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About PID Control1

“There’s an apocryphal story you might have heard. A brilliant graduate
student was working at a prestigious institution under a famous professor of
control theory. This ingenious student managed to solve several of the deep-
est longstanding problems of control theory, developing a nonlinear, adaptive
control algorithm that was guaranteed to converge globally, under extremely
general conditions of noise and modeling uncertainty, to a controller that rep-
resented the best possible trade-offs among stability, robustness, and perfor-
mance, both transient and steady state. All that remained to be done was
the computer implementation. Unfortunately, the computational burden was
immense, and years passed before a sufficiently powerful computer could be
harnessed to perform the massive computations. Finally, the algorithm was
implemented, and a group of distinguished researchers, all experts in the most
advanced methods and theories of control, waited expectantly for the ultimate
controller. When the computations were finished, the answer appeared: PID.”

1Taken from: Dennis S. Bernstein, IEEE Control System Magazine, Vol.26, No.1, Febru-

ary 2006, p.8.
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Abstract

The great evolution that control systems have had in the last years, has
brought the need to make a more precise control, taking into account all
possible situations that can be presented. Within these possibilities, the con-
trol system’s performance - as well as - the robustness must be considered as
important attributes that every control-loop has to consider.

From the performance side, considering the two possible modes of oper-
ation for the system, the requirements have to include good disturbance re-
jection (regulation-control) and set-point tracking (servo-control), what rep-
resents by itself a trade-off between these both considerations.

Moreover, if we look from the system’s robustness point of view, due the
process variations, it is an important aspect that should be included explic-
itly in the design stage. However, the accomplishment of the corresponding
robustness specification is not always verified, therefore affecting the trade-off
between performance and robustness.

This thesis presents an approach that faces with a problem that takes into
account the above considerations. The aim is to provide solutions to improve
the general behavior of a control system, with a One-Degree-of-Freedom (1-
DoF) Proportional-Integral-Derivative (PID) controller structure.

The proposal is focused from two points of view. In the first part, the
analysis is conducted from the perspective of the operating mode (either servo
or regulation mode) of the control-loop and tuning mode of the controller.
When the operating mode is different from the one selected for tuning, the
performance of the optimal tuning settings can be degraded. Obviously both
situations can be present in any control system and in this context, a general
approach for servo/regulation control is provided to improve the performance
on both operation modes. This is formulated from the optimal controller
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x Abstract

parameters for set-point and regulation tuning methods, and looking for an
intermediate tuning between these settings.

Considering the importance of robustness, in the second part the purpose is
to design a control strategy that does not depends of the extreme tunings (for
servo and regulation), and also that includes robustness considerations, in an
explicit way. Therefore, it is formulated a combined servo/regulation index, to
evaluate the system’s performance, and incorporating a robustness constraint.
The accomplishment of the claimed robustness is checked and then, the PID
controller gives a good performance with also a precise and certain robustness
degree.

The results conducted to several PID tunings, that use the robustness or
the degradation of the performance, as the design parameter. In both cases
the aim is to meet the resulting selected value for the design, providing as
much as possible the best value for the other characteristic (robustness or
performance, depending of the case).

As a main contribution, it is also presented a balanced performance/robustness
PID tuning for the best trade-off, between the robustness increase and the con-
sequent loss in the optimality degree of the performance.
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Chapter 1

Introduction

1.1 A short glimpse on PID control

Since their introduction in 1940 (Babb, 1990; Bennett, 2000) commercial Pro-
portional - Integrative - Derivative (PID) controllers have been with no doubt
the most extensive option that can be found on industrial control applica-
tions (Åström and Hägglund, 2001). Their success is mainly due to its simple
structure and to the physical meaning of the corresponding three parameters
(therefore making manual tuning possible). This fact makes PID control eas-
ier to understand by the control engineers than other most advanced control
techniques. In addition, the PID controller provides satisfactory performance
in a wide range of practical situations.

With regard to the design and tuning of PID controllers, there are many
methods that can be found in the literature over the last sixty years. Special
attention is made of the IFAC workshop PID’00 - Past, Present and Future
of PID Control, held in Terrassa, Spain, in April 2000, where a glimpse of
the state-of-the-art on PID control was provided. Moreover, because of the
widespread use of PID controllers, it is interesting to have simple but efficient
methods for tuning the controller.

Recently, tuning methods based on optimization approaches with the aim
of ensuring robust stability have received attention in the literature (Ge et
al., 2002; Toscano, 2005). Also, great advances on optimal methods based
on stabilizing PID solutions have been achieved (Silva et al., 2002; Pedret et
al., 2002; Ho and Lin, 2003). However these methods, although effective, use
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2 Introduction

to rely on somewhat complex numerical optimization procedures and do not
provide autotuning rules. Instead, the tuning of the controller is defined as
the solution of the optimization problem.

In fact, since the initial work of Ziegler and Nichols (Ziegler and Nichols,
1942), an intensive research has been done, developing autotuning methods
to determine the PID controller parameters (Skogestad, 2003; Åström and
Hägglund, 2004; Kristiansson and Lennartson, 2006). It can be seen that
most of them are concerned with feedback controllers which are tuned either
with a view to the rejection of disturbances (Cohen and Coon, 1953; López et
al., 1967) or for a well-damped fast response to a step change in the controller
set-point (Rovira et al., 1969; Martin et al., 1975; Rivera et al., 1986).

Moreover, in some cases the methods considered only the system perfor-
mance (Ho et al., 1999), or its robustness (Åström and Hägglund, 1984; Ho
et al., 1995; Fung et al., 1998). However, the most interesting cases are the
ones that combine performance and robustness, because they face with all sys-
tem’s requirements (Ho et al., 1999; Ingimundarson et al., (n.d.); Yaniv and
Nagurka, 2004; Vilanova, 2008).

O’Dwyer (O’Dwyer, 2003) presents a complete collection of tuning rules
for PID controllers, which show their abundance.

The previous cited methods study the performance and robustness jointly
in the control design. However, no one treats specifically the performance/robustness
trade-off problem, nor consider in the formulation the servo/regulation trade-
off or the interacting between all of these variables. Therefore, it can be stated
as the major novel feature in this research work.

1.2 Objective and background

Taking into account that in industrial process control applications, it is re-
quired a good load-disturbance rejection (usually known as regulatory-control),
as well as, a good transient response to set-point changes (known as servo-
control operation), the controller design should consider both possibilities of
operation.

Moreover, it is important that every control system provides a certain
degree of robustness, in order to preserve the closed-loop dynamics, to possible
variations in the process. Therefore, the robustness issue should be included
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within the multiple trade-offs presented in the control design and it must be
solved on a balanced way.

With respect to performance, the Two-Degree-of-Freedom (2-DoF) for-
mulation is aimed at trying to met both objectives. Two closed-loop trans-
fer functions can be adjusted independently and the design is usually state
for optimal regulation operation and suboptimal for servo-control (Araki and
Taguchi, 2003). This suboptimal behavior is achieved using a set-point weight-
ing factor, as an extra tuning parameter, that gives the second Degree-of-
Freedom to improve the tracking action (Araki and Taguchi, 1998; Taguchi
and Araki, 2000).

Many tuning methods for this kind of PID controllers have been formu-
lated over the last years (Åström and Hägglund, 2004; Leva and Bascetta,
2007; Bascetta and Leva, 2008; Alfaro et al., 2009), and also some partic-
ular applications of the 2-DoF formulation based on advanced optimization
algorithms have been developed (Kim, 2002; Kim, 2004; Zhang et al., 2002).

Despite the above, the servo and regulation demands cannot be simulta-
neously satisfied with a One-Degree-of-Freedom (1-DoF) controller, because
the resulting dynamic for each operation mode is different and it is possible
to choose just one for an optimal solution.

Considering the previous statement, the studies have focused only in fulfill-
ing one of the two requirements, providing tuning methods that are optimal
to servo-control or to regulation-control. However, it is well known that if
we optimize the closed-loop transfer function for a step-response specification,
the performance with respect to load-disturbance attenuation can be very
poor and vice-versa (Arrieta et al., 2010). Therefore, it is desirable to get a
compromise design, between servo/regulation, by using 1-DoF controller.

The proposed methods consider 1-DoF PID controllers as an alternative
when explicit Two-Degree-of-Freedom (2-DoF) PID controllers are not avail-
able. Therefore, it could be stated that the proposed tunings can be used
when both operation modes may happen and it could be seen as an implicit
2-DoF approach (because the design takes into account both objectives, servo
and regulation modes).

With respect to the robustness issue, during the last years, there has been
a perspective change of how to include the robustness considerations. In this
sense, there is variation from the classical Gain and Phase Margin measures to
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a single and more general quantification of robustness, such as the Maximum
of the Sensitivity function magnitude.

Taking also into account the importance of the explicit inclusion of robust-
ness into the design, the aim is to look for an optimal tuning for a combined
servo/regulation index, that also guarantees a robustness value, specified as a
desirable Maximum Sensitivity requirement.

The research line of this thesis, follows the above idea and some previous
work can be found as background in (Arrieta, 2007; Arrieta and Vilanova,
2007a; Arrieta and Vilanova, 2007b; Arrieta and Vilanova, 2007c; Arrieta and
Vilanova, 2007d).

1.3 Thesis outline

In this thesis, the contents are restricted to include only the main contributions
and ideas, shown as highlights. This manuscript is by no means intended to
be self contained, however reviews and bibliographical references are provided
for sake of clarity and to help the understanding of this work. Evidently, to
read and follow this document, some knowledge of control systems’ theory is
needed.

The thesis is divided in three parts and the contents are organized as
follows:

Part I: Combined servo/regulation operation for PID controllers

In this first part, the aim is to look for an intermediate tuning that combining
existing optimal settings for set-point and load-disturbance tuning modes,
improves the overall operation of the system, therefore taking into account
both servo and regulation operation modes.

Chapter 2. This chapter introduces all the general framework to formulate
the proposed problem statement. Important concepts and aspects like
the control system configuration or tuning and operation modes are
shown. Also, a motivation example is provided.

Chapter 3. In this chapter, the Performance Degradation concept is intro-
duced and then, a general description of the followed procedure to find
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an intermediate tuning for balanced servo/regulation operation is pre-
sented, in order to improve the overall performance of the system (also
using weighting factors). The advantages of the proposal are shown by
some simulation examples.

Chapter 4. As an extension of the general approach for servo/regulation con-
trol operation, the idea is applied for unstable and integrating processes,
achieving simple tunings that allow to improve the system’s behavior.

Part II: Robustness and performance trade-off for PID controllers

In the second part of this thesis, the idea is still to provide a good servo/regula-
tion performance for the system. However, in this case, the proposed method
is formulated from the beginning as an optimization problem for combined
performance (not from the extreme existing tunings), including also the ro-
bustness property as a constraint.

Chapter 5. This chapter begins with the main aspects and framework for the
approach, stating the used performance and robustness considerations
and the optimization problem setup. The proposed robust based PID
control design is shown and tested against other tuning methods.

Chapter 6. It is proposed a PID design based on the optimality degree of
the system’s performance. The resulting tuning looks for the robustness
increase, selecting an allowed degradation value for the performance.
This approach is different but complementary to the one presented in
chapter 5.

Chapter 7. This chapter concludes the second part providing a balanced
performance/robustness PID design. The formulation looks for the best
compromise between the robustness increase and the consequent loss in
the optimality degree of the performance.

Part III: Concluding remarks

This final part presents a summary of the main results and conclusions of the
thesis, as well as, some future work and research to be conducted.
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Chapter 8. Finally, the conclusion remarks and main contributions are pointed,
jointly with the proposals for future research.

1.4 List of publications

The thesis has generated the following journal papers:

• O. Arrieta, R. Vilanova. Performance Degradation Analysis of Tuning
Modes: Application to an Optimal PID Tuning. International Journal
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• O. Arrieta, A. Visioli, R. Vilanova. PID autotuning for weighted servo/
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2010, pp. 472-480.
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Conference on Emerging Technologies and Factory Automation, Mal-
lorca - Spain, September 22-26, 2009.
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Chapter 2

Materials and methods

Within the wide range of approaches to autotuning, optimal methods have
received special interest. These methods provide, given a simple model process
description -such as a First-Order-Plus-Dead-Time (FOPDT) model- settings
for optimal closed-loop responses (Zhuang and Atherton, 1993).

For One-Degree-of-Freedom (1-DoF) controllers, it is usual to relate the
tuning method to the expected operation mode for the control system, known
as servo or regulation.

Therefore, controller settings can be found for optimal set-point or load-
disturbance responses. This fact allows better performance of the controller
when the control system operates on the selected tuned mode but, a degrada-
tion in the performance is expected when the tuning and operation modes are
different. Obviously there is always the need to choose one of the two possible
ways to tune the controller, for set-point tracking or load-disturbances rejec-
tion. In the case of 1-DoF PID, tuning can be optimal just for one of the two
operation modes.

2.1 Control system configuration

We consider the unity-feedback system shown in Fig. 2.1, where P is the
process and C is the (1-DoF PID) controller.

The variables of interest can be described as follows:

• y is the process output (controlled variable).

11
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C
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Figure 2.1: The considered feedback control system.

• u is the controller output signal.

• r is the set-point for the process output.

• d is the load-disturbance of the system.

• e is the control error e = r − y.

Also, the process P is assumed to be modelled by a FOPDT transfer
function of the form

P (s) =
K

1 + Ts
e−Ls (2.1)

where K is the process gain, T is the time constant and L is the dead-time.
This model is commonly used in process control because is simple and de-
scribes the dynamics of many industrial processes approximately (Åström and
Hägglund, 2006).

The availability of FOPDT models in the process industry is a well known
fact. The generation of such model just needs for a very simple step-test ex-
periment to be applied to the process. This can be considered as an advantage
with respect to other methods that need a more plant demanding experiment
such as methods based on more complex models or even data-driven methods
where a sufficiently rich input needs to be applied to the plant. From this
point of view, to maintain the need for plant experimentation to a minimum
is a key point when considering industrial application of a technique.

In this context, a common characterization of the process parameters is
done in terms of the normalized dead-time τ = L/T (Visioli, 2006). On
the other hand, the ideal 1-DoF PID controller with derivative time filter is
considered
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C(s) = Kp

(

1 +
1

Tis
+

Tds

1 + (Td/N)s

)

(2.2)

where Kp is the proportional gain, Ti is the integral time constant and Td

is the derivative time constant. The derivative time noise filter constant N
usually takes values within the range 5-33 (Åström and Hägglund, 2006; Vi-
sioli, 2006). Without loss of generality, here we will consider N = 10 (Zhuang
and Atherton, 1993).

2.2 Servo and regulation operation modes

Considering the closed-loop system of Fig. 2.1 the process output is given by

y(s) =
C(s)P (s)

1 + C(s)P (s)
r(s)

︸ ︷︷ ︸

servo−control

+
P (s)

1 + C(s)P (s)
d(s)

︸ ︷︷ ︸

regulatory−control

(2.3)

The process output y depends of its two input signals, r and d and from
that, the system can operate in two different modes, known as servo-control or
regulatory-control. In the first case, the control objective is to provide a good
tracking of the signal reference r, whereas in the second case is to maintain
the output variable at the desired value, despite possible disturbances in d.

For the design of the control system, both operation modes must be con-
sidered, however depending on the controller structure (e.g. 1-DoF PID), it is
not always possible to specify different performance behaviors for changes in
the set-point and load-disturbances.

For the servo operation mode, disturbances are not considered (d(s) = 0),
then (2.3) takes the form

ysp(s)
.
=

C(s)P (s)

1 + C(s)P (s)
r(s) (2.4)

For regulation operation mode, no changes in the set-point reference are
supposed (e.g. r(s) = 0), then, process output would be

yld(s)
.
=

P (s)

1 + C(s)P (s)
d(s) (2.5)
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2.3 Set-point and load-disturbance tuning modes

Controller tuning is one of the most important aspects in control systems. For
the selection of this, it is necessary to take into account some aspects like: the
controller structure, the information that is available for the process and the
specifications that the output has to fulfill.

The analysis presented in this work is focused on the Integral Square Er-
ror (ISE) criteria, which is one of the most well known and most often used
(Åström and Hägglund, 1995), however, the general analysis could be de-
veloped in terms of any other performance criterion. A formulation of the
performance index is

J =

∫
∞

0
e(t)2dt (2.6)

The optimization of (2.6) is considered, subject to the control system con-
figuration shown in Fig. 2.1 where the controller C(s) takes the explicit form
of a 1-DoF PID controller (2.2).

When the settings for optimal set-point (servo-control) response are con-
sidered, the controller parameters are adjusted according to the following for-
mulae (Zhuang and Atherton, 1993)

Kp =
a1

K
τ b1

Ti =
T

a2 + b2τ
(2.7)

Td = a3Tτ b3

and for the optimal load-disturbance (regulatory-control) response

Kp =
a1

K
τ b1

1

Ti
=

a2

T
τ b2 (2.8)

Td = a3Tτ b3
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where the corresponding values of ai and bi are given in Table 2.1 (Zhuang
and Atherton, 1993).

Note that due to the fitting procedure, the tuning expressions do not in-
clude the whole range of τ , therefore split in two, resulting in different con-
stants for each parameter.

Table 2.1: Optimal PID settings for set-point (sp) and load-disturbance (ld)
τ range 0.1 - 1.0 1.1 - 2.0

Tuning SP LD SP LD

a1 1.048 1.473 1.154 1.524
b1 -0.897 -0.970 -0.567 -0.735
a2 1.195 1.115 1.047 1.130
b2 -0.368 -0.753 -0.220 -0.641
a3 0.489 0.550 0.490 0.552
b3 0.888 0.948 0.708 0.851

2.3.1 Motivation example

In order to show the performance of the previously presented settings and how
this can degrade when the controller is not operating according to the tuned
mode, an example is provided. This motivates the analysis to be presented in
the next sections.

Consider the following plant transfer function, taken from (Zhuang and
Atherton, 1993), and the corresponding FOPDT approximation

P1(s) =
e−0.5s

(s + 1)2
≈

e−0.99s

1 + 1.65s
(2.9)

The application of the ISE tuning formulae for optimal set-point and load-
disturbance responses provides the PID parameters shown in Table 2.2.

Fig. 2.2 shows the performance of both settings when the control sys-
tem is operating in both, servo and regulation mode. It can be appreciated
that the load-disturbance response of the set-point tuning is closer to the op-
timal regulation one than the load-disturbance tuning to the optimal servo
tuning. Therefore the observed Performance Degradation is larger for the
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Table 2.2: Motivation example - PID controller parameters for P1

tuning Kp Ti Td

set − point(sp) 1.657 1.694 0.513
load − disturbance(ld) 2.418 1.007 0.559

load-disturbance tuning. From a global point of view, it will seem better to
choose the set-point settings.

0 10 20 30 40 50

70

75

80

85

90

95

100

time

P
ro

ce
ss

 O
ut

pu
t

 

 
sp − tuning
ld − tuning

Figure 2.2: Motivation example - Process responses for servo and regulation
for system P1.

2.4 Problem statement

If the control-loop has always to operate on one of the two possible operation
modes (servo or regulator) the tuning choice will be clear. However, when
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both situations are likely to occur, it may not be so evident which are the
most appropriate controller settings.

The analysis to answer the problem concentrates on the Performance Degra-
dation index which provides a quantitative evaluation of the controller settings
with respect to the operation mode and the main objective is to reduce it.

Here, the question “How to improve the performance when the system op-
erates also in a different mode that it was tuned for?” is treated by searching
an intermediate tuning for the controller, between both optimal parameters
settings for set-point and load-disturbance, in order to reduce the global Per-
formance Degradation index.

Also, the selection of the servo/regulation trade-off tuning can be made
to achieve a balanced performance behavior between the operation modes.
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Chapter 3

General approach for
servo/regulation operation

3.1 Performance Degradation of the control system

The performance of the control system is measured in terms of a performance
index that takes into account the possibility of an operation mode different
from the selected one. This motivates the redefinition of the performance
index (2.6) as

Jx(z) =

∫
∞

0
e(t, x, z)2dt (3.1)

where x denotes the operating mode of the control system and z the selected
operating mode for tuning, i.e., the tuning mode. Thus, we have x ∈ {sp, ld}
and z ∈ {sp, ld}, where sp states for set-point (servo) tuning and ld for load-
disturbance (regulator) tuning. Obviously, for one specific process it has to be
verified that:

Jsp(sp) ≤ Jsp(ld)

Jld(ld) ≤ Jld(sp)

Performance will not be optimal for both situations. The Performance
Degradation measure helps in the evaluation of the loss of performance with

19
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respect to their optimal value (Arrieta and Vilanova, 2007a). Performance
Degradation, PDx(z), will be associated to the tuning mode - z - and tested
on the, opposite, operating mode - x -. According to this, the Performance
Degradation of the load-disturbance tuning, PDsp(ld), will be defined as

PDsp(ld)
.
=

∣
∣
∣
∣

Jsp(ld) − Jsp(sp)

Jsp(sp)

∣
∣
∣
∣

(3.2)

whereas the Performance Degradation associated to the set-point tuning, PDld(sp),
will be

PDld(sp)
.
=

∣
∣
∣
∣

Jld(sp) − Jld(ld)

Jld(ld)

∣
∣
∣
∣
. (3.3)

Note that, because the controller settings expressed through (2.7) and
(2.8) have explicit dependence on the process normalized dead-time τ , it is
worth taking into account that, for the PID application, the Performance
Degradation will also depend on τ .

Fig. 3.1 shows the performance analysis for the normalized dead-time
ranges where PID controller settings (set-point and load-disturbance) are pro-
vided by (Zhuang and Atherton, 1993).

Note also that Performance Degradation is a decreasing function of the
normalized dead-time, taking very high values for processes with small nor-
malized dead-time.

The final decision for the choice of the appropriate tuning mode will de-
pend on the importance for the system operation as servo or regulation modes.
However, if both situations are likely to occur, Fig. 3.1 suggests a set-point
based tuning is to be preferred, because it provides less Performance Degra-
dation than load-disturbance tuning.

3.2 Controller’s search space

The tuning approaches presented in Section 2.3 can be considered extremal
situations. The controller settings are obtained by considering exclusively one
mode of operation. This may generate, as it has been shown in the previous
section, quite poor performance if the non-considered situation happens. This
fact suggests to analyze if, by loosing some degree of optimality with respect
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Figure 3.1: Performance Degradation of set-point (sp) and load-disturbance
(ld) tunings for ISE criteria with respect to the normalized dead-time τ .

to the tuning mode, the Performance Degradation can be reduced when the
operation is different to the selected one for tuning.

Based on this observation we suggest to look for an intermediate controller.
In order to define this exploration, we need to define the search-space and the
overall Performance Degradation index to be minimized (Arrieta and Vilanova,
2010). Obviously the solution will depend on how this factors are defined.

The search of the controller settings that provide a trade-off performance
for both operating modes could be stated in terms of a completely new op-
timization procedure. However, we would like to take advantage of existing
autotuning formulae (like (2.7) and (2.8)), in order to keep the procedure, as
well as the resulting controller expression, in similar simple terms. Therefore,
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the resulting controller settings could be considered as an extension of the op-
timal ones. On this basis we define a controller settings family parameterized
in terms of a vector as

γ = [γ1, γ2, γ3] (3.4)

where γi is a variable for each controller parameter (Kp, Ti, Td) that allows
searching for the intermediate tuning. The values for this factor are restricted
to γi ∈ [0, 1] i = 1, 2, 3. Also, the set-point tuning will correspond to a
contour constraint for each γi = 0, whereas the load-disturbance tuning corre-
sponds to γi = 1. Fig. 3.2 shows graphically the procedure and the application
for the 1-DoF PID controller tuning.

Figure 3.2: γ− tuning procedure for the search of the intermediate controller.

The controller settings family [Kp(γ1), Ti(γ2), Td(γ3)], can be expressed, in
a more general form, as

Kp(γ1) = fKp
(γ1; K

ld
p , Ksp

p )

Ti(γ2) = fTi
(γ2; T

ld
i , T sp

i ) (3.5)

Td(γ3) = fTd
(γ3; T

ld
d , T sp

d )

where γi ∈ [0, 1] i = 1, 2, 3 and [Ksp
p , T sp

i , T sp
d ] and [K ld

p , T ld
i , T ld

d ] stand for
the set-point and load-disturbance settings for [Kp, Ti, Td] respectively. Also,
every γ transition has to satisfy the contour constraints with the form
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Ksp
p = fKp

(0; K ld
p , Ksp

p )

K ld
p = fKp

(1; K ld
p , Ksp

p )

T sp
i = fTi

(0; T ld
i , T sp

i ) (3.6)

T ld
i = fTi

(1; T ld
i , T sp

i )

T sp
d = fTd

(0; T ld
d , T sp

d )

T ld
d = fTd

(1; T ld
d , T sp

d )

Taking (3.5) as the general formulation, the controller parameters can be
generated by a linear evolution between the settings from the set-point tuning
to the load-disturbance one and the other way around. Therefore,

Kp(γ1) = γ1K
ld
p + (1 − γ1)K

sp
p

Ti(γ2) = γ2T
ld
i + (1 − γ2)T

sp
i (3.7)

Td(γ3) = γ3T
ld
d + (1 − γ3)T

sp
d

3.2.1 Parametric stability analysis

Here, the objective is to introduce the stability analysis of the closed-loop
generated by the controller defined by (3.7) in terms of the vector γ (Arrieta
et al., 2009a).

Stabilizing region for a PID controller

Here, the main relevant results obtained by Silva et. al. in (Silva et al., 2002)
are reproduced in order to have a clear idea of the applied methodology.

First, consider that the PID controller is expressed with its three gains as

Kc = Kp, Ki = Kp/Ti, Kd = KpTd (3.8)

Then, we can cite the following theorem.
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Theorem 3.2.1 (Silva et al., 2002): The range of Kc values for which a given
open-loop stable plant, with a transfer function as (2.1), can be stabilized using
a PID controller in the structure depicted in Fig. 2.1 is given by

−
1

K
< Kc <

1

K

[
T

L
α1 sin(α1) − cos(α1)

]

(3.9)

where α1 is the solution of the equation:

tan(α) = −
T

T + L
α (3.10)

in the interval (0, π). For Kc values outside this range, there are no stabilizing
PID controllers. The complete stabilizing region is given by (see Fig. 3.3):

1. For each Kc ∈ (−(1/K), 1/K), the cross-section of the stabilizing region
in the (Ki, Kd) space is the trapezoid T.

2. For Kc = 1/K, the cross-section of the stabilizing region in the (Ki, Kd)
space is the triangle ∆.

3. For each Kc ∈ (1/K, Ku := 1/K[(T/L)α1 sin(α1) − cos(α1)]), the cross-
section of the stabilizing region in the (Ki, Kd) space is the quadrilateral
Q.�

The parameters mj , bj , wj , j = 1, 2 necessary for determining the bound-
aries of T, ∆ and Q can be determined using the following equations

mj
.
= m(zj) (3.11)

bj
.
= b(zj) (3.12)

m(z)
.
= L2

z2 (3.13)

b(z)
.
= − L

Kz

[
sin(z) + T

L
z cos(z)

]
(3.14)

where zj , j = 1, 2, . . . are the positive-real solutions of

KKc + cos(z) −
T

L
z sin(z) = 0 (3.15)

arranged in ascending order of magnitude.
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Figure 3.3: The stabilizing regions of (Ki, Kd) for: (a)−(1/K) < Kc < 1/K,
(b)Kc = 1/K and (c)1/K < Kc < Ku.

Stabilizing region for the intermediate PID controller’s family

Our stability analysis is based on the demonstration that for each frozen value
of γ the so defined intermediate PID controller gains lie within the corre-
sponding stability polyhedral described in Section 3.2.1 by Theorem 3.2.1. To
simplify the proof, the following procedure is proposed.

Step 1 Firstly, verify that for all frozen value of γ1 ∈ [0, 1], the proportional
gain Kc(γ1) guarantees the existence of a stabilizing PID controller. Oth-
erwise, there would be an intermediate controller parametrization that
would make the unstable the closed-loop.

Step 2 Since Step 1 guarantees the existence of a PID controller that ensures
the stability of the closed-loop, for each value of γ1 ∈ [0, 1] the corre-
sponding stability region described by Theorem 3.2.1 and denoted by
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Rγ1
can be considered.

Step 3 In this step, the intersection of all the stabilizing regions is calculated
and checked to be non-empty, R =

⋂

γ1∈[0,1]

Rγ1
6= ∅.

Step 4 In the last step, the values of remaining controller parameters gains
Ki(γ2), Kd(γ3) are plotted for a mesh of (γ2, γ3) generated on [0, 1] ×
[0, 1]. The resulting graph is verified to completely lie within the stability
region R guaranteeing then the stability for each frozen value of vector
γ. Finally, for a sufficiently small value of 1/N , the closed-loop system
is interpreted as a singularly perturbed system for which the Tikhonov’s
Theorem guarantees the preservation of stability.

In this way, following the above steps, the subsequent theorem can be
proved:

Theorem 3.2.2 The intermediate controller given by (2.2) and (3.7) asymp-
totically stabilizes the system (2.1) provided that the border values are given
by (2.7), (2.8) and Table 2.1, 1/N is sufficiently small and γi ∈ [0, 1] for
i = 1, 2, 3.

Proof: Following the steps introduced above, we will show that the pro-
posed border values for Kc, namely Kc1, Kc2, satisfy equation (3.9), guaran-
teeing then the existence of a stabilizing PID controller. Equation (3.10) can
be rewritten as

tan(α) = −
1

1 + τ
α (3.16)

For each value of τ ∈ [0.1, 1.0] ∪ [1.1, 2.0], Fig. 3.4 shows the maximum
allowed proportional gain, given by the right hand side of (3.9) and the other
gains given by the tuning equations (2.7) and (2.8) for the border parameters.

Since the controller values are obtained from a convex linear combination
of the border values, it can be directly deduced from Fig. 3.4 that equation
(3.9) is satisfied for all admissible normalized dead-time. In conclusion, there
always exists a stabilizing PID controller.
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Figure 3.4: Maximum allowable proportional gain and values obtained by the
tuning method.

Hence, from Theorem 3.2.1, there exist non-empty regions describing the
set of stabilizing PID controllers. In particular, Table 3.1 shows the type of
regions for each value of the normalized dead-time and from this, we can say
that

• For the τ ∈ [0.1, 1.0] there is not change in the stabilizing region, being
the type Q for the whole range.

• For the τ ∈ [1.1, 2.0] the stabilizing regions between the two possible ex-
tremes could change, what means that a new region from the intersection
of them has to be obtained.

Furthermore, the intersection of such stabilizing regions is non-empty. To
verify this, denote by {Tk}

n1

k=1, {∆k}
n2

k=1, {Qk}
n3

k=1, the sets of potential sta-
bilizing regions.



28 General approach for servo/regulation operation

Table 3.1: Stabilizing regions for set-point(sp) and load-disturbance(ld)

τ range 0.1 - 1.0

Tuning set-point load-disturbance

Stabilizing Q, ∀τ ∈ [0.1, 1.0] Q ∀τ ∈ [0.1, 1.0]
Region

τ range 1.1 - 2.0

Tuning set-point load-disturbance

Stabilizing Q, ∀τ ∈ [1.1, 1.29[ Q, ∀τ ∈ [1.1, 1.77[
Region ∆, τ = 1.29 ∆, τ = 1.77

T, ∀τ ∈]1.29, 2.0] T, ∀τ ∈]1.77, 2.0]

Every element of the set {Tk}
n1

k=1 share the left-hand border while the
right hand one is defined by the straight line Kd = m1Ki + b1. For every
admissible normalized dead-time and any allowable KKc product, the solution
to equation (3.15) is finite which implies that the slope of the above border line
is finite. Hence, its maximum value can attained and is finite which implies
that there always exists a common point in all the sets and ∩{Tk}

n1

k=1 6= ∅.

Similar arguments show that ∩{∆k}
n2

k=1 6= ∅ and ∩{Qk}
n3

k=1 6= ∅. Finally,
the intersection of all set is non-empty since from Fig. 2.1, Q ⊂ ∆ ⊂ T
implying that ∩{Qk}

n3

k=1 ⊂ ∩{∆k}
n2

k=1 ⊂ ∩{Tk}
n1

k=1 and therefore, ∩{Qk}
n3

k=1∩
{∆k}

n2

k=1 ∩ {Tk}
n1

k=1 6= ∅.

The proof is completed depicting the remaining controller parameter vari-
ation and verifying that the plotted polygon lies within the intersection. This
step will be illustrated by an example.

Thus, the theorem is proved for the ideal PID controller. Finally, for
a sufficiently small 1/N > 0 the closed-loop is still stable by applying the
Tikhonov’s Theorem (Khalil, 2002) to the resulting singularly perturbed sys-
tem, hence concluding the proof of the Theorem. �

Example

We consider the controlled process (2.9) shown before as a motivation example.
Table 2.2 shows the PID controller parameters for the system using the ISE
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tuning formulae (Zhuang and Atherton, 1993) for optimal set-point and load-
disturbance.

From the PID parameters, the whole controller family parameters (3.7),
as well as, the equivalent expressions (3.8) can be obtained. From Table 3.1,
it can be seen that for system (2.9) the shape region is Q, see Fig. 3.3 (step
1).

Then, applying equations (3.11) to (3.15) we can look for the set of all
Rγ1

stabilizing regions (step 2) and from this, the intersection for the set, that
results in the most restricted region (step 3).

Fig. 3.5 shows the resulting stabilizing region R and the variation of Ki

and Kd parameters for all γ set between 0 and 1 (step 4).
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Figure 3.5: The stabilizing region for the system (2.9) and the defined polygon
for the γ variation.

We can say that the closed-loop system would be stable for all the param-
eters (3.7), because the resulting polygon for γ variation is into the stabilizing
region R.
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3.3 Overall Performance Degradation

Now, in order to define a global Performance Degradation (PD) index, the
previously defined terms (3.2) and (3.3) need to be extended. Note that the
Performance Degradation was associated to the tuning mode, therefore tested
against the opposite operating mode. Now, for every combination of γ the
Performance Degradation needs to be measured with respect to both operating
modes (because the corresponding γ−tuning does not necessarily corresponds
to an operating mode). Hence,

• PDsp(γ) will represent the Performance Degradation of the γ − tuning
on servo operating mode.

PDsp(γ) =

∣
∣
∣
∣

Jsp(γ) − Jsp(sp)

Jsp(sp)

∣
∣
∣
∣

(3.17)

• PDld(γ) will represent the Performance Degradation of the γ − tuning
on regulation operating mode.

PDld(γ) =

∣
∣
∣
∣

Jld(γ) − Jld(ld)

Jld(ld)

∣
∣
∣
∣

(3.18)

From the above Performance Degradation definitions, the overall Perfor-
mance Degradation is introduced and interpreted as a function of γ. There
may be different ways to define the PD(γ) function, depending on the impor-
tance associated to every operating mode (e.g. applying weighting factors to
each component). However, every definition must satisfy the following contour
constraints

PD(γ) =

{
PDld(sp) for γ = [0, 0, 0]
PDsp(ld) for γ = [1, 1, 1]

The most immediate definition would be

PD(γ) = PDld(γ) + PDsp(γ) (3.19)

This expression represents a compromise, or a balance, between both losses
of performance (Arrieta and Vilanova, 2007b; Arrieta et al., 2009b).
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3.4 Weighted Performance Degradation

As it has been mentioned before, the greatest loss of performance occurs when
the load-disturbance tuning operates on servo mode. Therefore, PDsp(γ) will
be the largest component of the global expression of PD(γ) and in the oppo-
site side PDld(γ) the smallest one. This causes that the percentage reduction
of PD that can be obtained from the PDld side is smaller than the one for the
PDsp part. A balanced reduction of PD(γ) from both Performance Degrada-
tions is possible by introducing weighting factors associated to each operating
mode (Arrieta et al., 2010). This idea can be applied rewriting (3.19) as

WPD(γ; α)
.
= αPDld(γ) + (1 − α)PDsp(γ) (3.20)

that we call Weighted Performance Degradation (WPD) index, where α ∈
[0, 1] is the weight factor and indicates which one of the two possible operation
modes is preferred or more important.

One way to express the importance between both operation modes, could
be the total time that the system operates in each one of them. For example,
a system that operates the 75% of the time as a regulator (or viceversa 25% as
a servo), α = 0.75. However, the α parameter allows to make a more general
choice for the preference of the system operation (not only taking into account
the time for each operation mode).

Note also that (3.20) with α = 0.50, represents an equivalent expression
to the one obtained previously in (3.19) that gives the same significance for
both operation modes.

The intermediate tuning will be determined by proper selection of γ =
[γ1, γ2, γ3]. This choice will correspond to the solution of the following opti-
mization problem,

γop
.
= [γ1op, γ2op, γ3op] = arg

[

min
γ

WPD(γ; α)

]

(3.21)

It is obvious that α = 0 means

WPD(γ; 0) = PDsp(γ) (3.22)
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and of course the γop that minimizes the Performance Degradation for servo
operation mode (3.22), is the one that corresponds to the set-point tuning
(γ = [0, 0, 0]). On the other side, α = 1 is equivalent to

WPD(γ; 1) = PDld(γ) (3.23)

and the tuning that minimizes the Performance Degradation for regulation
operation (3.23) is the load-disturbance tuning that equals to γ = [1, 1, 1].

The optimal values (3.21) jointly with (3.7), give a tuning formula that
provides a worse performance than the optimal settings operating in the same
way but also a lower degradation in the performance when the operating mode
is different from the tuning mode.

Remark: It is important to note that the presented procedure has just
considered the performance with respect to the proposed Performance Degra-
dation index. Other closed-loop characteristics such as stability robustness,
tolerance to parameter variation, etc. are not taken into account. How to con-
sider additional closed-loop characteristics is a subject that will be presented
later in Part II of this thesis. However, it is clear that in order to include such
characteristics into consideration, they need to be part of the original extreme
tunings (Arrieta and Vilanova, 2007c).

3.5 Optimization procedure

To provide the possibility to specify any possible combination between both
operation modes, the index (3.20), with an appropriated weight factor α and
subjected to the optimization (3.21), gives the suitable γi values that provide
the PID tuning according to (3.7).

However, from a more practical point of view it is unusual and very difficult
to say for example, that the regulation mode, in a control system, has the 63%
of the importance (that means the 37% for the servo). With this respect, we
can establish a categorization in order to make the analysis simpler and also
to help the choice of the weight factor. Therefore, depending on the operation
for the control system, we can identify the following general cases:

• Operation only as a servo that means α = 0.

• Operation only as a regulator that means α = 1.
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• Same importance for both system operation modes, servo and regulation,
that is equivalent to α = 0.50.

• More importance for the servo than the regulation operation, that can
be expressed by α = 0.25.

• More importance for regulator than servo, that can be indicated as α =
0.75.

This broad classification allows for a qualitative specification of the control
system operation.

Here, the optimization was performed using genetic algorithms (Mitchell,
1998), taking problem (3.21) as the fitness function. The implementation was
performed using MATLAB 7.6.0(R2008a) R© for a population size of 20 and a
maximum number of generations of 50.

The optimal solution was found for α = {0.25, 0.50, 0.75}. As we said
before for α = {0, 1}, as extreme situations, the optimal tunings are the ones
related to set-point and load-disturbance presented previously in Section 2.3.

It is worth to say that at first the optimization was performed by consid-
ering an enlarged search space for the γ vector, however, for the rare cases in
which the optimal γi parameters were outside the interval [0, 1], the value of
the objective function was practically the same and, therefore, it is preferred
to constraint the search space in order to provide a bounded controller’s family
that is easier to understand as are presented of an intermediate controller.

3.6 Intermediate tuning for balanced servo/regulation

operation

What is provided in this section is a procedure about how to find an inter-
mediate tuning for the controller that improves the overall performance of
the system, considered as a trade-off between servo and regulation operation
modes. The settings are determined from the combination of the optimal ones
for set-point and load-disturbance, presented in (Zhuang and Atherton, 1993),
and taking into account the balance between the importance of each one of
the operation modes for the control system (servo or regulation).
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3.6.1 Autotuning rules

Tuning relations (3.7) allow to select γi values on the basis of trade-off per-
formance for both operating modes. However, it would be desirable an auto-
matic methodology to choose this set of parameters without the need to run
the whole Weighted Performance Degradation analysis.

In order to pursue the previous idea, by repeating the problem optimization
posed in (3.21) for the three weighting factors and different values of the
normalized dead-time τ , we can find an optimal set for each γi parameter. For
each one of these groups, it is possible to approximate a function to determine
a general procedure that allows to find the suitable values for the γi’s, that
provide the best intermediate tuning. Results are adjusted to the general
expression as

γi(τ) = a + bτ + cτ2 τ ∈ [0.1, 1.0] ∪ [1.1, 2.0] (3.24)

where a, b and c are given in Table 3.2, according to the weighting factor α and
for each γi and τ range. Fig. 3.6 shows the followed procedure for α = 0.50
and the γ1 case. Note that, the range of τ is split in two because it is part of
the formulation for the original extreme tunings.

Table 3.2: γα − autotuning settings
τ range 0.1 - 1.0 1.1 - 2.0
constant a b c a b c

γ1 0.082 0.074 0.138 0.021 0.040 -0.006
α = 0.25 γ2 0.896 -1.238 0.854 0.097 -0.723 0.173

γ3 0.332 -0.592 0.508 0.323 -0.183 0.033

γ1 0.093 0.547 -0.106 1.162 -1.258 0.406
α = 0.50 γ2 0.920 -0.540 0.206 2.222 -2.184 0.639

γ3 0.831 -1.197 0.548 -0.436 0.941 -0.334

γ1 0.108 0.566 0.067 2.197 -2.529 0.774
α = 0.75 γ2 0.869 -0.271 0.129 1.312 -1.021 0.296

γ3 0.211 0.701 -0.683 -0.987 1.791 -0.579

Equation (3.24) for each γi along with the settings (3.7) provide what we
call here γα −autotuning for weighted servo/regulation operation, that is one
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Figure 3.6: Optimal set for γ1 parameter and the corresponding approximated
function for α = 0.50

of the contributions of this work.

3.7 Examples

This section presents several examples to illustrate how the implementation
of the γα − autotuning improves the performance of the closed-loop system
respect to the both operation modes.

In all the examples it is supposed that the process output can vary in
the 0 to 100% normalized range and that in the normal operation point, the
controlled variable has a value close to 70%.

3.7.1 Example 1

Let us to consider the system (2.9), shown before as a Motivation Example.
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Table 3.3 shows the PID controller parameters for the system (2.9) using
the (Zhuang and Atherton, 1993) method and the proposed γα − autotuning
with α = {0.25, 0.50, 0.75}. Moreover, the corresponding system outputs re-
sponses to a 20% set-point change followed by a -20% load-disturbance change,
are shown in Fig. 3.7 for the following tuning methods: set-point, load-
disturbance and γα−autotuning with its three possible scenarios. The control
signal is not shown for the sake of brevity, however it can be easily guessed
that it would be smoother when the value of α is lower (see Example 3).

Table 3.3: Example 1 - PID controller parameters for P1

tuning Kp Ti Td

set − point(sp) 1.657 1.694 0.513
load − disturbance(ld) 2.418 1.007 0.559

γα=0.25 − autotuning 1.791 1.378 0.520
γα=0.50 − autotuning 1.949 1.234 0.527
γα=0.75 − autotuning 2.016 1.177 0.531

It can be seen that the proposed γα − autotuning gives lower performance
than the optimum settings when the system operates in the same way as
it was tuned. However, higher performance can be obtained for the whole
system operation (regulatory-control and servo-control), when an intermediate
controller is used.

Table 3.4 shows the Performance Degradation values calculated from (3.17)
and (3.18) and also the WPD index (3.20) for each tuning. The below side of
the table presents the improvement in percentage that can be achieved with
each one of the γα−autotuning respect to the extreme tunings (set-point and
load-disturbance).

All the values confirm the fact that, in global terms, when both operating
modes could appear and taking into account the importance that the control-
loop is operating as servo or regulation mode, the proposed γα − autotuning
is the best choice to tune the PID controller in order to get less Performance
Degradations.
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Figure 3.7: Example 1 - Process responses for servo and regulation for system
P1.

3.7.2 Example 2

In order to add completeness to the comparison, a case-study example is pro-
vided. We consider the isothermal Continuous Stirred Tank Reactor (CSTR),
as the one in Fig. 3.8, where the isothermal series/parallel Van de Vusse reac-
tion (Van de Vusse, 1964; Kravaris and Daoutidis, 1990) is taking place. The
reaction can be described by the following scheme

A
k1−→ B

k2−→ C (3.25)

2A
k3−→ D

Doing a mass balance, the system can be described by the following model
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Table 3.4: Example 1 - PD and WPD values for the system P1 and the
improvement obtained with γα − autotuning

tuning PDsp PDld WPDα=0.25 WPDα=0.50 WPDα=0.75

set − point(sp) - 0.3951 0.0988 0.1976 0.2964
load − disturbance(ld) 0.9496 - 0.7123 0.4748 0.2374
γα=0.25 − autotuning 0.0336 0.1662 0.0668 - -
γα=0.50 − autotuning 0.1088 0.0376 - 0.0732 -
γα=0.75 − autotuning 0.1578 0.0009 - - 0.0401

improvement in % of

γα=0.25 − autotuning 96.46%(ld) 57.93%(sp) 32.39%(sp) - -
90.62%(ld) - -

γα=0.50 − autotuning 88.54%(ld) 90.49%(sp) - 62.95%(sp) -
- 85.58%(ld) -

γα=0.75 − autotuning 83.38%(ld) 99.77%(sp) - - 86.47%(sp)
- - 83.11%(ld)

(respect to)

dCA(t)

dt
=

Fr(t)

V
[CAi − CA(t)] − k1CA(t) − k3C

2
A(t)

dCB(t)

dt
= −

Fr(t)

V
CB(t) + k1CA(t) − k2CB(t) (3.26)

where Fr is the feed flow rate of product A, V is the reactor volume which is
kept constant during the operation, CA and CB are the reactant concentrations
in the reactor, and ki (i = 1, 2, 3) are the reaction rate constants for the three
reactions.

In this case, the variables of interest are: the concentration of B in the
reactor (CB as the controlled variable), the flow through the reactor (Fr as the
manipulated variable), and the concentration CAi of A in the feed flow (whose
variation can be considered as the disturbance). The kinetic parameters are
chosen to be k1 = 5/6 min−1, k2 = 5/3 min−1, and k3 = 1/6 l mol−1 min−1.
Also, is assumed that the nominal concentration of A in the feed (CAi) is
10 mol l−1 and the volume V = 700 l.

Using (3.26) and the parameters values, the characterization of the steady-
state for the process can be obtained as it is shown in Fig.3.9, for three con-
centrations of CAi, where is easy to see the non-linearity of the system.
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Figure 3.8: Example 2 - CSTR System

Initially, the system is at the steady-state (therefore the operational point)
with CAo = 2.9175 mol l−1 and CBo = 1.10 mol l−1. From this, the measure-
ment range for CB can be selected from 0 to 1.5714 mol/l and the capacity
for the control valve with a maximum flow of 634.1719 l/min (variation range
of the flow from 0 to 634.1719 l/min) (Arrieta et al., 2008). The signals (y,
u, r) will be in percentage (0 to 100%).

The sensor-transmitter element takes the form

y(t)% =

(
100

1.5714

)

CB(t) (3.27)

and the control valve with a linear flow characteristic,

Fr(t) =

(
634.1719

100

)

u(t)% (3.28)
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Figure 3.9: Example 2 - Steady-State characterization for the reactor (3.26)

Fig. 3.10 shows the steady-state characterization, taking into account
elements represented by (3.27) and (3.28). This is called set actuator-process-
sensor and from this, it is clear the choice for the operational point as, ro =
70% and uo = 60%.

It is assumed that changes in the set-point would be not larger than 10%
and the possible disturbance in CAi, can variate around ±10%. In Fig. 3.11
the process output can be seen (including the sensor and the control valve)
and also the FOPDT model for a step change in the process input (yu(t)).

Using the identification method (Alfaro, 2006), the determined FOPDT
model is

P3(s) ≈
0.3199e−0.5289s

0.6238s + 1
(3.29)

From (3.29), the application of the ISE tuning formulae for optimal set-
point and load-disturbance responses and also the intermediate γα−autotuning
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Figure 3.10: Example 2 - Steady-State characterization for the set actuator-
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provide the parameters for the PID controller that are shown in Table 3.5.

Table 3.5: Example 2 - PID controller parameters for P3

tuning Kp Ti Td

set − point(sp) 3.799 0.707 0.264
load − disturbance(ld) 5.404 0.494 0.293

γα=0.25 − autotuning 4.190 0.609 0.269
γα=0.50 − autotuning 4.570 0.577 0.270
γα=0.75 − autotuning 4.820 0.551 0.273

Process outputs of the closed-loop system are shown in Fig. 3.12, first for a
set-point step change of -10%, follows by a disturbance of +10% and finally a
new change in the set-point of +5%, all these situations using the three tuning
modes (set-point, load-disturbance and γα − autotuning). Also, the control
signal (u(t)) can be seen. It appears that, as expected, the control signal is
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Figure 3.11: Example 2 - Reaction curve for process (3.26) and FOPDT model
3.29.

smoother for lower values of α.

A more comprehensive picture of the process outputs, for the set-point
change, is shown in Fig. 3.13. In this case, it can be seen that, as expected,
the set-point tuning gives the better performance for servo operation mode.
Furthermore, the γα − autotuning provides a lower degradation, respect to
the optimal, than the load-disturbance tuning.

The detail of load-disturbance attenuation is in Fig. 3.14. Similarly to
the previous case, the load-disturbance tuning is the one that gives better
performance for regulation operation and the performance degradation of the
set-point tuning is greater than the three cases for γα − autotuning.

In general terms, it can be confirmed that the γα − autotuning gives a
better overall performance when the system operates in both servo and regu-
lation modes. Also, the control signal for the intermediate tuning seems to be
smoother than that provided by the optimal regulation settings.

Table 3.6 shows the PD and WPD indices and the improvement that can
be achieve for each case of the γα − autotuning.
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Figure 3.12: Example 2 - Process responses for servo and regulation for non-
linear control system.

3.8 Summary

In process control it is very usual to have changes in the set-point, as well as in
the disturbance. This causes the need to face with both servo and regulatory
control problems. For 1-DoF PID controllers, when the tuning objective is
different to the real system operation, a degradation in the performance is
expected and it can be evaluated. A reduction in the overall Performance
Degradation can be obtained by searching an intermediate controller between
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Figure 3.13: Example 2 - Process responses for the non-linear control system
operating as servo.

the optimal ones proposed for set-point and load-disturbance tunings.

Autotuning formulae have been presented with the aim to minimize the
Weighted Performance Degradation, expressed as a combination depending
of the balance between the total time that the system operates in servo and
regulation modes. This is one of the main contributions of this work because
it is a novel feature that allows to select the tuning according to a general
qualitative specification of the control system operation.

Results are given for PID controllers, in order to get results closer to in-
dustrial applications. The examples have shown the improvement obtained
with each one of the γα − autotuning cases.
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Figure 3.14: Example 2 - Process responses for the non-linear control system
operating as regulator

Even if the results were presented and exemplified using the ISE perfor-
mance criteria, it could be possible to reproduce a similar methodology for
other PID controller tuning, like the one that uses derivative action just ap-
plied to the process output, or to other PID tunings with different performance
objectives.
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Table 3.6: Example 2 - PD and WPD values for the non-linear CSTR system
and the improvement obtained with γα − autotuning

tuning PDsp PDld WPDα=0.25 WPDα=0.50 WPDα=0.75

set − point(sp) - 0.3284 0.0821 0.1642 0.2463
load − disturbance(ld) 0.5316 - 0.3987 0.2658 0.1329
γα=0.25 − autotuning 0.0192 0.1398 0.0493 - -
γα=0.50 − autotuning 0.0706 0.0470 - 0.0588 -
γα=0.75 − autotuning 0.1334 0.0038 - - 0.0362

improvement in % of

γα=0.25 − autotuning 96.39%(ld) 57.73%(sp) 39.95%(sp) - -
87.63%(ld) - -

γα=0.50 − autotuning 86.72%(ld) 85.99%(sp) - 64.19%(sp) -
- 77.88%(ld) -

γα=0.75 − autotuning 74.91%(ld) 99.15%(sp) - - 85.30%(sp)
- - 72.76%(ld)

(respect to)



Chapter 4

Application to unstable and
integrating processes

4.1 Considerations

Much of the effort in control systems has been concentrated on the application
to stable systems, while quite a few of the important chemical processing units
in industrial and chemical practices are open-loop unstable processes that are
known to be difficult to control, especially when there exists a time delay,
such as in the case of continuous stirred tank reactors, polymerization reactors
and bio-reactors which are inherently open-loop unstable by design (Sree and
Chidambaram, 2006).

Clearly, the tuning of controllers to stabilize these processes and to achieve
adequate disturbance rejection is critical. Moreover, integrating processes are
very frequently encountered in process industries and many researchers have
suggested that for the purpose of designing a controller, a large number of
chemical processes could be modelled using an integrating process with time
delay. Consequently, there has been much interest in the literature in the
tuning of industrially standard PID controllers for open-loop unstable systems
as well as for integrating processes.

In fact, several papers can be found in the literature that deals with the
tuning of unstable (Lee et al., 2000; Visioli, 2001; Sree et al., 2004; Vivek
and Chidambaram, 2005; Panda, 2009) and integrating processes (Lee et al.,

47



48 Application to unstable and integrating processes

2000; Visioli, 2001; Chen and Seborg, 2002; Chidambaram and Sree, 2003; Ali
and Majhi, 2010). There is, however, a common problem with the tuning
of PI/PID controllers for such systems: the tunings are usually devoted to
the servo or regulation operation and may exhibit a significant performance
degradation when operating on the tuning mode they were not designed for.
This is also observed when operating with stable systems, but becomes re-
ally a problem for unstable and integrating processes. A simple look at the
existing literature shows that the performance is highly dependent of using
the appropriate tuning mode. (O’Dwyer, 2003) presents a collection of tuning
rules for PID controllers for stable, unstable and integrating processes.

Based on this observation, in this chapter the purpose is to provide an
alternative way of addressing the tuning of unstable and integral processes in
order to alleviate the aforementioned situation and to provide a better overall
performance. The approach constitutes and extension of the method presented
in section 3.6 for stable systems (Arrieta et al., 2010). The idea is to find an
intermediate tuning for the controller that improves the overall performance of
the system, considered as a trade-off between servo and regulation operation
modes. The settings are determined from the combination of the optimal ones
for set-point and load-disturbance, presented in (Visioli, 2001), and taking
into account the balance between the importance of each one of the operation
modes for the control system (servo or regulation).

4.2 General framework

We consider again the unity-feedback system shown in Fig. 2.1, where P is
an unstable system assumed to be modelled by

P (s) =
K

Ts − 1
e−Ls (4.1)

or if we have an integrating process, the model will be

P (s) =
K

s
e−Ls (4.2)

In both cases, K is the process gain and L is the dead-time. For unsta-
ble system (4.1), T is the time constant. These models are commonly used
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because are capable of satisfactorily modelling the dynamics of unstable and
integrating processes.

Let us consider for controller C, the ideal One-Degree-of-Freedom (1-DoF)
PID controller, that is considered as

C(s) = Kp

(

1 +
1

Tis
+ Tds

)

(4.3)

where Kp is the proportional gain and Ti and Td are the integral and derivative
time constants, respectively.

The analysis presented here, is an extension of the Performance Degrada-
tion idea, adapting all the aspects and considerations to the cases of unsta-
ble an integrating systems. We rely once more on the Integral Square Error
(ISE) criteria (2.6). In this case the settings are determined from a combi-
nation of the optimal ones for set-point and load-disturbance, presented in
(Visioli, 2001), and taking into account the balance between the preference of
each one of the operation modes for the control system.

Tables 4.1 and 4.2 show the tuning formulas for unstable and integrating
system respectively, where the resulting settings are optimal to the ISE criteria
(Visioli, 2001).

Table 4.1: Tuning rules for optimal ISE set-point and load-disturbance for
unstable processes

PID parameter set-point load-disturbance

Kp 1.32/K(L/T )−0.92 1.37/K(L/T )−1

Ti 4.00(L/T )0.47T 2.42(L/T )1.18T
Td 3.78T (1 − 0.84(L/T )−0.02)/(L/T )−0.95 0.60(L/T )T

4.3 Tuning rules for unstable processes

Following the previously developed procedure for stable systems and adapting
it to the unstable case, we say that the controller settings family [Kp(γ

u
1 ),

Ti(γ
u
2 ), Td(γ

u
3 )] will be generated by a linear evolution from the parameters
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Table 4.2: Tuning rules for optimal ISE set-point and load-disturbance for
integrating processes

PID parameter set-point load-disturbance

Kp 1.03/KL 1.37/KL
Ti - 1.49L
Td 0.49L 0.29L

for the set-point tuning to the load-disturbance one and the other way around
(as relations (3.7)). Therefore,

Kp(γ
u
1 ) = γu

1 K ld
p + (1 − γu

1 )Ksp
p

Ti(γ
u
2 ) = γu

2 T ld
i + (1 − γu

2 )T sp
i (4.4)

Td(γ
u
3 ) = γu

3 T ld
d + (1 − γu

3 )T sp
d

Once again, repeating the problem optimization posed in (3.21) for the
three weighting factors and different values of the normalized dead-time τ =
L/T , we can find an optimal set for each γu

i parameter. For each one of
these groups, it is possible to approximate a function to determine a general
procedure that allows to find the suitable values for the γu

i ’s, that provide the
best intermediate tuning. Results are adjusted according to

γu
i (τ) = au + buτ + cuτ2 (4.5)

where au, bu and cu are given in Table 4.3, according to the weighting factor
α and for each γu

i .

Equation (4.5) for each γu
i along with the settings (4.4) provide what we call

here γu
α − tuning for unstable processes offering a weighted servo/regulation

operation.

4.3.1 Illustrative example

Consider the following unstable system represented by

P4(s) =
1

s − 1
e−0.2s (4.6)
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Table 4.3: γu
α-tuning settings for unstable systems

α = 0.25 α = 0.50 α = 0.75

constant au bu cu au bu cu au bu cu

γu
1 0.544 -1.631 2.194 0.629 -0.801 1.009 0.711 0.061 -0.324

γu
2 0.807 0.100 -1.491 0.787 1.026 -2.513 0.687 2.173 -4.026

γu
3 0.660 -0.019 0.293 0.718 0.268 -0.580 0.547 1.265 -2.116

The application of the ISE tuning formulae of (Visioli, 2001), as well as,
the γu

α − tuning, provides the PID parameters shown in Table 4.4. Fig. 4.1
shows the control system performance for the two possible operation modes
for the above tuning methods.

Table 4.4: Unstable process - PID controller parameters for P4

tuning Kp Ti Td

set − point(sp) 5.803 1.877 0.109
load − disturbance(ld) 6.850 0.362 0.120

γu
α=0.25 − tuning 6.123 0.715 0.116

γu
α=0.50 − tuning 6.336 0.526 0.117

γu
α=0.75 − tuning 6.547 0.442 0.117

It can be seen that the proposed γu
α − tuning gives lower performance

than the optimum settings when the system operates in the same way as it
was tuned. However, higher performance can be obtained for the whole sys-
tem operation (regulatory-control and servo-control), when the intermediate
controller is used.

Table 4.5 shows the PD and WPD indices and the improvement, in per-
centage, that can be achieve for each case of the γu

α − tuning respect to the
extreme tunings (set-point and load-disturbance).

4.4 Tuning rules for integrating processes

Now, we analyze the case for integrating systems represented as (4.2). For this
case, it must be taken into account that the method presented in (Visioli, 2001)
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Figure 4.1: Unstable process - Servo and regulation control responses for sys-
tem P4.

Table 4.5: Unstable process - PD and WPD values for the system P4 and the
improvement obtained with γu

α − tuning.

tuning PDsp PDld WPDα=0.25 WPDα=0.50 WPDα=0.75

set − point(sp) - 1.8829 0.4707 0.9414 1.4122
load − disturbance(ld) 0.6788 - 0.5091 0.3394 0.1697

γu
α=0.25 − tuning 0.1207 0.3190 0.1703 - -

γu
α=0.50 − tuning 0.2524 0.0993 - 0.1759 -

γu
α=0.75 − tuning 0.4201 0.0088 - - 0.1116

improvement in % of

γu
α=0.25 − tuning 82.21%(ld) 83.06%(sp) 63.82%(sp) - -

66.55%(ld) - -
γu

α=0.50 − tuning 62.81%(ld) 94.73%(sp) - 81.32%(sp) -
- 48.18%(ld) -

γu
α=0.75 − tuning 38.10%(ld) 99.54%(sp) - - 92.10%(sp)

- - 34.23%(ld)
(respect to)

uses a PD (Proportional-Derivative) controller, when the expected operation
for the system is servo-control. This kind of controller could be seen as a PID
controller with the integral part disabled, that is equivalent to Ti → ∞.

Regarding to the above consideration, the generation of the controller’s
parameters family like (4.4), has the difficulty to make a transition in the
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integral time between T ld
i and infinite.

In order to adjust the general procedure considering the foregoing concerns,
we obtain the PID controller’s gains as

Kc = Kp, Ki = Kp/Ti, Kd = KpTd (4.7)

after that, the controller’s family is generated with these gains according to

Kc(γ
i
1) = γi

1K
ld
c + (1 − γi

1)K
sp
c

Ki(γ
i
2) = γi

2K
ld
i (4.8)

Kd(γ
i
3) = γi

3K
ld
d + (1 − γi

3)K
sp
d

Then, the original PID parameters can be obtained by applying an inverse
concept of (4.7), like

Kp = Kc, Ti = Kc/Ki, Td = Kd/Kc (4.9)

With this change, it is possible to achieve a suitable transition in the PID
parameters, maintaining the idea of γi ∈ [0, 1].

Once again, if we repeat the optimization problem posed in (3.21) for the
three weighting factors and different values of dead-time L, we can find an
optimal set for each γi

i parameter. In this case, unlike the case of unstable
systems, the optimal values are practically constant and for that reason, the
method is approximated with fixed values for each γi

i . Table 4.6 gives the
corresponding constant values depending only of the weighting factor α.

Table 4.6: γi
α-tuning values for integrating systems.
α = 0.25 α = 0.50 α = 0.75

γi
1 0.5591 0.7064 0.8274

γi
2 0.3906 0.5702 0.7532

γi
3 0.5903 0.7421 0.8731

Summarizing, for integrating systems, the suitable values for γi along with
the settings (4.8) provide the γi

α − tuning, for weighted servo/regulation op-
eration.
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Figure 4.2: Integrating process - Servo and regulation control responses for
system P5.

4.4.1 Illustrative example

Consider the following integrating process represented by

P5(s) =
0.0506

s
e−6s (4.10)

Table 4.7 shows the PID controller parameters for the system (4.10) us-
ing the (Visioli, 2001) method and the proposed γi

α − tuning with α =
{0.25, 0.50, 0.75}. Fig. 4.1 shows the control system output for the servo
and regulation operation modes.

Table 4.7: Integrating process - PID controller parameters for P5

tuning Kp Ti Td

set − point(sp) 3.393 - 2.940
load − disturbance(ld) 4.513 8.940 3.540

γi
α=0.25 − tuning 4.019 20.384 3.363

γi
α=0.50 − tuning 4.184 14.536 3.448

γi
α=0.75 − tuning 4.319 11.361 3.552
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It can be confirmed that the γi
α − tuning gives a better performance when

the system operates in both servo and regulation modes. Special attention has
to be put to the set-point tuning operating in regulation mode because being
the controller PD type (without integral action), a static error is expected and
consequently the Performance Degradation is infinite.

Table 4.8 shows the PD and WPD indices and the improvement, that can
be achieve for each case of the γi

α − tuning.

Table 4.8: Integrating process - PD and WPD values for the system P5 and
the improvement obtained with γi

α − tuning.

tuning PDsp PDld WPDα=0.25 WPDα=0.50 WPDα=0.75

set − point(sp) - ∞ ∞ ∞ ∞
load − disturbance(ld) 0.9742 - 0.7307 0.4871 0.2436

γi
α=0.25 − tuning 0.2810 0.4611 0.3260 - -

γi
α=0.50 − tuning 0.4443 0.1682 - 0.3063 -

γi
α=0.75 − tuning 0.6393 0.0468 - - 0.1950

improvement in % of

γi
α=0.25 − tuning 71.16%(ld) ∞(sp) ∞(sp) - -

55.38%(ld) - -
γi

α=0.50 − tuning 54.39%(ld) ∞(sp) - ∞(sp) -
- 37.12%(ld) -

γi
α=0.75 − tuning 34.38%(ld) ∞(sp) - - ∞(sp)

- - 19.95%(ld)
(respect to)

4.5 Comparative Study

In this section the proposed γα − tuning method with α = 0.50 (balanced
servo and regulation operation) is compared with other well known PID tuning
methods for unstable and integrating systems.

4.5.1 Unstable process example

Let us consider the First-Order-Delayed-Unstable-Process (FODUP) with the
following transfer function
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Figure 4.3: Unstable process - Servo and regulation control responses for sys-
tem P6.

P6(s) =
4

4s − 1
e−2s (4.11)

Table 4.9 shows the PID parameters obtained with different tuning meth-
ods for system (4.11). Also in Fig. 4.3 it is possible to see the process outputs
for the servo and regulation cases.

Table 4.9: Unstable process - PID controller parameters for P6

tuning Kp Ti Td

γu
α=0.50 − tuning 0.654 6.662 1.188
(Panda, 2009) 0.653 10.420 0.908

(Sree et al., 2004) 0.571 11.122 1.025
(Lee et al., 2000)(λ = L) 0.606 11.732 0.840

Table 4.10 gives the performance criteria (3.1) for servo (Jsp) and regula-
tion (Jld) operation modes, as well as, the associated Performance Degradation
indices ((3.17) to (3.20)) for each tuning.

All the values confirm the fact that, in global terms, when both operating
modes could appear and taking into account the importance that the control-
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Table 4.10: Unstable process - Performance and Performance Degradation
indices for system P6.

tuning Jsp Jld PDsp
1 PDld

2 WPDα=0.50

γu
α=0.50 − tuning 8.9776 26.3352 0.0837 0.0728 0.0783
(Panda, 2009) 9.2178 34.3572 0.1127 0.3997 0.2562

(Sree et al., 2004) 9.4747 46.7897 0.1437 0.9061 0.5249
(Lee et al., 2000)(λ = L) 9.9005 44.4132 0.1951 0.8093 0.5022

1 Calculated using equation (3.17) with Jsp(sp) = 8.2839.
2 Calculated using equation (3.18) with Jld(ld) = 24.5470.

loop is operating as servo or regulation mode, the proposed γu
α − tuning is

the best choice to tune the PID controller in order to get less Performance
Degradations.

4.5.2 Integrating process example

A distillation column separates a small amount of a low-boiling material from
the final product. This technique is very common in chemical processes for
the separation of mixed fluids. The bottom level of the distillation column is
controlled by adjusting the steam flow rate. The process for the level control
system is usually represented by an integrating model as

P7(s) =
0.2

s
e−7.4s (4.12)

The PID controller parameters, for the different tuning methods, are shown
in Table 4.11 and in Fig. 4.4 there are the process outputs for system (4.12)
operating in servo and regulation modes.

In Table 4.12, there are the performance criteria (3.1) for servo (Jsp)
and regulation (Jld) operation modes, as well as, the associated Performance
Degradation indices ((3.17) to (3.20)) for each tuning.

From all the data, it is possible to see that even that the servo performance
of the proposed tuning is lower than the provided for the other tunings, the
general behavior (taking into account both operation modes) of the control
system, tuned with γi

α − tuning, is better. This means achieving the best
value for the Weighted Performance Degradation index (WPD).



58 Application to unstable and integrating processes

Table 4.11: Integrating process - PID controller parameters for P7

tuning Kp Ti Td

γi
α=0.50 − tuning 0.858 17.928 4.253

(Ali and Majhi, 2010) 0.696 23.458 3.626
(Chidambaram and Sree, 2003) 0.834 33.300 3.330

(Lee et al., 2000)(λ = L) 0.675 27.099 2.620
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Figure 4.4: Integrating process - Servo and regulation control responses for
system P7.

Table 4.12: Integrating process - Performance and Performance Degradation
indices for system P7.

tuning Jsp Jld PDsp
1 PDld

2 WPDα=0.50

γi
α=0.50 − tuning 14.4299 22.4365 0.4443 0.1684 0.3063

(Ali and Majhi, 2010) 13.0946 36.8297 0.3106 0.9179 0.6142
(Chidambaram and Sree, 2003) 12.3686 33.7810 0.2380 0.7591 0.4985

(Lee et al., 2000)(λ = L) 13.3858 44.9949 0.3398 1.3430 0.8414

1 Calculated using equation (3.17) with Jsp(sp) = 9.9912.
2 Calculated using equation (3.18) with Jld(ld) = 19.2036.
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4.6 Summary

The control of stable processes by using PI/PID controllers is by now a well
established and understood problem (even new methods and approaches are
continuously appearing). However, when the process has integrating or unsta-
ble characteristics the problem becomes much more difficult. Several proposals
have appeared in the literature presenting different approaches to tackle the
problem

These procedures are usually related to servo or regulation control prob-
lems, however, in process control it is very usual to have changes in the set-
point as well as in the disturbance. A common drawback of such approaches
is the high loss of performance if the other operation mode is used.

An approach for providing a unique tuning for unstable and integrating
processes, depending on the importance given to the system operations in
servo and regulation modes, is presented. It combines tunings for both op-
eration modes in such a way that the performance degradation is traded-off.
Results are given for PID controllers, in order to get results closer to indus-
trial applications and the examples have shown the improvement that can be
achieved with the proposal.
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Robustness and performance
trade-off for PID controllers
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Chapter 5

Robust based PID control
design

5.1 Motivation and framework

Robustness is an important attribute for control systems, because the design
procedures are usually based on the use of low-order linear models identified
at the closed-loop operation point. Due to the non-linearity found in most
of the industrial process, it is necessary to consider the expected changes
in the process characteristics assuming certain relative stability margins, or
robustness requirements, for the control system. Therefore, the design of the
closed-loop control system must take into account the system performance to
load-disturbance and set-point changes and its robustness to variation of the
controlled process characteristics, preserving the well-known trade-off between
all these variables.

The general procedure, presented in chapter 3, depends on a direct way of
the extreme tunings, robustness considerations are therefore not taken into ac-
count explicitly. Of course, if the original extreme tunings include any closed-
loop characteristic, for example stability or robustness, they would be reflected
in the resulting intermediate tuning. In this sense, the purpose here is to go
forward and to propose an approach that takes into account the robustness
issue, in an explicit way at the design stage.

Another aspect that is constrained by the extreme tunings is the PID
controller type. On this direction, it is desirable to use a PID controller

63
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that applies the derivative part just to the feedback signal, in order to avoid
extreme instantaneous change in the controller output signal when a set-point
step change occurs (Åström and Hägglund, 2006). This kind of controller is
commonly called ISA-PID and it is the most dominating control structure
present in industrial control applications.

Taking into account the above statements, we consider the feedback control
system shown in Fig. 5.1, where P (s) is the controlled process, C(s) is the
controller, r(s) is the set-point, u(s) is the controller output signal, d(s) is the
load-disturbance and y(s) is the system output.

)
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(
s
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+


+
)
(
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r
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)
(
s
d
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(
s
u


Figure 5.1: Closed-loop control system.

Now, the output of the ISA-PID controller is given by

u(s) = Kp

(

1 +
1

Tis

)

e(s) − Kp

(
Tds

1 + (Td/N)s

)

y(s) (5.1)

where e(s) = r(s)−y(s) is the control error, Kp is the controller static gain, Ti

the integral time constant, Td the derivative time constant and the derivative
filter constant N is taken N = 10 as it is usual practice in industrial controllers.

5.1.1 Performance

One way to evaluate the performance of control systems is by calculating a cost
function based on the error, i.e. the difference between the desired value (set-
point) and the actual value of the controlled variable (system’s output). Of
course, as larger and longer in time is be the error, the system’s performance
will be worse.
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In this sense, a common reference for the evaluation of the controller per-
formance, is a functional based on the integral of the error like: Integral-
Square-Error (ISE) (2.6), or Integral-Absolute-Error (IAE).

Some approaches had used the ISE criterion, because its definition allows
an analytical calculation for the index (Zhuang and Atherton, 1993; Visioli,
2001). However, nowadays can be found in the literature that IAE is the most
useful ans suitable index to quantify the performance of the system (Chen and
Seborg, 2002; Skogestad, 2003; Åström and Hägglund, 2006; Kristiansson and
Lennartson, 2006; Tan et al., 2006). It can be used explicitly in the design
stage or just as an evaluation measure.

The formulation of the criterion is stated as

IAE
.
=

∫
∞

0
|e(t)| dt =

∫
∞

0
|r(t) − y(t)| dt (5.2)

where the index can be measure for changes in the set-point or in the load-
disturbance.

5.1.2 Robustness

As an indication of the system robustness (relative stability) the Sensitivity
Function peak value will be used. The control system Maximum Sensitivity is
defined as

Ms
.
= max

ω
|S(jω)| = max

ω

1

|1 + C(jω)P (jω)|
(5.3)

and recommended values for Ms are typically within the range 1.4 - 2.0
(Åström and Hägglund, 2006).

The use of the maximum sensitivity as a robustness measure, has the ad-
vantage that lower bounds to the Gain, Am, and Phase, φm, margins (Åström
and Hägglund, 2006) can be assured according to

Am >
Ms

Ms − 1

φm > 2 sin−1

(
1

2Ms

)
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Therefore, to assure Ms = 2.0 provides what is commonly considered min-
imum robustness requirement (that translates to Am > 2 and φm > 29o, for
Ms = 1.4 we have Am > 3.5 and φm > 41o).

5.2 Optimization problem formulation

From the above definitions for performance and robustness specifications, there
appears the need to formulate a joint criteria that faces with the trade-off
between the performance for servo and regulation operation and also that
takes into account the accomplishment of a robustness level.

5.2.1 Servo/Regulation trade-off

As it was exposed before, there is a trade-off behavior between the dynamics
for servo and regulation control operation modes. It is not enough just to
consider the tuning mode, it is also necessary to include the system operation
in the controller’s design.

Using some of the exposed ideas, we can say that Jz
x represents the criteria

(5.2) taking into account the operation mode x, for a tuning mode z. From
this, we can post the following definitions:

• Jr
r is the value of performance index for the set-point tuning operating

in servo-control mode.

• Jr
d is the value of performance index for the set-point tuning operating

in regulatory-control mode.

• Jd
r is the value of performance index for the load-disturbance tuning

operating in servo-control mode.

• Jd
d is the value of performance index for the load-disturbance tuning

operating in regulatory-control mode.

Obviously Jr
r is the optimal value for servo-control operation, Jo

r , and Jd
d is

the optimal one for regulation, Jo
d . An intermediate tuning between servo and

regulation operation modes should have higher values than the optimal ones,
when the tuning and operation modes are the same, but the indexes would be
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lower when the modes are different. So, for each operation mode we have the
following relationships,

Jo
r

.
= Jr

r ≤ Jrd
r ≤ Jd

r

Jo
d

.
= Jd

d ≤ Jrd
d ≤ Jr

d

where Jrd
r and Jrd

d are the performance values of the intermediate tuning for
servo and regulation control operation, respectively.

The previous ideas can be represented graphically, the results are shown
in Fig. 5.2, where the performance indexes are plotted in the Jr − Jd plane.
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Figure 5.2: Plane Jr − Jd.

It can be seen that the point (Jr
r , Jd

d ) is the “ideal” one because it represents
the minimum performance values taking both possible operation modes, servo
and regulation, into account. However, this point is unreachable due the
differences in the dynamics for each of the objectives of the control operation
modes. Therefore our efforts must go towards getting the minimum resulting
distance, meaning the best balance between the operation modes.

On this way, a cost objective function is formulated in order to get closer,
as much as possible, the resulting point (Jrd

r , Jrd
d ), to the “ideal” one, (Jo

r , Jo
d ).

Therefore,
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Jrd =

√

(Jrd
r − Jo

r )
2
+

(
Jrd

d − Jo
d

)2
(5.4)

where Jo
r and Jo

d are the optimal values for servo and regulation control respec-
tively, and Jrd

r , Jrd
d are the performance indexes for the intermediate tuning

considering both operation modes. In Fig. 5.2, index (5.4) is represented by
the arrow between the “ideal” point and the corresponding to the intermediate
tuning.

From the above analysis, the optimization problem setup considers the
model’s normalized dead-times, τ , in the range 0.1 ≤ τ ≤ 2.0, to obtain the
PID controller optimum parameters such that

po := [Kpo, Tio, Tdo] = arg

[

min
p

Jrd

]

(5.5)

where p is the PID controller parameters vector. Here, optimization is done
using genetic algorithms technique.

The aim of minimization (5.5) is to achieved a balanced performance for
both operation modes of the control system.

5.2.2 Robustness constraint criterion

The cost functional (5.4) proposed before, even though face with the trade-off
problem between the operation modes of the system, just takes into account
characteristics of performance. However, there is a need to include a certain
robustness for the control-loop.

In that sense, we want to use (5.3) as a robustness measure. So, the
optimization problem (5.5) is subject to a constraint of the form

|Ms − Md
s | = 0 (5.6)

where Ms and Md
s are the Maximum Sensitivity and the desired Maximum

Sensitivity functions respectively. This constraint tries to guarantee the se-
lected robustness value for the control system.
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5.3 Servo/regulation PID tunings with robustness
consideration

From the previous formulation, we look for a tuning rule that face with the
trade-off problem between the performance for servo and regulation modes
and providing, at the same time, a certain degree of robustness (if necessary).

5.3.1 PID tuning for specified robustness levels

As it has been stated, we solve the optimization problem (5.5) subject to
constraint (5.6). In that sense, a broad classification can be established, using
specific values for Ms, within the suggested range between 1.4 − 2.0. This
will allow a qualitative specification for the control system robustness. So, the
rating can be described as

• Low robustness level - Ms = 2.0

• Medium-low robustness level - Ms = 1.8

• Medium-high robustness level - Ms = 1.6

• High robustness level - Ms = 1.4

According to this principle, the above mentioned four values for Ms are
used here as desirable robustness, Md

s into the robustness constraint (5.6), for
the problem optimization (5.5). Additionally, an unconstrained optimization
is done, that can be seen as the Md

s free case.

In order to provide results for autotuning methodology, the optimal sets for
the PID parameters with the corresponding desired robustness, are approx-
imated in equations for each controller’s parameter. This fitting procedure
looks for simple expressions that allow for an homogenized set, to preserve the
simplicity and completeness of the approach.

Therefore, the resulting controller parameters will be, expressed just in
terms of the FOPDT process model parameters (2.1) as
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KpK = a1τ
b1 + c1

Ti

T
= a2τ

b2 + c2 (5.7)

Td

T
= a3τ

b3 + c3

where the constants ai, bi and ci are given in Table 5.1, according to the
desired robustness level for the control system.

It is important to note that, although there may be other tuning equations
that provide a good fit, the choice of the proposals (5.7) represents an option
to retain the simplicity that is searched, because all the robustness levels and
controller’s parameters can be expressed in the same form and only changing
the constants, according to each case as in Table 5.1.

Table 5.1: PID settings for servo/regulation tuning with robustness consider-
ation

constant Md
s free Md

s = 2.0 Md
s = 1.8 Md

s = 1.6 Md
s = 1.4

a1 1.1410 0.7699 0.6825 0.5678 0.4306
b1 -0.9664 -1.0270 -1.0240 -1.0250 -1.0190
c1 0.1468 0.3490 0.3026 0.2601 0.1926

a2 1.0860 0.7402 0.7821 0.8323 0.7894
b2 0.4896 0.7309 0.6490 0.5382 0.4286
c2 0.2775 0.5307 0.4511 0.3507 0.2557

a3 0.3726 0.2750 0.2938 0.3111 0.3599
b3 0.7098 0.9478 0.7956 0.8894 0.9592
c3 -0.0409 0.0034 -0.0188 -0.0118 -0.0127

In the literature, there are many control designs that include robustness
in the formulation stage and even more, in some cases the consideration is
regarded as a parameter design directly. However, none of these methods
check the accomplishment of the claimed robustness and this should be an
aspect that deserves much attention.

The deviation of the resulting value of Ms with respect to the specified
target has a direct influence (as a trade-off ) in the performance of the system
(Vilanova et al., 2010).
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In order to guarantee the selected robustness, the constraint stated in (5.6)
forces the optimization problem to fulfill the fixed value Md

s and for this, the
minimum of the performance index Jrd is achieved.

Here, the resulting robustness, applying the proposed methodology, is com-
pared to the desired one, in order to check the accomplishment of the claimed
robustness. Fig. 5.3 shows that the robust tuning has a very good accu-
racy for the Ms values for all the range of processes, therefore assuring that
performance is the best one that can be achieved for that robustness value.
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Figure 5.3: Accomplishment for each claimed robustness level.

From the very well known performance-robustness trade-off, the increase
of the system’s robustness from the Md

s -free case (no robustness constraint),
is reflected in a deterioration of the system’s performance, and vice-versa.
Similar to Fig. 5.3, where it can be seen the robustness increasing, in Fig. 5.4
it is shown how the performance index Jrd varies, for each one of the proposed
robustness levels.

If we use the information of Fig. 5.3 and Fig. 5.4, and the unconstrained
case as the starting point, it is possible to see that for each selected level, the
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Figure 5.4: Combined index Jrd for each robustness level tuning.

robustness is improved achieving smaller values for Ms, but at the same time
having larger values (i.e worse) for the performance index Jrd.

It is also important to note that, the relation between the loss of perfor-
mance and the robustness increase (for each level of Ms) is nonlinear, neither
for the τ range. For example, in Fig. 5.4 the difference between the perfor-
mance for cases Md

s = 1.8 and Md
s = 1.6, is much lower than the one for

Md
s = 1.6 and Md

s = 1.4, despite that the levels are equally separated.

In general terms, it is possible to say that the robustness requirements are
fulfilled, facing at the same time, to the performance servo/regulation trade-off
problem.

5.3.2 PID tuning for an arbitrary specific robustness value

With the aim to give more completeness to the previous exposed tuning
method, an extension of the approach is presented. We want to take ad-
vantage of the simplicity and homogeneity offered by tuning (5.7), in order to
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exploit in the same lines, for a simple tuning rule that allows to specify, on an
explicit way, the robustness parameter value within the range Ms ∈ [1.4, 2.0].

Maybe, it is true that from a more practical point of view, it is difficult to
have an specification of a Ms = 1.57 and this fact leads to the establishment
of qualitative levels. However, a generic Md

s tuning method can be used as a
comparison tool, setting the same robustness (e.g. from a robust profile for
all range of τ), and looking for the behavior of the performance.

Once again, the above idea is possible just because the followed fitting
procedure was conceived to have the same form for each tuning and also for
each parameter. Thus, the final expression for the controller’s parameters that
we are looking for is

pi(τ, M
d
s ) = ai(M

d
s )τ bi(M

d
s ) + ci(M

d
s ) (5.8)

where i = 1, 2, 3 indicates the corresponding controller’s parameter, p, and
constants are expressed as functions of Md

s . Therefore, from Table 5.1 each
constant ai, bi and ci are generated from a a generic second order Md

s depen-
dent polynomial as

a1 = −0.3112(Md
s )2 + 1.6250(Md

s ) − 1.2340

b1 = 0.0188(Md
s )2 − 0.0753(Md

s ) − 0.9509

c1 = −0.1319(Md
s )2 + 0.7042(Md

s ) − 0.5334

a2 = −0.5300(Md
s )2 + 1.7030(Md

s ) − 0.5511

b2 = −0.1731(Md
s )2 + 1.0970(Md

s ) − 0.7700 (5.9)

c2 = −0.0963(Md
s )2 + 0.7899(Md

s ) − 0.6629

a3 = 0.1875(Md
s )2 − 0.7735(Md

s ) + 1.0740

b3 = 0.3870(Md
s )2 − 4.7810(Md

s ) + 4.9470

c3 = 0.1331(Md
s )2 − 0.4733(Md

s ) + 0.4032

Parameters (5.7) joint with (5.9) allow to determine the PID controller for
any arbitrary value Md

s in the range [1.4, 2.0].

As it was said before, the accomplishment of the selected value for Ms is an
aspect that must be checked. Fig. 5.5 shows the resulting Ms values obtained
with the generic tuning (5.7) and (5.9), for the previously stated robustness
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levels and also for an intermediate value Md
s = 1.7 (not included in the initial

data).
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Figure 5.5: Accomplishment for the claimed robustness value.

5.4 Comparative examples

This section presents two kinds of examples in order to evaluate the charac-
teristics of the proposed tuning rule. First example is an analysis not only for
a specific process, but for the whole set of plants provided in their range of
validity, τ ∈ [0.1, 2.0], in order to show the global advantages that the proposal
can provide.

Then, the other example is for a specific plant, providing the control system
time responses and some evaluation data. It is supposed that the process
output can vary in the 0 to 100% normalized range and that in the normal
operation point, the controlled variable has a value close to 70%.
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5.4.1 Complete tuning case

The robust tuning rules that can be found in the literature consider different
specifications for Ms. They range from the considered minimum robustness;
Ms = 2.0; to a high robustness; Ms = 1.4.

Here, we compare the tuning proposed in Section 5.3 with the following
methods:

• AMIGO method (Åström and Hägglund, 2004) provides tuning with a
design specification of Ms = 1.4.

• Kappa-Tau (κ− τ) method (Åström and Hägglund, 1995) provides tun-
ing with a design specification of Ms = 1.4 and Ms = 2.0.

• Tavakoli method (Tavakoli et al., 2005) provides tuning with a design
specification of Ms = 2.0.

Fig. 5.6 shows the achieved Ms values for 1.4 and 2.0 cases, for the com-
pared tuning rules. With this information and the one in Fig. 5.3, it seems
that the proposed tuning is the option that provides the best accuracy for the
selected robustness.

With the aim to establish a more precise and quantitative measure of the
claimed robustness accomplishment for the whole range of models, the next
index is stated

IMs

.
=

∫ τf

τo

|M r
s (τ) − Md

s (τ)|dτ (5.10)

where Md
s and M r

s are the desired and resulting Ms values, respectively. As
IMs is smaller, the accuracy is better. In Table 5.2 there are the values (5.10)
for the analyzed tuning rules.

Now, from the plots in Figs. 5.3 and 5.6, and the measured values (5.10) in
Table 5.2, it is possible to say that the proposed PID tuning (using the levels
classification), is the one that provides the best accomplishment between the
desirable and the achieved robustness.
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Table 5.2: Claimed robustness accomplishment IMs for different tuning rules
Tuning Md

s IMs

AMIGO 1.4 0.0634
κ − τ 1.4 4.9672
κ − τ 2.0 10.2377

Tavakoli 2.0 0.0519

1.4 0.0035
Proposed 1.6 0.0066
(levels) 1.8 0.0111

2.0 0.0186

Proposed 1.4 0.0054
(generic) MAMIGO

s 0.0028 (MAMIGO
s )

0.0628 (1.4)

Once the robustness accomplishment has been verified, it is important to
see the resulting performance for the compared tuning rules. Fig. 5.7 shows
the combined servo/regulation performance index (5.4).

For the Md
s = 2.0 it is obvious that the proposed tuning is the one that

provides the best robustness accomplishment and at the same time, the best
achievable performance. However, for Md

s = 1.4 case, even the proposal is
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Figure 5.7: Jrd index for the compared tuning rules.

more accurate for the claimed robustness, Fig. 5.7 shows that AMIGO tun-
ing method has values slightly lower for Jrd index compared to the proposed
tuning. Precisely, because AMIGO method does not fulfill the robustness re-
quirements, having a somewhat lower robustness, is that it achieves better
results for performance. This fact strongly confirms the importance of the
relation between robustness and performance variations.

Generic PID tuning method (5.7) joint with (5.9) allows to determine the
controller parameters for any value Md

s in the range [1.4, 2.0]. So, it can set
flat profiles for robustness as, Md

s = 1.4 (similarly to the level classification
case), or variable ones as functions like Md

s = fMs
(τ) .

From the above and in order to have a fair comparison, we can take advan-
tage of the generic PID tuning, reproducing a profile with the same robustness
that AMIGO tuning provides, Md

s = MAMIGO
s (τ). Then, for the same robust-

ness the idea is to look for the best performance. Fig. 5.8 shows the results.

It can be seen that the proposed generic tuning, is very accurate for the two
selected robustness profiles. If we compare the proposal in the two situations
(levels and generic), for the Md

s = 1.4 the resulting performance is practically
the same. However, the most interesting thing is when the generic tuning is set
with the AMIGO values (MAMIGO

s ). As said before, AMIGO provides slightly
lower values for Jrd index when the comparison is with the specified robustness
levels, but if we use the generic approach to have exactly the same robustness
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behavior, it is easy to see from Fig. 5.8, that there is an improvement in the
performance component.

5.4.2 Particular process case

Consider the following fourth order controlled process

P8(s) =
1

∏3
n=0(σ

ns + 1)
(5.11)

with σ = {0.25, 0.50, 1.0} taken from (Åström and Hägglund, 2000). Using
a two-point identification procedure (Alfaro, 2006) FOPDT models were ob-
tained whose parameters are show in Table 5.3. These parameters will be the
ones used for tuning the PID controllers.

Table 5.3: Particular processes - FOPDT model parameters for P8

σ K T L

0.25 1.0 1.049 0.298
0.50 1.0 1.247 0.691
1.00 1.0 2.343 1.861
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Table 5.4: Particular processes - PID controller parameters for P8
σ = 0.25 σ = 0.50 σ = 1.00

Tuning Md
s Kp Ti Td Kp Ti Td Kp Ti Td

AMIGO 1.4 1.784 0.709 0.137 1.012 1.079 0.296 0.767 2.326 0.751
κ − τ 1.4 2.982 0.832 0.200 0.867 1.233 0.320 0.486 2.432 0.630
κ − τ 2.0 5.712 0.654 0.165 1.719 1.151 0.285 1.030 2.555 0.633

1.4 1.745 0.751 0.100 0.978 1.083 0.239 0.737 2.274 0.646
Proposed 1.6 2.323 0.811 0.094 1.300 1.193 0.215 0.979 2.544 0.566
(levels) 1.8 2.779 0.836 0.094 1.552 1.227 0.206 1.167 2.635 0.529

2.0 3.153 0.866 0.091 1.761 1.261 0.200 1.324 2.709 0.523

Proposed 1.4 1.749 0.754 0.112 0.981 1.087 0.254 0.739 2.283 0.675
(generic) MAMIGO

s 1.888 0.767 0.110 1.055 1.112 0.247 0.790 2.338 0.653

Table 5.5: Particular processes - Controller robustness
σ = 0.25 σ = 0.50 σ = 1.00

Tuning Md
s M r

s |Md
s − M r

s | M r
s |Md

s − M r
s | M r

s |Md
s − M r

s |

AMIGO 1.4 1.446 0.046 (3.3%) 1.444 0.044 (3.1%) 1.440 0.040 (2.9%)
κ − τ 1.4 2.922 1.522 (108.7%) 1.382 0.018 (1.3%) 1.234 0.166 (11.9%)
κ − τ 2.0 12.370 10.370 (518.5%) 2.062 0.062 (3.1%) 1.655 0.345 (17.3%)

1.4 1.400 0.000 (0.0%) 1.401 0.001 (0.1%) 1.402 0.002 (0.1%)
Proposed 1.6 1.598 0.002 (0.1%) 1.603 0.003 (0.2%) 1.605 0.005 (0.3%)
(levels) 1.8 1.796 0.004 (0.2%) 1.804 0.004 (0.2%) 1.808 0.008 (0.4%)

2.0 1.995 0.005 (0.3%) 2.008 0.008 (0.4%) 2.013 0.013 (0.6%)

Proposed 1.4 1.401 0.001 (0.1%) 1.403 0.003 (0.2%) 1.404 0.004 (0.3%)
(generic) MAMIGO

s 1.445 0.001 (0.1%) 1.444 0.000 (0.0%) 1.441 0.001 (0.1%)

Table 5.4 shows the PID controller parameters whereas in Table 5.5 the
specified (Md

s ) and achieved (M r
s ) robustness of the control system, are pre-

sented when the controller is tuned with Kappa-Tau (κ − τ) (Åström and
Hägglund, 1995) and AMIGO (Åström and Hägglund, 2006) rules and the
corresponding parameters obtained with the proposed method (levels and
generic). The accuracy in terms of |Md

s − M r
s | is also shown, where it is

possible to say that, when qualitative robustness levels are specified, the pro-
posed method is closer to the desired values than the AMIGO or Kappa-Tau
tuning rules.

The control system’s performance for servo Jr, regulation Jd and the com-
bined index Jrd, are provided in Table 5.6 for each tuning and each case of
process P8.

The analysis to determine the best option to tune the controller, must be
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Table 5.6: Particular processes - Controller performance
σ = 0.25 σ = 0.50 σ = 1.00

Tuning Md
s Jr Jd Jrd Jr Jd Jrd Jr Jd Jrd

AMIGO 1.4 0.8606 0.4465 0.4524 1.7067 1.1961 0.8184 4.1494 3.2979 1.7021
κ − τ 1.4 0.7047 0.2892 0.2324 1.7382 1.4626 1.0560 5.0165 5.0094 3.6171
κ − τ 2.0 0.5561 0.1183 0.0513 1.4597 0.7366 0.3189 3.7911 2.6407 0.9560

1.4 0.8274 0.4611 0.4379 1.6958 1.2238 0.8336 4.1888 3.3712 1.7852
Proposed 1.6 0.7115 0.3513 0.2784 1.5135 0.9669 0.5188 3.8318 2.7597 1.0776
(levels) 1.8 0.6551 0.3006 0.2028 1.4488 0.8254 0.3689 3.7905 2.4555 0.8104

2.0 0.6175 0.2746 0.1584 1.4095 0.7396 0.2809 3.7861 2.2600 0.6750

Proposed 1.4 0.8336 0.4633 0.4439 1.6980 1.2246 0.8356 4.1882 3.3691 1.7830
(generic) MAMIGO

s 0.8005 0.4297 0.3968 1.6485 1.1541 0.7495 4.0915 3.2142 1.6004

done using Tables 5.5 and 5.6 jointly. First, the target robustness has to be
fulfilled with a small bounded error and then, for same robustness values the
tuning with the minimum performance will be selected.

For example, if we concentrate in σ = 1.00 and Md
s = 1.4 case, Kappa-Tau

method has the worst robustness accomplishment (11.9%), whereas AMIGO
and proposed (level) tunings have small values (2.9% and 0.1% respectively).
In this first step, we can rule out κ−τ tuning and continue with the other ones.
Then, looking for the performance behaviour, it is possible to see that AMIGO
gives a smaller index value Jrd than the proposed level tuning. However, if
we use the generic tuning (5.9), in order to relax the accuracy of the claimed
robustness equal to the AMIGO (means Md

s = MAMIGO
s ), it is possible to see

that the achieved performance index is the best one. So, as a conclusion the
proposed tuning should be the best choice to obtain the PID parameters.

The control system’s and controller’s outputs for each level of the proposed
method are shown in Fig. 5.9 for the case of σ = 0.50, whereas Fig. 5.10
compares the Kappa-Tau, AMIGO and the level proposed method, for the
σ = 1.00 and Md

s = 1.4 case, with also the proposed method using the generic
approach for two values of Md

s , as exposed above. In both figures, the responses
reflect the previous comments, although in some cases because the similarity
of the curves, the information contained in the Tables is necessary.

5.5 Summary

In process control, it is very important to guarantee some degree of robustness,
in order to preserve the closed-loop dynamics, to possible variations in the
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Figure 5.9: Particular process - Proposed method (σ = 0.50).

control system. Also, at the same time, it must be provided the best achievable
performance for servo and regulation operation.

All of the above specifications, lead to have different trade-offs, between
performance and robustness or between servo and regulation modes, that must
be solved on a balanced way. Here, we looked for a PID controller tuning
rule that faces to the general problem. This tuning is optimal, as much as
possible, to a proposed performance index that takes into account both system
operation modes, including also a certain degree of robustness, specified as a
desirable Maximum Sensitivity value.

Autotuning formulae have been presented for two approaches. First, ro-
bustness is established using a qualitative levels classification and then, the
idea is extended to an issue that offers a generic expression, to allow the
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case(σ = 1.00).

specification in terms of any value of robustness in the range Ms ∈ [1.4, 2.0].
Moreover, taking into account the performance/robustness trade-off, the ac-
curacy of the claimed robustness is a point that has been verified, achieving
flat curves for the resulting values. In short, both approaches are two of the
main contributions presented in this thesis.



Chapter 6

Optimality based PID control
design

6.1 General aspects

The analysis exposed in Chapter 5, shows the interaction between performance
and robustness in control systems. It is possible to say that, an increase of
robustness implies an optimality loss in the performance (i.e. a degradation),
with respect to the one that can be achieved without any robustness constraint.
From this,it is possible to define the degree of optimality of the constrained
case, with respect to the unconstrained one (that is, the optimum).

In order to quantify the degree of optimality, the following index is pro-
posed

IPerf
.
=

Jo
rd

JrdMs

rd

(6.1)

where Jo
rd is the optimal index value (5.4), using the tuning (5.7) for no con-

straint of Ms (first column of Table 5.1), that means the best one that can
be achieved. Then, JrdMs

rd is the value of index (5.4) for the cases where the
tuning has a robustness constraint.

Note that (6.1) is normalized in the [0, 1] range, where IPerf = 1 means a

perfect optimality and, as much as the robustness is increased, the index JrdMs

rd

will increase and, consequently, IPerf < 1, meaning an optimality reduction.

83
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The degree of optimality that each control system has when a desirable
value of Ms is stated, can be evaluated taking advantage of the generic tuning
rule presented before in section 5.3.2. For each value of Md

s ∈ [1.4 − 2.0], the
optimality degree (6.1) can be obtained.

Motivation example

In order to show how the optimality degree of a system varies, as a function
of the robustness variable Ms, a motivation example is provided.

Consider system (5.11), P8(s), with σ = 0.50, from the example in section
5.4.2. For this particular process, the idea is to use each value within the range
Md

s ∈ [1.4 − 2.0], as a design parameter of tuning (5.7) and (5.9). Then, it
is possible to calculate a set of degree of optimality values (6.1) and compare
them with respect to the ones for AMIGO, Kappa-Tau and Tavakoli tuning
methods.

Fig. 6.1 illustrates the results, where it is shown the optimality index
IPerf with the corresponding achieved robustness. It is possible to see that
the singletons for the compared tunings, are below the line that represents the
generic proposed tuning for the Md

s range. This means that the proposal is the
option that provides better degree of optimality for any value of robustness.

In addition, note that the horizontal variation of the points represents
the error between the desired and the resulting robustness. The points for
AMIGO, Kappa-Tau and Tavakoli methods, should be located on the axes
corresponding to Ms = 1.4 and Ms = 2.0, but they are not, because they do
not accomplish the robustness constraint.

The line for the proposed tuning, in Fig. 6.1, represents a limit. For each
choice of robustness Md

s , the intersection point with the line, indicates the best
degree of optimality that can be achieved. From the other side, if the choice
is a certain degree of optimality, the intersection provides the best robustness
value that can be selected.

This analysis has been done for one specific process (P8), however, the idea
is to reproduce the same procedure in order to generalize the results for any
possible process.

From above, we want to repeat the idea of Fig. 6.1, but now for the whole
range of family plants within τ ∈ [0.1, 2.0]. So, for each τ , we take advantage
of the possibilities of the proposed tuning (5.7) and (5.9), to get the PID
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Figure 6.1: Process P8 - Index IPerf values for different tunings.

parameters for any value of Md
s ∈ [1.4 − 2.0] and then, compute the degree

of optimality using (6.1). Fig. 6.2 shows the IPerf variation, as a function of
Md

s , for some values of the normalized dead-time, τ .

Note that, as an example, the horizontal line indicates when the degree
of optimality is 55%. With the intersection points between this line and the
curves correspondig to the IPerf variation for each τ , it is possible to deter-
mine a set of desired robustness that is related with this degree of optimality
(IPerf = 0.55). This set of Md

s (τ) can be seen as a profile that the tuning
should follow to satisfy the degree of optimality. Fig. 6.3 shows the detail
where also, just to clarify, there is the previous case of Md

s = 1.7, that can be
considered as a flat profile.
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6.2 PID tunings with performance optimality de-
gree

As it has been shown above, there is a relation (trade-off ) between the degree
of optimality and the increase in the system’s robustness. It is possible there-
fore to find the corresponding Md

s value for any specific optimality, as a point
(Md

s , IPerf ).

Following the above idea for all plants in the range τ ∈ [0.1, 2.0], fixing
a certain degree of optimality we can look for the corresponding set of Md

s

values. So, using the robustness profile in tuning (5.7) jointly with the generic
form (5.9), the controller’s parameters [Kp, Ti, Td], can be obtained.

Here, with the aim to facilitate the understanding of the general idea and
taking into account that, it could be easier to specify a certain degradation,
than a degree of optimality (i.e. an optimality loss), we redefine (6.1) as,
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Deg
.
= 1 − IPerf (6.2)

In this sense, a desirable optimality degree of 60% can be interpreted as
a 40% of degradation. The general concept is exactly the same, but just the
way of interpretation is changed.

Using a similar idea to the one exposed in Section 5.3, we look for a tuning
methodology that uses the degradation as a parameter design, in order to
increase the robustness of the system.

6.2.1 PID tuning for fixed performance degradation levels

The previous exposed procedure tries to achieve that, allowing a degradation
in the performance, the system’s robustness can be increased.

As it was stated before for robustness, a broad classification is a very easy
and practical way to understand a problem formulation. In this sense, now it
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will be used the degradation of the system performance, Deg as a parameter
to establish the levels.

To fix these degradation levels, we see information provided in Fig. 6.2.
Here, the aim is to obtain profiles of Md

s for the range of τ ∈ [0.1, 2.0]. There-
fore, the selected optimality degree level must intersect each one of the curves
corresponding to each one of the plants.

Fulfilling the above, to get a degree of optimality higher than 75%, the
range of considered robustness should be extended to values greater than
Md

s = 2.0, but this value is the minimum acceptable robustness and for that,
this option is not studied. From the other side, to have an optimality de-
gree lower than 45% the robustness values must be minor than Md

s = 1.4,
that is considered as a high robustness level, therefore decrease the degree of
optimality to less than 45% (meaning a degradation more than 55%), is not
justified.

Then, the range of application was established as Deg ∈ [0.25, 0.55] and
therefore the classification as,

• Low degradation - Deg = 0.25

• Medium-low degradation - Deg = 0.35

• Medium-high degradation - Deg = 0.45

• High degradation - Deg = 0.55

As it was said above, for each stated degradation level and each τ , it is
found the corresponding Md

s . Then, the set of robustness values determines
the Md

s profile, that is used in the proposed generic tuning (5.7) and (5.9),
of section 5.3.2, to determine sets for each parameter of the PID controller,
Kp, Ti and Td. Therefore, with all the parameters sets, the tuning rule can be
formulated (by fitting).

Once again, following a similar idea to that described for the Md
s case, the

aim is to provide a simple tuning and for that, we take advantage of the good
fitting that equations (5.7) provide. So, the sets for each PID parameter and
for each degradation level, are approximated to fit the corresponding equations
form.
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Table 6.1: PID tuning settings for allowed performance degradation

constant Dega = 0 Dega = 0.25 Dega = 0.35 Dega = 0.45 Dega = 0.55

a1 1.1410 0.8787 0.7490 0.6292 0.5252
b1 -0.9664 -0.9280 -0.9348 -0.9444 -0.9492
c1 0.1468 0.2033 0.2669 0.3195 0.3494

a2 1.0860 0.8154 0.8664 0.8871 0.8755
b2 0.4896 0.6431 0.6033 0.5847 0.5830
c2 0.2775 0.4502 0.3874 0.3466 0.3275

a3 0.3726 0.2794 0.2757 0.2804 0.2949
b3 0.7098 0.8765 0.8698 0.8471 0.8123
c3 -0.0409 -0.0149 -0.0070 -0.0037 -0.0055

The tuning rule remains the expressed form in (5.7), but the ai, bi and ci

constants are given in Table 6.1, according to the allowed degradation level in
the system’s performance, Dega.

Table 6.1 shows, in the first column, the case for Dega = 0, that is exactly
the same to the one in Table 5.1 for Md

s free (without any constraint), but it
is included here in order to give completeness to the approach. Note also that,
to keep the same tuning expressions (5.7) provides even more uniformity and
simplicity to the proposed approach.

The evaluation of the above proposed tuning rule has to be done taking
into account both performance and robustness issues. In order to study the
system’s performance, in Fig. 6.4 there are the indexes Jrd, for each case of
Dega. Note that, with this information and using (6.1) and (6.2), it is possible
to find the resulting degradation values, as they are shown in Fig. 6.5.

Even the accuracy between the achieved degradation (6.2) and the selected
in Dega, is not as good as the one obtained for the Md

s case, we can say that the
tuning accomplishment is good enough, specially for the first τ values range
[0.1, 1.5]. For τ > 1.5, the deviation is due to the successive approximations
for the controller parameters and also, it is a region of processes that is difficult
to control using a PID, because it represents systems dominated by the dead-
time.

Once more, it is important to see how the changes in the performance (due
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Figure 6.4: Combined index Jrd for each degradation level tuning.

to the imposed degradation), affects the achieved robustness for the system.
Fig. 6.6 shows this evaluation, where the optimality decreases (i.e. degrada-
tion increases), the robustness of the system grows up. This is an important
aspect because these Ms values represent the profile that should be accom-
plished in order to achieve the fixed degradation (meaning a certain degree of
optimality).

It can be seen, all results are in agreement regarding to the well known
performance/robustness ratio.

6.2.2 PID tuning for an arbitrary performance degradation

Analogously to the tuning presented in Section 5.3.2, for arbitrary values of
Md

s , we want to give here a formulation that allow us to specify any value for
the allowed degradation. Because the approach is based on the information
provided by the fixed degradation levels, the range of validity is within Dega ∈
[0.25, 0.55].
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Figure 6.5: Accomplishment of the fixed degradation level tuning.

It is important to emphasize that, this extension is just possible because
the simplicity and the homogeneity of the PID tuning parameters (5.7), that
remains the same expression for each one of the fixed degradation levels.

Once again, the aim is to provide a generic formulation in order to give
completeness, as much as possible. Therefore, because each controller param-
eter has the same form, we look for a general equation as,

pi(τ, Dega) = ai(Dega)τ bi(Dega) + ci(Dega) (6.3)

where i = 1, 2, 3 indicates the corresponding controller’s parameter, p, and
constants are expressed as functions of Dega. Then, from Table 6.1, the
constants ai, bi and ci with their respective Dega value, are fitted to a second
order polynomial as
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a1 = 0.6425(Dega)2 − 1.6940(Dega) + 1.2620

b1 = 0.0500(Dega)2 − 0.1132(Dega) − 0.9024

c1 = −0.8425(Dega)2 + 1.1650(Dega) − 0.0359

a2 = −1.5650(Dega)2 + 1.4530(Dega) + 0.5499

b2 = 0.9525(Dega)2 − 0.9609(Dega) + 0.8236 (6.4)

c2 = 1.0930(Dega)2 − 1.2830(Dega) + 0.7026

a3 = 0.4550(Dega)2 − 0.3128(Dega) + 0.3292

b3 = −0.7025(Dega)2 + 0.3467(Dega) + 0.8339

c3 = −0.2425(Dega)2 + 0.2255(Dega) − 0.0561

Specifically, parameters (5.7) jointly with the resulting constants (6.4),
provide the PID controller tuning that choosing an arbitrary degradation value
for the system performance, increases the robustness, as much as possible, for
the prescribed degree of optimality.
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Table 6.2: Particular process - PID controller parameters for P8 (σ = 0.50)
Tuning Dega Kp Ti Td

0.25 1.723 1.257 0.189
Proposed 0.35 1.568 1.240 0.197
(levels) 0.45 1.418 1.216 0.207

0.55 1.269 1.182 0.221

κ − τ (Md
s = 2.0) - 1.719 1.151 0.285

Proposed Degκ−τ 1.529 1.234 0.199
(generic)

6.2.3 Evaluation example

In order to evaluate the proposal, we take again advantage of system (5.11),
P8(s), with σ = 0.50, shown in section 5.4.2 and also in this chapter, as a
Motivation example.

From the FOPDT model and using tuning (5.7) for each fixed degrada-
tion level in Table 6.1, the PID parameters can be obtained. Moreover, the
proposed generic tuning (6.4), for arbitrary values of allowed degradation is
compared (setting the same degradation value), with the Kappa-Tau (κ − τ)
(Åström and Hägglund, 1995) for the Ms = 2.0 case. Tunings are shown in
Table 6.2.

Comparisons with other tunings like AMIGO, Kappa-Tau for Ms = 1.4 or
Tavakoli, are not included because, as it can be seen in Fig. 6.1, the optimality
degree values that they provide are outside the validity range of the proposed
tuning, IPerf ∈ [0.45, 0.75] or seen from the allowed degradation point of view,
Dega ∈ [0.25, 0.55].

Table 6.3 gives the performance and robustness values provided by each
tuning. Also, in Fig. 6.7 the control system’s and controller’s output are
shown for each allowed degradation level, whereas in Fig. 6.8, it is possible to
see the comparison between the κ − τ tuning and the proposed settings with
the specific value of degradation.

From the two approaches for the proposal, it can be concluded that the
levels version has a good accuracy with respect to the selected value for the
allowed performance degradation, giving at the same time an increase in the
robustness. Concerning to the proposed tuning for an arbitrary value of Dega,
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Table 6.3: Particular process P8 (σ = 0.50) - Controller evaluation
Tuning Dega Degr M r

s Jr Jd Jrd

0.25 0.2508 1.9780 1.4229 0.7568 0.3024
Proposed 0.35 0.3575 1.8217 1.4421 0.8208 0.3609
(levels) 0.45 0.4657 1.6923 1.4755 0.8954 0.4392

0.55 0.5645 1.5800 1.5283 0.9871 0.5438

κ − τ (Md
s = 2.0) - 0.3325 2.0626 1.4597 0.7366 0.3189

Proposed Degκ−τ 0.3379 1.8474 1.4378 0.8086 0.3491
(generic)
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Figure 6.7: Particular process P8 - Proposed method (σ = 0.50).

from Table 6.3 it is possible to see that compared to κ−τ , the achieved perfor-
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Figure 6.8: Particular process P8 - Control system responses (σ = 0.50).

mance is practically the same (because they have the same degradation value),
however, in the proposed tuning the robustness is much better. So, conclud-
ing, for same performance, the proposed tuning provides greater robustness,
making it a better option to tune the controller.

6.3 Summary

The control system’s trade-off between performance and robustness, can be
studied from two points of view. First, as it was shown in Chapter 5, select-
ing a desirable value for robustness and facing to the resulting performance
degradation.
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In this chapter, we formulated the problem from the other side, selecting an
allowed performance degradation in order to get a higher robustness, respect
to the case with zero degradation. The proposal is presented for some degra-
dation levels (qualitative classification), and also for generic specific values of
degradation within the range 25%-55%.

Results are presented as autotuning formulae, maintaining the same sim-
plicity shown before for other proposed PID tuning approaches. The example
shows the accuracy and the benefits of the contribution.



Chapter 7

Balanced
performance/robustness PID
design

Approaches presented in chapters 5 and 6 show two different ways to face with
the trade-off problem between performance and robustness issues. First, it was
proposed a tuning method that choosing a desired robustness Md

s , provides
the best servo/regulation performance that can be achieved for the system. In
the second case, the idea is to reduce the degree of optimality of the system’s
performance, in order to increase the robustness. So, the tuning proposes to
select a certain degradation for the performance, that at the same time gives
the largest robustness increase.

Both approaches provide good results from the point of view they were
formulated and, of course, they are different, but complementary. However, it
is necessary to go beyond and look for an intermediate idea, that provides a
balance between the degree of optimality and the robustness increase.

7.1 Robustness increase measure

From the above, index (6.1) provides an idea about the degree of optimality for
the system’s performance. Here, we need to state a similar concept but with
the aim to quantify the robustness increase. Then, we compare the achieved

97



98 Balanced performance/robustness PID design

robustness of the constrained case with respect to the unconstrained one, that
is the optimum in performance but with lower robustness.

Therefore, the following index is proposed

IRob
.
=

∣
∣
∣
∣

Mo
s − MJrd

s

Mo
s

∣
∣
∣
∣

(7.1)

where Mo
s represents the robustness value achieved by tuning (5.4) without

any constraint for Ms (first column of Table 5.1), and MJrd
s is the robustness

value for the cases where the robustness is constrained (i.e. increased). Then,
(7.1) is a normalized index, where as much as it grows, the robustness increase
will be larger.

Once more, we want to take advantage of the generic tuning rule, presented
in section 5.3.2, in order to evaluate the robustness increase for the whole
range of family plants within τ ∈ [0.1, 2.0]. Then, for each τ and each value
Md

s ∈ [1.4, 2.0], it is possible to find the PID parameters and obtain index
(7.1). This procedure is analogous to the presented in the previous chapter
for IPerf index.

Fig. 7.1 shows the IRob variation, as a function of Md
s , for some cases of the

normalized dead-time, τ . Each line represents the relative robustness increase
for a particular process (value of τ).

Note that in Fig. 7.1, we could define a certain value (level), for the robust-
ness increase and with the intersection points, determine a suitable robustness
profile (analogous to the procedure for IPerf in section 6.1). However, this
idea has the same objective to the tuning presented in chapter 5, that is to
increase the robustness of the system and provide at the same time, the best
servo/regulation performance. Here, as we stated before, the aim is to look
for a balanced tuning.

7.2 Robustness/Performance balance

Taking into account that indexes (6.1) and (7.1) are both normalized into the
range [0, 1], therefore having the same scale, if we put the information of Fig.
6.2 and Fig. 7.1 all together, the intersection points for each pair of curves,
can be interpreted as equilibrium points. These, represent when the degree of
optimality is consistent to the robustness increase, and vice-versa.
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Figure 7.1: Variation of the index IRob.

In Fig. 7.2, there are just few cases for the model normalized dead-times
τ , where it is possible to see the consideration exposed before.

With the intersection points between the corresponding pairs of curves, we
can determine the suitable set of desired robustness, that provides the best bal-
ance between performance optimality degree and robustness increase. This set
of Md

s (τ) determines the robustness profile for the best robustness/performance
compromise, for all the τ range. See Fig. 7.3.

7.3 Balanced PID tuning

As it has been explained before, with information provided by indexes IPerf

and IRob, it is possible to obtain the corresponding Md
s value, that achieves the

best compromise between the loss of the optimality degree and the robustness
increase.

The set of desired robustness values for all the plants within τ ∈ [0.1, 2.0],



100 Balanced performance/robustness PID design

1.4 1.45 1.5 1.55 1.6 1.65 1.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Md
s

I P
e
r
f
,I

R
o
b

 

 
τ = 0.1
τ = 0.5
τ = 1.0
τ = 1.5
τ = 2.0

Figure 7.2: IPerf and IRob variation for some values of τ .

is a Md
s profile that, as before, can be used in tuning (5.7) and (5.9), in order

to get the PID controller parameters.

Then, following the same aim to propose a simple and homogeneous tuning,
the set for each parameter is fitted to the general tuning expressions (5.7).
Therefore,

KpK = 0.6776τ−0.8630 + 0.1162

Ti

T
= 0.9950τ0.4016 + 0.1564 (7.2)

Td

T
= 0.2998τ0.9760 + 0.0110

Tuning (7.2) is the one that provides the best compromise/balance between
the robustness increase and the resulting loss of optimality degree for the sys-
tem’s performance. It is important to note that also, because this performance
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Figure 7.3: Md
s profile for the best robustness/performance balance.

index formulation, the trade-off problem between servo and regulation control
operation modes, is included.

7.4 Tuning evaluation

In this section, the intention is to evaluate the performance and robustness
features for the proposed balanced tuning. Also, it is desirable to establish a
more precise quantification of the balance concept, stated before. Therefore,
we define the following index,

IB
.
=

∫ τf

τo

|IPerf (τ) − IRob(τ)|dτ (7.3)

where the idea is to measure the difference between the robustness increase and
the degree of optimality, for the whole range of plants τ ∈ [0.1, 2.0]. Note that,
when the index (7.3) is low, it means a good balance between the robustness
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increase and the corresponding price for performance optimality. A high value
of IB indicates a lack of balance for the studied indexes.

In Fig. 7.4, there are the robustness and servo/regulation performance
evaluation for the proposed balanced tuning and compared with the uncon-
strained case, equivalent to Md

s free and/or Dega = 0. There, it can be seen
the robustness increase, as well as the consequent loss of degree of optimality
for the system’s performance.
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Figure 7.4: Robustness and performance values for proposed tuning.

In addition, Fig. 7.5 shows IPerf and IRob indexes for the proposed bal-
anced tuning (7.2), where the similarity between the values indicates that, for
the whole τ range, the robustness increase is equivalent to the loss of perfor-
mance’s optimality, therefore having a balance. It means a “fair price between
what is paid and what is got”.

Table 7.1 shows the balanced index IB, for each one of the proposed tuning
rules and also compared with AMIGO and Kappa-Tau methods.

It is possible to see that, apart from the case for proposed balanced tuning
that has obviously the best IB index, tuning with Md

s = 1.6 is the one that
provides lower value for the balanced index (7.3). This has a lot of sense
because, if we look in Fig. 7.3, the robustness profile in almost the cases are
within the range [1.5, 1.6].

Moreover, AMIGO tuning has a better IB index than its counterpart for
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Figure 7.5: IPerf and IRob indexes for the proposed balanced tuning.

proposed Md
s = 1.4. However, this is again for the previously exposed non-

accomplishment of the specified robustness for the AMIGO method. If we
use the generic tuning for Md

s , in order to reproduce the robustness profile for
AMIGO (Md

s = MAMIGO
s ), it is possible to see in Table 7.1, that this resulting

tuning provides a better robustness/performance balance.

7.5 Comparison example

We will use again system (5.11), P8(s), with σ = 0.50, in order to evaluate the
proposed balanced tuning.

From the FOPDT model information and applying the proposed balanced
tuning (7.2), it is possible to obtain the PID parameters as: Kp = 1.244,
Ti = 1.174 and Td = 0.224. Here, the idea is to evaluate the robustness
and performance provided for the balanced tuning and also to compare with:
AMIGO and proposed generic tuning for Md

s = MAMIGO
s and Kappa-Tau
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Table 7.1: Balanced index 7.3 for different tuning rules
Tuning Criteria design IB

AMIGO Md
s = 1.4 0.2900

κ − τ Md
s = 1.4 2.1373

κ − τ Md
s = 2.0 3.6303

Md
s = 1.4 0.3163

Md
s = 1.6 0.1416

Proposed Md
s = 1.8 0.7011

Md
s = 2.0 1.3228

Md
s = MAMIGO

s 0.2512

Dega = 0.25 1.0513
Proposed Dega = 0.35 0.7987

Dega = 0.45 0.5482
Dega = 0.55 0.2956

Proposed Balanced-IB 0.0070

Table 7.2: Particular process P8 (σ = 0.50) - Controller tuning evaluation
Tuning Criteria design IPerf IRob |IPerf − IRob|

AMIGO Md
s = 1.4 0.2913 0.4651 0.1738

Proposed Md
s = MAMIGO

s 0.3186 0.4650 0.1464

κ − τ Md
s = 2.0 0.6675 0.2359 0.4316

Proposed Dega = Degκ−τ 0.6621 0.3156 0.3465

Proposed Balanced-IB 0.4202 0.4211 0.0009

(Ms = 2.0) and the proposed tuning for an arbitrary degradation value of
Dega = Degκ−τ . Controller’s parameters for these last tuning methods can
be found in Tables 5.4 and 6.2.

In Table 7.2, the indexes (6.1) and (7.1) are shown, as well as the corre-
sponding difference |IPerf−IRob|, that indicates the system robustness/performance
balance. Just to remember, index IPerf indicates the degree of optimality for
the system, so it is desired high values near to one. Then, for the system’s
robustness increase IRob, it must be as large as possible.

The comparison shown in Table 7.2 provides that, as expected, AMIGO
and proposed generic tuning for Md

s = MAMIGO
s have an equal IRob value,
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because their robustness is the same. However, the proposed Md
s tuning has

a higher performance optimality degree than AMIGO, therefore achieving a
better balance (less |IPerf − IRob| value).

For the Kappa-Tau and proposed tuning with Dega = Degκ−τ , we have
an analogous result because, for similar IPerf index values, the robustness
increase achieved by proposed tuning for arbitrary Dega values, is higher than
the one for κ− τ method and therefore, the balance is better for the proposal.

Finally, the last row of Table 7.2 gives the evaluation for the proposed bal-
anced tuning (7.2), that has obviously the best balance calculation, meaning
a similar values for IPerf and IRob. For this system, it is possible to see that
the best balance can be obtained when the performance degree of optimality
and the robustness increase, are values around the 40%.

In Fig. 7.6, there are the system’s and controller’s outputs for three cases
of the proposed tuning. It is possible to see that, responses for the balanced
tuning are between the ones that provide the best values for IPerf and IRob

indexes.

7.6 Summary

In this chapter a new PID tuning methodology is proposed, with the aim to
achieve the best possible balance between robustness and performance issues.
The problem was faced using the results presented in chapters 5 and 6.

The proposal is presented as an autotuning rule, where just the FOPDT
model information is needed to calculate the PID controller parameters. This
proposed balanced tuning looks for the best compromise between the robust-
ness increase and the consequent reduction in the performance optimality for
the system.

An important aspect of the proposed balanced tuning is that, it remains
the same expression for the controller’s parameters than the previous proposed
ones for Md

s and Dega, providing a complete and homogeneous set of options
to tune the PID.
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Figure 7.6: Particular process P8 - Proposed methods (σ = 0.50).



Part III

Concluding remarks
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Chapter 8

Conclusions and future work

This thesis faces to various and very important aspects of PID control, such
as performance and robustness. The main objective is to provide answers to
the very well known trade-off problems, between performance for servo and
regulation operation and between performance and robustness features.

From the above, the proposed tuning methodologies take into account these
considerations, in order to improve the general behavior of the control system.

This chapter concludes the work presented in this thesis and gives some
clues for future work and research.

8.1 Conclusions and contributions

New autotuning methods for PID controllers have been presented. These
methods use the information provided by a FOPDT model of the process, to
obtain the controller’s parameters. The design looks for the essential require-
ments of any control system as combined servo/regulation performance and
robustness with respect to model uncertainties. The formulation of the design
problems were divided in two approaches (corresponding to the two parts of
this document).

Part I: Combined servo/regulation operation for PID controllers

It is presented a general procedure to find an intermediate tuning for servo/
regulation control operation, in order to reduce the performance degradation
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when the system operates in a different way that it was tuned for. This
approach is stated in terms of the extreme optimal tunings for each operation
mode and weighting factors can be used, as a qualitative specification, to
declare a preference between both operation modes.

The resulting intermediate tuning provides lower performance than the op-
timum settings when the tuning and the operation modes are equal. However,
in general terms, if we take into account the whole system operation (servo
and regulation), it is possible to achieve the highest performance when the
proposed intermediate tuning is used.

In addition of the above idea, the general procedure was extended to unsta-
ble an integrating processes showing that for this application, the proposal is
even better because the expected performance degradation is very high, when
the tuning and operation modes are different. Therefore, the improvement
that can be achieved using the intermediate tuning, results in a good option
to obtain the PID controller parameters.

Part II: Robustness and performance trade-off for PID controllers

The proposed approaches include the consideration of robustness, in an explicit
way into the design stage. First, it was presented a tuning rule that selecting a
desired robustness Md

s , provides the best servo/regulation performance (5.4),
that can be achieved for the system. The accomplishment of the claimed
robustness was verified, obtaining almost negligible deviation values, therefore
the PID controller gives a good performance with also a precise and certain
robustness degree.

In the second case, it is proposed an approach that, even different, is
complementary to the previous one. The idea is to allow some reduction in
the optimality degree of the system’s performance, in order to achieve the
largest increase in the robustness. Some evaluations show the good results for
the proposed tunings compared with other well-known PID methods.

Finally, it was desirable to look for an intermediate approach that provides
a balance between the degree of optimality and the robustness increase and in
this sense, a well-balanced PID tuning was presented (7.2).

A very important aspect of this second part is that, all PID tuning methods
were parametrized using the same form for the equations of controller’s pa-
rameters (5.7). This allows to maintain simple and homogeneous expressions
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that can be implemented easily.

8.2 Future work and research

Some ideas to extend or to explore new opportunities from this research study,
can be followed in future works.

• Process model information. The proposed tunings were based on
the information provided by a FOPDT model. To develop the same
procedure for Second-Order-Plus-Dead-Time (SOPDT) models, could
improve the whole system’s behavior. Moreover, although in the first
part the results were presented for unstable and integrating processes
cases, could be interesting to follow the proposed ideas in the second
part for these kind of systems and even more, to study the non-minimum
phase systems (inverse response).

• PID controller structure. Taking into account the little-known of
fractional PID controllers, could be very interesting to explore the servo/
regulation dynamics, as well as the robustness, in this kind of PID. For
its novelty, it is a point that can receive much attention.

Another approach is to obtain the four parameters of a 2-DoF PID con-
troller just with a single optimization of index (5.4). This could improve
the actual and well-known procedure of two stages (first one for reg-
ulation and then for servo). A systematic way to determine when a
PID should be of one or two degrees of freedom (1-DoF/2-DoF) is very
welcome.

• Control configuration. Considering that, usually control systems op-
erate in regulation mode and set-point changes can be predicted, the
formulation of an adaptive re-tuning design between servo/regulation
tuning modes could be investigated. Also, the researched topic could be
studied for multivariable systems, specifically for TITO processes, con-
sidering that it is a system that follows a set-point but has continuous
disturbances, produced by the interaction effects between the control-
loops.
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• Real implementation. The proposed PID controller tunings imple-
mented by simulation in this work, can be tested and performed in real
plants.
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Åström, K.J. and T. Hägglund (1984). Automatic tuning of simple regula-
tors with with specifications on phase and amplitude margin. Automatica
20, 645–651.
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