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SUMMARY

Pork is the most consumed meat worldwide. The breeding programs have been
working towards a sustainable pig production improving reproduction traits, growth
and meat quality traits. The genetic basis determining these complex and
economically important production traits remains elusive not being fully understood.
In the present thesis we pursue to clarify the molecular mechanisms that determine
growth and meat quality traits.

The functional role of FABP4 and FABP5 genes in determining the fatty acid
composition in muscle and backfat tissues was evaluated. Animals inheriting the C
allele for FABP4:9.2634 _2635insC polymorphism showed higher intramuscular
content of C16:0 and C16:1(n-7) fatty acids and, decreased content of C18:2(n-6)
fatty acid and higher FABP4  expression in  backfat. Moreover,
FABP4:9.2634_2635insC was located inside a PPARG binding site suggesting a role of
this nuclear receptor in the regulation of FABP4 gene expression. The
FABP5:9.3000T>G SNP was the most significant marker for intramuscular
percentages of C18:1(n-9), C18:2(n-6), and MUFA. However, this variant was not
associated with FABP5 gene expression, being FABP5 gene expression in muscle
regulated by other genomic regions located on SSC4, SSC6, SSC9 and SSC13.

Aiming to identify genes and pathways affecting the intramuscular fatty acid
composition, the muscle transcriptome of two groups of pigs with extreme
phenotypes for these traits was analyzed. A total of 131 genes mostly related to lipid
metabolism pathways were identified as differentially expressed between groups.
The functional analysis showed that animals with a higher content of PUFA
presented low fatty acid and glucose uptake resulting in an inhibition of the
lipogenesis.

Gene-by-gene approaches used until now are limited when analyzing complex traits
usually implying several genes with small effects; moreover, they ignore functional
interactions. For this reason, we decided to apply a gene network approach based on
SNP-by-SNP co-association analysis to explore growth, conformation and fatness
related traits. From the resulting network formed by 513 nodes and 639 edges, three
transcription factors PRDM16, ELF1 and PPARG were likely to be the major
regulators of this network. Moreover, 54 genes identified within the network
belonged to growth-related ontologies.

Finally, with the aim to evaluate functional candidate genes affecting intramuscular
deposition and fatty acid composition traits from previous studies of our group, the
MRNA expression of 45 genes was measured in 114 animals. The eGWAS identified
241 eSNPs distributed in 18 eQTLs. Three out of 18 eQTLs presented cis-acting
variants and 16 eQTLs showed trans regulatory effects. The results highlighted
putative key regulators and improved our knowledge in the functional regulatory
mechanisms implicated in these complex traits.




RESUMEN

La carne de cerdo es la mds consumida mundialmente. Los programas de mejora
animal se han centrado en realizar una produccién sostenible y eficiente mejorando
tanto los caracteres de reproduccidon, como de crecimiento y calidad de la carne.
Actualmente no se dispone de un conocimiento completo sobre la base genética que
determina estos caracteres de produccion y por este motivo el objetivo principal de
esta tesis consistio en profundizar en los mecanismos moleculares que determinan
los caracteres de crecimiento y calidad de la carne.

Los genes FABP4 y FABP5 fueron evaluados como genes candidatos para la
composicion de acidos grasos en musculo y grasa dorsal. Los animales portadores del
alelo C para el polimorfismo FABP4: g.2634_2635insC mostraron un mayor
contenido intramuscular de acidos grasos C16:0 y C16:1(n-7) y, un menor contenido
de C18:2(n-6) y una mayor expresion del gen FABP4 en grasa dorsal. Dicho
polimorfismo se encuentra dentro de una diana de unién para el gen PPARG
pudiendo este factor nuclear determinar las diferencias de expresion observadas.
Respecto la expresion del gen FABP5 en musculo, se detectaron regiones asociadas
en los SSC4, SSC6, SSC9 y SSC13. Sin embargo, no se observé una clara asociacion de
genotipos del SNP FABP5: g.3000T> G con la composicidn de acidos grasos.

Con el objetivo de explorar el transcriptoma del musculo para identificar genes y
rutas metabdlicas relacionadas con el contenido y la composicion de acidos grasos
en musculo, se secuencid el ARN de dos grupos de animales que diferian en estos
caracteres. Se identificé un total de 131 genes diferencialmente expresados entre
grupos en su mayoria relacionados con las rutas del metabolismo lipidico. El andlisis
funcional mostré una menor captacion de glucosa y una inhibicién de la lipogénesis
en los animales con un mayor contenido en PUFA.

Los enfoques utilizados hasta ahora para el analisis de los caracteres complejos
implican generalmente varios genes con efectos pequefios y no consideran las
interacciones funcionales. Por esta razén, se decidid aplicar un enfoque de redes
génicas basada en el andlisis de co-asociacion entre SNPs para el estudio de
caracteres relacionados con el crecimiento, la conformacion y el engrasamiento. Se
identificaron tres factores de transcripcion, PRDM16, ELF1 y PPARG, como
principales reguladores de la red. Ademas, 54 de los genes identificados en la red
pertenecian a ontologias relacionadas con el crecimiento.

Finalmente, con el objetivo de evaluar genes candidatos funcionales identificados en
estudios previos de nuestro grupo afectando a caracteres de deposicién y
composicion de acidos grasos en musculo, se analizd la expresion de 45 genes en 114
animales. El eGWAS identificd 241 eSNPs distribuidos en 18 eQTLs. Tres de los 18
eQTLs presentaban variantes en cis, y en 16 de los eQTLs se identificaron zonas
reguladoras en trans. Los resultados permitieron identificar potenciales reguladores
y mejorar nuestro conocimiento sobre los mecanismos funcionales implicados en
estos caracteres complejos.
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FOXP3 : forkhead box P3

GLUT : glucose transporter proteins

GWAS : genome-wide association studies

HIF1AN : hypoxia in ducible factor 1, alpha subunit inhibitor
HOXA2 : homeobox A2

HSL : hormone-sensitive lipase

IBMAP: Iberian x Landrace animal material

IGF2 : insulin-like growth factor 2

KIT : v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
LMX1A : LIM homeobox transcription factor 1, alpha

MGLL : monoglyceride lipase

MUFA : monounsaturated fatty acids

NCOA : nuclear receptor coactivator

NGS : next generation sequencing

NR3C1 : nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)
PBX1 : pre-B-cell leukemia homeobox 1

PCIT : partial correlation coefficient with information theory
PEX2 : peroxisomal biogenesis factor 2

PIK3CG : phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma
PIK3R1 : phosphoinositide-3-kinase, regulatory subunit 1 (alpha)
PLA2G12A : phospholipase A2, group XIIA

PLIN : perilipin

PPAR : peroxisome proliferator activated receptor

PRDM16 : PR domain containing 16

PUFA : polyunsaturated fatty acids

QTL : quantitative trait locus

RGS4 : regulator of G-protein signaling 4

RNA-Seq : RNA sequencing

RT-gPCR : real-time quantitative polymerase chain reaction
RXR : retinoic X receptor

RYR1 : ryanodine receptor 1 (Skeletal)



SCD : stearoyl-CoA desaturase

SDHC : succinate dehydrogenase complex, subunit C, integral membrane protein,
15kDa

SFA : saturated fatty acids

SLC2A4 : solute carrier family 2 (facilitated glucose transporter), member 4

SNP : single nucleotide polymorphism

SSC : Sus scrofa chromosome

TBPL2 : TATA box binding protein like 2

USF1 : upstream transcription factor 1

UTR : untranslated region

WGS : whole genome sequencing
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1.1. Porcine meat production

Pork is the most widely consumed meat in the world representing the 36.4% of the
meat produced [FAO 2013; http://www.fao.org/; accessed June 2015]. Thanks to the
improvements in the pig breeding technologies, this is the fastest growing livestock
sector in terms of sustainability and efficiency of meat production; reaching in 2013
approximately a billion and a half of produced animals, having a great economic
impact (Figure 1.1). With 150 million pigs and about 22 million-ton carcass weight,
the European Union is the second largest pork producer (22.3%) after Asia (57.3%)
(Figure 1.2A), followed by North Central America (17.1%) [FAO 2013;
http://faostat.fao.org/; accessed June 2015]. Moreover, the 14.7% of European pig
production came from Spain [Eurostat 2015; http://ec.europa.eu/eurostat/;
accessed June 2015]. Finally, the region in Spain with the highest number of pigs
produced is Catalonia reaching the 7,457,000 animals in 2014 (Figure 1.2B) [Eurostat

2015; http://ec.europa.eu/eurostat/; accessed June 2015].
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Figure 1.1. Evolution of pork meat production. Heads produced in the world, Europe
and Spain from 2000 to 2013 [FAO 2013; http://faostat.fao.org/; accessed June
2015].
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Figure 1.2. Importance of pig production worldwide and by regions. A) Pie chart
representing the average number of pigs produced by continents in 2013 [FAO 2013;
http://faostat.fao.org/; accessed June 2015]. B) Pigs produced by European regions
in 2014 [Eurostat 2015; http://ec.europa.eu/eurostat/; accessed June 2015]. Circles

size is according to the number of animals produced.

1.2. Relevant traits in the porcine industry

Pig breeders select measurable, attainable, realistic and timely goals to improve
breeds according to the needs of producers, processors and consumers. The priority
of these goals in the porcine selection has been in permanent revision changing
along the time to satisfy demand (Dekkers et al., 2011) (Figure 1.3). Over the last

twenty years, swine breeding programs have focused on a few economic important
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traits such as reproductive performance, growth efficiency and leanness, because
there was an increasing demand for leaner pork at lowest price. As a consequence, a
remarkable genetic progress was made, creating commercial animal breeds with a
reduced backfat and high growth rate (e.g. Landrace). This contributed towards a
massive utilization at a worldwide scale of these highly efficient breeds in an
intensified and industrialized swine management, causing a declined importance of
the native breeds (Kanis et al., 2005; Pugliese & Sirtori 2012). However, the strong
selection process lead to a dramatic reduction of intramuscular fat content in some
breeds, negatively affecting meat quality, and therefore, leading to a deterioration of

the taste and tenderness of the produced meat (Wood & Whittemore 2007).

For this reason, during the last years, consumers’ requirements have changed, being
more interested in healthier and tasty eating products (Wood et al., 2004). With the
aim to not only produce meat at a lower cost but also meet consumer's preference
of high quality meat, concerning sensorial and nutritional aspects, pig breeding

programs have recently included those traits in their goals (Figure 1.3).
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Figure 1.3. Main traits of interest for breeding in porcine meat production and their
priority in selection along time (Toro & Silid, 1992; Ollivier 1998; Kanis et al., 2005;
Merks et al., 2012).
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General breeding interests consider growth (average daily gain, age at slaughter,
feed efficiency), carcass quality (loin muscle area, primary cut weights), fatness
(backfat thickness and abdominal fat), fertility (litter size, piglet weight and viability),
disease resistance (immune capacity), behaviour (stress susceptibility, welfare), and
meat quality traits. Meat quality comprises different aspects including technological
(pH, water-holding capacity, cooking loss, firmness), sensorial (texture, flavour,
juiciness, colour and marbling), nutrition (fat content and its lipid composition,

digestibility) and safety (hygiene) factors (Figure 1.4).

7 Technological
4 factors
Sensorial Nutritional
aspects values

Figure 1.4. Schematic representation of the main factors that affect meat quality.

Hereby, there is a market requirement for high quality meat products, but at the
same time, there is a strong request for low prices and safety products, which are
critical factors for the food industry. Moreover, pig breeding has moved from the
general genetic improvement of international lines to the specific lines for specific
products (Pugliese & Sirtori 2012). This challenge can be addressed by traditional
selection, management practices, and also by genomic selection (Miar et al., 2015).
Hence, pig breeding organisations need rapid genetic progress that will maximize
value over costs without forgetting pig health and welfare. In the present thesis we
focused on growth, carcass composition and conformation, and fat-composition

related traits that are discussed below.

1.2.1. Growth, carcass conformation and composition

The carcass weight and yield, comprising the composition (proportions of muscle, fat
and bone), are economically important traits in the pig meat industry affecting the
value of different commercial cuts. The characteristics of the pig that are positive for

profitability are high growth rate, low food conversion ratio and low fatness of the
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carcass. Moreover, there is an increasing demand of the slaughterhouses for
uniformity in the carcass cuts (Merks et al., 2012). The major limitation for increasing
slaughter weights faced two decades ago was the high carcass fat levels observed at
heavier weights and the associated deterioration in feed efficiency (Cisneros et al.,
1996). The continued selection pressures have been successful at creating swine
populations having heavier but leaner carcasses (Eggert et al., 2007). Some carcass
yield traits are relatively easy to measure in farms and slaughterhouses, such as body
weight at different ages and at slaughter, the carcass length, the primary cuts weight
such as ham, shoulder and belly, and the backfat thickness (Orcutt et al., 1990;

Whittaker et al., 1992).

The differences in growth and carcass traits in pigs depend not only on breed,
gender, maturity and environmental effects such as nutrition and management, but
also have a strong genetic component (Davies & Kallweit 1979; Gu et al., 1992;
Eggert et al., 2007). Genetic heritabilities for growth and carcass conformation traits
are described in the literature to be moderate, ranging from 0.22 to 0.43 in different
breeds (Johansson et al., 1987; Hermesch et al., 2000; Fernandez et al., 2007; Miar et
al., 2014). In the case of the proportions, the carcass lean percentage has an average
heritability of 0.54 (Ducos 1994). This is not surprising since breeders have achieved
through traditional selection a dramatic reduction of the amount of backfat present

in carcasses.

1.2.2. Pork intramuscular fat content and fatty acid composition

The amount and composition of fat in muscle have gained special interest in the
food industry for their close relation with meat tenderness and taste, being much
appreciated for consumers, and giving an additional value to the final product (Wood
et al., 2004). Meat with high intramuscular fat is considered of good quality, giving
flavour and oilness to the meat. In addition, intramuscular fatty acid composition
affects the quality of meat in terms of palatability and nutritional values. Fat or
adipose tissue is a connective tissue formed by adipose cells, which are constituted
by 80% to 90% of lipids. Fatty acids, which are the predominant type of lipids, can be

classified into three categories based on their saturation level: i) saturated fatty acids
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(SFA) with no double bonds; ii) mono-unsaturated fatty acids (MUFA) with one
double bond; and iii) polyunsaturated fatty acids (PUFA) with two or more double
bonds. Fat properties depend on its fatty acid composition. The saturation of the
fatty acids affects the fat firmness and oiliness changing the melting point. Fat with
high PUFA content leads to faster oxidation rates producing a faster rancidity,
whereas high MUFA contributes to a better taste and lower oxidation rate of meat.
Furthermore, the ingestion of high SFA has been associated to obesity, cancers and
cardiovascular diseases in humans. On the other hand, PUFA, mainly n-3, have been
considered beneficial for human health, having a positive effect on cholesterol
reduction and modulation of inflammatory processes. Therefore, there has been an
increasing interest in the modification of intramuscular fatty acid composition for

producing tastier and healthier meat (Wood & Enser 1997).

Both, fatty acid composition and deposition are complex characters determined by
environmental factors such as diet and multiple genetic factors (Ovilo et al., 2014,
Ramayo-Caldas et al.,, 2012a). Estimated heritability values for intramuscular fat
range from 0.26 to 0.86, whereas for intramuscular fatty acid composition are low-
to-moderate ranging from 0.15 to 0.55 (Casellas et al., 2010; Ntawubizi et al., 2010).
The importance of the genetic determination of these traits has been evidenced in
the comparison between pig breeds and the large amount of quantitative trait loci
(QTLs) associated with these traits. However, the cost of measuring these traits and
their low-moderate heritabilities make difficult to improve them by traditional

selection (Davoli & Braglia 2007).

1.3. Fatty acid metabolism

Lipids are a major class of biological molecules and play many important and varied
roles. They are crucial structural components of the membrane, are a major source
of the energy stored in cells, and serve also as signaling molecules or lipokines (Cao
et al., 2008). The alterations that lipids undergo are produced mainly by two
reactions, lipolysis or B-oxidation and lipogenesis or de novo fatty acid synthesis. The
B-oxidation is a breakdown of the fatty acids that occurs in energy requirement

states, whereas the de novo fatty acid synthesis is an energy storage mechanism.
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Hence, fatty acids can be synthesized by de novo lipogenesis or provided by diet. In
this regard, the fatty acid synthase (FAS) can synthetize palmitic acid (C16:0) from
acetyl-CoA and malonyl-CoA which can be in turn the precursor of the long-chain
saturated and unsaturated fatty acids of n-9 family (and minor fatty acids of n-7 and
n-10 families); whereas, very long-chain fatty acid of n-3 and n-6 families are derived
from a-linolenic acid (C18:3(n-3); an omega-3 fatty acid) and linoleic acid (C18:2(n-
6); an omega-6 fatty acid). These two fatty acids are essential in human and other
animals as they cannot be synthetized and must be provided by the diet (Guillou et

al., 2010) (Figure 1.5).
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Figure 1.5. Fatty acid biosynthesis in mammals. The long-chain saturated and
unsaturated fatty acids belonging to n-7, n-9 and n-10 families can be synthesized
from C16:0 produced by FAS. On the other side, very long-chain fatty acids of n-3
and n-6 families are considered as essential because they can only be synthetized

from precursors obtained from the diet (Guillou et al., 2010).
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The dietary fatty acid digestion begins on the stomach where lipids are partially
digested by gastric lipases resulting in large fat globules with hydrophobic
triacylglycerol cores surrounded by polar molecules, including phospholipids,
cholesterol, fatty acids and ionized proteins. Afterwards, they move to the intestinal
track where in the lumen they are hydrolyzed by the pancreatic lipase releasing
monoacylglycerol, diacylglycerol and free fatty acids. Fatty acids and
monoacylglycerol are absorbed by the enterocytes and are re-esterified to form
triacylglycerol. Finally, chylomicrons formed from triacylglycerol together with
cholesterol, phospholipids and proteins are transported via the lymphatic system to
reach the target tissues where they are metabolized (Shi & Burn 2004). The main
target tissues for lipid metabolism, the adipose tissue, liver, and skeletal muscle
cooperate with each other to supply energy requirements. In adipose tissue, fatty
acids are stored as triacylglycerol and are released into the circulation to meet
demands of other tissues when necessary. In liver, they are re-esterificated into
triacylglycerol and secreted as very-low-density lipoproteins. Conversely, in muscle
they are utilized to obtain energy through oxidation. Several enzymes catalyze the
different reactions of lipid metabolism (Figure 1.5 shows enzymes implicated in fatty
acids biosynthesis). Furthermore, fatty acids in the circulation must pass the
endothelium, the interstitial space, and the cell membrane for their utilization or
storage. This transport of long chain fatty acids is mediated via specific transporter
proteins including: the Albumin (ALB), which acts as a soluble fatty acid transporter
in the blood plasma; the fatty acid transport proteins (FATPs) and the fatty acid
translocase (FAT), which are plasma membrane proteins involved in the
translocation of long-chain fatty acids from the intersticial space to the cytoplasm
across the plasma membrane; and the fatty acid binding proteins (FABPs) involved in
the fatty acid transport in the cell for their final oxidation to the mitochondria or

storage in lipid droplets (Figure 1.6).

Moreover, there is a direct cross-talk between the glucose and fatty acid metabolism
for energy homeostasis in the muscle (Kiens 2006). For instance, insulin acts in the
carbohydrate metabolism facilitating the glucose diffusion into adipose and muscle
cells via glucose transporter proteins (GLUT) and stimulates fatty acid synthesis and
the storage of triglycerides by the esterification of glycerol phosphate. Finally, other

enzymes and regulators influence the fatty acid metabolism such as the carnitine
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palmitoyltransferases (CPTs) for fatty acid oxidation, the perilipins (PLINs) which
protect fatty acids from their breakdown by the hormone-sensitive lipase (HSL), the
peroxisome proliferator activated receptors (PPARs) which act as transcriptional

regulators for genes involved in fatty acid metabolism among many others.
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Figure 1.6. Fatty acid transport in the cell for utilization and/or storage in myocytes.
Similarity between the regulation of cellular uptake of fatty acids and glucose. The
uptake of both fatty acids and glucose by cardiac and skeletal muscle is increased
after translocation of specific transporter proteins in response to stimulation with

insulin or during increased contractile activity (adapted from Glatz et al., 2010).
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1.4. Genomic tools to study traits of interest in porcine production

The new genomic technologies are rapidly evolving and provide new opportunities
to support breeding in a cost effective manner (Davoli & Braglia 2007) (Table 1.1). In
swine species many tools have been developed by the scientific community to
support the study of the production traits. In the nineties, the first map of genetic
markers in the porcine genome was released (PiGMaP; Haley et al., 1990). This
served as a tool to identify QTLs through linkage analyses (Andersson et al., 1994).
Some years after, a big effort was made to sequence the pig genome (Groenen et al.,
2012) of about 2,596 Mb size from a single female Duroc animal (Archibald et al.,,
2010), which has been submitted to continuous improvement. The most recent
upgraded version of the pig genome sequence, named Sscrofal0.2, was released
three years ago (Groenen et al., 2012). The last upgraded annotation available for
this sequence in the Ensembl database is the release 80 [Ensembl;
http://www.ensembl.org, accessed May 2015], which comprises a total of 21,640
genes encoding 30,585 transcripts, 3,125 non-coding genes and 568 pseudogenes.
Moreover, there is information about more than 52 millions of short variants,
including single nucleotide polymorphisms (SNPs), insertions and deletions, and 85
structural variants. In addition, the development of high throughput SNP chips in
porcine species such as the PorcineSNP60 BeadChip (//lumina) offered the possibility
to perform high-density genotyping in a large number of animals, providing maps of
higher resolution (more than 64,232 SNP markers) at a reduced cost. This resolution
would be increased in a short time with the availability of new porcine SNP chip with

more than 600,000 SNPs (Axiom® Porcine Genotyping Array, Affimetrix).

On the other hand, the development of the microarray technology allowed the
expression analysis of many genes in a single reaction, quickly, and in an efficient
manner. The first commercially available pig microarray (Porcine AROS v1.0, Operon;
Gene-Chip® Porcine microarray, Affymetrix) was released in 2003 and consisted of a
set of 10,665 oligo set (reviewed in Pena et al., 2014). Some years later, these arrays
were improved and, currently, they offer a more exhaustive coverage of the
transcriptome and allowed to customize gene expression arrays. Different
microarray studies have been performed in the porcine species to compare the

muscle transcriptome of individuals with different intramuscular fat content and
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composition (Liu et al., 2009; Canovas et al., 2010; Damon et al., 2012; Hamill et al.,
2013; Pena et al.,, 2013; Sun et al.,, 2013; Yu et al, 2013) and during growth
(D'Andrea et al., 2011).

Recently, the development of high-throughput array platforms using nanoliter
fluidics technology with customized oligonucleotide designs (i.e.: the Fluidigm
Dynamic Arrays (Fluidigm) or the Tagman OpenArray plates (Life technologies)) allow
genotyping or studying the expression of a low number of pre-selected DNA markers

or genes, respectively, in large populations in a cost-effective manner.

Afterwards, the development of next generation sequencing (NGS) technologies to
study whole genomes (whole genome sequencing or WGS) and transcriptome
architectures (RNA sequencing or RNA-Seq) have represented a significant
improvement in the analysis of complex traits (discussed in more detail in section
1.4.2). RNA-Seq enables to determine the transcript abundance with a larger
dynamic range of expression levels compared with microarrays and it is not limited

by the available genomic sequencing information during microarray production.
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Table 1.1. Description of the main technologies that allow system genetics for

guantitative traits and potential applications (adapted from Mackay et al., 2009).

Layers or level

of “omics”

Technology available

Potential applications

High-density
genotyping

DNA sequencing

Transcriptional
profiling

Epigenome

Proteomics

Metabolomics

Phenomics

36

- Commercial genotyping arrays
- Customized genotyping arrays

- Whole genome sequencing
- Whole-exome sequencing
- Sequence capture

- Microbiome sequencing

- Microarrays

- RNA-Seq

- High throughput gPCR
microfluidic systems

- Bisulfite sequencing

- Chromatin
immunoprecipitation
sequencing

- DNase | hypersensitive sites
sequencing

- Formaldehyde-assisted
isolation of regulatory elements
sequencing

- Chromosome conformation
capture

- Tandem mass
spectrophotometry

-Gas chromatography

-High-performance liquid
chromatography-mass
spectrophotometry

- Image or video analysis-based
phenotyping

Identify SNPs in large number of
individuals, identification of QTLs,
structural variants and construction
of networks based in co-association
among SNPs

Identification of variants (SNP, indels,
structural, rare alleles), resequencing
of interesting regions (QTLs, genes),
analysis of microbiome and its
interaction with the phenotypes

Differential expression among
groups, identification of variants,
prediction of new transcripts and
non-annotated genes, analysis of
gene expression in larger
populations, identification of eQTLs,
co-expression analysis and networks

Analyze methylation and histone
modification patterns, chromatin
architecture and its interaction with
proteins

Detection of quantitative and
qualitative variation on proteins

Detection of quantitative and
qualitative variation in cellular
metabolites

Phenotyping large number of samples
required for system genetics analyses
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However, the main RNA-Seq drawback when compared with microarrays is that the
analysis relies on the current pig genome assembly. In swine, different RNA-Seq
studies have been performed concerning growth and meat quality traits (Chen et al.,
2011; Pérez-Montarelo et al.,, 2012; Ramayo-Caldas et al., 2012b; Corominas et al.,
2013b; Jiang et al., 2013; Puig-Oliveras et al., 2014a; Xing et al., 2014).

It is worth mentioning that also other new developed high-throughput technologies
allow the analysis of the whole proteome or metabolome (Table 1.1), which is very
convenient because of their effect on meat quality traits (Paredi et al., 2013). For
instance, in pigs, proteome studies have been used to identify protein modifications
in muscle during post mortem ageing in relation with meat quality traits (Di Luca et
al., 2013). Last but not least, new technologic advances have made possible to
phenotypically characterize a large amount of samples in a reduced time and in a
more easy way (phenomics), for example by using the Fat-o-Meter for carcass
grading system based on lean content with AutoFOM device in pigs (Mohrmann et
al., 2006). The large-scale genetic data obtained with these methodologies have
required the development of new and more efficient computational technologies,

which has boosted the bioinformatics area in the scientific community.

Finally, the integration of different layers of biological information, the so-called
“omics” or systems genetics which takes into account the genomics, transcriptomics,
proteomics, metabolomics, etc., is a major challenge to decipher the genetic basis of
variation for quantitative traits (Civelek & Lusis 2014, Ohashi et al., 2015). This
combined approach may be useful to understand the flow of biological information
that underlies complex traits. To achieve this objective, multi-dimensional high-
density omics data have to be integrated using mathematical or statistical models,
computational biology and bioinformatic tools (Kadarmideen 2014). Few pionnering
studies in porcine species have applied systems biology approaches. For instance,
Yang et al. (2011), with the aim to study the relationship between five endocrine
tissues and 27 plasma metabolites, integrated the analysis of transcriptome and
metabolome to identify quantitative trait transcripts. Similar approaches such as the
integration of genomics and transcriptomics to identify heritable expression
quantitative trait loci (eQTL; more discussed below) have been also performed in

swine species (Canovas et al., 2012; Muioz et al., 2013).
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1.4.1. QTLs, GWAS and candidate genes

The final goal of QTL and genome-wide association studies (GWAS) in domestic
animals is to identify genes and variants associated with economically relevant traits.
To achieve this objective, these techniques use a quantitative phenotype and screen
for association among markers, such as microsatellites or SNPs distributed along the
genome, and phenotypic records. The QTL approach relies on the existence of
predictive markers near or linked to causal loci that tend to segregate together. It is
useful for populations with related individuals where the tendency of this linkage is
disrupted by recombination events, which probability increases with physical
distance. The most predictive markers are therefore expected to reside in the
proximity of the causal locus (Mackay et al., 2009). The succes of QTL identification is
affected by (1) the allele segregation in the cross and (2) the number of
recombination events; requiring large data sets of related individuals with known
pedigrees (Hill 2010). On the other hand, the GWAS allow assessing the association
of each separate marker for the trait of interest in populations and crosses. Several
thousand markers spaced throughout the genome, usually SNPs, are used to identify
a marker allele in linkage or linkage desequilibrium with the causal variant.
Therefore, if one allele is more frequent in animals showing a certain phenotype, it is
defined as an associated SNP for this trait and considered as a marker. This screening
serves as an information source for breeding value estimation and it is used to assess
genomic selection in the industry. Genomic selection is predicted to offer anywhere
between 20-50% of greater genetic progress by using pig breeding programs

(Meuwissen et al., 2001; Huisman & Charagu 2013).

Currently, there have been reported 13,030 pig QTLs in the Pig QTLdb represented
by 663 different pig traits [PigQTLdb; http://www.animalgenome.org/cgi-
bin/QTLdb/SS/index; accessed July 2015]. From the total QTLs reported, 1,880 have
been detected for fatness traits, 646 are related to fat composition traits and 1,070

and 710 to growth and conformation traits, respectively (Figure 1.7).
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Number of QTLs

Trait type

Figure 1.7. Distribution of porcine QTLs among the different trait types in the Pig
QTLdb [PigQTLdb; http://www.animalgenome.org/cgi-bin/QTLdb/SS/index; accessed
July 2015].

Noteworthy, the efforts in QTL and GWAS analyses have been useful to identify
regions or genes having large effects on some traits (Table 1.2) (Rotschild 2003; Van
Laere et al., 2003; Dekkers 2004; Rotschild et al., 2007; Mufoz et al., 2009,
Corominas et al., 2013a; Ma et al., 2014; Qiao et al., 2015)

Table 1.2. Strong candidate genes determining porcine production traits identified in

QTL or GWAS analyses.

Coat colour KIT, MC1R
Growth, fatness and carcass composition IGF2, LEP, MC4R, MRF, PLAG1
Meat quality CAST, ELOVL6, FABP4, FABP5, PHKG1,
PRKAG3, RN, RYR1
Litter size ESR, FSHB, PRLR, RBP4
Disease susceptibility FUT1, NRAMP, SLA
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Despite the succes in the identification of genes containing causal mutations for
some QTLs, their number is still very low due to the limitations of these approaches
(Andersson & Georges, 2004). The main reasons may be: (1) production traits are
complex and therefore difficult to detect, (2) genetic variants tend to explain a
reduced amount of the genetic variation, and (3) several QTL studies are conducted
in experimental crosses, where large QTL intervals have been identified due to
linkage between markers. Moreover, several of the QTLs detected cannot be
replicated maybe because they are segregating only in specific breeds or populations

(Mackay et al., 2009).

1.4.2. NGS technologies

The NGS platforms first released in 2005 offer to the scientific community the
opportunity of exploring the whole genome, transcriptome or epigenome of an
organism in a cost-effective manner (Morozova & Marra 2008). This approach allows
to simultaneously sequence thousands-to-many-millions of fragments in parallel
reactions (Yang et al., 2014). To date, different systems (Roche 454, AB SOLiID,
lumina GA/HiSeq, lon Torrent PGM, lllumina MiSeq) have been used for NGS of
which lllumina HiSeq 2000 has the lowest reagent cost, the SOLID has the highest
accuracy and the Roche 454 has the longest read length (Soneson & Delorenzi 2013).
A third generation sequencing method allowing the real-time sequencing of a single-
molecule has been developed by Pacific Bioscience (Menlo Park, CA, USA) and has
recently been used to improve the reference sequence of livestock species as cattle

[Bovine Genome Project; http://www.hgsc.bcm.edu].

WGS provides an unprecedented opportunity to characterize the entire genome and
to identify variants such as SNPs, indels and structural variants. In recent studies,
WGS data has been employed to provide information of signatures of selection to
understand the evolutionary history and speciation process (Amaral et al., 2011;
Rubin et al., 2012; Ramirez et al., 2014; Choi et al., 2015; Moon et al., 2015; Paudel
et al., 2015) and study breed variability and homozygosity regions (Bosse et al.,
2012; Groenen et al., 2012; Veroneze et al., 2012; Esteve-Codina et al., 2013; Ai et

al., 2015; Bianco et al.,, 2015) by sequencing different Sus species and Sus scrofa
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subespecies. However, the most promising application in livestock species is the use
of WGS data to perform high resolution GWAS with the aim to detect variants and
genes associated with complex diseases and its implementation in genomic selection
(Bijma 2012; Pabinger et al., 2013; Eynard et al., 2015; Pérez-Enciso et al., 2015). The
basic workflow for the WGS analysis involves library preparation, sequencing, quality
assessment, read alignment to the reference genome, variant calling, and results

filtering.

On the other hand, in the transcriptomics field, the RNA-Seq approach provides
information of the whole transcriptome including gene expression for each specific
transcript in a large dynamic range, information of new genes and isoforms, splicing
events, allele specific expression, and different promoter and polyadenylation signal
usage in a single experiment (Wang et al., 2009). RNA-Seq experiments comprise:
RNA isolation, library preparation, RNA sequencing, quality assessment and read
alignment to the reference genome. The most common use of transcriptome
profiling is the search for differentially expressed genes (Soneson & Delorenzi 2013).
In this regard, different RNA-Seq studies have been performed in swine to identify
differentially expressed genes and modulated pathways affected by sex (Esteve-
Codina et al., 2011), breeds (Sodhi et al., 2014; Ghosh et al., 2015), or important
production traits (Chen et al., 2011; Ramayo-Caldas et al., 2012b; Corominas et al.,
2013b; Jiang et al., 2013; Puig-Oliveras et al., 2014a; Xing et al., 2014); whereas, a
few number of studies in pig have provided insights into SNVs, isoforms, and
promoter and transcription start site usage (Jung et al., 2012; Farajzadeh et al,
2013) or alelle specific expression (Wu et al., 2015). Therefore, these techniques are
important tools for the identification of candidate genes for livestock production

traits.

Different tools have been developed in the scientific community for NGS studies,
including: raw data quality control and processing, alignment of the reads and
visualization of data, short and large structural variant detection, and differential

expression analysis (Table 1.3).
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Table 1.3. Summary of bioinformatic tools for NGS data processing (Li & Homer
2010; Garcia-Alcalde et al., 2012; Martin et al., 2012; Pabinger et al., 2013; Zhao et

al., 2013). Tools used in this work are shown in bold characters.

Quality assessment ContEST, FASTQC, FASTX-Toolkit, Galaxy, htSeqTools, NGSQC,
and read processing  PIQA, PRINSEQ, Qualimap, SolexaQA, TagCleaner, TileQC

BarraCUDA, BFAST, Bowtie/Tophat, BWA, ELAND, MAP, MAQ,
Alignment Mosaik, mrsFAST, Novoalign, SMALT, SOAP, SSAHA, Stampy,
YOABS

Atlas, Bambino, Beagle, CRIPSP, CoNAn-snv, CORTEX, Dindel,
FreeBayes, GATK, IMPUTE2, Indelocator, lon Variant Hunter,

Variant calling MaCH, moDIL, Pindel, PolyScan, Qcall, realSFS, SAMtools,
Slinderll, Sniper, SNVer, SNVMix, SOAPindel, SOAPsnp, Syzygy,
VarScan 2, VARID, VipR

BreakDancer, CNAseq, CNVer, cnvHMM, CNVnator, CNV-seq,
Structural variant CONDEX, CoNIFER, CONTRA, ControlFreec, CopySeq,
identification ExoCNVTest, ExomeCNV, ExomeDepth, PropSeq, RDXplorer,

readDepth, Segseq, SeqGene, SVDetect, VarScan2, XHMM

ABrowse, AnnolJ, Apollo, ARGO/Combo, Artemis, Bambino,
BamView, Consed, DiProGB, EagleView, Ensembl, Gaggle, Gap5,
GBrowse, G-compass, Genome Environment Browser,

Mapping and GenomeView, GenoViewer, Hawkeye, Integrated Genome

variant visualization = Browser, Integrative Genome Viewer, JalView, JBrowse,
LookSeq, MagicViewer, MapView, NGSView, SAMSCOPE,
samtools tview, Savant, SeqWord, SNUGB, Tablet, UCSC
genome browser, UTGB toolkit, VEGA, Vista

Differential gene ShrinkSeq, DESeq, edgeR, NBPSeq, TSPM, voom, vst, baySeq,
expression EBSeq, SAMseq

Alternatively, user friendly commercial tools which give the opportunity to perform
all these analysis in a single platform, such as CLC bio (http://www.clcbio.com; CLC
inc, Aarhus, Denmark), Galaxy (Giardine et al., 2005; http://g2.bx.psu.edu) and

Partek (http://www.partek.com; Partek Inc, St Louis, MO, USA) are available.

For the differential expression analysis of RNA-Seq data, the programs differ in a
number of statistical issues, where the normalization is the main factor influencing
the results (Hitzemann et al., 2013). Although there is no consensus in the scientific

community regarding which method performs best, Soneson & Delorenzi (2013)
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reported that DESeq, EdgeR and NBPSeq give, in general, the best results for small
sample size, and that DESeq is very conservative. Moreover, DESeq and edgeR show
a slight reduction in type | error (the incorrect rejection of a true null hypothesis)

rate when increasing sample size.

1.4.3. eQTL mapping approach

Transcriptomic data can be used to identify candidate genes underlying QTLs
through the co-localization with eQTLs. This approach relies on the assumption that
causative genes may have polymorphisms producing differences in their level of
expression that translates into varying amounts of its corresponding functional
protein and an observable phenotype difference (Verdugo et al., 2010). To date, few

eQTL studies have been performed to study porcine production traits (Table 1.4).

Table 1.4. eQTL studies for porcine production traits.

Growth Steibel et al., 2011; Ponsuksili et al., 2012
Fatness Steibel et al., 2011; Canovas et al., 2012

Ponsuksili et al., 2008, Ponsuksili et al., 2010;
Meat quality Wimmers et al., 2010; Heidt et al., 2013;
Ponsuksili et al., 2014

Blood metabolite profile Chen et al., 2013a
Fatty acid composition Munoz et al., 2013

Disease susceptibility and

. Liaubet et al., 2011; Reiner et al., 2014
disorders

The eQTL technique allows the mapping of transcript profiles as quantitative traits
and to classify them in cis and trans-acting mode of action, identifying hotspot loci
and regulators responsible for the phenotypes. By definition, cis-eQTLs are genetic
variants mapped very close or into the studied gene that directly affect its level of
transcription. In contrast, trans-eQTLs result from mutations in a different gene that

may exert regulatory functions on the transcription of other genes (Doss et al.,
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2005). Finally, a hotspot locus is defined as a region regulating the expression of a

large number of genes.

1.4.4. Multi-trait network analyses for complex traits

Many livestock production traits are influenced by several genetic and
environmental factors (Andersson 2001). Understanding the genetic basis
determining these complex traits with the tools available to date is supposing a hard
and arduous task. Several production traits are correlated and this can be due to
pleiotropy or linkage (Chen & Liibberstedt 2010; Solovieff et al., 2013) (Figure 1.8).
Linkage occurs when two genes controlling different traits are located very close to
each other, with little recombination rates, and therefore are transmitted together
to progeny (Figure 1.8.B). A clear example of linkage in livestock occurred during the
past years when applying a strong selection for higher lean meat content in pigs. In
these populations, a recessive mutation in the ryanodine receptor 1 (Skeletal) (RYR1)
gene causing malignant hyperthermia that mapped close to this locus rapidly
increased its frequency resulting in low quality meats and also causing the death in
animals under stress conditions (Andersson 2001). Pleiotropy occurs when a gene
affects to more than one trait (Figure 1.8.A; Wagner & Zhang 2011) and has been
described in growth, conformation and fat-related traits in pigs (Nagamine et al.,
2009; Fernandez et al., 2012; Ramayo-Caldas et al., 2012a; Munoz et al., 2013;
Revilla et al., 2014). A well-known case of pleiotropy in pigs is caused by the v-kit
Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) gene, which can
affect coat colour, but also can exhibit lethal alleles, can affect the development of
melanocytes, hematopoietic cells, primordial germ cells, interstitial cells in the small
intestine and may affect hearing (Marklund et al., 1998). Another clear effect of
pleiotropy in pigs was evidenced by GWAS analyses for intramuscular fatty acid
deposition and composition traits in Ramayo-Caldas et al. (2012a). In this study the
authors described a pleiotropic effect for several intramuscular fatty acid

composition indices in Sus scrofa chromosome 4 (SSC4), SSC8 and SSC16.
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Figure 1.8. Schematic representation for possible causes of correlation among
phenotypic traits (adapted from Wagner & Zhang 2011). A) Pleiotropy: a locus/gene
affecting one more than one trait; B) Linkage: close genes affecting different traits
that are inherited together due to linkage disequilibrium and thus causing
differences in more than one phenotype; C) Gene-gene interactions determining
phenotypes; D) Phenotype composed for different metabolites as intermediates in a

single pathway.

A further factor determining phenotypic correlations among traits, an a cause of
pleiotropy, is because genes do not act as independent units, they interact with each
other in biologic complex networks, so a variation in one gene can alter a whole
pathway (Figure 1.8.C). Finally, but not less important, the final phenotype can be
viewed as the sum of all the reactions catalyzed for several enzymes playing
different roles on the same pathway (Figure 1.8.D). This knowledge can be very
useful to assess complex traits that are not independent of each other, for instance,

the growth traits, where the weight of each primary cut will be more or less
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proportional to the carcass weight. Correlations among traits must be considered in
assessing the total impact of selection for a trait. As a trait is altered, performance
for all correlated traits changes as well. Thus, trait correlation must be exploited in

selection programs considering several traits at once in multi-trait analyses.

Multi-trait network approaches have recently been developed to exploit genetic
correlations between traits (Bolormaa et al., 2014). In this context, Fortes et al.
(2010) developed a network approach based on co-association, named the
Association Weight Matrix (AWM). The AWM is a systems biology approach that
combines GWAS results from different correlated traits in an AWM for performing a
partial correlation coefficient with information theory (PCIT). The AWM algorithm
allows: (1) to capture SNPs in one trait of interest or in a minimum of three
correlated traits having a relaxed statistical threshold (p<0.05) in the GWAS, (2) to
annotate the SNPs in genes, (3) to identify gene-gene interactions by performing
correlations of the SNP additive effect across traits and (4) to include experimental
knowledge about transcription factors and target interactions (Fortes et al., 2010).
Once identified all genes and their interactions, PCIT algorithm is used to assess
significance threshold for interactions between genes (Reverter & Chan 2008). The
obtained result is a gene-gene interaction network integrating positional genomic
information of the SNPs and experimental knowledge of potential regulators. This
approach assumes that genes with strongly correlated additive effects on a complex
trait are likely to share genetic regulation. This approach has already been applied in
a previous study of our group with the aim to gain insight into the molecular
mechanisms determining the intramuscular fatty acid composition in pigs (Ramayo-
Caldas et al., 2014a). In this study, they predicted a network of 1,096 genes related
to intramuscular fatty acid composition in pigs and suggested that genetic variants in
three key transcription factors (EP300, FHL2, and NCOA2) were modulating the lipid
metabolism and controlling the energy homeostasis in pigs (Ramayo-Caldas et al.,

2014a).
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1.5. IBMAP cross animal material

The IBMAP_consortium (1996), a collaboration between the UAB (Universitat
Autonoma de Barcelona), INIA (Instituto Nacional de Investigacion y Tecnologia
Agraria y Alimentaria, Madrid), and IRTA (Institut de Recerca i Tecnologia
Agroalimentaries, Lleida) made possible the generation of the Iberian x Landrace

cross (Figure 1.9).
,4
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3d x 31Q
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Figure 1.9. Schematic representation of the IBMAP cross (Iberian x Landrace).

This experimental cross was created for the identification of QTLs of interest for the
porcine meat industry. The Iberian and the Landrace breeds were selected for being
divergent pig lines basically differing in meat quality, growth, fatness, fertility, and
feed efficiency traits. For instance, Iberian is a Mediterranean local breed from the
Iberian Peninsula appreciated for its excellent meat quality and cured products with
a higher content of SFA and MUFA fatty acids. Specifically, the Guadyerbas line is an
original strain of the Iberian breed isolated in an experimental farm since 1945 (Toro
et al., 2000). In comparison, Landrace is a lean international breed that has
undergone a strong selection for production benefits having a high prolificacy and
growth. However, the Landrace meat is not as appreciated as the Iberian, having less

intramuscular and higher content of PUFA (Serra et al., 1998).
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The IBMAP population was initially created by crossing 3 Iberian Guadyerbas boars
(Dehesdén del Encinar, Toledo) with 31 Landrace sows (Nova Geneética, Lleida),
obtaining an F; generation from which different crosses were further generated: 321
F, animals obtained by mating F; animals, 56 F; individuals obtained by mating F,
animals, 166 BC1_LD animals (25% lberian x 75% Landrace backcross) from
backcrossing five F; males with 26 Landrace sows, and 79 BC animals obtained by
crossing four F, boars and 22 Landrace sows. All animals were fed ad libitum and
sacrificed at 180 + 2.8 days (average * standard deviation) in a commercial
slaughterhouse following national and institutional guidelines for the Good
Experimental Practices and approved by the Ethical Committee of the Institution

(IRTA, Institut de Recerca i Tecnologia Agroalimentaries).

1.5.1. Identification of QTLs in the IBMAP cross

QTL studies based on microsatellite markers in the IBMAP cross identified significant
associated regions for growth, fatness and fatty acid composition on SSC2, SSC4,
SSC6, SSC7, SSC8, and SSCX (Ovilo et al., 2000; Pérez-Enciso et al., 2000; Ovilo et al.,
2002a; Pérez-Enciso et al., 2002; Varona et al., 2002; Clop et al., 2003; Mercadé et
al., 2005a; Ovilo et al., 2005; Pérez-Enciso et al., 2005). Afterwards, QTL and GWAS
approaches using SNP markers from the PorcineSNP60 BeadChip of //lumina (Ramos
et al., 2009) have been employed, obtaining in general a higher resolution in QTL
invervals and the identification of new genomic regions associated with the analysed
traits (Fernandez et al., 2012; Ramayo-Caldas et al., 2012a; Corominas et al., 2013a;

Mufoz et al., 2013; Revilla et al., 2014).

Within these QTLs several functional candidate genes have been identified for
growth, fatness and meat quality traits including IGF2, DECR, DGAT1, FABP2, FABP3,
FABP4, FABP5, LEPR, ACADM, CDS1, CDS2, FABP2, MTTP, ELOVL6, FASN, GIP, ACACA,
and ACSL4 (Clop et al., 2002; Ovilo et al., 2002b; Estellé et al., 2005a; Estellé et al.,
2005b; Mercadé et al., 2005a; Mercadé et al., 2005b; Mercadé et al., 2005c; Ovilo et
al., 2005; Estellé et al., 2006; Kim et al., 2006; Mercadé et al., 2006a; Mercadé et al.,
2006b; Mercadé et al., 2007; Estellé et al., 2009a; Estellé et al., 2009b; Mufiioz et al.,
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2009; Corominas et al., 2012; Corominas et al., 2013a) (genes analyzed in this work

are shown in bold characters).

1.5.1.1. FABP4 and FABP5 candidate genes in SSC4

The first QTL in pigs, named FAT1, was found on SSC4 using a wild-boar intercross
(Andersson et al., 1994). Comparative maps identified this region to be homologous
to both human chromosome 1 and 8. This QTL was subsequently replicated and
validated in other crosses and other breeds (Knott et al. 1998; Marklund et al., 1999;
Walling et al., 2000; Bidanel et al., 2001; Cepica et al., 2003; Stawiniska et al., 2009),
including the IBMAP population (Figure 1.10) (Pérez-Enciso et al., 2000). However, in
IBMAP an additional QTL region was identified for growth and fatness traits

(Mercadé et al., 2006b; Estellé et al., 2006) proximal to FABP4 and FABP5 genes.
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Figure 1.10. QTLs in SSC4 for growth and fatness traits detected in the IBMAP

population (adapted from Mercadé et al., 2005a).

In SSC4, Fatty acid binding proteins 4 and 5 (FABP4 and FABP5) genes have long been
studied as candidate genes affecting fat deposition and composition traits in pigs
(Gerbens et al., 1998; Gerbens et al., 2000; Gerbens et al., 2001; Estellé et al., 2006;
Mercadé et al., 2006b; Gao et al., 2011; Chen et al., 2013b) as well as in cattle,

chicken and sheep (Hoashi et al., 2008; Wang et al., 2009b; Xu et al., 2011). FABP4
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and FABP5 genes are members of the FABP family and are involved in the
intracellular lipid transport of free fatty acids. The FABP4 gene is highly expressed in
adipocytes and it is also expressed in macrophages, dendritic cells, and skeletal
muscle; meanwhile, FABP5 gene is mainly expressed in epidermal cells, mammary
gland, brain stomach, intestine, liver, kidney, testis, spleen, and placenta (Smathers
& Petersen 2011). Furthermore, in previous studies of our group, two
polymorphisms of FABP4 (g.2634_2635insC in intron 1) and FABP5 (g.3000T>G in
intron 2) genes were genotyped in the F,, F3, and backcross generations of the
IBMAP cross, revealing a tight association with fatness traits (Estellé et al., 2006;
Mercadé et al., 2006b). Other studies of our group identified in the same region a
pleiotropic QTL for backfat fatty acid composition traits in the IBMAP F, generation
(Pérez-Enciso et al., 2000; Clop et al., 2003) and intramuscular fatty acid composition

in the BC1_LD (Ramayo-Caldas et al., 2012a).
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This PhD thesis was done under the framework of the IBMAP Project funded by two
projects: AGL2008-04818-C03/GAN (MICINN) and AGL2011-29821-C02 (MINECO).
The animal material generated by the IBMAP project consisting in an Iberian x
Landrace cross was obtained thanks to the collaboration between INIA, IRTA and

UAB research groups.

The main aim of this thesis was to increase the knowledge of the genetic basis

determining growth and fat-related traits in pigs.
The specific objectives were:

1) To evaluate the porcine FABP4 and FABP5 as candidate genes for fatty acid

composition traits and study their expression and regulation.

2) To characterize the transcriptome architecture of the porcine Longissimus
dorsi muscle and to identify genes and pathways determining the

differences in the intramuscular fatty acid composition among animals.

3) To study gene interactions, pathways, and main regulators determining
growth and fat-related traits by the construction of a co-association gene

network.

4) To study the expression and to identify eQTLs of a set of 45 selected

candidate genes for fat content and fatty acid composition in muscle.
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Abstract

Background: The FABP4 and FABP5 genes, coding for fatty-acid-transport proteins,
have been studied as positional and functional candidate genes for SSC4 QTLs for fat
and growth related traits. Polymorphisms in these genes have been associated with fat
deposition and growth traits. More recently, QTLs affecting fatty acid composition in
backfat and intramuscular fat have been identified in this genomic region. Thus, the
aim of this study was to evaluate the FABP4 and FABP5 genes as positional and

functional genes affecting fatty acid composition in muscle and backfat tissues.

Results: The association analysis with FABP4 and FABP5 gene polymorphisms and the
QTL scan performed in the Iberian x Landrace backcross identified the
FABP4:9.2634_2635insC polymorphism as the most significant marker for palmitoleic
and eicosatrienoic fatty acids and PUFA content in muscle. The FABP5:9.3000T>G
polymorphism was the most associated marker for oleic and linoleic fatty acids and
MUFA content in muscle. Furthermore, the FABP4 and FABP5 gene expression analysis
in 114 BC1_LD animals revealed that FABP4 gene expression in backfat, but not in
muscle, was associated with FABP4:9.2634_2635insC. In contrast, FABP5:9.3000T>G
was not associated with gene expression levels. The eGWAS highlighted the
FABP4:9.2634_2635insC polymorphism as the most associated polymorphism with
FABP4 gene expression in backfat while different genomic regions were associated in
trans with FABP5 gene expression in muscle. Finally, a putative transcription binding
site for PPARG may be affected by FABP4:9.2634_2635insC polymorphism, modifying

FABP4 gene expression and determining the intramuscular fatty acid composition.

Conclusions: Our results suggest FABP4 as an important gene regulating fatty acid
composition, being FABP4:9.2634_2635insC polymorphism the strongest signal
associated both to FABP4 gene expression in backfat and to intramuscular fatty acid

composition in muscle.
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Background

The genetic basis of fat composition has largely been studied in swine due to their
impact in meat production yield and quality. Fatty acid (FA) composition can affect the
taste and the quality of the cooked and the cured meat [1,2]. Specifically, high
polyunsaturated FA (PUFA) content negatively affects the oxidative stability, flavour
and colour of pork meat. Moreover, the meat nutritional value can also be altered by
the FA profile, influencing human health. For instance, the n-3 PUFA are considered to
reduce cholesterol concentration and decrease inflammatory processes [3,4]. Thus,
meat with higher amounts of intramuscular fat (IMF), a healthier FA profile, and good
organoleptic properties may have better consumer acceptance. Hence, there is an

interest for the pig industry to produce meat with a balanced FA composition [5].

Over the last years, an lberian x Landrace intercross (IBMAP) was generated for the
identification of QTLs affecting meat and carcass quality traits, such as growth, fatness,
and FA composition in backfat (BF) and IMF [6-11]. These breeds are divergent for the
studied traits, for instance, Iberian is a local an obese Mediterranean breed with a
higher content of SFA and MUFA, specifically palmitic (C16:0) and oleic (C18:1(n-9))
FAs; whereas Landrace is a lean international breed with a higher content of PUFA
such as linoleic (C18:2(n-6)) and a-linolenic (C18:3(n-3)) [1]. In the F, generation of this
cross, a pleiotropic QTL effect was described on SSC4 for the percentage of C18:1(n-9)
and C18:2(n-6) FAs and the double-bond (DBI) and peroxidability (Pl) indexes in BF
[6,7]. QTLs for C18:2(n-6) FA content in BF, perirenal fat and abdominal fat were
reported in the same region in other swine populations [12-14]. More recently, a
genome-wide association study (GWAS) has identified the same SSC4 region as
associated with the intramuscular percentage of palmitoleic (C16:1(n-7)), C18:1(n-9),
and C18:2(n-6) FAs in an lberian x Landrace backcross (BC1_LD) [10]. Besides, a QTL
scan performed in the BC1_LD detected a significant QTL on SSC4 for IMF content of
C16:1(n-7), C18:2(n-6), and eicosatrienoic (C20:3(n-6)) FAs and backfat content of
C16:0, C18:2(n-6), C18:3(n-6), and C20:3(n-6) FAs [11].

Fatty acid binding proteins 4 and 5 (FABP4 and FABP5) genes have long been studied as

candidate genes affecting fat-related traits in pigs [15-20]. FABPs are responsible for
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the transport of long chain FAs for different purposes: uptake, storage, and utilization
[21]. They are also involved in other processes such as adipogenesis, myogenesis, and

regulation of gene expression [22,23].

In previous studies of our group, FABP4 and FABP5 genes were sequenced in the
IBMAP founding generation (three Iberian boars and seven Landrace sows) to identify
polymorphisms. FABP4:9.2634_2635insC and FABP5:9g.3000T>G genetic variants were
genotyped in the F,, F3, and BC1_LD generations of the IBMAP cross, revealing a tight
association with fatness traits [18,19]. The aim of the present study was to evaluate
FABP4 and FABP5 as candidate genes for the SSC4 QTL affecting FA composition in IMF
and BF in an Iberian x Landrace backcross. To achieve this goal, gene expression
analysis and association studies between FABP4:9.2634 2635insC  and
FABP5:9.3000T>G polymorphisms with FA composition in BF and muscle (Longissimus

dorsi) were performed.

Methods

Animal samples and phenotypic records

The animal material used in this study belongs to the IBMAP cross population
generated by the initial crossing of three lberian (Guadyerbas line) boars with 31
Landrace sows [6], and containing several generations and related backcrosses. Here,
we have analyzed 144 animals from a backcross generation (BC1_LD; 25% lberian x
75% Landrace) produced by crossing five F; (Iberian x Landrace) boars with 26
Landrace sows. All animals were fed ad libitum with a cereal-based commercial diet.
Pigs were slaughtered at an average age of 179.8 + 2.3 days following national and
institutional guidelines for the ethical use and treatment of animals in experiments and
approved by the Ethical Committee of the Institution (IRTA- Institut de Recerca i
Tecnologia Agroalimentaries). Samples of BF (taken between the third and the fourth
ribs) and muscle (Longissimus dorsi) were collected, snap-frozen in liquid nitrogen, and
stored at -802C for RNA extraction. DNA was extracted from blood samples and used

for gene PCR amplification and polymorphism genotyping.
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Muscle and BF FA composition was determined as previously described [10,11]. The FA
measures in IMF and BF were: myristic (C14:0), palmitic (C16:0), palmitoleic (C16:1(n-
7)), heptadecanoic (C17:0), heptadecenoic (C17:1), stearic (C18:0), octadecenoic
(C18:1(n-7)), oleic (C18:1(n-9)), linoleic (C18:2(n-6)), a-linolenic (C18:3(n-3)), arachidic
(C20:0), eicosenoic (C20:1(n-9)), eicosatrienoic (C20:3(n-6)), arachidonic (C20:4(n-6)),

polyunsaturated (PUFA), monounsaturated (MUFA), and saturated (SFA) FAs.
Genotyping data

A total of 179 animals from the BC1_LD (144 backcrossed individuals and their
corresponding 35 parents) were genotyped with the Porcine SNP60 Beadchip (Illumina)
following the Infinium HD Assay Ultra protocol (lllumina) [24]. Raw data was visualized
with GenomeStudio software (lllumina) and trimmed for high genotyping quality (call
rate > 0.99). Plink [25] software was used to retain markers with a minor allele
frequency (MAF) = 5% and animals with missing genotypes < 5 %. After the quality
control filter, a subset of 40,476 SNPs and 179 animals remained. The position of the
SNPs was based on the Sscrofal0.2 assembly [26]. Furthermore, all animals (n=179)
were also genotyped for the FABP4:9.2634 2635insC and FABP5:9.3000T>G
polymorphisms following the pyrosequencing protocols described by Mercadé et al.

[19] and Estellé et al. [18], respectively.
Identification of putative binding sites and its conservation across species

A computer-assisted identification of putative transcription binding sites in intron 1 of
FABP4 was performed using Matlnspector (cut-off as default) [27] from
GenomatixSuite software (Genomatix Software GmbH) with the Genomatix Matrix
Library 8.3. To explore the conservation of the FABP4 exon 1 and proximal intron 1
sequence region harboring FABP4:9.2634_2635insC polymorphism, FABP4 gene
sequences for the human (NC_000008), cow (AC_000171) and pig (Y16039) were
downloaded from NCBI and compared by multi-alignment analysis using Multalin

program [28].
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QTL scan analysis

In order to select properly located markers for QTL scan analysis, the linkage map of
SSC4 of the IBMAP population [29] was used. A total of 155 genetic markers were
chosen for further analyses according to their higher informativity (I > 0.6) in the
BC1_LD calculated by the Ron index [30]. In addition, markers FABP4:9.2634_2635insC
and FABP5:9.3000T>G were included in the association analyses. For this subset of 157
SNPs, genetic distances were calculated for the BC1_LD population using the “Fixed”
option of CRI-MAP program v2.503 [31]. From the clusters of markers belonging to the
same linkage group, without recombination between them, only the most informative

SNP was selected, remaining a total of 78 SNPs [see Additional file 1: Table S1].

QTL scan was performed for FA composition in IMF and BF by using the basic model

implemented on Qxpak 5.0 [32]:

Yiik = Sex; + Batch,- + Bek+ Pa+ ug+ €ijk, (1)

in which yjy is the k™" individual’s record observation for the analyzed trait, depending
on fixed effects for sex and batch (with two and five levels, respectively), carcass
weight as a covariate and its respective slope (fc), a is the QTL additive effect, Py is
the additive coefficient calculated as P, =Pr(QQ) - Pr(qq), the probability of the K™
individual being homozygous for alleles of Iberian origin minus the probability of being
homozygous for alleles of Landrace origin, ui represents the infinitesimal genetic effect
with random distribution N(0, Ac,?) where A is the numerator of the pedigree-based

relationship matrix and ej the random residual.

To assess the statistical significance a Bonferroni correction was calculated with the R

package [33].
Genotype association analysis

Association analyses with the polymorphisms FABP4 g.2634 2635insC and
FABP5:9.3000T>G and FA composition in BF and IMF were performed using a mixed
model implemented in Qxpak 5.0 [32]:

Yijkl = Sex; + Batchj + BCk+ A+ U+ €ijkl, (2)
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in which yj is the k™ individual’s record, sex (two levels) and batch (five levels) are
fixed effects, B is a covariate coefficient with ¢ being carcass weight, A¢ is a -1, 0, +1
indicator variable depending on the k™ individual’s genotype for the " SNP, a
represents the additive effect associated with the " SNP, uy is the infinitesimal genetic
effect with random distribution N(0, Ac,’), where A is the numerator of the pedigree-

based relationship matrix and e the residual.

Genomic intervals of £+1Mb around the most significant SNPs were annotated using

BIOMART [34].
RNA isolation and gene expression quantification

Total RNA was isolated from muscle and BF tissues of 114 BC1_LD animals using the
RiboPure™ Isolation of High Quality Total RNA (Ambion) and quantified in a NanoDrop
ND-1000 spectrophotometer (NanoDrop products). Once isolated, the cDNA was
synthesized de novo from total RNA (1 pug from muscle or 0.3 pg from BF) in a 20 pl mix
using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems) and
random hexamers primers. Real time quantitative PCR (RT-qPCR) primers are shown in
Table S2 [see Additional file 2: Table S2]. Three genes were analyzed as endogenous
controls by GeNorm [35]: 6-2 microglobulin  (62M),  Hypoxanthine
phosphoribosyltransferase 1 (HPRT1) and Glyceraldehyde 3-phosphate dehydrogenase
(GADPH). HPRT1 and 82M were chosen as the best endogenous controls for both
tissues. PCR amplification was performed in triplicate in a 20-pl final volume using
FastStart Universal SYBR Green Master (Rox; Roche Applied Biosystems) and
containing 5 pl of cDNA diluted 1:125 from muscle and BF. Primer concentration was
at 600 nM for FABP4, FABP5 and 82M and 900 nM for HPRT1 in both tissues. PCR
amplification was performed using 96-well optical plates in an ABI PRISM 7900HT
sequence Detection System (Applied Biosystems) under the following conditions: 10
min at 95 2C, 40 cycles of 15 s at 95 2C and 1 min at 60 2C. To assess primer-dimer
formation, a dissociation curve was drawn for each primer pair. To quantify and

normalize the relative quantification (RQ) data, the 24T

method [36] was applied
using a sample with low expression as a calibrator. R software [33] was employed for

statistical comparison of gene expression data and FABP4 and FABP5 genotypes using
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a linear procedure considering sex and batch as fixed effects. Differences were

considered as statistically significant at p-value < 0.01.
Gene expression association analysis (eGWAS)

Association analyses of whole-genome SNP genotypes and FABP4 and FABP5 mRNA
expression values from muscle and BF were also performed. A total of 40,476 SNPs
mapping to a proper location in the Sscrofal0.2 assembly and FABP4:9.2634_2635insC
and FABP5:9.3000T>G polymorphisms were used. For FABP5 gene, backfat and muscle
MRNA expression data did not fit a normal distribution and the RQ value was
transformed to log,. The previously described model (2) without the carcass weight
covariate was used for the expression genome-wide association studies (eGWAS). To
measure the statistical significance at the genome-wide level for association studies,
the R package g-value [33,37] was used to calculate the false discovery rate (FDR)-
based g-value (set at g-value < 0.1). Genomic intervals of +1Mb around the most

significant SNP were annotated using BIOMART [34].

Results

Effect of FABP4 and FABP5 gene polymorphisms on fatty acid composition

In the present study, a total of 179 animals belonging to the BC1_LD IBMAP population
(144 backcrossed individuals and their corresponding parents) were genotyped for the

FABP4:.9.2634_2635insC and FABP5:9.3000T>G polymorphisms.

In order to test the association of FABP4 and FABP5 polymorphisms with FA
composition in muscle (n=125) and BF (n=130), an association analysis using an
additive model (1) was performed in BC1_LD animals. Significant associations were
observed between polymorphism FABP4:9.2634 2635insC and the IMF content of
C16:0, C16:1(n-7), C18:1(n-7), C18:2(n-6), and C20:3(n-6) FAs, MUFA and PUFA (Table
1). Homozygous individuals for the FABP4:g9.2635insC allele, which is fixed in Iberian
boars and is found at low frequency (0.23) in Landrace sows, showed a higher IMF
content of C16:0, C16:1(n-7), and C18:1(n-7) FAs and MUFA and a decreased IMF
content of C18:2(n-6) and C20:3(n-6) FAs and PUFA (Figure 1A). Besides, in backfat,
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polymorphism FABP4:9.2634_2635insC showed a significant association with the
percentages of C16:0, C18:2(n-6), C18:3(n-3), and C20:3(n-6) FAs and PUFA (Table 1).
FABP4:9.2635insC homozygous individuals showed more C16:0 and less C18:2(n-6),
C18:3(n-3), and C20:3(n-6) FAs and PUFA content in BF (Figure 1B).

Significant associations were also found between SNP FABP5:9g.3000T>G and C18:1(n-
9) and C18:2(n-6) FAs, MUFA and PUFA in IMF (Table 1). Finally, in backfat, significant
associations were only observed between SNP FABP5:9.3000T>G and C18:1(n-9) FA
and MUFA content (Table 1). Individuals that have inherited the FABP5g.3000T allele,
which is fixed in Iberian boars and shows intermediate frequencies (0.42) in Landrace
sows, showed in muscle a higher C18:1(n-9) FA and MUFA content, a decreased
C18:2(n-6) FA content and suggestive lower PUFA levels. Conversely, these animals
showed in BF a higher content of C18:1(n-9) and a suggestive increase in MUFA

content (Figure 1C and 1D).

QTL scan on SSC4 for fatty acid composition in backfat and muscle

A QTL scan for the IMF and BF FA content was performed on the BC1_LD population to
assess the association of the FABP4 and FABP5 chromosomal region with the analyzed
traits. QTL analysis was performed in those traits significantly associated with FABP4

and FABP5 polymorphisms (Table 1, traits with p-values < 0.01).

FABP4 gene remains un-annotated in the current pig genome reference sequence
Sscrofal0.2. RH and linkage maps located FABP4 gene close to FABP5 gene on SSC4
[18,38], in agreement with the human comparative map. Accordingly, FABP4 gene was
located at 1 cM before FABP5 in the linkage map for further analysis [see Additional
file 1: Table S1] [18].

A total of 78 SNPs from the 60K SNP pig chip (lllumina) were selected on the basis of
their informativity [30] and position in the linkage map [29]. FABP4:9.2634_2635insC
and FABP5:9g.3000T>G polymorphisms were also included in this analysis [see
Additional file 1: Table S1].
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A QTL for IMF content of C16:1(n-7), C18:1(n-9), C18:2(n-6), and C20:3(n-6) FAs, MUFA
and PUFA was located around 50 cM on the linkage map where FABP4 and FABP5
genes were mapped [see Additional file 3: Figure S1]. Furthermore, the FABP4-FABP5
genomic region was significantly associated with C18:2(n-6) and PUFA content in BF
[see Additional file 3: Figure S1], although the largest QTL effect was surrounding the
59-108 cM region [see Additional file 3: Figure S1]. For C16:0 and C18:1(n-7) FAs in IMF
and C16:0, C18:1(n-9), C18:3(n-3), and C20:3 (n-6) FAs and MUFA in BF no significant
QTL were found in the FABP4-FABP5 genomic region. These results are in accordance
with a previous GWAS performed in the same animal population, in which the FABP4-
FABP5 genomic region was associated with C16:1(n-7), C18:1(n-9), and C18:2(n-6) FA
content in IMF [10]. A previous QTL scan performed by Mufioz et al. [11] in the same
animal material only detected a significant QTL on the FABP4-FABP5 genes
chromosomal region (approximately at 44 cM in their linkage map) for C18:2(n-6) and
C20:3(n-6) FAs in IMF. In addition to these two FAs, we report significant QTLs for
C16:1(n-7) and C18:1(n-9) FAs, PUFA and MUFA content in IMF. Differences between
both studies may be due to the number and selection of the markers. In the present
study 78 SNPs of SSC4 were selected according to their informativity and position,
whereas in Mufiioz et al. [11] 8,417 SNPs from all autosomes were retained according

to their position in the linkage map.

In order to test if polymorphisms FABP4:9.2634 2635insC or FABP5:9g.3000T>G
explained a major part of the QTL variability, an analysis containing both the QTL
effects and the gene polymorphism effect (FABP4:9.2634_2635insC or
FABP5:9.3000T>G effect) was performed. The QTL effect was tested removing it from
the full model and the polymorphism effect was tested removing it from the full
model. The results of likelihood ratio (LR) test showed that the
FABP4:9.2634_2635insC or the FABP5:9.3000T>G polymorphism effect was more
significant than the QTL effect for all analyzed traits except for C18:2(n-6) FA backfat
content. Note that the QTL effect disappeared after fitting gene polymorphisms as a

covariate in the model (Table 2).

Finally, for C18:2(n-6) FA and PUFA content in BF, models fitting one QTL against a

model considering two different QTL were tested to determine whether one or two
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QTL were segregating on SSC4. Results of the LR test indicated that the model with one
QTL on 58-109 cM was the most likely for these two traits (LR c1s:2(n-6) = 10.61; p-value
c18:2(n-6) = 1.12x107; LR pura = 10.31; p-value pyra = 1.32x10°%), concluding that no QTL
was segregating for backfat FA composition in the FABP4-FABP5 genomic region (LR

c18:2(n-6) = 1.60; p-value cigame) = 2.93x10™; LR pura = 1.10; p-value pyra = 2.06x107).
Study of FABP4 and FABP5 gene expression

Previous studies using microarrays have found significant differences in the expression
of FABP4 and FABP5 genes in pigs with different profiles of fatty acid content in muscle
[39,40]. Hence, with the aim to study the association between polymorphisms
FABP4:9.2634_2635insC and FABP5:9g.3000T>G and gene expression, the FABP4 and
FABP5 expression profiles were analyzed by RT-gPCR in 114 BC1_LD animals in muscle
and BF.

FABP4 gene expression level in adipose tissue was higher than in muscle (data not
shown), in agreement with other studies reporting that FABP4 is abundantly expressed
in adipose tissue [41,42]. In contrast, FABP5 is expressed at low levels in adipocytes

and muscle tissues (data not shown).

A moderate correlation between FABP4 and FABP5 gene expression was observed in
muscle (r = 0.45, p-value = 3.57x10°) and in BF (r = 0.54, p-value = 1.10x10®). Also,
FABP5 gene expression in muscle was higher in females than in males (p-value =

3.1x10™).

Finally, no clear correlation between FABP4 and FABP5 expression among tissues was
observed, suggesting that different mechanisms controlling FABP4 and FABP5

expression operate in BF and muscle tissues.

FABP4 and FABP5 gene expression values were classified according to
FABP4:9.2634_2635insC and FABP5:9.3000T>G genotypes. A significant difference in
FABP4 gene expression among FABP4:9.2634 _2635insC genotypes was observed in BF
(p-value = 4.39x10™), but not in muscle (Figure 2). This result supports the hypothesis

of different mechanisms controlling FABPs gene expression among tissues. Animals
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with the FABP4:9.2635insC allele showed a higher FABP4 expression in BF (p-value =
1.85x107; 4 (estimated additive effect) = 0.139) in comparison with the FABP4:9.2634_
allele (Figure 2). No significant differences were observed for FABP5 gene expression in

muscle or BF among FABP4:9.2634_2635insC and FABP5:9.3000T>G genotypes.

Genome-wide association studies of FABP4 and FABP5 gene expression

Taking into account that differences in FABP4 and FABP5 gene expression were
observed among tissues, eGWAS (expression GWAS) were performed using 40,476
SNPs of the porcine 60 K SNP Chip (lllumina) and the FABP4:9.2634 _2635insC and
FABP5:9.3000T>G polymorphisms and the RQ expression data of FABP4 and FABP5

genes for BF and muscle.

In muscle, no significant association was found for FABP4 gene expression (Figure 3A).
Noteworthy, the most significant peak for FABP4 gene expression in BF was located in
SSC4 (Figure 3B; significant at chromosome-wise level) being FABP4:9.2634_2635insC

the most associated polymorphism (p-value=4.71x10°).

For FABP5 gene expression four potential trans acting regions in chromosomes SSC4,
SSC6, SSC9, and SSC13 were identified (Figure 3C). In SSC4, three SNPs at position
100.7 Mb were identified as the most significantly associated (ALGA0026790,
ALGA0026791, MARCO0042655, p-value= 7.47x10"6); two of them were located in the
upstream and downstream regions of the Fc receptor-like 1 (FCRL1) gene, an
immunoglobulin receptor involved in inflammation pathways activated with high free
fatty acids levels [43]. Another potential trans eQTL was identified in SSC6
(MARC0010912, 24.8 Mb, p-value = 3.82x107) close to E2F transcription factor 4,
p107/p130-binding (E2F4) gene, which acts as a repressor of peroxisome-proliferator-
activated receptor ggmma (PPARG), a well-known adipogenic transcription factor [44].
In SSC9, a significant region was found at 54.9 Mb (ASGA0082302, p-value = 1.61x10®),
where the CXADR-like membrane protein (CLMP) gene was identified. This gene plays a
role in adipocyte differentiation and development of obesity [45]. Finally, the most
significant associated region found in SSC13 was at position 17.3 Mb (H3GA0035652,
p-value = 1.81x107). In this region, the 5-azacytidine induced 2 (AZI2) gene was

annotated. AZI2 gene contributes to the activation of the nuclear factor of kappa light
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polypeptide gene enhancer in B-cells (NFkB) which is involved in lipid metabolism [46].
Whereas, no clear significant associated regions were observed for FABP5 gene

expression in BF (Figure 3D).

PPARG may be involved in FABP4 gene expression regulation

FABP49.2634_2635insC polymorphism was clearly associated with FABP4 gene
expression and FA composition in muscle and backfat. This polymorphism was located
in intron 1 of FABP4 gene [19], in a region conserved between different species [see
Additional file 4: Figure S2]. To assess if FABP4:9.2634_2635insC polymorphism could
affect FABP4 gene expression through the disruption of a transcription factor-binding
site, an in-silico identification of cis-acting DNA-sequence motifs in this region was
carried out. Remarkably, FABP4:9.2634_2635insC polymorphism was found to be in
the binding site of the PPARG [see Additional file 4: Figure S2].

Discussion

Free FAs (FFAs) are transported through the cytoplasm by binding proteins like FABPs
that deliver them to specific compartments in the cell, such as the mitochondria or the
peroxisome for their oxidation; to the endoplasmic reticulum for signaling and
membrane synthesis; to the lipid droplet for storage; or to the nucleus for activation of

nuclear receptors (reviewed in [47]).

FABP4 is mainly secreted by adipocytes [48] and has been suggested to play an
important role in FA storage in adipocytes as triacylglycerol [49]. During the initial
steps of lipogenesis, C16:0 and C18:0 FAs are converted to the most abundant MUFAs
in pork (C16:1 and C18:1) [50] which are important components of membrane

phospholipids, cholesterol and triglycerides [51].

Taken together, the association with FABP4 and FABP5 gene polymorphisms and the
classical QTL analysis showed that FABP4:9.2634 2635insC was the most significant
marker for palmitoleic acid (C16:1(n-7)), C20:3(n-6) FA, and PUFA composition in
Longissimus dorsi muscle. Remarkably, palmitoleic acid has been described as a marker
for de novo FA lipogenesis because very little amount of this FA is provided by the diet

[52]. In addition, FABP5:9.3000T>G was the SNP showing the strongest statistical
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significance for oleic acid (C18:1(n-9)), linoleic acid (C18:2(n-6)), and MUFA
percentages in muscle. Oleic acid is the most abundant and nutritionally relevant FA of
pig meat and it is associated with the flavor of the Iberian pig dry-cured products.
Linoleic acid is an essential FA which must be provided by the diet and it is the most

abundant omega 6 FA of pig meat.

These results are in agreement with the reported phenotypic differences in fat
deposition and composition between Iberian and Landrace pigs [1]. Iberian pigs have
higher percentages of palmitic acid, oleic acid, SFA and MUFA, and lower
concentrations of linoleic and a-linoleic acids than commercial breeds [1]. Here,
animals homozygous for Iberian FABP4g.2635insC and FABP5g.3000T genotypes (more
frequent in Iberian than in Landrace parental lines) showed a higher percentage of

MUFA and lower content of PUFA both in muscle and backfat tissues.

The analysis of FABP4 and FABP5 gene expression in backfat and muscle revealed that
FABP4 gene expression in backfat, but not in muscle, was associated with
polymorphism FABP4g.2634 2635insC. Although FABP5g.3000T>G SNP was not
associated with gene expression levels, we cannot discard this gene as candidate for
FA composition determination. Further studies are needed to identify new
polymorphisms in the FABP5 gene. Conversely, the eGWAS study pointed to the
FABP4g.2634_2635insC polymorphism as the most strongly associated with FABP4
gene expression in backfat whereas no clear peak was observed for FABP4 gene
expression in muscle. Hence, a concordant QTL and eQTL location was only observed
for FABP4 gene in adipose tissue and IMF FA composition traits, reinforcing FABP4 as a
strong candidate gene for meat quality traits. A more complex pattern was observed
for FABP5 gene expression in muscle with four trans-acting regions identified in
chromosomes SSC4, SSC6, SSC9, and SSC13. The associated SNPs in SSC4 were located
at 100.7 Mb, whereas FABP5 gene was mapped at 60.3 Mb in the Sscrofa10.2 assembly
of the pig genome. Relevant positional candidate genes were identified in the trans-
eGWAS regions including FCRL1 (SSC4), E2F4 (SSC6), CLMP (SSC9), and AZI2 (SSC13).
Further work is needed to unravel the role of these genes in the regulation of FABP5
gene. In spite of the correlation observed between FABP4 and FABP5 genes in muscle

and backfat, eGWAS results suggest that different mechanisms of genetic regulation
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are acting on each gene. Moreover, considering a single gene, different patterns of

trans-acting regions were observed in muscle and backfat.

The higher level of FABP4 gene expression in BF for animals homozygous for the
FABP4g.2635insC allele may positively impact the intracellular uptake of C16 and C18
for de novo lipogenesis of SFA and MUFA and for triacylglycerol storage. FABP4 has
been described to play a central role in obesity development [53,54], being FABP4
knockout mice protected against diet-induced obesity [55,56]. In concordance, the
Iberian phenotype shows higher IMF and strongest backfat tissue development, being
more prone to obesity. This result agrees with a previous analysis of pig adipose tissue
transcriptome in animals of the BC1_LD, in which a higher expression of lipogenic
genes was observed in animals with a higher content of MUFA and SFA in IMF [57]. The
high MUFA and SFA content positively affects the firmless/oilness of adipose tissue

and the oxidative stability of meat [2].

Furthermore, FABP4 is also involved in the delivery of FFA to the muscle in order to
fulfill the required energy [58]. Thus, the higher expression levels of FABP4 in adipose
tissue observed in animals inheriting the lIberian allele (FABP4g.2635insC) may be
affecting the transport of FA to the muscle and therefore determining the differences
in FA composition observed among Iberian and Landrace breeds [1]. This agrees with
the impaired FA uptake on muscle tissue observed in FABP4"" and FABP5”" knockout
mice [58]. In FABP-deficient mice, an increase in fatty acid oxidation and energy
expenditure has been described [59]. This agrees with our previous RNA-Seq study in
liver [60], adipose tissue [57], and muscle [61] in which extreme BC1_LD animals for
IMF FA composition were analyzed. Animals with a higher proportion of MUFA and
lower percentage of PUFA, exhibited a lower expression of B-oxidation genes in liver,
an increased expression of lipogenic genes in adipose tissue and a metabolic shift

towards lipogenesis and glucose uptake in muscle [61].

Finally, FABP4g.2634_2635insC polymorphism is located in a target binding site for
PPARG, a well-known regulator of adipogenesis and FA metabolism. In a previous
study of our group we identified the PPARG gene as a major regulator for fatness and

growth traits in the same population [62]. PPARG has largely been reported as an
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essential transcription factor for adipogenesis that modules FABP4 gene expression
[63,64,65]. Furthermore, PPARG is known to be involved in lipid metabolism and it is
selectively expressed in pig adipose tissue. In mice, PPARG-knockdown (isoforms 1 and
2) inhibits adipogenesis and FABP4 gene expression [66]. In addition, other studies
have reported evidences for PPARG regulation via enhancing an intron 1 binding site
[67]. Here, we hypothesize that PPARG may regulate FABP4 expression via enhancing
an intron 1 binding site. However, we cannot discard other polymorphisms on this

gene as causative for the SSC4 QTL and further functional studies are required.
Conclusions

Association and QTL scan results showed that FABP4:9.2634 2635insC was the most
significant marker for C16:1(n-7)), C20:3(n-6) FA, and PUFA composition in Longissimus
dorsi muscle. In addition, FABP4:9.2634_2635insC polymorphism was associated with
FABP4 gene expression in BF, but not in muscle. These results suggest the
FABP4:9.2634_2635insC polymorphism as being a strong candidate polymorphism for
FA composition in muscle. The FABP5:9.3000T>G SNP was the most significant marker
for IMF percentages of C18:1(n-9), C18:2(n-6), and MUFA. However, this variant was
not associated with FABP5 gene expression, being FABP5 gene expression in muscle

regulated by other genomic regions located on SSC4, SSC6, SSC9 and SSC13.
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Figure 1. FA composition in IMF and BF classified according to genotypes of
FABP4:9.2634_2635insC and FABP5:g.3000T>G polymorphisms. (A) FA content in
muscle and FABP4:9.2634 2635insC genotypes, (B) FA content in BF and
FABP4:9.2634_2635insC genotypes, (C) FA content in muscle and FABP5:9.3000T>G
genotypes, and (D) FA content in BF and FABP5:9.3000T>G genotypes. Data represent
means * standard error of mean (SEM). Values with different superscript letter (a, b
and c) indicate significant differences between groups (p-value < 0.05) as determined

by a linear model in R.
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Figure 2. FABP4 and FABP5 gene expression in muscle and backfat classified according
the FABP4:9.2634_2635insC and FABP5:9.3000T>G genotypes. Data represent means *
standard error of mean (SEM). Values with different superscript letter (a, b and c)
indicate significant differences between groups (p-value <0.05) as determined by a

linear model in R.
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Figure 3. Plot of FABP4 and FABP5 gene expression GWAS in BF and muscle tissues.
Positions in Mb are relative to Sscrofa10.2 assembly of the pig genome. Plot of eGWAS
for (A) FABP4 gene expression in muscle (B) FABP4 gene expression in BF (C) FABP5
gene expression in muscle and (D) FABP5 gene expression in BF. Horizontal dashed line

indicates the genome-wide significance level (FDR-based g-value < 0.05).
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Tables

Table 1. Association of FABP4:9.2634_2635insC and FABP5:9.3000T>G polymorphisms

with FA composition traits in IMF and backfat tissues.

Fatty Acid

Polymorphism association

Composition (%) FABP4 Additive genetic FABP5 Additive genetic Mean (SD)
.2634_2635insC effect .30007>G effect
Intramuscular
C16:0 1.77x10°" 0.418 8.56 x10 0.418 22.568 (1.205)
C16:1(n-7) 1.29x10°"" 0.195 3.55x107 0.102 2.498 (0.389)
C18:1(n-7) 1.00x10°" 0.144 1.34x1072 0.118 3.883 (0.359)
€18:1(n-9) 4.47%107 0.685 7.61x10™* " 1.223 40.065 (2.892)
C18:2(n-6) 1.25x10°3" -0.929 9.71x10™"" -1.020 10.394 (2.482)
€20:3(n-6) 1.21x10"" -0.046 2.36x10° -0.040 0.274 (0.131)
MUFA 8.22x10°" 0.981 3.24x10° 7 1.469 47.951 (3.193)
PUFA 1.58x10°" -1.290 2.48x10°" -1.333 13.405 (3.444)
Backfat
C16:0 4.22x10*" 0.454 6.86x10" 0.000 22.463 (1.163)
C18:1(n-9) 2.89x10" 0.205 5.59x10°" 0.564 41.997 (1.839)
C18:2(n-6) 4.65x10* " -0.674 4.93x10° -0.409 13.853 (1.762)
C18:3(n-3) 5.34x10°" -0.031 3.59x10" -0.011 0.745 (0.106)
€20:3(n-6) 7.99x10°3" -0.023 1.58x10" -0.013 0.718 (0.080)
MUFA 2.70x10" 0.227 9.19x103" 0.552 45.393 (1.943)
PUFA 3.98x10™" -0.738 5.70x10 -0.430 15.429 (1.891)

*p-values<0.01 ; **p-values<0.001 ; ***p-values<0.0001




PAPERS AND STUDIES

Table 2. QTL analysis and likelihood ratio tests comparing the QTL and gene
polymorphism effect (FABP4-FABP5 genes).

Eatty Acid QrL® QTL + Gene polymorphism”
Yy I
i FABP4 FABPS
Composition (%) | pgs (cM)* Pan pQTLb
g.2634_2635insC g.3000T>G
Intramuscular fat
C16:1(n-7) 4554  591x10° 8.31x10* """ 1.65x10°""
€18:1(n-9) 50 3.34x10* ™ 3.34x10™ 7.55x10™* "
C18:2(n-6) 34-71 3.25x10° """ 3.23x10° 7 1.32x10™""
€20:3(n-6) 50 3.46x10" " 1.16x10" 1.11x10*™
PUFA 37-53 4.64x10°"" 5.08x107 1.62x10°"
MUFA 36-57 3.88x10° " 1.89x107" 3.52x10° "
Backfat
C18:2(n-6) 48-50 2.11x10™*"" 2.84x10* ™" 5.59x10™ "
PUFA 48-50 2.05x10™* ™" 1.96x1072" 5.06x10* "

? A classical QTL model (1)

® A model including both QTL and gene polymorphism effects. For each trait, only the most significant of the
FABP4:9.2634_2635insC and FABP5:9.3000T>G polymorphisms was included in the model. Likelihood ratio tests for

QTL and SNP effects were calculated comparing the appropriate full and reduced models.
©QTL position in cM; FABP4 and FABP5 genes are located at 50 cM in the linkage map.

* p-value <0.05, **p-value < 0.01, ***p-value < 0.001.
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Additional files

Additional file 1: Table S1. Markers in SSC4 for QTL scan analysis and their position in

the linkage map (cM) and the physical map (bp).

Additional file 2: Table S2. Primers used for FABP4 and FABP5 gene expression
quantification by RT-qPCR.

Additional file 3: Figure S1. QTL scan with significant QTL regions. QTL scan for
C16:1(n-7), C18:1(n-9), C18:2(n-6) and C20:3(n-6) FAs, PUFA and MUFA IMF content
and C18:2(n-6) FA and PUFA backfat content.

Additional file 4: Figure S2. Multi-alignment of porcine, cattle, and human FABP4 gene
sequence of exon 1 and proximal intron 1. This region harbours
FABP4:9.2634_2635insC polymorphism and PPARG putative transcription factor
binding site affected by this polymorphism. The grey dotted box indicates FABP4 exon
1 region, the black dotted box indicates the PPARG putative transcription binding site,

and the black continuous box FABP4:9.2634_2635insC polymorphism in intron 1.
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Abstract

Background: Besides having an impact on human health, the porcine muscle fatty acid profile determines meat quality and
taste. The RNA-Seq technologies allowed us to explore the pig muscle transcriptome with an unprecedented detail. The aim
of this study was to identify differentially-expressed genes between two groups of 6 sows belonging to an Iberian X
Landrace backcross with extreme phenotypes according to FA profile.

Results: We sequenced the muscle transcriptome acquiring 787.5 M of 75 bp paired-end reads. About 85.1% of reads were
mapped to the reference genome. Of the total reads, 79.1% were located in exons, 6.0% in introns and 14.9% in intergenic
regions, indicating expressed regions not annotated in the reference genome. We identified a 34.5% of the intergenic
regions as interspersed repetitive regions. We predicted a total of 2,372 putative proteins. Pathway analysis with 131
differentially-expressed genes revealed that the most statistically-significant metabolic pathways were related with lipid
metabolism. Moreover, 18 of the differentially-expressed genes were located in genomic regions associated with IMF
composition in an independent GWAS study in the same genetic background. Thus, our results indicate that the lipid
metabolism of FAs is differently modulated when the FA composition in muscle differs. For instance, a high content of PUFA
may reduce FA and glucose uptake resulting in an inhibition of the lipogenesis. These results are consistent with previous
studies of our group analysing the liver and the adipose tissue transcriptomes providing a view of each of the main organs
involved in lipid metabolism.

Conclusions: The results obtained in the muscle transcriptome analysis increase the knowledge of the gene regulation of
IMF deposition, FA profile and meat quality, in terms of taste and nutritional value. Besides, our results may be important in
terms of human health.
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According to the Food and Agriculture Organization (FAO) [7],
pork is the major source of meat intake by human, accounting for
the 43% of the consumed meat worldwide. The taste and the
quality of the cooked and the cured meat products depend on the
oxidative stability of the muscle which is related to the fatty acid
(FA) composition [8,9]. Furthermore, it is well known that genetic
and environmental factors such as diet, are responsible for FA
composition variation [10]. Besides its influence on meat taste, the
FA composition in muscle has taken additional importance due to

Introduction

High-throughput sequencing technologies are rapidly evolving
and its application to transcriptome analysis (RNA-Seq), with the
adapted bioinformatic tools, allow the exploration of the
transcriptome in an unprecedented manner in terms of accuracy
and data insight [1]. In addition, RNA-Seq technology is useful,
not only to detect variation in gene expression patterns, but also to
identify new isoforms, splicing events, and different promoter and

polyadenylation signal usage. Currently, only a few RNA-Seq
studies have been conducted in livestock species such as pigs [2-6].
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their nutritional value and human health-related benefits [11,12],
particularly for its effects on human diseases such as cancers,
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coronary heart diseases and atherosclerosis [11]. It has been
reported that omega-3 FAs, such as a-linolenic acid (C18:3 n-3),
are associated with the reduction of low density lipoprotein (LDL)
cholesterol and blood triacylglycerols, as well as with the
modulation of immune functions and inflammatory processes
[13,14]. Artificial selection to increase meat production in pigs has
caused a reduction of intramuscular fat (IMF) and changes in meat
FA composition in some breeds. Hereby, there is an increasing
interest in the pork industry on producing meat products with a
higher IMF content and with a healthier FA profile, while
maintaining a reduced amount of backfat [15].

In a recent genome-wide association study (GWAS) [16],
genomic regions associated with the IMF (Longissimus dorst) FA
composition were identified in a backcross population (BC1_LD;
25% Iberian and 75% Landrace). A combined linkage QTL scan
and GWAS performed in the same backcross revealed significant
pleiotropic regions with effects on both IMF and backfat tissues
[17,18]. Moreover, the transcriptome of the other two major
organs regulating lipid metabolism, liver and adipose tissue
(backfat), have been studied using RNA-Seq in the BC1_LD
animals [4,5]. In these studies, a shift towards the oxidation of FAs
in liver [4] and an inhibition of de novo lipogenesis in adipose tissue
[5] was observed in animals with higher content of polyunsatu-
rated FA (PUFA). Since the adipose and liver tissues have
previously been analysed using animals belonging to the same
population, with the addition of the muscle transcriptome we aim
to have a more complete view of the genetic regulation of lipid
metabolism in pigs [4,5]. The goal of the current study was to
identify differentially-expressed genes and pathways in the
Longissimus dorst muscle of Iberian x Landrace backcrossed pigs
with extreme phenotypes for muscle FA profile to better
understand the differences in this meat quality trait.

Results

Phenotypic differences among the analysed animals

In a previous work [4], a Principal Component Analysis (PCA)
was performed to select animals of an Iberian x Landrace
backcross (BC1_LD) with extreme phenotypes for IMF FA
composition. Using the same classification and the first principal
component, six females belonging to the extreme High (H) group
and six from the Low (L) group were selected for muscle RNA-Seq
analysis. Animal selection considered the parental genetic diversity
according to the pedigree. Significant statistical differences (P-
value <0.05) were identified between the H and L groups in 18
out of 26 evaluated traits (Table 1). The H group had, in
comparison to the L group, a higher content of PUFA including
linolenic (C18:2 n-6), a-linolenic, eicosadienoic (C20:2 n-6),
eicosatrienoic (C20:3 n-6) and arachidonic (C20:4 n-6) FAs.
Conversely, the L group had a higher content of monounsaturated
FA (MUFA) like palmitoleic (C16:1 n-7) and oleic (CG18:1 n-9) FAs
and saturated FAs (SFA) such as myristic (C14:0) and palmitic
(C16:0) FAs. The two groups of pigs did not differ significantly in
either IMF content or backfat thickness.

Transcriptome analysis of swine muscle tissue

As described above, the Longissimus dors: (LD) muscle transcrip-
tome was sequenced in twelve sows (H=6, L =6) with extreme
phenotypes for intramuscular FA composition. A total amount of
787.5 M of 75 bp paired-end reads were acquired from the RNA-
Seq experiment. Sequence alignment was performed against the
reference pig genome (Sscrofal0.2) by using Tophat [19]. About
85.1% (76.5%—86.6%) of reads were mapped to the reference
genome, of which 14.5% (12.4%-16.1%) did not map to unique

PLOS ONE | www.plosone.org

Exploring the Porcine Muscle Transcriptome

genomic locations. A total of 85.1% (84.0%—-87.6%) of the
mapped reads correspond to annotated genes, 79.1% (77.5%—
84.1%) of them were located in exons and 6.0% (3.6%-6.8%) in
introns. The remaining 14.9% (12.4%—16.0%) of reads mapped to
intergenic regions, indicating that they were not annotated in the
reference genome (Table S1).

The transcripts generated when assembling the short reads with
Cufllinks [20] resulted in a mean of 43,255 transcripts expressed in
muscle (Table S2). Transcripts were classified in different
categories, being the most abundant the exonic transcripts
(60.4%), the putative new isoforms (20.5%) and the intergenic
transcripts (10.1%) (Table S2). A total of 9,887 new isoforms were
identified corresponding to 9,805 known genes.

Transposable elements identification and novel coding
gene discovery

The percentage of interspersed repeats identified with the
Repeat Masker [21] in the intergenic transcripts was about 34.5%.
Moreover, SINEs and LINEs were the most abundant repetitive
clements identified (14.1% and 14.9%, respectively) (Table S3).

With the aim of improving the current porcine genome
annotation, we took into account the intergenic transcripts
identified with cufflinks (a mean of 4,440 transcripts) to determine
whether these transcripts potentially codified for proteins. A total
of 2,372 putative proteins were predicted by Augustus [22]
corresponding to non-annotated transcripts of the Sscrofal0.2
genome assembly version. Among the 2,372 novel predicted
proteins, only 1,406 (59.2%) had at least one orthologous gene
identified with BLASTP option of Blast2GO, representing a total
of 577 known genes (Table S4) [23]. These proteins corresponded
to: 720 Sus scrofa, 17 Homo sapiens and 247 Bos taurus in silico
predicted protein, and 476 Sus scrofa, 933 Homo sapiens, and 403 Bos
taurus known proteins. The pig species was the only one showing a
higher percentage of computationally predicted protein (60.2%) in
comparison to known proteins (39.8%).

Moreover, 918 of the predicted novel proteins were successfully
annotated with Blast2GO [23]. To summarize the functional
annotation, a GO Slim analysis was performed. The most relevant
molecular functions identified were “protein binding” (25%), “ion
binding” (19%), “nucleic acid binding” (17%), “small molecular
binding” (10%) and, interestingly, “lipid binding” (2%). These
new transcripts were mainly involved in the following biological
processes: “‘primary metabolic process” (9%), “cellular metabolic
process” (9%), “macromolecule metabolic process” (8%) and
“regulation of biological process” (7%). Using the Enzime code
and KEGG, the main metabolic pathways represented were the
“phosphatidylinositol signalling system” (12 sequences), “inositol
phosphate metabolism™ (11) and the “pyrimidine (9) and purine (8)
metabolism”.

Differential gene expression analysis

A high correlation (r=0.98, P-value <2.2x10~'%) between H
and L groups in the mean gene expression was found, showing
that most of the genes had a similar behaviour. A total of 11,945
transcripts were used to perform the differential expression
analysis after filtering. Using EdgeR program [24], 314 genes
were identified as significantly differentially expressed between H
and L groups. Whereas, employing DESeq [25], 208 genes were
detected. Figure 1 shows the P-value distribution and how among
the transcripts accepted as differentially expressed the selected cut-
off of P-value <0.01 is clearly departing from the expected P-value
(equivalent to a FDR =0.12).

A total of 131 genes (Table S5) overlapping in both analyses
were selected as differentially expressed between H and L groups
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and, thereafter, used for pathway analysis (Figure 2). Fifty genes
had a higher expression and 81 a lower expression in the H group
(in comparison with L group). Remarkably, eighteen (CLCA4,
ANGPTI, PLERKHHI, SDR16C5, PIK3RI1, INTU, MAL2, NCEH],
PLN, C401f29, FABP3, TBX3, MCTI, ESFI, POLR3GL, DBT,
Coorf165 and CHACI) of the 131 genes were also present in the
annotated QTL intervals of a GWAS study for the IMF FA profile
performed in the same population [16]. Three of these genes
(PIK3RI1, NCEHI and FABPS3) have been directly related with lipid
metabolism [26], being clear candidate genes to study the genetic
contribution of IMF FA composition. Intriguingly, only two
(Coorf165 and CHAC]I) of the 18 genes were over-expressed in the
H group. Moreover, two of the differentially-expressed genes in
muscle (AQP7 and FOS) were also identified as differentially
expressed in liver [4], and seventeen of them (AQP4, SCD,
PLERKHBI, CTSF, CIDEC, ALDOC, CXCL2, KIAA0408, SLPI, ALB,

PLOS ONE | www.plosone.org

Table 1. Mean comparison between High and Low groups (six animals per group) of the traits included in the principal
component analysis (PCA).

Characters H Mean L Mean Significance P-value
Carcass quality

Carcass weight (CW) (kg) 66.22+10.52 70.50*+7.91 NS 4.44x107"
Ham weight (HW) (kg) 18.79%+2.32 18.97+2.41 NS 8.96x10~"
Shoulder weight (SW) (kg) 6.6+0.95 6.32+0.97 NS 6.16x107"
Intramuscular fat (IMF) (%) 1.94£0.65 1.69£0.64 NS 525x107"
Fatty acids in intramuscular fat

Saturated FA®

Myristic acid (C14:0) 1.11£0.12 1.28+0.12 * 3,08x1072
Palmitic acid (C16:0) 21.29+0.57 24.16*0.54 X 435%107°
Heptadecanoic acid (C17:0) 0.35*0.06 0.20+0.03 HHx 3.09x107*
Stearic acid (C18:0) 13.50%0.94 14.16x1.11 NS 291x107"
Arachidic acid (C20:0) 0.25+0.09 0.23+0.05 NS 5.83x107"
Monounsaturated FA®

Palmitoleic acid (C16:1 n-7) 2.33+0.30 2.97+0.41 * 1.03x10 2
Heptadecenoic acid (C17:1) 0.33+0.08 0.22+0.05 * 2.04x1072
Oleic acid (C18:1 n-9) 36.78%3.10 42.77+1.07 ** 1.18x1073
Octadecenoic acid (C18:1 n-7) 3.85+0.20 4.14+0.27 NS 6.29%102
Eicosenoic acid (C20:1 n-9) 0.82+0.13 0.82+0.07 NS 9.95x107"
Polyunsaturated FA®

Linoleic acid (C18:2 n-6) 13.70+1.30 6.83+0.40 *hx 2.14x1077
a-Linolenic acid (C18:3 n-3) 1.14£0.42 0.47+0.07 ** 323x10°3
Eicosadienoic acid (C20:2 n-6) 0.61+0.16 0.38+0.05 ** 8.39x107°
Eicosatrienoic acid (C20:3 n-6) 0.42+0.17 0.15+0.02 ** 3.58x10 >
Arachidonic acid (C20:4 n-6) 2.79+1.26 0.76+0.18 ** 2.96x1073
Metabolic ratios

Average Chain Length (ACL) 17.44%+0.02 17.37+0.02 HHx 2411077
Saturated FA (SFA) 36.49+1.08 40.02+1.28 *xx 420x10™*
Monounsaturated FA (MUFA) 44.49+2.90 51.21+1.41 Hxx 467x10"*
Polyunsaturated FA (PUFA) 18.67+2.75 8.59+0.53 *x% 495%x10°°
Peroxidability index (PI) 30.92+6.66 13.53+1.02 Hxx 8.60x10°
Double-bond index (DBI) 0.44+0.08 0.19+0.01 Hxx 2.85x107°
Unsaturated index (Ul) 0.89+0.06 0.70+0.01 *EE 1.82x107°
NS: P-value >0.05; * P-value <0.05; ** P-value <0.01; *** P-value <0.001

*The percentage of each FA, relative to the total FA

doi:10.1371/journal.pone.0099720.t001

C14H100f116, ITPR2, TRIP10, BANFI, HIFIAN, CHACI and
FHL3) were identified as differentially expressed in adipose tissue
[5]. In addition, three of the differentially-expressed genes in our
analysis (ATF3, ENAH and SLPI) were also identified in a muscle
microarray study of extreme animals for FA composition from the
same backcross [27]. Other genes such as DNAJA4, ANKRDI,
MYHI10 and TNFRSFI124 were also common, but they were only
detected by the DESeq program [25] in the RNA-Seq data.

Functional analysis

With the aim of having a more complete functional view of our
differentially-expressed genes in the H and L groups, we used
Babelomics [28] and Ingenuity Pathways Analysis [29] programs,
who have related capabilities but use different databases. The top
canonical pathways overrepresented according to IPA were
related with nitric oxide signalling in the cardiovascular system
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Figure 1. Q-Q plot representing the DESeq [25] P-value
distribution of the differentially expression analysis. The
expected distribution of the P-values is indicated with a red line,
whereas black points represent the observed distribution. The selected
cut-off is represented with a green discontinuous line (-log10 (P-value)
>2).
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(7 genes, P-value =7.75x1077) and endothelial nitric oxide
synthase signalling (eNOS, 8 genes, P-value =2.34x10”°%. On the
other hand, using Babelomics we observed an overrepresentation
of lipids and lipoproteins metabolism (6 genes, P-value
=1.64x107%, and also the peroxisome proliferator-activated
receptors (PPAR, 4 genes, P-value =7.25x10™% and the insulin
(5 genes, P-value =1.00x10"?) signalling and the hemostasis (7
genes, P-value =1.64x107% pathway (Table 2).

Among the top molecular and cellular functions significantly
overrepresented when comparing H relative to L groups with
Babelomics, we identified the response to organic substance (18
genes, P-value =3.8x1077), the muscle organ development (5
genes, P-value =3.8x107°), the energy derivation by oxidation of
organic compounds (5 genes, P-value =1.0x10"% and the
response to hormone stimulus (9 genes, P-value =2.6x107%,
Whereas with IPA, the most relevant functions were involved in
lipid metabolism (30 genes, P-value =1.04x10"%), molecular
transport (36 genes, P-value =1.04x10""%), small molecule
biochemistry (47 genes, P-value =1.04x107°%, cell death and
survival (38 genes, P-value =1.55x107°), carbohydrate metabo-
lism (30 genes, P-value =2.25x107°), energy production (10
genes, P-value =5.8x107%) and skeletal and muscular system
development and function (23 genes, P-value =247x10"%
(Table S6).

Among the related specific functions for lipid metabolism, the
top molecular functions identified with IPA were the oxidation
(ACADVL, ACOX2, FABP3, PLINI, PLIN5, PON2, SCD; P-value
=3.59x10™", accumulation (ACADVL, AQP7, FH, IDHI, PLINI,
PON2, RETSAT, SCD; P-value =7.90x10""), synthesis

¢ Lipid Metabolism
e Carbohydrate Metabolism

w
* Lipid and Carbohydrate Metabolism
Muscle Development
* Others
el
o . .

Expression(Log[2]Fold_Change)
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Figure 2. Plot of the 131 differentially-expressed genes identified between the two groups High and Low. X-axis values correspond to
base mean expression values and y-axis values are the log2(fold change). The colour for the differentially-expressed genes is related to their function
in lipid metabolism (red), carbohydrate metabolism (blue), both lipid and carbohydrate metabolism (orange), muscle development (green) or others

(black).
doi:10.1371/journal.pone.0099720.g002
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Table 2. Summary of the most significantly-overrepresented pathways of the differentially-expressed genes in muscle between

ITPR2, PLEK, TF, ALB

Babelomics IPA

Category Genes P-value Category Genes P-value

Metabolism of Lipids and ~ SCD, ACADVL, 5.12x107* Nitric Oxid Signalling in the BDKRB2, PIK3R3, PRKG1, 7.75x1077

Lipoproteins ACOX2, IDH1, IDI1, ALB Cardiovascular System PLN, ITPR2, PIK3R1, ATP2A2

Alanine, Aspartate and ABAT, GOT1, ASNS 6.38x10~* eNOS Signalling BDK4B2, PIK3R3, AQP7, PRKG1, 2.34x107°

Glutamate Metabolism ITPR2, PIK3R1, CHRNAY, AQP4

PPAR Signalling Pathway ACOX2, AQP7, FABP3, 7.25x107* Clathrin-mediated PIK3R3, ALB, CD2AP, TF, PIK3R1, 295x107°
SCD Endocytosis Signalling TFRC, ITGB6, FGF1

Insulin Signalling Pathway  GYS2, PIK3R1, TRIP10, 1.00x1073 ILK Signalling PIK3R3, FOS, RND3, PIK3R1, 295x10°°
PIK3R3, PPP1R3C ITGB6, MYL6B, MYH7B, ACTN3

Hemostasis ANGPT1, PIK3R1, ALDOA, 1.64x102 CXCR4 Signalling PIK3R3, FOS, RND3, ITPR2, 479x107°

PIK3R1, MYL6B

doi:10.1371/journal.pone.0099720.t002

(ACADVL, ACOX2, ALB, BDRRB2, CNTFR, FABP3, FGFI, FOS,
IDII, PIK3RI, PLINI, PON2, SCD; P~alue =2.28x107%),
concentration (DUSPI, EXTLI, FABP3, FOS, IDHI, NCEHI,
PLINI, PON2, PPPIR3C, SCD; P-value =2.48x10"") and
homeostasis (ACADVL, FABP3, GOT1, NCEHI, PIK3R1, PLINI,
SCD; P-value =1.96x10"% of lipids (Table S7). Other related
pathways were identified such as concentration of bile acids (ALB,
ATF3, SCD; Pvalue = 3.87x10™%), obesity (ABAT, AQP7 ARID5B,
ATF3, DESPI, HBEGF, IDHI, PLINI, RETSAT, SCD; P-value
= 5.76><1074), and insulin resistance (ACOX2, ALB, AQP7,
ATP242, FGFI, PIK3RI, PON2, PPPIR3C, SCD; P-value
=5.41x107°% and sensitivity (FABPS, HIFIAN, PIK3R1, SCD; P-
value =7.39x107°). In addition, interesting functions such as
heart discase, blood pressure, glucose tolerance, synthesis of
carbohydrate and glucose metabolism disorder, biogenesis of
cholesterol, differentiation of muscle cells and adiposity were also
identified (Table S7).

Finally, a total of nine direct and nine indirect networks were
obtained with IPA (Table S8). The top direct network was
associated with cell death and survival, cellular development,
connective tissue development and function (Figure 3). It showed a
score of 55 and contained 29 molecules (Table S8). The top
indirect network was related to metabolic disease, lipid metabolism
and molecular transport (Figure S1). A total of 21 molecules were
associated to this network having a score of 36 (Table S8).

Discussion

To date, muscle transcriptome analyses concerning meat quality
in swine have mainly been conducted using microarrays [3,27,30—
32]. Compared with microarrays, RNA-Seq enables to determine
the transcript abundance with a larger dynamic range of expression
levels, it is not limited by the available genomic sequencing
information during microarray production and can provide
information about new isoforms. However, the main RNA-Seq
drawback when compared with microarrays is that the analysis
relies on the current pig genome assembly (in this study 10.2), in
which interesting genes involved in lipid metabolism are still
incorrectly annotated or not present. Therefore, the improvement
of the annotation is transcendental for further RNA-Seq studies.

Muscle transcriptome description

In the present study, using RNA-Seq analysis we were able to
map a high percentage of reads to the current pig genome
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assembly (Sscrofal0.2). Our percentage of mapped reads (85.1%)
was similar to the described in the pig adipose tissue transcriptome
(80%—-87%) [5] performed with the Sscrofal0.2 annotation
version, however it was higher than the percentage found in the
plg muscle transcriptome (64,8%) [6] performed with the
Sscrofa9.2 version or the pig liver transcriptome (71.4%—77.7%)
[4] using the Sscrofa9.61 annotation version. The high amount of
transcripts mapping to intergenic regions and the novel coding
gene discovery, showing a higher percentage of computationally
predicted proteins (60.2%) versus known proteins (39.8%) in pig in
comparison to other species such as bovine and human, reinforces
the need to improve the current pig annotation. Similar results
were shown in the porcine liver [4] and adipose tissue [5]
transcriptomes, in which the 86.0% and 62.5% of the novel
proteins identified respectively were computationally-predicted. As
expected, the major overlap of predicted novel proteins was
between muscle and adipose tissue [5] because unlike the liver and
gonads [2,4], both analyses were performed using the most recent
annotation of the genome. Hence, a total of 40% novel predicted
proteins in the muscle tissue transcriptome have also been found in
adipose tissue, either realised with the Sscrofal(.2. Of the 2,372
predicted novel proteins, 972 were validated i silico being present
in at least one of the three tissues compared [2,4,5]. Interestingly,
36 of the novel predicted proteins were also identified in four
different tissues (liver [4], gonads [2], adipose [5], and muscle
tissue) (Figure 4). When analysing the main metabolic pathways for
the novel transcripts identified, the “phosphatidylinositol signalling
system” and “inositol phosphate metabolism” were among the
most represented categories. The phosphatidylinositol signalling
system plays a critical role in the regulation of diverse processes
such as muscle contraction, cell secretion, cell growth and
differentiation [33]. Moreover, phosphatidylinositol is an essential
component of the lipid membrane, where the total amount of
phospholipids remains fairly constant, or increases little, as the
animal increases in fatness [9,34]. Not surprisingly, these pathways
were also identified when analyzing the adipose tissue novel
transcripts [5]. Interestingly, the phosphatidylinositol signalling
was also found within the most significantly overrepresented
pathways in animals differing in FA composition in an study using
microarrays [35]. Finally, we detected a high percentage (34.5%)
of new repetitive elements present in the porcine genome. This
result was similar to those obtained in adipose tissue (36%) using
the Sscrofal0.2 genome annotation, but higher than those
obtained in gonads (7.3%) and liver (approximately 5.8-7.3%)
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that used an older version of the pig genome assembly [2,4,5].
This higher content of repetitive elements can be explained by the
improvement of the current assembly (Sscrofal0.2) of the pig
genome being the repetitive regions the most difficult to assemble

[36].

Differential Expression analysis

Apart from describing the transcriptome of the Longissimus dorst
muscle, this study aimed to identify genes that can be implicated in
determining the phenotypic differences of animals with extreme
IMF FA composition belonging to an Iberian x Landrace
backcross (BC1_LD). Iberian pigs are a local Mediterranean
breed, and in comparison with Landrace, they have an extreme
trend to obesity, with a higher IMF content and a strongest
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development of backfat tissue [8]. In contrast to the Iberian pigs,
commercial breeds such as Landrace have suffered a strong
selection towards a lean meat content, muscularity and enhanced
reproduction [37]. Moreover, these two breeds are extreme for FA
composition, showing the Iberian pigs a higher content of SFA and
MUFA (specially C16 and C18:1) and the Landrace pigs a higher
content of PUFA [8,38]. In our study, animals belonging to L
group had a higher content of SFA and MUFA similarly to the
Iberian pigs, whereas animals from H group had higher content of
PUFA, as observed in the Landrace animals. Thus, this animal
material suits very well to studies aiming at identifying the
molecular factors influencing the FA metabolism in pigs.

For the differential-expression analysis we intersected the two
lists of genes, obtained by DEseq [25] and EdgeR [24], to obtain a
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single list in order to avoid false positives [39]. For the same reason
we used a strict P-value =0.01, based on the Q-Q plot and
equivalent to a FDR =0.12, and a fold change =1.2 as used in the
adipose transcriptome analysis [5,40]. We identified a lower
number of differentially-expressed genes with DESeq (208 genes)
when compared to EdgeR (314 genes) what is in accordance with
the observations reported by Soneson & Delorenzi [40]. DESeq
uses conservative default settings and performs well when outliers
are introduced, having a better false discovery rate (FDR) control
for large sample sizes than EdgeR [40]. Notice that some relevant
genes identified using microarrays in the muscle transcriptome of
animals extreme for FA metabolism [27,35] such as ACACA,
FABP4 or PPARGCIA remained incorrectly or non-annotated in
the Sscrofal0.2 annotation version. On the other hand, interesting
genes detected in our RNA-Seq study that may determine
differences in FA composition in muscle such as ChREBP, G152,
PLINI, PLIN5 and AQP7 could not be detected in microarray

studies since probes for these genes were not included.

Differentially modulated metabolic pathways between
groups

Among the top canonical pathways overrepresented between
both groups of animals, we found hemostasis, nitric oxide (NO),
metabolism of lipids and lipoproteins and PPAR and insulin
signalling pathways (Table 2). Remarkably, most of the genes
represented in these pathways were down-expressed in the H
group. When compared with a previous study using microarrays of
animals of BC1_LD population [27], the insulin and the calcium
signalling, the regulation of the cytoskeleton, the focal adhesion
dynamics, the leukocyte accumulation and cardiomyopathies-
related pathways (Table S7) were found in common. Interestingly,
our analysis identified other relevant pathways related to lipid
metabolism, PPAR and NO signalling. On the other hand, most of
the main overrepresented pathways identified in our study were
also present in Duroc animals displaying divergent MUFA and
PUFA fatty acids percentages (Table 2) [35], thus supporting a

PLOS ONE | www.plosone.org

Exploring the Porcine Muscle Transcriptome

relevant role of these metabolic pathways in determining
intramuscular FA composition. However, a feedback loop in
which FA composition modifies these metabolic pathways that in
turn cause a change in FA composition cannot be ruled out as we
described below (i.e. differences in C16:1 n-7 FA or PUFA).
Besides, in our analysis two other interesting pathways were found:
(i) the clathrin-mediated endocytosis signalling, which is used for
molecules such as low density lipoproteins, transferrins or growth
factors and (i) the C-X-C chemokine receptor type 4 (CXCR4)
signalling, involved in the endocytosis of the glucose transporter
protein 4 (GLUT4), specially in myocytes [41].

In the following sections a detailed explanation of differentially-
expressed genes belonging to each of the main overrepresented
pathways will be discussed.

e NO and insulin signalling pathways. The skeletal muscle
is a target organ for the insulin-induced glucose uptake and for
the maintenance of glucose homeostasis in blood [42]. Insulin
acts in the carbohydrate metabolism facilitating the glucose
diffusion into adipose and muscle cells via glucose transporter
proteins (GLUT) and stimulates FA synthesis and the storage
of triglycerides by the esterification of glycerol phosphate.
Notably, the C16:1 n-7 FA, observed to be decreased in the H
group (Table 1), can act as a lipokine that jointly with the
expression of the peroxisome proliferator-activated receptor gamma
(PPAR-y) can strongly stimulate the muscle insulin action
[43,44]. Interestingly, PPAR-y and solute carrier family 2, member 4
(SLC2A44; also called GLUTH) were identified as over-expressed
in the L group animals when using EdgeR program.
Supporting these results, Canovas et al. [35] identified a higher
expression of myocyle enhancer factor 24 (MEF24) gene which
upregulates GLUT4 in Duroc animals having a higher MUFA
and SFA content. Furthermore, insulin stimulates eNOS, the
enzyme responsible for synthesizing NO by calcium-indepen-
dent phosphorylation via phosphoinositide 3-kinases (PI3
kinases) and the downstream effector serine/threonine kinase
(Akt) [45]. NO is a signalling molecule synthesized from L-
arginine that plays an important role in regulating energy
metabolism in mammals [46]. It has been reported that a
chronic exposure of NO may decrease whole-body energy
metabolism, increasing the adiposity and obesity [46]. For
instance, PI5 kinases, down-expressed in the H group, have
been reported to be necessary for the insulin-stimulated
glucose uptake and glycogen synthesis, meanwhile, Akt
regulates cell growth and metabolism and it is involved in
glucose transport and lipogenesis (Figure 4) [16,47]. In the
same direction, the glycogen synthase (G1S) gene was down-
expressed in animals belonging to the H group (Figure Sl),
what might be a downstream effect of the Akt pathway [48].
Thus, the GYS inhibition may decrease the synthesis of
glycogen necessary for glucose storage.

e PPAR and metabolism of lipids and lipoproteins
pathways. In concordance with the low glucose-uptake that
seems to occur in the H group of animals, we observed a
down-expression of lipogenic genes most probably due to the
lack of activation of carbohydrate responsive-element binding
protein (CAREBP) [49]. The stearoyl-CoA desaturase (SCD) gene
(Table S5) is responsible for the biosynthesis of MUFA from
SFA, and its deficiency has been associated with lean mice
[50]. Furthermore, polymorphisms in SCD gene have been
strongly associated with FA composition in pigs and cows
[12,51-53]. It has been suggested that an inhibition of this
enzyme produces an increase in fatty acid oxidation through
the inhibition of acetyl-CoA carboxylase (ACACA), regulated via

June 2014 | Volume 9 | Issue 6 | 99720



ChREBP, and de novo lipogenesis [50,54]. Interestingly, the SCD
gene was identified as down-expressed in the adipose tissue of
animals with higher content of PUFA in the Iberian x
Landrace crossbred [5] and over-expressed in animals with
higher IMF accumulation [31,35]. Our results support the
hypothesis of Corominas et al. [5], that suggested that higher
PUFA content in the H group suppresses the CAREBP gene
function in a LXR-dependent manner inhibiting glycolytic and
lipogenic genes. Although not present in the overlapping list
(Table S5), the CAREBP gene was identified as down-expressed
in the H group for EdgeR program.

Another gene whose disruption is associated with lean mice
and was also down-expressed in H group is the perilipin [55].
Perilipins modulate the hydrolysis of triglycerides by hommone-
sensitive lipase (LIPE) [56]. Specifically, perilipin 5 (PLIN5) may
play a role of “master lipolytic regulator” in muscle, and its
over-expression can increase lipid droplet size and triacylgly-
cerol storage [57]. We also identified the lipid transporter Fatty
acid binding protein 3, muscle and heart (FABPS3) and the Aquoporins
(AQP4 and AQP7) as down-expressed in the H group (Table
S4). FABP3 is more expressed in the skeletal muscle than in
other tissues and participates in FA uptake and cytosolic
transport, having a high binding affinity for palmitic, oleic and
stearic acids. Furthermore, FABP3 acts as a transcription factor
in the nucleus for the control of lipid-mediated transcriptional
programs via nuclear hormone receptors or other transcription
factors that respond to lipids [58]. This gene has also been
found in a genomic region significantly associated with FA
composition in a GWAS performed in the Iberian x Landrace
cross, being a clear candidate to explain the differences in FA
composition observed between the two groups of animals [16].
Besides, it has been suggested as a candidate gene for the
control of IMF deposition as it was identified as over-expressed
in animals with higher IMF content [59]. The Aquaporins are
modulated by the PI3K/Akt signalling and they are involved
in glycerol uptake, particularly AQP4 is localized in muscle
fibers and it is important for energy supply in the skeletal
muscle [46,60,61]. The AQP7 which is higher expressed in fat
tissue was also identified in the liver transcriptome study as
being also down-expressed in animals with a higher content of
PUFA [4,61]. Another differentially-expressed gene between
the two groups of animals was the very long-chan specific acyl-CoA
dehydrogenase gene (ACADVL), a PPAR target gene which was
down-expressed in the H group. This gene catalyzes the first
step of the mitochondrial FA B-oxidation pathway, mainly in
muscle, having preference for C16:0, C16:1, C18:0 and C18:1
[62,63]. Moreover, ACADVL deficiency in humans produced a
defective oxidation of oleic FA and knock-out mice for
ACADVL fed in high-fat diet had a decrease in whole body
fat content [64]. Overall, these results agree with a previous
study in which the transcriptome of two groups of Duroc pigs
with different IMF composition was analysed using micro-
arrays and concluded that the IMF accumulation in animals
having more IMF, MUFA and SFA may result from a balance
between uptake, synthesis and degradation of triglycerides
[35].

® Hemostasis. Alterations in fat metabolism play a role in the
development of cardiovascular disease. Not surprisingly, our
data set revealed several differentially-expressed transcripts
which could be classified as potential regulators of hemostasis
(Table S2). For instance, the angiopoietin-1 (ANGPTI) gene
which has been reported to increase vessel formation causing
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an enhanced glucose uptake and also the glycogen and lipid
synthesis [65] was over-expressed in the L. group and present
in a QTL interval of the GWAS for IMF FA profile in the
same population (Table S5) [16]. Furthermore, and consistent
with our results, the angiogenesis promoted by ANGPT'1 has
been reported to increase NO production accompanied by an
activation of the Akt and the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB) signalling pathways
[66,67] (Figure 4). Accordingly, the hypoxia-inducible factor-1,
alpha subumit inhibitor (HIFIAN), which is regulated through the
NF-kB inflammatory pathway and serves as an oxygen sensor
regulating heart’s oxygen supply, was down-expressed in the L
group (Table S5). Thus, the L. group animals having more SFA
and MUFA content may have boosted the angiogenesis and
improved the inflammatory response through the activation of
the ANGPTI gene. A decreased essential PUFA content may
lead to a proinflammatory eicosanoids synthesis and vasocon-
strictors activation as has been reported in other studies [68].
In this direction, an over-expression of genes encoding for the
inositol 1,4,5-triphosphate receptor 2 (ITPR2) protein which
activates the release of Ca(2+) in the vessels acting as
vasoconstrictor and aldosterone A (ALDOA) which increases
blood pressure when activated by angiotensin [69,70] was
observed in L group.

Pig lipid metabolism affected by intramuscular FA
composition

In general, our results show that differences in FA composition
may influence the lipid metabolism determining the phenotypic
variation observed between the two groups of animals. In previous
studies of our group, we observed that in liver [4], a high content
of PUFA (H group phenotype) shifted the metabolism towards the
FA oxidation; meanwhile, in adipose tissue [5] inhibited lipogen-
esis. Accordingly, in other studies analyzing the muscle tran-
scriptome using microarrays a favored FA oxidation and a reduced
fatty acid uptake, lipogenesis and triacylglycerol synthesis was
generally observed in the group with higher intramuscular PUFA
content [27,35]. In our RNA-Seq study in muscle we observed an
inhibition of glucose uptake and lipogenesis in the H group, which
would produce a decrease in the triglyceride storage. Noteworthy,
in adipose and muscle transcriptome analysis, the albumin (ALDB)
gene was identified as over-expressed in animals having a higher
content of PUFA (H group) [5]. The ALB is a long chain FA
transporter that enhances FA mobilization affecting cellular
uptake and also plays an antioxidant function in plasma. In
adipose tissue, we hypothesized that ALB was supplying the FFAs
used for the oxidation in liver in pre-slaughtering fasting
conditions [5]. In the same direction, our results suggested that
in muscle there is also an increased input of FFAs from blood and
adipose tissue in order to fulfil the high-energy requirements in the
H group. We hypothesize that animals having a high content of
SFA and MUFA such as the Iberian pig, which is a rustic and
slow-growing breed, may have an enhanced adaptation to fasting
thanks to their high availability of muscle energy stores. Thus,
selection towards a fast growth in commercial pigs such as
Landrace, may have affected the ability to adapt to food disposal
fluctuations [71].

Implications

In conclusion, the genes identified here as differentially-
expressed between extreme animals, the pathways and the gene
networks, contribute to understand the differences in gene
regulation between the two groups differing in the muscle FA
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composition. The functional analysis showed a different regulation
of the lipid metabolism between groups, being more prone either
to lipolisis or to lipogenesis depending on their FA composition.
Moreover, the enrichment analysis showed that muscle plays a key
role in energy metabolism, mainly in glucose and lipid metabo-
lism, observing that animals having more PUFA, had a shift of the
metabolism towards the lipolisis and also a lower glucose uptake.
There are also evidences that the joint metabolism of the liver,
adipose tissue and muscle may have an integrated role in
determining the final FA composition of muscle. Therefore, the
study of the muscle transcriptome may provide clues to decipher
the genetic basis of meat quality traits. Moreover, this study may
be of high relevance since FA composition in meat has important
consequences in human health [72]. Besides, we observed that
among the DE genes there was an overrepresentation of the
obesity and the insulin resistance pathways. The results here
exposed are particularly interesting because these diseases have a
high prevalence and the pig has been described as a suitable
biomodel for human lipid-related metabolic diseases [73].

Methods

Animal samples and phenotypes

The IBMAP population was originated by the cross of 3 Iberian
boars (Guadyerbas) with 31 Landrace sows [74]. In this study we
used 144 animals from the BCI_LD generation obtained by
crossing five F'1 boars with 26 Landrace sows. Animals were fed ad
libitum with a cereal-based commercial diet (see [8] for diet details)
and slaughtered at 179.8%£2.6 days. Animal care and procedures
were performed following national and institutional guidelines for
the Good Experimental Practices and approved by the Ethical
Committee of the Institution (IRTA- Institut de Recerca i
Tecnologia Agroalimentaries). Samples of the Longissimus dorst
muscle were collected, snap frozen in liquid nitrogen and stored at
—80°C until RNA extraction.

A Principal Component Analysis (PCA) was performed for
characters related with the FA profile in muscle (see [4] for
detailed description of this analysis). Twelve extreme animals were
selected according to the first principal component (6 H and 6 L)
[4]. Only females were taken into account in order to remove the
sex effect on FA composition. The R language [75] was used to
perform the statistical analysis of phenotypic mean comparison
using a linear model.

RNA isolation

Total RNA was isolated from the Longissimus dorst muscle of 12
samples with RiboPure Isolation of High Quality Total RNA
(Ambion, Austin, TX, USA). Total RNA was quantified in a
NanoDrop ND-1000 spectrophotometer (NanoDrop products,
Wilmington, DE, USA) and Qubit (Invitrogen, Carlsbad, CA,
USA). RNA purity and integrity was checked employing a
Bioanalyzer-2100 (Agilent Technologies, Inc., Santa Clara, CA,
USA). All samples had a RNA Integrity Number (RIN) above 8.5.

Paired-end raw sequences (75 bp) were generated using a Hi-
Seq 2000 instrument (Illumina, Inc., San Diego, CA, USA) in
CNAG institute (Centro Nacional de Analisis Genoémico,
Barcelona, Espaiia).

Mapping and annotation

We ran FastQC [76] for the quality control. Indexed reads were
then mapped to the reference pig genome version 10.2
(Sscrofal0.2) and the annotation database Ensembl Genes 67
[77] using TopHat v2.0.1 [19] with an allowance of two
mismatches for each read. The resulting bam files containing the
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aligned sequences, were subsequently merged with Samtools [78].
Reads were annotated using the intersectBed option of BEDtools
[79]. Cufflinks v2.0.2 program [20] was used to assemble the
transcripts with a minimum of 10 reads per alignment. Finally,
Samtools [78] was employed to compute descriptive statistics.

Gene expression quantification and differential-
expression analysis

The number of reads mapping to each gene was determined
with the comp-counts option in Qualimap v5.0 program [80]. We
discarded those genes with a group mean less than 20 counts. We
calculated the Pearson correlation coeflicient between the mean
expression values of the H and L group using the cor.test function of
R. For the differential expression analysis we used DESeq [25] and
EdgeR [24] packages implemented in R. We considered as
differentially expressed between H and L groups those genes
identified by both programs (DESeq and EdgeR) with a fold
change =1.2 and P-value =0.01, the same parameters used in
Corominas et al. [5], these case for both programs. FDR was
calculated using the R package qvalue [81].

Transposable elements and orthology analysis

We used RepeatMasker version open-3.3.0 [21] with the rm-
20120418 database in order to identify repetitive and transposable
elements in the pig muscle transcriptome. We used “quick search”
and “pig” species options and the Search Engine NCBI/
RMBLAST.

Intergenic expressed regions not annotated in the Sscrofal0.2
version assembly were identified using Cuffcompare [82] and
extracted using our own Python and R scripts. Novel putative
proteins were predicted with Augustus program [22]. Afterwards,
using Blast2GO [23], we mapped and annotated the novel protein
coding genes. Using BLASTP option (£-value hit filter 1.00E-6,
annotation cutoff 55, gene ontology (GO) weight 5 and HSP-hit
coverage cutoff 0) we checked their orthology with already
annotated proteins in Homo sapiens, Bos taurus and Sus scrofa protein
databases. The InterProScan specific tool implemented in
Blast2GO was employed to refine the functional annotations.
With the GO Slim options we selected the relevant GO terms
belonging to the cellular component, biological process and
molecular function categories. Parameters were set to 10 for the
seq filter and 20 for node score filter. Finally the ontology level was
set to 3.

Gene ontologies and pathways

The Ingenuity Pathways Analysis software [29] and FatitGO
tools from Babelomics 4.3 [28] were used to identify the most
relevant biological functions and pathways in which the differen-
tially-expressed genes (between the H and L groups) were
involved. IPA, which uses its own private databases, allowed us
to identify biological relevant information, identifying overrepre-
sented pathways using the BH multiple testing correction (FDR) at
P-value <0.05, and generating biological networks. For FatiGO,
we used KEGG [83] and Reactome [84] databases setting the cut-
off FDR <0.1. The Mouse Genome Database (MGD) [26] was
used in order to identify how mutant alleles driven in mice for the
18 identified genes common in GWAS and RNA-Seq analysis
affected the phenotype.

Data Availability

The full data sets have been submitted to NCBI Sequence Read
Archive (SRA) wunder Accession SRP039424, Bioproject:
PRJNA240057.
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Figure S1 Network (indirect, score 36) generated by IPA
of 35 focus genes corresponding to metabolic disease,
lipid metabolism and molecular transport. Node colours
indicate gene expression, being the red nodes higher-expressed
genes and the green nodes lower-expressed genes in the H group
relative to the L group. Colour intensity is related to the degree of
expression. Node shapes indicate the biological function of the
protein.
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Table S1 Percentage of reads mapped for each sample and their
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reference genome sequence.
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Table 82 Total number of assembled transcripts with cufflinks.
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Table 83 Description of the repetitive elements identified in the

intergenic transcripts of the swine muscle transcriptome.
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Table S4 New predicted novel proteins with Augustus which
have orthologous known genes identified with BLASTP option of
Blast2GO.
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Abstract

Background: Several QTLs have been identified for major economically relevant
traits in livestock, such as growth and meat quality, revealing the complex genetic
architecture of these traits. The use of network approaches considering the
interactions of multiple molecules and traits provides useful insights into the
molecular underpinnings of complex traits. Here, a network based methodology,
named Association Weight Matrix, was applied to study gene interactions and
pathways affecting pig conformation, growth and fatness ftraits.

Results: The co-association network analysis underpinned three transcription
factors, PPARy, ELF1, and PRDM16 involved in mesoderm tissue differentiation.
Fifty-four genes in the network belonged to growth-related ontologies and 46 of
them were common with a similar study for growth in cattle supporting our results.
The functional analysis uncovered the lipid metabolism and the corticotrophin and
gonadotrophin release hormone pathways among the most important pathways
influencing these traits. Our results suggest that the genes and pathways here
identified are important determining either the total body weight of the animal and
the fat content. For instance, a switch in the mesoderm tissue differentiation may
determinate the age-related preferred pathways being in the puberty stage those
related with the miogenic and osteogenic lineages; on the contrary, in the maturity
stage cells may be more prone to the adipocyte fate. Hence, our results
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demonstrate that an integrative genomic co-association analysis is a powerful
approach for identifying new connections and interactions among genes.
Conclusions: This work provides insights about pathways and key regulators
which may be important determining the animal growth, conformation and body
proportions and fatness traits. Molecular information concerning genes and
pathways here described may be crucial for the improvement of genetic breeding
programs applied to pork meat production.

Introduction

About 43% of the meat consumed worldwide proceeds from pigs, thus
representing the major source of meat for human food intake [1]. Moreover, pig
serves as a model for metabolic diseases such as obesity in humans [2, 3]. For meat
industry, carcass conformation and growth are economically important traits,
determining the proportions of the different commercial cuts [4]. Understanding
the interactions between genes defining body growth and conformation of pigs is
therefore critical for an efficient pig production.

Over 553 quantitative trait loci (QTLs) for growth-related traits have been
reported in pigs [http://www.animalgenome.org/cgi-bin/QTLdb/SS/index].
Moreover, a genome wide linkage analysis for growth and body composition
carried out in an Iberian x Landrace cross (IBMAP) confirmed previous QTL
regions and identified new ones in 10 of the 18 autosomes [5]. Despite the large
number of QTLs identified by QTL scan and Genome-Wide Association Studies
(GWAS) the genetic architecture of these complex traits is far from being
understood [6]. The detection of SNPs having a clear effect on complex traits
using GWAS is limiting, still being a challenging task. The main reason is because
many genes have a little effect, moreover, the need for multiple tests correction
methods may result in removing some interesting SNPs [7]. The power of single
trait GWAS can be enhanced when considering simultaneously multiple
phenotypes because complex traits generally have multiple correlated traits [7].

Hence, for complex traits, a systems biology approach that integrates the results
into coherent network models offers many advantages over single trait approaches
[8]. Recently, a framework for integrating the information of GWAS with network
inference algorithms, named Association Weight Matrix (AWM), was developed
to reveal and identify key regulatory elements, provide in silico information and
generate gene networks with the aim to better understand the regulatory
mechanisms of complex traits [9, 10]. However, few studies have been performed
to date using system biology approaches and genotypic data in livestock species
[2) H_E ]

Network biology approaches may substantially improve our knowledge about
the diverse molecular pathways underlying complex traits. Using this methodol-
ogy, the main objective of this work was to identify key regulators, gene
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interactions and pathways determining pig growth and conformation traits in
order to improve our knowledge about the architecture of these complex traits.

Results and Discussion

Global growth network description and trait cluster analysis

In the present study, we used a systems biology approach considering 12 growth-
related phenotypes (Table 1). Given that primary cuts have economic impact in
the Iberian pig production [16], ham weight was considered as the key trait for the
AWM analysis. Among the genotypes of the 60K SNPs Porcine Beadchip, a total
of 41,279 SNPs were retained for further analysis. Single-trait-single-SNP analysis
by GWAS was performed for all traits (S1 Figure). The AWM approach captured a
total of 1,747 annotated genes proximal to co-associated SNPs for conformation,
growth and fatness traits. Therefore, an AWM with 1,747 nodes, representing
genes, and a total of 316,166 edges, which account for the predicted interactions,
was built (Fig. 1A). Interestingly, in the hierarchical cluster analysis two groups of
phenotypic traits were formed showing a clear opposite directionality of the
additive values. The first one containing the fatness traits (BFT'155, BFT180, BFTS
and IMF), whereas the second one encompassing the growth and conformation
related traits (BW125, BW155, BW180, HW, SW, BLW, CW and CL) (S2 Figure).
Additionally, a second cluster analysis considering only 54 genes (S1 Table) of the
network which are known to be related with growth was performed, showing
again, after clustering, two different groups for the additive values of growth and
fatness traits (Fig. 2).

Next, in order to simplify and visualize the data with Cytoscape software, the
number of interactions was reduced by selecting only the strongest co-
associations, major than 0.86 (X4 c=0.79+0.07). The resulting network had
53,200 predicted interactions and 1,703 genes.

Key transcription factors regulating growth traits

Within the 1,703 associated-genes, a total of 142 putative regulators (52 Table)
were identified. After exploring all the possible interconnected trios among
regulators, the top trio which spanned most of the network topology with highest
connectivity (a total of 26,160 connections) and minimum redundancy was
formed by the Peroxisome Proliferator-Activated Receptor Gamma (PPARy;
PPARyp., =147), the E74-Like Factor 1 (Ets Domain Transcription Factor) (ELFI;
ELFIpe =237), and the PR Domain Containing 16 (PRDM16; PRDM16p., =256)
genes. In the resulting network, there were a total of 639 co-associations with the
top trio of TF connecting 513 genes (Fig. 1B). Interestingly, ELFI localized in a
QTL on SSC11 identified for growth and body composition traits in the IBMAP
cross [5], whereas no QTL was identified on SSC6 and SSC13 regions where the
two other TF, PRDM16 and PPARG, were located. This result supports that the
network methodology allowed the detection of potential variations affecting the
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Table 1. Phenotypic traits registered in the BC1_LD (F1 x Landrace) and in the BC (F2 x Landrace) and F3 generations of the Iberian x Landrace cross.

Body weight at 125 days (kg) BW125 58.11 8.71
Body weight at 155 days (kg) BW155 269 80.74 13.61
Body weight at 180 days (kg) BW180 269 100.10 14.91
Carcass weight (kg) Cw 271 74.46 11.07
Carcass length (cm) CL 261 81.86 6.23
Backfat thickness at 155 days (mm) BFT155 269 13.34 3.08
Backfat thickness at 180 days (mm) BFT180 220 15.60 3.21
Backfat thickness at slaughter (mm) BFTS 237 23.26 6.13
Intramuscular fat percentage (%) IMF 247 1.52 0.78
Weight of hams (kg) HW 271 21.62 3.39
Weight of shoulders (kg) SW 271 10.04 1.72
Weight of belly (kg) BLW 276 7.33 1.14

doi:10.1371/journal.pone.0114862.t001

analyzed traits that would have not been detected by using single-trait based
approaches (Table 2).

In the network, PPARy gene, which is a key regulator of adipocyte
differentiation, glucose homeostasis and fatty acid metabolism, was highly
connected presenting 147 co-associations with other genes. This gene plays a role
in determining the energy balance and the fat deposition influencing growth and
body size [17, 18]. Furthermore, PPARy has been associated with obesity, diabetes
and atherosclerosis [19], and it has been identified, using the same methodology,
as a key transcription factor regulating cattle puberty-related traits [9].
Interestingly, in another study of our group, PPARy was identified as over-
expressed in pigs having more MUFA and SFA versus pigs with high PUFA
content [20]. Other studies in pigs suggested that PPARY is an excellent target for
determining growth and fat deposition traits at a certain age in pigs [21,22].

On the other hand, ELFI gene is a major regulator of haematopoiesis and
energy metabolism [23]. ELFI has also been described to trigger the NF-xB
pathway activation involved in cell growth and differentiation and in lipid
metabolism [24, 25]. Noteworthy, other members of the ELFI gene family (ETS
transcription regulator family) are known to regulate adipocyte and osteoblast
differentiation [26]. Remarkably, FOXP3 which interacts with ELFI has been
identified as a central transcription factor regulating IMF in cattle using the same
methodology [13,27].

Finally, PRDM1I6 gene is involved in the differentiation of the brown adipose
tissue, specifically in the switch between myogenic and adipogenic lineages [28].
PRDM16 has been reported to control the myogenic cell fate into brown fat cells
in mice, however, pigs lack in brown fat tissue [28,29]. PRDM]16 can also function
by triggering nervous and haematopoietic systems and participates in the
regulation of the oxidative stress [30].
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Fig. 1. Co-association networks based on the AWM approach. A) Full network formed by 1,747 nodes, representing genes and SNPs, and a total of
316,166 edges, accounting for the interactions among them. B) Network formed by 513 nodes and 639 edges representing genes and interactions among
the top trio of transcription factors. Colours corresponded to different functions according to the legend.

doi:10.1371/journal.pone.0114862.g001
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Fig. 2. Hierarchical cluster analysis considering only those genes in the network related with growth
(S1 Table) among 12 phenotypic traits. The green colour in the figure corresponds to negative SNP additive
effect values and red to positive SNP additive effect values.

doi:10.1371/journal.pone.0114862.g002
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Table 2. Additive effect and p-value of the SNPs representing the top trio of transcription factors.

Representative SNP MARC0030882 MARC0000451 1SU10000701

BW125
BW155
BW180
Cw

CL
BFT155
BFT180
BFTS
IMF
HW
SwW
BLW

—1.564
=2.933
-3.115
—0.734
—0.534
0.630
0.581
0.666
0.010
—0.580
—0.282
—0.250

9.70E-02 1.767 2.89E-02 3.261 4.74E-05
1.90E-02 2.217 4.09E-02 3.983 2.45E-04
3.08E-02 1.762 1.59E-01 5.329 1.41E-05
5.23E-01 —-0.008 9.95E-01 3.338 5.37E-04
1.28E-01 0.589 6.15E-02 0.758 1.26E-02
4.78E-02 —0.011 1.00E+00 0.148 5.65E-01
6.35E-02 —0.297 2.99E-01 0.161 5.54E-01
3.38E-01 —0.526 3.46E-01 —0.537 3.73E-01
8.81E-01 —0.036 5.39E-01 —0.054 4.17E-01
1.16E-02 0.586 3.25E-03 0.546 6.01E-03
1.27E-02 0.229 2.19E-02 0.249 8.74E-03
7.57E-03 0.174 3.24E-02 0.147 7.15E-02

doi:10.1371/journal.pone.0114862.t002

The embryonic mesoderm is a multipotent tissue that differentiates into
myocytes, osteocytes and adipocytes [26]. The three top TF identified in the
network have in common that are key regulators of the mesoderm cell fate. For
instance, the over-expression of PPARy may activate adipogenesis, ELF] may
regulate adipocyte and osteoblast differentiation, meanwhile PRDM16 may trigger
the switch between adipose tissue and myocytes [28].

Selecting both miRNAs and TF as putative regulators did not affect the results,
being the same top trio of genes identified as key regulators. In fact, inferring
transcriptional and miRNA-mediated regulatory networks is still a challenge,
particularly in non-model species such as the pig where the miRNA annotation is
poor when compared to human or cow [31].

Additionally, a limitation of the AWM methodology is that only the nearest
gene to the significant co-associated SNP is selected, discarding all other proximal
genes. Linkage disequilibrium (LD) between molecular markers has to be taken
into account for the AWM analysis. For instance, after exploring the network in
more detail, a high co-association was observed between Nuclear Receptor
Subfamily 2, Group C, Member 2 (NR2C2) and PPARy sharing the same co-
associated nodes (Fig. 3). The strong relationship between NR2C2 and PPARYy is
supported by the literature, being NR2C2 a repressor of PPARy activity [32].
Interestingly, a deficiency of NR2C2, which has been suggested to play a critical
role in the regulation of energy and lipid homeostasis, in mice causes growth
retardation [32,33]. Remarkably, NR2C2 was also identified as co-associated in
cattle growth network [12] and also in a network for fatness traits in cattle [13]
and pig [11]. However, SNPs proximal to these genes (PPARy and NR2C2) in our
AWM network were separated by 1.27 Mb, being in complete LD (D'=1) (53
Figure). Accordingly, LD can be a limitation to rule out which of these two genes
play a key role regulating growth traits or if both genes are biologically relevant.
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Fig. 3. Network showing the shared-genes of NR2C2 and PPARy.

doi:10.1371/journal.pone.0114862.9g003

Co-association network among the top TF

The parameters describing the network topology were calculated with CentiScaPe
software, obtaining an average degree (Deg) of 62.44 and an average distance
(AvDg) of 3.21; hence, showing a high degree of connection. A total of 54 genes
out of the 513 nodes (Fig. 1B; blue colour in the network) belonged to growth-
related gene ontologies (S1 Table). Noteworthy, a total of 20 genes were related to
lipid metabolism (yellow colour in Fig. 1B). Among the 513 nodes setting up
network connections, seven genes (COPS7B, EFEMPI1, ETV6, FRS2, HSPG2,
SH3PXD2A and TGSI) had been associated with human height, which is driven
by growth and developmental processes [34, 35]. Interestingly, the indian hedgehog
(IHH) gene product, identified in a human height GWAS study, binds to the
patched domain containing 3 (PTCHD3) receptor, here identified as co-
associated with ELFI [36]. In addition, 46 of the 513 genes were common with a
study for cattle growth trait using the same methodology (GRK5, NDRG3, RYK,
FRS2, SCN8A, HIFOO, NALCN, EPB4114A, LRRC16A, CNTNAP5, LTBPI,
KHDRBS3, EPHBI1, PRKCB, ATRN, TMEM]108, PTK2B, RAPGEF5, RBPMS,
SORCS3, SNX29, KCNN3, PLCHI, PLCB4, PDE11A, RGS7, NR2C2, WDR64,
KCNMAI, DCN, SPEF2, CA10, MYB, RNF17, FYB, ETV6, CREB5, ZNF488, KSR2,
SYT1, TBCIDI16, SUCLG2, MLLT4, PLCXD3, VPS45, TUFTI) [16]. Central to this
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network, transmembrane and tetratricopeptide repeat containing 1 (TMTCI) gene
appeared to be a common interaction factor for the 3 principal TFs. Not TMTCI
but transmembrane and tetratricopeptide repeat containing 2 (TMTC2) was also
identified in the cattle growth network by Widmann et al. [12].

Aside from known interactions reported by the literature, our growth network
allowed the identification of new interactions between genes that have not been
previously described and may help in the understanding of such complex trait. In
these sense, one of the top TF identified in the growth network, ELFI gene, has
not been reported to date to be involved in growth processes. This gene was
identified to be co-associated with B Lymphoid Tyrosine Kinase (BLK) gene in the
AWM analysis. It has been reported that ELF]I is a transcriptional activator of BLK
and SRC kinases such as v-yes-1 Yamaguchi sarcoma viral related oncogene homolog
(LYN) [37]. BLK is involved in the stimulation of insulin secretion in response to
glucose [38]. In addition, the SRC family of protein tyrosine kinases (SFKs)
interacts with growth factors [39] and cytokine receptors [40] and they are key
mediators of PI3K and AKT signalling important for cell proliferation [41]. The
LYN gene belonging to SFKs is required for rapid phosphorylation of Fer (Fps/Fes
Related) Tyrosine Kinase (FER) [42]. In the AWM analysis we found FER also co-
associated with ELFI.

Another interesting interaction identified in the co-association growth network
was the ELF1 with HOXBI13. Supporting this interaction, it has been described
that Myeloid ecotropic viral integration site 1 (MEIS1) is a HOX cofactor which is
regulated by ELFI [43]. HOXBI13 may play a role in growth repression and spinal
cord formation [44,45]. Furthermore, HOXBI3 increases the androgen and favors
the lipid accumulation in cells [46].

The transcription factor Forkhead box O1 (FOXO1) gene, also identified in the
network co-associated with PRDM16, is activated in response to glucocorticoids
and is blocked via the IGF/Akt pathway. FOXOI1 is a target of insulin signalling
and glucose metabolism, as well as it plays a role in myogenic growth and
differentiation. Moreover, it has been observed that mice overexpressing FOXO!
in skeletal muscle had a reduced skeletal muscle mass when compared with wild-
type mice [47]. When FOXO1 and PPARGCIA act together they promote
gluconeogenesis. FOXO1 is known to repress PPARy [48]. Another interesting
gene was the miRNA ssc-miR-196al, which was identified as co-associated with
PRDM16, and has been recently reported to be associated with growth and
development of skeletal muscle [49]. Other identified co-associated genes with
PRDM16 were SH3PXD2A, ADAMTS12 and PTPN22. Interestingly, SH3PXD2A
(SH3 And PX Domains 2A) is reported to bind the matrix metalloproteinases
(ADAMs) and phosphoinositides [50]. Moreover, in human is associated with
ADAM]12 (the membrane-anchored protein corresponding to the secreted protein
ADAMTS12) which is involved in skeletal muscle regeneration and mediates the
neurotoxic effect of beta-amyloid peptide [51]. Finally, PTPN22 has been
associated with diabetes in humans [52].
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Biological pathways and functional analysis

Functional analysis using IPA program allowed us to identify the biological
functions overrepresented considering the 513 co-associated genes related to the
top trio of TF. Among the networks identified with IPA there were: “cell
signalling, nucleic acid metabolism, cell-to-cell signalling and interaction”,
“organism development, DNA replication, recombination and repair, and lipid
metabolism” and “hereditary disorder, neurological disease and developmental
disorder”, all of them having a score =38, “cell-to-cell signalling and interaction,
nervous system development and function, cellular assembly and organization”
(score =33) and “cellular development, nervous system development and
function, behaviour” (score =29) (53 Table). Remarkably, the top molecular and
cellular functions identified were: “post-translational modification” (p-value
=9.01 x 107°), “cell-to-cell signalling and interaction” (p-value =1.26 x 107%),
“molecular transport” (p-value =1.26 x 10~ %), “cellular development” (p-value
=2.89 x 10~*) and “cell morphology” (p-value =3.10 x 10~ *). Among the top
physiological system development functions we observed the “organismal
survival” (p-value =1.18 x 10~ *), “nervous system development and function”
(p-value =1.26 x 10™%), “tissue development” (p-value =2.34 x 10~%) and
“behaviour” (p-value =2.88 x 10~ *). These results are in agreement with those
obtained by Widmann et al. [12] using the same methodology to study growth
traits in cattle, where they identified similar biological processes (cell commu-
nication, signal transduction, cellular process, cell surface receptor signalling
pathway and cell adhesion) suggesting that different genetic variants may be
affecting the same pathways even in different species.

Among the most overrepresented pathways identified we observed D-myo-
inositol (1,4,5)-triphosphate (Ins(1,4,5)P;) biosynthesis (p-value =2.45 x 1074,
G-protein coupled receptor (GPCR) signalling (p-value =5.88 x 10™°), cortico-
tropin releasing (CRH) hormone signalling (p-value =7.58 x 10°>), gonadotro-
pin-releasing hormone (GnRH) signalling (p-value =1.55 x 10~ %), caveolar-
mediated endocytosis signalling (p-value =1.62 x 10~ ), nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-«xB) activation by viruses (p-value
=1.62 x 10~ ?), phospholipase C (PLC) signalling (p-value =1.94 x 10~ %) and
neuronal nitric oxide synthase (nNOS) signalling in skeletal muscle cells (p-value
=3.46 x 10~ %) pathways (S4 Table). Noteworthy, in the cattle growth network
study, the GnRH signalling and the nitric oxide (NO) pathway were also
identified [16]. Some of these pathways (54 Table) are discussed in more detailed
below.

GPCR, PLC and Ins(1,4,5)P3 signalling pathways

In mammals during growth and development there is a high requirement of lipids
to increase in cell size and number. Lipids are the primary substrates which bind
to certain GPCRs leading to an induced activity of PLC, which catalyse the
hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP,) to inositol 1,4,5-
trisphosphate (IP3) and 1,2-diacylglycerol (DAG) both having important second
messenger functions [53]. DAG can be also used as a component of biological
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membranes or as a precursor to triacylglycerol (TAG) for energy storage [54]. The
IP; molecule binds to the Ins(1,4,5)P; receptors (InsP3R) and trigger Ca**
channel opening activating the ryanodine receptor-operated channel (RYR)
[55,56]. The IP; signalling mechanism is crucial for normal cell physiology [57].
Moreover, GPCRs jointly with phosphatidylinositol kinases (PIPK) may be
involved in feed signal transduction pathways [58]. Two PIPK genes (PIP5K1A
and PIP5KIC) jointly with PLCB4 and RYRI were identified as co-associated to
PRDM16 gene. Thus, PRDM16 is a key transcriptional factor determining
adiposity or miogenesis, and may also be necessary for the normal skeletal muscle
development. Furthermore, the GPCRs, GPR144 and GPR176 were also identified
in the growth network.

GnRH and CRH signalling pathway

Two hormone-related pathways, GnRH and CRH signalling pathways, were
identified as overrepresented in our data. CRH is a peptide hormone secreted by
the hypothalamus which controls adrenal secretion of cortisol and has been
suggested to play a role in cell growth and survival. Interestingly, sheep with high
cortisol response were prone to obesity [59]. Moreover, it has been observed that
children treated with glucocorticoids showed growth retardation [60]. GnRH,
which binds to GNRHR (GPCR member 7), is synthesized and released from
neurons within the hypothalamus and regulates the production of gonadotropins,
such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the
pituitary gland, which, in turn triggers sexual maturation and promotes the
secretion of endogenous sex hormones such as testosterone and estrogen from the
gonads. Interestingly, growth-related traits in pig depend largely on gender [61].
In fact, GnRH agonists are used to treat central precocious puberty (CPP)
characterized for developing an early puberty, larger growth of the skeleton and
adult height [62]. Besides, the GnRF analog-diphtheria toxoid conjugate is used
for castration and it is known to increase body weight at slaughter and improve
average daily gain and feed conversion ratio [63]. The release of Ca*" and DAG
enhances the activation of protein kinases (PKC) to increase gonadotropin
hormone secretion. Interestingly, in the network we can observe PRKCB co-
associated to ELF-1 and PRKCE co-associated with PPARy and PRDM]16. These
results underline an important function of the three key TF in our network having
an important role in the puberty and bone growth development.

NF-xB and NO signalling pathway

NF-kB is a pleiotropic transcription factor being involved in many biological
processes such as inflammation, immunity, differentiation, cell growth and
apoptosis. This signalling pathway has also been identified in a study of human
growth using gene expression data [64]. It is reported that ELFI interacts with NF-
kB via DNA binding domain [37]. Furthermore, the NF-kB activity may activate
nNOS to generate NO [65]. NO may trigger GH secretion and affects other several
pituitary peptides such as gonadotropins [66]. It is reported that a chronic
exposure of NO may stimulate angiogenesis and adipocyte development [67].
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Interestingly, we observed NOSI co-associated with ELFI in the growth network
(Fig. 1B). Both, ELFI and NOSI genes may play a role in hematopoiesis and
vascular development [68]. On the other hand, NO has the ability to enhance and
regenerate diseased muscle, through determining the fibro-adipogenic progenitors
fate and inhibiting adipogenesis [69]. In this direction, the NO production is
thought to inhibit PPARy expression [69]. Surprisingly, NOSI was also identified
as co-associated with PRDM]I6, but not with PPARy.

General discussion: from network to phenotype inference

Iberian pigs are known to have higher IMF than Landrace pigs at the same growth
stage [70]. Furthermore, the skeletal muscle grows faster in Landrace than in
Iberian pigs, being less prone to obesity [70]. In this study, we analyzed
backcrossed animals from an Iberian x Landrace cross, which differed in fat and
growth traits. Growth refers to an increase in tissue mass and it can be plotted as a
sigmoid curve depending on age and cumulative weight [71]. At the pre-mature
phase, muscle mass, organ and bone formation are increased, meanwhile in the
mature phase the animal is more prone to fattening and intramuscular deposition
[71]. The top trio of TF identified in the network are key regulators for mesoderm
cell differentiation in osteocytes, miocytes or adipocytes. Our results showed
among the top molecular and cellular functions the cell development and
interaction pathways which may be important in order to trigger tissue formation.
Noteworthy, the hierarchical cluster analysis evidenced a clear division of the
additive effects of the SNPs for the 12 growth phenotypic traits, between animal
weight-related and fat-related traits (S2 Figure and Fig. 2). We hypothesize that
the hormone releasing pathways here identified (GnRH and CRH) may be key for
the regulation of conformation, growth and fatness traits in our animal material.
An increased carcass weight with a reduced backfat thickness at a fixed age have
been selection targets in commercial pig breeds, resulting in less mature animals as
fat deposition rate is expected to increase in the puberty phase [72]. Given that
Iberian breed is more prone to IMF and backfat deposition at the same growth
stage lead to the hypothesis that Landrace animals may arrive later to the mature
growth phase when compared to Iberian animals. What remains unclear is
whether the signals for maturity switching are related to the GnRH or CRH
hormone release pathways. Finally, the genes and pathways here identified had a
high concordance with those reported by other authors studying growth
metabolism in animals or height related traits in human. Our hypothesis are
supported by the high concordance between our genes and pathways identified in
the network and those reported by Fortes et al. [9] for puberty traits in cattle.

Conclusions

The processes regulating conformation, growth and fatness traits in pigs are
complex and most of the mechanisms remain unknown despite being of great
interest for the pig industry. The power of single trait GWAS can be enhanced
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when considering simultaneously multiple phenotypes taking advantage of system
biology approaches. In the present study, the AWM gene co-association network
analysis revealed key transcription factors, gene-gene interactions and pathways
underpinning the regulation of pig conformation, growth and fatness. Network
approaches represent a major step in understanding the genetics of complex
diseases and traits. Further efforts should be made in order to study in more detail
the new gene-gene interactions here identified, as well as, to study in more detail
the key transcription factors and pathways involvement in the growth and
conformation traits determination.

Material and Methods

Animal material and phenotypic classification

The animal material used belongs to several generations of the IBMAP population
obtained from the cross of 3 Iberian boars (Guadyerbas) with 31 Landrace sows
[73, 74]. For this study we used phenotypic records from 292 animals belonging to
three different IBMAP generations: 159 BC1_LD animals (25% Iberian x 75%
Landrace) from backcrossing five F1 males with 26 Landrace sows, 79 BC animals
obtained by crossing 4 F2 boars and 22 Landrace sows and 54 F3 obtained by
mating F2 animals. Animals were fed ad libitum and sacrificed at 180+ 2.8 days
(average + standard deviation) in a commercial slaughterhouse following
national and institutional guidelines for the Good Experimental Practices and
approved by the Ethical Committee of the Institution (IRTA- Institut de Recerca i
Tecnologia Agroalimentaries).

Phenotypic records used in the analyses (Table 1) correspond to body weight
(BW) measured at 125, 155 and 180 days (BW125, BW155, and BW180,
respectively), backfat thickness (BFT) at the level of the fourth rib at 4 cm of the
midline measured by ultrasounds at 155 and 180 days (BFT155 and BFT180) and
measured with a rule at slaughter (BFTS), carcass length (CL) and carcass weight
(CW), ham weight (HW), shoulder weight (SW), belly weight (BLW), and the
intramuscular fat content (IMF) in the longissimus dorsi muscle.

Genetic markers and quality control

A total of 364 pigs, including their FO, F1 and F2 founder generations (72
animals), were genotyped with the Porcine SNP60K BeadChip [75] following the
Infinium HD Assay Ultra protocol (Illumina Inc.; San Diego, CA, USA) and the
genotypes were visualized with the GenomeStudio software (Illumina Inc.; San
Diego, CA, USA). The quality control of the 62,163 SNPs was performed by using
Plink [76] software removing markers with a minor allele frequency (MAF) <5%
and animals with missing genotypes>5%. The SNP mapping and annotation was
performed by using the pig assembly 10.2 [ftp://ftp.ncbi.hlm.nih.gov/genomes/
Sus_scrofa/GEF/]. We also excluded markers which did not map in the
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Sscrofal0.2 version assembly. Pedstats program [77] was used to check Mendelian
inheritance errors.

Genome-wide association analysis

Genome-wide association analysis (GWAS) for the twelve phenotypic growth
traits were performed using a mixed model accounting for additive effects with
Qxpak 5.0 software [78]:

Yijlkm = Sex; + Batch; + ey +Aak + ui + €jjikm,

in which yjj, was the i-th individual record, sex (two levels) and batch (nine
levels) were fixed effects, £ was a covariate coefficient with ¢ being the covariate
used in each case (described below), A; was a —1, 0, +1 indicator variable
depending on the I-th individual genotype for the k-th SNP, a, represented the
additive effect associated with the k-th SNP, u; represented the infinitesimal
genetic effect with random distribution N(0, Ac,) where A was a numerator of
the the pedigree-based relationship matrix and ey the residual.

Different covariates (c) were used for the analysis. Carcass weight was used as a
covariate for CL, IMF, BFTS, HW, SW, and BLW. For BFT155 and BFT180 the
covariates used were the body weight at their respective days. Meanwhile, for the
body and the carcass weights the covariate used was the animal age.

Association weight matrix

The association weight matrix (AWM) was built from the GWAS results. First, the
SNP additive effects were normalized with a z-score method using a R script and a
matrix was constructed with these values, being SNPs in rows and traits in
columns. Another matrix with the same format was generated for the p-values
obtained in the GWAS. For the analysis, the ham weight was selected as the key
phenotype. Subsequently, the AWM script [9] available from authors was used in
R (http://www.r-project.org/). Those SNPs associated (nominal p-value <0.05)
with the ham weight or with 3 or more traits were selected for further analysis. We
included in the analysis the SNPs with a distance of minor than 2.5 kb (SNPs
close) and major than 1,000 kb (SNPs far) from a gene. We also included SNPs
located at less than 10 kb of miRNA. Finally, to facilitate the analysis, for SNPs
clustering at less than 1 Mb of distance from each other, the SNP associated with
the major number of characters was selected. The hierarchical clustering option of
PermutMatrix software [79] was used to visualize the results of both traits and
genes. The trio of putative regulators spanning most of the network topology with
a minimum redundancy [10] was selected. In this study we took into account all
the transcription factors (TF) from the list reported by Vaquerizas et al. [80];
additionally, those 22 genes belonging to the GO: 0050789 which accounts for the
DNA binding TF activity were added. All miRNA annotated on Sscrofal0.2
assembly were also included in the analysis as potential regulators. PCIT
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algorithm [81] was used to construct a file containing the reported gene-gene
interactions among the 3 TFs. The CentiScaPe plug-in [82] of Cytoscape software
[83] was used to visualize the PCIT results and either to calculate the node
centrality values (Deg) and network parameters.

Gene ontologies, pathways and network analysis

The Ingenuity Pathways Analysis software (IPA; Ingenuity Systems, Redwood city,
CA, USA; www.ingenuity.com) was used to identify the most relevant biological
functions and pathways in which the genes associated with the phenotypic traits
were involved. IPA, which uses its own databases, allowed the identification of
overrepresented pathways using the BH multiple testing correction [84] of p-value
(FDR <0.05) and generating biological networks. The Mouse Genome Database
(MGD:; http://www.informatics.jax.org) was used in order to identify how mutant
alleles driven in mice for the identified growth-related genes present in the
network affected the phenotype.
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S1 Figure. GWAS plot of the 12 traits: body weight measured at 125, 155 and
180 days (BW125, BW155, and BW180, respectively), backfat thickness
measured at 155 and 180 days (BFT155 and BFT180) and measured at slaughter
(BFTS), carcass length and weight (CL and CW), weight of the hams, shoulders
and belly (HW, SW and BLW) and intramuscular fat (IMF) content. The
horizontal green line represents the statistical significance (false discovery rate; set
at g-value =0.05) calculated with the g-value library [85] implemented in R
program (http://www.r-project.org/).
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S2 Figure. Hierarchical cluster analysis among 12 phenotypic traits: body
weight measured at 125, 155 and 180 days (BW125, BW155, and BW180,
respectively), backfat thickness measured at 155 and 180 days (BFT155 and
BFT180) and measured at slaughter (BFTS), carcass length and weight (CL and
CW), weight of the hams, shoulders and belly (HW, SW and BLW) and the
intramuscular fat (IMF) content.

doi:10.1371/journal.pone.0114862.s002 (TIF)

S3 Figure. Linkage disequilibrium among the PPARG and NR2C2 SNPs.
Pattern of linkage disequilibrium analysis around +2Mb of the SNPs in
PPARG and NR2C2. Figure colored from blue to red according to LD strength
between consecutive markers. The green diamond-shape corresponds to the SNP
in PPARG gene and the blue diamond-shape the SNP in NR2C2 gene.
doi:10.1371/journal.pone.0114862.s003 (DOCX)

S1 Table. List of 54 growth-related genes in the network.
doi:10.1371/journal.pone.0114862.s004 (XLSX)
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S2 Table. List of 142 regulators (transcription factors and miRNAs) identified
within the list of associated-genes.
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S3 Table. Top networks of molecular functions identified with IPA for the 513
genes.
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S4 Table. Top pathways identified with IPA for the 513 genes.
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Genetic dissection of growth and meat quality traits in pigs

Abstract

Background: The pork meat lean percentage and its quality determine the price paid
for cuts by consumers. Meat with high intramuscular fat (IMF) composed of more
monounsaturated fatty acid (MUFA) and, less polyunsaturated fatty acid (PUFA) and
saturated fatty acid (SFA) content is considered of good quality being more tasty and
juicy. Many genes determining fat content and composition in pork meat have been
identified through quantitative trait loci (QTL) and genome-wide association analyses
(GWAS); however, few genes containing causal mutations have been detected. The
expression QTLs (eQTLs) are described to be heritable and to affect phenotypes. The
aim of this work was to study the genetic basis that affects the abundance of
transcripts in relation with lipid metabolism in swine muscle (Longissimus dorsi) in an

Iberian x Landrace (IBMAP) backcross (BC1_LD).

Results: In this study we performed a genome-wide association with the PorcineSNP60
BeadChip genotype information and the mRNA expression levels (eGWAS) of 45 lipid-
related genes measured by Real-Time PCR in 114 BC1_LD animals. The eGWAS
identified 241 eSNPs located in 18 chromosomal regions on SSC1, SSC2, SSC3, SSC6,
SSC8, SSC9, SSC10, SSC11, and SSC13 and associated with 11 genes ACSM5, CROT,
FABP3, FOS, HIF1AN, IGF2, MGLL, NCOA1, PIK3R1, PLA2G12A, and PPARA. Three eQTLs
for IGF2, ACSM5 and MGLL were identified showing cis-acting effects, whereas 16
eQTLs had trans regulatory effects on gene expression traits for ACSM5, CROT, FABP3,
FOS, HIFIAN, MGLL, NCOA1, PIK3R1, PLA2G12A, and PPARA genes. A total of 46% of
the 241 eSNPs identified were located within a gene. Strong candidate genes
regulating ACSM5, FOS, PPARA, PIK3R1, PLA2G12A and HIF1AN gene expression were
evidenced with the eGWAS. Furthermore, potential regulators co-localizing within
fatness and growth related QTLs previously identified in the IBMAP cross (i.e.
ARHGAP6, IGF2, MC2R, MGLL, NR3C1) were also evidenced. In addition, the NR3C1
transcription factor was identified as a strong candidate gene regulating the 45 lipid

metabolism related genes analyzed.
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Conclusions: The obtained results highlighted genes and pathways that may be key in
determining the IMF content and fatty acid (FA) composition in the IBMAP backcross
and increased our knowledge in the functional regulatory mechanisms implicated in

these complex traits.

Keywords: eQTL, Longissimus dorsi, gene expression, lipid metabolism

Introduction

Pork meat cuts and their derived products are paid according to the lean percentage in
pork carcasses and the meat quality since they determine a better acceptance for
consumers (Schwab et al., 2006). A high amount of backfat content is a less desirable
trait; meanwhile, meat with high IMF is considered to have better taste conferring
juiciness to the meat. Besides, FA composition of IMF affects the meat nutritional and
sensory quality parameters. MUFA confers more oxidative stability than PUFA
improving meat taste and colour (Wood et al.,, 2008). Furthermore, PUFA decreases
the risk of suffering cardiovascular diseases being healthier than SFA (Michas et al.,
2014). Thereby, there is a consumer requirement for porcine meat with high IMF with

a balanced FA composition.

Selected breeds for the pig industry as Landrace have an efficient meat production
with a rapid growth and leaner carcass; however, the resulting meat has low IMF and
high PUFA content (Estévez et al., 2003). In contrast, other breeds as Iberian have a
slow growth and are used to produce high quality and tasty meat, especially for dry-
cured products, showing more IMF with higher MUFA and SFA content. The
differences in the genetic background of these breeds determine the IMF and its FA

composition affecting the pork meat quality (Serra et al., 1998).

The experimental IBMAP BC1_LD, 25% lberian and 75% Landrace population, was
generated to study the genetic mechanisms that determine relevant production traits
for the porcine meat industry. Strategies such as QTL and GWAS have been useful to
highlight many genes determining IMF content and composition in the IBMAP

population (Pérez-Enciso et al., 2000; Ovilo et al., 2002; Clop et al., 2003; Mercadé et
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al., 2005a; Munoz et al.,, 2011; Fernandez et al., 2012; Ramayo-Caldas et al., 2012;
Mufioz et al., 2013) resulting in the identification of several candidates genes (Estellé
et al., 2005; Mercadé et al., 2005b; Estellé et al. 2006, Mercadé et al., 2006; Corominas
et al., 2012, Corominas et al., 2013; Revilla et al., 2014). Despite this, the underlying
physio-genetic complex mechanisms of the IMF deposition and its FA composition
have not been clarified. The difficulty in the detection of QTLs for complex traits may
be influenced by the pleiotropic nature of these traits and the use of multiple tests

correction methods (Rao 2008).

The detection of eQTLs has recently been proposed as a good strategy to deepen in
the study of the genetic architecture of complex traits (Schadt et al., 2003; Gilad et al.,
2008). This technique allows the identification of genetic variants associated with gene
transcription levels which may be determining the phenotypic differences of complex
traits. With the aim to better understand the mechanisms affecting the IMF content
and FA composition, we performed eGWAS of 45 strong candidate genes identified in

previous studies of our group in 114 BC1_LD animals.

Results and Discussion

Selection of lipid-related metabolism genes in muscle

In previous studies of our group, strong candidate genes affecting the IMF content and
FA composition of the Longissimus dorsi muscle of the IBMAP BC1_LD were identified
by using GWAS, RNA-Seq and co-association network approaches (Ramayo-Caldas et
al., 2012; Puig-Oliveras et al., 2014a; Puig-Oliveras et al., 2014b; Ramayo-Caldas et al.,
2014). In the present study, a list of 45 genes functionally related with lipid metabolism

was selected, prioritizing candidate genes for FA composition.

We included (1) candidate genes differentially expressed (ACAA2, AQP7, ALB, ANGPT1,
ATF3, MLXIPL, FOS, HIF1AN, PIK3R1, PLIN5, PPARG, SCD, SLC2A4) in the Longissimus
dorsi muscle of two phenotypically extreme groups of animals for intramuscular FA
composition from the IBMAP cross and their potential regulators (NFKB1, PPARGC1A)
(Puig-Oliveras et al., 2014a). (2) Candidate functional and positional genes (FABPS5,
PIK3R1, PLA2G12A, PPAP2A) identified in a GWAS study for intramuscular FA
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composition in the same animal material (Ramayo-Caldas et al., 2012); and (3) genes
related to lipid metabolism identified in gene co-association networks for FA
composition (ACSM5, ANGPT1, FABP3, FABP5, MGLL, NCOA2, PEX2, PPARG, SETD7;
Ramayo-Caldas et al., 2014) and fatness and growth related traits (ALB, CREG1, ELFI1,
FABP5, MGLL, PPARG; Puig-Oliveras et al., 2014b). Finally, in order to complete the set
of genes, we chose genes which have been described in the literature to play different
roles in muscle lipid metabolism such as transcriptional factors, cofactors and nuclear
receptors (ETS1, LPINI, NR1IH3, NCOA1, NCOA6, PPARA, PPARD, PRKAA1, RXRG, SP1,
SREBF1) (http://www.bioguo.org/AnimalTFDB/; Zhang et al. 2012), enzymes (ACSS1,
ACSS2, CPT1B, CROT, DGAT1, DGAT2, PDHX) as well as the IGF2 gene, which was
described as the causal factor of the imprinted QTL for muscle growth and fat
deposition in a Meishan x Large White intercross (Van Laere et al., 2003). Moreover,
polymorphisms in IGF2 gene have been significantly associated to muscle FA

composition in swine (Hong et al., 2015).
Gene expression profiling

In the present study, 114 backcrossed (BC1_LD) animals generated from the
experimental IBMAP population and showing a wide range of IMF content and FA
composition values were used for RNA extraction and Real-Time PCR to perform the

eGWAS (Table S1).

Sex significant effect (p-value<0.05) between gene expression levels was detected in
20 out of the 45 analyzed genes (44%): ACSS1, ACSS2, ATF3, CREG1, DGAT2, ETS1,
FABP5, HIF1AN, IGF2, NCOA2, NCOA6, PLA2G12A, PPARA, PPARG, PPARGCI1A, PRKAAL,
PEX2, SCD, SP1, and SREBF1 (Figure S1). Sexually dimorphic gene expression in genes
involved in lipid metabolism has already been described in muscle as in other tissues
such as liver (Liu et al., 2010; Zhang et al., 2011). Interestingly, some of the sex-biased
genes identified are key regulators of lipid metabolism in muscle, such as PPARA,
PPARG, PPARGCIA and SREBF1. Notice that within the sex-biased genes, several
lipogenic genes were more expressed in females (DGAT2, NCOA2, NCOA6, PPARG,
PRKAA1, SCD, SP1 and SREBF1), whereas more lipolytic genes were over-expressed in
males (ATF3, PPARA and PPARGCI1A). Consistent with these results, PPARA and SREBF1
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presented sex-biased gene expression in human skeletal muscle (Fu et al., 2009).
Furthermore, PPARGC1A and PPARA gene expression in muscle are affected under diet
supplementation with 17B-estradiol (E;) (Fu et al., 2009). In addition, the mRNA
expression of SCD and PPARG genes has been observed to be lower in male than in

female human muscle cell cultures (Rune et al., 2009).

To assess the relationship between muscle gene expression levels and phenotypes, a
hierarchical cluster analysis of the correlation values among the gene expression levels
(RQ) of the 45 genes and the fatty acid content in muscle was performed. The
hierarchical cluster analysis showed that genes related mainly with lipogenic pathways
(DGAT2, PPARG, SCD, MGLL, NCOA1, NCOA2, NCOA6, PRKAA1, SP1, SREBF1) clustered
together; whereas a second cluster was found for genes mainly related with lipolytic
pathways (ATF3, CPT1B, PPARA, PPARD, PPARGC1A) (Figure 1). Genes clustering within
the lipogenic-related cluster showed in general positive correlations with palmitoleic
(C16:1(n-7)) and octadecenoic (C18:1(n-7)) FAs; while the lipolytic-related group
showed in general a positive correlation with PUFAs and in special linoleic (C18:2(n-6))
FA. In general, these results are in agreement with a previous muscle RNA-Seq
transcriptome study (Puig-Oliveras et al., 2014a) of animals extreme for intramuscular
FA composition performed by our group where a higher expression of genes related
with lipogenic pathways was observed in the muscle of animals with high MUFA and

SFA content in muscle.

The highest correlations (p-value<1.00x10°) were observed for PPARG and SCD
(r=0.78), DGAT2 and PPARG (0.85), SCD and DGAT2 (r=0.77), FABP3 and PLIN5 (r=0.83),
FABP3 and AQP7 (r=0.80), ACAA2 and FABP3 (r=0.78) and ELF1 and PPAP2A (r=0.75).
Interestingly, the strong correlation of mMRNA expression of PPARG and SCD (r=0.78; p-
value<1.00x10'®) suggests a transcriptional regulation of SCD by the PPARG nuclear
factor. Supporting our results, recent results obtained in dairy goat have showed that
PPARG contributes to the regulation of SCD in mammary epithelial cells (Shi et al.,
2013).

Here, PPARG, DGAT2 and SCD, which are involved in the triacylglycerol synthesis, were
highly correlated. Similarly, FABP3, AQP7 and PLIN5, which encode for proteins
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responsible of lipid and glucose transport, were also highly correlated. Noteworthy,
these three genes were over-expressed in animals with higher MUFA and SFA content
in muscle when compared with animals having more PUFA in a RNA-Seq study (Puig-

Oliveras et al., 2014a).
eQTL identification

An eGWAS was performed using a total of 40,586 SNPs and the mRNA expression
values of the 45 lipid-related genes of the 114 BC1_LD animals. A total of 241 eSNPs in
18 chromosomal regions located in SSC1, SSC2, SSC3, SSC6, SSC8, SSC9, SSC10, SSC11,
and SSC13 were identified for a total of 11 genes: ACSM5, CROT, FABP3, FOS, HIF1AN,
PIK3R1, PLA2G12A, MGLL, IGF2, NCOA1 and PPARA (FDR<0.05; Table 1). Five genes
(ACSM5, IGF2, MGLL, PLA2G12A and PPARA) presented more than one associated
eQTL (Table 1). Three out of 18 eQTLs were identified as cis-acting for ACSM5, IGF2
and MGLL gene expression (Figure 2), suggesting the presence of a mutation in the
same gene directly affecting its expression, whereas 16 eQTLs had trans regulatory

effects. The majority of eQTLs (8 of 18) were located in SSC2 and SSC6 (Table 1).

From the associated eSNPs (n=241), 215 eSNPs were successfully annotated with the
Variant Effect Predictor of Ensembl (VEP; Sscrofa 10.2 annotation release 80) of which
54% (117 eSNPs) were located in intergenic regions. The remaining 46% (98) eSNPs
mapped within 76 genes: 69 (32%) in introns, 10 in the 5' flanking region, 13 in the 3'
flanking region, three in the 3'UTR region, two in the coding region of a gene
determining synonymous mutations and one missense mutation. Twelve out of the 98
intra-genic eSNPs were located within a gene exerting a lipid metabolism function
(ABCA3, ACSM3, LRP5, LHFPL4, BRPF1, HRH1, PPARG, ACADS, COPG1, MGLL, ACAD11,
ARHGAP26) based on Genecards [http://www.genecards.org] and Mouse Genome
Informatics database [http://www.informatics.jax.org] (Table S2). Of these twelve
genes related to the lipid metabolism, only six of them were described to be expressed
in muscle (ACSM3, PPARG, ACAD9, MGLL, ACAD11, and ARHGAP26). Only one of the
intragenic eSNPs mapping within genes with a lipid-related function was identified in a
trans eQTL: the ARHGAP26 gene located in a trans-eQTL for PPARA gene. This gene is

activated via lipid interaction, however its role has not been well defined (Erlmann et
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al., 2009). The other eSNPs located within a gene having a lipid-related function were

inside cis-eQTLs, where the strong candidate gene was the analyzed gene.
cis-eQTL identified

The insulin-like growth factor 2 (IGF2) gene is not mapped in the current Sscrofa10.2
assembly (Rubin et al., 2012). However, it has been located by linkage map in the
telomeric end of the p arm of SSC2 (Fontanesi et al., 2010). An intronic /GF2 mutation
(IGF2-intron3-G3072A) was described by Van Laere et al. (2003) to have a major effect
on muscle growth in pig. Although this mutation was segregating only in a small family
on the IBMAP F, population (Estellé et al., 2005), the cis-eQTL for IGF2 suggests that
the intronic mutation identified by Van Laere et al. (2003) or another variant within
the IGF2 gene may be segregating in the IBMAP BC1_LD, having an important effect on
the analyzed traits. Further analysis will be conducted to validate our hypothesis.
Concerning the monoglyceride lipase (MGLL) eGWAS results, one of the annotated cis-
eSNP (ASGA0103932) mapped within an intronic region of MGLL gene (Table S2).
However, this SNP was not the most significantly associated SNP (ASGA0103932; p-
value=2.34x10%), suggesting the presence of other SNPs within or near this gene as
causative mutation with effects in the MGLL gene expression levels. The most
significant cis-eSNP for MGLL (ASGA0093606; p—value=2.20><10'9) was located less than
0.69Mb downstream of the MGLL gene. In addition, an eSNP in the MGLL cis-eQTL was
annotated in the upstream region of PPARG gene (Table S2). PPARG and MGLL genes
were reported to be co-associated in a previous study of our group for growth and
fatness traits, where PPARG was described as a major regulator (Puig-Oliveras et al.,
2014b). Besides, the literature-based analysis with Genomatix
[http://www.genomatix.de/] also identified an interaction between these two genes
(Figure S2), and a chromatin immunoprecipitation (ChiP) experiment performed in
epithelial cultured cells revealed PPARG binding sites in the distal MGLL promoter
(Harmon et al., 2010). Though, it is likely that this region initially considered as a single
cis-acting eQTL comprises in fact two eQTLs. In this regard, the MGLL gene expression
would be affected by a variant present in the same gene (MGLL) and also by PPARG.
Reinforcing this hypothesis, we observed that it was the largest cis interval (comprising

approximately 54.6Mb) in comparison with the two other cis intervals (spanning a
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maximum length of 11.5Mb) identified for the IGF2 and ACSM5 genes (Table 1). The
correlation between PPARG and MGLL gene expression in muscle was moderate
(r=0.48; p—value=8.28x10'8). No association was found between the SNP within PPARG
(ISU10000701) and the PPARG gene expression, suggesting than other polymorphism
in this region is responsible for the variation in MGLL gene expression. Remarkably, the
significant associated eSNP inside the PPARG gene (ISU10000701) was one of the three
main co-associated SNPs in the network identified in Puig-Oliveras et al. (2014b)

involved in the determination of growth and fatness traits.

Three eSNPs (ASGA0090088, ASGA0105223 and SIRI0001454) in complete linkage
disequilibrium (D'=1) were the most significant in the cis-eQTL (p-value=7.12x10"%)
associated with the mRNA levels of the acyl-coA synthetase medium-chain family
member 5 (ACSM5) (Table 1). The ASGA0O090088 marker was the closest cis-eSNP
mapping at approximately 798kb of the upstream region of the ACSM5 gene (Table
S2).

trans-eQTL identified

The ACSM5 gene expression was associated in trans with two chromosomal regions in
SSC3 and SSC10. The most associated SNP of SSC10 was an intronic polymorphism
(ASGA0090778; p-value=2.55x10%) in the COG7 gene (Table S2). Although the COG7
gene has not been described to have a direct relationship with the lipid metabolism
function, it is reported that members of the conserved component of oligomeric golgi
complex (COG) are involved in intra-Golgi trafficking and glycosylation of proteins and
lipids (Smith & Lupashin 2008). Other lipid-related genes were identified within this
trans-eQTL in SSC10 such as the NADH dehydrogenase (ubiquinone) 1, alpha/beta
subcomplex, 1, 8kDa (NDUFAB1) gene which plays a role in FA biosynthesis and the
golgi-associated, gamma adaptin ear containing, ARF binding protein 2 (GGA2) gene,
which is a component of the clathrin coats involved in the lipid membrane exchange
(Hung et al., 2012) (Table S3). Within the second trans-eQTL for ACSM5 at 100.35Mb of
SSC3, two genes that may affect the lipid metabolism were identified: protein kinase c,
epsilon (PRKCE) and calmodulin 1 (Phosphorylase kinase, delta) (CALM1) (Table S3).

PRKCE knockdown led to an increase of FA esterification in hepatocytes and CALM1
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gene expression (Raddatz et al., 2011). CALML1 is a subunit of the phosphorylase kinase

enzyme, a rate-limiting enzyme for glycogenolysis (Mormeneo et al., 2012).

For FBJ murine osteosarcoma viral oncogene homolog (FOS) gene expression, three
interesting genes in a SSC11 trans-eQTL were identified: StAR-related lipid transfer
(START) domain containing 13 (STARD13), spastic paraplegia 20 (Troyer syndrome)
(§PG20), and arachidonate 5-lipoxygenase-activating protein (ALOX5AP) (Table S3).
The StAR gene family encode for globular proteins that form cavities where lipids and
lipid hormones bind to be exchanged between biological membranes (Thorsell et al.,
2011). Supporting STARD13 as a regulator of FOS gene expression, in transgenic mice
with pancreas STARD13 ablation there was no detectable mRNA expression of FOS
gene (Petzold et al., 2013). SPG20 may be involved in increased lipid droplet and
alterations in perilipin levels (Renvoisé et al., 2012). Finally, ALOX5AP is required for

leukotriene (an arachidonic metabolite) synthesis implied in inflammatory responses.

Two regions in SSC2 and SSC6 were associated in trans with the peroxisome
proliferator-activated receptor alpha (PPARA) gene expression. In SSC2, several genes
related with lipid metabolism were identified: Rho GTPase activating protein 26
(ARHGAP26), fibroblast growth factor 1 (Acidic) (FGF1) and nuclear receptor subfamily
3, group ¢, member 1 (glucocorticoid receptor) (NR3C1) (Table S3). The ARHGAP26 is
activated via lipid interaction (Erlmann et al, 2009) and may play a role in
adipogenesis, as well as the transcription factor NR3C1, which maps at approximately
0.5Mb  of ARHGAP26 gene. By using the Genomatix interface
[http://www.genomatrix.de/], we observed that NR3C1 interacts with NFKB, CREB and
NCOA genes, and may be affected by the corticotropin-releasing hormone (CRH) and
insulin (INS) (Figure 3). Accordingly, the CRH was identified in a network analysis for
fatness and growth traits (Puig-Oliveras et al., 2014b) and the insulin signalling
pathway in a RNA-Seq study comparing animals extreme for their intramuscular FA
composition (Puig-Oliveras et al., 2014a), both studies performed with the IBMAP
animal material. The FGF1 gene has been identified as differentially expressed in
animals phenotypically extreme for FA composition in muscle (Puig-Oliveras et al.,
2014a). Noteworthy, FGF1 is involved in preadipocyte differentiation and has been

suggested to be acting on the PPARG system, however the mechanisms remain unclear
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(Hutley et al., 2004). In accordance with this hypothesis, it is described that FGF1 can
be trans-located to the nucleus exerting a growth regulatory activity (Zhen et al.,
2012). Hence, it would be important to study the FGF1-PPARA relationship. In the SSC6
PPARA trans-eQTL mapped the palmitoyl-protein thioesterase 1 (PPT1) gene, which is
involved in the catabolism of lipid modified proteins (Calero et al., 2003), the
metallophosphoesterase 1 (MPPE1) which acts in lipid remodelling of GPI-anchor
proteins, the inositol(myo)-1(or 4)-monophosphatase 2 (IMPA2) which plays an
important role in phosphatidylinositol signalling, and the cell death-inducing DFFA-Like
effector A (CIDEA) involved in lipolysis and thermogenesis. Interestingly, CIDEA-null
mice showed a decreased PPARA, PPARG and SREBF1 gene expression and a decreased
de novo FA synthesis in liver (Zhou et al., 2012). Besides, the CIDEA-PPARA interaction
identified in the eQTL analysis was also captured by Genomatix
[http://www.genomatrix.de/] literature-based analysis (Figure S2). In addition, two
melanocortin receptor genes (MC2R and MC5R) mapped in the PPARA SSC6 trans-
eQTL. In adipocyte cells of MC2R knockdown mice alterations in fatty acid composition
were observed: a reduction in the C16:1/C16:0 and C18:1/C18:0 ratios and an increase
in the arachidonic acid content (Betz et al., 2012). MC2R is specifically activated by the
adrenocorticotropic hormone (ACTH) (Agulleiro et al., 2013). On the other hand, MC5R
has been linked or associated with the obesity phenotypes such as body mass index

and fat mass in humans (Chagnon et al., 1997).

The phosphoinositide-3-kinase, regulatory subunit 1 alpha (PIK3R1) eGWAS revealed a
trans-eQTL on SSC6 at 145.60Mb where several interesting genes involved in lipid
metabolism were mapped: low density lipoprotein receptor-related protein 8,
apolipoprotein e receptor (LRP8), 24-dehydrocholesterol reductase (DHCR24), dab
reelin signal transducer homolog 1 (DAB1), protein kinase, AMP-activated, alpha 2
catalytic subunit (PRKAA2), phosphatidic acid phosphatase type 2B (PPAP2B), and
proprotein convertase subtilisin/kexin type 9 (PCSK9) (Table S3). The DHCR24 gene
regulates the production of cholesterol (Mirza et al., 2006), the PPAP2B is involved in
the diacylglycerol synthesis for de novo lipogenesis of glycerolipids, and the PCSK9
regulates the plasma cholesterol homeostasis and binds to low and very low density

lipoprotein receptors (LDLR and VLDLR) and apolipoprotein receptors (LPR1 and LPR8)
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for their degradation. DAB1 is involved in intracellular signalling pathways, including
the PI3K signalling inducing its phosphorylation (Herz et al.,, 2009). However, this gene
was detected at very low expression levels in the muscle tissue of the RNA-Seq animals
(Puig-Oliveras et al., 2014a). Interestingly, the PRKAA2 gene identified within the SSC6
trans-eQTL for PIK3R1, is a catalytic subunit of the AMP-activated protein kinase
(AMPK) which is in charge of regulating lipid synthesis by phosphorylating lipid
metabolic enzymes such as ACACA, ACACB, ACC, GYS1, HMGCR, HSL and LIPE to
inactivate them. Therefore, it acts regulating key enzymes of fatty acid uptake,
esterification, lipolysis and oxidation (O’Neill et al, 2013). In the same direction,
PRKAA2 knockdown affects Akt activation. Therefore, PIK3R1 and PRKAA2, are both
associated with the PI3K-Akt signalling pathway. Supporting these results, recent
published studies suggested that AMPK activates Akt via regulating PI3K (Tao et al,,
2010). These results highlighted the PRKAA2 as strong candidate gene to explain the

variation in the mRNA levels of PIK3R1.

Four chromosomal regions (two regions in SSC6, one region in SSC8, and one in SSC9)
where associated in trans with the phospholipase A2, group XIIA (PLA2G12A) gene
expression. Specifically, on the SSC8 eQTL at approximately 128 to 136Mb were
mapped the microsomal triglyceride transfer protein (MTTP), the hematopoietic
prostaglandin D synthase (HPDGS), and the alcohol dehydrogenases 4, 5 and 7 (ADH7,
ADH4, and ADH5) genes involved in lipid metabolism (Table S3). The MTTP exhibiting a
lipid transfer activity has been associated with C16:0, palmitoleic (C16:1(n-7)) and
C18:1(n-9) FAs (Estellé et al., 2009; Ramayo-Caldas et al, 2012). The alcohol
dehydrogenases are responsible for catalyzing ethanol and acetic acid to acetyl-CoA,
needed for FA synthesis (Montooth et al., 2006). The HPGDS gene is identified to
catalyse the conversion of prostaglandins (lipid derived signalling molecules) to
prostanoids involved in immune response (Virtue et al., 2015). The ADH5 was the most
expressed gene in pig muscle (Puig-Oliveras et al., 2014a); meanwhile, the other ADH
members (ADH7 and ADH4) jointly with, MTTP and HPGDS genes showed very low
expression levels in muscle (Puig-Oliveras et al., 2014a) what is in concordance with
what is reported in human muscle (Kapushesky et al., 2010). Two genes were

identified within the trans-eQTL at 79.9Mb position on SSC6: mitochondrial trans-2-



PAPERS AND STUDIES

enoyl-coA reductase (MECR) and sestrin 2 (SESN2) (Table S3). MECR is involved in FA
synthesis and transcription modulation of PPARs (Parl et al., 2013); and SESN2 may
contribute to the inhibition of the nuclear receptor subfamily 1, group H, member 3
mediated (NR1H3-mediated or LXRa) hepatic lipogenesis (Jin et al., 2013). Only one
lipid related gene was identified within the second trans-eQTL at 9.7Mb the WW
domain containing oxidoreductase (WWOX) gene which has recently been described to

play a role in cholesterol homeostasis and triglyceride biosynthesis (latan et al., 2014).

Noteworthy, an eQTL on SSC9 at around 117Mb was affecting the expression of genes
PLA2G12A and the hypoxia inducible factor 1, alpha subunit inhibitor (HIF1AN) (Table
1). Their mRNA expression was highly correlated (r=0.60; p-value=1.98x10™"),
suggesting a common element regulating their transcriptional levels. The three most
significant SNPs (H3GA0028012, ASGA0044215, ALGA0117195; p-value=4.48x10°)
within this eQTL were in complete linkage disequilibrium (D'=1) (Table 1). In this region
was mapped the PIK3CG which encodes a phosphatidylinositol-4,5-bisphosphate 3-
kinase which is known to participate in different functions including the insulin
signalling pathway and the lipid metabolism (Kobayashi et al., 2011), and the DLD gene
which encodes a dihydrolipoamide dehydrogenase involved in acetyl-coA biosynthesis
(Table S3). The PIK3CG gene, unlike other PI3K family members, is activated by
interaction with G-protein-coupled receptors and silencing this gene the PI3K-Akt
signalling pathway is inhibited (Semba et al., 2002). In accordance, studies in cell lines
have suggested that HIFIAN gene expression is repressed by a mechanism involving
PI3K signalling (Datta et al., 2004). Altogether, these results suggest that the PRKAA2
may regulate the class | PI3K regulatory subunit 1 (PIK3R1), which is able to form a
heterodimer with the PIK3CG catalytic subunit, activate Akt pathway and inhibit

HIF1AN gene expression.

For IGF2 gene expression, apart from the SSC2 cis-eQTL, a trans eQTL located
approximately at 162Mb of the same chromosome was identified and the sirtuin 3
(SIRT3) gene mapped in this region (Table S3). It has been described that S/IRT3
knockout mice exhibited decreased oxygen consumption and increased oxidative
stress in skeletal muscle (Jing et al., 2011). Moreover, SIRT3 knockout mice showed a

down-regulation of the Akt phosphorylation (Jing et al., 2011) (Figure S3). Members of
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the SIRT gene family have been described to be relevant genes controlling lipolysis and
promoting fat mobilization in white adipose tissue (Schug & Li 2011) and SIRT1
member has been identified as one of the most central genes in a liver co-expression
network for intramuscular FA composition in the IBMAP animal material (Ramayo-
Caldas et al., 2014). Recently, the SIRT3 member, which can be activated by the AMPK
protein, has been suggested to play a major role in obesity-related diseases (Newsom

etal., 2013).

Finally, within the trans-eQTLs identified for CROT, FABP3, MGLL, and NCOA1 gene
expression, we could not detect any strong candidate gene exerting a known lipid

metabolism function.
Functional network analysis of genes mapping in eQTLs

For trans-eQTLs all the genes located within a £+1Mb interval were selected for gene
annotation. Conversely, for cis-eQTLs only the studied candidate gene was considered
(ACSM5, IGF2, and MGLL) for further analyses. In the 18 eQTLs, a total of 292 protein-
coding genes, 13 miRNA, one miscRNA, six pseudogenes, one rRNA, eleven snoRNAs
and four snRNAs were annotated. From the 292 protein-coding genes with Ensembl
Gene ID, 256 had at least one human orthologous gene and were submitted to IPA to

perform a functional categorization (Table S4).

The main networks identified with IPA analysis were: (i) energy production, small
molecule biochemistry, and drug metabolism (score=44); (ii) organismal injury and
abnormalities, cancer, and hematological disease (score=42); (iii) and connective tissue

disorders, inflammatory disease, skeletal and muscular disorders (score=37) (Table S4).

Focusing on the first network comprising the energy production, small molecule
biochemistry and drug metabolism functions, we identified the serine/threonine
kinase effector (Akt) complex as central in the network (Figure S3). Remarkably, the
Akt complex, which is involved in glucose transport and lipogenesis, was also identified
in the muscle transcriptome study between 12 BC1_LD animals extreme for
intramuscular FA composition (Puig Oliveras et al., 2014a). In agreement with this

results, several genes (PIK3CG, PPAP2B, PRKAA2, PTPN2 and SIRT3) identified as
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potential regulators within the eQTLs of the 45 lipid-related genes, are strongly related

to the Akt pathway.
Identification of master regulators

A total of 298 genes including (1) the 253 genes annotated in the trans-eQTL intervals,
and (2) the 45 studied genes of the present study were analyzed with iRegulon
cytoscape plugin (Janky et al., 2014). We observed that the EP300 gene was the most
enriched transcription factor motif (enrichment score threshold for the motif,
NES=4.737). Noteworthy, the EP300 gene was identified as a key regulator of FA
composition and IMF traits in the same material using a gene co-association network
(Ramayo-Caldas et al., 2014). On the other hand, five of the 45 studied genes were
identified as strong regulators of the 45 genes with iRegulon: NR1H3 (NES=5.348; 10
target genes), MLXIPL (NES=4.988; 29 target genes), PPARA (NES=4.785; 32 target
genes), NFKB1 (NES=3.855; 6 target genes) and PPARG (NES=3.536; 10 target genes).
The PPARA motif was present on the highest number of target genes (32 out of 45
genes). Interestingly, NR3C1 gene identified within the PPARA trans-eQTL on SSC2 was
also identified with iRegulon among the regulators for the 45 analyzed genes and
Matlnspector (Genomatix software) predicted a binding-site for this transcription
factor in the promoter of PPARA. The NR3C1 gene may play a negative role in
adipogenesis, regulating the lipolytic and antilipogenic gene expression. In human
studies, polymorphisms in the NR3C1 gene have been suggested to contribute to
obesity (Dobson et al., 2001). Thus we hypothesize that the NR3C1 may be a master
regulator of lipid metabolism through the regulation of PPARA gene expression.

However, further studies are necessary to corroborate this hypothesis.
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QTL and eQTL co-localization

Finally, we looked for the overlapping of the 241 eSNPs with the QTLs described in the
Pig QTLdb [http://www.animalgenome.org/cgi-bin/QTLdb/SS/index; Release 27, Apr
27, 2015]. A total of 234 eSNPs (97%) co-localized in 132 QTLs for fatness traits and
157 eSNPs (65%) within 10 different QTLs for FA composition (Table S5), confirming a
high co-localization of eQTLs and fat-related QTLs. The large number of QTLs described
for these traits, covering a big extension of the porcine genome, provides evidences for

a complex genetic pleiotropic regulation basis of these traits.

Remarkably, five genes identified within the eQTLs (i.e. ARHGAP6, IGF2, MC2R, MGLL,
NR3C1) overlapped with described QTLs in the IBMAP population. For instance, the
IGF2 gene for which a cis-eQTL was detected, was identified within a confidence
interval of one of the epistatic regions affecting muscle fiber traits (Estellé et al., 2008).
The MGLL gene, showing a cis-acting eQTL, was located close to a GWAS interval
affecting FA composition traits: palmitic (C16:0) and oleic, (C18:1(n-9)) FAs,
polyunsaturated/saturated ratio (PUFA/SFA ratio), SFA, and unsaturated index (Ul)
(Ramayo-Caldas et al., 2012). Furthermore, MGLL maps within a QTL interval affecting
growth (Fernandez et al.,, 2012). The MC2R gene, identified in a PPARA trans-eQTL,
maps within an IBMAP QTL region for IMF content and backfat thickness (Ovilo et al.,
2000). Moreover, ARHGAP6 and NR3C1 genes also identified in a trans-eQTL for PPARA
gene expression are located within a QTL for growth traits in the IBMAP population

(Fernandez et al., 2012).

Conclusions

To gain insight into the genetic control of lipid metabolism-related traits, potential
candidate genes and variants regulating the transcriptional level of 45 lipid related-
genes were identified using eQTL mapping and functional analyses. This study has
identified several genomic regions containing candidate genes that may regulate gene
expression levels of relevant lipid-metabolism related genes. Combined assessment of

the obtained results from eGWAS of lipid-related genes and GWAS may provide
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complementary information of genes and variants determining the IMF and FA
composition traits. Therefore, the present results identify potential key genes and
variants affecting pork meat quality. However, more efforts should be made to
validate our results, for instance, the implication of the NR3C1 gene as a major

regulator in muscle FA metabolism.

Methods

Animal samples and phenotypes

The IBMAP population was obtained by crossing three Guadyerbas Iberian boars with
31 Landrace sows (Pérez-Enciso et al., 2000). In the present study, we used 114
animals belonging to the BC1_LD generation of the IBMAP population obtained by
crossing five F1 boars with 26 Landrace sows. Animals were fed ad libitum with a
cereal-based commercial diet and slaughtered at 179.8 + 2.6 days. Animal care and
procedures were performed following national and institutional guidelines for the
Good Experimental Practices and approved by the Ethical Committee of the Institution
(IRTA- Institut de Recerca i Tecnologia Agroalimentaries). Samples of the Longissimus
dorsi muscle were collected, snap frozen in liquid nitrogen and stored at -802C until

further RNA isolation.

Genotyping

A total of 197 animals from the BC1_LD (160 backcrossed individuals and their
respective parents) were genotyped with the Porcine SNP60 Beadchip (lllumina),
following the Infinium HD Assay Ultra protocol (lllumina) (Ramos et al., 2009). Raw
data was visualized with GenomeStudio software (lllumina) and trimmed for high
genotyping quality (call rate > 0.99). Markers with minor allele frequency (MAF) > 5%
and animals with missing genotypes < 5% were retained. After the quality control

filter, a subset of 40,586 SNPs remained.

Gene expression profiling

Total RNA was isolated from the Longissimus dorsi muscle of 114 samples with

RiboPure Isolation of High Quality Total RNA (Ambion, Austin, TX, USA). Total RNA was
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quantified in a NanoDrop ND-1000 spectrophotometer (NanoDrop products,
Wilmington, DE, USA) and Qubit (Invitrogen, Carlsbad, CA, USA). The RNA was
converted to cDNA using the High-Capacity cDNA Reverse Transcription (Applied
Biosystems). The cDNA samples were loaded into a Dynamic Array 48.48 chip in a
BioMark system (Fluidigm; San Francisco, CA, USA) through a NanoFlex controller. For
this experiment, the expressed levels of 48 genes were analyzed and a total of 45
target genes were normalized using the two most stable housekeeping genes (ACTB
and TBP). Primers used for the analyses are detailed in Table S6. Data was collected
using the Fluidigm Real-Time PCR analysis software 3.0.2 (Fluidigm) and analyzed using
the DAG expression software 1.0.4.11 (Ballester et al., 2013) applying the relative
standard curve method (see Applied Biosystems user bulletin #2). Analyses were
performed using the normalized gene expression levels of each sample and assay. The
animals showing abnormal gene expression levels (outliers) were removed and data
obtained was normalized if necessary performing log, transformation of the NQ value.
We also tested the sex effect by using a linear model with R program (lhaka &

Gentleman, 1996).
Gene expression association analysis

An eGWAS was also performed using the genotypes of BC1_LD animals and the
expression values from muscle. A mixed model was employed implemented on Qxpak

5.0 (Pérez-Enciso & Misztal, 2011):
Yijki = Sexi+Batchj+ Bekt+ Aa) + Uit €ijkl,

in which yj was the k™ individual record, sex (two levels) and batch (five levels) were
fixed effects, B is a covariate coefficient with ¢ being carcass weight, A, was a -1, 0, +1
indicator variable depending on the k™ individual's genotype for the 1™ SNP, a
represents the additive effect associated with the 1" SNP, uy is the infinitesimal genetic
effect with random distribution N(0, Ac,”) where A is the numerator of the pedigree-

based relationship matrix and e the residual.
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To correct for multiple testing, the false discovery rate (FDR) was calculated with the g-
value library of R package setting the threshold at g-value < 0.05 (Ilhaka & Gentleman,
1996; Storey & Tibshirani, 2003).

The identified eSNPs were classified as cis when they were located within 1Mb from
the analyzed gene and as trans when they were located elsewhere of the genome. The
number of significant eSNPs belonging to the same interval was considered among

associated eSNPs less than 10Mb apart.
Gene annotation and functional analysis

The significantly associated eSNPs were mapped in the Sscrofal0.2 assembly and were
annotated with the Ensembl Genes 78 Database using VEP software (Mclaren et al.,
2010). The genomic eQTL intervals considering +1Mb around the candidate
chromosomal regions were annotated using BioMart software

[http://www.biomart.org].

The Core Analysis function included in the Ingenuity Pathway Analysis (IPA; ingenuity
Systems) software [http://www.ingenuity.com] and the Genomatix Pathway System
(GePS) (Release 2.8.0) in the Genomatix software suite [https://www.genomatix.de/]
were used to perform the functional analysis of genes mapped in the 18 eQTLs regions.
Specifically, the IPA software was used for data interpretation in the context of
biological processes, pathways, networks, and upstream regulators. All information
generated in this software is derived from the Ingenuity Pathway Knowledge Base
(IPKB), which is based on functions and interactions of genes published in the
literature. Genomatix was used to retrieve additional information of gene functions,
interactions and upstream regulators based on literature. Furthermore, information
from Mouse Genome Informatics Database [MGI; http://www.informatics.jax.org] and
Genecards [http://www.genecards.org] was used to identify gene functions affecting
the analyzed phenotypes. For the lipid-related genes, the Gene Expression Atlas
[http://www.ebi.ac.uk/gxa] was used to determine whether they were expressed in

muscle or not.
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Finally, an in-silico identification of transcription factor binding sites in the promoter
region of the 256 annotated genes was performed. For this analysis we used iRegulon
(Janky et al., 2014), which relies on the analysis of the motif enrichment for a
transcription factor in the gene set using databases of nearly 10,000 TF motifs and

1,000 ChIP-seq data sets or “tracks”.

Correlation of gene expression and phenotypes

Correlations were performed among gene expression of the 45 genes to explore the
relationship between genes. Furthermore, pairwise correlations among gene
expression and FA composition percentages in muscle (Ramayo-Caldas et al.,, 2012)
were carried out to explore the relationships between gene expression and
phenotypes. All values were normalized applying the log, of raw data if necessary.
Afterwards, gene expression was corrected by sex (two levels) and batch (five levels)
effects, whereas FA composition percentages were corrected by sex, batch and carcass
weight. The remaining residuals of the phenotypes and gene expression values
corrected for the corresponding effects were used to obtain the pairwise correlations.
The hierarchical clustering option of PermutMatrix software was used to visualize the

results of both traits and genes (Caraux & Pinloche 2005).
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Figure Legends

Figure 1. Hierarchical cluster of correlations among gene expression levels (RQ) of the

45 genes and fatty acid content in muscle.
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Figure 2. GWAS plot of ACSM5, IGF2 and MGLL gene expression in muscle tissue.
Positions in Mb are relative to Sscrofa10.2 assembly of the pig genome. Horizontal
dashed lines indicate the chromosome wide significance level (FDR-based g-value <
0.001). Plot of eGWAS for (A) ACSM5 gene expression in muscle (B) IGF2 gene

expression in muscle (C) MGLL gene expression in muscle.
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Figure 3. Literature-based network of genes interacting

factor generated by Genomatix.
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Tables

Table 1. Significant eQTLs identified.

most significant SNPs in eQTL p-value g-value eQTL interval'

ASGA0090088, ASGA0105223,

1 ACSM5 7.12E-14 9.29E-10 3:16487448-27941321 43 cls
SIRI0001454
2 ACSM5 ALGA0020170 8.58E-11 3.73E-07 3:100347076 1 TRANS
3 ACSM5 ASGA0090778 2.55E-08 3.44E-05 10:175359 1 TRANS
4 CROT ALGA0046590 4.01E-07 9.77E-03 8:15870120-15912410 3 TRANS
5 FABP3 ALGA0063896 1.26E-06 4.47E-02 11:81364018-82160789 2 TRANS
6 FOS H3GA0031293 1.22E-09 4.95E-05 11:6736568-11968518 6 TRANS
HIF1AN, H3GA0028012, ASGA0044215, 2.91E-07 3.92E-03
7 9:117742788-117851340 3 TRANS
PLA2G12A ALGAO0117195 4.48E-06 2.74E-02
8 IGF2 ASGA0101159, DIAS0000846 <1.0E-25 <1.0E-25 2:16416-11175095 17 CIs*
9 IGF2 ASGA0085784 6.63E-09 2.45E-05 2:162088043-162298086 2 TRANS
10 MGLL ASGA0057854 7.06E-08 6.28E-05 1:287348708 1 TRANS
11 MGLL ASGA0093606 2.20E-09 2.61E-05 13:27954256-82589660 147 cls
ALGA0016576, MARC0045025,
12 NCOA1 2.60E-06 3.49E-02 2:146195530-146722998 3 TRANS
MARC0087200
13 PIK3R1 ALGAO0117336 1.24E-06 3.02E-02 6:143952619-145605378 3 TRANS
14 PLA2G12A ALGA0113789 1.96E-08 7.84E-04 6:10020702 1 TRANS
15 PLA2G12A ALGA0103867 3.41E-06 2.74E-02 6:79924228 1 TRANS
16 PLA2G12A ASGAO0039774 1.34E-06 2.68E-02 8:128899782-136113975 3 TRANS
17 PPARA M1GA0003328 3.25E-06 3.30E-02 2:150634202 1 TRANS

MARC0074986, DIAS0004325,
18 PPARA 6.17E-07 6.17E-07 6:89986075-90352248 3 TRANS
CASI0006620

! Chromosomal location is given according to the Sscrofal0.2 assembly coordinates. Positions are relative to the significant eQTL
interval start and end. Lengths are given in base pairs.
? Number of significant eSNPs within the eQTL interval.

* Approximate location of the gene described by Fontanesi et al. (2010).
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Supporting Information

Figure S1. Comparison between males and females of muscle gene expression levels of
45 lipid-related genes. Data represents means = SEM. Significant differences between

sexes are indicated as * P <0.05, ** P <0.01, ** P <0.001.
Figure S2. Network of the lipid metabolic process function obtained by Genomatix.

Figure S3. Network (score 44) generated by IPA of 25 focus genes corresponding to the

energy production, small molecule biochemistry and drug metabolism functions.

Table S1. Descriptive statistics including mean and standard deviation (SD) of
intramuscular fat (IMF), fatty acid (FA) composition and fatty acid indices of the

BC1_LD animals analyzed.

Table S2. Description of the 241 eSNPs identified as significantly associated with gene

expression.

Table S3. Gene annotation within the eQTL intervals. Annotation was performed by
considering for trans-eQTLs the eQTL interval £1Mb; whereas for cis-eQTLs only the

studied gene was selected (ACSM5, IGF2, and MGLL).

Table S4. Top functional networks identified with IPA based on the list of annotated

genes mapping within the 18 eQTLs.

Table S5. Positional concordance among the 241 eSNPs associated with gene
expression and the QTLs described in the pig QTL database for fatness and fat

composition related traits.

Table S6. Primers used for the analyses of gene expression of the 48 genes by Real-

Time PCR.
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