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dels meus millors amics gràcies a las piernas de Madonna, a les nostres apostes i bromes

i, en particular, a tot el recolzament que m’ha donat quan pitjor ho he passat. Després,
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gracias Salva, Mariasun, Asunción, Sandra, Alex, David, Ester y Paula (valiente reto

tuve con vosotras dos!).

Finalmente, no tengo suficientes palabras para agradecer a mi familia todo lo que

han hecho por mı́. Mis padres, Enrique y Victoria han sido geniales durante toda mi

vida y me han dado fuerzas especialmente durante estos últimos años. De mi madre he

aprendido a ser un luchador, a tener una sonrisa en la cara siempre y a ver las cosas

por el lado positivo. La verdad es que nunca he conocido a alguien tan fuerte, enérgico
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las palabras tú tienes que hacer lo que te haga más feliz, siempre me has apoyado en

todo y nunca me has reprochado nada. Eres la mejor madre que podŕıa tener. Y mi
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Introduction

Conical refraction is a phenomenon occurring in biaxial crystals that was predicted

theoretically by Hamilton in 1832 observed by Lloyd few months later. During many

years, this optical effect was considered as a curiosity and almost fell into oblivion until

the last quarter of the 20th century. One of the reasons for this is that crystal technology

was not developed enough to offer high quality biaxial crystals cut perpendicular to one

of the optic axes. This issue has been solved during the last decades and with the

start of the 21st the community started studying the conical refraction phenomenon

both experimentally and theoretically. There are three main reasons that make conical

refraction so attractive:

1) When using a focused Gaussian input beam the conical refraction beam forms an

optical bottle, i.e. it opens and closes itself symmetrically along its propagation leaving

a central region without intensity.

2) At the intermediate region of the optical bottle -the focal plane-, the transverse

intensity pattern is formed by a pair of concentric bright rings split by an exactly null

dark ring known as Poggendorff ring.

3) The state of polarization of the rings is linear and unique at every point in a way

such that every two diametrically opposite points of the ring have orthogonal polariza-

tions. This polarization distribution differs from the well known radial and azimuthal

polarization distributions.

Inspired by these features, with the present thesis we have the aim of analyzing

in detail the phenomenon of conical refraction and to exploit it in different areas of

science and technology. The organization of the thesis does not follow the temporal

line of development of our work but we have tried to find the most constructive way to

understand the conical refraction phenomenology and its applications.

The thesis can be divided in two main parts in which 1) we analyze in detail the

phenomenon of conical refraction (Chapters 1–8) and 2) we apply it in different fields of
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fundamental science and technology (Chapters 6–10). Unless otherwise stated, all the

work presented here has been performed in the Conical Refraction Laboratory at the

Optics Group of the Universitat Autònoma de Barcelona in collaboration with Dr. Yury

V. Loiko, Dr. Todor K. Kalkandjiev and Prof. Jordi Mompart.

Chapter 1 is devoted to introduce conical refraction historically: from Hamilton’s

prediction and the first experiments from Lloyd to the diffractive theory of Belsky, Kha-

palyuk and Berry and the last reported experiments. We also give a brief introduction

to crystal optics in order to understand the fundamental physics of the phenomenon.

Then, in Chapter 2 we present the theory of conical refraction for both a sin-

gle crystal and cascade of them. We divide the theory in three complementary views:

the diffractive theory developed by Belsky and Khapalyuk and reformulated in an el-

egant way by Berry (Chapter 2.2) and our group, the dual-cone model introduced by

Sokolovskii and co-workers and reformulated by our group (Chapter 2.4), and the wave-

vector and polarization interpretation introduced by our group (Chapter 2.3).

One feature that has not been commented above about the nature of conical refrac-

tion is the fact that the beam evolution is governed by the parameter ρ0, obtained as the

ratio between the ring radius R0 and the waist radius of the focused input beam w0, i.e.,

ρ0 ≡ R0
w0

. We show the relevance of ρ0 Chapter 3 and demonstrate that, by adjusting

appropriately this parameter, there can be obtained very interesting light beams, such

as three-dimensional dark focus and a super-Gaussian beam.

Besides, the ρ0 parameter not only controls the intensity pattern but also the state

of polarization of the conical refraction beam. Beams at which the state of polarization

and the intensity pattern do not factorize are known as vector beams. In Chapter 4

we show different vector beams generated with conical refraction and demonstrate that

their polarization distribution depends, in general, on the state of polarization of the

input beam. We also show that the spin-orbit coupling provided by the biaxial crystal

leads to different optical singularities in the conical refraction beam.

The birefringence introduced by the biaxial crystal has the consequence that, even if

the input beam lacks of some the wave-vectors (for instance, when the beam is blocked

partially by an obstruction), the conical refraction beam can preserve in part its annular

structure. The reconstruction of after an obstruction is a process known as self-healing.

In Chapter 5 it is demonstrated that conically refracted beams also self-heal on some

way. In our approach, we do not obstruct the conical refraction beam itself but we do it

with the Gaussian input beam by using an azimuthal obstruction. We show that even

when half of the input beam is blocked, the transverse intensity pattern at the focal

plane is still ring-like.

Biaxial crystals are mostly used as non-linear media to give rise to non-linear effects

such as second harmonic generation, parametric down-conversion, Kerr effect, etc. Sec-

ond harmonic generation in conical refraction has been studied together, in the same

biaxial crystal. The approach that is presented in Chapter 8 slightly differs from that
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one. We study the second harmonic generation of a conically refracted beam in type

I and type II non-lineal crystals. This arrangement is very efficient, since the phase

matching orientation of the non-linear crystal can be adjusted independently on the

optic axis of the crystal giving rise to conical refraction. We show the beam evolution

of the SHG beams when the non-linear crystal is placed at the ring plane of conical

refraction and give a formula for the intensity pattern at the focal plane.

Chapters 6 and 7 are related to one of the major applications of conical refraction:

optical trapping. At variance with other works where conical refraction is used as

for optical twzeers, our approach takes profit of the force of photophoresis and the

dipolar force to trap macroscopic absorbing particles and Bose–Einstein condensates.

With photophoresis (Chapter 6), we demonstrate the efficient loading and unloading of

macroscopic particles by reconfiguring in real-time the optical bottle provided by the

conical refraction beam. This work was thought and carried out during a short research

stay that was carried out at the group of Prof. Wieslaw Krolikowski from the Australian

National University. For the case of optical trapping with dipole potentials (Chapter 7),

we give the trapping frequencies and potential depths for different optical potentials

available with conical refraction. For the particular cases of the Poggendorff dark ring

and the three-dimensional dark focus we give analytical formulas deduced directly from

the theory of conical refraction and we present an experimental implementation of these

optical potentials. Most of this research with Bose–Einstein Condensates was developed

during a research stay funded by the DAAD at the group of Prof. Gerhard Birkl at the

Technische Universität Darmstadt.

Chapter 9 we present the first proposal of combining conical refraction with quan-

tum optics. Firstly, we analyze the transformation of a spontaneous parametric down-

conversion beam generated in a non-linear crystal, which leads photons entangled in lin-

ear momentum. Then, we propose a method to demonstrate such entanglement through

a polarization measurement, i.e., we swap linear momentum entanglement into polariza-

tion entanglement by means of the conical refraction phenomenon. This proposal was

developed during a short research stay that was carried out at the group of Prof. Miles

Padgett from the University of Glasgow and funded by the MICINN.

In addition to all the implementations at a fundamental science level, conical refrac-

tion also has technological applications, as it is shown in Chapter 10. In particular, we

report a free space optical communication system for multiplexing and demultiplexing

multiple polarization channels with a cascade of 3 biaxial crystals.

Finally, Chapter 11 gives a summary of the work presented in this thesis and

envisages possible future work.
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CHAPTER 1

History of conical refraction

This Chapter serves to introduce the phenomenon of Conical Refraction and its

meaning to the theory of light. Our aim is to show the historical evolution of the

phenomenon, including both the development of the theory of conical refraction and

milestone experiments, as long as we introduce briefly some ideas of crystal optics. The

organization of the Chapter is the following. In Section 1.1 we show the relevance of

the conical refraction phenomenon for the acceptance of the wave nature of light. Then,

after a brief introduction of crystal optics given in Section 1.2, we discuss how Hamilton

discovered conical refraction in biaxial crystals (Section 1.3), the new observations of

the phenomenon reported by Voigt, Poggendorff and Raman (Section 1.4); and show the

development of the diffractive theory of conical refraction introduced by Lalor and fur-

ther developed later by Belsky and Khapalyuk and reformulated by Berry (Section 1.5).

Finally, in Section 1.6 we discuss other areas of knowledge in which conical refraction

plays a role.

1.1 The triumph of the wave theory of light

The prediction of conical refraction (CR) in biaxial crystals by William Rowan

Hamilton is closely related to the triumph of the wave theory of optics over its cor-

puscular picture. At the beginning of the 19th century there was a fight between backers

of both theories. However, the corpuscular-minded scientists had some advantage be-

cause Sir Isaac Newton, one of the fathers of scientific thought, was one of the major

contributors to that theory [1]. Among all the known phenomenology related to light

by that time, double refraction observed in anisotropic uniaxial crystals was one of the

candidates to tip the balance towards one of the two theories.

1
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The effects of anisotropic media over a light beam are known since the 17th century,

when Rasmus Bartholin in 1669 reported the observation of the splitting of an incident

light beam into two sub-beams after passing through a plate of the Iceland mineral [2].

Bartholin observed that while one of the two sub-beams refracted following the ordinary

Snell’s law, the other sub-beam followed a new extraordinary law. This phenomenon is

known as double refraction and it is a consequence of the birefringence of the medium

generated by an anisotropy in the material structure. Some years after, in 1690, Chris-

tiaan Huygens presented a novel description of light propagation in anisotropic media

where light is assumed to be a wave that, when passing through a uniaxial crystal, re-

fracts as two internal waves [3]. In Huygens’ description, the ordinary wave refracts as a

sphere, i.e. following Snell’s law in all directions, but the extraordinary wave refracts as

an ellipsoid. Both the sphere and the ellipsoid touch each other at only two points and

the line that connects these points gives the direction of the optic axis of the material.

Along this direction, the input beam into the crystal propagates without splitting at

all. This new theory established the roots for the wave theory of light that came in the

following centuries. In fact, the wave theory of double refraction was revised in detail

during the 19th century by George Gabriel Stokes among others, who could nothing else

than verify it.

Although Huygens’ theory described well all the double refraction experiments car-

ried out by that time, it was rejected by Newton because the origin of the two orthogonal

polarizations in waves was unclear. In addition, David Brewster in 1813 discovered that

the mineral topaz has two different directions along which no refraction was observed,

i.e. two optic axes. Accordingly, these type of crystals were named biaxial crystals. Fur-

ther investigations showed that aragonite, borax or mica also behave as biaxial crystals.

The theory of Huygens could not explain the behavior of light in these materials, what

weaken even more the wave theory of light against the corpuscular theory. In addition,

Pierre Simon Laplace and Etienne Louis Malus were able to deduced double refraction

effects from a corpuscular point of view.

However, not everything was lost for the wave theory of light. At the beginning of the

19th century, Thomas Young was convinced that light was a wave and in 1801 presented

his milestone contribution on the interference of light waves and the slit experiment

[4]. Nevertheless, the shadow of Newton was too large such that Young’s experiment

and its wave explanation was not accepted by the community. In 1819, Agustin-Jean

Fresnel presented an independent description of the wave theory of light to a competition

launched by the Académie des Sciences to explain the properties of light. Fresnel’s

theory of light included the effects of interference, diffraction and double refraction both

in uniaxial and biaxial media [5]. Concretely, in that work, he predicted that a beam

of light passing through a pinhole creates an interference intensity pattern such that

an on axis maximum intensity spot is found. In contrast, the corpuscular theory of

light predicted a dark intensity region at that point. The experimental observation of

Dominique-François-Jean Arago (who was the head of the comitee of the Académie des
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Sciences) of Fresnel’s prediction was the first big victory of the wave theory of light.

Regarding double refraction, Fresnel’s theory states that, in general, a wave of light

propagating through a medium does it differently in any of the three Cartesian directions.

As a consequence, the wave surface does not form an ellipsoid nor a spheroid but a surface

of the 4th order formed by two sheets whose points of contact with the tangent planes

at any point give the direction of the two refracted beams in the crystal. Note that,

although similar, this new law differs with Snell’s law and Huygens’ law, in general. If the

wave refracts identically in all three Cartesian directions, i.e. if the medium is isotropic,

Snell’s law governs the propagation of light. If two of the three Cartesian directions

of refraction are equal, then the medium is uniaxial, it possesses an optic axis through

which no double refraction is observed and Huygens’ law can be applied. Finally, if all

three directions are different, the medium possesses two optic axes through which light

does not double refract, while in any other direction double refraction is observed.

One of the problems of Fresnel’s theory of light was that the procedure that he

followed to obtain it was involved and inelegant and this did not give the final victory

to the wave theory of light. Anyways, the Fresnel wave surface and its properties

were studied exhaustively during all the 19th century by scientists such as André Marie

Ampère, Augustin Louis Cauchy, Lord Rayleigh and William Rowan Hamilton, who was

the culpable of the final triumph of the wave theory of light, as we will discuss in Section

1.3.

1.2 Elements of crystal optics

In the previous section we have highlighted the relevance of the Fresnel surface for

the triumph of the wave theory of light. In what follows section we present the Fresnel

surface formally in order to understand CR in that context. We do not follow the

procedure developed by Fresnel since we have the possibility of using Maxwell equations,

which were established decades after Fresnel’s theory. A deeper analysis of crystal optics

is presented in Chapter 15 of Ref. [6] and in Chapter 11 of Ref. [7].

We consider the propagation of an electromagnetic monochromatic plane wave

through an electrically linear anisotropic medium with permittivity

ε̂ =







ǫxx εxy εxz
ǫyx εyy εyz
ǫzx εzy εzz






, (1.1)

where εij are constants, and permeability µ̂ = µ0I, where Î is the identity matrix. The

diagonalized form of the permittivity tensor from Eq. (1.1) reads as follows

ε̂ =







ε1 0 0

0 ε2 0

0 0 ε3






. (1.2)
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An electromagnetic field E applied to the medium forces the charges of the latter to

re-organize. This re-organization can be described by means of the displacement vector

D through the identity

D = ε̂E. (1.3)

A similar relation is found for the magnetic field H and the magnetic inductance B:

H = µ̂−1B. (1.4)

Eqs. (1.3) and (1.4) are the constitutive equations of electromagnetism. In order to have

complete information of the propagation of an electromagnetic field passing through a

medium, Maxwell equations must be also considered:

∇ ·E = ρ, (1.5)

∇ ·B = 0, (1.6)

∇×E = −∂B
∂t
, (1.7)

∇×H = J+
∂E

∂t
. (1.8)

For a linear dielectric anisotropic medium, there are neither free charges (ρ = 0) nor

currents (J = 0). The propagating electromagnetic field we consider is a monochromatic

transverse plane wave with angular frequency ω propagating at speed c/n (being n the

refractive index) with electric field in the form

E = E0 exp
[

iω
(n

c
k · r− t

)

+ δ
]

e0, (1.9)

where E0 is a constant, k = (kx, ky, kz) is the unitary wave-vector, and e0 = (aex+bey+

cez) is a unit vector in Cartesian coordinates. By combining Eq. (1.9) with Eqs. (1.3),

(1.4) and (1.5)–(1.8) Maxwell equations can be rewritten as follows:

k ·E = 0, (1.10)

k ·B = 0, (1.11)

nk×E = B, (1.12)

nk×H = −E. (1.13)

Now we can combine Eqs. (1.3), (1.12) and (1.13) to obtain

ε̂E = n2 [E− (k ·E)k] . (1.14)

Eq. (1.14) forms a system of three linear equations that can be solved only if the asso-

ciated determinant vanishes, i.e.

det
∣

∣n2δij − n2kikj − εij
∣

∣ =

∣

∣

∣

∣

∣

∣

∣

n2(1− k2x)− ε1 n2kxky n2kxkz
n2kykx n2(1− k2y)− ε2 n2kykz
n2kzkx n2kzky n2(1− k2z)− ε3

∣

∣

∣

∣

∣

∣

∣

= 0.

(1.15)
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Evaluation of Eq. (1.15) gives

n4
(

ε1k
2
x + ε2k

2
y + ε3k

2
z

)

− n2
[

k2xε1(ε2 + ε3) + k2yε2(ε1 + ε3) + k2zε3(ε1 + ε2)
]

+ k2xε1ε2ε3 = 0 .

(1.16)

Eq. (1.16) which is a surface of the 4th order known as Fresnel’s equation and it is

probably the most relevant equation of crystal optics, since it describes light propagation

in isotropic, uniaxial and biaxial media. Eq. (1.16) has, in general, two different real

roots for a fixed k, i.e. every input plane-wave into an anisotropic medium propagates

as two plane-waves with different wave-vectors within the medium.

Let us here note that Fresnel’s wave-surface describes phase propagation within the

material. At variance with isotropic homogeneous media, in anisotropic crystals the

direction of propagation of the energy, i.e. the direction of the Poynting vector, does

not coincide with the direction of propagation of the phase, in general. An equivalent

equation to Eq. (1.16) can be obtained analogously for propagation of rays within the

crystal [6, 7].

1.2.1 Uniaxial crystals

Uniaxial crystals are optical media with only two different permittivity constants

ε1 = ε2 ≡ εo and ε3 = εe, being εo parallel to the optic axis of the crystal and εe
orthogonal to it. Under this condition, Eq. (1.16) reads as

(n2 − εo)
[

n2εek
2
z + n2εe(k

2
x + k2y)− εoεe

]

= 0. (1.17)

It is straightforward to realize that Eq. (1.17) has two possible solutions: a spheroid and

an ellipsoid

k2x + k2y + k2z =
εo
n2
, (1.18)

k2z
εo

+
k2x + k2y
εe

=
1

n2
. (1.19)

That is to say, the wave-vector surface of the 4th order becomes two independent surfaces

of the 2nd order. Fig. 1.1 gives cuts in the (a) xy, (b) xz and (c) yz planes and also

(d) the three-dimensional surface of Eq. (1.17) for εo = 1 and εe = 2. Refraction of an

input plane-wave by a uniaxial crystal is depicted in Fig. 1.1(e) by the direction of the

normals of the tangent planes with red and blue lines at the crossing points between

the input ray (black dashed line) with the Fresnel surfaces. One of the refracted plane-

waves follows usual laws of refraction in a medium with refractive index n =
√
εo and is

called as the ordinary wave, depicted in red in Fig. 1.1(e). In contrast, the direction of

propagation of the other refracted wave depends on the angle that the input plane-wave

makes with the optic axis and is known as the extraordinary wave, depicted in blue in

Fig. 1.1(e). As it can be appreciated, the spheroid and the ellipsoid touch each other at

two points. The line that connects these two points gives the direction of the optic axis
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of the crystal. Note that the refracted waves from a plane-wave propagating along the

optic axis overlap and therefore only a single plane-wave is observed. If the spheroid is

contained within the ellipsoid, the material is said to be a positive uniaxial crystal, while

if the case is the opposite, the material is a negative uniaxial crystal. Note additionally

that at the crossing point between the two surfaces there can be found only one tangent

plane that touches the surfaces at a single point.

z

x

y

x

z

y

(a) (b) (c)

z

x

y

(d)

Eo

Ee

 optic axis
k

(f )

(e)

o

e

i

z

x

optic axis

Figure 1.1: Transverse cuts in the (a) xy, (b) xz and (c) yz planes of the wave-surface.

(d) Three-dimensional representation of the wave-surface of Eq. (1.17) for εo = 1 and

εe = 2. (e) An input plane-wave (depicted with a black dashed line) refracts into

an ordinary (red) and extraordinary (blue) plane waves, which are in the direction of

the normal vectors to the tangent plane at the crossing point between the input wave-

vector and Fresnel’s surface. (f) The ordinary and extraordinary waves are mutually

orthogonally polarized.

The state of polarization of the ordinary and extraordinary waves can be easily

visualized through the construction depicted in Fig. 1.1(e). From Eq. (1.10) it is clear

that E ⊥ k. Let’s consider the plane containing the wave-vector k of a propagating

plane-wave through the crystal and the optic axis. This plane is known as the principal

plane (depicted in color blue). The section of the plane perpendicular to k at the origin

with the surface of wave normals forms an ellipse (depicted in color red) whose principal

semi-axes are one perpendicular and one parallel to the principal plane. At the same

time, the semi-axis of the ellipse perpendicular to the principal plane has the same

radius than the spheroid, i.e. it is in the direction of the ordinary wave. Therefore, the

electric field of the ordinary wave vibrates orthogonal to the principal plane, while the

electric field of the extraordinary wave vibrates parallel to this plane being both electric

fields mutually orthogonal. Note that for a given input plane-wave, the ordinary and
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extraordinary refracted waves are always linearly polarized. The combination of both

waves gives a total elliptically polarized wave, in general.

1.2.2 Biaxial crystals

z

x

y

x

z

y

(a) (b) (c)

(f )

o

e

i

(d) z

x

y
z

x

optic axis

(e)

tangent 

plane

Figure 1.2: Transverse cuts in the (a) xy, (b) xz and (c) yz planes of the wave-surface.

(d) Three-dimensional representation of the wave-surface surface of Eq. (1.16) for ε1 = 1,

ε2 = 3 and ε3 = 5. (e) A single octane of the wave surface to see properly the crossing

point between both surfaces. We have used illumination parallel to the optic axis to

show that instead of a point, a ring is reflected. (f) An input plane-wave (depicted with a

black dashed line) refracts into an ordinary (red) and extraordinary (blue) plane waves,

which are in the direction of the normal vectors to the tangent plane at the crossing

point between the input wave-vector and Fresnel’s surface.

Biaxial crystals are anisotropic optical materials with three different permittivity

constants, i. e. ε1 6= ε2 6= ε3. In this case, further simplifications of Eq. (1.16) cannot

be applied and the wave-surface is of the 4th order. All the phenomenology associated

to refraction of an input plane wave when it propagates within a biaxial crystal along

any direction and described by Fresnel’s surface is analogous to a uniaxial crystal: the

input plane-wave refracts as two orthogonally linearly polarized waves that propagate

along different directions given by the normals to the tangent plane of the surfaces at the

crossing point with the input plane-wave. However, at variance with uniaxial crystals,

the two wave surfaces generated in a biaxial crystal cross each other at 4 points. The

two lines that connect each pair of diametric crossing points of the surfaces give the

direction of the optic axes of the crystal. Fig. 1.2 gives cuts in the (a) xy, (b) xz and (c)

yz and also (d) the three-dimensional surface of Eq. (1.16) for ε1 = 1, εe = 2 and εe = 3.

Fig. 1.2(e) shows only an octant of the total volume to facilitate the visualization of the

crossing point between the two surfaces. and Fig. 1.2(f) depicts refraction in a biaxial

crystal. From Fig. 1.2(b) it is clear that at the crossing points defining the optic axes,
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a tangent plane cannot be defined. Nevertheless there can be found a tangent plane

enclosing the optic axis, that it is expected to touch the surface at two points. However,

the octane from Fig. 1.2(e) shows that when one shines light in the direction of the optic

axis (see white illumination), the reflected light forms neither a spot nor a double-spot

but a ring. As a consequence, the tangent plane enclosing the optic axis does not touch

the surface at two points but at a ring. In what follows we will show that this apparently

small difference between uniaxial and biaxial crystals is more relevant than it seems at

first sight.

1.3 The subtle phenomenon of conical refraction

As commented in the previous section, there are two types of anisotropic optical

media: uniaxial and biaxial crystals. In both types of crystals, an incident light beam

suffers, in general, from double refraction at the exit of the crystal. However, there

exist a significant difference that escaped to Fresnel between the two types of media

when the beam propagates parallel to the optic axis. Fresnel found correctly that the

general form of the wave surface is a doubled sheeted surface of the 4th order and that

the crossing points between the two sheets give the optic axes of the crystal. According

to the experimental observations, he stated that light propagating parallel to the optic

axis does not suffer from double refraction. This statement, which is true for uniaxial

crystals, does not hold for biaxial crystals or, at least, not completely.

(a) (b) (d)

Figure 1.3: The fathers of CR: (a) W. R. Hamilton and (b) H. Lloyd. (c) Model of the

wave surface of a biaxial crystal reproduced by the Göttingen Collection of Mathematical

Models and Instruments. Bottom sequence of images: transition from double refraction

of CR reproduced from Lloyd report [8].

William Rowan Hamilton was one the first great mathematicians of the 19th century

and one of the fathers of the modern formulation of physics as we recognize it nowadays.
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He was very interested on the properties of the Fresnel wave surface and studied it in

detail, discovering new properties that were misapprehended by all previous researchers.

It was clear that the direction of the refracted beams in biaxial crystals can be described

by the normal vector to the tangent planes to the surface at any point. The subtle

realization of Hamilton was that at the crossing points of the Fresnel surface, i.e. at

the points defining the optic axes, there is not a unique tangent plane. As shown in

Fig. 1.2(a), the crossing points form conoidal cusps where the tangent plane is not well

defined. In contrast, at that singular points a tangent cone can be found. Additionally,

Fresnel assumed that each of the four singularities could be completely covered over by

a tangent plane that touches the wave surface at two single points, as suggested by the

two points a and b from Fig. 1.2. However, the complex structure of the wave surface

when imaged in three dimensions [Fig. 1.2(b)] shows that a closing tangent plane touches

the wave surface along a ring, as Hamilton discovered. Therefore, a bundle of waves

of light propagating parallel to one of the optic axes of a biaxial crystal should refract

internally as an slanted cone within the crystal and emerge from it as an hollow light

cylinder whose transverse cross-section forms a ring of light. But not only this, there

is one more solution in which a bundle of waves forming a cone of light propagate as

a pencil within the crystal and emerge externally as a cone of light. These two new

phenomena were called as internal and external conical refraction (CR) respectively by

Hamilton. Hamilton’s theory of CR was presented together with a general method to

solve optical problems in his Essay on the theory of systems of rays in 1832 [9].

The two new phenomena predicted elegantly by Hamilton needed to be observed

experimentally. For that reason, Hamilton contacted Humphrey Lloyd and asked him

to carry out the corresponding experimental observations. He took aragonite as biaxial

material and succeeded in observing, first, external and, secondly, internal CR few weeks

after Hamilton’s prediction [8] from sunlight and by arranging a metallic pinhole at the

entrance of the crystal. In addition to the novel refraction phenomena, Lloyd observed

that all the rays of the light cone were polarized in different planes so that every two

diametrically opposite points have orthogonal polarizations. This new law of polariza-

tion in CR was deduced afterwards by Hamilton from his theory. Lloyd also observed

that the light cylinder appeared displaced with respect to the transverse position of the

pinhole.

Hamilton’s discovery together with Lloyd’s observations was the definitive fist on

the table of the wave theory of light and it meant its acceptance over the corpuscular

theory. It had the relevance of being one of the first mathematical predictions of physical

phenomena, at variance with previous theoretical contributions to the wave theory of

light that were explanations of already observed effects. However, this was not the last

word in CR since, as we show in the next section, new phenomena escaping Hamilton’s

theory were observed later.
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1.4 Everything was not said: new observations on conical

refraction

It seemed that Hamilton’s theory was able to predict any phenomena regarding light

propagation in optical media and, in particular, that all the phenomenology associated

to CR had been reported. However, in 1839 Johann Christian Poggendorff (editor of

Annalen der Physik) reported new observations on light propagation under internal CR

conditions [10]. As Lloyd, he used aragonite as biaxial material but as a light source he

used a fire lamp, which tends to be more monochromatic than sunlight, and a lens. In

addition to the transition from double refraction to conical refraction as the optic axes

of the crystal and the direction of the beam approach each other and the polarization

distribution along the ring, Poggendorff realized that the ring of light was split by a

ring of complete darkness. Two years after, similar observations were reported by R.

Potter [11], although he resisted to accept that his experimental results confirmed the

wave nature of light.

The work of Poggendorff caused some impression in their German colleagues Beer

and Haidinger, who reported independently very detailed experimental works on the

phenomenology of internal CR: the transition from double to internal conical refraction,

the state of polarization of the ring, the dispersion relation for different wavelengths

and even some calculations on the refractive indices of aragonite but they did not say

anything regarding the dark ring observed by Poggendorff [12,13].

During the following years, it seems that interest on studying CR and on explain-

ing the novel observations from Poggendorff disappeared. In 1905, Voigt presented an

exhaustive 50 pages long article with both an experimental and a theoretical analysis

of CR in Annalen der Physik, where he discussed all the phenomenology known and

gave a theoretical explanation for the Poggendorff dark ring [14]. He gave a guide of all

types of crystallographic groups and included also crystals with optical activity. Voigt’s

proposal for the Poggendorff dark ring was not too far from reality: the biaxial crystal

generates a conical wave for the ordinary and the extraordinary polarizations and each

of the two bright rings split by the Poggendorff dark ring correspond to one of that

ordinary and extraordinary conical waves. In addition, Voigt reported that the lateral

shift of the light cylinder observed by Lloyd depends on the orientation of the plane of

optic axes of the crystal. Finally, he also realized that if the incident beam is linearly

polarized, the ring lacks of one sector.

Hamilton was not the only big presence in CR. In 1941 the Nobel prize winner Sir

Chandrasekhara Venkata Raman published a series of works on internal CR in naph-

thalene crystals [15–17], a biaxial material with almost 10 times larger birefringence

than aragonite. He confirmed the presence of the Poggendorff dark ring and reported

a new observation: the transverse intensity pattern along the beam propagation direc-

tion changes. There is one plane at which the Poggendorff ring can be observed clearly

and as the imaging plane is moved from that plane the bright rings become wider. Far
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enough from the plane of observation of the Poggendorff ring, the inner ring becomes a

bright axial spot. These observations had to wait for a diffractive theory of CR to have

a theoretical explanation.

1.5 From Hamilton’s model to the diffractive theory of

conical refraction

The born of non-linear optics brought a new hope for the study of CR mainly by two

different reasons: (1) the requirement of good quality non-linear crystals, being many

of them biaxial, and (2) the use of a coherent, monochromatic and easily addressable

light source, i. e. the laser. In this sense, we find the first proposal of a new generation

of experiments in CR in the work of Goyal and Prakash [18], where they discuss the

possibility of observing CR in a non-linear medium whose refractive index is modified by

means of an additional high intense light beam. Almost at the same time, Portigal and

Burstein made the first big step towards a complete description of the CR phenomenon

[19]. Starting from Maxwell equations, they were able to give a quantitative analysis of

internal CR by calculating the phase velocities, polarization modes and Poynting vector

of a bundle of waves entering into the biaxial crystal.

Soon afterwards, Lalor presented a series of works in which he calculated The Angular

Spectrum of Electromagnetic Fields in Crystals both for uniaxial and biaxial crystals

[20, 21]. This was, up to our knowledge, the first attempt to describe light propagation

in anisotropic media with a diffractive formalism. The summit of his series of three

papers was An Analytical Approach to the Theory of Internal Conical Refraction, where

the Fourier transform has a central role in the description of the phenomenon [22].

Closely related to this work is the one from Schell and Bloembergen [23]. In addition to

the diffractive equations for the light field out of the biaxial crystal, they also showed

for the first time experimental images of CR for linearly polarized input beams with a

clear dark ring splitting the ring of CR into two bright rings. Similar observations were

reported by Perkal’skis and Mikhailichenko [24] and by Velichkina et al. [25].

In 1978 Belsky and Khapalyuk presented the holy grail of CR: the full diffractive

theory of both external [26] and internal CR [27] in biaxial crystals. This work is very

related to Lalor’s calculations but the equations at which Belsky and Khapalyuk arrived

were much more compact. In this formalism, the electric field behind the crystal is

obtained from the transverse plane-wave decomposition of the input beam transformed

by a Fourier-like operation that includes beam propagation. These results describe in

detail all the phenomenology associated with CR, which were demonstrated by Fève et

al. with spheres of KTP [28]. The Beslky and Khapalyuk theory of CR was explored in

detail by Belsky and Stepanov [29] (including gyroscopic crystals [30]), who recognized

the relevance on the CR beam evolution of the ratio between the ring radius and the waist

radius of the input beam, and also by Belafhal for the asymptotic case of R0 ≫ w0 [31],
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where R0 is the geometric approximation of the CR ring radius and w0 is the waist

radius of the input beam.

172 years after Hamilton’s prediction of CR, Sir Michael Victor Berry developed the

definitive theory of CR [32]. He considered diffractive paraxial optics and the biaxial

crystal acting as a unitary transformation over the angular plane wave spectrum of the

input beam impinging the crystal. He presented analytical formulas for the Poggendorff

dark and bright rings and for the Raman axial spot. This approach was a breakthrough

in biaxial crystal optics and, together with some illustrative experiments on CR with

high quality KGd(WO4)2 biaxial crystals [33], and opened a new era for the study of

the phenomenon and the applications of CR.

Finally, it is worth saying external CR has not been reported clearly. The only

related experiments are the first one reported by Lloyd [8] and the work from Féve et

al. [28]. In this thesis we will always deal with internal CR.

Figure 1.4: Diabolo-like geometry near the cusp point of the Fresnel’s surface of a biaxial

crystal defining one of the optic axis.

1.6 Conical refraction out of crystal optics

CR has been also studied out of the domain of optics. As in many other topics,

CR has its analogous in sound waves by considering sonic crystals [34]. Most related

works are purely theoretical [35–40] and only preliminary experiments have been re-

ported [41–43]. However, all the phenomenology related to CR has been recovered

for the acoustic case; namely the generation of conical structures when the incident

bundle of waves propagate nearly parallel to the optic axis of the sonic crystal such

that the state of polarization along the ring is linear, with the azimuth varying as

eCR = (cos(φ/2), sin(φ/2)). A similar approach has been discussed in plasma physics

by Tsiklauri, who reported theoretically CR of magnetohydrodynamical waves in a col-

lisionless plasma with anisotropic thermal pressure [44]. As it has been discussed in

previous sections, CR is associated to a diabolo-like cusp in the Fresnel’s surface of a

biaxial crystal, see Fig. 1.4. These type of surface singularities are conical intersections,

which have studied en chemistry for instance [45]. In the line of conical intersections, CR
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has been discussed recently in honeycomb lattices [46, 47] and in Lieb lattices [48]. In

particular, CR and gap solitons in photonic honeycomb lattices have been reported both

experimentally and theoretically by Peleg et al. [49]. Additonally, Bulgakov and Fedorin

discussed CR in periodic semiconductors under the influence of an external magnetic

field [50]. Finally, note that both these works and our work only consider non-magnetic

biaxial crystals. However, it could be interesting to study all the phenomenology associ-

ated to the the case of biaxial crystals with µ 6= µ0, as it has been introduced by Matos

and co-workers [51].





CHAPTER 2

Theory and fundamental experiments on conical refraction

In this Chapter we introduce theory of CR that will be the base of all the following

Chapters and which can be divided in three main contributions. Firstly, we briefly

introduce the development of the CR theory, see Section 2.1. In Section 2.2 we present

the diffractive theory of CR developed by Belsky, Khapalyuk and Berry (BKB) and

show the cylindrically symmetric solution that is the base of almost all the CR-related

works. Our contribution to this Section is the demonstration that the BKB solution can

be used to predict the transformation of beams with non-cylindrically symmetric electric

field amplitude propagating both along and out of the optic axis of a biaxial crystal.

Then, Section 2.3 we propose a simple formulation based on splitting of linearly polarized

wave-vectors that can be used to predict the CR transverse intensity pattern of arbitrary

input beams at the focal plane, and demonstrate it for an axicon beam. In Section 2.4

we reformulate the dual-cone model of CR, give an intuitive explanation based on the

wave-vector and polarization dependence of the CR phenomenon and demonstrate the

former experimentally. The wave-vector and polarization CR formalism is extended to a

cascade of multiple biaxial crystals with aligned optic axis, including linearly polarized

input beams, in Section 2.5. We show that, in the general case, a cascade of N crystals

generates 2N−1 concentric rings at the focal plane. Finally, in Section 2.6, we discuss

the main conclusions of the Chapter.

The research contained in this chapter has been published in Refs. [52–56] and has

been done in collaboration of Alba Peinado, Ángel Lizana, Irene Estévez and Juan

Campos from the Universitat Autònoma de Barcelona; Hiromitsu Tomizawa from the

Japan Synchrotron Radiation Research Institute, Asticio Vargas and Fabián A. Torres-

Ruiz from the Universidad de Concepción; and Ignacio Moreno from the Universidad

Miguel Hernández.
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2.1 Introduction

l
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Figure 2.1: Basic parameters in CR. R0 is the geometric approximation of the CR light

ring that can be calculated as R0 = lα, where l is the length of the biaxial crystal and

α the semi-angle of the light cone or conicity. ρ0 measures the ring radius in units of

waist radius of the input beam w0. G is a vector that can be attached to the crystal to

describe both the direction and the magnitude of the lateral displacement that the CR

ring suffers. φ also gives the orientation of the plane of optic axes of the crystal.

As stated in the previous Chapter, CR was predicted theoretically by Hamilton by

analyzing in detail Fresnel’s surface corresponding to a biaxial crystal. He considered

a collimated bundle of plane-waves propagating within the crystal and parallel to one

of the optic axes and deduced that the bundle would refract as an slanted cone within

the crystal and emerge as a hollow light cylinder whose transverse profile forms a light

ring. Although this is precisely what was found by Lloyd, further experiments carried

out by Poggendorff, Voigt and Raman showed that Hamilton theory could not describe

completely all the phenomenology associated to CR. These results surpassing Hamil-

ton’s theory come from the fact that a collimated beam is an idealization without real

equivalent. In any experimental situation, beams have always a plane at which their

width is minimum. In other words, real beams are focused in a greater or lesser extent.

The description of the transformation of focused beams by optical systems was far from

Hamilton’s age and was not well established until the middle of the 20th century. That

is the reason why the diffractive theory of CR, capable of predicting all the observed

phenomena, had to wait until the last quarter of the last century. This theory was

presented by Belsky and Khapalyuk [26,27] and then reformulated in an elegant way by

Berry [32]. Recently, we have shown that the reformulation of the diffractive theory of

CR carried out by Berry can be used to predict the beam evolution of light propagation

in biaxial crystals along any direction and not only along the optic axis [52] and also

in case of non-homogeneously polarized beams [53]. Note that alternatively Dreger [57]

and Garnier [58] have reported the solutions of optical beam propagation in biaxial

crystals, although in both cases the theory presented is very involved. On the other

hand, Sokolovskii and co-workers showed that the Belsky–Khapalyuk–Berry equations
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can be re-arranged so that they describe CR in terms of the interference between two

co-propagating cones [59], being this theory demonstrated experimentally and newly

re-formulated by us [56], as it is shown in Section 2.4. Alternatively, we have also pre-

sented a novel proposal that can be used to easily predict the CR pattern at the focal

plane by means of a wave-vector and polarization formalism [54] that can be also used

in a cascade of biaxial crystals, as we have also shown in Ref. [55]. In this chapter, we

present these three theories and study in detail all the characteristics associated to CR

both for single and multiple crystals.

(a) (b) (c)

(d) (e) (f )

(g)

(h)

ExCP

LP

Ey

Ex Ey

CP

LP

Z

ρ

Figure 2.2: Conical refraction for a Gaussian input beam with left handed circular

polarization [images (a)–(c) and (g)] and linear horizontal polarization [images (d)–(f)

and (h)]. Images (a) and (d) are transverse cuts at the focal plane (Z = 0) of the

intensity pattern. Images (b) and (e) are the transverse electric field in the X direction,

while images (b) and (e) are the transverse electric field in the Y direction. (g) and (h)

are transverse cuts in the Z–ρ plane at ϕ = 0.
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Let us firstly briefly outline geometrically the CR annular pattern observed at the

focal plane with an input Gaussian beam. While the complete CR ring is observed for

circular polarization of the input Gaussian beam, as it is shown in Fig. 2.2(a), a crescent

ring with one point of the ring being of zero intensity appears for linear polarization,

see Fig. 2.2(d). In both cases, the center of the CR ring is laterally shifted with respect

to the incident beam, as sketched in Fig. 2.1. This shift can be represented by a vector

G = R0 (cosφG, sinφG) that belongs to the plane of the crystal optic axes [33]. Its

modulus is equal to the ring radius |G| ≡ R0. The latter is the product of the crystal

length, l, and the CR semi-angle α or conicity, i.e., R0 = lα [33]. The CR semi-angle α

depends on the principal refractive indices of the crystal as α =
√

(n22 − n21)(n23 − n22)/n22,
where we have assumed n1 < n2 < n3. For the KGd(WO4)2) biaxial crystals that we

will use in all our experiments, α(λ = 633 nm) = 16.9mrad [33,60].

2.2 Diffractive solution

2.2.1 Cylindrically symmetric solution

We will present the theory as re-formulated by Berry, since, in our opinion, it is very

compact and clear in terms of operators. In what follows, we will consider normalized

coordinates to the waist radius w0 and and Rayleigh length zR of the input beam,

i.e., X ↔ x/w0, Y ↔ y/w0 and Z ↔ z/zR. In the parabolic approximation, after

passing through a medium or optical element, a light beam can be described by means

of its displacement vector D as a superposition of plane waves k = (kx, ky), which are

generated from a unitary transformation provided by the optical element Û(k) applied

over the Fourier transform vector of the input light beam A(k). In other words,

D =
1

(2π)2

∞
∫∫

−∞

eik·rÛ(k)A(k)dk, (2.1)

where A(k) = (Ax(k),+Ay(k) is the 2D Fourier transform of the transverse amplitude

of the input electric field E(r) = (Ex(r) + Ey(r)):

Ax(k) =
1

(2π)2

∞
∫∫

−∞

Ex(r)e
−ik·rdr, (2.2)

Ay(k) =
1

(2π)2

∞
∫∫

−∞

Ey(r)e
−ik·rdr. (2.3)

For a low birefringent biaxial crystal, Berry showed that the unitary transformation

provided by the medium is Û(~κ) = e−i~Γ(~κ) with [32]

Γ(~k) =
1

2
k2Z2Î+ ρ0k · (σ̂3, σ̂1), (2.4)
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where σ̂3 and σ̂1 are the Pauli matrices and Î is the 2 × 2 identity matrix. ρ0 is the

ratio between the geometric ring radius of the CR ring R0 and the waist radius of the

focused input beam w0, i.e., ρ0 ≡ R0/w0. We would like to note that this transformation

is assumed in the formulation of Belsky and Khapalyuk [26, 27]. It is straightforward

to demonstrate that for a given vector v = vn with |n| = 1, the evaluation of eiv(~n·~σ)

gives Î cos(v) + i(n · σsin(v)), where σ = (σ̂1, σ̂2, σ̂3) is the vector of Pauli matrices. By

recalling the latter identity and after evaluation of Û(k) = e−iΓ(k) by using Eq. (2.4),

the unitary transformation provided by the crystal can be obtained:

Û(k) = e−i 1
2n

k2Z2

[

cos(ρ0k)Î+ i
sin(ρ0k)

k
k · (σ̂3, σ̂1)

]

, (2.5)

where k ≡
√

k2x + k2y is the transverse magnitude of the wave-vector in cylindrical coor-

dinates and n is the mean refractive index of the crystal. By using Eq. (2.5), Eq. (2.1)

becomes

D =
1

(2π)2

∞
∫∫

−∞

eik·re−i 1
2n

k2Z2

[

cos(ρ0k)Î+ i
sin(ρ0k)

k
k · (σ̂3, σ̂1)

]

A(k)dk, (2.6)

which can be written in cylindrical coordinates (k = k(cos(φk), sin(φk)), r =

r(cos(ϕ), sin(ϕ))/w0 = ρ(cos(ϕ), sin(ϕ))) as

D =
1

(2π)2

∫∫

eikρ cos(φk−ϕ)e−i 1
2n

k2Z2

(

cos(φk) sin(φk)

sin(φk) − cos(φk)

)

A(k)kdk. (2.7)

Now, we simplify the system by considering a uniformly polarized and cylindrically

symmetric input beam E = E(r)e0 with cylindrically symmetric Fourier transform too,

i.e., Ax(k) = Ay(k) = a(k), where

a(k) =

∞
∫

0

kE(r, Z = 0)J0(rk)dr , (2.8)

where Jn(x) is the nth-order Bessel function of the first type. With this assumption, we

can integrate over φk by using the following expressions

2π
∫

0

eikρ cos(φk−ϕ)dk = J0(kρ) , (2.9)

2π
∫

0

eikρ cos(φk−ϕ) cos(φk)dk = cos(ϕ)J1(kρ) (2.10)

and obtain a 1D integral for the field D:

D =

(

B0 +B1 cosϕ B1 sinϕ

B1 sinϕ B0 −B1 cosϕ

)

e0 , (2.11)
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where B0 = B0(ρ, Z, ρ0) and B1 = B1(ρ, Z, ρ0) are the Belsky–Khapalyuk–Berry inte-

grals that describe the evolution of the CR beam in both the radial and axial directions:

B0(r, Z, ρ0) =
1

(2π)

∞
∫

0

a(k)e−i 1
2n

k2z2 cos(kρ0)J0(kr)dφk , (2.12)

B0(r, Z, ρ0) =
1

(2π)

∞
∫

0

a(k)e−i 1
2n

k2Z2
sin(kρ0)J1(kr)dφk . (2.13)

For an input beam of circular polarization (CP) (also for random polarization, RP)

and of linear polarization (LP), the intensity distribution behind the crystal becomes,

respectively:

ICP (ρ, Z) = |BC |2 + |BS |2 , (2.14)

ILP (ρ, Z) = ICP + 2Re [BCB
∗
S ] cos (2Φ− (ϕ+ ϕC)) , (2.15)

where Φ is the polarization azimuth of the LP input beam with ein = (cosΦ, sinΦ).

To explore the main features of the CR beam, let’s consider the case of a Gaussian

input beam, with electric field and Fourier transform

E(r) = E0e
− r2

w(z)2 e0 ≡ E0e
−ρ2e0, (2.16)

a(k) = a0e
− k2

4 , (2.17)

where w(z) = w0

√
1 + Z2 and E0 and a0 are constants. Additionally, we consider

that the dimensions of the CR ring are much larger than the waist radius of the input

beam, i.e., ρ0 ≫ 1. For a circularly polarized beam with e0 = 1/
√
2(1, i), at the focal

plane (Z = 0) the transverse intensity pattern is formed by two bright rings with the

characteristic Poggendorff dark annular splitting, see Fig. 2.2(a). Fig. 2.2(b) and (c)

show the absolute value of the transverse electric field in the horizontal and vertical

directions at the focal plane. As it can be observed, both transverse intensity patterns

have a nodal point at diametrically opposite azimuthal positions, which indicates the

characteristic polarization distribution of the CR beam, i.e., the angular variation of the

azimuth of the linear polarization along the ring is π rad for a full turn. As a consequence,

if the input beam is linearly polarized, e.g., for e0 = (1, 0), the transverse intensity

pattern forms an azimuthally crescent ring with a point of null intensity coinciding with

the point of the ring with orthogonal polarization to the input beam, see Fig. 2.2(d).

Fig. 2.2(e) shows a density plot in the Z − ρ plane. Out of the focal plane, along the

axial direction, the CR rings become wider and the Poggendorff splitting disappears as

the on-axis intensity (Raman spot) grows up from zero to two axial maxima placed at

Z = ±
√

4/3ρ0. (2.18)
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Although being the case of a Gaussian input beam the most studied situation in

CR for cylindrically symmetric beams [33,61–69], other works have investigated CR for

Laguerre–Gauss beams [70,71] and for top-hat beams [72].

2.2.2 Non-cylindrically symmetric solution

Recently, we have demonstrated that the Belsky–Khapalyuk–Berry solution can be

also implemented in non-cylindrically symmetric beams [52]. Since Eq. (2.5) gives in-

formation about the operation of the crystal over an input beam, Eq. (2.11) can always

be applied, independently on the transverse profile of the input beam. Additionally, if

one realizes that the propagation direction of a beam with transverse amplitude E(r)

can be described by the product of this amplitude and a factor exp(−iδ · r⊥) (where

δ = (δx, δy) and r⊥ = (x, y)), it is straightforward to state that Eq. (2.11) can be imple-

mented with arbitrary beams both in transverse shape and propagation direction. From

Eq. (2.11), there can be obtained two main integrals similar to Eq. (2.12) and Eq. (2.13)

that describe the beam evolution behind the biaxial crystal [52]:

B0,j(r, ρ0) =
i

(2π)2

∞
∫∫

−∞

e−i(k·r− Z
2n

k2)ky
k

sin (ρ0k)Aj(k)dk, (2.19)

B1,j(r, ρ0) =
1

(2π)2

∞
∫∫

−∞

e−i(k·r− Z
2n

k2)

(

cos (ρ0k) + i
kx
k

sin (ρ0k)

)

Aj(k)dk,(2.20)

being j = (x, y). The expressions for the D field in terms of Eqs. (2.19) and (2.20) are

Dx = B0,y(r, ρ0) +B1,x(r, ρ0), (2.21)

Dy = B0,x(r, ρ0) +B1,y(r,−ρ0). (2.22)

Eqs. (2.19)–(2.22) can be used to predict the transformation of any input beam, no

matter its state of polarization or its shape, as long as its Fourier transform can be

obtained. For input beams with non-homogeneous polarizations, it must be taken into

account that the beam and the polarization can always be decomposed in the (x, y)

basis, so that the theoretical formalism presented above is always suitable for predicting

light propagation in biaxial crystals.

In what follows we discuss the transformation of input beams that propagate within

a biaxial crystal non-parallel to one of the optic axes, i.e., under conditions of double

refraction. We consider homogeneously left handed circularly polarized input beams,

i.e., with normalized electric field e0 = (1, i)/
√
2, and we look at the transverse patterns

at the focal plane (Z = 0). We will discuss the already shown case of an input beam

with Gaussian transverse profile and also of an elliptical input beam. Their electric field

amplitudes are described by

EG(x, y) = e−i(δxx+δyy)e−(x2+y2)e0, (2.23)

EEB(x, y) = e−i(δxx+δyy)e−(x
2

a2
+ y2

b2
)e0, (2.24)
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where a and b are constants and δx and δy give the angular separation of the input

beam’s propagation direction with respect to the optic axis of the crystal.

Fig. 2.3 shows transition from double refraction to CR for the Gaussian input beam

(first and second rows) and the elliptical input beam (third and fourth rows) both ex-

perimentally (second and fourth rows) and numerically calculated by using Eqs. (2.19)–

(2.24) (first and third rows). For simplicity, we consider only angular displacement of

the input beam in the vertical direction, i.e., δx = 0. The experiments have been per-

formed by employing a KGd(WO2)4 biaxial crystal with a length of l = 28mm, yielding

a CR ring radius of R0 = lα = 475mum. The Gaussian input beam used was focused by

a spherical lens with 100mm of focal length. The elliptical input beam was obtained by

focusing the same Gaussian beam with a cylindrical lens with 100mm of focal length.

The biaxial crystal was mounted on an angular micrometric positioner that allowed to

change the φ and θ angles in spherical coordinates and to observe the transition from

double refraction to CR as the optic axis and the beam propagation direction approached

each other.
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Figure 2.3: Transverse intensity patterns showing the transition from double refraction

to conical refraction for a Gaussian input beam (first and second rows) and an elliptical

input beam (third and fourth rows) both experimentally (second and fourth rows) and

numerically calculated by using Eqs. (2.19)–(2.24) (first and third rows).

The transformation of a Gaussian input beam propagating parallel to one of the

optic axes of a biaxial crystal as described by Eq. (2.23) (parallel propagation implies
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δx = δy = 0) is the case analyzed in the previous Subsection. When δx,y 6= 0 double

refraction instead of CR is found. Double refraction in uniaxial crystals is associated

with the splitting of the input beam into two beams with identical transverse pattern

and orthogonal polarizations, corresponding to the ordinary and the extraordinary po-

larizations. However, in biaxial crystals, a Gaussian input beam propagating out of the

optic axes splits into two azimuthal sectors placed at diametrically opposite positions

of the otherwise expected CR ring, provided that the angular propagation deviation

with respect to the optic axis is small. Only when δx,y ≫ 1 the output split beams

preserve the input beam’s pattern, as in uniaxial crystals. As the beam propagation

direction approaches to the optic axis, the split beams occupy a larger azimuthal angle

and eventually both interfere, see Figs. 2.3(a3)–(a5). The fact that the two split beams

interfere implies that both beams possess regions of non-orthogonal polarizations. For

parallel propagation with respect to the optic axes, the interference between both split

beams is maximum and the two bright rings with Poggendorff splitting are formed.

For an elliptical input beam, there is a competition between the ellipticity of the

shape of the beam and the refraction induced by the crystal. We consider an elliptical

beam described by Eq. (2.24) with a = 1, b = 0.1, i.e., with wx < wy. Since the misalign-

ment with respect to the optic axis is only along the y direction, the two split beams

are expected also to appear in that direction. Due to the non-symmetrical nature of the

elliptical beam and the double refraction provided by the biaxial crystal, which induce

opposite effects, the two refracted beams for beam propagation out of the optic axis are

wider than for the Gaussian input beam case, see Fig. 2.3(c1). As the misalignment of

the input beam is reduced, the refracted beams expand along the azimuthal direction

and at some point both interfere. For parallel propagation to one of the optic axis, the

pattern is formed by two lobes each of which with Poggendorff splitting, see Fig. 2.3(c5).

The two lobes are slightly connected between each other but we have checked that the

connection points tend to disappear as the ratio of the axes of the ellipse increases. We

have additionally checked that there is a continuous evolution of the double-concentric

ring structure from Fig. 2.3(a5) into the double-lobe pattern from Fig. 2.3(c5) as the

ratio of the axes of the ellipse increases. In the next section we use strongly elliptical

beams to give a formalism capable to predict the transformation of plane waves in CR.

2.3 Wave-vector and polarization description of conical re-

fraction

Up to this point, we have shown the diffractive theory of CR and we have demon-

strated that it is capable to predict light propagation through biaxial crystals. However,

the resulting equations are involved and their computational cost is high. Additionally,

they do not offer intuition about the CR pattern obtained for an arbitrary beam. In this

section we present a simple analytical formulation capable of predicting the transverse

intensity pattern at the focal plane after a light beam propagates along or near the optic
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axis of a biaxial crystal. We experimentally address this by analyzing the wave-vector

and polarization dependence of the CR phenomenon and present a phenomenological

formulation that easily describes refraction of a bundle of plane-waves passing through a

biaxial crystal. Since the two bright rings of CR have the same polarization distribution,

in what follows we will neglect Poggendorff splitting and consider a single bright ring.

Our experimental scheme is based on the propagation of elliptical beams (EBs) along

the optic axis of a biaxial crystal. EBs do not posses continuous cylindrical symmetry, at

variance with Gaussian beams typically used in CR experiments. The approach follows

the transformation law pointed out by Loiko et al. [73] for CR filtered beams, which

differs from the well known Malus law for double refraction in uniaxial crystals.

2.3.1 Conical refraction of spatially anisotropic beams revisited

z

Circularly polarized

Gaussian beam

Focusing convex lens

Biaxial crystal

(BC)

CCD

Lloyd plane

f = 150mm

f = 150mm
Focusing cylindrical lens

(c), (d)

(a), (b)
(a) (b)

(c) (d)

Input beam Lloyd plane

Figure 2.4: Experimental set-up of light refraction along the optic axis of a biaxial

crystal (BC): the input beam is focused by a lens and passes through the BC. The

refraction pattern is obtained at the focal plane of the system, which coincides with the

focal plane. (a) An input Gaussian beam focused with a spherical lens (focal length of

150mm) yields the well-known ring of CR (c) at the focal plane of the system. (b) An

elliptical beam (EB) beam, obtained with a cylindrical lens (focal length of 150mm)

that focuses in the horizontal direction, yields the the double refraction pattern shown

in figure (d).

CR has been mostly reported for input beams with intensity pattern possessing

continuous cylindrical (rotation) symmetry around the propagation axis. This has been

motivated by Hamilton’s prediction of the CR within the ray optics description, where

rays are always associated with cylindrically symmetric collimated beams. Real beams

of finite size can be modeled as a bundle of rays with propagation directions isotropically

distributed around the beam axis. On the one hand, according to the modified Hamilton

theory [74], CR can be interpreted as a wave-vector and polarization dependent type

of double refraction, when each ray of the input bundle refracts into two rays at the
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entrance crystal surface and all refracted rays form a cone. In this process, the two

refracted rays go to opposite points on the CR ring. On the other hand, it has been

also demonstrated that in CR the transverse wave-vector components are conserved [74].

This means that all input rays (plane waves) with wave-vectors confined in a certain

plane defined by an azimuthal angle φ refract to a plane with the same azimuthal angle

at the focal plane, i.e., into two opposite points on the CR ring.

Therefore, double refraction along the optic axis of a biaxial crystal and, in particular,

the wave-vector and polarization dependence of the CR, can be studied with linearly

polarized beams formed by plane waves whose wave-vectors are confined in a certain

plane. Such beams are known as cylindrical beams and EBs provide their finite size

approximation. The latter ones can be obtained from collimated Gaussian beams focused

by a cylindrical lens. In Fig. 2.4 we compare the transverse pattern obtained at the

focal plane for a Gaussian and an elliptical input beam. For a Gaussian input beam,

the transverse pattern behind the crystal is formed by the well known pair of bright

rings with Poggendorff splitting, see Fig. 2.4(d). In contrast, an EB passing through

a biaxial crystal does not generate the CR ring, but splits into two beams (in case of

circularly polarized input beams) oppositely placed along the otherwise expected CR

ring and tangent to it, see Fig. 2.4(b). The form and orientation of the refracted beams

resemble the transverse intensity pattern and orientation of the input EB. Below, using

EBs we show how phenomenological laws that describe double refraction along the optic

axis in biaxial crystals can be deduced.
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Figure 2.5: (a) An elliptical beam with linear polarization is generated when a circularly

polarized collimated Gaussian beam passes through the linear polarizer (with polariza-

tion plane given by azimuthal angle φE) and is focused by a cylindrical lens (focal length

of 150mm), which determines the wave-vectors plane (given by azimuthal angle φK).

The resulting patterns are captured by a CCD camera at the Lloyd plane behind the

BC. The orientation of the crystal is characterized by the orientation of the plane of its

optic axes (given by azimuthal angle φG). (b) Elliptical beam at the focal plane of the

lens when the BC is removed. The beam is parameterized by the azimuthal angles φE
and φK related to the polarization and wave-vector planes, respectively. All angles are

measured from the horizontal x-axis of the laboratory system of coordinates.



26 Theory and fundamental experiments on conical refraction

2.3.2 Transformation rules of conical refraction

In this subsection, we present the position and the relative intensity of the two

refracted beams produced when an input EB propagates along the optic axis of a BC.

The experimental set-up shown in Fig. 2.5(a) is used. The initial circularly polarized

Gaussian beam with waist radius of w = 1mm is obtained from a 640 nm diode laser

coupled to a monomode fiber. Then a linear polarizer is introduced to fix the polarization

plane in a well defined direction. The resulting linearly polarized beam is focused by a

cylindrical lens of 150mm focal length with its flat face oriented strictly perpendicular to

the beam propagation direction. The cylindrical lens only focuses the Gaussian beam in

one direction, so that it transforms its transverse circular shape to an elliptical one with

a ratio 3/100 of the semi-axes of the ellipse. As a consequence, the divergence of the

generated EB is different along the focused and unfocused directions (wf = 30µm, θf =

6.8mrad; wuf = 1000µm, θuf = 0.2mrad, where f and uf subscripts refer to focused

and unfocused directions, respectively). The EB is characterized by its polarization

plane, represented by the azimuthal angle φE , and by its plane of wave-vectors (or K-

plane), represented by azimuthal angle φK ; see Fig. 2.5(b). Different EBs are obtained

by rotating either the cylindrical lens or the linear polarizer. The KGd(WO4)2 BC is

28mm and, therefore, R0 = 475µm. Both the orientation of the optic axis of the BC

and the cylindrical lens are well controlled in the θ and ϕ directions in 3D spherical

coordinates by a micrometer positioning system. The resulting pattern is captured by

a CCD camera at the focal plane behind the BC.

Position of the refracted beams

Now we will experimentally deduce the lateral shift of the refracted beams for EBs

propagated through a BC. In Fig. 2.6 two series of images present the transverse intensity

pattern at the focal plane recorded varying either φE (φK = 0◦) (b) or φK (φE = 0◦)
(c) from 0 to 157.5◦ in 22.5◦ intervals, when the crystal orientation remains fixed at

φG = 0◦. The geometric center of the refracted beams coincides with the center of the

otherwise expected CR ring, since it is shifted from the position of the initial EB by

the vector G. This shift is shown schematically in Fig. 2.6(a), and it is subtracted in

Fig. 2.6(b) and Fig. 2.6(c).

From Fig. 2.6 it is clear that in a local frame with origin at the ring center, the

positions of the two refracted beams do not depend on the input beam polarization, φE ,

but rotate linearly with φK . Moreover, the azimuthal angles φ± of the refracted beams

are defined by the wave-vector plane, φK , of the input EB, namely,

φ+ = φK , φ− = φK + π. (2.25)

Since φK and φK + π describe the same wave-vector plane, the latter expressions mean

conservation of the K-planes of wave-vectors. Rotation of the crystal, i.e., change of φG,

does not affect the angles φ±, but it affects the position of the center of the refracted
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Figure 2.6: Transverse intensity patterns obtained after rotating (b) the polarizer, i.e.

varying φE , or (c) cylindrical lens, i.e. varying φK . φ means φE in (b) and φK in (c)

and it is varied in the range [0◦, 157.5◦] with steps of 22.5◦, while φG = 0◦. Yellow (b)

and green (c) lines at the bottom right corner indicate the polarization E-plane (b) and

the wave-vector K-plane (c), respectively. (a) Splitting of an input EB beam (dashed

ellipse), where R± denote the position of the two output refracted beams at the Lloyd

plane. Dashed ring in (a) denotes the otherwise expected CR in case of input beam of

Gaussian profile.

beams and redistributes the intensity between the refracted beams as it will be shown

in the next subsection. Summarizing, in the xy laboratory coordinates, the positions of

the refracted beams R± at the focal plane can be written as follows:

R±(φK) = S(φK) +G±R0u(φK), (2.26)

where u(φK) ≡ (cos (φK) , sin (φK)). S denotes the position at the focal plane where the

initial EB would be focused in the absence of the BC, see Fig. 2.6(c). In other words,

the two refracted beams are located at diagonal positions of the otherwise expected CR

ring. EBs obtained from the same Gaussian beam have the same initial position S, i.e.,

S does not depend on φE,K,G in this case. As a final comment, Eqs. (2.26) generalize

the geometrical approach given in Ref. [74].

Relative intensity distribution of the refracted beams

Now we report how the intensity of the input EB is distributed between the two

refracted beams. In the experiments, three parameters can be varied independently:

φG, φE and φK , associated to the crystal orientation represented by G and to the
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polarization and wave-vectors planes of the incident EBs. Below we show that only

one combination of these angles governs the relative intensity distribution between the

two refracted beams. With this purpose, we have repeated the experiments shown in

Fig. 2.6(b) and Fig. 2.6(c) for different orientations of the BC.
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Figure 2.7: Normalized intensities of the two refracted beams after the splitting of

the elliptical beam as a function of the variation of the parameters (a) φG/2 − φE
(φK = 0◦) or (b) φG+φK (φE = 0◦). Black solid (I+) and red dashed (I−) curves show
the analytical fitting given by Eqs. (2.31), while symbols represent the corresponding

experimental data. The error in angle measurements is ±0.5◦.

Symbols (black crosses and red circles) in Fig. 2.7(a) Fig. 2.7(b) show the correspond-

ing experimental results for the intensities I± of the two refracted beams normalized

with respect to the intensity of the incident beam. Black solid and red dashed curves

represent their analytical fittings given by the following expressions:

I+ (φE , φG, φK = 0) = I0 cos
2

(

φG
2
− φE

)

; (2.27)

I− (φE , φG, φK = 0) = I0 sin
2

(

φG
2
− φE

)

, (2.28)

I+ (φE = 0, φG, φK) = I0 cos
2

(

φG
2

+
φK
2

)

; (2.29)

I− (φE = 0, φG, φK) = I0 sin
2

(

φG
2

+
φK
2

)

. (2.30)

I+ and I− are the intensities of the beams refracted at angles φ+ and φ− and located

diagonally at the both ends of the CR ring at positions R+ and R− respectively, following

Eq.(2.26). Eqs. (2.28) and (2.30) can be rewritten in a unified simple form, giving the

next formula for the relative intensity distribution between the two refracted beams with

only one governing parameter ω:

I+ = I0 cos
2
(ω

2

)

, I− = I0 sin
2
(ω

2

)

, ω ≡ φG − φχ, φχ = 2φE − φK . (2.31)
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From Eq. (2.31) it follows that, with respect to the relative energy distribution the only

significant parameters of the input EB is φχ. Therefore, the intensity splitting under CR

can be expressed in terms of the difference between the parameter φχ and the orientation

of the BC, given by φG.

Eqs. (2.26) and (2.31) constitute the Transformation Rules of Conical Refraction.

For different polarization of the input beams they allow explaining the ratio of inten-

sities for any pair of diagonally opposite points of the CR ring. These results agree

with experimental observations that the complete CR ring appears only for beams with

azimuthally continuous symmetric distribution of wave-vectors. As a proof of usefulness

of the formalism introduced in this work, in the next subsection we apply the derived

transformation rules to an axicon input beam.

2.3.3 Application of the transformation rules of CR to an axicon beam
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Figure 2.8: Experimental set-up for axicon beam propagation along the optic axis of a

biaxial crystal. The axicon lens (apex angle of 179.5◦) generates a conical beam from an

input linearly polarized Gaussian beam which is then focused by a spherical lens (focal

length of 150mm) along the optic axis of the BC.

The experimental set-up is sketched in Fig. 2.8. A linearly polarized conical beam

is prepared when an initial circularly polarized Gaussian beam passes through a linear

polarizer and an axicon lens. The axicon beam is focused by a spherical lens into the

BC. The resulting pattern is captured with a CCD camera at the focal plane. As in

previous experiments, the orientation of the optic axis of the BC, the spherical lens and

the axicon lens are well controlled in the θ and ϕ directions in 3D spherical coordinates

by a micrometer positioning system. Each infinitesimally thin azimuthal sector of the

axicon lens characterized by azimuthal angle φ forms a thin prism that produces a wave

with particular wave-vector whose transverse projection comprises an angle φk = φ. The
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axicon lens generates, therefore, a continuous collection of beams with φ ∈ [0, 2π). After

the axicon, the refracted beams, following Snell law, have the same inclination angle θ0
with respect to the z-axis. At the focal plane of the lens they form a ring such that each

point can be characterized by wave-vector plane, φk, and polarization plane, φE . In

other words, each point of the axicon ring is an EB. In this case all these EB have their

polarization plane fixed at φE and their wave-vector plane φ is varying continuously

along the ring as shown in Fig. 2.9(a). Behind the BC, the refraction pattern can be

calculated by applying Eq. (2.26) to every point of the input axicon annular beam taking

into account the initial positions as given by S (φ) = Rax (cosφ, sinφ) (where Rax is the

radius of the axicon light ring). Therefore, from Eq. (2.26) one can obtain the refracted

pattern for an axicon beam:

R±(φ) = G+ (|Rax| ± |R0|)u(φ). (2.32)

These expressions, with φ scanned from 0 to 2π, parametrize two concentric rings with

radii Rax ± R0 laterally shifted by G relatively to the axicon ring axis. The intensity

distribution is calculated from Eq. (2.31). All points of the incident axicon beam have

the same intensity, which is distributed between the two refracted rings as follows:

I+ = I0
R0

R+
cos2

(

φ− φ0
2

)

, I− = I0
R0

R−
sin2

(

φ− φ0
2

)

, (2.33)

where we have taken ω = φ−φ0 being φ0 ≡ 2φE−φG a constant parameter. In addition,

since both rings have different radii, normalization factors R0/R± have been introduced

to I± to assure energy conservation.

(a) (b) (c)

φ = Kφ

Figure 2.9: Refraction of linearly polarized axicon annular beam along optic axis of a

biaxial crystal. (a) Schematic representation of linearly polarized axicon annular beam

with each point characterized by the azimuthal angles φk = φ (short green lines) and all

of them have the same polarization plane φE (short orange lines). (b) Experimentally

observed transverse intensity pattern at the focal plane consisting of two concentric

rings when a linearly polarized axicon beam with φE = 0 propagates along the optic

axis of the biaxial crystal with φG = 0. (c) Corresponding theoretical simulation from

Eqs. (2.32) and (2.33).

Fig. 2.9(a) shows the intensity pattern of the axicon beam with its polarization and

K-plane distribution. The experimental refraction pattern behind the BC is shown in
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Fig. 2.9(b). The pattern is formed by two concentric rings oppositely polarized, with

polarization distribution analogous to that one obtained in a cascaded CR configura-

tion [33]. Polarization of the ring points with minimum (zero) and maximum intensities

are orthogonal and parallel respectively to that of the input axicon beam. Fig. 2.9(c)

presents the theoretical prediction of the light refraction pattern from Eqs.(2.32) and

(2.33). Comparison between Fig. 2.9(b) and Fig. 2.9(c) shows that the theoretical pre-

diction and the experiment (see Fig. 2.9(b)) are in complete agreement.

2.4 Dual-cone model of conical refraction

2.4.1 Dual-cone theory and its relation to the wave-vector interpreta-

tion

Following the dual-cone model of CR, which can be obtained by re-arranging the

Belsky–Khapalyuk–Berry B0 and B1 equations i.e., Eqs. (2.12) and (2.13), for a uni-

formly polarized input light beam with axially symmetric intensity distribution, the

electric field behind the biaxial crystal can be represented as a sum of two CR cones

C±(ρ, ϕ, Z):

E(ρ, ϕ, Z) = C+(ρ, ϕ, Z) +C−(ρ, ϕ, Z), (2.34)

Cq(ρ, ϕ, Z) =
∑

q,s=±
Aqs(ρ, Z)es(ϕ)(es(ϕ) · ein), (2.35)

Aqs(ρ, Z) =
1

2

∫ ∞

0
dka(k)ke−iZ k2

4 eiqρ0k (J0(kρ)− iqsJ1(kρ)) , (2.36)

e+(ϕ) =
[

cos
(ϕ

2

)

, sin
(ϕ

2

)]

, (2.37)

e−(ϕ) =
[

sin
(ϕ

2

)

,− cos
(ϕ

2

)]

. (2.38)

where dot in Eq. (2.35) means scalar product of two vectors and a (k) is given by

Eq. (2.8). e± describe the CR polarization basis. For a circularly polarized input beam

with helicity σ = ±, the two CR cones Cσ
q (q = ±) and the total CR electric field

E = [Ex, Ey] can be written as follows:

Cσ
q =

eiσϕ/2√
2

(Aq+e+ − iσAq−e−) , (2.39)

Eσ
x =

eiσϕ/2√
2

{

(A++ +A−+) cos
(ϕ

2

)

iσ (A+− +A−−) sin
(ϕ

2

)}

, (2.40)

Eσ
y =

eiσϕ/2√
2

{

(A++ +A−+) sin
(ϕ

2

)

iσ (A+− +A−−) cos
(ϕ

2

)}

, (2.41)

where Aqs with q, s = ± is described by Eq. (2.36).

From Eqs. (2.40) and (2.41) it follows that each of the two CR cones can be repre-

sented as a decomposition into the two unit vectors e± of the CR basis. Note that e±
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are orthogonal to each other at any point in 3D space. They are non-homogeneously

polarized, in contrast to the well known polarization basis of linearly and circularly

polarized states that have homogeneous polarization distribution in 3D space. The CR

polarization basis is also different from the well known inhomogeneous polarization basis

formed by radially and azimuthally polarized states. In particular, the unit vectors e±
are rotated by 180◦ along any closed loop around the center of coordinates normally

associated with the geometric center of the light beam.

Figure 2.10: Decomposition amplitudes Aqs of the CR cones Cq=+ (a,b) and Cq=−
(d,e) onto the CR polarization basis of es=+ (a,d) and es=− (b,e) for an input beam

with fundamental Gaussian transverse profile. Intensity evolution of the CR cones C+

and C− are presented in figures (c) and (f), respectively. Their corresponding transverse

profiles at the focal plane are presented in the insets. ρ0 = 10.

Note that in the general case, decompositions of beams on the CR polarization basis

and on the CR cones are different. Each CR cone has two components in the CR

polarization basis as demonstrated in Fig. 2.10. The amplitudes of this decomposition

are strongly separated in space. The separation point is associated with the CR cone

vertexes, i.e., the Raman spots. The C+ and C− cones have smallest diameter at

the Raman spot behind and before the focal focal plane, respectively. As shown in

Fig. 2.10, for the CR cone C+ the polarization amplitude A++ becomes negligible after

the Raman spot behind the focal focal plane, while A+− is negligible before the same

Raman spot. For the CR coneC− the contributions of amplitudes in the CR polarization

basis are opposite, i.e., A−+ (A−−) becomes negligible before (after) the vertex of the

corresponding CR cone C−. Therefore, CR cones C± have almost identical polarization

distribution between the Raman spots and, consequently, they can interfere with each

other, which leads to the double bright ring pattern with the Poggendorff fine splitting

at the focal plane previously observed in conical refraction.
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From ± infinity to the Raman spots the CR cones C± are predominantly of orthog-

onal polarization at any spatial point and, therefore, they do not interfere. Moreover, if

the polarization distribution of an input beam coincides with one of the CR cones only

this CR cone is observed under conical refraction and, therefore, the interference pat-

tern, i.e., the Poggendorff dark ring, disappears at the focal plane of conical refraction

as shown theoretically in Fig. 2.10(c) and Fig. 2.10(f) and demonstrated experimentally

in the next subsection. This model reproduces well the features of the CR beam shown

in Fig. 2.2 with the add that in this case the beam can clearly be decomposed into two

contributions, as shown in the next subsection.

CP LP 0 LP 90 

(a) (b) (c)

(d) (e) (f )

o o

CP LP 0 LP 90 
o o

Figure 2.11: Double conical refraction experiment. (a)–(c) are the experimental CR

transverse profiles obtained at the focal plane when the input beam is a sector of a

Gaussian beam with its wave-vectors mainly contained in a plane at angle φk = 0◦.
Such a beam is obtained by applying an amplitude mask onto the beam, see its sketch

at the left side of the corresponding figure. (d)–(f) are the corresponding experimental

transverse patterns for φk = 180◦. In both cases only one refracted beam is obtained by

properly choosing the input polarization.

Alternatively, we have shown in the previous section that an input plane-wave with

transverse wave-vector k⊥ = k [cos(φk), sin(φk)] refracts into two opposite points in the

expected CR rings, after passing through the biaxial crystal. If the polarization of this

ray is selected properly, only one point will be observed at the otherwise expected CR

ring. Having this idea in mind, let’s consider the following experiment: in front of a

Gaussian beam we place an angular mask that only transmits one angular sector of

the beam, as depicted in the inset of Fig. 2.11(a). If the angular mask has the opening

sector at an angle φ, most of the wave-vectors of the transmitted beam posses transverse

wave vector kin = k [cos(φ), sin(φ)]. In this case, a circularly polarized input beam cut

with such an angular mask and passing through the biaxial crystal is transformed into
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two azimuthal sectors at positions φ and φ + π of the otherwise expected CR rings,

represented as dotted lines in Fig. 2.11(a).

However, note that each of the two azimuthal sectors do not belong to the same

ring. Therefore, if the polarization of the input beam is fixed to be linear with azimuth

at Φ = φ/2 or Φ = (φ + π)/2, after being transformed by the biaxial crystal only one

sector of the CR ring will be observed. This is shown in Figs. 2.11(b) and (c) for Φ = 0

and Φ = π/2 respectively. If the angular mask is placed with the opened sector at φ+π,

it will be also transformed into two azimuthal sectors not belonging to the same ring

either, see Fig. 2.11(d). Analogously, if the transmitted sector is linearly polarized with

azimuth at Φ = (φ+π)/2 or Φ = φ/2, only one azimuthal sector will be observed behind

the biaxial crystal, as shown in Figs. 2.11(e) and (f) for Φ = 0 and Φ = π/2 respectively.

These results indicate that if we consider a Gaussian input beam that possesses a non-

uniform polarization mimicking the CR polarization, it is possible to select only one of

the two bright rings.

FL

BC

Optic axis

λ = 640 nm

   = 1.26mm0w Monomode

fiber CP Gaussian 

beamLP

l

QWP CR-p

Figure 2.12: Experimental set-up. The input Gaussian beam is obtained from a diode

laser coupled to a monomode fiber. Its polarization is fixed to be circular by means of a

linear polarizer (LP) and a quarter wave-plate (QWP). A segmented polarizer (CR-p)

that can be rotated around the axial direction transforms the Gaussian beam into a

non-uniformly polarized beam that mimics the CR polarization azimuthal distribution.

The beam is focused (FL) through the biaxial crystal (BC) and the pattern at the focal

plane is recorded by a CCD camera.

2.4.2 Experiments

To show the dual-cone nature of the CR beam, we have designed a segmented po-

larizer formed by 8 sectors emulating the CR polarization -for this reason we call it as

CR-polarizer. By taking into account the experimental results shown in Fig. 2.11, it

is straightforward to deduce that for two appropriate orientations of the CR-polarizer,

only one light ring is observed at the CR pattern at the focal plane. In this section we

provide experimental proof of this conclusion.

Fig. 2.12 shows our experimental set-up. As input beam, we take a collimated
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linearly polarized Gaussian beam with w0 ≈ 1mm waist radius obtained from a 640 nm

diode laser coupled to a monomode fiber. The linear polarizer (LP) and the quarter

wave-plate (QWP) are used to control the polarization of the input beam and fix it to

be circular. The CR-polarizer is placed after the QWP with its center coinciding with

the center of the beam, which is focused by the lens (200mm of focal length) upon the

biaxial crystal (BC). To ensure that the vertexes of the CR-polarizer are right at the

center of the beam, we use an XY micro-positioner. Once focused, the beam has a waist

radius of w0 ≈ 41µm.
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Figure 2.13: (a) and (b) show two particular configurations of the CR-polarizer for

which only one CR light ring is obtained. The density plots show the numerically

obtained light ring at the focal plane (Z = 0), while the dotted concentric rings are the

position where the CR bright rings would appear in the absence of the CR-polarizer.

Transverse patterns obtained at Z = ±6 are also shown. (c)–(h) show the transverse

CR pattern at the focal plane for different orientations of the CR-polarizer with respect

to the polarization distribution generated by the CR phenomenon [see double arrows in

Fig. 2.2(a)]. The characteristic CR bright rings are recovered for φCR−p = 90◦, while for
φCR−p = 0◦ or φCR−p = 180◦ only one bright ring is obtained. (i)–(n) and (o)–(t) are

the corresponding transverse patterns (demagnified in size around a 30% ) at Z = −6
and Z = 6, respectively.
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As BC we use a KGd(WO4)2 crystal being l = 28mm, therefore R0 ≈ 475µm, and

yielding ρ0 ≈ 11. The CCD camera is mounted on a translation stage to record the

pattern at different planes along the beam propagation.

The possibility to use the CR-polarizer to observe the dual-cone nature of CR is

reported in Fig. 2.13. Figs. 2.13 (d)–(h) show the CR pattern at the focal plane for

rotation of the CR-polarizer at angles φCR−p = [0 ◦, 180 ◦] in steps of 45 ◦. Fig. 2.13(c)

is the pattern obtained in the absence of the CR-polarizer. At φCR−p = 0 only one light

ring is observable. As φCR−p increases, the intensity of this ring decreases and an inner

ring starts to form. At φCR−p = 90 ◦ the pattern is clearly formed by two light rings.

From φCR−p = 90 ◦ on, the intensity of the outer ring keeps decreasing as the one from

the inner increases, until having only one light ring again at φCR−p = 180 ◦. To provide

an even clearer visualization of the effect producing by the rotation of the CR-polarizer,

we have carried out the same experiment at Z = ±6, the planes where the Raman spots

starts to appear.
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Figure 2.14: CR transverse intensity profiles at the focal plane (first row) and at Z = −6
(second row) and Z = +6 (third row) for orientations of a linear polarizer (LP) at angles:

[0 ◦, 45 ◦, 90 ◦, 135 ◦]. Left- and right-hand side set of images correspond to φCR−p = 0 ◦

and φCR−p = 180 ◦, respectively.

The results are shown in Figs. 2.13(j)–(n) for Z = −6 and in Figs. 2.13(p)–(t) for

Z = 6, being Figs. 2.13(i) and (o) the pattern obtained in the absence of the CR-

polarizer. At Z = −6 and for φCR−p = 0 ◦, the CR pattern only has contributions from

the beam center. In contrast, at φCR−p = 180 ◦ a light ring with no intensity at its

center is found. At intermediary angles of the CR-polarizer, contributions of both the

central intensity and the light ring are found. At Z = 6 the CR pattern obtained for

φCR−p = 0 ◦ is a light ring whereas at φCR−p = 180 ◦ only intensity at the beam center
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is observed. These results, together with the one presented in Figs. 2.13(d)–(h) indicate

that the CR beam can be actually understood as two axially displaced light cones, being

the focal plane a mirror symmetry-plane.

It is also necessary to show the state of polarization of the light cones. Fig. 2.14

presents the experimental images of the CR transverse intensity profiles at the focal

plane (first row) and at Z = −6 (second row) and Z = +6 (third row) for different

orientations of a linear polarizer (LP) used to analyze the state of polarization of the

two cones. Left-hand set of images correspond to φCR−p = 0 ◦ while right-hand side set

of images correspond to φCR−p = 180 ◦ see top insets. Each set of images correspond to

the C− and C+ cones, respectively. The images show two remarkable phenomena: (i)

every two diametrically opposite points at the light pattern are orthogonally polarized

at any plane, and (ii) the polarization distributions of both light cones are the same.
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Figure 2.15: Cuts in the Z–X plane (where X ≡ x/w0)of the beam evolution obtained

for two orientations of the CR-polarizer at (a) and (c) 0◦, and (b) and (d) 180◦, showing
the dual-cone nature of the CR phenomenon. The first row presents the experimental

measurements obtained by recording the transverse pattern at different propagation

planes, while the corresponding numerical simulations obtained using Eqs. (2.40)–(2.41)

can be found in second row. (e) and (f) represent, respectively, the experimental and

numerical beam propagation with the CR-polarizer being removed from the set-up.

ρth0 = 10, ρexp0 ≈ 11. Black is null intensity and yellow is maximum intensity.

To observe the free space evolution of the light cones, Fig. 2.15 presents cuts in the Z–
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X plane of the beam evolution of the CR pattern using the CR-polarizer. First row are

the experimental results, while second row are the numerical simulations obtained using

the dual-cone model, i.e., Eqs. (6)–(2.41). Figs. 2.15(a) (obtained with φCR−p = 0 ◦) and
(c) correspond to the C− light cone, while Figs. 2.15(b) (obtained with φCR−p = 180 ◦)
and (d) correspond to the C+ light cone.

Fig. 2.15(e) shows the experimental beam evolution with the CR-polarizer being

removed and Fig. 2.15(f) is the corresponding numerical simulation. The experimental

images were taken by recording the transverse light pattern at different planes along the

axial direction in steps of 5mm and then interpolating between them using the software

ImageJ. As it can be appreciated, both experiments and numerical simulations are in

good agreement, confirming the dual-cone nature of the CR phenomenon.

2.5 Cascaded conical refraction

(a) (b)

Figure 2.16: Transverse intensity pattern at the focal plane for a cascade of two biaxial

crystals with aligned optic axes obtained from an elliptical input beam. (a) Numeri-

cal simulations obtained by using Eqs. (2.19)–(2.24). (b) Experimental measurements

obtained by using two KGd(WO2)4 biaxial crystals with lengths of l1 = 28mm and

l2 = 10mm.

Multiple concentric rings in CR have been experimentally reported in a cascade of

two [33,75,76], three [77] and up to four [78] BCs, with interesting applications in lasing

[79], particle trapping [80], vortex generation [81] and free space optical communications

[82]. The diffracting wave theory of CR has been extended by Berry to the case of

cylindrically symmetric beams propagating through a cascade of up to N BCs [75,

83], providing an accurate description of the phenomenon in terms of Bessel functions.

Additionally, the extension to non-cylindrically symmetric input beams presented in

Section 2.2.2 can be also implemented to accurately predict the pattern of input beams

propagating through a cascade of BCs, as shown in Fig. 2.16 for a cascade of two biaxial

crystals and a circularly polarized elliptical input beam. However, the diffractive theory
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of CR has two major drawbacks: 1) its highly demanding from a computational point

of view and 2) it does not offer any intuition on the final pattern after an arbitrary large

cascade of crystals.
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Figure 2.17: (a) CR ring at the focal plane for a circularly polarized input beam. Orange

double arrows show the polarization distribution at each point of the CR ring. G =

R0[cosϕ, sinϕ] gives the transverse displacement that the CR ring (with radius R0)

suffers with respect to the input beam (white dot), with original position r0. ϕ gives

the orientation of the plane of optic axes. ξ is the polar angle of a given point on the

ring, with azimuth of the linear polarization φξ. (b) CR pattern for a linearly polarized

input beam with azimuth of the linear polarization φE = 30◦.

In this Section we provide a simpler approach based in the wave-vector and polariza-

tion interpretation of CR shown in Section 2.3. Our aim is to offer a practical guideline

of the final pattern for CR in cascaded BCs at the focal plane, including the case of

linearly polarized input beams.

2.5.1 Coordinates system and single crystal configuration

The scheme of our experimental arrangement is shown in Fig. 2.18. A circularly

polarized Gaussian light beam is focused with a lens (FL), passing along the optic axis

of a cascade of up to three biaxial crystals (BCi) rotated by angles ϕi (i = 1, 2, 3) around

their aligned optic axes. Finally, an imaging lens (IL) projects the focal plane onto the

CCD camera.

Single annular pattern with fine Poggendorff splitting is observed when the first

crystal is placed alone. We introduce the transverse coordinates XY, see Fig. 2.17(a).

The BC1 orientated at an angle ϕ1 transforms the input Gaussian beam (with position

vector r0) into the CR light ring, whose center position is given by

r1 = r0 +G1. (2.42)

From Eq. (2.42), the position of any point of the CR ring (represented by the polar
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angle χ, see Fig. 2.17(a)), is described by

r1(χ) = r0 +G1 + |G1| [cos(χ), sin(χ)] . (2.43)

The polarization azimuth, Φχ, at each point of the ring is related to its position along

the CR ring through

Φχ =
χ+ ϕ1

2
. (2.44)
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Figure 2.18: Experimental set-up. An input beam propagating along the optic axis of a

cascade of biaxial crystals (BCi) (with orientation ϕi) is focused with a lens (FL) and

transformed by the CR phenomenon in the cascade. An imaging lens (IL) projects the

final pattern into the CCD camera.

2.5.2 Multiple crystals

To investigate the origin of multiple rings generated by a cascade of BCs, part of the

conically refracted beam is selected (filtered) by placing a pinhole at the CR ring after

the first crystal, as schematically shown by the dashed white circle in Fig. 2.17(a). Every

point of the ring is a CR-filtered beam defined by the polar angle χ of the filtering (which

also defines the plane of wave-vectors ΦK = χ [54]) and by the plane of its electric field

vector with polarization azimuth Φχ given by Eq. (2.44). CR-filtered beams passing

through a BC do not produce full ring pattern, but refract (split) into two orthogonally

linearly polarized beams [73]. Their positions correspond to two diagonally opposite

points of the otherwise expected CR ring for a Gaussian input beam. Their geometric

center is

r2 = r1 +G2 = r0 +G1 +G2, (2.45)

while their polar angles and transverse positions are defined by the filtering angle χ of

the input beam

χ
(1)
2 = χ, χ

(2)
2 = χ+ π; (2.46)

r2(χ
(1,2)
2 ) = r1(χ) +G2 ± |G2| [cos(χ), sin(χ)] , (2.47)
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where the superscript distinguishes the refracted (output) beams. Their polarization

azimuths Φ
χ
(1,2)
2

are defined by Eq. (2.44) with χ being replaced by χ
(1,2)
2 given in

Eq. (2.46) and ϕ1 being replaced by ϕ2.
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Figure 2.19: (a,b) Experimental intensity ring pattern(s) at the focal plane for a cascade

formed by (a) 1 and (b) 2 biaxial crystals (BC). The dotted green ring show the CR ring

that should appear in the absence of the second BCs. Red and green arrows correspond

to G1 and G2 respectively. (c,d) Experimental intensity patterns obtained by using a

beam filtered at χ = 45◦ (represented with gray vector, r0(χ) = r(in)+G1+
1√
2
|G1| [1, 1])

from the CR ring of the first BC. White vector gives the position of the input beam.

The purple dotted ring show the CR ring that would appear if the CR-filtered beam

was a Gaussian beam.

By combining Eq. (2.43) with Eqs. (2.45) and (2.47), the latter reads

r2(χ
(1,2)
2 ) = r2 ±R(1,2)

2 [cos(χ), sin(χ)] , (2.48)

where R
(1,2)
2 = ||G1| ± |G2||. To relate the angle between consecutive crystals, we

define ϕnm ≡ ϕn−ϕm. The intensity splitting distribution between the refracted beams

(derived from Section 2.3) is

I
(1)
2 = Iχ cos

2
(

Φ
χ
(1)
2

− Φχ

)

= Iχ cos
2
(ϕ21

2

)

, (2.49)

I
(2)
2 = Iχ cos

2
(

Φ
χ
(2)
2

− Φχ

)

= Iχ sin
2
(ϕ21

2

)

, (2.50)
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where Iχ = Iχ,CP = P0
A for a circularly polarized input beam, while Iχ = Iχ,LP =

2P0
A cos2 (Φχ − Φ0) = 2Iχ,CP cos2

(χ+ϕ1

2 − Φ0

)

for the linearly polarized case. P0 is the

input beam’s power, which redistributes over the area A = 4πw0R occupied by the CR

ring. Note that if R = 0, then A = πw2
0, where w0 is the waist radius of the focused

input beam. The two refracted beams after the BC2 are also CR-filtered beams, that

are described by their transverse positions r
(1,2)
2 = r(χ

(1,2)
2 ) and by the set of parameters

[χ
(1,2)
2 ,Φ

χ
(1,2)
2

].

Experimental results on CR-filtered beams in a cascade of two crystals are presented

in Fig. 2.19. As it can be appreciated, a CR-filtered beam from the CR ring generated

by the first crystal refracts as two beams after passing through the second crystal. When

the ring of the first crystal is not filtered, the transverse intensity pattern obtained after

the second crystal forms a pair of concentric CR rings each of which with Poggendorff

splitting.

Multiple rings formation is obtained by considering the full range χ ∈ [0, 2π). In

this case, Eqs. (2.48), (2.49) and (2.50) define two concentric rings with common center

at r2, radii R
(i)
2 and azimuthal intensities I

(i)
2 :

r2 = r0 +G1 +G2, (2.51)

R
(i)
2 = ||G1| ± |G2|| (i = 1, 2), (2.52)

I
(1)
2,CP =

P0

A
(1)
2

cos2
(ϕ21

2

)

, (2.53)

I
(2)
2,CP =

P0

A
(2)
2

sin2
(ϕ21

2

)

, (2.54)

being A
(i)
2 = 4πw0R

(i)
2 if R

(i)
2 6= 0 and A

(i)
2 = πw2

0 if R
(i)
2 = 0. In other words, the

second crystal shifts the center of the ring pattern and splits the parental CR ring into

two concentric ones, as observed experimentally for the cascade of two crystals, see

Fig. 2.20(a1). For input beams with linear polarization, the azimuthal intensity of the

light ring patterns are:

I
(1)
2,LP = 2I

(1)
2,CP cos2

(

χ+ ϕ1

2
− Φ0

)

, (2.55)

I
(2)
2,LP = 2I

(2)
2,CP cos2

(

χ+ ϕ1

2
− Φ0 +

π

2

)

, (2.56)

for |G2| > R1 and

I
(1)
2,LP = 2I

(1)
2,CP cos2

(

χ+ ϕ1

2
− Φ0

)

, (2.57)

I
(2)
2,LP = 2I

(2)
2,CP cos2

(

χ+ ϕ1

2
− Φ0

)

, (2.58)

for |G2| < R1. Experimental patterns and corresponding theoretical simulations of a

cascade of two biaxial crystals for input beams with linear and circular polarizations are

shown in box (1) of Fig. 2.20.
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The third biaxial crystal (BC3), once added into the cascade, splits each CR-filtered

beam into two CR filtered beams with parameters defined by Eqs. (2.46), (2.47), (2.49)

and (2.50) as previously described. Therefore, four CR filtered beams appear at the

positions defined by Eq. (2.48) with parameters r3 = r0 + G1 + G2 + G3 and R
(i)
3 =

∣

∣

∣
R

(1,2)
2 ± |G3|

∣

∣

∣
(i = 1, 2, 3, 4). For the full range χ ∈ [0, 2π) the latter results predict

four concentric rings as shown in Fig. 2.20(a2), centered at r3 and with radii R
(3)
i and

corresponding azimuthal intensities I
(i)
3 as follows

r3 = r0 +G1 +G2 +G3, (2.59)

R
(i)
3 = |||G1| ± |G2|| ± |G3|| (i = 1, 2, 3, 4), (2.60)

I
(1)
3 =

P0

A
(1)
3

cos2
(ϕ21

2

)

cos2
(ϕ21

2

)

, (2.61)

I
(2)
3 =

P0

A
(2)
3

sin2
(ϕ32

2

)

cos2
(ϕ21

2

)

, (2.62)

I
(3)
3 =

P0

A
(3)
3

cos2
(ϕ32

2

)

sin2
(ϕ21

2

)

, (2.63)

I
(4)
3 =

P0

A
(4)
3

sin2
(ϕ32

2

)

sin2
(ϕ21

2

)

, (2.64)

for CP input beams. For LP input beams, corresponding expressions can be obtained

using Eqs. (2.55)–(2.58) and taking into account whether |G3| < R
(i)
2 or |G3| > R

(i)
2

(i = 1, 2). Explicit formulation is not presented here since for a cascade of N = 3

BCs there are 3! = 6 possible combinations × 4 light rings = 24 formulae. Experimental

patterns and corresponding theoretical simulations for a cascade of three biaxial crystals

for linearly and circularly polarized input beams are presented in box (2) of Fig. 2.20.

Patterns for a cascade of N biaxial crystals with characteristic vectors Gi can be

obtained by applying Eq. (2.59) (position of the center) Eq. (2.60) (radii of each ring)

and Eqs. (2.61)-(2.64) (intensity of each ring) recursively. In this case, up to 2N−1

concentric rings appear at the focal plane, as it was recently shown if Refs. [75, 78, 83]

for circularly polarized input beams.

2.6 Conclusions

In this chapter we have shown the fundamental features of the CR phenomenon

under three different perspectives. In the first part of the chapter, the diffractive so-

lution of CR has been presented. We have demonstrated that this formulation allows

predicting the free space evolution of light beams propagated through a biaxial crystal

along any direction, including one of the optic axes. For a cylindrically symmetric and

uniformly polarized beam propagating along one of the optic axes, simplified equations

and numerical calculations for the particular case of a Gaussian input beam have been

presented. In the general case, we have reported both theoretically and experimentally
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the transition from double refraction to CR of a Gaussian and an elliptical input beam

propagating within a biaxial crystal. Note that this formalism is also suitable to predict

the transformation of non-homogeneously polarized beams after propagating through a

biaxial crystal, as we have demonstrated for a radially and azimuthally polarized input

light beams [53].

(a1) (b1)

(c1) (d1)

(a2) (b2)

(c2) (d2)

(1) (2)

Figure 2.20: Transverse intensity patterns for a cascade of 2 BCs (box 1) and 3 BCs

(box 2). Figures (ai,bi) are experimental data and (ci,di) (i = 1, 2) the corresponding

theoretical simulations. First column corresponds to a circularly polarized input beam,

while second column corresponds to a linearly polarized input beam with azimuth Φ0 =

0◦. Experimental parameters of the BCs: L1 = 27.31mm, ϕ1 = 0◦; L2 = 10.66mm,

ϕ2 = 90◦; L3 = 18.29mm, ϕ3 = 180◦. The focal length of the focusing lens (FL,

see Fig. 2.18) is 200mm.

Then, we have presented the wave-vector and polarization dependence of the internal

conical refraction phenomenon in biaxial crystals. We have experimentally proved that

this phenomenon is only one particular case of refraction associated to beams possessing

continuous axial cylindrical symmetry. In fact, we have reported that strongly elliptical

beams do not generate the complete characteristic light ring of CR when they propagate

along one of the optic axis of a biaxial crystal but split, in general, into two beams.

We have derived expressions for the positions and relative intensities of the resulting

refracted beams. These expressions play an analogous role as the Malus law but for

biaxial crystals and can be used to predict the transverse intensity pattern of much

more involved incident beams, as it has been demonstrated here for an input axicon

beam.

In the third Section of the chapter, we have demonstrated the dual-cone nature of
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the CR phenomenon by using an azimuthally segmented polarizer that mimics the CR

polarization distribution to generate a non-homogeneously polarized beam. We have

proved that such device allows for selecting between the two CR cones and shown the

experimental free-space conical beam evolution for a Gaussian input beam. A mirror-

symmetric beam evolution with respect to the focal plane for the two light cones has

been obtained. In addition, we have demonstrated that the CR cones C+ and C− have

their vertexes at the Raman spot behind and before the focal plane, respectively. It has

been also reported the generation of two bright rings split by the Poggendorff dark ring

at the focal plane, which can be understood in terms of the interference produced by

the difference on the divergence of the two co-propagating light cones.

Finally, it has been presented an extension to a cascade of biaxial crystals, that leads

to a transverse intensity pattern formed by multiple concentric rings. We have demon-

strated that such pattern can be described by using the wave-vector and polarization

formalism previously commented and we have shown that a cascade formed by N BCs

generates up to 2N−1 rings. A Simple formulation that allows deducing the position,

radii and intensity for each light ring has been also presented. Finally, we have reported

the transverse intensity pattern of cascaded CR from a linearly polarized input beam,

showing that the final pattern depends on the relative position of the BCs in the cascade,

i.e., it is a non-commutable operation.





CHAPTER 3

Beam shaping with conical refraction

This Chapter demonstrates the influence of the ρ0 ≡ R0/w0 parameter over the CR

beam evolution. While for ρ0 ≫ 1 the characteristic pair of concentric bright rings

with Poggendorff splitting are generated, for ρ0 ≈ 1 the CR beam changes radically. In

Section 3.1 we discuss all the previous works that related with CR for low values of ρ0.

Section 3.1 is devoted to show CR beams that can be obtained for different values of

ρ0 < 10. Our investigations on the generation of a three-dimensional (3D) dark focus

with CR are presented in Section 3.2. We demonstrate that in this case the CR beam

forms a perfect optical bottle, i. e. a null-intensity region in space surrounded for

regions of higher intensity in all directions. In Section 3.3 we present a novel Super-

Gaussian beam obtained with CR. Super-Gaussian beams are beams whose intensity

distribution is flat at the top and that decays smoothly at the edges. We discuss the

beam propagation of the super-Gaussian beam and show that it has a confocal parameter

three times larger than the one that would be obtained from a Gaussian beam. The

main advantages CR for beam shaping and conclusions of the Chapter are discussed in

Section 3.4

The research contained in this chapter has been has been done in collaboration with

Edik U. Rafailov from the Aston University, and Hiromitsu Tomizawa from the Japan

Synchrotron Radiation Research Institute and has been published in Refs. [66, 68].

3.1 Introduction

The evolution of the CR beam depends strongly on the ρ0 = R0/w0 parameter. Up

to now, we have centered our attention to the condition ρ0 ≫ 1, which covers most

of the works on the field. However, there have been some investigations on the CR

47



48 Beam shaping with conical refraction

beam dependence with the ρ0 parameter. The first contribution that can be found in

this sense was from Belsky and Stepanov [29], although they only reported a graph

with the 1D radial intensity distribution at the focal plane for different values of ρ0.

A similar analysis was made by Belafhal [31]. Hellström and co-workers, designed a

Yb:KGW laser based on CR and reported transverse intensity patterns obtained with

low values of ρ0, although no detailed investigation on this issue can be found [84]. The

first real experimental attempt to take profit of the ρ0 parameter was carried out by

Peet, who proposed the use of the biaxial crystals as a versatile mode converter between

Heremite–Gauss and Laguerre–Gauss beams throughout the CR phenomenon [76]. The

same author, analyzed in detail the B0 and B1 components of the CR beam to improve

the directivity of the input beam [63] and also to generate vortex-like structures in

the far field of the CR beam [65]. Rosen and co-workers proposed a sub wavelength

localization scheme for optical imaging based in CR under the condition ρ0 ≈ 1 [85].

Although being very interesting, none of the previously commented works studied in

detail the beam evolution of the obtained CR beams for low values of ρ0. In this chapter,

we do so for two very particular values of ρ0 leading to a 3D dark focus (ρ0 = 0.924) [66]

and a Super-Gaussian beam (ρ0 = 0.445) [68]. Before discussing in detail the features

of the 3D dark focus and the Super-Gaussian beam, in this section we show how the ρ0
parameter affects the intensity pattern of the CR beam. In Fig. 3.1(a) we show the radial

intensity distribution variation with ρ0 obtained from a circularly polarized Gaussian

input beam and using Eqs. (2.11)–(2.16). For ρ0 ≥ 3 the characteristic two bright rings

with the Poggendorff splitting can be observed. In contrast, for lower values of ρ0, the

two bright rings and, in particular, the inner bright ring are not clearly distinguished.

This can be better visualized in Figs. 3.1(b)-(i), where transverse intensity patterns in

the XY plane at Z = 0 for different values of ρ0 are presented. As ρ0 decreases, the

transverse intensity pattern differs from the characteristic CR bright rings. At ρ0 ≈ 1.5

the inner ring collapses into a central spot, at ρ0 ≈ 1 only a single (doughnut-like) ring

is found and for ρ0 < 1 the ring becomes imperceptible. Since for ρ0 < 1 the transverse

intensity pattern evolves from a doughnut-like ring to a Gaussian-like beam, it seems

that it is possible to find a value of ρ0 where the radial intensity distribution is flat at

its top.

3.2 Generating a 3D dark focus with conical refraction

Optical beams with dark regions of exactly zero intensity are rare objects usually

related to optical singularities. Their applications range from particle trapping [86],

subdiffraction limited tighter focusing [87] and plasmon excitation [88] to laser machining

[89]. Laguerre–Gauss beams are well known examples of light beams possessing optical

vortices forming a straight nodal line surrounded by light [90]. More involved structures

of closed loop nodal lines, their threading, knotting and linking have been demonstrated

recently [91–94].
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Figure 3.1: (a) 2D density plot of the radial intensity distribution at I (ρ, ρ0, Z = 0),

as given by Eq. (2.12)–(2.17). (b)-(i) Transverse intensity distributions at the focal

plane ICP (ρ, Z = 0) for an input Gaussian beam of circular polarization as given by

Eq. (2.12)–(2.17) for different values of the control parameter ρ0.

Bottle beams [95] are another example of optical beams with a dark region, more

precisely they are also named optical dark potentials. Ideally, bottle beams comprise

zero electric amplitude at one spatial point surrounded in all directions by regions with

relatively high intensity. In practice, the intensity minimum in bottle beams is not ex-

actly equal to zero because of different experimental imperfections. Various methods

and techniques have been proposed to produce 3D optical dark potentials in a control-

lable way, such as creating an intensity minimum by surrounding a region in 3D space

with several beams [96, 97], crossing at least two cylindrical-vector and vortex beams

with a phase dislocation along the beam axis that leads to a zero-intensity point [98], by

destructive interference of several Laguerre–Gauss light beams [95,99] or using uniaxial

c-cut crystals [100]. However, these methods have several drawbacks such as the fact

that in some of them the intensity minimum is not exactly equal to zero, the extreme

precise control on the optical elements being used, the field fluctuations introduced at

and close to the zero-amplitude point, or the non trivial generation of Laguerre-Gauss
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and cylindrical-vector and vortex beams [101]. Optical bottle beams have applications

in optical tweezers for trapping particles with a refractive index lower than the surround-

ing medium, using the photophoretic force for instance [86], or in cold atom trapping

with the possibility of creating an all optical blue-detuned trap that operates in the

zero-intensity region [102].

In this section, we present a robust, easy, and compact alternative to the previ-

ously cited methods to generate an optical bottle beam by transforming a fundamental

monochromatic Gaussian beam into a beam with a 3D dark focus, i.e. a beam with a

point of exact null intensity surrounded in all directions by regions of higher intensity,

by means of CR.

3.2.1 Axial intensity for ρ0 ≈ 1

Let us consider a focused monochromatic input beam propagating along one of the

optic axis of a biaxial crystal. In what follows, we will assume a fundamental Gaussian

input beam whose Rayleigh length and waist radius are given by zR and w0, respectively.

If focusing lenses are used, the beam waist position is located at the focal plane of the

lens. Since R0 = lα is characterized by the length (l) and conicity parameter (α) of the

crystal, the ρ0 parameter can be easily controlled experimentally by modifying w0, e. g.

by changing the focal length of the lens used in the experiments.

For a circularly polarized beam, at the beam center (ρ = 0), from Eq. (2.14), the

on Z-axis intensity distribution is defined solely by the function B0 (ρ = 0, Z) since

J1(0) = 0 and, therefore, B1 (ρ = 0, Z) = 0, see Eq. (2.13). In other words,

ICP (ρ = 0, Z) =

∣

∣

∣

∣

∣

∣

1

(2π)

∞
∫

0

a(k)e−i 1
2n

k2Z2
cos(kρ0)dφk

∣

∣

∣

∣

∣

∣

2

. (3.1)

The former can be evaluated analytically for a Gaussian input beam with Fourier trans-

form defined by Eq. (2.17), yielding:

BC(0, Z) =
1

wZ

d

dX
F(X) =

1

wZ

[

1 + i
√
πXe−X2

erf(iX)
]

, (3.2)

where X = ρ0/
√
wZ and wZ = 1+ iZ. F(X) and erf(X) denote Dawson and error func-

tions, respectively. Dawson function satisfies the equation dF(X)/dX = 1− 2XF(X).
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Figure 3.2: On-axis intensity at the focal plane center, I (ρ = 0, ρ0, Z = 0) as a function

of the control parameter ρ0 = R0/w0. Black solid circles represent the experimental data

obtained when a focused Gaussian beam propagates along the optic axis of a biaxial

crystal. The inset shows the on-axis intensity I (ρ = 0, ρ0, Z).

The evolution of the normalized intensity at the beam center for different values of

ρ0 is shown in Fig. 3.2. At Z = 0 (1D plot), for ρ0 ≥ 3 the intensity at the beam

center is close to 0. From ρ0 ≥ 3 down, the axial intensity increases, having a relative

maximum at ρ0 ≈ 1.5. Then, the intensity decreases newly and a minimum is found

at ρ0 ≈ 1. From this value of ρ0 down, the axial intensity increases until a maximum

at ρ0 = 0, where no CR can be observed. The surface plot reproduces the 1D plot at

different axial positions. As commented in the previous Chapter, for large values of ρ0,

an axial intensity maximum (Raman spot) is found far from the focal plane (Z = 0).

For low values of ρ0 the absolute axial maximum is shifted towards Z = 0. However, for

ρ0 ≈ 1 the absolute axial intensity maximum is found again far from the focal plane.

From Fig. 3.2, it is clear that Eq. (3.2) has a solution with zero amplitude at the

beam center (ρ = 0, Z = 0) that corresponds to the maximum of the Dawson function

F(X). Thus, by numerically solving BC(0, Z) = 0 from Eq. (3.2), one expects to obtain

a dark focus (DF) (zero amplitude) for

ρDF
0 = 0.924, (3.3)

where the superscript ‘DF’ means dark focus.
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3.2.2 Characteristics of the 3D dark focus beam
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Figure 3.3: Slice of the intensity distributions ICP (ρ, Z) along the propagation direction

for an input Gaussian beam of circular polarization as given by Eqs.(2.12)–(2.14) for

different values of the control parameter ρ0.

Since the Z-axis is the symmetry axis of the output beam, the 3D distribution of the

electric field can be represented by a two dimensional slice of intensity IρZ = I (ρ, Z) as

shown in Fig. 3.3. For ρ0 < 0.5, a single bright spot is observed whose maximum intensity

corresponds to the center of the focal plane, see Fig. 3.3(a). For larger values of ρ0, this

maximum is laterally shifted in the focal plane and an intensity minimum appears at

ρ = Z = 0, see Figs. 3.3(b,c). In particular, the 3D dark focus or perfect bottle beam

found for ρ0 = ρDF
0 = 0.924 [Fig. 3.3(c)] disappears for larger values of ρ0, see Fig. 3.3(d).

As it is seen in Fig. 3.3(c), the 3D dark focus with a zero intensity point at the beam

center is surrounded by a region of higher intensity in all directions. The maximum of

the intensity barrier is achieved at the focal plane on a ring with radius ρmax ≈ 1.1

and I (ρmax, Z = 0) ≈ 0.2, i.e. the peak intensity at this ring is approximately 20%

of that provided by the same focused Gaussian beam without the crystal. Along the

beam propagation direction, the axial intensity has maxima at Zmax ≈ ±1.388 with

I (ρ = 0, Zmax) ≈ 0.14. The minimum in the intensity barrier has a form of a ring

with radius ρθ ≈ 0.62 that appears at a distance Zθ ≈ ±1.1 with |ρθ/Zθ| ≈ tan 30◦

and I (ρθ, Zθ) ≈ 0.13. Dark focus, see Fig.3.4(c), and dark ring, see Fig.3.4(d), appear

because of destructive interference of two cones provided by the CR phenomenon inside

biaxial crystal and displaced with respect to each other along propagation direction as

detailed in Chapter 2.

To experimentally confirm the theoretical prediction on the possibility to generate a

CR bottle beam with a 3D dark focus, we have performed experiments on CR in a plate

of KGd (WO4)2 biaxial crystal 2.3 mm long yielding a CR ring radius of R0 = 39.1 µm.

The Gaussian input beam (with waist radius of 1.5 mm) obtained from a 640 nm diode

laser coupled to a monomode fiber, as shown in Fig. 2.13. The input collimated beam is

focused by a lens and the transverse intensity patterns behind the crystal are recorded

at different positions along the beam propagation direction within few Rayleigh lengths.
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By varying the focusing distance of the lens, we are able to adjust the radius of the

focused beam, i.e. the parameter ρ0 = R0/w0 in the range ρ0 ∈ [0.3, 4.0].
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(e)                       (f )                       (g)                       (h)
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Figure 3.4: Transverse intensity patterns at the focal plane experimentally obtained

(a)-(d) and theoretically calculated (e)-(h) for a circularly polarized input beam of fun-

damental Gaussian profile with different values of the waist radius w0, which gives

different values of control parameter ρ0.

Normalized intensities at the center of the focal plane experimentally measured are

plotted in Fig. 3.2 with black solid points, while the experimentally captured full trans-

verse intensity patterns are represented in the upper row of Fig. 3.4 for different values

of ρ0. As indicated before, for ρ0 < 0.5, the intensity pattern resembles that of a Gaus-

sian beam. From ρ0 = 0.45 to ρ0 = 0.92, the intensity at the center decreases being

exactly zero at ρ0 = 0.92, see Figs. 3.4(a) and (b). From ρ0 = 0.92 to ρ0 = 1.50, it

increases with a relative maximum at ρ0 = 1.50, see Fig. 3.4(c). From this value on, the

intensity at the center monotonically decreases and the full transverse intensity pattern

becomes the standard pattern of CR with two bright rings, see Fig. 3.4(d). The waist

of the focused beam has been measured by removing the crystal. For the results shown

in Fig. 3.4(b), it provides the ratio ρ
(exp)
0 = 0.93, which is close to the theoretical value

ρDF
0 , see Eq. (3.3). The lower row in Fig. 3.4 shows the full transverse intensity patterns

theoretically calculated from Eqs. (2.12)–(2.17) being in excellent agreement with the

experimental results.

Figs. 3.5(a)-(d) present the experimentally measured spatial evolution of the trans-

verse intensity patterns for ρ
(exp)
0 = 0.93 ∼ ρDF

0 that corresponds to the case where a 3D

dark focus appears at the focal plane. The dark focus pattern from Fig. 3.5(a) evolves

to a pattern with a maximum intensity at its center as shown in Fig. 3.5(d). Clearly,

a region of null intensity is surrounded by regions of higher intensity. The Rayleigh

length in this case is zR ≈ 8.9mm, which gives an estimation of the depth of the dark

potential. Figs. 3.5(e)-(h) are the corresponding theoretical predictions obtained from
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Eqs. (2.12)-(2.14). Both theory and experiments are in good agreement.

(a)                        (b)                        (c)                        (d)

(e)                        (f )                         (g)                       (h)

Z = 0.0         0.5             1.0           2.0

Figure 3.5: Spatial evolution of the transverse intensity patterns along the propagation

distance Z for ρ
(exp)
0 = 0.93 ∼ ρDF

0 , see Eq.(3.3), as experimentally obtained (a)-(d) and

theoretically calculated (e)-(h), see Eqs.(2.12)–(2.14). Top insets represent the cross-

section of the measured intensity distribution along the horizontal axis at the beam

center.

3.3 A Super-Gaussian conical refraction beam

Ideally, a flat-top beam [101,103–116] is a light beam possessing an intensity trans-

verse profile mostly flat in the central part and sharply decaying at its edges, at variance

with the Gaussian profile of the fundamental TEM00 mode. Flat-top beams are useful in

a wide variety of laser applications where one needs a uniform intensity over a fixed area,

such as in optical processing [101, 117], laser-driven acceleration of particles [118, 119],

optical trapping [120] or gravitational-waves detectors [121]. Nevertheless, the genera-

tion of flat-top beams is a non trivial task and usually diffractive optical elements are

required, which suffers from several drawbacks such as losses due to inefficient mode pro-

jection or diffraction, their extreme precise control or their limited spectral range [101].

Beams whose transverse intensity profile possess sharp edges and extremely flat cross-

section are ideal realizations of flat-top beams. In experimental situations flat-top beams

are well approximated by super-Gaussian beams [122,123]. A super-Gaussian beam also

possesses a flat intensity profile but it decays smoothly at its edges, similarly to a Gaus-

sian beam [123]. The aim of this section is to show that a beam of super-Gaussian

profile can be generated by transforming an input Gaussian beam with a biaxial crystal

throughout the CR phenomenon.
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3.3.1 Characteristics of the Super-Gaussian conical refraction beam
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Figure 3.6: Cross-section of the intensity distribution along (a) the radial direction and

(b) the beam propagation direction at the beam center for the original Gaussian beam

(black dashed line) and the super-Gaussian conical refraction (SGCR) beam obtained

by adjusting ρ0 = 0.445 (red solid line). Black dots are the corresponding experimental

measurements. (c) Intensity distribution in the z-r plane showing the free space evolu-

tion of the SGCR beam. (d) Intensity distribution of the SGCR beam normalized to

the beam area to help visualizing the value of its confocal parameter b.

By further exploring the CR beam dependence with the ρ0 parameter, we have

found that at the value ρ0 = 0.445 the transverse intensity profile of the transformed

beam becomes flat at its top and it decays smoothly at its edges, i.e. it is a super-

Gaussian conically refracted (SGCR) beam. To deduce such value of ρ0, we solved

Eqs. (2.12) and (2.13) numerically and we looked for which value of ρ0 it is found a

maximum number of points with a slope equal to zero at the transverse cross-section at

the focal plane. Fig. 3.6(a) and Fig. 3.6(b) show, respectively, the cross-section of the

transverse intensity profile of the input Gaussian beam and the output CR beam for
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ρ0 = 0.445 along both the radial and the longitudinal directions. Fig. 3.6(c) plots the

2D intensity distribution of the SGCR beam in the z-r plane, while Fig. 3.6(d) plots

the corresponding intensity distribution normalized to the beam area. The plateau at

the top part has been measured to be a 30% of the FWHM, which is compatible with a

super-Gaussian beam of first order [103]. Also, the depth of field of this super-Gaussian

beam is larger than that one of a Gaussian beam, as shown in Fig. 3.6(b). In Gaussian

beams, the depth of field or confocal parameter b is twice the distance of the transverse

plane at which the beam waist radius is w(zR) =
√
2w0, i.e. b = 2zR. To obtain the

confocal parameter for the SGCR beam, we solved numerically Eqs. (2.12) and (2.13)

using ρ0 = 0.445 and we looked for the axial distance Z from the focal plane to which

the area occupied by the SGCR beam was doubled with respect to the focal plane, i.e.

we found Z accomplishing that w(Z) =
√
2w(Z = 0). The waist radius of beam, w(Z),

was considered at e−2 of the maximum intensity at each plane. For the SGCR, we have

found that the depth of field is bSGCR = 6.1zR, as depicted in Fig. 3.6(d). Therefore,

the SGCR beam reported here has a confocal parameter three times larger than that

one of the fundamental Gaussian beam.

(a)        (b) (c)              (d)

Z = 0        1           2                                 4

  = 0.4450ρ

I x 1.25      I x 2.50          I x 7.50  = 0.4450ρ

(e)        (f ) (g)              (h)

Figure 3.7: Transverse patterns along the beam propagation direction of the SGCR

beam calculated theoretically (top row), and obtained experimentally (bottom row) for

an input beam of transverse Gaussian profile. Insets are the cross-section of the intensity

distribution along the horizontal direction.

Top row of Fig. 3.7 presents the theoretical transverse patterns of the SGCR beam at

different planes along its propagation for a Gaussian input beam. Top insets demonstrate

that the flat-top profile of the SGCR beams is only obtained at the focal plane while

when the imaging plane is moved to other planes the plateau disappears and the profile
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tends to be Gaussian-like.

Experiments on the SGCR beam only require an input beam, a BC and an imaging

system (CCD camera). We use the same input beam and biaxial crystal as in the previ-

ous Section and a focusing lens with focal length of 200mm. The experimental value of

the control parameter of ρ0 obtained is 0.44. Bottom row of Fig. 3.7 shows the exper-

imental transverse patterns obtained at different propagation distances for the SGCR

beams. Top insets represent the cross-section at the beam center along the horizontal

direction. They agree well with the corresponding numerical simulations presented in

Fig. 3.7. For this arrangement, we have also measured the confocal parameter obtaining

that bexpSGCR = (5.8± 0.2)zR.

3.4 Conclusions

In conclusion, in this chapter we have carefully investigated CR both theoretically

and experimentally in the regime ρ0 = R0/w0 < 1 for which novel intensity structures

appear. On the one hand, for the specific value ρ0 = 0.924, we have theoretically

derived and experimentally reported the transformation of an input Gaussian beam

into a bottle beam with a point of exact null intensity. At variance with spatial light

modulators (SLMs), where a significant amount of light is lost by diffraction, the here

proposed method transfers all the input power into the bottle beam, as long as the

facets of the crystal have dielectric coatings to avoid reflections and the doping elements

that can be found in some particular crystals do not absorb input light power at the

used frequency. The obtained bottle beam could be useful for applications such as

laser drilling, stimulated emission depletion microscopy, or trapping neutral atoms and

Bose–Einstein condensates (BECs) by means of the light dipole force. An additional

advantage is the fact that the quality and smoothness of the 3D dark focus obtained by

means of CR is only limited by the quality of the input beam and the focusing lenses,

while for SLMs it strongly depends on the pixel density. Nonetheless, this technique can

be used in all the spectral range to which the biaxial crystal is transparent, at variance

with other techniques such as computer generated holograms with SLMs or diffractive

optical elements. Furthermore, as it is shown in Figs. 3.4(b) and (c), the bottle beam

generated with CR can be adiabatically transformed into a 3D dark ring, by simply

tuning the focusing geometry. Hence, it could be possible to trap a BEC in the 3D dark

focus and then adiabatically transfer it into the dark ring to investigate, for instance,

matter wave (Sagnac) interferometry or the appearance of persistent currents.

On the other hand, we have demonstrated that the CR phenomenon can be used as

a tool for generating beams with Super-Gaussian transverse profiles, this means flat-top

beams with a smooth decay at their edges, from input beams with transverse Gaussian

profile. We have reported that the generation of the SGCR beams is governed by the

adjustment of the control parameter ρ0 to a value of 0.445. We have shown that the

SGCR beams have only the flat-top profile at the focal plane of the system, while far
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from the focal plane the transverse cross-section becomes Gaussian-like. Additionally,

the SGCR beams have been shown to have a confocal parameter of 6.1zR, i.e. more than

three times that one for Gaussian beams. In addition to full power conversion, broad

wavelength range and smoothness of the generated beam commented in the previous

paragraph, the SGCR beam has the advantage presented that biaxial crystals can be

used with high power beams, which is a requirement for high intensity x-rays exper-

iments, for instance. One possible drawback of the presented method is the state of

polarization of the SGCR beam, which is non-uniform and contains circular, elliptical

and linear SOPs. However, the SOP of the beam is, in principle, only relevant in optical

processing with tightly focused beams, while for the rest of the possible applications the

most relevant aspect is the shape of the beam. The state of polarization and the optical

singularities generated with low values of ρ0 will be addressed in Chapter 4. Finally,

note that the methods presented in this Chapter could be extended to alternative input

beams such as elliptical beams, which have been studied in detail in CR [54], to generate

elliptical beams with transverse flat-top cross-section.



CHAPTER 4

Novel vector beams and optical singularities in conical refraction

In this Chapter we report novel vector beams, i.e., beams with involving states of

polarization (SOP), obtained by transforming a Gaussian beam passing through a biaxial

crystal, by means of the conical refraction phenomenon. We analyze both experimentally

and theoretically the SOP of the different vector beams generated and demonstrate that

the SOP of the input beam can be used to control both the shape and the SOP of

the transformed beam. We also identify polarization singularities of such beams and

relate them to the spin-orbit coupling provided by the biaxial crystal and discuss them

in terms of the coherent addition of two contributions, the B0 and B1 fields of the

Beksly–Khapalyuk–Berry solution, which form the conical refraction beam.

The Chapter is organized as follows. In Sec. 4.1 we define vector beams, discuss their

common applications and introduce our work. Then, Section 4.2 is devoted to briefly

review the basics of the Stokes vector and CR formalisms needed for the subsequent

sections and also to present separately the B0 and B1 components of the CR beam. In

Sections 4.3 and 4.4, we report for ρ0 ≫ 1 and ρ0 . 1, respectively, the generation of

novel CR vector beams both theoretically and experimentally. We characterize these

vector beams by measuring their Stokes parameters and propose methods to manipulate

them as, for instance, making use of the SOP of the input beam. We also identify

polarization singularities generated in CR beams and in Sec. 4.5 we relate them to the

spin-orbit coupling provided by the biaxial crystal. Finally, in Sec. 4.6 we summarize the

main results of this work and discuss potential applications of these CR vector beams

to different fields of optics.

The research contained in this chapter has been done in collaboration with Alba

Peinado, Ángel Lizana and Juan Campos from the Universitat Autònoma de Barcelona

and has been published in Ref. [69].
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4.1 Introduction

The state of polarization (SOP) is one of the fundamental signatures of light fields

associated with their vectorial nature. In general, at each point in space the dynamics

of the electric field vector of a wave can be described by an ellipse. This ellipse is

known as polarization ellipse and it is characterized by the orientation of its major axis

through the azimuth angle Φ ∈ [0, π] and by the ellipticity parameter β ∈ [−π/4, π/4]
so that tanβ is the ratio of the axes of the polarization ellipse. If β = 0 the light

field is linearly polarized, while if β = ±π/4 the SOP will be circular (left handed for

‘+’ and right handed for ‘-’, if we consider an observer looking in the direction from

which light is coming). Usually coherent light beams are homogeneously polarized, i.e.

the SOP is identical for all points at any transverse plane along the beam propagation.

However, there exist light beams possessing non-homogenous polarization, known as

vector beams, such as the well known radial or azimuthal polarizations [101] or even

beams with more involving polarization distributions [124–126]. The non-homogeneous

polarization distribution of vector beams can lead to singular points where the SOP is

exactly circular (C points), lines along which the SOP is linear (L lines) or disclinations

where the instantaneous electric field is null [127–130]. Vector beams have been applied

to laser material processing, optical imaging, atomic spectroscopy, and optical trapping

(see [101] and the references therein), among many others.

In CR, for ρ0 ≫ 1, the SOP of the beam at the focal plane is already well known

[54, 59, 74, 131]. In this Chapter we investigate the CR SOP out of the focal plane,

including values of ρ0 . 1, when Poggendorff fine splitting vanishes. By means of the

Stokes vector formalism, we characterize the resulting novel vector beams of CR and

show that the SOP of the input beam can be used to control both the shape and the

SOP of the transformed CR beam.

4.2 Theoretical background

4.2.1 Analysis of the B0 and B1 functions

From Eqs. (2.11)–(2.13), for a homogeneously polarized input beam with state of

polarization given by e0 = (ex, ey), the electric field components in Cartesian coordinates

Ex and Ey of the CR beam behind the biaxial crystal can be written as follows:

Ex = (B0 +B1 cosϕ) ex + (B1 sinϕ) ey, (4.1)

Ey = (B1 sinϕ) ex + (B0 −B1 cosϕ) ey, (4.2)
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where φ is the azimuthal angle in cylindrical coordinates. From Eq. (4.1) and Eq. (4.2)

it is straightforward to obtain the SOP of the B0 and B1 components:

B0,x = B0 ex, (4.3)

B0,y = B0 ey, (4.4)

B1,x = B1 cosϕex +B1 sinϕey, (4.5)

B1,y = B1 sinϕex −B1 cosϕey. (4.6)

+ =

B1B0 B0 B1
+

+ =

+ =

+ =

Figure 4.1: Transverse intensity patterns and electric field (blue arrows) of the B0

component (first column), B1 component (second row) and CR rings (third column)

obtained at the focal plane for a right-handed circularly polarized Gaussian input beam.

Each row represents a different moment of time over half a period of rotation of the

electric field. ρ0 = 10.
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For a circularly polarized Gaussian input beam with SOP e0 = (1,±i)/
√
2 (‘+’

for left-handed and ‘-’ for right-handed) passing through the biaxial crystal under CR

conditions, Eqs. (4.3)–(4.6) read as follows

B0,x =
1√
2
B0, (4.7)

B0,y =
±i√
2
B0, (4.8)

B1,x =
1√
2
B1e

±iϕ, (4.9)

B1,y =
∓i√
2
B1e

±iϕ. (4.10)

For this case, the SOP of the B0 and B1 components can be easily understood. Both

components are circularly polarized but, while the B0 component is in phase with the

input beam, the B1 component is in counter-phase and possesses an azimuthal phase

eiϕ associated to beams carrying ±~ orbital angular momentum (OAM) per photon

[132–135]. In other words, every point of the B1 component is circularly polarized but

there is a rotation of the field by 2π on running along the azimuthal angle ϕ.

B0

B1

Z

(a)

(b)
ρ

Figure 4.2: Transverse intensity cuts in the Z–ρ plane of the (a) B0 and (b) B1 compo-

nents.

The SOP of the B1 component combined with the B0 component leads to the char-

acteristic CR polarization distribution along the CR rings obtained for ρ0 ≫ 1, as shown

in Fig. 4.1 for a right-handed circularly polarized (RHCP) Gaussian input beam. As it

can be observed, the transverse intensity patterns at the focal plane of the B0 (first col-

umn) and B1 (second column) components are practically indistinguishable each other

and almost identical to the CR pattern (third column), except for the presence of a
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node in the latter. Each row corresponds to different moments of time running over

half a period, the blue arrows indicating the SOP at different points of the rings. This

sequence of images corroborate the previous highlighted features of the electric field of

the B0 and B1 components: (i) electric field of the B0 component rotates clockwise, as

the input beam, while the electric field of the B1 component rotates counter-clockwise;

and (2) all the points of the B0 component are in phase whereas for the B1 component

there is an azimuthal phase of 2π along the rings. Note that at any moment of time the

transverse intensity pattern of the B0 and B1 components form complete light rings.

In contrast, the CR transverse intensity patterns form a azimuthally crescent annular

structures with the position of the null-intensity point rotating in counter-phase with

the input beam. From these images it is clear that how SOP of the CR rings is obtained

from the coherent addition of the B0 and B1 fields.
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Figure 4.3: B0 (left-hand side box) and B1 (right-hand side box) beams obtained for

ρ0 = 1.50 (first row), ρ0 = 0.92 (second row) and ρ0 = 0.45 (third row) in the Z–ρ plane

(first column of each box) and in X–Y plane at Z = 0 (second column of each box).

As shown in Fig. 4.1 the transverse intensity patterns of the B0 and B1 fields at the

focal plane (Z = 0) are almost identical. However, out of the focal plane the situation

changes, see Fig. 4.2. In particular, at the positions where the Raman spots would

start to form for the whole CR beam, the nature of the J0 and J1 Bessel functions

involved in the B0 and B1 components becomes appreciable. Far enough from the focal

plane, the B0 beam possesses an axial intensity maximum, while the B1 beam has a

nodal line coinciding with the Z axis, i.e., it forms an optical vortex, which is an optical

singularity [128]. This result becomes more appreciable for low values of ρ0. In Fig. 4.3
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we show the intensity patterns of the B0 (left-hand side box) and B1 (right-hand side

box) components for ρ0 = 1.50 (first row), ρ0 = 0.92 (second row) and ρ0 = 0.45 (third

row) in the Z–ρ plane (first column of each box) and in X–Y plane at Z = 0 (second

column of each box). It is clear that the B1 field forms an optical vortex possessing a

nodal line along the Z axis, while the B1 component has, in general, light intensity at the

beam axis. These results obtained by analyzing separately the B0 and B1 components of

the CR beam will be very useful to understand the vector beams and optical singularities

shown in the following Sections.

4.2.2 Stokes vector formalism

Since in this Chapter we aim to analyze in detail the SOP of CR beams, in what

follows we introduce the standard tool to analyze the SOP of a light beam: the Stokes

vector S = (S0, S1, S2, S3). For an electric field E = (Ex, Ey) with intensity I the Stokes

parameters read [6]:

S0 = I = |Ex|2 + |Ey|2 , (4.11)

S1 = I0◦ − I90◦ = |Ex|2 − |Ey|2 , (4.12)

S2 = I45◦ − I135◦ = 2Re [E∗
xEy] , (4.13)

S3 = IR − IL = 2Im [E∗
xEy] , (4.14)

where IΦ (Φ = 0◦, 45◦, 90◦, 135◦) indicates the intensity of linearly polarized light with

azimuth Φ, and IR and IL indicate the intensity of right- and left-handed circularly

polarized light, respectively. In what follows, we use equations normalized to E2, i.e.

we consider I = E2 = 1. These definitions show that S0 account for the intensity of

the light beam, S1 measures the amount of light which is linearly polarized (LP) in the

vertical/horizontal basis, S2 does the same but with the diagonal basis and S3 relates the

state of polarization in the right- and left- circularly polarized (CP) basis. The following

equations show how the Stokes parameters account for the azimuth ǫ and ellipticity β

of the polarization ellipse [6]:

ǫ =
1

2
arctan

(

S2
S1

)

, (4.15)

β =
1

2
arctan

(

S3
√

S2
1 + S2

2

)

. (4.16)

4.3 State of polarization for ρ0 ≫ 1

The first information that can be extracted from Eqs. (2.11)–(2.13) with respect

to the SOP of the CR beam is that at ρ = 0 there is only contribution of B0, since

B1 ∝ J1(ηρ = 0) = 0. Additionally, as commented previously, the SOP of the B0

component is e0. As a consequence, the center of the CR beam will possess always the
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same SOP as the input beam. This fact, that was already pointed out in [62,63,65], will

be discussed with more detail below. To obtain the Stokes parameters of the CR beam,

Eqs. (4.11)–(4.14) must be combined with Eqs. (2.11)–(2.13). For a circularly polarized

(CP) input beam, the electric field and intensity beyond the crystal become:

Ex = B0 +B1e
±iϕ, (4.17)

Ey = ±iB0 ∓ iB1e
±iϕ, (4.18)

ICP = 2(|B0|2 + |B1|2), (4.19)

where upper/lower sign stays for LHCP/RHCP beam. For a linearly polarized (LP)

input beam, the corresponding electric field and intensity beyond the crystal read as

follows:

Ex = B0 cosΦ +B1 cos (ϕ− Φ) , (4.20)

Ey = B0 sinΦ +B1 sin (ϕ− Φ) , (4.21)

ILP = ICP + 2Re [B0B
∗
1 ] cos (2Φ− ϕ) , (4.22)

where Φ is the polarization azimuth of the LP input beam with e0 = (cosΦ, sinΦ).

For well resolved concentric rings with Poggendorff splitting, i.e. for ρ0 ≫ 1,

Eqs. (2.12), (2.13), (4.19) and (4.22) show that a radially symmetric intensity pattern

of CR is obtained only for a CP input beam. Instead, for a LP input beam, a crescent

annular intensity pattern appears such that the zero intensity point is obtained for the

ring position that possesses orthogonal polarization to the input beam. In both cases,

the polarization distribution of the CR pattern is the same. Every point of the rings is

linearly polarized and the azimuth rotates continuously along the ring so that every two

diametrically opposite points have orthogonal polarizations.

Fig. 4.4(a) presents the numerically obtained Stokes parameters at transverse sec-

tions of the CR beam (ρ0 = 10) at Z = 0 (first and second rows) and Z = 10.92 (third

and fourth rows) obtained from a RHCP (first and third rows) and a LP (Φ = 45◦)
(second and fourth rows) Gaussian input beam. At the focal plane, see first two rows

in Fig. 4.4(a), the SOP described by the Stokes parameters is the expected: symmetric

pattern for the RHCP case and with a node at ϕ = 270◦ (Φ = 135◦, since we have used

ϕC = 0◦). Last column in Fig. 4.4(a) demonstrates that at the focal plane the SOP

of the CR beams, either RHCP or LP (Φ = 45◦) (or any other) is linear, i.e. S3 = 0.

In contrast, for the Raman spot, Z = 10.92, all Stokes parameters are substantially

different from zero, as shown in the last two rows in Fig. 4.4(a).

Stokes parameters in Fig. 4.4(a) clearly identify polarization singularities of CR

beams. For RHCP input light, it is a C-point at the center of the CR beam, i.e., it is of

CP at any point of the beam center along propagation. The center of the S3 transverse

pattern is a point with maximum intensity, while the other two Stokes parameters S1
and S2 have zero values. For LP45◦ input light, one can identify L-line singularity.

In Fig. 4.4(a) this line can be identified as a vertical line of zero value of the Stokes
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parameters S3 and S1 and nonzero value of S2. It belongs to the plane defined by the

points of CR ring with linear SOP of LPΦ=45◦ and LPΦ=135◦ .
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Figure 4.4: (a) Theory: transverse pattern for ρ0 = 10 of the Stokes parameters

S0, S1, S2, S3 obtained from numerical simulations for the CR beam transverse pro-

file with a RHCP and a LP (Φ = 45◦) Gaussian input beam. First and second rows

correspond to the focal plane (Z = 0) while third and fourth rows to the Raman spot

plane (Z = 10.92). The plane of optic axes of the crystal lies horizontally (ϕc = 0). (b)

Experiment: for ρ0 = 10.81, transverse patterns of the Stokes parameters S0, S1, S2, S3
for the CR beams measured with a RHCP and a LP (Φ = 45◦) Gaussian input beam.

First and second rows correspond to the focal plane (Z = 0) while third and fourth rows

to the Raman spot plane (Z = 10.92).

We have also investigated the spatial evolution of the Stokes parameters along the

propagation direction for a RHCP and LP (Φ = 45◦) Gaussian input beam. As we

move away from the focal plane, the bright rings become wider and the intensity at

the Poggendorff dark ring is no longer zero. The intensity of the outer ring decreases

while the intensity of the inner ring increases. The outer ring expands and the inner

ring becomes smaller in radius. As a result, at Z ≈ 6 a spot in the center of the pattern

appears. Finally, the inner ring shrinks into a bright spot at Z = 10.92 for ρ0 = 10,

corresponding to the Raman spot. At this point, it can be found an additional type of

polarization singularity independently on the polarization state of an input beam. It

is clearly distinguishable by inspection of the Stokes parameter S3 that defines degree

of circular polarization of the field. Observing the S3 parameter far from the focal

plane, for instance, at the Raman spot as shown in the last two rows in Fig. 4.4(a),

reveals alternating annular regions of RHCP and LHCP states. These annular regions

of circular polarization are separated by circles of null intensity. At these circles the

field is linearly polarized. Therefore, these polarization singularities can be called as L-
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circles. This behavior has been also observed in the focusing of radially polarized beams

and explored in detail in Refs. [136, 137]. For a LP (Φ = 45◦) input beam, the central

spot is broken by a line of null intensity (L-line) that connects the two points with LP

and azimuth Φ = 45◦ and Φ = 135◦, as commented before. Note that polarization

singularities, i.e., C-point for CP input beam, L-lines for LP input beam and L-circles,

are invariants of CR beam propagation behind the crystal.

To test the validity of the obtained theoretical results, we have performed the cor-

responding experimental measurements. Fig. 4.5 shows the experimental set-up. The

Gaussian input beam is obtained from a diode laser at 640 nm coupled to a monomode

fiber with a collimator, yielding a beam waist of w0 = 1.26mm. To generate the differ-

ent input polarization states (LP with Φ = 45◦ and RHCP) we use half- and quarter-

waveplates. We use lenses with different focal lengths to modify the waist radius w0 of

the input beam and to reach different values of ρ0. The beam passes along one of the

optic axes of a biaxial crystal, placed always before the expected focal plane of the beam.

An additional imaging lens is used to take different planes along the beam propagation

direction and transfer them onto the CCD camera. Linear and circular polarizers are

used to measure the Stokes parameters of the beam after being transformed by the CR

phenomenon. We use a commercially available (CROptics) KGd(WO4)2 biaxial crystals

with α = 16.9 mrad and length l = 10.5mm yielding CR ring radius of R0 = 180µm.

FL

BC

 
f + ∆L

Optic axis

λ = 640 nm

 = 1.26mm0w Monomode

fiber Gaussian 

beamPSG

l

PSD IL
CCD

Figure 4.5: Experimental set-up. A diode laser coupled to a monomode fiber generates

a Gaussian beam at 640 nm with a beam waist radius w0 = 1.26mm. Then the beam is

focused by means of a focusing lens (FL) along one of the optic axes of a KGd(WO4)2
biaxial crystal (BC). Experiments from Fig. 4.4 were carried out using a FL with 100mm

focal length and a biaxial crystal 10.5mm long, while FLs with focal lengths of 150mm,

200mm and 400mm and a biaxial crystal 2.3mm long were used for the experiments

from Fig. 4.7. Linear and circular polarizers are used as polarization state generators

(PSG) and polarization state detectors (PSD) to generate and measure the SOP of the

input and output beam, respectively. The transverse patterns are recorded by means of

an imaging lens (IL) that projects the image into a CCD camera.

Fig. 4.4(b) shows the obtained experimental Stokes parameters for ρ0 = 10.81. The

experimental results are in good agreement with the theoretical results presented in

Fig. 4.4(a). Discrepancy has been observed only for the S3 parameter for the case of a
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LP input beam (see last image of second rows) of Fig. 4.4(a). This can be explained in

terms of the experimental error introduced by the polarization state detector elements

used, that disturb the beam shape and its position, which is central for the quality of

the experimental results.
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Figure 4.6: Intensity variation (a) along the radial direction ρ at the focal plane Z = 0

and (b) along the axial direction Z at the beam center (ρ = 0) for CR vector beams

obtained using ρ0 = 1.50 (blue-solid line), ρ0 = 0.92 (red-dashed line) and ρ0 = 0.45

(black-dotted line). The corresponding intensity distribution in the (Z, ρ) plane are

shown in figures (c)-(e)

For ρ0 . 1 CR patterns are significantly different from the double bright concentric

rings with clear Poggendorff splitting (occurring for ρ0 ≫ 1 as shown in the previous

section). The region ρ0 . 1 has been explored recently [63,66,68] showing that CR can

be used to design new CR lasers [138], to increase the directivity of laser beams [63],

to generate a super-Gaussian beam [68], to create a three dimensional dark focus [66]

and even to develop a novel scheme for super-resolution microscopy [85]. However, in

all these works, no deep insight about the SOP of the generated CR beams has been

provided. In what follows by considering the Stokes parameters we uncover the evolution

of the SOP and polarization singularities of the CR beams and demonstrate how they

depend on the SOP of the input beam. Fig. 4.6 shows the main features and general

view of CR beams with ρ0 = [1.50, 0.92, 0.45]. The cross-section of the CR transverse

intensity pattern at the focal plane and far away from the focal plane are shown in

Figs. 4.6(a) and (b), respectively. Figs. 4.6(c)–(e) are 2D density plots of the intensity

of the CR beams in the Z–ρ plane.
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Figs. 4.7(a), (c) and (e) presents density plots of the numerically calculated Stokes

parameters for (a) ρ0 = 1.50, (c) ρ0 = 0.92 and (e) ρ0 = 0.45 at Z = 0 (first and second

rows) and out of the focal plane (third and fourth rows). For ρ0 = 1.50 and ρ0 = 0.92

these planes give the axial intensity maximum, while for ρ0 = 0.45 we have considered

the plane where the cross-section area of the beam is doubled [68]. First and third rows

refer to a RHCP Gaussian input beam while second and fourth rows present the case

of a LP (Φ = 45◦) Gaussian input beam. For ρ0 . 1 the position of the Raman spots

are not well determined by Eq. (2.18) and the position of the axial intensity maxima

must be determined for each particular case of ρ0. Its Z position is indicated at each

image. The corresponding experimentally measured transverse Stokes parameters are

shown in Figs. 4.7(b), (d) and (f) for (b) ρ0 = 1.48, (d) ρ0 = 0.95 and (f) ρ0 = 0.45 at

Z = 0 (first and second rows) and out of the focal plane (third and fourth rows). For

these experiments, the same set-up shown in Fig. 4.5 was used but in this case taking a

2.3mm long KGd(WO4)2 biaxial crystal yielding CR ring radius of R0 = 39 µm.

While transverse distribution for intensity and polarization of CR beam look different

for the ρ0 . 1 case with respect to ρ0 ≫ 1, it should be noted that singularities, i.e.,

the topological structure of the CR beam, remains similar. It means that (i) the CR

beam center constitutes a C-point singularity for the case of RHCP input beam (see the

first and third rows in Fig. 4.7), (ii) there exists a L-line polarization singularity for the

LPΦ=45◦ input beam (see the second and fourth rows in Fig. 4.6) and (iii) there exists

a L-circle singularity for input beam with arbitrary SOP (see the third and fourth rows

in Fig. 4.7).

If we consider the special case of ρ0 = 0.92, the central point at the focal plane is a

null-intensity point and therefore all Stokes parameters are also 0 at the beam center.

Vanishing intensity at the beam center leads to another feature: at the focal plane the

sign of the circular polarization state associated with the Stokes parameter S3 is the

opposite with respect to the input beam. In other words, at the focal plane the CR

beam is predominantly LHCP for the RHCP input beam that we consider in this article

(see first row in Fig. 4.7 for the case of ρ0 = 0.92). This feature is easily deduced

from the mathematical formulation, since for this ρ0 the value of the integral B0 at

any radial point is null, which leads to dominance of the contribution of integral B1

associated with a SOP orthogonal to the input one, see Fig. 4.3. For the case of a LP

(Φ = 45◦) input beam and for all values of ρ0 investigated, at the focal plane Z = 0 the

transverse patterns are crescent-like, with the intensity minimum at a point diagonally

opposite to the point with maximum intensity. In the case of LPΦ=45◦ input beam that

we consider, the intensity minimum is observed at the bottom, corresponding to the

point of LP with Φ = 135◦. In contrast to the RCHP case, for all three values of ρ0 the

S3 parameter is null, which means that the patterns are completely LP. Out of the focal

plane S3 6= 0 except at the beam center, where there is an L-line connecting the points

with LP Φ = 45◦ and Φ = 135◦.
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Figure 4.7: Numerically calculated Stokes parameters for ρ0 = 1.50 (a), ρ0 = 0.92 (c),

and ρ0 = 0.45 (e); and measured Stokes parameters for: (b) ρ0 = 1.48, (d) ρ0 = 0.95,

and (f) ρ0 = 0.44. The plane of optic axes of the crystal lies horizontally (ϕc = 0).

The theoretical predictions are, in general, in good agreement with the experimental
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results. Again, the S3 parameter for a LP input beam (last image of second and fourth

rows of Figs. 4.7(a), (c) and (e)) is the measurement that differs most with respect to

the numerical predictions. In addition to the experimental difficulties commented above,

i.e., the experimental error introduced by the polarization state detector elements used

that disturb the beam shape and its position (being these ones particularly significant

for large values of w0), here it must be also taken into account the fact that small changes

in the ρ0 can modify quantitatively the CR pattern. Additional features of focused CR

beams are associated with Gouy phase.
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Figure 4.8: Numerically calculated Stokes parameters for ρ0 = 1.50 (top row of each

box), ρ0 = 0.92 (middle row of each box), and ρ0 = 0.45 (bottom row of each box) before

(a,c) and after (b,d) the focal plane of a right-handed circularly polarized (RHCP) beam

and a linearly polarized (LP) beam with azimuth at 45◦.

It can be revealed by considering the transverse pattern evolution for Stokes param-

eters along CR beam propagation shown in Fig. 4.8 for a RHCP (top boxes) and LP

(Φ = 45◦) (bottom boxes) Gaussian input beam for ρ0 = 1.50, ρ0 = 0.92 and ρ0 = 0.45

before (Z < 0) and after (Z > 0) the focal plane. For RHCP input light [boxes (a)

and (b)] the focal plane is a symmetry plane for S3. In contrast, S1 and S2 are rotated

roughly 180◦ before and after the focal plane, which must be associated to the Gouy

phase [139]. For a LP (Φ = 45◦) input beam [boxes (c) and (d)] the Stokes parameters

S1 and S2 are symmetric with respect to the focal plane and now S3 suffers from a phase
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shift of 180◦, due to the Gouy phase too.

4.5 Discussion in terms of spin-orbit coupling

In general, the rotation of the Stokes parameters before and after the focal plane

obtained for CR beams is also observed with focused Gaussian beams: due to the Gouy

phase shift, which induces an additional phase in the electric field of 180◦ at the focal

plane, the S1 and S2 of a Gaussian beam rotate around the Z axis by 180◦. However,

note that at variance with the results expected for a focused Gaussian beam, the S1 and

S2 parameters of CR beams obtained from CP input beams not only rotate along the

Z axis but also twist around it at the focal plane. CR beams possess non-integer OAM

that is generated due to the spin-orbit coupling provided by the biaxial crystal, as it

has been reported by Berry and co-workers [140]. In Ref. [140] it is shown that the total

OAM JOAM and total spin angular momentum (SAM) JSAM carried by the CR beam

as a function of ρ0 and of the initial total angular momentum J0 are:

JOAM = J0
1

2
ρ0e

−ρ20
√
πD(ρ0), (4.23)

JSAM = J0

(

1− ρ0e−ρ20
√
πD(ρ0)

)

, (4.24)

where D(x) is the Dawson integral

D(x) =
2√
π

∫ ∞

0
dt et

2
. (4.25)
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Figure 4.9: Plots of the orbital angular momentum (OAM) (blue line), spin angular

momentum (SAM) (purple line) and total angular momentum (green line) of the CR

beam as a function of ρ0 for a left handed circularly polarized Gaussian input beam

carrying a SAM of +~.
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Both the value and handedness of the OAM depend on the ellipticity of the input

beam and on the ρ0 parameter, see Fig. 4.9. For ρ0 ≫ 1 and a CP input beam,

i.e., with J0 = ±~ (+ for LHCP and - for RHCP), the output CR beam carries total

optical angular momentum ±~/2 and zero SAM. This is natural if one pays attention

to the combination of the B0 and B1 components that give rise to the CR beam. On

the one hand, the B0 field carries ±~ SAM and 0 OAM. On the other hand, the B1

component carries carries ∓~ SAM and ±~ OAM. Therefore, the equal coherent positive

superposition of both fields gives 0 SAM and ±1
2~ OAM.

For values of ρ0 out of that condition, the spin-orbit coupling differs. For instance,

around ρ0 = 0.92 the handedness of the SAM of the CR beam changes from the same

(ρ0 < 0.92) to the opposite (ρ0 > 0.92) with respect to the input beam. As reported

in Ref. [140], for ρ0 = 1.50 the OAM of the CR beam is maximum compared with any

other value of ρ0. Near the focal plane the twist is more appreciable at the central

spot. Additionally, the velocity of rotation of the S1 and S2 parameters at that region

as the beam approaches to the focal plane (Z = 0) is much faster than the rotation

velocity of the outer ring. For the value ρ0 = 0.445 the beam carries almost null OAM,

which explains the small twist of the S1 and S2 parameters near the focal plane and its

similarities with a homogeneously CP Gaussian beam.
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Figure 4.10: Numerically simulated transverse intensity patterns and SOP (blue lines)

at Z = 0 of vector beams obtained for a RHCP (first row) and a LP (Φ = 45◦) input

Gaussian beam for ρ0 = 10.0 (first column), ρ0 = 1.50 (second column), ρ0 = 0.92 (third

column) and ρ0 = 0.45 (fourth column).

As shown in Fig. 4.3, for ρ0 . 1 the intensity patterns of the B0 and B1 components

differ from each other. Since there are regions of the beam where both functions do not

coincide, the coherent addition of both functions is not as direct as for ρ0 ≫ 1 and the

spin-orbit coupling in the ρ0 . 1 case is rather complex. To illustrate some examples,
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note that in some regions of the beam, the amplitude of the electric field vector of the

B0 and B1 components are equal but they have opposite senses. As a consequence, in

these regions the total electric field is null and a polarization singularity is found, such

as for the case of ρ0 = 0.92. In an alternative scenario, the B0 and B1 fields have the

precise amplitude to generate a region of linearly polarized states, such as the L-line

found for ρ0 = 1.50. As a summary, the combination of both SAM and OAM of the

CR vector beams leads to the rotation and twisting of the S1 and S2 Stokes parameters

when CP input beams propagating through the biaxial crystal are considered.

To sum up the the results discussed in this Chapter, Fig. 4.10 presents the calculated

transverse patterns and SOP (blue curves) of the vector beams analyzed in this work

for a RHCP (first row) and a LP (Φ = 45◦) (second row) input Gaussian beam at

the focal plane. As it can be observed, for low values of ρ0 the SOP of the generated

vector beams is rich and include regions with different ellipticity and azimuth, leading

to Poincare beams [141].

4.6 Conclusions

In summary, we have studied in detail the SOP of CR vector beams for a wide

range of ρ0 and for different SOP of the input beam. We have determined the Stokes

parameters of the CR beam at different transverse planes along the beam propagation

direction and we have shown that both the shape and the SOP of the transformed beams

depend on the SOP of the input beam. We have shown that the polarization distribution

formed by orthogonal polarizations at any two radially opposite points of the pattern

and usually associated to the CR phenomenon remains relevant under the condition

ρ0 ≫ 1 and at the focal plane only. For ρ0 . 1 and CP input beams we have found that

polarization structure of CR beams contains non-homogeneously elliptically polarized

states not only with different azimuth but also with different ellipticity. In contrast,

for LP input beams, the SOP of the CR has been reported to be completely linear at

the focal plane and with variable ellipticity and azimuth out of it. A good agreement

between the theoretical predictions and the experimental results has been obtained.

Additionally, we have shown for the first time to our knowledge, experimental results

on polarization singularities of CR beams and we have related them to the spin-orbit

coupling provided by the CR phenomenon. We have demonstrated that CR polariza-

tion singularities can be changed by and controlled by varying the SOP of the input

light beam. Such polarization singularities as C-points, L-lines and L-circles have been

identified for CR beams.

The reported results can be particularly interesting for experiments with tightly

focused beams [101], for the generation of novel polarizations in CR [81], in optical

micromanipulation [80, 142, 143], mode conversion between Heremite–Gauss-like beams

and Laguerre–Gauss-like beams [76] and in super-resolution imaging [85]. It is also

promising the generation of polarization-tunable potentials to inject, extract and ma-
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nipulate ultra-cold atoms [55, 144]. Additionally, by taking into account that the CR

beams posses orbital angular momentum [140] and that the biaxial crystals used are

transparent to a wide frequency range, the presented technique could be an alternative

for the production of high-frequency vortex beams for molecular-scale super-resolution

microscopy [145]. Finally, by using quantum sources, CR vector beams can be a tool

for testing new Bell-like inequalities with hybrid polarization-momentum states useful

in quantum information technologies [146].





CHAPTER 5

Conical refraction healing after partially blocking the input beam

In this Chapter we address the question of the CR healing of a Gaussian input beam

in the presence of an obstruction. In our case, we investigate the reconstruction of the

transverse intensity pattern of the CR beams at different propagation distances and also

of their state of polarization when the Gaussian input beam passing through the biaxial

crystal is blocked by an azimuthal obstruction. We show that, even for relatively large

obstacles, the CR beams keep their annular shape, state of polarization and dark optical

singularities. The Chapter is organized as follows: in Sec. 5.1 we introduce related works

to the field of self-healing that can be found in the literature and motivate our work.

Then, Section 5.2 is devoted to describe our experimental set-up and report healing of

conically refracted Gaussian beams after an obstruction for ρ0 ≫ 1. In Section 5.3 we

compare the reconstructing behavior of the CR beam for ρ0 = 0.92 and ρ0 ≫ 1 and

discuss the differences between the two cases. Finally, our main results are summarized

in Section 5.4.

The research contained in this Chapter has been done in collaboration of Ramón Cor-

balán from the Universitat Autònoma de Barcelona and has been published in Ref. [147].

5.1 Introduction

Gaussian beams are the most well known solution of the paraxial wave equation.

They are form-invariant beams, i.e., the form of their transverse intensity pattern does

not change upon propagation, apart from a scaling factor. Durnin et al. [148] re-

ported another solution of the paraxial wave equation, the Bessel beams, which are

completely invariant upon propagation. In other words, both the transverse intensity

profile and scale of Bessel beams remain unchanged as it propagates, i.e., Bessel beams

77
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are diffraction-free beams. One of the main features of Bessel beams is that they self-

reconstruct after an obstacle, being this effect known as self-healing.

Recently, there has been a great interest in the study of the self-healing effect

appearing in Bessel beams [149, 150] and other diffraction-free beams including Airy

beams [151, 152] and Pearcey beams [153], or other exotic beams such as helico-conical

beams [154] as well as Mathieu and Webber beams [155]. The major advantage of

self-healing beams is that they can be used through turbulent media [152] and that

they are ideal candidates for particle manipulation at different planes [156, 157] and in

microscopy [158]. The CR phenomenon has been also reported as an efficient tool to

generate Bessel beams [62,159,160]. The relation of CR with Bessel beams suggests that

even if the input Gaussian beam is partially blocked, the CR beam may only be slightly

affected. The aim of this Chapter is precisely to investigate the CR healing of a Gaus-

sian input beam in the presence of an obstruction that blocks an azimuthal sector of the

beam. We analyze both theoretically (by using the theoretical formalism presented in

Sec. 2.2.2) and experimentally the influence of the obstruction over both the transverse

intensity pattern and the state of polarization of the CR beam for well developed CR

rings (ρ0 ≫ 1) and for the three-dimensional dark focus reported in Sec. 3.2.

5.2 CR healing of Gaussian beams for ρ0 ≫ 1

In this Section we analyze the reconstruction of conically refracted Gaussian beams

under the condition R0 ≫ w0 when an obstruction of closing angle φ blocks an azimuthal

part of the input beam. We consider first the approximation R0 ≫ w0 since it is the

commonly used configuration in most experimental arrangements. Fig. 5.1 shows our

experimental set-up. We obtain a circularly polarized Gaussian beam at 640 nm from a

diode laser coupled to a monomode fiber by utilizing a linear polarizer (LP) and a quarter

wave-plate (QWP). As an obstruction, we use amplitude angular masks (AAM). They

block an azimuthal sector of angle φ of the Gaussian beam at the exit of the collimator.

The AAM are made by printing the desired 2D pattern over a transparent sheet of

plastic. The beam, whose waist radius w0 can be adjusted by means of the collimator,

passes through a biaxial crystal and parallel to one of the optic axes. A CCD camera

combined with an imaging lens (IL) records the transverse intensity pattern of the CR

beam at different planes. As a biaxial crystal we use a KGd(WO4)2 crystal of length

l = 28mm, conicity α = 16.9 mrad and, therefore, R0 = lα ≈ 475µm. By reducing the

focused beam waist down to w0 = 44µm, we have obtained a ρ0 parameter up to 10.75.

Fig. 5.2 shows both the experimental (top row) and numerically calculated (bottom

row) transverse intensity patterns at the focal plane for obstructions of (a,f) φ = 0◦, (b,g)
45◦, (c,h) 90◦, (d,i) 135◦ and (e,j) 180◦. Insets represent the obstructed input beam just

behind the AMM. When a relatively small obstruction angle is considered (φ = 45◦),
the transverse intensity pattern is almost unaffected as compared with the case without

obstruction. In this case, the Poggendorff dark ring and the two ring-like structures are
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clearly visible. The rings are mirror-symmetric with respect to the horizontal axis but

they have a maximum at their top and bottom regions. As φ increases the CR rings

become asymmetric and the outer ring breaks into two boomerang-like lobes such that

no complete Poggendorff dark ring is appreciable. For φ = 180◦, i.e., when the AAM

blocks half of the input beam, the CR transverse intensity pattern is formed by a wide

single ring with two dark singularities in the upper and top regions of the ring.

φ

FL

BC

Optic axis

λ = 640 nm
Monomode

fiber CP Gaussian 

beamLP

l

QWP AAM CCDIL

C
Diode laser

Figure 5.1: Experimental set-up. A Gaussian beam is obtained from a diode laser

coupled to a monomode fiber. A collimator (C) is used to change the beam waist radius

w0 of the Gaussian beam. A linear polarizer (LP) and a quarter wave-plate (QWP)

are used to fix the state of polarization of the Gaussian beam to circular. Azimuthal

angular amplitude masks (AAM) characterized by their closing angle φ are used to block

a sector of the Gaussian beam. The obtained beam passes through the biaxial crystal

(BC) along one of its optic axes and a CCD camera and an imaging lens (IL) record the

transverse intensity pattern at different planes.

The healing mechanism provided by the biaxial crystal to reconstruct the CR beam

can be understood in terms of the wave-vector splitting within the crystal. Every plane-

wave is described by a certain wave-vector k = k‖ + k⊥, with k⊥ = |k⊥|(cosφk, sinφk).
The biaxial crystal splits every plane wave into two new plane-waves. At the focal plane,

these two plane-waves are refracted at positions on the ring characterized by their az-

imuthal angle ϕ = φk and ϕ = φk + π [54]. As a consequence, when one azimuthal

sector of the Gaussian beam is blocked, the azimuthally opposite sector partially com-

pensates the absence of the blocked sector. For this reason, even when half of the input

beam is blocked, a ring-like structure can be formed after passing through the biaxial

crystal. This mechanism explains why a single bright ring without Poggendorff splitting

is obtained when half of the input beam is blocked with the AAM, i.e., when φ = 180◦.
The two bright rings with Poggendorff splitting appear as an interference of plane waves

going to a particular azimuthal point of the CR ring from opposite sectors of the input

beam. In contrast, if there are no other waves coming to the corresponding opposite

points of the CR ring pattern at the focal plane, there is no interference and a only
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a single ring is observed. In Figs. 5.2(b)–(e) it is clearly visible an increase of the az-

imuthal sector of a single bright ring and shrink of the double bright rings’ domain with

the AMM closing angle φ. Note that the azimuthal sector occupied by the double bright

rings is larger than the angular sector of the AMM, φ, because of the diffraction of the

input beam at the edges of AMM dark sector.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

 (º) =    0      45       90       135        180φ

Figure 5.2: Transverse intensity patterns at the focal plane (z = 0) obtained with an

obstruction of closing angle (a,f) φ = 0◦, (b,g) φ = 45◦, (c,h) φ = 90◦, (d,i) φ = 135◦

and (e,j) φ = 180◦ placed before the biaxial crystal. (a,f) Intensity pattern obtained in

the absence of obstruction. First row: experimental results (ρexp0 = 10.75). Second row:

numerical calculations obtained from Eqs. (2.3), (2.3), (2.19)–(2.22) (ρth0 = 10).

Now we turn to analyze the healing of the state of polarization of the reconstructed

CR beams. The standard tool to analyze the state of polarization of a light beam is the

Stokes vector S = (S0, S1, S2, S3) together with the azimuth ǫ and ellipticity β of the

polarization ellipse of the light beam described by Eqs. (4.11)–(4.16). The values of ǫ

and β at the focal plane numerically calculated for obstructions of (a,f) φ = 0◦, (b,g)
45◦, (c,h) 90◦, (d,i) 135◦ and (e,j) 180◦ are presented in Fig. 5.3. Insets represent the

obstructed input beam. Ideally, as ρ0 →∞, β → 0. Since in our numerical simulations

we consider ρ0 = 10, the state of polarization of the CR rings is slightly elliptical rather

than purely linear. As it can be appreciated, in general, the polarization structure of

the CR beam is maintained for all the values of φ, i.e., every two diametrically opposite

points of the light structure are orthogonally polarized.

In Fig. 5.4 we show the evolution of the transverse intensity patterns along the axial

direction for a blocking sector of φ = 45◦. Top row shows the transverse intensity

patterns in the absence of the blocking mask, while middle and bottom rows are the

experimental and numerically calculated transverse intensity patterns for the obstructed

Gaussian beam. Near the focal plane (z = 0) the transverse intensity pattern resembles

the pattern obtained without obstruction. In contrast, far enough of the focal plane it

can be appreciated a perturbation of the CR transverse intensity pattern that resembles



5.2 CR healing of Gaussian beams for ρ0 ≫ 1 81

the considered obstruction.
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Figure 5.3: Numerically calculated 2D density plots of the azimuth ǫ (first row) and the

ellipticity β (second row) of conically refracted beams at the focal plane for ρ0 = 10

when the input Gaussian is blocked by azimuthal obstructions of (b,g) φ = 45◦, (c,h)
φ = 90◦, (d,i) φ = 135◦ and (e,j) φ = 180◦ is placed before the biaxial crystal. (a,f) 2D

density plots of ǫ and β in the absence of the obstruction.

Z = -15 -10 -5 0 5 10 15

Figure 5.4: Experimental (second row) and numerically calculated with Eqs. (2.3), (2.3),

(2.19)–(2.22) (third row) transverse intensity patterns along the axial direction z for an

obstruction with φ = 45 for ρ0 = 10. The first row shows the numerically calculated

transverse intensity patterns obtained in the absence of the obstruction. z is measured

in units of the Rayleigh range, which for the Gaussian beam used in our experiments

(w0 = 44µm) is zR = 9.5mm.
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5.3 CR healing of Gaussian beams for ρ0 ≈ 1

As discussed in Section 2.4.1, the CR beam depends strongly on the value of the

control parameter ρ0. For ρ0 = 0.92 the transverse intensity pattern at the focal plane

forms a doughnut-like light structure with a null intensity point at the beam center [66],

see Fig. 5.5(a). Along the axial direction, the intensity at the beam center is no longer

zero and the beam forms an optical bottle. This value of ρ0 is particularly interesting

because the polarization distribution of the light ring has points with different β and ǫ

and one deals with a Poincare beam, i.e., a beam possessing points with all the polariza-

tion states of the Poincare sphere [141]. In what follows we discuss the reconstruction

of a conically refracted Gaussian beam for ρ0 = 0.92 after an obstruction, analogously

to what has been performed previously for ρ0 ≫ 1. For the incoming experiments we

have used the same set-up as in Fig. 5.1 but with a 2.3mm long KGd(WO4)2 (therefore

R0 = 39µm) crystal and a waist radius of w0 = 44µm.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)
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Figure 5.5: Transverse intensity patterns at the focal plane (z = 0) obtained when an

obstruction of angle (b,g) φ = 45◦, (c,h) φ = 90◦, (d,i) φ = 135◦ and (e,j) φ = 180◦

is placed before the biaxial crystal. (a,f) Transverse intensity pattern in the absence

of obstruction. First row: experimental results (ρexp0 = 1.04). Second row: numerical

calculations obtained from Eqs. (2.3), (2.3), (2.19)–(2.22) (ρth0 = 0.92).

Fig. 5.5 shows both the experimental (top row) and numerically calculated (bottom

row) transverse intensity pattern at the focal plane for obstructions of (a,f) φ = 0◦, (b,g)
45◦, (c,h) 90◦, (d,i) 135◦ and (e,j) 180◦. Insets represent the obstructed input beam for

ρ0 = 0.92. In contrast to the case of ρ0 ≫ 1, when a relatively small obstruction angle

is considered (φ = 45◦), the transverse intensity pattern is substantially different with

respect to the case with no obstruction. In this case, a maximum of intensity appears

at the bottom part of the ring and, therefore, the intensity pattern is mirror symmetric

with respect to the vertical axis. As φ increases, the intensity in the bottom part of

the light structure becomes stronger than in the top part. For all the values of φ, an
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intensity minimum can be observed but its position moves in the vertical direction as φ

increases. However, note that even when half of the beam is blocked by the obstruction,

the dark singularity is preserved. A similar behavior has been reported for a linearly

polarized Bessel beam [150].

With respect to the state of polarization of the CR beams at the focal plane, see

Fig. 5.6, we have observed that there is a tendency to preserve the polarization structure

of the CR beam without obstruction: the CR beam is elliptically polarized and the

ellipticity changes radially similarly to the intensity pattern. At the edges of the beam,

β → 0 and the characteristic CR polarization distribution is recovered. However, since

the transverse intensity pattern is very affected by the presence of an obstruction, these

features of the state of polarization are lost for large enough values of φ. In particular,

β losses its doughnut-like shape, while ǫ is kept quite stable up to φ = 135◦.
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Figure 5.6: 2D density plots of the azimuth ǫ (first row) and the ellipticity β (second row)

of conically refracted beams at the focal plane for ρ0 = 0.92 when the input Gaussian

is blocked by azimuthal obstructions of (b,g) φ = 45◦, (c,h) φ = 90◦, (d,i) φ = 135◦ and

(e,j) φ = 180◦ is placed before the biaxial crystal. (a,f) 2D density plots of ǫ β in the

absence of obstruction.

The evolution of the transverse intensity pattern along the axial direction for a

blocking sector of φ = 45◦ is shown in Fig. 5.7. Top row shows the transverse intensity

patterns in the absence of the blocking mask, while middle and bottom row are the

experimental and numerically calculated transverse intensity patterns for the obstructed

Gaussian beam. Near the focal plane (z = 0) the transverse intensity pattern differs

from the one obtained without obstruction. Additionally, out of the focal plane there

is no reconstruction of the transverse intensity pattern. Therefore, for ρ0 = 0.92, the

beam reconstruction process is neither found at the focal plane nor away from it.
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Figure 5.7: Experimental (second row) and numerically calculated (third row) with

Eqs. (2.3), (2.3), (2.19)–(2.22) transverse intensity patterns along the axial direction z

for an obstruction with φ = 45 for ρ0 = 0.92. The first row shows the numerically

calculated transverse intensity patterns obtained in the absence of the obstruction. z

is measured in units of the Rayleigh range, which for the Gaussian beam used in our

experiments (w0 = 44µm) is zR = 9.5mm.

5.4 Conclusions

We have analyzed in detail the transformation of Gaussian beams partially ob-

structed when they propagate through a biaxial crystal and parallel to one of the optic

axes, i.e., under conditions of CR. We have shown that, at the focal plane, the CR beams

for ρ0 ≫ 1 preserve the annular shape even when half of the beam is blocked. However,

we have found that the dark annular singularity known as Poggendorff dark ring only

remains for small perturbations of the input beam. Out of the focal plane we have ob-

tained that the obstruction affects the beam evolution, being its effect more appreciable

the further away one moves along the axial direction. Additionally, the reconstruction

of the state of polarization of the CR beam has also been investigated. For ρ0 ≫ 1, we

have found that the polarization distribution of the CR rings is very stable against large

perturbations.

We have carried out analogous investigations for ρ0 ≈ 1. In this case the transverse

light pattern is more affected by the presence of the obstruction than in the case of

ρ0 ≫ 1. Regarding the reconstruction of the state of polarization we have found that

only the azimuth of the polarization is relatively robust when large obstructions affect

the input Gaussian beam.



CHAPTER 6

An optical vault for absorbing particles

This Chapter is devoted to demonstrate that the CR bottle beam obtained for

ρ0 = R0/w0 ≫ 1 can be used as a reconfigurable optical potential to trap absorb-

ing particles throughout the photophoretic force. We take profit of the characteristic

state of polarization of the CR bright rings to generate a null-intensity region at the

top region of the ring that allows particles to enter into the optical trap. Then, by

changing the state of polarization of the input beam from linear to circular, we close

the bottle and confine particles. Finally, by modifying again the state of polarization of

the input from circular to linear beam we generate a null-intensity region at the bottom

of the ring and the trapped particles can scape from the trap in a controlled manner.

The Chapter is organized as follows. In Sec. 6.1 we motivate our approach and discuss

related works available in the literature. Then, Sec. 6.2 presents the fundamentals on

the photophoretic force. Our experimental proposal, which only consists on the use of

half- and quarter-waveplates, a focusing lens and a biaxial crystal in addition to the

input laser beam is shown in Sec. 6.3. In Sec. 6.4, we demonstrate experimental efficient

loading and unloading of carbon-coated glass shells with sizes ranging from 20µm to

50µm. Finally, the conclusions of our work are shown in Sec. 6.5

The research contained in this chapter has been published in Refs. [142, 161], and

has been done in collaboration with Vladlen Shvedov, Cyril Hnatovsky and Wieslaw

Krolikowski from the Australian National University.

6.1 Introduction

Since its inception in the late 70s the field of optical trapping and manipulation

of micron and submicron-sized objects with light has experienced an intense interest
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and rapid development [162,163]. Optical tweezers utilizing the presence of mechanical

forces arising from light interaction with matter are now an indispensable tool in vari-

ous physical, biological and medical applications. They have been extensively used on

manipulating colloidal particles, molecules, nanoparticles and even single atoms. Last

decade has seen an enormous progress in the field of trapping resulting in the implemen-

tation of advanced techniques involving for instance, multiple holographic traps, optical

fibers, or singular scalar and vector beams [164, 165]. Optimum conditions for parti-

cle trapping are dictated by the optical properties of the particles and the surrounding

medium, as well as the physical nature of the light-mediated trapping forces. For in-

stance, while high light intensity attracts and traps transparent high-index objects in a

low-index medium, it in fact repels low index particles in a high index environment [166].

That is why hollow (or doughnut) beams are used for efficient trapping in the latter case.

In general, depending on the particular media and application, robust trapping and ma-

nipulation of micro-objects requires tailoring the light beam intensity pattern via phase

and amplitude modulation or by varying the spatial coherence of light [165,167–169].

In 2000, Arlt and Padgett [95] introduced the concept of an optical bottle which

represents an optical beam with a low (ideally null) intensity region surrounded entirely

by light. Such a bottle could be used as a three-dimensional trap. Following this

idea various practical implementations of optical bottles have been proposed. The low

intensity regions have been formed using, for instance, interference of multiple laser

beams, partially spatially coherent optical vortices or laser beams affected by optical

aberrations. The suitability of an optical bottle for particle trapping and manipulation

has been confirmed in experiments with atoms [170, 171] and absorbing particles [86,

143,172,173].

The problem with an ideal bottle beam is that the more efficiently it traps particles

the more difficult it is to load it with particles. Once an optical bottle is formed it

actually prevents particles from entering it. To cope with this issue, one straightforward

solution consists of turning on the bottle beam when the particles already float in the

region where the trap will be formed. Another and much more convenient choice would

be to design a bottle in such a way that it could be partially opened and closed so it

could be loaded and unloaded with particles as required.

The purpose of this Chapter is to prove that such a design is indeed possible. We

demonstrate that optical bottle formed CR can be tailored so that it can be opened and

closed at will and in real time by varying the polarization of the input beam. We then

use photophoretic trapping to demonstrate loading and unloading of airborne particles

into and from the bottle.

6.2 The photophoretic force

The photophoretic force is a thermal force induced by optical beams that was iden-

tified firstly by Felix Ehrenhaft at the beginning of the 20th century [174]. The force
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of photophoresis works as follows. When a gas-suspended particle is illuminated, light

is diffracted, refracted and reflected by the particle. Additionally, if the particle is not

transparent, it will absorb part of the energy of the light field and its temperature will

rise up. As a consequence, the illuminated particle will radiate heat to the environment

and the molecules of the surrounding gas will increase their kinetic energy. If the particle

is non-symmetrically illuminated, heat will be radiated unevenly too and only molecules

from a certain region will increase their kinetic energy. Those ones will exchange linear

momentum with the illuminated particle with the result of a net force applied over the

particle. At this point, the movement of the illuminated particle can be away from the

light source or towards to it depending on its absorption properties.

F
F

(b)(a)

(c)

Gravity

Photophoresis

Positive photophoresisNegative photophoresis

Figure 6.1: Action of the photophoretic force over an absorbing particle. (a) If heat is

concentrated at the dark side of the particle, the particles from the surrounding medium

will push it toward the light source (negative photophoresis). (b) Positive photophoresis

occurs when the illuminated side of the particle is hotter than the dark one. In this case

the net motion of the particle is away from the source. (c) If the particle is illuminated

symmetrically it can be trapped in a three-dimensional region of space.

First, let’s consider the case of a low absorbing spherical particle. In this case, most

of the illuminating light is refracted and concentrated at the dark side of the particle.

As a consequence, this side will be hotter than the illuminated one and the particle will

move towards the light source. This effect is known as negative photophoresis. Negative

photophoresis can also occur if heat absorption over the particle’s surface is non-uniform,
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as sketched in Fig. 6.1(a). In contrast, if the particle is strongly absorbing, most of

the illuminated light will be absorbed at the illuminated side of the particle and its

interaction with the surrounding medium will result on a net force away from the source,

being this case named as positive photophoresis, see Fig. 6.1(b). In addition, if heat

transmission over the particle surface is non-homogeneous, the photophoretic force will

be even more involved. In our work, we consider homogeneous carbon-coated spherical

glass shells, so that most of particles suffer from positive photophoresis. For further

reading on the photophoretic force, we recommend Refs. [172, 174]. The photophoretic

force has been used as a speckle trap [169], to trap biological samples [175,176], combined

with engineered vortex beams as a tractor beam [86, 143] and demonstrated to also

depend on the polarization of the illuminating source [143,177].
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Figure 6.2: Numerically calculated CR optical bottle beams obtained for (a) a circularly

polarized input beam and (b) a linearly polarized input beam by using Eqs. (2.14)–

(2.16). The bottle is fully closed for a circularly polarized incident beam and opened for

a linearly polarized incident beam. The hole in the top wall of the “bottle” is clearly

visible. The insets depict the principal cross sections of the light intensity distribution.

(c) and (d) depict the loading of particles into the bottles. Here ρ0 = 10.

6.3 Experimental proposal

Our trapping scheme, which is based on the possibility of opening and closing in real

time the optical bottle provided by the CR phenomenon when ρ0 ≡ R0/w0 ≫ 1, works as



6.3 Experimental proposal 89

follows. Let’s consider the case of the CR optical bottle generated when the input beam

passing through the biaxial crystal is circularly polarized, see Fig. 6.2(a). In this case

the optical bottle will be completely closed in 3D and absorbing particles falling down

inside the bottle will be repelled from the latter as sketched in Fig. 6.2(c). Obviously,

there is a certain probability for the particles to pass through the light barrier and enter

inside the bottle but such probability is very low. In contrast, a linearly polarized input

beam impinging the crystal results in the loss of perfect cylindrical symmetry of the CR

optical bottle. From the 3D point of view, this latter case results in the formation of a

hole in the side of the otherwise perfect bottle beam, see Fig. 6.2(b).

The angular position of null-intensity region can be varied by rotating the azimuth of

the linear polarization of the input beam. If the latter coincides with the azimuth from

the bottom part of the CR rings at the focal plane, a null intensity point at their top

will be generated. This would allow increasing the trapping efficiency, since absorbing

particles will find an stable point at the bottom part of the CR rings, as shown in

Fig. 6.2(c) and Fig. 6.2(d). Once a particle has been loaded inside the bottle, the latter

can be closed by modifying the state of polarization of the input beam from linear to

circular, which isolates the particle from the environment. Finally, reverting the state

of polarization of the input beam to linear would enable opening a hole in the trap at a

desired angular location to unload the particles.

We tested experimentally the practical suitability of the above described optical bot-

tle beams to trap of airborne microscopic particles. Our experimental proposal is rather

simple, since only a half-waveplate (HWP), a quarter-waveplate (QWP) a focusing lens

and a biaxial crystal is needed to generate the 3D trapping potential, see Fig. 6.3(a).

The light beam from a CW laser (λ = 532 nm, input power 100mW) passes through a

HWP and QWP and then, after focusing with 100 cm positive lens, propagates along

the optical axis of a monoclinic KTP crystal (l = 10mm and α = 10 mrad) cut per-

pendicular to one of its optic axes, giving ρ0 ≈ 12. Light emerging from the crystal is

imaged with a CCD camera. We start with a circularly polarized input beam to create

a perfect, cylindrically symmetric optical bottle. In order to visualize the optical bottle

the camera was translated axially with a 10µm step and at each step the transverse

light intensity distribution is recorded and stored in the computer. A sequence of 75

intensity slices is then used to reconstruct the full 3D structure of the bottle. The result

is depicted in Fig. 6.3(b). As expected, the CR beam forms an optical bottle with a

dark central region entirely surrounded by light. The transverse size and the length of

the bottle could be adjusted by varying the collimating optics as well as the position of

the crystal. Then, the mutual orientation of the fast axis between the HWP and the

QWP is modified to transform continuously the ellipticity of the input beam from 90◦

(circularly polarized) to 0◦ (linearly polarized). The 3D light intensity distribution for

the linearly polarized case is shown in Fig. 6.3(c). The light structure is no longer cylin-

drically symmetric, with the top wall of the bottle featuring an opening, in agreement

with the theoretical prediction, see Fig. 6.2(b).
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Figure 6.3: (a) Experimental set-up. A Gaussian-like input beam obtained at 532 nm

and with 100mW of power is focused by a lens (FL) parallel to one of the optic axis

of a KTP biaxial crystal. Previously, the state of polarization of the input beam has

been prepared by means of a half-waveplate (HWP) and a quarter-waveplate (QWP).

Absorbing particles contained in a chamber are trapped at the generated CR optical

bottle. An imaging lens (IL) and a CCD camera are used to image different transverse

planes along the beam propagation direciton. (b) and (c) are the reconstructed experi-

mental 3D intensity distribution obtained for circularly polarized and linearly polarized

input beams, respectively. Here ρ0 = 12.

6.4 Experimental results

We used the experimental set-up and optical bottles depicted in Fig. 6.3 to demon-

strate trapping and manipulation of airborne light absorbing particles. Such particles

can be efficiently confined by employing the photophoretic force [173, 174]. As com-

mented in Sec. 6.2, in this case the illumination of particles leads to their heating and

nonuniform temperature distribution. Interaction with the surrounding air results in

the appearance of the photophoretic force which tends to repel particles from the high

intensity region. In our experiments with the optical bottle we used glass shells covered

with a thin layer of carbon (around 200 nm thick) in order to enhance light absorption.

The external diameter of the shells ranged from a few to tens of micrometers. To prevent

accidental air flow from affecting the trapping the optical bottle was formed inside a

transparent glass cell placed immediately behind the biaxial crystal. The axially located

CCD camera recorded images of the particles inside the optical bottle. In order to speed

up the trapping process the spheres were made floating in the air.
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Figure 6.4: (a) Statistics of the particles size normalized to the radial dimensions of the

trap. (b) Experimental images of hollow glass shells of different size trapped inside the

bottle beam. Particles diameter has been measured to be in the range 20–50µm. Note

that simultaneous trapping of two glass spheres is also possible. Here ρ0 ≈ 12, being

the ring radius R0 ≈ 200µm.

We found that while a particle could be trapped using either a fully closed (circular

polarization) or open (linear polarization) bottle, the loading process was much faster

in the latter case. As the internal diameter of the bottle was rather large (200 µm) the

bottle could accommodate a great variety of trapped spheres. In Fig. 6.4(b) we show

examples of particles with different size confined in the trap. Because of gravity they are

all located at the bottom of the bottle. The trapping was generally very robust, with the

particles resting on the lower “wall”, although other stable trapping positions are also

possible. However, we found that sometimes the trapped particles oscillated inside the

trap with the oscillation frequency increasing with the trapping power. Such dynamics

was observed in the case of trapping complex objects such as those formed by two

connected glass spheres. Besides, in Fig. 6.4(a) it is shown an histogram with statistics

on the particle size normalized to the radial dimensions of the trap, i.e., the diameter of

the CR ring. The size distribution is Gaussian-like, with an average normalized size of

0.23. That is to say it is possible to efficiently trap particles of as big as the half of the

CR ring radius R0.
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(a) (b) (c) (d)

Figure 6.5: Experimentally recorded sequence of images illustrating unloading the

trapped glass sphere from the optical bottle.

The ability to open or close the bottle at will by varying the polarization of the input

beam gives a unique opportunity to use the opening in the bottle not only to easily trap

micro-object but also to unload the trap. Such functionality is demonstrated in Fig. 6.5.

The image sequence represents various stages of closing the hole in the upper wall of

the bottle while subsequently opening it in its bottom wall. It is clearly seen that the

initially trapped sphere drops out of the trap under the effect of gravity when the hole

in the bottom wall appears.

6.5 Conclusions

In summary, we have used the phenomenon of conical refraction of light to create

an optical bottle for photophoretic trapping and manipulation of airborne particles.

By changing the input beam polarization from circular to linear the light wall can be

opened up to let the particles under study enter the otherwise almost impenetrable

trap. If necessary, the trapped particles can later be released by rotating the plane of

the linearly polarized input beam and thus adjusting the angular position of the exit

opening in the trap. We have demonstrated the ability to perform such manipulations

in ambient air with relatively large and heavy absorbing glass shells, in the range of

20µm–50µm. Finally, we envisage that it would be very promising to combine the here

presented technique with the results shown in Sec. 2.4 in order to reconfigure the CR

optical bottle along the axial direction too, which could be used to vary dynamically

the position of the trapped particles.



CHAPTER 7

Trapping Bose–einstein condensates with conical refraction

In this Chapter we present two a novel proposals to trap ultracold neutral atoms

and Bose–Einstein condensates (BECs) with dipole potentials generated with CR.

On the one hand, we demonstrate optical trapping of ultra-cold atoms in a blue-

detuned trap formed by the three-dimensional dark focus shown in Sec. 3.2. We present

experiments on trapping a 87Rb BEC in this potential and derive the trapping frequen-

cies and potential barriers under the harmonic approximation and the CR theory. On

the other hand, we also present a novel approach for the optical manipulation of neutral

atoms in the Poggendorff dark ring of CR. We demonstrate both theoretically and ex-

perimentally that the Poggendorff dark ring is confined in three dimensions by regions

of higher intensity. We derive the positions of the confining intensity maxima and min-

ima and discuss the application of the Poggendorff ring for trapping ultra-cold atoms

using the repulsive dipole force of blue-detuned light. We give analytical expressions for

the trapping frequencies and potential depths along both the radial and the axial direc-

tions. Finally, we present realistic numerical simulations of the dynamics of a 87Rb BEC

trapped inside the Poggendorff ring which are in good agreement with corresponding

experimental results.

The organization of the Chapter is the following. In Sec. 7.1 we give an insight

into atom trapping with red- and blue-detuned potentials based on the dipolar force.

Sec. 7.2 and Sec. 7.4 are devoted, respectively, to discuss theoretically and demonstrate

experimentally optical trapping of 87Rb BECs in a blue-detuned 3D trap and in a blue-

detuned light ring provided by CR.

The research contained in this Chapter has been done in collaboration with Juan

Polo, and Verònica Ahufinger from the Universitat Autònoma de Barcelona; and Jo-

hannes Küber, Felix Schmaltz and Gerhard Birkl from the Technische Universität Darm-
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stadt (TUD); and has been published in Refs. [178,179]. The reported experiments were

carried out by the author at the laboratory of Prof. Birkl at the TUD during a 3 months

stay that was financed by the Deutscher Akademischer Austausch Dienst (grant number

91526836).

7.1 Introduction

The field of atomtronics is a key point to enable integrated matter-based quantum

technologies such as quantum computation, quantum simulation and quantum metrol-

ogy [180, 181]. Light-assisted manipulation of matter by means of the field intensity

gradient throughout the dipolar force is one of the main techniques used in atomtronics.

The intensity gradient of a light field can be used to efficiently trap ultra-cold atoms

and BECs, using either red- or blue-detuned light. In the former technique, atoms are

trapped in the region of intensity maxima taking profit of light whose wavelength is

smaller (red-detuned case) or larger (bue-detuned case) than the atomic two-level tran-

sition frequency. Red-detuned (bright) optical traps are the most widely used optical

traps due to their simplicity, since only a tightly enough focused beam producing a

strong intensity gradient is needed. A drawback of trapped atoms in attractive dipole

potentials is that they suffer from different energy shifts depending on the state and

intensity of the trap. The fidelity of high precision measurements based on dipole traps

also suffers from coherence loss caused by inhomogeneous differential light shifts [182].

In contrast, blue-detuned (dark) optical traps, allowing for a confinement of atoms in an

intensity local minimum, have significantly decreased scattering rate and decoherence.

Therefore, they are ideal candidates for highly sensitive experiments.

The aim of this chapter is to demonstrate that both a 3D dark potential and a

dark ORP generated with CR can be used to efficiently trap BECs. Starting from the

fundamental CR equations, we will obtain the trapping potentials and potential depths

under the harmonic approximation. Then we will demonstrate experimental trapping

of 87Rb BECs in these potentials.

7.2 Trapping BECs in a 3D dark focus

Blue-detuned optical potentials are used in the manipulation of Rydberg states [183],

atomic clocks [184], quantum information processing [185] or Bose-Einstein condensation

in uniform potentials [186]. In the best ideal situation for blue-detuned optical traps,

the local minimum where atoms are trapped has null intensity. If additionally this

null intensity region is confined in three dimensions by regions of higher intensity, the

light beam will form an optical bottle [95]. Different methods have been proposed to

generate optical bottle beams, such as the interference of Laguerre–Gauss beams [99],

surrounding a region of space in three dimensions with several beams [187], crossing two



7.2 Trapping BECs in a 3D dark focus 95

or more vortex beams [188] or by using optical C-cut uniaxial crystals [100]. However,

most of these methods have associated different limitations such as the extreme precise

control on the optical elements needed to generate and align the complex beams used or

the fact that the intensity minimum is not exactly equal to zero [101]. In what follows,

we exploit the 3D dark focus presented in Sec. 3.2 as a blue-detuned potential for atom

trapping experiments. Firstly, we will derive the trapping frequencies and potentials

depths under harmonic approximation, by using the CR theory presented in Sec. 2.2.

Then we will report the experimental implementation of the CR 3D dark focus for the

trapping of a 87Rb BEC.

7.2.1 Theoretical formulation for the 3D dark focus to atom trapping
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Figure 7.1: (a) 2D density plot of the transverse pattern of CR at the focal plane for

ρ0 = 0.924. (b) Corresponding 2D density plot in the z-x plane showing that for this

value of ρ0 the CR beam forms a 3D dark focus. Top insets plot the radial and axial

transverse cross-sections at z = 0 and x = 0, respectively.

Previously, it has been shown that for ρ0 = R0/w0 = 0.924 the CR beam forms a

3D dark focus, i.e., a null intensity point surrounded by regions of higher intensity in

3D space, as shown in Fig. 7.1. Now, we will study the behavior of the CR beam at and

around the origin, i.e., for r = (ρ ≈ 0, Z ≈ 0), and we will derive the trapping frequencies

and potential depths using the harmonic approximation. The dipolar potential trapping

that it will be considered is [189]:

U(r) = −I(r)Ũ0, (7.1)

Ũ0 =
πc2

2

[

ΓD2

ω3
D2

(

2

ωD2 − ωL

)

+
ΓD1

ω3
D1

(

1

ωD1 − ωL

)

]

. (7.2)

Note that in Ũ0 we have applied the rotating-wave approximation and we consider

the case of Alkali atoms. c is light’s velocity in vacuum, ΓDi
and ωDi

(i = 1, 2) are,

respectively, the natural line width and frequency of theDi line of the atomic specie used,

and ωL is the frequency of the input beam. In our case, I(r), is given by Eqs. (2.12)–

(2.14).
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Radial direction

The Taylor expansion of the Bessel function of order α, Jα(x), around x = 0 can be

written as follows:

Jα(x) =
∞
∑

k=0

(−1)k
k!Γ(k + α+ 1)

(x

2

)2k+α
, (7.3)

where Γ(t) =
∫∞
0 xt−1e−xdx is the well known gamma function. Under this expansion

and for an input beam of transverse fundamental Gaussian profile, Eqs. (2.12) and (2.13)

become:

B0(ρ, Z) = E0

∫ ∞

0
ηe

−η2(1+iZ)
4 cos (ηρ0)

∞
∑

k=0

(−1)k
k!Γ(k + 1)

(ηρ

2

)2k
dη, (7.4)

B1(ρ, Z) = E0

∫ ∞

0
ηe

−η2(1+iZ)
4 sin (ηρ0)

∞
∑

k=0

(−1)k
k!Γ(k + 2)

(ηρ

2

)2k+1
dη, (7.5)

where we have considered a Gaussian input beam with normalized transverse profile of

the electric field amplitude E(ρ) = E0 exp(−ρ2) and corresponding Fourier transform

a (η) = E0 exp
(

−η2/4
)

, being E0 =
√

P
2πw2

0
, P the power of the input beam and w0 its

waist radius. Eqs. (7.4) and (7.5) can be analytically solved, obtaining the following

expressions:

B0(ρ, Z) = 2E0

∞
∑

k=0

(−1)kρ2k
k!(1 + iZ)1+m 1F1

(

k + 1;
1

2
;
−ρ20

1 + iZ

)

, (7.6)

B1(ρ, Z) = 4ρ0E0

∞
∑

k=0

(−1)kρ2k+1

k!(1 + iZ)m+1 1
F1

(

k + 2;
3

2
;
−ρ20

1 + iZ

)

. (7.7)

(7.8)

where 1F1(a; b; z) is the Kummer confluent hyper-geometric function. This formulation

can be used for any value of ρ0 as long as the point of intensity minimum remains at

ρ = 0. Note that the minimum intensity point ρmin will depend on the value of ρ0. For

the 3D dark focus (ρ0 = 0.924), ρmin = 0. We have found that close to ρ = 0, the term

k = 0 approximates well to the original CR beam without approximation. In contrast,

to describe appropriately the position of the radial maximum, up to the term k = 4

must be considered. For the harmonic approximation, only up to second order terms

are required. Since the intensity of the CR beam for a circularly polarized input beam

is given by Eq. (2.14), it is enough to keep the k = 0 terms of the series in Eqs. (7.7)

and (7.8). In this case, the intensity of the CR beam reads as follows

I (ρ ≈ 0, Z) =
2P

πw2
0







∣

∣

∣

∣

∣

∣

1F1
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∣

∣

∣

∣

∣

∣

2

+ 4ρ20

∣

∣

∣

∣

∣

∣

ρ2
1F1

(

2; 32 ;
−ρ20
1+iZ

)

(1 + iZ)2

∣

∣

∣

∣

∣

∣

2





. (7.9)

The first term in Eq. (7.9) is an offset of the potential that appears when one moves out

axially from the focal plane, as shown at the top inset of Fig. 7.1(b). As a consequence,
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trapping atoms out of the focal plane can increase the scattering rate of photons. The

second term (after the ‘+’) is the one that must be taken into account to obtain the

trapping frequency of the potential. By using the harmonic approximation, the trapping

frequency along the radial direction at any Z, ωr(Z), is:

ωr(Z) =

√

16ρ20Ũ0P

πmw4
0

∣

∣

∣

∣

∣

∣

1F1

(

2; 32 ;
−ρ20
1+iZ

)

(1 + iZ)2

∣

∣

∣

∣

∣

∣

, (7.10)

where m is the atomic mass. Note that, in the axial direction this approximation is

only valid in the region where the optical bottle is formed, i.e,, for Z ∈ [−1.388, 1.388].
Additionally, note that in Eq. (7.13), we have undone the normalization of the radial

coordinate, i.e., we have replaced ρ by r/w0.

As commented above, the potential barrier along the radial direction, i.e., at the

point r = (ρ = 1.1, Z = 0), is not well described by the harmonic approximation and it

must be evaluated by taking terms k > 4 in Eq. (7.9). Its value is:

U(ρ = 1.1, Z = 0) = 0.80× Ũ0
P

2πw2
0

, (7.11)

Axial direction

For completeness, we will study also the trapping confinement along the axial direc-

tion. In this case, a compact expression for any value of ρ0 cannot be obtained since

the minimum radial intensity point depends on it. For our case of interest, the point

of minimum intensity is at ρ = 0. Here, the approximation from Eq. (7.3) used before

is not needed since J1(0) = 0 and J0(0) = 1 and, as a consequence B1 (ρ = 0, Z) = 0.

Therefore, the light intensity is solely described by B0 as follows

I (0, Z) = |B0 (0, Z)|2 =
P

2πw2
0

∣

∣

∣

∣

∫ ∞

0
ηe−
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∣
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√
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∣
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2

,

where D(x) is the Dawson function. The second order of the Taylor expansion of this

analytical solution leads to the following expression for the trapping frequency (ωz)

along the axial direction:

ωz =

√

Ũ0P

πmw2
0z

2
R

. (7.13)

The potential barriers along the axial direction, i.e., at r = (ρ = 0, Z = ±1.388) can be

obtained directly from Eq. (7.13). Their values are:

U(ρ = 0, Z = ±1.388) = 0.32× Ũ0
P

2πw2
0

, (7.14)
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7.3 Experimental trapping of a 87Rb BEC in the 3D dark

focus

BC

CCD

HWP QWP F1 F2 F3
F4

F5
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Illuminating light

Light-sheet 

beam

Vacuum chamber

From Ti:Sa 

laser

Gravity

Figure 7.2: Experimental setup for the creation of a 3D dark focus potential based on

CR. The CR ring potential (λ = 792.55 nm) is oriented horizontally. Vertical confine-

ment is achieved by a horizontally oriented red-detuned light sheet (λ = 783.55 nm).

The re-imaging system de-magnifies the CR beam by a factor of 0.75. F1 = 150mm,

F2 =F3 =F4 = 400mm, F5 = 300mm, HWP = half- waveplate, QWP = quarter-

waveplate, NPBS = non-polarizing beam splitter. The inset is a density plot of an

experimentally trapped 87Rb BEC (image size 2mm× 2mm) with our set-up.

The experimental set-up is presented in Fig. 7.2. A 90◦ mutually intersected pair

of beams (not shown in the set-up) forming a crossed optical dipole trap is used to

create a BEC of 25000 87Rb atoms in the center of the vacuum chamber. The crossing

plane of the two beams is in the direction perpendicular to gravity. The light of the CR

potential is obtained from a tunable Ti:Sapphire laser at λCR = 792.55 nm, providing

a power of PCR = 24mW inside the vacuum chamber. To generate the 3D dark focus

potential, we align the focused input beam with waist radius of 42.7µm and Rayleigh

length zR = 5.42mm along one of the optic axis of KGd(WO4)2 biaxial crystal by using

a lens F1 of 150mm focal length. A half-waveplate (HWP) and a quarter-waveplate

(QWP) are used to ensure the state of polarization of the input beam to be circular. A

pinhole before the focusing lens F1 is arranged in order to increase the spatial coherence

of the input beam and ensure its Gaussian transverse profile. The KGd(WO4)2 crystal

has a length of l = 2.2mm, a conicity of α(λ = 792.55 nm) = 17.6mrad and, therefore,

R0 = 37.4µm. This value, together with the measured w0, gives ρ0 = 0.88, which is
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close to the theoretical value ρ0 = 0.924 for the 3D dark focus. The transformed CR

pattern appears at the focal plane of the system. Lenses F2, F3, F4 and F5 are used

in telescope configuration to re-image the focal plane into the vacuum chamber on top

of the crossed dipole trap. This re-imaging system de-magnifies the CR potential by

a factor of 0.75, so that the final radius of the CR ring and of the focused beam are

R′
0 = 28.1µm and w′

0 = 32.0µm, respectively.

The radial direction of the 3D dark focus is in a plane perpendicular to gravity.

Since the confinement provided by the 3D dark focus depends on zR, a large quantity

of power would be required to trap atoms against gravity along the axial direction. For

this reason, we use an additional red-detuned sheet of light generated by means of a

cylindrical lens that focuses a Gaussian beam to hold atoms against gravity. For the

light-sheet, we use light obtained from a diode laser at λLS = 783.55 nm, with a power

of PLS = 137mW. The waist radius of the focused beam in the axial direction of the

system is wZ = 26.2µm. All these parameters yield a measured trapping frequency of

ωZ = (169± 2)Hz. This measurement was done by loading a BEC into the light sheet

potential and switching it off for 300µs. Then, the light sheet was switched on again

and we could observe the velocity of oscillation of the atoms in the potential induced by

gravity. As a summary, our 3D optical trapping potential is formed by the dark focus

with blue-detuned light, allowing for confinement in the radial direction, and for the

light sheet with red-detuned light, allowing for confinement in the axial direction. The

loading of the BEC into this potential is performed adiabatically, i.e., the crossed dipole

trap is switched off slowly while the CR potential and the light sheet are switched on.

The total duration time of the process is 40ms. Inset in Fig. 7.2 shows experimental

atomic density images of a 87Rb BEC in this trapping configuration.

To measure the trapping frequency of the 3D dark focus potential we used the optical

lattice to give a momentum of 2~k to the trapped atoms and measure their velocity for

different oscillation times. We found a trapping frequency of ωR = 2π × (283± 16)Hz.

The experimental error is due to the azimuthal asymmetry of the potential heights.

To measure the potential heights of the blue-detuned dark focus trap, we used an

optical lattice that accelerated the trapped atoms in a direction parallel to the light-

sheet beam. In our experimental arrangement, both arms of the optical lattice could

be modified independently both in intensity and frequency, resulting this in a moving

optical lattice. More details about the optical lattice used can be found in Ref. [190].

The dark focus point of the CR potential was positioned on top of the crossing point of

cross-dipole trap in order to accelerate the atoms against the light walls of the dark focus

potential. Atoms were accelerated with a momentum of 2~k and we took measurements

on the atom number that left the potential as a function of its power. The potential

height is found when only half of the atoms can leave the potential. The measured

potential height of the 3D trapping potential in the radial direction was Ur = 25ER,

where ER is the recoil energy (ER/~ = 2π × 3.77 kHz in our experiments).

For the experimental parameters used in our experiment, the corresponding calcu-
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lated trapping frequency is ωr(ρ0 = 0.88, Z = 0) = 2π × (284)Hz, which is in complete

agreement with the measured trapping frequency. With respect to the calculated po-

tential barrier, we have obtained a theoretical value of U(ρ = 1.1, Z = 0) = 31ER,

which slightly differs with the corresponding measurement. This can be associated to

the asymmetry of the maximum along the azimuthal direction in the experimental po-

tential.

7.4 Blue-detuned optical ring traps for BECs based on

conical refraction

Optical ring potentials (ORPs) with axial symmetry are considered as basic build-

ing blocks and the simplest nontrivial closed-loop circuits in atomtronics [180,191–194]

and atom interferometry [195]. Atoms can be trapped by means of the optical dipolar

force in high or low intensity regions with red-detuned [196, 197] or blue-detuned [198]

light, in what follows called bright and dark potentials, respectively. On the one

hand, bright ORPs have been proposed and demonstrated with high-azimuthal-order

Laguerre–Gaussian (LG) beams [199] and also with annular microlenses [200, 201].

Azimuthal lattices within ORPs have been demonstrated with time orbiting of light

beams [202,203] and by interference of LG beams of different azimuthal orders [204]. A

one-dimensional stack of ORPs in a line has been proposed in an optical cavity [205]

and demonstrated with axicon beams [206]. Experimental storage and propagation

of ultra-cold atoms and BECs in bright ORPs have been reported recently [207, 208].

Dark ORPs on the other hand are optical fields with an annular region of minimum

intensity [170], such as closed-loop optical singularities [91, 94], for which the region of

minimum intensity is exactly zero. For ultra-cold atoms, dark ORPs have the advantage

of substantially reducing atom heating and decoherence rates [198] because of the low

rate of spontaneous photon scattering as well as producing intrinsically flat potential

minima. Blue-detuned ORPs have been experimentally reported by means of LG beams

generated with spatial light modulators (SLMs) [209] and by amplitude masks [210–212].

These two techniques might experience the following limitations: (i) a significant frac-

tion of the input power is lost and, therefore, it does not contribute to create the optical

trap, (ii) the smoothness and, therefore, the quality of the trapping potential is limited

by the size and number of pixels for the SLMs and the resolution of the printing system

for the amplitude masks, and (iii) an accurate control on the position and alignment

of the optical elements being used is required. As a consequence, these two techniques

yield typically not null intensity minima. Producing ORPs with zero-intensity annular

regions both along the radial and axial directions is a challenging task. In this case, the

dark potential forms a toroidal dark focus, i.e., a region of minimum intensity confined

by higher intensities (light walls) both in the axial and radial directions. A toroidal dark

focus has only been demonstrated using a superposition of two LG beams [170].

In this section, we present a new method to generate a dark ORP by means of the
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Poggendorff dark ring (PDR) of CR. We theoretically investigate the three-dimensional

(3D) field distribution around the CR PDR and show both theoretically and experi-

mentally that it is a toroidal dark focus. We also discuss the use of the PDR as a

blue-detuned ORP for ultra-cold atoms and demonstrate this for a 87Rb BEC.

7.4.1 Asymptotic solution close to the Poggendorff dark ring

The asymptotic solution for the Poggendorff dark ring, i.e., for ρ0 = R0
w0
≫ 1, is

obtained by using the asymptotic expansion of Bessel functions: cos (ηρ0) J0 (ηρ) ≈
sin (ηρ0) J1 (ηρ) ≈ cos (ηξ − π/4)/√2πηρ0. Here we have centered the normalized radial

component in cylindrical coordinates at ρ0 by using ξ ≡ ρ− ρ0 = r/w0−R0/w0. In this

case BC ≈ BS and the electric field can be written as [27, 29]:

E (ξ, Z, ϕ) = f (ξ, Z)E0 (eCR · e0) eCR , (7.15)

where

f (ξ, Z) =

√

1

8π3ρ0

∫ ∞

0
dη
√
ηa (η) e−iZ

4
η2 cos
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4

)

,

(7.16)

and

eCR =

(

cos ϕ+ϕ0

2

sin ϕ+ϕ0

2

)

. (7.17)

Therefore, the asymptotic intensity distributions IaCP and IaLP for CP and LP input

beams are, respectively,

IaCP (ξ, Z) = |f (ξ, Z)|2 , (7.18)

IaLP (ξ, Z, ϕ) = IaCP cos2
(

Φ− ϕ+ ϕ0

2

)

. (7.19)

In the following we will analyze the case of a CP input beam, for which the CR

output intensity is azimuthally symmetric and its spatial distribution is described by

Eq. (7.18). For the Gaussian input beam considered in the previous section, Eq. (7.16)

can be analytically evaluated through the Kummer confluent hyper-geometric function

1F1(a; b; z) [32]:
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√
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, (7.20)

where wZ = 1 + iZ.
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Figure 7.3: Normalized CR intensity for a CP Gaussian input beam as given by

Eq. (7.20) along the radial direction (a) at the focal plane and (b) along the axial direc-

tion at the radial position of the PDR (ξ = ξ0). Blue solid circles represent experimental

data with an experimental uncertainty of 5 % along both axis.

The solid line in Fig. 7.3(a) shows the square modulus of Eq. (7.20) at the focal

plane (Z = 0). f(ξ0, 0) = 0, gives the radial position of the Poggendorff dark ring at

the focal plane, being ξ0 = −0.541. In other words, the radius of the PDR is smaller

than the geometric approximation of the CR ring, R0, by approximately half the waist

of the input beam. Note that ξ = ρ − ρ0, with ρ0 ≡ R0/w0. In the radial direction

the PDR is confined by two maxima at ξ+ = 0.390 and ξ− = −1.235, respectively (see

Table 7.1). Along the Z direction, the lowest intensity barrier is observed also at the

radial position of the PDR, i.e., at ξ = ξ0 as shown in Fig. 7.3(b). At this radial point

the positions of the intensity maxima along Z obtained from Eq. (7.18) and (7.20) are

Z± = ±1.519. Therefore, the PDR is confined by walls of light in all directions and forms

a toroidal dark-focus. Table 7.1 presents the positions of the PDR and of the maxima

in the radial (ξ±) and axial (Z±) directions. As a visualization of the toroidal dark

Table 7.1: Positions of the Poggendorff dark ring and of the maxima in the radial (ξ±)
and axial (Z±) directions.

Point name ξ(w0) Z(zR)

Dark Ring: ξ0 -0.541 0

Bright Rings: ξ+ 0.390 0

ξ− -1.235 0

Maxima along Z: Z± -0.541 ±1.519

trap provided by the PDR of CR, Fig. 7.3(a) shows the three-dimensional distribution

of light intensity of the asymptotic approximation of the BKB solution near the focal

plane. Fig. 7.3(b) is a contour plot near the PDR, confirming that it is a region of low

intensity surrounded in all directions by regions of higher intensity. Note that the PDR

is an exact null intensity region only for input Gaussian beams under the asymptotic
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approximation, i.e., for ρ0 ≫ 1, while non-zero intensity radial minimum points are

found out of the paraxial approximation, as reported in Chapter 3. For input beams

with different transverse profile the CR pattern may change [70,72].
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Figure 7.4: (a) Normalized light intensity in three dimensions near the PDR. (b) 2D

contour density plot near the PDR of the normalized light intensity calculated from

Eqs. (7.18) and (7.20) and for ρ0 = R0/w0 = 20. Color map: black = null intensity,

white = high intensity.

We have experimentally checked that near the PDR the light intensity increases in

all directions, see blue solid circles in Fig. 7.4(a) and Fig. 7.4(b). These experiments on

the CR PDR were carried out using a CP focused input Gaussian beam (w0 = 40µm,

zR = 7.9mm) at λ = 640 nm and a KGd(WO4)2 biaxial crystal (cross-section 6×4mm2,

l = 28mm, α = 16.9mrad) cut perpendicular to one of the optic axes (entrance surface

parallelism better than 10 arc seconds) yielding a CR ring of R0 = 475µm (ρ0 ≈ 12).

The transverse light patterns at and around the focal plane were recorded with a CCD

camera.

7.4.2 Harmonic potential approximation

We consider the same potential as described by Eq. (7.1) and Eq. (7.2) where I(r) is

given by Eq. (7.18) and Eq. (7.20). By using the harmonic approximation, we have ob-

tained the following expressions for the corresponding radial (ωr) and axial (ωz) trapping

frequencies of the PDR (ξ = ξ0, Z = 0)

ωr,z =

√

Ar,zŨ0P

π2mw4
0ρ0

, (7.21)

with the numerical constants Ar(Z = 0) = 4.63 and Az = 0.34. Eq. (7.21) is obtained

by expanding Eq. (7.20) in Taylor series, introducing it into Eq. (7.18) and considering

the ξ2 coefficient.

Note that from Eqs. (7.18), (7.20), and (7.21) for a given CR set-up, i.e., for a fixed

R0 and w0, the trapping frequencies and the maxima of the potential barriers can be

tuned by modifying the power P and the frequency ωL of the input beam. We have
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obtained that at the focal plane the maxima of the potential barriers are described by

U(ξ±, 0) = C±Ũ0
P

4π2w2
0ρ0

, (7.22)

where C+ = 2.54 (outer bright ring) and C− = 0.541 (inner bright ring).

There can be other experimental situations however, where it is required to work

outside the focal plane, for instance in experiments where a more symmetric potential is

needed, such as the one shown with a solid line in Fig. 7.5(a), where the radial intensity

distribution close to the PDR is shown for the focal plane (Z = 0) and the plane Z = 4.

In these cases, Eq. (7.21) can be utilized to calculate the trapping frequency of the

potential at any axial position Z by just replacing Ar(Z = 0) by

Ar(Z) = −0.051 +
8.817

1.873 + 2.307Z2
. (7.23)

Figure 7.5(b) presents the dependence of Ar(Z) on Z. Note that outside the focal plane

an offset to the potential is occurring, since the minimum intensity point is no longer of

null intensity as plotted for Z = 4 as solid line in Fig. 7.5(a). We have found that this

non-zero minimum intensity point can be taken into account by means of the optical

potential along the axial direction,

U(ξ0, Z) = Ũ0
P

4π2w2
0ρ0

Z2. (7.24)

The confining maxima along Z are not well described by the harmonic approximation

and must be evaluated using Eqs. (7.18) and (7.20). They read

U(ξ0, Z±) = 0.17Ũ0
P

4π2w2
0ρ0

. (7.25)
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Figure 7.5: (a) Profile of the trapping potential at Z = 0, i.e., at the focal plane (dashed

curve), and at Z = 4 (solid curve) where the inner and the outer bright rings of CR

have equal maximum intensity. (b) Coefficient Ar as a function of Z. The analytical

expression for the Ar(Z) is given by Eq. (7.23).
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7.4.3 Numerical simulations of a BEC of 87Rb atoms

To demonstrate the applicability of the PDR for ultra-cold gases, now we discuss the

two-dimensional (2D) evolution of a BEC of 87Rb atoms confined in an annular geometry

within the focal plane by using the PDR of CR and a strong additional confinement along

the axial direction so that ωaxial ≫ ωr. Such confinement can be achieved by using an

additional red-detuned sheet of light (e.g. generated by focusing a Gaussian beam with

a cylindrical lens as shown in Fig. 7.2) to compensate for the weak axial confinement as

well as, in case of a horizontal ring plane, the effect of gravity. We use the 2D Gross–

Pitaevskii equation (GPE) in order to study the dynamics of the BEC along the ring

potential:

i~
∂

∂t
Ψ(r, t) =

(

− ~
2

2m
∇2 + Vext(r) + g2D |Ψ(r, t)|2

)

Ψ(r, t), (7.26)

where Vext(r) is the external potential, g2D = 2~asN
√

2π ~ωz

m , as is the scattering length,

ωz is the frequency of the confining potential in the axial direction, m is the mass of the
87Rb atoms and N is the number of atoms.

In our simulations, we consider trapping close to the D2 and D1 lines of
87Rb. These

lines possess natural line widths of ΓD2 = 2π × 6.07MHz and ΓD1 = 2π × 5.75MHz and

frequencies of ωD2 = 2π×384.23THz and ωD1 = 2π × 377.11THz, respectively. Thus, to

calculate the trapping frequencies and the maxima of the potential barriers is straight-

forward by using Eqs. (7.2), (7.21), (7.22), and (7.25). Based on the experimental

parameters of [190], for a biaxial crystal yielding a CR ring of R0 = 170µm, an input

beam waist w0 = 18µm, a light frequency of ωL = 2π × 378.40THz and a laser power

P = 27mW, at the focal plane, the maxima of the potential barriers and trapping fre-

quencies are, respectively, U(ξ−, Z = 0)/kB = 280 nK, U(ξ+, Z = 0)/kB = 1314 nK and

ωr = 2π × 265Hz, where kB is the Boltzmann constant.

Figure 7.6(a) shows the numerical simulation for a 87Rb BEC, with scattering length

as = 5.45 nm , of N = 12000 atoms trapped in a blue-detuned harmonic annular poten-

tial Vr =
1
2mω

2
r (r − (R0 − 0.541w0))

2 with radial frequency ωr = 2π×265Hz calculated

using Eq. (7.21). Our numerical simulations are based in the following loading process:

the BEC is created in a cross-dipole trap, see e.g. [213], and loaded into the red-detuned

sheet of light. We consider that both the cross-dipole trap and the red-detuned sheet of

light lie in a common plane orthogonal to the gravity field. The PDR potential, which

also lies in the plane orthogonal to the gravity field, is placed tangent to one of the

beams of the cross-dipole trap, see Fig. 7.6(c). The beam from the cross-dipole trap

that is tangent to the PDR is switched off as the CR PDR potential is switched on, in

an adiabatic process. Finally, the remaining beam from the cross-dipole trap is switched

off and the BEC expands in the CR PDR potential. We plot the atomic density of the

BEC after 30ms of expansion in the annular potential. In order to reduce the trans-

verse excitations, the loading of the BEC into the CR ring potential has been performed

adiabatically (in our case during 20ms) as reported in [190]. Fig. 7.6(b) shows the
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corresponding experimental density distribution after 30ms expansion of a 87Rb BEC

trapped in the real CR PDR. The CR PDR was placed perpendicular to gravity and a

sheet of light generated by focusing a Gaussian beam with a cylindrical lens was used

to hold atoms against gravity. The corresponding measured trapping frequencies are

ωexp
r = 2π × (300± 20)Hz and ωexp

z = 2π × (169± 2)Hz.

(a)           (b)                  (c)

Gravity

Figure 7.6: (a) Plot of the atomic density from the numerical simulation of a trapped
87Rb BEC after 30ms of expansion in the ring Vr = 1

2mω
2
r (r − (R0 − 0.541w0))

2, with

the frequency ωr = 2π × 265Hz being calculated using the harmonic approximation.

Parameter values used for the simulation: R0 = 170µm, w0 = 18µm, P = 27mW,

wz = 2π × 500Hz, as = 5.45 nm and N = 12000 atoms. (b) Experimental density

distribution of a trapped 87Rb BEC in the CR ring potential using the same experimental

parameters as for the numerical simulation, with the exception of the axial confinement,

that was made using a red-detuned Gaussian beam focused with a cylindrical lens,

providing a measured trapping frequency of wexp
z = 2π × (169 ± 2)Hz. The measured

radial trapping frequency provided by the CR PDR was ωexp
r = 2π × (300± 20)Hz. (c)

Numerical simulation under the same conditions as in (a) but including the scattering

induced by the position spreading during detection. Each figure is 600µm × 600µm.

Color map: dark blue (red) corresponds to null (high) intensity. White dashed lines

in (c) indicate the position of the cross-dipole trap with respect to the PDR, being

both of them orthogonal to the gravity field. The waist radius of each beam from the

cross-dipole trap is 25µm.

The major discrepancy between experimental and numerical density plots is found

in the radial width of the BEC. In the ideal case (Fig. 7.6(a)), the effects of broadening

due to finite optical resolution and photon scattering of the detection light have not

been considered to obtain the plot, which shows a BEC with a width of 3µm. In

contrast, the experimental image from Fig. 7.6(b), which shows a BEC with a width

of 25µm, was obtained by using red-detuned light (λill = 780 nm, Pill = 0.25mW) to

illuminate the BEC during a time of till = 200µs. For this illuminating light we have

calculated a scattering rate Γsc = 3.29 × 106 s−1 that, together with the recoil velocity

of vrec = 5.89mm/s, increases the width of the atomic cloud in the radial direction

by 21.89µm during the illumination time. Figure 7.6(c) shows the same numerical
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simulation as Fig. 7.6(a) where we have taken into account now the increase of the

width produced by the detection process. Now, numerical simulation and experimental

result agree well.

In order to further confirm the validity of the harmonic approximation, we also

studied the ground state of the BEC trapped in the toroidal dark-focus (see Fig. 7.7).

The physical system considered has the following parameters: R0 = 170µm, w0 =

18µm, P = 27mW, wr = 2π × 265Hz, as = 5.45 nm and N = 12000 atoms. The

toroidal dark trap is placed orthogonal to gravity and, to provide confinement along

the axial direction, we have considered a sheet of light analogous to the one discussed

in [190] with a trapping frequency wz = 2π×500Hz. The plots represent a section of the

wave-function probability in the radial direction at the peak value of the density. The

red-solid line in Fig. 7.7(a) shows the ground state wave-function probability of the BEC

trapped in the PDR potential (represented by the red-dashed line), while the black-solid

line is the ground state of the BEC trapped in the harmonically approximated potential

(represented by black-dashed line) equivalent to the PDR. To provide confinement in the

azimuthal direction, an extra beam yielding a trapping frequency of wazi = 2π× 265Hz

is included. We have found a 0.7% of relative difference between the energies of the two

ground states. Figure 7.7(b) presents the BEC wave-function probability after 30ms

of expansion within the harmonically approximated ring potential (black-solid line) and

within the real PDR potential (red-solid line). Black- and red-dashed lines represent the

harmonic ring potential and the PDR potential, respectively. In this case, the relative

difference between both wave-function probabilities is negligible. These results confirm

the good agreement between the harmonic approximation derived above and the original

PDR.
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Figure 7.7: Radial sections of the atomic density of the BEC (a) before and (b)

after 30ms of azimuthal expansion of the BEC trapped in the harmonic potential

Vr =
1
2mω

2
r (r − (R0 − 0.541w0))

2 (black-dashed line) and in the Poggendroff dark ring

of CR (red-solid line). Black-dashed and red-dotted lines are the corresponding trapping

potentials. Parameter values: R0 = 170µm, w0 = 18µm, P = 27mW, wr = 2π×265Hz,

wz = 2π×500Hz, as = 5.45 nm and N = 12000 atoms. The ground state (a) is obtained

by adding an extra confinement (wazi = 2π×265Hz) in the azimuthal direction in order

to reproduce the loading of the BEC in the CR ring trap.



108 Trapping Bose–einstein condensates with conical refraction

7.5 Conclusions

In this Chapter we have proposed and demonstrated two blue-detuned novel optical

potentials based on CR for atomtronics experiments. On the one hand, we have demon-

strated the experimental implementation of a blue-detuned 3D trap obtained from a

single beam and a biaxial crystal. We have derived simple expressions for the trapping

frequencies and potential barriers in three dimensions as a function of typical experimen-

tal parameters. Both experimental measurements and predicted results are in complete

agreement with each other. In our case, the 3D dark focus beam was arranged with the

beam propagation direction parallel to gravity. Since the axial confinement offered by

such optical potential is not enough to compensate gravity, an additional trapping po-

tential was needed to confine in this direction was needed. However, the 3D dark focus

can be used as a blue-detuned optical trap with a single beam by arranging the light

potential in a plane orthogonal to gravity. One of the advantages of our technique is

that CR provides the full conversion of the input power into the 3D dark focus and avoid

diffraction losses, in contrast to other methods based on spatial light modulators (SLMs),

for instance, which introduce losses due to diffraction in the generation of LG beams.

Moreover, biaxial crystals can be transparent to an extremely wide spectral range [214]

(0.35 µm-5.5 µm in KGd(WO4)2, for instance), at variance with SLMs which only work

in a short spectral range usually of few hundreds of nm. These features make the 3D

dark focus beam very attractive for particle manipulation [142,143] and atom [185,200]

trapping. We would like to note that if instead of a Gaussian input beam, an elliptical

beam was used, the 3D dark focus would lead to a pair of elliptical beams divided by

a thin dark region. This configuration could be used as a dark sheet potential. Also, a

combination of the 3D dark focus with an array of micro lenses [201,215] would lead to

the generation of a 2D array of 3D dark traps of significant interest in atom trapping

for quantum computing experiments. Finally, the interference of the 3D dark focus

with a plane wave along the beam propagation direction would generate a 1D stack of

doughnut-like beams, ideal for quantum many-body experiments [206].

On the other hand, we have demonstrated that the Poggendorff dark ring of CR

obtained for ρ0 ≫ 1 is a good candidate for matter-wave experiments requiring annular

geometries. We have found the positions of the bright and dark rings of CR and the

position of the two points with maximum intensity along the beam propagation direction,

both experimentally and analytically. Besides, we have shown that the radius of the

PDR is smaller than the optical geometric approximation of the CR ring radius R0, by

approximately half the waist radius of the input beam (−0.541w0 in Table 7.1). All

previous related works [27, 29, 31, 32, 74] were performed considering that the radius

of the PDR exactly coincided with R0. The reported results show that the PDR is

enclosed by higher intensity walls both in the radial as in the axial directions, i.e.,

it is a toroidal dark-focus in all three dimensions, at variance with other light beams

possessing only radial confinement, such as Laguerre–Gaussian modes. We have applied

the harmonic approximation around the PDR and we have derived the expression for the
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radial and axial trapping frequencies and the maxima of the potential barriers for blue-

detuned light as a function of common experimental parameters such as beam power,

beam waist, detuning and the parameters of the crystal. The reported results show the

suitability of the PDR for trapping ultra-cold atoms with blue-detuned light, making this

technique ideal for experiments where well-defined potentials and high intensity beams

are required [170,198–200]. Therefore, as a proof of the usefulness of the derived theory

we have performed numerical simulations of the dynamics of a trapped 87Rb BEC with

N = 12000 atoms in the dark ring potential using the harmonic approximation and have

compared the obtained results with the solution of the original CR light field. We have

also compared the ground states in both cases and we have found 0.7% relative difference

in energy between them. The numerical simulations agree well with the experimental

results on the dynamics of a trapped 87Rb BEC in the PDR of CR. In addition to

the advantages commented above in terms of power efficiency and beam quality, the

minimum (and practically null) intensity circle offered by the toroidal dark trap avoids

photon scattering and presents no corrugation of the potential minimum at the focal

plan, at variance with techniques based on LG beams [209] or amplitude masks [210–

212]. A range of applications of this technique can be envisioned: for optimized beam

geometries, i.e., small w0, R0, and zR, the toroidal dark focus of the PDR generated by

CR could be used to built an all-optical trap for BECs using a single beam. Under such

conditions, this potential could be used as a basic element in atomic SQUID experiments

[216, 217], as well as to study the dynamics of matter waves with periodic boundary

conditions and the generation of persistent currents [208, 218]. For large R0, the PDR

can be used as a dark 2D ring potential by using a 1D light sheet, along the axial

direction, as an additional confining potential. This configuration would allow to study

wave-packet interference in a mesoscopic ring simulating a quasi-one-dimensional system.

By modifying this 1D light sheet to a blue-detuned double layer also accessible via CR

[54,66] again a fully blue-detuned dark trap geometry with added flexibility is generated.

Additionally, a radial optical lattice could be generated by means of a cascade of biaxial

crystals, generating 2N−1 dark rings for a cascade of N biaxial crystals [55, 83]. This

could be also combined with the technique shown in [82] to generate an azimuthal optical

lattice with controllable number of nodes and separation between them, applicable in

quantum-many body systems experiments [219, 220]. Also interesting is the possibility

of using the PDR to coherently injecting, extracting, and velocity filtering of particles,

ultra-cold atoms and BECs as reported in [142, 144] by tuning the polarization of the

input beam and opening/closing the ring potential. Finally, we would also like to note

that by switching to red-detuned light, the inner and outer bright rings around the PDR

generate an intrinsically concentric system of a double-ring potential which can be used

for the generation of coherent double wave packets for the investigation of wave packet

tunneling and coupled persistent currents of ultra cold atoms [221,222].





CHAPTER 8

Second harmonic generation of a conically refracted beam

Type I and type II second harmonic generation (SHG) of a beam transformed by

the conical refraction phenomenon are presented within this Chapter. At variance with

other works combining SHG and CR where both phenomena are generated in a single

non-linear biaxial crystal, see Section 8.1, in our approach we firstly transform an input

Gaussian beam with a linear biaxial crystal and then double its frequency with non-

linear KTP and LBO crystals. In this case, a very efficient process is found, since the

optic axis of the linear biaxial crystal can be aligned with the phase-matching direction

of the non-linear crystals used. Section 8.2 describes our experimental approach, in

which we use LBO (for type I SHG) and KTP (for type II SHG) non-linear crystals to

frequency double a CR beam at a fundamental frequency of 1064 nm. In Section 8.3 it

is discussed the transverse intensity patterns obtained at the focal plane of the system.

We show that for type I the second harmonic intensity pattern is a light ring with

a point of null intensity, while for type II the light ring possesses two dark regions.

The experimental results are in good agreement with the proposed theoretical model.

The beam evolution of the SHG CR beams are reported in Section 8.4, showing great

similarities with the CR beam at the fundamental frequency. We discuss SHG CR

beams generated at different positions of the non-linear crystals along the fundamental

CR beam in Section 8.5. Since the SHG process depends strongly on the input intensity

distribution, transverse intensity patterns generated do not resemble the ones obtained

at the focal plane. Finally, in Section 8.6 we outline the main conclusions that can be

drawn from our work.

The research contained in this chapter has been performed in collaboration of José

Trull and Crina Cojocaru from the Universitat Politècnica de Catalunya (UPC) and

published in Ref. [223].
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8.1 Introduction

The invention of the laser opened many new areas of physics. In particular, the

interaction of a powerful, monochromatic and coherent light source with optical media

resulted on the born of non-linear optics. The first non-linear optical effect reported was

second harmonic generation (SHG), in which two photons at frequency ν combine each

other to form a single photon at frequency 2ν. Note that in this process both energy

(E) and momentum (k) are conserved:

Ef = ~2ν = ~ν + ~ν, (8.1)

kf = k2ν = kν,1 + kν,2. (8.2)

Eq. (9.2) is also known as the phase-matching condition. Since linear momentum is a

vectorial magnitude, both the direction and magnitude of this quantity must be pre-

served. In the simplest case the refractive indices at the two involved frequencies satisfy

n(2ν) = n(ν) and we have collinear phase-matching, i.e., k2ν ‖ kν . For n(2ν) 6= n(ν),

the phase matching condition implies, in general, non-collinear SHG.

In spite of being a relatively old phenomenon, only few articles have addressed CR

in the non-linear regime [224–231], being all of them centered in the study of second

harmonic generation (SHG) processes. In most of these works [224, 229], CR and its

SH signal were generated in the same biaxial crystal (BC). This configuration ensures a

very compact set-up, but unfortunately the phase matching direction does not coincide,

in general, with one of the the optic axis of the crystal. Therefore, only materials

with very large non-linearities are able to simultaneously generate SH and CR. An

alternative study of SHG in combination with CR can be carried out by placing a NLC

after a BC [223, 230]. This configuration allows the adjustment of the phase matching

condition for SHG in the NLC with the optic axis of the BC. In this case, a more efficient

SHG process can be found. In what follows we present our results of SHG in type I

(LBO) and type II (KTP) NLCs of a beam transformed by the CR phenomenon, that

have in published in Ref. [223]. [223–231], being all of them centered in the study of

second harmonic generation (SHG) processes. In most of these works [224, 229], CR

and its SH signal were generated in the same biaxial crystal (BC). This configuration

ensures a very compact set-up, but unfortunately the phase matching direction does

not coincide, in general, with one of the the optic axis of the crystal. Therefore, only

materials with very large non-linearities are able to simultaneously generate SH and

CR. An alternative study of SHG in combination with CR can be carried out by placing

a NLC after a BC [223, 230]. This configuration allows the adjustment of the phase

matching condition for SHG in the NLC with the optic axis of the BC. In this case,

a more efficient SHG process can be found. In what follows we present our results of

SHG in type I (LBO) and type II (KTP) NLCs of a beam transformed by the CR

phenomenon [223].
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8.2 Experimental set-up

Fig. 8.1 shows in detail our experimental set-up.

FL IL

CCD camera 

Yb fiber laser

λ = 1064 nm

τ = 110 ns

PRR = 20 kHz

w0 = 3.2 mm

Ring plane

 

ZIL

 

IRF

BCBCBCBCBCBC NLNLNLNLCCCNLC

f + ∆BC+∆NLC

(b)

o e

(a)

Figure 8.1: (a) Experimental set-up. A randomly polarized input beam with a beam

waist radius of w0 = 3.2mm is obtained from an Yb fiber laser generating light pulses

at 1064 nm with pulse duration τ = (110 ± 10) ns at 20 kHz repetition rate (PRR)

and up to 10W of nominal power per pulse. This beam is focused by a lens (FL) of

400mm focal length to a KGd(WO4)2 BC of length L = 28mm and conicity, yielding

R0 = 475µm. At the ring plane, we place the NLCs: LBO (type I, deff = 0.668 pm/V,

LLBO = 10mm) and KTP (type II, deff = 3.2598 pm/V, LKTP = 8mm). The imaging

lens IL projects different planes of the SHG propagated beams onto the CCD camera.

The infrared filter (IRF) eliminates the radiation at the FH. ∆BC = L(1− 1/nBC) and

∆NLC = LNLC(1 − 1/nNLC) are the longitudinal shift of the ring plane added by the

BC and the NLC, respectively. (b) CR ring at the ring plane with the fine Poggendorff

splitting obtained in the absence of the NLC. Double orange arrows show the polarization

distribution along the ring. o and e denote the points with ordinary and extraordinary

polarizations, respectively.

A randomly polarized input beam at 1064 nm is focused to a KGd(WO4)2 BC under

CR conditions. At the ring plane, where the CR ring at fundamental harmonic (FH)

appears, we place the NLCs oriented precisely under phase-matching conditions for

optimal generation of SH. The focusing lens used ensures operation under plane wave

approximation, i.e., LNLC ≈ zR so that the NLC generates SH only from a unique

transverse pattern of the CR beam. The length of the NLCs (LLBO = 10mm, LKTP =

8mm) is smaller than the distance of the Raman spot from the ring plane: ZRaman ≈
166mm. Finally, an imaging lens (IL, with position ZIL) of 200mm focal length projects

the ring plane into the CCD camera.
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8.3 Transverse intensity patterns at the focal plane

Fig. 8.2(b) and Fig. 8.2(c) show the experimental SHG intensity patterns for type I

and type II NLCs, respectively. We observe that in type I SHG, the transverse pattern

consists of a light ring with a point of null intensity, resembling the pattern obtained in

CR with linearly polarized beams [33]. However, in this case the whole SH ring is linearly

polarized with the polarization plane coinciding with the extraordinary polarization of

the NLC. For type I NLC, SHG occurs in the form oo→ e. Thus, the point of the CR

ring at the FH with polarization coinciding with the extraordinary mode of the NLC

does not lead to SHG and, therefore, the resulting pattern in this case forms a crescent

ring. With respect to type II SHG, we observe a light ring with two diagonally opposite

points of null intensity. In this case, the ring is also linearly polarized coinciding with the

extraordinary polarization of the NLC. Note that in type II SHG the doubling frequency

process occurs through the channels oe → e and eo → e. As a consequence, the two

points of the CR ring at the FH with only ordinary or extraordinary polarization do not

contribute to SH while the maximum SH intensity comes from those points of the FH

ring with an equal contribution of ordinary and extraordinary polarizations.

o e

(a) (b) (c)

FH Type I (LBO) Type II (KTP)

Figure 8.2: Patterns of the FH (a), type I (b) and type II SH (c) generated with the NLCs

placed at the ring plane. Patterns were captured by using the lens IL, see Fig. 8.1, to

image the ring plane onto the CCD. Top and right insets are, respectively, the horizontal

and vertical intensity profiles at the center of the images. Orange double arrows indicate

the polarization plane.

Fig. 8.4 presents the SHG transverse intensity patterns for different CR rings ob-

tained from biaxial crystals with corresponding different length. The KGd(WO4)2 crys-

tals used in this case were 28mm, 23mm and 11mm long (476µm, 397µm and 181µm

of ring radius respectively). Insets are the profile of the fundamental frequency. Since

the state of polarization and transverse intensity pattern of the FH is well preserved

even for the shorter BC, the results obtained for the three crystals are identical.
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SHG Type

Type I

Type II

Ring radius
181 µm 397 µm 476 µm

(b)(a) (c)

Figure 8.3: Type I (a)-(c) and type II (d)-(f) SHG patterns of conically refracted beams

with ring radius of 181µm (second column), 397µm (third column), and 476µm (fourth

column). Insets in first row represent in scale the rings at the fundamental frequency.

To obtain a quantitative description of the SH process we use the diffractive theory

of CR presented in Chapter 2. In particular, it can be shown, that for the asymptotic

case ρ0 →∞, the intensity of the CR beam at the ring plane is described by:

|f (ξ, Z)| = e
− ξ2

2wZ

25/4w
3/4
Z

D 1
2

( √
2ξ√
wZ

)

, (8.3)

where wZ = 1+iZ and D 1
2
(x) is the parabolic cylinder (Weber) function [29]. ξ ≡ ρ−ρ0

is the normalized radial component in cylindrical coordinates. Taking into account both

the polarization and the intensity distribution of the FH given by Eq. (8.3) and the the

nature of the SHG processes (oo → e for type I; oe → e and eo → e for type II), it is

straightforward to derive the corresponding analytical expressions for the SH intensity

patterns from the CR ring:

IType I = I2ω0

|f (ξ, η)|4
ρ20

cos4
(

ϕ+ φ0
2

)

, (8.4)

IType II = I2ω0

|f (ξ, η)|4
ρ20

sin2 (ϕ+ φ0) , (8.5)

I2ω0 =

(

P

λ1Lǫ0c

n1
n2

)

tanh2





√

√

√

√

(

16π2d2effPL

n1n2ǫ0cλ31

)



 , (8.6)

where ϕ indicates the point of the CR ring, φ0 is the mutual orientation between the

planes of optic axes of the BC and the NLC and ρ0 ≡ R0
w0

measures the ring radius in
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beam waists. I2ω0 is the normalized intensity of the SH signal at the exit of a NLC for a

Gaussian beam [232], where P is the power of the input beam, λ1 is the wavelength of the

fundamental wave, ǫ0 is the vacuum permeability, c is the speed of light in the vacuum,

deff is the maximum value of the effective χ2 coefficient and n1 and n2 are the optical

refractive indexes of the NLC. In Fig. 8.4 we plot the azimuthal intensity variations

obtained experimentally (symbols) and the corresponding theoretical solutions (solid

lines) for type I (red) and type II (black) NLCs.

Note, in addition, that the inner Poggendorff ring is almost non visible in the SHG

intensity patterns, see Figs. 8.2(b) and 8.2(c). For the FH, it has been shown that the

intensity of the input beam redistributes between the two Poggendorff rings in a ratio

3:1 (outer:inner) [27]. Since I2ω0 ∝ I2ω0
, the two Poggendorff rings do not generate the

same SH intensity signal, being the SHG outer ring much more intense than the inner

one.

Figure 8.4: Azimuthal intensity distribution of the final patterns for type I (LBO) and

type II (KTP) SHG. Symbols represent the experimental data, while solid lines are the

corresponding analytical solutions from Eqs. (8.4)–(8.6).

8.4 Beam evolution of the SHG beams

Fig. 8.5 presents the evolution of the transverse intensity patterns of the SHG beams

obtained by imaging different planes along the beam propagation. Comparing with the

intensity patterns observed in the absence of the NLC, i.e., under conditions of CR (top

row), one concludes that the frequency doubled waves are also CR beams, being their

evolution completely analogous to the FH. We have observed two focusing spots placed

symmetrically from the ring plane of the SH signals resembling the Raman spots of

CR. This behavior is expected since SHG is a non-linear process that converts both the

intensity and the phase of the incoming wavefront inside the NLC.



8.5 Influence of the position of the non-linear crystal 117

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

F
H

Ty
p

e
 I 

(L
B

O
)

Ty
p

e
 II

 (
K

T
P

)

Figure 8.5: Evolution of the transverse intensity profile in type I (middle row) and type

II (bottom row) SHG when the NLCs are placed at the ring plane of the CR beam. The

extraordinary polarization in the NLC was perpendicular to the plane of optic axes of

the BC, i.e., φ0 = 0◦. We note that the Raman-like spots for second harmonic, see (d)

and (h), have been observed on both sides from the ring plane. First row images show

the transverse intensity patterns observed in the absence of the NLC.

8.5 Influence of the position of the non-linear crystal

It is well known that SHG depends on the beam’s profile passing through a NLC.

To illustrate how is this dependence for CR beams, power measurements of the total

SHG intensity were taken with the NLCs placed at different positions of the CR beam.

Both in type I and type II SHG, the Raman spot is the most efficient plane. The

corresponding transverse intensity patterns obtained at the focal image plane when the

NLCs are placed at different positions of the beam propagation at FH are shown in

Fig. 8.5(a)–(h). It is particularly interesting that, when the NLCs are placed out of the

ring plane, there are contributions to the SHG beam of all the original CR beam, i.e., of

the CR ring, the Raman spot and the secondary rings at the same time. This has been

also pointed out by Peet and Shchemelyov [230].

8.6 Conclusions

In summary, we have reported SHG in type I and type II NLCs from an input beam

refracted conically after passing along the optic axis of a BC. This configuration allows
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aligning precisely the phase-matching direction of the NLC. For type I, the SH pattern

at the ring plane forms a light ring with a point of null intensity, corresponding to

the extraordinary polarization of the FH. In contrast, for type II SHG, the light ring

possesses two dark points that correspond to the two points of the FH with only ordinary

or extraordinary polarizations. We have provided a qualitative explanation of the SH

intensity patterns in terms of the different channels that contribute to the SH signal and

derived an analytical solution that is in good agreement with the experimental results.

Besides, we have investigated the spatial evolution of the SH beams showing that they

resemble conically refracted beams. Finally, we have shown that the Raman spot is the

most efficient region for SHG and demosntrated that when the NLCs are placed out

of the ring plane, the transverse intensity patterns observed at the focal image plane

posses contributions from the CR rings and the Raman spot at the same time.

Ty
p

e
 II

 (
K

T
P

) (e) (f ) (g) (h)

(a) (b) (c) (d)

Ty
p

e
 I 

(L
B

O
)

0-2.5-5-7.5-10-12.5-15-17.5

ZNLC (zR)

In
te

n
si

ty
(a

.u
.)

Figure 8.6: Top plot: Measured total output SHG power for different positions of the

NLCs along the FH beam propagation. (a)–(h) Patterns obtained as the position of the

type I (first row) and type II (bottom row) NLC is placed at different positions along

the beam propagation direction of the FH beam. Subsequent images are separated a

distance of 5zR.



CHAPTER 9

Testing quantum mechanics with conical refraction

In this Chapter there are presented, to our knowledge, the first attempts to use

CR for quantum optical applications. We propose the use of CR to measure linear

momentum entanglement between two twin photons generated by means of spontaneous

parametric down-conversion through a polarization measurement. This proposal was

conceived during a research stay at the group of Prof. Miles Padgett (University of

Glasgow). Unfortunately, the duration of the stay was insufficient to achieve good

quality experimental data, reason for which we will restrict to the theoretical proposal.

The Chapter is organized as follows. In Sec. 9.1 we introduce the Einstein–Podolsky–

Rosen paradox and Bell inequalities, that are at the heart of our proposals. Sec. 9.2

is devoted to explain the transformation of a spontaneous parametric down-conversion

beam by means of the conical refraction phenomenon. Then, in Sec. 9.3 we show how a

single biaxial crystal can be used to swap linear momentum entanglement for polarization

entanglement. We present the quantum state of the system and how it can be converted

into a polarization state. To conclude, in Sec. 9.4 we sum up the ideas presented in this

Chapter and discuss the reasons why we did not succeed with the experiments.

9.1 Introduction

In 1935 Albert Einstein, Boris Podolsky and Nathan Rosen presented a paradox (the

EPR paradox) that became the major critique against the Copenhagen interpretation

of quantum mechanics [233]. With that critique, EPR aimed to show that the wave-

function is not enough to describe reality and, therefore, that the quantum-mechanical

description of the world is incomplete. The EPR paradox can be summarized as follows.

Let’s consider a disintegration process that emits a pair of particles and let them travel
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a time enough so they are space-time separated but they are entangled in momentum

and position. Quantum mechanics affirms that there are some quantities (observables)

that cannot be simultaneously measured with complete precision. In this sense, it is

stated that operators associated to these conjugated observables. This is the case of

momentum p and position r, whose canonical commutation relation leads to the well

known uncertainty principle σxσp ≥ ~/2. Besides the fact that the uncertainty principle

introduces some constrains, there is no restriction to measure simultaneously the mo-

mentum of one of a pair of particles and the position of the other one. However, such

measurement would give us a complete knowledge of both the position and momentum of

the two particles, since in the disintegration process both momentum and center of mass

position must be preserved. This seems to be in contradiction with the Copenhagen in-

terpretation of quantum mechanics. EPR stated that a more fundamental theory based

on some unknown (hidden) variables should be developed to make quantum mechanics

complete. Soon afterward, Neils Bohr wrote a reply to the EPR paradox where he stated

that it is an error to consider both particles as two separate systems [234]. After the

particles have interacted once, they must be considered as part of a single system. This

response to the EPR paradox was enough for the quantum-mechanical defenders but it

was not enough to discard the existence of some hidden variable theory that explained

the oddities of quantum mechanics.

In 1964 John S. Bell published a work that settle any discussion on that sense

[235,236]. Bell realized that EPR assumed that the measuring process performed in one

particle is not affecting the measuring process carried out over the other particle, i.e.,

the measurements are local. By taking the latter statement and the idea of the EPR

paradox that separated particles have separated physical realities as axioms, Bell derived

a set of inequalities that every local theory of hidden variables should satisfy. To the

delight of quantum mechanical backers, he found that in some cases quantum mechanics

does not satisfy those inequalities and, therefore, that quantum mechanics cannot be

described by any local theory of supplemental variables. The direct consequence of this

finding is that quantum mechanics is non-local, at variance with any intuition that we

have of our everyday world.

The problem is that situations of conflict where quantum mechanics violate Bell

inequalities are rare and hard to test experimentally, since a very well defined entangled

state and the corresponding measuring devices are needed. In 1969, John F. Clauser,

Michael A. Horne, Abner Shimony and Richard A. Holt proposed a feasible experiment

to test Bell inequalities based on polarization entangled correlated photons produced in

certain atomic cascades that opened the route to a first batch of experiments [237–240].

With the exception of Ref. [238] all these works demonstrated agreement with quantum

mechanics, i.e., violation of Bell inequalities. However, in these first experiments the

detection efficiency was so low that one additional assumption was required: given a pair

of photons emerging from the polarizers used, the probability of their joint detection

is independent of the polarizer orientations. Alain Aspect and co-workers were able to
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avoid the latter assumption by using a very efficient atomic cascade process that enabled

to clearly violate Bell inequalities [241–243].

Nowadays, most experiments devoted to further test Bell inequalities take profit of

the non-linear optical phenomenon of spontaneous parametric down-conversion (SPDC)

that in 1995 was demonstrated to be an efficient source of polarization entangled pho-

ton pairs by Anton Zeilinger and co-workers [244]. In fact, this source also produces

frequency entangled [245–247] and both linear [248,249] and orbital angular momentum

entangled [250–255] photon pairs. In our case, we will use photon pairs produced by

SPDC to propose a novel method to swap linear momentum entanglement into polariza-

tion entanglement by means of CR. Additionally, we will propose a CR-based Bell-like

inequality to test entanglement between the linear momentum and the polarization of a

single photon.

9.2 Conical refraction of a spontaneous parametric down-

converted beam
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Figure 9.1: (a) Spontaneous parametric down-conversion (SPDC) process: a pump pho-

ton of frequency ν0 and momentum |kν0 | = 2πn/λ0 decays into two photons with corre-

sponding momentum |kνj | = 2πn/λj (j = {s, i}). (b) Perfect collinear phase-matching:

the two photons are emitted parallel to the direction of the pump and the down-converted

light forms a bright spot. (c) Perfect non-collinear phase-matching: the signal and idler

photons have opposite transverse momentum and their directions belong to a cone. In

this case the transverse light pattern of the down-converted light forms a light central

ring. NLC: nonlinear crystal.
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Spontaneous parametric down-conversion (SPDC) is a non-linear process in which

a single photon decays into two new photons called as idler and signal photons. In this

process, which was firstly identified by Kleinman as optical parametric noise [256], both

the energy and the linear momentum must be preserved, i.e.

hν0 = hνs + hνi, (9.1)

kν0 = kνs + kνi , (9.2)

being Eq. (9.1) and Eq. (9.2) known as the phase-matching conditions. If |kν0 | =
|kνs |+ |kνi | collinear phase-matching is found and the transverse intensity pattern of the

SPDC beam at the output of the non-linear crystal forms a bright spot, see Fig. 9.1(b).

In contrast, if the previous relation does not hold, the non-collinear phase-matching

condition produces a SPDC beam evolving as a cone whose transverse intensity pattern

forms a light ring, as shown in Fig. 9.1(c). Note that in this case, the signal and idler

photons appear at diametrically opposite positions on the light ring.

The signal and idler photons generated in the SPDC process have been reported

to be entangled in many different degrees of freedom such as polarization [244, 257],

frequency [258], linear momentum [259], transverse position [260] and orbital angular

momentum [250]. In our case, we use a BBO uniaxial crystal to produce type-I SPDC

photons with the same polarization and frequency and we pay attention to correlations in

linear momentum. The intensity profile of the SPDC beam in the far-field of the crystal

imaged with a lens of focal length f can be modeled through the following expression:

I(r)SPDC = sinc2
(

ar2

f
+ α

)

, (9.3)

where α = (|kν0 | − |kνs | − |kνi |)L/2 is a phase-matching parameter that determines the

opening angle of the SPDC cone and a = (|kνs |+ |kνi |)L/4n2, where n is the refractive

index for the signal and idler wavelengths and L is the crystal length [261]. For our

purposes, we require non-collinear phase-matching to obtain a clear SPDC light cone.

The transformation of such a beam by means of CR can be easily predicted making use

of Eqs. (2.12)–(2.15) and (9.3). Both the theoretical and the experimental transverse

intensity patterns obtained when the SPDC beam at the far-field of the non-linear BBO

crystal (α ≈ −3, f = 200mm, L = 5mm, λ0 = 355 nm, λi = λs ≈ 2λ0) passes through a

biaxial crystal are presented in Fig. 9.2. Note that the polarization of the SPDC beam

was transformed into circular by means of a quarter wave-plate. The transverse intensity

pattern is formed by a pair of concentric light rings without Poggendorff splitting. We

have checked that the polarization distribution along the rings is CR-like, i.e., it is

linear at every point with the azimuth rotating π rad for a complete turn along the

rings. In what follows, we take profit of the linear momentum entanglement provided

by the SPDC process and of the linear momentum-polarization relation offered by the

CR phenomenon to propose a new Bell-type inequality test of quantum mechanics.
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(a) (b)

Figure 9.2: (a) Numerically calculated, by using Eq. (9.3), and (b) experimentally

recorded transverse intensity pattern of the down-converted light cone after being trans-

formed by the CR phenomenon. For the experimental image, a BBO non-linear crystal

was used to down-convert input photons at 355 nm into momentum-entangled photon

pairs at 710 nm. Then, the optic axis of a KTP biaxial crystal (l = 10mm) was aligned

with the beam propagation direction of the pump beam and a CCD camera was used

to record the transverse intensity pattern. α ≈ −5.

9.3 Detection of linear momentum entanglement with con-

ical refraction

As commented in the previous section, SPDC can be used to generate photon pairs

entangled in time, frequency, polarization, linear momentum and orbital angular mo-

mentum. For the case of linear momentum entangled photons, entanglement detection

is not an easy task, since transverse positions must be measured, e.g., by using a single

photon CCD camera [146, 260]. In contrast, detection of polarization entanglement is

much simpler, since only linear polarizers and single photon detectors are needed. In

this Section we propose how to take profit of the CR phenomenon to transform linear

momentum entanglement into polarization entanglement.

We consider that the down-converted photons have the same frequency, i.e., that

νs = νi =≡ ν = ν0 and also that they are generated in type I SPDC (therefore they

are horizontally polarized). As previously stated, the signal and idler photons are, in

general, emitted in a light cone, see Figs. 9.1(a) and (c). Their linear momentum ks,i

has both transverse k⊥
s,i and parallel k

‖
s,i components to the propagation direction of the

fundamental beam. These momentum components can be written as

k⊥
s,i =

k0
2

sinβ (cosφs,iux + sinφs,iuy) , (9.4)

k
‖
s,i =

k0
2

cosβuz, (9.5)

where k0 = 2πn/λ0 is the wave-number of the fundamental photon, β is the aperture

angle of the down-converted cone, φs,i is the azimuthal angle in cylindrical coordinates
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and ux,y,z form an orthogonal basis of unitary vectors. If we look at the transverse

momentum component and define φs ≡ φ, due to momentum conservation the relation

φi = φ + π must be satisfied. Fig. 9.3 shows our experimental proposal. The state

of polarization of the down-converted photons emerging from the non-linear crystal

is transformed by means of a quarter wave-plate into left-handed circular (σ+), for

instance. The system formed by the down-converted photons can be mathematically

described by the following state:

|ψ〉 = 1

2π

∫ 2π

0
dφ
∣

∣φ, σ+
〉

s

∣

∣φ+ π, σ+
〉

i
. (9.6)
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Figure 9.3: Proposed set-up to demonstrate linear momentum entanglement through a

polarization measurement with CR. The state of polarization of the SPDC cone emitted

by a BBO non-linear crystal is transformed from linear into circular by means of a

quarter wave-plate (QWP). A slit selects only two azimuthal sectors of the light cone

and, therefore, fixes the transverse momentum of the transmitted twin photons. A

biaxial crystal (BC) couples the transverse momentum of photons with a certain linear

polarization that depends on the orientation of the BC. A non-polarizing beam splitter

(NPBS) sends each photon to a linear polarizer (LP) and a single photon detector (SPD)

to measure coincidences counts while rotating the mutual angle between the transmission

axes of the polarizers. The inset shows different plots of the correlation function between

the LPs of branches A and B as a function of the orientation of the transmission axis of

LPB (ϕB) calculated from Eq. (9.14) for ϕA = 0 rad (blue line), ϕA = π/8 rad (purple

line), ϕA = π/4 rad (yellow line) and ϕA = 3π/8 rad (green line).

Then, a slit whose aperture plane is described by the azimuthal angle φk projects

the state described by Eq. (9.6) into the state

|ψ〉′ =
∣

∣φk, σ
+
〉

s

∣

∣φk + π, σ+
〉

i
, (9.7)
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which is a state with well defined transverse linear momentum given by the azimuthal

angle φk. This bi-photon state passes through a biaxial crystal with k
‖
s,i parallel to one of

its optic axis. Following the theoretical formalism used in Sec. 2.3.3 it is straightforward

to deduce that the resulting state can be described by

|ψ〉out =
1√
2

(∣

∣

∣

∣

φk,
φk
2

〉

s

∣

∣

∣

∣

φk + π,
φk
2

+
π

2

〉

i

+

∣

∣

∣

∣

φk + π,
φk
2

+
π

2

〉

s

∣

∣

∣

∣

φk,
φk
2

〉

i

)

, (9.8)

where we have set the orientation of the characteristic G vector of the biaxial crystal at

ϕc = 0. Note that the action of the biaxial crystal over the bi-photon state is twofold:

(1) the linear momentum of each photon has equal probabilities of being projected

at azimuthal angles φk and φk + π and (2) the state of polarization of each state is

correspondingly transformed from circular to linear with azimuth φk/2−ϕc and φk/2+

π/2 − ϕc. Without loosing generality we can set φk = 0, which leaves the state from

Eq. (9.8) as

|ψ〉out =
1√
2
(|→, H〉s |←, V 〉i + |←, V 〉s |→, H〉i) , (9.9)

where we have defined transverse linear momentum states with azimuthal angle 0/π as

→ / ← and linearly polarized states with azimuth at 0/π2 rad as H/V . The combined

role of the biaxial crystal and the NPBS is to remove the information on the linear

momentum of each photon, so that the bi-photon state approaching the detectors is:

|ψ〉out =
1√
2
(|H〉s |V 〉i + |V 〉s |H〉i) , (9.10)

which is a well known Bell-state for polarization entangled photons (see [236] and the

references therein). Once the photons are spatially separated by the NPBS and passed

through the corresponding linear polarizers A and B with respective transmission axis

at angles ϕA and ϕB, the expected quantum coincidence counts Cij (where i, j ∈ 0, 1)

at given single photon detectors after the linear polarizers are

C00 (ϕA, ϕB) = C11 (ϕA, ϕB) =
1

2
sin2 (ϕA − ϕB) , (9.11)

C01 (ϕA, ϕB) = C10 (ϕA, ϕB) =
1

2
cos2 (ϕA − ϕB) . (9.12)

For these coincidence counts, the well known correlation function

E (ϕA, ϕB) =
C00 (ϕA, ϕB) + C11 (ϕA, ϕB)− C01 (ϕA, ϕB)− C10 (ϕA, ϕB)

C00 (ϕA, ϕB) + C11 (ϕA, ϕB) + C01 (ϕA, ϕB) + C10 (ϕA, ϕB)
(9.13)

reads:

E (ϕA, ϕB) = cos2 [2 (ϕA − ϕB)] . (9.14)

Therefore, the Bell parameter S ≡ E (ϕA, ϕB) +E (ϕ′
A, ϕ

′
B) +E (ϕ′

A, ϕB)−E (ϕA, ϕ
′
B)

reaches a maximum value of 2
√
2, which is the upper bounding for violation of Bell

inequalities.
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9.4 Conclusions

In this Chapter we have proposed the use of CR to transform linear momentum

entanglement of twin photons generated in a non-linear crystal by means of SPDC into

polarization entanglement. It has been shown that the CR phenomenon couples a given

transverse linear momentum with a certain linear polarization. We have described the

quantum state of photons before and after the biaxial crystal in terms of these two

observables and shown that, at least theoretically, linear momentum entanglement is

transformed into polarization entanglement. It has been demonstrated that this output

quantum state is a Bell state for polarization with a well known Bell inequality that

gives a maximum value of 2
√
2 of the S parameter.

Unfortunately, the experimental data collected from the experiments carried out in

order to demonstrate our proposal did not have quality enough to measure the Bell (S)

parameter. The major drawback that we suffered during the research stay at the group

of Prof. Miles Padgett was noise from the environment that strongly affected the bucket

detectors used, together with the lack of extra time to keep on with the experiment.

In case of being demonstrated experimentally, our proposal would open a new route

to demonstrate linear momentum entanglement of twin photons, which is a hard task

due to the high sensibility of the CCD detectors that are needed, with a relatively

simple polarization measurement. Note that, as commented in previous Chapters, CR

is a linear effect that does not depend on the intensity of the input source. Additionally,

biaxial crystals can be transparent to a high spectral range and they convert the full

power of the input light source, which would significantly decrease losses compared with

other systems.



CHAPTER 10

Conical refraction for free-space optical communications

In this Chapter, we propose a polarization de-multiplexing and multiplexing sys-

tem based on conical refraction to increase the channel capacity for free-space optical

communication applications. The proposed technique is based on the forward-backward

optical transform occurring when a light beam propagates consecutively along the optic

axes of two identical biaxial crystals with opposite orientations of their conical refraction

characteristic vectors. We present an experimental proof of usefulness of the presented

technique by increasing in one order of magnitude the channel capacity at optical fre-

quencies in a propagation distance of 4m. The Chapter is organized as follows. In

Sec. 10.1 we discuss different FSOC techniques that can be found in the literature.

Then, the forward-backward CR optical transform that is at the heart of our FSOC sys-

tem is presented in Sec. 10.2. Sec. 10.3 is devoted to show our experimental proposal, in

which we use three biaxial crystals, and the corresponding experimental results. Finally,

in Sec. 10.4 we summarize our work and envisage future possible experiments based on

our technique.

The research contained in this chapter has been published in Ref. [82] and patented

in Ref. [262].

10.1 Introduction

In optical communications, different properties of a light field, such as its intensity,

wavelength, polarization, and orbital angular momentum (OAM), can be used to pro-

vide optical signals to efficiently transmit the information so that these signals do not

interfere each other along the communication channel. Thus, for example, the capacity

of a communication channel can be substantially increased if one multiplexes different

127



128 Conical refraction for free-space optical communications

wavelengths of various input optical carrier signals into a single channel by using the

Wavelength Division Multiplexing (WDM) technique [263]. For a monochromatic laser

beam, Laguerre–Gaussian light beams carrying orbital angular momentum (OAM) in

the helicity of their phase fronts have been proposed [132] as a basis of carrier signals

allowing, in principle, for an arbitrary increase of the channel capacity [264–267]. How-

ever, there are practical drawbacks that restrict the range of applicability of the OAM

encoding technique [268, 269] such as the large divergence of high order OAM modes,

which prevent their use for free space optical communications (FSOC) at long distances.

Alternatively, also for a monochromatic field, one could additionally use the polar-

ization degree of freedom of a light beam as a carrier basis of signals for FSOC links.

In this case, nevertheless, the use of a polarization beam splitter allows, at most, to

double the FSOC channel capacity. In this Chapter, we present a novel method to

de-multiplex and multiplex a monochromatic input light beam into, in principle, an

arbitrary large number of polarization states by means of the CR phenomenon. Our

formalism is closely related to the wave-vector and polarization formalism presented in

Sec. 2.3 and on the forward-backward optical transformation carried out by the CR

phenomenon in a cascade of two biaxial crystals with opposite orientations of their G

vectors.

10.2 The forward-backward conical refraction transforma-

tion

As it has been previously shown, when an ideally collimated circularly polarized

light beam passes along the optic axis of a biaxial crystal it refracts conically inside the

crystal and emerges as a collimated hollow cylinder whose transverse intensity pattern

forms a light ring. This light ring is laterally shifted being both the direction of the

displacement as well as the ring radius given by the so-called characteristic G vector

of the biaxial crystal [33], see Fig. 2.1. As a consequence, a crystal with orientation

of its G vector ϕG = 90◦ shifts the center of the CR ring a distance R0 in the +y

direction, where we have considered that G is contained in the xy plane and beam

propagation parallel to the z direction, as sketched in Fig. 10.1(a). In contrast, a crystal

with orientation of its G vector ϕG = 270◦, i.e., opposite to the previous case, shifts

the CR ring a distance R0 in the −y direction, see Fig. 10.1(b). If both effects are

combined, the output beam at the exit of the second biaxial crystal is identical to the

input beam entering into the first biaxial crystal. In other words, the birefringent effects

of both biaxial crystals cancel each other and the input beam remains invariant after

passing through the 2-crystal cascade. This particular arrangement, which allows for an

optical CR forward-backward transform, will be called in what follows as the degenerate

2-crystal cascade CR configuration. Note that in this simplified explanation, we have

only considered ideally collimated beams. However, as we will demonstrate in what

follows, the here defined forward-backward transform also applies to focused beams.
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Figure 10.1: Sketch of the forward-backward CR transform provided by a degenerate

2-crystal cascade configuration with formed by two biaxial crystals with orientation of

their characteristic vector G of (a) ϕG = 90◦ for G1 and (b) ϕG = 270◦ for G2 .

(c1)–(e3) Experimental transverse intensity patterns of the input beam entering into

the system (first column), the CR beam obtained at the ring plane (second column) and

the output beam emerging from the whole degenerate 2-crystal cascade (third column)

for a Gaussian input beam (first row), an elliptical input beam (second row) and a

star-shaped input beam (third row).

In Figs. 10.1(c1)–(e3) we show the transverse intensity patterns corresponding to

different input beams entering the first biaxial crystal (first column), the CR beam

obtained at the ring plane (second column) and the output beam emerging from the

whole degenerate 2-crystal cascade (third column) for a Gaussian input beam (first

row), an elliptical input beam (second row) and a star-shaped input beam (third row).

For a Gaussian input beam, at the ring plane the transverse intensity pattern is formed

by the well known pair of concentric bright rings with Poggendorff splitting. As it was

already discussed in Sec. 2.3, an elliptical input beam splits into two elliptical beams at

the ring plane of the first biaxial crystal. Finally, the star-like input beam is transformed

into azimuthal sectors along a ring at the CR ring plane. As it can be appreciated, the

output beams after passing through the degenerate 2-crystal cascade reproduces the

input beam.
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10.3 Multiplexing and de-multiplexing proposal and ex-

perimental results

LP QWP AAMFL FLCL

BC1 BC2 BC3
CCD camera 

Diode laser at

640 nm
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Receiver

Ring planene

=

1G
r

1G−
r

Figure 10.2: Sketch of the polarization de-multiplexing and multiplexing experimental

set-up based on CR being used to increase the channel capacity of a FSOC system.

The FSOC system is formed by the transmitter with its two identical biaxial crystals

presenting opposite G vectors, a free space propagation distance of 4m, and the receiver

with the third biaxial crystal. The inset shows how polarization signals are selected by

using an angular amplitude mask (AAM) that only allows passing some sectors of the

CR ring. Green lines indicate the state of polarization. LP: linear polarizer. QWP:

quarter wave plate.

In this section, we make use of the forward-backward transform of conical refraction

to propose a novel method to de-multiplex and multiplex a monochromatic light beam

into a large number of linearly polarized states as it is schematically shown in Fig. 10.2.

The first crystal de-multiplexes the input beam into an infinite number of linearly po-

larized beams placed along a ring (see boxed inset in Fig. 10.2 where each transmitted

sector is a linearly polarized beam). Each of these beams constitutes an information

channel (note that the channels are polarization channels) that can be individually se-

lected and modulated in amplitude. Later on, the second biaxial crystal multiplexes all

the channels into one beam that propagates in free space. Finally, a third biaxial crystal

can be used to decode the transmitted signal at the receiver stage. In what follows

we describe the CR de-multiplexing and multiplexing protocol in terms of the standard

elements that form a free space optical telecommunications system: the transmitter,

the free space propagation, and the receiver. Note that the mutual alignment of the

optic axes of the biaxial crystals should be maintained with precision within 50 µrad
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to make it work properly by means of the CR effect. In this section, we make use of

the forward-backward transform of CR to propose a novel method to de-multiplex and

multiplex a monochromatic light beam into a large number of linearly polarized states

as it is schematically shown in Fig. 10.2. The first crystal de-multiplexes the input

beam into an infinite number of linearly polarized beams placed along a ring (see boxed

inset in Fig. 10.2 where each transmitted sector is a linearly polarized beam). Each of

these beams constitutes an information channel (note that the channels are polarization

channels) that can be individually selected and modulated in amplitude. Later on, the

second biaxial crystal multiplexes all the channels into one beam that propagates in free

space. Finally, a third biaxial crystal can be used to decode the transmitted signal at

the receiver stage. In what follows we describe the CR de-multiplexing and multiplexing

protocol in terms of the standard elements that form a free space optical telecommu-

nications system: the transmitter, the free space propagation, and the receiver. Note

that the mutual alignment of the optic axes of the biaxial crystals should be maintained

with precision within 50 µrad to make it work properly by means of the CR effect.

The transmitter consists of an input monochromatic light beam, two biaxial crystals

in a degenerate 2-cascade configuration, an angular amplitude mask, and the lenses to

focus and collimate the beam. As input beam, we take a collimated linearly polarized

Gaussian beam with w0 = 1mm beam waist obtained from a 640 nm diode laser coupled

to a monomode fiber. A linear polarizer and a quarter wave plate are placed to ensure a

perfect circularly polarized Gaussian beam at the entrance of the first crystal. Note that

the experiment could also be performed with a linearly polarized input beam but with the

inconvenience of producing a crescent intensity pattern instead of a complete ring and,

therefore, the polarization channels would possess different amplitudes. The degenerated

2-cascade scheme is prepared with two identical KGd(WO4)2 biaxial crystals (< 100 nm

of difference) yielding a light ring after the first crystal of 872µm ring radius. The

polished entrance surfaces of the two biaxial crystals (cross-section 6 × 4mm2) have

parallelism with less than 10 arc seconds and they are perpendicular to one of the two

optic crystal axes within 1.5mrad misalignment angle. To focus and collimate the beam

we use lenses with 200mm focal length. To select the polarization channels at the light

ring we use angular amplitude masks forming a star burst-like pattern with n (up to

12) opened circular sectors, see boxed inset in Fig. 10.2. The amplitude masks actually

allow passing only some parts of the ring, thus we are indeed selecting the communication

channels. Encoding the information into the different channels could be performed by

time varying the transmission coefficient for each sector of the mask using, for instance,

a spatial light modulator.

In our experiments, the free space propagation distance is 4m. We have measured

that the multiplexed beam has a divergence similar to the initial Gaussian beam and,

therefore, we expect that our protocol could operate for the same distances as other

FSOC systems do it with Gaussian beams.

The receiver itself consists of an objective of 50mm focal length, a 12mm long
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KGd(WO4)2 biaxial crystal, and a CCD camera. This biaxial crystal de-multiplexes

(final patterns shown in the third row of Fig. 10.3) the free space propagated beam

(transverse patterns shown in the second row of Fig. 10.3), performing CR and recovering

the sectors that were modulated by the angular amplitude masks (first row of Fig. 10.3)

at the transmitter. As it can be observed in the third row of Fig. 10.3, we are able to

independently modulate up to 12 sectors, which constitutes an increase in one order of

magnitude of the channel capacity of the FSOC link. Last row in Fig. 10.3 shows the

intensity variation along the azimuthal direction of the corresponding de-multiplexed

patterns from the third row of Fig. 10.3. The intensity peaks of the received channels

are perfectly distinguishable with respect to the background. Additionally, one can also

note that there is no crosstalk between neighbor channels, since there appear as number

of peaks as number of channels selected at the transmitter.
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Figure 10.3: Experimental transverse intensity patterns (third row) and the correspond-

ing integrated azimuthal intensities (fourth row) obtained by the receiver for multiplexer

masks (first row) with 2 (a), 4 (b), 8 (c), and 12 (d) opened sectors. The second row

shows the multiplexed beams at the entrance of the receiver.

Crosstalk (XT) between the channels is one of the main limiting factors for real

applications. The main contribution into the XT between adjacent channels in our

system comes from light diffraction on the mask domain boundaries. To characterize

the XT, we have investigated the influence of the closure angle of the masks, i.e., the
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azimuthal angle separating neighbor open sectors (see θ in the inset of Fig. 10.4), and

the number of channels over it by measuring the residual intensity at the center of the

closed sector. For the latter case, the open and closed sectors in the mask have the same

azimuthal angular width and we measure the XT at the closed sectors. The results for

XT, i.e., residual intensity related to the intensity maximum, are presented in Fig. 10.4.

The data reveal that, as it can be expected, the smaller the number of channels the

smaller the XT. Moreover, the thinner the open sectors, which corresponds to larger

closure angle θ, the smaller the XT too. Red solid curve gives exponential fitting to the

experimental data that show the XT decay as θ increases and N decreases. For the 12

channels case shown in Fig. 10.3, the average XT is less than 3%. Finally, we would

like also to note that misalignment in crystals’ rotation around the beam propagation

direction leads to light polarization XT between any opposite points at the CR ring.

However, in our system the latter is well controlled below 10−6.

θ

θ

Figure 10.4: Crosstalk (XT) between adjacent channels vs. the closure angle θ (bottom

axis) and vs. the number of channels N (top axis) of the masks used. Red solid curve

represents exponential fitting to the experimental data. Uncertainty of the θ angle

measurement was below 1o.

10.4 Conclusions

In summary, we have proposed a novel technique to de-multiplex and multiplex a

monochromatic light beam into a finite and, in the ideal case, an arbitrary number of

linearly polarized states. The technique is based on the forward-backward transform

produced by two biaxial crystals under conditions of CR. We have demonstrated an

increase of one order of magnitude in the channel capacity for FSOC of a monochromatic

input Gaussian beam at 640 nm for a 4m propagation distance with cross-talk being

below 3%. In addition, we have investigated the XT with respect to the azimuthal angle

of the closed sectors and the number of sectors of the masks used. The obtained results

suggest that by simply optimizing the channel selecting mechanism, i.e., the thickness

of the open and closed sectors of the masks, one could increase the channel capacity or

decrease the XT for a fixed number of channels.
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As an encouragement for future investigations on the technique proposed in this

Chapter, we would like to note that by selecting appropriate biaxial crystals it would

be interesting to extend this novel method to other wavelengths in the optical and

telecommunication bands at which the crystals are transparent and to combine it with

the WDM technique. Finally, it would be very promising to look for new quantum

cryptography protocols by extending the technique to the single-photon case.



CHAPTER 11

Conclusions and outlook

In this last Chapter we aim to discuss and summarize the main contributions of this

thesis. Since all Chapters have been summed up at their end, here we will just comment

our most relevant contributions.

Within this thesis we have analyzed in detail the phenomenon of conical refraction

(CR) occurring in biaxial crystals when a light beam propagates parallel to one of the

optic axis and we have applied this phenomenon to different areas of physics such as

optical trapping, free-space optical communications or quantum entanglement.

After a brief overview of the phenomenon of CR and its relevance for the accep-

tance of the wave theory of light (see Chapter 1), we have exhaustively analyzed the

phenomenon of CR both theoretically and experimentally in Chapters 2–4. For a

cylindrically symmetric and homogeneously polarized beam, the diffractive solution of

CR (introduced by Belsky and Khapalyuk and reformulated by Berry [26, 27, 32, 74])

is based on two main equations and ρ0 ≡ R0/w0 is used as the control parameter that

structures the output beam, where R0 is the CR ring radius under geometrical approx-

imation and w0 the waist radius of the focused input beam. We have explored the

influence of ρ0 over the CR beam and shown that for ρ0 ≈ 1 both the transverse in-

tensity pattern at the focal plane and the evolution of the beam differs from the CR

beam found for ρ0 ≫ 1, which is characterized at the focal plane by a pair of concentric

bright rings with different intensity split by the Poggendorff dark ring. In particular,

we have reported the generation of a super-Gaussian beam [68] and a three-dimensional

dark focus for ρ0 = 0.45 and ρ0 = 0.92 [66], respectively.

It is also well known that under conditions of ρ0 ≫ 1 and for a Gaussian input beam

the polarization distribution along the CR rings at the focal plane is linear at every point

with the azimuth rotating continuously by π rad for a complete turn along the rings.

135
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In this thesis we have demonstrated that this polarization distribution is only found at

the focal plane and that out of the focal plane there exist states possessing non-null

ellipticity [69]. Not only this, it has been shown the existence of annular lines forming

polarization singularities separating right and left handed circularly polarized states. We

have further analyzed the state of polarization of CR beams for ρ0 ≈ 1 and demonstrated

the generation of Poincaré beams, i.e., non-homogeneously polarized beams possessing

all possible states of polarization. It has been also discussed the generation of optical

singularities and we have linked them with the spin-orbit coupling provided by the

biaxial crystal. We note here that it would be very interesting to further analyze the

spin-orbit coupling and optical singularities generated by non-Gaussian input beams,

including non-cylindrically symmetric and non-homogeneously polarized input beams

and also for the propagation out of the optic axis.

In this thesis we have also contributed to the diffractive theory of CR by demonstrat-

ing that the Hamiltonian operator introduced by Berry [32] can be used to predict the

transformation of non-homogeneously polarized and non-cylindrically symmetric beams

propagating through a biaxial crystal (or a cascade of them) along any direction [52].

The validity of the presented equations has been proved both for Gaussian and elliptical

input beams propagating both along the optic axis of a biaxial crystal and out of it and

also for a cascade of two biaxial crystals with aligned optic axis.

Although the Belsky–Khapalyuk–Berry equations of CR describes well all the phe-

nomenology associated to CR, they do not offer too much physical intuition about the

beam evolution [27,32]. Recently it was proposed that the CR beam can be understood

as the interaction of two light cones with slightly different positions of their vertices

along the axial direction [59]. Our contribution to this picture has been the reformu-

lation of the dual-cone model of CR and also the experimental demonstration of the

existence of two light cones without the need of blocking the beam at any part [56]. A

segmented linear polarizer that mimics the usual CR polarization distribution has been

used in order to select each of the cones and modify the intensity ratio between the inner

and the outer rings of CR.

The last contribution to the theory of CR reported in the present thesis has been

a CR model based in splitting of linearly polarized input waves. In this model, every

azimuthal point of the CR ring at the focal plane (Poggendorff splitting is neglected

in this approach) is characterized by a transverse wave-vector and a state of linear

polarization [54]. When an input wave enters into the crystal, it splits into two sub-

waves that preserve the original transverse wave-vector and refract to opposite points of

the CR ring. The state of linear polarization of these two waves is mutually orthogonal

and depends on the orientation of the biaxial crystal. We have shown that, with this

simple model, there can be obtained the general features of the final transverse intensity

pattern and polarization structure of complex input beams. As a proof of principle, we

have applied this formalism to the case of a linearly polarized axicon beam. This theory

has been shown to be of significantly usefulness for the calculation of the transverse
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intensity pattern obtained for an arbitrary large cascade of crystals with aligned optic

axes [55]. In this case, the resulting pattern after a cascade of N crystals contains in

general 2N−1 concentric bright rings. The intensity of the rings depend on the mutual

orientation between the crystals and their radius is a function of the CR ring radius

generated independently by each of the crystals.

The above mentioned splitting of an input wave into two sub-waves makes us glimpse

that even if the input beam lacks of some wave-vectors, the CR light ring can still be

observed. Following this idea, in Chapter 5 we have also investigated the CR trans-

formation of Gaussian input beams partially blocked by an obstruction [147]. We have

obtained that the CR phenomenon is a healing-like process that reconstructs partially

the output beam emerging from the biaxial crystal, e.g., when half of the input beam

is blocked, the transformed intensity pattern still forms a light ring. This has been

analyzed for two different scenarios, ρ0 ≫ 1 and ρ0 = 0.92, obtaining that the healing

process both in shape and in polarization distribution is more robust for large values of

ρ0.

When one looks at the shape of CR beams, the first application that is envisaged is

optical trapping. While optical trapping is usually associated to optical tweezers, in this

thesis we have explored and demonstrated optical trapping of both absorbing particles

and Bose–Einstein condensates by using, respectively, the photophoretic force and the

dipole force, see Chapters 6 and 7. On the one hand, it has been demonstrated that

the optical bottle formed by a CR beam can be reconfigured by changing the state of

polarization of the input beam [142]. In collaboration with the group of Prof. Wieslaw

Krolikowski at the Australian National University, we have used this mechanism to

efficiently load and unload absorbing glass shells up to 100µm of radius by means of the

photophoretic force. In this sense, it would be very promising to combine this technique

with the method described in Sec. 2.4 to modulate in real time the intensity distribution

between each of the axial intensity maxima of the CR bottle in order to move the

particles away from and towards the input source. On the other hand, we have carried

out two different implementations of CR as a dipolar potential for ultra-cold neutral

atoms by taking profit of the Poggendorff dark ring and the three-dimensional dark

focus reported in Chapter 3. Firstly, a complete characterization of both the Poggendorff

dark ring and the three-dimensional dark focus has been made, demonstrating that they

form, respectively, a null intensity region surrounded by high intensity walls in three

dimensions. For the Poggendorff dark ring case, this implies a dark toroidal potential

[178], while the three-dimensional dark focus forms a perfect optical bottle [179]. Then,

we have derived the harmonic trapping frequencies and potential depths directly from the

CR theory and, in collaboration with the group of Prof. Gerhard Birkl at the Technische

Universität Darmstadt, we have experimentally applied these potentials to trap a 87Rb

Bose–Einstein condensate. Optical ring potentials are particularly interesting because

they represent basic elements in the recently born field of Atomtronics [180,191–194] and

they are ideal candidates for the study of persistent currents and the implementation
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of atomic Sagnac interferometers [270]. To motivate future implementations of novel

potentials based on CR, the combination of CR and microlenses arrays could be used for

the generation of bright and dark annular optical lattices. In our case, we have restricted

to the case of dark potentials but note that annular bright geometries, including coupled

concentric rings, are also available via CR. Note also that reshaping of the CR optical

potentials could be possible by modifying in real time the state of polarization of the

input beam.

Since both the spatial evolution and the polarization distribution of a CR beam is

very rich, in collaboration with Prof. Jose Trull and Prof. Crina Cojocaru from the

Universitat Politècnica de Catalunya we have looked at the second harmonic generation

(SHG) of this kind of beams in type I and type II non-linear crystals, see Chapter 8

and Ref. [223]. It has been obtained that, in general, when the non-linear crystal is

placed at the focal plane of the input CR beam the transverse intensity patterns of the

SHG beams resemble the ring-like patterns of the fundamental frequency CR beams but

possessing linear polarization at all the points of the light structure. In contrast, when

the non-linear crystals are placed out of the focal plane, we have shown that the SHG

beams have contributions of both the Raman spot and the CR rings.

The first proposal of combining CR with quantum optics has also been presented in

this thesis, in collaboration with the group of Prof. Miles Padgett from the University of

Glasgow, see Chapter 9. Firstly, we have analyzed the transformation of a spontaneous

parametric down-conversion beam generated in a non-linear crystal, which leads photons

entangled in linear momentum. Then, inspired by the wave-vector splitting introduced

by the biaxial crystal we have proposed a method to demonstrate such entanglement

through a polarization measurement, i.e., we swap linear momentum entanglement into

polarization entanglement by means of the conical refraction phenomenon. Unfortu-

nately, the experimental results obtained in Glasgow did not have quality enough to

confirm the theoretical proposal.

CR has been also considered for technological applications, being at the heart of a

single shot novel polarimeter [131, 271] and of a solid state laser [138]. In particular, in

Chapter 10 of this thesis we have also reported a free space optical communication

(FSOC) system for multiplexing and demultiplexing multiple polarization channels with

a cascade of 3 biaxial crystals, see Ref. [82] and patent [262]. Some sectors of the CR

ring generated by the first biaxial crystal are selected by means of amplitude masks

and a second biaxial crystal is used to recombine (multiplex) all these sectors back

to a single beam. Finally, the third biaxial crystal demultiplexes the selected sectors

that form our communication channels. With this system, it has been demonstrated the

possibility to increase in one order of magnitude of the channel capacity, i.e., the number

of polarization channels, with less than 3% of crosstalk. This system is interesting since it

can work at any wavelength at which the biaxial crystals are transparent. In this case,

it would be very interesting to investigate the multiplexing of multiple independent

lasers with a single biaxial crystal, i.e., to combine multiple independent lasers. We
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have carried out some investigations in this sense and our preliminary conclusions are

that this could only be achieved with linearly polarized elliptical beams. We would

like to note that the FSOC system reported in this thesis is not the only technological

application of CR. In collaboration with the group of Prof. Edik U. Rafailov at the Aston

University (Birmingham), we have shown that the doping elements found in our biaxial

crystals can be used to built intracavity lasers with CR patterns [138]. Additionally,

due to that for a uniformly polarized input beam there exists a direct link between the

intensity distribution of the CR rings and the state of polarization of the input beam, we

have demonstrated and patented a single-shot polarimeter based on CR in collaboration

with the group of Prof. Juan Campos at the Universitat Autònoma de Barcelona, see

Refs. [131,271,272] for further information.

In conclusion, the applications discussed in this thesis are only some examples of

the possibilities to apply CR to different fields of science and technology. Our aim has

been to show that the physics behind the phenomenon of CR is very rich and that it

can be really useful in a wide variety of situations. We hope that our investigations

will motivate the scientific community to take profit of the flexibility offered by the CR

phenomenon, giving a second life to this old and almost forgotten optical effect.
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[167] T. Čižmár, M. Mazilu, and K. Dholakia. In situ wavefront correction and its

application to micromanipulation. Nature Photonics 4, 388 (2010).

[168] D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia. Applications

of spatial light modulators in atom optics. Opt. Express 11, 158 (2003).

[169] V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski,

and Y. S. Kivshar. Selective trapping of multiple particles by volume speckle field.

Optics express 18, 3137 (2010).



BIBLIOGRAPHY 153

[170] S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi. Cold-atom

confinement in an all-optical dark ring trap. Phys. Rev. A 76, 061404 (2007).

[171] P. Xu, X. He, J. Wang, and M. Zhan. Trapping a single atom in a blue detuned

optical bottle beam trap. Opt. Lett. 35, 2164 (2010).

[172] A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar.

Photophoretic manipulation of absorbing aerosol particles with vortex beams: the-

ory versus experiment. Opt. Express 17, 8201 (2009).

[173] V. G. Shvedov, C. Hnatovsky, A. V. Rode, and W. Krolikowski. Robust trapping

and manipulation of airborne particles with a bottle beam. Opt. Express 19, 17350

(2011).

[174] O. Jovanovic. Photophoresis: Light induced motion of particles suspended in gas.

Journal of Quantitative Spectroscopy and Radiative Transfer 110, 889 (2009).

Light Scattering: Mie and More Commemorating 100 years of Mie’s 1908 publi-

cation.

[175] B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y.-L. Pan. Photophoretic

trapping of airborne particles using ultraviolet illumination. Opt. Express 23,

3630 (2015).

[176] C. Wang, Y.-L. Pan, S. C. Hill, and B. Redding. Photophoretic trapping-raman

spectroscopy for single pollens and fungal spores trapped in air. Journal of Quanti-

tative Spectroscopy and Radiative Transfer 153, 4 (2015). Topical issue on optical

particle characterization and remote sensing of the atmosphere: Part {II}.

[177] V. G. Shvedov, C. Hnatovsky, N. Eckerskorn, A. V. Rode, and W. Krolikowski.

Polarization-sensitive photophoresis. Applied Physics Letters 101, 051106 (2012).

[178] A. Turpin, J. Polo, Y. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev,
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[213] T. Lauber, J. Küber, O. Wille, and G. Birkl. Optimized bose-einstein-condensate

production in a dipole trap based on a 1070-nm multifrequency laser: Influence

of enhanced two-body loss on the evaporation process. Phys. Rev. A 84, 043641

(2011).

[214] R. T. Darcy, D. McCloskey, K. E. Ballantine, B. D. Jennings, J. G. Lunney, P. R.

Eastham, and J. F. Donegan. White light conical diffraction. Opt. Express 21,

20394 (2013).

[215] M. Schlosser, S. Tichelmann, J. Kruse, and G. Birkl. Scalable architecture for

quantum information processing with atoms in optical micro-structures. Quantum

Information Processing 10, 907 (2011).

[216] K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D. Phillips, and G. K. Campbell.

Driving phase slips in a superfluid atom circuit with a rotating weak link. Phys.

Rev. Lett. 110, 025302 (2013).

[217] C. Ryu, P. W. Blackburn, A. A. Blinova, and M. G. Boshier. Experimental real-

ization of josephson junctions for an atom squid. Phys. Rev. Lett. 111, 205301

(2013).

[218] C. Ryu, K. C. Henderson, and M. G. Boshier. Creation of matter wave bessel

beams and observation of quantized circulation in a bose–einstein condensate. New

Journal of Physics 16, 013046 (2014).

[219] L. Amico, A. Osterloh, and F. Cataliotti. Quantum many particle systems in

ring-shaped optical lattices. Phys. Rev. Lett. 95, 063201 (2005).

[220] A. S. Maciej Lewenstein and V. Ahufinger. Ultracold Atoms in Optical Lattices:

Simulating quantum many-body systems (Oxford, 2012).

[221] O. Morizot, Y. Colombe, V. Lorent, H. Perrin, and B. M. Garraway. Ring trap

for ultracold atoms. Phys. Rev. A 74, 023617 (2006).



BIBLIOGRAPHY 157

[222] D. Aghamalyan, L. Amico, and L. C. Kwek. Effective dynamics of cold atoms

flowing in two ring-shaped optical potentials with tunable tunneling. Phys. Rev. A

88, 063627 (2013).

[223] A. Turpin, Y. V. Loiko, T. K. Kalkandjiev, J. Trull, C. Cojocaru, and J. Mompart.

Type i and type ii second harmonic generation of conically refracted beams. Opt.

Lett. 38, 2484 (2013).

[224] H. Shih and N. Bloembergen. Conical refraction in second-harmonic generation.

Phys. Rev. 184, 895 (1969).

[225] A. J. Schell and N. Bloembergen. Laser studies of internal conical diffraction. iii.

second-harmonic conical refraction in α-iodic acid. Phys. Rev. A 18, 2592 (1978).

[226] V. Stroganov, A. Illarionov, and B. Kidyarov. Conical refraction in second har-

monic generation in a crystal of lithium formate. Journal of Applied Spectroscopy

32, 341 (1980).

[227] T. S. Velichkina, O. I. Vasil’eva, A. I. Israilenko, and I. A. Yakovlev. Demonstration

of phenomena of conical refraction. Soviet Physics Uspekhi 23, 176 (1980).

[228] J. Kroupa. Second-harmonic conical refraction in guhp. Journal of Optics 12,

045706 (2010).

[229] S. Zolotovskaya, A. Abdolvand, T. Kalkandjiev, and E. Rafailov. Second-harmonic

conical refraction: observation of free and forced harmonic waves. Applied Physics

B 103, 9 (2011).

[230] V. Peet and S. Shchemelyov. Frequency doubling with laser beams transformed by

conical refraction in a biaxial crystal. Journal of Optics 13, 055205 (2011).

[231] S. D. Grant, S. A. Zolotovskaya, T. K. Kalkandjiev, W. A. Gillespie, and A. Ab-

dolvand. On the frequency-doubled conically-refracted gaussian beam. Opt. Express

22, 21347 (2014).

[232] R. W. Boyd. Nonlinear optics (Academic press, 2003).

[233] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of

physical reality be considered complete? Phys. Rev. 47, 777 (1935).

[234] N. Bohr. Can quantum-mechanical description of physical reality be considered

complete? Phys. Rev. 48, 696 (1935).

[235] J. S. Bell et al. On the einstein-podolsky-rosen paradox. Physics 1, 195 (1964).

[236] A. Aspect. Bell’s theorem: The naive view of an experimentalist. arXiv:quant-

ph/0402001 (2004).



158 BIBLIOGRAPHY

[237] S. J. Freedman and J. F. Clauser. Experimental test of local hidden-variable theo-

ries. Phys. Rev. Lett. 28, 938 (1972).

[238] F. M. Pipkin. Atomic Physics Tests of the Basic Concepts in Quantum Mechanics.

Advances in Atomic and Molecular Physics 14, 281 (1979).

[239] J. F. Clauser. Experimental investigation of a polarization correlation anomaly.

Phys. Rev. Lett. 36, 1223 (1976).

[240] S. J. Freedman and J. F. Clauser. Experimental test of local hidden-variable theo-

ries. Phys. Rev. Lett. 28, 938 (1972).

[241] A. Aspect, P. Grangier, and G. Roger. Experimental tests of realistic local theories

via bell’s theorem. Phys. Rev. Lett. 47, 460 (1981).

[242] A. Aspect, P. Grangier, and G. Roger. Experimental realization of einstein-

podolsky-rosen-bohm Gedankenexperiment : A new violation of bell’s inequalities.

Phys. Rev. Lett. 49, 91 (1982).

[243] A. Aspect, J. Dalibard, and G. Roger. Experimental test of bell’s inequalities using

time- varying analyzers. Phys. Rev. Lett. 49, 1804 (1982).

[244] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih.

New high-intensity source of polarization-entangled photon pairs. Physical Review

Letters 75, 4337 (1995).

[245] J. Brendel, E. Mohler, and W. Martienssen. Experimental test of bell’s inequality

for energy and time. EPL (Europhysics Letters) 20, 575 (1992).

[246] W. Tittel, J. Brendel, T. Herzog, H. Zbinden, and N. Gisin. Non-local two-photon

correlations using interferometers physically separated by 35 meters. EPL (Euro-

physics Letters) 40, 595 (1997).

[247] M. Hendrych, M. Micuda, and J. P. Torres. Tunable control of the frequency

correlations of entangled photons. Opt. Lett. 32, 2339 (2007).

[248] C. I. Osorio, G. Molina-Terriza, B. G. Font, and J. P. Torres. Azimuthal dis-

tinguishability of entangled photons generated in spontaneous parametric down-

conversion. Opt. Express 15, 14636 (2007).

[249] R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger.

Interface between path and orbital angular momentum entanglement for high-

dimensional photonic quantum information. Nature Communications 5, 4502

(2014).

[250] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger. Entanglement of the orbital angular

momentum states of photons. Nature 412, 313 (2001).



BIBLIOGRAPHY 159

[251] G. Molina-Terriza, J. P. Torres, and L. Torner. Orbital angular momentum of

photons in noncollinear parametric downconversion. Optics Communications 228,

155 (2003).

[252] J. P. Torres, Y. Deyanova, L. Torner, and G. Molina-Terriza. Preparation of

engineered two-photon entangled states for multidimensional quantum information.

Phys. Rev. A 67, 052313 (2003).

[253] C. I. Osorio, G. Molina-Terriza, and J. P. Torres. Correlations in orbital angular

momentum of spatially entangled paired photons generated in parametric down-

conversion. Phys. Rev. A 77, 015810 (2008).

[254] J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R. Boyd, A. Jha, S. Bar-

nett, S. Franke-Arnold, and M. Padgett. Violation of a bell inequality in two-

dimensional orbital angular momentum state-spaces. Optics express 17, 8287

(2009).

[255] B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett,

and M. J. Padgett. Holographic ghost imaging and the violation of a bell inequality.

Phys. Rev. Lett. 103, 083602 (2009).

[256] D. A. Kleinman. Theory of optical parametric noise. Phys. Rev. 174, 1027 (1968).

[257] Y. H. Shih and C. O. Alley. New type of einstein-podolsky-rosen-bohm experiment

using pairs of light quanta produced by optical parametric down conversion. Phys.

Rev. Lett. 61, 2921 (1988).

[258] I. Ali Khan and J. C. Howell. Experimental demonstration of high two-photon

time-energy entanglement. Phys. Rev. A 73, 031801 (2006).

[259] J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd. Realization of the

einstein-podolsky-rosen paradox using momentum- and position-entangled photons

from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004).

[260] P.-A. Moreau, F. Devaux, and E. Lantz. Einstein-podolsky-rosen paradox in twin

images. Phys. Rev. Lett. 113, 160401 (2014).

[261] J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett.

Increasing the dimension in high-dimensional two-photon orbital angular momen-

tum entanglement. Phys. Rev. A 86, 012334 (2012).

[262] A. Turpin, Y. V. Loiko, T. K. Kalkandjiev, and J. Mompart. System,

method, transmitter and receptor for optical communications (2012). EP Patent

P201230105.

[263] B. Mukherjee. Wdm optical communication networks: progress and challenges.

Selected Areas in Communications, IEEE Journal on 18, 1810 (2000).



160 BIBLIOGRAPHY

[264] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett,

and S. Franke-Arnold. Free-space information transfer using light beams carrying

orbital angular momentum. Optics Express 12, 5448 (2004).

[265] J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue,

S. Dolinar, M. Tur, et al. Terabit free-space data transmission employing orbital

angular momentum multiplexing. Nature Photonics 6, 488 (2012).

[266] J. Torres. Optical communications: Multiplexing twisted light. Nature Photonics

6, 420 (2012).

[267] M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin,

and A. Zeilinger. Communication with spatially modulated light through turbulent

air across vienna. New Journal of Physics 16, 113028 (2014).

[268] B. Jack, M. J. Padgett, and S. Franke-Arnold. Angular diffraction. New Journal

of Physics 10, 103013 (2008).

[269] S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. Padgett.

Uncertainty principle for angular position and angular momentum. New Journal

of Physics 6, 103 (2004).

[270] J. L. Helm, S. L. Cornish, and S. A. Gardiner. Sagnac interferometry using bright

matter-wave solitons. Phys. Rev. Lett. 114, 134101 (2015).

[271] A. Peinado, A. Lizana, A. Turpin, C. Iemmi, T. K. Kalkandjiev, J. Mompart,

and J. Campos. Optimization, tolerance analysis and implementation of a stokes

polarimeter based on the conical refraction phenomenon. Optics Express 23, 5636

(2015).

[272] A. Turpin, A. Peinado, A. Lizana, T. K. Kalkandjiev, J. Campos, and J. Mom-

part. Complete polarimeter based on conical refraction (2014). EP Patent

PCT/EP2014/065,918.


	History of conical refraction
	The triumph of the wave theory of light
	Elements of crystal optics
	Uniaxial crystals
	Biaxial crystals

	The subtle phenomenon of conical refraction
	Everything was not said: new observations on conical refraction
	From Hamilton's model to the diffractive theory of conical refraction
	Conical refraction out of crystal optics

	Theory and fundamental experiments on conical refraction
	Introduction
	Diffractive solution
	Cylindrically symmetric solution
	Non-cylindrically symmetric solution

	Wave-vector and polarization description of conical refraction
	Conical refraction of spatially anisotropic beams revisited
	Transformation rules of conical refraction
	Application of the transformation rules of CR to an axicon beam

	Dual-cone model of conical refraction
	Dual-cone theory and its relation to the wave-vector interpretation
	Experiments

	Cascaded conical refraction
	Coordinates system and single crystal configuration
	Multiple crystals

	Conclusions

	Beam shaping with conical refraction
	Introduction
	Generating a 3D dark focus with conical refraction
	Axial intensity for 0 1
	Characteristics of the 3D dark focus beam

	A Super-Gaussian conical refraction beam
	Characteristics of the Super-Gaussian conical refraction beam

	Conclusions

	Novel vector beams and optical singularities in conical refraction
	Introduction
	Theoretical background
	Analysis of the B0 and B1 functions
	Stokes vector formalism

	State of polarization for 0 1
	State of polarization for 0 1
	Discussion in terms of spin-orbit coupling
	Conclusions

	Conical refraction healing after partially blocking the input beam
	Introduction
	CR healing of Gaussian beams for 0 1
	CR healing of Gaussian beams for 0 1
	Conclusions

	An optical vault for absorbing particles
	Introduction
	The photophoretic force
	Experimental proposal
	Experimental results
	Conclusions

	Trapping Bose–einstein condensates with conical refraction
	Introduction
	Trapping BECs in a 3D dark focus
	Theoretical formulation for the 3D dark focus to atom trapping

	Experimental trapping of a 87Rb BEC in the 3D dark focus
	Blue-detuned optical ring traps for BECs based on conical refraction
	Asymptotic solution close to the Poggendorff dark ring
	Harmonic potential approximation
	Numerical simulations of a BEC of 87Rb atoms

	Conclusions

	Second harmonic generation of a conically refracted beam
	Introduction
	Experimental set-up
	Transverse intensity patterns at the focal plane
	Beam evolution of the SHG beams
	Influence of the position of the non-linear crystal
	Conclusions

	Testing quantum mechanics with conical refraction
	Introduction
	Conical refraction of a spontaneous parametric down-converted beam
	Detection of linear momentum entanglement with conical refraction
	Conclusions

	Conical refraction for free-space optical communications
	Introduction
	The forward-backward conical refraction transformation
	Multiplexing and de-multiplexing proposal and experimental results
	Conclusions

	Conclusions and outlook
	Bibliography

