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2.1 Introduction
In broadband communication systems, information is coded in the form of

light pulses, as shown in fig 2.1a. These pulses are transmitted, through waveguiding

structures, from the source to the receiver, where the information is decoded. As the

number of pulses per unit time that can be sent and decoded increases, the system

transmission capacity is greatly enhanced, being able to transmit larger quantity of

information. However, there exist some limitations on the pulse frequency due to

optical signal distortion as it travels along a guiding structure. The consequence of this

distortion can be seen in fig 2.1b. As the distance (or propagation time) increases, the

pulse progressively broadens. Thus, the resolution (defined as the difference between

the maximum and the minimum intensity value) decreases, being more difficult to

detect the pulses at the detector. For large broadening, it becomes nearly impossible to

differentiate two consecutive pulses, as shown in fig, 2.1c.

Time Time Time

                        a)             b)   c)
Fig 2.1.: Pulse resolution lowering due to broadening as a function of time (or distance).

As previously mentioned, when a light pulse is injected in a multimode fiber

optic or a waveguide, it broadens as a function of time and propagation distance. This

behavior is mainly due to the intermodal dispersion and it is a direct consequence of the

fact that each mode propagates at a different speed along the guiding structure. Thus,

even if two closer pulses can be well resolved at the input end, because of the
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broadening, they may not be so at the receiver. In those situations where the output

pulses are not resolvable, the information cannot be retrieved. This dispersion can be

overcame by single-mode operation. Actually, the state-of-art in broadband

telecommunications systems operating over long distances do actually use this principle

of operation.

The above description does not mean that single mode waveguides do not

suffer from dispersion. It has to be noted that all light sources have a central wavelength

value λ0 but also have a certain width ∆λ. Thus, each wavelength within this width also

takes a different time to arrive at the receiver, causing a pulse broadening. This

broadening due to the spectral width of the light source is called intramodal dispersion.

There also exist some other properties that can cause pulse broadening. If the

waveguide optical properties (refractive index and absorption coefficient) have a non-

linear response with λ, or even if, due to difficulties on the fabrication process, those

layers comprising the guiding structure are not homogeneous, linear and isotropic (HLI

materials), the propagation along the waveguides will depend on its behavior with λ.

Thus, a broadening due to material dispersion can also be observed.

Finally, the goodness of any guiding structure clearly depends on its capacity

of confining the light with as lower losses as possible. There exists several optical

properties that allows obtaining confinement (as could be Total Internal Reflection or

AntiResonant Reflecting Optical Waveguides), but in all of them, each mode reaches the

boundary between the core layer and the adjacent layers with a certain angle. Even if the

structure is single-mode, this angle is a function of λ for a given waveguide geometry

and refractive index values. Thus, the waveguide dispersion produces a λ-dependent

delay along the guiding structure, which increases as ∆λ spans from the central value λ0.

As can be observed in table 2.1, in multimode guiding structures, the

intermodal dispersion prevails and other dispersion effects can be neglected. This fact is

the former drawback that prevents the application of this kind of structures in

telecommunications. There are, however, some other application fields where these

guiding structures can be used, as it will be explained later on. For single moded

waveguides fabricated with LHI materials and with a coherent light source, there only

exists intramodal dispersion, which is much lower and the light pulses can be closely
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transmitted, increasing the overall information transmission speed. If incoherent light

sources are used, the dispersion on the waveguide and on the material should also be

studied.

Single-mode Multimode

Intermodal dispersion Does not exist Important

Intramodal dispersion Important Neglectable

Material dispersion Variable Neglectable*

Waveguide dispersion Variable Neglectable

* Except for highly non-linear media

Table 2.1: Different dispersion effects that cause pulse broadening on light guiding structures.

At this point, it will be useful knowing which waveguide configurations are

the most appropriate for single-mode behavior. There exist several optical principles in

which guiding structures could be based on. Between them, Total Internal Reflection

(TIR) and AntiResonant Reflecting Optical Waveguides (ARROW) configurations

could be highlighted, since they are the most versatile, simple and robust.

The simplest Total Internal Reflection waveguides consist on two layers

with different refractive index. Single-mode behavior can be obtained either with a

small refractive index difference between the core and the buffer layer (fig. 2.2a) or

with a thin core (fig. 2.2b). Comparison between TIR waveguides can be done by

defining the external asymmetry parameter as ∆nce= nc -next, where nc is the refractive

index of the core and next is that of the external media. Hence, for thick waveguides,

∆nce has to be small for single mode waveguides. On the contrary, if the core is thin,

high ∆nce values can be used while keeping the expecting modal properties. How these

values are correlated has previously been studied in [1]. Problems with this

configuration arise during the fabrication and the characterization. Firstly, for

waveguides with small ∆nce require thick layers, which frequently crack if the

deposition (or growth) conditions are not optimized. Furthermore, they require a small

difference between the refractive indexes, that is, the necessary equipment must give a

thick layer while keeping constant its composition. These strong requirements need

extremely complex systems that reduce the possibility of mass-production.
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Although it is much easier to fabricate a TIR waveguide with a high ∆nce,

problems arise during the characterization. Light is commonly injected by end-fire

coupling from a single-mode optical fiber with a diameter of 4 µm. As an example, the

core of a waveguide with ∆nce=2.00 (as could be a Si3N4 waveguide), must not exceed

0.1µm for having single-mode operation. This strong difference between the areas of

the guiding structures causes high losses during injection if end-fire coupling is used.

Furthermore, core waveguides are commonly etched so as to have cross-section

confinement, as it will be discussed later. For keeping single-mode operation, this etch

must not exceed 5nm. Although it can be done with standard lithography and etching

processes, waveguides cannot be seen at naked eye and it obviously is a major

drawback for alignment of integrated optical devices, light sources and photodetectors.

The major advantage of ARROW structures (fig. 2.2c and d) is that, due to its

principle of operation, their modal properties does not depend on the core thickness, but

on the antireflective pair located just beneath the core. Hence, it is possible to obtain

waveguides with a core thicknesses of the same magnitude as compared to the input

fiber optics while keeping its single-mode properties unchanged. This behavior is

observed in fig 2.2c and d, where the first mode in both structures has a deep

penetration into the substrate, as compared to the fundamental mode, which has not.

They also have several additional properties that will be discussed in the next section.

2.2 ARROW Waveguides
During the last fifty years, research on microelectronics has overcome the

most optimistic expectations, both in achievements and in new equipment. Integrated

optics is still far from microelectronics, but it is expected to progress much faster since,

instead of developing new equipment, the previously developed systems can be adapted

so as to provide good results in integrated optics. It has to be taken into account,

however, that the main material used in microelectronics is silicon, which is absorbent

for wavelengths below 1.12µm. Then, the first was the design of a new waveguide that

could operate in the visible region with acceptable absorption losses while keeping its

single-mode behavior.
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The response of such strong requirements was the development of ARROW-A

[2] and ARROW-B [3] waveguides in 1986 and 1989, respectively. Their basic

configuration has previously been presented in fig 2.2. They consist on two different

layers placed just below the core. Its refractive index and thickness has to be chosen, for

a given working wavelength, so as provide very high reflection at the core-1st cladding

(d1) interface. At the upper air-core interface still undergoes total internal reflection.

a) b)

c) d)

Fig 2.2.: Different waveguide single-mode configurations a) TIR waveguide with small refractive index
difference between the core and the underlayer. b) TIR waveguide with high refractive index difference. c)
fundamental and first mode of an ARROW-A waveguide. c) fundamental and first mode of an ARROW-B
waveguide.
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The antiresonant pair (d1 and d2) has the transmission properties of two Fabry-

Perot resonators. Hence, high reflection happens at its antiresonant wavelengths. If each

layer is sintonized so as to have the same transmission properties, a very high reflection

(>99.96%) will be achieved. Due to the fact that the principle of operation relies on the

properly phased reflections at each boundary, it could be thought that the fabrication

conditions of these structures are extremely strict and that they only work over a very

narrow band of wavelengths. In order to confirm or deny this point, theoretical

expressions of the sintonized layer thicknesses as a function of the working parameters

should be derived.

2.2.1 Theoretical Expressions

As presented in fig. 2.3, and using ray-tracing optics, the phase difference

between the ray reflected at the core-1st cladding interface (A) and the ray reflected at

the 1st cladding-2nd cladding interface (B) is given by:

( )1111 cosd θδ kn= (2.1)

where n1 and d1 are the refractive index and thickness of the 1st cladding layer, θ1 is the

angle at which light propagation through the core is refracted in the 1st cladding layer in

reference to the normal and k is the wavenumber.

Subst
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q22d 2n;
1d 1n;

cd cn;

Fig 2.3.: Ray-tracing scheme in an ARROW-A waveguide, where the different rays that provide
antiresonance-based confinement are plotted (A & B).

On the basis of the same deductions, inside the core the phase difference is:

( )mc,ccosd θδ cc kn= (2.2)
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where nc and dc are the refractive index of the core and θc,m is the angle at which each

mode m is reflected at the core boundaries.

As can be seen from the previous expression, δc depends on the light

propagating angle, which is different for every mode. The propagation constant of the

mth mode (βm) can also be given as a function of θc,m, and has the expression.

mccmcm knkn ,sencos θψβ == (2.3)

if antiresonance is imposed, then ( ( ) 212 πδ += gc , g=0, 1, 2,...). Applying this

condition to ec. (2.2) one obtains the incidence angle for each layer
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These expressions can be introduced to the well-known reflection coefficients [4] so as

to obtain the reflectivity (R) expression for any polarization:
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where ri→j stands for the reflection coefficient at the boundary between the layers i and j

(i=1,2; j=2,3).

In fig 2.4 the ec. (2.5) as a function of d1 has been plotted for several core

thicknesses. As can be observed, there exist some periodic narrow values of d1 where a

minimum of reflectivity is obtained. These values correspond to the Fabry-Perot

resonance values. On the contrary, the regions where reflectivity is close to unity are

broad, corresponding to antiresonance values. Hence, and as far as fabrication is

concerned, layer thicknesses have a high degree of tolerance. It also can be observed

how reflectivity decreases when the core size is reduced. This fact is comparable to the

finesse decrease in a Fabry-Perot [5]. Core properties (dc and nc) are, for a given

wavelength, the responsible of the light confinement inside the guiding structure. If,

keeping constant the refractive index, the core thickness is progressively reduced, the
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confinement is also reduced and the modes propagating through the waveguide partially

travels outside the structure. This portion of electromagnetic field propagating beyond

the core boundary layers is commonly known as the evanescent field and its magnitude

increases as the core thickness decreases. It can be understood as a decrease of the

reflectivity mirror properties. Hence, one realizes that the decrease in the core

thicknesses causes the same effect than the finesse decrease in a Fabry-Perot

Interferometer.
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Fig 2.4.: Reflectivity vs. d1 for three different core thickness dc in an ARROW-A structure, with
refractive index values nc=n2=1.46, n1=2.00 and working wavelength λ=633nm.

Minimizing ec. (2.5), it is possible to express the values where d1 has a

maximum of reflectivity as a function of the rest of the parameters involved. It can be

written in the form:
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In all previous calculations, it has been supposed for simplification that

reflections were produced at the boundaries, that is, the effect of the evanescent field

penetration on the surrounding media was neglected. However, this approximation
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could be too strong in poorly confining waveguides (for example, with a thin core). This

effect can be considered with the introduction of the so-called Goos-Hänchen shift [6].

This effect causes the replacement of dc in all previous equations by an effective core

thickness dce, given by
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Generalizing the previous results, it could be affirmed that, for a given layer i with

refractive index ni, its antiresonant thickness will be
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If the 2nd cladding refractive index is equal to the core refractive index (n2=nc), at the 1st

antiresonant condition (g=0) and for the fundamental mode (m=0) equation 2.8 is

greatly simplified
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Attenuation of the several modes, defined as the power loss per unit propagation length

can be related to the reflectivity [7] as

1
)1(

21)1(17.2
2

−







+

−=







λ
α

m
dn

d
R

cm
dB cec

ce
m (2.10)

Evaluating this expression as a function of d1, as shown in fig 2.5, allows confirming

that it is technologically simple to achieve the necessary thicknesses so as to provide the

optimum antiresonant layers.

Summing up, it has been observed how in ARROW-A structures light

propagates through the core by repeating TIR at the upper air-core boundary and

ultrahigh reflection (>99.96%) for the TE0 due to the antiresonant interference

claddings. The amount of power that is not reflected corresponds to radiation loss.

Hence, any ARROW mode has a certain degree of losses. Properly speaking, instead of
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ARROW modes, it should be written quasi-guided or leaky modes. However, for

simplification on labeling and since their behavior actually is identical to a standard

mode, we always describe them as ARROW modes.

It can be observed that the theoretical study done basically corresponds to a

multiple Fresnel reflection. Thus, on the basis of Fresnel coefficients, attenuation should

strongly depend on light polarization. Instead of repeating the same analytical

calculations for the TM modes, it will be easier to contrast this fact during the numerical

simulations.
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Fig 2.5.: Attenuation vs. d1 for three different core thickness dc in an ARROW-A structure, with the same
refractive index values as the previous figure and working wavelength. Maximum attenuation can be
observed at the reflectivity minimums.

On the other hand, in ARROW-B waveguides, schematically presented in fig.

2.2d, the refractive index of the first cladding is the smallest on the structure (except

air). Then, if this layer is thick enough, this waveguide will behave as a TIR waveguide

and its modal properties will depend on the core thickness and the refractive indexes of

the layers, as it happens with all TIR waveguides. However, if d1 were made thin

enough so as to permit that the evanescent tail reaches the second cladding, it would

interfere in this layer. Moreover, if it is taken into account that the first reflection at the
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core-1st cladding is the most important on light confinement and interference does not

have a strong dependence with polarization, attenuation in ARROW-B should be less

dependent on polarization as compared to ARROW-A. Both ARROW waveguides

considered, however, should have the same modal properties: higher order modes

should be filtered out since the antiresonant pair would only have high reflectivity for

the TE0 mode.

In order to confirm the above-predicted behavior, it could be extremely useful

to use a numerical analysis. Although it could also be possible to do it analytically, the

optimization of ARROW structures will be clearer and less tedious with a numerical

approach. Furthermore, as it will be studied in the next section, there exist several

geometries where analytical calculus have a high degree of complexity or simply does

not have an analytical solution.

2.2.2 Numerical Simulations
Up to this point, only a brief approach to some of the optical properties of slab

ARROW-A structures has been done. Furthermore, as previously mentioned, slab

structures are generally not used in integrated optics, since it does not allow a dense

integration of optical devices on the same chip. Hence, ARROW core is partially etched

so as to provide cross-section confinement. Obtaining the appropriate boundary

conditions for this geometry is extremely difficult, although it has been solved for some

particular cases [8]. Thus, if an optimization of these waveguides wants to be done, it is

more useful to use a numerical simulation program instead of analytical deduction.

There exist several numerical simulation methods that provide, with a different

degree of accuracy, the optical constants and the propagation property of any integrated

optical device. The first one was developed for squared cross-section waveguides [8],

lately modified and renamed as Effective Index Method (EIM) [9]. Although both

methods are simple and fast, the propagation constant values that these methods provide

do not match with the experimental results as the modes are less confined, that is, as

they approaches the cutoff condition [10].

If inhomogeneous and anisotropic guiding structures with arbitrary cross

section want to be studied, it becomes necessary to use more complex simulation

methods, as could be the Finite Elements Method (FEM) [11] or the Finite Difference
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Method (FDM) [12]. Both are based on the waveguide cross-section division in a

certain number of regions, where, under the application of the appropriate boundary

conditions, the wave equation can be numerically solved inside every region (FEM) or

at every point (FDM). Both methods are able to provide the propagation constant, the

attenuation and radiation losses, the evanescent field and their modal properties.

Although some FEM methods are also able to provide the field amplitude evolution

along the propagation direction, generally it has to be implemented separately. The most

common method for analyzing the field evolution along the propagating direction is the

Beam Propagation Method (BPM) [13], which, for a given amplitude profile at z=0, is

able to determine its shape at a certain distance zf provided by the user. There exist

several variations of BPM, in order to include 2D confinement, backscattering, wide

angle propagation or even bent waveguides. Depending on the parameters under study,

it would be necessary to choose the most appropriate BPM algorithms. Normally, it

would be extremely useful to have information concerning the evolution of a 2D profile

along the propagation axis. Unfortunately, a 2D-BPM requires an excessively long

computing time. What is normally done, working far from cutoff condition, is reducing

one dimension of the device, through effective index method, and then use the standard

BPM algorithms. This method is generally called FDM-(EIM)BPM or FEM-

(EIM)BPM.

Particularly, in our case, it has been developed a FDM method with a Non-

Uniform Mesh (NU-FDM) [12]. The non-uniformity of the mesh allows obtaining the

same results as the uniform mesh, but with much lesser computational time. The density

of analysis points is higher near boundary regions or where it is needed. On the

contrary, it is sparse where the layers are locally homogeneous. The non-uniformity of

the mesh is particularly important in those structures with high difference between the

layer thicknesses, as could be ARROW waveguides.

Before starting analyzing the properties of Rib-ARROW waveguides, it will

be of worth confirming the expected behavior of slab structures. Moreover, its operation

principle does not depend on the rib as far as layer thicknesses or refractive index

differences are concerned. Firstly, the thickness of the different layers will be optimized

in order to minimize the attenuation losses for the TE0 mode. Once determined the layer
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dimensions, its stability, as a function of refractive index variations will also be studied.

Finally, rib will be introduced so as to analyze the change on the modal properties as the

etching is increased. During all the following simulations the working wavelength will

be fixed at 633nm.

For this analysis, it becomes useful to define the external and internal

asymmetry coefficients, being respectively ∆nce= nc-next and ∆nc2=nc-n2. While the

former parameter will provide information concerning the confinement degree of the

modes on the structure, the latter will be responsible of the number of guided modes.

The letter between brackets after ∆nci will be (A) for an ARROW-A or (B) for an

ARROW-B.

In the previous analytical calculations, it was possible to obtain a certain value

for the first cladding thickness that assured antiresonance. It could be a good starting

point when optimizing the second cladding to consider the obtained d1 value as correct.

Lately, a comparison between the analytical and the numerical results will be done so as

to confirm the simulation method. From the analytical results obtained in fig. 2.4 and

2.5, it will become logical to consider core thicknesses above 3µm. Reduction of the

core dimensions will also be studied afterwards. At this point, we will consider dc=4µm,

∆nc2=0 for both structures, while d1=0.12µm, ∆nce= 0.46 will be chosen for ARROW-A;

d1=0.5µm, ∆nce= 0.56 will be the parameters for ARROW-B. Reasons why choosing the

core thickness and the 1st cladding for ARROW-A are clear from the previous analysis,

as they also are, in according to equation 2.9, the election of ∆nc2=0. ∆nce values are not

extremely important at this point, since the effects on its variation are not under study

yet. However, their values have been chosen following two main criteria: 1. Ability to

obtain materials with the expected internal and external asymmetry coefficients with the

available technology. 2. Capability to compare the results obtained with the literature.

Finally, d1 value for ARROW-B structure has been chosen considering the property that

it should have, as it was described at the end of the previous section: thin enough so as

to permit the evanescent tail to reach the second cladding.

Generally, we will focus our study in two main properties of the guiding

structures: attenuation (also called radiation loss) and dispersion (effective refractive

index variation). While the former will provide essential information concerning the
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amount of power that will be obtained at the output of the device, the latter allows

determining the optical properties of each mode. If necessary, a third property, the

evanescent field, will be included as a complement of the previous. It will be

particularly useful when the confinement or the coupling between waveguides were to

be studied.

Attenuation and dispersion as a function of d2 for TE and TM polarization can

be seen in fig. 2.6. As expected, minimum radiation losses, with ∆nc2=0, are obtained

when d2=dc/2, as predicted in eq. (2.9). As a rule, when d2 is an odd multiple of dc/2,

minimum attenuation for even order modes and maximum attenuation for odd modes is

obtained. On the contrary, when d2 is a multiple of dc, the radiation losses of even order

modes reaches its maximum, since it behaves as a vertical directional coupler [14]. It

can be observed how the most significant difference between both structures is its

polarization dependence: the attenuation of TM0 in ARROW-A is at least two orders of

magnitude higher as compared to TE0, confirming the previously described multiple

Fresnel reflection principle. On the contrary, in ARROW-B configuration, a lower

dependence on polarization is observed. Although this behavior could be considered as

a limitation for some applications, there are others where the non-polarization

dependence structures greatly simplifies the device configuration. For example it allows

working with incoherent light sources or, at least, not to worry about the light

polarization that is injected at the device input.

Finally, it can be observed how the dispersion behavior is identical for both

structures and for both polarizations: there is no modal transition for the lowest order

mode when d2 is varied between 0 and 3µm. However, higher order modes present

modal transition at d2 thicknesses where resonant condition is obtained.

Further simulations will always consider the results obtained in the figure 2.6.

That is, the second cladding thickness will be sintonized at dc/2 in order to assure

minimum attenuation from the second cladding layer.

In the previous section, we have found the analytical expression for the

minimum radiation losses for ARROW-A waveguides and we have also seen that the

region were this condition is achieved is significantly broad. For ARROW-B, however,

only a qualitatively analysis has been done according to its internal and external
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asymmetry parameters. Following the same optimization steps of the second cladding

layer, the behavior of the attenuation and the dispersion for both ARROW structures

and polarization as a function of the first cladding thickness is presented in fig 2.7 and

2.8. The same asymmetry parameters as the previous figure have been chosen at the

same wavelength and with d2=dc/2. So far, the single difference between ARROW-A

and ARROW-B structures were the non-polarization selectivity of the latter, since the

attenuation and dispersion had the same overall properties. It can be observed in figs 2.7

and 2.8 how major differences between them arise due to the different asymmetry

values of each structure.
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Fig 2.6.: Attenuation and dispersion for the lower TE and TM modes vs. d2 for ARROW-A (a & c) and
ARROW-B (b &d) structures. In both dc=4µm; λ=633nm; ∆nc2=0. For ARROW-A ∆nce=0.46(A) and
d1=0.12µm, while ∆nce=0.56(B) and d1=0.5µm were for ARROW-B

Confirming the analytical results obtained in the previous section, radiation

losses in ARROW-A exhibit periodicity as a function of d1, as shown in fig 2.7a. The
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loss of even order modes has its minimum value at the antiresonant conditions (eq. 2.6).

Before analyzing the effective refractive index properties, it has to be noted that this

structure is able to support two types of guided modes. If nc<neff<n1, modes correspond

to first cladding layer, which are TIR modes due to the higher refractive index value of

this layer. When next<neff<nc the ARROW modes are obtained. As observed in fig 2.7b,

these modes are leaky modes into which TIR 1st cladding modes are transformed when

they reach their cutoffs. The resonant values of d1, where maximums in attenuation are

achieved, correspond to this cutoff condition. This supposition is confirmed by the

evanescent field magnitude, shown in fig. 2.7c. It is observed how a sharp variation of

the evanescent field is produced at the antiresonance values. Since there has been no

variation on the upper boundary layer, there is no reason why supposing that the

variation observed in fig 2.7c is due to modifications of the upper interface. On the

contrary, as d1 deviates from antiresonance, the TE0 mode is less confined and the

effective refractive index tends to its cutoff condition. Finally, when this situation is

achieved, an overall modal transition is produced, changing TEi by TEi-1 (i=1,..N). If it

is considered that higher modes have lower confinement factor in both layers, it

becomes logical that at near values above the cutoff condition, the evanescent field to be

maximum, since a modal transition has just produced.

 Finally, as it is seen in fig. 2.7, TM modes also have at least two orders of

magnitude higher attenuation as compared to TE, but their overall behavior is exactly

the same: periodicity and sharp attenuation maximums as a function of d1.

Fig. 2.8 shows the attenuation (a), the dispersion (b) and the evanescent field

(c) characteristics of ARROW-B as a function of d1 for both polarisations. It can be

observed how all their optical properties are completely different from the previously

studied in ARROW-A structures, being of special significance the lack of periodicity of

the parameters under study: attenuation monotonically decreases when d1 increases for

all modes and for both polarisations. Dispersion values converge asymptotically to

constant values as d1 increases. Finally, in fig. 2.8c it can be observed how after a fast

increase, the evanescent field reaches a nearly constant value as a function of d1. This

behavior can be clearly understood if it is taken into account that ARROW-B modes are

obtained when n1<neff<nc.


