C22B-C21B-C24B-F16B -163.8(2) C20B-C21B-C24B-F17B -104.3(2) C22B-C21B-C24B-F17B 75.0(2) C1B-B1B-C25B-C26B 139.19(17) C9B-B1B-C25B-C26B 24.0(2) C17B-B1B-C25B-C26B -97.15(19) C1B-B1B-C25B-C30B -48.8(2) C9B-B1B-C25B-C30B -163.97 (14) C17B-B1B-C25B-C30B 74.90(18) C30B-C25B-C26B-C27B 1.3(3) B1B-C25B-C26B-C27B 173.58(17) C25B-C26B-C27B-C28B -1.0(3) C25B-C26B-C27B-C31B 179.62(19) C26B-C27B-C28B-C29B -0.1(3) C31B-C27B-C28B-C29B 179.30(19) C27B-C28B-C29B-C30B 0.7(3) C27B-C28B-C29B-C32B -178.92(17) C28B-C29B-C30B-C25B -0.3(3) C32B-C29B-C30B-C25B 179.32(16) C26B-C25B-C30B-C29B -0.7(2) B1B-C25B-C30B-C29B -173.39(15) C28B-C27B-C31B-F20B -113.1(3) C26B-C27B-C31B-F20B 66.3(3) C28B-C27B-C31B-F19B 126.5(3) C26B-C27B-C31B-F19B -54.1(3) C28B-C27B-C31B-F21B 5.2(3) C26B-C27B-C31B-F21B -175.4(2) C28B-C29B-C32B-F23B -95.3(2) C30B-C29B-C32B-F23B 85.0(2) C28B-C29B-C32B-F22B 143.70 (18) C30B-C29B-C32B-F22B -36.0(2) C28B-C29B-C32B-F24B 23.7(3) C30B-C29B-C32B-F24B -155.94(16)
μ-Chloro bis-\{[(2',4', $\mathbf{6}^{\prime}$-triisopropyl-1,1'-biphenyl-2-yl)di-tertbutylphosphine] gold(I) \} tetrakis[3,5bis(trifluoromethyl)phenyl] borate (85)

Table 10. Crystal data and structure refinement for 85.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta $=30.41^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}

$$
\begin{aligned}
& \mathrm{C} 91.30 \mathrm{H} 105 \mathrm{Au} 2 \mathrm{~B} \text { C11.60 F24 P2 } \\
& 2181.76 \\
& 100(2) \mathrm{K} \\
& 0.71073 \AA \\
& \text { Triclinic } \\
& \mathrm{P}-1 \\
& \mathrm{a}=12.6200(10) \AA \\
& \alpha=75.106(3)^{\circ} . \\
& \mathrm{b}=19.7026(15) \AA \\
& \beta=80.481(3)^{\circ} . \\
& \mathrm{c}=19.7379(16) \AA \\
& \gamma=77.609(3)^{\circ} . \\
& 4600.7(6) \AA^{3} \\
& 2 \\
& 1.575 \mathrm{Mg}^{\circ} \mathrm{m}^{3} \\
& 3.359 \mathrm{~mm}^{-1} \\
& 2178 \\
& 0.20 \mathrm{x} 0.10 \mathrm{x} 0.06 \mathrm{~mm}^{3} \\
& 1.66 \text { to } 30.41{ }^{\circ} . \\
& -17<=\mathrm{h}<=15 \\
& -28<=\mathrm{k}<=25 \\
& -27<=1<=28 \\
& 59215 \\
& 24039[\mathrm{R}(\text { int })=0.0367] \\
& 86.4 \% \\
& \text { Empirical } \\
& 0.8239 \text { and } 0.5531 \\
& \text { Full-matrix least-squares on } \mathrm{F}^{2} \\
& 24039 / 343 / 1337 \\
& 1.051
\end{aligned}
$$

Experimental Section

Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0334$
	$\mathrm{wR} 2=0.0640$
R indices (all data)	$\mathrm{R} 1=0.0557$
	$\mathrm{wR} 2=0.0707$
Largest diff. peak and hole	1.043 and -0.929 e. \AA^{-3}

Table 11. Bond lengths [A] and angles [ํ for 85.

Bond lengths:		C37-C42	1.523(4)
Au1-P1	2.2509(9)	C38-C39	$1.384(5)$
Au1-Cl1	2.3463(8)	C39-C40	1.406 (5)
Au2-P2	2.2438(8)	C39-C45	1.517(5)
$\mathrm{Au} 2-\mathrm{Cl} 1$	2.3348(8)	C40-C41	1.390 (5)
P1-C1	1.823(3)	C41-C48	1.527(5)
P1-C22	$1.878(4)$	C42-C43	1.532(4)
P1-C26	$1.885(4)$	C42-C44	1.539(4)
P2-C30	1.831(3)	C45-C46	1.523(6)
P2-C51	1.879(3)	C45-C47	1.527(6)
P2-C55	1.887(3)	C48-C50	1.529(5)
C1-C2	$1.401(5)$	C48-C49	1.537(5)
C1-C6	$1.418(5)$	C51-C52	1.527(5)
C2-C3	$1.380(5)$	C51-C53	$1.530(5)$
C3-C4	$1.371(6)$	C51-C54	1.537(5)
C4-C5	1.379(6)	C55-C58	$1.536(5)$
C5-C6	$1.397(5)$	C55-C56	$1.539(5)$
C6-C7	$1.511(5)$	C55-C57	1.542(5)
C7-C8	$1.407(5)$	B1A-C25A	1.632(4)
C7-C12	$1.416(4)$	B1A-C17A	1.640 (5)
C8-C9	$1.388(5)$	B1A-C9A	1.641(5)
C8-C13	$1.524(5)$	B1A-C1A	1.651(5)
C9-C10	$1.385(5)$	C1A-C6A	1.393(4)
C10-C11	1.390 (5)	C1A-C2A	1.402(4)
C10-C16	$1.516(5)$	C2A-C3A	1.389(4)
C11-C12	$1.388(5)$	C3A-C4A	1.387(4)
C12-C19	$1.517(5)$	C3A-C7A	$1.505(5)$
C13-C14	$1.532(5)$	C4A-C5A	$1.381(5)$
C13-C15	$1.542(5)$	C5A-C6A	1.399(4)
C16-C18	$1.502(5)$	C5A-C8A	1.493 (5)
C16-C17	$1.523(5)$	C7A-F3'	1.299(8)
C16-C17'	$1.538(6)$	C7A-F1A	$1.306(4)$
C16-C18'	1.552(6)	C7A-F2'	$1.312(9)$
C19-C20	$1.532(5)$	C7A-F2A	1.326 (5)
C19-C21	1.542 (5)	C7A-F3A	1.371(4)
C22-C25'	1.479(14)	C7A-F1'	1.434(8)
C22-C23	$1.509(6)$	C8A-F4A	1.330 (4)
C22-C24	$1.518(6)$	C8A-F5A	1.333(4)
C22-C25	$1.573(6)$	C8A-F6A	1.342(4)
C22-C24'	1.583(14)	C9A-C14A	1.393(4)
C22-C23'	1.666(13)	C9A-C10A	$1.398(4)$
C26-C27	$1.519(5)$	C10A-C11A	1.390 (5)
C26-C29	$1.526(5)$	C11A-C12A	1.381(5)
C26-C28	$1.539(6)$	C11A-C15A	$1.505(5)$
C30-C31	$1.405(4)$	C12A-C13A	1.387 (5)
C30-C35	$1.414(5)$	C13A-C14A	1.390 (4)
C31-C32	$1.380(5)$	C13A-C16A	$1.495(5)$
C32-C33	$1.378(5)$	C15A-F7'	1.310(5)
C33-C34	$1.377(5)$	C15A-F9A	1.312(5)
C34-C35	$1.396(5)$	C15A-F8'	1.341(5)
C35-C36	$1.512(5)$	C15A-F8A	$1.342(5)$
C36-C37	$1.401(4)$	C15A-F7A	1.371(5)
C36-C41	$1.408(4)$	C15A-F9'	1.375 (5)
C37-C38	$1.393(5)$	C16A-F10A	1.319(4)

C16A-F12A	1.323(4)	C3-C4-C5	120.0(4)
C16A-F11A	$1.330(4)$	C4-C5-C6	122.0(4)
C17A-C18A	$1.393(4)$	C5-C6-C1	118.1(3)
C17A-C22A	$1.408(4)$	C5-C6-C7	114.0(3)
C18A-C19A	1.397(4)	C1-C6-C7	127.7(3)
C19A-C20A	1.384(4)	C8-C7-C12	119.5(3)
C19A-C23A	$1.486(4)$	C8-C7-C6	117.8(3)
C20A-C21A	1.383(4)	C12-C7-C6	121.8(3)
C21A-C22A	1.387(4)	C9-C8-C7	118.9(3)
C21A-C24A	1.499 (4)	C9-C8-C13	119.1(3)
C23A-F14A	$1.329(4)$	C7-C8-C13	122.0(3)
C23A-F15A	$1.336(4)$	C10-C9-C8	123.0(3)
C23A-F13A	$1.349(4)$	C9-C10-C11	117.1(3)
C24A-F16A	$1.335(4)$	C9-C10-C16	123.0(3)
C24A-F18A	1.341(4)	C11-C10-C16	119.9(3)
C24A-F17A	1.341(3)	C12-C11-C10	122.8(3)
C25A-C30A	$1.393(4)$	C11-C12-C7	118.7(3)
C25A-C26A	$1.409(4)$	C11-C12-C19	118.9(3)
C26A-C27A	$1.392(4)$	C7-C12-C19	122.4(3)
C27A-C28A	$1.380(4)$	C8-C13-C14	112.5(3)
C27A-C33A	1.490 (4)	C8-C13-C15	110.7(3)
C28A-C29A	1.384(4)	C14-C13-C15	109.3(3)
C29A-C30A	$1.396(4)$	C18-C16-C10	112.1(4)
C29A-C32A	$1.485(4)$	C18-C16-C17	111.4(4)
C32A-F23A	$1.298(4)$	C10-C16-C17	108.8(3)
C32A-F23'	$1.298(7)$	C18-C16-C17'	69.2(5)
C32A-F24A	1.317(4)	C10-C16-C17'	116.3(5)
C32A-F22A	$1.332(4)$	C17-C16-C17'	43.6(5)
C32A-F24'	$1.334(7)$	C18-C16-C18'	44.5(4)
C32A-F22'	$1.365(6)$	C10-C16-C18'	115.2(5)
C33A-F21'	$1.314(5)$	C17-C16-C18'	135.4(5)
C33A-F21A	$1.315(4)$	C17'-C16-C18'	106.4(5)
C33A-F20'	$1.327(5)$	C12-C19-C20	111.3(3)
C33A-F20A	$1.333(4)$	C12-C19-C21	112.4(3)
C33A-F19A	1.340 (4)	C20-C19-C21	109.5(3)
C33A-F19'	$1.366(5)$	C25'-C22-C23	74.2(7)
C1S-Cl1S	$1.775(9)$	C25'-C22-C24	125.5(8)
C1S-Cl2S	1.776 (9)	C23-C22-C24	110.2(4)
C1R-C2R	$1.516(5)$	C25'-C22-C25	33.7(7)
C2R-C3R	$1.521(5)$	C23-C22-C25	107.7(4)
C3R-C4R	$1.521(5)$	C24-C22-C25	108.6(4)
C4R-C5R	$1.516(5)$	C25'-C22-C24'	109.7(8)
		C23-C22-C24'	124.7(8)
Angles:		C24-C22-C24'	22.4(6)
P1-Au1-Cl1	176.82(3)	C25-C22-C24'	87.1(7)
P2-Au2-Cl1	173.03(3)	C25'-C22-C23'	104.4(8)
Au2-Cl1-Au1	94.82(3)	C23-C22-C23'	33.7(5)
C1-P1-C22	107.52(17)	C24-C22-C23'	80.6(6)
C1-P1-C26	108.15(16)	C25-C22-C23'	134.7(6)
C22-P1-C26	112.01(16)	C24'-C22-C23'	100.2(8)
C1-P1-Au1	111.04(11)	C25'-C22-P1	113.1(7)
C22-P1-Au1	110.77(11)	C23-C22-P1	108.1(3)
C26-P1-Au1	107.35(12)	C24-C22-P1	116.0(3)
C30-P2-C51	107.71(14)	C25-C22-P1	105.9(3)
C30-P2-C55	107.00(15)	C24'-C22-P1	118.6(8)
C51-P2-C55	112.27(15)	C23'-C22-P1	109.2(5)
C30-P2-Au2	111.92(11)	C27-C26-C29	109.2(4)
C51-P2-Au2	110.60(11)	C27-C26-C28	108.7(3)
C55-P2-Au2	107.34(11)	C29-C26-C28	105.3(4)
C2-C1-C6	118.3(3)	C27-C26-P1	116.9(3)
C2-C1-P1	117.7(3)	C29-C26-P1	106.4(2)
C6-C1-P1	124.1(3)	C28-C26-P1	109.7(3)
C3-C2-C1	122.0(4)	C31-C30-C35	118.7(3)
C4-C3-C2	119.5(4)	C31-C30-P2	116.5(3)

Experimental Section

C35-C30-P2	124.7(2)	F3'-C7A-F2A	121.9(6)
C32-C31-C30	122.0(3)	F1A-C7A-F2A	109.9(4)
C33-C32-C31	119.2(3)	F2'-C7A-F2A	21.1(5)
C34-C33-C32	119.7(3)	F3'-C7A-F3A	33.6(4)
C33-C34-C35	122.7(4)	F1A-C7A-F3A	105.5(4)
C34-C35-C30	117.6(3)	F2'-C7A-F3A	86.8(5)
C34-C35-C36	114.8(3)	F2A-C7A-F3A	105.7(4)
C30-C35-C36	127.6(3)	F3'-C7A-F1'	102.1(6)
C37-C36-C41	120.0(3)	F1A-C7A-F1'	33.7(3)
C37-C36-C35	119.3(3)	F2'-C7A-F1'	100.8(6)
C41-C36-C35	120.0(3)	F2A-C7A-F1'	81.2(5)
C38-C37-C36	118.9(3)	F3A-C7A-F1'	132.0(5)
C38-C37-C42	118.9(3)	F3'-C7A-C3A	118.8(5)
C36-C37-C42	122.0(3)	F1A-C7A-C3A	112.1(3)
C39-C38-C37	122.7(3)	F2'-C7A-C3A	112.9(6)
C38-C39-C40	117.3(3)	F2A-C7A-C3A	113.4(4)
C38-C39-C45	122.9(3)	F3A-C7A-C3A	109.7(3)
C40-C39-C45	119.8(3)	F1'-C7A-C3A	110.4(4)
C41-C40-C39	122.2(3)	F4A-C8A-F5A	107.4(3)
C40-C41-C36	118.9(3)	F4A-C8A-F6A	105.1(3)
C40-C41-C48	119.3(3)	F5A-C8A-F6A	104.6(3)
C36-C41-C48	121.7(3)	F4A-C8A-C5A	114.1(3)
C37-C42-C43	113.0(3)	F5A-C8A-C5A	112.5(3)
C37-C42-C44	109.5(3)	F6A-C8A-C5A	112.4(3)
C43-C42-C44	110.0(3)	C14A-C9A-C10A	115.6(3)
C39-C45-C46	113.8(3)	C14A-C9A-B1A	122.2(3)
C39-C45-C47	110.8(3)	C10A-C9A-B1A	121.8(3)
C46-C45-C47	109.6(4)	C11A-C10A-C9A	122.0(3)
C41-C48-C50	113.1(3)	C12A-C11A-C10A	121.1(3)
C41-C48-C49	110.6(3)	C12A-C11A-C15A	119.6(3)
C50-C48-C49	109.3(3)	C10A-C11A-C15A	119.2(3)
C52-C51-C53	107.6(3)	C11A-C12A-C13A	118.2(3)
C52-C51-C54	108.9(3)	C12A-C13A-C14A	120.2(3)
C53-C51-C54	108.9(3)	C12A-C13A-C16A	119.3(3)
C52-C51-P2	106.7(2)	C14A-C13A-C16A	120.5(3)
C53-C51-P2	116.2(2)	C13A-C14A-C9A	122.9(3)
C54-C51-P2	108.3(2)	F7'-C15A-F9A	79.8(4)
C58-C55-C56	108.4(3)	F7'-C15A-F8'	107.7(6)
C58-C55-C57	106.9(3)	F9A-C15A-F8'	116.2(8)
C56-C55-C57	108.5(3)	F7'-C15A-F8A	119.8(7)
C58-C55-P2	107.6(2)	F9A-C15A-F8A	108.3(6)
C56-C55-P2	115.7(2)	F8'-C15A-F8A	14.7(7)
C57-C55-P2	109.4(2)	F7'-C15A-F7A	26.8(4)
C25A-B1A-C17A	112.8(2)	F9A-C15A-F7A	105.4(5)
C25A-B1A-C9A	104.5(2)	F8'-C15A-F7A	89.2(6)
C17A-B1A-C9A	112.8(3)	F8A-C15A-F7A	103.4(5)
C25A-B1A-C1A	111.9(3)	F7'-C15A-F9'	106.0(4)
C17A-B1A-C1A	103.0(2)	F9A-C15A-F9'	26.2(4)
C9A-B1A-C1A	112.1(2)	F8'-C15A-F9'	105.6(5)
C6A-C1A-C2A	115.6(3)	F8A-C15A-F9'	93.4(6)
C6A-C1A-B1A	121.7(3)	F7A-C15A-F9'	131.0(5)
C2A-C1A-B1A	122.3(3)	F7'-C15A-C11A	115.7(4)
C3A-C2A-C1A	122.1(3)	F9A-C15A-C11A	118.5(5)
C4A-C3A-C2A	121.2(3)	F8'-C15A-C11A	113.8(6)
C4A-C3A-C7A	117.8(3)	F8A-C15A-C11A	111.3(6)
C2A-C3A-C7A	121.0(3)	F7A-C15A-C11A	108.6(4)
C5A-C4A-C3A	117.9(3)	F9'-C15A-C11A	107.2(4)
C4A-C5A-C6A	120.8(3)	F10A-C16A-F12A	106.3(4)
C4A-C5A-C8A	120.2(3)	F10A-C16A-F11A	105.7(3)
C6A-C5A-C8A	119.1(3)	F12A-C16A-F11A	105.2(3)
C1A-C6A-C5A	122.4(3)	F10A-C16A-C13A	113.6(3)
F3'-C7A-F1A	72.2(5)	F12A-C16A-C13A	112.4(3)
F3'-C7A-F2'	109.7(7)	F11A-C16A-C13A	113.0(3)
F1A-C7A-F2'	125.3(6)	C18A-C17A-C22A	115.5(3)

C18A-C17A-B1A	$123.2(3)$	F23A-C32A-F24'	$44.3(4)$
C22A-C17A-B1A	$120.6(3)$	F23'-C32A-F24'	$104.8(5)$
C17A-C18A-C19A	$122.4(3)$	F24A-C32A-F24'	$131.9(4)$
C20A-C19A-C18A	$120.5(3)$	F22A-C32A-F24'	$64.8(4)$
C20A-C19A-C23A	$120.2(3)$	F23A-C32A-F22'	$60.6(4)$
C18A-C19A-C23A	$119.2(3)$	F23'-C32A-F22'	$104.3(5)$
C21A-C20A-C19A	$118.4(3)$	F24A-C32A-F22'	$50.8(4)$
C20A-C21A-C22A	$120.8(3)$	F22A-C32A-F22'	$130.7(4)$
C20A-C21A-C24A	$119.7(3)$	F24'-C32A-F22'	$99.2(5)$
C22A-C21A-C24A	$119.5(3)$	F23A-C32A-C29A	$111.8(3)$
C21A-C22A-C17A	$122.3(3)$	F23'-C32A-C29A	$115.5(4)$
F14A-C23A-F15A	$106.7(3)$	F24A-C32A-C29A	$112.0(3)$
F14A-C23A-F13A	$105.3(3)$	F22A-C32A-C29A	$113.1(3)$
F15A-C23A-F13A	$105.6(3)$	F24'-C32A-C29A	$115.3(4)$
F14A-C23A-C19A	$113.3(3)$	F22'-C32A-C29A	$115.7(3)$
F15A-C23A-C19A	$113.6(3)$	F21'-C33A-F21AA	$122.6(6)$
F13A-C23A-C19A	$111.7(3)$	F21'-C33A-F20'	$108.3(6)$
F16A-C24A-F18A	$106.6(3)$	F21A-C33A-F20'	$68.4(5)$
F16A-C24A-F17A	$106.7(3)$	F21'-C33A-F20A	$31.0(4)$
F18A-C24A-F17A	$106.2(3)$	F21A-C33A-F20A	$106.4(4)$
F16A-C24A-C21A	$112.5(3)$	F20'-C33A-F20A	$130.5(5)$
F18A-C24A-C21A	$111.9(3)$	F21'-C33A-F19A	$73.3(5)$
F17A-C24A-C21A	$112.4(3)$	F21A-C33A-F19A	$106.5(4)$
C30A-C25A-C26A	$115.3(3)$	F20'-C33A-F19A	$42.0(4)$
C30A-C25A-B1AA	$121.4(3)$	F20A-C33A-F19A	$103.2(3)$
C26A-C25A-B1A	$123.1(3)$	F21'-C33A-F19'	$105.7(6)$
C27A-C26A-C25A	$122.3(3)$	F21A-C33A-F19'	$34.0(4)$
C28A-C27A-C26A	$120.8(3)$	F20'-C33A-F19'	$101.6(5)$
C28A-C27A-C33A	$119.6(3)$	F20A-C33A-F19'	$79.4(5)$
C26A-C27A-C33A	$119.6(3)$	F19A-C33A-F19'	$133.9(5)$
C27A-C28A-C29A	$118.4(3)$	F21'-C33A-C27A	$117.3(5)$
C28A-C29A-C30A	$120.6(3)$	F21A-C33A-C27A	$115.3(3)$
C28A-C29A-C32A	$120.3(3)$	F20'-C33A-C27A	$113.7(5)$
C30A-C29A-C32A	$119.0(3)$	F20A-C33A-C27A	$112.5(3)$
C25A-C30A-C29A	$122.6(3)$	F19A-C33A-C27A	$112.0(3)$
F23A-C32A-F23'	$131.9(5)$	F19'-C33A-C27A	$108.9(5)$
F23A-C32A-F24A	$108.9(4)$	C11S-C1S-C12S	$110.1(8)$
F23'-C32A-F24A	C1R-C2R-C3R	$110.9(7)$	
F23A-C32A-F22A	C2R-C3R-C4R	$110.4(7)$	
F23'-C32A-F22A	C5R-C4R-C3R	$110.4(8)$	
F24A-C32A-F22A			

Table 12. Torsion angles [1 for 85.

P2-Au2-C11-Au1	$-108.5(2)$
P1-Au1-Cl1-Au2	$-86.7(5)$
C11-Au1-P1-C1	$-122.1(5)$
Cl1-Au1-P1-C22	$118.5(5)$
Cl1-Au1-P1-C26	$-4.1(6)$
Cl1-Au2-P2-C30	$-127.8(3)$
C11-Au2-P2-C51	$112.1(3)$
Cl1-Au2-P2-C55	$-10.7(3)$
C22-P1-C1-C2	$-61.0(3)$
C26-P1-C1-C2	$60.1(3)$
Au1-P1-C1-C2	$177.7(2)$
C22-P1-C1-C6	$120.1(3)$
C26-P1-C1-C6	$-118.7(3)$
Au1-P1-C1-C6	$-1.2(3)$
C6-C1-C2-C3	$-0.4(6)$
P1-C1-C2-C3	$-179.3(3)$
C1-C2-C3-C4	$-2.2(6)$
C2-C3-C4-C5	$1.8(7)$
C3-C4-C5-C6	$1.2(7)$

C4-C5-C6-C1	$-3.8(6)$
C4-C5-C6-C7	$170.7(4)$
C2-C1-C6-C5	$3.3(5)$
P1-C1-C6-C5	$-177.9(3)$
C2-C1-C6-C7	$-170.3(3)$
P1-C1-C6-C7	$8.6(5)$
C5-C6-C7-C8	$-77.5(4)$
C1-C6-C7-C8	$96.3(4)$
C5-C6-C7-C12	$91.8(4)$
C1-C6-C7-C12	$-94.4(4)$
C12-C7-C8-C9	$2.0(5)$
C6-C7-C8-C9	$171.6(3)$
C12-C7-C8-C13	$-176.7(3)$
C6-C7-C8-C13	$-7.2(5)$
C7-C8-C9-C10	$-0.7(5)$
C13-C8-C9-C10	$178.1(3)$
C8-C9-C10-C11	$-0.9(5)$
C8-C9-C10-C16	$178.5(3)$
C9-C10-C11-C12	$1.2(5)$

Experimental Section

C16-C10-C11-C12	-178.2(3)	P2-C30-C35-C34 17	175.5(2)
C10-C11-C12-C7	$0.0(5)$	C31-C30-C35-C36 -	-178.3(3)
C10-C11-C12-C19	-178.6(3)	P2-C30-C35-C36 -2	-2.3(5)
C8-C7-C12-C11	-1.7(5)	C34-C35-C36-C37	-83.1(4)
C6-C7-C12-C11	-170.8(3)	C30-C35-C36-C37	94.8(4)
C8-C7-C12-C19	176.9(3)	C34-C35-C36-C41	87.3(4)
C6-C7-C12-C19	7.8(5)	C30-C35-C36-C41	-94.9(4)
C9-C8-C13-C14	44.9(4)	C41-C36-C37-C38	3.5(5)
C7-C8-C13-C14	-136.4(3)	C35-C36-C37-C38	173.9(3)
C9-C8-C13-C15	-77.6(4)	C41-C36-C37-C42	-172.1(3)
C7-C8-C13-C15	101.1(4)	C35-C36-C37-C42	-1.7(5)
C9-C10-C16-C18	-3.1(6)	C36-C37-C38-C39	-0.8(5)
C11-C10-C16-C18	176.4(4)	C42-C37-C38-C39	174.9(3)
C9-C10-C16-C17	120.6(4)	C37-C38-C39-C40	-1.9(5)
C11-C10-C16-C17	-60.0(5)	C37-C38-C39-C45	179.7(4)
C9-C10-C16-C17	73.8(7)	C38-C39-C40-C41	2.0(6)
C11-C10-C16-C17	'-106.7(7)	C45-C39-C40-C41	-179.6(4)
C9-C10-C16-C18	-51.8(7)	C39-C40-C41-C36	0.6(5)
C11-C10-C16-C18'	8' 127.7(6)	C39-C40-C41-C48 -	-174.9(3)
C11-C12-C19-C20	74.7(4)	C37-C36-C41-C40	-3.4(5)
C7-C12-C19-C20	-103.9(4)	C35-C36-C41-C40	-173.7(3)
C11-C12-C19-C21	-48.6(4)	C37-C36-C41-C48	171.9(3)
C7-C12-C19-C21	132.9(3)	C35-C36-C41-C48	1.6(5)
C1-P1-C22-C25'	-152.2(8)	C38-C37-C42-C43	45.7(4)
C26-P1-C22-C25'	89.1(8)	C36-C37-C42-C43 -	-138.7(3)
Au1-P1-C22-C25'	-30.7(8)	C38-C37-C42-C44	77.3(4)
C1-P1-C22-C23 -	-72.2(3)	C36-C37-C42-C44	98.2(4)
C26-P1-C22-C23	169.2(3)	C38-C39-C45-C46	8.6(6)
Au1-P1-C22-C23	49.3(3)	C40-C39-C45-C46 -	-169.8(4)
C1-P1-C22-C24	52.2(4)	C38-C39-C45-C47 -	-115.5(4)
C26-P1-C22-C24	-66.5(4)	C40-C39-C45-C47	66.1(5)
Au1-P1-C22-C24	173.7(3)	C40-C41-C48-C50	-45.9(5)
C1-P1-C22-C25	172.7(3)	C36-C41-C48-C50	138.7(3)
C26-P1-C22-C25	54.0(3)	C40-C41-C48-C49	77.0(4)
Au1-P1-C22-C25	-65.8(3)	C36-C41-C48-C49 -	-98.3(4)
C1-P1-C22-C24'	77.3(7)	C30-P2-C51-C52 -70.5	-70.5(3)
C26-P1-C22-C24'	-41.4(7)	C55-P2-C51-C52 172.	172.0(2)
Au1-P1-C22-C24'	-161.2(7)	Au2-P2-C51-C52 52.	52.1(2)
C1-P1-C22-C23'	-36.5(6)	C30-P2-C51-C53 49	49.4(3)
C26-P1-C22-C23'	-155.2(6)	C55-P2-C51-C53 -6	-68.1(3)
Au1-P1-C22-C23'	85.0(6)	Au2-P2-C51-C53 172	172.0(2)
C1-P1-C26-C27	-75.1(3)	C30-P2-C51-C54 172,	172.4(2)
C22-P1-C26-C27	43.2(4)	C55-P2-C51-C54 54	54.8(3)
Au1-P1-C26-C27	165.0(3)	Au2-P2-C51-C54 -6	-65.0(3)
C1-P1-C26-C29	47.2(3)	C30-P2-C55-C58 41	41.9(3)
C22-P1-C26-C29	165.5(3)	C51-P2-C55-C58 15	159.9(2)
Au1-P1-C26-C29	-72.7(3)	Au2-P2-C55-C58 -78.4	-78.4(2)
C1-P1-C26-C28	160.6(3)	C30-P2-C55-C56 -79	-79.5(3)
C22-P1-C26-C28	-81.1(3)	C51-P2-C55-C56 38	38.5(3)
Au1-P1-C26-C28	40.7(3)	Au2-P2-C55-C56 160	160.3(2)
C51-P2-C30-C31	-66.6(3)	C30-P2-C55-C57 157	157.7(2)
C55-P2-C30-C31	54.3(3)	C51-P2-C55-C57 -8	84.3(3)
Au2-P2-C30-C31	171.6(2)	Au2-P2-C55-C57 37	37.4(2)
C51-P2-C30-C35	117.3(3)	C25A-B1A-C1A-C6A	A 152.3(3)
C55-P2-C30-C35	-121.8(3)	C17A-B1A-C1A-C6A	A -86.3(3)
Au2-P2-C30-C35	-4.4(3)	C9A-B1A-C1A-C6A	35.3(4)
C35-C30-C31-C32	1.6(5)	C25A-B1A-C1A-C2A	A -35.3(4)
P2-C30-C31-C32	-174.8(2)	C17A-B1A-C1A-C2A	A 86.1(3)
C30-C31-C32-C33	-0.6(5)	C9A-B1A-C1A-C2A	A -152.3(3)
C31-C32-C33-C34	-1.4(5)	C6A-C1A-C2A-C3A	-1.3(5)
C32-C33-C34-C35	2.5(5)	B1A-C1A-C2A-C3A	- $174.1(3)$
C33-C34-C35-C30	-1.5(5)	C1A-C2A-C3A-C4A	0.4(5)
C33-C34-C35-C36	176.6(3)	C1A-C2A-C3A-C7A	A 178.9(3)
C31-C30-C35-C34	-0.5(4)	C2A-C3A-C4A-C5A	A 0.1(5)

C7A-C3A-C4A-C5A -	$-178.4(3)$
C3A-C4A-C5A-C6A 0	0.3(5)
C3A-C4A-C5A-C8A -	-179.2(3)
C2A-C1A-C6A-C5A 1	1.7(5)
B1A-C1A-C6A-C5A 1	174.6(3)
C4A-C5A-C6A-C1A -	-1.3(5)
C8A-C5A-C6A-C1A 17	178.2(3)
C4A-C3A-C7A-F3' -17	-17.1(7)
C2A-C3A-C7A-F3' 16	164.4(5)
C4A-C3A-C7A-F1A 6	64.1(5)
C2A-C3A-C7A-F1A -11	-114.4(4)
C4A-C3A-C7A-F2' -1	-147.7(5)
C2A-C3A-C7A-F2' 33	33.8(6)
C4A-C3A-C7A-F2A -1	-170.7(4)
C2A-C3A-C7A-F2A 10.8	10.8(5)
C4A-C3A-C7A-F3A -52	-52.7(4)
C2A-C3A-C7A-F3A 128	128.7(4)
C4A-C3A-C7A-F1' 100	100.3(5)
C2A-C3A-C7A-F1' -78	-78.2(5)
C4A-C5A-C8A-F4A -4.	-4.4(5)
C6A-C5A-C8A-F4A 1	176.1(3)
C4A-C5A-C8A-F5A 1	118.3(4)
C6A-C5A-C8A-F5A -	-61.2(5)
C4A-C5A-C8A-F6A -1	-124.0(4)
C6A-C5A-C8A-F6A 56	56.6(4)
C25A-B1A-C9A-C14A	4A 87.7(3)
C17A-B1A-C9A-C14A	A -35.1(4)
C1A-B1A-C9A-C14A	A -150.9(3)
C25A-B1A-C9A-C10A	A -85.1(3)
C17A-B1A-C9A-C10A	A 152.1(3)
C1A-B1A-C9A-C10A	A 36.3(4)
C14A-C9A-C10A-C11A	11 A 0.8(4)
B1A-C9A-C10A-C11A	A 174.0(3)
C9A-C10A-C11A-C12A	12A 0.1(5)
C9A-C10A-C11A-C15A	15A -179.3(3)
C10A-C11A-C12A-C13A	C13A -0.2(5)
C15A-C11A-C12A-C13A	13A 179.2(3)
C11A-C12A-C13A-C14A	14A -0.6(5)
C11A-C12A-C13A-C16A	16A 177.0(3)
C12A-C13A-C14A-C9A	C9A 1.5(5)
C16A-C13A-C14A-C9A	-9A -176.1(3)
C10A-C9A-C14A-C13A	3A -1.5(4)
B1A-C9A-C14A-C13A	-174.7(3)
C12A-C11A-C15A-F7	7'-83.8(5)
C10A-C11A-C15A-F7'	7' 95.6(5)
C12A-C11A-C15A-F9A	9A 8.4(6)
C10A-C11A-C15A-F9A	9A -172.1(5)
C12A-C11A-C15A-F8'	8' 150.6(5)
C10A-C11A-C15A-F8'	8'-29.9(6)
C12A-C11A-C15A-F8A	8A 135.0(5)
C10A-C11A-C15A-F8A	8A -45.6(6)
C12A-C11A-C15A-F7A	7 A -111.7(5)
C10A-C11A-C15A-F7A	7A 67.7(5)
C12A-C11A-C15A-F9'	9' 34.2(5)
C10A-C11A-C15A-F9'	9' -146.4(4)
C12A-C13A-C16A-F10A	10A 153.2(3)
C14A-C13A-C16A-F10A	10A -29.2(5)
C12A-C13A-C16A-F12A	12A -86.0(4)
C14A-C13A-C16A-F12A	12A 91.6(4)
C12A-C13A-C16A-F11A	11A 32.9(5)
C14A-C13A-C16A-F11A	11A -149.5(3)
C25A-B1A-C17A-C18A	18A -148.6(3)
C9A-B1A-C17A-C18A	A -30.6(4)
C1A-B1A-C17A-C18A	A 90.5(3)

C25A-B1A-C17A-C22A 41.1(4)
C9A-B1A-C17A-C22A 159.1(3)
C1A-B1A-C17A-C22A -79.8(3)
C22A-C17A-C18A-C19A -1.3(4) B1A-C17A-C18A-C19A -172.0(3) C17A-C18A-C19A-C20A 2.4(5) C17A-C18A-C19A-C23A 178.3(3) C18A-C19A-C20A-C21A -1.3(4) C23A-C19A-C20A-C21A -177.1(3) C19A-C20A-C21A-C22A $-0.9(4)$ C19A-C20A-C21A-C24A 178.4(3) C20A-C21A-C22A-C17A $2.1(5)$ C24A-C21A-C22A-C17A -177.2(3) C18A-C17A-C22A-C21A -1.0(4) B1A-C17A-C22A-C21A 170.0(3) C20A-C19A-C23A-F14A -144.8(3) C18A-C19A-C23A-F14A 39.3(4) C20A-C19A-C23A-F15A $-22.9(4)$ C18A-C19A-C23A-F15A 161.2(3) C20A-C19A-C23A-F13A 96.5(4) C18A-C19A-C23A-F13A $\quad-79.4(4)$ C20A-C21A-C24A-F16A -151.5(3) C22A-C21A-C24A-F16A 27.8(4) C20A-C21A-C24A-F18A $-31.5(4)$ C22A-C21A-C24A-F18A 147.8(3) C20A-C21A-C24A-F17A 88.0(3) C22A-C21A-C24A-F17A $\quad-92.7(3)$ C17A-B1A-C25A-C30A -152.2(3) C9A-B1A-C25A-C30A 85.0(3) C1A-B1A-C25A-C30A $\quad-36.6(4)$ C17A-B1A-C25A-C26A 33.8(4) C9A-B1A-C25A-C26A -89.0(3) C1A-B1A-C25A-C26A 149.5(3) C30A-C25A-C26A-C27A 0.5(5) B1A-C25A-C26A-C27A 174.8(3) C25A-C26A-C27A-C28A $0.2(5)$ C25A-C26A-C27A-C33A $-178.5(3)$ C26A-C27A-C28A-C29A -0.6(5) C33A-C27A-C28A-C29A 178.1(3) C27A-C28A-C29A-C30A $0.3(5)$ C27A-C28A-C29A-C32A 178.7(3) C26A-C25A-C30A-C29A $-0.8(5)$ B1A-C25A-C30A-C29A -175.2(3) C28A-C29A-C30A-C25A $0.4(5)$ C32A-C29A-C30A-C25A $-178.0(3)$ C28A-C29A-C32A-F23A 108.5(5) C30A-C29A-C32A-F23A -73.1(5) C28A-C29A-C32A-F23' -62.5(7) C30A-C29A-C32A-F23' 115.9(6) C28A-C29A-C32A-F24A -129.0(4) C30A-C29A-C32A-F24A 49.5(5) C28A-C29A-C32A-F22A $-11.8(5)$ C30A-C29A-C32A-F22A 166.7(4) C28A-C29A-C32A-F24' 60.1(6) C30A-C29A-C32A-F24' -121.4(6) C28A-C29A-C32A-F22' 175.2(5) C30A-C29A-C32A-F22' -6.3(6) C28A-C27A-C33A-F21' 169.7(6) C26A-C27A-C33A-F21' -11.6(7) C28A-C27A-C33A-F21A 13.7(5) C26A-C27A-C33A-F21A -167.6(4) C28A-C27A-C33A-F20' -62.6(6) C26A-C27A-C33A-F20' 116.1(6) C28A-C27A-C33A-F20A 135.9(3)

C26A-C27A-C33A-F20A -45.4(4) C28A-C27A-C33A-F19A -108.4(4)
C26A-C27A-C33A-F19A 70.3(4)
C28A-C27A-C33A-F19' 49.9(5)

C26A-C27A-C33A-F19' -131.4(5)
C1R-C2R-C3R-C4R 178(3)
C2R-C3R-C4R-C5R 170(3)

DFT Calculations Data

(Ethynylbenzene) [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl) di-tert-butylphosphine] gold(I) hexafluoroantimonate (6)

Row	Symbol	X	Y	Z
1	P	-1.4220890	-2.0874300	-0.4061630
2	C	0.1788090	-2.7175190	-1.2104470
3	C	-2.3153120	-3.4456610	0.5876250
4	Au	-0.9434760	-0.2923880	1.0399150
5	C	1.3957710	-1.2360410	4.0949600
6	C	2.4760610	-2.0838190	4.2892970
7	C	3.6327990	-1.9307820	3.5216410
8	C	3.7228000	-0.9230440	2.5640550
9	C	2.6539970	-0.0595050	2.3711790
10	C	1.4874140	-0.2185650	3.1318940
11	H	0.4784280	-1.3520800	4.6702980
12	H	2.4158710	-2.8737410	5.0348920
13	H	4.4688960	-2.6115660	3.6703340
14	H	4.6067580	-0.8157820	1.9387900
15	H	2.7139050	0.7190840	1.614450
16	C	0.3725430	0.6196820	2.8438180
17	C	-0.5781180	1.3368720	2.5111430
18	H	-1.2502100	2.1795120	2.4827910
19	C	-2.5210790	-1.5086180	-1.7572370
20	C	-2.9429100	-2.4586420	-2.7017470
21	C	-2.9291850	-0.1600410	-1.9137830
22	C	-3.7108650	-2.1118780	-3.8040660
23	H	-2.6704540	-3.5046590	-2.5728890
24	C	-3.6863600	0.1657550	-3.0487360
25	C	-4.0690480	-0.7823320	-3.9879260
26	H	-4.0214930	-2.8762780	-4.5128460
27	H	-3.9956330	1.2034950	-3.1770130
28	H	-4.6597540	-0.4831810	-4.8514630
29	C	-2.2070640	-4.8571540	0.0121000
30	H	-2.8372620	-5.5196140	0.6233470
31	H	-2.5696570	-4.9347370	-1.0201900
32	H	-1.1863200	-5.2553190	0.0600040
33	C	-1.7319360	-3.4552040	2.0060440
34	H	-0.6485820	-3.6309680	2.0218870
35	H	-1.9292860	-2.5116270	2.5340660
36	H	-2.2098930	-4.2653660	2.5763260
37	C	-3.7905070	-3.0613580	0.6760800
38	H	-4.2965380	-3.7649150	1.3528810
39	H	-3.9249610	-2.0538660	1.0891040
40	H	-4.2945540	-3.1092090	-0.2980160
41	C	0.0123960	-3.8435040	-2.2312360
42	H	1.0136280	-4.1039740	-2.6036380
43	H	-0.4277290	-4.7560610	-1.8195040
10				
10				

44	H	-0.5776330	-3.5256090	-3.0995610
45	C	1.1219400	-3.1645390	-0.0914530
46	H	2.1084120	-3.3735230	-0.5296700
47	H	1.2631710	-2.3844280	0.6718980
48	H	0.7824320	-4.0845950	0.4023800
49	C	0.8005600	-1.5307280	-1.9417070
50	H	0.9963650	-0.6828040	-1.2768990
51	H	1.7726540	-1.8412600	-2.3505820
52	H	0.1758290	-1.2003210	-2.7829740
53	C	-2.7328260	0.9901980	-0.9613870
54	C	-3.7520550	1.2748630	-0.0227310
55	C	-1.6831980	1.9223200	-1.1421180
56	C	-3.6882610	2.4543690	0.7229560
57	C	-1.6678420	3.0846270	-0.3713560
58	C	-2.6572800	3.3761820	0.5654780
59	H	-4.4845950	2.6613170	1.4384670
60	H	-0.8551940	3.8017430	-0.5096930
61	C	-0.5904250	1.7220980	-2.1692570
62	H	-0.6556850	0.6875090	-2.5326010
63	C	-2.6135680	4.6887070	1.3181620
64	H	-1.5500900	4.9275280	1.4909570
65	C	-3.3158620	4.6513960	2.6694550
66	H	-2.9579290	3.8296240	3.3053370
67	H	-3.1473050	5.5922180	3.2083100
68	H	-4.4028960	4.5353670	2.5536960
69	C	-3.2059630	5.7982100	0.4472310
70	H	-3.1501280	6.7694350	0.9567270
71	H	-2.6792170	5.8828230	-0.5120460
72	H	-4.2639410	5.5862440	0.2328540
73	C	0.8047600	1.9309550	-1.5827950
74	H	0.9295710	1.4141500	-0.6177060
75	H	1.5833860	1.5529630	-2.2564340
76	H	1.0165720	2.9962830	-1.4133880
77	C	-0.8068610	2.6361860	-3.3758700
78	H	-0.7773280	3.6941600	-3.0781180
79	H	-0.0194190	2.4770860	-4.1247780
80	H	-1.7767950	2.4501640	-3.8565260
81	C	-4.9585830	0.3754150	0.1579310
82	H	-4.7401950	-0.5914250	-0.3188540
83	C	-5.2790720	0.1129760	1.6285090
84	H	-5.6902010	1.0054100	2.1199800
85	H	-6.0323700	-0.6813610	1.7192030
86	H	-4.3865300	-0.1920470	2.1951560
87	C	-6.1789520	0.9657840	-0.5505590
88	H	-7.0505060	0.3080020	-0.4317350
89	H	-6.4371810	1.9475370	-0.1283950
90	H	-5.9965090	1.0988180	-1.6250220
91	Sb	4.8787650	0.6956260	-0.8953340
92	F	4.6758450	1.5884500	0.7565870
93	F	3.9624760	2.0950200	-1.7563290
94	F	3.2422050	-0.1914300	-0.5760190
95	F	6.5137450	1.5721190	-1.1810540
96	F	5.7859810	-0.7017200	-0.0056140
97	F	5.0416060	-0.2238770	-2.5257130

(Ethynylbenzene) [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl) di-tert-butylphosphinel gold(I) tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (83)

Row	Symbol	X	Y	Z
1	P	3.6413760	0.7558520	1.7393810
2	C	4.9163240	1.9952040	2.4240960
3	C	1.8480760	1.2686030	2.0874640
4	Au	3.9509760	0.6456680	-0.5912480
5	C	3.7843180	4.1131330	-2.4844230
6	C	4.0112810	5.4452710	-2.1722350
7	C	5.2795750	5.8578110	-1.7665560
8	C	6.3267120	4.9409080	-1.6759160
9	C	6.1092190	3.6043230	-1.9781390
10	C	4.8314270	3.1859860	-2.3799690
11	H	2.8013510	3.7753310	-2.8038790
12	H	3.1967930	6.1628550	-2.2457090
13	H	5.4556200	6.9033340	-1.5217710
14	H	7.3150970	5.2709620	-1.3640860
15	H	6.9143280	2.8750950	-1.9009860
16	C	4.5704810	1.8053940	-2.6271950
17	C	4.3296090	0.6071960	-2.8005940
18	H	4.2075550	-0.3537050	-3.2727890
19	C	3.9636340	-0.8626430	2.5566920
20	C	3.8756410	-0.9038910	3.9588450
21	C	4.3315890	-2.0459960	1.8668700
22	C	4.1721360	-2.0475510	4.6867180
23	H	3.5758130	-0.0159030	4.5083440
24	C	4.6590370	-3.1760660	2.6297290
25	C	4.5868860	-3.1900290	4.0153660
26	H	4.0865640	-2.0368650	5.7709800
27	H	4.9592240	-4.0795220	2.0984460
28	H	4.8428210	-4.0938810	4.5645750
29	C	1.5406900	1.6092760	3.5430810
30	H	0.4801080	1.8863540	3.6138790
31	H	1.6967680	0.7622530	4.2223650
32	H	2.1149880	2.4715290	3.9034430
33	C	1.4728200	2.4654860	1.2119210
34	H	1.9875630	3.3913210	1.4901730
35	H	1.6617350	2.2700740	0.1456190
36	H	0.3919910	2.6410050	1.3336670
37	C	0.9883680	0.0886420	1.6418580
38	H	-0.0727450	0.3663620	1.7339960
39	H	1.1672930	-0.1629030	0.5860820
40	H	1.1524400	-0.8073510	2.2539440
41	C	5.0170160	2.0694110	3.9486530
42	H	5.7002230	2.8933470	4.2009510
43	H	4.0623030	2.2781360	4.4444970
44	H	5.4437710	1.1549610	4.3759640
45	C	4.5914150	3.3878140	1.8769450
46	H	5.4597440	4.0401230	2.0514620
47	H	4.3929700	3.3885980	0.7943220
48	H	3.7372710	3.8443040	2.3915300
49	C	6.2841990	1.5693650	1.8930300

50	H	6.3325350	1.5994010	0.7964380
51	H	7.0415040	2.2661750	2.2810290
52	H	6.5619790	0.5612330	2.2290740
53	C	4.3401090	-2.2813520	0.3831140
54	C	3.2000220	-2.8692770	-0.2165750
55	C	5.5223840	-2.1311210	-0.3736230
56	C	3.2515330	-3.2229670	-1.5636280
57	C	5.5185010	-2.5041750	-1.7206420
58	C	4.3927330	-3.0365890	-2.3414100
59	H	2.3613910	-3.6574420	-2.0213490
60	H	6.4329360	-2.3874100	-2.3063390
61	C	6.8233330	-1.6718820	0.2523550
62	H	6.5903060	-1.2241510	1.2294550
63	C	4.4395180	-3.4584200	-3.7936250
64	H	5.3717270	-3.0507170	-4.2200840
65	C	3.2721160	-2.9164840	-4.6146850
66	H	3.1869390	-1.8224860	-4.5545660
67	H	3.3939960	-3.1851360	-5.6720460
68	H	2.3139770	-3.3353100	-4.2783970
69	C	4.5028540	-4.9816720	-3.9033530
70	H	4.5923580	-5.2949230	-4.9521620
71	H	5.3589810	-5.3870520	-3.3487190
72	H	3.5896300	-5.4376250	-3.4941040
73	C	7.5581630	-0.6233820	-0.5795890
74	H	6.8958220	0.2079240	-0.8651500
75	H	8.3999490	-0.2080370	-0.0087960
76	H	7.9708240	-1.0519070	-1.5035600
77	C	7.7349520	-2.8721790	0.5131500
78	H	7.9846120	-3.3830080	-0.4278000
79	H	8.6746740	-2.5500420	0.9819830
80	H	7.2576260	-3.6055450	1.1764690
81	C	1.9540250	-3.2154640	0.5778930
82	H	1.9696050	-2.6442360	1.5164420
83	C	0.6546210	-2.8764810	-0.1468450
84	H	0.4708860	-3.5471540	-0.9980950
85	H	-0.1919680	-2.9933700	0.5430310
86	H	0.6484280	-1.8484830	-0.5281680
87	C	1.9487750	-4.7002650	0.9487950
88	H	1.0500370	-4.9420790	1.5319900
89	H	1.9418110	-5.3242110	0.0431440
90	H	2.8268710	-4.9818840	1.5434040
91	B	-3.5704010	0.0204120	-0.0320330
92	C	-4.2433840	-1.3121570	-0.7019720
93	C	-4.3410340	-1.4775000	-2.0896730
94	C	-4.9039640	-2.2773450	0.0688360
95	C	-5.0286820	-2.5417440	-2.6693800
96	H	-3.8725760	-0.7476010	-2.7537000
97	C	-5.5901410	-3.3480940	-0.5011470
98	H	-4.8937470	-2.1962250	1.1580190
99	C	-5.6564700	-3.4976580	-1.8804790
100	H	-6.1876360	-4.3319360	-2.3295140
101	C	-4.8068900	1.0948730	-0.0034440
102	C	-5.7300680	1.1438880	1.0485430
103	C	-5.0955300	1.9148220	-1.1020330
104	C	-6.8545880	1.9673660	1.0165600
105	H	-5.5740220	0.5155500	1.9288420
106	C	-6.2177270	2.7385650	-1.1442140
107	H	-4.4267700	1.9140170	-1.9659060
108	C	-7.1107070	2.7800680	-0.0806040
109	H	-7.9842010	3.4252540	-0.1106260
110	C	-2.9415620	-0.2590750	1.4533570
111	C	-2.8299110	0.7588550	2.4050720
112	C	-2.3386740	-1.4824010	1.7911860
113	C	-2.1775390	0.5733270	3.6252620

114	H	-3.2610990	1.7404180	2.1963250
115	C	-1.6938050	-1.6782740	3.0084300
116	H	-2.3823470	-2.3080920	1.0796580
117	C	-1.6083900	-0.6498430	3.9445300
118	H	-1.1014130	-0.8035190	4.8952830
119	C	-2.2878630	0.5901560	-0.8775300
120	C	-1.4304200	-0.2391970	-1.6143980
121	C	-1.9171530	1.9385950	-0.7975620
122	C	-0.2967430	0.2562520	-2.2552390
123	H	-1.6591490	-1.3021330	-1.7035980
124	C	-0.7752480	2.4400050	-1.4189350
125	H	-2.5406250	2.6286720	-0.2269810
126	C	0.0464900	1.6024930	-2.1631360
127	H	0.9367070	1.9825960	-2.6657280
128	C	-5.0452650	-2.6402310	-4.1610140
129	C	-6.2155470	-4.3484900	0.4167540
130	C	-7.7688120	1.9562750	2.1994740
131	C	-6.4107940	3.6091770	-2.3439360
132	C	-1.0243090	-2.9722620	3.3469510
133	C	-2.1241870	1.7279030	4.5724090
134	C	-0.4888440	3.9068640	-1.3484540
135	C	0.5965720	-0.6337710	-3.0579490
136	F	-8.2359210	0.7240350	2.4518650
137	F	-7.1350730	2.3541670	3.3139070
138	F	-8.8297830	2.7558910	2.0421500
139	F	-7.6061390	4.2107020	-2.3602160
140	F	-5.4810580	4.5772330	-2.399430
141	F	-6.2985670	2.9138680	-3.4852450
142	F	-5.4647210	-1.4989180	-4.7272800
143	F	-5.8379590	-3.6209860	-4.6078450
144	F	-3.8162900	-2.8728220	-4.6504860
145	F	-6.9462860	-5.2626640	-0.2310040
146	F	-5.2840130	-5.0135780	1.1196080
147	F	-7.0177660	-3.7616590	1.3174970
148	F	0.3183150	-2.8373450	3.3751120
149	F	-1.2930840	-3.9480740	2.4716970
150	F	-1.3776650	-3.4129720	4.5608350
151	F	-1.3270070	1.5006090	5.6223740
152	F	-1.6624020	2.8344880	3.9584830
153	F	-3.3353130	2.0404840	5.0495650
154	F	-1.1222020	4.5838320	-2.3153060
155	F	0.8221760	4.1741730	-1.4871480
156	F	-0.8738290	4.4424590	-0.1830480
157	F	0.0768510	-1.8435850	-3.2750600
158	F	0.8925430	-0.0983600	-4.2519070
159	F	1.7834940	-0.8262270	-2.4396530

(Ethynylbenzene) [(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl) di-tert-butylphosphinel gold(I) tetrafluoroborate (84)

Row	Symbol	X	Y	Z
1	P	0.2976050	2.0708940	0.1254880
2	C	0.8539790	2.6707200	1.8350290
3	C	1.2660910	2.9359330	-1.2744850

4	Au	0.6120610	-0.2525830	-0.0481700
5	C	3.4936810	-1.4838780	-2.6134700
6	C	4.7287110	-1.0065410	-3.0294870
7	C	5.7206350	-0.7292730	-2.0895890
8	C	5.4850890	-0.9352050	-0.7306360
9	C	4.2561050	-1.4146390	-0.2991310
10	C	3.2558490	-1.6860200	-1.2460310
11	H	2.7031180	-1.6942020	-3.3328610
12	H	4.9192790	-0.8459730	-4.0885390
13	H	6.6861230	-0.3508590	-2.4204340
14	H	6.2652330	-0.7204150	-0.0032580
15	H	4.0350620	-1.5761780	0.7550030
16	C	1.9709350	-2.1167300	-0.7975320
17	C	0.8588390	-2.4564900	-0.3916490
18	H	0.0071460	-3.0319300	-0.0707780
19	C	-1.4775480	2.5141340	-0.0965780
20	C	-1.7995240	3.8812850	-0.1312960
21	C	-2.5130560	1.5701980	-0.2990330
22	C	-3.0897470	4.3349250	-0.3620880
23	H	-1.0186050	4.6208910	0.0234140
24	C	-3.8089270	2.0549370	-0.5362580
25	C	-4.1049650	3.4099040	-0.5703070
26	H	-3.2947640	5.4030870	-0.3820660
27	H	-4.6043510	1.3271210	-0.6991600
28	H	-5.1248500	3.7387910	-0.7597360
29	C	1.5856280	4.4125770	-1.0322970
30	H	2.1291640	4.7886170	-1.9114590
31	H	0.6899860	5.0362320	-0.9274870
32	H	2.2325770	4.5781940	-0.1632810
33	C	2.5828490	2.1770150	-1.4839060
34	H	3.2110550	2.1481730	-0.5859810
35	H	2.4091930	1.1405760	-1.8078530
36	H	3.1552200	2.6827520	-2.2757890
37	C	0.4499670	2.8193340	-2.5611950
38	H	1.0540740	3.2098370	-3.3931970
39	H	0.2058330	1.7756630	-2.7951800
40	H	-0.4829250	3.3964050	-2.5269630
41	C	0.4274220	4.0945280	2.1851380
42	H	0.8236210	4.3306650	3.1835180
43	H	0.8199030	4.8494090	1.4936000
44	H	-0.6638410	4.1953910	2.2363520
45	C	2.3752080	2.5428870	1.9325580
46	H	2.6632360	2.7058850	2.9817820
47	H	2.7242840	1.5401730	1.6568040
48	H	2.9039360	3.2939020	1.3330240
49	C	0.2186220	1.7147010	2.8444220
50	H	0.5633910	0.6811280	2.7126760
51	H	0.5016430	2.0365820	3.8579930
52	H	-0.8776620	1.7380060	2.7880400
53	C	-2.4129250	0.0710170	-0.2890200
54	C	-2.2726820	-0.6349100	-1.5041030
55	C	-2.6906260	-0.6418320	0.9009000
56	C	-2.3935950	-2.0265900	-1.5046630
57	C	-2.7706510	-2.0331250	0.8501610
58	C	-2.6351030	-2.7483240	-0.3398390
59	H	-2.2944450	-2.5591160	-2.4516640
60	H	-2.9820300	-2.5869650	1.7676160
61	C	-3.0155860	0.0637240	2.2031100
62	H	-2.6732690	1.1062330	2.1200130
63	C	-2.8356280	-4.2487290	-0.3341580
64	H	-2.4366030	-4.6248360	0.6233080
65	C	-2.1228690	-4.9807440	-1.4643340
66	H	-1.0521130	-4.7395510	-1.5130750
67	H	-2.2163810	-6.0655860	-1.3281870

68	H	-2.5653390	-4.7395370	-2.4413870
69	C	-4.3328460	-4.5627660	-0.3720490
70	H	-4.5085230	-5.6458380	-0.3245130
71	H	-4.8666110	-4.0911220	0.4632250
72	H	-4.7727350	-4.1872930	-1.3080120
73	C	-2.3386060	-0.5611050	3.4207520
74	H	-1.2658190	-0.7282480	3.2615100
75	H	-2.4639930	0.0949830	4.2932210
76	H	-2.7946780	-1.5269540	3.6802380
77	C	-4.5313990	0.1063810	2.4100910
78	H	-4.9413530	-0.9115530	2.4815030
79	H	-4.7779050	0.6339920	3.3416310
80	H	-5.0429670	0.6179560	1.5841150
81	C	-2.0500590	0.0693160	-2.8275970
82	H	-1.8611300	1.1332110	-2.6212540
83	C	-0.8385620	-0.4808960	-3.5794460
84	H	-0.9934430	-1.5231220	-3.8917180
85	H	-0.6490570	0.1086700	-4.4873680
86	H	0.0685730	-0.4542640	-2.9552670
87	C	-3.3017150	-0.0074660	-3.7016190
88	H	-3.1478740	0.5320250	-4.6459870
89	H	-3.5472760	-1.0502480	-3.9478020
90	H	-4.1725990	0.4307060	-3.1966190
91	B	2.0896860	-1.7503940	2.9331760
92	F	2.1892440	-1.9585020	4.2994290
93	F	0.7230240	-1.6812380	2.5678840
94	F	2.7050760	-0.5382500	2.5840780
95	F	2.7046820	-2.7896100	2.2323080

5. Towards the Total Synthesis of Rumphellaone A

All the reactants, ligands and the following reagents were purchased from comercial sources and used without further purification: (furan-2-yloxy)trimethylsilane, 2(diethoxymethyl)furan, furan-2-carboxylic acid, maleic anhydride, 2-methylfuran, 6-methylhept-5-en-2-one, butane-1,4-diol, 2,2,7,7-tetramethyl-3,6-dioxa-2,7-disilaoctane, ethynylbenzene, 1-ethynyl-3-methylbenzene, 3-ethynylphenol, 1-ethynyl-3methoxybenzene and BINOL. $\mathrm{Mn}(\mathrm{dpm})_{3}$ and Crabtree's catalyst were synthesized as reported. ${ }^{1,2}$ JohnPhosAuCl, ${ }^{\text {t }} \mathrm{BuXPhosAuCl}, \mathrm{IPrAuCl}, \mathrm{Ph}_{3} \mathrm{PAuCl}$, (THT)AuCl, (44)AuCl and complexes $\mathbf{E}, \mathbf{V}, \mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{L} \mathbf{~ a n d ~} \mathbf{S S}$ were also prepared according to the literature. ${ }^{3,4,5,6}$ Cyclobutene 19 was characterized in Chapter 2 and complex \mathbf{Q} in Chapter $4 .{ }^{7,8}$

Procedures for the Silyloxyalkynylfuran Approach

(Z)-4-Oxo-6-(trimethylsilyl)hex-2-en-5-ynoic acid (40)

AlCl_{3} ($140 \mathrm{mg}, 1.11 \mathrm{mmol}$) was added portion-wise to an icecooled solution of maleic anhydride ($98 \mathrm{mg}, 1.00 \mathrm{mmol}$) and 1,2bis(trimethylsilyl)ethyne ($170 \mathrm{mg}, 1.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.5 \mathrm{ml})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then at $25^{\circ} \mathrm{C}$ for 20 h . The reaction was quenched with 1 M HCl and the phases were separeted. The organic layeres were washed with water and dried with MgSO_{4}. The crude was concentrated and purified with cyclohexane:ethyl acetate (2:1) with 1% formic acid. (Z)-4-oxo-6-(trimethylsilyl)hex-2-en-5-ynoic acid 40 was obtained in 25% isolated yield ($46.2 \mathrm{mg}, 0.24$ mmol). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.10(\mathrm{~d}, J=15.67 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=16.02$ $\mathrm{Hz}, 1 \mathrm{H}), 0.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 127.44(\mathrm{~s}), 169.10(\mathrm{~s}), 142.41$ (s), 134.27 (s), 102.01 (s), 99.98 (s), - 0.68 (s). $\mathrm{ESI}^{-} m / z$ calc for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Si}^{+}[\mathrm{M}-\mathrm{H}]^{-}$ 195.0483, found 195.0483 (0.0 ppm).

[^104]
2-Iodo-5-methylfuran

To a solution of 2-methylfuran ($0.54 \mathrm{ml}, 6.09 \mathrm{mmol}$) in THF (15.0 ml), 2 M ${ }^{n} \operatorname{BuLi}(3.35 \mathrm{ml}, 6.70 \mathrm{mmol})$ was added at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h and 1,2-diiodoethane ($1.91 \mathrm{~g}, 6.70 \mathrm{mmol}$) was added. The solution was stirred for 18 h at $25^{\circ} \mathrm{C}$. The product was extracted with diethyl ether and washed with brine. The organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated carefully. 2-Iodo-5-methylfuran was obtained in 60% isolated yield ($0.76 \mathrm{~g}, 3.67 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 6.40(\mathrm{~d}, J=3.02 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.91(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~d}, J=0.82$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 158.41$ (s), 120.72 (s), 109.18 (s), 88.37 (s), 14.01 (s).

2-Tert-butyldimethylsilyloxyfuran

To a solution of furan-2(5H)-one ($0.84 \mathrm{ml}, 11.89 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{ml})$ was added $\mathrm{Et}_{3} \mathrm{~N}(3.32 \mathrm{ml}, 23.79 \mathrm{mmol})$. The solution was cooled down in an ice bath for 30 min and tert-butyldimethylsilyl trifluoromethanesulfonate ($3.28 \mathrm{ml}, 14.27 \mathrm{mmol}$) was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h and quenched with water. The phases were separated, the organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Kugelrohr destillation at $100{ }^{\circ} \mathrm{C}$ and 10 Torr afforded tert-butyl(furan-2-yloxy)dimethylsilane in 68% isolated yield ($1.54 \mathrm{~g}, 7.80 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta 6.82$ (dd, $\left.J=2.32,1.11 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.21$ (dd, $J=3.18,2.23 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11(\mathrm{dd}, J=3.17,1.07 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta 157.52$ (s), 132.77 (s), 111.54 (s), 84.01 (s), 25.98 (s), 25.76 (s), 4.63 (s).

2-Triisopropylsilyloxyfuran

To a solution of furan-2(5H)-one ($0.84 \mathrm{ml}, 11.89 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0$ $\mathrm{ml})$ was added $\mathrm{Et}_{3} \mathrm{~N}(3.32 \mathrm{ml}, 23.79 \mathrm{mmol})$. The solution was cooled down in an ice bath for 30 min and triisopropylsilyl trifluoromethanesulfonate ($3.95 \mathrm{ml}, 14.27 \mathrm{mmol}$) was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 16 h and quenched with water. The phases were separated, the organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Kugelrohr destillation at $100{ }^{\circ} \mathrm{C}$ and 0.1 Torr afforded (furan-2ylpxy)triisopropylsilane in 84% isolated yield ($2.40 \mathrm{~g}, 9.97 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 6.80(\mathrm{dd}, J=2.25,1.07 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=2.98,2.26 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}$, $J=3.20,1.12 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.24 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 157.14$ (s), 131.97 (s), 111.22 (s), 83.59 (s), 17.67 (s), 12.34 (s).

2-Trimethylsilylethynyl-5-methylfuran (41)

${ }^{t}$ BuLi 1.5 M in diethyl ether ($10.0 \mathrm{ml}, 16.50 \mathrm{mmol}$) was added dropwise over 2-methylfuran ($1.35 \mathrm{ml}, 15.00 \mathrm{mmol}$) in diethyl ether (30.0 ml) under inert conditions at $-78^{\circ} \mathrm{C}$. The solution was stirred for 1 h at this temperature and 1,2 -diiodoethane ($4.65 \mathrm{~g}, 16.50 \mathrm{mmol}$) in diethyl ether (45.0 ml) was added. The reaction mixture was stirred for an additional 30 min , warmed to $25^{\circ} \mathrm{C}$ and quenched it with a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Then, it was extracted with diethyl ether, washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. THF (13.0 ml) was added to the crude and diethyl ether was evaporated under vacuum carefully. Ethynyltrimethylsilane (3.18 ml , $22.50 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(6.28 \mathrm{ml}, 45.00 \mathrm{mmol})$ were added and the solution was degassed with argon for 15 min . Bis(triphenylphosphine)palladium (II) dichloride ($0.21 \mathrm{~g}, 0.30$ $\mathrm{mmol})$ was added and the reaction mixture stirred for 1 min at $25^{\circ} \mathrm{C}$ followed by $\mathrm{CuI}(0.11$
$\mathrm{g}, 0.60 \mathrm{mmol})$. The solution was stirred for an additional 2 h . The crude was concentrated and purified by silica gel column chromatography eluting with pure cyclohexane to obtain trimethyl((5-methylfuran-2-yl)ethynyl)silane 41 in 35% isolated yield ($0.93 \mathrm{~g}, 5.25 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{ppm}\right) \delta 6.52(\mathrm{dd}, J=3.27,0.51 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dq}, J=3.27$, $1.00 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=1.14,0.48 \mathrm{~Hz}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, ppm) $\delta 153.87$ (s), 136.35 (s), 117.29 (s), 107.19 (s), 99.02 (s), 96.04 (s), 13.47 (s), 0.19 (s).

2-Ethynyl-5-methylfuran

2-Trimethylsilylethynyl-5-methylfuran ($516.0 \mathrm{mg}, 2.89 \mathrm{mmol}$) was dissolved in methanol $(15.0 \mathrm{ml})$ under inert conditions and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (800.0 $\mathrm{mg}, 5.79 \mathrm{mmol}$) was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 15 min and was quenched with water. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic layers dried with MgSO_{4} and concentrated under vacuum without drying it. An exact solution was prepared in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the concentration was determined using diphenylmethane as internal standard. 2-Ethynyl-5-methylfuran was obtained in 60% yield $(184.0 \mathrm{mg}, 1.73 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{ppm}\right) \delta 6.34(\mathrm{~d}, J=3.22 \mathrm{~Hz}, 1 \mathrm{H}), 5.62$ $(\mathrm{dq}, J=3.30,0.95 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{ppm}$) $\delta 154.08$ (s), 135.16 (s), 117.56 (s), 107.09 (s), 81.73 (s), 74.76 (s), 13.50 (s).

2-Methyl-5-(3-methyl-3-phenylcyclobut-1-en-1-yl)furan (42)

2-Ethynyl-5-methylfuran ($21.00 \mathrm{mg}, 0.20 \mathrm{mmol}$) was dissolvded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.40 \mathrm{ml})$ and α-methylstyrene ($52.00 \mu \mathrm{l}, 0.40 \mathrm{mmol}$) undert inert conditions, ${ }^{t} \mathrm{BuXPhosAuCl}(6.57 \mathrm{mg}, 10.00 \mu \mathrm{~mol})$ and $\mathrm{NaBAr}_{4}{ }_{4}$ $(8.86 \mathrm{mg}, 10.00 \mu \mathrm{~mol})$ were added sequentially. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h and quenched with a drop of $\mathrm{Et}_{3} \mathrm{~N}$. The crude was concentrated and purified with silica gel preparative TLC eluting with pure pentane. 2-Methyl-5-(3-methyl-3-phenylcyclobut-1-en-1-yl)furan 42 was obtained in 64% isolated yield $(28.8 \mathrm{mg}, 0.13 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.40-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=3.16 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (dq, $J=3.26,0.97 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, \mathrm{~J}=12.44 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, \mathrm{~J}=12.38 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 152.46(\mathrm{~s}), 149.22(\mathrm{~s}), 147.78$ (s), 133.84 (s), 130.57 (s), 128.22 (s), 125.92 (s), 125.82 (s), 108.29 (s), 107.23 (s), 47.88 (s), $44.25(\mathrm{~s}), 27.77(\mathrm{~s}), 13.81(\mathrm{~s}) . \mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C} 16 \mathrm{H} 17 \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 225.1274$, found 225.1269 (2.4 ppm).

4-(4,4-Dimethyl-2-(5-methylfuran-2-yl)cyclobut-2-en-1-yl)butan-2-one (43)

2-Ethynyl-5-methylfuran ($106.0 \mathrm{mg}, 1.00 \mathrm{mmol}$) was dissolved in DCE (5.0 ml) and 6-methylhep-5-en-2-one ($295.0 \mu \mathrm{l}, 2.00 \mathrm{mmol}$) under inert conditions, ${ }^{t} \mathrm{BuXPhosAuCl}(32.9 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ and $\mathrm{NaBAr}^{\mathrm{F}} 4(44.3 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ were added sequentially. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h and quenched with a drop of $\mathrm{Et}_{3} \mathrm{~N}$. The crude was concentrated and purified with silica gel column chromatography eluting with pentane:diethyl ether (20:1). 4-(4,4-Dimethyl-2-(5-methylfuran-2-yl)cyclobut-2-en-1-yl)butan-2-one 43 was obtained in 31% isolated yield $(72.0 \mathrm{mg}, 0.30 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$) $\delta 6.15(\mathrm{~d}, \mathrm{~J}=3.20 \mathrm{~Hz}, 1 \mathrm{H}), 5.99$ $(\mathrm{s}, 1 \mathrm{H}), 5.97-5.95(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.74-$
$1.64(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right) \delta$ 208.75 (s), 152.43 (s), 149.22 (s), 136.46 (s$), 133.44$ (s$), 108.40$ (s$), 107.51$ (s), 51.83 (s), $44.64(\mathrm{~s}), 43.06(\mathrm{~s}), 30.22(\mathrm{~s}), 28.01(\mathrm{~s}), 24.11(\mathrm{~s}), 22.24(\mathrm{~s}), 13.89(\mathrm{~s}) . \mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C} 15 \mathrm{H} 21 \mathrm{O} 2^{+}[\mathrm{M}+\mathrm{H}]^{+} 233.1536$, found 233.1531 (2.2 ppm).

Procedures for the Oxidation Approach

2-Methyl-2-(4-methylpent-3-en-1-yl)-1,3-dioxepane (55)

To a solution of 6-methylhept-5-en-2-one ($4.43 \mathrm{ml}, 30.00 \mathrm{mmol}$), triethoxymethane ($5.49 \mathrm{ml}, 33.00 \mathrm{mmol}$) and butane-1,4-diol (5.00 $\mathrm{ml}, 56.40 \mathrm{~mol}$) in THF (60.0 ml) under inert conditions, FeCl_{3} (487.0 $\mathrm{mg}, 3.00 \mathrm{mmol}$) was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h and quenched with aqueous $\mathrm{NaOH} 10 \%$. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic layers washed with water and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude was purified by distillation at $120{ }^{\circ} \mathrm{C}$ and 0.75 Torr and 2-methyl-2-(4-methylpent-3-en-1-yl)-1,3dioxepane 55 was obtained in 83% isolated yield ($4.91 \mathrm{~g}, 24.76 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 5.14-5.09(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 4 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.68$ $(\mathrm{d}, J=0.98 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 131.70$ (s), 124.32 (s$), 102.63$ (s$), 62.11$ (s$), 37.81$ (s$), 29.93$ (s), 25.82 (s), 23.29 (s), 22.54 (s), 17.76 (s).

2-(2-(4,4-Dimethyl-2-phenylcyclobut-2-en-1-yl)ethyl)-2-methyl-1,3-dioxepane (56)

To a solution of 2-methyl-2-(4-methylpent-3-en-1-yl)-1,3-dioxepane $55(44.0 \mu \mathrm{l}, 0.20 \mathrm{mmol})$ and ethynylbenzene ($220.0 \mu \mathrm{l}, 2.00 \mathrm{mmol}$) under inert conditions, [${ }^{t}$ BuXPhosAuNCMe]BAr ${ }_{4}{ }_{4}(15.0 \mathrm{mg}, 10.00$ $\mu \mathrm{mol})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 48 h and quenched with a drop of $\mathrm{Et}_{3} \mathrm{~N}$. The crude was concentrated and purified with silica gel prep-TLC eluting with cyclohexane:ethyl acetate (5:1). 2-(2-(4,4-Dimethyl-2-phenylcyclobut-2-en-1-yl)ethyl)-2-methyl-1,3dioxepane 56 was obtained in 51% isolated yield ($30.3 \mathrm{mg}, 0.10 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.64$ $(\mathrm{m}, 4 \mathrm{H}), 2.71(\mathrm{~d}, J=10.94,3.63 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.61-$ $1.57(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H})$.

4-(4,4-Dimethyl-2-phenylcyclobut-2-en-1-yl)butan-2-one (19)

6-Methylhep-5-en-2-one ($0,74 \mathrm{ml}, 5.00 \mathrm{mmol}$) and ethynylbenzene $(2.2 \mathrm{ml}, 20.00 \mathrm{mmol})$ were dissolved in DCE $(10.0 \mathrm{ml})$ under inert conditions and ${ }^{t} \mathrm{BuXPhosAuCl}(164.0 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\mathrm{NaBAr}_{4}{ }_{4}$ $(222.0 \mathrm{mg}, 0.25 \mathrm{mmol})$ were added sequentially. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 19 h and quenched with 1 ml of $\mathrm{Et}_{3} \mathrm{~N}$. The crude was concentrated and purified with silica gel column chromatography eluting with pentane:diethyl ether (20:1). 4-(4,4-Dimethyl-2-phenylcyclobut-2-en-1-yl)butan-2-one 19 was obtained in 78% isolated yield ($0.89 \mathrm{~g}, 3.88 \mathrm{mmol}$). This compound was characterized in Chapter 2.

4-(2-(3-Hydroxyphenyl)-4,4-dimethylcyclobut-2-en-1-yl)butan-2-one (60)

6-Methylhep-5-en-2-one ($74.0 \mu \mathrm{l}, 0.50 \mathrm{mmol}$) and 3-ethynylphenol $(273.0 \mu \mathrm{l}, 2.00 \mathrm{mmol})$ were dissolved in DCE (1.0 ml) under inert conditions and ${ }^{t} \mathrm{BuXPhosAuCl}(16.4 \mathrm{mg}, 25.00 \mu \mathrm{~mol})$ and $\mathrm{NaBAr}_{4}^{\mathrm{F}}$ $(22.2 \mathrm{mg}, 25.00 \mu \mathrm{~mol})$ were added sequentially. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 19 h and quenched with 1 ml of $\mathrm{Et}_{3} \mathrm{~N}$. The crude was concentrated and purified with silica gel column chromatography eluting with cyclohexane:ethyl acetate (5:1). 4-(2-(3-Hydroxyphenyl)-4,4-dimethylcyclobut-2-en-1-yl)butan-2-one $\mathbf{6 0}$ was obtained in 40% isolated yield ($47.6 \mathrm{mg}, 0.19 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.22(\mathrm{t}, J=7.95$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92$ (ddd, $J=7.58,1.49,1.21 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=2.67,1.57 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (ddd, $J=8.17,2.64,0.84 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=10.73,4.47 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-$ $2.47(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 208.62$ (s), 159.79 (s), 145.50 (s), 136.78 (s), 136.05 (s), 129.46 (s$), 117.77$ (s$), 113.29$ (s$), 110.48$ (s$), 55.27$ (s), 51.02 (s), 42.78 (s), $30.00(\mathrm{~s}), 27.88(\mathrm{~s}), 23.33(\mathrm{~s}), 21.85(\mathrm{~s}) . \mathrm{ESI}^{-} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}$243.1391, found 243.1389 (0.2 ppm).

4-(2-(3-Methoxyphenyl)-4,4-dimethylcyclobut-2-en-1-yl)butan-2-one (61)

6-Methylhep-5-en-2-one ($74.0 \mu \mathrm{l}, 0.50 \mathrm{mmol}$) and 1-ethynyl-3methoxybenzene ($318.0 \mu \mathrm{l}, 2.00 \mathrm{mmol}$) were dissolved in DCE (1.0 ml) under inert conditions and ${ }^{t} \mathrm{BuXPhosAuCl}(16.4 \mathrm{mg}, 25.00$ $\mu \mathrm{mol})$ and $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(22.2 \mathrm{mg}, 25.00 \mu \mathrm{~mol})$ were added sequentially. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 19 h and quenched with 1 ml of $\mathrm{Et}_{3} \mathrm{~N}$. The crude was concentrated and purified with silica gel column chromatography eluting with pentane:diethyl ether (20:1). 4-(2-(3-Methoxyphenyl)-4,4-dimethylcyclobut-2-en-1-yl)butan-2-one $\mathbf{6 1}$ was obtained in 65% isolated yield ($83.6 \mathrm{mg}, 0.32 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) δ $7.25(\mathrm{t}, J=7.91 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{ddd}, J=7.64,1.60,0.99 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=2.62,1.51$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80(\mathrm{ddd}, J=8.25,2.59,0.80 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{dd}, J=$ $10.62,4.31 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.65$ $(\mathrm{m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 208.55(\mathrm{~s}), 159.73$ (s), 145.43 (s), 136.72 (s), 135.98 (s), 129.42 (s), 117.71 (s), 113.22 (s), 110.42 (s), 55.19 (s), 50.95 (s), 42.76 (s), 42.70 (s), 29.95 (s), 27.84 (s), 23.26 (s), 21.80 (s). $\mathrm{ESI}^{+} m / z$ calc for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NaO}_{2}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$281.1512, found $281.1500(1.2 \mathrm{ppm})$.

4-(4,4-Dimethyl-2-(m-tolyl)cyclobut-2-en-1-yl)butan-2-one (62)

6-Methylhep-5-en-2-one ($74.0 \mu \mathrm{l}, 0.50 \mathrm{mmol}$) and 1-ethynyl-3methylbenzene ($200.0 \quad \mu \mathrm{l}, \quad 1.75 \mathrm{mmol}$) were dissolved in dichloroethane (1.00 ml) under inert conditions and ${ }^{t} \mathrm{BuXPhosAuCl}$ $(16.4 \mathrm{mg}, 25.00 \mu \mathrm{~mol})$ and $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(22.2 \mathrm{mg}, 25.00 \mu \mathrm{~mol})$ were added sequentially. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 19 h and quenched with 1 ml of $\mathrm{Et}_{3} \mathrm{~N}$. The crude was concentrated and purified with silica gel column chromatography eluting with pentane:diethyl ether (20:1). 4-(4,4-Dimethyl-2-(m-tolyl)cyclobut-2-en-1-yl)butan-2-one 62 was obtained in 44\% isolated yield ($53.6 \mathrm{mg}, 0.22 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.22(\mathrm{t}, J=7.60$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.54 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=10.86$,
$4.21 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.73-$ $1.35(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 208.78(\mathrm{~s})$, 145.65 (s), 137.97 (s), 136.26 (s), 134.62 (s), 128.37 (s), 128.31 (s), 125.80 (s), 122.32 (s), 50.99 (s), 42.85 (s , 42.82 (s), 30.02 (s$), 27.95$ (s$), 23.47$ (s$), 21.90$ (s$), 21.51$ (s).

4-(2,2-Dimethyl-4-phenylcyclobutyl)butan-2-one (45)

To a solution of 4-(4,4-dimethyl-2-phenylcyclobut-2-en-1-yl)butan-2one $19(59.8 \mathrm{mg}, 0.26 \mathrm{mmol})$ in dry methanol (3.1 ml), $\mathrm{Pd} / \mathrm{C} 10 \%$ ($32.9 \mathrm{mg}, 31.00 \mu \mathrm{~mol}$) was added. The suspension was degassed with H_{2} for 10 min and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ and under H_{2} atmosphere (balloon) for 5 h . The crude was filtered through Teflon 0.22 and the solvent was removed under reduced pressure to obtain 4-(2,2-dimethyl-4-phenylcyclobutyl)butan-2-one 45 in 90% isolated yield as a mixture 1.6:1 of cis:trans diastereoisomers ($53.9 \mathrm{mg}, 0.23 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR for the mixture of diastereoisomers ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20$ $-7.16(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{q}, J=9.25 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.96(\mathrm{q}, J=8.77 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.25-2.17(\mathrm{~m}$, $1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 1.2 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~s}$, $2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H})$, $1.29(\mathrm{~s}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 1.2 \mathrm{H}), 1.13(\mathrm{~s}, 1.2 \mathrm{H}), 1.04(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR for the mixture of diastereoisomers ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 209.17$ (s), 208.92 (s), 145.14 (s), 141.23 (s), 128.45 (s), 128.42 (s), 128.21 (s$), 127.02$ (s$), 126.10$ (s), 126.04 (s), 51.88 (s), 48.18 (s), 42.28 (s), 41.69 (s ,, 41.66 (s), 41.31 (s$), 37.17$ (s$), 36.21$ (s$), 34.04$ (s$), 33.92$ (s$), 30.90$ (s), 30.54 (s), 29.94 (s), 29.77 (s), 24.62 (s), 24.61 (s), 22.40 (s), 21.48 (s$) . \mathrm{ESI}^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 253.1563$, found 253.1558 (0.5 ppm).

2-Methyl-2-(4-methylpent-3-en-1-yl)-1,3-dioxane (63) ${ }^{9}$

To a solution of 6-methylhept-5-en-2-one ($1.48 \mathrm{ml}, 10.00 \mathrm{mmol}$), triethoxymethane $(1.83 \mathrm{ml}, 11.00 \mathrm{mmol})$ and propane-1,3-diol (0.72 $\mathrm{ml}, 10.00 \mathrm{mmol})$ in THF (20 ml), $\mathrm{FeCl}_{3}(0.16 \mathrm{~g}, 1.00 \mathrm{mmol})$ was added. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 12 h . Then, it was quenched with $\mathrm{NaOH} 10 \%$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified with silica gel colum chromatography using a gradient of cyclohexane:ethyl acetate to obtain 2-methyl-2-(4-methylpent-3-en-1-yl)-1,3-dioxane 63 in 66% isolated yield (1.21 g , $6.57 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($440 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 5.15-5.10(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 4 \mathrm{H})$, $2.08-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 7 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.

2-(2-(4,4-Dimethyl-2-phenylcyclobut-2-en-1-yl)ethyl)-2-methyl-1,3-dioxane (64) ${ }^{9}$

2-Methyl-2-(4-methylpent-3-en-1-yl)-1,3-dioxane $\mathbf{6 3}$ ($0.1 \mathrm{~g}, 0.54$ $\mathrm{mmol})$ and ethynylbenzene $(596.00 \mu \mathrm{l}, 5.43 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(1.00 \mathrm{ml})$ under inert conditions and $\left.{ }^{t}{ }^{\prime} \mathrm{BuXPhosAuNCMe}\right] \mathrm{BAr}_{4}{ }_{4}(59.00 \mathrm{mg}, 27.00 \mu \mathrm{~mol})$ was added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 24 h and quenched with 1 drop of $\mathrm{Et}_{3} \mathrm{~N}$. The crude was concentrated and purified with silica gel column chromatography eluting with cyclohexane:ethyl acetate (99:1). 2-(2-(4,4-Dimethyl-2-phenylcyclobut-2-en-1-yl)ethyl)-2-methyl-1,3-dioxane 64 was obtained in 76% isolated

[^105]yield ($0.12 \mathrm{~g}, 0.41 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.23-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.82(\mathrm{~m}, 4 \mathrm{H}), 2.72(\mathrm{dd}, J=10.70,4.28 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-$ $1.85(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.50$ $(\mathrm{m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 145.94 (s), 136.49 (s), 134.99 (s), 128.43 (s), 127.36 (s), 125.28 (s), 99.40 (s), 59.80 (s), 59.79 (s), 52.08 (s), 43.06 (s), 37.39 (s), 27.97 (s), 25.70 (s), 23.37 (s), 22.02 (s), 20.92 (s). $\mathrm{ESI}^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 309.1825$, found 309.1831 (0.6 ppm).

2-(2-(2,2-Dimethyl-4-phenylcyclobutyl)ethyl)-2-methyl-1,3-dioxane (65) ${ }^{9}$

Ammonia (10 ml) was condensed in a trap cooled with acetone/dry ice and transferred to a flask at $-78^{\circ} \mathrm{C}$. Then, metallic sodium (40 $\mathrm{mg}, 1.75 \mathrm{mmol})$ was added followed by a solution of 2-(2-(4,4-dimethyl-2-phenylcyclobut-2-en-1-yl)ethyl)-2-methyl-1,3-dioxane $\mathbf{6 4}$ ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$) in THF (2 ml). The reaction mixture was stirred for 30 min and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and the flask was left open while stirring for 2 h . The solution was extracted with cyclohexane and the organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO} 4$ and concentrated. The residue was purified by silica gel column chromatography using cyclohexane;ethyl acetate (98:2) to obtain trans-2-(2-(2,2-dimethyl-4-phenylcyclobutyl)ethyl)-2-methyl-1,3-dioxane $\mathbf{6 5}$ in 37% isolated yield ($37 \mathrm{mg}, 0.13 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.28-7.23$ $(\mathrm{m}, 4 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{q}, J=9.26$ $\mathrm{Hz}, 1 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.15$ (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 145.44$ (s), 128.33 (s), 127.04 (s), 125.89 (s), 99.28 (s), 59.73 (s), 52.83 (s), 41.80 (s$), 41.16$ (s$), 36.07$ (s$), 34.16$ (s$), 31.21$ (s$), 25.64$ (s), 24.74 (s), 22.41 (s), 21.20 (s).

4-(4-(3-Hydroxyphenyl)-2,2-dimethylcyclobutyl)butan-2-one (67)

To a solution of 4-(2-(3-hydroxyphenyl)-4,4-dimethylcyclobut-2-en1 -yl)butan-2-one 60 ($48.86 \mathrm{mg}, 0.20 \mathrm{mmol}$) in dry methanol (2.40 $\mathrm{ml}), \mathrm{Pd} / \mathrm{C} 10 \%(21.00 \mathrm{mg}, 19.73 \mu \mathrm{~mol})$ was added. The suspension was degassed with H_{2} gas for 10 min and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ and under H_{2} atmosphere (balloon) for 5 h . The crude was filtered through Teflon 0.22 and the solvent was removed under reduced pressure to obtain 4-(4-(3-hydroxyphenyl)-2,2-dimethylcyclobutyl)butan-2-one 67 in 86% isolated yield as a mixture 1.7:1 of cis:trans diastereoisomers ($43 \mathrm{mg}, 0.17 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR for the mixture of diastereoisomers (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{ppm}\right) \delta 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.59(\mathrm{~m}, 1 \mathrm{H}), 3.72$ $(\mathrm{q}, J=9.17 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.90(\mathrm{q}, J=9.05 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.57(\mathrm{q}, J=7.43 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.34-2.28$ $(\mathrm{m}, 0.7 \mathrm{H}), 2.19-1.86(\mathrm{~m}, 7 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 2 \mathrm{H})$, $1.15(\mathrm{~s}, 1.2 \mathrm{H}), 1.15(\mathrm{~s}, 1.2 \mathrm{H}), 1.05(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR for the mixture of diastereoisomers ($\left.101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{ppm}\right) \delta 212.07$ (s), 211.82 (s), 158.39 (s), 158.28 (s), 147.96 (s), 143.97 (s), 130.27 (s), 130.04 (s), 120.85 (s), 120.09 (s), 119.29 (s), 116.23 (s), 114.70 (s), 113.91 (s), 52.80 (s), 49.15 (s), 42.90 (s), 42.81 (s), 42.22 (s), 42.06 (s), 38.12 (s), 36.94
 (s), 22.43 (s). $\mathrm{ESI}^{-} m / z$ calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 245.1547$, found 245.1545 (0.2 ppm).

4-(4-(3-Methoxyphenyl)-2,2-dimethylcyclobutyl)butan-2-one (68)

To a solution of 4-(2-(3-methoxyphenyl)-4,4-dimethylcyclobut-2-en-1-yl)butan-2-one $\mathbf{6 1}(85.14 \mathrm{mg}, 0.33 \mathrm{mmol})$ in dry methanol $(3.90 \mathrm{ml}), \mathrm{Pd} / \mathrm{C} 10 \%(35.00 \mathrm{mg}, 32.89 \mu \mathrm{~mol})$ was added. The suspension was degassed with H_{2} gas for 10 min and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ and under H_{2} atmosphere (balloon) for 5 h . The crude was filtered through Teflon 0.22 and the solvent was removed under reduced pressure to obtain 4-(4-(3-methoxyphenyl)-2,2-dimethylcyclobutyl)butan-2-one $\mathbf{6 8}$ in 54% isolated yield as a mixture 1.7:1 of cis:trans diastereoisomers $(46.3 \mathrm{mg}, 0.18 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR for the mixture of diastereoisomers ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.78$ $-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{q}, J=9.19 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.93(\mathrm{q}, J=$ $9.02 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 0.7 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 1.4 \mathrm{H}), 2.10-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.93-$ $1.82(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 2 \mathrm{H}), 1.12(\mathrm{~s}, 1.2 \mathrm{H}), 1.11$ $(\mathrm{s}, 1.1 \mathrm{H}), 1.02(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR for the mixture of diastereoisomers $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 209.17$ (s), 208.89 (s), 159.72 (s), 159.62 (s), 146.88 (s), 143.00 (s), 129.34 (s), 129.09 (s), 120.94 (s), 119.43 (s$), 114.36$ (s$), 112.93$ (s$), 111.13$ (s$), 111.03$ (s), 55.22 (s), 51.69 (s), 48.15 (s), 42.31 (s$), 41.66$ (s$), 41.23$ (s$), 37.18$ (s), 36.21 (s), 33.96 (s), 33.91 (s), 30.86 (s), 30.47 (s), 29.91 (s), 29.75 (s), 24.58 (s), 22.35 (s), 21.46 (s) and three carbon atoms missing due to overlapping. $\mathrm{ESI}^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$283.1669, found 283.1658 (0.9 ppm).

4-(2,2-Dimethyl-4-(m-tolyl)cyclobutyl)butan-2-one (69)

To a solution of 4-(2-(3-methoxyphenyl)-4,4-dimethylcyclobut-2-en-1-yl)butan-2-one 62 ($53.34 \mathrm{mg}, 0.22 \mathrm{mmol}$) in dry methanol (2.60 $\mathrm{ml}), \mathrm{Pd} / \mathrm{C} 10 \%(24.00 \mathrm{mg}, 22.55 \mu \mathrm{~mol})$ was added. The suspension was degassed with H_{2} gas for 10 min and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ and under H_{2} atmosphere (balloon) for 5 h . The crude was filtered through Teflon 0.22 and the solvent was removed under reduced pressure to obtain 4-(2,2-dimethyl-4-(m-tolyl)cyclobutyl)butan-2-one $\mathbf{6 9}$ in 84% isolated yield as a mixture 1.4:1 of cis:trans diastereoisomers ($45.4 \mathrm{mg}, 0.19 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR for the mixture of diastereoisomers (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{q}, J=8.94 \mathrm{~Hz}$, $0.6 \mathrm{H}), 2.91(\mathrm{q}, J=8.94 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.10(\mathrm{~m}, \mathrm{~m}$, $1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 1 \mathrm{H})$, $1.28(\mathrm{~s}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 1.2 \mathrm{H}), 1.12(\mathrm{~s}, 1.2 \mathrm{H}), 1.03(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR for the mixture of diastereoisomers ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{p} \mathrm{pm}$) $\delta 209.26$ (s), 208.98 (s), 145.04 (s), 141.11 (s), 137.85 (s), 137.60 (s), 129.15 (s), 128.28 (s), 128.06 (s), 127.74 (s), 126.78 (s), 126.76 (s), 125.49 (s), 124.01 (s), 51.75 (s), 48.13 (s), 42.30 (s), 41.69 (s), 41.57 (s), 41.25 (s), 37.05 (s), 36.17 (s), 33.97 (s , 33.87 (s), 30.87 (s), 30.48 (s , 29.88 (s), 29.69 (s$), 24.62$ (s$), 24.59$ (s), $22.35(\mathrm{~s}), 21.55(\mathrm{~s}), 21.52(\mathrm{~s}), 21.49(\mathrm{~s}) . \mathrm{ESI}^{+} m / z$ calc for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 267.1719, found 267.1712 (0.7 ppm).

3,3-Dimethyl-2-(3-oxobutyl)cyclobutane-1-carboxylic acid (46)

To a 1000 ml round-bottom flask, 4-(2,2-dimethyl-4-phenylcyclobutyl)butan-2-one 45 ($287.5 \mathrm{mg}, 1.25 \mathrm{mmol}$) was dissolved in 150 ml of a mixture of water:ethyl acetate (3:1) and cooled down to $4{ }^{\circ} \mathrm{C}$. Then, $\mathrm{NaIO}_{4}(4.00 \mathrm{~g}, 18.75 \mathrm{mmol})$ followed by
ruthenium (IV) oxide monohydrate ($20.00 \mathrm{mg}, 0.13 \mathrm{mmol}$) were added sequentially. The reaction mixture was stirred vigorously for 30 h at $25^{\circ} \mathrm{C}$. After extraction with ethyl acetate, the organic layers were washed with a mixture of brine:saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (10:1). The aqueous phase was acidified with concentrated HCl to pH 2 and extracted again. The combined organic layers were then washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous phase was acidified again and extracted with ethyl acetate. The solvent was evaporated under reduced pressure and 3,3-dimethyl-2-(3-oxobutyl)cyclobutane-1-carboxylic acid 46 was obtained in 80% isolated yield as a 1.4:1 mixture of diastereoisomers ($210.7 \mathrm{mg}, 1.06 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR for the mixture of diastereoisomers $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 3.20-3.15(\mathrm{~m}, 0.6 \mathrm{H}), 2.64(\mathrm{q}, J=9.09 \mathrm{~Hz}$, $0.4 \mathrm{H}), 2.47-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 2 \mathrm{H}), 1.04(\mathrm{~s}$, $1.1 \mathrm{H}), 1.02(\mathrm{~s}, 2 \mathrm{H}), 1.01(\mathrm{~s}, 1.1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR for the mixture of diastereoisomers $(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 209.26$ (s), 209.24 (s), 181.83 (s), 180.99 (s), 47.76 (s), 46.43 (s), 42.05 (s), 41.28 (s), 39.26 (s), 36.51 (s), 35.94 (s), 35.86 (s), 34.57 (s), 33.93 (s), 31.01 (s), 30.17 (s), 29.96 (s), 29.92 (s), 23.97 (s), 23.26 (s), 22.32 (s), 21.49 (s).

Methyl 3,3-dimethyl-2-(3-oxobutyl)cyclobutane-1-carboxylate (66)

3,3-Dimethyl-2-(3-oxobutyl)cyclobutane-1-carboxylic acid 46 (76.50 $\mathrm{mg}, 0.39 \mathrm{mmol}$) were dissolved in 2 ml of a mixture of toluene:methanol ($1: 1$) under inert conditions. The solution was cooled down to $0{ }^{\circ} \mathrm{C}$ and 2 M trimethylsilyldiazomethane in diethyl ether ($0.40 \mathrm{ml}, 0.80 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for 1.5 h and then directly concentrated under vacuum. Methyl 3,3-dimethyl-2-(3-oxobutyl)cyclobutane-1-carboxylate $\mathbf{6 6}$ was obtained in 91% isolated yield as a 1.1:1 mixture of diastereoisomers ($75.1 \mathrm{mg}, 0.35 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR for the mixture of diastereoisomers ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 3.62(\mathrm{~s}, 1.5 \mathrm{H}), 3.61(\mathrm{~s}, 1.5 \mathrm{H}), 3.15-3.10(\mathrm{~m}$, $0.6 \mathrm{H}), 2.59(\mathrm{q}, J=9.21 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.36-2.19(\mathrm{~m}, 3 \mathrm{H}), 2.09-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.73$ $(\mathrm{m}, 1 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 1.5 \mathrm{H}), 1.02(\mathrm{~s}, 1.5 \mathrm{H}), 1.00(\mathrm{~s}, 1.5 \mathrm{H}), 0.99(\mathrm{~s}, 1.5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR for the mixture of diastereoisomers ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 208.52$ (s), 208.40 (s), 175.82 (s), 174.99 (s), 51.59 (s), 51.38 (s), 47.68 (s), 46.34 (s), 41.98 (s), 41.32 (s), 39.24 (s), 36.33 (s), 36.11 (s), 35.69 (s), 34.53 (s), 34.09 (s), 31.04 (s), 30.16 (s), 29.93 (s), 29.89 (s), 24.01 (s), 23.29 (s), 22.30 (s), 21.58 (s).

Methyl 3,3-dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)cyclobutane-1-carboxylate (71)

Trimethylsilyl trifluoromethanesulfonate ($18.00 \mu \mathrm{l}, 0.10 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200.00 \mu \mathrm{l})$. Then, 22.00 ml of this solution was added over methyl 3,3-dimethyl-2-(3-oxobutyl)cyclobutane-1carboxylate $66(21.00 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and under inert conditions followed by 2,2,7,7-tetramethyl-3,6-dioxa-2,7-disilaoctane ($47.00 \mu 1,0.20 \mathrm{mmol}$). The reaction mixture was stirred for 1.5 h and quenched by a drop of pyridine. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated NaHCO_{3}, aqueous $\mathrm{CuSO}_{4} 1 \%$ and water, sequentially. The organic layers were dried with NaSO_{4} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and concentrated. Methyl 3,3-dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)cyclobutane-1-carboxylate $\mathbf{7 1}$ was obtained quantitatively as a 1:1 mixture of diastereoisomers ($27.4 \mathrm{mg}, 0.10 \mathrm{mmol}$). Note: Use 1.2 equiv. of 2,2,7,7-tetramethyl-3,6-dioxa-2,7-disilaoctane a in larger scale otherwise the purification is more complicated. ${ }^{1} \mathrm{H}$ NMR for the mixture of diastereoisomers $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 3.95$ $-3.89(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 1.5 \mathrm{H}), 3.65(\mathrm{~s}, 1.5 \mathrm{H}), 3.20-3.15(\mathrm{~m}, 0.5 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 0.5 \mathrm{H})$, $2.28-2.23(\mathrm{~m}, 0.5 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 0.5 \mathrm{H}), 1.80-1.76(\mathrm{~m}, 1 \mathrm{H})$,
$1.55-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 1.5 \mathrm{H}), 1.29(\mathrm{~s}, 1.5 \mathrm{H}), 1.12(\mathrm{~s}, 1.5 \mathrm{H}), 1.08(\mathrm{~s}, 1.5 \mathrm{H}), 1.05(\mathrm{~s}$, $1.5 \mathrm{H}), 1.03(\mathrm{~s}, 1.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR for the mixture of diastereoisomers $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 176.10(\mathrm{~s}), 175.33(\mathrm{~s}), 110.09(\mathrm{~s}), 110.04(\mathrm{~s}), 64.78(\mathrm{~s}), 64.75(\mathrm{~s}), 51.69(\mathrm{~s}), 51.40$ (s), 48.47 (s), 47.17 (s), 39.44 (s), 37.70 (s), 36.85 (s), 36.53 (s), 36.10 (s), 35.73 (s), 34.70 (s), 34.12 (s), 31.31 (s), 30.52 (s), 24.91 (s), 23.86 (s), 23.82 (s), 23.44 (s), 22.33 (s), 22.11 (s).

Methyl trans-3,3-dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)cyclobutane-1carboxylate (trans-71)

Methyl 3,3-dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)cyclobutane-1-carboxylate $71(30.00 \mathrm{mg}, 0.12 \mathrm{mmol})$ was dissolved in 0.25 ml of THF under inert conditions and sodium methoxide ($6.5 \mathrm{mg}, 0.12 \mathrm{mmol}$) was added. Then, 0.25 ml of freshly distilled methanol were added and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 20 h , when the diastereoselectivity reached $97: 3$ by GC-MS. The solution was cooled down to $0{ }^{\circ} \mathrm{C}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ followed by extraction with ethyl acetate. The organic layers were washed with saturated NaHCO_{3} and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and methyl trans-3,3-dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)cyclobutane-1-carboxylate trans-71 was obtained in 77% isolated yield ($22.8 \mathrm{mg}, 0.09 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 3.94-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{q}, J=9.09 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.11(\mathrm{~m}, 1 \mathrm{H})$, $1.87(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=11.24,8.71 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}$, $3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 176.09(\mathrm{~s}), 110.04(\mathrm{~s}), 64.76(\mathrm{~s})$, 51.69 (s), 48.47 (s), 39.43 (s), 36.84 (s), 36.09 (s), 34.69 (s), 30.51 (s), 24.90 (s), 23.85 (s), 22.32 (s). Stereochemistry confirmed with NOESY experiments (see Chapter 5).

1-(3,3-Dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)cyclobutyl)ethan-1-one (trans73)

Methyl trans-3,3-dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)cyclobutane-1-carboxylate trans-71 ($10.60 \mathrm{mg}, 41.00 \mu \mathrm{~mol})$ was dissolved in THF (0.10 ml) under inert conditions and N, O dimethylhydroxylamine hydrochloride ($4.50 \mathrm{mg}, 45.10 \mu \mathrm{~mol}$) was added. The solution was cooled down to $0{ }^{\circ} \mathrm{C}$ and 2 M isopropylmagnesium chloride in diethyl ether ($62.00 \mu \mathrm{l}, 123.00$ $\mu \mathrm{mol})$ was added. The reaction mixture was stirred for 2 h and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were washed with water and dried with MgSO_{4}. The Weinreb amide intermediate trans-72 was obtained in 81% yield and used directly. 1-(3,3-Dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)cyclobutyl)-2-methoxypropan-1-one trans-72 (16.30 mg, $57.00 \mu \mathrm{~mol})$ was dissolved in THF (0.20 ml) under inert conditions and cooled down to $0^{\circ} \mathrm{C}$. Then, 3 M methylmagnesium bromide in diethyl ether ($35.00 \mu \mathrm{l}, 102.60 \mu \mathrm{~mol}$) was added and the solution was stirred for 1.5 h at $25^{\circ} \mathrm{C}$. The reaction was cooled down to $0^{\circ} \mathrm{C}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ followed by extraction with ethyl acetate. The organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude was purified with neutral alumina column chromatography eluting with cyclohexane - cyclohexane:ethyl acetate ($2: 1$) - ethyl acetate to obtain 1-(3,3-dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)cyclobutyl)ethan-1-one trans-73 in 65% isolated yield ($9.5 \mathrm{mg}, 0.04 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) δ $3.94-3.89(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{q}, J=9.52 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{t}, J$
$=9.32 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 210.29$ (s), 110.00 (s), 64.78 (s), 47.59 (s), 47.03 (s), 37.18 (s), 36.25 (s), 33.95 (s), 30.61 (s), 28.47 (s), 25.05 (s), 23.87 (s), 22.59 (s). ESI $^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 263.1618$, found $263.1612(0.6 \mathrm{ppm})$.

2,2,6-Trimethyl-6-(phenylethynyl)tetrahydro-2H-pyran (59)

[(S,S,S)-(+)-(3,5-Dioxa-4-phosphacyclohepta[2,1-a:3,4-a']dinaphthalen-4-yl)bis(1-phenylethyl) amine] gold (I) chloride called $\mathbf{Z}(3.1 \mathrm{mg}, 4.02 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{ml})$ and added over silver bis(trifluoromethanesulfonyl)imide under inert conditions $(1.5 \mathrm{mg}, 3.87 \mu \mathrm{~mol})$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 15 min . The suspension was filtered through Teflon 0.22 and then concentrated. The crude was dissolved again in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{ml})$ under inert conditions and ethynylbenzene (9μ, 0.08 mmol) followed by 6 -methylhep- $5-\mathrm{en}$ - 2 -one ($49 \mu 1,0.33 \mathrm{mmol}$) were added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 h and quenched with a drop of $\mathrm{Et}_{3} \mathrm{~N}$. The crude was concentrated and purified by silica gel preparative TLC eluting with pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1). 2,2,6-Trimethyl-6-(phenylethynyl)tetrahydro-2H-pyran 59 was obtained in 38% isolated yield ($8 \mathrm{mg}, 0.04 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.41-7.38(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.54$ $(\mathrm{s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 131.46$ (s), 128.35 (s), 128.00 (s), 123.71 (s), 94.69 (s), 83.46 (s), 73.64 (s), 67.96 (s), $38.68(\mathrm{~s}), 36.76(\mathrm{~s}), 33.30(\mathrm{~s}), 32.69(\mathrm{~s}), 25.55(\mathrm{~s}), 17.96(\mathrm{~s}) . \mathrm{APCI}^{+} \mathrm{m} / \mathrm{z}$ calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 229.1587$, found 229.1586 (0.1 ppm).

DFT Calculations Data

2,6-Di(anthracen-9-yl)-4-methyl-4-(4-methylpent-3-en-1-yl)dinaphtho[2,1-d:1',2'-fl[1,3]dioxepine (51)
$G=-2615.349893$ Hartree/particle

Row	Symbol	X	Y	Z
1	C	-1.7409710	3.3448970	-0.1517820
2	C	-0.9756970	2.1485430	-0.3293030
3	C	-1.6138290	0.9290990	-0.1827300
4	C	-3.0208730	0.8057000	-0.0113420
5	C	-3.7627480	1.9630830	0.0483100
6	C	-3.1544700	3.2398680	0.0156460
7	H	-4.8464140	1.9012070	0.1608360
8	C	-3.9275880	4.4173270	0.1744630
9	C	-1.1559290	4.6354520	-0.0867800
10	C	-1.9291770	5.7564740	0.0889980
11	H	-1.4550760	6.7347730	0.1466600
12	C	-3.3323000	5.6524410	0.2065550
13	H	-3.9341360	6.5498000	0.3369580
14	H	-5.0072240	4.3153270	0.2863560
15	H	-0.0747190	4.7317240	-0.1625820
16	C	0.4731690	2.1402140	-0.6452370
17	C	1.0263070	2.8702160	-1.7469230

18	C	1.3109850	1.3279400	0.1030730
19	C	2.4390070	2.8527430	-1.9481070
20	C	2.7171410	1.2730200	-0.1157420
21	C	3.2532300	2.0627540	-1.1045000
22	H	4.3302580	2.0450340	-1.2801390
23	C	0.2317970	3.5775220	-2.6861430
24	H	-0.8510550	3.5601070	-2.5853690
25	C	3.0033630	3.5898810	-3.0187820
26	C	2.2078110	4.2902790	-3.8887900
27	C	0.8057210	4.2672780	-3.7259230
28	H	0.1718350	4.7957450	-4.4359250
29	H	4.0862340	3.5723480	-3.1434840
30	H	2.6506570	4.8472950	-4.7123440
31	O	-0.8715390	-0.2169400	-0.2769820
32	O	0.7915750	0.6001060	1.1392110
33	C	-0.0278130	-0.5288490	0.8225630
34	C	-0.8077000	-0.8119780	2.0854230
35	H	-1.5557430	-1.5936800	1.9085790
36	H	-0.1218460	-1.1403180	2.8754840
37	H	-1.3191560	0.0953860	2.4283440
38	C	0.8231390	-1.6905630	0.3489960
39	H	1.3375890	-1.3689300	-0.5687860
40	H	1.6057330	-1.8717030	1.1027040
41	C	0.0505840	-2.9769400	0.0520120
42	H	-0.8172450	-2.7379510	-0.5817170
43	H	-0.3558490	-3.3920420	0.9863710
44	C	0.9360240	-3.9927570	-0.6077110
45	H	1.4779880	-4.6699480	0.0594770
46	C	1.1659800	-4.0972960	-1.9230060
47	C	2.0994820	-5.1317320	-2.4730920
48	H	2.5391170	-5.7523850	-1.6822230
49	H	1.5835830	-5.7951800	-3.1843680
50	H	2.9230900	-4.6616030	-3.0342620
51	C	0.5403960	-3.2073770	-2.9545500
52	H	-0.0374800	-3.7952010	-3.6852500
53	H	-0.1294590	-2.4481270	-2.5326130
54	H	1.3201960	-2.6824920	-3.5292180
55	C	3.5582260	0.3364590	0.6735170
56	C	4.0460420	-0.8377940	0.0621480
57	C	3.8088700	0.5849940	2.0368610
58	C	4.7487620	-1.8089180	0.8583030
59	C	4.5267570	-0.3844150	2.8178670
60	C	4.9664350	-1.5611930	2.2125840
61	H	5.4957080	-2.3043960	2.8118810
62	C	-3.6400470	-0.5389420	0.1087480
63	C	-4.2618870	-0.9263580	1.3164590
64	C	-3.5591120	-1.4466600	-0.9688900
65	C	-4.7853780	-2.2612540	1.4463620
66	C	-4.0610340	-2.7838920	-0.8150610
67	C	-4.6593220	-3.1575780	0.3867400
68	H	-5.0408040	-4.1740240	0.5004190
69	C	-4.3639460	-0.0669420	2.4543090
70	C	-5.4084340	-2.6545390	2.6678200
71	C	-5.5027080	-1.7921350	3.7208200
72	C	-4.9628730	-0.4823160	3.6101490
73	H	-3.9477780	0.9365850	2.3949890
74	H	-5.0230500	0.1955500	4.4598990
75	H	-5.8043720	-3.6679850	2.7374590
76	H	-5.9792790	-2.1039920	4.6483850
77	C	-2.9957540	-1.0912870	-2.2319100
78	C	-3.9353160	-3.7070710	-1.8957850
79	C	-3.3660370	-3.3318710	-3.0776370
80	H	-3.2724360	-4.0447470	-3.8951400
81	C	-2.9017960	-1.9991410	-3.2485830

82	H	-2.4662310	-1.7015740	-4.2013610
83	H	-2.6410510	-0.0733750	-2.3820080
84	H	-4.3105820	-4.7203830	-1.7511220
85	C	3.3824990	1.7826150	2.6850520
86	C	4.7682340	-0.1237720	4.1988570
87	C	4.3366760	1.0327540	4.7817710
88	C	3.6379140	2.0006540	4.0094960
89	H	3.3068810	2.9246000	4.4806130
90	H	2.8552430	2.5352940	2.1010580
91	H	4.5291610	1.2223720	5.8363070
92	H	5.3107460	-0.8729300	4.7760050
93	C	3.8309200	-1.1437270	-1.3176530
94	C	5.1941480	-3.0203740	0.2504440
95	C	4.9676860	-3.2706610	-1.0715300
96	C	4.2759270	-2.3145070	-1.8636580
97	H	4.1005960	-2.5192320	-2.9194700
98	H	3.2915010	-0.4300040	-1.9381290
99	H	5.7222570	-3.7422390	0.8738700
100	H	5.3093760	-4.2002480	-1.5241640

$G=-3197.858361$ Hartree/particle

(4-methyl-4-(4-methylpent-3-en-1-yl)dinaphtho[2,1-d:1',2'-fl[1,3]dioxepine-2,6-diyl)bis(triphenylsilane) (52)

Row	Symbol	X
1	C	-1.3915550
2	C	-0.7996040
3	C	-1.5588430
4	C	-2.9643840
5	C	-3.5422610
6	C	-2.7794970
7	H	-4.6203770
8	C	-3.3784780
9	C	-0.6505800
10	C	-1.2563600
11	H	-0.6638560
12	C	-2.6363170
13	H	-3.1032030
14	H	-4.4429830
15	H	0.4171300
16	C	0.5741040
17	C	1.0040940
18	C	1.4521080
19	C	2.3665840
20	C	2.8215340
21	C	3.2466320
22	H	4.2934540
23	C	0.1294020
24	H	-0.9234090
25	C	2.8144720
26	C	1.9473410
27	C	0.5884330
28	H	-0.1044410
29	H	3.8634890

Y
3.5081580
2.2514820
1.1051210
1.1312060
2.3586330
3.5499020
2.4359270
4.7834440
4.7142140
5.8934840
6.8045450
5.9358260
6.8786440
4.7928190
4.6959930
2.1339830
2.8739830
1.2332260
2.7764250
1.1336520
1.9336890
1.9135190
3.6704310
3.7239230
3.5087200
4.2866490
4.3542030
4.9505220
3.4278020

Z
0.3934750
0.0425700
0.1977120
0.4135380
0.6570740
0.7173190
0.8126210
1.0714170
0.4734590
0.8345670
0.8997990
1.1283670
1.4072630
1.3068840
0.2635070
-0.4962530
-1.6435470
0.0807380
-2.0523840
-0.2928630
-1.3338810
-1.6478780
-2.4265660
-2.1569610
-3.1794820
-3.9033310
-3.5257640
-4.1171300
-3.4653120

30	H	2.2970750	4.8404120	-4.7726000
31	O	-0.9733630	-0.1201320	0.0018430
32	O	1.0054190	0.4853430	1.1366330
33	C	0.0414370	-0.5418400	0.9167620
34	C	-0.5118950	-0.8271880	2.2933020
35	H	-1.2679020	-1.6181280	2.2567090
36	H	0.3092930	-1.1349680	2.9552290
37	H	-0.9720870	0.0792700	2.7064000
38	C	0.7013550	-1.7346230	0.2515740
39	H	1.1176690	-1.3925930	-0.7084850
40	H	1.5516530	-2.0288410	0.8850580
41	C	-0.1964070	-2.9440100	0.0010240
42	H	-1.0705990	-2.6352170	-0.5896820
43	H	-0.5899830	-3.3173690	0.9602260
44	C	0.5628770	-4.0428760	-0.6772390
45	H	1.2712350	-4.5842670	-0.0392250
46	C	0.5013700	-4.3934760	-1.9684140
47	C	1.3224010	-5.5263830	-2.5057610
48	H	1.9595730	-5.9776820	-1.7347090
49	H	0.6782050	-6.3147990	-2.9253290
50	H	1.9736270	-5.1909720	-3.3290240
51	C	-0.3573870	-3.7119750	-2.9887940
52	H	-1.0592960	-4.4197320	-3.4571650
53	H	-0.9437110	-2.8773420	-2.5873240
54	H	0.2675920	-3.3149620	-3.8050020
55	Si	4.0705270	-0.0434230	0.5060020
56	C	5.7722230	0.7738790	0.4406350
57	C	6.5660530	0.6438870	-0.7098260
58	C	6.2852570	1.5327610	1.5017500
59	C	7.8114510	1.2578140	-0.8056840
60	H	6.2067600	0.0420620	-1.5474750
61	C	7.5319210	2.1467600	1.4145870
62	H	5.7091460	1.6377240	2.4223130
63	C	8.2961780	2.0131700	0.2588700
64	H	8.4070530	1.1420090	-1.7100850
65	H	7.9094240	2.7285950	2.2543270
66	H	9.2720380	2.4915620	0.1897380
67	C	3.6226950	-0.4094140	2.2957950
68	C	3.5286690	-1.7103940	2.8048050
69	C	3.3530850	0.6537270	3.1717880
70	C	3.1865200	-1.9441500	4.1357780
71	H	3.7150500	-2.5639090	2.1508590
72	C	3.0182250	0.4295570	4.5023920
73	H	3.3775590	1.6813780	2.8009750
74	C	2.9350210	-0.8740440	4.9881620
75	H	3.1169860	-2.9658450	4.5065830
76	H	2.8104820	1.2720570	5.1603630
77	H	2.6705130	-1.0541400	6.0290670
78	C	4.1984380	-1.6066790	-0.5368160
79	C	5.0276580	-2.6619480	-0.1249100
80	C	3.5401630	-1.7390540	-1.7666580
81	C	5.1626390	-3.8168430	-0.8893760
82	H	5.5883270	-2.5793260	0.8089010
83	C	3.6782520	-2.8873760	-2.5417570
84	H	2.9023750	-0.9310540	-2.1307600
85	C	4.4837790	-3.9322350	-2.1000300
86	H	5.8056210	-4.6253950	-0.5445880
87	H	3.1514680	-2.9660270	-3.4929640
88	H	4.5866960	-4.8351690	-2.7007910
89	Si	-4.0331960	-0.4091810	0.1755030
90	C	-5.8324600	0.1632310	0.1595360
91	C	-6.7434180	-0.1297480	1.1814970
92	C	-6.2938170	0.9183060	-0.9313190
93	C	-8.0617840	0.3188880	1.1245100

94	H	-6.4223580	-0.7239780	2.0383620
95	C	-7.6066110	1.3718770	-0.9943120
96	H	-5.6098130	1.1588190	-1.7488830
97	C	-8.4939040	1.0720900	0.0376350
98	H	-8.7528650	0.0779340	1.9311060
99	H	-7.9401780	1.9580290	-1.8494920
100	H	-9.5235530	1.4238120	-0.0084650
101	C	-3.7131810	-1.1617810	-1.5218030
102	C	-4.4296060	-2.3021020	-1.9190190
103	C	-2.8801710	-0.5533490	-2.4712440
104	C	-4.3045080	-2.8263960	-3.2021980
105	H	-5.1127550	-2.7851230	-1.2161100
106	C	-2.7632280	-1.0625860	-3.7620690
107	H	-2.3133330	0.3401710	-2.2045210
108	C	-3.4720100	-2.2031930	-4.1285610
109	H	-4.8672610	-3.7154160	-3.4834350
110	H	-2.1127630	-0.5687990	-4.4827660
111	H	-3.3770140	-2.6063530	-5.1358950
112	C	-3.8070870	-1.6359890	1.5792590
113	C	-3.5021190	-2.9872820	1.3787900
114	C	-3.9423530	-1.1825850	2.9012440
115	C	-3.3360380	-3.8561880	2.4555110
116	H	-3.3754040	-3.3709230	0.3649900
117	C	-3.7821790	-2.0444650	3.9810750
118	H	-4.1622900	-0.1287780	3.0922110
119	C	-3.4759320	-3.3855710	3.7577940
120	H	-3.0939580	-4.9027600	2.2752540
121	H	-3.8888490	-1.6694860	4.9978400
122	H	-3.3446920	-4.0632210	4.5999140

4-Methyl-4-(4-methylpent-3-en-1-yl)-2,6-bis(2,4,6-triisopropylphenyl)dinaphtho[2,1-d:1',2'fl[1,3]dioxepine (53)
$G=-2399.935166$ Hartree/particle

Row	Symbol	X	Y	Z
1	C	-1.8848490	3.6288780	0.4167840
2	C	-1.0622860	2.5041030	0.0839600
3	C	-1.6416940	1.2480250	0.1084990
4	C	-3.0415330	1.0304820	0.2454200
5	C	-3.8389600	2.1337710	0.4290940
6	C	-3.2901590	3.4320840	0.5692400
7	H	-4.9208820	2.0147550	0.5038570
8	C	-4.1166070	4.5407240	0.8770310
9	C	-1.3609590	4.9256510	0.6476190
10	C	-2.1852930	5.9763400	0.9691530
11	H	-1.7579350	6.9608640	1.1517190
12	C	-3.5806330	5.7888550	1.0707180
13	H	-4.2243540	6.6312110	1.3173250
14	H	-5.1897970	4.3747540	0.9742550
15	H	-0.2855680	5.0799650	0.5813520
16	C	0.3612490	2.5978410	-0.3206680
17	C	0.8051890	3.4915110	-1.3521020
18	C	1.2763090	1.7090370	0.2240800
19	C	2.1971880	3.5489390	-1.6607440
20	C	2.6435000	1.6724760	-0.1735330

21	C	3.0856760	2.6371170	-1.0458710
22	H	4.1403850	2.6688690	-1.3239660
23	C	-0.0718430	4.3061380	-2.1144400
24	H	-1.1437260	4.2353070	-1.9482210
25	C	2.6635010	4.4664240	-2.6349080
26	C	1.7909070	5.2709770	-3.3216740
27	C	0.4063310	5.1706200	-3.0689030
28	H	-0.2917570	5.7781650	-3.6424040
29	H	3.7337520	4.5005880	-2.8406570
30	H	2.1586420	5.9673730	-4.0730990
31	O	-0.8467640	0.1457880	-0.0810970
32	O	0.8989470	0.8947790	1.2570580
33	C	0.0010600	-0.1888560	1.0024930
34	C	-0.7526610	-0.3942000	2.2973470
35	H	-1.5611890	-1.1196660	2.1529140
36	H	-0.0669810	-0.7693020	3.0675910
37	H	-1.1816130	0.5522770	2.6474430
38	C	0.7813370	-1.4095200	0.5609970
39	H	1.2545990	-1.1626440	-0.4004700
40	H	1.5964200	-1.5577270	1.2876310
41	C	-0.0324000	-2.6956980	0.4109910
42	H	-0.8833590	-2.5196960	-0.2642670
43	H	-0.4636460	-2.9747560	1.3869270
44	C	0.8634990	-3.7943290	-0.0698510
45	H	1.7194560	-3.9926770	0.5867590
46	C	0.8003260	-4.4876310	-1.2140700
47	C	1.8623360	-5.4836950	-1.5709300
48	H	2.6288610	-5.5719120	-0.7912410
49	H	1.4335390	-6.4822760	-1.7455940
50	H	2.3622200	-5.1947900	-2.5095350
51	C	-0.2565740	-4.3201090	-2.2617030
52	H	-0.6695680	-5.2966020	-2.5573910
53	H	-1.0899700	-3.6831140	-1.9442790
54	H	0.1761280	-3.8781120	-3.1746920
55	C	3.5311410	0.5650010	0.2803030
56	C	3.8575250	-0.4727120	-0.6242910
57	C	3.9938560	0.5115310	1.6052910
58	C	4.6342320	-1.5384390	-0.1710950
59	C	4.7780320	-0.5713710	2.0066170
60	C	5.1045030	-1.6093400	1.1402690
61	C	-3.5605520	-0.3627060	0.1531290
62	C	-4.0901460	-1.0150090	1.2852270
63	C	-3.4313650	-1.0637980	-1.0665090
64	C	-4.4140850	-2.3704790	1.1863240
65	C	-3.7867550	-2.4098780	-1.1162320
66	C	-4.2507230	-3.0921110	0.0088710
67	H	5.1477900	-0.6115070	3.0336560
68	H	4.8795030	-2.3442500	-0.8652520
69	C	3.4033630	-0.4599150	-2.0761070
70	H	2.5403050	0.2193450	-2.1571140
71	C	4.5138860	0.0816070	-2.9787880
72	H	5.3986780	-0.5698350	-2.9259910
73	H	4.1826490	0.1147580	-4.0259050
74	H	4.8283930	1.0918570	-2.6891920
75	C	2.9581370	-1.8257710	-2.5981470
76	H	2.2218580	-2.3079650	-1.9394580
77	H	2.5064000	-1.7128180	-3.5934390
78	H	3.8075010	-2.5157620	-2.7075990
79	C	5.9281090	-2.7834680	1.6170290
80	H	6.2212890	-2.5733110	2.6589750
81	C	5.1057530	-4.0704530	1.6151720
82	H	4.1901210	-3.9591920	2.2112640
83	H	4.8100320	-4.3439900	0.5919040
84	H	5.6852540	-4.9071700	2.0285130

85	C	7.2044860	-2.9576650	0.7975060
86	H	7.8106550	-2.0425690	0.7984020
87	H	7.8170160	-3.7752050	1.2011470
88	H	6.9725520	-3.2046630	-0.2483600
89	C	3.7014830	1.6186290	2.5961220
90	H	2.9642050	2.2967910	2.1439890
91	C	4.9623170	2.4380850	2.8673540
92	H	5.7451960	1.8205430	3.3310800
93	H	5.3711730	2.8526800	1.9352540
94	H	4.7470740	3.2733630	3.5479380
95	C	3.0936250	1.0896940	3.8914410
96	H	2.1947730	0.4937790	3.6821740
97	H	3.8013540	0.4590480	4.4478820
98	H	2.8086240	1.9214180	4.5499920
99	H	-4.8043320	-2.8901510	2.0632700
100	H	-3.6930760	-2.9460410	-2.0636200
101	C	-4.5804080	-4.5659770	-0.0438260
102	H	-4.8215120	-4.8812540	0.9847490
103	C	-5.8069360	-4.8319240	-0.9144620
104	H	-6.0649230	-5.8997400	-0.9108620
105	H	-6.6793660	-4.2669200	-0.5614020
106	H	-5.6171910	-4.5388460	-1.9571980
107	C	-3.3900720	-5.3938870	-0.5233820
108	H	-3.1677050	-5.1854030	-1.5800940
109	H	-2.4819170	-5.1751570	0.0563880
110	H	-3.6045580	-6.4677380	-0.4390380
111	C	-4.3634220	-0.2928470	2.5930710
112	H	-3.7721320	0.6346860	2.6041670
113	C	-3.9889630	-1.0963730	3.8369720
114	H	-4.1018680	-0.4711480	4.7324760
115	H	-4.6434470	-1.9688470	3.9696580
116	H	-2.9526370	-1.4568750	3.8054140
117	C	-5.8422540	0.0957890	2.6716690
118	H	-6.0498810	0.6585770	3.5921630
119	H	-6.1549770	0.7105830	1.8174370
120	H	-6.4743500	-0.8043530	2.6774720
121	C	-2.9935860	-0.3697030	-2.3443700
122	H	-2.5928660	0.6193620	-2.0845120
123	C	-4.2117250	-0.1350200	-3.2386910
124	H	-4.6593300	-1.0887240	-3.5543770
125	H	-4.9853680	0.4385210	-2.7092460
126	H	-3.9316420	0.4215120	-4.1435780
127	C	-1.8930420	-1.1065890	-3.1008420
128	H	-2.2278940	-2.0878840	-3.4672990
129	H	-1.5870430	-0.5222650	-3.9794480
130	H	-1.0057420	-1.2577850	-2.4699410

2,6-Bis(3,5-bis(trifluoromethyl)phenyl)-4-methyl-4-(4-methylpent-3-en-1-yl)dinaphtho[2,1-d:1',2'fl[1,3]dioxepine (54)
$G=-3041.103987$ Hartree/particle

Row	Symbol	X
1	C	-1.8499860
2	C	-1.0671100
3	C	-1.6752490

[^106]Z
0.3378900
-0.0595170
-0.1230100

4	C	-3.0755240	1.2842340	0.0526290
5	C	-3.8369430	2.3913870	0.3522840
6	C	-3.2552760	3.6673940	0.5252800
7	H	-4.9167120	2.2905680	0.4718060
8	C	-4.0461290	4.7808540	0.9035730
9	C	-1.2874960	5.1104820	0.6031730
10	C	-2.0775670	6.1653440	0.9889480
11	H	-1.6223500	7.1326680	1.1938910
12	C	-3.4737990	6.0065870	1.1278890
13	H	-4.0883600	6.8540810	1.4251880
14	H	-5.1194630	4.6357850	1.0265000
15	H	-0.2114340	5.2440660	0.5107020
16	C	0.3753990	2.7750910	-0.3981010
17	C	0.8945050	3.6491690	-1.4072710
18	C	1.2276100	1.8643940	0.2019480
19	C	2.2922620	3.6140470	-1.6964770
20	C	2.6131490	1.7970870	-0.1095960
21	C	3.1197310	2.6811270	-1.0328700
22	H	4.1818780	2.6529160	-1.2810160
23	C	0.0801430	4.5162690	-2.1806920
24	H	-0.9949350	4.5225490	-2.0175460
25	C	2.8268970	4.4831040	-2.6798340
26	C	2.0148020	5.3329120	-3.3852390
27	C	0.6245980	5.3342960	-3.1397820
28	H	-0.0243280	5.9850430	-3.7232170
29	H	3.8992920	4.4485100	-2.8722130
30	H	2.4334710	5.9932900	-4.1421210
31	O	-0.9018370	0.3680150	-0.3949720
32	O	0.7259450	1.0033970	1.1438950
33	C	-0.0638890	-0.0896060	0.6619670
34	C	-0.8524440	-0.5680820	1.8588390
35	H	-1.5357980	-1.3768000	1.5740460
36	H	-0.1622170	-0.9407210	2.6249420
37	H	-1.4339500	0.2556850	2.2891700
38	C	0.8252720	-1.1510480	0.0439900
39	H	1.3831910	-0.6746850	-0.7762140
40	H	1.5632430	-1.4536840	0.8019610
41	C	0.1021670	-2.3790850	-0.5072630
42	H	-0.7036510	-2.0489510	-1.1755110
43	H	-0.3829980	-2.9350910	0.3092770
44	C	1.0627290	-3.2720890	-1.2347600
45	H	1.5646670	-4.0359080	-0.6337400
46	C	1.4075420	-3.1642760	-2.5247200
47	C	2.4278790	-4.0753200	-3.1372070
48	H	2.8043950	-4.8140710	-2.4194460
49	H	2.0091040	-4.6157070	-3.9998430
50	H	3.2879680	-3.5043480	-3.5199970
51	C	0.8381220	-2.1438730	-3.4644170
52	H	0.3516770	-2.6320040	-4.3225450
53	H	0.1042770	-1.4760840	-2.9968200
54	H	1.6421410	-1.5183910	-3.8816160
55	C	3.4650820	0.7410520	0.4780670
56	C	4.1400010	-0.1381060	-0.3723560
57	C	3.5668510	0.5564790	1.8585540
58	C	4.8776550	-1.1949550	0.1472210
59	C	4.3266630	-0.4887580	2.3705290
60	C	4.9764840	-1.3781560	1.5211920
61	C	-3.6726450	-0.0628950	-0.0469360
62	C	-4.6123720	-0.4849070	0.8961850
63	C	-3.2801010	-0.9607350	-1.0467330
64	C	-5.1273060	-1.7767000	0.8531560
65	C	-3.7765560	-2.2563950	-1.0659530
66	C	-4.7034660	-2.6764910	-0.1171440
67	H	-4.9148400	0.1912440	1.6936230

68	H	-5.0839100	-3.6970270	-0.1303020
69	H	-2.5665030	-0.6446570	-1.8021900
70	H	3.0468270	1.2314820	2.5337190
71	H	4.0471480	-0.0167060	-1.4505040
72	H	5.5570520	-2.2056650	1.9272430
73	C	4.4195130	-0.7253560	3.8467160
74	C	5.5367330	-2.1982620	-0.7480680
75	C	-3.2776980	-3.2596390	-2.0614250
76	C	-6.1564770	-2.2308890	1.8424790
77	F	-2.4916350	-2.7118330	-2.9940460
78	F	-2.5622670	-4.2175040	-1.4531240
79	F	-4.2853820	-3.8749310	-2.6906680
80	F	-5.8630350	-3.4423680	2.3317750
81	F	-7.3657580	-2.3302270	1.2725520
82	F	-6.2727090	-1.3952470	2.8776180
83	F	5.4747170	-1.8546040	-2.0372910
84	F	4.9618810	-3.4035630	-0.6260160
85	F	6.8288460	-2.3578880	-0.4329490
86	F	5.6816620	-0.9673090	4.2234920
87	F	3.9775180	0.3134830	4.5594950
	88	F	$3.6994640-1.7964180$	4.2105590

Trans-methyl 3,3-dimethyl-2-(3-oxobutyl)cyclobutane-1carboxylate (Trans-66)
$G=-694.265538$ Hartree/particle

Row	Symbol	X	Y	Z
1	C	-0.7141700	-0.6673380	-0.3236750
2	C	-2.0442940	-1.4033600	-0.0057830
3	C	-2.6297370	-0.0273840	0.3894650
4	C	-1.1998930	0.5276290	0.5438120
5	H	-0.7465250	-0.3451810	-1.3793370
6	H	-3.2785650	0.0119120	1.2738270
7	H	-3.1346050	0.4586240	-0.4561670
8	H	-0.8169000	0.4601830	1.5705760
9	C	-1.9494570	-2.3329970	1.1942770
10	H	-2.9532540	-2.6769170	1.4821390
11	H	-1.3443070	-3.2221150	0.9653050
12	H	-1.5071150	-1.8412000	2.0719990
13	C	-2.6878600	-2.1137760	-1.1787980
14	H	-2.0827560	-2.9791650	-1.4898850
15	H	-3.6898050	-2.4859840	-0.9202520
16	H	-2.7882350	-1.4431630	-2.0438120
17	C	0.6224070	-1.3046120	-0.0214150
18	H	0.7386100	-2.2209180	-0.6211860
19	H	0.6653470	-1.6250880	1.0307580
20	C	1.7805510	-0.3633720	-0.2995020
21	H	1.7119890	0.5473920	0.319960
22	H	1.7477000	0.0061310	-1.3397600
23	C	3.1425130	-0.9764740	-0.0771300
24	C	4.3130530	-0.0380840	-0.1933770
25	H	5.2530780	-0.5972490	-0.1807490
26	H	4.2479210	0.5672880	-1.1065450
27	H	4.3031560	0.6635860	0.6521480
28	C	-0.9279230	1.8811970	-0.0302950
29	C	0.2830820	3.8716120	0.2038710
30	H	0.9991560	4.2952630	0.9099910
31	H	0.7364420	3.7728330	-0.7880340
32	H	-0.6016450	4.5123400	0.1287330

Experimental Section

33	O	3.2853030	-2.1547640	0.1909100
34	O	-1.3886440	2.2930650	-1.0740500
35	O	-0.0703240	2.5895970	0.7220890

Cis-methyl 3,3-dimethyl-2-(3-oxobutyl)cyclobutane-1carboxylate (Cis-66)
$G=-694.261089$ Hartree/particle

Row	Symbol	X
1	C	0.3802700
2	C	1.6953560
3	C	2.4749890
4	C	1.1770780
5	H	0.1183960
6	H	3.2908720
7	H	2.8563730
8	H	0.9648170
9	C	1.9441050
10	H	1.2059020
11	H	2.9426970
12	H	1.8716410
13	C	1.8559640
14	H	2.8781890
15	H	1.1615140
16	H	1.6851490
17	C	-0.8542770
18	H	-1.0837820
19	H	-0.6727170
20	C	-2.0570200
21	H	-1.8433860
22	H	-2.2636480
23	C	-3.3219180
24	C	-4.5405270
25	H	-4.3704110
26	H	-5.4126610
27	H	-4.7392620
28	O	-3.3585100
29	C	0.9316370
30	O	1.9262690
31	C	1.7209130
32	H	1.5973630
33	H	2.6127180
34	H	0.8301640
35	O	-0.0764280

-1.0344310
-1.5505280
-0.6051280
0.1568000
-1.7145390
-0.0240810
-1.1330080
0.3040470
-3.0355620
-3.6261100
-3.3206780
-3.3279520
-1.1633740
-1.3911570
-1.7267040
-0.0930520
-0.8099280
-1.7420270
-0.0529820
-0.3960970
0.5438620
-1.1380140
-0.2047590
0.1974760
1.1661810
0.2697000
-0.5282500
-0.3607930
1.4942210
1.9160390
3.1868090
3.9655120
3.3781010
3.1656730
2.1463140

Z
0.5589870 -0.0894150 0.8582180
1.1876870
1.3871000
0.4131700
1.7419410
2.2547210
0.0901220
-0.4739840
-0.2717130
1.1475400
-1.5515700
-1.8869030
-2.1914150
-1.7217450
-0.2871040
-0.8286500
-1.0652210
0.5419800
1.0782790
1.3322800
-0.2568250
0.5306230
1.0195680
-0.1256960
1.3302340
-1.4637590
0.5501980
-0.2410870
-0.8578180
-0.0981480
-1.4566080
-1.4942200
0.7372190

UNIVERSITAT ROVIRA I VIRGILI
DISSECTING INTERMOLECULAR GOLD CATALYSIS: APPLICATION TO THE TOTAL SYNTHESIS OF RUMPHELLAONE A. Carla Obradors Llobet
Dipòsit Legal: T 75-2015

[^0]: ${ }^{1}$ For other precedents see: (a) R. O. C. Norman, W. J. E. Parr and C. B. Thomas, J. Chem. Soc., Perkin Trans. I 1976, 1983-1987; (b) Y. Fukuda and K. Utimoto, J. Org. Chem. 1991, 56, 3729-3731.
 ${ }_{2}^{2}$ J. H. Teles, S. Brode and M. Chabanas, Angew. Chem. Int. Ed. 1998, 37, 1415-1418.
 ${ }^{3}$ (a) A S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (b) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (c) E. Jiménez-Núñez and A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350; (d) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev. 2008, 108, 3351-3378; (e) N. T. Patil and Y. Yamamoto, Chem. Rev. 2008, 108, 3395-3442; (f) A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (g) N. D. Shapiro and F. D. Toste, Synlett 2010, 675-691; (h) C. Obradors and A. Echavarren, Acc. Chem. Res. 2014, 47, 902-912.
 ${ }^{4}$ (a) N. Krause, V. Belting, C. Deutsch, J. Edrsack, H. T. Fan, B. Gockel, A. Hoffmann-Röder, N. Morita and F. Volz, Pure Appl. Chem. 2008, 80, 1063-1069; (b) M. Rudolph and A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41, 2448-2462.
 ${ }^{5}$ For specific examples see: (a) E. Jiménez-Núñez, K. Molawi and A. M. Echavarren, Chem. Commun. 2009, 7327-7329; (b) K. Molawi, N. Delpont and A. M. Echavarren, Angew. Chem. Int. Ed. 2010, 49, 3517-3519; (c) M. Gaydou, R. E. Miller, N. Delpont, J. Ceccon and A. M. Echavarren, Angew. Chem. Int. Ed. 2013, 52, 63966399.
 ${ }^{6}$ (a) A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232-5241; (b) L. P. Liu and G. B. Hammond, Chem. Soc. Rev. 2012, 41, 3129-3139.
 ${ }^{7}$ (a) P. Pérez-Galán, N. Delpont, E. Herrero-Gómez, F. Maseras and A. M. Echavarren, Chem.-Eur. J. 2010, 16, 5324-5332; (b) G. C. Fortman and S. P. Nolan, Chem. Soc. Rev. 2011, 40, 5151-5169.

[^1]: ${ }^{8}$ (a) D. Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov, H. Zhang, X. Liu, J. L. Petersen and X. Shi, J. Am. Chem. Soc. 2012, 134, 9012-9019; (b) Y. Zhu, C. S. Day, L. Zhang, K. J. Hauser and A. C. Jones, Chem. -Eur. J. 2013, 19, 12264-12271; (c) A. Homs, I. Escofet and A. M. Echavarren, Org. Lett. 2013, 15, 5782-5785.
 ${ }^{9}$ (a) N. Mézailles, L. Ricard and F. Gagosz, Org. Lett. 2005, 7, 4133-4136; (b) C Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan and A. M. Echavarren, Chem. -Eur. J. 2006, 12, 1677-1693.
 ${ }^{10}$ (a) R. A. Widenhoefer, Chem. -Eur. J. 2008, 14, 5382-5391; (b) N. T. Patil, Chem. Asian J. 2012, 7, 21862194; (c) Y. M. Wang, A. D. Lackner and F. D. Toste, Acc. Chem. Res. 2014, 47, 889-901.
 ${ }^{11}$ For specific examples see: (a) M. P. Muñoz, J. Adrio, J. C. Carretero and A. M. Echavarren, Organometallics 2005, 24, 1293-1300; (b) G. L. Hamilton, E. J. Kang, M. Mba and F. D. Toste, Science 2007, 317, 496-499; (c) S. G. Sethofer, T. Mayer and F. D. Toste, J. Am. Chem. Soc. 2010, 132, 8276-8277; (d) K. Aikawa, M. Kojima and K. Mikami, Adv. Synth. Catal. 2010, 352, 3131-3135; (e) H. Teller, S. Flügge, R. Goddard and A. Fürstner, Angew. Chem. Int. Ed. 2010, 49, 1949-1953; (f) R. J. Felix, D. Weber, O. Gutierrez, D. J. Tantillo and M. R. Gagné, Nat. Chem. 2012, 4, 405-409; (g) J. Francos, F. Grande-Carmona, H. Faustino, J. Iglesias-Sigüenza, E. Díez, I. Alonso, R. Fernández, J. M. Lassaletta, F. López and J. L. Mascareñas, J. Am. Chem. Soc. 2012, 134, 14322-14325; (h) S. Handa and L. M. Slaughter, Angew. Chem. Int. Ed. 2012, 51, 2912-2915.
 ${ }^{12}$ D. J. Gorin and F. D. Toste, Nature 2007, 446, 395-403 and references citere therein.

[^2]: ${ }^{13}$ (a) T. J. Brown, M. G. Dickens and R. A. Widenhoefer, Chem. Commun. 2009, 6451-6453; (b) T. J. Brown, M. G. Dickens and R. A. Widenhoefer, J. Am. Chem. Soc. 2009, 131, 6350-6351; (c) R. E. M. Broomer and R. A. Widenhoefer, Organometallics 2012, 31, 768-771; (d) R. E. M. Brooner, T. J. Brown and R. A. Widenhoefer, Chem.-Eur. J. 2013, 19, 8276-8284.
 ${ }^{14}$ I. Krossing, Angew. Chem. Int. Ed. 2011, 50, 11576-11578 and references cited therein.
 ${ }^{15}$ For selected examples see: (a) S. Flügge, A. Anoop, R. Goddard, W. Thiel and A. Fürstner, Chem.-Eur. J. 2009, 15, 8558-8565; (b) T. N. Hooper, M. Green and C. A. Russell, Chem. Commun. 2010, 46, 2313-2315; (c) T. J. Brown and R. A. Widenhoefer, J. Organomet. Chem. 2011, 696, 1216-1220.
 ${ }^{16}$ T. J. Brown, A. Sugie, M. G. D. Leed and R. A. Widenhoefer, Chem.-Eur. J. 2012, 18, 6959-6971.

[^3]: ${ }^{17}$ (a) B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós and J. L. Mascareñas, Chem.-Eur. J. 2009, 15, 3336-3339; (b) I. Alonso, B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós and J. L. Mascareñas, J. Am. Chem. Soc. 2009, 131, 13020-13030.
 ${ }^{18}$ J. A. Akana, K. X. Bhattacharyya, P. Müller and J. P. Sadighi, J. Am. Chem. Soc. 2007, 129, 7736-7737.
 ${ }^{19}$ V. Lavallo, G. D. Frey, B. Donnadieu, M. Soleilhavoup and G. Bertrand, Angew. Chem. Int. Ed. 2008, 47, 5224-5228 and references citere therein.
 ${ }^{20}$ M. Joost, P. Gualco, S. Mallet-Ladeira, A. Amgoune and D. Bourissou, Angew. Chem. Int. Ed. 2013, 52, 71607163.
 ${ }^{21}$ (a) M. T. Reetz and K. Sommer, Eur. J. Org. Chem. 2003, 3485-3496; (b) C. Nevado and A. M. Echavarren, Synthesis 2005, 2, 167-182.
 ${ }_{22}$ (a) A. S. K. Hashmi, P. Haufe, C. Schmid, A. Rivas Nass and W. Frey, Chem.-Eur. J. 2006, 12, 5376-5382; (b) C. Ferrer and A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 1105-1109.
 ${ }^{23}$ (a) E. Mizushima, K. Sato, T. Hayashi and M. Tanaka, Angew. Chem. Int. Ed. 2002, 41, 4563-4565; (b) C. M. Krauter, A. S. K. Hashmi and M. Pernpointner, ChemCatChem 2010, 2, 1226-1230.

[^4]: ${ }^{24}$ (a) F. M. Istrate and F. Gagosz, Org. Lett. 2007, 9, 3181-3184; (b) J. Qian, Y. Liu, J. Cui and Z. Xu, J. Org. Chem. 2012, 77, 4484-4490.
 ${ }^{25}$ (a) H. Kusama, Y. Miyashita, J. Takay and, N. Iwasawa, Org. Lett. 2006, 8, 289-292; (b) E. Benedetti, G. Lemière, L. L. Chapellet, A. Penoni, G. Palmisano, M. Malacria, J. P. Goddard and L. Fensterbank, Org. Lett. 2010, 12, 4396-4399.
 ${ }^{26}$ (a) N. D. Shapiro and F. D. Toste, J. Am. Chem. Soc. 2007, 129, 4160-4161; (b) P. W. Davies and S. J. C. Albrecht, Angew. Chem. Int. Ed. 2009, 48, 8372-8375; (c) S. Shi, T. Wang, W. Yang, M. Rudolph and A. S. K. Hashmi, Chem.-Eur. J. 2013, 19, 6576-6580.
 ${ }^{27}$ L. Ye, L. Cui, G. Zhang and L. Zhang, J. Am. Chem. Soc. 2010, 132, 3258-3259.
 ${ }^{28}$ (a) I. Nakamura, T. Sato and Y. Yamamoto, Angew. Chem. Int. Ed. 2006, 45, 4473-4475; (b) I. Nakamura, T. Sato, M. Terada and Y. Yamamoto, Org. Lett. 2007, 9, 4081-4083.
 ${ }^{29}$ A. Hoffmann-Röder and N. Krause, Org. Lett. 2001, 3, 2537-2538.
 ${ }^{30}$ A. W. Sromek, M. Rubina and V. Gevorgyan, J. Am. Chem. Soc. 2005, 127, 10500-10501.
 ${ }^{31}$ (a) N. Marion and S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 2750-2752; (b) S. Wang, G. Zhang and L. Zhang, Synlett 2010, 692-706; (c) R. K. Shiroodi and V. Gevorgyan, Chem. Soc. Rev. 2013, 42, 4991-5001.
 ${ }^{32}$ A. Correa, N. Marion, L. Fensterbank, M. Malacria, S. P. Nolan and L. Cavallo, Angew. Chem. Int. Ed. 2008, 47, 718-721.

[^5]: ${ }^{33}$ (a) C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas and A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 2402-2406; (b) C. Nieto-Oberhuber, S. López, E. Jiménez-Núñez and A. M. Echavarren, Chem.-Eur. J. 2006, 12, 5916-5923.
 ${ }^{34}$ C. R. Solorio, Y. Wang and A. M. Echavarren, J. Am. Chem. Soc. 2011, 133, 11952-11955.
 ${ }^{35}$ M. García-Mota, N. Cabello, F. Maseras, A. M. Echavarren, J. Pérez-Ramírez and N. Lopez, ChemPhysChem 2008, 9, 1624-1629.
 ${ }^{36}$ D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard III and F. D. Toste, Nat. Chem. 2009, l, 482-486.

[^6]: ${ }^{37}$ (a) R. E. M. Brooner and R. A. Widenhoefer, Chem. Commun. 2014, 50, 2420-2423; (b) M. Joost, L. Estévez, S. Mallet-Ladeira, K. Miqueu, A. Amgoune and D. Bourissou, Angew. Chem. Int. Ed. 2014, DOI: 10.1002/anie. 201407684.
 ${ }^{38}$ U. Schubert, K. Ackermann and R. Aumann, Cryst. Struct. Comm. 1982, 11, 591-594.
 ${ }^{39}$ For an analogous gold allenylidene see: M. M. Hansmann, F. Rominger and A. S. K. Hashmi, Chem. Sci. 2013, 4, 1552-1559.
 ${ }^{40}$ (a) L. P. Liu, B. Xu, M. S. Mashuta and G. B. Hammond, J. Am. Chem. Soc. 2008, 130, 17642-17643; (b) W. Wang, G. B Hammond and B. Xu, J. Am. Chem. Soc. 2012, 134, 5697-5705.
 ${ }^{41}$ L. Ye and L. Zhang, Org. Lett. 2009, 11, 3646-3649.
 ${ }^{42}$ For alternative reactivities not discussed in this manuscript see: (a) X. Shi, D. J. Gorin and F. D. Toste, J. Am. Chem. Soc. 2005, 127, 5802-5803; (b) G. Lemière, V. Gandon, K. Cariou, A. Hours, T. Fukuyama, A. L. Dhimane, L. Fensterbank and M. Malacria, J. Am. Chem. Soc. 2009, 131, 2993-3006; (c) L. Cui, Y. Peng and L. Zhang, J. Am. Chem. Soc. 2009, 131, 8394-8395; (d) L. Cui, L. Ye and L. Zhang, Chem. Commun. 2010, 46, 3351-3353; (e) B. Lu, Y. Li, Y. Wang, D. H. Aue, Y. Luo, and L. Zhang, J. Am. Chem. Soc. 2013, 135, 85128524; (f) W. He, L. Xie, Y. Xu, J. Xiang and L. Zhang, Org. Biomol. Chem. 2012, 10, 3168-3171; (g) K. Ji, Y. Zhao and L. Zhang, Angew. Chem. Int. Ed. 2013, 52, 6508-6512.

[^7]: ${ }^{43}$ (a) C. H. M. Amijs, C. Ferrer and A. M. Echavarren, Chem. Commun. 2007, 698-700. (b) C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer and A. M. Echavarren, J. Org. Chem. 2008, 73, 77217730.
 ${ }^{44}$ (a) C. Nieto-Oberhuber, S. López and A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178-6179; (b) C. Nieto-Oberhuber, P. Pérez-Galán, E. Herrero-Gómez, T. Lauterbach, C. Rodríguez, S. López, C. Bour, A. Rosellón, D. J. Cárdenas and A. M. Echavarren, J. Am. Chem. Soc. 2008, 130, 269-279.
 ${ }^{45}$ (a) E. Jiménez-Núñez, C. K. Claverie, C. Nieto-Oberhuber and A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 5452-5455; (b) M. Schelwies, A. L. Dempwolff, F. Rominger and G. Helmchen, Angew. Chem. Int. Ed. 2007, 46, 5598-5601; (c) A. Escribano-Cuesta, V. López-Carrillo, D. Janssen and A. M. Echavarren, Chem.-Eur. J. 2009, 11, 5646-5650.
 ${ }^{46}$ (a) P. Pérez-Galán, H. Herrero-Gómez, D. T. Hog, N. J. A. Martin, F. Maseras and A. M. Echavarren, Chem. Sci. 2011, 2, 141-149; (b) V. López-Carrillo, N. Huguet, A. Mosquera and A. M. Echavarren, Chem.-Eur. J. 2011, 17, 10972-10978.
 ${ }^{47}$ E. Jiménez-Núñez, M. Raducan, T. Lauterbach, K. Molawi, C. R. Solorio and A. M. Echavarren, Angew. Chem. Int. Ed. 2009, 48, 6152-6155.

[^8]: ${ }^{48}$ M. Muratore, A. Homs, C. Obradors and A. M. Echavarren, Chem. Asian J. 2014, 9, 3066-3082 and references cited therein.
 ${ }^{49}$ V. López-Carrillo and A. M. Echavarren, J. Am. Chem. Soc. 2010, 132, 9292-9294.
 ${ }^{50}$ C. Obradors and A. M. Echavarren, Chem. Commun. 2014, 50, 16-28.
 ${ }^{51}$ For selected examples see: (a) P. H. Y. Cheong, P. Morganelli, M. R. Luzung, K. N. Houk and F. D. Toste, J. Am. Chem. Soc. 2008, 130, 4517-4526; (b) D. Weber, M. A. Tarselli and M. R. Gagné, Angew. Chem. Int. Ed. 2009, 48, 5733-5736; (c) G. Seidel, C. W. Lehmann and A. Fürstner, Angew. Chem. Int. Ed. 2010, 49, 84668470; (d) T. J. Brown and R. A. Widenhoefer, Organometallics 2011, 30, 6003-6009; (e) D. Weber, T. D. Jones, L. L. Adduci and M. R. Gagné, Angew. Chem. Int. Ed. 2012, 51, 2452-2456.

[^9]: ${ }^{52}$ (a) A. S. K. Hashmi, T. Lauterbach, P. Nösel, M. H. Vilhemsen, M. Rudolph and F. Rominger, Chem. -Eur. J. 2013, 19, 1058-1065; (b) D. Zuccaccia, L. Belpassi, F. Tarantelli and A. Macchioni, J. Am. Chem. Soc. 2009, 131, 3170-3171.
 ${ }^{53}$ (a) A. S. K. Hashmi and M. Rudolph, Chem. Soc. Rev. 2008, 37, 1766-1775; (b) A. Fürstner, Acc. Chem. Res. 2014, 47, 925-938.
 ${ }_{54}$ (a) Q. Zhou, X. Chen and D. Ma, Angew. Chem. Int. Ed. 2010, 49, 3513-3516; (b) K. Molawi, N. Delpont and A. M. Echavarren, Angew. Chem. Int. Ed. 2010, 49, 3517-3519.
 ${ }^{55}$ M. N. Hopkinson, A. D. Gee and V. Gouverneur, Chem. -Eur. J. 2011, 17, 8248-8262 and references cited therein.
 ${ }^{56}$ For some illustrative examples see: (a) J. T. Binder, B. Crone, T. T. Haug, H. Menz and S. F. Kirsch, Org. Lett. 2008, 10, 1025-1028; (b) M. Bandini and A. Eichholzer, Angew. Chem. Int. Ed. 2009, 48, 9533-9537; (c) M. Bandini, A. Bottoni, M. Chiarucci, G. Cera and G. P. Miscione, J. Am. Chem. Soc. 2012, 134, 20690-20700; (d) C. Praveen, B. Montaignac, M. R. Vitale, V. Ratovelomanana-Vida and V. Michelet, ChemCatChem 2013, DOI: DOI: 10.1002/cctc. 201300313.
 ${ }^{57}$ J. J. Hirner, Y. Shi and S. A. Blum, Acc. Chem. Res. 2011, 44, 603-613 and references cited therein.
 ${ }_{59}^{58}$ B. Sahoo, M. N. Hopkinson and F. Glorius, J. Am. Chem. Soc. 2013, 135, 5505-5508.
 ${ }^{59}$ M. C. Daniel and D. Astruc, Chem. Rev. 2004, 104, 293-346 and references cited therein.

[^10]: ${ }^{1}$ (a) A S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (b) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (c) E. Jiménez-Núñez and A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350; (d) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev. 2008, 108, 3351-3378; (e) N. T. Patil and Y. Yamamoto, Chem. Rev. 2008, 108, 3395-3442; (f) A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (g) N. D. Shapiro and F. D. Toste, Synlett 2010, 675-691; (h) C. Obradors and A. Echavarren, Acc. Chem. Res. 2014, 47, 902-912.
 ${ }^{2}$ For representative studies see: (a) L. Zhang, J. Sun and S. A. Kozmin, Adv. Synth. Catal. 2006, 348, 2271-2296; (b) M. García-Mota, N. Cabello, F. Maseras, A. M. Echavarren, J. Pérez-Ramírez and N. Lopez, ChemPhysChem 2008, 9, 1624-1629.
 ${ }^{3}$ (a) C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas and A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 2402-2406; (b) C. Nieto-Oberhuber, S. López, E. Jiménez-Núñez and A. M. Echavarren, Chem. -Eur. J. 2006, 12, 5916-5923.
 ${ }^{4}$ C. Nieto-Oberhuber, S. López, M. P. Muñoz, D. J. Cárdenas, E. Buñuel, C. Nevado and A. M. Echavarren, Angew. Chem. Int. Ed. 2005, 44, 6146-6148.

[^11]: ${ }^{5}$ C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan and A. M. Echavarren, Chem. -Eur. J. 2006, 12, 1677-1693.
 ${ }^{6}$ For representative examples see: (a) L. Zhang and S. Kozmin, J. Am. Chem. Soc. 2004, 126, 11806-11807; (b) V. Mamane, T. Gress, H. Krause and A. Fürstner, J. Am. Chem. Soc. 2004, 126, 8654-8655.
 ${ }^{7}$ For representative examples see: (a) B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós and J. L. Mascareñas, Chem. -Eur. J. 2009, 15, 3336-3339; (b) I. Alonso, B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós and J. L. Mascareñas, J. Am. Chem. Soc. 2009, 131, 13020-13030.
 ${ }^{8}$ R. E. M. Brooner, T. J. Brown and R. A. Widenhoefer, Angew. Chem. Int. Ed. 2013, 52, 6259-6261.
 ${ }^{9}$ A. Escribano-Cuesta, P. Pérez-Galán, E. Herrero-Gómez, M. Sekine, A. A. C. Braga, F. Maseras and A. M. Echavarren, Org. Biomol. Chem. 2012, 10, 6105-6111.

[^12]: ${ }^{10}$ Y. Odabachian and F. Gagosz, Adv. Synth. Catal. 2009, 351, 379-386.
 ${ }^{11}$ E. Comer, E. Rohan, L. Deng and J. A. Porco, Org. Lett. 2007, 9, 2123-2126.
 ${ }^{12}$ V. López-Carrillo and A. M. Echavarren, J. Am. Chem. Soc. 2010, 132, 9292-9294.

[^13]: ${ }^{13}$ E. M. Driggers, S. P.Hale, J. Lee and N. K. Terrett, Nat. Rev. Drug Discovery 2008, 7, 608-624.
 ${ }^{14}$ S. H. Seo, T. V. Jones, H. Seyler, J. O. Peters, T. H. Kim, J. Y. Chang and G. N. Tew, J. Am. Chem. Soc. 2006, 128, 9264-9265.
 ${ }^{15}$ L. F. Indoy, K. M. Park and S. S. Lee, Chem. Soc. Rev. 2013, 42, 1713-1727.
 ${ }_{17}^{16}$ A. Parenty, X. Moreau and J. M. Campagne, Chem. Rev. 2006, 106, 911-939.
 ${ }^{17}$ (a) K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4490-4527; (b) A. Gradillas and J. Pérez-Castells, Angew. Chem. Int. Ed. 2006, 45, 6086-6101.
 ${ }^{18}$ K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4442-4489.
 ${ }^{19}$ P. Wipf and T. H. Graham, J. Am. Chem. Soc. 2004, 126, 15346-15347.
 ${ }^{20}$ J. J. Masters, J. T. Link, L. B. Snyder, W. B. Young and S. J. Danishefsky, Angew. Chem. Int. Ed. 1995, 34, 1723-1726.

[^14]: ${ }^{21}$ A. C. Gyorkos, J. K. Stille and L. S. Hegedus, J. Am. Chem. Soc. 1990, 112, 8465-8472.
 ${ }^{22}$ D. Meng, P. Bertinato, A. Balog, D. S. Su, T. Kamenecka, E. J. Sorensen and S. J. Danishefsky, J. Am. Chem. Soc. 1997, 119, 10073 - 11092.
 ${ }^{23}$ C. Galli and L. Mandolini, J. Chem. Soc., Chem. Commun. 1982, 251.

[^15]: ${ }^{24}$ (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596 2599; (b) S. Özçubukçu, E. Ozkal, C. Jimeno and M. A. Pericàs, Org. Lett. 2009, 11, 4680-4683.

[^16]: ${ }^{25}$ R. Gleiter and H. Hopf, Modern Cyclophane Chemistry; Wiley VCH: Weinheim, 2004.
 ${ }^{26}$ T. Gulder and P. Baran, Nat. Prod. Rep. 2012, 29, 899-934 and references cited therein.
 ${ }^{27}$ (a) T. Sato, M. Wakabayashi, K. Hata and M. Kainosho, Tetrahedron 1971, 27, 2737-2755; (b) K. Tomooka, C. Iso, K. Uehara, M. Suzuki, R. Nishikawa-Shimono and K. Igawa, Angew. Chem. Int. Ed. 2012, 51, 1035510358.
 ${ }^{28}$ S. B. Garber, J. S. Kingsbury, B. L. Gray and A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168-8179.
 ${ }^{29}$ B. R. Travis, R. S. Narayan and B. Borhan, J. Am. Chem. Soc. 2002, 124, 3824-3825.

[^17]: ${ }^{30}$ H. Sajiki, Tetrahedron Lett. 1995, 36, 3465-3468.

[^18]: ${ }^{31}$ C. Obradors, D. Leboeuf, J. Aydin and A. M. Echavarren, Org. Lett. 2013, 15, 1576-1579.

[^19]: ${ }^{1}$ (a) L. Zhang, J. Sun and S. A. Kozmin, Adv. Synth. Catal. 2006, 348, 2271-2296; (b) A. Fürstner and P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (c) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (d) Z. Li, C. Brouwer and C. He, Chem. Rev. 2008, 108, 3239-3265; (e) A. Arcadi, Chem. Rev. 2008, 108, 32663325; (f) E. Jiménez-Núñez and A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350; (g) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev. 2008, 108, 3351-3378; (h) V. Michelet, P. Y. Toullec and J.-P. Genêt, Angew. Chem. Int. Ed. 2008, 47, 4268-4315; (i) A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (j) C. Aubert, L. Fensterbank, P. Garcia, M. Malacria and A. Simonneau, Chem. Rev. 2011, 111, 1954-1993 ; (j) N. Krause and C. Winter, Chem. Rev. 2011, 111, 1994-2009; (k) C. Obradors and A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902-912.
 ${ }^{2}$ M. E. Muratore, A. Homs, C. Obradors and A. M. Echavarren, Chem. Asian J. 2014, DOI: 10.1002/asia.201402305. For related examples, see: (a) C. Ferrer, C. H. M. Amijs and A. M. Echavarren, Chem. Eur. J. 2007, 13, 1358-1373; (b) S. Kramer and T. Skrydstrup, Angew. Chem. Int. Ed. 2012, 51, 4681-4684; (c) Y. Luo, K. Ji, Y. Li and L. Zhang, J. Am. Chem. Soc. 2012, 134, 17412-17415.
 ${ }^{3}$ J. Urbano, A. J. Hormigo, P. De Frémont, S. P. Nolan, M. M. Díaz-Requejo and P. J. Pérez, Chem. Commun. 2008, 759-761.
 ${ }^{4}$ V. López-Carrillo and A. M. Echavarren, J. Am. Chem. Soc. 2010, 132, 9292-9294.
 ${ }^{5}$ R. B. Dateer, B. S. Shaibu and R. S. Liu, Angew. Chem. Int. Ed. 2012, 51, 113-117.

[^20]: ${ }^{6}$ H.-S. Yeom, J. Koo, H.-S. Park, Y. Liang, Z.-X. Yu and S. Shin, J. Am. Chem. Soc. 2012, 134, 208-211.
 ${ }^{7}$ A. S. K. Hashmi, M. C. Blanco, E. Kurpejovic, W. Frey and J. W. Bats, Adv. Synth. Catal. 2006, 348, 709-713.
 ${ }^{8}$ N. Huguet, D. Leboeuf and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 6581-6585.

[^21]: ${ }^{9}$ For selected examples see: (a) L. Ye, Y. Wang, D. H. Aue and L. Zhang, J. Am. Chem. Soc. 2012, 134, 31-34; (b) A. S. K. Hashmi, I. Braun, P. Nösel, J. Schäldich, M. Wieteck, M. Rudolph and F. Rominger, Angew. Chem. Int. Ed. 2012, 51, 4456-4460; (c) A. S. K. Hashmi, M. Wieteck, I. Braun, M. Rudolph and F. Rominger, Angew. Chem. Int. Ed. 2012, 51, 10633-10637; (d) Y. Wang, A. Yepremyan, S. Ghorai, R. Todd, D. H. Aue and L. Zhang, Angew. Chem. Int. Ed. 2013, 52, 7795-7799; (e) D. D. Vachhani, M. Galli, J. Jacobs, L. Van Meervelt and E. V. Van der Eycken, Chem. Commun. 2013, 49, 7171-7173.
 ${ }^{10}$ M. J. Campbell and F. D. Toste, Chem. Sci. 2011, 2, 1369-1378.
 ${ }^{11}$ (a) C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, J. Cárdenas and A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 45, 2402-2406; (b) M. P. Muñoz, J. Adrio, J. C. Carretero and A. M. Echavarren, Organometallics 2005, 24, 1293-1300; (c) C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan and A. M. Echavarren, Chem. -Eur. J. 2006, 12, 1677-1693.
 ${ }^{12}$ E. Jiménez-Núñez, . K. Claverie, C. Nieto-Oberhuber and A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 5452-5455.
 ${ }^{13}$ (a) E. Jiménez-Núñez, K. Molawi and A. M. Echavarren, Chem. Commun. 2009, 7327-7329; (b) Q. Zhou, X. Chen and D. Ma, Angew. Chem. Int. Ed. 2010, 49, 3513-3516; (c) K. Molawi, N. Delpont and A. M. Echavarren, Angew. Chem. Int. Ed. 2010, 49, 3517-3519.
 ${ }^{14}$ For alternative methodologies see: (a) B. Li, Y. J. Zhao, Y. C. Lai and T. P. Loh, Angew. Chem. Int. Ed. 2012, 51, 8041-8045; (b) Y. Bai, W. Tao, J. Ren and Z. Wang, Angew. Chem. Int. Ed. 2012, 51, 4112 - 4116.

[^22]: ${ }^{15}$ A. Escribano-Cuesta, V. López-Carrillo, D. Janseen and A. M. Echavarren, Chem. -Eur. J. 2009, 15, 56445650.
 ${ }^{16}$ For other examples see: (a) M. Schelwies, A. L. Dempwolff, F. Rominger and G. Helmchen, Angew. Chem. Ibnt. Ed. 2007, 46, 5598-5601; (b) D. B. Huple and R. S. Liu, Chem. Commun. 2012, 48, 10975-10977; (c) N. Huguet and A. M. Echavarren, Synlett 2012, 23, 49-53.

[^23]: ${ }^{17}$ C. Obradors, D. Leboeuf, J. Aydin and A. M. Echavarren, Org. Lett. 2013, 15, 1576-1579.

[^24]: ${ }^{18}$ C. Nieto-Oberhuber, S. López, E. Jiménez-Núñez and A. M. Echavarren, Chem. -Eur. J. 2006, 12, 5916-5923.
 ${ }^{19}$ (a) P. H. Y. Cheong, P. Morganelli, M. R. Luzung, K. N. Houk and F. D. Toste, J. Am. Chem. Soc. 2008, 130, 4517-4526; (b) T. J. Brown and R. A. Widenhoefer, Organometallics, 2011, 30, 6003-6009; (c) M. Raducan, M Moreno, C. Bour and A. M. Echavarren, Chem. Commun. 2012, 48, 52-54.

[^25]: ${ }^{20}$ H. Hart and L. R. Lerner, J. Org. Chem. 1967, 32, 2669-2673.
 ${ }^{21}$ R. Knorr, E. Lattke and E. Räpple, Chem. Ber. 1981, 14, 1581-151.
 ${ }^{22}$ L. Minuti, A. Taticchi, D. Lanari, A. Marrocchi and E. Gacs-Baitz, Tetrahedron: Asymmetry 2003, 14, 7752779.
 ${ }^{23}$ (a) A. M. Montaña and K. M. Nicholas, J. Org. Chem. 1990, 55, 1569-1578; (b) J. H. Rigby and J. A. Z. Wilson, J. Org. Chem. 1987, 52, 34-44; (c) S. Xing, Y. Li, Z. Li, C. Liu, J. Ren and Z. Wang, Angew. Chem. Int. Ed. 2011, 50, 12605-12609.

[^26]: ${ }^{24}$ M. Raducan, C. Rodrígez-Escrich, X. C. Cambeiro, E. C. Escudero-Adán, M. A. Pericàs and A. M. Echavarren, Chem. Comтии. 2011, 47, 4893-4895.
 ${ }^{25}$ (a) G. L. Hamilton, E. J. Kang, M Mba and F. D. Toste, Science 2007, 317, 496-499; (b) R. A. Widenhoefer, Chem. -Eur. J. 2008, 14, 5382-5391; (c) K. Aikawa, M. Kojima and K. Mikami, Angew. Chem. Int. Ed. 2009, 48, 6073-6077; (d) H. Teller, S. Flügge, R. Goddard and A. Fürstner, Angew. Chem. Int. Ed. 2010, 49, 1949-1953; (e) K. Aikawa, M. Kojima and K. Mikami, Adv. Synth. Catal. 2010, 352, 3131-3135; (f) A. Z. González, D. Benitez, E. Tkatchouk, W. A. Goddard and F. D Toste, J. Am. Chem. Soc. 2011, 133, 5500-5507; (g) R. J. Felix, D. Weber, O. Gutierrez, D. J. Tantillo and M. R. Gagné, Nat. Chem. 2012, 4, 405-409; (h) H. S. Yeom, J. Koo, H. S. Park, Y. Wang, Y. Liang, Z. X. Yu and S. Shin, J. Am. Chem. Soc. 2012, 134, 208-211; (i) S. Handa and L. M. Slaughter, Angew. Chem. Int. Ed. 2012, 51, 2912-2915; (j) Y. M. Wang, A. D. Lackner and F. D. Toste, Acc. Chem. Res. 2014, 47, 889-901.

[^27]: ${ }^{26}$ At the same time, the analogous asymmetric cycloaddition with allenes was reported: E. Faustino, I. Alsonso, L. M. Mascareñas and F. López, Angew. Chem. Int. Ed. 2013, 52, 6526-6530.
 ${ }^{27}$ Collaboration started with Dr. Iván Rivilla from Prof. Fernando P. Cossio's research group in order to continue this work (Universidad del País Vasco).

[^28]: ${ }^{28}$ V. M. Lau, C. F. Gorin and M. W. Kanan, Chem. Sci. 2014, DOI: 0.1039/C4SC02058H.

[^29]: ${ }^{29}$ (a) R. M. Ormerod, C. J. Baddeley and R. M. Lambert, Surface Science 1991, 259, L709-L713; (b) C. J. Baddeley, R. M. Ormerod and R. M. Lambert, Studies in Surface Science and Catalysis 1993, 75, 371-382.
 ${ }^{30}$ S. Sun, J. Kroll, Y. Luo and L. Zhang, Synlett 2012, 23, 54-56.

[^30]: ${ }^{31}$ C. Obradors and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 3547-3551.

[^31]: ${ }^{1}$ (a) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (b) A. Fürstner and P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (c) E. Jiménez-Núñez and A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350; (d) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev. 2008, 108, 3351-3378; (e) N. T. Patil and Y. Yamamoto, Chem. Rev. 2008, 108, 3395-3442; (f) A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (g) H. G. Raubenheimer and H. Schmidbaur, S. Afr. J. Sci. 2011, 107, 31-34; (h) C. Obradors and A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902-912.
 ${ }^{2}$ (a) A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232-5241; (b) L. P. Liu and G. B. Hammond, Chem. Soc. Rev. 2012, 41, 3129-3139; (c) I. Braun, A. M. Asiri and A. S. K. Hashmi, ACS Catal. 2013, 3, 1902-1907; (d) C. Obradors and A. M. Echavarren, Chem. Commun. 2014, 50, 16-28.
 ${ }^{3}$ E. Jiménez-Núñez, C. K. Claverie, C. Nieto-Oberhuber and A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 5452-5455.
 ${ }^{4}$ (a) M. García-Mota, N. Cabello, F. Maseras, A. M. Echavarren, J. Pérez-Ramírez and N. López, ChemPhysChem 2008, 9, 1624-1629; (b) N. Cabello, C. Rodríguez and A. M. Echavarren, Synlett 2007, 17531758.

[^32]: ${ }^{5}$ Examples of nucleophilies. For arenes see: (a) M. T. Reetz and K. Sommer, Eur. J. Org. Chem. 2003, 34853496; (b) C. Nevado and A. M. Echavarren, Synthesis 2005, 167-182. For heteroarenes see: (c) A. S. K. Hashmi, P. Haufe, C. Schmid, A. Rivas Ness and W. Frey, Chem. -Eur. J. 2006, 12, 5376-5382; (d) C. Ferrer and A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 1105-1109. For alcohols see: (e) E. Mizushima, K. Sato, T. Hayashi and M. Tanaka, Angew. Chem. Int. Ed. 2002, 41, 4563-4565; (f) C. M. Krauter, A. S. K. Hashmi and M. Pernpointner, ChemCatChem 2010, 2, 1226-1230. For amines see: (g) F. M. Istrate and F. Gagosz, Org. Lett. 2007, 9, 3181-3184; (h) J. Qian, Y. Liu, J. Cui and Z. Xu, J. Org. Chem. 2012, 77, 4484-4490. For imines see: (i) H. Kusama, Y. Miyashita, J. Takay and N. Iwasawa, Org. Lett. 2006, 8, 289-292; (j) E. Benedetti, G. Lemière, L. L. Chapellet, A. Penoni, G. Palmisano, M. Malacria, J. P. Goddard and L. Fensterbank, Org. Lett. 2010, 12, 4396-4399. For sulfoxides see: (k) N. D. Shapiro and F. D. Toste, J. Am. Chem. Soc. 2007, 129, 4160-4161; (l) P. W. Davies and S. J. C. Albrecht, Angew. Chem. Int. Ed. 2009, 48, 8372-8375; (m) S. Shi, T. Wang, W. Wang, M. Rudolph and A. S. K. Hashmi, Chem. -Eur. J. 2013, 19, 6576-6580. For N-oxides see: (n) L. Ye, L. Cui, G. Zhang and L. Zhang, J. Am. Chem. Soc. 2010, 132, 3258-3259. And for thiols see: (o) I. Nakamura, T. Sato and Y. Yamamoto, Angew. Chem. Int. Ed. 2006, 45, 4473-4475; (p) I. Nakamura, T. Sato, M. Terada and Y. Yamamoto, Org. Lett. 2007, 9, 4081-4083.
 ${ }^{6}$ (a) L. P. Liu, B. Xu, M. S. Mashuta and G. B. Hammond, J. Am. Chem. Soc. 2008, 130, 17642-17643; (b) W. Wang, G. B. Hammond and B. Xu, J. Am. Chem. Soc. 2012, 134, 5697-5705.
 ${ }^{7}$ For propargylic carboxylates see: (a) N. Marion and S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 2750-2752; (b) A. Correa, N. Marion, L. Fensterbank, M. Malacria, S. P. Nolan and L. Cavallo, Angew. Chem. Int. Ed. 2008, 47, 718-721; (c) S. Wang, G. Zhang and L. Zhang, Synlett 2010, 692-706; (d) T. De Haro, E. Gómez-Bengoa, R. Cribiú, X. Huang and C. Nevado, Chem. -Eur. J. 2012, 18, 6811-6824; (e) R. K. Shiroodi and V. Gevorgyan, Chem. Soc. Rev. 2013, 42, 4991-5001. For 1,n-enynes see: (f) C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas and A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 2402-2406; (g) C. NietoOberhuber, M. P Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan and A. M. Echavarren, Chem. -Eur. J. 2006, 12, 1677-1693; (h) C. Nieto-Oberhuber, S. López, E. Jiménez-Núñez and A. M. Echavarren, Chem. -Eur. J. 2006, 12, 5916-5923.

[^33]: ${ }^{8}$ (a) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard III and F. D. Toste, Nat. Chem. 2009, 1 , 482-486; (b) A. M. Echavarren, Nat. Chem. 2009, 1, 431-433.
 ${ }^{9}$ (a) V. López-Carrilo and A. M. Echavarren, J. Am. Chem. Soc. 2010, 132, 9292-9294; (b) C. Obradors, D. Leboeuf, J. Aydin and A. M. Echavarren, Org. Lett. 2013, 15, 1576-1579.
 ${ }^{10}$ M. E. Muratore, A. Homs, C. Obradors and A. M. Echavarren, Chem. Asian J. 2014, DOI: 10.1002/asia.201402305. For propiolic acid see: (a) H. S. Yeom, J. Koo, H. S. Park, Y. Wang, Y. Liang, Z. X. Yu and S. Shin, J. Am. Chem. Soc. 2012, 134, 208-211; (b) S. R. Park, C. Kim, D. Kim, D. Thrimurtulu, H. S. Yeom, J. Jun, S. Shin and Y. H. Rhee, Org. Lett. 2013, 15, 1166-1169. For nucleophilic additions to enynes see: (c) C. Nieto-Oberhuber, S. López, M. P. Muñoz, D. J. Cárenas, E. Buñuel, C. Nevado and A. M. Echavarren, Angew. Chem. Int. Ed. 2005, 44, 6146-6148; (d) P. Pérez-Galán, N. J. A. Martin, A. G. Campaña, D. J. Cárenas and A. M. Echavarren, Chem. -Asian J. 2011, 6, 482-486. For [4+2] cyclizations see: (e) C. Nieto-Oberhuber, S. López and A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178-6179; (f) C. Nieto-Oberhuber, P-Pérez-Galán, E. Herrero-Gómez, T. Lauterbach, C. Rodrígez, S. López, C. Bour, A. Rosellón, D. J. Cárdenas and A. M. Echavarren, J. Am. Chem. Soc. 2008, 130, 269-279. For a tandem 1,5-propargyl ether migration of a 1,6-enyne followed by intramolecular cyclopropanation see: (g) E. Jiménez-Núñez, M. Raducan, T. Lauterbach, K. Molawi, C. R. Solorio and A. M. Echavarren, Angew. Chem. Int. Ed. 2009, 48, 6152-6155.
 ${ }^{11}$ A. Fürstner and L. Morency, Angew. Chem. Int. Ed. 2008, 47, 5030-5033.

[^34]: ${ }^{12}$ (a) A. Eschenmoser, L. Ruzicka, O. Jeger and D. Arigoni, Helv. Chim. Acta 1955, 38, 1890-1904; (b) G. Stork and A. W. Burgstahler, J. Am. Chem. Soc. 1955, 77, 5068-5077; (c) A. Eschenmoser and D. Arigoni, Helv. Chem. Acta 2005, 88, 3011-3050.
 ${ }^{13}$ (a) C. M. Chao, M. R. Vitale, P. Y. Toullec, J. P. Genêt and V. Michelet, Chem. -Eur. J. 2009, 15, 1319-1323; (b) S. G. Sethofer, T. Mayer and F. D. Toste, J. Am. Chem. Soc. 2010, 132, 8276-8277.
 ${ }^{14}$ (a) C. H. M. Amijs, C. Ferrer and A. M. Echavarren, Chem. Commun. 2007, 698-700; (b) C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer and A. M. Echavarren, J. Org. Chem. 2008, 73, 77217730.

[^35]: ${ }^{15}$ (a) S. López, E. Herrero-Gómez, P. Pérez-Galán, C. Nieto-Oberhuber and A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 6029-6032; (b) P. Pérez, H. Herrero, D. T. Hog, N. J. A. Martin, F. Maseras and A. M. Echavarren, Chem. Sci. 2011, 2, 141-149.
 ${ }^{16}$ C. A. Witham, P. Mauleón, N. D. Shapiro, B. D. Sherry and F. D. Toste, J. Am. Chem. Soc. 2007, 129, 58385839.
 ${ }^{17}$ G. Seidel, R. Mynott and A. Fürstner, Angew. Chem. Int. Ed. 2009, 48, 2510-2513.

[^36]: ${ }^{18}$ P. H. Y. Cheong, P. Morganelli, M. R. Luzung, K. N. Houk and F. D. Toste, J. Am. Chem. Soc. 2008, 130, 4517-4526.
 ${ }^{19}$ For related precedents see: (a) A. N. Nesmeyanov, E. G. Perevalova, K. I. Grandberg, D. A. Lemenovskii, T. V. Baukova and O. B. Afanassova, J. Organomet. Chem. 1974, 65, 131-144; (b) K. I. Grandberg, Russ. Chem. Rev. 1982, 51, 249-262; (c) K. I. Grandberg and V. P. Dyadchenko, J. Organomet. Chem. 1994, 474, 1-21; (d) K. A. Porter, A. Schier and H. Schmidbauer, Organometallics 2003, 22, 4922-4927; (e) V. Lavallo, G. D. Frey, S. Kousar, B. Donnadleu and G. Bertrand, Proc. Natl. Acad. Sci. USA 2007, 104, 13569-13573; (f) T. N. Hooper, M. Green and C. A. Russel, Chem. Commun. 2010, 46, 2313-2315.
 ${ }^{20}$ D. Weber, M. A. Tarselli and M. R. Gagné, Angew. Chem. Int. Ed. 2009, 48, 5733-5736.
 ${ }^{21}$ G. Seidel, C. W. Lehmann and A. Fürstner, Angew. Chem. Int. Ed. 2010, 49, 8466-8470.

[^37]: ${ }^{22}$ C. Obradors and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 3547-3551.

[^38]: ${ }^{23}$ Although these are often invoked, there is yet no structural proof for their existance. For recent discussions see: (a) S. D. Weber, D. Zahner, F. Rominger and B. F. Straub, Chem. Commun. 2012, 48, 11325-11327; (b) A. Homs, I Escofet and A. M. Echavarren, Org. Lett. 2013, 15, 5782-5785.

[^39]: ${ }^{24}$ (a) X. Han, G. R. Peh and P. E. Floreancig, Eur. J. Org. Chem. 2013, 1193-1208; (b) G. Drudis-Solé, G. Ujaque, F. Maseras and A. Lledós, C. R. Chimie 72004, 885-893.

[^40]: ${ }^{25}$ For selected examples see: (a) C. Wei and C. J. Li, J. Am. Chem. Soc. 2003, 125, 9584-9585; (b) M. J. Campbell and F. D. Toste, Chem. Sci. 2011, 2, 1369-1378; (c) M. Raducan, M. Moreno, C. Bour and A. M.
 Echavarren, Chem. Commun. 2012, 48, 52-54; (d) S. Sun, J. Kroll, Y. Luo and L. Zhang, Synlett 2012, 23, 54-56.

[^41]: ${ }^{26}$ For a review of kinetic experiments applied in mechanistic studies see: D. Blackmond, Angew. Chem. Int. Ed. 2005, 44, 4302-4320.

[^42]: ${ }^{27}$ For selected examples see: (a) T. J. Brown, M. G. Dickens and R. A. Widenhoefer, Chem. Commun. 2009, 6451-6453; (b) T. J. Brown, M. G. Dickens and R. A. Widenhoefer, J. Am. Chem. Soc. 2009, 131, 6350-6351; (c) R. E. M. Brooner, T. J. Brown and R. A. Widenhoefer, Chem. -Eur. J. 2013, 19, 8276-8284.

[^43]: ${ }^{28}$ For selected examples see: (a) R. A. Sanguramath, T. N. Hooper, C. P. Butts, M. Green, J. E. McGrady and C. A. Russel, Angew. Chem. Int. Ed. 2011, 50, 7592-7595; (b) R. E. M. Brooner and R. A. Widenhoefer, Organometallics 2011, 30, 3182-3193.
 ${ }^{29}$ T. J. Brown, A. Sugie, M. G. D. Leed and R. A. Widenhoefer, Chem. -Eur. J. 2012, 18, 6959-6971.
 ${ }^{30}$ For selected examples see: (a) N. D. Shapiro and F. D. Toste, Proc. Natl. Acad. Sci. USA 2008, 105, 2779-
 2782; (b) S. Flügge, A. Anoop, R. Goddard, W. Thhiel and A. Fürstner, Chem. -Eur. J. 2009, 15, 8558-8565; (c)
 T. J. Brown and R. A. Widenhoefer, J. Organomet. Chem. 2011, 696, 1216-1220.

[^44]: ${ }^{31}$ For basic concepts see: (a) K. J. Laidler and M. C. King, J. Phys. Chem. 1983, 87, 2657-2664; (b) P. Ballester, Acc. Chem. Res. 2013, 46, 874-884.

[^45]: ${ }^{32}$ T. J. Brown and R. A. Widenhoefer, Organometallics 2011, 30, 6003-6009.
 ${ }^{33}$ A. Himmelspach, M. Finze and S. Raub, Angew. Chem. Int. Ed. 2011, 50, 2628-2631.
 ${ }_{35}^{34}$ A. Grirrane, H. Garcia, A. Corma and E. Álvarez, ACS Catal. 2011, 1, 1647-1653.
 ${ }^{35}$ A. Simonneau, F. Jaroschik, D. Lesage, M. Karanik, R. Guillot, M. Malacria, J. C. Tabet, J. P. Goddard, L. Fensterbank, V. Gandon and Y. Gimbert, Chem. Sci. 2011, 2, 2417-2422.
 ${ }^{36}$ D. Weber, T. D. Jones, L. L. Adduci and M. R. Gagné, Angew. Chem. Int. Ed. 2012, 51, 2452-2456.
 ${ }^{37}$ D. Weber and M. R. Gagné, Chem. Sci. 2012, 4, 335-338.

[^46]: ${ }^{38}$ T. J. Brown, D. Weber, M. R. Gagné and R. A. Widenhoefer, J. Am. Chem. Soc. 2012, 134, 9134-9137.
 ${ }^{39}$ For selected examples see: (a) A. S. K. Hashmi, I. Braun, P. Nösel, J. Schädlich, M. Wieteck, M. Rudolph and F. Rominger, Angew. Chem. Int. Ed. 2012, 51, 4456-4460; (b) A. S. K. Hashmi, M. Wieteck, I. Braun, M. Rudolph and F. Rominger, Angew. Chem. Int. Ed. 2012, 51, 10633-10637; (c) A. S. K. Hashmi, I. Braun, M. Rudolph and F. Rominger, Organometallics 2012, 31, 644-661; (d) A. S. K. Hashmi, M. Wieteck, I. Braun, P. Nösel, L. Jongbloed, M. Rudolph and F. Rominger, Adv. Synth. Catal. 2012, 354, 555-562; (e) Y. Wang, A. Yepremyan, S. Ghorai, R. Todd, D. H. Aue and L. Zhang, Angew. Chem. Int. Ed. 2013, 52, 7795-7799.
 ${ }^{40}$ L. Ye, Y. Wang D. H. Aue and L. Zhang, J. Am. Chem. Soc. 2012, 134, 31-34.

[^47]: ${ }^{1}$ (a) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (b) A. Fürstner and P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (c) E. Jiménez-Núñez and A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350; (d) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev. 2008, 108, 3351-3378; (e) N. T. Patil and Y. Yamamoto, Chem. Rev. 2008, 108, 3395-3442; (f) A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (g) H. G. Raubenheimer and H. Schmidbaur, S. Afr. J. Sci. 2011, 107, 31-34; (h) C. Obradors and A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902-912.
 ${ }^{2}$ M. E. Muratore, A. Homs, C. Obradors and A. M. Echavarren, Chem. Asian J. 2014, DOI: 10.1002/asia.201402305. For related examples, see: (a) C. Ferrer, C. H. M. Amijs and A. M. Echavarren, Chem. Eur. J. 2007, 13, 1358-1373; (b) S. Kramer and T. Skrydstrup, Angew. Chem. Int. Ed. 2012, 51, 4681-4684; (c) Y. Luo, K. Ji, Y. Li and L. Zhang, J. Am. Chem. Soc. 2012, 134, 17412-17415.
 ${ }^{3}$ J. Urbano, A. J. Hormigo, P. de Frémont, S. P. Nolan, M. M. Díaz-Requejo and P. J. Pérez, Chem. Commun. 2008, 759-761.
 ${ }^{4}$ V. López-Carrillo and A. M. Echavarren, J. Am. Chem. Soc. 2010, 132, 9292-9294.
 ${ }^{5}$ C. Obradors and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 3547-3551.

[^48]: ${ }^{6}$ (a) C. Nieto-Oberhuber, S. López, M. P. Muñoz, D. J. Cárenas, E. Buñuel, C. Nevado and A. M. Echavarren, Angew. Chem. Int. Ed. 2005, 44, 6146-6148; (b) P. Pérez-Galán, N. J. A. Martin, A. G. Campaña, D. J. Cárenas and A. M. Echavarren, Chem. -Asian J. 2011, 6, 482-486; (c) C. Nieto-Oberhuber, S. López and A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178-6179; (d) C. Nieto-Oberhuber, P-Pérez-Galán, E. HerreroGómez, T. Lauterbach, C. Rodrígez, S. López, C. Bour, A. Rosellón, D. J. Cárenas and A. M. Echavarren, J. Am. Chem. Soc. 2008, 130, 269-279; (e) E. Jiménez-Núñez, M. Raducan, T. Lauterbach, K. Molawi, C. R. Solorio and A. M. Echavarren, Angew. Chem. Int. Ed. 2009, 48, 6152-6155.

[^49]: ${ }^{7}$ C. Obradors and A. M. Echavarren, Chem. Commun. 2014, 50, 16-28. For specific examples see: (a) P. H. Y. Cheong, P. Morganelli, M. R. Luzung, K. N. Houk and F. D. Toste, J. Am. Chem. Soc. 2008, 130, 4517-4526; (b) T. J. Brown and R. A. Widenhoefer, Organometallics, 2011, 30, 6003-6009; (c) M. Raducan, M Moreno, C. Bour and A. M. Echavarren, Chem. Commun. 2012, 48, 52-54
 ${ }^{8}$ (a) P. H. Y. Cheong, P. Morganelli, M. R. Luzung, K. N. Houk and F. D. Toste, J. Am. Chem. Soc. 2008, 130, 4517-4526; (b) D. Weber, M. A. Tarselli and M. R. Gagné, Angew. Chem. Int. Ed. 2009, 48, 5733-5736; (c) G. Seidel, C. W. Lehmann and A. Fürstner, Angew. Chem. Int. Ed. 2010, 49, 8466-8470; (d) T. J. Brown and R. A. Widenhoefer, Organometallics 2011, 30, 6003-6009; (e) A. Himmelspach, M. Finze and S. Raub, Angew. Chem. Int. Ed. 2011, 50, 2628-2631; (f) A. Simonneau, F. Jaroschik, D. Lesage, M. Karanik, R. Guillot, M. Malacria, J. C. Tabet, J. P. Goddard, L. Fensterbank, V. Gandon and Y. Gimbert, Chem. Sci. 2011, 2, 2417-2422; (g) D. Weber, T. D. Jones, L. L. Adduci and M. R. Gagné, Angew. Chem. Int. Ed. 2012, 51, 2452-2456; T. J. Brown, D. Weber, M. R. Gagné and R. A. Widenhoefer, J. Am. Chem. Soc. 2012, 134, 9134-9137.
 ${ }^{9}$ P. W. Davies and N. Martin, Org. Lett. 2009, 11, 2293-2296.

[^50]: ${ }^{10}$ V. M. Lau, C. F. Gorin and M. W. Kanan, Chem. Sci. 2014, DOI: 0.1039/C4SC02058H.
 ${ }^{11}$ A. S. K. Hashmi, T. Lauterbach, P. Nösel, M. H. Vilhelmsen, M. Rudolph and F. Rominger, Chem. -Eur. J.
 2013, 19, 1058-1065.

[^51]: ${ }^{12}$ For selected examples see: (a) G. L. Hamilton, E. J. Kang, M. Mba and F. D. Toste, Science 2007, 317, 496499; (b) K. Aikawa, M. Kojima and K. Mikami, Angew. Chem. Int. Ed. 2009, 121, 6189-6193; (c) K. Aikawa, M. Kojima and Koichi Mikami, Adv. Synth. Catal. 2010, 352, 3131-3135; (d) K. L. Butler, M. Tragni and R. A. Widenhoefer, Angew. Chem. Int. Ed. 2012, 51, 5175-5178.
 ${ }^{13}$ J. H. Kim, S. W. Park, S. R. Park, S. Lee and E. J. Kang, Chem. -Asian J. 2011, 6, 1982-1986.
 ${ }_{15}^{14}$ I. Krossing and I. Raabe, Angew. Chem. Int. Ed. 2004, 43, 2066-2090 and references cited therein.
 ${ }^{15}$ G. Ciancaleoni, L. Belpassi, F. Tarantelli, D. Zuccaccia and A. Macchioni, Dalton Trans. 2013, 42, 4122-4131.
 ${ }^{16}$ G. Ciancaleoni, C. Zuccaccia, D. Zuccaccia and A. Macchioni, Organometallics 2007, 26, 3624-3626.

[^52]: ${ }^{17}$ D. Zuccaccia, L. Belpassi, F. Tarantelli and A. Macchioni, J. Am. Chem. Soc. 2009, 131, 3170-3171.

[^53]: ${ }^{18}$ For examples of gold complexes with substituted alkynes see: (a) N. D. Shapiro and F. D. Toste, Proc. Natl. Acad. Sci. USA 2008, 105, 2779-2782; (b) S. Flügge, A. Anoop, R. Goddard, W. Thiel and A. Fürstner, Chem. Eur. J. 2009, 15, 8558-8565; (c) T. J. Brown and R. A. Widenhoefer, J. Organomet. Chem. 2011, 696, 12161220
 ${ }^{19}$ C. Obradors and A. M. Echavarren, Org. Lett. 2013, 15, 1576-1579.

[^54]: ${ }^{20}$ N. Huguet, D. Leboeuf and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 6581-6585.

[^55]: ${ }^{21}$ C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas and A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 34, 2402-2406.
 ${ }_{22}$ C. Nieto-Oberhuber, S. López, M. P. Muñoz, E. Jiménez-Núñez, E. Buñuel, D. J. Cárdenas and A. M.
 Echavarren, Chem. -Eur. J. 2006, 12, 1694-1702.

[^56]: ${ }^{23}$ P. R. McGonigal, C. de León, Y. Wang, A. Homs, C. R. Rogelio and A. M. Echavarren, Angew. Chem. Int. Ed. 2012, 51, 13093-13096.

[^57]: ${ }^{24}$ K. A. Connors, Chemical Kinetics, the Study of Reaction Rates in Solution 1991, VCH Publishers.

[^58]: ${ }^{25}$ For examples of gold complexes with alkenes see: (a) T. J. Brown, M. G. Dickens and R. A. Widenhoefer, Chem. Commun. 2009, 6451-6453; (b) T. J. Brown, M. G. Dickens and R. A. Widenhoefer, J. Am. Chem. Soc. 2009, 131, 6350-6351; (c) R. E. M. Brooner, T. J. Brown and R. A. Widenhoefer, Chem. -Eur. J. 2013, 19, 8276-8284.

[^59]: ${ }^{26}$ For basic concepts see: (a) K. J. Laidler and M. C. King, J. Phys. Chem. 1983, 87, 2657-2664; (b) P. Ballester, Acc. Chem. Res. 2013, 46, 874-884.

[^60]: ${ }^{27}$ For other examples and their reactivity see: (a) S. G. Weber, D. Zahner, F. Rominger and B. F. Straub; (b) A.
 Homs, I. Escofet and A. M. Echavarren, Org. Lett. 2013, 15, 5782-5785 and references cited therein.

[^61]: ${ }^{28}$ C. Obradors, A. Homs, D. Leboeuf and A. M. Echavarren, Adv. Synth. Catal. 2014, 356, 221-228.

[^62]: ${ }^{1}$ (a) A. S. K. Hashmi and M. Rudolph, Chem. Soc. Rev. 2008, 37, 1766-1775; (b) A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (c) Y. Zhang, T. Luo and Z. Yang, Nat. Prod. Rep. 2014, 31, 489-503; (d) A. Fürstner, Acc. Chem. Res. 2014, 47, 925-938; (e) C. Obradors and A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902-912. ${ }^{2}$ (a) Q. Zhou, X. Chen and D. Ma, Angew. Chem. Int. Ed. 2010, 49, 3513-3516; (b) K. Molawi, N. Delpont and A. M. Echavarren, Angew. Chem. Int. Ed. 2010, 49, 3517-3519.
 ${ }^{3}$ H. Teller and A. Fürstner, Chem. -Eur. J. 2011, 17, 7764-7767.
 ${ }^{4}$ M. Gaydou, R. E. Miller, N. Delpont, J. Ceccon and A. M. Echavarren, Angew. Chem. Int. Ed. 2013, 52, 63966399.
 ${ }^{5}$ (a) Y. J. Hong and D. J. Tantillo, Chem. Soc. Rev. 2014, 43, 5042-5050; (b) B. Darses, A. E. Greene and J. F. Poisson, J. Org. Chem. 2012, 77, 1710-1721; (c) L. M. Li, G. Y. Li, L. S. Ding, L. B. Yang, Y. Zhao, J. X. Pu, W. L. Xiao, Q. B. Han and H. D. Sun, J. Nat. Prod. 2008, 71, 684-688.

[^63]: ${ }^{6}$ (a) N. Hoffman, Chem. Rev. 2008, 108, 1052-1103. (b) J. Du and T. P. Yoon, J. Am. Chem. Soc. 2009, 131, 14604-14605.
 ${ }^{7}$ (a) A. Fürstner and C. Aïssa, J. Am. Chem. Soc. 2006, 128, 6306-6307; (b) M. Luparia, D. Audisio and N. Maulide, Synlett 2011, 6, 735-740.
 ${ }^{8}$ (a) L. Quijano, A. Vasquez and T. Rios, Phytochemistry 1995, 38, 1251-1255; (b) M. Wichlacz, W. A. Ayer, L. S. Trifonov, P. Chakravarty and D. Khasa, Phytochemistry 1999, 52, 1421-1425; (c) M. Wichlacz, W. A. Ayer, L. S. Trifonov, P. Chakravarty and D. Khasa, J. Nat. Prod. 1999, 62, 484-486; (d) H. M. Chung, W. H. Wang, T. L. Hwang, J. J. Li, L. S. Fang, Y. C. Wu and P. Y. Sung, Molecules 2014, 19, 12320-12327.
 ${ }^{9}$ H. M. Chung, Y. H. Chen, M. R. Lin, J. H. Su, W. H. Wang and P. J. Sung, Tetrahedron Lett. 2010, 51, 60256027.
 ${ }^{10}$ (a) T. Hirokawa and S. Kuwahara, Tetrahedron 2012, 68, 4581-4587; (b) T. Hirokawa, T. Nagasawa and S. Kuwahara, Tetrahedron Lett. 2012, 53, 705-706.

[^64]: ${ }^{11}$ V. López-Carrillo and A. M. Echavarren, J. Am. Chem. Soc. 2010, 132, 9292-9294.

[^65]: ${ }^{12}$ C. Obradors and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 3547-3551.

[^66]: ${ }^{13}$ (a) M. Asaoka, N. Sugimura and H. Takei, Bull. Chem. Soc. Jpn. 1979, 52, 1953-1956; (b) M. Szlosek and B. Frigadère, Angew. Chem. Int. Ed. 2000, 39, 1799-1801; (c) C. W. Cho and M. J. Krische, Angew. Chem. Int. Ed. 2004, 43, 6689-6691; (d) S. Ma, L. Lu and P. Lu, J. Org. Chem. 2005, 70, 1063-1065; (e) R. K. Boeckman, J. E. Pero and D. J. Boehmler, J. Am. Chem. Soc. 2006, 128, 11032-11033; (f) B. Simmons, A. M. Walji and D. W. C. MacMillan, Angew. Chem. Int. Ed. 2009, 48, 4349-4353; (g) E. K. Kemppainen, G. Sahoo, A. Valkonen and P. M. Pihko, Org. Lett. 2012, 14, 1086-1089; (h) W. Chen and J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 1524915252; (i) Y. H. Shi, Z. Wang and W. P. Deng, Tetrahedron 2012, 68, 3649-3653.

[^67]: ${ }_{15}^{14}$ N. Huguet, D. Leboeuf and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 6581-6585.
 ${ }^{15}$ P. Ribéreau and G. Quéguiner, Tetrahedron Lett. 1983, 39, 3593-3602.
 ${ }^{16}$ B. Zhong, L. Chen, J. Niu, D. Wu, H. Ma and M. Liao, Acyclic nucleoside phosphonate derivative and its pharmaceutical use, 2008, CN 101293899.
 ${ }^{17}$ D. A. Dickman, Y. Y. Ku, H. E. Morton, S. R. Chemburkar, H. H. Patel, A. Thomas, D. J. Plata and D. P. Sawick, Tetrahedron: Asymmetry, 1997, 8, 1791-1795.
 ${ }^{18}$ F. Von der Ohe and R. Bruckner, New J. Chem. 2000, 24, 659-669
 ${ }^{19}$ Y. E. Türkmen, T. J. Montavon, S. A. Kozmin and V. H. Rawal, J. Am. Chem. Soc. 2012, 134, 9062-9065.
 ${ }^{20}$ M. Ghaffarzadeh, M. Bolourtchian, Z. H. Fard, M. R. Halvagar and F. Mohsenzadeh, Synth. Commun. 2006, 36, 1973-1981.

[^68]: ${ }^{21}$ J. C. Gilbert and U. Weerasooriya, J. Org. Chem. 1982, 47, 1837-1845.
 ${ }^{22}$ R. W. Sinkelsam, A. J. Wheat, H. Boyaci and Y. Tor, ChemPhysChem 2011, 12, 567-570.
 ${ }^{23}$ E. Negishi, C. Xu, Z. Tan and M. Kotora, Heterocycles 1997, 46, 209-214.
 ${ }^{24}$ A. Pelter and M. Rowlands, Tetrahedron Lett. 1987, 28, 1203-1206.
 ${ }^{25}$ M. I. Burguete, R. Gavara, F. Galindo and S. V. Luis, Tetrahedron Lett. 2010, 26, 3360-3363.
 ${ }^{26}$ (a) R. A. Raphael, J. H. A. Stibbard and R. Tidbury, Tetrahedron Lett. 1982, 23, 2407-2410; (b) M. T. Reetz, K. Rölfing and N. Griebenow, Tetrahedron Lett. 1994, 35, 1969-1972.
 ${ }^{27}$ (a) D. Nightingale and F. T. Wadsworth, J. Am. Chem. Soc. 1947, 69, 1181-1183; (b) K. Y. Zhang, A. J. Borgerding and R. M. Carlson, Tetrahedron Lett. 1988, 29, 5703-5706; (c) W. Frosch, S. Back and H. Lang, J. Organomet. Chem. 2001, 625, 140-147; (d) R. Shintani and G. C. Fu, Angew. Chem. Int. Ed. 2002, 41, 10571059.

[^69]: ${ }^{28}$ (a) X. J. Wang, L. Zhang, X. Sun, Y. Xu, D. Krishnamuthy and C. H. Senanayake, Org. Lett. 2005, 7, 55935595; (b) H. Zong, H. Huang, J. Liu, G. Bian and L. Song, J. Org. Chem. 2012, 77, 4645-4652.
 ${ }_{30}^{29}$ N. K. Nayyar, D. R. Hutchison and M. J. Martinelli, J. Org. Chem. 1997, 62, 982-991.
 ${ }^{30}$ Other possibilities considered: (a) E. J. Corey and P. L. Fuchs, Tetrahedron Lett. 1972, 36, 3769-3772; (b) A. Carpita, R. Rossi and C. A. Veracini, Tetrahedron Lett. 1985, 41, 1919-1929; (c) J. C. De Jong, F. Van Bolhuis and B. L. Feringa, Tetrahedron: Asymmetry 1991, 2, 1247-1262; (d) M. T. Crimmins, D. G. Washburn, J. D. Katz and F. J. Zawacki, Tetrahedron Lett. 1998, 39, 3439-3442; (e) P. Kumar and R. K. Pandey, Green Chemistry 2000, 29-31; (f) L. Shen, Y. Zhang, A. Wang, E. Sieber-McMaster, X. Chen, P. Pelton, J. Z. Xu, M. Yang, P. Zhu, L. Zhou, M. Reuman, Z. Hu, R. Russel, A. C. Gibbs, H. Ross, K. Demarest, W. V. Murray and G. H. Kuo, Bioorg. Med. Chem. 2008, 16, 3321-3341.
 ${ }^{31}$ (a) H. Zhang and R. C. Larock, J. Org. Chem. 2002, 67, 7048-7056; (b) A. S. K. Hashmi, E. Enns, T. M. Frost, S. Schäfer, W. Frey and F. Rominger, Synthesis 2008, 17, 2707-2718.

[^70]: ${ }^{32}$ C. Obradors, A. Homs, D. Leboeuf and A. M. Echavarren, Adv. Synth. Catal. 2013, 356, 221-228.

[^71]: ${ }^{33}$ I thank Dr. Javier Carreras for suggesting this alternative pathway.
 ${ }^{34}$ (a) J. Muzart, Tetrahedron 2007, 63, 7505-7521; (b) S. Wan, H. Gunaydin, K. N. Houk and P. E. Floreancig, J. Am. Chem. Soc. 2007, 129, 7915-7923; (c) J. J. Dong, W. R. Browne and B. L. Feringa, Angew. Chem. Int. Ed. 2014, 53, 2-13.

[^72]: ${ }^{35}$ (a) R. A. Widenhoefer, Chem. -Eur. J. 2008, 14, 5382-5391; (b) N. T. Patil, Chem. Asian J. 2012, 7, 21862194; (c) Y. M. Wang, A. D. Lackner and F. D. Toste, Acc. Chem. Res. 2014, 47, 889-901.

[^73]: ${ }^{36}$ K. Nagata, H. Ishikawa, A. Tanaka, M. Miyazaki, T. Kanemitsu and T. Itoh, Heterocycles 2010, 81, 17911798.
 ${ }^{37}$ (a) H. Firouzabadi, N. Iranpoor and B. Karimi, Synlett 1999, 3, 321-323; (b) I. Karamé, M. Alamé, A. Kanj, G.
 N. Baydoun, H. Hazimeh, M. el Masri and L. Christ, C. R. Chimie 2011, 14, 525-529.

[^74]: ${ }^{38}$ G. Tocco, M. Begala, G. Delogu, C. Piccaiau and G. Podda, Tetrahedron Lett. 2004, 45, 6909-6913.
 ${ }^{39}$ H. Q. Zhang, C. Bo. Zhang, Y. Zheng and Y. G. Ma, Chem. Res. Chin. Univ. 2008, 24, 798-804.
 ${ }^{40}$ Catalyst provided by Prof. Fernando P. Cossio's research group (Universidad del País Vasco). Complex V was prepared by Dr. Iván Rivilla, who collaborated in the enantioselective synthesis of oxabicycles (Chapter 2).
 ${ }^{41}$ Example performed by Dr. Laura López.

[^75]: ${ }^{42}$ N. Delpont, I. Escofet, P. Pérez-Galán, D. Spiegl, M. Raducan, C. Bour, R. Sinisi and A. M. Echavarren, Catal. Sci. Tech. 2013, 3, 3007-3012.
 ${ }^{43}$ Experiments performed by Imma Escofet.
 ${ }^{44}$ (a) G. L. Hamilton, E. J. Kang, M Mba and F. D. Toste, Science 2007, 317, 496-499; (b) R. L. LaLonde, B. D. Sherry, E. J. Kand and F. D. Toste, J. Am. Chem. Soc. 2007, 129, 2452-2453; (c) K. Aikawa, M. Kojima and K. Mikami, Angew. Chem. Int. Ed. 2009, 48, 6073-6077; (d) H. Teller, S. Flügge, R. Goddard and A. Fürstner, Angew. Chem. Int. Ed. 2010, 49, 1949-1953; (e) K. Aikawa, M. Kojima and K. Mikami, Adv. Synth. Catal. 2010, 352, 3131-3135; (f) A. Z. González, D. Benitez, E. Tkatchouk, W. A. Goddard and F. D Toste, J. Am. Chem. Soc. 2011, 133, 5500-5507; (g) M. Kojima and K. Mikami, Chem. -Eur. J. 2011, 17, 13950-13953; (h) R. J. Felix, D. Weber, O. Gutierrez, D. J. Tantillo and M. R. Gagné, Nat. Chem. 2012, 4, 405-409; (i) H. S. Yeom, J. Koo, H. S. Park, Y. Wang, Y. Liang, Z. X. Yu and S. Shin, J. Am. Chem. Soc. 2012, 134, 208-211; (j) S. Handa and L. M. Slaughter, Angew. Chem. Int. Ed. 2012, 51, 2912-2915; (k) K. L. Butler, M. Tragni and R. A. Widenhoefer, Angew. Chem. Int. Ed. 2012, 51, 5175-5178; (l) J. F. Briones and H. M. L. Davies, J. Am. Chem. Soc. 2012, 134, 11916-11919; (m) J. Francos, F. Grande-Carmona, H. Faustino, J. Iglesias-Sigüenza, E. Díez, I. Alonso, R. Fernández, J. M. Lassaletta, F. Lópe and J. L. Mascareñas, J. Am. Chem. Soc. 2012, 134, 14322-14325.

[^76]: ${ }^{a}$ Crude analysed by ${ }^{1} \mathrm{H}$ NMR using 1,4-diacetylbenzene as internal standard, yields referred to cyclobutene $\mathbf{1 9}$. ${ }^{b}$ Reaction conversion in brackets. ${ }^{c}$ ChiralPak IC, hexane : isopropanol : ethanol (97:2:1), $1 \mathrm{~mL} / \mathrm{min}, 245 \mathrm{~nm}$. ${ }^{d}$ Isolated yield.

[^77]: ${ }^{45}$ For the use of $\mathrm{AgBAr}^{\mathrm{F}}{ }_{4}$ see: (a) M. Brookhart, B. Grant and A. F. Volpe Jr., Organometallics 1992, 11, 39203922; (b) S. Tanaka, M. Takashina, H. Tokimoto, Y. Fujimoto, K. Tanaka and K. Fukase, Synlett 2005, 15, 23252328; (c) H. Braunschweig, K. Radacki and A. Schneider, Chem. Commun. 2010, 47, 6473-6475; (d) K. Surendra and E. J. Corey, J. Am. Chem. Soc. 2014, 136, 10918-10920.

[^78]: ${ }^{46}$ M. Yamashita, Y. N. Dnyanoba, M. NagahamaT. Inaba, Y. Nishino, K. Miura, S. Kosaka, J. Fukao, I. Kawasaki and S. Ohta, Heterocycles 2005, 65, 2411-2430.
 ${ }^{47}$ R. H. Crabtree and M. W. Davis, J. Org. Chem. 1986, 51, 2655-2661.

[^79]: ${ }^{48}$ An enantioselective catalyst could be used as well: T. L. Church and P. G. Anderson, Coord. Chem. Rev. 2008, 252, 513-531
 ${ }^{49}$ (a) R. P. Yu, J. M. Darmon, C. Milsmann, G. W. Margulieux, S. C. E. Stieber, S. DeBeer and P. J. Chirik, J. Am. Chem. Soc. 2013, 135, 13168-13184; (b) K. Iwasaki, K. K. Wan, A. Oppedisano, S. W. M. Crossley and R. Shenvi, J. Am. Chem. Soc. 2014, 136, 1300-1303.
 ${ }^{50}$ Screening performed by Dr. Laura López.
 ${ }^{51}$ (a) S. N. Ananchenko, V. Y. Limanov, V. N. Leonov, V. N. Rzheznikov and I. V. Torgov, Tetrahedron 1962, 18, 1355-1367; (b) Z. Lin, J. Chen and Z. Valenta, Tetrahedron Lett. 1997, 38, 3863-3866.

[^80]: ${ }^{52}$ G. H. Lee, I. K. Youn, E. B. Choi, H. K. Lee, G. H. Yon, H. C. Yang and C. S. Pak, Curr. Org. Chem. 2004, 8, 1263-1287.
 ${ }^{53}$ (a) F. Alsonso and M. Yus, Tetrahedron 1998, 54, 1921-1928; (b) F. Alonso, P. Candela, C. Gómez and M.
 Yus, Adv. Synth. Catal. 2003, 345, 275-279.

[^81]: ${ }^{54}$ (a) J. A. Caputo and R. Fuchs, Tetrahedron Lett. 1967, 47, 4729-4731; (b) P. H. J. Carlsen, T. Katsuki, V. S. Martin and K. B. Sharpless, J. Org. Chem. 1981, 46, 3936-3935; (c) M. Kasai and H. Ziffer, J. Org. Chem. 1983, 48, 2346-2349; (d) M. T. Núñez and V. S. Martin, J. Org. Chem. 1990, 55, 1928-1932.
 ${ }_{56}^{55}$ Alternatively: R. Liotta and W. S. Hoff, J. Org. Chem. 1980, 45, 2887-2890.
 ${ }^{56}$ W. R. Gutekunst and P. S. Baran, J. Org. Chem. 2014, 79, 2430-2452.

[^82]: ${ }^{57}$ H. Burghart-Stoll and R. Brueckner, Eur. J. Org. Chem. 2012, 3978-4017.
 ${ }^{58}$ T. Tsunoda, M. Suzuki and R. Noyori, Tetrahedron Lett. 1980, 21, 1357-1358.
 ${ }^{59}$ J. R. Allan, D. H. Brown, R. H. Nuttail and D. W. A. Sharp, J. Chem. Soc. A: Inorg. Phys. Theor. 1966, 10311034.

[^83]: ${ }^{60}$ B. M. Trost, J. L. Gunzner, O. Dirat and Y. H. Rhee, J. Am. Chem. Soc. 2002, 124, 10396-10415.

[^84]: ${ }^{61}$ C. Aciro, S. K. Bagal, J. W. Harvey, L. H. Jones, C. E. Mowbray, R. M. Owen, Y. A. Sabnis, R. I. Storer and S.
 K. Yeap, Preparation of cyclobutenedione derivatives as modulators of CXCR-2 receptor for the treatment of asthma and COPD, 2010, WO 131145A1.

[^85]: ${ }^{62}$ Project continued by Dr. Beatrice Ranieri.
 ${ }^{63}$ For representative examples see: (a) R. Hamasaki, Y. Chounan, H. Horino and Y. Yamamoto, Tetrahedron Lett. 2000, 41, 9883-9887; (b) S. Yamasaki, K. Fujii, R. Wada, M. Kanai and M. Shibasaki, J. Am. Chem. Soc. 2002, 124, 6536-6537; (c) M. Durandetti and J. Périchon, Tetrahedron Lett. 2006, 47, 6255-6258; (d) U. Schneider and S. Kobayashi, Angew. Chem. Int. Ed. 2007, 46, 5909-5912; (e) A. G. Campaña, B. Bazdi, N. Fuentes, R. Robles, J. M. Cuerva, J. E. Oltra, S. Porcel and A. M. Echavarren, Angew. Chem. Int. Ed. 2008, 47, 7515-7519; (f) T. J. Barker and E. R. Jarvo, Org. Lett. 2009, 11, 1047-1049; (g) T. Takeda, M. Yamamoto, S. Yoshida and A. Tsubouchi, Angew. Chem. Int. Ed. 2012, 51, 7263-7266; (h) F. J. Williams, R. E. Grote and E. R. Jarvo, Chem. Commun. 2012, 48, 1496-1498; (i) Y. Ciu, W. Li, T. Sato, Y. Yamashita and S. Kobayashi, Adv. Synth. Catal. 2013, 355, 1193-1205.
 ${ }^{64}$ K. R. Fandrick, D. R, Fandrick, J. J. Gao, J. T. Reeves, Z. Jan, W. Li, J. J. Song, B. Lu, N. K. Yee and C. H. Senanayake, Org. Lett. 2010, 12, 3748-3751.
 ${ }^{65}$ (a) S. Casolari, D. D’Addario and E. Tagliavini, Org. Lett. 1999, 1, 1061-1063; (b) K. M. Waltz, J. Gavenonis and P. J. Walsh, Angew. Chem. Int. Ed. 2002, 41, 3697-3699; (c) S. Yamasaki, K. Fujii, R. Wada, M. Kanai and M. Shibasaki, J. Am. Chem. Soc. 2002, 124, 6536-6537; (d) S. E. Denmark and J. Fu, Chem Rev. 2003, 103, 2763-2793; (e) J. G. Kim, K. M. Waltz, I. F. Garcia, D. Kwiatkowski and P. J. Walsh, J. Am. Chem. Soc. 2004, 126, 12580-12585; (f) M. Wadamoto and H. Yamamoto, J. Am. Chem. Soc. 2005, 127, 14556-14557; (g) J. Lu, M. L. Hong, S. J. Ji, Y. C. Teo and T. P Loh, Chem. Commun. 2005, 4217-4218; (h) S. Lou, P. N. Mosquit and S. E. Schaus, J. Am Chem. Soc. 2006, 128, 12660-12661; (i) X. Zhang, D. Chen, X. Liu and X. Feng, J. Org. Chem. 2007, 72, 5227-5233; (j) J. J. Miller and M. S. Sigman, J. Am. Chem. Soc. 2007, 129, 2752-2753; (k) A. J. Wooten, J. G. Kim and P. J. Walsh, Org. Lett. 2007, 9, 381-384; (l) M. Kanai, R. Wada, T. Shibuguchi and M. Shibasaki, Pure Appl. Chem. 2008, 80, 1055-1062; (m) T. J. Baker and E. R. Jarvo, Org. Lett. 2009, 11, 10471049; (n) J. Itoh, S. B. Han and M. J. Krische, Angew. Chem. Int. Ed. 2009, 48, 6313-6316; (o) K. R. Fandrick, D. R. Fandrick, J. J. Gao, J. T. Reeves, Z. Tan, W. Li, J. J. Song, B. Lu, N. K. Yee and C. H. Senanayake, Org. Lett. 2010, 12, 3748-3751; (p) T. J. Baker and E. R. Jarvo, Synthesis 2010, 19, 3259-3262; (q) M. Yus, J. C. González-Gómez and F. Foubelo, Chem. Rev. 2011, 111, 7774-7854.

[^86]: ${ }^{66}$ (a) L. F. Tietze, K. Schiemann and C. Wegner, J. Am. Chem. Soc. 1995, 117, 5851-5852; (b) L. F. Tietze, K. Schiemann, C. Wegner and C. Wulff, Chem.-Eur. J. 1998, 4, 1862-1869; (c) E. Canales, K. G. Prasad and J. A. Soderquist, J. Am. Chem. Soc. 2005, 127, 11572-11573.
 ${ }^{67}$ T. R. Wu, L. Shen and J. M. Chong, Org. Lett. 2004, 6, 2701-2704.
 ${ }^{68}$ R. Wada, K. Oisaki, M. Kanai and M. Shibasaki, J. Am. Chem. Soc. 2004, 126, 8910-8911.
 ${ }^{69}$ (a) P. V. Ramachandran, H. C. Brown and S. Swaminathan, Tetrahedron: Asymmetry 1990, 1, 433-436; (b) E. J. Corey and R. K. Balzski, Tetrahedron Lett. 1990, 31, 611-614;
 ${ }^{70}$ T. Ohkuma, H. Ooka, S. Hashiguchi, T. Ikariya and R. Noyori, J. Am. Chem. Soc. 1995, 117, 2675-2476.
 ${ }^{71}$ A. P. Pulis, D. J. Blair, E Torres and V. K. Aggarwal, J. Am. Chem. Soc. 2013, 135, 16054-16057.
 ${ }^{72}$ Current work performed in collaboration with Dr. Laura López and Imma Escofet using High Throughput
 Experimentation (CELLEX).

[^87]: ${ }^{73}$ (a) T. M. Meulemans, N. H. Kiers, B. L. Feringa and P. W. N. M. van Leeuwen, Tetrahedron Lett. 1994, 35, 455-458; (b) J. A. Wright, M. J. Gaunt and J. B. Spencer, Chem. -Eur. J. 2006, 12, 949-955; (c) B. Weiner, A. Baeza, T. Jerphagnon and B. L. Feringa, J. Am. Chem. Soc. 2009, 131, 9473-9474; (d) S. K. Pandey and C. V. Ramana, J. Org. Chem. 2011, 76, 2315-2318.

[^88]: ${ }^{1}$ (a) A S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (b) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (c) E. Jiménez-Núñez and A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350; (d) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev. 2008, 108, 3351-3378; (e) N. T. Patil and Y. Yamamoto, Chem. Rev. 2008, 108, 3395-3442; (f) A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (g) N. D. Shapiro and F. D. Toste, Synlett 2010, 675-691; (h) C. Obradors and A. Echavarren, Acc. Chem. Res. 2014, 47, 902-912.
 ${ }^{2}$ D. J. Gorin and F. D. Toste, Nature 2007, 446, 395-403 and references citere therein.
 ${ }^{3}$ For representative examples see: (a) C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas and A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 2402-2406; (b) C. Nieto-Oberhuber, S. López, E. Jiménez-Núñez and A. M. Echavarren, Chem. -Eur. J. 2006, 12, 5916-5923.
 ${ }^{4}$ M. E. Muratore, A. Homs, C. Obradors and A. M. Echavarren, Chem. Asian J. 2014, DOI: 10.1002/asia. 201402305.
 ${ }^{5}$ V. López-Carrillo and A. M. Echavarren, J. Am. Chem. Soc. 2010, 132, 9292-9294.
 ${ }^{6}$ D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard III and F. D. Toste, Nat. Chem. 2009, 1, 482-486 and references cited therein.
 ${ }^{7}$ C. Obradors, D. Leboeuf, J. Aydin and A. M. Echavarren, Org. Lett. 2013, 15, 1576-1579.

[^89]: ${ }^{8}$ (a) K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4490-4527; (b) K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4442-4489; (c) A. Gradillas and J. PérezCastells, Angew. Chem. Int. Ed. 2006, 45, 6086-6101.
 ${ }^{9}$ (a) R. Gleiter and H. Hopf, Modern Cyclophane Chemistry; Wiley VCH: Weinheim, 2004; (b) T. Gulder and P. Baran, Nat. Prod. Rep. 2012, 29, 899-934 and references cited therein.
 ${ }^{10}$ For selected examples see: (a) C. Nieto-Oberhuber, S. López and A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178-6179; (b) E. Jiménez-Núñez, . K. Claverie, C. Nieto-Oberhuber and A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 5452-5455.

[^90]: ${ }^{11}$ C. Obradors and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 3547-3551.
 ${ }^{12}$ (a) A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232-5241; (b) L. P. Liu and G. B. Hammond, Chem. Soc. Rev. 2012, 41, 3129-3139; (c) I. Braun, A. M. Asiri and A. S. K. Hashmi, ACS Catal. 2013, 3, 1902-1907; (d) C. Obradors and A. M. Echavarren, Chem. Comтип. 2014, 50, 16-28.

[^91]: ${ }^{13}$ (a) P. H. Y. Cheong, P. Morganelli, M. R. Luzung, K. N. Houk and F. D. Toste, J. Am. Chem. Soc. 2008, 130, 4517-4526; (b) T. J. Brown and R. A. Widenhoefer, Organometallics, 2011, 30, 6003-6009; (c) M. Raducan, M Moreno, C. Bour and A. M. Echavarren, Chem. Commun. 2012, 48, 52-54.
 ${ }^{14}$ (a) D. Weber, M. A. Tarselli and M. R. Gagné, Angew. Chem. Int. Ed. 2009, 48, 5733-5736; (b) G. Seidel, C. W. Lehmann and A. Fürstner, Angew. Chem. Int. Ed. 2010, 49, 8466-8470; (c) A. Grirrane, H. Garcia, A. Corma and E. Álvarez, ACS Catal. 2011, 1, 1647-1653; (d) A. Simonneau, F. Jaroschik, D. Lesage, M. Karanik, R. Guillot, M. Malacria, J. C. Tabet, J. P. Goddard, L. Fensterbank, V. Gandon and Y. Gimbert, Chem. Sci. 2011, 2, 2417-2422; (e) D. Weber, T. D. Jones, L. L. Adduci and M. R. Gagné, Angew. Chem. Int. Ed. 2012, 51, $2452-$ 2456; (f) D. Weber and M. R. Gagné, Chem. Sci. 2012, 4, 335-338; (g) T. J. Brown, D. Weber, M. R. Gagné and R. A. Widenhoefer, J. Am. Chem. Soc. 2012, 134, 9134-9137.

[^92]: ${ }^{15}$ (a) T. J. Brown and R. A. Widenhoefer, Organometallics 2011, 30, 6003-6009; (b) A. Himmelspach, M. Finze and S. Raub, Angew. Chem. Int. Ed. 2011, 50, 2628-2631.

[^93]: ${ }^{16}$ I. Krossing and I. Raabe, Angew. Chem. Int. Ed. 2004, 43, 2066-2090 and references cited therein.
 ${ }^{17}$ C. Obradors, A. Homs, D. Leboeuf and A. M. Echavarren, Adv. Synth. Catal. 2014, 356, 221-228.
 ${ }^{18}$ N. Huguet, D. Leboeuf and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 6581-6585.
 ${ }^{19}$ P. R. McGonigal, C. de León, Y. Wang, A. Homs, C. R. Rogelio and A. M. Echavarren, Angew. Chem. Int. Ed. 2012, 51, 13093-13096.

[^94]: ${ }^{20}$ Application of gold chemistry to total synthesis: (a) A. S. K. Hashmi and M. Rudolph, Chem. Soc. Rev. 2008, 37, 1766-1775; (b) A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (c) Y. Zhang, T. Luo and Z. Yang, Nat. Prod. Rep. 2014, 31, 489-503; (d) A. Fürstner, Acc. Chem. Res. 2014, 47, 925-938.
 ${ }^{21}$ a) L. Quijano, A. Vasquez and T. Rios, Phytochemistry 1995, 38, 1251-1255; (b) M. Wichlacz, W. A. Ayer, L. S. Trifonov, P. Chakravarty and D. Khasa, Phytochemistry 1999, 52, 1421-1425; (c) M. Wichlacz, W. A. Ayer, L. S. Trifonov, P. Chakravarty and D. Khasa, J. Nat. Prod. 1999, 62, 484-486.
 ${ }^{22}$ (a) M. Szlosek and B. Frigadère, Angew. Chem. Int. Ed. 2000, 39, 1799-1801; (b) C. W. Cho and M. J. Krische, Angew. Chem. Int. Ed. 2004, 43, 6689-6691; (c) S. Ma, L. Lu and P. Lu, J. Org. Chem. 2005, 70, 10631065; (d) R. K. Boeckman, J. E. Pero and D. J. Boehmler, J. Am. Chem. Soc. 2006, 128, 11032-11033; (e) B. Simmons, A. M. Walji and D. W. C. MacMillan, Angew. Chem. Int. Ed. 2009, 48, 4349-4353.
 ${ }^{23}$ R. H. Crabtree and M. W. Davis, J. Org. Chem. 1986, 51, 2655-2661; K. Iwasaki, K. K. Wan, A. Oppedisano, S. W. M. Crossley and R. Shenvi, J. Am. Chem. Soc. 2014, 136, 1300-1303; S. N. Ananchenko, V. Y. Limanov, V. N. Leonov, V. N. Rzheznikov and I. V. Torgov, Tetrahedron 1962, 18, 1355-1367
 ${ }^{24}$ W. R. Gutekunst and P. S. Baran, J. Org. Chem. 2014, 79, 2430-2452.
 ${ }^{25}$ (a) J. Muzart, Tetrahedron 2007, 63, 7505-7521; (b) S. Wan, H. Gunaydin, K. N. Houk and P. E. Floreancig, J. Am. Chem. Soc. 2007, 129, 7915-7923.

[^95]: ${ }^{26}$ (a) R. A. Widenhoefer, Chem. -Eur. J. 2008, 14, 5382-5391; (b) N. T. Patil, Chem. Asian J. 2012, 7, 21862194; (c) Y. M. Wang, A. D. Lackner and F. D. Toste, Acc. Chem. Res. 2014, 47, 889-901.

[^96]: ${ }^{27}$ (a) G. L. Hamilton, E. J. Kang, M Mba and F. D. Toste, Science 2007, 317, 496-499; ((c) K. Aikawa, M. Kojima and K. Mikami, Angew. Chem. Int. Ed. 2009, 48, 6073-6077; (d) H. Teller, S. Flügge, R. Goddard and A. Fürstner, Angew. Chem. Int. Ed. 2010, 49, 1949-1953;; (f) A. Z. González, D. Benitez, E. Tkatchouk, W. A. Goddard and F. D Toste, J. Am. Chem. Soc. 2011, 133, 5500-5507; (h) R. J. Felix, D. Weber, O. Gutierrez, D. J. Tantillo and M. R. Gagné, Nat. Chem. 2012, 4, 405-409; (i) H. S. Yeom, J. Koo, H. S. Park, Y. Wang, Y. Liang, Z. X. Yu and S. Shin, J. Am. Chem. Soc. 2012, 134, 208-211; (k) K. L. Butler, M. Tragni and R. A. Widenhoefer, Angew. Chem. Int. Ed. 2012, 51, 5175-5178; (l) J. F. Briones and H. M. L. Davies, J. Am. Chem. Soc. 2012, 134, 11916-11919;

[^97]: ${ }^{1}$ (a) A. D. J. Becke, Chem. Phys. 1993, 98, 5648-5652; (b) C. T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B 1988, 37, 785-789; (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem. 1994, 98, 11623-1627.
 ${ }^{2}$ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, K. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, revision 02; Gaussian, Inc.: Wallingford, CT, 2009.
 ${ }^{3}$ (a) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654-3665; (b) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261.
 ${ }^{4}$ D. Andrae, U. Haussermann, M. Dolg, H. Stoll and H.Preuss, Theor. Chim. Acta 1990, 77, 123-141.
 ${ }^{5}$ E. Cances, B. Mennucci and J. J. Tomasi, Chem. Phys. 1997, 107, 3032-3041.

[^98]: ${ }^{6}$ M. Cossi, V. Barone, B. Mennucci and J. Tomasi, Chem. Phys. Lett. 1998, 286, 253-260
 ${ }^{7}$ B. Mennucci and J. J. Tomasi, Chem. Phys. 1997, 106, 5151-5158.
 ${ }^{8}$ S. Miertus and J. Tomasi, J. Chem. Phys. 1982, 65, 239-245.

[^99]: ${ }^{1}$ C. Obradors, D. Leboeuf, J. Aydin and A. M. Echavarren, Org. Lett. 2013, 15, 1576-1579.
 ${ }^{2}$ A. S. K. Hashmi, T. Hengst, C. Lothschütz and F. Rominguer, Adv. Synth. Catal. 2010, 352, 1315-1337.
 ${ }^{3}$ R. G. Iafe, D. G. Chan, J. L. Kuo, B. A. Boon, D. J. Faizi, T. Saga, J. W. Turner and C. A. Merlic, Org. Lett. 2012, 14, 4282-4285.
 ${ }^{4}$ E. Comer, E. Rohan, L. Deng and J. A. Porco, Org. Lett. 2007, 9, 2123-2126.
 ${ }^{5}$ R. R. Iyer and V. R. Mamdapur, J. Agr. Food Chem. 1989, 37, 1101-1103.
 ${ }^{6}$ (a) E. Herrero-Gómez, C. Nieto-Oberhuber, S. López, B. Benet-Buchholz and A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 5455-5459; (b) C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer and A. M. Echavarren, J. Org. Chem. 2008, 73, 7721-7730.
 ${ }^{7}$ Complex $\left[\mathrm{Cu}^{\mathbf{1}}\right]$ was provided by the group of Prof. Miquel Pericàs.

[^100]: ${ }^{1}$ C. Obradors and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 3547-3551.
 ${ }^{2}$ C. Obradors, D. Leboeuf, J. Aydin and A. M. Echavarren, Org. Lett. 2013, 15, 1576-1579.
 ${ }^{3}$ (a) E. Herrero-Gómez, C. Nieto-Oberhuber, S. López, B. Benet-Buchholz and A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 5455-5459; (b) D. V. Partyka, T. J. Robilotto, M. Zelles, A. D. Hunter and T. G. Gray,
 Organometallics 2008, 27, 28-32; (c) C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C Ferrer and A. M. Echavarren, J. Org. Chem. 2008, 73, 7721-7730; (d) Y. Wang, K. Ji, S. Lan and L. Zhang, Angew.
 Chem. Int. Ed. 2012, 51, 1915-1918; (e) A. S. K. Hashmi, M. Hamzic, F. Rominger and J. W. Bats, Chem. -Eur. J. 2009, 15, 13318-13322; (f) I. Alonso, B. Trillo, F. Lopez, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós and J. L. Mascareñas, J. Am. Chem. Soc. 2009, 131, 13020-13030.
 ${ }^{4}$ R. J. Felix, D. Weber, O. Gutierrez, D. J. Tantillo and M. R. Gagné, Nat. Chem. 2012, 4, 405-409.

[^101]: ${ }^{1}$ C. Obradors and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 3547-3551.

[^102]: ${ }^{1}$ C. Obradors, A. Homs, D. Leboeuf and A. M. Echavarren, Adv. Synth. Catal. 2014, 356, 221-228.
 ${ }^{2}$ V. López-Carrillo and A. M. Echavarren, J. Am. Chem. Soc. 2010, 132, 9292-9294.
 ${ }^{3}$ N. Huguet, D. Leboeuf and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 6581-6585.
 ${ }^{4}$ C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas and A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 34, 2402-2406.
 ${ }^{5}$ C. Nieto-Oberhuber, S. López, M. P. Muñoz, E. Jiménez-Núñez, E. Buñuel, D. J. Cárdenas and A. M. Echavarren, Chem. -Eur. J. 2006, 12, 1694-1702.
 ${ }_{7}^{6}$ C. Nieto-Oberhuber, S. López and A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178-6179.
 ${ }^{7}$ P. R. McGonigal, C. de León, Y. Wang, A. Homs, C. R. Rogelio and A. M. Echavarren, Angew. Chem. Int. Ed. 2012, 51, 13093-13096.
 ${ }^{8}$ (a) E. Herrero-Gómez, C. Nieto-Oberhuber, S. López, B. Benet-Buchholz and A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 5455-5459; (b) D. V. Partyka, T. J. Robilotto, M. Zelles, A. D. Hunter and T. G. Gray,
 Organometallics 2008, 27, 28-32; (c) C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C Ferrer and A. M. Echavarren, J. Org. Chem. 2008, 73, 7721-7730.
 ${ }^{9}$ C. Obradors and A. M. Echavarren, Org. Lett. 2013, 15, 1576-1579.
 ${ }^{10}$ C. Obradors and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 3547-3551.

[^103]: ${ }^{11}$ Synthesized by Anna Homs.

[^104]: ${ }^{1}$ R. H. Crabtree and M. W. Davis, J. Org. Chem. 1986, 51, 2655-2661.
 ${ }^{2}$ K. Iwasaki, K. K. Wan, A. Oppedisano, S. W. M. Crossley and R. Shenvi, J. Am. Chem. Soc. 2014, 136, 13001303.
 ${ }^{3}$ Catalyst V was provided by Prof. Fernando P. Cossio's research group (Universidad del País Vasco). The complex was prepared by Dr. Iván Rivilla, who collaborated in the enantioselective synthesis of oxabicycles (Chapter 2).
 ${ }^{4}$ N. Delpont, I. Escofet, P. Pérez-Galán, D. Spiegl, M. Raducan, C. Bour, R. Sinisi and A. M. Echavarren, Catal. Sci. Tech. 2013, 3, 3007-3012.
 ${ }^{5}$ R. J. Felix, D. Weber, O. Gutierrez, D. J. Tantillo and M. R. Gagné, Nat. Chem. 2012, 4, 405-409.
 ${ }^{6}$ (a) M. J. Johansson, D. J. Gorin, S. T. Staben and F. D. Toste, J. Am. Chem. Soc. 2005, 127, 18002-18003; (b) E. Herrero-Gómez, C. Nieto-Oberhuber, S. López, B. Benet-Buchholz and A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 5455-5459; (c) D. V. Partyka, T. J. Robilotto, M. Zelles, A. D. Hunter and T. G. Gray, Organometallics 2008, 27, 28-32; (d) C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C Ferrer and A. M. Echavarren, J. Org. Chem. 2008, 73, 7721-7730; (e) Y. Wang, K. Ji, S. Lan and L. Zhang, Angew. Chem. Int. Ed. 2012, 51, 1915-1918; (f) A. S. K. Hashmi, M. Hamzic, F. Rominger and J. W. Bats, Chem. -Eur. J. 2009, 15, 13318-13322; (g) I. Alonso, B. Trillo, F. Lopez, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós and J. L. Mascareñas, J. Am. Chem. Soc. 2009, 131, 13020-13030; (h) A. S. K. Hashmi, T. Hengst, C. Lothschütz and F. Rominger, Adv. Synth. Catal. 2010, 352, 1315-1337; (i) M. Z. Wang, C. Y. Zhou, Z. Guo, E. L. M. Wong, M. K. Wong and C. M. Che, Chem. Asian J. 2011, 6, 812-824.
 ${ }^{7}$ C. Obradors and A. M. Echavarren, Chem. -Eur. J. 2013, 19, 3547-3551.
 ${ }^{8}$ C. Obradors, A. Homs, D. Leboeuf and A. M. Echavarren, Adv. Synth. Catal. 2014, 356, 221-228.

[^105]: ${ }^{9}$ Synthesized by Dr. Laura López.

[^106]: Y
 3.8365240
 2.7081580
 1.4674670

