## Article IV

# MAGNETIC HARDENING INDUCED BY EXCHANGE COUPLING IN MECHANICALLY MILLED ANTIFERROMAGNETIC-FERROMAGNETIC COMPOSITES 

J. SORT, J. NOGUÉS, X. AMILS, S. SURIÑACH, J.S. MUÑOZ, M.D. BARÓ

Departament de Fisica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain


#### Abstract

Mechanical milling has been used to synthesize ferromagnetic ( $\mathrm{FM}, \mathrm{Co}$ ) antiferromagnetic (AFM, NiO) composites. The coercivity, $\mathrm{H}_{\mathrm{c}}$, and energy product, $\mathrm{BH}_{\text {Maxx }}$, of these composites can be enhanced at room temperature after appropriate heat treatments above the Neel temperature of the AFM, $\mathrm{T}_{\mathrm{N}}$. Although the maximum $\mathrm{H}_{\mathrm{C}}$ is achieved for the $(\mathrm{NiO}) 1: 1(\mathrm{Co})$ weight ratio, $\mathrm{BH}_{\mathrm{max}}$ is further enhanced for the ( NiO ) $2: 3(\mathrm{CO})$ ratio, where higher saturation magnetization is obtained due to the larger amount of FM. Exchange coupling, responsible for these effects, decreases as the temperature is increased and vanishes close to $\mathrm{T}_{\mathrm{N}}$. The thermal stability of the coercivity enhancement remains rather insensitive to the somewhat broad distribution of blocking temperatures of this system.


## INTRODUCTION

Since mechanical alloying (MA) was developed in the late 1960s [1], this technique has been used as a processing route for the synthesis of a large variety of equilibrium and nonequilibrium phases and phase mixtures [2]. This technique has been shown to be successful in reducing crystallite sizes to the nanometric range. These small particles can exhibit rather different physical properties from those of their bulk counterpart [3].

Mechanical alloying has also been used to produce direct or indirect magnetic interactions, like in exchange spring magnets (milling soft-hard ferromagnets) $[4,5]$ or giant magnetoresistance materials (milling magnetic-nonmagnetic phases) [6]. However, studies of exchange interaction between ferromagnetic and antiferromagnetic materials induced by ball milling are scarce. Nevertheless, recently the possibility of increasing the room temperature coercivity by mechanical alloying transition metals $(\mathrm{Ni}, \mathrm{Co}, \mathrm{Fe})$ and their own antiferromagnetic oxides ( NiO or CoO ) or sulfides ( FeS ) has been proven [ 7 ]. Moreover, it is well known that oxidized ferromagnetic fine particles can also exhibit coercivity enhancements [8]. However, this enhancement is mainly observed far below room temperature, which makes this property not useful for applications. It is noteworthy that coercivity increases due to AFM-FM exchange coupling are also being studied in thin film systems [9,10].

In this paper we show the possibility of increasing the room temperature coercivity and energy product by ball milling FM and AFM composed of different transition metals, e.g. Co and NiO, after adequate magnetic field heat treatments. The hardening of the FM phase is optimized by varying the AFM:FM ratio.

## EXPERIMENTAL

Different AFM:FM weight ratios ( $0: 1,3: 7,2: 3,1: 1$ and $3: 2$ ) of gas - atomized powders of $\mathrm{NiO}\left(99 \%,<100 \mu \mathrm{~m}, \mathrm{~T}_{\mathrm{N}}=590 \mathrm{~K}\right)$ and $\mathrm{Co}\left(99.5 \%,<44 \mu \mathrm{~m}, \mathrm{~T}_{\mathrm{C}}=1404 \mathrm{~K}\right)$ were mixed and sealed under Ar atmosphere in an agate vial ( $V=20 \mathrm{ml}$ ), together with 6 agate balls $(10 \mathrm{~mm}$ diameter), with a ball to powder weight ratio of $2: 1$. The milling was carried out for different

Mat. Res. Soc. Symp. Proc. Vol, 581 \$2000 Matertals Research Socioty

## Chapter 3

times ( $0.1-30$ hours), at 500 rpm , using a planetary mill. To induce exchange coupling, the as milled powders were annealed at different temperatures, $T_{A N N}=300-850 \mathrm{~K}$, for different times ( $0-5$ hours) under vacuum, in the presence of different magnetic fields ( $0-10 \mathrm{kOe}$ ), and field cooled to room temperature.

The microstructure of the powders was studied using standard $x$-ray diffraction (XRD) ( $\mathrm{Cu}-\mathrm{K} \alpha$ radiation). The x -ray diffraction peaks were deconvoluted and fitted using a pseudoVoigt function. The crystallite size, $\langle\mathrm{D}\rangle$, was evaluated using a single peak method from its integral breadth (Cauchy component), following Scherrer's approximation. Their morphological characterization was performed by using scanning electron microscopy (SEM), equipped with energy dispersive x-ray analysis (EDX). Magnetic hysteresis loops, up to 10 kOe , were measured in loosely packed powders, at temperatures between room temperature and 750 K , by means of vibrating sample magnetometry (VSM).

## RESULTS AND DISCUSSION

Shown in fig. 1(a) is a SEM image (secondary electron) for the NiO-Co powders ball milled for 20 hours in a weight ratio of $1: 1$. Bell milling induces a broad range of particle sizes, from $1 \mu \mathrm{~m}$ to $30 \mu \mathrm{~m}$ [11]. The larger particles (an enlargement of one of these particles is shown in fig. 1) are composed of about $1 \mu \mathrm{~m}$ thick lamellac, surrounded by small particles. As can be seen in fig. 1(b) the Co $x$-ray mapping indicates that the lamellae (bright in fig. 1(a)) correspond to Co while the particles (gray in fig. 1(a)) correspond to NiO. This microstructure, typical of ball milled ceramic-metal mixtures, is due to the ductile and brittle character of Co and NiO respectively. Moreover, this microstructure allows the existence of a large interface area between the FM and the AFM phases.


Fig. 1 (a) SEM secondary electron image and (b) Co EDX mapping for a
$(\mathrm{NiO}) 1: 1(\mathrm{Co})$ ball milled for 20 h .
X-ray diffraction (XRD) patterns have been obtained for the unmilled Co and NiO and for the 20 h ball milled $\mathrm{NiO}-\mathrm{Co}$ in a weight ratio of 1:1, before and after field annealing them in a 5 kOe magnetic field at $\mathrm{TANN}^{\prime}=600 \mathrm{~K}$. The XRD patterns of the unmilled Co reveal that it corresponds to a mixture of hcp and fcc Co, while the unmilled NiO powder diffraction peaks correspond to a foc phase. The crystallite sizes, evaluated for the Co hexagonal (002) and the NiO (111) peaks, are $<\mathrm{D}>\mathrm{Colhx}^{2}=42 \pm 4 \mathrm{~nm}$ and $\langle\mathrm{D}>\mathrm{No}>100 \mathrm{~nm}$, respectively [11].

When Co and NiO powders are ball milled together in a $1: 1$ weight ratio the intensity of the peaks corresponding to the fcc Co phase rapidly decreases. This allotropic transformation has been previously reported for ball milled Co powders [12]. The peak widths of the different phases after ball milling show an important increase. This is related to the crystallite size reduction, the introduction of planar defects and the microstrain increase. The crystallite sizes, after 20 hours of milling, estimated from the ( 002 )co,Hex and the ( 111 ) wo reflections, are: $\left\langle\mathrm{D}>\mathrm{c}_{\mathrm{o}, \mathrm{Hex}}=10 \pm 2 \mathrm{~nm}\right.$ and $\left\langle\mathrm{D}>_{\mathrm{NoO}}=14 \pm 2 \mathrm{~nm}\right.$, respectively. In addition, the positions of the

NiO peaks do not change ather ball-milling, indsoting no important variation in its lattice paramesec. This suggests that the diffusion of Ce info the NiO cell is very small [ $[1]$.

When the bell milled NiO-Co powders are annealed at $\mathrm{T}_{\text {NWF }}=600 \mathrm{~K}$ for 0.5 hours the x ray diffraction puttera is very similar to that of the as milled powders, where the NiO peets are not displood and celly a mingr decrease in the penk width is obtainad. The crystallive size

 this samealling tempesature, a slight increasic in the intexsity of the (200)cacose peak can already se observed, indicating the starting point for an allowople transformation from bep 10 hep-fict [12]. However, after anncaline at Twar $=740 \mathrm{~K}$ for 0.5 hours, the crystallite sines, calselased from ( 100 )celiex and (111)wo peaks, increase sigrifficuntly to - DOCultes $=44 \pm 4$ tm and $<$ Dreco $=40 \pm 4 \mathrm{mon}$ and the intensily of the peake oceresponding to the culbic phese iseresses. Thus, onncaling of TaNe $=740 \mathrm{~K}$ fiduess as important crystal growth and the allocropie phase تransformation from hep to foe $\mathrm{Cop}_{0}$ [11]

The room-wmperature coorcivity, Hc, tws baen meaburad as a function of the milling time for the difiereat NiD:Ce weight entios for beth as-milled end annealed ( $\mathrm{T}_{\mathrm{A}} \mathrm{me}=600 \mathrm{~K}$ ) powders. In pare Co , He increases allar a shot milling time ( 1 hour) from $\mathrm{Hc}-170 \mathrm{Oe}$ (as obtainef) to 290 Oe ( 1 hour bell millid) (13]. This increaske is atributod to the allotropic phase trankurmation from Scchcp Co to hop Co, where hep Co is known to have larger He than foc Co [14]. Further milling decreases Hc (og. $\mathrm{Hc}=125 \mathrm{Oe}$ afor milling 30 hours), which is poobally linked with the disondering of the hexagonal stracture, as bas been repoeted for lingvenn milling [12]. A maximum in He is aloo observed for ball malled NiO.Co. Howevar, for each AFM:FM ratio, the largesk Hc is cbtained for different milling times, which inceretse as the NiO content iscreases, indicating that NiO peobahly delays the Co stroctural changes.

Anncaling the ball milled pure Co powders at $T_{\text {ses }}=600 \mathrm{~K}$ (L. . TN $<\mathrm{T}_{\mathrm{N}} \mathrm{N}<\mathrm{Tc}$ ) for 0.5 bours in $\mathrm{K}=5 \mathrm{kOe}$ results in a slight decrease in Hc. However, a signiflient enhancement of Hc is oberved after annealing the ball milled NiO-Co powders of the same iemperature, TAver = 600 K , and field cooling $(\mathrm{H}-5 \mathrm{LO} \mathrm{e})$ to room tomperanare [13]. Shown in fig. 2 is the dependeose of the cocrcivity enlwacermeat (defined is the diffitatace of Hc after and before
 be soen in tion Ifgue, the room-temperature Hc increases only when the annealing teaperature is larger thas the NiO Nbel temperature (i.e. $\mathrm{TK}_{\mathrm{K}}=590 \mathrm{~K}$ ), as expecsed for an exchange coupled FM-AFM systom [9]. The decrease of $\Delta$ hic afler araceling at excoedingly high temperatures $\left(\mathrm{T}_{\text {noo }}>700 \mathrm{~K}\right.$ ) is doe to the allotrogic phase trantormation from focthsp Co to fsc Co , as


Fig. 2 Deperdsnce of the coercivity echangement, 4 HIc, on the annealing tenmerature for a ( N E$) \mathrm{i} 1: 1(\mathrm{Co})$ ball milled for 20 h .

## Chapter 3

observed from XRD. Loop shifts in the field axis, Hz , towards the negative field axis are also present in the hysteresis loops of the ball milled NiO-Co samples for all AFM:FM ratios, except in pure Co. The loop shifts depend on the annealing temperature with a similar dependence as $\Delta \mathrm{Hc}$, confirming the assumption that the exchange coupling between the AFM and the FM is responsibie for both effects, $\Delta \mathrm{Hc}$ and He .

Exchange coupling produces not only an enhancement of Hc but also an enhancement of the squareness, $\mathrm{M}_{\mathrm{R}} / \mathrm{Ms}_{\mathrm{s}}$ [13], and consequently an increase of the energy product, BHMax. The dependence of $\mathrm{HE}, \Delta \mathrm{Hc}$ and $\Delta \mathrm{BH}_{\text {max }}$ (defined as the difference of BH max after and before annealing at $\mathrm{T}_{\mathrm{ANN}}=600 \mathrm{~K}$ ) on the Co content ( $\mathrm{NiO}: \mathrm{Co}$ ratio) is shown in fig. 3. The values shown in the figure correspond to the milling times which give the maximum values of Hc for each NiO:Co ratio. As can be seen in the figure, the largest exchange coupling effects, i.e. maximum enhancements of HC and BH max and maximum loop shifts, are exhibited for the $(\mathrm{NiO}) \mathrm{I}: 1(\mathrm{Co})$ ratio. However, the maximum value of $\mathrm{BH}_{\text {Max }}$ after annealing at $\mathrm{T}_{\mathrm{ANN}}=600 \mathrm{~K}$ is not obtained for $(\mathrm{NiO}) 1: 1(\mathrm{Co})(\mathrm{BH}$ Max $=62000 \mathrm{G} . \mathrm{Oc})$ but for $(\mathrm{NiO}) 2: 3(\mathrm{Co})(\mathrm{BH} \mathrm{Max}=83000$ G.Oe). This is due to the interplay between Hc and Ms on BHMas. The addition of an AFM and the subsequent heat treatments increase $\mathrm{HC}_{\mathrm{c}}$, however the AFM also promotes a reduction in the overall Ms of the composite. Hence, the enhancement of BHMex is a compromise between both effects.


Fig. 3 Dependence of the (a) exchange bias, $\mathrm{H}_{\mathrm{E}_{3}}$ (b) coereivity enhancement, $\Delta_{\mathrm{HC}}$, and (c) enhancement of the energy product, $\Delta$ (BH)max, on the Co percentage (NiO:Co ratio).

Shown in fig. 4 is the dependence of the loop shift on the measuring temperature. As expected from exchange coupled AFM-FM systems, Hz decreases as measuring temperature increases, becoming zero at $\mathrm{T} \approx 600 \mathrm{~K}$, i.e. at the Néel temperature of the $\mathrm{AFM}(\mathrm{TN}(\mathrm{NiO})=590$ K ). A similar behavior is observed for $\Delta \mathrm{HC}$ and $\Delta(\mathrm{BH}) \mathrm{max}$. The decrease of these properties with increasing measuring temperature is the result of a reduction of the AFM/FM interface coupling,

## Articles

as a conseçance of dither the loss of tibe magnetic order in the APM andber the reduetion of the AFM migretocrystalline anisotrspy. The cridical teaperature at which exchagge coupling effects eompletely venish is usually denoted as the blocking temperature. Ts [9].

To study the thermal stability of the ball millad NiO.Co systers due to the coccomitant distrisution of blocking termperatures [15] (brocght about by the distribution of crystelite sizes and defects), the NiO-Co samples were warmed to a iemporature $\mathrm{Th}_{\mathrm{h}}, 300 \mathrm{~K}<\mathrm{To}_{\mathrm{o}}<700 \mathrm{~K}$, and spbucquently cooled to room tempernture in a fleld $\mathrm{H}=-5 \mathrm{kOe}$, ie. opposise to the one used to laduce the riginal coupling ( $\mathrm{H}=5 \mathrm{k} 0 \mathrm{o}$ ).


Fig. 4 Temperature dependence of the exrhange bixe, $\mathrm{Ht}(\mathrm{O}$ ) on the meastring tempentusc, and $\mathrm{H}=\left({ }^{\mu}\right)$ after field sooling in $\mathrm{H}=-5 \mathrm{kOe}$ from differsen temperatures.

Following this procedure, if the local blocking temperature of a crystalise (Is) is below To. the cystallite becomas paramagnetic, thus losing the information of the original coriplaz. Cooling such crystallite in $\mathrm{H}=-5 \mathrm{kOe}$ ioduces a coupling apposite to the criginol one, bence shitting the loop cowards poxifive fields. However, crystallites with Tes > To renasin unchanged. Conscquently, the Hz ottoinsd after warning to each To gives a menaure of Be number of crysiallites with $\mathrm{T}_{\mathrm{m}}<\mathrm{T}_{\mathrm{D}}$ [15]. As can bo soco in fig, 4, alreafy at $\mathrm{Tr}_{\mathrm{D}}=350 \mathrm{~K}$ a refustion in Hr con be obourved. Mocsover, for $\mathrm{Tb}=500 \mathrm{~K}$ Ha is redoced to neto (i.e $50 \%$ of the crysullikes have $T_{\text {bi }}<500 \mathrm{~K}$. These results indicase a beoad Cistribution of blociding temperatures fis this system. However, although the thernal stability of Hz is strangly inflocneed by the distribisice of Ta , we observed that Hc is rather ingenstive vo it. This is peobably becwuse athough the overall Fir depends on the strengit and siga of the coopting for ench crytallite. the cwhentemert of He depends only on the strengeh of the conpling.

## CONCLUSIONS

If conclusion, we have shows that mechanicolly milled AFM(NOO) - $\mathrm{FM}(\mathrm{CO})$ compotites display significant enkancements of the moom tempersturc cocrcivity end energy prodact due to the exchange cocpling indused after heat treating de samples as Toon > Tw under magnotie fields. The as-milled powders exhibit a peculitr mieroctructore (Co lamellac swornombed by refined NOO porticles), which allows the exisleoce of a latge iasectioce atep between the FM and the AFM. The maximum magnetic hardening is shown to be a trate off between the cocreivity enhancomett pooduced by exchange coupling and the overall redoction of asturation magnetization das so the antiforremagnet. All the efflocts ( $\mathrm{Hc}, \mathrm{He}$ and BHva) decsease with incressing temperature and lhe NiO -Co samples become uncoupled whica the

## Chapter 3

measuring temperature is larger than the antiferronagnetic Nbel temperaturt. Althoagh $\mathrm{H}_{\mathrm{s}}$ is stroegly influenced by the distribution of $\mathrm{T}_{\mathrm{B}}, \mathrm{H}_{\mathrm{C}}$ remains rather insensitive to it.

## ACKNOWLEDGEMENTS

This work was supported in part by DGESEIC under ceatract MAT98-0730 and by CICYT under contract PETR195-0311-OP. J.S. thanks the DGU for his fellowslip. IN. and X.A. acknowledge the Sparish Gevernmeet for its financial support.

## REFERENCES

1. J. S. Berjamin, Metall. Trans. 1, 2943 (1970); Mater. Sci. Forum 88-90, 1 (1992).
2. For a review, see B. S. Murty and S. Ranginathan, Feter. Mater. Rev, 43, 101 (1998).
3. For a review, see R. W. Siegel, Nanostruct. Mater. 3, 1 (1993)
4. P. Q. MeCormick, W. R. Miag, P. A. I. Smith, J. Ding, R. Stetet, J. Appl. Phyz. 83, 6256 (1998).
5. K. Raviprasad, M. Runakoshi and M. Umemoto, J. Appl. Phya. 83, 921 (1995).
6. A. J. Fargan, M. Viret and J. M. D. Cory, J. Phys: Cond. Matter. 7, 8953 (1993).
7. D. S. Geoghtgan, P. G. MeCoravick and R. Streot, Mat. Sei. Forum 179-181, 629 (1995).
8.W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956); 105, 904 (1957)-
8. For a review, see J. Noguts and Ivan K. Scluller, J. Magn. Magn. Mater, 192, 203 (1999).
9. A. S. Edclstcin, R. H. Kedama, M. Miller, V. Beowning, P. Lubitz, S. F. Cheng and H. Sieber, Appl. Phys. Lett. 74, 3872 (1999); Y. J. Tsang, B. Rocs, T. Mewes, S. O. Demokritov, B. Hillebrands and Y. J. Wang, Appl. Phys. Lett. 75, 707 (1999).
10. J. Sort, I. Noguts, X. Amils, S. Surinsch, I. S. Muloz and M. D. Baró, Mater. Sci. Forim (2000) in press.
11. J. Y. Huang, Y. K. Wu and H. Q. Ye, Appl. Phys. Lett. 66, 308 (1995), F. Cerdellini and G. Mazzone, Philos. Mag. A 67, 1289 (1993).
12. J. Sort, J. Noguts, X. Amils, S. Surinach, J. S. Muhoz and M. D. Bard, Appl. Phys. Lett. 75, 3177 (1999).
13. H. Sato, O. Kitakami, T. Sakurai, Y. Shitada, Y. Otani and K. Fukamichi, J. Appl. Phys. 81, 1858 (1997).
14. S. Soeya, T. Imagawa, K. Mitrooka and S. Narisise, J. Appl. Phya. 76, 5356 (1994); C. Tsang and Keuneth Lee, J. Appl. Phys. 53, 2605 (1982).
