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Resum 

En aquesta tesi s’investiguen cèl·lules solars orgàniques basades en semiconductors de petita 

molècula. En particular, les cèl·lules solars orgàniques d’aquesta tesi han emprat  

tetraphenyldibenzoperiflanthene com material donador i ful·lerè C70 com material acceptador. 

En la primera part d'aquesta tesi, ens centrem en la influència de la densitat d'estats de la capa 

donadora en els paràmetres característics de les cèl·lules solars. Més endavant, es presenten 

cèl·lules solars orgàniques amb una estructura p-i-n, on la capa intrínseca s'obté per l'evaporació 

conjunta del donador i l’acceptador. S'analitza la influència del gruix de la capa intrínseca de la 

cèl·lula solar p-i-n en la característica de la cèl·lula solar. 

En la segona part, es presenta un circuit equivalent per a les cèl·lules solars orgàniques. S'afegeix 

un nou terme en el model estàndard que representa les pèrdues de recombinació a la capa activa 

del dispositiu. L’anàlisi de les característiques de corrent – tensió mesurades a diferents 

intensitats de llum permeten l'estimació del terme de recombinació. El model separa clarament 

les qüestions tecnològiques (resistències en sèrie i en paral·lel) dels efectes relacionats amb la 

física del dispositiu (pèrdues de recombinació). També permet l’obtenció d’un producte de la 

mobilitat - temps de vida efectiu a la capa activa del dispositiu a ser determinat, la caracterització 

del seu estat de degradació. 
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Abstract 

This work deals with the research on organic solar cells based on small-molecules 

semiconductors. In particular, organic solar cells of this thesis have been used 

tetraphenyldibenzoperiflanthene as donor material and fullerene C70 as acceptor material. 

In the first part of this thesis, we focus on the influence of the density of states of the donor layer 

on the characteristic parameters of solar cells. Further, organic solar cells with p-i-n structure are 

presented, where the intrinsic layer is obtained by coevaporation of donor and acceptor. The 

influence of the thickness of the intrinsic layer on the p-i-n solar cell characteristic is analysed. 

In the second part, an equivalent circuit for organic solar cells is presented. A new term is added 

to the standard model representing recombination losses in the active layer of the device. The 

analysis of the characteristics of current - voltage measured at different illumination intensities 

allows the estimation of the term recombination. The model clearly separates technological 

issues (series and parallel resistance) from effects related to the physics of the device 

(recombination losses). It also allows obtaining an effective mobility-lifetime product in the 

active layer of the device to be determined, characterising its state of degradation. 
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1. Introduction 

1.1 Motivation 

Organic electronics is a division of materials science which deals with electrically-conductive 

semiconductors based on polymers and small-molecules. It is called organic electronics because 

these polymers and small-molecules are carbon-based. Organic electronics devices have attracted 

much attention during last decades due to their potential advantages. Devices using organic 

semiconductors should be cheaper and easier to manufacture than the corresponding ones based 

on inorganic semiconductors. Among them, organic light emitting diodes (OLEDs) [1–2], 

organic thin film transistors (OTFTs) [3–6] and organic solar cells (OSCs) [7–9] are rapidly 

developing towards commercial applications. 

OLEDs are used to create digital displays and lighting applications, in devices such as mobile 

phones and portable digital media players, car radios and digital cameras among others. OTFTs 

have already been demonstrated in applications like sensors [10–11], memory devices [12–13], 

flexible displays [14–16] and radio frequency identification tags (RF–IDs) [17–18]. Another 

application of organic semiconductors is in the field of photovoltaic solar cells, emerging as 

alternative of traditional photovoltaic technologies. This thesis is focused on the interesting field 

of solar cells based on organic semiconductors. 

Today, the photovoltaic market is dominated by solar cells based on crystalline silicon. 

Photovoltaics modules based on crystalline silicon present efficiencies on the order of 15–20%; 

nevertheless it is the price what has pulling up this technology on top. Photovoltaic modules 

based on crystalline silicon costs about 0.5–0.7 €/watt peak, making this technology competitive 

with other renewable sources. 

However, research laboratories are looking for new technologies that could lower down these 

prices. The most promising technological alternatives are: thin films for photoactive layers and 

solar concentrators. In addition, they are looking for products that could overcome some of the 
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limitations of crystalline silicon in terms of flexibility and weigh. In this sense, during the last 

decade, many efforts have been focused on the fabrication of solar cells based on organic 

semiconductors. Organic semiconductors can be processed at near ambient temperature over 

large area, opening the possibility to fabricate large area devices on flexible substrates. 

Light’s ability to generate electric current was first observed in 1839 by A. E. Becquerel when he 

discovered the photoelectrochemical process [19]. Thenceforth, different technologies have 

emerged in photovoltaic solar cells. Figure 1.1 shows the evolution of the best power conversion 

efficiency for each solar cell technology during last decades. 

The best efficiency reported for a monocrystalline silicon solar cell is 25% [20–21] getting quite 

close to the “practical” limit of around 26% [22]. Although efficiencies of solar cells based on 

monocrystalline silicon are very high, it is very important to keep an eye on solar cells based on 

multicrystalline silicon, since today 5 out of 10 sold solar cells are manufactured using this 

material. Multicrystalline silicon is cheaper than monocrystalline silicon, but unfortunately has 

also a lower optoelectronic quality due to a higher amount of crystal defects and metal 

impurities. Currently, the record efficiency in multicrystalline silicon solar cell is 20.4% [23]. 

Thin film solar cell is the alternative technology to the predominant crystalline silicon and its 

market-share has been increasing in recent years to about 9% of worldwide photovoltaic 

production in 2013 [24]. Thin-film technologies reduce the amount of active material in a cell, 

having a film thickness from a few nanometres to tens of micrometers. Thin-film solar cells are 

usually categorised by the photovoltaic material which they are made of. Cadmium Telluride 

(CdTe), Copper Indium Gallium Selenide (CIGS) and hydrogenated amorphous silicon (a-Si:H) 

are thin-film materials with long research tradition, and modules based on these materials are 

well established. Currently, the module market prices of these technologies are quite similar and 

slightly lower than c-Si solar modules, 0.46–0.63 €/watt peak. OSC, Dye-Sensitized Solar Cells 

(DSSC) (this type of solar cell was invented by Michael Grätzel and Brian O’Regan [25] and are 

also known as the Grätzel solar cell), Quantum Dot (QD) solar cells, Copper Zinc Tin Sulphide 

(CZTS) solar cells have also emerged in the frame of thin film technology. 

 

 

 



 

 

 

 

Figure 1.1 - Evolution of record cell efficiencies of different solar cell technologies. This graph is provided by the NREL (http://www.nrel.gov/ncpv/images/efficiency_chart.jpg 

2-04-2015) 
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The last group of solar cells (OSC, DSSC, QD, and CZTS solar cells) belongs to what has been 

called third generation solar cells. The physics behind their working principles are not well 

established and some technological issues, mainly regarding its time stability, have limited its 

influence to the research labs. Although some companies, such as DyeSol or Heliatek, start to 

produce some of these solar cells (DSSC, OSC), their higher prices and poor stability, compared 

to the crystalline silicon counterparts, has limited its wide spreading [26–27]. 

In 2014, researchers at the Zentrum für Sonnenenergie und Wasserstoff Forschung (ZSW) in 

Stuttgart achieved a certified 21.7% conversion rate in a CIGS thin-film cell [28]. On the other 

hand, the best CdTe solar cell efficiency has reached 21.5% by First Solar [29].  

Recently, a new actor has made act of presence in the competitive world of solar cells 

technologies: perovskites-based solar cells. A perovskite solar cell is a type of solar cell which 

includes a perovskite structured compound, most commonly a hybrid organic-inorganic lead or 

tin halide-based material, as the light-harvesting active layer. The properties that make this type 

of solar cell very attractive are: controllable energy bandgap by the halide content [30–31] and 

long diffusion length, for both holes and electrons, of over one micrometre [32]. Solar cell 

efficiencies of devices using these materials have increased from 3.8% in 2009 [33] to 20.1% 

achieved by the Korean Research Institute of Chemical Technology (KRICT) in 2014 [34], 

making this the fastest advancing solar technology to date.  

Figure 1.2 compare the evolution during last three decades of record efficiencies for various 

promising third generation solar cells with the standard a-Si:H solar cells. Perovskites solar cells 

efficiencies are also included. DSSC and a-Si:H solar cells (pink and blue curves) do not shown 

significant improvement in power conversion efficiency during last two decades. Actually, the 

best efficiency is 12.3% for DSSC obtained in laboratory by École Polytechnique Fédérale de 

Lausanne (EPFL) [35] and 13.4% for a-Si:H solar cells reached by LG Electronics [23]. On the 

other hand, the record power conversion efficiency of OSCs (red curve, for small area; and green 

curve for larger than 1 cm2) have shown exponential increase, mainly since 2005. However, this 

tendency seems to have stopped in 2012, when was reported the highest power conversion 

efficiency of OSC with 12%, achieved by Heliatek Company and using triple tandem solar cell 

geometry [36]. It is worth to mention that most of the research labs working on dye and organic 

solar cells have shifted its activities to perovskites technology. This is especially true for dye 

solar cells, since technology processes are quite similar for both technologies. 
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Figure 1.2 - Evolution of efficiencies from emerging solar cells (source: http://www.orgworld.de) 

Traditionally, the study of semiconducting organic materials focused on small organic molecules 

in the crystalline state, such as: anthracene, naphthalene or copper phthalocyanine [37–39]. 

Research activities were concentrated on phenomena associated with charge transport in 

individual molecules; in general they showed poor semiconducting electrical characteristics, and 

during many years few papers arise on this topic.  However, this situation start to change when in 

1977, Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa reported high electrical 

conductivity in oxidized iodine-doped polyacetylene. They claimed that polyacetylene halides 

could be the forerunners of a new class of organic polymers with electrical properties which may 

be systematically and controllably varied over a wide range by chemical doping [40]. For this 

research, they were awarded with the Nobel Prize in Chemistry in 2000 “for the discovery and 

development of conductive polymers”. The breakthrough of the thin film organic solar cell was 

made in 1986 by Ching Tang, when reported a power conversion efficiency of 1% [41]. Tang’s 

cell comprises a bilayer structure of a donor and acceptor materials (copper phthalocyanine and 

perylene tetracarboxylic derivative) and demonstrated that the properties in the interface region 

are primarily responsible for the photogeneration of charges. The efficiencies of the reported 

organic solar cells did not exceed 1% for many years. In 1992 Hiramoto et al. published the bulk 

heterojunction solar cell by mixing donor and acceptor materials in a blend layer [42]. The use of 

bulk heterojunction in active layer allowed a higher exciton dissociation and as a consequence 
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higher power conversion efficiency. Further improvements in solar cell performance were 

achieved by the introduction of organic doped materials [43] and the use of p-i-n concept [44].  

The huge diversity of organic molecules (and polymers) and the possibility of tailoring the 

material properties using chemistry processes allow the synthesis of new semiconductor 

compounds with specific properties, such as the optical gap or the photoluminescence.  

Methods from organic chemistry allow the fabrication of customised solar cells, as well as multi-

colour and semi-transparent solar cells [45–46]. The low material consumption during the 

fabrication process and the light weight devices foreseen expect low costs for production of 

OSCs. The possibility to deposit on plastic substrates, replacing the conventionally used rigid 

glass substrates, and on large area attracts the attention of the photovoltaic industry. However, 

the current challenges on the way to cost effective mass production are the low solar cell 

efficiencies as well as the short lifetimes. 

1.2 Objective of this Thesis  

The objective of this thesis was the fabrication of solar cells based on organic small-molecule 

semiconductors deposited in a high vacuum system. The structural and optoelectronic properties 

of the deposited thin-films were correlated with the optoelectronic performance of the fabricated 

solar cells.  

All the solar cells were fabricated on glass substrates with a pre-patterned indium tin oxide (ITO) 

layer. The device structure was: glass / ITO / small-molecule / metal, where small-molecule 

corresponds to the active layer. The fabrication was carried out in the Centre for Research in 

NanoEngineering (CRnE) of the Universitat Politècnica de Catalunya (UPC).  

The research in Micro and Nano Technologies (MNT) group is focused on understanding how 

advanced electronic devices work and how they performance can be improved. Group facilities 

include a Clean Room with main silicon processing equipment. The group have a strong 

experience in photovoltaics solar cells, reaching high power conversion efficiency (22%) in 

crystalline silicon (c-Si) solar cell and (18%) in Heterojunction with Intrinsic Thin layer (HIT) 

silicon solar cell.  

Ten years ago, the MNT group started a new research line focused on the fabrication of organic 

devices based on small-molecules organic semiconductors. The research started with the 
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fabrication of OTFTs using a basic evaporator with two sources for organic materials. Later on, 

MNT group acquired a glovebox to fabricate organic solar cells. The glovebox is equipped with 

two evaporator systems: one dedicated to the deposit organic molecules (home-made) and the 

other for metals. At the beginning of my thesis, my work was focused on the preparation and 

calibration of the organic evaporator. The fabrication of organic solar cells complement the other 

photovoltaic technologies carried out in the group. 

In the scope of this thesis, the materials used are commercial; however it was also explored the 

feasibility of new organic compounds provided by chemistry groups in the frame of collaborative 

projects.  

On the other hand, OTFTs were also fabricated to determine the electrical properties of organic 

molecules. The electrical measurements of OTFT allow the determination of the electrical field-

effect mobility and density-of-states (DOS) of organic semiconductor.  

In order to understand the electrical behaviour of small-molecule organic solar cells, such as 

recombination losses or influence of the electrical field effect, additional optoelectronic 

characterisation of the solar cells was performed. Variable Illumination Measurements (VIM) 

was be useful to study the recombination process and get an analytical model. 

1.3 Structure of this Thesis 

The thesis is organised as follows. The Chapter 1 includes the motivation, the objective and the 

structure of this thesis. In Chapter 2 some insights about the properties of organic 

semiconductors are reviewed. In Chapter 3 describes the principles of organic solar cells. The 

experimental materials and methods, especially fabrication tools and characterisation of OSCs 

are explained in Chapter 4. In Chapter 5 the influence of the DOS on the open circuit voltage in 

the organic solar cells is discussed. The influence of carrier bimolecular recombination is also 

studied. On the other hand, in Chapter 6 are studied the monomolecular recombination losses in 

the active layer using an analytical model. 

The Appendix I contains additional information (not included in the respective chapters for 

clarity reasons), such as the fabrication of OTFTs and the determination of carrier mobility and 

density of states of localised states. 
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2. Organic Semiconductors 
In this chapter the basic chemical and physical properties of organic semiconductors are 

introduced, as they are required for understanding the results presented in this thesis. First, the 

formation of molecular orbitals theory is discussed. Later, electrical and optical properties of 

organic semiconductors materials are described, as well as charge transport mechanism in 

organic materials. 

2.1 Introduction 

Organic semiconductors are promising materials for organic electronics due to their favourable 

properties, allowing them to be utilised in high throughput and low-cost fabrication methods. 

Organic semiconductors are carbon-based compounds, usually also composed of other element 

atoms such as oxygen, nitrogen or sulphur, with semiconducting properties. The commonly used 

organic semiconductors can be categorised as oligomers (small-molecules) or conjugated 

polymers. Small-molecules have low molecular weight; in contrast, polymers, at least in 

principle, consist of a nearly unlimited number of repeatable monomers and have long molecular 

chains. Figure 2.1 and Figure 2.2 depicts the most used as absorbers in organic photovoltaics.  

An important difference between small-molecules and polymers lies in the way how they are 

processed to form thin-films. Whereas small-molecules are usually deposited via thermal 

evaporation or sublimation under ultra-high vacuum, conjugated polymer are generally deposited 

using solution-processed methods, such as spin-coating, ink-jet printing or doctor blade 

techniques. 
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Figure 2.1 - Chemical structures of polymers most used in organic solar cells. 

Figure 2.2 - Chemical structures of small-molecules most used in organic solar cells. 
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Small-molecules are very attractive for application in solar cells because they have several 

advantages versus polymers such as: 

• Short synthesis: less than five steps are usually needed to synthesize the compound. Its 

well-defined chemical structures make them synthetically well reproducible. 

• Higher purity: small-molecule materials have well-defined molecular weights, allowing 

for straightforward separation of the host from the impurities. They are easily purified by 

re-crystallization and/or sublimation. 

• Better control on the structure and morphology of the deposited film; depending on the 

growth parameters (substrate temperature, pressure inside the deposition chamber and 

deposition rate) the deposited film can be poly-crystalline or amorphous in nature. 

• Solvents (potentially toxic) are not needed. 

• Multilayer devices: The preparation of well-defined multilayer structures, such as tandem 

solar cells, is comparatively easy because of the control of the layer thickness on the 

nanometre scale.  

2.2  Molecular Orbital Theory 

There are a large number of binding configurations of carbon (several millions of compounds 

were reported). A carbon atom has six electrons and its ground state configuration is 1s22s22p2, 

where s orbitals are fully occupied and two of three px, py, pz orbitals are occupied by one 

electron. When carbon atom makes a bond with another atom, hybridization occurs between s 

and p orbitals. The hybridization sp3 occurs when a carbon atom connects via four single bonds 

to other atoms by σ-bonds, such saturated compounds are good electrical insulators (Figure 2.3). 

Examples of this binding configuration are alkanes, or saturated polymers such us 

polyethylene �- CH� − CH� -�	, polystyrene or polypropylene. 

 

Figure 2.3 - Hybridization sp3. 



Chapter 2 Organic Semiconductors 

14 

  

On the other hand, molecules containing double or triple bonds are more complex and interesting 

from the point of view of the optical and electrical properties, for instance ethylene, H2C=CH2. 

In this case carbon atoms exhibit a sp2 hybridization which means that one s orbital and two p 

orbitals are combined. Figure 2.4 depicts sp2 hybridization.  

 

Figure 2.4 - sp2-hybridization of the valence electrons of two carbon atoms lead to molecular π- and σ-bondings. 

In each carbon atom, three sp2 hybrid orbitals are arranged in a trigonal planar geometry (120º 

between them), while the non-hybridized 2pz remain perpendicular to this plane. The 

combination of one sp2 orbital from each carbon atom gives two orbitals in the final molecule 

known as σ and σ*. The side-by-side overlapping of both 2pz orbitals also results in two orbitals 

in the final molecule: π and π*. These orbitals are ordered from lower energy to higher energy as 

follows: σ, π, π*, σ*. The orbitals π and σ are filled with electrons and constitute the double bond 

(stronger σ bond and weaker π bond). The energetically highest occupied molecular orbital is 

called HOMO. On the other hand, the energetically lowest unoccupied molecular orbital is called 

LUMO. Comparing to inorganic semiconductors, it should be noted that HOMO is the analogue 

of valence band and LUMO is the analogue of conduction band. In the case of ethylene 

molecule, the π orbital is the HOMO meanwhile the π* is the LUMO (Figure 2.5). 

 

Figure 2.5 - Energetic diagram of molecular orbitals of an ethylene molecule 
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The HOMO–LUMO is the lowest electronic transition. The difference between the π-π* 

molecular orbital is called energy band gap (Eg) and confers the optoelectronical properties of a 

semiconductor. 

If the molecule presents an alternation of simple and double bonds over a planar segment the 

system is said to be π-conjugated. This system can be presented in many forms, as well as small-

molecules, conjugated polymers or molecular crystals. For each double bond a new pair of π, π* 

orbitals appear in the energetic diagram of orbitals of the final molecule, and the gap between 

occupied and empty states in these π systems becomes smaller. In this kind of molecules, the 

molecular orbitals, from lower to higher energy, are: σ,…, σn, π, …, πn, πn
*, …, σn

*. 

If carbon atoms form larger molecules, typically with benzene rings as the basic unit, the 

HOMO–LUMO gap becomes so small that the HOMO electrons can overcome this energetic 

barrier in such way that they do not belong to a single bond or atom, but rather to a group of 

atoms. The π-bonds become delocalised and form a π-system which often has the extensions of 

the molecule. Figure 2.6 depicts π-electrons moving along the conjugated chain as a flip-flop 

between single and double bonds.  

 

Figure 2.6 - Scheme of electron delocalization in a benzene ring. 

The ionization potential (IP) is the minimum amount of energy required to extract an electron 

from the molecule. On the other hand, the electron affinity (EA) is defined as the amount of 

energy released when an electron is added to a molecule. In this work, we set HOMO equal to 

the IP and the LUMO to the EA.  
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Due to a small molecular interaction (overlapping of the π-orbitals) in the organic solid, the 

charge carrier transport level for holes (HOMO) is only weakly broadened. The LUMO 

corresponds to the electron transport level in organic solids.  

The value of the HOMO level is often determined by means of cyclic voltammetry and 

photoemission yield spectroscopy techniques, while the value of the LUMO level is usually 

measured by cyclic voltammetry (CV) or calculated by adding up the measured HOMO level 

and the measured optical bandgap. CV allows the estimation of the energetic levels from liquid 

solutions; in contrast, the technique used to measure the HOMO level in thin films is ultraviolet 

photoelectron spectroscopy (UPS) (or inverse photoemission spectroscopy (IPES) in the case of 

the LUMO level). 

2.3 Optical properties 

Optical density (OD) is the amount of attenuation (or gradual intensity loss) that occurs when 

light passes through an optical component. Optical attenuation may result from not only 

absorption of light but also from scattering of light. Higher OD values indicate a higher level of 

blocking. The OD can be calculated from optical transmission (T) measurements (Eq. 2.1): 

The optical density of a material relates to the sluggish tendency of the atoms of a material to 

maintain the absorbed energy of an electromagnetic wave in the form of vibrating electrons 

before reemitting it as a new electromagnetic disturbance. When the material is more optically 

dense a wave will move slowly through the material. The OD depends on the material and its 

thickness. 

On the other hand, the optical absorption coefficient (α) determines how far into a material light 

of a particular wavelength can penetrate before it is absorbed. The absorption coefficient only 

depends on the material and on the wavelength of light which is being absorbed. In a material 

with a low absorption coefficient, light is only poorly absorbed, and if the material is thin 

enough, it will appear transparent to that wavelength. Inorganic semiconductor materials have a 

sharp edge in their absorption coefficient, since light which has energy below the band gap does 

not have sufficient energy to excite an electron into the conduction band from the valence band. 

Consequently this light is not absorbed. The absorption coefficient for hydrogenated amorphous 

 
� =  − log����� (2.1) 
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silicon (a-Si:H), crystalline silicon (c-Si) and pentacene semiconductors materials is shown 

below (Figure 2.7). 
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Figure 2.7 – Optical absorption coefficients for different thin film semiconductors.  

The Figure 2.7 shows that, even for those photons which have energy above the band gap, the 

absorption coefficient is not constant, but still depends strongly on wavelength.  The probability 

of absorbing a photon depends on the likelihood of having a photon and an electron interact in 

such a way as to move from one energy band to another. For photons which have energy very 

close to that of the band gap, the absorption is relatively low since only those electrons directly 

at the valence band edge can interact with the photon to cause absorption. As the photon energy 

increases, not just the electrons already having energy close to that of the band gap can interact 

with the photon. Therefore, a larger number of electrons can interact with the photon and result 

in the photon being absorbed. 

The absorption coefficient, α, is related to the extinction coefficient, k, by the following formula: 

 � =  4 � ��  (2.2) 
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where λ is the wavelength. If λ is in nm, it is necessary to multiply by 107 to get the absorption 

coefficient in units of cm-1. 

Organic semiconductors are characterised by high absorption coefficients which make it possible 

to manufacture thin film devices. The use of such thin layers reduces the amount of active 

material required and also makes light-weight. In addition, this allows the production of flexible 

devices, and even the realization of semitransparent solar cells which can be integrated into 

windows and glass facades. 

2.4 Charge Carrier Transport 

Due to the weak electronic coupling in organic semiconductors, the charge carriers can be 

effectively localised on a single molecule. Disordered molecular solids exhibit generally an 

inhomogeneous energy distribution of their localised transport states. Therefore, the charge 

carrier transport between adjacent molecules is thermally activated and the mobility increases 

with increasing temperature [1]. This kind of thermally activated charge carrier transport is 

known as hopping transport. The mobility due to thermally assisted hopping is many orders of 

magnitude lower than that due to band transport. The charge transport mechanism via a localised 

hopping mechanism is characterized by a radical ion that polarizes the surrounding neutral 

molecules. The rate of this hopping process may be expressed with Marcus theory [2–3]. 

Sometimes the ensemble of localised states within a certain energy range is called band. It is 

stated here, that the term band in this context has nothing to do with energy bands in an ideal 

crystal. 

In contrast, band-like conduction can occur in organic semiconductors if its structure is well 

organised like in the case of organic crystals. Similar to inorganic semiconductors, the 

conductivity in very pure and highly ordered organic solids is limited by scattering processes 

with phonons [4]. In contrast to the hopping transport, the conductivity is increasing with 

decreasing temperature due to a reduction of the respective scattering probability. 

It can be summarized, that in well-organized organic crystals the charge transport is based on 

polaron bands, while the hopping transport prevails in polycrystalline and amorphous materials. 

Next, the most used charge transport models in organic semiconductors are briefly exposed. 

However, it is important to note that a full comprehensive theory to describe the charge transport 

in organic semiconductors is still lacking.  
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Hopping Mechanism 

A theory involving electron transfer based on oxidation – reduction reactions assuming very little 

spatial overlap of the electronic orbitals of two reacting molecules was introduced by Marcus in 

1956 [5]. The charge transport can be described as involving a self-exchange electron (hole) 

transfer from a charged molecule to a next neutral one by hopping of charges. According to this 

theory, two major parameters determine self-exchange rates [2] [6]:  

i. the electronic coupling between adjacent molecules, which needs to be maximized. 

ii.  the reorganization energy, which needs to be small for efficient charge transport. 

Here the reorganization energy corresponds basically to the sum of geometry relaxation energies 

switching from the neutral state to the charged state and vice versa. All this elucidates the strong 

importance of intermolecular interactions on the efficiency of charge carrier hopping and their 

related mobility since they are directly related.  

Multiple Trapping and Release Model 

Introduced originally to description of the low mobility of hydrogenated amorphous silicon 

devices [7], in the Multiple Trapping and Release (MTR) model the charge carriers are assumed 

to travel in narrow, delocalised bands and interact with a high concentration of localised trap 

levels. Further adapted by Horowitz et al. [8–9] the localised trap levels are believed to arise 

from defects and impurities in both the molecular and crystal structure. In the decentralised band 

the charge carriers have a band mobility µ0, but interact further by trapping and detrapping with 

localised states. The trapping and release mechanisms determines the overall mobility and the 

thermally activated behaviour. The trap distribution (Density of States (DOS) within the gap) is 

believed to be exponentially shaped. Also, the often observed gate voltage, i.e. electric field, 

dependence of the charge carrier mobility can be described with this model. 

2.4.1 Determination of the charge carrier mobility 

The charge carrier mobility characterises how quickly a charge can move through a metal or 

semiconductor. The term carrier mobility refers in general to both electron and hole mobility in 

semiconductors. The charge carrier mobility of an organic material can be determined from 

different approaches. The charge carrier mobilities of organic materials greatly vary depending 

on the kind of charge carriers, namely, whether they are holes or electrons, molecular structures, 

and materials morphologies. Due to the fact that the mobility depends on several parameters, the 
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measuring conditions have a strong impact on the results. In some cases device stacks have to be 

made which differ compared to a typical solar cell stack. The morphology which could depend 

on the layer device stack influences on the mobility. Common methods are now considered, with 

focus on the field effect transistor which is used in this work. 

Time of flight method 

Time of flight (TOF) is one of the most established experimental techniques for mobility 

measurements in organic disordered systems. This method is a rather simple and direct approach, 

shown by Warta and Karl [10] for naphthaline and Kitamura et al. [11] for the molecule CuPc. 

The TOF method is based on the measurement of the carrier transit time (τ), namely, the time 

required for a charge carriers photo-generated near one of the electrodes by a short intense light 

pulse to drift across the layer with a well-known thickness to the other electrode under an applied 

electric field. Samples used for the measurement are consisting of organic layer sandwiched 

between the two electrodes, where one of which is transparent for light pulse. 

In the case of measuring a hole drift mobility, the transparent electrode is held at a positive 

potential with respect to the ground, while the other one is grounded through a resistance which 

has a much smaller resistance than the sample. This leads to an applied potential V in the 

material. Hole charges are generated by photo-excitation of the film through irradiation with a 

short pulse laser (the wavelength of which depends on the absorption band of materials). One of 

the advantages of using TOF technique is that the hole and electron mobility can be studied 

separately. 

For the mobility calculation the thickness d, the applied voltage V, and the transit time τd 

between the optical excitation and the arrival of the charges at the electrode have to be known 

(Eq. 2.3): 

Space charge limited current 

The theory of space charge limited current (SCLC) between plane parallel electrodes was first 

given by Mott and Gurney (1940) [12]. Later, in 1969, it was also applied in organic 

semiconductors [13]. 
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The current flow is limited either by barriers at the electrodes (injection and extraction) or 

through transport in the organic layer. To get SCLC ohmic contacts are required. Then, the 

current flow is limited by the charge carrier mobility. An additional requirement is that only one 

kind of charge carriers is injected and the other one is blocked. This can be realized by choosing 

a suitable stack design (e.g. electron- or hole only devices [14–15]). 

The carrier drift mobility measured by SCLC method is based on the analysis of current density 

(J) – applied voltage (V) characteristics in dark. Generally, the J–V characteristics are linear at 

low drive voltages, showing ohmic behaviour. At high applied voltages, the J–V characteristics 

become space-charge limited because of the injection of charge carriers from one electrode. 

When the contact between the electrode and the organic layer is ohmic, the current is transport 

limited instead of injection limited. In the case of SCLC, the current-voltage characteristic does 

not satisfy the ohmic law any longer and shows a superlinear behaviour of V2 and is described in 

the absence of any trapping effects. The space-charge-limited current J is given by Eq. 2.4, 

which is known as the Mott-Gurney law: 

where ϵ is the dielectric constant, V the applied voltage, and L the thickness of the semiconductor 

material. 

The interpretation of J–V curves becomes more complex in the presence of traps. They first 

exhibit a linear regime, where transport is injection-limited, followed by a sudden increase for an 

intermediate range of applied biases; finally, the V2 dependence of the trap-free SCLC regime is 

reached. The extent of the intermediate region is governed by the spatial and energetic 

distribution of trap states.  

Organic Field Effect Transistor (OFET) 

An OFET is a three terminal device in which an organic semiconductor is placed on a dielectric 

and connected to the source and drain electrodes. The OFET electrical characterisation is a 

common method used to determine the charge carrier mobility of organic materials [16–17], 

which can measure the average charge carrier drift velocity per unit electric field. It is a measure 

of how easily charge carriers can move in the device. This method has been used in MNT group 

since ten years ago, further details about the calculation of charge carrier mobility from OFET 

characterisation can be found in Appendix I. 

 � =  98  � " "�  ��
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Expressions derived for inorganic-based transistors in the linear and saturated regimes prove to 

be readily applicable to organic transistors (OFETs) [18]. These expressions read in the linear 

regime (Eq. 2.5): 

and in the saturated regime (Eq. 2.6): 

Where, ISD and VSD are the current and voltage bias between source and drain, respectively, VG 

denotes the gate voltage, VT is the threshold voltage at which the current starts to rise, C is the 

capacitance of the gate dielectric, and W and L are the width and length of the conducting 

channel. From these expressions carrier mobility can be estimated. 

Transport is affected by structural defects within the organic layer at the interface, the surface 

topology and polarity of the dielectric, and/or the presence of traps at the interface (that depends 

on the chemical structure of the gate dielectric surface). Also, contact resistance at the source and 

drain metal/organic interfaces plays an important role. The contact resistance becomes gradually 

more important when the length of the channel is reduced and the transistor operates at low 

fields. Its effect can be omitted via four-probe measurements [19–20].  

The charge mobilities extracted in the saturated regime are generally higher than those in the 

linear regime due to different electric-field distributions. The mobility can sometimes be found 

to be gate-voltage dependent [21]. This observation is often related to the presence of traps due 

to structural defects and/or impurities (that the charges injected first have to fill prior to 

establishment of a current) and/or to dependence of the mobility on charge carrier density (which 

is modulated by VG) [22]. 

Comparisons of mobilities measured by different methods 

One of the important differences between the different mobility measurement methods is the 

geometry of the sample in which the charge mobility is characterised. The thickness of samples 

for the measurement is different depending upon the method. In TOF and SCLC, the sample is 

sandwiched between two electrodes and the conduction of the charges is perpendicular to the 

substrate plane. By contrast, in a FET the charge mobility is characterised within the plane of the 

 %&' =  (#  � ) ��* − �+� �&' (2.5) 

 %&' =  (2#  � ) ��* −  �+�� (2.6) 
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substrate. The analysis of SCLC curves for specifically designed single carrier devices or time-

of-flight experiments are some alternatives. However, these methods very often lead to incorrect 

results as analytical expressions are not valid in most of the cases involving organic 

semiconductors [23]. 

Nonetheless, it is important to note that this geometrical difference is irrelevant when one study 

the charge transport properties in an amorphous material but becomes fundamental when the 

material present some molecular organisation such as liquid crystal materials or crystalline 

materials.  



Chapter 2 Organic Semiconductors 

24 

  

References 

[1] P. M. Borsenberger, L. Pautmeier, H. Bässler, “Charge transport in disordered molecular 
solids” J. Chem. Phys. 94 (1991) 5447. 

[2] V. Coropceanu, J. Cornil, D. A. da Silva, Y. Olivier, R. Silbey, J. L. Bredas, “Charge 
transport in organic semiconductors”, Chem. Rev. 107 (2007) 926. 

[3] J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick , J. M. Frost, “Modeling charge transport in 
organic photovoltaic materials”, Acc. Chem. Res. 42, (2009) 1768. 

[4] W. Warta, R. Stehle, N. Karl, “Ultrapure, High Mobility Organic Photoconductors”, Appl. 
Phys. A 36 (1985) 163. 

[5] R. A. Marcus. “On the Theory of Oxidation-Reduction Reactions Involving Electron 
Transfer”, J. Chem. Phys., 24 (1956) 966. 

[6] J.-L. Bredas, D. Beljonne, V. Coropceanu, J. Cornil, “Charge-Transfer and Energy-
Transfer Processes in π-Conjugated Oligomers and Polymers: A Molecular Picture". 
Chem. Rev., 104 (2004) 4971. 

[7] P. G. Le Comber, W. E. Spear, “Electronic Transport in Amorphous Silicon Films", Phys. 
Rev. Lett., 25 (1970) 509. 

[8] G. Horowitz, R. Hajlaoui, P. Delannoy. “Temperature Dependence of the Field - Effect 
Mobility of Sexithiophene. Determination of the Density of Traps". J. Phys. III France, 5 
(1995) 355. 

[9] G. Horowitz, M. E. Hajlaoui, R. Hajlaoui. “Temperature and gate voltage dependence of 
hole mobility in polycrystalline oligothiophene thin film transistors”, J. Appl. Phys., 87 
(2000) 4456. 

[10] W. Warta, N. Karl, “Hot holes in naphthalene: High, electric-field-dependent mobilities”, 
Phys. Rev. B, 32 (1985) 1172. 

[11] M. Kitamura, T. Imada, S. Kako, Y. Arakawa, “Time-of-Flight Measurement of Lateral 
Carrier Mobility in Organic Thin Films”, Jpn. J. Appl. Phys. 43 (2004) 2326. 

[12] N. F. Mott, R. W. Gurney, “Electronic Processes in Ionic Crystals”, Oxford University 
Press, New York City, 1940. 

[13] M. A. Lampert, “Simplified Theory of Space-Charge-Limited Currents in an Insulator with 
Traps”, Phys. Rev. 103 (1956) 1648. 

[14] H. Antoniadis, J. N. Miller, D. B. Roitman, I. H. Cambell, “Effects of hole carrier injection 
and transport in organic light-emitting diodes”, IEEE Trans. Electron Devices 44 (1997) 
1289. 

[15] P. M. Blom, M. J. M. d. Jong, C. T. Liedenbaum, “Device physics of polymer light-
emitting diodes”, Polym. Adv. Technol. 9 (1998) 390. 

[16] H. Katz, “Organic molecular solids as thin film transistor semiconductors”, J. Mater. 
Chem. 7 (1997) 369. 



Chapter 2 Organic Semiconductors 

25 

 

[17] C. D. Dimitrakopoulos, D. J. Mascaro, “Organic thin-film transistors: a review of recent 
advances”, IBM J. Res. Dev. 45 (2001) 11. 

[18] G. Horowitz “Organic field-effect transistors”, Adv. Mater. 10 (1998) 365.  

[19] P.V. Pesavento, R. J. Chesterfield, C. R. Newman, C. D. Frisbie, “Gated four-probe 
measurements on pentacene thin-film transistors: contact resistance as a function of gate 
voltage and temperature”, J. Appl. Phys. 96 (2004) 7312.  

[20] C. Goldmann, S. Haas, C. Krellner, K.P. Pernstich, D.J. Gundlach, B. Batlogg, “Hole 
mobility in organic single crystals measured by a “flip-crystal” field-effect technique”, J. 
Appl. Phys. 96 (2004) 2080. 

[21] C.D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, J.M. Shaw, “Low-
voltage organic transistors on plastic comprising high-dielectric constant gate insulators”, 
Science 283 (1999) 822.  

[22] C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. de Leeuw, “Unification of the hole transport 
in polymeric field-effect transistors and light-emitting diodes”, Phys. Rev. Lett. 91 (2003) 
216601.  

[23] T. Kirchartz, “Influence of diffusion on space-charge-limited current measurements in 
organic semiconductors”, Beilstein J. Nanotechnol. 4 (2013) 180. 

  



Chapter 2 Organic Semiconductors 

26 

  

 

  



 

27 

 

3. Organic Solar Cells 
A brief introduction to organic solar cells is given in this chapter. Firstly, an equivalent 

electrical circuit, useful to characterise any type of solar cell, is presented. Following, the 

working principle of the organic solar cells is introduced with special attention to its 

peculiarities, such as the creation and dissociation of excitons, the origin of the open circuit 

voltage as well as the recombination processes. Finally, the most used architectures in organic 

solar cells are detailed. 

3.1 Solar Cells Characterisation 

A solar cell is a device that converts directly the light into electricity. The standard parameters 

used to characterise the performance of a solar cell are described briefly in this section. These 

parameters will be useful to compare the electrical performance of different solar cells. 

Moreover, its analysis allows a deep understanding of the physics governing its electrical 

behaviour. 

3.1.1 Current - Voltage characteristics 

When a solar cell is measured in dark, the current density vs. voltage (J–V) characteristic shows 

the typical diode characteristic. Under illumination, the dark J–V curve is shifted towards 

negative currents because of the generated photocurrent (Figure 3.1). Photocurrent density is 

defined as the photocurrent generated per unit area (JPH). The electrical power generated by a 

solar cell can be identified by the area enclosed in the fourth quadrant of the J–V curve under 

illumination. Short circuit current density (JSC), open circuit voltage (VOC) and fill factor (FF) 

values are the main parameters that characterise a solar cell. These three parameters determine 

the power conversion efficiency of a solar cell (η). 
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Figure 3.1 - J–V curve of a PV cell under illumination (blue line) conditions. The open circuit voltage (VOC) and the 
short-circuit current (JSC) are shown. The maximum power output is given by the red square (current density in 

maximum power point (JMPP) and voltage in maximum power point VMPP). 

Open Circuit Voltage 

The voltage between the two terminals of a solar cell under illumination at which no current 

flows through the device is called the open circuit voltage (VOC). VOC is the maximum voltage 

that the photovoltaic cell can provide to the external circuit. Likewise, VOC can also be thought of 

as the point at carrier generation and recombination exactly balance each other and no net current 

exists at any point inside the device.  

Short Circuit Current Density 

When there is not voltage applied only short-circuit current density JSC flows through the solar 

cell terminals. JSC is the maximal current density the photovoltaic cells can provide to the 

external circuit. In ideal solar cell (without parasitic resistances), the JSC will be the same as the 

JPH. Thus, for monochromatic exposure the spectral dependence of the charge carrier generation 

can be measured. 

Fill Factor 

Fill factor is one of the key parameter to evaluate the performance of a solar cell. The maximum 

power point (MPP) of a solar cell can be measured in the fourth quadrant of the J–V curve 

(Figure 3.1). The fill factor of a device is defined as the ratio between the maximum power 

delivered to an external circuit and the product of VOC and JSC (Eq. 3.1). Graphically, the FF is a 

measure of the “squareness” of the solar cell and is also the area of the largest rectangle which 

will fit in the J–V curve.  
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Because of the diode behaviour and the presence of resistances and recombination losses, |JMPP| 

and VMPP are always lower than |JSC| and VOC, respectively. 

Power Conversion Efficiency  

Power conversion efficiency (η) is defined as the percentage of incident illumination  power Po 

that is converted into electrical output power and is calculated from the maximum power at the 

MPP over the incident light power P0 [1]. 

To certify reliable comparison of different solar cells standard test conditions are used. Thereby, 

incident solar power density (Po) standards have been defined. National American Society for 

Testing Materials (ASTM) standard E948 and International Electrotechnical Commission (IEC) 

standard 60904-1 specifies a set of common test conditions and methods to measure the 

electrical performance of photovoltaic cells. They are named the Standard Testing Conditions 

(STC) and are defined as follows: 

1. Temperature of the device under test (DUT) is to be 25˚ ± 1˚C;  

2. Spectral distribution of the light is to be AM1.5 ± 25%; 

3. Irradiance measured at the plane of the solar cell is to be 1 sun ± 2% 

The spectrum standard is the AM1.5 which can be approached by commercial solar simulators 

(Figure 3.2). AM is the air mass coefficient defined by direct optical path length through the 

Earth’s atmosphere, expressed as a ratio relative to the path length at the zenith. AM1.5 

atmosphere thickness corresponds to a solar zenith angle of z = 48.19°. Therefore, AM1.5 is 

useful to represent the overall yearly average for mid-latitudes. 
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Figure 3.2 - Spectral irradiance of the AM1.5 (red area) solar spectrum up to 2600nm. 

3.1.2 Equivalent circuit for solar cell 

The current – voltage characteristic of an ideal solar cell can be defined as the sum of the 

Shockley equation (Eq. 3.3) that describes the electrical behaviour of the diode in dark 

conditions [1] with an added term, JPH, corresponding to the photocurrent provided by the diode 

under illumination conditions (Eq. 3.4): 

where J is the current density, J0 reverse bias saturation current density, n is the diode ideality 

factor, kB is the Boltzmann constant, and T is the absolute temperature. 

Assuming a generation rate of charge carriers independent of the applied voltage V and adding 

up Eq. 3.3 and Eq. 3.4, current density of a solar cell can be expressed as: 

Eq. 3.5 defines the characteristic of an ideal solar cell. Eq. 3.5 leads to the equivalent electrical 

circuit depicted in Figure 3.3. 
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Figure 3.3 - Ideal solar cell consisting of a current source and an ideal diode in parallel. 

As mentioned above, the Shockley equation (Eq. 3.5) can only be used for describing the 

electrical behaviour of ideal solar cells. In real devices, additional parallel resistance (RP) and 

series resistance (RS) must be taken into account.  

• Parallel resistance (RP): also known as shunt resistor RSH. It is due to shunt currents 

through shorts or pin-holes in the device. 

• Series resistance (RS): represents Ohmic losses in the front and rear electrodes mainly 

due to the contact resistances. 

Considering the effects of RP and RS the equivalent electrical circuit becomes (Figure 3.4): 

 

Figure 3.4 - Equivalent circuit of a solar cell including an additional shunt resistor RP as well as a series resistor RS. 

Solving the equivalent circuit, the electrical characteristics of a non-ideal solar cell can be 

described by the following equation [1–3]:  
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3.1.3 Spectral Response of solar cell 

The spectral response SR (λ) is an important way to characterise the optical response of the solar 

cell and, in general, is a powerful tool to optimise their performance. The spectral response 

represents the current per irradiated light power in A/W for a certain wavelength. SR (λ) can be 

expressed as the JPH per incident power (Eq. 3.7): 

Furthermore, the External Quantum Efficiency (EQE) of a device determines the conversion 

efficiency of an absorbed photon into a free charge carrier (extracted electron-hole pair) and 

depends on wavelength (Eq. 3.8). 

The EQE can be derived from the spectral response considering that the energy of a photon EP = 

hc / λ with h being Planck’s constant, c the speed of light and q the elementary charge using the 

following (Eq. 3.9): 

The short-circuit current density expected under a light source can be estimated from the EQE 

and the spectral irradiance of the light source by integrating the product of the EQE and the 

photon flux density (Eq. 3.10): 

where 
5.1AMEλ is the spectral irradiance of the AM1.5 spectrum. 

The EQE can be converted into the internal quantum efficiency (IQE) if only the fraction of the 

actually absorbed photons is considered (Eq. 3.11): 

where R(λ) is the reflected light and T(λ) is the transmitted light. 
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3.2 Working principle of Photovoltaic Solar Cells 

In this section, the physics behind the working principles of organic solar cells will be briefly 

described. To understand the physics behaviour of organic solar cell requires a deep knowledge 

of the working principle of a photovoltaic solar cell. We review in the following the fundamental 

principles for photovoltaic effect. A general approach is introduced to describe solar cells in 

terms applicable to all possible device structures including p-n homo- and heterojunction cells 

(i.e., Si, CIGS, CdTe), bulk heterojunction devices (i.e., organic solar cells), or nanostructured 

photoelectrochemical cells (i.e., DSCs)[4–5]. 

1. Any photovoltaic device requires a light absorber that converts electrons from thermal 

equilibrium into an excited state upon absorption of photons (Figure 3.5). Upon photon 

absorption, an electron is excited into an electronic state at higher energy, leaving a 

positive charge behind at low energy.  

 

Figure 3.5 - Ideal structure of a photovoltaic device. The currents are driven by the gradient of electrochemical 
potential. On the left hand side the holes are blocked, while on the right and side electrons are blocked before 

reaching the contacts. Figure adapted from [6]. 

2. Either this excited state is metastable by itself or the electron is transferred into a 

metastable, high-energy state while the remaining positive charge gets into a metastable 

low-energy state. 

3. A transport mechanism is necessary to bring electrons to a high electron energy contact 

or (negative potential), while the remaining positive charge needs a driving force to 

achieve the low energy contact [4]. Currents of electrons and holes respectively are 

driven by gradients of their electrochemical potential. 

4. The contacts have to show some selectivity for charge collection such that positive 

charges cannot recombine with electrons from the high-energy contact, while electrons 

from the high energy-state should not reach the low-energy contact. 
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The selectivity of the contacts can be achieved using different approaches. The simple way is to 

add a thin layer with a strong selectivity character (for holes or electrons). These layers are 

usually called Hole (or Electron) Transport Layer (HTL, ETL). A HTL should be inserted 

between the donor and the anode electrode, whereas the ETL should be placed between acceptor 

and cathode electrode.  

Examples of materials used as HTL in organic devices (including OLEDs and TFTs) are:  

• Transition Metal Oxides (TMOs): molybdenum oxide (MoOx) [7], vanadium pentaoxide 

(V2O5) [8], tungsten trioxide (WO3) [9–10], rhenium dioxide (ReO2) [11], nickel oxide 

(NiO) [12]. 

• Solution processed organic materials: poly(3,4-ethylenedioxythiophene) polystyrene 

sulfonate (PEDOT-PSS) [13], triindoles, triazatruxene (TAT), and N-trimethyltriindole 

(TMTI) [14]. 

• Carbon-based nanostructures: Carbon nanotubes (CNT) [15] and Graphene oxide (GO) 

[16–18]. 

As ETL the following compounds have been reported to have good selectivity for electrons: 

• Lithium fluoride (LiF) [19], calcium (Ca) [20], bathocuproine (BCP) [21], 

bathophenanthroline (BPhen) [22], 1,3,5-tris(2-N-phenylbenzimidazolyl) benzene (TPBi) 

[23], zinc oxide (ZnO) [24], titanium oxide (TiOx) [25], caesium carbonate (Cs2CO3) 

[26]. 

The concept of the selectivity contacts was first introduced some years ago by some authors (see 

for example: Peter Würfel [5] and Juan Bisquert [27]). Although for many years this approach 

was used to describe the electrical behaviour of organic and dye sensitized solar cells, its 

simplicity and powerfulness it has caused that more and more authors use it as the theoretical 

framework for explaining the photovoltaic working principle of other types of solar cells; as well 

as crystalline silicon solar cells [28–29]. 

This definition is useful to describe any kind of photovoltaic solar cell, and can be easily applied 

to cells with an intrinsic absorber sandwiched between an n- and p- doped layers (n-i-p or p-i-n). 

Electrons are excited into some electronic state in the conduction band (CB), directly followed 

by phonon emission such that electrons decay to the bottom of the CB, which is the metastable 

high-energy state. The electric field across the intrinsic layer provides a driving force for electron 
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and hole transport toward the respective contact, while a doped n- and p-type layer close to the 

high- and low-energy contact provides the required transport selectivity due to a valence band 

(VB) offset that creates a barrier for hole transport toward the cathode, and a anode offset 

between the absorber and the p-type layers blocks electrons from recombining at the anode [30].  

Organic solar cells operate very similar to p-i-n cells with the difference that the metastable high-

energy state corresponds to the LUMO level of the acceptor while the HOMO level of the donor 

defines the low-energy state. Photovoltaic action in p-n homojunction silicon solar cells is often 

entirely attributed to the built-in electric field that provides a driving force for holes and 

electrons toward the cathode and anode, respectively. However, selective charge collection at the 

cathode is at least as important to achieve high conversion efficiencies.  

While the above principles are basic requirements for PV action, they do not say much about the 

efficiency of the process. For the development of efficient single-junction solar cells, additional 

criteria have to be fulfilled: 

• The energy bandgap of the absorber (EG) should be in the range between 0.9 and 1.7 eV 

(absorption onset between 1380 and 730 nm), for which the detailed balance limit 

predicts a theoretical efficiency limit above 30%. This bandgap estimation take into 

account that photons with sub-band-gap energy are not absorbed (hν < EG) while only a 

fraction of the photon energy (EG / hν) above the band gap is converted into electric 

power while the fraction (hν − EG) / hν is mostly converted into heat. 

• The inverse absorption coefficient α−1 should be shorter than the minority carrier 

diffusion length LD. This criteria is a rather rough statement saying that within a minority 

carrier diffusion length, most of the photons should be absorbed in order to provide 

diffusion as a transport mechanism to reach the respective contact. This statement is 

useful for the development of new absorber materials because α−1 as well as LD are 

material properties and can be characterised without the need to produce the whole 

device. However, this criteria neglects additional parameters that can cause a gradient of 

the minority carrier quasi-Fermi level 1 (which is the driving force minority carrier), such 

as the electric fields, gradients of the electron affinity, and band gap or band 

                                                             
1 Quasi Fermi level is a term that describes the population of charges separately in the conduction band or valence band, when 
their populations are displaced from equilibrium. This displacement could be caused by the application of an external voltage, or 
by exposure to light. 
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discontinuities. In contrast to the diffusion length, these parameters are defined by the 

device structure and can only be characterised in a complete solar cell.  

• During the transport from the absorber to the high- and low-energy contact, the loss of 

energy due to discontinuities of the valence or the conduction band has to be minimised. 

As the previous point, this parameter is defined by device structure, which provides a 

general guideline for the band structure of a solar cell. 

3.3 Working principle of Organic Solar Cells 

At this point, it is worthwhile to note that, in contrast to inorganic semiconductors, the term 

donor and the term acceptor are used in relation to organic solar cells. Thus, a donor can 

describe a molecule (material) which transfers an electron to another molecule. Therefore, an 

acceptor can describe a molecule (material) which receives an electron from another molecule. 

Another important difference of organic versus inorganic semiconductors is the existence of the 

exciton. The exciton is an electron-hole pair, where electron and hole are bound by Coulomb 

force (Eq 3.12). 

where r is the distance between the two charges q, ɛ0 is the vacuum permittivity and ɛ the 

permittivity of the organic medium.  

In organic semiconductors the formed excitons are Frenkel type, whereas in inorganic 

semiconductors (like crystalline silicon) they usually are Wannier Mott-type. The latter are often 

thermally dissociated at room temperature, which is not the case in a Frenkel exciton where the 

binding energy is ten times greater. Due to the high dielectric constant the Wannier Mott exciton 

has a radius larger than the lattice spacing; in contrast, Frenkel excitons tend to be small, of the 

same order as the size of the unit cell because of the low dielectric constant values found in 

organic semiconductors. This aspect is of essential importance to describe the operation of 

organic solar cells, as discussed below.  

Due to the low dielectric constant permittivity in organic materials (∼3) photoexcitation leads to 

a strongly bound exciton, which needs (in the case of solar cells) to be dissociated into free 

electrons and holes (carriers) [31]. The dissociation takes place at the donor/acceptor (D/A) 
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interface. Once the exciton is dissociated, electron and hole, diffuse up to the corresponding 

electrodes, where they are collected and giving rise to an electric current.  

Exciton dissociation is energetically favourable when the energy of binding exciton (EEX) is 

larger than the difference between ionization potential of the donor (IPD) and the electron affinity 

of the acceptor (EAA) [32–33].  

If the difference is not sufficient the exciton will recombine (geminate recombination) without 

contributing to the photocurrent. Exciton dissociation can also occur at the organic 

semiconductor/metal interfaces or in presence of impurities (e.g. oxygen) [34].  

Organic solar cells are generally fabricated in thin film form of donor (D) and acceptor (A) 

materials, with suitable energy levels matching, between two electrodes. One electrode must be 

transparent to allow the incident light reaching the photoactive materials.  

The conversion of the photon energy into free charge carriers in an organic solar cell could be 

explained in the follow simplified steps (Figure 3.6): 

1. Light absorption of the photon in one of the respective absorber layers (shown here for a 

donor layer and exciton creation.  

2. Exciton diffusion to the donor/acceptor interface. 

3. Charge transfer state: exciton gets separated due to a favourable energy offset 

overcoming the exciton binding energy [35–36]. 

4. Charge transport: free charge carriers are generated and transported through the 

respective layer. 

5. Collection of the charges at the electrodes. 

 EB
exc > IPD – EAA (3.13) 
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Light absorption 

The first step in the photovoltaic process consists in the absorption of the light. In most organic 

solar cell only a small percentage of the incident light is absorbed. Principal reasons are:  

• Thickness of photoactive materials: the organic layer is too thin. Low charge carrier 

mobilities and the low exciton diffusion lengths require layer thickness between 20 and 

100 nm. Fortunately, the high optical absorption coefficients (e.g. > 105 cm−1) of organic 

semiconductors allow that organic solar cells could work with a layer thickness of a few 

tens of nanometres.  

• Semiconductor bandgap too high with typically values about 2 eV. Besides the high 

absorption coefficient, only a small portion of the incident light is absorbed because of 

higher bandgap values. 

When the electron is excited by the light absorption an exciton is created. For most organic 

semiconductors permittivity values (ɛ) lies between 1 and 6 [37] which is quite low compared to 

the permittivity of inorganic semiconductors (as for instance silicon) which exhibits ɛ = 12. 

Excitons in inorganic semiconductors are usually of Wannier-Mott type. Their radius is in most 

cases larger than the lattice spacing and the charges are quasi-free. In contrast, the attractive 

force between electrons and holes in organic solids, where the exciton is initially localised in one 

molecule, is much higher and the binding energy is comparably strong. Such strongly bound 

excitons are called Frenkel excitons [38]. 
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Figure 3.6 - Diagram showing the photogeneration in organic solar cell: from photon absorption to free carriers. 
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Exciton diffusion 

After the generation of excitons, they diffuse through the donor or acceptor phase and dissociate 

into free charges at the D/A interface or recombine wasting the photons. Ideally, all photoexcited 

excitons should reach the D/A interface, but due to the small exciton diffusion length some 

excitons recombine before to reach the D/A interface. The exciton diffusion length (LD) can be 

estimated by (Eq. 3.14): 

where τ0 is the lifetime of the exciton and D is the diffusion coefficient. In literature, exciton 

diffusion lengths can vary from 1 nm to more than 50 nm, depending on the material [39–41].  

Due to their electrical neutrality, exciton movement is not affected by electric field, and 

consequently, they diffuse through the organic semiconductor isotropically. This diffusion is 

usually described as a Förster-type incoherent energy transfer process [42] and typically acts to 

lower the energy of the exciton. The diffusion process can result in trapping of the exciton in 

states originating from aggregates or defects. These states give rise to the tail of the density of 

states [43].  

Only the excitons which are able to reach the D/A interface can contribute to the photocurrent. 

Exciton diffusion lengths have strong influence on the device design, because of the trade-off 

between light absorption and recombination. As consequence, the active layer thickness must be 

tuned to absorb light and to allow the exciton to reach the D/A interface.  

Charge transfer state 

At the D/A interface, strongly bound excitons might dissociate, contributing to charge carrier 

generation. The dissociation of the exciton happens via an intermediate state, a so-called charge 

transfer (CT) state. The electrons will be transferred to the electronegative acceptor, provided 

that the exciton binding energy (EB
exc) is overcome by this charge transfer process. This 

requirement is often satisfied by an energetic offset between the donor and acceptor LUMOs. If 

the electron is transferred from the LUMO of the donor to the LUMO of the neighbouring 

acceptor the charge transfer (CT) exciton is formed, where the resulting electron-hole pairs still 

experience Coulombic attraction because donor and acceptor phases are physically close to each 

other at the interfaces. Then, in this intermediate state the two charges are located on separate 

neighbouring molecules [44–45] (Figure 3.7). The binding energy of the CT state (EB
CT) was 

 DLD 0τ=  (3.14) 
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reported to be in the range of 0.1–0.5 eV [46–48], which is significantly larger than the thermal 

energy at room temperature (~25 meV). 

 

Figure 3.7 - Scheme of the creation of exciton and charge-transfer states. The energy of this state depends upon the 
Coulomb attraction of the electron and hole and therefore their separation as illustrated by the dotted ellipsoid. For 

simplicity, the binding energies are shown relative to the LUMOs. 

Charge Transport 

Once the charge carriers are separated, the electrons are in the acceptor phase whereas hole 

remains in the donor phase. Free charges must be transported from the D/A interface through the 

organic materials towards the respective electrodes to produce photocurrent. The charge 

transport in organic materials can be described by a hopping mechanism [49], instead of band 

transport. In the case of solar cells, the driving force is mainly the gradient of electrons and holes 

concentration. Thus, the free charges (electrons and holes) diffuse to corresponding electrode. 

Currents of electrons and holes are driven by gradients of their electrochemical potential. The 

only possible loss mechanism in the charge transport is recombination between electrons and 

holes during the journey to the electrodes (bimolecular recombination). Nevertheless, this 

process is known to be very efficient and fast. A common measure for charge transport 

efficiency is the mobility-lifetime (μτ) product, which expresses the average distance a charge 

carrier travels at a fixed electric field before it recombines. Further analysis and experiments 

have been done about μτ product in Chapter 6. 

Collection the charges   

An efficient collection of charges at their respective electrodes requires that the charge must 

overcome the potential barrier of organic/metal interface [50]. This can be realised by using 

doped layers to create selective contacts. The semipermeable contacts let the collection of one 
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kind of charge carriers through and block the other one. There is only a direct loss path if 

contacts are not selective and a charge carrier reaches the “wrong” contact, where it recombines.  

External Quantum Efficiency  

Each of these steps of conversion of photon energy into free charge carriers occurs with a certain 

efficiency η. The EQE of organic solar cells can be expressed multiplying these efficiencies (Eq. 

3.15): 

where ηA is related to the photon absorption efficiency, ηED to the exciton diffusion efficiency, 

ηCT to the charge transfer efficiency, and ηCC to the carrier collection efficiency. The ηED restricts 

the EQE, because of the exciton diffusion length has values in the range of nanometres. The 

distance an exciton is able to travel during its lifetime has strong influence on the design and 

optimisation of materials and devices (i.e. the thicknesses of active layers). 

From the spectra of the EQE, photocurrent contribution of a limited wavelength region can be 

studied. Hence, the contribution of each material to the photocurrent can be obtained, since the 

different photoactive materials absorb in different spectral regions. 

3.3.1 Carrier Recombination   

Recombination processes are mechanisms losses that decrease the power conversion efficiency 

of the solar cells. There are two types of recombination in organic solar cells: geminate and 

nongeminate recombination. 

• Geminate recombination takes place when a coulombically bound electron–hole pair 

(exciton) generated from the absorption of a single photon recombines before the electron 

and hole are separated into free charge carriers. The probability of geminate 

recombination is independent of carrier density and geminate losses happen within 

nanoseconds of absorption [51–52].  

• Nongeminate recombination is the recombination of free charge carriers and 

encompasses both trap-assisted (Shockley-Read-Hall) and bimolecular mechanisms 

(Langevin). Nongeminate recombination losses are carrier density dependent and 

typically occur after micro to milliseconds when illumination conditions are comparable 

1 sun [53–54]. 

 EQE = ηA ηED ηCT ηCC (3.15) 
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Geminate recombination 

Onsager was the first to described quantitatively geminate recombination [55]. His model 

calculates the probability that a coulombically bound electron-hole pair will escape its Coulomb 

attraction and generate free charges. The competition between dissociation of CT state and its 

recombination to the ground state depends upon the magnitude of the coulombic attraction felt 

by this CT state (Figure 3.8). In particular, Onsager proposed a definition for a Coulomb capture 

radius (alternatively called the Onsager radius), rc, define the distance at which the Coulomb 

attraction energy equals the thermal energy kBT. If the thermalisation length a is greater than the 

Coulomb capture radius rc, the charge carriers are considered to be fully dissociated. If, however, 

the thermalisation length is smaller than rc, then the dissociation of the CT state into free charges 

occurs with a certain escape probability, while geminate recombination occurs with a 

complementary probability. 

 

Figure 3.8 - Electron thermalisation length (a) versus coulomb capture radius (rC). 

Nongeminate recombination 

Direct nongeminate recombination refers to the recombination of a free electron with a free hole 

in the semiconductor. Most often, nongeminate recombination takes place via defect states in the 

gap (Shokley-Read-Hall), where a free electron (or hole) is captured by a trapped hole (or 

electron). Nongeminate recombination is usually referred in the literature as bimolecular 

recombination, in the sense that the electron and hole that recombina come from different 

dissociated excitons. 
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3.3.2 Parameters characteristics of Organic Solar Cells  

In the next paragraphs the VOC, JSC, parasitic resistances (RP, RS) and FF will be analysed in 

detail for the case of organic solar cells. 

Open Circuit Voltage 

The VOC is related to the splitting of the quasi-Fermi levels of hole and electron in the active 

layer under steady-state illumination at the anode and cathode (Figure 3.9) [56]. Under this 

condition, carrier generation and recombination exactly balance each other and no net current 

exists at any point inside the device. 

 

Figure 3.9 - The open circuit voltage in organic solar cells is related to the difference between HOMO level of the 

donor and LUMO level of the acceptor. 

Many reports have shown that in organic solar cells, VOC is linearly correlated to the difference 

between the HOMO level of the donor and the LUMO level of the acceptor (Eq. 16) [57–58], 

and it does not depend on the work functions of the electrodes [59]. 

where q is the elementary charge, EHOMO,D is the HOMO level energy of the donor and ELUMO,A 

is the LUMO level energy of the acceptor. One the most cited work was done by Brabec et al. in 

2001 [57]. They synthesized a series of fullerene derivatives with different LUMO levels and 

blended them with a common donor poly(2-methoxy-5-(30,70-dimethyloctyloxy)- 1,4-

phenylenevinylene) (MDMO-PPV). In their experiments, VOC was always linearly dependent on 

the LUMO level of the acceptor. While the work function of the cathode varied in the wide range 

of 2.87 eV (Ca) to 4.28 eV (Au), the variation of VOC was comparatively very small (<0.2 V). In 

2006, Scharber [58] carefully studied a series of organic solar cell devices (26 polymer donor 

 VOC = (1/q) (|EHOMO,D| –|ELUMO,A| – ∆) (3.16) 
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materials with different HOMO levels blended with a common acceptor), and proposed an 

empirical value of 0.3 for VOC losses. It should be noted that the VOC loss of 0.3 eV is obtained 

from experimental data, and it is not based on theoretical background. A similar relation was 

reported by Veldman et al. [60] based on a detailed analysis of the charge transfer emission in 

polymer/fullerene blends. A number of studies suggested that the physical reasons of this 0.3V 

loss factor limiting the maximum achievable VOC in organic solar cells could be related to the 

effect of disorder [61–62]. Durrant and co-workers [63–64] analyse the impact of charge carrier 

recombination and the donor acceptor microstructure on the VOC of bulk polymer solar cells. 

They developed a comprehensive model describing the VOC of bulk heterojunction solar cells 

device based on transient optoelectronic analyses. They found for different polymer-fullerene 

solar cells VOC losses in the range of 0.225–0.435V. 

Although the origin of the losses has been discussed widely no clean conclusions have been 

established. Anyhow, there is a consensus the major losses resulting in a decreased VOC are 

related to the disorder in organic semiconductors [65] and non-geminate recombination [66].  

Materials for organic solar cells are soft materials. During the film preparation, interactions 

between molecules, kinks in the polymer chains, and the degrees of crystallinity of organic 

semiconductors can all introduce disorder into the system. Furthermore, the regioregularity, 

molecular weight, and purity variation are all important causes of disorder. The control of film 

deposition is an important subject in the field of organic solar cells. Thus, disorder should also be 

taken into consideration when discussing origin of VOC in organic solar cell. 

As consequence of disorder and defects localised states appear within the bandgap of the 

semiconductor. Similar to the well-studied inorganic hydrogenated amorphous silicon (a-Si:H) 

semiconductor, disorder induces band tails states and deep traps in the electronic structure. The 

distribution in the gap states downshifts the electron quasi-Fermi level and upshifts the hole 

quasi-Fermi level, which obviously reduces VOC. For the same reason, disorder in organic 

materials plays a role in bringing the electron quasi-Fermi level down away from the LUMO 

level of the acceptor, and lifting up the hole quasi-Fermi level away from the HOMO level of the 

donor, and consequently reduce the VOC. The distribution of density of states (DOS) in the tail 

can be approximated as a Gaussian or exponential type.  

Nongeminate recombination in organic solar cells annihilates carriers and hence causes energy 

loss, reducing VOC as a result. At VOC photo-generated carriers remain and accumulate inside the 

device, thereby bimolecular mechanism governs the recombination. 
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The influence of the DOS on the VOC in small-molecule organic solar cells is discussed in section 

3 of Chapter 5. 

Short Circuit Current  

The JSC in organic solar cell is ideally proportional to the absorbed photons and dependent on the 

free charges carriers to reach the electrodes. The number of photons absorbed depends on the 

absorption coefficient of the material and the device architecture, as well as the thickness of the 

active layer or reflecting back electrodes [1]. 

The major loss of JSC is leaded by monomolecular recombination, where carriers recombine 

through a trap or a recombination centre. 

Parasitic Resistances 

• Parallel resistance (Rp): In organic solar cells, Rp is mainly attributed to recombination 

of charge carriers near the donor-acceptor interface. 

• Series resistance (Rs): In organic solar cells, Rs considers conductivity i.e. mobility of 

the specific charge carrier in the respective transport medium. For example, mobility of 

holes in a p-type material. The mobility can be affected by space charges and traps. Rs is 

also increased with a longer travelling distance of the charges in i.e. thicker transport 

layers. 

Fill Factor 

The value of FF depends mainly on parasitic resistances. Typical values for FF are 0.65 to 0.85 

for good organic solar cells. 

3.4 Device architecture 

In the following a brief summary, including the strengths and weak points, of the four most used 

architectures of organic solar cells is given: 

Single layer cell. Single layer structures consist of only one semiconductor material between two 

electrodes (Figure 3.10). Single layer cells and are often referred to as Schottky type devices or 

Schottky diodes since charge separation occurs at the rectifying (Schottky) junction with one 

electrode. The other electrode interface is supposed to be of ohmic contact [67–70]. The 
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structure is simple but the absorption is usually low using a single type of molecule. Since both 

positive and negative charges travel through the same material, recombination losses are 

generally high. 

 

Figure 3.10 - Diagram of single layer organic solar cell. 

Bilayer cell. This kind of solar cell contain two layers sandwiched with the conductive electrodes 

(Figure 3.11).This structure benefits from the separated charge transport layers that ensure 

connectivity with the correct electrode and give the separated charge carriers only little chance to 

recombine with its counterpart. The principal drawback is the small interface area that allows 

only excitons to reach it and get dissociated.  

This architecture has an important limitation which relates to the exciton diffusion length in the 

organic materials. The exciton diffusion length is dependent on the exciton lifetime and is in the 

range of 10–40 nm. 

 

Figure 3.11 - Diagram of bilayer organic solar cell. 

Bulk Heterojunction cell. A mixture of donor and acceptor materials is sandwiched between 

anode and cathode (Figure 3.12). The strong point of this type is the large interface area, 

allowing high molecular mixing and, thereforen, most excitons can reach the D/A interface. This 
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accounts for the intrinsically low exciton diffusion lengths and allows for more generated 

excitons to be separated into free charge carriers. However, the charges have to be transported to 

the electrodes via closed and short percolation pathways. Otherwise transport losses by trapping 

or recombination may occur. Hence, the connectivity with the correct electrode is the big weak 

point of this structure. As a result, the photocurrent is usually higher in bulk heterojunction than 

in at heterojunction solar cells [71–72]. 

 

Figure 3.12 - Diagram of Bulk Heterojunction organic solar cell. 

p-i-n cell. This type represents the successful attempt to unify the advantages of the two 

structures described previously. The photoactive donor/acceptor heterojunction (intrinsic layer) 

is sandwiched between semipermeable layers, which act as selective membranes, facilitating 

charge transport to the respective contacts (Figure 3.13). 

The semipermeable layers can be formed either by using doped wide-gap materials or charge 

(hole and electron) transport layers. In this thesis, transparent materials with wide band gap are 

used as semipermeable layers. Charge separation occurs in the intrinsic layer and charge 

transport can only occur via the corresponding transport layer. In Chapter 5, we study the 

influence of the thickness of the intrinsic layer on the performance of the solar cells.  

Additionally, the electron transport layer also protects the active layer against damage due to the 

metal deposition [73]. BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) and BPhen 

(bathophenanthroline; 4,7-diphenyl-1,10-phenanthroline) are typical molecules used for electron 

transport layers. On the other hand, Transition Metal Oxides (TMOs) and PEDOT:PSS can be 

used as a hole transport layers. In this thesis, Molybdenum Oxide (MoO3) and BCP are the 

materials employed as hole and electron transport layers respectively.  
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Figure 3.13 - Diagram of p-i-n organic solar cell 

Tandem Cells. Organic tandem solar cells were first introduced by Hiramoto et al. in 1990 [74]. 

Tandem solar cells with organic semiconductors are solar cells with multiple D/A 

heterojunctions made of different semiconductor materials. Ideally, each D/A heterojunction will 

produce electric current in response to different wavelengths of light; thereby a broader 

harvesting of the solar spectrum is achieved [75]. Thermal evaporation processing allows an easy 

stacking of organic layers to form multiple heterojunctions.  

The tandem solar cells concept is particularly interesting in the case of small-molecule solar cells 

with p-i-n structure. The single p-i-n devices feature good device performance with high FF and 

high Internal Quantum Efficiency (IQE). Nevertheless, to achieve high power conversion 

efficiencies both IQE and the total absorption need to be high. The single p-i-n cells suffer from 

too low absorption in two aspects. Firstly, the absorption spectra of the photoactive layers do not 

cover the complete range of the sun spectrum. In addition, the photoactive layers have to be thin 

enough to avoid recombination losses and space charge limitation of the current flow. Therefore, 

they are optically thin even at the absorption maxima.  

An approach to overcome these problems is to stack several junctions with either identical or 

complementary absorption spectra on top of each other. The VOC is then given by the sum of the 

open circuit voltages of the individual cells. The flow of photocurrent in stacked junction cells 

requires easy recombination of charge carriers with low energetic losses at the interface between 

the individual cells. For that reason, each D/A heterojunction is separated by a thin layer as 

recombination zone, shown in Figure 3.14 [76]. 

Today, this architecture combined with p-i-n subcells has achieved the world record efficiency in 

organic solar cells. 
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Figure 3.14 - Diagram of tandem organic solar cell. 
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4. Materials and Experimental Methods 
This Chapter presents the materials used in this thesis to fabricate the solar cells. Additionally, 

the thin film deposition techniques and the experimental set-up used for solar cell deposition and 

characterisation are explained in detail. 

4.1 Materials 

The chemical structure and the main optoelectronic properties of the organic semiconductors 

used in this work are presented in this section. 

Tetraphenyldibenzoperiflanthene 

Tetraphenyldibenzoperiflanthene (DBP) is a p-type semiconductor (donor electron material). 

DBP molecule has a symmetrical structure (Figure 4.1). DBP molecule is only composed of 

carbon and hydrogen atoms. 

 

Figure 4.1 - Structure of Tetraphenyldibenzoperiflanthene (DBP) 

Numerous donor materials have been developed in last decades. DBP is a promising electron 

donor material for photovoltaic applications and has been used in many laboratories around the 

world since 2009 [1–6].  

The principal advantages of DBP in application to solar cells are the high optical absorption and 

the high HOMO level. High optical absorption values allow a reduction in the thickness of the 

active layer, which is a favourable condition for the exciton to reach the donor – acceptor (D/A) 

interface. The HOMO energy level of DBP is estimated to be around -5.5eV [1], which makes 
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DBP suitable for employment with fullerene acceptors. The high HOMO energy leads to a high 

open circuit voltage (VOC) because the difference between the HOMO energy of the donor and 

the lowest unoccupied molecular orbital (LUMO) energy of the acceptor is proportional to VOC 

[7]. 

Fullerene C70 

A fullerene is any molecule composed of only carbon atoms in the form of a hollow sphere, 

ellipsoid, tube, and many other shapes. C70 is the fullerene molecule consisting of 70 carbon 

atoms. It is a cage-like structure which resembles a rugby ball, made of 25 hexagons and 12 

pentagons, with a carbon atom at the vertices of each polygon and a bond along each polygon 

edge (Figure 4.2). 

 

Figure 4.2 - Structure of fullerene C70 

C70 was discovered in 1985 by Robert Curl, Harold Kroto and Richard Smalley [8]. They found 

Cn clusters (for even n with n > 20) using laser evaporation of graphite of which the most 

common were C60 and C70. They were awarded the 1996 Nobel Prize in Chemistry for their 

discovery of fullerenes. 

C70 is used as electron acceptor and electron transporting molecule. The energy levels of C70 are 

-6.1eV for the IP and -4.0eV for EA. C70 can forms brownish crystals with a bandgap of 1.77 eV 

[9].  

Molybdenum oxide MoO3 

Molybdenum oxide is a transition metal oxide (TMO). Previous works presented transition metal 

oxides such as V2O5, WO3, and MoO3 as conducting p-type materials, with the electron affinity 

and ionization energy of MoO3 in the order of 2.3 and 5.3–5.4 eV, respectively [10–11]. 

However, it has been recently demonstrated with direct and inverse photoemission spectroscopy 

measurements that MoO3 exhibits a high electron affinity (EA) of 6.7 eV and may consequently 

be used as p-type dopant for materials with deep HOMO levels. MoO3 as well as other similar 

transition metal oxides are n-type materials exhibiting very deep lying electronic states and more 
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commonly used as hole transport layer [12–15]. In Figure 4.3, a schematic energy-level diagram 

of several TMOs and organic semiconductors. The lower shaded regions represent the valence 

bands and the upper shaded regions represent the conduction bands. The dashed lines indicate 

the position of the Fermi level for each oxide. Oxides with their Fermi levels close to the valence 

band are p-type semiconductors, and oxides with their Fermi levels close to the conduction band 

are n-type semiconductors [16]. 

 

Figure 4.3 - Schematic energy-level diagrams of (a) several transition metal oxides and (b) several organic 

semiconductors. Figure obtained from [16]. 

MoO3 is one of the most commonly used transition metal oxide in organic electronics 

applications, because it is evaporated at relatively low temperature (~ 400 °C). Hence, it can be 

easily deposited in vacuum from a crucible. In contrast, the evaporation temperatures of V2O5 

and WO3 are significantly higher.  

MoO3 layer has been used in OLEDs to improve hole injection from the anode to the organic 

emitters. Moreover, it has been reported that devices containing MoO3 are more stable in the air 

than those fabricated using alternative hole transport layer (like PEDOT:PSS) [17]. Metal oxides 

interlayer has also been used in organic photovoltaic cells. Enhancement in power conversion 

efficiencies was observed. In particular, the use of MoO3 interlayer between the ITO anode and 

the donor layer in small-molecule solar cells enhance the fill factor due to the reduction in series 

resistance, which improves the power conversion efficiency [14].  
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Bathocuproine BCP 

Bathocuproine, 2,9-dimethy-4,7-diphenyl -1,10-phenathroline (Figure 4.4), also called BCP, is a 

well known material used as electron transport layer in applications such as organic light-

emitting diodes [18] and organic solar cells [19–21]. The appearance of BCP is white or yellow 

crystalline powder. BCP is soluble in organic solvents such as nitrobenzene and insoluble in 

water.  

 

Figure 4.4 - Chemical structure of bathocuproine (BCP). 

BCP is a wide-gap electron transport material. The role of BCP layer inserted between active 

layer and aluminium contact in organic solar cells was investigated by Vogel et al. [20]. In that 

work, BCP dramatically improves electron transport out of the C60 film into the aluminium 

electrode. Consequently, BCP buffer layer reduces geminate recombination of excitons at the 

C60–Al interface. For that reason, the BCP layer is used to make a selective cathode. In addition, 

it prevents damage to the active organic layer by the metal deposition. The optimal BCP 

thickness for application in organic solar cells is between 8 and 10 nm [21]. 

4.2 Experimental Methods 

The fabrication process of organic solar cells is detailed in this section. Substrate preparation, 

organic and metal depositions are described. At the end of the chapter, specifications of electrical 

set up used for devices characterisation are exposed. 

The fabrication and characterisation of the devices of this thesis has been carried out the Centre 

for Research in Nanoengineering (CRnE) and in the clean room facilities of the Departament 

d’Enginyeria Electrònica (DEE) from Universitat Politècnica de Catalunya. MNT group has a 

long experience on the fabrication of solar cells based on inorganic semiconductors (silicon). 

Clean room facilities (located in the basement of the DEE, Campus Nord) used for fabrication 

and characterisation of solar cells are detailed below. 
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Facilities at the Clean Room of the DEE 

There are several deposition systems in the clean room of UPC: one evaporation system based on 

electron beam and Joule effect, another evaporation system based on magnetron sputtering and a 

Plasma Enhanced Chemical Vapour Deposition (PECVD) system devoted to the deposition of 

hydrogenated amorphous silicon and alloys. In addition, thermal ovens are utilised to perform 

annealing, doping diffusion processes and to growth silicon dioxide on crystalline silicon wafers. 

Moreover, two photolithographic systems with resolution around one micrometre are used. In 

order to measure the film thickness there are a profilometer and an ellipsometer. The last is used 

to measure the thickness and index of refraction for thin dielectric films.  

At the moment, MNT the research activities based on inorganic solar cells include: crystalline 

silicon solar cells with interdigitated back contact electrodes (maximum efficiency 22%), 

Heterojunction with Intrinsic Thin-Film (HIT solar cells, with 18% efficiency). Besides, MNT 

group is also fabricating porous silicon for thermo-photovoltaic applications. 

As it mentioned in the Chapter 1, the MNT group from DEE proposed to fabricate organic solar 

cells about ten years ago. In 2002, the MNT group started a new research line focused on the 

fabrication of organic devices based on small-molecules semiconductors. The objective was to 

widen up the technology know-how of the group. For this purpose, the group acquired a new 

deposition systems based on two Joule-effect evaporators (Oerlikon). The MNT group acquired 

the organic evaporator UNIVEX 300 from Leybold Systems (Figure 4.5). The group began the 

research in organic electronics with manufacturing organic field effect transistors (OFETs) to 

study the electronic properties of organic semiconductors. Metal contacts were deposited using 

the evaporator from Edwards. The need to avoid oxygen incorporation during the device 

fabrication pushed the group to be equipped with a new evaporation system integrated in a 

glovebox. 
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Figure 4.5 - Organic Evaporator UNIVEX 300 (left); Inside view of the chamber with two crucibles for p- and n- 

type respectively (right). In operation since 2006. 

The glovebox MB200B from the company MBraun allows to fabricate the whole devices in an 

inert atmosphere (Figure 4.6). The glovebox is equipped with two evaporation systems: one is 

devoted to the deposition of organic semiconductors and the other one is used evaporate metals 

to deposit the electrodes. Thus, the complete device can be fabricated in inert atmosphere. 

Hence, the semiconductor materials properties are not affected due to contact with oxygen or 

moisture. 

At the beginning of this thesis, my work was focused to tune-up the equipment to fabricate 

organic solar cells. The organic evaporator was designed by the MNT group. The parts 

composing this evaporator were purchased to different companies. Vacuum chamber was 

designed in collaboration with the Spanish company Trinos Vacuum (http://www.vacuum-

projects.net/). The adaptation of a vacuum deposition system to the glove box cannot be done in 

a straightforward way. The system is equipped with five organic sources provided by Creaphys 

(http://www.creaphys.com/). This system enables to coevaporate up to five different organic 

molecules (two of them simultaneously) (Figure 4.7). This allows fabrication of intrinsic layers 

(mixture of donor and acceptor molecules) or doping organic semiconductors. The temperature 

at the crucible is controlled by two PID controllers. Substrate temperature is also controlled by 

heater (Figure 4.8).  
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Figure 4.6 - Glovebox MB200B from MBraun with metal evaporator in 2010, before the installation of organic 

evaporator. 

 

 

 

 

Figure 4.7 - Top view of organic evaporation sources. Each organic source is equipped with a shutter (controlled 

externally). Moreover an additional shutter is located behind the holder substrate. 
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Figure 4.8 - Schematic of organic chamber with the connections between the three temperature controllers with five 

evaporation sources and substrate holder. 

The metal evaporator uses Joule-effect to evaporate thin films onto a given substrate. It can 

deposit materials with a specified thickness of up to 1500 nanometers. Deposition rate is 

controlled by the use of a quartz crystal monitor. It was programmed to evaporate with a suitable 

rate in order to not damage the organic layers. Finally, the glovebox was ready to fabricate 

organic solar cells in 2012 (Figure 4.9).  

 

Figure 4.9 - Glovebox MB200B from MBraun with our home-made organic evaporator in 2012. 

In the following paragraphs, the facilities distributed between CRnE and DEE used for the 

characterisation of films and devices are exposed.  
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CRnE facilities  

Purification System  

High material purity is one critical aspect to the functioning of organic electronic devices. It is 

possible to aim for purities > 99.9%, typically even >> 99.99% independently of the initial purity 

of the raw material. A purification organic semiconductor leads to higher power efficiency and 

longer lifetime of the devices. The optimised process can get a material yield of about 20%. The 

Tube-based Vacuum Sublimation System (CreaPhys GmbH) provides the means to purify 

organic volatile compounds by gradient thermal sublimation in vacuum. The DSU-05 has a 

nominal capacity of 5 g, which are, however, strongly dependent on the material properties like 

density, sublimation and melting behaviour. The system features a three zone gradient oven. 

Figure 4.10 shows the result of sublimation CuPc. Initially, the aim of DSU-05 system was to 

purify organic compounds provided by chemist laboratories specialized in synthesis. 

Nevertheless, the system has not been used very often due to the low yielding.  

 

Figure 4.10 - Purification of CuPc molecules. 

Focused Ion Beam 

The Zeiss Neon 40 combines the imaging and analytical capabilities of a high resolution 

Scanning Electron Microscope (SEM) with a Focused Ion Beam (FIB) column (Figure 4.11). In 

addition, this cross-beam system has a multi-channel gas injection system (GIS) for deposition of 

metal and insulating layers, and can also perform enhanced and selective etching. This cross-

beam workstation is used for sample observation, selective milling and deposition, 3D 
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tomography, Transmission Electron Microscopy (TEM) lamella preparation, microfabrication 

and elemental analysis. 

 

Figure 4.11 - Cross-beam workstation Zeiss Neon 40 

Atomic Force Microscope 

In this thesis, the Atomic Force Microscopy (AFM) has been used to measure the topography of 

the organic thin-films in tapping mode. In fact, the basic technique of AFM, which is contact 

AFM, is not well adapted to examine such surfaces due to problems of friction and adhesion. 

Therefore, the tapping mode of operation was developed to overcome drawbacks of contact 

mode [22]. This mode uses oscillation of the cantilever tip at or near its natural resonant 

frequency while allowing the cantilever tip to impact the target sample for a minimal amount of 

time. This intermittent contact lessens the damage done to the soft surface and to the tip, 

compared to the amount done in contact. Hence the dragging forces during scanning are greatly 

reduced [23]. Moreover, during oscillation, the tip goes through both the attractive and the 

repulsive regions of the tip-sample force field. 

The Dimension 3100 Nanoman AFM from Veeco (Figure 4.12) provides a variety of high 

resolution surface imaging techniques, such as: atomic force microscopy, in tapping and contact 

mode or Kelvin probe or surface potential microscopy (KPM) among others. 
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Figure 4.12 - Atomic Force Microscope Dimension 3100 Nanoman from Veeco 

Spectrophotometer 

This equipment allows complete characterisation of the optical properties of thin-film layers; in 

particular allows the measure of optical density. UV-visible-NIR Spectrophotometer (Shimadzu 

3600) has UV-probe software for photometric analysis of solid and liquid materials in the 185 to 

3300 nm range (Figure 4.13). It is equipped with ISR 3100 integrating sphere and transmission 

liquid sample holder.  

 

Figure 4.13 - UV-visible-NIR Spectrometer. Shimadzu 3600. 

 

Profilometer 

Thicknesses of thin film layers were determined ex-situ by Veeco DEKTAK 150 profilometer 

(Figure 4.14). The profilometer measures the vertical depth of a material across a specified 

horizontal length. The profile is displayed on a graphical interface. Uses for this equipment 

include measuring etch depth, deposited film thickness, and surface roughness. The resolution of 

a step to determine the film thickness is about tens of nanometres.  
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Figure 4.14 - Veeco DEKTAK 150 (right) with DEKTAT Stylus (left) 

4.2.1 Fabrication process for Organic Solar Cells 

Organic solar cells fabricated in MNT-UPC are processed by thermal evaporation in high 

vacuum conditions, which is the most generally used method for depositing low weight organic 

compounds [24]. The use of this technique has some advantages over solution – processable thin 

films in the application of organic optoelectronic devices. Higher control of the structure and 

morphology of the films is possible because solvents are not required, leading to a high 

reproducibility of device fabrication. The flexibility in device design (i.e. layer thicknesses, 

multilayer structure, materials selection) is an intrinsic attribute of dry processing techniques 

such as thermal evaporation. In this work, the structure of the fabricated organic solar cells 

consist of a glass substrate with a transparent electrode acting as the anode, the organic films and 

the top metal contact acting as the cathode.  

Vacuum deposition Systems 

Vacuum deposition is a family of processes used to deposit layers of material atom-by-atom or 

molecule-by-molecule on a solid surface. The deposited layers can range from a thickness of one 

atom up to millimetres. When the vapour source is a liquid or solid the process is called physical 

vapour deposition (PVD), on the other hand if the source is a chemical vapour precursor the 

process is called chemical vapour deposition (CVD). The vacuum environment in thermal 

evaporation reduce the particle density, hence the mean free path for collision is long and 

reducing the particle density of undesirable molecules or atoms (contaminants). 

Three types of flow are mostly encountered in vacuum technology: viscous or continuous flow, 

molecular flow and Knudsen flow at the transition between these two. A backing pump, working 

in viscous flow, is needed in a high vacuum system to start turbomolecular pump, since 

turbomolecular pumps usually work in the pressure region below 10-3 mbar. In this thesis, the 
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high vacuum systems used to evacuate the evaporator chambers are comprised by a 

turbomolecular pump and an oil-sealed rotary pump.  

Thermal evaporation process consists on the sublimation of a compound from a resistively 

heated crucible or boat (source) in vacuum from 10−6 mbar to 10−10 mbar onto a substrate [25]. 

Hence, a molecular beam is created from the boat to the substrate. This molecular beam is 

defined by the elongated shape of the boat. The mean free path of the molecules evaporated in 

the vacuum chamber is usually longer than the size of the chamber. Consequently, the molecules 

can travel from the source to the substrate without collide with other molecules in the chamber. 

The limitation in the deposition rate is fixed by the escape rate of the molecules from the solid or 

melt phase into vacuum, since molecular transport through vacuum is almost immediate. The 

deposition rate is controlled by the source temperature. Using shutters for substrate and sources, 

which can interrupt the molecular beam, allow nanometre control of film thickness.  

The quartz crystal microbalance (QCM) coating thickness gauge (thin film controller) utilizes 

the piezoelectric sensitivity of a quartz oscillator (monitor crystal) to measure the supplied mass 

on the gauge. This property is utilised to monitor the deposition rate and film thickness during 

vacuum coating. A very sharp electromechanical resonance occurs at different discrete 

frequencies of the voltage applied. Resonance frequency is reduced when a quantity of mass is 

added to the surface of the quartz crystal oscillating in resonance. This frequency shift is very 

reproducible.  

Fabrication process 

Preparation of the substrates is very important in order to obtain reproducible results. All the 

solar cells presented in this thesis are fabricated on glass coated with the transparent conductor 

indium tin oxide (In2O3:SnO2, ITO) (Luminescence Technology Corporation). Glass substrates 

with pre-patterned ITO have a sheet resistance of 12Ω/sq and a thickness of 120 nm (Figure 

4.15). 
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The ITO surface is cleaned in an ultrasonic bath with acetone (15 min) and isopropyl alcohol (15 

min) and dried with nitrogen flux. Finally, the substrates are treated in ultraviolet/ozone for 30 

min. This treatment increases the work function [26] and removes any remaining carbon 

residues. 

Once substrates are cleaned, they are transferred into the vacuum system for film deposition. 

Organic layers were deposited by thermal evaporation under a base pressure of approximately 

10-7 mbar at a rate in the range of 0.1–0.2 Å/s. The substrate temperature is a crucial parameter 

for the morphology of the film. For that reason, substrate temperature was controlled during the 

organic deposition molecules. In Chapter 5, a detailed work about the influence of the deposition 

substrate temperature on the optoelectronic properties of the donor material is presented.  

The crucible or boat, holding the evaporation material, is at the core of the evaporation process. 

A conical alumina (Al2O3) boat is used in this work (Figure 4.16). The alumina boat can achieve 

high temperatures, above 500ºC. The maximum temperature reached in this thesis was 350ºC, to 

evaporate fullerene C70.  

   
  

Glove box MBraun200B has integrated the vacuum deposition system MB-EcoVap which 

allows evaporating metals (Figure 4.17). The equipment includes several recipes programmable 

1,5cm 

1,5cm 

0,4cm 0,4cm 0,7cm 

ITO 

Figure 4.15 - Geometry of ITO patterned substrate. 

Figure 4.16 - Alumina boat (left). Alumina boat inside the heater system equipped with shutter (right).  
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PLC control to evaporate different metals. There are two evaporation sources controlled 

independently. This double source setup allows the evaporation and co-evaporation of different 

metal layers without break the vacuum with nitrogen. A structure to hold the mask with 9 solar 

cells substrates were designed and adapted in MB-EcoVap system. Moreover, there is an 

automatic mechanism with electro-pneumatic valves to lift the chamber.  

  

Figure 4.17 - MB-EcoVap (left); inside view with holder for mask (right). 

The metal used as the cathode in the organic solar cells was aluminium. Aluminium was 

presented in form of pellet. The metal was deposited by thermal evaporation on organic layers 

through metallic shadow mask to give an active are of 0.075 cm2 (Figure 4.18). Deposit rate was 

below than 0.2 Å/s during first 20nm and 1 Å/s up to required thickness. Since the evaporated 

material reaches the substrate mostly from a single direction, during the evaporation process the 

samples rotated at 30 rpm to obtain a uniform layer. 

 

Figure 4.18 - Shadow metal mask for evaporation (left); substrate with four organic solar cells, its active area is 

0.075 cm2 (right). 
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Metal deposition is an extremely critical point in organic small-molecules solar cells. Metal 

atoms may diffuse though organic layers; this effect can short the device.  

Figure 4.19 shows a typical SEM image of the cross-section of an organic solar cell based on 

CuPc and C60. In this case, the structure of the solar cell was glass/ITO/CuPc/C60/Ag. The cross-

section was obtained by using a FIB process. The observed layer thicknesses are in agreement 

with profilometry measurements. In addition, the layers are uniform and no shortcircuits are 

visible.  

 

Figure 4.19 - Cross-section of organic solar cell. 

4.2.2 Characterisation of Organic Solar Cells 

Electrical characterisations of all devices were carried out in nitrogen ambient using a plastic 

prototype (Figure 4.20), specifically designed to minimise oxygen and humidity degradation. 

This prototype allows the measurement of 4 different substrates with 4 cells in each substrate in 

nitrogen atmosphere. Metallic tips contact all anodes and cathodes of solar cells. There are two 

selectors that allow selecting one solar cell from a specific substrate. The prototype has been 

fabricated by the company microLIQUID. 
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Figure 4.20 - Prototype to measure organic solar cells in nitrogen atmosphere. 

Current – Voltage Measurement 

The most important characterisation is the measurement of the current-voltage characteristics (I-

V curve), delivering the power conversion efficiency. The basic parameters of I-V characteristics 

are discussed in Chapter 3. Devices were measured at room temperature in the dark and under 

AM 1.5G conditions using a solar simulator (Newport Oriel Instruments Model: 94061A Class 

ABB (Figure 4.21). 

 

Figure 4.21 - Solar simulator Newport Oriel Model 94061A Class ABB. 

Illumination source uses a Xenon lamp and a proprietary filter to meet Class A performance 

parameters without compromising the one sun output power in 6 x 6 inch area (Figure 4.22). The 

overall illumination intensity is calibrated with a pyranometer prior to each measurement run. 
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Figure 4.22 - Spectral output of Solar Simulator with standard AM1.5G filter (Newport). 

The measurements were carried out applying bias and recording the current using a HP 4142B 

DC Source measurement unit. A Matlab interface was used to control the source meter and 

record the I-V curves.  

External Quantum Efficiency Measurement 

The External Quantum Efficiency (EQE) of a solar cell is given by the extracted electron hole 

pairs per incident photons. EQE measurements of photovoltaic cells were performed with a 

quantum efficiency integrated system, model QEX10 (PV Measurements, Inc.), under standard 

measurement conditions using a 150 W xenon lamp coupled with a slit monochromator (Figure 

4.23). The intensity of incident monochromatic light was calibrated with a Si photodiode. The 

QEX10 spectral response system uses an adjustable mechanical chopper to modulate the light at 

rates between 4 Hz and 200 Hz, chopping frequency was fixed at 66 Hz to avoid any 

perturbation from light ambient. The measurements were carried out in the wavelength range of 

300 nm to 800 nm at resolution of 5 nm. 

 

Figure 4.23 - Quantum efficiency integrated system, model QEX10 (PV Measurements, Inc.). 
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Variable Intensity Measurement 

The solar cell performance is dependent on light intensity. Measuring the J–V curve over a wide 

range of illumination levels, rather than at a fixed illumination level of 100 mW/cm2, can be 

obtained additional information about the device performance. We call this method the Variable 

Illumination Measurement (VIM) method. From the J–V measurements at different illumination 

levels, a model of an organic solar cell can be obtained. In this thesis, a study about the 

recombination of organic solar cells is detailed in Chapter 6. 

The VIM measurements were carried out in Departament de Física Aplicada i Òptica of the 

Universitat de Barcelona (UB) (Figure 4.24). The illumination level can vary from 10 mW/cm2 

(0.1 suns) to 200 mW/cm2 (2 suns) by means of neutral grey filters to preserve the spectral 

distribution of the incident light (Figure 4.25). 

 

Figure 4.24 - Image of characterisation setup for Variable Intensity Measurements. 
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Figure 4.25 - Scheme of Variable Intensity Measurement. 
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5. Organic Solar Cells based on DBP and 
fullerene C70 

The main results obtained on the characterisation of organic solar cells based on small-

molecules tetraphenyldibenzoperiflanthene (DBP) and fullerene C70 are presented and discussed 

in this chapter. 

In the first section, the electrical performance of bilayer solar cells is analysed. In particular we 

will focus on the influence of the deposition substrate temperature of the donor material on the 

performance of the solar cells.  

In the second section, the influence of the density of localised states in the band gap of the donor 

layer on the open circuit voltage (VOC) of the solar cells will be discussed. 

Finally, using the optimised deposition parameters solar cells with p-i-n structure will be 

fabricated, where the intrinsic layer is obtained by the coevaporation of donor and acceptor. The 

influence of the thickness of the intrinsic layer of p-i-n solar cell will be studied. 

5.1 Bilayer Solar Cells based on DBP and C70 

5.1.1 Introduction 

Solar cells based on bilayer structure (donor/acceptor) were presented in Chapter 3, section 3.3. 

This structure allows higher control of the film morphology of the donor and the acceptor 

material during the deposition process. As we also mentioned, the optimum geometry for high 

efficiency organic solar cells would be the p-i-n structure, where the intrinsic layer is composed 

of donor and acceptor material (bulk heterojunction approach). Contrary to the situation of 

solution processed bulk heterojunction solar cells, this approach is not easy to optimise when 

cells are based on thermal evaporated small-molecule. The coevaporation of two compounds in a 

controlled manner is not easy. Since the sublimation temperatures usually are different for each 

compound, the deposition rates should be stabilized separately, making the fabrication of the 

solar cell a complex process. Moreover, deposition rates depend on the amount of material 
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present in the crucible, adding more uncertainty on the control de deposition rates when both 

compounds are sublimated simultaneously.  

For all these reasons, our approach started with the optimisation of the optoelectronic properties 

of a solar cell with bilayer structure. The fabrication of organic solar cells involves the 

optimisation of different layers, each of them with very low thickness (tens of nm). In the case of 

a multilayer structure composed of individual single compounds allows us to optimise separately 

each of the layers of the solar cell having a good control of the thicknesses (usually in the range 

of tens nanometres) of each layer. Moreover, this approach allows us to be more confident with 

the measured experimental data and extract conclusive conclusions.  

Our experimental deposition set-up allows the deposition of thin-film layers with good thickness 

control over an area of around diameter of 5 inches (variation of 5% between the maximum 

(central part) and minimum thickness (external part)). Considering this, our holder 10 cm x 10 

cm allows to deposit simultaneously over 9 substrates (1 cm x 1 cm). As mentioned before 

(Chapter 4) each substrate allocates 4 solar cells. This allows us to fabricate 36 organic solar 

cells in a single run process. The reproducibility of the optoelectronic performance of the 

fabricated solar cells is not very high, including solar cells measured on the same substrate. 

Therefore, obtaining conclusive results is based on the trend observed on the evolution of the 

solar cell performance with its structure/geometry and the deposition parameters used when 

processing.  

The basic structure of our solar cell consists on a bilayer structure of the donor and acceptor 

materials sandwiched between a Hole Transport Layer (HTL) in contact with the anode electrode 

and an Electron Transport Layer (ETL) in contact with the cathode electrode. In our case, we 

have used molybdenum trioxide (MoO3) as HTL and BCP as ETL. The structure of the solar 

cells studied in this Chapter is glass/ITO/MoO3/DBP(10nm)/C70(40nm)/BCP(8nm)/Al(150nm). 

Glass substrates with prepatterned ITO were supplied by Luminiscence Technology Corporation 

(Lumtec Taiwan). ITO thickness was 1200~1600Å, with a sheet resistance of 9~15 Ω/sq and a 

maximum of optical transmission of 84% at 550nm. The DBP, C70, MoO3 and BCP compounds 

were purchased from Sigma Aldrich. The absorbing part of the solar cell is formed by DBP 

acting as a donor and C70 as an acceptor.  

The substrate temperature is one of the deposition parameters that have strong influence on the 

performance of thin-film solar cells. Previous works have reported the influence of substrate 

temperature on the morphology of amorphous silicon thin films and its influence on the 
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optoelectronic properties [1–3]. In this section, we study the variation in performance of bilayer 

organic solar cells where the donor material was deposited at different substrate temperatures. 

Fullerenes and its derivatives are the most common used electron acceptor materials to fabricate 

organic solar cells due to its excellent electronic properties. Although different electron acceptor 

materials have been used in solar cell technology, like perylene derivatives, its performance was 

clearly lower when compared with fullerenes derivatives.  Main advantages of fullerene 

derivatives are its deep-lying LUMO energy level (~3.8–4.2 eV) for effective charge separation 

at D/A interface and its high electron mobility. 

Contrary, there are a vast number of electron donor materials. Among them, DBP has recently 

emerged as a promising donor material for photovoltaic applications [4–9]. The most important 

advantages of DBP in application to solar cells are its high optical light absorption and its deep 

HOMO level position. High optical absorption values allow a reduction in the thickness of the 

layer, which is a favourable condition for the exciton to reach the donor – acceptor (D/A) 

interface. The HOMO energy level of DBP is estimated to be 5.5eV [4], which makes it 

appropriate to combine with fullerene acceptors. The relatively deep HOMO level of DBP can 

help to obtain a high VOC. It has been reported that VOC is related to the difference between the 

HOMO level of the donor and the LUMO level of the acceptor [10]. 
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Figure 5.1 - Energy levels (eV) of the different layers comprising the bilayer solar cell. 
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The electrical properties of MoO3 have been presented in Chapter 4. This material is an n-type 

semiconductor exhibiting very deep lying electronic states [11–14]. Recent investigations have 

led to a reinterpretation of the electronic structure of MoO3/semiconductor interfaces. The hole 

injection mechanism is considered via electron extraction from the HOMO through the MoO3 

conduction band [15].  

5.1.2 Electrical Characterisation 

The photovoltaic performances of bilayer solar cells where the DBP was deposited at different 

substrate temperatures are presented in this section. First, the main photovoltaic parameters from 

J–V characteristic are exposed. Following, spectral analyses of bilayer solar cells are discussed. 
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Figure 5.2 - Current – Voltage measurements of bilayer cells under one sun illumination with DBP layer deposited 

at different temperatures. 
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The J–V characteristics of bilayer solar cells are shown in Figure 5.2. From J–V characteristics 

have been estimated the main photovoltaic parameters as a function of the DBP deposition 

temperature. Results are summarised in Figure 5.3. The device with a DBP layer deposited at a 

substrate temperature of 30 ºC showed a JSC = 5.29 mA/cm2, VOC = 0.79 V and FF = 46% for a 

PCE = 1.9%. The best VOC and FF values were obtained for a substrate temperature of 60 ºC 

during DBP deposition, leading to a maximum PCE of 2.5%. Particularly, this device achieved a 

VOC = 0.89 V, FF = 58% and only the JSC = 4.79 mA/cm2 was slightly reduced with respect to 

the reference device fabricated at 30 ºC. Substrate temperatures higher than 60 ºC resulted in 

lower solar cell performance, basically due to the reduction of JSC.  
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Figure 5.3 - Photovoltaic parameters of organic solar cells versus DBP substrate temperature. 

The Optical Density (OD) of the photoactive materials DBP and C70 single layers and in a bilayer 

structure are shown in Figure 5.4. Thicknesses of the DBP and C70 were 10 nm and 40 nm 

respectively. The donor DBP presents different absorption bands in the visible region around 
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330, 550 and 600 nm. The acceptor C70 shows a strong absorption band at 350 nm and a broader 

band in the region of 450 nm. The OD of the DBP/C70 bilayer structure is significant from 300 

nm to 700 nm. The higher OD of the device with DBP deposited at 30 ºC agrees with the highest 

JSC value obtained for this device. As the deposition temperature increases, the actual thickness 

of the DBP layers could be slightly reduced because of a lower sticking coefficient of the organic 

molecule on the substrate. This effect could explain the reduction in the OD at higher substrate 

temperatures and the decrease of the JSC values observed in Figure 5.3. 
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Figure 5.4 - Optical density of the active layers used for the fabrication of bilayer solar cells. 

The spectral dependence of photocurrent generation and collection was analysed by measuring 

the EQE curves (Figure 5.5). The EQE curves were quite similar for all the solar cells with a 

slight reduction on devices incorporating DBP deposited at higher temperatures. This behaviour 

reproduces the trend observed in the measurements of the OD (Figure 5.4). The EQE curves also 

evidence a good correlation with the JSC values measured for these devices. 
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Figure 5.5 - EQE of bilayer solar cells in which the DBP layer was deposited at different substrate temperature. 

5.1.3 Morphology analysis 

The effect of the substrate temperature on the topography of the DBP films was studied by 

Atomic Force Microscopy (AFM). For that purpose, a series of DBP films with a thickness of 20 

nm were deposited on crystalline silicon substrates. Figure 5.6 shows the top view AFM images 

(1 x 1 μm2 scanning square) for four samples deposited at the different substrate temperatures. It 

can be observed that pillar-like grain structures were created as the substrate temperature 

increase. The density and size of these pillars also seem to increase with the substrate 

temperature during the deposition of the DBP.  

 

Figure 5.6 - AFM images of DBP thin films deposited at different substrate temperatures: 

 a) 30 ºC b) 60 ºC  c) 90 ºC  d) 120 ºC 
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The roughness values were estimated by using software techniques and its dependence with 

substrate temperature is shown in Figure 5.7. The surface of the films prepared at 30 ºC and 60 

ºC was relatively smooth with roughness values around 0.35 nm. A sharp increase of the surface 

roughness is observed for the films deposited at 90 ºC and 120 ºC. This modification of the 

surface morphology with substrate temperature is rather similar to that reported by other groups 

(Zhou et al. [16]). 
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Figure 5.7 - Root-mean-square roughness of DBP thin films as function of the substrate temperature. 

The nanostructure of the 20nm DBP layers on SiO2 substrates were also analysed by X-Ray 

Diffraction (XRD) spectroscopy. The absence of diffraction peaks indicates the amorphous 

nature of the samples (Figure 5.8). Therefore, we could expect that transport properties, and 

particularly carrier mobility, are rather isotropic in these films. 
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Figure 5.8 - XRD of DBP thin films deposited at different substrate temperature. 

5.2 Influence of the Density of States in the open circuit voltage 

5.2.1 Introduction 

The optoelectronic properties of thin-film devices based on disordered semiconductors depend 

largely on the distribution of localised states in the band gap of the semiconductor. This is 

especially true in the case of organic solar cells in which thicknesses of the different layers 

composing the device are very thin, a few tenths of nm. It is rational to assume that by lowering 

the Density-of-States (DOS) in the band-gap of the semiconductor would improve the device 

performance, since defect states act as traps and recombination centres in the active layer. In 

particular open-circuit voltages are strongly dependent on the DOS of the active semiconductor 

material. Open circuit voltages are proportional to the difference between the quasi-Femi level of 

electrons and holes. Therefore, separation between quasi-Fermi levels will be lower for 

semiconductors with high level of localised states, i.e. recombination centres. Experimental 

information on the distribution of defects cannot be obtained in a straightforward manner. 

Different techniques have been proposed to obtain information about the energy distribution of 

the DOS in thin-film semiconductors. These include: ultraviolet photoelectron spectroscopy, 

Kelvin probe force microscopy, electron spin resonance spectroscopy, space-charge-limited-
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current spectroscopy, deep-level transient spectroscopy, photoconductivity measurements and 

impedance spectroscopy [17–23]. Alternatively, field-effect structures such as thin-film 

transistors (TFTs) can be also used to obtain information regarding the energy distribution of 

trapped charges. Thin film transistors (TFTs) have been extensively used to determine the 

density of localised states in the band gap of inorganic semiconductors, such as polycrystalline 

silicon or hydrogenated amorphous silicon [24], and more recently in the study of organic 

semiconductors [25]. 

The presence of carrier traps in organic semiconductors necessarily affects the performance of 

electronic devices, and particularly solar cells. A higher DOS distribution causes more charge 

trapping and a reduced carrier mobility, which has a detrimental effect in the charge carrier 

collection that degrades the JSC and FF values [26]. On the other hand, the influence of the DOS 

distribution on the VOC has been also widely discussed in relation to the disorder of organic 

semiconductors [27]. Under some assumptions analytical expressions have been proposed to 

quantify the loss in VOC depending on the particular DOS distribution [28–29]. These models are 

based on the calculation of the VOC values from the separation of the electron and hole under 

illumination. Then, a higher density of localised states reduces the separation of the quasi-Fermi 

levels of electrons and holes and results in lower VOC values.  

The effect of the carrier mobility in relation to the VOC value is more complex, since in open-

circuit conditions there is no direct current extraction. The carrier mobility can have influence in 

the recombination mechanism, which in open-circuit and steady-state conditions must equal the 

generation rate. This recombination is typically assumed to be dominated by bimolecular 

mechanisms around open-circuit conditions [28], where for instance the Langevin model 

considers a mobility-dependent prefactor [29]. However, many reported studies using a variety 

of different techniques have found bimolecular recombination rates far below the Langevin 

formulation [30–34]. Hence, the influence that carrier mobility has in the VOC is still unclear and 

needs further investigation as there can be different mobility-dependent recombination 

mechanisms [33–34]. Nonetheless, in many practical cases disorder induces a broader DOS 

distribution that causes a decrease of carrier mobility owing to charge trapping. Then, the VOC 

drops because of a higher DOS along with the JSC and FF values due to the decreased carrier 

mobility. In this section, the performance of DBP/C70 organic solar cells is correlated with the 

DOS distribution of the donor material.  
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5.2.2 Mobility and density of states of donor DBP 

To study the influence of substrate temperature on the electronic properties of DBP, a series of 

OTFTs were fabricated at different substrate temperature. As mentioned before, OTFTs are a 

good tool to get information about the electrical properties of the charge carrier. In particular, 

field-effect mobility can be easily estimated from the analysis of the transistor electrical 

characteristics. However, as shown in Appendix I, detailed analysis of the electrical 

characteristics of TFT measured at different temperature allows to get more basic information of 

the electronic structure of thin-film semiconductors. In particular, from the transfer electrical 

characteristics measured at differed temperature and estimation of the density of localised states 

within the band gap of the semiconductor can be obtained. A detailed description of the 

methodology used to determine the mobility and the density of localised states can be found in 

Appendix I.  

Figure 5.9 shows the output characteristics of OTFT based on DBP (20 nm thick) deposited at 

substrate temperature of 60 ºC. The thickness of the SiO2 dielectric was 100 nm. The transistor 

exhibits the expected behaviour for a p-channel field effect transistor. A linear dependence 

between IDS and VDS is observed for low VDS voltages. At higher VDS voltages IDS saturates.  
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Figure 5.9 - Output characteristics of a DBP based OTFT with a SiO2 gate dielectric. 

Figure 5.10 shows the hole mobility as a function of the substrate temperature for two series of 

DBP transistors with different active layer thicknesses (20 and 50 nm). The field-effect mobility 

values are of the order of 10-5 cm2/V·s and show a similar dependence with the substrate 

temperature. The highest field-effect mobility values were obtained for devices deposited at 60 
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ºC, which agrees with similar experiments reported in [5].  The highest VOC and FF values were 

routinely obtained when substrate temperature was fixed at 60 ºC during the deposition of the 

DBPlayer (Figure 5.3). This correlation between the solar cell performance (in particular VOC 

and FF values) with the field-effect mobility has already been reported for thermally evaporated 

small-molecule organic solar cells [35].  
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Figure 5.10 - Hole mobility of DBP as a function of the substrate temperature. 

In order to determine the DOS, transfer characteristics were measured under vacuum conditions 

at different temperatures. Detailed information about the procedure to determine DOS can be 

found in Appendix I. Figure 5.11 shows an example of the transfer curves measured in the 

temperature range from 300 to 360 K in steps of 10 K. In this example, DBP active layer was 20 

nm thick and deposited at substrate temperature of 30ºC. We observe that for negative VGS (ON 

region), IDS increase with temperature. Whereas for positive VGS (OFF region), IDS shows no 

dependence with the temperature. 
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Figure 5.11 - Transfer characteristics of a DBP based OTFT measured at various temperatures (for a fixed VDS = -

20V). DBP thickness was 20 nm and was deposited at substrate temperature of 30ºC. 

Figure 5.12 shows the DOS of localised states as a function of Fermi level position for DBP 

transistors, 20 nm-thick, deposited at different substrate temperatures (30, 60, 90, 120 ºC).  
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Figure 5.12 - Density of states of DBP as function of the substrate temperature. 

Charge transport properties in thin-film small-molecule organic semiconductors can be described 

by an effective transport level and a distribution of trap states below this transport level [36–37]. 

This description is similar to the mobility edge picture developed for amorphous inorganic 

semiconductors, especially hydrogenated amorphous silicon, in which the mobility edge 

separates extended states from the localised ones. The distribution of traps below the transport 

level is believed to be exponentially shaped [38]. In analogy to inorganic semiconductors, this 

exponential region of the DOS can be assumed to be a band tail of localised states induced by 

structural disorder (Eq. 5.1). 

where N0 is a prefactor that defines the concentration of tail states per unit volume and energy 

interval (cm-3eV-1) at the valence band edge. The slope of the tail given by kTo measures the 

extent of the distribution of localised states; in other words, it is an indirect measure of the 

disorder in the semiconductor. Figure 5.12 shows that in all the samples the DOS increases 

exponentially up to 1020 cm-3 close to the valence band edge (E-EHOMO< 0.2 eV). However, the 

tail of localised states is clearly reduced for the sample deposited at 60 ºC compared to the other 

 ./�0� =  .�12343456+7 8
 ( 5.1) 
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substrate temperatures. The presence of these trap states in the band gap of the semiconductor 

could act as traps and recombination centres and therefore could affect the position of the quasi 

Fermi level position for holes in illumination [39]. The origin of these electronic trap states is 

diverse and is still the subject of many investigations and discussions [36], [40], [41]. Some traps 

(extrinsic) are related to contaminants and chemical defects with composition different than the 

organic semiconductor and are associated with chemical impurities in the source material. 

Another source of defects is related to the chemical instability inherent in many organic 

compounds. It is well reported that organic molecules are reactive with oxygen and water [42]. 

Finally, some defects are associated with structural disorder (intrinsic traps) and are primary 

introduced by the growing conditions [41], [43]. 

As has been mentioned before, in organic solar cells, it has been shown that the maximum 

achievable value of VOC is determined by the energy offset between the LUMO of the acceptor 

and the HOMO of the donor [44]. Experimentally, it has been found for a wide range of 

materials the relationship qVOC = HOMODONOR –LUMOACCEPTOR – Δ [45]. The loss term (Δ) has 

been related to the exciton binding energy of radiative or non-radiative recombination of polaron 

pairs [47–48]. Despite the physical mechanisms contributing to the loss term Δ are still under 

discussion, there is also a consensus that the distribution of localised states plays an important 

role when determining VOC values [48]. The presence of tail states (broader DOS) causes a lower 

effective energy gap and therefore a reduction of the VOC. In the particular case of a DBP donor, 

photogenerated holes will prefer to occupy tail states rather than energy states in the HOMO 

level, leading to a higher hole quasi-Fermi level position and, as a consequence, bringing the 

average energy of electrons and holes closer together.  

This phenomenon has already been studied in organic solar cells, both from the viewpoint of 

numerical device simulation and experimental measurements. Blakesley et al. studied the 

influence of energetic disorder on the VOC using numerical simulation [49]. They found that a 

large increase of energetic disorder, or in other words broader DOS, causes a significant 

reduction in VOC. Meanwhile, both JSC and FF also drop along with VOC. 

5.3 p-i-n Organic Solar Cells based on DBP:C70 

The p-i-n organic solar cell structure is presented in Chapter 3, section 3.3. In this section, the 

results obtained from the characterisation of p-i-n solar cells are presented. The intrinsic layer (i-

layer) is composed by the coevaporation of donor and acceptor (at ratio 1:1). The i-layer 
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thickness in p-i-n solar cells has strong influence in the performance. Increasing the thickness of 

intrinsic layer can increase the efficiency caused by higher absorption; however, excess of 

thickness reduce the efficiency due to recombination losses of free charge carriers. The 

optimisation of active layer thickness taking into account the trade-off between absorption and 

recombination is the objective of this section. Figure 5.13 shows the structure of the solar cells. 

 

Figure 5.13 - Structure of p-i-n solar cell where i-layer is coevaporated at ratio donor – acceptor (1:1). 

As previous section, the donor is DBP and the acceptor C70. In order to facilitate holes and 

electrons collection, MoO3 has been used as hole transport layer and BCP as electron transport 

layer inserted between the active layers and electrodes. The detailed configuration was 

ITO/MoO3(3nm)/DBP:C70(1:1)(x nm)/BCP(8nm)/Al(150nm). The thickness of i-layer (x) varies 

from 30 nm up to 70 nm. Figure 5.14 shows J-V curves of p-i-n cells with different i-layer 

thickness. The substrate temperature during coevaporation of donor and acceptor were fixed at 

60 ºC due to it is the optimum temperature for lower tail of DOS of DBP as demonstrated in 

section 5.2. 
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Figure 5.14 - J–V Curves of p-i-n cells for different i-layer thickness. 

The main photovoltaic parameters as a function of i-layer thickness are summarized in Table 5.1 

and shown in Figure 5.15. Following, the influence of i-layer thickness in each parameter is 

discussed. 

Table 5.1 – Measurement results of the devices with various DBP:C70 thicknesses 

Thickness (nm) PCE (%) FF (%) JSC (mA/cm2) VOC (V) 
30 1.76 39 -6.2 0.73 
40 2.82 36 -11.2 0.71 
60 3.12 33 -14.1 0.65 
70 2.90 27 -17.8 0.61 
90 1.90 37 -8.4 0.61 
100 1.01 27 -6.6 0.57 
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Figure 5.15 - Photovoltaic parameters of p-i-n organic solar cells versus i-layer thickness. 

Short Circuit Current (JSC) 

It was found that the JSC of p-i-n solar cells was increasing while the thickness of i-layer is 

increasing up to 70 nm, indicating an efficient charge generation for this thickness. The 

enhancing of JSC could be explained due to the increment of the absorption and the higher donor-

acceptor interface. On the other hand, the JSC starts to decrease when the thickness is higher than 

70 nm. The JSC reduction could be attributed to geminate recombination of the excitions due to 

the short exciton diffusion length. As a result, JSC has the highest value at 70 nm (17.84 mA/cm2) 

and the lowest value was reached with thickness about 30 nm (6.19 mA/cm2). 

Open Circuit Voltage (VOC) 

The VOC value is falling whereas i-layer thickness is higher than 40nm, when VOC reaches the 

highest value. As explained above, VOC value is related to the separation of the electron and hole 
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quasi-Fermi levels under illumination. The recombination in open-circuit is typically assumed to 

be dominated by bimolecular recombination. The higher i-layer thickness also implies higher 

bimolecular recombination since the free charge carriers (electrons and holes) must to travel 

longer distances up to the electrodes. Consequently, VOC decrease because of the higher 

bimolecular recombination. 

Fill Factor (FF) 

The FF of p-i-n cells seems to decrease when i-layer thickness increase. However, no clear trend 

is observed. This phenomena could be explained because of FF is affected by both 

recombination mechanisms of organic solar cells. The maximum FF value is 39%, achieved by 

i-layer thickness of 30 nm, and the lowest FF value is 27%, reached by i-layer thickness of 70 

nm.  

Power Conversion Efficiency (PCE) 

The PCE of solar cells is influenced by FF, VOC and JSC. The optimum p-i-n solar cell based on 

DBP:C70 (1:1) has been obtained for i-layer thickness. For higher values of i-layer thickness the 

PCE decreases, mainly leaded by the diminution of VOC. The performance of p-i-n solar cell with 

i-layer thickness of 40 nm is JSC = 11.20 mA/cm2, VOC = 0.81 V, FF = 0.43 and PCE of 

3.93%.The PCE could be improved by optimising the volume ratio between the donor and 

acceptor, most likely with higher a concentration of the acceptor C70, since the exciton lifetime in 

fullerene domains is higher than in DBP domains [8]. 

External Quantum Efficiency (EQE) 

The spectral analysis of p-i-n cells from wavelength of 300 to 850 nm was examined by 

measuring the EQE curves (Figure 5.16). The EQE curves keep a good correspondence with the 

JSC values measured (Figure 5.15). The highest area of EQE belongs to p-i-n cell with i-layer 

thickness of 70 nm, which has also the highest JSC. Conversely, the lowest area belongs to p-i-n 

cells with 30 nm and 100 nm of i-layer thickness. The JSC of both cells are similar which are 

about 6.19 mA/cm2 and 6.57 mA/cm2.  
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Figure 5.16 - EQE curves of p-i-n solar cells with different i-layer thicknesses. 

Furthermore, the peak around 350–400 nm can be related to the C70 absorption; on the other 

hand, the peaks around 550–650 nm belong to DBP absorption. The curve of p-i-n cell with 60 

nm of i-layer thickness has tendency almost flat comparing with other cells.  
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6. Model for charge carrier collection 
efficiency in Organic Solar Cells 

In this Chapter, an equivalent circuit for organic solar cells is presented. It is based on the 

classic combination of a diode with an exponential current–voltage characteristic, parasitic 

series and parallel resistances, a photogenerated current source, plus a new term representing 

recombination losses in the active layer of the device. The model clearly separates technological 

issues (series and parallel resistance) from effects related to the physics of the device 

(recombination losses). It also allows an effective μτ product in the active layer of the device to 

be determined, characterising its state of degradation. 

6.1 Model for Organic Solar Cell 

The use of equivalent circuits is a convenient way to describe the electrical behaviour of 

electronic devices. Therefore, an equivalent circuit model is helpful in the understanding and 

optimisation of solar cells by providing a quantitative estimate for losses in the device. The 

conventional circuit model developed in the context of photovoltaic solar cells is presented in 

Chapter 3 and shown in Figure 6.1[1]. According to this equivalent circuit, the J–V characteristic 

can be expressed by an implicit equation (Eq. 6.1). This model essentially consists of a current 

source shunted by a diode. These two elements correspond to generation and loss of photocurrent 

in the device. The resistances RS and RP can be considered to be “parasitic” circuit elements, 

introduced to describe the behaviour of real solar cells with their technological limitations. This 

model has been used to interpret results obtained with organic solar cells as well [2–4]. In view 

of the fact that photovoltaic response in organic solar cells is considerably different from that in 

inorganic solar cells, the modification of conventional solar cell circuit model is discussed in this 

Chapter. 
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Figure 6.1 - Equivalent circuit for standard solar cell. 

6.2 Introduction to the Variable Illumination Measurement method 

The standard equivalent circuit superposes a photocurrent source on the electrical characteristic 

of the dark diode. Nonetheless, it is important to note that the photogeneration of electrons and 

holes within the solar cell will change the carrier concentration at every point. Thus, in principle, 

a new solution for the drift-diffusion differential equations throughout the whole device would 

be required. However, such a simple superposition of a dark diode and a photocurrent source is 

indeed valid and can be theoretically justified for crystalline solar cells, consisting of pn-diodes. 

The theoretical justification [5] is based on the linear form of the drift-diffusion differential 

equations for minority carriers, within the p- or n-type bulk regions of the pn-diode. 

However, it is well known that the main part of the photovoltaic generation in solar cells with a 

p-i-n structure occurs in the active i-layer, as in the case of amorphous silicon solar cells. As a 

striking example, the curves for different illumination levels usually all meet at a single point in 

the first quadrant [6], which has been called collection voltage (VC). This fact can only be 

reconciled with the simple equivalent circuit of Fig. 6.2 by including an additional loss term, 

which increases strongly with the forward voltage. Such a loss term takes into account the 

recombination losses in the active layer of the device. Then, this term has to be considered in the 

implicit equation (Eq. 6.2). In this section, we propose a method to gain valuable information 

about the device operation and, in particular, the recombination term. The basic idea is to 

measure the J(V) curve over a wide range of illumination levels, rather than at a fixed level of 
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one sun. For that reason, we have called it the Variable Illumination Measurement (VIM) 

method. 

   

Figure 6.2 - Equivalent circuit for solar cell with recombination term. 

6.2.1 Parameters of the model 

We have used the standard characterisation procedure for solar cells that consists of measuring 

the curve at a given illumination level as it shown in Figure 6.3. The resulting data may be 

condensed into the six characteristic parameters which are: 

1) the short circuit current ISC; 

2) the open circuit voltage VOC; 

3) the fill factor FF; 

4) the efficiency η; 

5) the “open circuit resistance” ROC, which at a high illumination level may be related to the 

series resistance ; 

6) and the “short circuit resistance” RSC, which at a low illumination level may be related to 

the parallel resistance 

The latter two parameters are key parameters for the present treatment; they are defined as the 

reciprocal slopes of the J-V curve.  
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Dynamic resistances: 

� Open circuit resistance      

 

� Short circuit resistance       

 

Figure 6.3 - J–V curve of a p-i-n solar cell. Apart from the standard photovoltaic parameters (JSC, VOC and FF), we 
also consider the dynamic resistance of the device evaluated at short-circuit and open-circuit conditions (RSC and 

ROC). 

The logarithmic variation on the illumination intensity can be classified in five distinct levels, 

each one of them with a characteristic J(V) curve (Figure 6.3): 

 

Figure 6.4 - Five illumination levels used in the VIM method, where Level C ≈1 sun. Figure adapted from [7]. 

Level A) At very low illumination levels, the J(V) curve is completely shaped by the 

parallel resistance RP, which determines the values of both RSC and ROC. The value of RP 

limits the VOC the FF is equal to a minimum 0.25. 

Level B) By increasing the illumination, the RP still determines the RSC value, which 

shapes the short circuit region of the measurement. The J(V) curve at forward voltage is 
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already shaped by the physics of the device. Both the VOC and the FF progressively 

increase.   

Level C) In this regime, the J(V) curve is not affected by neither RS nor RP but by the 

physics of the device. The FF reaches a maximum and the device is at its optimum 

operating point (≈1 sun). 

Level D) Further increasing the illumination level, the ROC vale equals the series 

resistance RS, which begins to shape the open circuit region of the J(V) curve, while the 

rest remains shaped by the physics of the device. While the VOC still increases, the FF 

starts to decrease. 

Level E) At very high illumination levels the J(V) is completely shaped by the RS value, 

which determines both RSC and ROC. At this level, VOC reaches a maximum while the FF 

is again at a minimum 0.25. 

6.2.2 Assumptions for the model 

A few assumptions and modelling simplifications were done, many of them based upon the 

experience in amorphous silicon solar cells, but also extendable to organic solar cells with p-i-n 

structure: 

a) Charge collection in p-i-n solar cells is mainly a drift-driven process, while diffusion 

plays a minor role [8]. This assumption is particularly true around the short circuit 

condition, as it has been justified in the literature [9–10].  

b) Several works also support that the J–V curve is affected by a first-order recombination 

process from the short-circuit condition to around the maximum power point [11–12]. 

Recently, this behaviour has been explained considering a monomolecular recombination 

process through localised states near the interface between donor and acceptor domains 

[13–14]. 

c) The electric field 0 is constant through the intrinsic layer. This approximation has been 

widely used to describe the behaviour of inorganic thin film solar cells based on 

amorphous silicon due to the low fixed charge density in their intrinsic active layers [8, 

15–16]. Although the relevance of fixed charge densities in organic semiconductors is 

still subject of discussion [17–18], a constant electric field approximation is often 

assumed in the literature considering the rather thin active layer of these devices (<100 
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nm) [9, 19]. The electrostatic potential on the active layer is given by the difference 

between the built-in voltage across the electrodes (Vbi) and the applied voltage V. Thus, 

the intensity of the electric field within the active layer of thickness L can be calculated 

as: 

6.2.3 Effective mobility-lifetime product (μτeff) of charge carriers 

Under the previous assumptions (drift-driven collection, monomolecular recombination and 

constant electric field), a compact analytical expression for the current density near the short-

circuit condition can be used [8] (Eq. 6.6): 

where q is the elementary charge and G the effective generation rate of charge carriers per unit 

volume, which considers only those excitons which are effectively dissociated. A constant 

generation rate is a good approximation for the typically thin active layers of p-i-n solar cells 

illuminated under the AM1.5 spectra. The collection length lc in Eq. 6.6 is defined as the sum of 

the corresponding drift lengths for electrons (ln = μnτn E) and holes (lp = μpτp E), that is, lc = le + 

lh. The collection length is interpreted as the maximum distance these charges separate apart 

driven by the electric field before recombining. 

Then, by introducing an effective μτeff product and taking into account Eq. (6.5), the collection 

length lc can be written as:  

where μτeff = μnτn + μpτp. 

The validity of Eq. 6.6 is limited to small applied voltages, since it does not consider charge 

carrier injection by the electrodes. This means that the contribution of the diode term and shunt 

resistance to the current density must be much lower than the total photogenerated current 

density reduced by the recombination term: 

 0 = �9:  −  �#  ( 6.5) 

 � = ;<=> ?1 − 1AB C− #=>DE ( 6.6) 

 => = ��F�F + �H�H�0 = ��FII �9: − �#  (6.7) 

 � ≈  �KH − �LF> (6.8) 
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Anyhow, Eq. 6.6 indeed describes the J–V curve under illumination at moderate applied 

voltages. For long collection lengths compared to the active layer thickness, it can be 

approximated by: 

where we can identify the photogenerated current density  �KH = ;<#, that we would obtain if all 

the charge carriers were collected in the external circuit. Eq. 6.9 can be particularised at the 

short-circuit condition to obtain an expression for JSC: 

where we have introduced the short-circuit collection length lco = μτeff Vbi / L, that is the 

collection length given by Eq. 6.7 evaluated at zero applied voltage. According to Eq. 6.9, the 

collection efficiency at moderate applied voltages can be calculated as: 

Eq. 6.11 states that the fraction of the photogenerated current that recombines into the active 

layer is given by the ratio of L/2 to lc. This result can be physically interpreted considering that 

the mean distance that charge carriers have to move in order to reach its corresponding electrode 

is actually half of the thickness of the active layer. Then, we finally obtain an analytical 

expression for the recombination term valid for moderate applied voltages: 

Finally, according to definition of RSC, by evaluating the derivative M�LF> M�⁄ |P> we obtain the 

following expression for RSC: 

This last equation gives a direct relation between the collection voltage VC and the physical 

mechanisms governing charge carrier collection [20]:  

 � ≈ ;<# Q1 − # 2R=> S (6.9) 

 �&T = �KH Q1 − # 2R=>U
S (6.10) 

 
η> = 1 − # 2R=>  (6.11) 

 �LF> = �KH Q# 2R=> S = �KH #� 2⁄��FII��9: − �� (6.12) 

 VP> =  C2��FII�9:#� − 1D �9:�P> = �T�P>  (6.13) 
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6.3 Results for p-i-n small-molecule solar cells based on DBP/C70 

The VIM method has been used to study the quality of the intrinsic layer of organic solar cells 

with pin structure. The solar cells used in this study have the following structure: 

glass/ITO/MoO3/DBP:C70(X nm)/BCP(8 nm)/Al(150 nm). The i-layer (DBP:C70) thickness was 

30nm and 40 nm for two different devices. 

 

Figure 6.5 - Structure of p-i-n solar cell used for VIM analysis. 

A simple graphical interpretation for the collection voltage is obtained when analysing the J(V) 

curves for the different illumination levels applied to the solar cells under study (Figure 6.6). The 

VC value can then be obtained as that single point where all 1/RSC slopes meet when extrapolated 

into the x axis. This fact also implies that, under reverse bias conditions, the short-circuit current 

approaches the total photogenerated current (JSC ≲ Jph) [21]. 

 �T = Q =>U# 2R � 1S �9:  (6.14) 
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Figure 6.6 - J -V curves for the p-i-n organic solar cells measured with VIM method. The collection voltage VC is 

obtained by the x-axis intersection of the 1/RSC slopes. i-layer thickness of 40nm (left) and 30nm (right) 

After extracting the VC value from experimental VIM data (Figure 6.6) and considering that Vbi ≈ 

Wanode − Wcathode = 0.7 V, the μτeff of each solar cell can be calculated (Table 6.1). These values 

are comparable to those reported in the literature for similar devices [13][22–23]. 

Table 6.1 Values for the carrier collection process obtained from the VIM analysis. 

i-layer thickness 
(nm) 

VC 
(V) 

μτeff 
(cm2/V) 

lC 
(nm) ηC 

Jrec 
(mA/cm2) 

40 3.07 3.07x10-10 173.5 88% 1.46 
30 1.42 3.56x10-11 50.6 70% 2.60 

 

These results give us an insight on the carrier transport process in the active layer, which can be 

related to its quality. For the device with a 40 nm thick i-layer, the higher μτeff value indicates 

lower recombination losses and a better current extraction into the electrodes. Namely, the 

collection length (at short circuit conditions) is almost 4 times larger than the active layer. This 

leads to a carrier collection efficiency of 88%, meaning that only 12% of the photogenerated 

current is lost because of recombination (Jrec). On the other hand, for the 30 nm thick i-layer, the 

lower μτeff value indicates a poorer carrier transport quality of the device. Consequently, the 

collection efficiency is limited to a value of 70% because of the higher recombination term. Note 

that the collection efficiency depends on the active layer quality but also on its thickness, which 

influences the strength of the electric field. By contrast, the μτeff value is only characteristic of the 

active layer quality. The differences observed between these two devices, fabricated under very 

similar deposition conditions, could be related to the fast degradation of non- encapsulated 

devices in ambient.  
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6.4 Degradation of p-i-n Organic Solar Cells 

One of the main drawbacks of organic solar cells is that they are prone to degradation in the 

presence of oxygen and humidity, making necessary the encapsulation under transparent 

polymer membranes or glass to maintain their electronic properties.  

An insight on the causes of solar cell degradation can be obtained by applying the VIM method 

for a long time after the fabrication. Since RS, RP and μτeff are related to specific quality aspects 

of the cell, a distinction can be made between degradation of the i-layer and other parts of the 

cell, such as the metal contacts. 

For an organic p-i-n solar cell with the following structure: 

glass/ITO/MoO3/DBP:C70(30nm)/BCP(8nm)/Al(150nm), VIM measurements were done after 

cell fabrication and every 5 hours. The cell remained under nitrogen atmosphere, in a fixed 

position and under dark conditions between these measurements. Table 6.2 shows the 

performance parameters for one measure of the VIM data.  

Table 6.2 Main performance parameters of p-i-n organic solar cell based on DBP:C70(1:1) with i-layer thickness of 

30 nm at t=0 h and t=30 h. 

Time PCE  

(%) 

FF 

(%) 

PMAX  

(mW/cm2) 

JSC 

(mA/cm2) 

VOC 

(V) 

Diode n 

0 h 1.60 38 2.1 7.77 0.71 1.41 

30 h 0.66 35 0.86 3.60 0.68 1.40 

 

Even though the cell was kept under N2 atmosphere and it was only illuminated every 5 hours 

during data acquisition, the decrease in the conversion efficiency is substantial (59%). The 

largest degradation comes from a JSC drop of 54%, while FF drops only by 7% and there is also 

a very slight decrease in the VOC. This is consistent with experimental results reported by [24], 

where similar losses in JSC and PCE occurred when measuring the cell under ambient conditions. 

Almost no change was observed in the ideality factor n, although reported degradation tests have 

signalled an increase as a possible reason for loss of efficiency [25].  

Analysis of the series resistance RS shows an important increment, somewhat explaining the 

decrease in FF (Figure 6.7). This is attributed to degradation outside i-layer, such as corrosion or 
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delamination of the contacts, leading to a drop in conductivity and a change in the work function. 

This effect has also been reported in previous studies [26]. 
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Figure 6.7 - Evolution of series resistance of p-i-n solar cells based on DBP:C70 (1:1) 

Figure 6.8 shows how μτeff also decreases with time, clearly representative of a loss in carrier 

mobility and/or lifetime. Following the same explanation as in [13], the larger than expected 

drop in JSC and FF cannot attribute to the decrease of μτeff (Figure 6.8), indicating that some 

other factor (different from ηC) contributes to the drop of the power conversion efficiency. This 

major degradation could be due to a loss of optical absorbance in the active layer (ηA), a loss in 

the exciton diffusion capability (ηED), or a loss in the exciton transfer into carriers (ηCT). 
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Figure 6.8 - p-i-n solar cells based on DBP:C70 (1:1) performance parameters across 30 h (normalized to initial 

values). Solar cells were under N2 atmosphere. 

This last possibility seems probable, and it has been explained by [24] as the formation of a 

space-charge region within the active layer due to p-doping by oxygen. This effect shields the 

electric field inside the active layer and inhibits charge carrier extraction, which leads to a drop 

in JSC.  

It is worth noting that a fraction of the degradation suffered by the organic materials has been 

reported to be of reversible nature, with JSC partially recovering after a short annealing period at 

140 °C [24].  
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7. Conclusions and Outlook 
Organic solar cells have gathered much attention last decades, mainly since 2005 when its record 

efficiencies have increased exponentially. However, their interest seems to have diminished 

since 2012, when was reported the highest power conversion efficiency of OSC with 12%. It is 

worth to mention that most of the research labs working on dye and organic solar cells have 

shifted its activities to perovskites solar cells. 

This thesis deals with the research on organic solar cells based on small-molecules 

semiconductors. Organic solar cells were fabricated by thermal evaporation on glass substrates. 

All the fabrication process were done in inert conditions. The materials used in this thesis were 

tetraphenyldibenzoperiflanthene as donor material and fullerene C70 as acceptor material. 

In the first results of this thesis, we focus on the influence of the density of states of the donor 

layer on the characteristic parameters of organic solar cells. For that reason, a study of the 

variation in performance of solar cells where the donor material was deposited at different 

substrate temperatures were done. This work demonstrated that the optimum substrate 

temperature for this kind of solar cells was 60 ºC, since the tail of localised states is clearly 

reduced for the sample deposited at 60 ºC compared to the other substrate temperatures. This 

effect leads to an enhancement of the open circuit voltage in the solar cell. Further, organic solar 

cells with p-i-n structure, where the intrinsic layer is obtained by coevaporation of donor and 

acceptor, were analysed. This work demonstrated that the optimum thickness of the intrinsic 

layer of the p-i-n solar cell based on DBP and fullerene C70 is 40 nm. 

In the second part, an equivalent circuit for organic solar cells with a new term representing 

recombination losses in the active layer of the organic solar cell is considered. The model allows 

obtaining of an effective mobility-lifetime product in the active layer of the device to be 

determined, characterising its state of degradation. The degradation of p-i-n organic solar cells 

based on DBP and C70 were analysed. The main factor of the degradation of solar cells was not 

its intrinsic layer, indicating that some other factor contributes strongly to the decrease of the 
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power conversion efficiency. Due to the increment of series resistance, the degradation of this 

kind of solar cells could be attributed to the contacts. 
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APPENDIX I: Electrical Characterisation of 
Organic Semiconductors from OTFT 
In this appendix detailed information about fabrication and characterisation of organic Thin-

Film Transistors (OTFTs) can be found. In the framework of this thesis, OTFTs have been used 

to characterise the electrical properties of the organic semiconductors used in the fabrication of 

the organic solar cells. In particular, we focused on the determination of the field-effect mobility 

and on the estimation of the density of states (DOS) of localised states in the band-gap of the 

semiconductor. 

A_I.1 Introduction 

First OTFTs were based on polymers like polyacetylene [1–2] and polythiophene [3], these 

transistors had very low mobilities, below than 10-5cm2/Vs. First OTFT based on polymers with 

high mobility (μ = 0.2 cm2/Vs) was reported by Fuchigami et al. in 1993 [4], but with low ON-

OFF current ratio. On the other hand, the first small-molecule OTFT based on sexithiophene was 

reported in 1989 and had a mobility in order of 10-3–10-2 cm2/Vs [5]. Further improvement in 

performance was achieved in 1997 with first vacuum sublimed pentacene molecule OTFT, with 

mobility of 0.7 cm2/Vs [6]. Alternatively, the first OTFT based on solution-processed conjugated 

polymer (P3HT) was reported in 1998, having with high mobility (0.1 cm2/Vs) and high ON-

OFF current ratio [7]. 

Tuning of molecular structure it is possible to optimise a determinate function and achieve a 

performance enhancement. In addition, OTFTs are based on naturally abundant and sustainable 

elements. On the other hand, the fabrication process by solution-processing is compatible with 

large area and flexible devices. These advantages of OTFTs lead an increasing interest to use it 

for applications such as smart cards, identification (ID) tags and flexible displays [8]. However, 

the goal of use OTFT in this thesis is to characterise electrically organic semiconductor 

molecules for its use in small-molecule solar cells. Following, the fabrication process and 

characterisation details are exposed. 
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A_I.2 Fabrication of OTFT 

OTFTs were fabricated using the same experimental set-up used to fabricate the solar cells. 

Since we want to correlate the properties of TFTs with OSC, the parameters to deposit organic 

semiconductor were the same than the used for solar cells fabrication. Electrical properties 

obtained when measuring TFT corresponds to longitudinal (planar) conductivity between two 

electrodes (drain and source). Of course, this is not the ideal situation to compare with solar 

cells, in which conductivity of the carriers between electrodes (anode and cathode) is essentially 

transversal.  

The structure of the fabricated TFT is shown in Figure A 1. An inverted-staggered (top contact, 

bottom gate) geometry was choose. Crystalline silicon was used as a substrate. Thermally-grown 

silicon dioxide (SiO2) 100-nm thick was used as a dielectric. 

Top contact geometry is preferred to the bottom contact geometry, due to the easiness when 

contact electrodes. Moreover, it has been reported that in top contact geometry devices perform 

better due to lower contact resistance between electrodes and conductance channel. 

 

Figure A 1 - Inverted-staggered (top contact) OTFT 

Crystalline silicon is commonly used as a substrate and a gate electrode for OTFTs and leads the 

great advantage of easily growth of silicon oxide (SiO2) as insulator (Figure A 2), which has well 

known dielectric properties in the field of microelectronics and its flat surface ideal to deposit 

organic layers. The thermal oxidation of silicon consists in a chemical reaction of surface of the 

silicon wafer and an oxidant. The oxidant could be oxygen (dry oxidation) or water vapour (wet 

oxidation). To facilitate the reaction should work with furnaces at high temperatures in the order 

of 800–1100ºC, depending on the speed and thickness desired. Thermal oxidation was carried 

out in clean room facilities of Universitat Politècnica de Catalunya inside a furnace at 1000ºC 

with oxygen as the oxidant. 
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Figure A 2 - Silicon wafer with SiO2 100-nm thick used as dielectric. 

Organic semiconductor and gold electrodes (Drain and Source) were deposited in different 

vacuum chambers in order to avoid cross contamination. Magnetic shadow masks were used to 

define the area in both cases (Figure A 3 - Magnetic shadow mask for OTFT.Figure A 3). The 

use of magnetic shadow masks provides better adhesion to the surface, thus increasing edge 

definition of the electrodes. Shadow masks consisting of electrodeposited nickel on lithographic 

pre-patterned copper surfaces were fabricated on glass substrates (acting as sacrificial substrate). 

Nickel layer (50 microns thick) provides the magnetic properties and desired mechanical 

properties, like flexibility. This process has a resolution up to ±10 μm and it also carried out in 

the clean room facilities of Universitat Politècnica de Catalunya. The drain and source gold 

electrodes used in this thesis defines geometry of channel length (L) and width (W) of 80 µm and 

2 mm, respectively.  

 

Figure A 3 - Magnetic shadow mask for OTFT. 



APPENDIX I: Electrical Characterisation of Organic Semiconductors from OTFT 

120 

 

A_I.3 Characterisation of OTFT 

The fabricated OTFTs were characterised in the dark and under moderate vacuum conditions 

(10-1 mbar) to minimise oxidation effects during the electrical characterisation process. The 

electrical characteristics were measured using an Agilent 4156C parameter analyser. The device 

temperature was varied from 300 to 390 K by means of an MMR Technologies controller (model 

K–20). 

A_I.3.1 Determination of Mobility μ 

A brief review of different methods to determine the charge carrier mobility of organic 

semiconductors can be found in Chapter 2, section 2.4. Here, it is detailed the methodology 

followed in order to determine the mobility from electrical characterisation of OTFT. 

The current between source and drain ISD depends on the mobility of the charge carriers μ, 

geometry of device: channel length L and width W, capacitance of the oxide per unit area Cox, 

gate voltage VG, source-drain voltage VSD, and the threshold voltage VTH which is required to 

create the channel.  

The following Eq. A.1 defines the drain-source current in the linear region for a Thin-Film 

Transistor: 

In saturation regime (VGS – VTH < VDS), the induced charge carriers limit the current between 

source and drain, therefore IDS is constant independently of the increasing voltage between the 

electrodes. The current flow depends only on VG and the parameters of the transistor. Applying 

the condition (VGS – VTH = VDS) to Eq. A1, the ISD for this regime can be expressed as Eq. A2, 

which depends quadratically on the gate voltage: 

The mobility can be determined from equation Eq. A2 by plotting the square root of ISD versus 

VG. Fitting a straight line to the square root of the measured drain current yields the field-effect 

charge carrier mobility µ and the threshold voltage VT. Eq. A3 shows the steps to determine the 

equation for the linear fit. 
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Using the expression of linear fit ([ � \A � ]) (Eq. A4): 

Finally, the expressions to determinate the µ and VT are:    

It is important to note that, as mentioned above, the mobility is not a constant parameter as it 

depends on the VGS. Hence, the Eq. A5 is estimation and the obtained values must be treated as 

such. 

If VGS is equal to VDS we ensure that the device is in saturation regime. To carry out the 

saturation characteristic, ISD is measured by a sweep of voltages (VGS = VDS) from very low 

conduction to high conduction (|VGS | >> | VTH |). This measurement shows an exponential 

characteristic as depicted in Figure A4. 
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Figure A 4 - Linear fit in saturation measurement for p-type OTFT. 
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A_I.3.2 Determination of Density of States (DOS) 

The optoelectronic properties of the devices depend largely on the density of states (DOS) in the 

band gap of the active semiconductor layers. DOS distribution in semiconductors determines the 

electrical transport, photosensitivity, doping efficiency and, at the end, impairs the device 

performance (traps and recombination centres). Figure A5 illustrates how the energy spectrum of 

amorphous semiconductors differs from that of crystal semiconductors in the presence of density 

“tails” of electronic states that penetrate the energy gap. 

 

Figure A 5 - (left) Ideal semiconductor (Crystalline materials (silicon). Well defined valence & conduction bands. 

No states in the middle of the gap. (right) Amorphous and polycrystalline semiconductors. States inside the gap. 

Experimental information on the distribution of defects cannot be obtained in a straightforward 

way. Different techniques for extracting information about the energy distribution of the DOS in 

thin-film semiconductors: ultraviolet photoelectron spectroscopy, Kelvin probe force 

microscopy, electron spin resonance spectroscopy, space-charge-limited-current spectroscopy, 

deep-level spectroscopy, photoconductivity measurements [9–14].  

In this thesis, we estimate the DOS distribution in organic semiconductor thin-films from 

electrical measurements performed at different temperatures on OTFTs. This measurements will 

provide information about the thermal emission energy distribution of trapped charges.  

The multiple trapping and thermal release model (MTR) should describe charge transport in 

disordered small-molecule organic semiconductors [15]. The trapping and release mechanisms 

determines the overall mobility and the thermally activated behaviour. The trap distribution DOS 

within the gap is believed to be exponentially shaped. Therefore, a crucial feature for the MTR 

model is the determination of the DOS in the gap of the semiconductor. 
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The position of the Fermi level provides extensive information about the electrical characteristics 

of the semiconductor material, such as the density of trap states in the bandgap or the distribution 

of states in the band tails. 

It has been observed that the behaviour conductivity (σ) in thin-film organic semiconductors is 

thermally activated, following the Arrhenius model (Eq A6): 

where Ea is the activation energy, kB the Boltzmann constant, T the temperature in K and σ0 a 

constant of the material. Ea can be considered a measure of the distance from the Fermi level 

(EF) position to the transport band edge. In consequence, Ea is Ea = Ec - EF for n-type 

semiconductors and Ea = EF - Ev for p-type.  

On the other hand, from the experimental data obtained from the characterisation of OTFTs, the 

conductivity can also be calculated from the IDS-VDS curve, as expressed in the following 

expression (Eq A7): 

Applying Eq A6 in Eq A7 can be obtained (Eq. A8): 

Thus, if ISD is measured at two different temperatures with a fixed VGS = VDS, we obtain (Eq. A9): 

From Eq A9, it can be easily extracted the value of Ea of the conductivity.  

On the other hand, Fermi level position in the semiconductor can be varied with the VGS voltage. 

When applying a VGS voltage, more charge is accumulated in the conductive channel of the Thin-

Film Transistor. For a n-type semiconductor applying a positive voltage in the gate will induce 

more negative charge (electrons) to be accumulated in the channel, whereas the application of 

positive VGS will empty the channel from electrons. Since the amount of charge accumulated in 

the channel depends on the position of the Fermi level, changing VGS shifts the Fermi level 

position inside the band-gap of the semiconductor. In the case of n-type semiconductor, a 
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positive VGS will shift the EF to the LUMO level (conduction band in the case of inorganic 

semiconductors), whereas a negative EF will shift EF towards the middle of the gap (in an n-type 

semiconductor EF lies close to LUMO level). A similar description can be made in the case of p-

type semiconductor. In this case, EF lies close to the HOMO level, and the application of a VGS 

voltage will shift EF to the HOMO level for a negative VGS and to the middle of the band-gap for 

a positive VGS. 

The transfer characteristic of the device is necessary to be measured at different temperatures to 

achieve Ea.  

The transfer curve was measured several times by applying heating and cooling cycles until the 

results were stable. Since the transfer characteristics are measured at a fixed VDS voltage, the 

drain current is proportional to the channel conductance for each VGS voltage. An Arrhenius plot 

of the channel conductance gives evidence of a thermally activated behaviour.   
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Figure A 6 - Transfer characteristic of TFT measured from 300 K to 370 K with step of 10 K.  
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Figure A 7 - Arrhenius plot of drain-source current in function of temperature. 
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Figure A 8 - Activation energy of TFTs, where the semiconductor layer were deposited at different substrate 

temperature, in function of gate-source voltage. 

The rate at which Ea varies with VGS indicates how easily the Fermi level can shift through the 

DOS distribution in the gap of the organic semiconductor. A fast variation of Ea with VGS takes 

place if a low density of localised states has to be filled by trapped carriers. In contrast, a high 

DOS in the gap results in slower variations of Ea with VGS.  
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This method to extract the density-of-states inside the band-gap in thin-film semiconductors has 

been applied to hydrogenated amorphous silicon (a-Si:H). Globus et al. [16] using the transfer 

characteristics measured at different temperatures of a-Si:H TFTs derived an estimation of the 

distribution of localised states. Recently, the method has been also successfully used to extract 

the DOS of organic semiconductors, such as pentacene and PTCDI-C8 [17–19].  

Following this method the DOS in the gap of the semiconductor can be estimated from the 

derivative of Ea with respect to VGS:  

where Ea is the energy measured from the valence band edge, Ci is the capacity of the dielectric 

per unit area, q is the elementary charge and t is the thickness of the accumulation channel. It has 

been reported that the accumulation channel of OTFTs is formed within the first monolayers 

near the dielectric interface [20–22]. Therefore, in the calculations we have considered an 

accumulation channel of thickness t=10 nm. Using Eq. A10, we can estimate the distribution of 

localised states in the region from the valence band edge to approximately the middle of the gap 

(Figure A 9). 

 

Figure A 9- Schematic diagram of DOS as a function of Ea for a p-type semiconductor. Applying a negative V GS the 
EF shifts closer to the HOMO level. Deep states located in the forbidden band gap and shallow states located closer 

to the HOMO are indicated. 
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