
Chapter 5. Filter design on the 
three dimensional spectrum 

In this chapter we study the extension of Fourier domain 

filtering to the color Fourier spectrum and the three 

dimensional spectrum of color images. We interpret the 

filtering operations of the color Fourier spectrum as 

transformations of the color space, and give an interpretation of 

their effect on correlation operations.  

5.1. Color space transformations based on color Fourier 
spectrum filtering 

Linear operations on the color space can be interpreted in terms 

of a transformation of the color Fourier spectrum. Equivalently, 

transformations of the color Fourier spectrum involve a 

transformation of the color space.  

Let us consider a linear transformation, noted T, of the color 

space. Each color c is transformed onto a new color c’=Tc. The 
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transform T can be represented by a N×N matrix with matrix 

elements Tn’n. Because the color Fourier transform is a linear 

operator, there is a linear relation, R, between the spectrum of a 

color c and the spectrum of its image through T (c’=Tc). 

Furthermore R and T satisfy the following relation: 

 1−= FTFR . (5.1)  

Here F is the matrix that represents the color Fourier 

transform, defined in Equation 4.12. The explicit form of the 

matrix elements is written as follows. 
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Rm’m can be identified with the two dimensional Fourier 

transform of the matrix elements, with the exception of a sign  

 [ ]nNnDmm TFTR −= ,'2' . (5.3) 

Similarly, the matrix elements, Tn’n, of the transformation in the 

color space can be written as a two dimensional Fourier 

transform of the matrix elements of the transformation in the 

color Fourier space: 
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An interesting set of linear transformations are the Fourier 

spectrum filtering operations. These are operations in which the 

Fourier spectrum is multiplied by a filter function H(m), and 
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therefore they can be written as diagonal matrices in the color 

Fourier domain, as follows: 

 ( ) mmmm mHR '' δ= . (5.5) 

Filtering of the color Fourier spectrum introduces a linear 

transformation of the color space, as follows: 
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And by developing this we can obtain 
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That is, the operator T can be written in terms of the inverse 

Fourier transform of the filter, h(n) known as the impulse 

response function of the filter. 

 ( )nnhT nn −= '' . (5.8) 

Of course, the application of this operator to a color c with 

components c(n) is the convolution of the color with the 

impulse response function of the filter, let us say: 
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5.2. Classification of color Fourier spectrum filtering 
operations  

Linear operations associated to color Fourier spectrum filters 

can always be written as a convolution, i.e. as an operation 

invariant to shifts along the color axis. Note that the cyclic 

convolution of any function with a uniform distribution leads to 

a uniform distribution. This implies that the result of applying 

any color Fourier spectrum filtering operation to the white color 

produces the white (or a gray color). Therefore, one can 

consider that the vector W=ζR+ζG+ζB is an eigenvector for 

any color space transformation induced by a color Fourier 

spectrum filtering operation.  

Let us consider the case for N=3, the transformation of the color 

space corresponding to a filtering operation can be written in 

terms of the filter impulse response function h(n) as follows:  
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Note that each row-vector corresponds to a different cyclic 

translation of the impulse response function. This way, the 

product of the matrix with a vector gives the convolution of that 

vector with the impulse response function  

The convolution operator can be written in the basis (ζ,η,ξ) 

associated to the color Fourier transform defined in Equation 

4.23, as follows. 
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 1' −= ATAT . (5.11) 

The explicit expression can be obtained by replacing the explicit 

expressions of T and A, then we obtain the following 

expression: 
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In addition, one can write the explicit dependency of the color 

space transformation on the Fourier domain filter. To do this it 

is enough to realize that  
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Then, one can write the transformation expression as follows. 
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Here we assume that h(n) is a real valued distribution, because 

we only consider real transformations of the color space. 

Therefore H(2)=H*(1). One can observe that the only nonzero 
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matrix element of the first column is the first row, 

independently of h(n). That indicates that the white color, that 

in the (ζ,η,ξ) basis has components (ζ,0,0), is an eigenvector for 

any color space transformation generated by a color Fourier 

spectrum filter. 

It results convenient to write the filter in exponential notation 

to express T’ as the composition of two operators as follows 
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Here Φ(1) represents the argument of the filter at the m=1 

channel. This way, the transformation induced by a color 

Fourier spectrum filtering operation can be decomposed in 

three operators. A rescaling of the color space, a dilatation (or 

contraction) along the ζ axis, which is related to the amplitude 

modulation of the filter. And a rotation about the same ζ axis, 

related to the phase modulation of the filter.  

5.3. Low pass and High pass filter 

Let us consider the N=3 color space transformation induced by 

a real-valued filter. The filter is also symmetric so as to have a 

real-valued impulse response function. In this case, the 

transformation matrix is diagonal in the basis defined by (ζ,η,ξ), 

and it can be written as follows: 
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We neglect the factor |H(1)| that indicates a rescaling of the 

color space because it does not involve any transformation of 

the color space. The remaining matrix indicates that the color 

space is dilated in the ζ-direction by a factor of H(0)/H(1). We 

consider two different situations: when H(0)/H(1)<1, known as 

high pass filter, and when H(0)/H(1)>1, known as low pass 

filter. We illustrate these transformations in Figure 5.1. We have 

represented the transformation of a cube (drawn in black line) 

with its sides normal to the ζ, η and ξ axes. The low pass filter 

transformation produces a dilatation of the ζ axis, while η and ξ 

remain constant, therefore the cube is longed along the ζ 

direction (see the red-lined cube in Figure 5.1a). In other hand, 

the high pass filter produces a contraction of the ζ axis, 

therefore the cube is contracted in this direction (Figure 5.1b). 
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Figure 5.1. Transformation of the color space induced by the low pass and high 
pass filtering. (a) Low pass in the (ζ,η,ξ) basis. (b) High pass in the (ζ,η,ξ) basis. 
(c) Low pass in the (r,g,b) basis. (d) High pass in the (r,g,b) basis. 

The effect of the same transformations on the RGB color cube† 

has been represented in Figure 5.1c, for the low pass filter, and 

Figure 5.1d for the high pass filter. One can observe that the 

dilatation and contraction is in the direction of the diagonal of 

the cube that links the black (K) with the white (W), and 

therefore all the aristae of the cube are changed, what is 

                                            

† the RGB color cube is the cube whose vertices are the black (K), the 
primary colors (R, G, B), the secondary colors (C, M, Y) and the white 
(W). 
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indicating that none of the RGB colors is an eigenvector of the 

transformation. 

The above described transformations of the color space 

introduced by the high-pass and low-pass filter operations 

produce a change in the color distribution of the images. The 

dilatation or contraction of the ζ coordinate of the colors 

involves a change in their saturation, as can be deduced from 

Equation 4.25b. When a dilatation of ζ is produced (for a low 

pass filter), the saturation of the colors is reduced. In the other 

hand, for a high pass filter, a contraction of the ζ coordinate is 

produced, and the saturation of the colors is enhanced. 

Nevertheless, the hue information is not altered by these filters, 

as can be deduced from the fact that both directions, η and ξ are 

not altered by the filtering operation.  

This is illustrated in Figure 5.2 for the low pass filters. The 

image in Figure 5.2a has been taken as the input signal for the a 

low pass filtering operation. We have considered the filter in 

Figure 5.2b, that enhances the DC term of the color Fourier 

spectrum of the image with respect to the other channels. The 

image resulting from this filtering operation is represented in 

Figure 5.2c. One can observe that the colors of the output image 

are less saturated than in the original image. The limit case is 

when the m≠0 channels of the color spectrum are completely 

removed from the color Fourier spectrum (The filter is shown in 

Figure 5.2d). In this case, the RGB color cube is collapsed onto 

its diagonal and only the intensity information is preserved by 
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the transformation, leading to a black and white version of the 

original image, as can be seen in Figure 5.2e.  

m

H(m)

m

H(m)

H(m)

m

H(m)

m
(a)

(b)

(d)

(c)

(e)  

Figure 5.2. Example of Low pass filter. (a) Original image, (b) Low pass filter 
with a ratio of 25% (c) Corresponding filtered image. (d) Low pass filter with 
extinction of the nonzero frequencies. (e) Resulting filtered image. 

The opposite case, that is, the case of the high pass filter is 

represented in Figure 5.3. We have considered the input image 

represented in Figure 5.3a, and in this case we have applied a 

high pass filter that produces a contraction of the ζ coordinate 

of the color space. This produces an increase of the saturation of 

the colors without altering their hue, as can be seen in Figure 

5.3b.  
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(a) (b)(a) (b)  

Figure 5.3. Color enhancement by high pass filtering of the color spectrum of an 
image. (a) Sample image. (b) Image reconstructed from the filtered spectrum.  

The effect of the low pass and the high pass filter on the color 

distribution of images involves a rescaling of their color 

distribution in the chromaticity histogram. The chromaticity 

histogram of an image is a two dimensional representation of 

the color distribution of the image in which the value at each 

point (x,y) is proportional to the number of pixels of the image 

with a color that satisfies R/I=x, and G/I=y. The chromaticity 

histogram for the image in Figure 5.4a. has been represented in 

Figure 5.4b. The histogram has been overlapped to the Maxwell 

triangle. In the histogram, the gray level represents the value, so 

dark gray levels correspond to low occurrence rates, and light 

gray levels correspond a high occurrence rates. The zero gray 

level, corresponding to the null occurrence rate, has been set 

transparent, to make easier the location of colors. The response 

of a high pass filter to the signal in Figure 5.4a, whose 

chromaticity histogram is represented in Figure 5.4b has been 

represented in Figure 5.4c. The chromaticity histogram of the 

response has been represented in Figure 5.4d. One can observe 

that the transformation induced by the high pass filter 
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operation involves a magnification of the distribution of the 

colors on the chromaticity histogram. The opposite case, that is, 

the response of a low pass filter to the input image has been 

represented in Figure 5.4e, and its chromaticity histogram in 

Figure 5.4f. Now, the colors have lost saturation, and 

consequently the histogram has been reduced to a small area 

about the center of the Maxwell’s triangle. 

(a)

(b)

(c)

(d)

(e)

(f)

(a)

(b)

(c)

(d)

(e)

(f)  

Figure 5.4. Re scaling of the histogram by color Fourier spectrum filtering. (a) 
Original image. (b) Chromaticity histogram. (c). High pass filter response and 
its chromaticity histogram (d). Low pass filter response (e) and its chromaticity 
histogram (f).  

Note that the chromaticity distribution of the image is rescaled 

but the “shape” of the color distribution in the histogram is 

preserved. This way, low pass and high pass filtering operations 

are revealed to be a useful tool to enhance or soften the color 

distribution of images. 
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5.4. Linear Phase filtering  

Let us consider now that we apply a phase filter  to the color 

Fourier spectrum of a color image. In this case equation 15 can 

be written as follows: 
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One finds that this matrix corresponds to a rotation of an angle 

Φ(1) about the ζ axis of the color space. We have represented this 

rotation in Figure 5.5a. While the ζ axis is not changed, the η 

and ξ axes are rotated. This transformation has been 

represented in the (r,g,b) frame in Figure 5.5b. One can observe 

that the RGB color cube is rotated about its diagonal. 
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g

(a) (b)  

Figure 5.5. Transformation of the color space induced by a phase filtering. (a) 
representation in the ζ,η,ξ frame. (b) representation in the r,g,b frame. 

Because the phase modulation of the color Fourier spectrum 

does not change the ζ axis, the intensity of the color is not 



LCD-Based Optical Processor for Color Pattern Recognition by 3D Correlation 

 14  

altered by the induced transformation. In addition, because the 

transformation can be considered as a rotation, the distance of 

the colors to the ζ  axis is unchanged, and that involves that the 

saturation (As defined in Equation 4.25b) of the colors is also 

preserved. This way, only the hue of the colors is affected by the 

phase filtering of their color Fourier spectra. We illustrate this 

in Figure 5.6. We have applied a phase filter to the image in 

Figure 5.6a, whose chromaticity histogram is Figure 5.6b. The 

resulting response image is represented in Figure 5.6c, one can 

observe that the colors of the scene have been changed, but 

their intensity and saturation is kept. That is, only the hue has 

been altered. In the histogram of the response image, 

represented in Figure 5.6d, one can observe that the color 

distribution is rotated with respect to original image. 

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)  

Figure 5.6. Effect of the phase filtering for the color Fourier spectrum of a color 
image. (a) Sample image (b) Chromaticity histogram of the sample image. (c) 
Transformed image. (d) Chromaticity histogram of the transformed image.  
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5.4.1. Channel sinc-interpolation 

In last section we have given an interpretation of the linear 

phase filtering of the color Fourier spectrum in terms of 

rotations of the color space. However, linear phase filtering of 

the color Fourier spectrum, can also be interpreted in terms of a 

shift of the signal along the color axis. The shift of the signal can 

be used for channel interpolation, as we explain next.  

Let us consider a phase filter that introduces a shift smaller 

than one channel on the signal (see Figure 5.7a). Because the 

sampling points do not change, a new sample of the function is 

obtained, as represented in Figure 5.7b. The new set of points 

can also be interpreted as a translation of the sampling points, 

this way, a new set of values of the function can be obtained, 

and the interpolation of the function can be performed at these 

new points, as is represented in Figure 5.7c. 

λ(a)

(c)

(b)

λ

λ

 

Figure 5.7. Illustration of the sinc-interpolation. (a) The original image is shifted 
by less than one pixel. (b) A sample of the shifted function is obtained. (c) The 
new sampling corresponds to the values of the function at the intermediate 
points of the function.  
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This way, the interpolation by linear phase filtering (sinc-

interpolation) permits to obtain the response of a system with 

N’ detectors from the response of a system with N detectors, 

where N’>N. As the sampling theorem states, aside from edge 

effects, the result obtained by this sinc-interpolation technique 

is exact for the spectra whose maximum chromatic frequency is 

under the Nyquist frequency for the N channel system, that is 

N∆λ/2. 

This is illustrated in Figure 5.8. We have considered the color 

image in Figure 5.8a, whose (r,g,b) decomposition is presented 

in Figure 5.8b. The response of a 5-channel system obtained by 

a phase filtering of the color Fourier spectrum is represented in 

Figure 5.8c. The n=1 and n=3 channels of the image have been 

obtained by sinc-interpolation, that is, by means of a phase 

filtering of the color Fourier spectrum of the (r,g,b) channels.  

(a) (b)

(c)

n= 0 n= 1 n= 2

n= 0 n= 1 n= 2 n= 3 n= 4
(a) (b)

(c)

n= 0 n= 1 n= 2

n= 0 n= 1 n= 2 n= 3 n= 4

 

Figure 5.8. (a) Color image. (b) RGB channels. (c) Response for a 5 channel 
system obtained by sinc-interpolation.  
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5.5. Whitening of the color Fourier spectrum 

Spectrum whitening is a usual operation in signal processing. It 

consists of a nonlinear transformation in which the magnitude 

information of the color Fourier spectrum of the signal is 

removed. The filter is signal dependent, and can be written as  

 ( )
( )mA

mH f
1

= , (5.18) 

where A(m) is the magnitude of the color Fourier spectrum of 

the signal. Therefore, the spectrum FC(m)=A(m)exp[iΦ(m)] is 

transformed onto a new spectrum FC’(m)=exp[iΦ(m)].  

An scheme of the color spectrum whitening operation is 

represented in Figure 5.9 The color Fourier spectrum of the 

input signal is obtained. Then, the whitening operation is 

performed, and finally the inverse color Fourier transform is 

applied to the filtered spectrum and a new color is obtained. A 

direct interpretation of the color space transformation induced 

by the spectrum whitening can be given in terms of the HSI 

representation from the relations in Equations 4.25. 

FTC Color spectrum
whiteningfilter

Response

Whitenedcolor 
freq. spectrum

Input signal Color freq. 
spectrum

FTC
-1

W
hit

en
ing

 

Figure 5.9. Scheme for the color spectrum whitening filter transformation of the 
color space. 
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That whitening of the color Fourier spectrum involves the 

normalization of the DC channel, therefore the intensity of the 

transformed color has unit intensity. In addition, the saturation 

of the transformed color is one (following the definition of 

saturation given in Equation 4.25b) because also the magnitude 

of the m≠0 channels is normalized to one. However, the hue of 

the transformed color is the same as the hue of the original 

signal because the whitening operation does not transform the 

phase distribution of the color spectrum.  
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Figure 5.10. Representation of the transformation of the color space induced by 
the color spectrum whitening operation. 

This way, all the colors with a given hue are transformed by the 

whitening operation onto the color with unit intensity and unit 

saturation that has that value of hue (see Figure 5.10a), i.e. a 

color c is transformed in the color c’, whose saturation and 

intensity are one, and whose hue is the same as the hue for c. 

Color spectrum whitening operation can be considered as a 
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locally orthogonal projection of the colors onto the 

circumference defined by the intersection of the unit intensity 

plane and the unit saturation cone. This is represented in Figure 

5.10b. The circumference of colors with unit intensity and unit 

saturation is represented. We have also represented the plane 

constituted of all the colors that are transformed onto a color c’. 

This plane is orthogonal to the circumference at the point 

defined by c’.  

The axis of the unit saturation cone is the ζ axis and the r, g and 

b axes are contained in its surface. Therefore it’s easy to realize 

that the cone surface is out of the RGB cube except for the 

primary colors (see Figure 5.11a). That means that the only 

saturated colors that have three non-negative components are 

the primary colors R, G and B, and that all the other saturated 

colors have one negative component (see Figure 5.11b). 

According to Grassman’s color mixture laws, the negative 

component represents the amount of the primary colors that 

has to be added to a saturated color to produce a color that is 

equalized by additive mixture of the remaining primary colors.  
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Figure 5.11. (a) Representation of the unit saturation cone in relation to the RGB 
cube. (b) Representation of colors with positive and negative components. Aside 
from the primary colors the saturated colors have one negative component.  

We illustrate the saturation and intensity normalization effect 

on the colors produced by the color spectrum whitening in 

Figure 5.12. We have considered the sample image in Figure 

5.12a. It contains a number of squares in different colors, with 

different hue, saturation and intensity values. The squares in 

each column have the same hue. From top to down, the squares 

in a column are sorted from less saturated to more saturated, 

and from more intense to less intense. The response of the color 

spectrum whitening filter applied to this scene is represented in 

Figure 5.12b. Because saturated colors have one negative 

component, we have added a uniform gray background to the 

response so as to have non-negative components. One can 

observe that all the colors with the same hue are transformed 

onto the same color.  
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(a) (b)(a) (b)  

Figure 5.12. (a) Sample scene: palette of colors with different saturation, hue 
and intensity. (b) Response of the color spectrum whitening filter: The colors 
are classified by hue. 

Because the color spectrum whitening filtering represents a 

normalization of the saturation, the distribution in a 

chromaticity histogram of the filter response to any color image 

is restricted to be in the circumference of maximum saturation. 

This is illustrated in Figure 5.13. We have applied a whitening 

operation to the sample scene in Figure 5.13a, whose 

chromaticity histogram is represented in Figure 5.13b. The 

response of the filter is represented in Figure 5.13c. It presents 

colors with negative components, therefore, to be able to 

represent them, we have subtracted from the image the 

minimum value between all the components of all the pixels, 

what is equivalent to add a uniform gray background. One can 

observe that the colors of the response image are saturated, and 

that the intensity is normalized. The corresponding 

chromaticity histogram is represented in Figure 5.13d. One can 

observe that all the colors are distributed in the circumference 

tangent to the Maxwell triangle (It looks like an ellipse because 

of the asymmetrical projection).The circumference, that is 

originally out of the Maxwell triangle, is inscribed in the 
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Maxwell triangle because of the addition of the background, 

that is interpreted as a shift along the ζ axis, as shown in Figure 

5.13e. This way, the original circumference Σ is transformed 

onto the circumference Σ’, which is inside the pyramid whose 

axes are defined by the three primary colors. 
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(c)

(d)

(e)
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Figure 5.13. (a) Sample scene. (b) Corresponding chromaticity histogram. (c) 
Color whitened spectrum filter response. (d) Corresponding chromaticity 
histogram.(e) Color desaturation by addition of white. 

5.6. Color-wise correlation 

A particular case of filtering of the color Fourier spectrum is the 

color-wise correlation. This is the case when the color spectrum 

filter consists of the complex conjugated color Fourier spectrum 

of a reference signal. This way, by applying the correlation 

theorem one finds that the response of the filter is the 

correlation between the input and the reference signals along 

the color axis. One writes the color-wise correlation as follows: 
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Figure 5.14. Interpretation of the color wise correlation in terms of projections 
in the color space. 

Here, we consider cyclic translations of the reference image. 

The color-wise correlation can be considered as the scalar 

product of the vector that represents the color c with the vector 

that represents the reference signal d, shifted by n channels. We 

have demonstrated in Section 5.4 that a cyclic translation of the 

color distribution, represented by a linear phase filtering can be 

understood as a rotation of the color space about the ζ axis, 

noted as Rζ( ). This way, we can write the channels of the color-

wise correlation as the scalar product of the input color with a 

rotation of the reference color, as follows. 

 [ ]( ) dcRdc 





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N
n π

ζ
2 , (5.20) 
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This is illustrated in Figure 5.14: the vector c is projected 

orthogonally onto the reference vector d, and onto the vectors 

that come from the rotation of d about the ζ axis. The 

magnitudes of these components are the values of the color-

wise correlation in the different channels. When the input and 

the reference color are the same color, the projection is maximal 

in the n=0 channel, Therefore, color-wise correlation can be 

used as a color recognition technique.  

(a) (b) (c)

(d)

n= 0 n= 1 n= 2

 

Figure 5.15. (a) Input scene. (b) Reference. (c) Color-wise correlation. (d) 
Channels of the color-wise correlation. 

An example of color-wise correlation is presented in Figure 5.15, 

We have considered the images in Figure 5.15a and b as the 

input scene and the reference respectively. We have performed 

the color-wise correlation, and presented the result in Figure 

5.15c, as a color image. The channels of the color-wise 
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correlation are represented in Figure 5.15d. The n=0 channel 

(colored in red) of the color-wise correlation has its maximum 

at the pixels where the scene and the reference have more 

similar colors. For the other channels, the maxima recognize the 

colors that result from the rotation of the yellow color of the 

reference by 2π/3 and -2π/3 respectively about the ζ axis, that is, 

a certain value of cyan and of magenta respectively. 

5.6.1. Color-wise correlation phase only filter. 

Color recognition by color-wise correlation can be improved by 

means of modifications of the color Fourier spectrum filter. 

Usual correlation filters such as the phase only filter and the 

pure phase correlation (not strictly a filter but a phase only filter 

combined with a preprocessing of the input), involve a 

whitening of the color Fourier spectrum. In the case of color-

wise correlation the whitening of the color spectrum has an 

interpretation in terms of the intensity and saturation of the 

signal color, that allows to give a geometrical interpretation of 

the phase only filter in the color space.. 

Let us consider the color-wise correlation using a phase only 

filter. An scheme of it is presented in Figure 5.16. The color 

Fourier spectrum is whitened, and the complex conjugate of the 

resulting filter is multiplied by the color Fourier spectrum of the 

input signal. Finally the inverse color Fourier transform is 

applied to the obtained product so as to get the color-wise 

correlation with  a phase only filter matched to the reference.  
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Figure 5.16. Scheme of the color-wise correlation with phase only filter. 

We have shown in Section 5.5 that the whitening of the color 

Fourier spectrum is equivalent to maximize the saturation and 

to normalize the intensity of the colors. Therefore, the impulse 

response function of a phase only filter can be obtained directly 

from the reference scene by modifying the saturation and the 

intensity of the color (shown in red in Figure 5.16).  

This way, the color-wise correlation of a color c with a phase 

only filter matched to a color d can be interpreted as the classic 

color-wise correlation of c and dW, defined as the input 

response function of the phase only filter matched to d. That is, 

the n-th channel color-wise correlation is interpreted as the 

orthogonal projection of c onto dW,n. Where dW,n is obtained by 

applying a rotation to dW as follows: 

 WnW n
N

dRd 





=

π
ζ

2, . (5.21) 

For the phase only filter, the vectors dW,n constitute an ortho-

normal basis of the color space. This is demonstrated as follows: 

Let us consider the color-wise autocorrelation of dW. The color-
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wise autocorrelation is obtained by applying the inverse Fourier 

transform to the squared magnitude of the color Fourier 

spectrum of the signal. Because of the whitening operation, the 

squared magnitude of the color Fourier spectrum of dW is 

uniform, and therefore the autocorrelation is a Kronecker delta 

function.  
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WW δ=⊗dd , (5.22) 
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In other hand, the channels of the color-wise correlation can be 

written as the scalar products of vectors: 
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So, we can rename n=p–q and write the rotation as the 

composition of two rotations, as follows: 
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And by applying the definition of dW,n we get  

 [ ]( ) ( )qpqp K
pWqWWW −=⋅=−⊗ δ,, dddd . (5.26) 
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That is, the set of colors dW,n are represented by N unit and 

orthogonal vectors in the color space, and therefore constitute 

an ortho-normal basis of the color space.. 

The color-wise correlation using a phase only filter can be 

interpreted as the orthogonal projection of the signal color onto 

the ortho-normal basis of the color space determined by the hue 

of the reference color. This way, the channels of the color-wise 

correlation correspond to the components of the signal color in 

that basis.  

This is illustrated for the N=3 color space in Figure 5.17. A 

phase only filter is matched to the color d. This is equivalent to 

perform the classic color-wise correlation of the signal color c 

with the impulse response of the filter, that is dW,0, that has the 

same hue as d but has unit intensity and unit saturation. dW,0 

and its translations dW,1 and dW,2 constitute an ortho-normal 

basis. The different channels of the color-wise correlation 

correspond to the orthogonal projection of the input color onto 

the different basis elements, and consequently they correspond 

to the components of the signal in the basis determined by dW,n. 
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Figure 5.17. Interpretation of the phase only filter color-wise correlation as the 
projection of the color onto an ortho-normal basis of the color space. 

We give an example of color-wise correlation using a phase only 

filter in Figure 5.18. The image in Figure 5.18a is used as the 

input signal, it consists in a circle in which each point is colored 

in a color whose saturation and hue are proportional to the 

radial and polar coordinate of the point respectively. All the 

colors have the same intensity. This way, the circle can be 

considered as a section of the color space normal to the ζ axis. 

The color-wise correlation of the scene using a phase only filter 

matched to Figure 5.18b is represented in Figure 5.18c, as a 

color image, and in Figure 5.18d, where the different channels 

have been represented separately. One can observe that the n=0 

channel of the correlation is maximum at the side of the circle 

determined by the hue of the reference color. This corresponds 

to the more saturated color with the hue of the reference signal. 

The values at the different channels of the correlation indicate 

the coordinates of the color at each pixel of the input signal in 
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the ortho-normal basis defined by the reference. Because the 

colors of the input scene are located in a plane of the color 

space, their coordinates increase linearly along the direction 

defined by the axes of the new basis. We have drawn in Figure 

5.18d the axes of the new basis. 

(a) (b) (c)

(d)

n= 0 n= 1 n= 2

 

Figure 5.18. Phase only filter for color-wise correlation. (a) Input signal. (b) 
Reference. (c) Color-wise correlation. (d) Channels of the color-wise correlation. 

5.6.2. Pure phase color-wise correlation 

Whitening of the color Fourier spectrum can be performed for 

both the scene and the reference signal. One refers to this case 

as the pure phase color-wise correlation. We have represented 

an scheme of the pure phase correlation in Figure 5.19. In this 

case one can consider that the scene is filtered by a color 

spectrum whitening filter before entering the correlation 

process. This way, an input signal with the same hue but 
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normalized saturation and intensity is correlated instead of the 

original  input signal. Therefore, the resulting correlation is 

invariant to intensity changes or saturation changes.  
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Figure 5.19. Scheme of the pure phase color-wise correlation.  

This is illustrated in Figure 5.20. We have considered the input 

signal represented in Figure 5.20a, that is equal to the input 

signal in Figure 5.18a. The image obtained after the 

preprocessing is shown in Figure 5.20b. Note that all the colors 

are transformed onto colors with unit saturation and intensity, 

but the hue is not affected. This way, for the considered image, 

the color distribution is uniform along each radius of the circle.  
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(a) (b) (c)

(e)

n= 0 n= 1

(d)  

Figure 5.20. (a) Input signal. (b) Preprocessed signal. (c) Reference. (d) Pure 
phase correlation. (e) n=0 channel of the pure phase correlation. 

The reference signal is the yellowish circle in Figure 5.20c, and 

the color-wise correlation is represented as a color image in 

Figure 5.20d. One can observe that, the value of the correlation 

does not change along the radii of the circle. In addition, one 

can observe the n=0 channel, identified to the red channel (also 

represented alone in Figure 5.20e) takes its maximum value in 

the radius of colors with the same hue as the reference signal. 

5.7. Whitening operations on the three dimensional 
spectrum of color images 

Whitening operations along the color axis and along the spatial 

axes can be combined to produce three dimensional filters with 

different properties. We present in Figure 5.21 the scheme for 

the design of different filters that involve whitening operations. 
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Figure 5.21a corresponds to the three dimensional version of 

the classic matched filter. In this case there is no whitening of 

the Fourier spectrum. Because there is not any nonlinear 

operation, one can consider the transformation between the 

reference signal and the filter as the composition of the color 

Fourier transform with the spatial two dimensional Fourier 

transform of the channels of the image. Both operations 

commute in this case. In addition, the impulse response 

function of the filter is identified to the reference signal itself. 

The scheme in Figure 5.21b corresponds to the whitening of the 

color Fourier spectrum of the reference signal. We call it the 

color-whitened filter. In this case, the color Fourier spectrum is 

whitened before the spatial Fourier transform is performed. 

This operation is represented by the solid red one-way arrow. 

This is a non-linear operation, therefore in this case the color 

Fourier transform and the spatial Fourier transform do not 

commute. Because the color Fourier spectrum whitening is 

equivalent to a normalization of the intensity and the saturation 

of the colors, we can establish a relation between the signal and 

the impulse response function in the direct domain. This is 

represented by the red dashed arrow. 

Figure 5.21c represents the reciprocal case. In this case the two 

dimensional Fourier spectrum of the channels of the reference 

signal are whitened independently. And then the color spectrum 

is obtained by applying the color Fourier transform. We call this 

filter the three dimensional spatial-whitened filter. In this case 
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there is not any simple relation in the direct domain between 

the reference signal and the impulse response function of the 

filter. 
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Figure 5.21. Scheme for different whitening operations (a) 3D classic filter. (b) 
3D color-whitened filter. (c) 3D space-whitened filter (d) 3D phase only filter. 

Finally, the filter corresponding to the whitening of the three 

dimensional spectrum is represented in Figure 5.21d. It is the 

natural generalization of the usual phase only filter to three 

dimensional images in which the color is placed in the third 

axis.  

As we have explained in Section 5.6.1, the color spectrum 

whitening operation produces an ortho-normalization of the 

channels. That means that the color-wise cross-correlation 
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between the channels of the filter response is null. That is, the 

color spectrum whitening involves a decorrelation of the 

different channels of the signal. Analogously, one can 

understand that the two dimensional spectrum whitening filter 

generates a signal in which the different pixels of a channel of 

the scene are decorrelated each other, but not decorrelated to 

the pixels of the different channels. Finally, the three 

dimensional spectrum whitening filtering involves a 

decorrelation between different pixels, also in different 

channels.  

This is illustrated in Figure 5.22. We have considered the three 

dimensional autocorrelation for the responses of the following 

whitening filters: Three dimensional classic filter (Figure 

5.22a), Three dimensional color-whitened filter (Figure 5.22b), 

three dimensional spatial-whitened filter (Figure 5.22c) and 

finally three dimensional phase only filter. We have represented 

the impulse response function of the filters (in the left column) 

and the magnitude of the three channels of the three 

dimensional autocorrelation (in the remaining columns). In 

addition, for the two first cases, we have also represented the 

three dimensional correlation encoded as a color image).  

The considered scene consists of a butterfly shape painted in 

low saturation colors (Figure 5.22a left). One observes that the 

three dimensional autocorrelation of the original scene presents 

a wide peak in the three channels of the correlation (Figure 
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5.22a). This is interpreted as the autocorrelation peak is wide 

also along the color axis.  

(a)

(b)

n= 0 n= 1n= -1

n= 0 n= 1n= -1

(c) n= 0 n= 1n= -1

(d) n= 0 n= 1n= -1
 

Figure 5.22. (a) Original scene and its three dimensional autocorrelation. (b) 
Impulse response of the color-spectrum whitening filter and its three 
dimensional autocorrelation. (c) Idem for spatial-spectrum whitening. (d) Idem 
for three dimensional spectrum whitening. 
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The response of the color-spectrum whitening is represented in 

Figure 5.22b. The shape of the butterfly is not changed, but the 

colors of the pixels have unit saturation and unit intensity. The 

autocorrelation presents a peak only in the n=0 channel. That 

means that the peak is narrower along the color axis than for 

the classic filter. Note that the value at the center of the n≠0 

channels of the correlation is zero. This is a consequence of the 

decorrelation of the channels of the response image, as we 

demonstrate next. At the center of the spatial coordinates, the 

three dimensional correlation can be written as the addition of 

the color-wise correlation of all the pixels, as follows: 
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Because the color components of any pixel are decorrelated with 

the other color components of the same pixel, all the terms in 

the series are zero for n≠0. However, the n≠0 channels of the 

three dimensional correlation can be different from zero at the 

pixels that are not at the origin because the color components of 

a pixel are not decorrelated with the color components of 

different pixels. 

When the spatial-frequency spectrum whitening is performed, 

the corresponding impulse response function is the one 

presented in Figure 5.22c. The usual edge enhancement is 

produced, but the hue and saturation of the colors are not 

changed. In this case, the three dimensional autocorrelation 
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presents a peak that is spatially sharp but wide along the color 

axis, therefore it is present in the three channels of the three 

dimensional autocorrelation. Analogously to the case of the 

color whitening, the fact that the pixels are spatially 

decorrelated for all the channels, implies that the n=0 channel 

is zero everywhere except at the origin. However, there is still 

cross correlation between the different channels of each pixel, 

and that produces the sharp peaks in the n≠0 channels. 

Moreover, there is also correlation between the different pixels 

of different channels of the color image, and this produces the 

nonzero background in the n≠0 channels.  

Finally, when the three dimensional Fourier spectrum of the 

color image is whitened, the impulse response function is 

decorrelated both along the spatial and the color dimensions. 

One can observe in Figure 5.22d that the edges of the butterfly 

are enhanced, and that the color saturation and intensity are 

normalized. In this case, the three dimensional correlation has 

only one sharp peak in the center of the n=0 channel, what 

means that the image is decorrelated both spatially and also 

along the color axis.  

We have shown that the three dimensional phase only filter 

impulse response function is decorrelated both along the color 

axis and along the spatial axes. However, this does not mean 

that the channels, treated separately are spatially decorrelated, 

nor that the color distribution of each pixel is decorrelated along 

the color axis. This is illustrated in Figure 5.23. The profiles of 
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the magnitude of the two dimensional correlation obtained 

separately for each channel of the impulse response function of 

the three dimensional phase only filter are represented in 

Figure 5.23a. One can observe that for the three channels there 

is a high peak in the center, but the background is not zero, 

what means that the channels are not spatially decorrelated. We 

also present in Figure 5.23b (as gray level images) the 

magnitude of the color-wise correlation for the same response 

image, The fact that the n≠0 channels are not null indicates that 

the image is not decorrelated along the color axis. That is, that 

the colors of the impulse response function are not on the unit 

intensity and saturation circle. This is shown in Figure 5.23c, 

where a chromaticity histogram of the impulse response 

function of the three dimensional phase only filter is presented.  
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(a)

(b)

n= -1 n= 0 n= 1

n= -1 n= 0 n= 1

(c)

 

Figure 5.23. (a) Spatial two dimensional autocorrelation of the channels of the 
impulse response function (IRF) of the three dimensional phase only filter 
(3DPOF). (b) Channels of the color-wise autocorrelation of the IRF of the 
3DPOF. (c) Chromaticity spectrum of the IRF of the 3DPOF  

5.8. Whitening filters for color pattern recognition 

Whitening operations can be used for color pattern recognition 

because the decorrelation of the channels implies an increase of 

the discrimination capability of the filters. We illustrate this in 

Figure 5.24. We consider the input scene shown in Figure 5.24a. 

It is composed of two butterflies, the upper one is the butterfly 

studied in Figure 5.22, and it is the one to be recognized. The 

other one is a butterfly with the same shape but different color 

distribution. For both objects the colors have saturation close to 
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zero. We have considered the three dimensional correlation of 

the scene using the filters that come from whitening the color 

spectrum, the spatial spectrum and the three dimensional 

spectrum of the reference object. The three dimensional 

correlation, and a profile of its n=0 channel are represented in 

Figure 5.24b, c, d and e for the cases of classic matched filtering, 

color spectrum whitening, spatial spectrum whitening and three 

dimensional whitening, respectively.  

In the case of the classic matched filter (Figure 5.24b) there are 

two wide peaks of similar intensities. In addition they are 

almost white, what indicates that the intensity of the peaks is 

similar in the three channels of the three dimensional 

correlation. Because the two butterflies have the same shape 

and very unsaturated colors, the two peaks have similar 

intensities, and the discrimination is very poor.  

The three dimensional correlation using a 3D color-whitened 

filter is represented in Figure 5.24c. In this case the two peaks 

are spatially wide, but their distribution along the color axis is 

different. This way, the components in the n≠0 channels of the 

peak corresponding to the target object is lower than for the 

three dimensional classic matched filter, and it is encoded in a 

reddish color. However, the peak corresponding to the non-

target object is encoded in a greenish color, what indicates that 

the peak has its maximum at the n=1 channel. This way, in the 

n=0 channel (that is the channel useful for the recognition) the 
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peak for the target butterfly is clearly more intense than the 

peak for the non-target object.  

(a)

(c)(b)

(e)(d)  

Figure 5.24. (a)Sample input scene. (b) Classic three dimensional correlation. 
(c) Color spectrum whitening correlation. (d) Spatial spectrum whitening 
correlation . (e)Three dimensional phase only filter correlation. 

Figure 5.24d represents the correlation for the three 

dimensional spatial-whitened filter. In this case the peaks are 

spatially sharp but wide along the color axis. This way, because 

the two butterflies have the same shape and non-saturated 

colors, in the n=0 channel both peaks have almost the same 

intensity.  
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The correlation using the three dimensional phase only filter is 

represented in Figure 5.24e. One can observe that the three 

dimensional correlation, encoded as a color image presents two 

sharp spots colored in two different colors. The spot 

corresponding to the target object is colored in a reddish color 

because the n=0 channel is encoded in red. In this case, as an 

effect of the three dimensional spectrum whitening, that 

represents whitening along both the color axis and the spatial 

axes, the n=0 channel of the three dimensional correlation 

presents two sharp peaks, and the discrimination is improved. 

5.8.1. Input scene filtering operations  
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Figure 5.25. Scheme of the three dimensional phase only correlation with scene 
color spectrum whitening.  

We have demonstrated that color spectrum whitening can also 

be performed in the direct domain by means of a normalization 
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of the intensity and saturation of the colors of the image, so 

color spectrum whitening can be efficiently performed, without 

necessity of obtaining the color Fourier spectrum. This enables 

to do a pre-processing of the scene in which intensity and 

saturation normalizations are performed so as to increase the 

discrimination capability of the correlation process. An scheme 

of this correlation operation is given in Figure 5.25.  

(a) (b)

(c) (d) (e)

(f)

n= 0 n= 1n= -1

 

Figure 5.26. Color whitened scene phase only filter correlation. (a) input scene. 
(b) reference. (c) Preprocessed scene. (d) Filter impulse response function. (e) 
Color encoded three dimensional correlation. (f) Profile of the channels of the 
correlation.  
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The input scene color Fourier spectrum is obtained and 

whitened, and then the two dimensional Fourier transform is 

applied to obtain a modified three dimensional spectrum of the 

input scene. This modified three dimensional spectrum can also 

be obtained by normalizing the intensity and the saturation of 

the scene in the direct domain and by applying the three 

dimensional Fourier transform. By multiplying the three 

dimensional spectrum of the preprocessed scene by a phase 

only filter matched to a reference scene the spectrum of a 

correlation function is obtained. Finally the inverse three 

dimensional Fourier transform is applied and the correlation 

function is obtained.  

This correlation scheme is applied to the same butterflies scene 

in Figure 5.24. The input scene and the reference are 

represented in Figure 5.26a and b respectively. After the 

preprocessing the scene is transformed onto the image in Figure 

5.26c. The magnitude of the impulse response function of the 

phase only filter is represented in Figure 5.26d. The resulting 

three dimensional correlation is represented as a color image in 

Figure 5.26e, and a profile of the magnitude of the channels is 

given in Figure 5.26f. 

The correlation function presents two sharp peaks because the 

three dimensional phase only filter is used. In addition the two 

peaks are mostly in different channels, and therefore encoded in 

different colors. So, while the autocorrelation peak is located at 

the n=0 channel, the cross correlation is centered at the n=1 
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channel. This is because the color distribution of the non-target 

object corresponds to a shift, (by 0.75 of a channel) along the 

color axis of the color distribution of the target object. In 

addition, at the n=0 channel, the cross-correlation is lower than 

for the case without pre-processing.  We illustrate it in Figure 

5.27. We have represented the magnitude at the n=0 channel of 

the three dimensional correlation for different whitening 

operations. Figure 5.27a represents the case for whitening of the 

spatial-whitening filter. It presents a poor discrimination 

because both butterflies have the same shape, and almost 

unsaturated color distributions. Figure 5.27b represents the 

case for three dimensional phase only filter. The cross 

correlation peak is lower than for the spatial-whitening case.  
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Figure 5.27. Magnitude at the n=0 channel of the three dimensional correlation 
for the two butterflies scene with different whitening operations:(a) Space-
whitened filter correlation. (b) three dimensional phase only filter. (c) scene 
color-whitening, and 3D phase only filter. (d) scene color-whitening plus a 
constant, and 3D phase only filter.  

In addition this filter does not require partial transformations 

and therefore can be optically implemented as we demonstrate 

in next chapter. 
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Both Figure 5.27c and d represent the same case of scene color-

whitening and three dimensional phase only filter, however, 

because the pre-processed scene contains negative values, a 

constant has been added to the preprocessed scene for in Figure 

5.27d so as to remove the negative values and to allow its 

implementation in an optical correlator. In both cases a great 

improvement of the discrimination is produced with respect to 

the cases without scene preprocessing. However, because of 

adding a constant to the input scene, the contrast of the 

resulting correlation is affected and the discrimination is a bit 

smaller.  

Note that the correlation schemes in Figure 5.27b, c and d do 

not require partial Fourier transforms, along the spatial axes or 

the color axis, only three dimensional Fourier transforms are 

involved in the correlation. In addition, for Figure 5.27b and d it 

is not necessary to represent negative valued images. However, 

to perform these operations optically it is still necessary to 

represent three dimensional functions and to obtain their three 

dimensional Fourier spectra transform. The way how to do this 

is explained in next chapter.  




