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Abstract 

The detection of the Acoustic Events (AEs) naturally produced in a meeting room may help to 

describe the human and social activity. The automatic description of interactions between humans 

and environment can be useful for providing: implicit assistance to the people inside the room, 

context-aware and content-aware information requiring a minimum of human attention or interrup-

tions, support for high-level analysis of the underlying acoustic scene, etc. Activity detection and 

description is a key functionality of perceptually aware interfaces working in collaborative human 

communication environments like meeting-rooms. On the other hand, the recent fast growth of 

available audio or audiovisual content strongly demands tools for analyzing, indexing, searching 

and retrieving the available documents. Given an audio document, the first processing step usually 

is audio segmentation (AS), i.e. the partitioning of the input audio stream into acoustically homoge-

neous regions which are labelled according to a predefined broad set of classes like speech, music, 

noise, etc. In fact, AS can be seen as a particular case of acoustic event detection, as it will be done 

herewith. 

Acoustic event detection (AED) is the objective of this thesis work. A variety of features com-

ing not only from audio but also from the video modality is proposed to deal with that detection 

problem in meeting-room and broadcast news domains. Two basic detection approaches are inves-

tigated in this work: a joint segmentation and classification using Hidden Markov Models (HMMs) 

with Gaussian Mixture Densities (GMMs), and a detection-by-classification approach using dis-

criminative Support Vector Machines (SVMs). For the first case, a fast one-pass-training feature 

selection algorithm is developed in this thesis to select, for each AE class, the subset of multimodal 

features that shows the best detection rate.  

AED in meeting-room environments aims at processing the signals collected by distant mi-

crophones and video cameras in order to obtain the temporal sequence of (possibly overlapped) AEs 

that have been produced in the room.  When applied to interactive seminars with a certain degree of 

spontaneity, the detection of acoustic events from only the audio modality alone shows a large 

amount of errors, which is mostly due to the temporal overlaps of sounds. This thesis includes 

several novelties regarding the task of multimodal AED. Firstly, the use of video features. Since in 

the video modality the acoustic sources do not overlap (except for occlusions), the proposed fea-

tures improve AED in such rather spontaneous scenario recordings. Secondly, the inclusion of 

acoustic localization features, which, in combination with the usual spectro-temporal audio features, 

yield a further improvement in recognition rate. Thirdly, the comparison of feature-level and 
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decision-level fusion strategies for the combination of audio and video modalities. In the later case, 

the system output scores are combined using two statistical approaches: weighted arithmetical mean 

and fuzzy integral. On the other hand, due to the scarcity of annotated multimodal data, and, in 

particular, of data with temporal sound overlaps, a new multimodal database with a rich variety of 

meeting-room AEs has been recorded and manually annotated, and it has been made publicly 

available for research purposes. 

For audio segmentation in the broadcast news domain, a hierarchical system architecture is 

proposed, which properly groups a set of detectors, each one corresponding to one of the acoustic 

classes of interest. Two different AS systems have been developed for two broadcast news data-

bases: the first one corresponds to audio recordings from the TV debate program Àgora from the 

Catalan TV3 channel, and the second one includes diverse audio segments from the 3/24 Catalan 

broadcast news TV channel. The output of the first AS system was used as the first stage in the 

automatic translation and subtitling applications developed for the Tecnoparla project, a project that 

developed several speech technologies to extract all possible information from audio. The second 

AS system, which is a hierarchical HMM-GMM-based detection system with feature selection, 

obtained competitive results in the Albayzín-2010 audio segmentation evaluation. 

Finally, it is worth mentioning a few side outcomes from this thesis work. The author has been 

responsible for the organization of the above mentioned Albayzín-2010 evaluation of audio segmen-

tation systems, taking a leading role in the specification of acoustic classes, databases, metric and 

evaluation protocol, and also carrying out a posterior analysis of the systems and results submitted 

by eight research groups from Spanish and Portuguese universities. Moreover, a 2-source HMM-

GMM-based acoustic event detection system has been implemented in the UPC’s smart-room, 

which works in real time, for purposes of testing and demonstration.  
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Resum 

La detecció d'esdeveniments acústics (Acoustic Events (AEs)) que es produeixen naturalment en 

una sala de reunions pot ajudar a descriure l'activitat humana i social. La descripció automàtica de 

les interaccions entre els éssers humans i l'entorn pot ser útil per a proporcionar: ajuda implícita a la 

gent dins de la sala, informació sensible al context i al contingut sense requerir gaire atenció 

humana ni interrupcions, suport per a l'anàlisi d'alt nivell de l'escena acústica, etc. La detecció i la 

descripció d'activitat és una funcionalitat clau de les interfícies perceptives que treballen en entorns 

de comunicació humana com sales de reunions. D'altra banda, el recent creixement ràpid del 

contingut audiovisual disponible requereix l'existència d'eines per a l'anàlisi, indexació, cerca i 

recuperació dels documents existents. Donat un document d'àudio, el primer pas de processament 

acostuma a ser la seva segmentació (Audio Segmentation (AS)), és a dir, la partició de la seqüència 

d'entrada d'àudio en regions acústiques homogènies que s'etiqueten d'acord amb un conjunt 

predefinit de classes com parla, música, soroll, etc. De fet, l'AS pot ser vist com un cas particular de 

la detecció d’esdeveniments acústics, i així es fa en aquesta tesi. 

La detecció d’esdeveniments acústics (Acoustic Event Detection (AED)) és un dels objectius 

d'aquesta tesi. Es proposa tot una varietat de característiques que provenen no només de l'àudio, 

sinó també de la modalitat de vídeo, per fer front al problema de la detecció en dominis de sala de 

reunions i de difusió de notícies. En aquest treball s'investiguen dos enfocaments bàsics de detecció: 

1) la realització conjunta de segmentació i classificació utilitzant models de Markov ocults (Hidden 

Markov Models (HMMs)) amb models de barreges de gaussianes (Gaussian Mixture Models 

(GMMs)), i 2) la detecció per classificació utilitzant màquines de vectors suport (Support Vector 

Machines (SVM)) discriminatives. Per al primer cas, en aquesta tesi es desenvolupa un algorisme 

de selecció de característiques ràpid d'un sol pas per tal de seleccionar, per a cada AE, el subconjunt 

de característiques multimodals que aconsegueix la millor taxa de detecció. 

L'AED en entorns de sales de reunió té com a objectiu processar els senyals recollits per 

micròfons distants i càmeres de vídeo per tal d'obtenir la seqüència temporal dels (possiblement 

superposats) esdeveniments acústics que s'han produït a la sala. Quan s'aplica als seminaris 

interactius amb un cert grau d'espontaneïtat, la detecció d'esdeveniments acústics a partir de només 

la modalitat d'àudio mostra una gran quantitat d'errors, que és sobretot a causa de la superposició 

temporal dels sons. Aquesta tesi inclou diverses contribucions pel que fa a la tasca d'AED 

multimodal. En primer lloc, l'ús de característiques de vídeo. Ja que en la modalitat de vídeo les 

fonts acústiques no se superposen (exceptuant les oclusions), les característiques proposades 
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milloren la detecció en els enregistraments en escenaris de caire espontani. En segon lloc, la 

inclusió de característiques de localització acústica, que, en combinació amb les característiques 

habituals d'àudio espectrotemporals, signifiquen nova millora en la taxa de reconeixement. En 

tercer lloc, la comparació d'estratègies de fusió a nivell de característiques i a nivell de decisions, 

per a la utilització combinada de les modalitats d'àudio i vídeo. En el darrer cas, les puntuacions de 

sortida del sistema es combinen fent ús de dos mètodes estadístics: la mitjana aritmètica ponderada i 

la integral difusa. D'altra banda, a causa de l'escassetat de dades multimodals anotades, i, en 

particular, de dades amb superposició temporal de sons, s'ha grabat i anotat manualment una nova 

base de dades multimodal amb una rica varietat d'AEs de sala de reunions, i s'ha posat a disposició 

pública per a finalitats d'investigació. 

Per a la segmentació d'àudio en el domini de difusió de notícies, es proposa una arquitectura 

jeràrquica de sistema, que agrupa apropiadament un conjunt de detectors, cada un dels quals 

correspon a una de les classes acústiques d'interès. S'han desenvolupat dos sistemes diferents de SA 

per a dues bases de dades de difusió de notícies: la primera correspon a gravacions d'àudio del 

programa de debat Àgora del canal de televisió català TV3, i el segon inclou diversos segments 

d'àudio del canal de televisió català 3/24 de difusió de notícies. La sortida del primer sistema es va 

utilitzar com a primera etapa dels sistemes de traducció automàtica i de subtitulat del projecte 

Tecnoparla, un projecte finançat pel govern de la Generalitat en el que es desenvoluparen diverses 

tecnologies de la parla per extreure tota la informació possible del senyal d'àudio. El segon sistema 

d'AS, que és un sistema de detecció jeràrquica basat en HMM-GMM amb selecció de 

característiques, ha obtingut resultats competitius en l'avaluació de segmentació d'àudio Albayzín-

2010. 

Per acabar, val la pena esmentar alguns resultats col·laterals d’aquesta tesi. L’autor ha sigut 

responsable de l'organització de l'avaluació de sistemes de segmentació d'àudio dins de la campanya 

Albayzín-2010 abans esmentada. S'han especificat les classes d’esdeveniments, les bases de dades, 

la mètrica i els protocols d'avaluació utilitzats, i s'ha realitzat una anàlisi posterior dels sistemes i els 

resultats presentats perls vuit grups de recerca participants, provinents d'universitats espanyoles i 

portugueses. A més a més, s'ha implementat en la sala multimodal de la UPC un sistema de detecció 

d'esdeveniments acústics per a dues fonts simultànies, basat en HMM-GMM, i funcionant en temps 

real, per finalitats de test i demostració. 
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Chapter 1. Introduction 

1.1 Thesis Overview and Motivation 

Acoustic event detection (AED) aims at determining the identity of sounds and their temporal 

position in audio signals. The detection of the Acoustic Events (AEs) naturally produced in a 

meeting room may help to describe the human and social activity that takes place in it. The auto-

matic description of interactions between humans and environment can be useful for providing: 

implicit assistance to the people inside the room, context-aware and content-aware information 

requiring a minimum of human attention or interruptions, support for high-level analysis of the 

underlying acoustic scene, etc. In fact, human activity is reflected in a rich variety of AEs, either 

produced by the human body or by objects handled by humans. Although speech is usually the most 

informative AE, other kind of sounds may carry useful cues for scene understanding. For instance, 

in a meeting/lecture context, we may associate a chair moving or door noise to its start or end, cup 

clinking to a coffee break, or footsteps to somebody entering or leaving. Furthermore, some of these 

AEs are tightly coupled with human behaviors or psychological states: paper wrapping may denote 

tension; laughing, cheerfulness; yawning in the middle of a lecture, boredom; keyboard typing, 

distraction from the main activity in a meeting; and clapping during a speech, approval. Acoustic 

Event Detection (AED) is also useful in the broadcast news domain audio segmentation. The recent 

fast growth of multimedia content available on Internet and other sources strongly demands tools 

for analyzing, indexing, and searching the available documents in order to offer to users the possi-

bility of selecting the desired content, and to companies the capability of tracking, from contents 

generated by the users themselves, the people preferences, opinions, etc. Given an audio document, 

the first processing step usually is audio segmentation (AS), i.e. the partitioning of the input audio 

stream into acoustically homogeneous regions which are labelled according to a predefined broad 

set of classes like speech, music, noise, etc.  Moreover, AS can contribute to improve the perform-

ance and robustness of speech technologies such as speech and speaker recognition, and speech 

enhancement.  

AED is usually addressed from an audio perspective and many reported works are intended 

for indexing and retrieval of multimedia documents [LZJ02] or to improve robustness of speech 

recognition [NNM03]. Within the context of ambient intelligence, AED applied to give a contextual 

description of a meeting scenario was pioneered by [Tem07]. Moreover, AED has been adopted as 

a relevant technology in several international projects, like CHIL [WS09], and evaluation cam-
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paigns [CLE06] [CLE07]. The CLEAR’07 international evaluations in seminar conditions have 

shown that AED is a challenging problem. 

Feature selection plays a central role in the tasks of classification and data mining, since re-

dundant and irrelevant features often degrade the performance of classification algorithms [KJ97]. 

In the meeting-room AED and the broadcast news AS we face the problem of the large number and 

variety of features proposed in the literature. In fact, there are many features which exploit acoustic 

content such as sub-band energies computed in short-time windows, time evolution parameters, 

modulation spectrum, level of harmonicity, etc. Very often authors do not present strong or clear 

arguments in favour of a particular feature set they propose, and the final decision about feature 

subset selection is mainly based on their prior knowledge. The feature selection problem is even 

more acute when other types of data, like video data, are used besides audio. By using a fast one-

pass-training feature selection approach we have selected the subset of multimodal features that 

shows the best detection rate for each class of AEs, observing an improvement in average accuracy 

with respect to using the whole set of features. 

In this thesis we address the problem of the AED in real-world meeting-room environment 

from multimodal perspective. To deal with the difficult problem of signal overlaps, we use features 

coming from the video modality as well as acoustic localization features, which are new for the 

meeting-room AED task. Since in the video modality the acoustic sources do not overlap (except 

for occlusions), the proposed features improve AED in spontaneous scenario recordings. Although 

the considered meeting-room events are not acoustic but audio-visual, in the thesis we refer to 

acoustic events, because the audio characterization of events provides the main description for 

them. In other words, the event is considered when it has a specific audio counterpart (sound 

activity), and video information is only an additional source of information which is used to en-

hance the audio mono-modal detection.  

For broadcast news audio segmentation the hierarchical AS systems with feature selection has 

been developed. The hierarchical system architecture is a group of detectors (called modules), 

where each module is responsible for detection of one acoustic class of interest. As input it uses the 

output of the preceding module and has 2 outputs: the first corresponds to audio segments detected 

as the corresponding class of interest, and the other is the rest of the input stream. One of the most 

important decisions when using this kind of architecture is to put the modules in the best order in 

terms of information flow, since some modules may benefit greatly from the previous detection of 

certain classes. For instance, previous detection of the classes that show high confusion with 

subsequent classes potentially can improve the overall performance. In this type of architecture, it is 
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not necessary to have the same classifier, feature set and/or topology for different detectors. Two 

different AS systems has been developed using two broadcast news databases: the first one includes 

audio recordings from the TV debate program Àgora from the Catalan TV3 channel, and the second 

one includes diverse audio segments from the 3/24 Catalan broadcast news TV channel. The output 

of the first AS system was used as the first stage in the automatic translation and subtitling applica-

tion developed for the Tecnoparla project, a project that included several technologies to extract all 

possible information from audio: speaker diarization, language recognition, speech recognition, 

speech translation and text-to-speech syntesis. The second HMM-based AS system with feature 

selection got competitive results in the Albayzín-2010 audio segmentation evaluation among 8 

participants from Spanish and Portuguese universities. 

In the presented thesis two-source AED and acoustic source localization (ASL) systems run-

ning in real-time in the UPC’s smart-room have been developed. The detection of AEs is performed 

using HMM-GMM approach, which allows analyzing the input waveform on a frame-by-frame 

basis with low latency. The AED and ASL systems are visually monitored by a GUI application 

which shows the output of AED and ASL technologies in real-time.  Using this application, a video 

recording has been captured that contains the output of the GUI during a session lasting about 2 

min, where three people in the room speak, interact with each other or produce one of the 12 

isolated as well as overlapped with speech meeting-room AEs. 
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1.2 Thesis Objectives 

The goal of this thesis work is designing efficient algorithms for acoustic event detection in meet-

ing-room environments and audio segmentation in the broadcast news domain. Determining the 

occurrence of events is fundamental to developing systems that can observe and react to them.  The 

thesis work contemplates several main research directions: multimodal feature extraction and 

feature selection for AED, research on different detection/segmentation approaches, fusion of both 

audio and video modalities to detect AEs. 

For meeting-room environments, the task of AED is relatively new; however, it has already 

been evaluated in the framework of two international evaluation campaigns: in CLEAR (Classifica-

tion of Events, Activities, and Relationships evaluation campaigns) 2006 [CLE06], and in CLEAR 

2007 [CLE07]. In the last evaluations, 5 out of 6 submitted systems showed accuracies below 25%, 

and the best system got 33.6% accuracy. It has been found that the overlapping segments account 

for more than 70% of errors produced by every submitted system. 

Dealing with the overlap problem is the central research objective in our work. Since the hu-

man-produced AEs have a visual correlate, video modality can be exploited to enhance the 

detection rate of certain AEs. A number of features can be extracted from video recordings by 

means of object detection, motion analysis, and multi-camera person tracking to represent the visual 

counterpart of AEs. From the audio perspective, the video modality has an attractive property: the 

disturbing acoustic noise usually does not have a correlate in the video signal. 

Enhancing of the recognition results using information from multiple microphones is the other 

research objective in our work. Since the characteristics of the meeting-room are known before-

hand, the position (x, y, z) of the acoustic source may carry useful information. Indeed, some 

acoustic events can only occur at particular locations, like door slam and door knock can only 

appear near the door, or footsteps and chair moving events take place near the floor. Based on this 

fact, we can define a set of meta-classes that depend on the position where the acoustic event is 

detected. The proposed meta-classes and their associated spatial features are: “near door” and “far 

door”, related to the distance of the acoustic source to the door, and “below table”, “on table” and 

“above table” meta-classes depending on the z-coordinate of the detected AE.  

The demonstration of obtained results is an important aspect during any research activity. Our 

objective is online implementation of AED technologies in the smart-room in order to investigate 

the potentialities of video and audio perception of the computer systems. 
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Taking into account great variety audio features proposed in the state-of-the-art literature we 

aim to propose a theoretically-based systematization to the topic of feature extraction for AED, and 

also to propose fast and effective approach to select individual features or groups of features for 

different AEs. 

Since the task of AED in meeting room environments is relatively new, there is a scarcity of 

annotated multimodal data, and, in particular, of data with temporal sound overlaps. Recording and 

manual annotation of multimodal and making it available for research community is also an objec-

tive in our research. 

Searching for a suitable fusion approach of different modalities is an important aspect in de-

velopment of multimodal systems. The information fusion can be done on data, feature, and 

decision levels. Data fusion is rarely found in multi-modal systems because raw data is usually not 

compatible among modalities. Concatenating feature vectors from different modalities into one 

super vector is a possible way for combining audio and visual information. An alternative to fea-

ture-level fusion is to model each different feature set separately, to design a specialized classifier 

for this feature set, and combine the classifier output scores. The two above mentioned fusion 

approaches will be compared in the presented thesis. 

In the context of audio segmentation in broadcast news domain our objective is to find a suit-

able segmentation strategy, and the best feature set for each acoustic class individually. Quantitative 

comparison and evaluation of competing approaches is very important in nearly every research and 

engineering problem since it may help to guess which directions are promising and which are not. 

So the evaluations have to be organized and coordinated, and appropriate metrics and evaluation 

tools have to be developed.  
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1.3 Thesis Outline 

The thesis is organized as follows. Chapter 2 presents state of the art in the area of multimodal 

audio recognition, presenting a literature review from the application point of view, and reporting 

different features extracted from audio and video modalities, feature selection, classification and 

detection techniques that have been used so far for multimodal acoustic event detection (AED) and 

audio segmentation (AS) tasks. 

Chapter 3 reports the work done in the area of audio-visual feature extraction. The scheme for 

grouping of the variety of audio features is presented. Then the feature extraction approach to obtain 

a set of spectro-temporal features and the localization coordinates of the sound source is detailed. 

Additionally, a number of features extracted from the video signals by means of object detection, 

motion analysis, and multi-camera person tracking to represent the visual counterpart of several 

AEs is described. 

Chapter 4 describes a few AED systems developed in this thesis. The chapter includes the 

overview of HMM-GMM, SVM detection systems and the fusion techniques of different modali-

ties. Then the results, obtained with the above-mentioned systems and different databases, are 

reported. The importance of different modalities using fuzzy theory concept is investigated. 

Chapter 5 presents the work done in the broadcast news AS task. A hierarchical system is de-

veloped that has been applied for two different databases. The suitability of the presented AS 

approach has been validated in automatic translation and subtitling application as well as in speaker 

diarization system. The chapter includes the overview, results and main conclusions from the 

Albayzín-2010 AS evaluation whose organization was carried out by the author. 

Chapter 6 reports the work done in the feature selection problem. A fast one-pass-training 

technique has been proposed that does not require the re-estimation of acoustic models during the 

evaluation of the candidate feature sets.  Three different feature selection approaches have been 

compared in the framework of multimodal the meeting-room AED and the broadcast news AS. 

Online implementation of the 2-source AED and acoustic source localization systems is pre-

sented in chapter 7. 

Finally, chapter 8 concludes the work. The main achievements are summarised in this chapter. 

Several promising future directions are highlighted.  
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Chapter 2. State of the Art 

2.1 Chapter Overview 

In this chapter the current state of the art in the area of multimodal feature extraction, feature 

selection, audio recognition and fusion of different information sources is presented. 

The remaining sections of this chapter are organized as follows. Section 2.2 presents literature 

review of the multimodal acoustic event detection task. Related topics in multimodal audio recogni-

tion from the application point of view are discussed in Section 2.3. Sections 2.4, 2.5, 2.6, 2.7 

discuss the currently used multimodal features, feature selection, detection and fusion approaches, 

respectively. 
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2.2 Acoustic event detection 

The notions of acoustic event, acoustic class, environmental sound [MMS10], sounding object 

[RF03] are used interchangeably in the literature. Their definition can be attributed to Vanderveer 

[Van79] as “any possible audible acoustic event which is caused by motions in the ordinary human 

environment; they have real events as their sources; they are usually more “complex” than labora-

tory sinusoids; they are meaningful, in the sense that they specify events in the environment (…)”. 

Acoustic Event Detection (AED) is usually addressed from an audio perspective and most of the 

existing contributions are intended for indexing and retrieval of multimedia documents [LZJ02] or 

to improve robustness of speech recognition [NNM03]. Detection of acoustic events has been 

carried out in several environments like living environments [DM11], hospitals [VIB03], kitchen 

rooms [SLP03], bathrooms [JJK05], public places, and in the broadcast news domain. For instance, 

in [CLH06] ten key audio effects are taken into consideration: applause, car-racing, cheer, car-

crash, explosion, gun-shot, helicopter, laughter, plane, and siren.  Moncrieff et al. proposed to detect 

violent events in feature films by analyzing environmental sounds such as gunfire, engines, and 

explosions [MDV01].  

Within the context of ambient intelligence, AED applied to give a contextual description of a 

meeting scenario was pioneered by [Tem07]. Moreover, AED has been adopted as a semantically 

relevant technology in CHIL European project [WS09] and several evaluation campaigns [CLE06], 

[CLE07]. They were an international effort to evaluate systems designed to recognize events, 

activities, and their relationships in interactive scenarios like lectures or meetings. In the framework 

of the CHIL project it has been decided that for the chosen meeting-room environment it is reason-

able to have an acoustic sound taxonomy for general sound description and a semantic sound 

taxonomy for a specific task. The proposed acoustic scheme is shown in Figure 2.2.1. Actually, 

almost any type of sounds can be referred to one of the proposed groups according to its acoustical 

property. On the contrary, the semantic scheme that is presented in Figure 2.2.2 is very specific to 

the CHIL meeting-room scenario. Additionally, with two sound taxonomies (acoustic and semantic) 

it is possible to cope with situations when the produced event does not match any semantic label but 

can be identified acoustically. 
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Figure 2.2.1. CHIL acoustic sound taxonomy 
 

 

Figure 2.2.2. CHIL meeting-room semantic sound taxonomy 
 

Although much progress has been achieved in the framework of CHIL, there is still a need of 

a theoretically-based systematization of feature extraction for AED, multi-microphone processing to 

exploit the spatial diversity of sounds, integration of audio and video information, especially for 

overlapping sounds, detection of multiple simultaneous acoustic sources, etc. The problem of 

acoustic overlaps is closely related to the ‘‘cocktail party” problem [WB06]. In that problem, one 

usually tries to separate one speech source from other; however, in AED we would like to separate 

acoustic events from speech. Temporal overlaps of several speakers have been considered in the 

NIST RT-09 [RT09] evaluation campaign, where the involved tasks (e.g. speaker diarization) have 

been evaluated on overlapped speaker segments as well. In fact, the overlap problem has recently 

gained a strong interest in speech processing. For instance, in [WBW05], the authors propose 

several different features and investigate their effectiveness for detection of overlaps of two and 

more speakers. Also, some improvement in detection of speech overlaps for speaker diarization is 

shown in [ZSH10]. 
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The idea of using more than one modality arises from two main observations: 1) when one or 

the other modality is not available the system will still be able to return an AE estimation and 2) 

when both modalities are available, the diversity and complementarity of the information, should 

couple with an improvement on the general performance of the system. Most existing researches on 

multimodal event detection focus on a specific domain, such as the analysis in the sports video 

domain, as high-level semantic events normally rely much on the domain knowledge. In particular, 

authors in [LXY06] show the multimodal-based approach that can generate reliable annotation for 

basketball video which cannot be successfully achieved using a single modality. In [RGA00] the 

authors developed effective techniques to detect excited announcers’ speech and baseball hits from 

noisy audio signals, and fused them to extract events of exciting segments in baseball programs. In 

[ZLC07] authors propose an effective fusion scheme of audio and visual modalities for highlight 

detection in broadcast soccer videos. The extracted annotations are used to build applications for 

selective browsing of sports videos. Such summarization techniques enable content-based indexing 

of multimedia documents for efficient storage and retrieval. Since the detecting semantic events is a 

challenging multimedia understanding problem, one need to depend on multiple modalities to 

interpret the semantics reliably. 

Audio segmentation (AS) in the broadcast news domain can be considered as a specific appli-

cation of AED. The research works on audio and multimedia content segmentation published so far 

address the problem in different contexts. The first prominent works are dated from 1996, the time 

when the speech recognition community moved from the newspaper (Wall Street Journal) era 

towards the broadcast news (BN) challenge [Pal03]. In the BN domain the speech data exhibited 

considerable diversity, ranging from clean studio to really noisy speech interspersed with music, 

commercials, sports etc. This time the decision was made to disregard the challenge of transcribing 

speech in sports material and commercials. The work from [Sau96] and then from [SS97] are the 

earliest works that tackled the problem of speech/music discrimination from radio stations. The 

authors found the first applications of AS in automatic program monitoring of FM stations, and in 

improvement of performance of ASR technologies, respectively. Both works showed relatively low 

segmentation error rates (around 2-5%).  

Within the next years the research interest was oriented towards the recognition of a broader 

set of acoustic classes, like in [ZK99] or [LZJ02] where, in addition to speech and music classes, 

the environment sounds were also taken into consideration. A wider diversity of music genres was 

considered in [MKP00]. Conventional approaches for speech/music discrimination can provide 

reasonable performance with regular music signals, but often perform poorly with singing seg-
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ments. This challenging problem was considered in [CG01]. The authors in [SPP99] tried to catego-

rize the audio into mixed class types such as music with speech, speech with background noise, etc. 

The reported classification accuracy was over 80%. A similar problem was tackled by [BFM02] and 

[AMB03], dealing with the overlapped segments that naturally appear in the real-world multimedia 

domain and cause high error rates. The interest in mixed sound detection in the recent years 

[IMK08] [DPR09] [LV10] shows it is still a challenging problem. 

In the BN domain, where speech is typically interspersed with music, background noise, and 

other specific acoustic events, audio and multimedia segmentation is primarily required for index-

ing, subtitling and retrieval. However, speech technologies that work on such type of data can also 

benefit from the AS output in terms of overall performance. In particular, the acoustic models used 

in automatic speech recognition or speaker diarization can be trained for specific acoustic condi-

tions, such as clean studio vs. noisy outdoor speech, or high quality wide bandwidth studio vs. low 

quality narrow-band telephone speech. Also, AS may improve the efficiency of low bit-rate audio 

coders, as it allows that traditionally separated speech and music codec designs can be merged in a 

universal coding scheme which keeps the reproduction quality of both speech and music [EGR07]. 

Multimedia information indexing and retrieval research is about developing algorithms, inter-

faces, and tools allowing people to search and find content in all possible forms. Current 

commercial search methods mostly rely on metadata as captions or keywords. On the web this 

metadata is usually extracted and extrapolated through the text surrounding the media, assuming a 

direct semantic connection between the two. However, in many cases this information is not suffi-

cient, complete, or exact; in some cases this information is not even available. Content–based 

methods are designed to search through the semantic information intrinsically carried by the media 

themselves. One of the main challenges in content-based multimedia retrieval still remains the 

bridging of the semantic gap referring to the difference of abstraction which subsists between the 

extracted low level features and the high level features requested by humans’ natural queries. Tools 

for efficient storage, retrieval, transmission, editing, and analysis of multimedia content are abso-

lutely essential for the utilization of raw content. Several applications can benefit from semantic 

analysis from the multimedia content. Filtering of multimedia content can enable automatic rating 

of Internet sites and restrict access to violent content. Semantic understanding could mean better 

and natural interfaces in human computer interaction. Very low bit-rate video coding, summariza-

tion, and transcoding are among the several applications that could benefit from semantic 

multimedia analysis [NH02]. 
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2.3 Applications of multimodal audio recognition 

Many audio recognition applications considered video modality as a valuable additional source of 

information. Here we present the most prominent ones. 

2.3.1 Audio-visual speech recognition 

Multimodal speech recognition is an extension of the traditional audio speech recognition task. A 

comprehensive survey on joint processing of audio speech and visual speech can be found in 

[Che01]. The main motivation of the multimodal speech processing is the fact that human speech is 

bimodal in nature: audio and visual. While the audio speech signal refers to the acoustic waveform 

produced by the speaker, the visual speech signal refers to the movements of the lips, tongue, and 

other facial muscles of the speaker. Such bimodality has two aspects, the production and the percep-

tion. Speech is produced by the vibration of the vocal cord and the configuration of the vocal tract 

that is composed of articulatory organs. Using these articulatory organs, together with the muscles 

that generate facial expressions, a speaker produces speech. Since some of these articulators are 

visible, there is an inherent relationship between the acoustic and visible speech. 

In audio speech, the basic unit is called a phoneme. In the visual domain, the basic unit of 

mouth movements is called a viseme, which forms the smallest visibly distinguishable unit of visual 

speech. There are many acoustic sounds that are visually ambiguous. These sounds are grouped into 

the same class that represents a viseme, so there is a many-to-one mapping between phonemes and 

visemes. Both in the acoustic modality and in the visual modality, most of the vowels are distin-

guishable. The same is not true for consonants, however. For example, in the acoustic domain, the 

sounds /p/, /t/, and /k/ are very similar. The confusion sets in the auditory modality are usually 

distinguishable in the visual modality. One good example is the sounds /p/ and /k/, which can be 

easily distinguished by the visual cue of a closed mouth versus an open mouth. Therefore, for 

speech understanding, if we can extract the lip movements from the video of a talking person, such 

information can be utilized to improve speech understanding. This forms the basis for developing 

the multimodal speech recognition systems that, received a large interest in the last decade. 

Audio-only speaker/speech recognition systems are far from being perfect especially under 

noisy conditions and reverberation. Performance problems are also observed in video-only 

speaker/speech recognition systems, where poor picture quality, changes in pose and lighting 

conditions, and varying facial expressions maybe harmful. 
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State-of-art multimodal speech recognition systems have been jointly using lip information 

with audio. In the speech recognition literature, audio is generally modelled by mel-frequency 

cepstral coefficients (MFCC). However for lip information, there are several approaches reported in 

the literature such as texture-based, motion-based, geometry-based and model-based [DL00]. In 

texture-based approaches, pure or DCT-domain lip image intensity are used as features. Motion-

based approaches compute motion vectors to represent the lip movement during speaking. In 

geometry-based approaches shape features such as lengths of horizontal and vertical lip openings, 

area, perimeter, pose angle are selected for lip representation. For model-based approaches, process-

ing methods such as active shape models, active contours or parametric models are used to segment 

the lip region [CEY06].  

2.3.2 Multimodal speaker identification 

Person identification is of major importance in security, surveillance, human-computer interfaces. 

Recently, person identification for smart environments has become another application area of 

significant interest [EJF06]. Sample application areas can be a smart video-conferencing system 

that can recognize the speaker; a smart lecture or meeting room, where the participants can be 

identified automatically and their behaviours can be analyzed throughout the meeting or the lecture. 

All these applications attempt the recognition of people based on audiovisual data.  

The way the systems collect data divides multimodal speaker identification systems into two 

categories: near-field and far-field systems. In near-field systems both the sensor and the person to 

be identified focus on each other. In far-field systems the sensors monitor an entire space in which 

the person appears, occasionally collecting useful data (face and/or speech) about that person. 

Hence, far-field data streams are corrupted with noise: the video streams contain faces viewed from 

arbitrary angles, distances, under arbitrary illumination, and possibly, depending on the environ-

ment of the deployment, with arbitrary expressions. Similarly, the sound streams suffer from 

reverberations, large attenuations, and the coexistence of background sounds. The audiovisual 

environment changes dramatically as the person moves around the space. As a result, the faces 

collected are tiny (typically of 10 pixels between the eyes) and with gross variations in pose, 

expression, and illumination. The speech samples are also attenuated, corrupted with all sorts of 

background noises (occasionally entirely masked by them) and reverberations. Nevertheless, far-

field systems have three features that allow them to offer usable recognition rates: the use of multi-

ple sensors (many cameras and microphones); the abundance of training data that are audiovisual 

streams similar to those on which the system is expected to operate; the possibly long periods of 
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time that the systems can collect data on which they are going to base their identity decision. Note 

the far-field multimodal person identification systems evaluation was in the scope of CHIL Euro-

pean project. 

Multimodal speaker recognition systems existing in the literature are mostly bimodal, in the 

sense that they integrate multiple features from audio and face information as in [SP03] or from 

audio and lip information as in [WS01]. An example of a multimodal identification system that uses 

three different features - face, voice, and lip movement—to identify people is developed in [FD00]. 

Even if one modality is somehow disturbed—for example, if a noisy environment drowns out the 

voice—the other two modalities still lead to an accurate identification. 

2.3.3 Multimodal emotion recognition 

Emotions play an important role in natural human interactions, decision making and other cognitive 

functions. Current technologies allow exploring the human emotions using not only audio and video 

modalities, but also other modalities such as the human physiology. Emotion expressed in a piece of 

media, such as movies or songs, could be used for tasks of indexing and retrieval or automatic 

summarization. The information about the emotion that better represents a movie could, for exam-

ple, be used to index that particular movie by genre-like categories (e.g. happiness vs. comedy or 

fear vs. thriller and horror, etc.). One of the challenging issues is to endow a machine with an 

emotional intelligence. Emotionally intelligent systems must be able to create an affective interac-

tion with users: they must be endowed with the ability to perceive, interpret, express and regulate 

emotions [CKC07]. Recognising users’ emotional state is then one of the main requirements for 

computers to successfully interact with humans. 

Multimodal approaches to emotion recognition are currently gaining attention of research 

community. In [PHC10] authors perform emotion recognition by means of fusing information 

coming from both the visual and auditory modalities. Identification of the six “universal” emotions, 

i.e. anger, disgust, fear, happiness, sadness, and fear is addressed. Most of the works consider the 

integration of information from facial expressions and speech and there are only a few attempts to 

combine information from body movement and gestures in a multimodal framework. Authors in 

[GP06] for example fused at different levels facial expressions and body gestures information for 

bimodal emotion recognition. In [KR05] proposed a vision-based computational model to infer 

acted mental states from head movements and facial expressions.  
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2.4 Methodology 

The design of a multimodal audio recognition system requires addressing three basic issues 

[CEY06]. The first one is to decide which modalities to fuse. The word “modality” can be inter-

preted in various ways; in meeting-room acoustic event detection it usually refers to a specific type 

of information that can be deduced from signals. In this sense, spectro-temporal content of audio 

signal and the acoustic localization information obtained from microphone array can be interpreted 

as two different modalities existing in audio signals. Likewise, video signal can be split into differ-

ent modalities, face and motion being the major ones.  

The second issue is how to represent the raw data for each modality with a discriminative and 

low-dimensional set of features and, in conjunction with this, to find the best matching metric in the 

resulting feature space for classification. This step also includes a training phase through which 

each class is represented with a statistical model or a representative feature set. Curse of dimension-

ality, computational efficiency, robustness, invariance, and discrimination capability are the most 

important criteria in selection of the feature set and the classification methodology for each modal-

ity.  

The third issue is how to fuse different modalities. Different strategies are possible. In the so-

called “early integration” modalities are fused at data or feature level, whereas in “late integration” 

decisions or scores resulting from each monomodal classification are combined to give the final 

conclusion. This latter strategy is also referred to as decision or opinion fusion and is effective 

especially in case the contributing modalities are uncorrelated and thus the resulting partial deci-

sions are statistically independent. Multimodal decision fusion can also be viewed from a broader 

perspective as a way of combining classifiers, which is a well-studied problem in pattern recogni-

tion. The main motivation here is to compensate possible misclassification errors of a certain 

classifier with other available classifiers and to end up with a more reliable overall decision. 

The general structure of a multimodal audio recognition system can be described with a block 

diagram, as it is shown in Figure 2.4.1. From the multimodal data, a number of characteristic 

features are extracted, the most important are selected which are then classified with some sort of 

pattern classifier. In the case of “late” fusion the recognition results from different detection sys-

tems can be posteriorly fused to obtain more reliable estimate. 
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Figure 2.4.1. General block diagram of a sound detection system. 

 

2.4.1 Feature extraction 

One major issue in building an automatic audio recognition system is the choice of proper signal 

features that are likely to result in effective discrimination among different AEs. The appropriate 

choice of features is crucial in building a robust recognition system. The main source of additional 

information for the meeting-room AED is video data from multiple cameras. The visual component 

is considered to be a valuable supplementary information source in noisy environments because it 

remains unaffected by acoustic noise.  

2.4.1.1 Audio features 

Audio feature extraction serves as the basis for a wide range of audio technologies. In audio recog-

nition many features are proposed which describe the acoustic content of the sound such as sub-

band energies computed in short-time windows, time evolution parameters, modulation spectrum, 

level of harmonicity, etc [Pee03] [LSD01] [TN09]. Although in speech recognition the MFCC 

features (or alternative features which have a lot in common with them) became the de-facto 

standard for front-ends in many applications, the situation with audio recognition in general is not 

so clear yet. Very often authors do not present strong or clear arguments in favour of a particular 

feature set they propose, and the final decision about feature subset selection is mainly based on 

their prior knowledge. For instance, for music detection, the features that capture the harmonicity 

content of the waveform are preferable [SK04], while for classification of generic sounds the 

features which model the spectral envelope are widely used [LSD01]. For instance, in [SK04] 

harmonic concentration and harmonic energy entropy features are proposed, and in [INM06] a 

periodicity measure based on the fundamental frequency is estimated independently in each sub-

band to obtain periodic and non-periodic features. In speech-song classification, authors from 

[Ger02] propose pitch as a feature due to the specific structure of a song.  

The temporal evolution of the above mentioned features may be characterized by duration and 

dynamics features. In the later case, traditionally the first and the second temporal derivatives of the 

above mentioned features are used [Tem07] [SK04]. 
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There are several attempts for grouping of audio feature. Broadly, acoustic features can be 

grouped into two categories: time-domain (or temporal features) and frequency-domain (or spectral 

features) [CNK09]. Time-domain features are computed from the audio waveforms directly and 

characterize the signal in time domain. Frequency-domain features are derived from the Fourier 

transform of the time signal over a frame, and characterize the spectral content of the signal. Simi-

larly, in [UKR07] the authors classify features which commonly exploited for audio event detection 

into time domain features, transformation domain features, time-transformation domain features or 

their combinations.  In [Pee03] the author distinguishes temporal, temporal shape, energy, energy 

shape, harmonic and perceptual features. 

We can also distinguish frame-based and segment-based features. The frame-based features 

usually describe the spectrum of the signal within a short time period (10-30 ms), where the process 

is considered stationary. The concept of the audio frame comes from traditional speech signal 

processing, where analysis over a short time interval has been found to be appropriate. MFCCs and 

PLPs are examples of frame-based features routinely used in speech recognition, which represent 

the spectral envelope and also its temporal evolution. To extract the semantic content, we need to 

observe the temporal variation of frame features on a longer time scale segments. The length of the 

segment may be fixed (usually 0.5sec – 5 sec) or variable. Although fixing the segment size brings 

practical implementation advantages, the performance of a segmentation system may suffer either 

from the possibly high resolution required by the content or from the lack of sufficient statistics 

needed to estimate the segment features due to the limited time span of the segment. According to 

[KQG04] a more efficient solution is to extract global segments within which the content is kept 

stationary so that the classification method can achieve an optimum performance within the seg-

ment. The most usual segment-based features are the first and second order statistics of the frame-

based features computed along the whole segment. Sometimes high-order statistics are taken into 

consideration, like skewness and kurtosis as well as more complex feature combinations that 

capture the dynamics of audio (e.g. the percentage of frames showing less-than-average energy), 

rhythm (e.g. periodicity from the onset detection curve), timbre or harmonicity of the segment 

[LT07]. 

Features may be characterized depending on the application where they are used. Two major 

groups could be discussed: Automatic Speech Recognition (ASR) features, which were initially 

designed for speech recognition applications, and the often so-called perceptual features, which 

have shown a high success in specific applications (recognition of certain classes of sounds or 

environments) [SK04] [Ger02] [PRA02]. In [Tem07], a set of perceptual features was used which 
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showed to be successful for AED: frame energy, the silence ratio, sub-band energies, zero-crossing 

rate, high zero-crossing rate ratio, low short-time energy ratio, spectrum flux, band periodicity, 

noise frame ratio, fundamental frequency, spectral centroid, spectral roll-off and spectral band-

width. Other research work [PRA02], proposes features for robust speech/music segmentation 

based on particular properties of those two classes: modulation entropy, 4 Hz modulation energy 

and duration features. Experiments showed that speech carries more modulation entropy as well as 

modulation energy than music, and for music the duration of stationary segments is higher; actually 

both facts are correlated. 

In [Ara08], a feature vector is formed from the estimates of posterior probabilities over the set 

of classes. This vector is then used as input to state-of-the-art acoustic models (mainly HMM-GMM 

based systems). Given the discriminative nature of posterior features, the acoustic models can use 

significantly fewer parameters for a similar recognition performance.  

In [CNJ08] the authors propose a novel method based on matching pursuit (MP) for feature 

extraction to analyze environment sounds. The MP-based method utilizes a dictionary from which 

to select features, and the results showed that this method is promising in classifying unstructured 

audio environments, especially when MP-based features are used in combination with state-of-the-

art MFCC features. 

Recently, the interest in technological development for designing automatic systems to mimic 

human capabilities has evolved and intensified. It is well known that an automatic speech recogni-

tion system performs far less reliably than a human listener under adverse conditions. There is still a 

lot to be learned in understanding the reason why a human subject would perceive and recognize 

sounds as reliably as witness. A major aim of psychoacoustic research is to establish functional 

relationships between the basic physical attributes of sound, such as intensity, frequency and 

changes in these characteristics over time, and their associated perceptions. 

Many researchers have thus made various efforts on emulating human speech perception in 

order to achieve human-like performance. Some approaches model and rebuild the functionalities of 

the auditory nuclei. These are exemplified by research on basilar membrane and electronic cochlea 

[PH96]. Most of these types of systems have similar structures as the human auditory pathway. 

However, they model only a small fraction of perceptual functionality in the human auditory 

system. This is because the human auditory system is structurally very complex, consisting of many 

feedback paths from higher levels in the neural system. Presently, much of the structure and mecha-

nism, especially interactions among auditory nuclei, remains unknown. 
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In [MJ08], both functional and structural aspects of perception/cognition which are essential 

to the understanding of most auditory phenomena are discussed. In this work the authors suggested 

3 essential stages of auditory perception: the sensory stage, the primary neural processing stage, and 

the perceptual inference stage with intermediate signal representations. This architecture allows for 

a nearly independent construction of signal processing models within the three stages, and so to 

construct a chain of processing from a stimulus to the corresponding perceptual response. 

In [PH96], a model of the auditory processing has been developed to analyse everyday sounds 

like music, speech and sound environments in which they occur. The model transforms a complex 

sound into a multi-channel activity pattern like that observed in the auditory nerve, and then it 

converts this neural activity pattern into an “auditory image” feature that is intended to represent 

human’s initial impression of the sound. The initial stage that generates the neural activity pattern is 

a cochlea simulation that is composed of two processing modules [PH96]:  

1. A gamma-tone auditory filterbank, which performs a spectral analysis and converts the 

acoustic wave into a multi-channel representation of the basilar membrane motion.  

2. A two-dimensional adaptation mechanism that “transduces” the membrane motion and 

converts it into a multi-channel representation of the neural activity pattern arriving at the cochlear 

nucleus.  

The auditory gamma-tone filter bank incorporates two insights from the auditory physiology: 

1) a higher frequency resolution for low frequencies 2) a higher temporal resolution for high 

frequencies. The gamma-tone filter bank-based feature extraction technique is also presented in 

[HAA07] for classification of everyday sounds like opening/closing the door, or footstep sounds. 

Two types of perceptual features were extracted, based on the combination of gamma-tone filters 

with the Hilbert transform, and with Meddis’ inner hair cell model. In the presented work, the 

authors compare psychoacoustic features with classical MFCC features, and the experiments show 

that, in general, the gamma-tone based representations outperform other pre-processing methods. 

Other feature extraction techniques model even a smaller part of the psychoacoustic process, 

since they concentrate on particular transformations of the input signal. For instance, in [BC00] the 

feasibility of applying human speech perceptual characteristics to enhance the recognition accuracy 

and robustness in Mandarin vowel recognition is shown. In this study, a perceptual processing is 

applied to the Fourier spectrum to obtain the so called perceptual spectrum. The proposed percep-

tual speech processing is based on three perceptual characteristics, and consists of three independent 

processing steps: the masking effect, the minimum audible field renormalization, and the mel-scale 

resampling. Furthermore, to reduce the feature dimensionality, and at the same time retain the 
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relevant information, a phonetic feature mapping to obtain the so called phonetic features was 

proposed. These new features are basically similarity measures between the input perceptual 

spectrum and a set of nine reference perceptual spectra. 

In the PLP technique [Her90], the short-term spectrum of the speech is modified by several 

psycho-physically based transformations based on three concepts from the psycho-physics of 

hearing: the critical-bands spectral resolution; the equal-loudness curve, and the intensity-loudness 

power law. This technique is currently used in many speech recognition systems for feature extrac-

tion.  

In [DPK96], a quantitative model for signal processing in the auditory system is described. 

This model combines several stages (preprocessing, adaptation and adding the internal noise) which 

simulate aspects of transformation in the auditory periphery with an optimal detector as the decision 

device. 

The author in [Kle03] [Kle02] motivates an approach to feature extraction for automatic 

speech recognition which utilizes two-dimensional spectra-temporal modulation filters. Results 

from physiological and psychoacoustic studies indicate that spectrally and temporally localized 

time-frequency envelope patterns are the relevant basis for auditory perception. In this study the 

feature vector size is relatively high (more than 2000), so it is important to search for an efficient 

automatic feature selection procedure that yields smaller feature sets. 

Although the modelling of the human perception system is an extremely difficult task, it may 

be still beneficial to model even a small part of transformations in the pathway between the entering 

of acoustic waveforms in the human’s ear and the final perception in brain. Moreover, using psy-

choacoustic model is strongly motivated in numerous studies [HAA07] [BC00] [Her90] [Kle02], 

where authors present promising results in audio recognition. 

Here, we present some of the commonly used audio features used in audio recognition appli-

cations. We use the following notation in feature definition: 

s(n) – signal value at the time index n; 

N – frame length; 

f(i), a(i) – frequency value at the frequency bin i and the corresponding Discrete Fourier Trans-

form (DFT) amplitude, respectively; 

x(k) – value of mel-scaled logarithmic filter-bank energy at the sub-band frequency index k cor-

responding to the current frame. 

Zero crossing rate (ZCR) Zero-crossings occur when successive samples have different 

signs, and the ZCR rate is the average number of times the signal changes its sign within a frame 
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where the indicator function I{A} is 1 if its argument A is true and 0 otherwise. 

Short-time energy (STE) Short-time energy provides a convenient representation of the am-

plitude variation over time. It is defined as: 
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Sub-band log energies. The 4 sub-bands are equally distributed along the 20 mel-scaled filter 

bank energies (FBEs) (5 per sub-band). The energy of each sub-band is calculated as: 
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where N=5 is the number of log FBEs per sub-band. 

Spectral centroid. The centroid is a measure of the spectral “brightness” of the spectral frame 

and is defined as the linear average frequency weighted by DFT amplitudes, divided by the sum of 

the amplitudes:  
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Spectral roll-off. This measure quantifies the frequency bin fc at which the accumulative 

value of the frequency response magnitude reaches a certain percentage of the total magnitude. A 

commonly used threshold is c=95%. 
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Spectral Flux. It is used to measure a spectral amplitude difference between two successive 

frames. 

Spectral bandwidth measures the width of the range of signal’s frequencies. 
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where CE is the spectral centroid of the frame. 

Chroma features. Chroma features [Fuj99] are the powerful representation for music audio in 

which the entire spectrum is projected onto 12 bins representing the 12 distinct semitones (or 

chroma) of the musical octave. Since, in music, notes exactly one octave apart are perceived as 

particularly similar, knowing the distribution of chroma even without the absolute frequency (i.e. 

the original octave) can give useful musical information about the audio and may even reveal 

perceived musical similarity that is not apparent in the original spectra. In this thesis chroma 

features are computed for 12 semitones from a short-time FFT spectrogram with window-size 50 

ms, rate 10 ms, and using Gaussian window.  

Amplitude modulation features. The authors in [BAL05] propose an approach to sound 

classification that aims to mimic the human auditory system at least partially by making use of 

auditory features as known from auditory scene analysis. Among others, they propose amplitude 

modulation features. The possible way of describing amplitude modulations in various natural 

sound sources is using amplitude histograms that can be modelled by means of percentiles. The 

50% percentile P50, for example, shows the level below which the envelope is 50% of the time.  

The distances between the percentiles may thus be the basis for more complex features. They 

are normalized to the 50% percentile; the distance between the 10% and the 90% percentiles for 

example is calculated as follows:  

50

1090
1090 P

PPd −
=−  (2.4.7) 

 

A number of features are presented in the following that appear to be valuable for the descrip-

tion of the form of the histogram:  

1) Width. The width of the histogram is well described by the distance between the 90 % and 

the 10% percentile:  

 

width = d90-10 (2.4.8) 

 

2) Symmetry. The symmetry can be investigated by looking at the difference:  
 

symmetry = (d90-50) - (d50-10) (2.4.9) 
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The symmetry is near zero for symmetrical distributions, positive for left sided distributions, 

and negative for right sided distributions. Impulse-like signals are asymmetric right-sided due to the 

signal pauses.  

3) Skewness. The skewness of the histogram can be regarded as the difference between the 

50% percentile and the median:  

 

skewness = xP ~
50 −  (2.4.10) 

 

The median is estimated by the mean between the 10 % and the 90 % percentile: 

2
~ 1090 PPx +
=  (2.4.11) 

 

For asymmetrical distributions the difference between P50 and the approximated median should 

be large, for symmetrical distributions approximately zero.  

4) Kurtosis. The kurtosis corresponds to the approximation  
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which sets the middle 50% interval in relation to the range of the distribution, indicating whether 

the distribution has a narrow or a broad peak. 

5) Lower half. The distributions in the lower half of the histogram are expressed by the differ-

ence:  

 

lower half = (d50-30 ) - (d30-10)  (2.4.13)  

 

The lower half of the distribution allows to characterize right-sided distributions by encoding 

the relations between the lower and upper half (that is, below and above P30) of the lower half of the 

total distribution (that is, below P50). For impulse-like signals, this feature will have a large value, 

for continuous signals it will be approximately zero. 
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We will call these features as perceptual throughout the work, since it has a more perceptu-

ally-oriented profile than the conventional features taken from ASR.  

Among ASR feature which are very popular in audio recognition tasks the MFCC features are 

the most widely used. In this thesis, frequency-filtered (FF) log filter-bank energies [NMH01] 

are employed. The feature extraction procedure consists of applying, for every frame, a short-length 

FIR filter to the vector of log filter-bank energies vector, along the frequency variable. The transfer 

function of the filter is z - z-1, and the end-points are taken into account. That type of features has 

been successfully applied not only to speech recognition but also to other speech technologies like 

speaker recognition [LH08]. 

2.4.1.2 Video features 

Considering the visual signal, feature extraction depends heavily on the type of video data: syn-

chronized recordings of multiple calibrated cameras or close-up video recordings of subject’s face. 

Traditional methods for processing video have focused on analyzing individual frames independ-

ently, or possibly adjacent frames such as optical flow. Features are typically extracted for each 

frame independently, and then subsequently linked together temporally. Other methods like the one 

described in [Ke08] consider video as three-dimensional volumes, and thus the fundamental proc-

essing unit should be 3D blocks consisting of many frames. 

Visual features can be extracted on object color, texture, shape and motion [ALM03]: 

1) Color is the most widely used visual feature in video retrieval. Color features can include 

color histogram, dominant color, mean and standard deviation of colors. 

2) Texture also is an important feature of a visible surface, where repetition or quasi-repetition 

of a fundamental pattern occurs. 

3) Shape features that are related to the shape of the objects in the image are usually repre-

sented using traditional shape analysis such as moment invariants, Fourier descriptors, etc. 

4) Motion is another useful visual cue. Theoretically, it is invariant to changes of color and 

lighting. Motion features include motion histogram/phase correlation, dominant motion, and model 

parameters for global motion description. 

A preliminary inspection show that visual features are not very robust regarding changes in il-

lumination, variability in object viewpoint, unpredictable object motion and so on. 

For the task of event detection, shape and motion features are preferable since they are dis-

criminative and robust to variations. Both of them capture how people and other surrounding 

objects deform and move through space-time, thus enabling to recognize an event. Robust detection 
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of events thus requires robust tracking of an object’s state. In particular, a very promising approach 

is presented in [CSC08] which uses a video 3D tracking algorithm, where a Particle Filtering (PF) 

technique is used to estimate the location of each person inside the room at a given time t. Using the 

3D tracking algorithm, apart from the position of the participants in the room, their velocity and 

acceleration can be estimated, which may be useful to describe activities as standing, walking or 

running. Moreover, the z-component may give indications about person’s sitting/standing. 

Video features could be extracted on various levels: low-level, middle-level, object-level 

[WCC05]. For low-level features such as dominant color, motion vectors are acquired directly from 

the input videos by using simple feature extractions, which usually possess limited capabilities in 

presenting the semantic contents of the video events. In contrast, object-related features are attrib-

utes of the objects such as ball location and player shapes, which greatly facilitate the high-level 

domain analysis. However, their extraction is usually difficult and computationally costly for real-

time implementation. Middle-level features offer a reasonable trade-off between the computational 

requirements and the resulting semantics. 

In [XMZ02], video features are based on energy redistribution between consecutive frames in 

the video sequence and they were useful for classifying basketball video. In [ZWR03], other motion 

features such as center of motion, wideness of motion, intensity of motion were effectively utilized 

for off-line segmentation and recognition of actions in meeting scenarios. In [Ke08], volumetric 

features based on video’s optical flow for visual event detection are presented. Video is thought as a 

group of 3D volumes and decomposed into 3D subregions. The recognition of spatio-temporal 

events in video is done by means of matching of individual volumes. In [HDG06], the problem of 

segmentation and recognition of sequences of multimodal human interactions in meetings is ad-

dressed. Authors propose person-specific video features: head vertical centroid, head eccentricity, 

right hand horizontal centroid, right hand angle, right hand eccentricity, head and hand motion, 

global motion features from each seat. These features were calculated from predefined positions in 

the meeting-room. Used in conjunction with audio and semantic features, they showed a superior 

performance. In laughter detection [PP08], the video features capture the facial expression dynam-

ics. These features are 20 facial points (corners/extremities of the eyebrows, the eyes, the nose, the 

mouth and the chin) which are tracked using a particle filtering tracking scheme. Then these fea-

tures were transformed using Principle Component Analysis (PCA) to reflect rigid-movement 

aspects of data. 
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2.4.2 Feature selection 

Most previous efforts utilize a combination of some, or even all, of the aforementioned features, to 

characterize audio signals. However, adding more features is not always helpful. As the feature 

dimension increases, data points become sparser and there are potentially irrelevant features that 

could negatively impact the classification result. This in turn leads to the issue of selecting an 

optimal subset of features from a larger set of possible features to yield the most effective subset for 

acoustic event detection tasks.  

The feature selection problem still remains very important and challenging in pattern recogni-

tion. Selecting proper features is key to effective system performance. When we have two or more 

classes, feature selection consists of choosing those features which are most effective for showing 

class separability [Fuk72]. There are many research works devoted to this problem [GE03] [KJ97] 

[GS08]. Two main conclusions could be formulated as followed: 

1. The probability of misclassification of a decision rule does not increase as the number of features 

increases, as long as the class-conditional densities are completely known.  

This means that an additional feature can never decrease the performance of the optimum 

Bayes classifier. But it is observed in practice that the added features actually degrade the perform-

ance of a classifier if the number of training samples that are used to design the classifier is small 

relative to the number of features, or when the class-conditional probability with many parameters 

is difficult to estimate. 

2. In general no non-exhaustive sequential feature selection procedure can be guaranteed to 

produce the optimal subset [CC77].  

If d is a number of features, then any ordering of the classification errors of each 2d feature 

subsets is possible. Only exhaustive search can guarantee the optimal feature subset, so the research 

efforts are directed towards developing techniques which can filter irrelevant and highly correlated 

features in order that the search space decreases. Sometimes certain heuristics are proposed to 

decrease the search space [GS08].  

In [KJ97], the concept of weak and strong relevance is presented: a feature X is strongly rele-

vant if removal of X alone results in performance deterioration of an optimal Bayes classifier. A 

feature X is weakly relevant if it is not strongly relevant and there is exists a subset of features, S, 

such that the performance of a Bayes classifier on S is worse than the performance on }{XS ∪ . A 

feature is irrelevant if it is not strongly or weakly relevant. It is argued that the optimal feature set 

should include strong and possibly some weak relevant features.  
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A search of the optimal feature set requires a state space, an initial state, a termination condi-

tion, and a search engine [KJ97]. The state space include possible combinations of features, and the 

search is terminated after finding a feature set with the highest value of the evaluation (objective) 

function J(.). Depending on the way of calculating the objective function, the feature selection 

approaches are divided into: 

1. Filter approaches (score feature subsets independently of the chosen classifier). 

2. Wrapper approaches (utilize the learning machine of interest as a black box to score subsets 

of features). 

3. Embedded methods (feature set scoring is done during the process of training a learning 

machine). 

Most filter approaches attempt to identify and remove as much irrelevant and redundant in-

formation as possible prior to learning, as a pre-processing step. The main disadvantage of the filter 

approach is that it totally ignores the effects of the selected feature subset on the performance of the 

classification algorithm.  

The feature selection search engine conducts the search in the space of all possible states. In 

[JDM00], the following search engines are summarized: 

1. Exhaustive Search 

2. Branch-and-Bound Search 

3. Best Individual Features 

4. Sequential Forward Selection (SFS) and Sequential Backward Selection (SBS) 

5. Plus “l-take away r” Selection 

6. Sequential Forward Floating Search (SFFS) and Sequential Backward Floating Search 

(SBFS). 

Sequential forward and backward selection are widely used to select features, with SFS being 

used more often due to the lesser magnitude of calculations involved [Pir04]. Two forms of sequen-

tial selection are described in [KJ97]: best first search and hill-climbing search. In [KJ97], the 

authors introduced a way to change the search space topology by creating dynamic operators 

(compound operators) that reduce the search by means of dynamically selecting promising feature 

sets during evaluation. When the number of features is very high, the search of the best individual 

features is used as a pre-processing step. 

In literature, linear transformation of the original features is often applied prior to feature se-

lection. More precisely, if X=[x1 … xn] is the feature vector in the original feature domain, after 

applying a transformation matrix A, we obtain the feature in the transformed domain Y=[y1 … ym] 
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(m<n). The main purpose of this transformation is, firstly, to find a new feature space where classes 

show better separability, and secondly, to reduce the feature space dimensionality from n to m. In 

PCA [DHS00], the transformation matrix A transforms a number of (possibly) correlated variables 

into a (smaller) number of uncorrelated variables called principal components. The first principal 

component accounts for as much of the variability in the data as possible, and each subsequent 

component accounts for as much of the remaining variability as possible. In the Independent 

Component Analysis (ICA) approach [DHS00] [Com94], the transformation matrix is selected in 

such a way that features after transformation become maximally independent. In the Linear Dis-

criminant Analysis (LDA) approach [Fuk72], the transformation matrix A is found through an 

optimization criterion of separability of classes which is formulated in terms of both the within-

class and the between-class scatter matrices. Sometimes, it might be desired to pick a subset of the 

original features rather than find a mapping that uses all the original features [CXZ07]. Other linear 

transforms for dimensionality reduction are presented in [VGB08]: Maximum Likelihood Linear 

Transform (MLLT), Heteroscedastic Linear Discriminant Analysis (HLDA), and Smoothed HLDA 

(SHLDA). The experiments performed on the ASR AURORA2 setup, a standard digit speech 

recognition task, showed that, when using approaches such as MLLT, HLDA, SHLDA, PCA and 

concatenated schemes, no remarkable improvement is achieved compared to LDA alone. 

The method presented in [KS96] is based on eliminating features if they give a little or no ad-

ditional information to remaining features in the original feature domain.  The main idea is to find a 

subset of original features FG ⊂  that keep the conditional distribution of class C almost un-

changed: Pr(C|F)≈ Pr(C|G). This means that all features in F, which are not included in G are non-

informative. To compare two probability distributions, the KL-distance measure D(.) is proposed. If 

fG is the projection of the variable f from F onto the variables in G then δ=D(Pr(C|f), Pr(C|fG)) 

should be as small as possible. This theoretically justified model for optimal feature set selection 

requires finding the subset G in a practical way. The authors propose the idea of the Markov blanket 

to find all non-informative features Fi. In the study, the authors heuristically choose the Markov 

blanket based on selecting a set of K features which are strongly correlated with Fi. 

In [Fuk72], the author proposes to find the best feature set with reference to the Bayes classi-

fier. Then the class separability becomes equivalent to the probability of error due to the Bayes 

classifier, which is the best we can expect. A major disadvantage of the probability of error as a 

criterion is the fact that an explicit mathematical expression is not available, except for a very few 

special cases. Even for normal distributions, the calculation of the error requires a numerical 

integration. To avoid numerical integration, the upper and lower bounds of probability of error are 
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used instead. In this study, the Bhattacharyya distance and the divergence are discussed as a feature 

selection criterion for normal distribution, which have a direct relationship to the probability of 

error. The extension to a multi-class problem is proposed. 

In [HS98], the authors present a feature selection heuristic that takes into account the useful-

ness of individual features for predicting the class label along with the level of inter-correlation 

among them. The hypothesis on which the heuristic is based is as follows: “Good feature subsets 

contain features highly correlated with (predictive of) the class, yet uncorrelated with (not predic-

tive of) each other”. Authors propose to evaluate the objective function which takes into account the 

features average correlation with class and average inter-correlation. The entropy measure is used to 

estimate the above mentioned correlations. A similar idea is presented in [PLD05], where a criterion 

function named “minimal-redundancy-maximal-relevance” (mRMR) is constructed which tries to 

find features with maximal statistical dependency of target class on the data distribution, and with 

minimal mutual redundancy among them. 

In [ZZH08], the authors rank features according to their individual Bayes accuracy on the 

training set. Firstly the features are decorrelated using the PCA transformation, and afterwards the 

discriminant capability of each feature is measured the using hard_bayesian and soft_bayesian 

functions defined as: 

∑
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where T is the number of training instances; l(t) is the true label for tth instance; δ(.) is the Dirac 

delta function; ωk is the class label; Rankt(.) is the likelihood of the true label l(t) on the data point xt. 

2.4.3 Detection approaches 

Detection of acoustic events can be performed in three different ways. The first one is based on 

detecting the sound boundaries and then classifying each end-pointed segment. Hereafter we refer 

to it as the detection-and-classification approach. For example, in [Pfe01] an approach based upon 

exploration of relative silences has been proposed. A relative silence is considered as a pause 

between important foreground sounds. A different type of segmentation algorithm, which does not 

require any a-priori information about the particular acoustic classes, is based on the BIC [CG98]. It 

assumes that the sequence of acoustic feature vectors is a Gaussian process, and measures the 
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likelihood that two consecutive acoustic frames were generated by two processes rather than a 

single process. 

The second approach consists of classifying consecutive fixed-length audio segments. We will 

refer to it as the detection-by-classification approach. A raw segmentation output is obtained in that 

case as a direct byproduct of the sequence of segment labels given by the classifier. However, to 

improve the segmentation (detection) accuracy, some kind of smoothing is required, assuming it is 

improbable that sound types change suddenly or frequently in an arbitrary way. Many publications 

give preference to the latter approach due to its natural simplicity. As an example, [Sau96] used 

multivariate Gaussian classifier to obtain a sequence of decisions, [LZJ02] applied a KNN-based 

classifier, and [BFM02] used an MLP-based classifier in the experiments. 

In the third approach, segmentation and classification are done jointly. For instance, in its de-

coding step, the HMM-based method attempts to find the state sequence (and, consequently, 

acoustic class sequence) with the highest likelihood given a sequence of observed feature vectors. 

The most common procedure for doing that is Viterbi decoding, which uses a dynamic program-

ming algorithm to find in recursive way the most probable sequence of HMM states. The HMM-

based audio segmentation approach borrowed from speech/speaker recognition applications has 

been successfully applied in [ZK99], [AMB03], [LV10] and many other works. 

All above mentioned detection approaches require a classification algorithm. A classifier that 

assigns the class label with the largest posterior probability, Bayes classifier, is the most natural 

choice, but in real-life problems we do not know the true prior probabilities nor the class condi-

tional pdfs, so we can only design flawed versions of the Bayes classifier. Statistical pattern 

recognition provides a variety of classifier models that are effectively used in audio recognition 

tasks. There is no consensus on a single taxonomy of classification methods. In [Lip91] the author 

lists five types of classifiers: probabalistic (linear discriminant classifier, quadratic discriminant 

classifier, Parzen), global (multilayer perceptron), local (radial basis function neural networks 

(RBF)), nearest-neighbor type (k-nn, learning vector quantization neural networs) and rule-forming 

(binary decision trees, rule-based systems). In the work [HKL97] the authors consider another 

grouping: classifiers, based on density estimation and classifiers based on regression. 

In the following sub-Sections three widely used classification algorithms employed in this 

thesis are briefly described. 
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2.4.3.1 Gaussian Mixture Models (GMMs) 

Gaussian mixture models are quite popular in speech and speaker recognition. In the design step, 

we have to find the probability density functions that most likely have generated the training 

patterns of each of the classes, assuming that they can be modelled by mixtures of Gaussians. 

In the GMM, the likelihood function is defined as 
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being μ the mean vector and Σ  the covariance matrix (often considered diagonal). As the goal is to 

maximize the likelihood (ML), the parameters of the GMM ( iiiw Σ and ,,μ ) are obtained via the 

Expectation-Maximization (EM) algorithm [RJ93]. A GMM-based classifiers can handle an arbi-

trary number of classes.  

2.4.3.2 Hidden Markov Models (HMMs) 

An HMM is a doubly stochastic process with an underlying stochastic process that is not observable 

(it is hidden), but can only be observed through another set of stochastic processes that produce the 

sequence of observations.  

An HMM is characterized by a set of parameters λ=(A, B, Π) [HLW05], where 

• A = {ai,j} is the state transition probability matrix, and ai,j is the transition probability from 

state i to state j satisfying  0≤ ai,j ≤1, ∑ =
=

N

j jia
1 , 1 , and N is the number of states in the 

model; 

• B = {bi(xt)} is the observation probability matrix, where bi(xt) is the observation probability 

of feature xt at state i; 

• Π = {πi} is the initial state distribution. 
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An HMM can be continuous or discrete. In the continuous model, observation probabilities of 

the feature vectors are characterized using a parameterized form. A common approach is to use 

Gaussian Mixture Model (GMM), by which the probability is described as 

),,()(
1 jkjkt

K

k jktj xNpxb j Σ=∑ =
μ , where Kj is the number of mixtures in state j, pj,k is the mixture 

coefficient for the kth mixture and N(.) is a Gaussian function with mean vector μj,k and covariance 

matrix Σjk.  

An HMM is trained for every class and the training process follows the Baum-Welch method 

[RJ93]. The initial parameters of A and B are chosen randomly and the initial values of Π are 

uniformly distributed for each state. After training, we have λ1, λ2, …, λK, where K is the number of 

acoustic classes. For each testing sequence X, the likelihood P(X, λi), i = 1,…, K is computed for 

each class, and the testing sequence is classified to the class with the maximum likelihood. 

A “one-pass” technique [NO99] developed for speech recognition is used for detection, which 

simultaneously determines the optimal state sequence and AE class sequence. To hypothesize an 

AE sequence Ω = c1, c2, …, cL, where L is the number of scene transitions in the sequence, we can 

imagine a super HMM that is obtained by concatenating the HMM’s for different AE classes. The 

search space can be described as a super network consisting of all states of all classes where the best 

state transition path has to be found. The search has to be performed at two levels simultaneously: at 

the state level within a class and at the class level. The paths at the two levels can be searched 

efficiently by dynamic programming. 

The one-pass dynamic programming method searches the optimal AE sequence for a given 

observation sequence X= {x1, x2, …, xT}. The algorithm requires two arrays: 

1) Q(t,s;c) is the score of the best path up to time t that ends in state of class c.  

2) B(t,s;c) is the start time of the best path up to time t that ends in state s of class c. 

As illustrated in Figure 2.4.1, the path is searched within the class and among the classes. 

Within the class, the recurrence equation is as follows: 
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1 ≤ s ≤ N(c) 

where N(c) is the number of states in class c, sm is the optimum predecessor state for the hy-

pothesis (t,s;c). 
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Figure 2.4.1. Illustration of transition between states within a class and between classes. N(k) 

means the number of states in the class k  
 

In (2.4.4) the partial score );'|,( cssxp t  between state s´ and s at time t is defined as: 
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where ssa ' is the state transition probability from state s´ to s and bs(xt) is the observation prob-

ability of feature xt at the state s in the class c. 

To hypothesize the potential AE boundary, the termination quantity H(t;c), a class traceback 

pointer R(t;c), and a time traceback pointer F(t;c) are introduced as: 
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where p(c|b) is the class transition probability of class b to class c. To allow for the transition 

between different classes, a special state s = 0 is introduced: and is passed on as both the score and 

the time index: 
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Figure 2.4.1 illustrates the time alignment, which gives the optimal AE sequence. In this ex-

ample, the optimal AE sequence is (2; K; 1) and transitions occur at t1 and t2. Q(t,s;c) and B(t,s;c) 

are determined for every state within each class at every time instance t. Then, H(t;c) is computed, 

and R(t;c) and F(t; c) are recorded for all K classes. Before computing Q(t,s;c), the score value and 

the backtrack time value for the potential AE change Q(t - 1, s=0;c) and B(t - 1,c=0;c) are set. Note 

that the AE sequence and the state sequence are determined simultaneously. The process starts at 

time t = 1 and ends at t = T in a strictly left-right fashion. When time T is reached, the optimum AE 

sequence *
lΩ and the time for the AE transition *

lT can be found by tracing back R(c;t) and F(c;t), 

respectively. 

2.4.3.3 Support vector machines (SVMs) 

Kernel-based algorithms have been recently developed in the Machine Learning community, where 

they were first introduced in the Support Vector Machine (SVM) algorithm. The attractiveness of 

this algorithm is due to their elegant treatment of nonlinear problems and their efficiency in high 

dimensional problems. Support Vector Machines (SVMs) have been shown to provide better 

performance than more traditional techniques in many problems, thanks to their ability to general-

ize. The SVM model relies on two assumptions. First, transforming data into a high-dimensional 

space may convert complex classification problems (with complex decision surfaces) into simpler 

problems that can use linear discriminant functions. Second, SVMs are based on using only those 

training patterns that are near the decision surface assuming they provide the most useful informa-

tion for classification.  

Consider the problem of separating the set of training vectors belonging to two separate 

classes, (x1; y1), …, (xl; yl), where xi ∈Rn is a feature vector and yi∈{-1, +1} a class label, with a 

hyperplane of equation wx + b = 0. Of all the boundaries determined by w and b, the one that 

maximizes the margin (Figure 2.4.2) would generalize well as opposed to other possible separating 

hyperplanes. 
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Figure 2.4.2. Two-class linear classification. The support vectors are indicated with crosses 
 

A separating hyperplane in canonical form must satisfy the following constraints, yi [(w·xi) + 

b] ≥1; i = 1, …, l. The margin is 
w
2 according to its definition. Hence the hyperplane that opti-

mally separates the data is the one that minimizes 2

2
1)( ww =Φ  

The solution to the optimization problem can be obtained as follows [Vap98]: first, find the 

maximization solution to the following problem 
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where x+ is a support vector of the “+” class and x- is a support vector of the “-” class. Now, a 

new data point x is classified by the sign of 
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In non-separable cases, slack variables ξi ≥ 0, which measure the mis-classification errors, can 

be introduced and a penalty function, ∑=
=

l

i iF
1

)( ξξ , added to the objective function. The optimiza-

tion problem is now treated as to minimize the total classification error as well as the bound on the 

VC dimension [Vap98] of the classifier. The solution is identical to the separable case except for a 

modification of the Lagrange multipliers as 0 ≤ αi ≤ C, i=1, …, l. We refer to [Vap98] for more 

details on the non-separable case. 

In linearly non-separable but nonlinearly (better) separable case, the SVM replaces the inner 

product x · y by a kernel function K(x; y), and then constructs an optimal separating hyperplane in 

the mapped space. According to the Mercer theorem [Vap98], the kernel function implicitly maps 

the input vectors, via Φ associated with the kernel, into a high dimensional feature space in which 

the mapped data is linearly separable. Possible choices of kernel functions include (1) Polynomial 

K(x; y) = ((x · y + 1))d, where the parameter d is the degree of the polynomial; (2) Gaussian Radial 

Basis Function K(x; y) = )
2

)(exp( 2

2

σ
yx −

− , where the parameter σ is the width of the Gaussian 

function; and (3) Multi-Layer Perception K(x; y) = tanh (k(x · y) - μ), where the k and μ are the 

scale and offset parameters. However, Exponential Radial Basis Function (ERBF) has been empiri-

cally observed to perform better than above three [Gun98].  

2.4.4 Multimodal fusion approaches 

As it has been already mentioned, using jointly audio and visual information can significantly 

improve the accuracy for AED with respect to using audio or visual information only. This is 

because multimodal features can resolve ambiguities that are present in a single modality. Feature 

sets derived from different modalities are usually governed by different laws, have different charac-

teristic time-scales, and highlight different aspects of the AEs. Another motivation behind audio-

visual AED is the bimodal characteristics of perception and production systems of human beings.  

The effective combination of acoustic and visual information for AED is a challenging prob-

lem. Several approaches to audio and video fusion have been suggested in the literature. These can 

be classified into three main groups: data fusion, feature fusion and decision fusion. Data fusion is 

rarely found in multi-modal systems because raw data is usually not compatible among modalities. 

For instance, audio is represented by one-dimensional high rate data, whereas video is organized in 

two-dimensional frames over time at a much lower rate. 
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Concatenating features from all the modalities is likely to improve the classification accuracy. 

One straightforward approach is to compute audio and video features at the same time scale and put 

all features for each time interval into one super feature vector. Theoretically, this method can fully 

exploit the correlation between features from different modalities and lead to the highest classifica-

tion accuracy. However, the very high dimension of the feature space makes it necessary to obtain a 

very large set of training data and increase the degree of freedom in the observation probability 

distribution (the number of Gaussian mixtures in the continuous HMM-GMM case). Integration of 

audio and visual features in a HMM classifier has been studied previously, for instances, for speech 

recognition [CZH98], and for speech-to-lip-movement synthesis. Authors incorporate dynamic 

visual features extracted from the speaker’s lips. It is motivated by the ability of the hearing-

impaired to lip-reading. Four different of feature integration methods are compared in [WHL99]: 

direct concatenation of feature vectors, product HMM (product of likelihood values from individual 

modality), two-stage HMM, and integration by neural network. The product HMM based on 

product of likelihood values from individual modality showed the best result on average.   

An alternative to feature-level fusion is to model each different feature set separately, design a 

specialized classifier for this feature set, and combine the classifier output scores. Each such classi-

fier acts as an independent “expert”, giving its opinion about the unknown audio segment. The 

fusion rule then combines the individual experts’ match scores. This approach is referred here as 

decision-level fusion. By combining classifiers we are aiming at a more accurate classification 

decision at the expense of increased complexity. 

There are two main strategies in combining decisions: fusion and selection. In classifier fu-

sion, each ensemble member is supposed to have knowledge of the whole feature space. In 

classifier selection, each ensemble member is supposed to know well a part of feature space and be 

responsible for objects in this part. Therefore in the fusion approach, usually applied combiners 

such as average and majority vote whereas in the selection approach usually selected only one 

classifier to label the input x. There are combination schemes lying between the two “pure” strate-

gies. Such a scheme, for example, is taking the average of the outputs with coefficients that depend 

on the input x. Classifier selection has not attracted as much attention as classifier fusion. This 

might change in future [Kun04]. Cascade classifiers also seem to be relatively neglected in the 

literature. 

Some combiners do not need training after the classifiers in ensemble have been trained indi-

vidually. An example is the majority vote combiner. Other classifiers need additional training, for 
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example, the weighted average combiner. A third class of combiners develop the combiner during 

the training of the individual classifiers, for example, Adaboost [Kun04]. 

The possible ways of combining the outputs of the L classifiers in an ensemble depend on 

what information we obtain from the individual members. We can distinguish two types of classi-

fier outputs: 

• Label output. Each classifier Di produces a class label Ω∈is , i = 1, …, L. Thus, for any object 

nx ℜ∈ to be classified, the L classifier outputs define a vector s = [s1, …, sL]T LΩ∈ . There is 

no information about the certainty of the guessed labels, nor any alternative labels suggested. 

The methods that are based on combining label outputs include majority vote, weighted ma-

jority vote, naive Bayes combination, probabilistic tree and others. 

• Continuous valued outputs. Each classifier Di produces a c-dimensional vector [di,1, …, di,c]T. 

The value di,j represents the support for the hypothesis that vector x submitted for classifica-

tion comes from class ωj. The methods that combine the continuous valued outputs include 

non-trainable combiners: average, minimum/maximum/median, product. Among trainable 

combiners are: weighted average, fuzzy integral, decision template etc. 

In the following we present the examples of multimodal fusion approaches found in the litera-

ture. In paper [HLW99], authors examine different techniques to integrate audio and visual 

information for classification in video based on HMMs. In that work, one HMM for each class and 

modality is trained, and a 3-layer perceptron is used to combine the outputs. The fusion scheme in 

[XDX03] was proposed in the framework of detection events in sports video, where the audio 

features were considered as the main cue and the decisions based on motion, texture and colour 

were considered as auxiliary information to refine results based on audio. For laughter detection in 

[PP08] the decision level fusion is done by means of a sum operator. Two statistic fusion schemes: 

the logistic regression and the Bayesian belief network (BBN) are proposed in [LT05] for fusion 

different modalities. Experimental results in sports video domains suggest that the proposed frame-

work is promising. In [CAW06] a gunshot event recognition system based on audio and visual 

feature analysis is presented. Gunshot events are among the most important events for an automatic 

surveillance system to recognize. 
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2.5 Chapter Summary 

In this chapter we have quickly reviewed the work done so far in the area of acoustic event detec-

tion focusing on multimodal approaches. Firstly, the task of acoustic event detection has been 

overviewed. Also, a literature review of different multimodal audio recognition applications have 

been presented, where the application domain has been subdivided into multimodal speech recogni-

tion, speaker identification and emotion recognition. Secondly, the feature extraction and selection 

approaches as well as detection and fusion techniques that have been used in the area of audio 

recognition have been discussed. Finally the relevant reported works have been presented. 
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Chapter 3. Multimodal feature extraction 

3.1  Chapter Overview 

This Chapter presents features extracted from audio and video modalities which are employed in 

this thesis.  

In Section 3.2 a set of spectro-temporal features that have shown so far its usefulness for 

meeting-room AED and broadcast AS tasks is presented. First, a feature grouping scheme is intro-

duced to put all these features in a meaningful framework. Second, features coming from acoustic 

source localization system, which, in combination with usual spectro-temporal audio features, yield 

further improvements in recognition rate, are described in Section 3.3. In Section 3.4 a variety of 

features is extracted from video recordings by means of object detection, motion analysis, and 

multi-camera person tracking to represent the visual counterpart of several acoustic events. Since 

the video modality is not affected by acoustic noise, the proposed features show to be useful for 

AED in spontaneous scenario recordings. Both the localization and the video features are new for 

the task of meeting-room AED. 
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3.2 Conventional acoustic features 

In audio recognition we face the problem of the large number and variety of features proposed in 

the literature. Those features exploit acoustic content such as sub-band energies computed in short-

time windows, time evolution parameters, modulation spectrum, level of harmonicity, etc.  There 

are several attempts of grouping all these features into a meaningful structure can be found in 

literature and several of them are discussed in sub-Section 2.4.2. However, the main drawback of 

the most proposed grouping schemes is uncertainty about which group each particular feature 

belongs to.  In the following we propose an alternative meaningful feature grouping scheme that can 

be used to put together a large variety of audio features. We argue that the features located in the 

same cell of this structure capture similar acoustic information of sounds. 

3.2.1 Feature grouping 

As we have already mentioned previously, there is a great variety of audio features proposed in the 

literature, but they are not well organized in some meaningful structure. In fact, some of the features 

exhibits a certain redundancy, like, for instance, MFCC and LPC features, that are two alternative 

ways of spectral envelope representation, but other are quite different like MFCC and, for instance, 

the fundamental frequency.  

Feature extraction process consists in extraction of relevant information from audio which is 

used posteriorly for recognition. The question is which information should be considered as rele-

vant, i.e. what makes sounds different for human perception? Let’s review briefly the auditory 

model of human perception. The acoustic wave is transmitted from the outer ear to the inner ear 

where the ear drum and bone structures convert the sound wave to mechanical vibrations which 

ultimately are transferred to the basilar membrane inside the cochlea. The basilar membrane vi-

brates in a frequency-selective manner along its extent and thereby performs a rough (non-uniform) 

spectral analysis of the sound.  Different frequencies presented in audio signal invoke particular 

neurons. The information embedded in the firing of action potentials at auditory nerves is transmit-

ted to the higher stages of human auditory system. Thus the spectral content is one of the most 

important characteristic of sound from perceptual point of view. One the other hand, several studies 

have indicated that the exploitation of temporal information plays an important role in human sound 

processing. For instance, magneto-encephalographic studies in humans [LSH97] have suggested 

that amplitude modulations are explicitly coded in the auditory cortex; this motivates incorporating 

a signal decomposition in both time and frequency domain [BAK11].  
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Based on that observation, most of the feature extraction methods analyze audio from two per-

spectives: spectral content and the time evolution of spectral components. Taking into account that 

audio signal in general is non-stationary stochastic process, the spectral content analysis is usually 

performed on frame basis where the process can be considered stationary. The frame spectrum can 

be described from 2 perceptually relevant points of view: the shape of the spectral envelope and its 

harmonic structure. The time evolution of spectral components can be characterized using statisti-

cal and structural approaches. Note in some audio recognition systems time evolution is explicitly 

modeled during recognition stage (e.g. HMM approach). 

In the proposed grouping scheme (Table 3.2.1) each feature is described in 2 dimensions: time 

(horizontal) and frequency (vertical). Different features can be put into specific cell of the table 

based on the type of information the feature is capturing. If some feature captures only spectral 

information without time evolution, it is put into the cell of the first column in the table.  

 

Table 3.2.1. Proposed feature grouping scheme. 

  Time domain 

  None  

(frame-based features) 

Statistical Structural 
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tra
l e
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FBE, MFCC, FF, LPC, 

PLP, Sp. Centr, Sp. Roll-

off, Sp. width, Bright-

ness, Spectral Slope, F1, 

F2 

 

Mean, Variance, Kurto-

sis, Percentile values, 

Min/max of spectral  

envelope parameters 

Delta and delta-delta, 

Autocorrelation features, 

4 Hz modulation energy, 

Attack time, Attack slope 

of spectral envelope 

parameters 

Fr
eq

ue
nc

y 
do
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ai

n 

H
ar

m
on

ic
ity

 

Fundamental frequency, 

Pitch, Tonality, CRRM, 

Harmonic to noise ratio 

Mean, Variance, Kurto-

sis, Percentile values, 

Min/max of harmonicity 

parameters 

Delta and delta-delta, 

Autocorrelation features, 

4 Hz modulation energy, 

Attack time, Attack slope 

of harmonicity parame-

ters 

 

The spectral features are decomposed in 2 sub-categories: spectral envelope features and har-

monicity features. Spectral envelope features are the most popular and they describe the shape of the 
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spectral envelope. Spectral envelope can be parameterized in different ways. The most straightfor-

ward approach is using the integrated energies in critical sub-bands (filter bank energies, FBE). 

Usually the filter bank energies are further transformed since they exhibit certain correlation. The 

examples of such transformations are: log + DCT for MFCC feature extraction, derivative filter 

transformation for FF LFBE feature extraction. Sometimes the precise shape of the envelope is not 

of particular interest, so the distribution of spectral energy between low/high frequencies (spectral 

slope), sharpness/flatness (spectral width), the “middle” point of spectrum (spectral centroid, 

spectral roll-off point), position of formants (F1, F2), etc are used. 

A set of harmonicity features is another perceptual group of features that describe the spec-

trum of a signal. The examples are: fundamental frequency, pitch, energy of harmonics, harmonic to 

noise ratio, position of harmonics along the frequency axis, inharmonicity (amount of partials that 

are not multiples of fundamental frequency), tonality (ratio of the harmonic to inharmonic parts of 

the spectrum) etc. Another example is cepstrum resynthesis residual magnitude (CRRM) that is 2-

norm of the vector residual after cepstral analysis, smoothing, and resynthesis [SS97]. For instance, 

in the case of voiced speech, cepstral analysis filters out the pitch “ripple” from the signal, giving 

higher values for the residual. 

The time evolution of frame-based spectral parameters can by analyzed using statistical or 

structural approaches. In statistical approach the descriptive statistics is usually used: it describes a 

large number of values in a sensible way. The examples of descriptive statistics are the mean, 

median value, variance, range, the minimum and maximum variables, histogram, quantiles and 

percentiles, kurtosis and skewness, percentage of low/high values etc. Statistical analysis of a set of 

variables is performed irrespectively of position of variables along time within analysis segment.  

Although statistical characteristics of audio features are widely used for audio representation 

in most of current audio analysis systems and have been proved to be effective, they lead to ambi-

guities in some cases. In structural time evolution analysis the order of variables is significant thus 

features form a part of time series. Structural analysis accounts for the fact that data points taken 

over time may have an internal morphological structure (i.e. shape, autocorrelation) that should be 

accounted for. A structural analysis generally reflects the fact that observations close together in 

time will be more closely related than observations further apart. Structural feature extractors are 

difficult to apply to new domains because implementation of feature extraction requires domain 

knowledge. The simple version of structural time evolution features are delta and delta-delta 

coefficients of the standard ASR features. Other features from that category include attack time 

(temporal duration of the attack phase), attack slope (ratio between the magnitude difference at the 
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beginning and the ending of attack period, and the corresponding time difference), 4 Hz modulation 

energy (speech tends to have more modulation energy at 4Hz than music does), amplitude modula-

tion features, etc. 

3.2.1 Feature extraction for AED and AS 

3.2.1.1 Frequency filtered log filter bank energies 

Sixteen FF LFBE coefficients [NMH01] along with their first temporal derivatives are extracted to 

describe every audio signal frame. Therefore, a 32-dimensional feature vector is used. The frame 

length is 30 ms with 20 ms shift, and a Hamming window is applied.  

3.2.1.2 Set of perceptual features 

Motivated by the discriminative ability of perceptual features reported in state-of-the-art literature, 

in certain experiments a set of perceptual features is used in combination with previously described 

features. The number of coefficients is presented in brackets:  

• Zero crossing rate (1)  

• Short-time energy (1) 

• Sub-band energies (4) 

• Spectral flux (4) 

• Spectral centroid (1) 

• Spectral bandwidth (1) 

• Chroma parameters (12) 

3.2.1.3 Amplitude modulation features 

In order to improve the AS results in the broadcast news domain the following 5 amplitude modula-

tion features are extracted (described in chapter 2): 

• Width 

• Symmetry 

• Skewness 

• Kurtosis 

• Lower half  

All these features are computed over a 10 sec window with 1 sec shift. 
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The amplitude histogram of continuous signals, like noisy speech noise and certain kinds of 

music possibly overlapped with noise, shows a narrow and symmetrical distribution, whereas the 

distribution is broad and asymmetric for speech.  

 

 

Speech Speech over noise 

  
Music Speech over music 

Figure 3.2.1. Amplitude envelope histogram of “Clean speech”, “Speech with noise in back-
ground”, “Music”, “Speech with music in background” 

 
 

The examples in Figure 3.2.1 show the amplitude histogram of speech, speech over noise, mu-

sic and speech over music classes employed in AS task. The histograms were built over twenty 

seconds of the energy envelope of each signal. Due to the pauses in the speech signal, its level 

varies very much over time, resulting in a broad and asymmetrical amplitude histogram. The level 

of speech over noise varies less, that is, the amplitude histogram has a narrow and symmetrical 

form. Music histogram has even narrower amplitude histogram and also symmetric form. In addi-
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tion to the histograms, 10%, 50% and 90% percentiles are also drawn in the figures. The 10% 

percentile, for example, shows the level below which the envelope is 10% of the time. The asym-

metrical distribution in the speech signal results in a much larger distance between the 10% and the 

50% percentile than between the 50% and 90% percentile, or, in other words, the 50% percentile is 

far away from the arithmetical mean of the 10% and 90% percentile. For music signals, the 50% 

percentile is more or less in the middle of the 10% and the 90 % percentile, representing the sym-

metrical distribution. 

3.2.1.4 Spectral slope features 

In AS task we have “telephone speech over music” as one of the classes of interest  which com-

posed of the music that spans all the frequency range up to 8 kHz (16 kHz sampling frequency), and 

telephone speech which is in low frequency range (up to 3.4 kHz).  New features, called spectral 

slope features, are proposed to enhance the detection accuracy. To compute a spectral slope, two 

different couples of sub-bands are defined. These sub-bands have been chosen to discriminate 

between “telephone speech over music” and the rest of audio based on the slope of the spectrum in 

the region around 4000 Hz, the end of the band of telephone speech, beyond which only music 

frequency components exist. The first couple is made of the sub-bands [1000 – 3000] Hz and [3000 

– 7000] Hz and the second is consists of the sub-bands [3000 – 3500] Hz and [3500 – 4000] Hz (see 

Figure 3.2.2). These sub-bands aim to parameterize the energy in the region where the energy drop 

should appear for the “telephone speech over music” class.  

 

 
 
Figure 3.2.2. Sub-band couples for the spectral slope superposed over periodograms corresponding 

to “speech” and “telephone speech over music” classes  
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A spectral slope feature vector ss is computed for each couple as: 

),,(
2

1
21 S

SSSss =  (3.2.1) 

where S1, S2 are total energies of the first and second sub-band respectively. 

Experimental results have shown that the dynamics of the spectral slope features are helpful 

for the detection of the “telephone speech over music” class. Thus the deltas and accelerations are 

added to the final feature vector. Finally a set of 18 values is obtained for each frame. 
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3.3 Acoustic localization features 

In order to enhance the AED accuracy in meeting-room environments, acoustic localization features 

are used in combination with audio spectro-temporal features. In our case, as the characteristics of 

the room are known beforehand (Figure. 3.3.1 (a)), the position (x, y, z) of the acoustic source may 

carry useful information. Indeed, some AEs can only occur at particular locations, like door slam 

and door knock can only appear near the door, or footsteps and chair moving events take place near 

the floor. Based on this fact, we define a set of meta-classes that depend on the position where each 

AE can be detected. The proposed meta-classes are: “near door” and “far door”, related to the 

distance of the acoustic source to the door, and “below table”, “on table” and “above table” meta-

classes depending on the z-coordinate of the detected AE. The meta-class categorization of meeting-

room AEs is presented in Table 3.3.1. The height-related meta-classes are depicted in Figure 3.3.1 

(b) and their likelihood function modelled via Gaussian Mixture Models can be observed in Figure 

3.3.2 (b). Thus in our experiments two acoustic source localization features are extracted: d (dis-

tance from the door) and z (height of the detected acoustic source). It is worth noting that the z-

coordinate is not a discriminative feature for those AEs that are produced at the similar height.  

 

Table 3.3.1 Meta-class categorization of the meeting-room acoustic events 

Based on distance from the door Based on z-coordinate 
near door Far door below-table on-table above-table 

Door knock Steps Paper wrapping Speech 
Door slam Chair moving Keyboard typing Cough 

 

10 AEs not 
included into 
“near door”   Key jingle Laugh 

   Phone ring Applause 
   Cup clink  

 

  

(a) (b) 
Figure 3.3.1. (a) The top view of the room. (b) The three categories along the vertical axis 
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3.3.1 Feature extraction approach 

The acoustic localization system used in this work is based on the SRP-PHAT [DSB01] localization 

method, which is known to perform robustly in most scenarios. The SRP-PHAT algorithm is briefly 

described in the following. Consider a scenario provided with a set of NM microphones from which 

we choose a set of microphone pairs, denoted as Ψ. Let Xi and Xj be the 3D location of two micro-

phones i and j. The time delay of a hypothetical acoustic source placed at 3Rx∈  is expressed as: 

 

s

xxxx ji
jix

−−−
=,,τ  (3.3.1) 

 

where s is the speed of sound. The 3D space to be analyzed is quantized into a set of positions with 

typical separations of 5 to 10 cm. The theoretical TDoA jix ,,τ  from each exploration position to 

each microphone pair is pre-calculated and stored. PHAT-weighted cross-correlations of each 

microphone pair are estimated for each analysis frame [OS97]. They can be expressed in terms of 

the inverse Fourier transform of the estimated cross-power spectral density Gi,j(f) as follows:  
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The contribution of the cross-correlation of every microphone pair is accumulated for each 

exploration region using the delays pre-computed in Eq. 3.3.2. In this way, we obtain an acoustic 

map at every time instant, as depicted in Figure 3.3.2 (a). Finally, the estimated location of the 

acoustic source is the position of the quantized space that maximizes the contribution of the cross-

correlation of all microphone pairs: 

 

∑
Ψ∈

=
ji

jixji
x

Rargmaxx
,

,,, )(ˆ τ  (3.3.3) 

 

The sum of the contributions of each microphone pair cross-correlation gives a value of confidence 

of the estimated position, which is assumed to be well-correlated with the likelihood of the estima-

tion. 
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AE Applause AE Chair moving 

(a) Acoustic maps 

 

height (z-coordinate) log-distance from the door 

(b) AE localization distributions 

Figure 3.3.2. Acoustic localization. In (a), acoustic maps corresponding to two AEs overlaid 
to a zenithal camera view of the analyzed scenario. In (b), the likelihood functions modelled 

by GMMs 
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3.4 Video features  

Acoustic event detection is usually addressed from an audio perspective only. Typically, low 

acoustic energy AEs as paper wrapping, keyboard typing or footsteps are hard to be detected using 

only the audio modality. The problem becomes even more challenging in the case of signal over-

laps. Since the human-produced AEs have a visual correlate, it can be exploited to enhance the 

detection rate of certain AEs. Therefore, a number of features are extracted from video recordings 

by means of object detection, motion analysis, and multi-camera person tracking to represent the 

visual counterpart of five classes of AEs. From the audio perspective, the video modality has an 

attractive property: the disturbing acoustic noise usually does not have a correlate in the video 

signal. In this section, several video technologies which provide useful features for our AED task 

are presented.  

3.4.1 Person tracking features 

Multiple cameras are employed to perform tracking of multiple interacting people in the scene, 

applying the real-time performance algorithm presented in [CSC08]. This technique exploits spatial 

redundancy among camera views towards avoiding occlusion and perspective issues by means of a 

3D reconstruction of the scene. Afterwards, an efficient Monte Carlo based tracking strategy that 

exploits particle filtering (PF) [AMG02] approach retrieves an accurate estimation of the location of 

each target at every time instant t. Two main factors are to be taken into account when implement-

ing a particle filter: the likelihood function and the propagation strategy.  

Likelihood function p(zt|xt) can be defined as the likelihood of a particle belonging to the vol-

ume that corresponds to a person. For a given particle j occupying a voxel xt, its likelihood is 

formulated as: 

 

∑
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where C(·) stands for the neighborhood over a connectivity q domain on the 3D orthogonal grid and 

|C(·)| represents its cardinality. Typically, connectivity in 3D discrete grids can be 6, 14 and 26; in 

our research q=26 provided accurate results. Function d(·) measures the distance between a fore-

ground voxel p in the neighbourhood of the particle. 
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Challenges in 3D multi-person tracking from volumetric scene reconstruction are basically 

twofold. First, finding an interaction model in order to avoid mismatches and target merging. 

Several approaches have been proposed [Lan06] but the joint PF presented in [KBD03] is the 

optimal solution to multi-target tracking using PFs. However, its computational load increases 

dramatically with the number of targets to track since every particle estimates the location of all 

targets in the scene simultaneously. The proposed solution is to use a split PF per person, which 

requires less computational load at the cost of not being able to solve some complex cross-overs. 

However, this situation is alleviated by the fact that cross-overs are restricted to the horizontal plane 

in our scenario (see Figure 3.4.1). 

Let us assume that there are M independent PF trackers, being M the number of humans in the 

room. Nevertheless, they are not fully independent since each PF can consider voxels from other 

tracked targets in either the likelihood evaluation or the 3D re-sampling step resulting in target 

merging or identity mismatches. In order to achieve the most independent set of trackers, we 

consider a blocking method to model interactions. Many blocking proposals can be found in 2D 

tracking related works [KBD03] and we extend it to our 3D case. 

 

 

 
Figure 3.4.1. Particles from the tracker A (yellow ellipsoid) falling into the exclusion zone of 

tracker B (green ellipsoid) will be penalized 
 



3.4.Video features 

 
54

 

Figure 3.4.2: The output of the employed algorithm in a scenario involving multiple targets 
 

The combination of the estimated 3D location together with geometric descriptors allows dis-

carding spurious objects such as furniture and a simple classification of the person's pose as 

standing or sitting. The performance of this algorithm over a large annotated database [LCC07] 

showed the effectiveness of this approach. An example of the performance of this algorithm is 

shown in Figure 3.4.2. 

 

 

The output of the 3D tracking algorithm is the set of coordinates of all the people in the room, 

which are given every 40ms (25 fps). From those coordinates, we have to generate features that 

 

 

 

(a) (b) 

Figure 3.4.3. In (a), values of the velocity during one development seminar (bottom) and 
reference “steps” labels (top). In (b), the histograms of log-velocities for “non-steps” (left 

hump) and “steps” (right hump) 
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carry information correlated with “Steps”. The movements of people in the meeting room can be 

characterized by a velocity measure. In a 2D plane, the velocity can be calculated in the following 

way:  

 

22
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where dx/dt and dy/dt are the values of velocity along x and y axes, respectively. Those values are 

calculated using a smoothed derivative non-casual filter h applied to the vector of positions of each 

person in the room. We tried several shapes of the impulse response of the derivative filter; best 

results were obtained using a linear non-casual filter with the impulse response h(n) = [-m … -2 -1 0 

1 2 … m] (zero corresponds to the current value and L=2*m+1 is the length of the filter).  

Usually more than one person is present in the room, and each person has its own movement 

and velocity. The maximum velocity among the participants in the seminar is used as a current 

feature value for “Steps”/ “non-Steps” detection. 

Figure 3.4.3 (a) plots the maximum value of velocity among participants for a 6-min seminar 

along with the corresponding ground truth labels. From it we can observe that there is certain 

degree of correspondence between peaks of velocity and true “Steps”.  

The normalized histograms of the logarithm of velocity for “Steps” and “non-Steps” obtained 

from development seminars are depicted in Figure 3.4.3 (b), from which can be seen that “Steps” 

are more likely to appear with higher values of velocity. The jerky nature of the “Steps” hump 

results from a more than 10 times scarcer representation of “Steps” with respect to “non-Steps” in 

the development database. 

To have a better detection of “Steps” the length L of the derivative filter h(n) and several types 

of windows applied on h(n) were investigated. According to the results shown in Figure 3.4.4, the 

best detection of “Steps” on development data is achieved with a 2-sec-long derivative filter and a 

Hamming window.  
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Figure 3.4.4. Detection of “Steps” on the development database as a function of the length of the 

derivative filter (in seconds) 
 

3.4.1.1 Feature for detection “Chair moving” AE 

Once the position of the target is known, an additional feature associated with the person can be 

extracted: height. When analyzing the temporal evolution of this feature, sudden changes of it are 

usually correlated with chair moving AE, that is, when the person sits down or stands up. In Figure 

3.4.5 the temporal evolution of the height position of the participant (blue solid line) is depicted 

along with ground truth labels of “chair moving” AE (red dashed line). One can observe a certain 

correlation between these two curves. The video features for “chair moving” AE detection are 

obtained using a smoothed derivative non-casual filter h applied to the vector of height positions of 

each person in the room. There are two possible cases when “chair moving” AE may appear: 

1) The person is currently sitting and wants to stand up. In this case the person usually first stands 

up and then moves a chair towards the table. This corresponds to the case when “chair moving” 

sound appears with some delay (in average, about 1.5 seconds). 

2) The person is currently standing and wants to sit down. In this case the person first moves a chair 

and then takes a seat (in average, about 1.5 seconds delay). 
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Figure 3.4.5. Values of the height position of the participant during the development seminar (solid 

blue curve) and reference “chair moving” labels (dashed red curve) 
 

These two types of delays are incorporated in feature extraction process as described in fol-

lowing. If f(t) is the height position of the participant along the time, the  derivative of height 

position of the person is computed as g (t) = f(t)*h. Note, g(t)>0 if the persons stands up, g(t)<0 if 

the person sits down and g(x) ≈ 0 the rest of the time. Two new auxiliary functions are introduced: 

⎩
⎨
⎧ >

=
otherwise    ,0

 if  ),(
)(1

0g(t)tg
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The feature vector for “chair moving” AE detection is obtained as G(t) = g1(t + τ) + g2(t - τ), 

where τ = 1.5 sec in our experiments. 

3.4.2 Colour-specific MHI 

Some AEs are associated with motion of objects around the person. In particular, we would like to 

detect a motion of a white object in the scene that can be associated to paper wrapping (under the 

assumption that a paper sheet is distinguishable from the background colour). In order to address 

the detection of white paper motion, a close-up camera focused on the front the person under study 

is employed. Motion descriptors introduced by [BD99], namely the motion history energy (MHE) 

and image (MHI), have been found useful to describe and recognize actions.  
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Figure 3.4.6. Paper wrapping feature extraction 

 

However, in our work, only the MHE feature is exploited, since the MHI descriptor encodes 

the structure of the motion, i.e. how the action is executed; this cue does not provide any useful 

information to increase the classifier performance. Every pixel in the MHE image contains a binary 

value denoting whether motion has occurred in the last τ frames at that location. In the original 

technique, silhouettes were employed as the input to generate these descriptors but they are not 

appropriate in our context since motion typically occurs within the silhouette of the person. Instead, 

we propose to generate the MHE from the output of a pixel-wise colour detector, hence performing 

a color/region-specific motion analysis that allows distinguishing motion for objects of a specific 

color. For paper motion, a statistic classifier based on a Gaussian model in RGB is used to select the 

pixels with whitish colour. In our experiments, τ = 12 frames produced satisfactory results. Finally, 

a connected component analysis is applied to the MHE images and some features are computed 

over the retrieved components (blobs). In particular, the area of each blob allows discarding spuri-

ous motion. In the paper motion case, the size of the biggest blob in the scene is employed to 

address paper wrapping AE detection. An example of this technique is depicted in Figure 3.4.6. 

3.4.3 Object detection  

Detection of certain objects in the scene can be beneficial to detect some AEs such as phone ring-

ing, cup clinking or keyboard typing. Unfortunately, phones and cups are too small to be efficiently 
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detected in our scenario, but the case of a laptop can be correctly addressed. In our case, the detec-

tion of laptops is performed from a zenithal camera located at the ceiling. The algorithm initially 

detects the laptop’s screen and keyboard separately and, in a second stage, assesses their relative 

position and size. Captured images are segmented to create an initial partition of 256 regions based 

on colour similarity. These regions are iteratively fused to generate a Binary Partition Tree (BPT), a 

region-based representation of the image that provides segmentation at multiple scales [SG00]. 

Starting from the initial partition, the BPT is built by iteratively merging the two most similar and 

neighbouring regions, defining a tree structure whose leaves represent the regions at the initial 

partition and the root corresponds to the whole image (see Figure 3.4.7 (a)). Thanks to this tech-

nique, the laptop parts may be detected not only at the regions in the initial partition but also at 

some combinations of them, represented by the BPT nodes. Once the BPT is built, visual descrip-

tors are computed for each region represented at its nodes. These descriptors represent colour, area 

and location features of each segment. 

The detection problem is posed as a traditional pattern recognition case, where a GMM-based 

classifier is trained for the screen and keyboard parts. A subset of ten images representing the laptop 

at different positions in the table has been used to train a model based on the region-based descrip-

tors of each laptop part, as well as their relative position and sizes. An example of the performance 

of this algorithm is shown in Figure 3.4.7 (b). For further details on the algorithm, the reader is 

referred to [GM07]. 

 
 

(a) (b) 
Figure 3.4.7. Object detection. In (a) the binary tree representing the whole image as a hierarchy. 
Regions corresponding to the screen and keyboard regions are identified within the tree. In (b), the 

detection of a laptop from zenithal view 
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3.4.4 Door activity features 

In order to visually detect door slam AE, we considered exploiting the a priori knowledge about the 

physical location of the door. Analyzing the zenithal camera view, activity near the door can be 

addressed by means of a foreground/background pixel classification [SG99]. The amount of fore-

ground pixels in the door area will indicate that a person has entered or exited, hence allowing a 

visual detection of door slam AE. Although changes in scene lighting can cause problems for many 

backgrounding methods in outdoor conditions, the lighting in the meeting room scenario is usually 

remains constant. 

In Figure 3.4.8 the method for foreground pixel extraction is described. First, the background 

image of the room from zenithal camera view is stored (Figure 3.4.8 (a)). Second, for each video 

frame (Figure 3.4.8 (b)) the foreground is detected by subtracting each pixel of background and 

current frame of the sequence and making thresholding Figure 3.4.8 (c).  

The proportion of foreground pixels in the “door area” along the time is depicted in Figure 

3.4.9. Although this algorithm is robust enough, the false alarms may appear when some person is 

moving in the “door area”. 

 

  
(a) (b) (c) 

Figure 3.4.8. Door activity feature extraction. (a) Background image; (b) Image corresponding to 
the person enters the room; (c) Foreground pixels depicted in white 
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Figure 3.4.9: The proportion of foreground pixels in “door area” along the time (blue solid line) 
with the reference “door slam” labels (red dashed line) 
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3.5 Chapter Summary 

In this Chapter we have presented a meaningful framework for grouping of audio features, and 

described those features that so far have shown its usefulness for the acoustic event detection task. 

A new feature set called spectral slope was designed to detect a particular class of interest in 

broadcast news audio segmentation. Additional features that describe the spatial location of the 

produced AE in the 3D space were presented which are new for the meeting-room AED task. 

Moreover, a number of features were extracted from the video signals by means of object detection, 

motion analysis, and multi-camera person tracking to represent the visual counterpart of several 

AEs which are also new for the meeting-room AED. 

 



Chapter 4.Multimodal meeting-room acoustic event detection 
  
 
 

 
63

Chapter 4. Multimodal meeting-room acoustic event detection 

4.1 Chapter Overview 

In the previous chapter a variety of multimodal features extracted from audio and video modalities 

was presented. The second step in building a multimodal AED system is choosing a multi-class 

detection approach and an appropriate way of fusion of different modalities.  

The databases and metric to evaluate the accuracy are presented in Section 4.2. Two basic de-

tection strategies are described in chapter 4.3: HMM-GMM-based and SVM-based. SVM is a 

discriminative two-class classification technique that can be easily extended to multi-classification 

problem. Feature-level and decision-level fusion strategies are described in this Section 4.4. Fea-

ture-level fusion strategy relies on synchronization of different modalities and concatenation of 

features into one super-vector. In decision-level fusion approach an individual detectors are built for 

audio and video modalities and the output scores are combined using two statistical approaches: 

weighted arithmetical mean (WAM) and fuzzy integral (FI). Fuzzy integral is a meaningful formal-

ism for combining classifier outputs that can capture interactions among various sources of 

information. Experimental results are presented in Section 4.6 and Section 4.7 concludes this 

chapter.  
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4.2 Databases and metric  

4.2.1 Description of the databases 

State-of-the-art empirical and statistical data driven methods in audio recognition depend to a large 

extend on sufficient and appropriate sample data, often covering a particular domain, acoustic 

environment, recording channel or modality. One of the problems when dealing with multimodal 

AED task in the meeting-room environment is lack of the annotated data to evaluate the perform-

ance of the proposed techniques. There exists a relatively large database of sounds, like RWCP 

sound scene database [NHA02], but only a small part of the sounds included in that database can be 

considered as usual or at least possible in a meeting room and only the audio modality is available 

for those sounds. Another relatively large and multimodal AMI corpus [AMI] contains only a 

limited number of AE instances that is not appropriate to develop AED technologies. 

For meeting-room environments, the task of AED is relatively new; however, it has already 

been adopted as a semantically relevant technology in CHIL European project (2004-2007) and two 

international evaluation campaigns: in CLEAR (Classification of Events, Activities, and Relation-

ships evaluation campaigns) 2006 [CLE06], by three participants, and in CLEAR 2007 [CLE07], by 

six participants. To support these evaluations a large multimodal and multi-site corpus for AED in 

meeting-room environment has been created. 

In this thesis a CLEAR’07 evaluation corpus is used. It consists of 25 interactive seminars, 

approximately 30 min-long that have been recorded by AIT (Athens Information Technology), ITC 

(Instituto Trentino di Cultura), IBM, UKA (Universität Karlsruhe), and UPC (Universitat Politèc-

nica de Catalunya) in their smart-rooms. Each seminar usually consists of a presentation of 10 to 30 

minutes to a group of three to five attendees in a meeting room. During and after the presentation, 

there are questions from the attendees with answers from the presenter. There is also activity in 

terms of people entering/leaving the room, opening and closing the door, standing up and going to 

the screen, discussion among the attendees, coffee breaks, etc. Each meeting can be conditionally 

decomposed into acoustic scenes: “beginning”, “meeting”, “coffee break”, “question/answers”, and 

“end”. The recorded interactive seminars contained a satisfactory number of acoustic events, so it 

was possible to perform AED tests that are statistically meaningful. The development part of the 

database consists of five interactive seminars (one from each site).  In total, development data 

consists of 7495 seconds, where 16% of total time is AEs, 13% is silence, and 81% is “Speech” and 

“Unknown” classes. The remaining interactive seminars have been conditionally decomposed into 5 
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types of acoustic scenes: “beginning”, “meeting”, “coffee break”, “question/answers”, and “end”. 

After observing the “richness” of each acoustic scene type in terms of AEs, 20 5-minute segments 

have been extracted maximizing the AE time and number of occurrences per AE class. These data 

belong to the test part of the database and consist of 6001 seconds, where 36% are AE time, 11% 

are silence, and 78% are “Speech” and “Unknown” classes. Noticeably, during about 64% of time, 

the AEs are overlapped with “Speech” and during 3% they are overlapped with other AEs. In terms 

of AE occurrences, more than 65% of the existing 1434 AEs are partially or completely overlapped 

with “Speech” and/or other AEs.  

Since the employed cameras in CLEAR’07 evaluation corpus do not provide a close view of 

the subjects under study, a new database has been recorded at UPC smart-room with 5 calibrated 

cameras and 6 T-shaped 4-microphone clusters (Appendix A). This database includes two kinds of 

datasets: 8 recorded sessions of isolated AEs, where 6 different participants performed 10 times 

each AE, and a spontaneously generated dataset which consists of 9 scenes about 5 minutes long 

with 2 participants that interact with each other in a natural way: discuss certain subject, drink 

coffee, speak on the mobile phone, etc. Although the interactive scenes were recorded according to 

a previously elaborated scenario, we call this type of recordings “spontaneous” since the AEs were 

produced in a realistic seminar style with possible overlap with speech. Manual annotation of the 

data has been done to get an objective performance evaluation. This database is publicly available 

from the author and the detailed description of this database is presented in Appendix A. 

The above mentioned databases include 15 semantic classes (classes of interest), i.e. types of 

AEs that are: “door knock”, “door open/slam”, “steps”, “chair moving”, “spoon/cup jingle”, “paper 

work”, “key jingle”, “keyboard typing”, “phone ring”, “applause”, “cough”, “laugh”, “speech”, 

“silence”, “unknown”. Among them, there are 2 AEs, “silence” and “unknown”, which are not 

evaluated. Along with the audio-visual data, the audio database of isolated AEs recorded at UPC in 

2004 was used. The details of the databases in terms of the number of occurrences per AE class are 

shown in Table 4.2.1. 

Using “UPC iso multimodal” database a new corpus with signal overlaps has been artificially 

generated. We assume a meeting scenario where there are two simultaneous acoustic sources in the 

room: one is always speech and the other is a specific AE. Taking into account this assumption, the 

UPC smart-room has been considered ideally subdivided in the two areas: left and right. In the left 

part the speaker produces speech, and in the right part the listener produces different types of AEs. 

Following this assumption, speech of the speaker was recorded from the left part of the room and 

posteriorly it was artificially overlapped with the multimodal database of isolated AEs. To do that, 



4.2.Databases and metric 
 

 
66

for each AE instance, a segment with the same length was extracted from a random position inside 

the speech signal. The overlapping was performed with 5 different Signal-to-Noise Ratios (SNRs): 

20 dB, 10dB, 0dB, -10dB. -20 dB, where speech is considered as “noise”. Although the database 

with overlapped AEs is generated in an artificial way, it has some advantages: 

a) The behaviour of the system can be analyzed for different levels of overlap. 

b) The existing databases of isolated AEs with high number of instances can be used for 

evaluation. 

 

Table 4.2.1. Number of occurrences per acoustic event class 

Number of Occurrences 
Audio Audio-visual 

Event Type Label 
UPC iso 

audio 
CHIL 

seminars
UPC iso 

multimodal

UPC sponta-
neously 

generated 
Door knock [kn] 50 235 79 27 

Door open/slam [ds] 120 149 256 82 
Steps [st] 73 570 206 153 

Chair moving [cm] 76 464 245 183 
Spoon/cup jingle [cl] 64 56 96 48 

Paper work [pw] 84 218 91 146 
Key jingle [kj] 65 54 82 41 

Keyboard typing [kt] 66 177 89 81 
Phone ring [pr] 116 46 101 29 
Applause [ap] 60 21 83 9 

Cough [co] 65 90 90 24 
Laugh [la] 64 191 - - 
Speech [sp] - 2463 74 255 

Unknown [un] 126 860 - - 
Silence [si] Not annotated explicitly 

 

4.2.2 Metric 

In support of CHIL evaluation campaign a specific metric for AED technology evaluation has been 

defined. The metric referred to AED-ACC (4.2.1) is employed to assess the accuracy AED systems. 

This metric is defined as the F-score (the harmonic mean between precision and recall):  

 

RecallPrecision
Recall*PrecisionACCAED

+
=−

*2 ,   (4.2.1) 

where  
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,
AEsoutputsystemallofnumber

AEsoutputsystemcorrectofnumberPrecision =
 

.
AEsreferenceallofnumber

AEsreferenceecteddetcorrectlyofnumbercallRe =
 

A system output AE is considered correct if at least one of two conditions is met: 1) There ex-

ists at least one reference AE whose temporal centre is situated between the timestamps of the 

system output AE, and the labels of the system output AE and the reference AE are the same. 2) Its 

temporal centre lies between the timestamps of at least one reference AE, and the labels of both the 

system output AE and the reference AE are the same. Similarly, a reference AE is considered 

correctly detected if at least one of two conditions is met: 1) There exists at least one system output 

AE whose temporal centre is situated between the timestamps of the reference AE, and the labels of 

both the system output AE and the reference AE are the same. 2) Its temporal centre lies between 

the timestamps of at least one system output AE, and the labels of the system output AE and the 

reference AE are the same.  

 The AED-ACC metric was used in the last CLEAR’2007 [CLE07] international evaluation, 

supported by the European Integrated project CHIL [WS09] and the US National Institute of 

Standards and Technology (NIST). 
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4.3 Detection approaches 

4.3.1 Joint segmentation and classification using HMMs  

Acoustic event detection requires both segmentation of the audio stream, and classification of the 

segments. We perform simultaneous segmentation and classification using similar to state-of-the-art 

methods for continuous speech recognition [NO99]. 

The goal of AED can be formulated as follows: find the event sequence Ω = (c1, c1, …, cM) that 

maximizes the posterior probability given the observation vector O = (o1, o2, …,oT): 

 

)()|(maxarg)|(maxargˆ ΩΩ=Ω=Ω
ΩΩ

POPOP  (4.3.1) 

 

The acoustic model P(O|Ω) is one HMM for each AE, that has several emitting states con-

nected with ergodic or left-to-right  transitions. P(Ω) is a prior probability of AE sequence Ω. In 

order to avoid the dependence of AE sequence to the particular recording scenario we assume that 

all sequences of AEs are equally probable. The observation distributions of the states are incremen-

tally-trained Gaussian mixtures with continuous densities. Each HMM is trained with the signal 

segments belonging to the corresponding event class from development data, using the standard 

Baum–Welch training algorithm [RJ93]. The HTK toolkit [YEK02] is used for training and testing 

the HMM–GMM system. The HMM topology for each AE is determined during a cross-validation 

procedure on the development data. The number of emitting states and Gaussian mixtures per state 

depends much on the amount of available training data. Usually the number of emitting states for 

each meeting-room AE ranges from 1 to 5 and the number of Gaussian mixtures ranges from 2 to 

16. Note the two parameters, number of emitting states and number of Gaussians, usually compen-

sate each other: with increasing number of states the number of Gaussian mixtures needed to model 

each state decreases. For testing, the Viterbi algorithm is used to find the sequence of states with 

highest probability, resulting in a sequence of detected AEs.  

Although the multi-class segmentation using HMMs is usually performed within a one single 

pass, in our work we exploit the parallel structure of the binary detectors depicted in Figure 4.3.1. 

Firstly, the input signal is processed by each binary detector independently (the total number of 

detectors is equal to the number of AE classes N), thus segmenting the input signal in intervals 

either as “Class” or “non-Class”. Using the training approach known as one-against-all method 

[RK04], all the classes different from “Class” are used to train the “non-Class” model. Secondly, 
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the sequences of decisions from each binary detector are superimposed together to get the final 

decision. 

 

 
 

Figure 4.3.1. A set of binary detectors working in parallel 
 

The proposed architecture with N separate HMM-based binary detectors working in parallel 

has several advantages: 

1. For each particular AE, the best set of features is used. The features which are useful for de-

tecting one class are not necessarily useful for other classes. In our case, the video features are used 

only for detecting some particular classes. 

2. The trade-off between the number of misses and false alarms can be optimized for each par-

ticular AE class. 

3. In the case of overlapped AEs, the proposed system can provide multiple decisions for the 

same audio segment.   

However, this architecture requires N binary detectors that makes the detection process more 

complex in the case of a large number of AE classes.  

4.3.2 Detection-by-classification using Support Vector Machines (SVMs) 

The SVM-based AED system used in the present work is the one that was also used for the AED 

evaluations in CLEAR 2007 [TNB08] with slight modifications. Note this system was ranked as the 

second best system in the international CLEAR’07 [CLE07] AED evaluation. 

The scheme of the AED system is shown in Figure 4.3.2. For each frame, a set of spectral pa-

rameters has been extracted. It consists of the concatenation of two types of parameters: 1) 16 

Frequency-Filtered (FF) log filter-bank energies, along with the first and the second time deriva-

tives; and 2) a set of the following parameters: zero-crossing rate, short time energy, 4 sub-band 

energies, spectral flux, calculated for each of the defined sub-bands, spectral centroid, and spectral 

bandwidth. In total, a vector of 60 components is built to represent each frame. The mean and the 
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standard deviation parameters have been computed over all frames in a 0.5 sec window with a 100 

ms shift, thus forming one vector of 120 elements. A sequence of decisions made on a 0.5-second 

window every 100 ms is obtained. That sequence is smoothed by assigning to the current decision 

point the label that is most frequent in a string of five decision points around the current one. The 

sequence of decisions is then processed again to get the detected events. In that step, only the events 

that have their length equal or larger than the average event length are kept, and the number of 

events is forced to be lower than a number which is proportional to the length of the segment. The 

average length of the events is estimated from the training and development databases. Finally, if 

the average of the above-mentioned computed confidences in a detected event is less than a thresh-

old, the hypothesized event is marked as “unknown”; otherwise, it maintains the assigned label. 

 
Figure 4.3.2. SVM-based AED system 

 

The training data for each binary SVM classifier were firstly normalized anisotropicly to be in 

the range from –1 to 1, and the obtained normalizing template was then applied also to the testing 

data that are fed to that classifier. In the experiments with the SVM we used the Gaussian kernel. 

Leave-one-out cross validation [SS02] was applied to search for the optimal kernel parameter σ. To 

cope with the data imbalance we introduced different generalization parameters (C+ and C−) for 

positively and negatively labelled training samples: C+ = K(A−/A+), C−=K(A+/A−) where A+ and A− 

are the number of positive and negative training samples, respectively. K was set to value 10 for all 

experiments [TN09]. The MAX WINS (pair-wise majority voting) [HL02] scheme was used to 

extend the SVM to the task of classifying several classes. After the voting is done, the class with the 

highest number of winning two-class decisions (votes) is chosen. 

 

0.1 sec 

0.5 sec 

... 

System output AE assigned segments 

...
SVMSVMSVM 
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4.4 Multimodal fusion 

The information fusion can be done on data, feature, and decision levels. Data fusion is rarely found 

in multi-modal systems because raw data is usually not compatible among modalities. For instance, 

audio is represented by one-dimensional vector of samples, whereas video is organized in two-

dimensional frames. Concatenating feature vectors from different modalities into one super vector 

is possible way for combining of audio and visual information. An alternative to feature-level 

fusion is to model each different feature set separately, design a specialized classifier for this feature 

set, and combine the classifier output scores. Each such classifier acts as an independent “expert”, 

giving its opinion about the unknown AE. The fusion rule then combines the individual experts’ 

match scores. This approach is referred here as decision-level fusion. In the presented work, fusion 

is carried out on the decision level using weighted arithmetical mean (WAM) and fuzzy integral 

(FI) [TMN08] [Kun04] fusion approaches. Unlike non-trainable fusion operators (mean, product), 

the statistical approaches WAM and FI avoid the assumption of equal importance of information 

sources. Moreover the FI fusion operator also takes into account the interdependences among 

modalities. 

4.4.1 Feature-level fusion approach 

In this work the feature-level fusion is implemented by concatenating the feature sets Xs from S 

different modalities in one super-vector 

   

S21 XXXZ ∪∪∪= ...  (4.4.1) 

 

 In the case of using HMM-GMM approach, the likelihood of that observation super-vector 

at state j and time t is calculated as: 

 

∑=
m

mZ Nptb );()( mmt Σ;μZ  (4.4.2) 

 

where N(.;μ;Σ) is a multivariate Gaussian pdf with mean vector μ and covariance matrix Σ, and pm 

are the mixture weights.  

Feature-level fusion becomes a difficult task when some features are missing. Although the 

audio spectro-temporal features can be extracted at every time instance, the feature that corresponds 
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to the localization of acoustic source has an undefined value in the absence of any acoustic activity. 

In the experiments we substitute the missing features (x, y, z coordinates) with a predefined “syn-

thetic” value (we use -1 value in our experiments). In this case we explicitly assign the 3D 

“position” of the silence event to have the value (-1, -1, -1).  

4.4.2 Decision-level fusion approach 

Multimodal decision fusion can be viewed from a broader perspective as a way of combining 

multiple classifiers corresponding to each modality. The main motivation here is to compensate 

possible misclassification errors of a certain classifier with other available classifiers and to end up 

with a more reliable overall decision. 

In the presented experiments decision level fusion is carried out using weighted arithmetical 

mean (WAM) and fuzzy integral (FI) fusion approaches. Unlike non-trainable fusion operators 

(mean, product), the statistical approaches WAM and FI avoid the assumption of equal importance 

of information sources. 

We are searching for a suitable fusion operator to combine a finite set of information 

sources },...,1{ zZ = . Let },...,,{ 21 zDDDD =  be a set of trained classification systems and 

},...,,{ 21 Nccc=Ω  be a set of class labels. Each classification system takes as input a data point 

nx ℜ∈  and assigns it to a class label fromΩ . Alternatively, each classifier output can be formed as 

an N-dimensional vector that represents the degree of support of a classification system to each of N 

classes. It is convenient to organize the output of all classification systems in a decision profile:  
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where a row is classifier output and a column is a support of all classifiers for a class. We suppose 

these classifier outputs are commensurable, i.e. defined on the same measurement scale (most often 

they are posterior probability-like).  

Let’s denote hi, i=1,..,z, the output scores of z classification systems for the class cn (the sup-

ports for class cn, i.e. a column from decision profile) and before defining how FI combines 
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information sources, let’s look to the conventional WAM fusion operator. A final support measure 

for the class cn using WAM can be defined as: 

 

∑
∈

=
Zi

iWAM hiM )(μ  (4.4.4) 

 

where Ziallforii
Zi

∈≥=∑
∈

0)(,1)( μμ  

The WAM operator combines the score of z competent information sources through the 

weights of importance expressed by ( )iμ . For the weights in WAM operator we use uniform class 

noise model with the weights computed as ii E
i

E
ii EE −−= 1)1(μ  where Ei is the training error of 

class ci [Kun04]. The main disadvantage of the WAM operator is that it implies preferential inde-

pendence of the information sources. 

Let’s denote with }),({),( jiji μμ =  the weight of importance corresponding to the couple of 

information sources i and j from Z. If μ  is not additive, i.e. ( ) ( ) ( )[ ]jiji μμμ +≠,  for a given couple 

Zji ⊆},{ , we must take into account some interaction among the information sources. Therefore, 

we can build an aggregation operator starting from the WAM, adding the term of “second order” 

that involves the corrective coefficients ( ) ( ) ( )[ ]jiji μμμ +−, , then the term of “third order”, etc. 

Finally, we arrive to the definition of the FI: assuming the sequence hi, i=1,..,z, is ordered in such a 

way that zhh ≤≤ ...1 , the Choquet fuzzy integral can be computed as 

( ) ( )[ ]∑
=

+−=
z

i
iFI hzizihM

1

,...,1,...,),( μμμ  (4.4.5) 

where 0ø)()1( ==+ μμ z . )(Sμ can be viewed as a weight related to a subset S of the set Z of 

information sources. It is called fuzzy measure (FM) for ZTS ⊆, it has to meet the following 

conditions:  

1)( 0,ø)( == Zμμ ,   Boundary 

)( )( TSTS μμ ≤⇒⊆ ,  Monotonicity 

For instance, as an illustrative example let’s consider the case of 2 information sources with 

unordered system outputs h1=0.4 and h2=0.3, and corresponding fuzzy measures μ(1)=0.6 and 

μ(2)=0.8. Note that μ(0)=0 and μ(1,2)=1. In that case, the Choquet fuzzy integral is computed as 

MFI(μ,h)= (μ(1,2)- μ(1))h2+ μ(1)h1=0.36.  
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A large flexibility of the FI aggregation operator is due to the use of FM that can model im-

portance and interaction among criteria. And although the FM )(iμ  provides an initial view about 

the importance of information source i, all possible subsets of Z that include that information source 

should be analysed to give a final score. For instance, we may have 0)( =iμ , suggesting that 

element i, Ti∉ , is not important; but if, at the same time, )()( TiT μμ >>∪ , this actually indicates 

i is an important element for the decision. For calculating the importance of the information source 

i, the Shapley score [Gra95] is used. It is defined as:  

)]()([
!

!)!1(
),(

\
TiT

Z
TTZ

i
iZT

μμμφ −∪
−−

= ∑
⊆

 (4.4.6) 

Generally, (4.4.6) calculates a weighted average value of the marginal contribution 

)()( TiT μμ −∪  of the element i over all possible combinations. It can be easily shown that the 

information source importance sums to one.  
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4.5 Experimental results 

4.5.1 Improving Detection of “Steps” using audio-visual decision-level fusion  

Motivated by the fact that the “Steps” AE accounted for almost 35% of all acoustic events in the 

CLEAR’07 evaluation database, in the first set of experiments we use video 3D tracking informa-

tion to improve the detection of that particular class. Detection of AEs is carried out with one video-

based and two audio-based systems: HMM-GMM-based and SVM-based. The use of the three AED 

systems is motivated by the fact that each system performs detection in a different manner. The 

difference in the nature of the considered detection systems makes the fusion promising for obtain-

ing a superior performance. The HMM-GMM-based AED system (described in Section 4.3.1) 

segments the acoustic signal in events by using a frame-level representation of the signal and 

computing the state sequence with highest likelihood. The SVM-based system (described in Section 

4.3.2) does it by classifying segments resulting from consecutive sliding windows. The video-based 

system uses information about position of people in the room. It utilizes velocity feature and 

probabilistic classifier for “Steps”/“non-Steps” detection as described in following. The normalized 

histograms of the logarithm of velocity for “Steps” and “non-Steps” obtained from development 

seminars as depicted in Figure 3.4.3 (b), from which can be seen that “Steps” are more likely to 

appear with higher values of velocity. The jerky nature of the “Steps” hump results from a more 

than 10 times scarcer representation of “Steps” with respect to “non-Steps” in the development 

database. These two curves are approximated by two Gaussians via Expectation-Maximization 

algorithm (EM). During detection on testing data the final decision for “Steps”/ “non-Steps” classes 

is made using the maximum aposteriori estimate: 

 

)()|()|( jjj wPwxPxwP = , j={1, 2} (4.5.1) 

 

where P(w1) and P(w2) are prior probabilities for the class “Steps” and the meta-class “non-Steps” 

respectively, which are computed using the prior distribution of these two classes in development 

data and P(x|wj) are likelihoods given by the Gaussian models. 

In the experiments, late fusion is performed via combining the decisions from several infor-

mation sources. In our case, not all information sources give scores for all classes. Unlike SVM and 

HMM-GMM-based systems, which provide information about 15 AE classes, the video-based 

system scores are given only for the class “Steps” and the meta-class “non-Steps”. Fusion of 
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information sources using the late fusion can be done either by transforming (extending) the score 

for “non-Steps” from the video-based system to the remaining 15 classes which do not include 

“Steps” or, vice-versa, transforming (restricting) the scores of 15 classes provided by the SVM and 

HMM-GMM-based systems to one score for the class “non-Steps”. In the former case, the fusion is 

done at one stage with all the classes. In the latter, a two-stage approach is implemented, where on 

the first stage the 3 detection systems are used to do “Steps”/ “non-Steps” classification and on the 

second stage the subsequent classification of the “non-Steps” output of the first stage is done with 

both SVM and HMM-GMM-based systems. The one-stage and two-stage approaches are schemati-

cally shown in Figure 4.5.1 
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Figure 4.5.1. One-stage (a) and two-stage (b) decision-level fusion  
 

For one-stage fusion (Figure 4.5.1 (a)) the score V of “non-Steps” of the video-based system is 

equally distributed among the remaining 15 classes assigning to each of them score V before 

applying soft-max normalization. At the first stage of the two-stage approach, all the classes not 

labelled as “Steps” form the “non-Steps” meta-class. The final score of “non-Steps” is chosen as 

maximum value of scores of all the classes that formed that meta-class. 

The individual FMs for the fuzzy integral fusion are trained on development data in our work 

using the gradient descent training algorithm [Gra95]. The 5-fold cross validation on development 

data was used to stop the training process to avoid overtraining. The tricky point was that during 

training the algorithm minimizes the total error on development data. As the number of data per 

each class is non-uniform distributed, during the training process the number of detection mistakes 

for the most representative classes (“Speech”, “Silence”) is decreased at the expense of increasing 

errors on the classes with lower number of representatives. The final metric scores, however, only 
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12 classes which are the classes with much smaller number of representatives than e.g. “Speech”. 

This way, the FI with the trained FM measure tends to detect correctly the classes that are not 

scored by the metric. To cope with this problem, we firstly fixed the FM of the classes of no interest 

(“Speech”, “Unknown”, and “Silence”) to be in the equilibrium state [Gra95] and, secondly, 

calculate the cross-validation accuracy only for the classes of interest. 

In order to fuse 3 information sources (SVM-based, HMM-GMM-based, and video-based sys-

tems), their outputs must be synchronized in time. In our case, the SVM system provides voting 

scores every 100ms, the video-based system every 40ms, and the HMM-GMM system gives 

segments of variable length which represent the best path through the recognition network. The 

outputs of the 3 systems were reduced to a common time step of 100ms. For that purpose the output 

score of the video-based system was averaged on each interval of 100ms, while for the HMM-

GMM system each segment was broken into 100ms-long pieces.  
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Figure 4.5.2. Synchronization of different information sources 

 

 

On the other hand, to make the outputs of information sources commensurable we have to 

normalize them to be in the range [0 1] and their sum equal to 1. As it was mentioned in Section 

4.3.2, when the SVM classification system is used alone, after voting, the class with the highest 

number of winning two-class decisions (votes) is chosen. In case of a subsequent fusion with other 

classification systems numbers of votes obtained by non-winning classes were used to get a vector 

of scores for the classes. For the HMM-GMM system, each hypothesis of an AE given by the 

optimal Viterbi segmentation of the seminar is then decoded by the trained HMM-GMM models of 

winning and each non-winning AE class in order to obtain the corresponding log-likelihood values 

which form vector of scores.  In case of video-based AED system we obtain scores for the two 

classes “Steps” and “non-Steps” as the distance between the values of log-velocity and the decision 

boundary. To make the scores of video-based and HMM-GMM-based systems positive min-max 

normalization [SSK06] is used. 
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The soft-max function is then applied to the vector of scores of each detection system. This func-

tion is defined as: 

 

∑=
i

iinormalizedi qkqkq )*exp(/)*exp(  (4.5.2) 

 

where the coefficient k controls the distance between the components of the vector [q1, q2, …,qN]. 

For instance, in extreme case when k=0, the elements of the vector after soft-max normalization 

would have the same value 1/N, and when k→∞ the elements tend to become binary. The normali-

zation coefficients are different for each AED system, and they are obtained using the development 

data. 

The results of first-stage fusion for “Steps”/“non-Steps” detection are presented in Fig-

ure 4.5.3. It can be seen that fusion of SVM and HMM-GMM-based systems leads to a small 

improvement, while in combination with video information the improvement is noticeable. It is 

worth to mention that 48.1% of accuracy for “Steps” detection would indicate a little worse decision 

than random choice if the metric scored both “non-Steps” meta-class and “Steps” class. However, in 

our case, only the “Steps” class is scored and thus 48.1% indicates that not only around 48.1% of 

“Steps” are detected (recall) but also that 48.1% of all produced decisions are correct (precision). 

On the first stage the FI fusion gives superior results in comparison with WAM fusion. This indi-

cates that a certain interaction between information sources for “Steps” detection exists that can not 

be captured by WAM fusion operator.  
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Figure 4.5.3. Accuracy of “Steps” detection on the first stage  
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The final results of detection of all 12 classes of AEs are presented in Figure 4.5.4. It can be 

seen that total system accuracy benefits from better recognition of “Steps” class. Again in this 

experiment the FI fusion shows better performance then WAM, resulting in a final accuracy of 

40.5%. 
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Figure 4.5.4. Overall system accuracy based on two-stage fusion 

 
Previously explained one-stage fusion showed lower scores - only 38.8% for WAM and 

39.2% with FI. This fact may indicate that in our particular case spreading no-information for 

classes with missing scores can be harmful and, conversely, to compress the scores of many classes 

to binary problems can be more beneficial.  

4.5.2 Feature-level fusion of audio spectro-temporal, acoustic localization and video features 

In the previous sub-Section we have shown how additional information from video 3D tracking 

system can improve the recognition results of “Steps” AE in CLEAR’07 evaluation database. In 

order to extend the multimodal AED to more classes, a new database described in Section 4.2 has 

been recorded which provided a close view of the subjects under study. A feature-level fusion 

strategy is used, and a parallel structure of binary HMM-GMM-based detectors is employed.  In the 

experiments presented here video feature extraction is extended to 5 AE classes, and “Speech” 

class, is also evaluated in the final results. A statistical significance test is performed individually 

for each AE. 

The overall diagram of the proposed system is depicted in Figure 4.5.5. Three data sources are 

combined together: two come from audio and one from video. The first is obtained from single 

channel audio processing and consists of audio spectro-temporal (AST) features. The second is 
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obtained from microphone array processing and consists of the 3D location of the audio source. 

And the third is obtained from multiple cameras covering the scenario and consists of video-based 

features related to several AEs. The three types of features are concatenated together (feature-level 

fusion) and supplied to the corresponding binary detector from the set of 12 detectors that work in 

parallel.   

 

Figure 4.5.5. System flow-chart 
 

In order to assess the performance of the proposed multimodal AED system and show the ad-

vantages of the proposed feature sets, the multimodal database of isolated AEs described in Section 

4.2 was used for both training and testing: 8 sessions were randomly permuted; odd index numbers 

were assigned to training and even index numbers to testing. Six permutations were used in the 

experiments. The subset of spontaneously generated AEs was used in the final experiments in order 

to check the adequateness of the multimodal fusion with real world data. The HMM-GMM-based 

AED system described in sub-Section 4.3.1 is used for AED. 

The detection results for each mono-modal detection system are presented in Table 4.5.1 (for 

the database of isolated AEs only). The baseline system (first column) is trained with the 32 AST 

features (16 FF LFBE plus the first time derivatives), while the other two systems use only one 

feature coming from either the video or the localization modality, respectively. As we see from the 

table, the baseline detection system shows high recognition rates for almost all AEs except the class 

“Steps” that is much better detected with the video-based AED system. The recognition results for 

the video-based system are presented only for those AEs for which video counterpart is taken into 

consideration. In the case of localization-based AED system, the results are presented only for each 

category rather than the particular AE class. In fact, using the localization information we are able 

to detect just the category but not the AE within it. 
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Table 4.5.1: Mono-modal recognition results 

 AST (%) Video (%) Localization (%) 

Door knock 97.20 --- 
Door slam 93.95 79.96 

82.95 

Chair moving 94.73 77.28 
Steps 60.94 75.60 

83.15 

Paper work 94.10 91.42 
Keyboard 95.57 81.98 
Cup clink 95.47 --- 

86.31 

Key jingle 89.73 --- 
Phone ring 89.97 --- 
Applause 93.24 --- 

Cough 93.19 --- 
Speech 86.25 --- 

67.70 

 

The confusion matrix that corresponds to the baseline detection system is presented in Table 

4.5.2, which presents the percentage of hypothesized AEs (rows) that are associated to the reference 

AEs (columns), so that all the numbers out of the main diagonal correspond to confusions. This 

table shows that some improvement may be achieved by adding localization-based features. For 

instance, although the “below-table” AEs (“Chair moving” and “Steps”) are mainly confused with 

each other, there is still some confusion among these two AEs and the AEs from other categories. 

 
Table 4.5.2. Confusion matrix corresponding to the baseline system (in %) 

 

 kn ds cm st pw kt cl kj pr ap co sp 

kn 98.8 0.4 0 0 0 0 0 0 0 0 0.8 0 

ds 0.3 82.0 0 14.8 0.1 1.2 0.4 0.1 0.2 0.2 0.2 0 

cm 0.9 0.4 93.8 4.0 0.4 0 0 0 0 0 0.1 0.3 

st 0 18.1 13.8 65.4 1.2 0.5 0 0 0.2 0.4 0 0.4 

pw 0 0.3 0 0.3 85.6 10.5 0 1.0 0.3 2.0 0 0 

kt 0 0 0 0 0 98.9 0 0.8 0.4 0 0 0 

cl 0 2.0 0 0 0 0 94.9 1.0 2.0 0 0 0 

kj 0 0 0 0 5.0 0.8 0 89.5 4.7 0 0 0 

pr 0 0 0 0 0 0 0 1.0 87.8 0.3 0 10.9 

ap 0 0 0 0 1.2 0 1.2 0 0 97.6 0 0 

co 6.9 0.4 0 0 0 0 0 0 0 0 92.4 0.4 

sp 1.8 0.7 0 5.8 0 0 0 0 3.6 0 7.6 80.6 
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The final detection results for isolated and spontaneously generated AEs are presented in Ta-

ble 4.5.3. The first column corresponds to the baseline system (that uses the 32-dimensional AST 

feature vector). The next columns correspond to the fusion of baseline features with the localization 

feature, the video feature and the combination of both of them, respectively. The last column shows 

the p-value of the statistical significance of the AST+L+V test in relation to the baseline system. If 

P1 and P2 are the accuracy measures for the baseline and the multimodal AED system, respectively, 

the null hypothesis H0 is: P1 ≥ P2; and the alternative hypothesis H1 is: P1 < P2. Assuming a stan-

dard level of significance at 95%, a p-value that is less than 0.05 implies the rejection of the null 

hypothesis or, in other words, it means that the result is statistically significant. 

Although the AST+L+V system improves the baseline system for most of the isolated AEs, a 

statistically significant improvement is only obtained for the classes “Door slam”, “Door knock”, 

and “Steps”. For the data subset of spontaneously generated AEs, a significant improvement in the 

detection of some low energy AEs (“Steps”, “Paper work”, “Keyboard typing”) is achieved. The 

best relative improvement corresponds to the “Steps” class. Other AEs have slightly improved their 

detection rates. In average, 15% relative error-rate reduction for isolated AEs, and 21% for sponta-

neously generated AEs are achieved. 

 

Table 4.5.3. Fusion of different modalities using isolated and spontaneously generated AEs 
Isolated Spontaneously generated 

AEs 
AST AST+L AST+V AST+L+V p-value AST AST+L AST+V AST+L+V 

Door knock 97.20 98.81 97.20 98.81 0.05 88.72 90.45 88.72 90.45 

Door slam 93.95 95.35 97.06 96.72 0.01 75.45 82.89 85.04 87.36 

Chair moving 94.73 95.18 95.24 95.93 0.09 83.89 84.32 84.12 84.82 

Steps 60.94 72.51 78.09 77.25 0.04 58.56 57.12 67.12 66.58 

Paper work 94.10 94.19 95.16 95.07 0.30 65.14 62.61 73.18 79.32 

Keyboard 95.57 95.96 96.56 96.72 0.37 71.69 78.37 79.68 80.50 

Cup clink 95.47 94.03 95.47 94.03 0.86 90.35 86.08 90.35 86.08 

Key jingle 89.73 88.00 89.73 89.60 0.52 52.09 44.12 52.09 44.12 

Phone 89.97 88.09 89.97 88.79 0.64 87.98 90.45 87.98 90.45 

Applause 93.24 94.91 93.24 94.91 0.13 84.06 84.65 84.06 84.65 

Cough 93.19 94.20 93.19 94.20 0.35 76.47 82.36 76.47 82.36 

Speech 86.25 85.47 86.25 85.47 0.62 83.66 83.12 83.66 83.12 
          

Average 90.36 91.39 92.26 92.29 - 76.51 77.21 79.37 79.98 
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As it can be observed, the video information improves the baseline results for the five classes for 

which video information is used, especially in the case of spontaneously generated AEs where the 

acoustic overlaps happen more frequently. Therefore, the recognition rate of those classes consid-

ered as “difficult” (usually affected by overlap or of low energy) increases. 

Acoustic localization features improve the recognition accuracy for some AEs, but for other 

events, it is decreased. One of the reasons of such behaviour is the mismatch between training and 

testing data for spontaneously generated AEs. For instance, the “Cup clink” AE in spontaneous 

conditions often appears when the person is standing, which is not the case for isolated AEs. 

Another reason is that, for overlapped AEs, the AE with higher energy will be properly localized 

while the other overlapped AE will be masked. Additionally, according to the confusion matrix 

(Table 4.5.2), the main confusion among AEs happens inside the same category, so that the audio 

localization information is not able to contribute significantly.  

4.5.3 Detection of overlapped with speech AEs 

In previous experiments we have seen how features from additional modalities improve the baseline 

recognition rate of both isolated and spontaneously generated AEs.  Since the baseline recognition 

results show high recognition accuracy (more, than 90% for most of the classes), the improvement 

from additional modalities is not statistical significant for many of AEs. In this Section we present 

new results with artificially generated database where the improvement from the video modality 

becomes apparent. The database consists of isolated acoustic events overlapped with speech with 

different SNRs as described in Section 4.2. Additionally, in the experiments we present comparison 

results between feature and decision level fusion approaches. 

The meeting scenario adopted for the following experiments assumes that there are two simul-

taneous acoustic sources in the room: one is always speech and the other is a specific AE. Taking 

into account this assumption, our UPC's smart-room has been considered ideally subdivided in the 

two areas: left and right. In the left part the speaker produces speech, and in the right part the 

listener produces different types of AEs. This assumption allows us to analyze the left and right 

parts of the room independently for the extraction of acoustic source localization features. 

The decision-level fusion process is schematically depicted in Figure 4.5.6. First, a HMM 

segmentation based on the spectro-temporal features is performed to find all non-silence segments 

in the input audio. Given the “Class” and “non-Class” HMM-GMM models the log-likelihood ratio 

(LLR) is obtained for each non-silence segment Si and each modality separately. A high positive 

LLR score would mean a high confidence that the non-Silence segment belongs to the “Class”, 
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while a low negative score would mean that the segment more likely belongs to “non-Class”. A 

value close to zero indicates low confidence of decision.  Second, the obtained scores are normal-

ized to be in the range [0…1] and their sum equal to 1. Then the normalized values are fused 

together using either Weighted Arithmetical Mean (WAM) or Fuzzy Integral (FI) fusion operators. 

 

 
 

Figure 4.5.6. Flowchart of decision-level fusion 
 

The detection results corresponding to two mono-modal AED systems based on AST and 

video features, respectively, are presented in Figure 4.5.7. The results for the video-based system 

are presented as an average accuracy score for those AEs for which the video counterpart is taken 

into consideration.  
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Figure 4.5.7. Mono-modal AED results 

 

Note the recognition results do not change for different SNR conditions since the video sig-

nals are not affected by overlapped speech. We do not present results for the AED system based on 

localization features since the information about the position of the acoustic source enables to detect 

just the category but not the AE within it. As we see from Figure 4.5.7, the recognition results of the 

baseline system decrease significantly for low SNRs. 
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The average relative improvement obtained by the multimodal system with respect to the 

baseline system (that uses the AST features only) for different fusion techniques is displayed in 

Figure 4.5.8. The feature-level fusion performs better for all AEs than both WAM and FI decision-

level fusion approaches, and the both decision-level fusion techniques showed similar results in our 

experiments. 
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Figure 4.5.8. Average relative improvement obtained by the multimodal system 

 
The Figure 4.5.9 summarizes the relative improvement (averaged over all AEs) obtained with 

the feature-level and the decision-level (using FI) fusion techniques for AED along different SNRs. 

Notice that the relative improvement from additional modalities at high SNRs is minimal due to the 

fact that in clean conditions the baseline results are already high. The same observation has been 

already made from Table 4.5.3. However, when the level of noise increases, the baseline results 

based on AST features drop down drastically yielding to increase of relative improvement coming 

from additional modalities. 

Moreover, according to both Figure 4.5.8 and Figure 4.5.9  the fusion performed at the feature 

level showed better performances than both of those performed at the decision-level, highlighting 

that processing input data in a joint feature space is more successful. It is known fact that early 

integration techniques, if adequately used, are usually favoured if a couple of modalities is highly 

correlated. Additionally, fuzzy integral fusion technique shows higher recognition rate than WAM 

fusion indicating about certain interaction among information sources. 

The information about the importance of each modality can be extracted applying the Shapley 

score to the FMs. Figure 4.5.10 shows the importance of the three information sources coming from 

spectro-temporal, acoustic localization and video features. The importance is calculated for those 

five AEs for which the video counterpart is taken into consideration. It can be observed that for 
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“Door slam”, “Steps” and “Paper wrapping” AEs the video-based detection system demonstrate the 

highest importance, while for the rest two AEs, “Chair moving” and “Keyboard typing”, the detec-

tion system based on acoustic spectro-temporal shows the superior importance. Note acoustic 

localization features exhibit minor importance for AED since the main confusion between classes 

occur within the same meta-class category. Another reason of low importance is the difficultness of 

precise estimation of localization coordinates for low-energy AEs like “Paper work”, “Steps” and 

“Keyboard typing”. 
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Figure 4.5.9. The relative improvement obtained from multimodal features for different SNRs 
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Figure 4.5.10. The importance of different modalities calculated with Shapley score 
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4.6 Chapter Summary 

In this chapter, we have shown that video signals can be a useful additional source of information to 

cope with the problem of acoustic event detection. Using an algorithm for video 3D tracking, video-

based features that represent the movement have been extracted, and a probabilistic classifier for 

“Steps”/”non-Steps” detection has been developed. The fuzzy integral and WAM techniques were 

used to fuse the outputs of both video-based detector and two audio-based AED systems which use 

either SVM or HMM classifiers. Using the CLEAR’07 evaluation database, the results showed the 

effectiveness of the multimodal fusion for detection of “Steps” AE. 

Additionally, a multimodal system based on a feature-level fusion approach and a one-against-

all detection strategy has been presented and tested with a new audiovisual database. The acoustic 

data is processed to obtain a set of spectro-temporal features and the localization coordinates of the 

sound source. A number of features are extracted from the video signals by means of object detec-

tion, motion analysis, and multi-camera person tracking to represent the visual counterpart of 

several AEs. Experimental results show that information from the microphone array as well as the 

video cameras facilitates the task of AED for both datasets of AEs: isolated and spontaneously 

generated. Since in the video modality the acoustic sources do not overlap (except for occlusions), a 

significant error-rate reduction is obtained. The acoustic localization features also improve the 

results for some particular classes of AEs. The combination of all features produced higher recogni-

tion rates for most of the classes, being the improvement statistically significant for a few of them. 

Using the database of isolated AEs artificially overlapped with speech we demonstrated that a 

significant improvement from additional modalities can be obtained in the conditions where the 

audio signals are strongly overlapped with speech. Additionally, the recognition results showed that 

fusion performed at the feature level is better than both of those performed at the decision-level, 

highlighting that processing input data in a joint feature space is more successful. 
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Chapter 5. Broadcast news audio segmentation 

5.1 Chapter Overview 

The recent fast growth of available audio or audiovisual content strongly demands tools for analyz-

ing, indexing, searching and retrieving the available documents. Given an audio document, the first 

processing step usually is audio segmentation (AS), i.e. the partitioning of the input audio stream 

into acoustically homogeneous regions which are labelled according to a predefined broad set of 

classes like speech, music, noise, etc. 

This chapter is organized as follows. Section 5.2 presents the database and metric description 

for the audio segmentation task. In Section 5.3 and Section 5.4 the overview of the proposed 

hierarchical structures of binary detectors for broadcast news AS using two databases is introduced. 

In Section 5.5 we present an example of how AS can be applied in speaker diarization task. Section 

5.6 presents the overview of Albayzín-2010 evaluation and the main conclusions from the submit-

ted systems and results. Inspired by the results from this evaluation, in Section 5.7 a reference audio 

segmentation system is constructed. Finally, in Section 5.8 we present some modifications to 

evaluation metric and observe how these changes may affect the evaluation results. 
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5.2 Databases, metric and detection approaches 

5.2.1 Class definition and metric 

Audio segmentation is the task of segmenting a continuous audio stream in terms of acoustically 

homogenous regions. The definition of acoustic classes depends much on the database and applica-

tion domain. In [LHH01] the authors propose a method for robust speech, music, environment noise 

and silence segmentation of the audio recorded from different channels such as studio, telephone 

etc. In [NL05] the audio stream from the broadcast news domain is segmented into 5 different types 

including speech, commercials, environmental sound, physical violence and silence. The content 

based retrieval using TV programs is considered in [LSD01], where 7 similar classes are defined. In 

our work we consider 8 acoustic classes presented in Table 5.2.1. 

 

Table 5.2.1. The acoustic classes defined for audio segmentation task 

Class Description 

Speech [sp] 
Clean speech from a close microphone without any sound in 

background 

Music [mu] Music is understood in a general sense 

Speech over music [sm] 
Overlapping of speech and music classes or speech with noise in 

background and music classes 

Speech over noise [sn] 

Speech which is not recorded in studio conditions, or it is over-

lapped with some type of noise (applause, traffic noise, etc.), or 

includes several simultaneous voices (for instance, synchronous 

translation) 

Telephone speech [ts] 

 

Telephonic interventions from the viewers during TV show. 

These interventions are mixed in the program’s main audio 

stream 

Telephone speech over 

music [tm] 

The same as previous class but additionally there is music in the 

background. 

Silence [si] Absence of any acoustic activity 
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The metric is defined as a relative error averaged over all acoustic classes (AC): 

)
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=  (5.2.1) 

where  

dur(missi) is the total duration of all deletion errors (misses) for the ith AC, 

dur(fai) is the total duration of all insertion errors (false alarms) for the ith AC,  

dur(refi) is the total duration of all the ith AC instances according to the reference file.  

An incorrectly classified audio segment (a substitution) is computed both as a deletion error 

for one AC and an insertion error for another. A forgiveness collar of 1 sec (both + and -) is not 

scored around each reference boundary. This accounts for both the inconsistent human annotation 

and the uncertainty about when an AC begins/ends.  

The proposed metric is slightly different from the conventional NIST metric for speaker diari-

zation, where only the total error time is taken into account independently of the AC. Since the 

distribution of the classes in the database is not uniform, the errors from different classes are 

weighed differently (depending on the total duration of the class in the database). This metric 

stimulates to detect well not only the best-represented classes, but also the minor in duration 

classes. 

5.2.2 Databases 

5.2.2.1 Àgora database 

The database consists of 43h and 25m of spontaneous speech in the context of the debate TV 

program. Each program has been cut in two parts to exclude the commercials, and each part has 

duration of about 40 minutes. Àgora is a highly moderated program where around 7 different 

speakers discuss a wide variety of topics. The Àgora program has a fairly fixed structure, although 

no use of this information has been made in order to keep the system general.  

The distribution of acoustic classes (ACs) in the database is presented in Table 5.2.2. Since si-

lences are not labelled, the evaluation of “Silence” class is not included in evaluation task. 

Moreover, “Telephone speech” class is poorly represented in the database, so this class is not 

evaluated either.  
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Table 5.2.2. Distrbution of the acoustic classes in the Àgora database 
 

Acoustic class Appearance (%) 
Speech 85 
Speech over music 10 
Telephone speech 0.02 
Telephone speech over music 2 
Music 2 

 

5.2.2.2 3/24 TV channel database  

The database consists of Catalan broadcast news audio from the 3/24 TV channel that was recorded 

by the TALP Research Center from the UPC, and was manually annotated by Verbio Technologies. 

Its production took place in 2009 under the Tecnoparla research project. The database includes 

around 87 hours of annotated audio (24 files of approximately 4 hours long each). The manual 

annotation of the database was performed in 2 passes. A first annotation pass segmented the re-

cordings with respect to background sounds (speech, music, noise or none), channel conditions 

(studio, telephone, outside and none), speakers, and speaking modes. A second annotation pass 

provided speech transcriptions and acoustic events (such as throat, breath, voice, laugh, artic, pause, 

sound, rustle or noise). For the proposed evaluation we took into account only the first pass of 

annotation. According to this material, a set of audio classes was defined (Table 5.2.3) which 

includes overlapping of speech with either music or noise.  

 
Table 5.2.3. Distrbution of the acoustic classes in tv3/24 database 

 
Acoustic class Appearance (%) 

Speech 37 
Speech over music 15 
Speech over noise 40 
Music 5 

 
The remaining 3% is referred to “Other”, any type of audio (including silence and noises) that 

does not correspond to the other four classes and they are not evaluated in the experiments. Al-

though 3/24 TV is primarily a Catalan television channel, the recorded broadcasts contain a 

proportion of roughly 17% of Spanish speech segments. The gender conditioned distribution 

indicates a clear unbalance in favour of male speech data (63% versus 37%).  



Chapter 5.Broadcast news audio segmentation 
  
 
 

 
93

5.2.3 Hierarchical detection approach 

The hierarchical audio segmentation architecture is a group of detectors (called modules), where 

each module is responsible for detection of one acoustic class of interest. As input it uses the output 

of the preceding module and has 2 outputs: the first corresponds to audio segments detected as the 

corresponding class of interest, and the other is the rest of the input stream. One of the most impor-

tant decisions when using this kind of architecture is to put the modules in the best order in terms of 

information flow, since some modules may benefit greatly from the previous detection of certain 

classes. For instance, previous detection of the classes that show high confusion with subsequent 

classes potentially can improve the overall performance. 

On the other hand, in this type of architecture, it is not necessary to have the same classifier, 

feature set and/or topology for different detectors. Tuning of parameters is done in each the system 

independently, and the two-class detection can be done in a fast and easy way. Given the modules, 

the detection accuracy can be computed individually and a priori. Those modules with best accura-

cies are then placed in the early stages to facilitate the subsequent detection of the classes with 

worst individual accuracies.  
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5.3 Hierarchical audio segmentation system for Àgora database 

The flow diagram of hierarchical architecture for audio segmentation in Àgora database is presented 

in Figure 5.3.1. The whole detection system consists of 5 binary detectors. Although silence is not 

included in our evaluation task, prior segmentation of this class facilitates the detection of other 

classes of interest. Each detector is based on specific feature set and classification algorithm. The 

details of each detector are described in following. 

 

 
 

Figure 5.3.1. Flow diagram of the hierarchical architectures for Àgora database 
 

5.3.1 Silence detectors 

As depicted in Figure 5.3.1 there are two silence detectors in the proposed hierarchical structure. 

Since there are no references for the silences both of them are trained in unsupervised manner. The 

first one is intended to detect the most confident “Silence” segments. This is done to avoid confu-

sion with silences that have musical spectra and it facilitates the detection of “Music” class in 

subsequent block. The detection is based on the derivative of the short time energy proposed in 

[LZZ02]. 

The second silence detector removes the rest of the silences to prepare the signal for the sub-

sequent modules. The algorithm can be described in the following: 
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1. The short-time energy of the signal is transformed to the logarithmic scale, and a GMM of N 

Gaussians is trained. The Gaussian mixtures with a lower weight than a fixed percent of the 

weight of the Gaussian with the highest weight are discarded (if any). 

2. This GMM is decomposed into two clusters of Gaussians (Figure 5.3.2). One cluster of 

Gaussians will be used to generate a GMM for “Silence” class and the other cluster for non-

“Silence”. In order to cluster the Gaussians they are sorted based on their mean. The Nsil 

Gaussians with the lowest mean are selected for the “Silence” class (as they represent the 

frames with low energy). The N – Nsil other Gaussians are left for the “non-Silence” class. In 

order to do determine Nsil we assume that there is not a smooth transition in the energy be-

tween silence and non-silence. Based on this assumption the detector calculates the 

difference of the means for the sorted array of Gaussians. This lack of smooth transition 

makes that at some point there is a big difference between two consecutive Gaussians. The 

position of this gap is used to define the clusters of Gaussians. Two GMMs are formed from 

the clusters using the means and variances estimated previously, modifying the weights to 

meet the requirement of total area equal to one. The ratios between the different weights of 

the Gaussians inside a GMM are respected, the weights are only scaled. The Figure 5.3.2 

depicts the decomposition of one GMM (red line) into two GMMs, one for silence (dashed 

blue line) and another one for non-silence (dashed green line), with the histogram of the fea-

ture in the background (gray color). 

 

 
Figure 5.3.2. Two clusters of Gaussians corresponding to “Silence” and “non-Silence” classes 

with the histogram of the feature in the background 
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3. Given silence and non-silence GMMs the whole shows are evaluated frame by frame. Com-

paring log likelihood ratios (LLRs) with zero, each frame is classified as silence or non-

silence. The decisions are smoothed using a median filter. Finally, silences shorter than the 

specified minimum duration are discarded. 

 

5.3.2 Music and Speech over music detectors 

Music segments usually appear at the beginning and the end of the shows or when the topic of 

discussion changes. Music serves as introduction to shows and it attracts attention of the audience 

towards its beginning. Often the discussion starts when music is still in the background. It is worth 

mentioning that the melody in Àgora shows does not vary much and only 2 or 3 different musical 

instruments could be distinguished: drums, saxophone and piano.  

The differences between “Music” and “non-Music” class can be noticed in the spectral do-

main. The periodograms of 5 sec long “Music” and “Speech” segments are displayed in Figure 

5.3.3. According to it, the spectral envelope is flatter for “Music” class while for “Speech” class. 

Conventional ASR features are used in both “Music” and “Speech over music” detectors: 16 FF 

LFBE coefficients with their first time derivatives, mean normalization is applied. Each acoustic 

class is modelled using HMM-GMM. Both “Music” and “Speech over music” HMMs consist of 2 

emitting states with 5 Gaussians per state, while “non-Music” and “non-Speech over music” HMMs 

have 3 emitting states and 9 Gaussians per state. All the models have left-to-right connected state 

transitions.  

 
 

Figure 5.3.3. Periodograms corresponding to “Speech” and “Music” classes 
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5.3.3 Telephone speech over music detector 

Some sections of the program have telephonic interventions from the viewers. These interventions 

are mixed in the program’s main audio stream as a wide band stream. 

The SVM-based AED system described in Section 4.3.2 is used. The audio signal is framed 

using 30 ms Hamming window and 10 ms shift. For each frame, a set of spectral parameters has 

been extracted. It consists of the concatenation of two types of parameters: 1) 16 FF LFBE, along 

with the first and the second time derivatives; and 2) a set of the following parameters: zero-

crossing rate, short time energy, 4 sub-band energies, spectral flux, calculated for each of the 

defined sub-bands, spectral centroid, and spectral bandwidth. In total, a vector of 60 components is 

built to represent each frame. The mean and the standard deviation parameters have been computed 

over all frames in a 0.5sec window with a 100ms shift. New features, called spectral slopes de-

scribed in sub-section 3.2.1.4, are concatenated leading to a feature vector of 138 components. A 

dataset reduction algorithm based on PSVMs [TMN07] is applied to cope with the enormous 

amount of data available for training.  

5.3.4 Ring tone detector 

Àgora database also contains such non-speech events as ring tones that usually precede the tele-

phone conversation. In fact, all these ring tones have similar acoustical content and duration. An ad-

hoc approach has been developed to detect them that consists in the following steps: 

• One of the ring tones is manually isolated and saved as a waveform. 

For each show: 

• The input audio stream is normalized to its maximum. 

• The cross-correlation r[n] between the show and the isolated ring tone is computed. 

• r[n] is normalized to its maximum. 

• A new signal is generated with pulses where r[n] > 0.5. The smoothing is introduced 

to avoid rapid changes of this signal. 

• The center of each pulse is considered as the middle point of the detection. 

• Taking into account the duration of the ring tone and the middle point of the detection 

the output hypothesis is generated. 
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5.3.5 Experimental results 

In order to evaluate the proposed AS system the Àgora broadcast news database has been divided 

into three sets: training, development and evaluation. The sets have been designed to have similar 

acoustic characteristics. This way 27h hours were used for training, 8h of audio were used for 

development and the remaining 8h for evaluation.   

We evaluate the improvements introduced by the hierarchical architecture by means of com-

paring two systems:  one-step and hierarchical. In one-step system each acoustic class is modelled 

by HMM with 2 emitting states with 5 Gaussians per state. 16 FF LFBE coefficients with their first 

time derivatives together with 18 spectral slope features are used. In total, the feature vector has 50 

components. 

Table 5.3.1. Segmentation results per class 
 

Class One-step (%) Hierarchical (%) 
Speech 6.5 4.8 
Music 2.5 2.4 
Speech over music 5.8 4.9 
Telephone speech over music 3.7 1.5 
Average 4.6 3.4 

 
From the results in Table 5.3.1, it can be observed that the use of a more flexible architecture 

allows developing a system that is more suited to a particular task. 26% of relative improvement in 

average can be obtained by using a set of detectors, which are properly combined and also tuned to 

the different target classes. 

In table 5.3.2 we present the improvement of segmentation results for “telephone speech over 

music” class introduced by the proposed spectral slope features. As we can see, the inclusion of 

those features yield strong recognition improvement.  

 
Table 5.3.2. “Telephone speech over music” detection results 

 
System Error rate (%) 

without Spectral Slope 3.5 
with Spectral Slope 1.5 

 
 

The ring-tone detection results are presented in Table 5.3.3. We observe that the proposed ad-

hoc approach demonstrate almost perfect ring-tone detection. The main source of the errors corre-

sponds to the short mismatches at the boundaries of the detected signals. 
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Table 5.3.3. Ring tone detection results 
 

Scored time 49.48 sec 
False alarm time 0.17 % 
Missed time 2.12 % 
  
Error rate 2.29 % 

 

5.3.6 Tecnoparla application 

Within the Tecnoparla research project a specific application that demonstrates the usefulness of 

speech and language technologies has been developed. This application performs automatic 

translation and subtitling of audiovisual content (Figure 5.3.4). The interest of this application is 

clear since a large variety of audiovisual content is available in multiple languages, either 

professionally created (television or radio) or created by individuals and available through the 

Internet. Thus the automatic translation and subtitling facilitates accessibility and dissemination of 

international audiovisual content. 

The developed system has been designed specifically for television news or debate, and 

includes many speech and language technologies: audio segmentation, speaker diarization, language 

recognition, speech recognition, speech translation and text-to-speech synthesis. The first step in 

this system is audio segmentation, described in previous sub-Section. Since speech recognizer must 

act only when there is speech and there is no background music or it is barely perceptible, this 

module avoids absurd transcripts with large amount of errors. As demonstrated in Figure 5.3.4, the 

developed application automatically segments audio into the acoustic classes presented in Table 

5.2.1. 

 

 



5.3.Hierarchical audio segmentation system for Àgora database 
 

 
100

 
 

Figure 5.3.4. Automatic translation and subtitling system 
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5.4 Hierarchical audio segmentation system for tv3/24 database 

The flow diagram of the hierarchical AS system for tv3/24 database is presented in Figure 5.4.1. 

The whole detection system consists of 5 binary detectors. A set of audio spectro-temporal features 

is extracted to describe every audio frame. It consists of 16 frequency-filtered (FF) log filter-bank 

energies with their first time derivatives. In total, a 32-dimensional feature vector was initially 

chosen. Each binary detector is trained using the features which were selected from that 32-

dimensional feature vector during the fast feature selection procedure (described in chapter 6). Each 

binary detector consists of 2 HMMs: “Class” and “non-Class”. Both HMMs have 1 emitting state 

and the observation distributions are Gaussian mixtures with continuous densities. There are 16 

sessions available for designing the audio segmentation system. Half of the sessions we decided to 

use for training/development and the other half for testing. 

First we select the appropriate number of Gaussians per HMM-GMM for each binary detector. 

Actually, this number is a trade-off between the improvement in performance and the execution 

time needed to train the models with corresponding number of Gaussians. With 256 Gaussians we 

got the acceptable results. Note, for modelling of ACs in tv3/24 database the number of Gaussian 

mixtures is much higher than in the case of Àgora database due to the more complex audio content. 

Figure 5.4.2 demonstrates the mean error-rate obtained with increasing of the number of Gaussian 

mixtures per model. The average error rate was computed by means of averaging the error rates 

from each binary detector without combination them in hierarchical structure. 
 

 

Figure 5.4.1. Flow diagram of the hierarchical architecture for tv3/24 database 
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Figure 5.4.2. Relation between mean error-rate and the number of mixtures per each GMM model 
 

In Figure 5.4.3 we compare different system architectures. The one-step multi-class system 

corresponds to the HMM-GMM audio segmentation performed in one step. The “Hierarchical” 

architecture is the one depicted in Figure 5.4.1. Finally, the system “Hierarchical + FS” is the same 

as previous but uses the feature selection described in chapter 6. 
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Figure 5.4.3. Comparison of different detection systems 

 
According to results from Figure 5.4.3, the hierarchical audio segmentation system outper-

forms the one-step multi-class detection system (about 8% of absolute error-rate reduction in 

average).  

The CPU time employed to perform testing is described below: 

• Feature extraction: 546 sec; 

• Viterbi segmentation: 3329 sec; 

• Total: 3845 sec. 
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This processes were executed on PC with Intel Core 2 CPU, 2.13 GHz, 1Gb of RAM. This 

way the total CPU time, computed by adding CPU times for feature extraction and audio segmenta-

tion, falls below 1×RT (real-time factor). 
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5.5 Improving speaker diarization using audio segmentation1 

5.5.1 Task definition  

In the context of human language processing speaker diarization consists in segmenting and label-

ling an unknown set of speakers in a continuous audio stream. Speaker diarization is usually 

described as the task of deciding who spokes when and it can be used in large variety of applica-

tions. 

The main objective of this Section is to evaluate and compare the performance of the diariza-

tion system described in [LAT08] exploiting the audio segmentation information in different ways. 

On the one hand, it can be used beforehand to extract speech or more condition-specific segments 

which are then fed to the diarization system. On the other hand, the audio segmentation hypothesis 

can be used with the diarization labelling to perform time masking. In our experiments audio 

segmentation is performed using hierarchical AS system described in Section 5.3. 

5.5.2 Speaker diarization performance bounds 

The results for speaker diarization experiments were obtained on two data sets: development 

(Devset) and evaluation set (Evalset) of Àgora database. In the first experiment we perform speaker 

diarization without any audio segmentation information. Thus all the audio data, silences and music 

included, is considered for speaker labelling. The idea is to define the lower performance bound of 

the system.  

Opposite to this, we can also define the upper performance bound by using a perfect audio 

segmentation. A perfect segmentation is achieved by extracting speech segments according to the 

reference transcription. Here, the entire diarization error-rate (DER) is caused either by incorrect 

speaker clustering or by missed speech due to overlapped speech of multiple speakers, since 

speaker diarization system is assigning only one label for a segment.  

The difference between the upper and lower limit corresponds to the importance of applying 

an audio segmentation for speech extraction.  The experimental setup schemes for these two ex-

periments are depicted in Figure 5.5.1 (a) and (b). From the numbers in Table 5.5.1 (columns “No 

AS” and “Perfect AS”) it is obvious that in the perfect case we can gain for development and 

evaluation set 1.98% and 3.00% absolute DER difference, respectively. 

 

                                                 
1 We are grateful to Martin Zelenak for performing the experiments and system description in this sub-Section 
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Table5.5.1. Speaker diarization experiment results: (No AS) without any audio segmentation; 
(Perfect AS) speech extracted according to the reference; (SpeechExt) speech extracted according 
to segmentation hypothesis; (OutMask) all audio data is given to diarization and speaker labeling 

is masked with speech segments; (Tel + Non-Tel) 
 

Diarization error rate (DER), % 
 

No AS Perfect 
AS 

AS hyp. 
SpeechExt

AS hyp. 
OutMask 

Tel + Non-Tel 

Devset 15.69  13.71 14.48 14.41 13.74  
Evalset 13.50 10.50 12.15 12.43 12.37  

 

 

(a) (b) 

(c) (d) 

 
(e) 

Figure 5.5.1. Experiment strategies: (a) all audio is fed to the diarization system; (b) diarization 
over speech segments extracted according to the reference transcriptions; (c) diarization over 
speech segments extracted according to audio segmentation hypothesis; (d) diarization output 

speech masked with audio segmentation hypothesis; (e) separate diarization of telephone and non-
telephone channel speech and  merging of the two labelings 

Speaker 
diarization 1 

audio 
output 

labeling AS 

 •
labelling 1

 • Speaker 
diarization 2 

+

labelling 2

non-telephone 
speech

telephone 
speech

Speaker 
diarization audio

AS 

 • 

masking 

Speaker 
diarization audio 

output 
labeling

AS 

 • 
speech 

Speaker 
diarization 

audio output 
labeling•

reference 

speech 
Speaker 

diarization 
audio output 

labeling 



5.5.Improving speaker diarization using audio segmentation 
 

 
106

5.5.3 Speaker Diarization using Audio Segmentation 

Speaker diarization system aims to find speaker changes and assign cluster labels to it. The audio 

segmentation hypothesis assists the diarization process by localizing applicable data in order to 

prevent labelling of non-speech segments. One approach is to extract speech only before providing 

the data to diarization (Figure 5.6.1 (c)) and the other is to perform a post-processing of the speaker 

transcription so that non-applicable time segments are discarded (Figure 5.6.1 (d)). The latter case is 

referred as output masking. It needs to be emphasized that the diarization labelling which is masked 

is obtained for the whole audio stream (including e.g. silences). The comparison of these two 

approaches unveils the influence of cluster purity on the performance. The difference in DER for 

evaluation set, as can be seen from the 3rd and 4th columns in Table 5.5.1, is not more than 2.30% 

relatively and for the development set the masking approach is even slightly better than the extrac-

tion approach.  

After analyzing the erroneous segments, it was found that for telephone channel speakers the 

diarization system usually creates just one cluster with no respect to the actual number of speakers 

in such portions. To cope with this problem, a more tailored diarization for the telephone channel 

audio was applied. Audio segmentation information was used to distinguish between telephone and 

non-telephone speech. The structure of the TV shows guarantees that the identity of speakers in 

studio is different to those who are calling by telephone. This diarization strategy is schematically 

illustrated in Figure 5.6.1 (e). The speech data is split into two sets and separate diarization is 

performed for both of them in parallel. Diarization performance of this approach is presented in the 

last column of Table 5.5.1. The difference in DER for development and evaluation set is 1.95% and 

1.13%, respectively.  
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5.6 Albayzín-2010 evaluation campaign 

Taking into account the increasing interest in the problem of audio segmentation from the one hand, 

and the existence, from the other hand, of a rich variety of feature extraction approaches and 

classification methods, we organized an international evaluation of broadcast news audio segmenta-

tion in the context of the Albayzín-2010 campaign. The Albayzín evaluation campaign is an 

internationally-open set of evaluations organized by the Spanish Network of Speech Technologies 

(RTH) every 2 years. Actually, the quantitative comparison and evaluation of competing ap-

proaches is very important in nearly every research and engineering problem. The evaluation 

campaigns that independently compare systems from different research groups help to determine 

which directions are promising and which are not [PAL03].  

The rest of this section is organized as followed: first, we describe the different feature extrac-

tion methods, the segmentation techniques, and the organization ways of the segmentation process 

proposed by the eight groups that submitted their results to the evaluation. Second, we compare the 

various segmentation systems and results, to gain an insight into the proposed solutions.  

5.6.1 Participating groups and methods 

Ten research groups registered for participation, but only eight submitted segmentation results: 

ATVS (Universidad Autónoma de Madrid), CEPHIS (Universitat Autònoma de Barcelona), GSI 

(Instituto de Telecomunicações, Universidade de Coimbra, Portugal), GTC-VIVOLAB (Universidad 

de Zaragoza), GTH (Universidad Politécnica de Madrid / Universidad Carlos III de Madrid), GTM 

(Universidade de Vigo), GTTS (Universidad del País Basco), TALP (Universitat Politècnica de 

Catalunya).  

About 3 months were given to all the participants to design their own audio segmentation sys-

tem. After that period, the testing data were released, and 2 weeks were given to perform testing. 

In the following, the systems presented by the participant groups are briefly described. The 

systems are listed in the order they are ranked in the table of final results. The full description of the 

systems can be found in FALA 2010 conference proceedings [FAL10]. 
 

System 1 

Features: segment-based. First, 15 MFCCs, the frame energy and their first and second deriva-

tives (delta and delta-delta) are extracted. Additionally, the spectral entropy and the chroma 
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coefficients are calculated. Second, the mean and variance of these features are computed over 1 sec 

interval. 

Segmentation approach: HMM-based. 

The acoustic modeling is performed using 5 HMMs with 3 emitting states and 256 Gaussians 

per state. Each HMM corresponds to one acoustic class. An hierarchical organization of binary 

HMM detectors is used. First, audio is segmented into “Music”/“non-Music” portions. Second, the 

“non-Music” portions are further segmented into “Speech over music”/“non-Speech over music” 

portions. Finally, the “non-Speech over music” portions are segmented into “Speech”/ “Speech over 

noise”. 

 

System 2 

Features: segment-based. First, 13 MFCCs including the zero (energy) coefficient and their 

first and second derivatives (delta and delta-delta) are extracted. Second, a background model based 

on GMM (GMM-UBM) of M mixture components is trained using data from all classes. Then, 

given an audio segment represented by N feature vectors of dimension D, the GMM-UBM is 

adapted to that audio segment using MAP adaptation. By stacking the resulting means, a supervec-

tor of dimension M·D is obtained.  

Segmentation approach: detection-and-classification. 

The BIC algorithm is used to detect the segment boundaries. The classification of each seg-

ment is performed using Support Vector Machines (SVMs). 

 

System 3 

Features: frame-based 7 MFCCs plus shifted delta coefficients (SDC).  

Segmentation approach: HMM-based.  

The acoustic modeling is performed using a five-state HMM with full connected state transi-

tions. Each state corresponds to one acoustic class modeled by GMM with 1024 mixtures. Given a 

vector of observations, the Viterbi decoding algorithm is applied to obtain a sequence of HMM 

states. A mode filter (i.e. a filter that replaces a current state with mode of its neighboring states) is 

applied to avoid spurious changes between states. 
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System 4  

Features: frame-based 16 frequency-filtered (FF) log filter-bank energies with their first time 

derivatives. Mean subtraction is applied at the segment level. A wrapper-based feature selection 

technique is used to find the most discriminative features for each acoustic class individually. 

Segmentation approach: HMM-based. 

The acoustic modeling is performed using 5 HMMs with 1 emitting state and 64 Gaussians 

per state. Each HMM corresponds to one acoustic class. A hierarchical organization of binary 

HMM detectors is used. First, the audio stream is pre-segmented using a silence detector. Then non-

silence portions are segmented into “Music”/“non-Music”; the “non-Music” portions are further 

segmented into “Speech over music”/“non-Speech over music”; the “non-Speech over music” 

portions are further segmented into “Speech over noise”/ “non-Speech over noise”; and, finally, the 

“non-Speech over noise” portions are segmented into “Speech”/“Other”.  

 

System 5 

Features: frame-based 12 PLPs plus local energy and their first and second derivatives (delta 

and delta-delta).  

Segmentation approach: HMM-based. 

The acoustic modeling is performed using 5 HMMs with 1 emitting state and 64 Gaussians 

per state. Each HMM corresponds to one acoustic class. 

 

System 6  

Features: frame-based 16 MFCCs including zero (energy) coefficient, plus 8 perceptual coef-

ficients (e.g. zero crossing rate, spectral centroid, spectral roll-off, etc.) and their first time 

derivatives.  

Segmentation approach: mixed, detection-by-classification and HMM-based. 

An hierarchical organization of the detection process is used. First, silence and music are located 

using a repetition detector system based on fingerprinting (detection-by-classification). In the 

proposed fingerprinting system, a 32-bit binary pattern is computed for each frame of about 200ms; 

spectral analysis is performed with a mel-scaled filter-bank with 32 channels, and the resulting 

spectrogram is binarized into a 32-bit pattern, choosing 1, essentially, when there is a spectral peak. 

The detection strategy consists in counting the number of matching bits between the signature and 

the audio binary patterns in each frame, and when this number is above a threshold, an acoustic 

class is detected.  Second, a hybrid HMM-MLP segmentation is applied to the audio segments 
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which are not classified as either music or silence. Each acoustic class is modeled via a 10-state 

HMM with left-to-right state transitions.  

 

System 7 

Features: frame-based 13 MFCCs plus their first and second derivatives (delta and delta-

delta). Additionally, the mean, the variance and the skewness of the first MFCC are calculated. 

Segmentation approach: detection-and-classification. 

The BIC algorithm is used to detect the segment boundaries. Classification is performed with 

a hierarchical organization of detectors and using GMMs combined with a binary decision tree. 

First, the audio stream, which is pre-segmented with a silence detector, is classified into “Mu-

sic”/“non-Music” segments; the “non-Music” ones are further classified into “Speech over 

music”/“Speech”/ “Speech over noise”.  

System 8 

Features: frame-based 13 MFCCs including zero (energy) coefficient. Cepstral mean subtrac-

tion was not applied.  

Segmentation approach: detection-by-classification. 

Each class is modeled by a GMM with 1024 mixtures. For each frame, the class yielding the 

highest likelihood is chosen. A mode filter is applied to smooth the decisions along time. 

5.6.2 Results 

Table 5.6.1 presents the final scores from the eight systems. The error rate is presented for 

each evaluated class individually, together with the average score over all evaluated classes. Note, 

that no participant was using any additional data for training the acoustic models apart from the data 

provided for the evaluation. 

As can be observed in Table 5.6.1, “Music” is the best detected class for all the systems. The 

system that obtained the best average score (30.22%), system 1, also got the highest score individu-

ally for each class. 

The distribution of the miss and the false alarm errors from all systems is presented in Figure 

5.6.1. This plot shows a clear unbalance between misses and false alarms for the classes “Speech” 

and “Speech over music”. 
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Table 5.6.1. Results of the audio segmentation evaluation 

Error rate 
systems 

mu sp sm sn Average 

1 19.21 39.52 24.97 37.19 30.22 

2 22.41 41.80 27.47 40.93 33.15 

3 31.01 40.42 33.39 39.80 36.15 

4 26.40 44.20 33.88 41.52 36.50 

5 23.65 45.07 36.95 45.21 37.72 

6 21.43 48.03 51.66 48.49 42.40 

7 28.14 51.06 48.78 51.51 44.87 

8 26.94 52.76 47.75 52.93 45.09 
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(c) Speech over music (d) Speech over noise 

 
Figure 5.6.1. Distribution of errors across the eight systems and for each acoustic class 
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Table 5.6.2. Confusion matrix of acoustic classes 

 mu sp sm sn 

mu 89.4 0.1 8.0 2.5 

sp 0.0 70.6 2.9 26.5 

sm 1.8 1.2 87.0 10.0 

sn 0.3 10.2 8.3 81.2 

 
In Table 5.6.2 we present the confusion matrix, which shows the percentage of hypothesized 

acoustic classes (rows) that are associated to the reference acoustic classes (columns). Data repre-

sent averages across the eight audio segmentation systems. 

According to the confusion matrix, the most common errors are the confusions between “Mu-

sic” and “Speech over music”, between “Speech over music” and “Speech over noise”, and also 

between “Speech” and “Speech over noise”. Indeed, the two components of each of those pairs of 

classes have very similar acoustic content. Another interesting observation is the low proportion 

(almost 0%) of confusions between “Speech” and “Music”. The second row of the confusion matrix 

indicates that 26.5% of the hypothesized speech is in fact “Speech over noise”. This is the main 

reason of the high proportion of false alarms for the class “Speech” (Figure 5.7.1 (b)). Actually, for 

many “Speech over noise” audio segments the level of noise in background is extremely low so that 

the detection systems usually confuse “Speech over noise” with “Speech”. 

 

 
Figure 5.6.2. Cumulative distribution of segments in terms of duration 

 
In Figure 5.6.2 we present cumulative distributions of duration of testing segments. The solid 

curve corresponds to the segments incorrectly detected by the audio segmentation systems for the 
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whole set of participants. The dashed curve corresponds to the cumulative distribution of the ground 

truth segments. Each point (x, y) of this plot shows the percentage y of segments with duration less 

than x seconds.  

According to this plot, more than 50% of the total amount of errors is shorter than 14 sec. For 

comparison, according to the ground truth labels, 50% of audio is represented by segments of 

duration less than 26 sec. So, in average, the duration of erroneous segments is almost twice shorter 

than that of the ground truth segments.  

In Figure 5.6.3 we compare the error distribution for 3 types of segments in the testing data-

base: very difficult, difficult and misclassified by the best. As illustrated in Figure 5.6.3 (a), very 

difficult are those segments which are totally included in error segments from 8 systems. Difficult 

segments are those which are included in error segments from at least 7 systems. Finally, misclassi-

fied by the best are those segments where the winner system in evaluation produced errors. The 

graphical distribution of those 3 types of segments is displayed in Figure 5.6.3 (b). 

 

  
(a) (b) 

Figure 5.6.3. (a) Illustration of “difficult” and “very difficult” segments; (b) Error distribution 
of “difficult”, “very difficult”, and “misclassified by the best” segments 
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Figure 5.6.4.  Percentages of distribution of the different types of shared errors 

 

Table 5.6.3. Description of the different types of shared errors 

Type of 
error Description 

1 Low level of background sound 
2 Speech in background 
3 The quality of music in background is low 
4 Singing in background 
5 Noise in background is more dominant than music for the [sm] class 
6 The microphone is affected by the wind 
7 Annotation mistake 
8 Other 

 

The error distribution for those segments, displayed in Figure 5.6.3, shows the degree of diffi-

culty of the audio segmentation task. In average, only 6.98% of the segments in the testing database 

are very difficult. The rest of the segments were detected correctly at least by one detection system. 

Comparing this number with the final score from the winner system (30.22%) we conclude that 

there is still a large margin to improve the audio segmentation performance. 
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Table 5.6.3 shows a grouping of the errors which are shared by all the 8 segmentation sys-

tems. The groups were defined after listening to all the segments which are defined as very difficult 

and are longer than 5 seconds. Seven different types of error were distinguished, and the rest were 

included in Other. 

According to the plot in Figure 5.6.4, a large percentage of shared errors was provoked by the 

presence of either a low level of sound in the background (23%) or overlapped speech (21%), while 

the annotator mistakes caused only 8% of the total amount of shared errors. 

 

5.6.3 Discussion 

By analyzing both the submitted audio segmentation systems and the corresponding segmentation 

results, several observations can be extracted which are outlined in the following. 

1. The conventional use of automatic speech recognition features for the audio segmentation 

task 

Historically, there have been no features specifically designed for the AS task. In the current 

evaluation, all systems used features that were designed for the automatic speech recognition (ASR) 

task, like MFCC, PLP or FF. Some systems combined the ASR features with other perceptual 

feature sets, but they could not report any significant improvement (for details we refer the reader to 

[FAL10]). 

2. The systems that used segment-based features outperformed the systems with frame-based 

features 

The best two audio segmentation systems parameterized the audio signal using segment-based 

features. The system 1 used the mean and variance along 1 sec segments; the system 2 used a super-

vector approach to parameterize even longer segments. Note the third best system used SDC 

coefficients, which take into account a long audio context. Presumably, this is the main reason for 

their superior detection rates. It may indicate that the models trained on frame-based features do not 

capture the structure of the acoustic classes sufficiently.  

3. The majority of the audio segmentation systems used the HMM approach 

The main advantage of the HMM approach is that it performs segmentation and classification 

jointly. Other alternatives like detection-and-classification or detection-by-classification require 

two independent steps to be carried out one after the other, so that the errors produced in the first 

step may propagate to the next one. Additionally, more parameters for tuning are required, which 

makes the system task-dependent. 
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4. The hierarchical detection approach seems to be effective 

Four research groups reported an improvement when using a hierarchical organization of the 

detection process. One of the most important decisions when using this kind of architecture lies in 

the orderings of the detection modules, since some of them may benefit greatly from the previous 

detection of certain classes. Those four audio segmentation systems detect the easiest classes 

(“Music” and silence, which is included in “Other”) at the early steps, while a further discrimination 

among the rest of the classes is done on subsequent steps. In this type of architecture, it is not 

necessary to have the same classifier, feature set and/or topology for the various individual detec-

tors. 

5. The fingerprinting approach for music detection seems to be effective 

Finding of repetitions with fingerprinting seems to be useful in audio segmentation of broad-

cast news due to the omnipresence of advertisements, jingles and even repeated programs. The 

system 6, which used that approach, got the second best result for the class “Music”. 

6. Challenge of the audio segmentation task 

Only 6.98% of the audio segments were detected incorrectly by all the audio segmentation 

systems. The rest of audio was recognized correctly by at least one detection system. Comparing 

this number with the score obtained by the winner system (30.22%), we conclude that there is still a 

large margin for improvement of segmentation results. Taking into account that the main source of 

mistakes are confusions between “Music” and “Speech over music”, between “Speech over music” 

and “Speech over noise”, and also between “Speech” and “Speech over noise”, future research 

efforts should be devoted to improved detection of background sounds. 

7. Complementarity of different segmentation systems 

The segmentation results from different systems are complementary up to some extend, so 

that the combination of them yields improvement in accuracy. A simple majority voting fusion 

scheme of the best three systems reduces the average score to 28.60%, and the fusion of the best 

five systems, to 29.19%. Comparing these numbers with the score obtained by the winner system 

(30.22%), we conclude that post-processing of the segmentation results from different segmenta-

tion systems is beneficial. 

8. Applicability of the systems to work in real-time 

Unlike many speech recognition or speaker diarization systems, whose performance drops 

drastically when operate in real-time, the described audio segmentation systems can work in real-

time due to their relative simplicity. In fact, four participants reported timing results (systems 3, 4, 
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5, and 8) and the total CPU time, computed by adding CPU times for feature extraction and audio 

segmentation, falls below 1×RT (real-time factor).  
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5.7 Constructing a reference AS system 

Inspired by the systems from the Albayzín-2010 evaluation and their results, we constructed a 

reference AS system that combines the best characteristics from those submitted systems. We use 

the HMMs-GMM with 1 emitting state and 256 GMM mixture components to model each individ-

ual class. The one-against-all detection strategy is employed: 5 binary detectors are organized in a 

hierarchical way, as depicted in Figure 5.4.1.   

The following sets of features were considered: 

• ASR features. 16 FF coefficients with the first time derivatives are computed in frames 

30ms long with 20 shift. Then mean and variance are computed over a 1 sec window. 

• 12 chroma features are computed in frames 50ms long. Then mean and variance are com-

puted over a 1 sec window. 

• 5 energy statistics features are computed over a 10 sec window with 1 sec shift. Those fea-

tures, which are obtained from the amplitude histogram of the audio signal, were not used in 

the evaluation campaign by any of the participants. But, since we observed a high amount of 

confusions between the classes [sp] and [sn], we conjectured that they may improve the 

overall accuracy. 

Using different combinations of the proposed features we found the best feature set for each 

detector separately. The segmentation results are presented in Table 5.7.1. 

Given the results from Table 5.7.1, we selected FF LFBE features for detecting [sp], FF + 

Chroma features for detecting [sn], and, finally, FF + Statistical + Chroma features for detecting 

both [mu] and [sm] classes. In average, we obtained 29.21% of error-rate that is the best score 

among presented in Albayzìn-2010 AS evaluation. 

 

Table 5.7.1. Segmentation results from different binary detectors using different feature sets 

Error rate  
mu sp sm sn 

FF 17.65 39.67 30.71 41.93 
FF + Chroma 18.34 40.52 28.35 40.77 
FF + Stat 18.51 41.81 26.80 43.14 
FF + Stat + Chroma 17.52 45.26 23.00 44.00 

 
Error rate  

mu sp sm sn Average 
Combined 

hierarchically 17.70 37.42 22.80 38.93 29.21 
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5.8 Changes in the definition and scoring of the acoustic classes 

In this section we propose several changes to the definition and evaluation of the acoustic classes in 

tv3/24 database and see how the proposed changes affect the recognition results. The transcription 

of the database used for evaluations was performed according to TC-STAR European Parliament 

Plenary Session Transcription Guidelines [TCS]. Apart from speech transcription, the annotations 

include 3 different layers: 

Speaker turn layer: None, Studio speaker, Outdoor speaker. 

Background conditions: none, music, noise, speech, speech + music, speech + noise, noise + 

music, speech + noise + music. 

Non-speech AEs: any short time non-speech sound like laugh, throat, knocking, etc. 

Since the non-speech AEs affect just short portions of audio, the corresponding layer was dis-

carded from the definition of the acoustic classes. 

 
Table 5.8.1. Distribution of the acoustic classes in the database 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

The distribution of the ACs in the database is presented in Table 5.8.1. The first number in each 

cell corresponds to the percentage of the corresponding AC in the whole database, the second one 

shows the percentage of the errors that the corresponding class provokes in the testing part of the 

   Speaker conditions 

   None Studio Outdoor 

None (clean 
conditions) 

 3.85/ 
- 

18.18/  
7.56 

18.55/ 
26.34 

Music  5.70/  
3.30 

11.21/ 
9.99 

3.30/ 
4.43 

Music+ Speech  0.68/  
0.00 

0.17/ 
0.04 

0.30/ 
0.62 

Music + Noise   0.05/  
0.03 

1.07/ 
0.72 

0.36/ 
0.60 

Music + speech 
+ noise 

 0.00/  
0.00 

0.00/ 
0.00 

0.00/ 
0.00 

Speech  0.37/  
0.01 

1.27/ 
1.99 

2.12/ 
3.60 

Noise  0.01/  
0.02 

10.03/ 
17.60 

21.90/ 
22.93 
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Noise + speech  0.01/  
0.00 

0.20/ 
0.01 

0.66/ 
0.19 
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database (the reference AS system is used to compute the error distribution). In equilibrium state 

those two numbers should have similar values. In the case when the first number is higher than the 

second one, the AC is considered easy for detection, in the opposite case it is considered difficult. 

From the table we observe that the classes clean outdoor speech, studio speech in noise and also 

studio/outdoor speech with speech in background are difficult for detection. In the table we also 

show how the classes were grouped for the Albayzín-2010 evaluation. 

In the following we propose several alternatives to the initial design of the acoustic classes 

and the way they are evaluated, and report how these changes affect the segmentation results. 

Refinement 1: 

Include the speech with speech in background segments into the [sp] class. In fact, many times 

the overlapped speech appears when there is a synchronous translation. Although the amount of 

overlapped speech is not high (1.27 + 2.12 = 3.39% of total amount of data), the proposed refine-

ment may partially remove confusion errors between [sp] and [sn]. 

Refinement 2: 

We propose to make some refinement in the evaluation of the classes [sp] and [sn]. In fact, in 

Table 5.8.1 we see a clear unbalance between the two numbers in the studio speech in the noise cell, 

and in the clean outdoor speech cell. Indeed, studio speech in the noise is acoustically similar to the 

[sp] class, and conversely, clean outdoor speech is similar to the [sn] class. For the segments that 

are labeled as studio speech in the noise and clean outdoor speech we propose to assume that both 

hypothesis labels [sp] and [sn] are correct. 

Refinement 3: 

In the Albayzín-2010 evaluation we considered all confusion errors are equally weighted in 

the metric. But, for instance, it seems reasonable to weight less the confusion between [mu] and 

[sm] than between [mu] and [sp]. 
 

Table 5.8.2. Weights for the different types of confusion errors 

sp 1 0.5 0.5 0 

sn 1 0.5 0 0.5 

sm 0.5 0 0.5 0.5 R
ef

er
en

ce
 

mu 0 0.5 1 1 

  mu sm sn sp 
  hypothesis 
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In principle, the idea is to penalize confusion errors between ACs that have similar acoustic 

content less than confusion errors between classes that have very different acoustic content. The set 

of proposed weights are displayed in Table 5.8.2. 

Refinement 4: 

Although the use of single layer segments is practically convenient, we could also define the 

task in terms of a multiple layer segmentation. For instance, we could define the task of segmenting 

audio into 3 possibly overlapped ACs: “Speech”, “Music” and “Noise”. In that case the classes are 

acoustically different and could mutually overlap so there is no need to apply refinements 2 and 3.  

 

Table 5.8.3. Segmentation results with the proposed refinements 

 mu sp sm sn Average 

Baseline 17.70 37.42 22.80 38.93 29.21 

Refinement 1 17.31 42.32 23.40 48.20 32.82 

Refinement 2 17.31 34.27 23.40 31.84 26.71 

Refinement 3 13.61 22.38 14.04 23.92 18.49 

 

 Speech Music Noise Average 

Refinement 4 6.6 69.5 82.3 52.8 

 

Table 5.8.3 shows the AS results with the proposed refinements. The main conclusions are: 

1. Inclusion of speech with speech in background into the [sp] class increases the error rate of 

the reference AS system. Since in our database background speech is usually bubble noise, it is 

more appropriate to include the overlapped speech into [sn]. 

2. The two modifications related to the way of evaluating the ACs indeed decrease the error 

rate of the reference AS system. The main benefit from the proposed modifications is obtaining a 

more meaningful error rate measurement. For instance, while confusion errors were counted twice 

in the initial metric, one as deletion and the other as insertion, since the class “Other” [ot] is not 

evaluated in the final tests, the confusion errors with this class were counted just once for the 

remaining ACs. Therefore, there were confusion errors between semantically different ACs which 

were implicitly weighted less than other equally important errors. Conversely, with the proposed 

changes, we explicitly de-weight the confusion errors between semantically similar acoustic 

classes. 
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3. The definition of the three new ACs, “Speech”, “Music” and “Noise”, that can mutually 

overlap, to replace the five previously defined ACs, leads to very low recognition results. Presuma-

bly, the main reason for such behavior is the high proportion of audio segments that belong 

simultaneously to different ACs. 
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5.9 Chapter Summary 

In this chapter we addressed the audio segmentation task in the broadcast news domain. Two 

different AS systems has been developed using two broadcast news databases: the first one includes 

audio recordings from TV debate program Àgora from the Catalan TV3 channel, and the second 

one includes audio from the 3/24 Catalan TV broadcast news channel. The output of the first AS 

system was used in automatic translation and subtitling application developed for the Tecnoparla 

project. Besides, it was used to improve the robustness of the speaker diarization system. The 

second HMM-based AS system with feature selection got competitive results in the Albayzín 2010 

audio segmentation evaluation. 

From the obtained results we observed that the use of a more flexible architecture allows de-

veloping a system that is more suited to a particular task. For Àgora and TV 3/24  databases, 26% 

and 9% of relative improvement, respectively, is obtained by using a set of detectors, which are 

properly combined and also tuned to the different target classes. 

Taking into account the increasing interest in the problem of audio segmentation, the Al-

bayzín-2010 evaluation of audio segmentation systems has been organized by our research group. 

The evaluation setup, definition of acoustic classes and the segmentation metric were proposed. 

After analyzing the submitted systems and their results, several main conclusions have been out-

lined, and also a reference audio segmentation system has been constructed that shows a superior 

recognition rate. 
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Chapter 6. Feature selection 

6.1 Chapter Overview 

In this chapter we aim to improve the detection rate by means of feature selection. In previous 

chapters we used a set of standard ASR features together with a set of “perceptual” features for 

AED. In order to enhance the detection of particular sounds, new features coming not only from the 

audio modality but also from video are proposed. Video features improved the detection of all 

acoustic events (AE) while the features coming from an acoustic localization system improved 

accuracy only for some of them. These results mean an additional motivation for us to perform 

feature selection in order to find the best feature set for each particular class of interest. 

We compare three feature selection approaches: one is the purely wrapper sequential back-

ward selection (SBS) algorithm and the other two are the hybrid two-stage systems that combine 

filter approaches (mRMR and PCA) with wrapper. We analyse the error through the lens of bias-

variance decomposition. In order to reduce the computational complexity of the conventional 

wrapper approach, a fast one-pass-training technique is introduced that avoids retraining of acoustic 

models during the evaluation of the candidate feature sets.  

The chapter is organized as follows: Section 6.2 describes motivation of feature selection. 

Sections 6.3 and 6.4 describe the feature selection approaches applied in the tasks of the meeting-

room AED and the broadcast news AS. Section 6.5 presents the obtained experimental results, and, 

finally, Section 6.6 provides conclusions. 
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6.2 Motivation of feature selection 

At least three reasons are traditionally given to motivate feature selection [GGN06]: performance 

improvement; general data reduction, to limit storage requirements and increase algorithm speed; 

and feature understanding, to gain knowledge about the data. The performance improvement is 

usually the primary objective in many applications and it is the main objective in the current work. 

Storage limitation objective is crucial, for instance, in embedded and online systems as the extrac-

tion of unimportant features may be computationally expensive and cause a time delay in 

classification algorithm. 

In our work we aim to feature selection for two different audio recognition tasks within the 

widely used Gaussian Mixture Model (GMM) framework. The first one is AED in meeting-room 

environments.  It is worth to mention that the system that got the highest accuracy in the last 

CLEAR 2007 [CLE07] evaluation used an automatic feature selection procedure to find the feature 

set that yields the highest detection rate [ZZL08]. The second task is the AS in the broadcast news 

domain. It has been already evaluated in the context of Albayzín-2010 international evaluation 

campaign [FAL10]. Noticeably, the system that got the highest score in Albayzín-2010 also per-

formed a feature subset selection for each individual acoustic class [FAL10].  
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6.3 Feature selection approaches 

There are many feature selection algorithms reported in the literature: some of them are effective, 

but very costly in computational time, and others are fast, but less effective in the feature selection 

task. We can distinguish two main approaches for feature selection. First, in the wrapper approach 

[KJ97], the actual classification algorithm is used to estimate the accuracy of feature subsets. The 

wrapper approach has proved to be effective but it is very slow to execute as the classification 

algorithm is called repeatedly.  Second, the filter approach, approach, which operates independently 

of any classification algorithm: undesirable features are filtered out before classification starts. It is 

assumed that undesirable features are those that are “irrelevant”, “noisy” and “redundant”. How-

ever, from a theoretical point of view the increase of the number of features can never decrease the 

performance of the optimal (Bayes) classifier [KJ97]. This means that “irrelevant”, “noisy” and 

“redundant” features are not necessarily harmful for a particular classifier and, conversely, poten-

tially useful features might be harmful. Let’s see a simple example of 2-class classification problem 

when potentially useful feature becomes harmful. The samples from both classes are generated from 

GMM with 3 mixture components and unit variance. The mean vectors of GMMs from the first 

class are: μ1=(2, 6), μ2=(2, -6), μ3=(10, 0); and the mean vectors of GMMs from the second class 

are: δ1=(6, 4), δ 2=(6, -4), δ 3=(14, 0). Imagine that we try to model each class using GMM with 2 

components (assuming that the designer of the classification system did not select a correct number 

of Gaussians thus making the classifier far from optimal).   In one-dimensional feature space (only 

one feature x is used) the classes a perfectly separated (Figure 6.3.1 (a)) but when additional feature 

y is added the overlap between class-conditional pdfs increases (Figure 6.3.1 (b)) thus the classifica-

tion accuracy decreases. On the other hand, if the designer of the classification system selects too 

many Gaussian components to model the classes, the GMMs become too complex and do not 

generalize well. This particular example clearly shows how additional potentially useful feature y 

may harm the accuracy of the particular classification system. Based on this fact we are motivated 

to perform feature selection taking into account a particular classification algorithm (GMM-based in 

our case). 
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(a) (b) 

Figure 6.3.1. (a) Pdf distribution of the two classes modeled by GMM with 2 mixture components and 
using only one feature x (b) The distribution of classes in 2-dimensional space (the  dot ellipses show 

the lines of equal probability density of the Gaussians; unit variance is considered) 
 

A search of the optimal feature set requires a state space, an initial state, a termination condi-

tion, and a search engine. The state space includes all possible combinations of features, and the 

search is terminated after finding a feature set with the lowest value of the evaluation (error) func-

tion J(.). When the initial number of features is equal to d the state space consists of 2d feature 

subsets. In fact, it is not feasible to evaluate all possible feature combinations starting from even a 

low number of initial features d. Several feature selection approaches based on suboptimal search 

strategies are proposed and the ones that are used in our work are described in the following.  

6.3.1 Sequential feature selection 

Sequential forward selection (SFS) and sequential backward selection (SBS) are the greedy search 

strategies that are most popular in the wrapper-based feature selection approach. In the SFS method 

one starts with an empty set and progressively adds features yielding the maximum improvement of 

the evaluation function J(.). In the SBS method one starts with the full set of features and progres-

sively eliminates the least useful ones. Both of these approaches are widely used when the initial 

feature set is relatively small (around 10-100 features) [GMT09]. Note that depending on the 

application domain, SFS and SBS approaches may lead to different results. In our work we use the 

SBS approach only. 

6.3.2 mRMR feature selection 

The minimal-redundancy-maximal-relevance (mRMR) [PLD05] is a filter approach that selects a 

given number of features which maximize the mutual information between the selected features and 
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the class labels (maximal relevance) and simultaneously minimize the dependency among the 

selected features (minimal redundancy). In our work, this algorithm has been used to get a ranking 

of the features, from the most to the least significant one. Ranking of d features leads to d “nested” 

feature sets dd SSSS ⊂⊂⊂⊂ −121 ...  where subset Si is composed of the i most significant features 

according to the mRMR criterion. Using the evaluation function J(.) (the same one used in wrapper 

approach) we evaluate each feature subset Si to choose the best one. 

6.3.3 PCA feature selection 

Methods that create new features based on transformations or combinations of the original feature 

set are called feature transformation or sometimes feature extraction algorithms. The transformed 

features may provide a better discriminative ability than the best subset of given features, but these 

new features (a linear or a nonlinear combination of given features) may not have a clear physical 

meaning. 

The best known linear feature extractor is the principal component analysis (PCA) or Kar-

hunen-Loève expansion, that computes the m largest eigenvectors of the d x d covariance matrix of 

the n d-dimensional patterns. The linear transformation is defined as: 

 

XHY =  (6.3.1) 

 

where X is the given n x d pattern matrix, Y is the derived n x m pattern matrix, and H is the d x m 

matrix of linear transformation whose columns are the eigenvectors. Since PCA uses the most 

expressive features (eigenvectors with the largest eigenvalues), it effectively approximates the data 

in a linear subspace. In Figure 6.3.2 we show the percentage of variance that is concentrated is the 

first most expressive features as a function of the number of features in the transformation domain. 

The number of features for classification stage is usually selected in such a way that 85-95% of 

variance is concentrated in first most expressive features. In our work given a feature ranking from 

the most expressive feature to the least one we create d “nested” feature sets dd SSSS ⊂⊂⊂⊂ −121 ...  

and then using the function J(.) we choose the best one. 
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Figure 6.3.2. Percentage of variance that concentrated in the first most expressive features as 
a function of the number of features in the transformation domain. (a) Database of the meet-

ing-room AEs (b) Broadcast news database 
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6.4 Bias-variance decomposition of the error 

Two commonly used error functions J(.) are employed in this paper to evaluate the candidate 

feature sets: mean zero-one error (MZOE) and mean-square error (MSE). In the following we 

describe briefly these error functions and its decomposition into bias and variance terms. The bias-

variance decomposition of the error allows to study the performance of the recognition system for 

different candidate feature sets.  

Consider n-dimensional feature space Rn. Given a training set a classification algorithm pro-

duces a model f. Given a test example x, this model produces a prediction y = f(x). Let t be a true 

value of the predicted variable for the test example x. A loss function L(t; y) measures the cost of 

predicting y when the true value is t. Squared loss is defined as LSL(t, y) = (t - y)2 and zero-one loss 

L0/1(t, y) = 0 if y = t, L0/1(t, y) = 1 otherwise. In our framework, the goal of feature selection is 

stated as searching for feature set that produces a model with the smallest possible loss; i.e., a model 

that minimizes the average loss L(t; y) over all examples. 

Since the same classification algorithm will in general produce different models f for different 

training sets, L(t; y) will be a function of the training set. Thus we are interested in expected loss 

ED[L(t; y)] over different training sets D of a given size. Bias-variance decompositions decompose 

the expected loss into the weighted sum of 3 terms: noise, bias, and variance, all non-negative. The 

noise term is the intrinsic error / uncertainty for correct prediction of x, regardless of the classifica-

tion algorithm. Bias term measures how closely the classification algorithm average prediction 

(considering all possible training sets of a fixed size) matches the optimal prediction y* (the Bayes 

rate prediction). In practice, we cannot know y* for real data so we follow previous authors [MC09] 

in using y* = t. As a result, the bias and noise cannot be separated and are combined in one term. 

Finally, the variance term shows how much the algorithm prediction fluctuates over different 

possible training sets of a given size. Domingos [Dom00] suggests the following decomposition for 

expected loss SLL  and 1/0L : 

  

)()()];([ xVxBytLEL SLDSL +==  

)()()];([ 1/01/0 xkVxBytLEL D +==   
 (6.4.1) 

 

where )];()( tyLXB m= , )];([)( yyLEXV mD=  and ym is the main prediction, i.e. the one that 

minimizes ED[L(y, ym)]. For squared loss ym is the mean prediction of the classification across 
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possible training data sets, and for zero-one loss ym is the mode (the most frequent value) of predic-

tions; and the constant k = 1 if B(x)=0 and k = -1 if B(x)=1. The error functions MSE and the 

MZOE are computed by averaging over multiple test examples the SLL  and the 1/0L , respectively. 
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6.5 Feature selection for AED 

In Section 6.3 we presented three search strategies to perform feature selection. There are also two 

alternative error functions for the evaluation of the candidate feature sets described in Section 6.4: 

MSE and MZOE. Usually both of them show similar results [Dom00] and could be used inter-

changeably. Note MZOE is the percentage of predictions that do not predict the correct class. It is 

often simply called the error rate for a classification model and it is tightly related to the evaluation 

metric in the AS task.  

The process of computing MZOE for broadcast news AS task is described in the following. 

Given a feature set Ω, the “Class” and “non-Class” models (Θclass and Θnon-class) are obtained using 

training data. For each audio segment i (we fixed the maximum length to 20 sec) in the develop-

ment database the problem of detecting “Class” in that interval i with observation sequence Xi can 

be formulated as a hypothesis test, being H0 “Class” in the interval i is not detected, and H1 “Class” 

in this interval is detected. The necessary condition for detecting “Class” (hypothesis H1) is the log-

likelihood ratio (LLR) ∆Li of “Class” and “non-Class” models exceeds a given non-negative 

threshold value P, i.e. 

 

PXQXQL classnoniclassii >Θ−Θ=Δ − )()(  (6.5.1) 

 

where Q(X|Θ) denotes the log-likelihood function given a feature vector X and an acoustic model Θ. 

The predicted label y for the ith segment is considered 1 if ∆Li>P and 0 otherwise. Given the 

predicted label y = {0, 1} and the reference label t = {0, 1} for each segment i in the development 

database, a bias-variance decomposition is obtained as described in Section 6.4. A feature set that 

corresponds to the lowest value of the MZOE is selected. 

However, if the number of instances in the development database is not high enough (like in 

the case of the multimodal database of the meeting-room acoustic events), it may happen that the 

MZOE function is not sensitive enough to small changes in the candidate feature set Ω.  Let’s see 

an example in Table 6.5.1, where the relation between the number of selected features and the 

number of errors for the “Chair moving” AE is presented. Notice that MZOE is not useful to decide 

about selecting the features ordered as 5th, 6th and 7th since the number of errors does not change 

when those three features are included in the feature vector. 
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Table 6.5.1. Relation between the number of features and the number  
of errors for the “Chair moving” AE 

 
Number of features 1 2 3 4 5 6 7 ... 31 32 

Number of errors 25 9 4 2 2 2 2 … 8 8 

 

To avoid that problem, the MSE loss function is used instead of MZOE. The predicted value yi 

for each audio segment i in the development database is obtained as described in the following. 

First, the LLR is computed for all “Class” and “non-Class” AE instances in development database. 

As an example, in Figure 6.5.1 we display the LLRs for all AEs in the labelled development data-

base. Squares correspond to the “Class” AE instances (“Chair moving” in our case) while crosses 

correspond to “non-Class” instances. Negative values of the LLR are substituted by 0. As we can 

see from that plot, most of the “Class” instances have higher LLR values than the “non-Class” ones. 

We consider the parameter P as a threshold (the horizontal line in Figure 6.5.1), and we selected 

P=270 for illustrative purposes. The ith AE instance is detected as “Class” if its LLR ΔLi is above 

P, otherwise it is detected as “non-Class”. Thus, all “Class” instances (squares in Figure 6.5.1) 

below the P line are misses, and all “non-Class” instances (crosses) above the P line are false 

alarms. In our experiments, P is selected in such a way that the numbers of misses and false alarms 

are equal (equal error rate). 

 

 
 

Figure 6.5.1. The LLRs corresponding to “Chair moving” class 
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Second, the predicted value yi for ith AE instance lies in the range [0 1] and it is computed from the 

LLR ΔLi with the expression:  

⎪
⎪
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The function g(.) is displayed graphically in Figure 6.5.2. 

 
Figure 6.5.2. The normalization function g(.) used for MSE loss computation 

 

Given the predicted and reference labels for each AE instance i the bias-variance decomposi-

tion of the MSE is obtained as described in Section 6.4. 
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6.6 Fast feature selection  

Although the SBS searching strategy requires much less computation load than the exhaustive 

search, it is still impractical to use it even for moderate number of initial features d. The most time 

consuming operation during feature selection is the re-estimation of GMM acoustic models using 

expectation-maximization (EM) algorithm that is called repeatedly for each candidate feature set. 

Our objective is to make the sequential feature selection approach practical for large number of 

initial features. In our work, the GMM acoustic models Θi for each ith acoustic class are obtained 

only once at the beginning of feature selection process using the whole set of initial features Ω. 

Using a standard marginalization technique [Pap91], the same acoustic models Θ are used to 

evaluate any feature subset R ⊂  Ω by means of marginalization of components that are not included 

in R. 

Further advantage in speed can be achieved by using the single dominant component in the 

GMM probability computation. The log-likelihood of any pattern x given GMM acoustic model Θ 

can be approximated by expression: 

 

)),(log()(~)),(log()( kkk
i

iii xNxQxNxQ Σ=Θ≈Σ=Θ ∑ αα  (6.5.3) 
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where ix , Σi and αi are the mean vector, the covariance matrix and the mixture weight of the ith 

mixture component, respectively; d is the total number of features.  

To validate the adequateness of the approximation (6.5.3) in our framework, in Figure 6.6.1 

we show the approximation error as average relative difference between LLR values ΔL1, ΔL2 over 

all AE instances in the development database. The values ΔL1 and ΔL2 are obtained using left and 

right parts of the expression (6.5.3), respectively, and the average value (ΔL1 – ΔL2)/|ΔL1| (in %) is 

depicted along the vertical axis as a function of the number of features. Note the approximation 

error is less than 5% provided that more than 6 features are used. 
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Figure 6.6.1. Average approximation error computed from the left and right parts of (6.5.3) 

 

Assuming diagonal covariance matrix Σk, we further obtain: 
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where σi
2 are the diagonal elements of the covariance matrix Σk. Thus the log-likelihood of each 

example x can be decomposed into the sum of the following terms: a constant term, the logarithm of 

the mixture weight, and the sum of the components that can be considered as the contribution 

coming from each feature. These contributions are computed at the beginning of the feature selec-

tion process using the initial acoustic model Θ. These contributions are further used for LLR 

computation given any subset of initial features. 
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6.7 Experimental results 

In the following experiments, first, we present the comparison results between the proposed fast 

feature selection technique that avoids retraining of acoustic models during the evaluation of the 

candidate feature set and the conventional approach. Second, we assess the performance of the 

proposed fast feature selection technique in 2 steps: in the first step the optimal set of features for 

each class is found using the development database. At the second step we analyze the improvement 

obtained by the system based on the selected features with respect to the system that uses the whole 

feature vector using testing database. Three different feature selection approaches are employed in 

our experiments: a purely wrapper SBS approach and the two hybrid approaches, PCA and mRMR, 

that combine filter for feature set ordering and wrapper for feature set evaluation. We analyze 

feature selection results for both the meeting-room AE database and the tv3/24 broadcast news 

database using HMM-GMM detection approaches described in chapter 4 and chapter 5, respec-

tively. 

6.7.1 Fast one-pass training feature selection approach 

The multimodal database of meeting-room AEs is employed to compare fast feature selection 

technique with the conventional one. We start with an initial feature set that consists of 16 fre-

quency-filtered (FF) log filter-bank energies with their first time derivatives (in total, 32 features). 

We also added features coming from the acoustic source localization system (1 additional feature 

for all AE classes) and video signals (1 additional feature for 5 classes of interest). 

Figure 6.7.1 summarizes the mean relative improvement obtained by the system based on se-

lected features with respect to the system that uses the whole set of features. The results correspond 

to the testing part of the database (unseen data that is not used during the feature selection process). 

The dashed line corresponds to the results obtained with the baseline conventional approach, and 

the solid curve corresponds to the one-pass-training technique.  The standard deviation is plotted 

with vertical lines. It has been calculated from 8 scores, which were obtained by using different 

combinations of partitions of the database for training, development and testing. According to them, 

the detection rate increases for all classes, except “Cough” and “Paper work”, by using any of the 

two feature selection techniques. We observe that the fast feature selection technique shows similar 

results compared to the conventional feature selection approach. The average of the mean relative 

improvement across the AEs (horizontal axis) equals to 4.5% for the conventional and 5.0% for the 

one-pass-training approach. 
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Figure 6.7.1. Comparison between the conventional and the one-pass-training features selection 

techniques 

6.7.2 Feature selection for meeting-room acoustic event detection 

Similarly to the experimental results in previous sub-Section, we start with an initial feature set that 

consists of 16 frequency-filtered (FF) log filter-bank energies with their first time derivatives (in 

total, 32 features). We also added features coming from the acoustic source localization system (1 

additional feature for all classes) and video signals (1 additional feature for 5 classes).The multimo-

dal database has been divided into 2 parts: training (5 sessions) and development (3 sessions).  The 

training part of the database has been further splitted into D=9 portions (each partition consists of 2 

sessions, with 50% overlap between partitions).  

Figure 6.7.2 shows an example of bias-variance decomposition of MSE error for four AE 

classes: “Applause”, “Chair Moving”, “Door Slam”, “Steps”; the feature ordering was done using 

SBS approach. The total height of each bar is the MSE error for the number of features on the x-

axis. Each bar is subdivided into portions that are due to bias and variance of the detection algo-

rithm. 
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(a) Applause (b) Chair moving 

 
(c) Door slam (d) Steps 

Figure 6.7.2. Bias-variance decomposition of squared error for several AE classes using develop-
ment database 

 

As we see from Figure 6.7.2, the variance term of the error of the detection algorithm in-

creases with increasing the number of features, while the bias term of the first decreases and then, 

after reaching some point, increases. For each AE we select the optimal number of features with the 

MSE bias-variance trade-off for the learning algorithm (18, 20, 29, 26 features for each AE in 

Figure 6.7.2, respectively). For some AEs (like “door slam”) the feature selection does not contrib-

ute significantly to MSE reduction. 

Once the number of features per each class is selected, the next step is to evaluate the per-

formance of the two AED systems:  the first one is based on the selected features and the second 

one uses the whole 34-dimensional (for five classes of AEs) or 33-dimensional (for the rest of the 

classes) feature vector. The evaluation experiment was repeated across 8-folds and the 8 estimates 

averaged. In order to have the results consistent with the experiments in Section 6.7.3, we present 

the results in terms of (1 – AED-ACC) score, so that better results correspond to lower value. 
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Figure 6.7.3. Comparison of the baseline recognition results with the results obtained along 

different AEs (a) using different features selection approaches  
 

In Figure 6.7.3 we compare the baseline (1 - AED-ACC) score averaged over different AE 

classes with the results obtained by the systems based on selected features using three different 

feature selection techniques: SBS, PCA and mRMR. The best result corresponds to the SBS ap-

proach, achieving 8.7% of relative error reduction. With PCA and mRMR aproach we do not report 

significant improvement. 

In Table 6.7.1, the number of selected features for different categories of features and feature 

selection methods is displayed. We decompose the 32 FF features into 16 static (S) and 16 dynamic 

(D) parameters. The next columns correspond to the number of selected features coming from 

localization and video, respectively. For PCA technique such kind of decomposition is not possible 

since the selected features do not have a clear physical meaning. In the case of SBS as well as 

mRMR technique, both static and dynamic FF-based features contribute to the final accuracy.  The 

video features are an important additional source of information for detection of those five AEs for 

which video features are extracted. In the case of SBS technique, the acoustic localization feature 

was selected for eight AEs, but not for the other four. One of the reasons of such behaviour is high 

variability of the estimated localization coordinates for those four AEs. For instance, “Key jingle”, 

“Phone ring” and “Speech” do not have clearly associated z-coordinate in the room. Regarding low-

energy AEs like “Paper work” the reliability of localization feature estimate is low compared to 

other AEs. 
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Table 6.7.1. Number of selected features for each AE 

Feature selection method 
SBS mRMR PCA 

AST AST Es 

S D Loc Video Total S D Loc Video Total Total 

Door knock 13 8 1 --- 22 15 16 1 --- 32 14 
Door 
open/slam 14 13 1 1 29 13 15 1 1 30 24 

Steps 13 11 1 1 26 15 16 1 1 31 33 
Chair mov-
ing 10 8 1 1 20 16 15 1 1 33 32 

Cup clink 8 7 1 --- 16 16 15 1 --- 32 18 
Paper work 14 10 1 1 26 13 15 1 1 30 16 
Key jingle 8 9 0 --- 17 7 8 0 --- 15 32 
Keyboard 
typing 12 10 0 1 23 14 16 1 1 32 33 

Phone ring 5 7 0 --- 12 2 1 0 --- 3 32 
Applause 8 9 1 --- 18 4 5 1 --- 10 23 
Cough 8 11 1 --- 20 15 15 1 --- 31 33 
Speech 8 10 0 --- 18 13 12 0 --- 25 18 
          
Average    21    25 26 

 

6.7.3 Feature selection for broadcast news audio segmentation 

The database that consists of 24 sessions has been divided into training (10 sessions), development 

(6 sessions) and testing (8 sessions) parts. The training part of the database has been further splitted 

into D=5 partitions (each partition consists of 5 sessions, with 40% overlap). The initial feature set 

consists of 16 frequency-filtered log filter-bank energies (FF LFBE) with their first time derivatives 

(in total, 32 features). The mean and the standard deviation of the features have been computed 

along a 1 sec window, thus forming a feature vector of 64 elements every 1 sec. 

Figure 6.7.4 shows the bias-variance decomposition of the MZOE for 4 acoustic classes: “Mu-

sic”, “Speech”, “Speech over music”, “Speech over noise”; the feature ordering was done using the 

SBS technique. Note that for the classes “Speech” and “Speech over music” the variance term of 

the error of the detection algorithm is much larger than for the other two classes. Similarly to the 

MSE, the variance term of the MZOE increases with increasing of the number of features. 
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(a) Music (b) Speech 

  

(c) Speech over music (d) Speech over noise 

Figure 6.7.4. Bias-variance decomposition of zero-one error for different acoustic classes using 
SBS approach 

 
 

In Figure 6.7.5 we compare the AS results obtained by the systems based on the selected fea-

tures (using SBS, PCA and mRMR techniques) with the system that uses the whole feature vector 

(baseline). When using the SBS technique the error rate decreases for all classes; using the PCA 

technique we got an improvement for 3 classes and, finally, using mRMR we got an improvement 

just for 2 classes. The overall detection results (when combined in the hierarchical way) are very 

similar in the case of the SBS and the PCA techniques (34.77% and 35.07%, respectively), achiev-

ing around 2% of absolute error reduction. 
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Figure 6.7.5. Comparison of the detection results along different acoustic classes using different 

feature selection approaches 
 
 

In Table 6.7.2, the number of selected features for different feature selection techniques and 

different acoustic classes is displayed. Using the SBS approach we achieved the largest feature 

reduction ratio: 2.6, being 4.6 for “Speech” class and 1.8 for “Music” class. Noticeably, that for the 

classes which include overlapping of speech with either music or noise the feature reduction ratio is 

in between of these values. 

 

Table 6.7.2. Number of selected features for each AC using different feature selection techniques 

 Feature selection technique 
 SBS mRMR PCA 
Music 36 62 47 
Speech 14 16 16 
Speech over music 27 61 59 
Speech over noise 18 20 48 
    
Average 24 40 43 

 
 

The CPU time (in hours) required to perform feature selection for one acoustic class is sum-

marized in Table 6.7.3. The processes were executed using Intel Xeon with 4 cores and 3 GHz; 32 

Gb of RAM. The whole feature selection process is decomposed in 4 steps: feature ordering, initial 

training of models using the whole set of features and the evaluation of the candidate feature sets. In 

the case of SBS wrapper approach, d(d-1)/2 feature subsets should be evaluated; in the case of filter 

approaches only d nested feature subsets are evaluated, where d is the total number of features. We 

have presented the timing results for both fast and conventional techniques.  
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Table 6.7.3. Breakdown timing for feature selection algorithms (in hours) 

Meeting-room AED Broadcast news AS Feature selection operation 
SBS mRMR PCA SBS mRMR PCA 

Feature ordering using filter 
approach - 0.13 0.002 - 0.24 0.002 

Initial training of models 0.4 0.39 
Wrappers-based subset 
selection (fast technique) 56.1 3.4 80.6 2.6 

Wrappers-based subset 
selection (conventional 
technique)* 

280.5 17 866.9 27.5 

* Not evaluated, estimated value 
 

As we expected, the filter approaches are much faster than wrapper one. The fast wrapper-based 

technique is about 5 and 10 times computationally efficient than conventional one for database of 

isolated AEs and for broadcast news AS database, respectively. The gain in execution time is more 

evident when the initial number of features increases. 
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6.8 Chapter Summary 

Taking into account a large computation load of the conventional wrapper approaches, a fast one-

pass-training technique has been proposed that does not require the re-estimation of acoustic models 

during the evaluation of the candidate feature sets. The speed benefit of this technique becomes 

extremely important when the initial feature set is large and the training of acoustic models is time 

consuming. The experimental results show that the fast technique can be successfully applied in our 

AED tasks. 

Three different feature selection approaches are compared in the framework of multimodal 

meeting-room acoustic event detection and broadcast news audio segmentation. The wrapper-based 

sequential backward selection approach showed the best results in terms of both accuracy and 

feature reduction ratio at the cost of high computational complexity. The hybrid two-stage PCA 

algorithm show slightly worse results in terms of accuracy, but much better performance in terms of 

speed. Note, for the PCA feature selection the extraction of the whole set of initial features is 

required so that it may delay the testing phase of detection/segmentation algorithm. This issue could 

be crucial in embedded and online systems as the extraction of unimportant features may be compu-

tationally expensive. Besides that, the physical meaning of the selected features is lost so that the 

PCA approach does not give any feedback about the suitability of a particular feature for the 

detection task. With the hybrid two-stage mRMR approach the recognition results are improved 

only for some classes but the average error along all acoustic classes increases for both databases 

employed in the paper. The possible reason of that is the difficulty of estimation of mutual informa-

tion between features if they have continuous distribution. 

The performance characteristics of the learning algorithms have been analyzed using the bias-

variance decomposition of the classification loss. For mean-square error and zero-one loss this 

decomposition has very simple form: the error is composed of two non-negative terms, one comes 

from classifier imperfectness as well as intrinsic error of domain and the other comes from fluctua-

tion of classifier prediction over different possible training sets. We observed that for all acoustic 

classes the bias of GMM-based classifier increases after reaching some point, while in general, the 

variance of the learner monotonically increases with increasing number of features. The most 

accurate feature set corresponds to the best bias-variance trade-off point for the learning algorithm. 

Using the multimodal database of acoustic events we found that both static and dynamic spec-

tro-temporal features contribute to the final accuracy. According to the obtained results, the video 



Chapter 6.Feature selection 
  
 
 

 
147

features are an important additional source of information for detection of the five AEs for which 

video features are extracted. The acoustic localization feature was selected only for some AEs. 
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Chapter 7. Online 2-source AED implementation 

7.1 Chapter Overview 

In this chapter we describe the 2-source acoustic event detection (AED) and acoustic source local-

ization (ASL) systems implemented in real-time in the UPC’s smart-room using HMM approach. 

The remaining sections are organized as follows. In Section 7.2, the previous activities imple-

mented in UPC’s smart-room are briefly outlined. Section 7.3 describes the proposed 2-source 

AED/ASL system. Section 7.4 gives the implementation overview of the of the AED/ASL compo-

nents using smart-audio++ package. Finally, in Section 7.5 we present some comparison results 

between online and offline implementations of AED. 
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7.2 Smart-room activities 

One example of new challenging multimodal research efforts is the development of smart-rooms. A 

smart-room is a closed space equipped with multiple microphones and cameras, which are designed 

to assist and complement human activities. The room serves two purposes: first, it is an experimen-

tation environment, where researchers can test online the multimodal analysis and synthesis 

developments in the area of human–computer interfaces; second, it doubles as a data collection 

facility for research purposes, providing data for technology development and evaluation. The 

configuration of the smart-room created in UPC can be found in Figure 3.3.1 (a). Among others, 

there are several audio-visual sensors (cameras and microphones), synchronization and acquisition 

equipments, working computers, and a video projector. Several technologies have already been 

implemented in the UPC smart-room that work in real-time. 

The first demo that combines both AED and ASL technologies was created by our group in the 

context of European CHIL project [WS09] in 2007. The one-source AED was implemented using 

Support Vector Machines (SVMs) [TN09]. In the SVM realization, the AED is performed by means 

of sequential classification of 1 sec sliding windows with 0.2 sec shift. The snapshot of the video 

demonstrating one-source AED/ASL is presented in Figure 7.2.1 (a). As it shown in the Figure, 

there are two screens in the GUI output: one corresponds to the real video captured from one of the 

cameras installed in the UPC’s smart-room, and the other is a graphical representation of the output 

of the AED and ASL technologies. In this demonstration three persons produce several acoustic 

events in isolated way without signal overlaps.  

The second demo is so called talking head demo (Figure 7.2.1 (b)) that demonstrates the con-

text awareness given by perceptual components. According to the scenario, the talking head 

“interacts” with the journalists in natural way: it not only informs the journalists about available 

resources, and points out events such as the arrival of a latecomer or news being contributed by 

remote colleagues, but also facilitates information requests from the journalists in a human-like 

interface based on automatic speech recognition technologies. Interactive behaviour of the talking 

head is also achieved by means of detection of some acoustic events, like an utterance “Don’t forget 

your keys!” when “key jingle” is detected or exclamation “Great! Well done!” when “applause” is 

detected. Five AEs were chosen for detection: door knock, door opening/closing, speech, applause, 

and key jingles. 

The third demo developed in our UPC's research group demonstrates the UPC’s smart-room 

remotely. The functionalities that are involved in the demonstration are the 3D person tracking, 
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ASL, and AED. The virtual 3D scene is reconstructed from the images of multiple cameras in the 

smart-room. Figure 7.2.1 (c) shows the developed 3D visualizer. Specifically, it shows one detected 

person sitting, and the other passing in the room. “Steps” are detected with the AED and localized 

in space with the ASL. The text label “Steps” is assigned to the place where the event happens. 

Additionally, the small screen at the lower left corner shows the corresponding real video. 

All the previously described demonstrations of the AED technology working online are fo-

cused on the detection of single AE without signal overlaps. In fact, in real scenarios the meeting-

room AEs are usually overlapped with other sounds, mainly with speech. In our work we extended 

the online implementation of AED to two sources, one of which is always speech.  

 

 
(a) 

  

(b) (c) 

Figure 7.2.1. Previous smart-room demos that make use of AED technology. (a) One-source 
AED/ASL demo (b) The talking head demonstrating the context awareness given by perceptual 

components (c) Virtual UPC’s smart-room demo 
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7.3 From one-source to two-source detection 

While the detection of the single acoustic source is performed with relatively high accuracy, a big 

challenge is dealing with two simultaneous acoustic events produced from different persons in the 

room. According to the last international evaluation campaign the overlapping segments account for 

more than 70% of errors produced by the systems. In our scenario we assume that one acoustic 

source is always speech and the other is a particular meeting-room AE. In our implementation we 

propose an alternative algorithm for AED based on HMMs, where the acoustic analysis is per-

formed on a frame-by-frame basis, using Viterbi segmentation algorithm for recognition which 

allows obtain the recognition result with very low latency. Besides, the acoustic source localization 

algorithm is extended to 2 sources. 

In our work, the overlap problem is faced at the level of models. 24 HMMs have been trained, 

one for each isolated acoustic event (12 acoustic models) and one for each AE overlapped with 

speech with different SNR (the other 12 acoustic models).  

The flowchart of the proposed online AED/ASL system is depicted in Figure 7.3.1. In consists 

of 4 main blocks: audio acquisition, 2-source AED, 2-source ASL and visualization.  

 

 
Figure 7.3.1. The flowchart of the proposed AED and ASL system working online 

 

The audio captured from the set of microphones is used for subsequent feature extraction and 

recognition in 2-source AED block; the 2-source ASL block estimates the position(s) of acoustic 

source(s). The output from 2-source AED block is either an isolated AE (if one source is detected) 

or an AE overlapped with speech (if 2 sources are detected). The output from 2-source ASL block is 

either one or two (x, y) coordinates of acoustic source(s). Both outputs are combined together and 

visualized by graphical user interface (GUI). An ambiguity happens when the numbers of acoustic 

sources detected by AED and ASL blocks are different. In this case the number of the displayed 

acoustic sources equals to the number of acoustic sources detected by the AED module. Note that 

(x; y) coordnate(s)

AE
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1 mic
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AEs are displayed in default positions if the number of localization coordinates is less than the 

number of detected AEs. 

7.3.1 Audio acquisition 

In the audio acquisition block, the audio signals are captured simultaneously from 24 microphones 

from T-shape clusters located on the walls of the room. The audio signal from the microphone #18 

is downsampled from 44.1 kHz to 16 kHz and subsequently used for feature extraction and recogni-

tion in 2-source AED block. Actually, the microphone #18 is the nearest one to the table and it 

allows the most reliable recognition of AEs. The 2-source ASL block uses the audio from the whole 

set of 24 microphones sampled at 44.1 kHz to estimate one or two positions of acoustic sources. 

7.3.2 Two-source AED system 

The first step in our 2-source AED system is feature extraction. A set of audio spectro-temporal 

features is extracted to describe every audio signal frame. There exist several alternative ways of 

parametrically representing the spectrum envelope of audio signals. Similarly to offline tests, we 

employ frequency-filtered (FF) log filter-bank energies (LFBE) parameters. In our experiments, the 

frame length is 30 ms with 20 ms shift, and a Hamming window is applied. A 32-dimensional 

feature vector is computed every 20 ms. 

Each acoustic class is modelled using HMMs where GMMs are used to compute the state 

emission probability as described in chapter 4. The HTK toolkit [YEK02] is used for training the 

HMM–GMM models. The audio part of the multimodal database described in Appendix A is used 

to create those models. There is one HMM for each AE, with only one emitting state. The observa-

tion distribution of this state is Gaussian mixture with continuous density, and consists of 64 

components with diagonal covariance matrix. Each HMM is trained with the signal segments 

belonging to the corresponding event class using the standard Baum–Welch training algorithm 

[RJ93]. The overlap problem has been handled at the level of models. In total, 24 HMMs is trained, 

one for each isolated AE class and one for each AE class overlapped with speech. For testing, the 

Viterbi algorithm is used. For online system implementation we use ATK, an API designed to 

facilitate building experimental applications for HTK. 

To build an application using ATK three main resource files have to be prepared off-line. The 

first one is a dictionary that contains all possible acoustic events for detection. In our case it is a set 

of 12 isolated AEs: “ap”, “cl”, “cm”, “co”, “ds”, “kj”, “kn”, “kt”, “pr”, “pw”, “st”, “sp” and 12 AEs 

overlapped with speech: “oa”, “oj”, “om”, “oh”, “od”, “ok”, “on”, “ot”, “or”, “ow”, “os” and “oo”. 
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The second resource file is the grammar file that defines a possible sequence of AEs as illustrated in 

Figure 7.3.2. In HTK SLF format, this would be represented by a text file containing a list of 

grammar nodes (the AEs) and the links needed to combine them together. The third required 

resource is a set of HMMs. These would be prepared off-line using HTK, and then stored in HTK 

supported format. Each of the three required resources can be defined as entries in a configuration 

file which is loaded at start-up time.  

In ATK, ARec component provides similar functionality to the standard HTK Viterbi decoder. 

It is supplied with a resource group containing dictionary, a grammar, and then decodes incoming 

feature vectors accordingly. 

In the proposed implementation, the ARec recogniser always operates in one of three possible 

states as indicated by the state diagram shown in Figure 7.3.3. Initially, when there is no acoustic 

activity in the room, the recognizer operates in FLUSH state and discards the input audio packets. 

Audio packet is a chunk of information that is used for transmitting between asynchronously 

executing components. When the energy of the N consecutive packets exceeds the predefined 

threshold, the recognizer starts operating in RUN state. Similarly, the recognizer goes back to 

FLUSH state if the energy of N consecutive packets are below this threshold. In RUN state the 

recognizer continuously performs the Viterbi decoding of the waveform from the time interval [t0 

ti], where t0 is the time instance when the first non-silence packet received and ti is the current time 

stamp. The grammar is defied as illustrated in Figure 7.3.2, that allows only one AE to be detected 

on this interval. In ANS state the recognizer sends the current decision obtained in RUN state to 

visualization block. There are 2 possible conditions when the recognizer goes to ANS state: 

• The confidence of the current decision exceeds a predefined threshold. In this case the corre-

sponding AE label is sent to visualization block. Very often a confident decision is obtained 

with just a few input packets. In this case the time delay between the AE production and its 

visualization is small allowing obtaining recognition result with low latency. 

• During 1 sec operation in RUN state the decision with enough confidence is not obtained. In 

this case the “unknown” AE is sent to visualization block. Note, that different thresholds are 

experimentally tuned for each AE. It allows controlling the number of misses and false alarms 

for each AE individually. In fact, false alarms are the most annoying kind of errors in output 

from the AED process. 

The recognizer goes back to RUN state immediately when the output label is sent to visualiza-

tion block. 
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Figure 7.3.2. AED grammar 
 

Figure 7.3.3. Finite-state machine 

 

ARec supports a simple method of confidence computation. Every frame, the acoustic log like-

lihood of the best matching model state and the best matching background model state is saved. 

Since we do not use any background model, the average score across all models is used instead. 

When the AE is recognised, these best-state and background state scores are summed to form a 

best-possible-acoustic score bs and a background score bg over the segment of the waveform for 

which the AE is being hypothesised.  

A raw confidence score in the range -1 to 1 is computed as: 
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where ac is the actual acoustic log likelihood of the AE. The confidence for that AE is then com-

puted as  
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x = α rawconf – β 

 

The constant α sets the slope of the confidence curve and β sets the operating point. Their values are 

set with default values of 0.15 and 0.0.  

7.3.3 Two-source acoustic source localization system 

The acoustic localization system used in this work is based on the SRP-PHAT localization method 

described in chapter 3. The contribution of the cross-correlation of every microphone pair is accu-

mulated for each exploration region in the room. In this way, we obtain a sound map at every time 

instant of 50 ms, as depicted in Figure 7.3.4, where in red colour the regions with high cross-

correlation contribution from all microphone pairs are highlighted. The estimated locations of 

acoustic sources are the positions of the quantized space that maximize that contribution. 

 

 
Figure 7.3.4.– Example of the Sound Map obtained with the SRP PHAT process 

 

There is no constraint on the number of acoustic sources that the algorithm has to detect. We 

employ the method that dynamically estimates the number of sources based on a birth/death system 

[SAH07]. The ASL system uses a spatial segmentation algorithm to group locations that are close 

to each other in space and time. When a minimum number of locations Nb are found in a space 

region over a defined time window Tb, the system decides whether it is a new acoustic source. 

Similarly, if the previously detected acoustic source does not have any measurements that fall 

within its acceptance region for a given amount of time Td, then it is dropped. The ratio between Tb 

and Nb used in the detection module is a design parameter. It must be high enough to filter out 
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noises and outliers, but also not too high in order to be able to detect sporadic acoustic events. In 

our experiments Nb is set to 4, Tb is 460 ms and Td is also 460 ms. 

7.3.4 Visualization 

The developed graphical interface (GUI) fully describes the acoustic activity in a smart room, and 

allows the observers to evaluate the system performance in a very convenient way. The GUI 

application is based on the QT Trolltech toolkit [QT], an open-source library widely used for the 

development of GUI programs. There are two screens in the GUI output, as shown in Figure 7.3.5. 

One corresponds to the real video captured from one of the cameras installed in the UPC’s smart-

room, and the other is a graphical representation of the output of the AED and ASL technologies.  

 

 
(a) 

 
(b) 
 

Figure 7.3.5. The two screens of the GUI: (a) real-time video and (b) the graphical representation 
of the AED and ASL functionalities (‘‘Cup clink” overlapped with “Speech” is being produced) 

 

When there is acoustic activity in the room, the GUI displays the animated puppets in the posi-

tions provided by the ASL system. The number of puppets depends on whether the acoustic event is 

produced in isolated manner (one puppet) or it is overlapped with speech (two puppets, one of 

which is always producing speech, as depicted in Figure 7.3.5). 
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7.4 Acoustic Event Detection Component Implementation 

The implementation of the AED components was done using a software package called 

SmatAudio++ and KSC socket messaging system developed under Linux platform. SmartFlow is a 

set of tools that allows components from various developers to interoperate in smart-spaces and deal 

with the data flows coming from that variety of sources. The use of a KSC message server and a 

KSC client library allows sending results of data analysis in an asynchronous way.  

 
 

Figure 7.4.1. SmartAudio map that corresponds to the 2-source AED/ASL system 
 

Figure 7.4.1 shows the SmartAudio map that corresponds to 2-source AED and ASL systems. 

The map shows the needed Smartflow clients and the interconnections among them. Each of the 

squares is a client designed for the execution of a specific stage of the AED/ASL task. The lines 

between the squares represent the connections between each client, i.e the data flows between the 

different AED/ASL stages. Different clients, that is, different computations required by the 

AED/ASL task are implemented on distinct servers in order to optimize the usage of the CPUs of 

the machines and splitting the computational burden among several computers. In fact, it reduces 

the elaboration time that is a crucial requirement for online tasks. The clients can be executed on 

any of the available server, whose choice has only to be guided by the criterion of the splitting of 

computational burden among different CPUs. Only the signal capture processes have to be imple-

mented on the computer where the corresponding acquisition hardware actually is. This is the 

reason why the RMEAlsaCapBlock client, designed for the audio channels acquisition, and the 
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capture client, designed for the acquisition of the video stream showing the real Smart-Room scene, 

have to be implemented, respectively, on server s4 and s2 (as it can be inferred from the captions of 

the related clients illustrated in the map). As can be seen from the SmartFlow map, the data output 

flow from the RMEAlsaCapBlock client reaches two different clients: the RMEAudioBlock_24c is 

designed for the pre-processing of the audio data successively used by acousticLoc for the execu-

tion of the Acoustic Source Localization (ASL) algorithm. The other client receiving the 

RMEAlsaCapBlock output is the RMEChannelExtraction client: as the audio capture client returns a 

single data flow that multiplexes the audio from all the microphones, the audio channels extraction 

performed by RMEChannelExtraction is needed in order to demultiplex the flow in its distinct 

audio channels, which then can be analysed separately. As it already metntioned, for AED only one 

audio channel related to microphone #18 of the smart-room is exploited. That is why only eight-

eenth output (illustrated in the SmartFlow map as small blue rectangle) of the 

RMEChannelExtraction client is fed as input to the successive stage: the ResampleClient. This stage 

is responsible for downsampling of the input audio signal from the sampling frequency of 44.1 kHz 

applied by the Smart-Room audio capture devices to 16 kHz. The downsampled signal is forwarded 

to the ASR_AED client that performs the extraction of the set of audio spectro-temporal features. 

Audio data is taken from the continuous audio using equal-sized chunks, each one 1024 audio 

samples long. For every chunk the features are extracted from 30-ms-long frames, that is, each 

frame includes 480 audio samples of the 16 kHz input audio signal. The overlapping between 

adjacent frames is the same as in the offline feature extraction, that is, 20 ms long or, equivalently, 

160 audio samples. Once the features are extracted, it is possible to perform Viterbi decoding. The 

HMM models, are loaded only once, at the initialization of the ASR_AED client, and the detection 

process is performed by the same client. 

The flow containing the decisions from ASR_AED is the input of the AEDTracking client, 

which is designed for the fusion of acoustic event detection and acoustic localization data. The 

output flow from the AEDTracking client, containing data about the detected AE(s) and estimated 

position(s) inside the room is finally fed to the DisplayAcousticEvents_with_Video client showing 

the real scene shot by one of the smart-room cameras. The video stream comes from capture client, 

that is one of the inputs of the DisplayAcousticEvents_with_Video client. DisplayAcousticEvents 

client also shows the real-time display of the detected acoustic events by means of animated draw-

ings that can be intuitively related to the corresponding AE. The additional functionality that 

provides this client is recording of a video file with animation and the associated audio stream that 

made possible to record 2 min demo. The whole SmartFlow AED system can also work offline due 
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to the readAudio client, shown in Figure 7.4.1 disconnected from any flows. In order to run the 

system offline, it is sufficient to connect the readAudio client (instead of the RMEAlsaCapBlock) to 

the RMEChannelExtraction client and define an input audio file for each of the audio channels to be 

used. 
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7.5 Experimental Results  

In order to prove the adequateness of the proposed approach, a series of experiments have been 

conducted to compare the implemented AED system working online with the baseline offline 

system and the results are presented in Table 7.5.1. In both online and offline tests the first column 

corresponds to the detection accuracy of the isolated acoustic events and the second one corre-

sponds to AEs overlapped with speech.  

In our experiments we used 8 sessions of isolated acoustic events from the database described in 

Appendix A. Additionally, these sessions were artificially overlapped with speech with different 

SNRs: -10 dB, 0 dB and +10 dB. For both offline and online tests, seven sessions (from 2 to 8) were 

used for training, and the remaining session 1 for testing. 

Table 7.5.1. Comparison of the recognition results between offline and online AED systems. 

Offline system Online system 
AEs 

Iso, % Overl, % Iso, % Overl, % 

ap 100 100 92 84 
cl 100 100 85 89 
cm 97 97 64 65 
co 67 95 87 75 
ds 83 100 84 84 
kj 100 100 97 93 
kn 100 95 52 72 
kt 67 100 85 86 
pr 100 96 92 97 
pw 64 86 74 73 
st 80 82 75 70 
     
Average 91.3 % 80.6% 

 

The main difference between the online and the offline tests is in the way of processing of the 

input waveform. During the offline tests the entire session is available for Viterbi segmentation. In 

this case the only parameter for tuning is the word insertion penalty parameter (p-value) that is the 

kind of trade-off between misses and false alarms. In our experiments p = -200. In online tests the 

recognition is performed on a frame-by-frame basis using the additional technologies described in 

sub-Section 7.3.2: silence detector, finite state machine, etc. In that case more parameters have to be 

tuned: the silence threshold, the number of silence frames, the confidence thresholds for each AE, 
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etc. Note that in online tests the output hypothesis labels are those that displayed by the visualiza-

tion block. 

As can be seen from Table 7.3.2, almost all AEs are well detected in offline simulations. Rela-

tively low detection rate corresponds to low-energy AEs, such as “Keyboard typing”, “Paper work” 

and “Steps”; additionally, the AE “Cough” is often confused with speech. In online simulations the 

best detection rate is achieved for such AEs as “Applause”, “Cup clink”, “Key jingle” and “Phone 

ring”, but AEs as “Door knock” and “Chair moving” showed relatively low detection rates. Actu-

ally, these AEs have the shortest duration in the testing database employed in the experiments. The 

obtained absolute difference between online and offline recognition results is less than 11% in terms 

of conventional AED-ACC metric. 
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7.6 Chapter Summary 

In this chapter we described a 2-source acoustic event detection and localization system run-

ning in real-time in the UPC’s smart-room. The detection of AEs is performed using our HMM-

GMM approach, which allows analyzing the input waveform on a frame-by-frame basis with low 

latency. The AED and ASL systems are visually monitored by a GUI application which shows the 

output of AED and ASL technologies in real-time. Using this application, a video recording has 

been captured that contains the output of the GUI during a session lasting about 2 min, where three 

people in the room speak, interact with each other in natural way producing AEs which may overlap 

with speech. The implementation of AED components using Smart-audio++ package has been 

reviewed. The experimental results show the absolute difference between online and offline recog-

nition results is less than 11% in terms of conventional AED-ACC metric. 
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Chapter 8. Conclusions and Future Work 

8.1 Summary of Conclusions 

This thesis presents the work done by the author in the area of Acoustic Event Detection (AED) 

focusing on: 1) multimodal techniques to deal with the difficult problem of signal overlaps present 

in meeting-room acoustic signals, and 2) audio segmentation techniques in the broadcast news 

domain. The HMM-GMM classifier is chosen as the basic detection technique to perform both 

offline experiments and implementation in real-time of a 2-source acoustic event detection system. 

There are several contributions of this thesis. Regarding feature extraction, firstly, the use of 

video features, which are new for the meeting-room AED task. A number of features were extracted 

from video recordings by means of object detection, motion analysis, and multi-camera person 

tracking to represent the visual counterpart of 5 classes of AEs. Since the video modality is not 

affected by acoustic noise, the proposed features improved AED in both isolated and spontaneous 

scenario recordings. Secondly, the inclusion of acoustic localization features, which, in combination 

with the usual spectro-temporal audio features, yielded further improvements in recognition rate. 

The following meta-classes were defined based on the acoustic localization information: “near 

door” and “far door”, related to the distance of the acoustic source to the door; and “below table”, 

“on table” and “above table”, related to the z-coordinate of the detected AE. 

Two different strategies for fusion  of audio and video modalities have been employed in this 

thesis: feature-level fusion is based on concatenating feature vectors from different modalities into 

one super vector; and decision-level fusion, where each modality acts as an independent “expert”, 

giving its opinion about the unknown acoustic event (AE). Decision-level fusion is carried out using 

weighted arithmetical mean (WAM) and fuzzy integral (FI) approaches. Unlike non-trainable fusion 

operators (mean, product), the statistical WAM and FI approaches avoid the assumption of equal 

importance of information sources. We demonstrated that the FI fusion operator can capture interac-

tions among the various modalities. Additionally, the fuzzy measure, which is associated with the 

fuzzy integral, can be used to measure the importance for each information source for detecting 

particular AEs. 

Taking into account that the task AED in meeting room environments is relatively new, there 

is a lack of annotated multimodal data, in particular data with temporal overlaps of sounds which is 

needed for training and testing the proposed technologies. In total, about 3 hours of new data with 

AEs were recorded in the UPC multimodal room from 5 video cameras and 24 microphones. The 

database includes two kinds of datasets: recordings of isolated AEs (2 hours), where several partici-
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pants performed each AE several times, and a more spontaneously generated dataset (1 hours) 

which consists of 9 scenes of about 5 min long with 2 participants that interact with each other in a 

natural way: drink coffee, speak on the mobile phone, etc. Manual annotation of the data has been 

done to get a reliable performance evaluation. In order to encourage other researchers to work on 

this multimodal AED field, these datasets are made publicly available. 

Another contribution of this thesis is in the area of feature selection. Taking into account the 

large computational load of the conventional wrapper approaches, a fast one-pass-training technique 

has been proposed that does not require the re-estimation of acoustic models during the evaluation 

of the candidate feature sets. The benefit in terms of computational speed of this technique becomes 

extremely important when the initial feature set is large and the training of acoustic models is time 

consuming. The experimental results show that the fast technique can be successfully applied in our 

multimodal audio recognition tasks. Three different feature selection approaches have been com-

pared in the framework of multimodal acoustic event detection and broadcast news audio 

segmentation. The wrapper-based sequential backward selection approach showed the best results 

in terms of both accuracy and feature reduction ratio at the cost of a high computational complexity. 

The hybrid two-stage PCA algorithm show slightly worse results in terms of accuracy, but much 

better performance in terms of speed. Note that for PCA feature selection the extraction of the 

whole set of initial features is required, which may produce a remarkable latency during the testing 

phase of the detection/segmentation algorithm. This issue could be crucial in embedded and online 

systems as the extraction of unimportant features may be computationally expensive. Besides that, 

the physical meaning of the selected features is lost so that the PCA approach does not give any 

feedback about the suitability of a particular feature to the detection/segmentation task. The per-

formance characteristics of the learning algorithms have been analyzed using the bias-variance 

decomposition of the classification loss. For mean-square error and zero-one loss this decomposi-

tion has very simple form: the error is composed of two non-negative terms, one comes from 

classifier imperfectness as well as intrinsic error of domain, and the other comes from fluctuation of 

classifier prediction over different possible training sets. We observed that for all acoustic classes 

the bias of the GMM-based classifier increases after reaching some point, while, in general, the 

variance of the learner monotonically increases with increasing number of features. The most 

accurate feature set corresponds to the best bias-variance trade-off point for the learning algorithm. 

Using the multimodal database of acoustic events we found that both static and dynamic spectro-

temporal features contribute to the final accuracy. According to the obtained results, the video 
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features are an important additional source of information for detection of the five AEs for which 

video features are extracted. The acoustic localization feature was selected only for some AEs. 

The problem of audio segmentation in broadcast news domain has been also tackled in this 

work, and two hierarchical AS systems have been developed. The hierarchical system architecture 

is a group of detectors (called modules), where each module is responsible for detection of one 

acoustic class of interest. As input it uses the output of the preceding module and has 2 outputs: the 

first corresponds to audio segments detected as the corresponding class of interest, and the other is 

the rest of the input stream. In this type of architecture, it is not necessary to have the same classi-

fier, feature set and/or topology for different detectors. Two different AS systems has been 

developed using two broadcast news databases: the first one includes audio recordings from the TV 

program Àgora from the Catalan TV3 channel and the second one includes audio from the 3/24 

Catalan TV channel. The output of the first AS system was used in automatic translation and 

subtitling application developed for Tecnoparla project, that also demonstrates other speech and 

language technologies: speaker diarization, language recognition, speech recognition, speech 

translation and text-to-speech syntesis. The first pre-processing step in the presented system is audio 

segmentation. The second HMM-GMM-based AS system with feature selection got competitive 

results in the Albayzín-2010 audio segmentation evaluation. 

Taking into account the increasing interest in the problem of audio segmentation from the one 

hand, and the existence, from the other hand, of a rich variety of feature extraction approaches and 

classification methods, the Albayzín 2010 evaluation of audio segmentation systems was organized. 

The Albayzín evaluation campaign is an internationally-open set of evaluations organized by the 

Spanish Network of Speech Technologies (RTH) every 2 years. Actually, the quantitative compari-

son and evaluation of competing approaches is very important in nearly every research and 

engineering problem. The evaluation campaigns that independently compare systems from different 

research groups help to determine which directions are promising and which are not. The evaluation 

setup, including the database, definition of acoustic classes and the segmentation metric were 

proposed in the framework of this thesis. The results from 8 participants from Spanish and Portu-

guese universities were compared and reported. After analyzing both systems and results, some 

main conclusions have been outlined. 

Real-time processing is a requirement for many practical signal processing applications. In 

this thesis we implemented online 2-source AED and acoustic source localization (ASL) algorithms 

in a smart-room, a closed space equipped with multiple microphones. The AED and ASL systems 

are visually monitored by a GUI application which shows the output of AED and ASL technologies 
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in real-time. Acoustic event detection is based on HMM-GMMs, that enable to process the input 

audio signal with low latency. The experimental results from online tests show promising recogni-

tion accuracy for most of AEs both isolated and overlapped with speech. A graphical user interface 

that shows 2-source AED and ASL functionalities working together is currently running in real time 

in the smart-room. Using this application, a video recording has been captured that contains the 

output of the GUI during a session lasting about 2 min, where three people in the room speak, 

interact with each other or produce one of the 12 isolated as well as overlapped with speech meet-

ing-room AEs.  
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8.2 Future Work 

The following list contains the most important points requiring improvements as well as a few 

directions for future work. 

8.2.1 Detection of novel objects 

Machine learning approaches in audio recognition create acoustic models using training data 

sampled from the application domain as well as prior knowledge about the problem. During testing 

these trained models are applied to new data in order to estimate the acoustic class. An implied 

assumption is that the future is stochastically similar to the past. This approach fails when the 

system is confronted with situations that are not anticipated from the past experience. Novelty 

detection refers to the recognition of unknown (or novel) data, i.e. data which differ considerably 

from the ones that the system processed during training. It is a fundamental requirement for a good 

machine learning system to automatically identify data from regions not covered by the training 

data since in this case no reasonable decision can be made. The recently introduced theory of 

incongruence [WHZ08] allows for detection of unexpected events in observations via disagreement 

of classifiers at different levels of classifier hierarchy. Several possibilities of how incongruence can 

appear from the point of view of class-membership hierarchy are discussed. 

Many previous works exploit novelty detection for monitoring and surveillance applications to 

identify hazardous events. However in the meeting-room domain the problem is not sufficiently 

addressed. It is common experience that in meeting-room environments out of the dictionary 

acoustic events appear. The examples are occasionally falling objects during presentations, human 

scream from outside the room, giving a flick by some participants etc. Note the online 2-source 

AED system implemented in UPC’s smart-room presented in chapter 7 includes “unknown” output 

symbolized with “?”. It appears when the AED algorithm does not have enough confidence to 

assign a detected non-silent event to one of defined 12 classes. However the “uknown” acoustic 

event is not evaluated in final experiments due to the fact that it is not feasible to obtain a wide 

variety of data, which are representatives of “unknown” events. This issue can be addressed in 

future work. 

8.2.2 Multi-microphone approach to deal with the problem of signal overlaps 

Detection of acoustic events (AED) that take place in meeting-rooms environment becomes a 

difficult task when signals show a large proportion of temporal overlap of sounds, like in seminar-
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type data, where the AEs often occur simultaneously with speech. Several evaluation campaigns 

report low detection accuracies in such environments. In the presented thesis we proposed different 

strategies to deal with this problem. First is using additional video modality that is less sensitive to 

the overlap phenomena present in the audio signal to improve the baseline recognition rate. Second, 

the overlap problem has been dealt at feature level: several features coming from acoustic localiza-

tion system showed to be useful in meeting-room scenario AED task. Third, the overlapping 

problem has been addressed at the level of models by modelling the possible combinations of 

sounds by classifiers in the online 2-source AED system. 

A possible improvement can be also achieved at the signal level using source separation tech-

niques like independent component analysis (ICA). Note ICA was originally developed to deal with 

problems that are closely related to the cocktail-party problem [WB06]. Using multiple channels is 

also motivated by the fact that in most biological systems perform sound analysis using several 

binaural cues: interaural time differences, interaural intensity densities and interaural spectral 

densities. 

Moreover, at the level of decisions different weights can be assigned within multi-microphone 

system architecture to particular microphones to improve the robustness of AED. Another approach 

lies in selecting the best microphone in terms of recognition accuracy, for instance, using the 

likelihood at the decoder output.  An alternative way of approaching microphone selection is based 

on measures or features extracted from the signals corresponding to the various microphones using 

different strategies: selection based on room impulse response related measures, selection based on 

position and orientation and selection based on signal distortion [WN10] etc. 

8.2.3 Extending multimodal AED to more classes 

New video technologies can be used for further improvement of multimodal AED. In this thesis we 

limited the video feature extraction to 5 classes: steps, chair moving, paper wrapping, keyboard 

typing and door slam. However for other AEs the video counterpart can be also taken into consid-

eration. Object detection video technology can be used for analysis of the three-dimensional regions 

of interest in the room. For instance, the localization of the cell-phone in the room may be useful for 

detection of “phone-ring”, detection of cup may be useful for “cup clink”, detection of keys for 

“key jingle” etc. 

Another useful technology is face detection. It can be used for further analysis of human facial 

expressions for detecting of laugh AE. The human siluette reconstruction technology may allow 
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reconstructing the movement of human hands that may be beneficial to detect the “applause” AE or 

“cough” (under the assumption of polite environment).  

8.2.4 AED for Automatic Speech Attribute Transcription 

Automatic Speech Attribute Transcription (ASAT) task approaches speech recognition from 

linguistic perspective by means of detection acoustic and auditory cues, weighting, combining and 

processing them until consistent speech understanding is achieved [LCD07]. This detection-based 

ASR approach allows incorporating expert knowledge of linguistics and acoustic phonetics into 

speech recognition systems and can be considered as alternative to classical ASR paradigm. The 

ASAT front-end processing assumes a bank of detectors of useful and meaningful attributes of 

speech signal. The design of these detectors is critical problem for the detection-based paradigm. 

We expect that the proposed HMM-GMM and SVM detection approaches developed for the 

meeting-room AED as well as statistical fusion techniques can be successfully applied in ASAT 

task. 

8.2.5 Cross-site event detection 

In the presented experiments the recognition accuracy for most of isolated AEs is higher than 90% 

being 98% for some of them. This creates a certain barrier for further development and improve-

ment of AED technologies since the actual baseline recognition rate is high. One possibility for 

further research is working with signal overlap problem and under noisy conditions. However 

creating the database with signal overlaps produced in natural way is difficult problem. Moreover, 

creating the database with artificially overlapped signals (using superposition of different signals 

recorded separately) may be far away from real audio. 

A possible direction of further research could be the cross-site event detection, i.e. the case 

when acoustic models are created using the database from one site and testing is performed using 

the database from another site. This is natural requirement for many practical applications to work 

equally well in different conditions and environments. In fact, within CHIL European project 

different databases with AEs have been recorded from UPC, UKA, IBM, AIT and ITC sites [WS09] 

that can be used in experiment. Preliminary experiments performed in mismatched conditions show 

that recognition rate diminishes for current approaches.  
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8.2.6 Factor analysis for audio segmentation 

The recent Albayzín audio segmentation evaluation showed that there is still a large margin for 

improvement of the segmentation results. Only 23% of errors produced by the best AS system were 

also produced by all the other AS systems. Since the main source of mistakes are confusions 

between “Music” and “Speech over music”, between “Speech over music” and “Speech over 

noise”, and also between “Speech” and “Speech over noise”, future research efforts should be 

devoted to improved detection of acoustic classes with different acoustic environment in back-

ground. 

Taking into account the recent success of joint factor analysis (JFA) [KBD05] and total vari-

ability [DDK09] approaches for language/speaker identification tasks, those approaches can be 

applied for the problem of audio segmentation. JFA approach tries to determine low dimension sub-

spaces of the high-dimensional feature space that cover most of the inter-session variance and most 

of the inter-class variance. Once these sub-spaces are identified the acoustic class can be detected 

using the information in the inter-class variability sub-space. 

Total-variability [DDK09] approach does not try to segregate inter-class and inter-session 

variability sub-spaces but finds a sub-space that covers most of the variability (both acoustic class 

and inter-session) by means of Principal Component Analysis (PCA). The audio segmentation 

problem can be addressed using feature vectors from this new subspace and several normaliza-

tion/compensation techniques. 
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Appendix A. UPC-TALP Multimodal Database of Isolated and 
Spontaneous Acoustic Events 

Introduction 
 
This database contains 2 types of multimodal recordings (hereafter S-recordings and T-recordings) 

of AEs that occur in a meeting room environment. The S-recordings correspond to isolated sounds 

that do not have temporal overlaps; within the same class the AE instances have approximately the 

same length and only one person per session was acting during recordings. The T-recordings 

correspond to the set of spontaneous AEs that occur in more realistic conditions. These recorded 

sounds may contain temporal overlaps; they have different length and were produced by 2 interact-

ing persons per session. The database can be used as a training material for AED task as well as for 

testing AED algorithms in quite and noisy environments with or without temporal sound overlaps. 

 
Description of the acoustic events 
 
For recording, we used the same list of sounds that was defined in CHIL [WS09] with conventional 

labels2: 

Acoustic event       Label 
 

o Knock (door, table)    kn 
o Door slam     ds 
o Steps      st 
o Chair moving     cm 
o Spoon (cup jingle)    cl 
o Paper work (listing, wrapping)  pw 
o Key jingle     kj 
o Keyboard typing    kt 
o Phone ringing/Music    pr 
o Applause     ap 
o Cough      co 
o Speech      sp 

 
 
Description of the recording setup 
 
The whole database was recorded using the following audio equipment: six T-shape clusters (4 

microphones per cluster). In total 6*4=24 microphones. For video recordings 5 video cameras in 

                                                 
2 The class “laugh” was substituted by class “speech”. 
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different positions of the room were used. The positions of the microphones and video cameras in 

the UPC Smart-Room are described in Figure A.1. Figure A.2 describes the configuration of the T-

shaped clusters. Audio data was recorded at 44.1kHz, 24-bit precision, and then packed in *.wv 

format (WavPack format that provides lossless compression). All the channels were synchronized.  

 
Figure A.1. Microphone and camera positioning in the UPC smart-room 

 

 
Figure A.2. Configuration & orientation of the T-shaped microphone clusters 

 

 
Description of the recorded database 
 
The number of sounds per each sound class is about 100-400 instances. 6 people participated in 

recordings. During each S-recording, the participant took a position P1 (Figure A.1). In the case of 
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T-recording the participants took position P1 and P2. Both positions are marked in Figure A.1.  The 

exact coordinates of these positions are given in Table A.1.  

During each S-recording a person had to produce a complete set of sounds 10 times. A script 

indicating the order of events to be produced was given to each participant. The participant was 

allowed to change the order of AEs. Almost each event was followed and preceded by a pause of 

several seconds. All sounds were produced individually. During T-recording 2 persons had to make 

a short meeting (around 5 minutes), discussing certain subject. The approximate script indicating 

the scenario of meeting was given to read to each participant before recording. The participants 

were allowed to make improvisations. 

 

Table A.1. X, Y coordinates of the positions of participants 

Position X (meters) Y(meters)

P1  1.28 2.40 

P2 3.03 2.40 

 

Annotation of the database 
 
The annotation was done manually by listening at signals from a single channel (the 7th channel). 

The following criterion was used during the annotation. If an event of class X includes a pause of 

minimum 300ms and both parts of the event, the one before the pause and the one after the pause, 

can be (subjectively) assigned a label X, then the event is annotated as two separated events of class 

X. If either the pause length is less than 300ms or the first/second part of the event is not recogniz-

able without hearing the other part, the whole event is marked as only one event of class X.  

 
Content of the distributed database  
 
The database that is distributed in 6 DVDs contains signals corresponding to 24 audio channels, 5 

video channels and the corresponding labels. The splitting of the data for purposes of training and 

testing can be based on either participants, sessions or type of recordings (S-recordings or T-

recordings). To produce the DVDs, we distributed the sessions in the most compact way in order to 

make the minimum number of DVDs (in our case 6). Table A.2 shows the distribution of the audio 

and video material among the sessions. The distribution sessions among DVDs is indicated in Table 

A.3. 

 



Appendix A.UPC-TALP Multimodal Database of Isolated and Spontaneous Acoustic Events 
 

 
176

Table A.2. Number of annotated acoustic events in each session 
 

Event type S01 S02 S03 S04 S05 S06 S07 S08 T01 T02 T03 T04 T05 T06 T07 T08 T09 TOTAL 
Knock (door, 
table), <kn> 9 8 10 10 10 8 11 13 2 3 2 3 3 4 2 5 3 106 
Door slam, 
<ds> 17 15 19 20 40 37 56 52 8 11 8 9 10 8 10 10 8 338 
Steps, <st> 10 10 8 23 43 34 28 50 15 17 12 18 20 21 16 17 17 359 
Chair moving, 
<cm> 19 37 32 22 23 38 34 40 17 21 15 20 22 24 15 23 26 428 
Spoon (cup 
jingle), <cl> 10 11 13 11 10 15 11 15 5 3 8 4 4 6 2 11 5 144 
Paper work 
(listing, 
wrapping), 
<pw> 

9 11 10 8 17 12 12 12 7 6 9 18 10 18 17 25 36 237 

Key jingle, 
<kj> 11 11 11 8 0 13 10 18 1 6 1 4 2 9 4 7 7 123 
Keyboard 
typing, <kt> 10 10 13 12 10 13 10 11 8 9 6 9 8 12 10 11 8 170 
Phone ring-
ing/Music, 
<pr> 

11 18 11 14 8 11 13 15 4 4 4 4 4 0 3 4 2 130 

Applause, <ap> 9 5 9 11 12 9 14 14 1 0 1 1 1 1 2 1 1 92 
Cough, <co> 10 10 12 13 9 13 11 12 7 3 2 1 4 2 1 3 1 114 
Speech, <sp> 0 0 0 0 8 20 12 34 27 33 36 31 41 46 41 0 0 329 

 
 
The name of a audio file is NAME_N.wv, where NAME is the name of session; N is the number of 

the microphone, The sampling frequency is 44100 Hz, the number of bits per sample is 24. The 

name of video file is camN.avi, where N is the number of video camera. The name of an annotation 

file is <session_name>.csv (e.g. S02.csv –  session 2 of isolated AEs). The format of its content is 

analog to that of the AGTK ".csv" format, i.e. “start_ts, end_ts, event_id”, where the labels start_ts, 

end_ts, event_id denote the starting time stamp (from he beginning of the file), the ending time 

stamp, and the event label, respectively. The time stamps are given in seconds from the beginning 

of the file. 

 
The structure of the DVD_N (where N denotes the DVD number) is: 
 
/<session_name> 
 
 /audio                                // audio recordings from T-shape microphones 
           <session_name>_01.wv 
           <session_name>_02.wv 
    ... 
 <session_name>_24.wv 
 /video                                 // video recordings from 5 cameras 
    cam1.avi 
    cam2.avi 
    cam3.avi 
    cam4.avi 
    cam5.avi   
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 <session_name>.csv  // file with annotations 
/license_agreement.pdf                       // license agreement 
/readme.txt                                    // brief introduction  
 

Table A.3. Distribution of sessions among DVDs 
 

DVD number Sessions 
1 S01, S02 
2 S03, S04 
3 S05, S06 
4 S07, T02, T03, T04 
5 S08, T01 
6 T05, T06, T07, T08, T09

 
 Script of S-recordings  
 
Scenery: Smart-room closed; a laptop, papers, keys, a cell phone, a spoon/cup are on the chair. 

Nobody is in the room. Duration is about 15-20min. Table A.4 summarizes the script: 

 

Table A.4 Script of S-recordings 

Phases Sound producing action Number of 
repetitions 

Estimated 

duration 

(minutes) 

Knock the door 10 Entrance 
Open and close the door 10 

10 Stepping & 
Sitting 

go to the different chairs loudly 
and sit down, stand up. 10 

3 

put the spoon into the cup and 
stir up an imaginary sugar 

10 

Take out the keys from a pocket 
and put them on the table / 
move the keys from one place 
to another on the table/ put them 
back into the pocket 

10 

keyboard typing 10 
Phone rings (different melodies) 
& Speech 

10 

Take some papers from the 
table and count them in hand / 
even the papers by knocking 
them to the table  

10 

Applause (of several people) 10 

Producing noises 

Cough 10 

12 
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Standing up stand up, move the chair 
changing sitting position 

1 

Stepping from the chair loudly 1 
Exit Open and close the door  1 

1 

 

 

Script of T-recordings  
 
Scenery: Smart-room is closed; a keyboard, papers, keys, a cell phone, a spoon/cup on the chair. 

Duration is about 5 min. 2 persons participate in it: person A and person B. At the beginning of 

session nobody is in the room. The approximate scenario of recordings is following (improvisation 

was welcomed): 

- <Door knock> A is entering the room<door slam>.  

- A moves <steps> towards the chair and takes a seat <chair moving>.  

- A makes a cough <cough>. He takes a paper from the table <paper wrapping> and reads it.  

- B is knocking the door <knock>.  

- A says: “Yes, come in, please”.  

- B enters the room <door slam>.  

- A stands up <chair moving> and moves towards B <steps> to great him and says something like: 

“Hello, how are you? Nice to see you!”  

- B: “I’m fine, thanks. …“!  

- A: “Oh, it’s good that you’ve come. I have something interesting for you. Come here” <steps>, 

<cough>.  

- B: “Did you get cold?”  

- A: “Yes, a little bit. Yesterday at night I drank several bottles of cold beer” <cough>.  

- A: “Please, take a seat”. <chair moving>. B during the sitting puts the keys on the table. <key 

jingle>.  

- A: “This is a paper about Multimodal Acoustic Event detection. You could be interested in it”. 

<paper work>  

- B: “Oh, what is the conference? Yes, yes I see. It could be helpful for me”.  

- A: “Do you want coffee? I can prepare it right now…”.  

- B: “Yes, with much pleasure, thanks”.  

- A: “Just a moment!”. A is leaving the room, preparing coffee <steps> <door slam>.  

- B: <typing something on the laptop>  
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- A is outside the room now. He rings to B <phone ringing>. He rings 2 times.  

- A enters the room <steps><door slam> “Please, take a coffee”  

- B: “Thanks!” “I was just looking for this paper through the internet”.  

- A and B start drinking a coffee. <cup clink>.  

- B likes the coffee and says “Great coffee!” and makes greeting applauses <applause>.  

- B: “Ok, I should go, see you later”, B takes the keys from the table. <key jingle>  

- A: “Bye” <steps>, <door slam>.  

 
User guidelines 
 
• All sounds should be done with 2-5 second pauses in between, e.g. you make a cough, wait 2-5 

seconds, then make another cough and wait 2-5 seconds, etc. 
• All sounds should be done in various manners, i.e. please, do not do the same sounds several 

times; e.g. if you knock the door, do not knock it exactly 3 times with the same speed 
 

 Entrance  
• Knock the door, pause 2-5 second, open the door, enter the room and close 

the door. Repeat it 10 times. 
 Stepping, sitting down, standing up. 

• Go to different chairs loudly and wait several seconds before sitting and 
standing up. Repeat it 10 times. 

Producing noises  
• Put the spoon into the cup and stir up an imaginary sugar (10 times with 2-5 

second pauses in between) 
• Make key jingling sounds like this: take out the keys from a pocket and put 

on the table - move the keys from one place to another on the table- put back 
into the pocket (Each of the ways is counted as one key jingle – you have to 
have 2 of them) 

• Keyboard typing. Type on the keyboard for 2 seconds. Do it 10 times with 2-
5 second pauses. 

• Your cell phone is on and the volume is maximum, somebody calls your cell 
phone 10 times.  

• You have to do some paper work - do one of the following: take some papers 
from the table and count them in hand / even the papers by knocking them to 
the table (each of it is counted as one paper work – you have to produce 2 of 
them with 5 second pauses inside) 

• Make applause 10 times (don’t forget to do it differently) 
• Make cough 10 times (don’t forget to do it differently) 

Sitting  
• Here you have to do 1 chair moving while standing up 

Stepping  
• Go from the chair to the door loudly and wait some seconds. 
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