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Chapter 10

Preliminaries

In this section we give the concepts and terminology that we will use to develop our work.
We also present an historical overview of the arithmetic Ramsey theory and anti—-Ramsey
theory on the integers. Finally we give some tools from additive combinatorics that we
will use in Chapter 11.

10.1 Basic definitions

We shall denote the set of integers by Z, the set of positive integers by Z*, and the set of
integers modulo n by Z/nZ.

Most of the results presented in Sections 10.2 and 10.3 will be confined to the interval
of integers [1,n] := {1,2,...,n}, and the set of natural numbers denoted by N.

Given a set X, an r—coloring of X is a function ¢ : X — C where |C| = r. Typically,
the elements of C' are called the colors, and we use C' = {1,2,...,7}. We can think of an
r—coloring ¢ of a set X, as a partition of X into r subsets X1, Xs, ..., X3 by associating
the subset X; with the set {x € X : ¢(x) = i}. The subsets X, X, ..., X3 are called color
classes. For 3—colorings we usually use C = {R, G, B} in order to have the color classes
Red Green and Blue. An equinumerous r—coloring os a set X, is an r—coloring in which
all color classes have the same cardinality.

Let Y be a subset of X and ¢ be a coloring on X, then Y is said to be monochromatic
under ¢, if ¢ assigns the same color to the elements of Y. On the contrary, Y is said to
be rainbow under c, if ¢ assigns pairwise distinct colors to the elements of Y.

Most of the structures that we consider in this work can be described as solutions of
systems of equations, being the main examples arithmetic progressions and Schur triples.
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For a positive integer t, a t—term arithmetic progression AP(t), is a sequence of the
form {a,a + d.a +2d,...,a+ (t — 1)d}, where a € Z and d € Z". We shall observe that,
when ¢ = 3, a 3-term arithmetic progression AP(3), is a triple (z,y, z) satisfying the
equation  +y = 2z. A Schur triple is a triple (x,y, 2) satisfying the equation z +y = 2.

Let X be a finite set with cardinality n and let S be a set of vectors in X¢. We said
that S is an orthogonal array of degree d and strength k if, for any choice of k columns,
each k-vector of X* appears in exactly one vector of S. In other words, if we specify
any set of k entries aq,--- ,a; and any set of subscripts 1 < iy < iy < -+ < i < d, we
find exactly one vector y = (y1,%2,...,yq4) in S with y;, = a1,v;, = as,...,v;, = ax. We
denote by OA(d, k) the family of orthogonal arrays of degree d and strength £ on X.

The set of Schur triples in a finite group form an orthogonal array O A(3,2). The same
is true for 3—term arithmetic progressions if the order of the group is relatively prime with
6.

10.2 Arithmetic Ramsey theory: three classical re-
sults

Ramsey’s theorem was not the first theorem in the area now known as Ramsey theory.
The results that are generally accepted to be the earliest Ramsey—type theorems are due,
in chronological order, to Hilbert, Schur and van der Waerden. All this results which
preceded Ramsey’s theorem, deal with colorings of the integers.

In this section we present three classical theorems concerning Ramsey theory on the in-
tegers, that became the starting point of an area that is still very active today: arithmetic
Ramsey theory.

10.2.1 Van der Waerden’s Theorem

We start with the van der Waerden theorem, which was proved in 1927, and its perhaps
the most fundamental Ramsey-type theorem on the integers. Loosely, it says that for any
given coloring of Z*, monochromatic arithmetic progressions cannot be avoided.

Theorem 10.1 (van der Waerden’s Theorem [67], 1927) For all positive integers
k and t, if n is sufficiently large, then every k-coloring of [1,n] contains a monochromatic
t-term arithmetic progression.
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The least positive integer n = w(t; k) which satisfies the van der Waerden theorem, is
known as the van der Waerden number. The van der Waerden numbers w(2;r) are easy
to find, as it is shown in the next example.

Example 10.1 w(2;7) =7+1. To see this, observe that w(2;r) > r (since an r-coloring
of [1,7] in which every integer get a distinct color does not contains a 2—-term arithmetic
progression), and by a simple application of the pigeonhole principle we get w(2;7) < r+1
(since any 2—element set of integers is a 2-term arithmetic progression).

For k > 3, the evaluation of these numbers becomes much more difficult. In fact,
the only known van der Waerden numbers, for k£ > 3, are: w(3;2) = 9, w(3;3) = 27,
w(3;4) = 76, w(4;2) = 35, and w(5;2) = 178. Thus, besides trying to find exact values
of the van der Waerden numbers, to estimate w(k;r) in terms of k and n, becomes one
of the central problems in Ramsey theory.

There are many other interesting aspects to study in this framework. For instance
consider the following question:

e How few arithmetic progression can a subset S C [1,n] have, if S has a given
density?

In the case of 3-term arithmetic progressions, it is shown in [23] that for n suffi-
ciently large, every 2-coloring of [1,n] admits ©(n?) monochromatic 3-term arithmetic
progressions. In 1999, Ron Graham propose the following problem:

e Let V(n) be the minimum number of monochromatic 3-term arithmetic progressions
in any 2—coloring of [1,n]. Given V(n) = n?(1 + o(1)), determine .

It was conjectured that § = 1/16. In 2008 this conjecture was disproved by Parrilo
et.al. [49]. They do not determine the exact value of 3, but provided fairly good upper
and lower bounds.

Theorem 10.2 (Parrilo, Robertson and Saracino [49], 2008)

1675 21 4 o)) < Vin) < 17

—n?%(1 1
32768 < S197 (1+o()

Now let p be a prime and S C Z/pZ a set of density vp, with v a constant. Denote
by t3(S) the number of monochromatic 3-term arithmetic progressions in S. From an old
result of Varnavides [66] it is know that the normalized count of ¢3(S) satisfies:
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1.
Emln{tg(S) : S CZ/pZ,|S| = vp} > c(v) >0

where ¢(v) is a constant depending only on v. Recently Croot [17] answer a question
of Green [18] and show that the limit:

lim — min{ts(S) : S C Z/pZ |S| = vp},

P00 p

does exist. However the actual value of that limit is still an open question.

10.2.2 Schur’s Theorem

We now present a theorem proved by Schur in 1916, which is one of the earliest results in
Ramsey theory.

Theorem 10.3 (Schur’s Theorem [58], 1916) For every k, if n is sufficiently large,
then every k-coloring of [1,n] contains a monochromatic solution of the equation x-+y = z.

A solution of the equation z+y = z is named a Schur triple. The least positive integer
n = s(k) which satisfies the Schur theorem, is known as the Schur number.

Example 10.2 s(2) = 5. By means of the following 2—coloring of [1,4] we get s(2) > 4:

1234

It can be shown that for every 2-coloring of [1,5] (there are 32 of them) there will exist
integers x,vy, z (not necessarily distinct) in the same color class satisfying x +y = z:

12345 12345 12345 12345 12345 12345 12345 12345
12345 12345 12345 12345 12345 12345 12345 12345
12345 12345 12345 12345 12345 12345 12345 12345

12345 12345 12345 12345 12345 12345 12345 12345
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The only Schur numbers that are currently known are: s(1) =2, s(2) =5, s(3) = 14
and s(4) = 45.

Concerning the problem of determine the minimum number of monochromatic Schur
triples in a 2—coloring of [1,n], it has been shown by several authors [19, 56, 54] that this
number is:

N?/22 + O(N).

The problem of finding the minimal number of monochromatic Schur triples was first
proposed by Graham et al. [23] in 1996. It was solved by Robertson and Zeilberger [54] in
1998; their proof relies on discrete calculus and a Maple package. A little later Schoen [56]
gave a paper-and-pencil proof of the same result. Finally, in 2003, Datskovsky [19] provide
a simple proof of this result, and also shows that the number of monochromatic Schur
triples modulo n equals:

n® —|51||S,]

where [1,n] = S1US, is a 2-coloring of [1, n]. Thus, the total number of monochromatic
Schur triples in every 2—coloring of the group Z/nZ depends only on the cardinality of
the color clases but not on the distribution on the colors.

10.2.3 Rado’s Theorem

The third classical theorem we mention is Rado’s theorem, which is a generalization of
Schur’s theorem. Thinking of Schur’s theorem as a theorem about the homogeneous linear
equation x +y — z = 0, we ask the most general question:

e Which systems, £, of homogeneous linear equations with integer coefficients have the
following property: for every r > 1, there exist a least positive integer n := n(L;r)
such that every r—coloring of [1,n] yields a monochromatic solution to L£7?

In a series of articles published in the 1930’s, Rado completely answered this question.
Since Rado’s theorem, in its most general form, is a bit complicate to describe, we will
mention here just the special case in which the system consist of only a single equation.

We first need the following definition.
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Definition 10.1 For r > 1, a linear equation £ is called r—regular if there exists n =
n(E;r) such that for every r—coloring of [1,n| there is a monochromatic solution to €. It
is called regular if it is r—regular for all r > 1.

Thus, Schur’s theorem states that the equation z 4+ y = z is regular.

Theorem 10.4 (Rado’s single equation Theorem, 1916) Let £ represent the linear
equation Y . c;z; = 0, where ¢; € Z— 0 for 1 < i < n. Then € is reqular if and only if
some nonempty subset of the ¢;’s sums to 0.

Example 10.3 [t follows by Rados’s theorem that the x +y — 2z = 0 (the Schur equation)
is reqular, since the sum of the first and third coefficients is 0.

10.3 Rainbow Ramsey theory: historical overview

In this Section we give an overview on the current state in the so called rainbow Ramsey
Theory. This new trend studies the existence of rainbow (hetero—chromatic) structures in
a colored universe, under certain density conditions on the colorings. In particular, the
results we present here are related to the existence of rainbow arithmetic progressions in
[1,n] and N.

There are previous results regarding the existence of rainbow structures in the context
of canonical Ramsey theory (canonical theorems prove the existence of either a monochro-
matic structure or a rainbow structure). Here our interest is not on ”either-or”-type
statements. In a sense, the theorems we describe below can be thought of as the first
rainbow counterparts of classical theorems in Ramsey theory, such as Schur’s and van der
Waerden’s theorems.

10.3.1 Rainbow Schur triples

More than seven decades after Schur’s theorem was published, Alekseev and Savchev [3]
consider what is now called an un—Schur problem. Recall that a solution of the equation
x4+ y = z is named a Schur triple.

Theorem 10.5 (Alekseev and Savchev [3], 1987) Every equinumerous 3-coloring of
[1,3n] contains a rainbow Schur triple.



10.3. RAINBOW RAMSEY THEORY: HISTORICAL OVERVIEW 111

It is natural to ask whether the condition of equal cardinalities on the color classes,
can be weakened. In fact, in 1990 Schénhaim [57] answers this question.

Theorem 10.6 (Schénhaim [57], 1990) Every 3-coloring of [1,n], such that every color
class has cardinality grater than n/4, contains a rainbow Schur triple, and n/4 is optimal.

10.3.2 Rainbow arithmetic progressions in N and [n]

Motivated by these results, Jungi¢ and Radoici¢ [34] proved the analogous result of The-
orem 10.5, concerning 3—term arithmetic progressions. Recall that a solution of the equa-
tion & + y = 2z is a 3-term arithmetic progression, and is denoted by AP(3).

Theorem 10.7 (Jungié¢ and Radoicié¢ [34], 2003) Every equinumerous 3—coloring of
[1,3n], contains a rainbow AP(3).

In 2003, Jungi¢, Licht, Mahdian, Nesettil and Radoic¢i¢ [32] proved an infinite version
of Theorem 10.7. Let ¢ : N — {R, G, B} be a 3-coloring of the set of natural numbers
with colors Red, Green, and Blue. We define R.(n) (resp. G.(n), B.(n)) to be the number
of integers less than or equal to n that are colored with color Red (resp. Green, Blue).

Theorem 10.8 (Jungié, Licht, Mahdian, Nesetfil and Radoi¢i¢ [32], 2003) Ifc:
N — {R, G, B} satisfies the following density condition:

lim sup(min(R.(n), G.(n), B.(n)) — n/6) = +oc
then ¢ contains a rainbow AP(3).

Basically Theorem 10.8 states that every 3—coloring of the set of natural numbers with
the upper density of each color grater than 1/6 contains a rainbow AP(3).

The next example given in [7] shows that Theorem 10.8 is the best possible.

Example 10.4 ([7]) Consider the following coloring of N:

1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15, 16, 17, 18, ...

that is:
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R ifi=1 (mod6)
c(iy)=1 G ifi=4 (mod6)

B otherwise

Observe that ¢ contains no rainbow AP(3) and min{R.(n), G.(n), B.(n)} = | (n+2)/6].

Based on the computer evidence, the authors in [32] conjectured a value r(n), for
which every 3—coloring of [1,n] with the smallest color class grater than r(n), contains
a rainbow AP(3). They also showed that, this conjecture, if true, is optimal. In 2004,
Axenovich and Fon-Der-Flass [7] proved successfully that conjecture.

Theorem 10.9 (Axenovich and Fon-Der-Flass [7], 2004) For every n > 3, every
partition of [1,n] into three color classes R, G, B, where min |R|, |G|, |B| > r(n), where

r(n) = { [(n+2)/6] if mnot =2 (mod 6)
(n+4)/6  ifm=2 (mod6)

contains a rainbow AP(3).

For mnot = 2 (mod 6) the coloring described in Example 10.4, shows that Theo-
rem 10.9 is tight in this case. The following coloring shows that Theorem 10.9 is tight as
well for the remaining case.

Example 10.5 ([7]) Let n = 6k + 2, we define a coloring ¢ as follows:

R ifi <2k+1 and i is odd
ci)=1< G ifi >4k +2 and i is even
B otherwise

It is not difficult to see that ¢ contains no rainbow AP(3) and:

min{R.(n),G.(n),B.(n)} =k+1=(n+4)/6

For k=3 (n=20) it looks like:

1,2,3,4,5,6,7,8,9,10,11, 12,13, 14,15, 16,17, 18, 19,
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One can think on generalize Theorem 10.9, Theorem 10.8, or even Theorem 10.7 by
increasing the number of colors and the length of a rainbow arithmetic progression.

Axenovich and Fon-Der-Flass [7] gave an example, for £ > 5, that no matter how large
the smallest color class is, there is a coloring with no rainbow AP (k).

Example 10.6 ([7]) Let n = 2mk, k > 5. We subdivide [1,n] into k consecutive inter-
vals of length 2m each, say Ay, ..., Ay and let t = |k/2|. Then,

j—1 ificecAjandj#t j#t+2
cliy=<¢ t—1 ifie AU A5 and i is even
t+1 ifie AU Ay and i 1s odd

It is not difficult to see that ¢ contains no rainbow AP(k) and the size of each color
class is n/k.

For k=4, m =3 (n=24) it looks like:

152733475367 387 3103 312, ) 3 ) 3 3 7193 7213 3233 )

Concerning the case k£ = 4, it is not even known if for sufficiently large values of n,
every equinumerous 4—coloring of [1,4n] contains a rainbow AP(4). Sicherman (see [32])
found equinumerous colorings of [1,n], for n < 60, without rainbow AP(4). Axenovich
and [on-Der-I'lass [7] provide a coloring of [1,n], where n = 10m + 1, with the smallest
color class of size (n — 1)/5 and no rainbow AP(4).

Concerning equinumerous colorings of N, the authors in [32] show examples with no
rainbow AP(k), for k = 5 and k = 6. By using a clever counting argument, C. Sdndor (see
[33]) generalize those examples and show the existence of equinumerous k-colorings of N
with no rainbow AP(k), for every k£ > 10. Hence the generalization of Theorem 10.8 is
not true for k = 5,6 and £ > 10. If the number of colors is infinite, in the same paper [32]
it was shown that there are colorings of N with infinitely many colors, with each color
having positive density such that there is no rainbow AP(3).

10.3.3 Rainbow arithmetic progressions in Z, and Z,

An interesting corollary of Theorem 10.8, is the modular version, which states that if
Z/nZ is colored with 3 colors, in such a way that the size of every color class is greater
than n/6, then there exist a rainbow AP(3), i.e. a triple z,y and z, each of different color
satisfying = + y = 2z (mod n).
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It turns out (by Example 10.4) that for n divisible by 6 this condition is tight. However,
for other values of n it is possible to obtain weaker assumptions, as we will see later.

Definition 10.2 Let m(n) be the largest integer m for which there is a 3-coloring of
Z/nZ, with no rainbow AP(3)’s, such that the cardinality of the smaller color class is m.

For n divisible by 6, m(n) = n/6. For general n, the exact value of m(n) is not known.
Jungié¢, Nesettil and Radoici¢ [33] formulated the following Conjecture.

Definition 10.3 Let Py be the set of primes for which 2 has either multiplicative order
p—1, or multiplicative order (p —1)/2 with (p —1)/2 odd. Let Py be the set of remaining
primes.

Example 10.7 Let us see where, Py or Py, belong some small prime numbers. Observe
that for n = 3,5,11, and 13, the multiplicative order of 2 in Z/nZ is n — 1; while for
n =7, the multiplicative order of 2 in Z/nZ is (n — 1)/2 an odd number. Hence, the fist
prime number which does not belong to Py is 17:

3€ Py, sice2?=4=1 (mod 3).

5€ Py, sice2' =16 =1 (mod 5).

7€ Py, sice 2> =8=1 (mod 7),

11 € Py, sice 219 = 1024 =1 (mod 11).
13 € Py, sice 2'2 = 4096 = 1 (mod 13).

17 € Py, sice 26 =256 = 1 (mod 17).

Conjecture 10.1 (Jungié, NesSetfil and Radoi¢ié¢ [33], 2005) Let n be an integer
which is not a power of 2. Let p denote the smallest odd prime factor of n in Py and let
q be the smallest odd prime factor of n in Py. Then

n
min{2p, q}

]

m(n) = |

For n = 2™ and primes in Py it had been already proved in [32] that m(n) = 0.
Actually these two cases characterize the possible values of n for which every 3—coloring
(with nonempty color classes) of Z/nZ, contains a rainbow AP(3).
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Theorem 10.10 (Jungié, Licht, Mahdian, NeSetfil and Radoi¢i¢ [32], 2003) For
every integer n, there is a rainbow-free 3—coloring of Z/nZ with non—empty color classes,
if and only if n does not satisfy any of the following conditions:

(a) n is a power of 2.

(b) n e P().

Hence, Theorem 10.10 states that m(n) = 0, if and only if, n is a power of 2 or n is a
prime in Pj.

Example 10.8 For n = 3,5,7,11 and 13, every 3—coloring of Z/nZ with non—empty
color classes contains a rainbow AP(3). For n = 17, next we show a 3-coloring of Z/nZ
with non—empty color classes that contains no rainbow AP(3)'s:

,1,2,3,4,5,6,7,8,9,10,11,12, 13,14, 15, 16

For general n the authors of [32] proved the following bounds.

Theorem 10.11 (Jungié, Licht, Mahdian, NeSetfil and Radoi¢ié¢ [32], 2003) Let
n be not a power of 2, q be the smallest prime factor of n, and r be the smallest odd prime

factor of n, then:

[5=) < m(n) < min(

)

>3
<3

We shall observe that, concerning cyclic groups of prime order, it follows from Theo-
rem 10.11 that:

m(p) <1

That is, every 3-coloring of Z/pZ, with the cardinality of the smallest color class
greater than one, contains a rainbow AP(3). In other words, a 3-coloring of Z/pZ which
is rainbow—free, satisfies that the cardinality of the smallest color class is either one or
zero. Actually, from Theorem 10.10, it follows that if p € Py then the size of the smallest
color class is zero, and if p € P; then the size of the smallest color class is one.
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10.4 Some tools from additive combinatorics

Next we give some tools from additive combinatorics that we will use in Chapter 11,
to describe 3-colorings on abelian groups of odd order, which has no 3-term arithmetic
progression with its members having pairwise distinct colors.

The key idea is to observe that, if ¢ is a 3—coloring of an abelian group of odd order G,
such that for any pair of color classes X,Y € {R, G, B} we have | X +Y| > |X|+ |Y]+1
then, since n = |G| is odd, we have | X +Y| > |G| — |2Z] and therefore the coloring has a
rainbow AP(3). Then, we shall use structural results which provide the structure of pairs
of sets (X,Y) with [ X +Y| < |X|+ |Y].

First we need some more definitions. Let G be a finite abelian group and A, B C G
two finite non-empty subsets.

Definition 10.4 The sumset of A and B is denoted by A+ B and defined as the set of
all elements of the group, representable as a sum of an element of A and an element of
B:

A+B={a+b:ac Abe B}

Definition 10.5 The period of a subset S C G, denoted by w(S), is the subgroup of G
defined by:

7(S)={g€G:S+g=25}

Thus, S is a union of cosets of 7(5), and 7(S5) lies above any subgroup of G such that
S is a union of cosets.

Definition 10.6 We say that a set S is periodic if 7(S) is a nontrivial subgroup of G
(i.e. w(S) # {0}). We say that S is aperiodic otherwise.

We shall use the following result of Kneser.

Theorem 10.12 (Kneser) Let (A, B) be a pair of finite non-empty subsets of an abelian
group G. Then, letting H := n(A + B), we have:

|A+B|>|A+ H|+ |B+ H| — |H|
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Moreover, if |A+ B| < |A|+ |B| — 1 then we have equality.

The next Remarks are direct consequences of Kneser’s theorem. If H is a subgroup of
G, the canonical homomorphism of G onto the quotient group G//H is denoted by ¢q/u,
and the full inverse image under ¢¢, i of a subset S C G/H is denoted by @G/H(S)

Remark 10.1 If A, B and H are as in Kneser’s theorem with |A+ B| < |A|+|B| -1,
then there are non cosets of H with elements of both subsets A and B.

Proof. From the conclusion of Kneser’s theorem we obtain:

(IA+ H[ = [A]) + (|B+ H| = |B]) = |[H[ + (]A+ B| = |A] = | B])

Since (A, B) is a pair with small sumset, it follow that: |H|+(|A+B|—|A|—|B|) < |H|,
then:

(|A+ H[ = |A)) +(IB+ H| = |B]) < |H]

which means that A and B are obtained from A+H = gpé}H(Z) and B+H = <pG/H(§)
by removing less than |H| elements totally. O

Remark 10.2 If A, B and H are as in Kneser’s theorem |A+ B| < |A|+|B|—1, writing
A= pg/a(A) and B = pg/u(B), we have: |[A+ B| = |A| + |B| — 1.

Proof.  Observe that |A + H| = |A||H|, |B+ H| = |B||H| and |A+ B| = |A+ B||H|,
then the conclusion of Kneser’s theorem takes the shape of the claim. O

Thus Knesers’s theorem shows that any pair (A, B) with small sumset, can be obtained
by "lifting” a pair (A4, B) of subsets of a quotient group G/H, with |[A+ B| = |A|+|B| 1.
In other words, Knesers’s theorem reduces the problem of classifying all pairs (A, B) with
small sumset, to that of describing those pairs for which: |A + B| = |A| + |B| — 1.

The structure of pairs of sets (X,Y) in an abelian group G verifying |X + Y| =
|X|+ |Y| — 1 is given by the Kemperman Structure Theorem (KST). We shall only use
the following simplified version of the Theorem which can be easily deduced from Theorem
2 in [38].

Definition 10.7 A set S C G is said to be quasiperiodic if it admits a decomposition
S = Sy U S, where each of Sy and Sy can be empty, Sy is H-periodic (where H is
nontrivial) and Sy is contained in a single coset of H.
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Note that every set S C G is quasiperiodic with S; = @ and H = G.

Theorem 10.13 (Kemperman [35]) Let A and B be nonempty subsets of an abelian
group G verifying
|A+B|=|A|+|B|-1< |G| - 2.

If A+ B is aperiodic then one of the following holds:

(i) min{|A],|B[} = L.
(ii) Both A and B are arithmetic progressions with the same common difference.

(iii) Both A and B are H—quasiperiodic for some nontrivial proper subgroup H < G.

We shall also use the following extension of KST, recently obtained by Grynkiewicz [25],
which describes the structure of pairs of sets (X,Y) in an abelian group G verifying
| X +Y]|=|X|+|Y| Again we only need a simplified version of the full result.

Theorem 10.14 (Grynkiewicz [25]) Let A and B be nonempty subsets of an abelian
group G of odd order n verifying

|A+ B| = |A|+ |B| < |G| - 3.

If A+ B is aperiodic then one of the following holds:

(i) min{|A[,|B|} =2 or |[A] = |B| = 3.
(ii) Both A and B are H-quasiperiodic for some nontrivial proper subgroup H < G.
(iii) There are a,b € G such that |A'+ B'| = |A'| + |B'| — 1 where A’ = AU {a} and
B' = BU {b}.

It is well known that if A, B are subsets of a group G and |A| + |B| > |G| then
A+ B = G. We shall use this simple fact without further reference. The following lemma
characterizes the structure of sets A, B C G with |A| + |B| = |G| and A+ B # G. We
include here a short proof for the benefit of the reader.

Lemma 10.1 Let A, B be subsets of a finite abelian group G such that
Al + [B] = |G].
If A+ B # G then there is a subgroup H and a € G such that
A+H=A B+H=B and A+ B=G\ (a+ H).
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Proof. 1f |[A+ B| = |G| — 1 then the statement holds with H = {0}. Suppose that
|A+ B| < |G| —2 and let H = P(A + B). By Kneser’s Theorem |A+ B| = |[A+ H| +
|B+ H|— |H| > |A|+ |B| — |H| = |G| — |H|. Since A + B # G is H-periodic we must
have A+ B=G\ (a+ H) for some a € Gand A+ H=Aand B+ H = B. O

One of the applications of Lemma 10.1 is the following result which will be often used
in Chapter 11. Let H be a proper subgroup of G. We say that a triple (X,Y,7) of
H-—cosets is in arithmetic progression if (X/H)+ (Y/H)=2-(Z/H). For X an H—coset
and U a color class of a coloring we write Xy := X NU.

Lemma 10.2 (The 3-cosets Lemma) Let {A, B,C} be a rainbow—free 3—coloring of
an abelian group G with odd order n. Let H < G be a subgroup of G and let (X,Y,Z) be
a triple of H—cosets in arithmetic progression.

If each of X4, Y and Z¢ is non—empty, then

max{|Xa| + [V, |[Xal + |Zc|, | Zc| + |YB|} < |H]. (10.1)

Moreover, if equality holds then there is a proper subgroup K < H such that two of the
sets X 4,Yg, Zc are K-periodic (the two involved in the equality holding) and the third
one is contained in a single coset of K.

Proof.  Since the coloring is rainbow—free we have X4 + Y C (2-Z) \ (2 Z¢). Hence
| X4+ Ys| < |H| which implies |X4| + |Yp| < |H|. Similarly X4 — (2- Z¢) ¢ YV and
Y — (2-Z¢) & X imply |X4| + |Zc| < |H| and |Yg| + |Zc| < |H| respectively. This
proves the first part of the statement.

Suppose that |X 4|+ |Yp| = |H|. By Lemma 10.1 there is a subgroup K < H such that
both X4 and Y5 are K-periodic and (2- 7))\ (X 4+ Y3) consists of a single K—coset, which
contains 2 Z¢. A symmetric argument applies if | X 4|+ |Z¢| = |H| or |Yg|+ |Zc| = |H].
O
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Chapter 11

Rainbow—free three colorings in
abelian groups

11.1 Introduction

Recall that a 3—term arithmetic progression AP(3), is a triple (x,y,2) with z + y = 2z.
Given a 3—coloring ¢ of an abelian group G, we say that a 3—term arithmetic progression
(x,y, z) is rainbow under ¢, if the coloring assigns pairwise distinct colors to the elements.
Throughout this chapter we will say that a coloring ¢ is rainbow—free if there are no
rainbow AP(3)’s under c.

In this chapter we give a structural description of rainbow—free 3-colorings on finite
abelian groups of odd order. Our main result, Theorem 11.1 below, identifies the three
possible kinds of rainbow-free colorings of an abelian group of odd order G which can be
described as follows. There is a proper subgroup H of G such that either the coloring is
obtained by lifting a rainbow-free coloring with a color class of size one from a quotient
group G /H, or there is one coset of H which is bichromatic and G \ H is monochromatic,
or a combination of the two possibilities above.

Observe that the property of being rainbow—free is invariant up to translation of the
coloring:

Remark 11.1 If ¢ is a rainbow—free coloring of G then ¢ (x) := ¢(x + g) is also rainbow-
free.

We will often use this remark without explicit reference.

The main result can be precisely stated as follows.

121
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Theorem 11.1 Let G be a finite abelian group of odd order n and let ¢ be a 3—coloring
of G with non—empty color classes A, B,C. Then c is rainbow—-free if and only if, up to
translation, there is a proper subgroup H < G and a color class, say A, such that:

(i) A C H, and the coloring induced in H is rainbow—free,

(ii) E-I—H:E(mda-l-H:é,

(i) B=—-B =2B and C = —C = 2C.
where B= B\ H and C = C '\ H.

The description of rainbow—{ree 3—colorings of abelian groups of odd order can be used
to prove Conjecture 10.1. Actually the Conjecture holds for general abelian groups of odd
order as shown in the next Corollary.

Corollary 11.1 Let G be an abelian group of odd order m. Let p denote the smallest
prime factor of n in Py and let q be the smallest prime factor of n in Py. If {A, B,C} is
a rainbow—free 3—coloring of G then

min{|A|, |B], |C]} < {mj . (1L.1)

Moreover, there are rainbow-free 3—colorings of G for which equality holds.

Proof. We first prove (11.1). By Theorem 11.1 (i), one color class, say A, is contained in
a subgroup H < G and

nn
Al < |H| < max{—, -1
|A| < |H| < {p,q}

n

Thus we may assume that |H| = % and G /H is a cyclic group of prime order p € Py,

otherwise we are done. By Theorem 11.1 (i), each of the two sets B = B\ H and
C =C '\ H is a (possibly empty) union of H—cosets.

Suppose that both sets B and C are nonempty. Since p € Py it follows from Theo-
rem 10.10 that the 3-coloring of G/H ~ Z/pZ with color classes A' = {0}, B' = B/H
and C' = C/H contains a rainbow AP(3) which must be of the form {—z,0,z} for
some r € G/H. But this contradicts that B = —B and C = —C, Theorem 11.1

(iii). Hence G \ H is monochromatic and thus H contains two colors. It follows that
min{|Al, B, [C]} < [,

Let us show that there are rainbow—free 3—colorings of GG for which equality holds in
(11.1).
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If 2p < ¢ then choose a subgroup H < G with cardinality %, consider a partition
AUB = H where [4| =[], and let C = G\ H. If ¢ < 2p then choose a subgroup H < G
with cardinality % and let B" = {2,2%,...,2" = 1} in the cyclic group G/H ~ Z/qZ. Since
q & Py, the set C' = G/H \ (B'"U—B'U{0}) is nonempty. Define the coloring A = H,
B=7"YB' U-B) and C = 77 }(C'"U —C"), where 7 : G — G/H denotes the natural
projection. In both cases the coloring satisfies parts (i), (ii) and (iii) of Theorem 11.1 and
therefore it is rainbow-{ree. O

We complete the proof Conjecture 10.1 in Section 11.5 where we show that Theorem
11.1 also implies the conjecture for cyclic groups of even order.

Note however that the conjecture does not hold for general abelian groups of even
order as illustrated by the following counterexample.

Example 11.1 Let G := H x (Z/2Z x Z/27Z) where |H| is not a power of 2. Consider
the following 3—coloring of G: let the subgroup H be colored by A, color one of the three
remaining H—cosets of G by B and the remaining two by C'.

This coloring is rainbow—free, since a 3—term arithmetic progression in Z/27Z x 7./ 27 =
G/H is of the form (z,z,y). However the smaller color class has cardinality |H| = |G|/4
which can be arbitrarily larger than min{%, %} according to the choice of H.

The ‘if” part of Theorem 11.1 can be easily checked as shown in Section 11.2. For
the “only if” part we use the following observation. Let {A, B, C} be a 3-coloring of an
abelian group G of odd order. If

|A+ B| > |A|+|B|+1

then (since n = |G| is odd) we have |[A + B| > |G| —|2-C|, where A+ B={a+b, a €
A, b € B} denotes the Minkowski sum of A and B, and 2-C = {2¢, ¢ € C'}. Therefore
A+ BnN2-C # ( and the coloring has a rainbow AP(3). Thus we are only concerned
with the situation where |A + B| < |A| + |B|. For this we use some results in Additive
Combinatorics on the structure of sets with small sumset which are recalled in Section 10.4.
It follows from Kneser’s theorem that the case |[A+B| < |A|+|B|—1 can be reduced to the
case of equality. The Kemperman Structure Theorem [35] provides precise information
on the structure of sets A, B in an abelian group verifying |A + B| = |A| + |B| — 1.
This deep structural result has been recently extended by Grynkiewicz [25] to handle the
case where |A + B| = |A| + |B|. These two structural results are the main tools used to
prove Theorem 11.1 in sections 11.2 ( small color classes), 11.3 (structured color classes)
and 11.4 (proof of the result).
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11.2 Small classes and arithmetic progresions

We start by characterizing the structure of a rainbow—free 3—coloring, of an abelian group
when there is a color class with just one element.

Proposition 11.1 Let G be a finite abelian group and let ¢ be a 3—coloring of G with
color classes A, B,C such that |A| = 1. Then ¢ is rainbow—free if and only if, up to
translation, every X € {A, B,C} satisfies:

2.X C X =-X. (11.2)

Proof.  Suppose first that ¢ is rainbow—free. We may assume that A = {0}, thus A
satisfies (11.2); on the other hand, for every € B we must have —x,2x € B since
otherwise we get a rainbow—free AP(3) of the form (—=z,0,z) or (0,z,2xz). Hence 2- B C
B = —B and similarly 2-C Cc C = —C.

Reciprocally, if all color classes satisfy (11.2) then necessarily A = {0} and, any 3-term
arithmetic progression containing 0 has its remaining members in the same color class,
thus ¢ is rainhow—free. O

Proposition 11.1 proves Theorem 11.1 when one of the colors has cardinality one.
Moreover the Proposition also shows the ‘if’ part of the Theorem.

Proposition 11.2 Let {A, B,C} be a coloring of an abelian group G. If there is a proper
subgroup H of G and a color A such that

(i) AC H, and the 3—coloring induced in H is rainbow-free,

(i) B+ H=B and C + H = C,

(iii) B=—-B=2B and C = —C' = 2C.
where B = B \ H and c=cC \ H, then the 3-coloring is rainbow—free.
Proof.  Choose the minimal H for which conditions (i)-(iii) are verified. Then H meets

at most, two colors, say A C H and B.

If C = G\ H then A+ B is contained in H, and thus it is disjoint from 2-C. Moreover,
each of 2- A and 2 - B are contained in H and thus disjoint from A+C =B+ C =C.

Suppose that C # G \ H. Since a rainbow AP(3) in G can not be contained in H,
it gives rise, by conditions (ii) and (iii), to a rainbow AP(3) in G/H with the coloring
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{A/H, B/H,C/HY}. However, every color X in this last coloring verifies X = —X = 2. X
and it follows from Proposition 11.1 that it is rainbow—free. O

Observe that the two propositions above do not require that G has odd order.

The 3-cosets Lemma and Proposition 11.1 can also be used to show the structure of a
rainbow—free coloring given by the main result when one of the color classes is contained
in a single coset.

Lemma 11.1 Let G be a finite abelian group with odd order n and let {A, B,C} be a
3—coloring of G. If one of the three color classes is contained in a single coset of a proper
subgroup H < G then Theorem 11.1 holds.

In particular, if B = B\ H and C' = C'\ H are both nonempty, then the 3-coloring
{A"= A+ H,B,C"} is also rainbow—free.

Proof.  The ‘if’ part follows from Proposition 11.2. Suppose that the given coloring is
rainbow—free.

We may assume that A C H and that H is a minimal subgroup of G' which contains

A.

Suppose that Y # H is an H—coset which intersects the two remaining color classes B
and C. Let Z be a third coset such that (X = H,Y, Z) are in arithmetic progression. Since
Y|+ |Yo| + | Z8| + | Zc| = 2|H]|, it follows from Lemma 10.2 that |Yz| + |Z¢| = |H| and
|Yo| + | Z| = |H|. Moreover, there is a subgroup K < H such that X, = A is contained
in a single coset of K and each of Yp, Yy, Zg, 7o is K—periodic. By the minimality of
H we have K = H contradicting the existence of the bichromatic coset Y. Thus each
of B\ H and C'\ H is monochromatic. Then the restriction of the coloring to H must
be rainbow—free and, in order that there are no rainbow AP(3) in H, H + z, H — x, we
must have X = —-X =2 X for X = E, C. Note that under these conditions the coloring
{A", B',C"} is also rainhow—free. O

We next show that the main result also holds if there is a class with two elements or
there are two classes with three elements.

Lemma 11.2 Let {A, B,C} be a coloring of an abelian group G of odd order n. If
min{|A[, |B|,|C|} = 2 then Theorem 11.1 holds.

Proof. By Proposition 11.2 and Lemma 11.1 we only have to show that, if the given
coloring ¢ is rainbow—free, then one color is contained in a single coset of a proper subgroup

of GG.
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We may assume that A = {0,a}. Let us show that a generates a proper subgroup H
of G. Suppose the contrary so that G = (a) = Z/n’Z.

Since {—a, a,3a} can not be rainbow, we have ¢(—a) = ¢(3a). Since {—3a,0,3a} can
not be rainbow we have ¢(—3a) = ¢(3a). By iterating this argument, we have

c(—a) = ¢(3a) = ¢(—3a) = ¢(ba) = ¢(=ba) = ... = c((n — 2)a) = ¢(—(n — 2)a),

so that the color class of —a has n — 2 elements. But then the third one is empty, a
contradiction.

Hence A C H and, by Lemma 11.1, Theorem 11.1 holds. O

We next consider the case |A| = |B| = 3.

Lemma 11.3 Let {A, B,C} be a coloring of an abelian group G of odd order n. If
|A| = |B| =3 and |A+ B| = |A| + |B| then Theorem 11.1 holds.

Proof.  Let A = {0,a,d’'}. Since |A+ B| = |A| + |B| it follows that B = A+ 2 =
{z,z4+a,x+a'} for some z € G. Since {—z, 0, z} can not be rainbow we have —x € AUB.
If —x € A then 0 € AN B, a contradiction. Thus —x € B and a = —2x. Since {0, x, 2z}
can not be rainbow we have 2z € AU B. If 22 € B then z € AN B (since A = B — x).
Thus 22 = a which implies B = {—z,z,3z} and A = {-22,0,2z} and both sets are
arithmetic progressions with the same difference contradicting |A + B| = |A| +|B|. O

We next prove the case when two color classes are almost progressions. An almost-
progression is an arithmetic progression with one point removed. Observe that, with this
definition, the class of almost progressions contains the class of all arithmetic progres-
sions except the ones whose length equals the order of the cyclic group generated by the
difference.

Lemma 11.4 Let {A, B,C} be a coloring of an abelian group G of odd order n. Assume
that 3 < |A| < |B| < |C|. If A and B are almost—progressions with the same difference d
then Theorem 11.1 holds.

Proof. 1f d generates a proper subgroup H of G then A is contained in a single coset of
H and the result follows by Lemma 11.1.

Thus we may assume that d generates the full group so that G is the cyclic group
Z/nZ and we may assume d = 1. We will show that in this case ¢ contains a rainbow
AP(3).

Let b be the minimum circular distance from elements in A to elements in B.
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If b = 1 we may assume that n — 1 € A and 0 € B. Since max{|A|, |B|} < (n —3)/2
we have (n —1)/2 € C giving the rainbow {0, (n — 1)/2,n — 1}.

Suppose now that b > 1. Since |A| > 3 we may assume that {n — 1,0} C A and
{1,2,...,0} CCand ¥ + 1 € B for some b' > b. If &/ is odd then {0, (' +1)/2,b' + 1} is
rainbow and if ¢/ is even then {n — 1, (' +2)/2,b' + 1} is rainbow. O

Moreover, if ¢ is rainbow—free then there is a subgroup H and g € G such that, up to
renaming the colors, both B and C' U {0} are H-periodic and

B+CDOG\ (9+H). (11.3)

11.3 Periodic color classes

In this section we analyze the structure of the color classes when they are close to be
periodic. The consideration of these cases arise from the discussion after Theorem 11.1
on sets with small sumset and the KST and Grynkiewicz theorems.

Throughout the section GG is an abelian group of odd order n and c¢ is a rainbow—free
3-coloring of G with non—empty color classes (A4, B, C). Recall that, for a subset X C G
and a subgroup H < G, we denote by X/H the image of X by the natural projection
m:G— G/H.

We start with a simple observation.

Lemma 11.5 If the three color classes are K—periodic for some subgroup K < G then
Theorem 11.1 holds in G if and only if it holds in G/K.

Proof.  Since the three color classes are K—periodic, ¢ is rainbow—free if and only if the
3—coloring {A/K,B/K,C/K} of G/K is rainbhow—free. Moreover, A/K is contained in
a single coset of a proper subgroup H' of G/K if and only if A is contained in a single
coset of the proper subgroup H' + K in G. In view of Proposition 11.2 and Lemma 11.1
this suffices to show the equivalence. O

We next consider the case where two of the color classes are quasiperiodic.

Lemma 11.6 Suppose that A = Ag U Ay and B = By U By are H—quasiperiodic decom-

positions of A and B with H a nontrivial proper subgroup of G. If Theorem 11.1 holds in
G/H then it holds in G.
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Proof. By Lemma 11.1 we may assume that none of the color classes is contained in a
single coset of a proper subgroup of G. By Lemma 11.5, we may also assume that at least
two of the color classes are not periodic. Therefore, up to renaming the color classes we
may assume that each of the sets Ap, By, A; and B; are nonempty, and that |C/H| > 1.
We also assume that 0 € A,.

Let us show that Ag/H = By/H. Suppose the contrary and let Z be an H—coset such
that X = H,Y = By + H and Z are in arithmetic progression. Note that both X and
Y intersect C' and that Z is monochromatic. Thus, up to renaming the color classes, the
conditions of Lemma 10.2 are satisfied and |Z| + |Ao|, | Z| + | Bo| > |H|, contradicting its
conclusion.

Consider the 3—coloring ¢y of G/H with color classes (A', B',C") with A" = A/H,
B'=B,/H and C' =G/H \ (A" U B’)). Note that C' = (C'\ H)/H.

Observe that cy is rainbowfree, otherwise we have three H-cosets in G in arithmetic
progression where at least two of them are monochromatic (since both By and C'\ H are
H—periodic) and, by the 3-cosets Lemma 10.2, the original coloring is not rainbow—free.
Since Theorem 11.1 holds in G/H, there is a subgroup K < G containing H such that,
up to translation, one of the three chromatic classes of ¢y is contained in K/H and the
remaining two are (K/H)-periodic outside K/H.

Suppose that A’ € K/H. Then A C K and, by Lemma 11.1, Theorem 11.1 holds for
¢ and G with K < G.

Let us show now that C’ can not be contained in a single coset of K/H in G/H.
Suppose the contrary, so that C' is contained in a single K—coset X of G. Let Z be
a K—coset in arithmetic progression with X and Y = Ay + K. Since Y intersects the
two colors, A and B, and Z is necessarily monochromatic with color A or B, we have
|Z| + |Yal, | Z] + |YB| > |K| contradicting Lemma 10.2.

Suppose now that B’ is contained in a single coset of K/H in G/H. Consider the
coloring cx of G/K with color classes (A”, B",C") with A” = A;/K,B"” = B/K and
C" = G/K \ (A" UB"). Again ¢k is rainbow free since otherwise we have three K-
cosets in G in arithmetic progression where one of them is monochromatic (since C" is
K—periodic) and, by Lemma 10.2, the original coloring is not rainbow-free. Moreover,
|B/K| = 2. It follows from Lemma 11.2 that Theorem 11.1 holds for ¢cx and G/K with
some subgroup L/K < G/K. Thus Theorem 11.1 holds for ¢ and G with L < G. O

We next consider the case where A + B is H—periodic for some subgroup H of G.
Observe that, since ¢ is rainbow—free, we also have H # G.

Lemma 11.7 Suppose that A + B is H-periodic for some proper nontrivial subgroup H
of G. If Theorem 11.1 holds in G/H then it holds in G.
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Proof.  We show that, under the assumption of the Lemma, both sets A and B admit
an H—quasiperiodic decomposition and thus Theorem 11.1 follows from Lemma 11.6.

By the Theorem of Kneser we have
|A/JH+ B/H|> |A/H|+ |B/H|— 1. (11.4)
Since A+ BN 2-C = we have
(A+B)/2CG\C=AUB, (11.5)

where X/2 denotes the image of X C G by the inverse of the automorphism of G defined
as ¥ — 2x. This automorphism leaves all subgroups invariant so that (A + B)/2 is also
H-—periodic. Let

D=((AuB)+ H)\(A+B)/2.

Note that the aperiodic parts of A and of B are contained in D U (AN B). By (11.4) we
have

|A/H[+|B/H|=|A/HNB/H| = [(AUB)/H| = [(A+B)/H|+|D/H| > |A/H|+|B/H|-1+|D/H],

which implies
|D/H|+|A/HNB/H| < 1.

Hence each of A and B admits an H—quasiperiodic decomposition. O

Now we prove the case where two of the color classes are almost quasiperiodic. A set
X C G is almost H—quasiperiodic (resp. almost H-periodic) if there is x € G such that
X U {a} is H—quasiperiodic (resp. H-periodic).

Lemma 11.8 Suppose that A, B are almost H—quasiperiodic for some proper nontrivial
subgroup H < G. If Theorem 11.1 holds in G/H then it holds in G.

Proof.  We say that a coset X of a subgroup H < G is punctured if all but one of its
elements are in the same color class U € {A, B,C}. We then say that X is a punctured
coset of color U.

Since A and B are almost H—quasiperiodic, they admit decompositions A = Ay U A,
and B = By U B; where each of Ay and By are subsets of some H—coset and each of A;
and B; are almost periodic so that each of them contains at most one punctured coset.

We may assume that at least one of A; or By contains a punctured coset and that
0 < |Ao|, |By| < |H| since otherwise A and B are quasiperiodic and the result follows from
Lemma 11.6. We may also assume that none of A, B and C' are periodic since otherwise at
least one of A+ B or A+ C'is periodic and the result follows from Lemma 11.7. Finally



130 CHAPTER 11. RAINBOW-FREE THREE COLORINGS IN ABELIAN GROUPS

we may assume that min{|A/H|,|B/H|,|C/H|} > 1 since otherwise the result follows
from Lemma ?7.

We consider two cases:

Case 1: Ag+H # By+H. Let Z be a coset in arithmetic progression with X = Aq+H
and Y = BO + H.

We may assume that one of X,Y, say X, intersects C, since otherwise X is the
punctured coset of By and Y is the punctured coset of A;, which implies that C is
periodic. In particular X N B = (). Moreover, whatever the colors present in Z, the
conditions of Lemma 10.2 are satisfied and Z can not be a full coset. Since all H—cosets
different from X and Y are either monochromatic or punctured, Z is a punctured coset.
Moreover it can not be of color C since Z N Ay = Z N By = 0.

Suppose that |Z4| = |ZNA| = |H|—1. Then, again by Lemma 10.2, | Z4|+|X¢| = |H],
which implies |X¢| = |[X NC| =1 and |Yp| = |Y N B| = 1. Thus both X and Z are
punctured cosets of color A. Since A can not contain more than two partially filled cosets,
Y is a punctured coset of color C'. Finally, the other color in Z must also be C since 7
is not the coset containing B.

Since |B/H| > 1 there is a coset Y’ ¢ {X,Y, Z} which intersects B. Moreover, Y is
either a full coset or a punctured coset of B. Let Z’ be a third coset in arithmetic pro-
gression with X and Y’. Whatever the colors present in Z’, the conditions of Lemma 10.2
are satisfied, so that both Y and Z’ must be punctured cosets. Thus Z’ must intersect C'
(there are no punctured cosets with colors A and B) and | X 4|+ |Ys| > |H|, contradicting
Lemma 10.2.

Suppose now that |Zg| = |ZNB| = |H|—1. f YN A # () then YV is a punctured coset
of color A and |Y4|+|Zg| > |H| contradicting Lemma 10.2. Otherwise Y intersects C' and
application of Lemma 10.2 implies |Yo| = |X4| = 1. Thus both Y and Z are punctured
cosets of B with second color C' and X is a punctured coset of C' with second color A,
the same structure as in the case above with colors A and B exchanged.

Case 2: Ay + H = By + H. We may assume that at least one of A; or By contains
a punctured coset which is not X, otherwise A and B are quasiperiodic and the results
follows from Lemma 11.6. So let Y be a punctured coset of color A (observe that Yz =0

since By is contained in X, thus |Yo| = 1). Let Z be a coset in arithmetic progression
with X and Y.

We fist prove that Z is not monochromatic. If Z is monochromatic of color B (resp.
C or A) then |Zg|+ |Yo| > |H| (vesp. |Zc|+ |Ya| > |H| or |Z4]+ |Ye| > |H]|) and we get
a contradiction by Lemma 10.2 since X4 (resp. Xp) is not empty.

Thus Z must be a punctured coset of color B with |Z¢| = 1. Since |Ya| + |Zp| > |H|
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then X¢ = 0. Since |Y4| + |Z¢| = |H| then |By| = 1, but also |Y¢| + |Zg| = |H| implies
|Ag| = 1 which is a contradiction. O

11.4 Proof of Theorem 11.1

The proof of Theorem 11.1 now follows from the results in sections 11.2 and 11.3 together
with the theorems of Kneser, Kemperman and Grynkiewicz. By Proposition 11.2 we only
have to prove that if ¢ is a rainbow—free coloring then the color classes verify conditions
(1)-(iii) with some proper subgroup H < G.

Let ¢ be a rainbow-free 3-coloring with non-empty color classes {A, B,C} of the
abelian group G of odd order n. Recall that (since |G| = n is odd) if ¢ is rainbow free,
then for any pair of color classes X,Y € {4, B,C} we have | X + Y| < |X|+ |Y].

The proof is by induction on the number of (not necessarily distinct) primes dividing
n = |G|. If n is prime, the statement holds by Theorems 10.10 and 10.11, and by
Proposition 11.1. Thus we may assume that the Theorem holds for any proper divisor of
n=|G|.

By Lemma 11.7 we can assume that A + B is aperiodic. It follows from Kneser’s
theorem that |A + B| > |A| + |B| — 1. We consider two cases.

Case 1: |A+ B| = |A|+ |B| — 1. It follows from the simplified version of the KST
Theorem ?7? that one of the following holds:
(i) min{]A|,|B|} = 1. In this case the result follows by Proposition 11.1.

(ii) Both A and B are arithmetic progressions with the same common difference d. The
result follows by Lemma 11.4.

(iii) Both A and B are H-quasiperiodic for some nontrivial proper subgroup H < G.
The result follows by Lemma 11.6.

Case 2: |A+ B| = |A|+ |B|. Tt follows from the simplified version of Grynkiewicz’s
Theorem 10.14 that one of the following holds:

(i) min{|A|,|B|} = 2 or |A| = |B| = 3. In this case the result follows by Lemmas 11.2
and 11.3 respectively.

(ii) Both A and B are H-quasiperiodic for some nontrivial proper subgroup H < G.
The result follows by Lemma 11.8.
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(iii) There are a,b € G such that |[A' + B'| = |A'| + |B'| — 1 where A’ = AU {a} and
B’ = BU{b}. According to Kemperman’s Theorem 10.13, either A’ + B’ is periodic,
in which case A + B is also periodic and the result follows by Lemma 11.7, or A,
B’ are both quasiperiodic, in which case A and B are almost periodic and we can
apply Lemma 11.8, or A’, B’ are both arithmetic progressions and then A and B
are almost arithmetic progressions, a case handled in Lemma 11.4.

11.5 The even case

In this Section we shall prove Conjecture 10.1 for cyclic groups of even order. We start
with another consequence of Proposition 11.1 which will be useful later on.

Lemma 11.9 Let {A, B,C} be a rainbow—free 3-coloring of an abelian group. Suppose
that there is a subgroup H such that one of the colors, say A, is contained in H, and each
of B= B\ H and C = C\ H are H-periodic.

There is a proper subgroup K of G containing H such that
B+CDOG\K
and each of B\ K and C'\ K is K -periodic.

Proof. We consider two cases.
Case 1: H ={0}.
We have A = {0}. If |B+ C| = |B| + |C| = |G| — 1 we can choose H = {0}.

Suppose that |B + C| = |B| + |C| — 1 and let {0,2} = G\ (B + C). We have
{0,z}+ B ={0,2} — B C G\ (CU{0}). Hence |{0,2} + B| < |B|+ 1. By decomposing
B into maximal arithmetic progressions with difference x we see that B is a union of
cosets of the nontrivial subgroup K = (z) < G generated by z and at most one (proper)
arithmetic progression with difference z. Likewise {0,2} +C C G\ (BU{0}) implies the
analogous structure for C. Since none of B and C' contains the whole subgroup K, the
only coset where the (proper) arithmetic progressions can sit in is K itself. If both colors
meet K then we have a rainbow—free 3—coloring of this cyclic group with all three colors
arithmetic progressions. But we can not partition & \ {0} into two arithmetic progressions
B',C" with B’ = —B’ and C" = —C". Thus only one of the colors, say C, meets K. Hence
the result holds with the subgroup K.

Finally suppose that |B+C| < |B|+|C|—1. By Kneser’s theorem there is a subgroup
K such that B+C'is K-periodic and |B+C| = |B+ K|+|C+ K|—|K]|. Since 0 ¢ B+C
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we have B+C C G\ K. Hence it follows from |G|—1 = |B|+|C| < |B+K|+|C+ K| < |G|
that one of the sets B, C'is K—periodic, the second one has one K-hole and B4+C = G\ K.

Case 2: H # {0}.

Suppose first that C = G\ H, so that B=0and B C H. Then B+ C = C and the
statement holds with K = H.

Suppose now that both B and C are nonempty. Then {A"=A/H,B = E/H, C' =
C/H} is a rainbow—free 3—coloring of G/H. It follows from Case 1 that there is a proper
subgroup K of G containing H such that B'\ (K/H) and C"\ (K/H) are K—periodic and
A"+ B' D (G/H)\ (K/H). It follows that each of B\ K and C'\ K are K—periodic (one
of the two may be empty) and B+C D G\ K. O

In what follows we use
G=LXZ/]2™L

where L has odd order and m > 1. As usual {A, B, C'} denotes a rainbow-free 3—coloring
of G. Let Py = 2-G. Since the even factor of G is cyclic we have

Py L xZ/2" 7.

For each color X € {A, B,C} we write Xog = X N Py and X; = X N P, where P, is the
second coset of Py in G.

Lemma 11.10 None of the two cosets of Py is monochromatic.

Proof. Suppose the contrary and choose the minimal m for which there is a counterexam-
ple to the statement. We may assume that P, = C. Since A+ B C Py\2-Cy = Py, \2- P,
we have m > 2 (otherwise 2 - P, = Py) and A + B is contained in the proper subgroup
2. Py of Py. Thus A U B is contained in one coset of 2 - Py and the second coset of this
subgroup in Py must be colored only with C' contradicting the minimality of m. O

We next give the structural result analogous to Theorem 11.1 for cyclic groups of even
order.

Theorem 11.2 Let G = L x Z/2™Z where L has odd order and m > 0. There is a
proper subgroup H' of L such that one of the colors, say A, is contained in one coset of
H = H'x7Z/2™Z and each of B\ H and C'\ H is H-periodic.

Proof. By Lemma 11.10 we may assume that none of the two cosets of P, is monochro-
matic. The proof is by induction on m. By Theorem 11.1 the result follows for m = 0.
Assume m > 1. We consider three cases.
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Case 1: One of the two cosets of P, is bichromatic.

We may assume that P, = B UCy and 0 € Ay = A. Thus |By| + |C4] = |P| and
B, +C, C PBy. It follows from Lemma 10.1 and 2- A C P, \ (B1 +C1) that there is a proper
subgroup H; of Py such that 2- A C Hy, and that both B; and C; are Hi—periodic. Let
H, = H{ x Z/2™Z where H| < L has odd order. We next consider two cases according
to Py being bichromatic or trichromatic.

Case 1.1: Py is bichromatic. We may assume that Py = Ay U By. Since |Ag| + |By| =
|Po| and 2-C) C Py\ (Ag+ By) it follows from Lemma 10.1 that there is a proper subgroup
Hy of Py such that 2 - (' is contained in a single coset of Hy, and that both Ay and By
are Hy-—periodic. Let Hy = H} X Z/2™Z with H) < L of odd order.

Now C being Hy—periodic and 2-C contained in a single coset of Hy implies H; < H|.
By the analogous argument on Ay we get Hy < H;. Thus H) = H] and, by symmetry,
we may assume Hy < H;. Therefore each color class is Hy—periodic.

It follows that H{ is a proper subgroup of L since otherwise we get the rainbow—free
3—coloring {A/L, B/L,C/L} of the cyclic group G/L of order 2™, contradicting Theorem
10.10.

Now consider the subgroup H = H|} x Z/2™Z. Observe that H contains A, since
2- Ay C Hy < H and the two subgroups H; and H have the same odd factor. Similarly,
since 2 - Cy C H, the color C] is also contained in H. Hence B does not intersect H
since otherwise, as all color classes are Hg—periodic, we would get the rainbow-free 3—
coloring {(Ag N H)/H,(BNH)/H},(C N H)/H)]) of the cyclic group G'/H|, of order 2™
contradicting again Theorem 10.10. Thus B = G \ H and the statement of the Theorem
holds with H' = H|.

Case 1.2: Py is trichromatic. By the induction hypothesis there is a subgroup Hy =
Hj) x Z/2™ Z such that A C Hy and By \ Hy and Cy \ Hy are Hy—periodic. Choose
a minimal H| with this property. We may assume that Cy \ Hp is nonempty. Since
2-AC H| xZ/2™7Z we have A C H' x Z/2™~ 17 with H' = Hj N H;|. By the minimality
of H) we have H' = Hj < H;. Now if for some = € L\ H| the coset X = H, + (2x,0)
is colored B then X C Ay 4+ By disjoint from 2 - C' implies that the coset Hy + (z,1)
is also monochromatic of color B. By switching the roles of B and C we conclude that
By \ (Ho+ (0,1)) and Cy \ (Hp + (0,1)) are also Hy-—periodic. Let H = H{ x Z/2™Z.
If C = G\ H the statement holds with H and we are done. Otherwise the 3-coloring
{A/Hy, (B \ Hy)/H,.(C\ Hy)/Hy} is rainbow—free with a color of cardinality one. By
Proposition 11.1 every color X satisfies 2- X C X = —X. This implies that each of B\ H
and C'\ H are not only Hy—periodic but in fact H-periodic. This concludes this case.

Case 2: Both cosets of Py are trichromatic.
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By the induction hypothesis there is a subgroup Hy = H] x Z/2™'Z of P, such that
Ay is contained in a single coset Hy and By \ Hy and Cy \ Hy are Hy—periodic. Choose a
minimal H{ with this property.

It follows from Lemma 11.9 that there is a proper subgroup Ty = T} x Z/2™'Z < P,
containing Hy such that By + Cy D Py \ Tj and each of By \ Ty and Cy \ Tp is Tp—periodic.

We have 2 - A; C Py \ (By + Cp) so that 2+ A; C Ty. It follows that A; C H with
H =T|x7Z/2™Z. Thus A C H. We now use a similar argument to Case 1.2. For each
x € L\ T, the coset X =T+ (22,0) C Py \ Tp is monochromatic and, since the coloring
is rainbow—free so that X = Ay + X is disjoint from Ty + (22, 1), the coset Ty + (x,1) is
also monochromatic. Hence each of By \ (Ty + A;) and Cy \ (Ty + A;) is also Ty—periodic.
Hence, either G\ H is monochromatic and we are done, or {A/H,(B\H)/H,(C\H)/H}
is a rainbow-free 3-coloring of G/H with a color class of cardinality one. By Proposition
11.1 every color X satisfies 2- X C X = —X. This implies that each of B\ H and C'\ H
are not only Tg—periodic but in fact H—periodic. This completes the proof. O

Theorem 11.2 provides a proof of Conjecture 10.1 for cyclic groups of even order. The
proof is completely analogous to the one in Corollary 11.1 for the case of abelian groups
of odd order except that we invoke Theorem 11.2 instead of Theorem 11.1.

Corollary 11.2 Let G be cyclic group of order n. Let p denote the smallest odd prime
factor of n in Py and let q be the smallest odd prime factor of n in Py. If {A,B,C} is a
rainbow—free 3—coloring of G then

min{|A|, |B], |C]} < {mj . (11.6)

Moreover, there are rainbow—free 3—colorings of G for which equality holds.
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Chapter 12

Colour patterns in orthogonal arrays

12.1 Introduction

Some of the phenomena described in past sections on the existence of color patterns
in combinatorial structures behave in a particularly nice way when considered in finite
groups. A simple example is the fact that the total number of monochromatic Schur triples
in every 2-coloring of the group of integers modulo n depends only on the cardinality of
the color classes but not on the distribution of the colors, a fact first noticed, as far as
we know, by Datskowsky [19] (see Section 10.2.2). The same is true for monochromatic
3—term arithmetic progressions when n is relatively prime with 6, as noted by Croot [17].

In 2005, Cilleruelo, Cameron and Serra [15] gave a combinatorial counting argument
which explains the above two results and provides the ground for the following general-
izations:

1. Results like the above mentioned ones can be extended to general finite groups.
Actually the universe to be colored needs not to be even a group, but simply an
orthogonal array. However most of the natural applications seem to be more suited
in the context of finite groups.

2. The monochromatic structures include Schur triples, arithmetic progressions, or
solutions of more general equations in groups.

3. The counting argument can be applied to colorings with more than two colors and
can also be used to study rainbow structures.

Of course there are limitations in such general results, which become less precise with
the increasing complexity of the structures we consider.

137
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We give in Section 12.2 a general formulation of the basic counting lemma which is
based in a counting argument used in [15]. This basic lemma is stated in the context
of orthogonal arrays and its nicest applications give a relationship between the number
of monochromatic and rainbow structures depending only on the cardinality of the color
classes. Section 12.3 collects some specific applications of the results in Section 12.2, in-
cluding the study of monochromatic and rainbow Schur triples and arithmetic progressions
in finite groups.

12.2 A counting argument

Let X be a finite set with cardinality n and let S be a set of vectors in X¢. Let ¢: X —
[1,7] be an r—coloring of X with color classes X1,..., X,. A vector x = (z1,2,...,24) € S
is monochromatic under c if all its coordinates belong to the same color class. When there
are either no two coordinates of the same color class or all colors are present, we say
that the vector is rainbow under ¢. We denote by M = M(S) and R = R(S) the set of
monochromatic and rainbow vectors in .S respectively.

A set S of d-vectors with entries in X is an orthogonal array of degree d and strength k
if, for any choice of k columns, each k-vector of X* appears in exactly one vector of S.
In other words, if we specify any set of k entries ay,---,a; and any set of subscripts
1 <ip <ip < - < i <d, we find exactly one vector y = (y1,99,...,¥q) in S with
Yiy = Q1,Yi, = g, .. .,Y;, = ag. We denote by OA(d, k) the family of orthogonal arrays of
degree d and strength k on X.

Lemma 12.1 below is the basic tool we shall use. It is based on the counting arguments
used in [15].

In what follows we use the following notation. The color classes of an r—coloring
¢ of X will be denoted by Xi, Xs,...,X,, and we denote z; = |X;|/n. For a vector
u = (uy,...,u,) with nonnegative integer entries, we denote by |[ul| = >, u;. The
multinomial coefficient ( d ) will be written as (fj) We use the convention

U1,U2eestr d— | 1]

(Z)infv<uand (g):l.
Lemma 12.1 Let S be an orthogonal array OA(d, k) on X and let ¢ be an r—coloring of

X.

For each vector u = (uy, us, ..., u,) with ||u|| <k the following equality holds:

(Y= 25 ()(2) () o

lIvil=d
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where the sum is extended to all vectors v = (vy,va,...,v,) with nonnegative integer
entries, ||v|]| = d, and s(v) is the number of vectors in S with v; coordinates in X; for
eacht=1,...,r.

Proof. Given an ordered partition V' = (V1,V3,...,V,) of [1,d], possibly with some empty
parts, let us denote by S(V) the set of vectors in S whose entries in V; belong to X,
1 < i <r. An r-tuple of subsets (U, Us,...,U,) of [1,d] is of type u = (uy, us, ..., u,) if
|Ui| = u;, 1 <4 < r. Denote by P"(u) the set of all r—tuples of pairwise disjoint subsets
of [1,d] of type u. We say that V' dominates U and write V = U if V; D U;, 1 < i <.

Since S is an orthogonal array OA(d, k), there are k — ||u|| vectors in S which meet a
prescribed assignment of ||u|| coordinates. Hence, for each r—tuple of subsets (Uy, Us, ... U,)
in P (u) there are | X || Xa|*2---| X, || X |*~!"/ vectors in S whose entries in U; belong
to X;, 1 < i < r. Among these vectors we find all vectors in S(V) for each partition V'
which dominates U, that is,

3" S(V) = X0 X X[ [

VU

Each partition V' dominates (lq‘ﬁl) (lVQ‘) - (ll‘;l) r—tuples in P"(u). Summing up through

all r—tuples in P"(u) we get vectors counted by s(v) for each v which dominates compo-

nentwise the vector u:

(ﬁ)')ﬁ'“ll&r“?---|Xr|"r|X|’f—“ = 2. 2.5m

UePr(u) VU

=2 2, 5m

V>-UUeP"(u)

i %d @) <u><u> > sw)

VePT(v)

) %—:d (Z) (:Z) (2:)5@'),

as claimed. O

Lemma 12.1 gives a relationship between the number of vectors with some specific
color patterns and the cardinalities of the color classes. For 2—colorings and orthogonal
arrays OA(d, k), Lemma 12.1 gives the following result obtained in [15].

Theorem 12.1 ([15]) Let S be an orthogonal array OA(d, k) on X. For any 2-coloring
of X we have

k

> (1Y (j) 1= % <s(0,d) +(=1)* Xd: (j N 1)s(i,d— z’)) :

Jj=0 Jj=1
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O
For orthogonal arrays OA(d, d — 1) with arbitrary d > 3 we get the following relation.

Theorem 12.2 Let S be an orthogonal array OA(d,d—1) on X. For each r—coloring of
X we have

Z ((1 - xi)d - (_1>dx;i) = nd{1 (Z |SZ| + (_1)d_1’M|> ’

=1 i=1

where S; denotes the set of vectors in S which miss color 1.

Proof. Consider the alternating sum of the equations (12.1) for vectors of type (,0, ..., 0);
we have

d—1 d—1

fd iy |d—1—i __ 1)t U1 s(v
> () = > 1>1V2d(2.) (v)
&)
— ||v§ :Os(v) + (=1)"s(d,0,...,0)

= [Sil+ (=1)* M,

where S; denotes the set of vectors which miss color 1 and M; denotes the set of vectors
with all entries of color 1.

By symmetry we get
d—1

/d s ,
Z<—1>l( )|Xj|er|d 5 4 (DML 1< < (12.2)

i
i=0
where S; denotes the set of vectors which miss color j and A; denotes the set of vectors
with all entries of color j. We get the result by adding up all the equations in (12.2). O

In particular we get the following Corollary for 3—-colorings, which is a slight general-
ization of a result by Balandraud [8, Corollary 2]. Here a vector is said to be rainbow if
all colors are present.

Corollary 12.1 Let S be an orthogonal array OA(d,d — 1) on X. For each 3-coloring
of X we have

3

D (L —a)! = (-1)%f) ~1= ndll (1 + (=) |M[ = |R]).

=1
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Proof. With our current notion of rainbow vectors we have

3
Rl =M=y Sl = 15| = > ISi| +[M].

=1

By Theorem 12.2 we have

-1 () = Yl

=1

= X7 R[4+ 1+ (=)™ M],

as claimed. O

12.3 Colour patterns in OA(3,2)

Natural extensions of results in Arithmetic Ramsey Theory concern the study of color
patterns of structures in groups. The results in Section 12.2 can be directly applied to
this setting. The set of Schur triples in a finite group G form an orthogonal array O A(3, 2).
The same is true for 3—term arithmetic progressions if the order of G is relatively prime
with 6. For orthogonal arrays O(3,2) we get a nice relationship between monochromatic
and rainbow vectors.

Theorem 12.3 Let S be an orthogonal array OA(3,2) on X. For any r-coloring of X
we have

2M|—|R| =3 |Xi]* — | X
i=1

Proof. By taking u = (0,0,0) in Lemma 12.1 we get

X7 =) s(v) = M|+ |R[+|T(2,1)], (12.3)
lol|=3

where T'(2,1) = S\ {M U R} denotes the set of vectors in S with exactly two entries of
the same colour.

On the other hand, the choice of u = (2,0,0) in Lemma 12.1 gives

31X, |* = 3s(3,0,0) + s(2,1,0) + 5(2,0,1).
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Adding up similar countings with (0,2,0) and (0, 0,2), we have

33 |XP =3|M|+ |T(2,1)]. (12.4)
i=1
The result follows by substracting (12.3) from (12.4). O

For 2—colourings we do not have rainbow triples, so that Theorem 12.3 gives a formula
for the total number of monochromatic triples in terms of the cardinalities of the color
classes. By minimized that formula (with each color class of size n/2) we get the minimum
number of monochromatic triples in an orthogonal array O A(3, 2) for any 2-coloring of X.
More precisely, we have the next Corolary which is a natural generalization of Corollary
3.1 in [15],

Corollary 12.2 Let S be an orthogonal array OA(3,2) on X. For any 2-coloring of X
we have
| M| = | X1 * = [X] - [Xo| + | X%

In particular, there are at least n? /4 monochromatic triples in S for any 2—coloring of X.

In the case of 3-colourings Theorem 12.3 has a nice interpretation. Let us call o2 =
S a2/r— (D2, zi/r)? the variance of an r—coloring ¢. Then Theorem 12.3 states the

following Corollary.

Corollary 12.3 Let S be an orthogonal array OA(3,2) on X. For any 3-coloring of X
we have
2|M| — |R| = 9n?0?. (12.5)

12.3.1 Schur triples in finite groups

In this Section we consider some applications for Schur triples in finite groups.

Let G be a finite group of order n. We denote by p(G) the smallest prime dividing
the order of G. A Schur triple in G is a triple of elements (z,y, z) with xy = z. The set
of Schur triples forms an orthogonal array OA(3,2).

Note that for every coloring of a group GG with identity 1 there is always a trivial
monochromatic Schur triple, namely (1,1,1). If the color class containing the group
identity is not a singleton we also have the trivial Schur triples (1, x,x) for x in the color
class of 1. Thus, in dealing with monochromatic Schur triples it makes sense to consider
colorings of G*, the nonidentity elements of the group. Note that the original proof of
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Schur works fine for finite groups, giving that any r—colouring of G* has a (nontrivial)
monochromatic Schur triple provided that the order of the group verifies |G| > er!. We
include here this translation just for completeness.

Theorem 12.4 (Schur) Letr be a positive integer. For every r—partition of G* = G\{1}
where G is a group of order |G| > er! there is a monochromatic Schur triple.

Proof. Let {A;,...A,,{1}} a given partition with no nontrivial monochromatic Schur
triples. This in particular implies that A;¢g~' N A;0 for each g € A,;.

We may assume that A; is the largest color class, so that |G| < r|A;|+1. For g; € A;
we have A1g;' C AyU---UA, U{1}.

Let Ay be the largest color class in A;g; ", so that |[4;] < (r — 1)|Ay] + 1. Let
g2 € Ay and note that Ayg; " C Ag; ' because g, = ag; ' for some a € A;. Therefore
we have Ayg;' € A3U---U A, U{1}. Let A; be the largest color class in Ayg;* so that
|Ay| < (r — 2)|A3] + 1. Again, for g3 € Az we have Asgz' C Aygy' C Ajgr'; hence
Azgs' C AyU---UA U{1}.

By continuing in this way we reach a step i where |4;,, N A;9; | < 1 (eventually
i =r.) Hence,

r—1 ]
G] < r|Ay |+ 1< r(r—1)|Ag| +7 < -+ < Z% <erl.
i=0

O
Since there are 2|X;| monochromatic Schur triples for X; the color class containing

the identity of the group, we immediately get the following results concerning rainbow
Schur—triples.

Corollary 12.4 Let ¢ be a 3—coloring of G. If 0% < g—g, where @ = min{xy, x9, 23} then
there is a rainbow Schur—triple under c.

Proof. Let X; be the color class containing the identity of the group, then 2|X;| < |M].
Since @ < z; then na < |X;| and thus 2na < |M|. Combining this inequality with
equation 12.5 we get,

4na — Ino? < |R|. (12.6)

Thus, |R| is positive if 02 < 2% as claimed. O
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Corollary 12.5 Let ¢ be an equinumerous 3—coloring of a group G of order n = 0
(mod 3). There is a linear number of rainbow Schur triples under c.

Proof. Since the variance of an equinumerous coloring c is 2 = 0, from equation 12.6 it
follows that %n < |RJ. O

Alekseev and Sachev [3] proved that every equinumerous 3-coloring of the integers in
[1,3n] contains a rainbow Schur-triple. The result was later improved by Schonheim [57]
who proved that any 3-coloring of the integers in [1, N] such that the smallest color class
has more than N/4 elements contains a rainbow Schur triple, and this lower bound is best
possible. The following example shows that for groups there are also 3—colorings with no
rainbow Schur triples such that the smaller color class has cardinality n/4:

Example 12.1 Let K < H < G be two subgroups of G such that K has index two in H
and H has index two in G; give color 1 to the elements in K, color 2 to the elements in
H\ K and color 3 the remaining elements of the group. In this example X; Xy, = Xy and
X1X3 - X2X3 - X3.

However it is not clear to us that the lower bound n/4 for the size of the smaller color
class is tight in the case of 3-colorings of groups with no rainbow Schur triples.

It has been shown by several authors [19, 56, 54] that the minimum number of
monochromatic Schur triples in a 2—colouring of the integers in [1, N] is N2/22 + O(N).
We just note here that this result can also be obtained from Theorem 12.3 by considering a
3—coloring of the group Z/2NZ with chromatic classes X, X, X3 where X3 = [N+1,2N]
and {X7, X5} are the color classes of the given 2-colouring of [1, N].

12.3.2 Arithmetic progressions in finite groups

In this Section we consider some applications for arithmetic progressions in finite groups.

A d-term arithmetic progression in a group G with p(G) > d is a set of the form
{a,az,az?,... az®"'} where a,z € G. The progression is said to be degenerate if z = 1,
the identity of the group. The set of d—term arithmetic progressions forms an orthogonal
array OA(d,2). For d = 3 we find the nicest applications of the results in Section 12.2.
When G is an abelian group the set of 3—term arithmetic progressions correspond to
solutions of the equation = + y = 2z.

For 3-colorings the following lower bound on the number of monochromatic 3—term
arithmetic progressions was given in [15].
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Corollary 12.6 ([15], Corollary 4.3) Every 3-coloring of a group G with p(G) > 17
has at least (n* + 15n + 32) /48 monochormatic 3—term arithmetic progressions.

The authors of [32] prove that, for cyclic groups G = Z/nZ, every 3—coloring such
that the smaller color class has more than min{n/6,n/p(G)} contains a rainbow 3—term
arithmetic progression. They also prove that the lower bound on the size of the smaller
color class can be decreased to 4 when n is a prime. For general groups the following
analogous of Corollaries 12.4 and 12.5 can be derived from Theorem 12.3 and Corollary
12.6.

Corollary 12.7 Let ¢ be a 3—coloring of a group G with p(G) > 17. If & = min{z,, x5, 23} >
0.26 then there is a rainbow 3—term arithmetic progression under c.

Proof. For a group G with p(G) > 17, Corollary 12.6 states (n? + 15n + 32)/48 < |M|.
Combining this inequality with Theorem 12.3 we obtain,

(25n% + 15n + 32) /24 — 3(| X, [* + | Xo|* + | X3]%) < |R|. (12.7)

Recall z; = | X;|/n. Since & = min{x,, ¥, 23} then,

|X1)2 + | X2 + | X3)? < (an)? + (an)* + ((1 — 2a)n)% (12.8)
From Equations 12.7 and 12.8 it follows that

(25m* + 15n + 32) /24 — 3(20” + (1 — 2a)*)n* < |R).

Thus,

(—432a? + 288 — 47)n? + 15n + 32
24

<|R|.
The coefficient (—432a% + 288« — 47) of n? is positive for 0.26 < o < 1/3. Then there
are rainbow 3-term arithmetic progression under c if 0.26 < a. O
In our present context, let us say that a 3-coloring is almost equinumerous if x; =

1/3+ 0(1/y/n).

Corollary 12.8 Let ¢ be an almost equinumerous 3—coloring of a group G with p(G) > 17.
Then the number of rainbow 3—term arithmetic progression under c is at least n*/24+O(n).
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Proof. Since x; = 1/3 + O(1/y/n) for every i, then

| X512 + | Xo? + | Xs]2 = 3(1/9 4+ O(1/n))n.

Combining this equality with Equation 12.7 we obtain,

(25n% + 15m + 32) /24 — n® + O(n) < |R|.

Thus, n?/24 + O(n) < |R| as claimed. O
By increasing the number of colors we clearly get rainbow 3—term arithmetic pro-

gressions more easily. Another simple application of Theorem 12.3 gives the following
Corollary.

Corollary 12.9 Ewvery almost equinumerous r—coloring, r > 3, of a group G of odd order
has at least (1 — 3/r)n* + O(n) rainbow 3-term arithmetic progressions.

Proof. Since x; = 1/r + O(1/y/n) for every i, then

D OIXP = r(1/r* +0(1/n))n’.
=1
Using this Equality Theorem 12.3 states,

2|M| — |R| = 3rn?(1/r* + O(1/n)) — n*.

Thus (1 —3/r)n? + O(n) < |R| as claimed. O

By using Theorem 12.3 we can estimate the minimum number of monochromatic 3—
term arithmetic progressions in a 2-colouring of the integers [1, N]. Consider a 3-coloring
of the group Z/(2N + 1)Z with chromatic classes X1, X5, X3 where X3 = [N +1,2N +1]
and {X;, X5} are the color classes of the given 2-colouring of [1, N]. Denote by M; the
set of monochromatic 3-term arithmetic progressions in X;. Then |M;|+ |M,| is also the
number of monochromatic 3-term arithmetic progressions taken in [1, V].



12.4. SIDON EQUATION 147

12.4 Sidon equation

The Sidon equation, ry = zt, has also received much attention. The set of solutions of
the Sidon equation forms an orthogonal array O A(4, 3). Corollary 12.1 gives the following
result.

Corollary 12.10 For any 3-coloring of a group G, the number of rainbow solutions to

the Sidon equation is
3
|R| = n? <1 - Z((l — ;)" — xf)) )

=1

The above results illustrate the application of the counting arguments in Section 12.2
to obtain Ramsey and anti-Ramsey results in colorings of finite groups. These results
can be extended to linear equations in abelian groups or, more generally, to equations of
the form z{"x5? - - 23? = g, where oy, @, . .., a4 are permutations of the elements G and

gEeQq.
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