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Summary 

 

Foam-like aerogels based on biodegradable polymers and sodium montmorillonite 

(Na
+
-MMT) clay were prepared through an environmentally friendly freeze-drying 

process. Both synthesized and bio-based polymers were utilized in this thesis, 

including polyvinyl alcohol (PVOH), carboxylmethylcellulose (CMC), xanthan gum, 

agar, Arabic gum and starch. The morphologies of aerogels were characterized using 

scanning electron microscopy. The mechanical properties investigation included 

compression and impact tests. Porosities and solid densities were measured using a 

helium pycnometer while the pore size distribution was determined by automated 

mercury porosimeters. 

Most of polymer-clay aerogels exhibited porous and layered structures that were 

formed via ice templating. However, high viscosity of the precursor solution may 

break the layered architecture by retarding the formation of ice crystals (e.g. 2.5 wt% 

agar aqueous solutions). The structures as well as the properties of aerogels were 

mainly influenced by polymer/clay proportion. Polymer molecules play a role of glue 

linking the clay nanoparticles, improving the structural integrity and hence the 

mechanical performance of the aerogels. On the other hand, clay platelets serve as a 

physical barrier that increases the heat endurance.  

Recycled cellulose fibers (RCF) that were isolated from waste paper pulp were also 

used to prepare bio-based aerogels. Adding another biopolymer CMC into RCF 

aerogels, the resultant RCF-CMC composite aerogels showed different 

microstructures and enhanced mechanical properties.  

Physical blending and chemical crosslinking were used to tailor the mechanical 

properties of xanthan gum/clay aerogels and starch/clay aerogels, respectively. 

Blending agar with xanthan gum in aqueous solution, the resultant aerogels displayed 

a significant improvement in mechanical properties compared with those containing a 

single biopolymer. Moreover, they exhibited tunable microstructures and mechanical 
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properties by changing agar/xanthan gum ratio in the aerogels. As to starch/clay 

aerogels, the incorporation of glutaraldehyde enhanced the structural integrity and 

mechanical properties of the aerogels through crosslinking reaction with starch 

molecules, which was proved by Fourier-Transform infrared (FT-IR) spectroscopy 

analysis. 

The evaluation of the flammability of aerogels was conducted with a cone colorimeter 

while the thermal stability was obtained from the results of thermogravimetric 

analysis. In regard to PVOH-clay aerogel, different types of flame retardant fillers, 

such as aluminum trihydroxide (ALH), ammonium polyphosphate (APP), silica gel 

and potassium carbonate, were adopted to modify their flame retardant properties. The 

results showed that ALH addition enhanced the flame retardancy as well as 

mechanical properties. For RCF-CMC aerogels, APP and clay played a synergetic 

effect on the flame retardancy and thermal stability. 

 

 

Resumen 

En esta Tesis se han preparado diversos aerogeles usando polímeros biodegradables 

como matriz y arcilla como refuerzo, a través de un proceso de fabricación amigable 

con el medio ambiente. Los polímeros empleados han sido tanto de origen natural 

(goma árabiga, agar-agar, goma xantana, almidón) o sintéticos como la 

carboximetilcelulosa (CMC) o el alcohol polivinílico.  Los compuestos formados se 

han caracterizado a través de diferentes técnicas con el objeto de relacionar las 

morfologías generadas con las propiedades térmicas y mecánicas resultantes. 

La gran mayoría de los aerogeles polímero/arcilla exhiben una estructura porosa y 

laminar que se forma a raíz de la liofilización. Sin embargo, se ha apreciado que altas 

viscosidades en la solución precursora puede romper la arquitectura laminar al 

retardar el crecimiento de los cristales de hielo (ej. Solución acuosa de 2.5 % peso de 

agar). La estructura y las propiedades de los aerogeles están asimismo y en general 
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influenciados por la relación polímero/arcilla.  En estos sistemas, las moléculas de 

polímero actúan a manera de pegamento uniendo las partículas de arcilla, 

incrementando de esa manera notablemente la capacidad mecánica de los aerogeles. 

Por otro lado la arcilla actúa entre otras formas, como barrera térmica incrementando 

la resistencia térmica y al fuego de las espumas formadas. 

Dentro de este trabajo se han empleado fibras de celulosa recicladas de residuos de 

papel en un intento de preparar bio-aerogeles a partir de material de desecho. La 

unión de estas fibras con CMC permitió obtener aerogeles con propiedades mejoradas 

y la posibilidad de emplear estos residuos en un segundo uso. Además del mezclado 

físico, en algunos casos se ha realizado una reacción de entrecruzamiento para ajustar 

las propiedades finales, como en el caso de los aerogeles goma xantana/arcilla o 

almidón/arcilla. La mezcla de agar con goma xantana en solución acuosa resultó en un 

notable aumento de propiedades con respecto a las composiciones que contenían un 

único polímero, debido al cambio morfológico inducido, pasando de una estructura 

laminar a una de tipo panal de abeja (honeycomb). De esta forma y a través de la 

relación entre estos dos polímeros naturales ha sido posible balancear y definir las 

propiedades finales deseadas para el aerogel. En los sistemas almidón/arcilla el 

entrecruzamiento se ha conseguido a través de un agente externo como el 

glutaraldehido. 

Atendiendo a su posible uso final, unas de las propiedades más relevantes en los 

aerogeles que se ha estudiado ha sido la estabilidad térmica y la resistencia al fuego. 

En este sentido, se han preparado sistemas basados en Polivinilalcohol/arcilla 

modificados con diferentes retardantes de llama. De los diversos aditivos probados la 

combinación con hidróxido de aluminio ha mostrado un efecto sinérgico 

incrementando tanto de la resistencia a fuego como las propiedades mecánicas. En los 

sistemas basados en celulosa la presencia de polifosfato de amonio y arcilla ha 

demostrado así mismo un efecto potenciador de la estabilidad térmica y en el retardo 

de llama.  
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APP Ammonium polyphosphate compound 

ATR Attenuated total reflectance 

CEC  Cation exchange capacity  

CMC Carboxymethylcellulose 

CNFs  Cellulose nanofibers 

EPS  Expanded polystyrene 

FD    Freeze-drying 

FGR Fire growth rate 

FTIR  Fourier-Transform Infrared 

GL   Glutaraldehyde 

LDH Layered double hydroxide 

MMT Montmorillonite 

Na
+
-MMT Sodium montmorillonite  

OM  Optical microscopy 

PC Potassium carbonate 

PVOH  Polyvinyl alcohol 

RCF  Recycled cellulose fibers 

SCD Supercritical drying 

SD  Shrinkage degree  

SEM  Scanning electron microscopy 

SG   Silica gel 

TGA  Thermogravimetric analysis 

THR  Total heat release  

TTPHRR Time to peak of heat release rate 

XG Xanthan gum 

 

 

Symbols 

 

ρapp Apparent density [g/cm
3
] 

ρts Theoretic solid density [g/cm
3
] 

ρes Experimental solid density [g/cm
3
] 

σ Compressive strength [MPa, kPa] 

σ10% Compressive strength at 10% strain [kPa] 
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σ70% Compressive strength at 70% strain [MPa] 

σy Yield strength [kPa] 

σsy Specific yield strength [kPa/(g/cm
3
)] 

ε Compressive strain [%] 

εmax Maximum deformation [%] 

   

D Pore diameter [μm] 

dW/dTmax Maximum mass decomposition rate [%/ºC] 

E Compressive Young‟s modulus [Mpa]  

Ea Energy absorbed [kJ/m
3
] 

Es  Specific compressive modulus [MPa/(gcm
-3

)] 

Td 5%  Temperature at 5% mass loss after 150 
o
C [ºC] 

Td max  Temperature at maximum decomposition rate [ºC] 

te  Time to flame extinguish [s] 

ti  Time to ignite [s] 

V  Viscosity [mpa s] 

w  Mass fraction [%] 

WR  Residue amount [%] 

 

 



Chapter 1: Introduction 

 

 

 

1.1 Prologue 

Aerogel pioneered by Kistler is a type of foam-like materials, which usually exhibit 

lightweight density and high porosity. The development of matrix materials and 

processing methods of aerogels widely expanded their properties and corresponding 

applications. One of most attractive research was about smectite clay aerogel prepared 

through a freeze-drying technique due to the cheap price as well as an 

environment-friendly preparation process. However, their mechanical brittleness 

limited their practical applications.  

In order to overcome this handicap, a novel and appealing route firstly reported by 

Nakazawa was to infiltrate the clay aerogel with polymers. Thus polymer/clay 

aerogels composites were created with significantly enhanced mechanical properties. 

This is due to that polymer molecules interact with clay nanoplatelets through 

hydrogen bonding or electrostatic attraction.  

In this thesis, different types of biodegradable polymers (polyvinyl alcohol, recycled 

cellulose fiber, sodium carboxylmethylcellulose, agar, xanthan gum, Arabic gum, 

starch) were utilized to prepared polymer-clay aerogels using a freeze-drying process 

in which the sole solvent used was water. These polymer-clay aerogels displayed the 

typical compressive behavior of elastic-plastic foams. Herein, they were considered as 

a promising alternative of non-biodegradable traditional petroleum-based foams (e.g. 

expanded polystyrene) that are widely used in packing, insulation, cushioning and 

floating.  
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According to the statistics for the year 2007, the global market for expanded 

polystyrene (EPS) was over 4 million tonnes. Because they have a density as low as 

15 kg/m
3
, the volume of the annual consumption is difficult to even envision. The 

increasing environmental problem caused by the EPS waste drives the biodegradable 

foam-like polymer-clay aerogels to be an interesting research topic.  

The microstructures, mechanical properties and thermal stability of prepared aerogels 

were investigated. In addition, to realize the properties of polymer-clay aerogels can 

compete with traditional polymeric foams, physical blending or chemical crosslinking 

routes were adopted to modify their properties. It was feasible to obtain materials with 

tunable structures and mechanical properties.  

On the other hand, petroleum-based foams are intrinsically highly flammable due to 

their low heat capacity, low thermal conductivity and high internal surface area. The 

challenges from fire hazard require developing less flammable foam materials. The 

fire behavior of the polymer-clay aerogels was studied, showing superior flame 

retardant properties than EPS due to the loading of inorganic clay. Combination flame 

retardant (FR) fillers (alumina trihydrate, ammonium polyphosphate, silica gel and 

potassium carbonate) into aerogels yielded better flame retardancy. Moreover, 

enhanced compatibility of mechanical properties and fire resistance was obtained 

when alumina trihydrate was used to modify polyvinyl alcohol (PVOH)-clay aerogel. 

Corresponding flame retardant mechanisms were proposed according to the 

experimental data.  
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1.2 Objectives  

The purpose of this thesis is to develop biodegradable polymer/clay composite 

aerogels. Biodegradable synthetic polymers as well as biopolymers from renewable 

resource have been utilized. The mechanical properties and flame resistance of the 

aerogels were modified to expand the potential application of these aerogel in relevant 

scientific and industrial fields. A state-of-the-art (chapter 2) will be presented as a 

review of previous works related with the aim of the thesis. The experimental work of 

is divided in five parts: 

 

(1) Raw materials information, aerogels sample preparation methods and the 

properties characterization techniques (chapter 3).  

(2) PVOH-clay aerogels and their properties modification with different flame 

retardant fillers (chapter 4).  

(3) Aerogels based on recycled cellulose fibers and carboxylmethylcellulose; 

improving their thermal stability and flame retardancy by adding clay and ammonium 

polyphosphate (chapter 5).  

(4) Exploring and developing possibilities of preparing naturally occurring bio-based 

polymers/clay aerogels. The raw materials included agar, xanthan gum (chapter 6), 

Arabic gum (chapter 7) and starch (chapter 8).  

(5) Investigation of biodegradability of prepared aerogels (chapter 9). 

 

  



 Chapter 2: State-of-the-art 

 

 

 

In this chapter, a comprehensive literature review is presented. Different types of 

aerogels, which were prepared through supercritical carbon dioxide (CO2) drying 

technique and freeze-drying process, were firstly summarized and their applications 

were briefly introduced. Then the state-of-the-art regarding the development of clay 

and polymer/clay aerogels prepared via freeze-drying technique was emphasized. The 

modification methods for improving the properties of polymer/clay aerogels 

(especially the mechanical properties and fire resistance) were discussed as well. 

Finally, the relationships between the processing, structures, and properties were 

described. 

 

 

2.1 Origin of Aerogels 

The term aerogel was first introduced by Kistler in 1930s to designate dry silica gels 

with a very high relative pore volume after a supercritical drying process [1]. During 

this procedure, the liquid in the gel was firstly substituted by supercritical CO2 fluid in 

an autoclave under its critical temperature and pressure followed by leaking the gas. 

Therefore, the formation of liquid-vapor meniscuses was prevented, creating dry 

samples without collapsing the gel solid network. Besides silica aerogels, Kistler 

synthesized a series of aerogels with different natures ranging from metal oxide 

aerogels (tungstic, ferric, or stannic oxide and nickel tartrate) to organic aerogels 

(cellulose, nitrocellulose, gelatine, agar, or egg albumin) [2]. After the discovery of 

Kistler, aerogels have been progressively developed with various functions and 

applications.  
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2.2 Sol-gel Process 

The precursor gels of aerogels can be prepared using a sol-gel process in which a 

colloidal solution is firstly produced by hydrolyzing raw materials followed by 

condensation of sol particles. An ageing process is subsequently conducted to increase 

the connection and strength of the gel network. The obtained gel is finally 

transformed into aerogel via different drying techniques [3]. A typical scheme of this 

process is as shown in Figure 2.1.   

 

 

Figure 2.1 General scheme for preparing aerogels by sol-gel processing and some typical 

variable parameters [3] 

 

Two pathways that are usually used to produce aerogels include supercritical drying 

and freeze-drying. In the following section, aerogel are categorized based on their 

natures as well as drying processes. This classification can help us understand the 
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application of two different drying techniques in preparing different aerogels. 

However, the emphasis is placed on the aerogels prepared using freeze-drying that is 

used in present work.  

 

 

2.3 Supercritical Drying 

Supercritical drying (SCD) is a process by which the liquid in a matrix is transformed 

into gas in the absence of surface tension and capillary stress, as shown in Figure 2.2 

(green arrow). To attain this attempt, the gel is put in an autoclave in which the 

temperature and pressure exceed the critical points. It is known that the surface 

tension between solvent and solute molecules ceases in a supercritical fluid. The 

liquid in the gel is finally replaced with a gas without destroying the solid delicate 

networks. The vapors are then slowly released from the autoclave, until the pressure 

in the autoclave reaches atmospheric pressure.  

 

 

Figure 2.2 Three phase diagram: freeze drying route-red; conventional drying-black; 

supercritical drying-green [5] 

 

Carbon dioxide (CO2) is usually chosen as gas media due to its low supercritical 

temperature and nontoxicity. In the process of supercritical CO2 drying, the liquid in 
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the gel (usually  ethanol) firstly replaced by liquid CO2 in a sealed vessel; and then 

CO2 is changed to supercritical state by raising the temperature and pressure; finally 

the vessel is isothermally depressurized to release CO2 gas [4]. In comparison to SCD, 

a high-temperature supercritical drying requires that the solvent in the vessel remains 

the same as the one in gel. 

In the past 20 years, many aerogels have been prepared via supercritical drying 

technique following the scheme described in Figure 2.1. According to their chemical 

compositions, aerogels can be inorganic (silica, metal oxide, carbon-based aerogel), 

organic (polymer matrix) and organic-inoganic. These aerogels had various 

exceptional properties resulting in tremendous variety of applications in general or 

specific aspects. In this chapter, the applications of aerogels are focused in scientific 

experiments and engineering design, rather than in commercial products. 

 

 

2.4 Aerogels Prepared via SCD 

2.4.1 SiO2 Aerogels 

The preparation of SiO2 aerogels from aqueous solutions of sodium silicate as 

described by Kistler was time-costly. Teichner et al. achieved a simple synthesis 

process in the 1960s [6]. In his work, tetramethoxysilane (TMOS) was dissolved in 

methanol, following by hydrolysis and condensation in defined amount of water. The 

chemical reactions during sol-gel processing of TMOS can be described by Figure 2.3. 

This report led to increasing interest on the researches of silica aerogel. More 

alkoxysilanes, such as tetraethoxysilane (TEOS), were successively used to prepare 

SiO2 aerogels. The aerogels skeletons are composed of “pearl-necklace” networks [7], 

as seen in Figure 2.4b. Moreover, the structures of aerogels can be tailored by 

changing the parameters (e.g. PH value, ageing time, temperature). Due to the 

low-dimensional pore radii (20-150 nm) and high porosity (88-99 %), SiO2 had 

superior properties, such as low bulk density (0.003-0.500 g/cm
3
), high inner surface 
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area (100-1600 m
2
/g), low thermal conductivity (0.017-0.021 W/(mK)), etc [3]. 

Therefore, they can be applied as thermal insulator, clean-up agents, optic elements, 

to name a few [8].   

 

 
Figure 2.3 Scheme of chemical reactions for the sol-gel process of alkoxysilanes [3] 

 

 

Figure 2.4 (a) Typical silica aerogels photos [9]; (b) SEM of amine modified silica aerogel 

from reference [10] with a apparent density of 0.19 g/cm
3
 

 

 

2.4.2 Metal Oxide Aerogels 

Metal oxide aerogels were also first reported by Kristler. The preparation method of 

metal oxide aerogels is principally the same like the one of silica aerogels. However, 

it was developed slowly up until the 1990s due to high hydrolysis rates of the 

precursors (usually metal alkoxides). The late developments of new techniques [11, 

12], which can control hydrolysis rate, made it possible to produce stable metal oxide 

gels. Unlike silica aerogels, the aerogels of various metal oxides have different 

morphologies, for example, V2O5 aerogels show fibrous structures [13] while Al2O3 

aerogels have leaf-like ones (Figure 2.5) [14]. The metal oxide aerogels exhibit high 
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specific surface area (hundreds of square meters per gram) as well as their own unique 

properties (e.g. magnetic, electric). They have been received considerable attention 

because of their emerging applications in electrical engineering and electrocatalysis.  

 

 

Figure 2.5 SEM of Al2O3 aerogel with a leaf-like morphology [14] 

 

Multi-component metal oxides (binary or ternary metal oxide complexes) and 

metal doped metal oxide aerogels were also developed for expanding the functions of 

metal oxide family. A complete compilation is beyond the scope of this work. Some 

examples summarized by Husing and Schubert in 1990s [3] are listed in Table 2.1. 

New studies on metal oxide aerogels after them mainly focused on expanding the 

precursor for preparing the metal oxide aerogels or potential application of the 

aerogels.  

 

Table 2.1 Examples of metal oxide aerogels, precursors for their preparation and potential 

applications 

Aerogel Precursor Application 

V2O5 VO(OiPr)3, VO(Oet)3 cathode in the lithium batteries 

Cr2O3 Cr(NO3)3, CrCl3, Cr(Oac)3 oxidated agent, fluorination 

MoO2 [MoO2(acac)2] electrocatalysis 

Al2O3/SiO2 (AlCl3.ethylene oxide).Si(OEt)4 catalyst support 

NiO/Al2O3/MgO Ni(Oac)2.ASB.Mg(OMe)2 nitroxidation 

Pt/MoO2 H2[PtCl6] in MeOH hydrogenation 

Pd/Al2O3 Pd(Oac)2 car-exhaust catalysis 
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2.4.3 Organic Aerogels 

Pekala et al. pioneered pure organic aerogels which were synthesized by 

polycondensation of resorcinol-formaldehyde following by supercritical drying [15]. 

Sol-gel polymerization of resorcinol with formaldehyde is shown in Figure 2.6.  

     

 

Figure 2.6 Scheme of the polymerization process for resorcinol-formaldehyde [16] 

 

Additional development in this area was based on the polymerization reaction of 

phenol [17] or melamine [18] with formaldehyde. The structures of these organic 

aerogels were strongly influenced by the processing parameters, such as the catalyst 

concentration and the pH of the solution. The aerogels were dominated by micropores 

and mesopores (<50 nm), resulting in high specific surface area and super low 

thermal conductivity (as low as 0.012 W/(mK) [19]).   

Except the sol-gel polymerization, precursors of aerogels can be prepared through a 

physical solution-gelation process as well. Firstly, hydrogels were created by gelling 

corresponding homogenous polymer solutions or well-dispersed particles suspensions. 

Then the prepared hydrogels were treated with a solvent exchange to obtain 

gel-ethanol mixtures before supercritical CO2 drying [20]. These aerogels had high 

porosity and large specific surface area. Therefore, they were widely applied in tissue 

engineering, drug delivery, catalysis, absorption and separation.  
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Garcia et al [20] overviewed polysaccharide-based aerogels for drug delivery. 

Highly porous drug carriers based on starch, pectin, alginate, chitin, chitosan, 

carrageenan, agar and cellulose were included in their work. Quignard et al [21] 

summarized marine polysaccharides-based aerogel impregnated with metal 

nanoparticles (e.g. palladium) as catalysts and catalyst supports.  

Both synthesized and natural polymers were used to prepared aerogels via this 

process. The structures and properties of aerogels not only depend on the nature of 

polymers, but also the processing parameters (e.g. temperature, drying time, solvent, 

etc.). Some factors will be discussed in the following sections. 

 

2.4.4 Inorganic-organic Hybrid Aerogels 

Combining organic molecules to inorganic aerogels during the sol-gel procedure can 

endow inorganic aerogel with exotic functions by forming inorganic-organic networks. 

There are four configurations of networks, as illustrated in Figure 2.7. These hybrid 

aerogels have been recently of great interests because some of the properties of 

aerogels are widened or improved without affecting the rest. For example, the 

hydrophobicity and the elastic properties of SiO2 aerogels were relatively improved 

by incorporating organic groups [22, 23]. The publications of hybrid aerogeols 

(organic-silica, organic-carbon, organic-clay and organic-metal) have been boomed in 

last 20 years. Table 2.2 lists some of hybrid aerogel, their precursor, properties and 

applications. 

 

Table 2.2 Examples of inorganic-organic aerogels, precursors of aerogels and application 

Aerogel Precursor Key Properties Reference 

Acrylamide-SiO2 
Dimethylsiloxane, 

N,N-dimethylacrylamide 

strong, transparent, 

hydrophobic 
[24] 

Isocyanate-SiO2 Diisocyanate,tetramethoxysilane flexible [25] 

Pectin-Fe2O3 γ-Fe2O3 nanoparticles, pectin magnetic [26] 

Polyimide-clay 

Montmorillonite, 

4,4‟-oxidianiline, 

N.N‟-dimethylacetamide 

heat resistant [27] 

Isocyanate-graphene Triisocyanate, graphene oxide high absorbent  [28] 
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Figure 2.7 Inorganic-organic hybrid networks through sol-gel process. (a) interpenetrating 

inorganic and organic networks; (b) incorporation of organic molecules (enzymes, dyes, etc.); 

(c) functionalization of oxidic materials with organic substituents; (d) dual networks [3] 

 

 

2.5 Freeze-drying Process 

Freeze-drying (FD), which is also called “lyophilization”, is another drying technique 

for avoiding phase boundaries following a three phase-diagram shown in Figure 2.2 

(red arrow). The resultant porous materials are also called “cryogel”.  

When freeze-drying process is designed to produce aerogels, aqueous precursor 

solutions are needed to be prepared in advance. The pores are created by freezing the 

solvent into ice crystals. When the ice is sublimed under vacuum, porous materials are 

obtained. During the freezing process, the ice crystals nucleate and grow, expelling 

the impurity to the interstitial regions between those ice crystals, as shown in Figure 

2.8. This process determines the structures and hence the properties of the resultant 

aerogels [29], which are also dependent on other factors discussed in following 

section. It is noted that both SCD and FD technique can be used to dry the precursors 

which can be prepared through the mentioned chemical sol-gel polymerization or 

physical solution-gelation process. 
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Figure 2.8 Ice crystals growth in polymer solution, inorganic nanoparticles dispersion or 

organic-inorganic mixture [30] 

 

 

2.6 Aerogels Prepared via Freeze-drying 

2.6.1 Aerogels Based on Ceramics and Carbon 

Freeze-dried inorganic aerogels mainly include the ones of ceramic and carbon nature. 

Aerogels based on ceramic were first reported by Mahler and Bechtold in 1980. They 

synthesized inorganic aerogels composed of bundles of aligned silica fibers [31]. 

Since then, a number of works have been reported on ice-templated porous ceramics, 

for example, alumina aerogels were prepared by freeze-casting slurries of water [32] 

or water/glycerol solutions containing high loadings of alumina [33]. Deville 

summarized works on porous ceramics materials [34]. A wide variety of ceramic 

aerogels (e.g. Si3N4, MgO, SiC, mullite, hydroxyapatite and tricalcium phosphate) 

have already been prepared following the process shown in Figure 2.9. These 

materials usually exhibit super high mechanical properties and high porosity, herein, 

are considered for potential load-bearing biomaterials applications. 
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Figure 2.9 The illustration of preparation of ceramics aerogel via freeze-drying [34] 

 

Carbon-based nano-materials, such as active carbon (black carbon), carbon nanotubes, 

carbon nanofibers or graphene, are nowadays the most popular topic in both frontier 

scientific research and industry nowadays. These advanced carbon nano-materials 

have been recent widely reported to make aerogels by FD process. The created 

foam-like carbon materials exhibit high surface area as well as high strength and 

electricity conductivity at extremely low density. They have been employed in various 

applications such as electrochemical energy storage and conversion [35], sensing [36], 

or catalysis [37] to name a few.  

 

 

2.6.2 Clay and Clay Aerogel 

Clay is a group of natural minerals mainly composed of silicate. They do exhibit great 

properties, such as stiffness and anti-flammability, making them a superior choice for 

gas barrier, reinforcement and fireproof in polymer-clay nanocomposites [38, 39]. 

According to the variation in the layered structure, clay can be divided into four 

majors groups shown in Table 2.3. The 2:1 layer type is most commonly used. They 

have a layered structure made up of two tetrahedrally coordinated silicon atoms fused 
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to an edge-shared octahedral sheet of either aluminium or magnesium hydroxide, as 

seen in Figure 2.10. Each layer sheet is approximate 1 nm thick and its length varies 

from tens of nanometers to more than one micron. Isomorphic substitution is the 

replacement of an element with another one inside the sheet without changing its 

chemical structure. For instances, Al
3+

 can be replaced by Mg
2+

 or Fe
2+

, and Mg
2+

 by 

Li
+ 

[40]. Silicate layers stack with regular Van der Waals gap between the platelets. 

This gap is called the interlayer or the gallery filled with alkali cations (Na
+
,Ca

2+
, etc.), 

which counterbalance the negatively charged platelets. 

 

Table 2.3 Clay types and features [41]  

Group Name Member Mineral General Formula 
Layer 

Type 

Layer 

Charge 

Kaolinite 
kaolinite, dickite, 

nacrite 
Al2Si2O5(OH)5 1:1 <0.01 

Montmorillonite 

or smectite 

montmorillonite, 

talc, pyrophyllite, 

vermiculite
*
, 

sauconite, saponite, 

nontronite 

(Ca,Na,H)(Al,Mg,Fe,Zn)2(Si,Al)4 

O10 (OH)2 XH2O 
2:1 0.5-1.2 

Illite illite (K,H)Al2(Si,Al)4O10(OH)2 XH2O 2:1 1.4-2.0 

Chlorite 

(Ⅰ)amesite (Mg,Fe)4Al4Si2O10(OH)8 

2:1:1 Variable 
(Ⅱ)chamosite (Fe,Mg)3Fe3AlSi3O10(OH)8 

(Ⅲ)cookeite LiAl5Si3O10(OH)8 

(Ⅳ)nimite (Ni,Mg,Fe,Al)6AlSi3O10(OH)8 

*Layer charge of vermiculite is 1.2 to 1.8; X indicates varying level of water in mineral type. 

 

 

Figure 2.10 2:1 layered silicate structure (T, tetrahedral sheet; O, octahedral sheet; C, 

intercalated cations; d, interlayer distance) [42] 
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Van Olphen determined that interlayer surface and cation hydration between the 

galleries is a unique property of montmorillonite (MMT) [43]. This leads to high 

hydrophilicity and excellent swelling ability of MMT in water, which are dependent 

on the cation exchange ability [44]. These properties are closely related with MMT 

aerogels discussed in following section. 

The preparation of MMT aerogel by freeze-drying clay hydrogel was firstly 

reported by Mackenzie [45] and Call [46] in the 1950s. Unlike the aerogels that 

follow sol-gel chemical condensation route as described previously, clay aerogels 

were formed by physical/electrostatic interactions between clay particles. This new 

inorganic aerogel can be formed in one step with water followed by freeze-drying 

process.  

Van Olphen et al [47] investigated the clay nanoparticles dispersive configuration 

and clay swelling behaviour in aqueous suspension. It was proposed that MMT 

nanoparticles within the aerogels are linked edge-to-face much like a “house of cards” 

owing to opposite surface and edge charges that exist in clays. However, similar 

processing of non-swelling clays, such as kaolin, only produced fine powders. 

Nakazawa et al. [48] studied the effects of processing parameters (e.g. clay 

concentration and freezing rate) on the structures of clay aerogels. It was found that 

decreases in clay concentrations and freezing rates resulted in pore shape changes 

from polygonal cells to thin lenses.  

Bandi discussed formation mechanism and development of sodium 

montmorillonite (Na
+
-MMT) aerogels systematically in his dissertation [49]. 

According to his study, Na
+
-MMT aerogels exhibited a hierarchical layered structure 

(Figure 2.11) in various clay concentrations (3 wt% to 10 wt%) and freezing 

conditions (-21 °C to -196 °C).  

In this section, the formation mechanism of Na
+
-MMT aerogels is briefly 

introduced according to the summarization of previous work. Na
+
-MMT particles 

absorb water into the interlayer region and swell, forming a trixotropic fluid. Due to 

the physical electrostatic interactions between positive charged Na
+
 within the 

galleries and negative charged platelet edges, clay will minimize free energy, resulting 
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in an edge-to-face association in water. When this Na
+
-MMT suspension is frozen, 

clay platelets are rejected from ice crystals and stacked into the walls of aerogels 

which have three-dimensional highly regular, “house of cards” structures, as seen in 

Figure 2.12.  

This type of aerogel has a great interest due to the low cost of clay. On the contrary, 

the alkoxide precursors for preparing the silica or metal oxide aerogel are much more 

expensive. On the other hand, supercritical drying process, which takes advantage of 

CO2 instead of alcohol, usually requires a solvent change process before drying, and 

costs more time and energy than freeze-drying. 

 

 

Figure 2.11 Morphology of clay aerogel (4 wt% clay, freezed at -31
o
C) [50]  

 

 

Figure 2.12 Synthesis of clay aerogels [51] 
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2.6.3 Polymer-based Aerogels  

Aerogels of polymeric nature prepared via freeze-drying process date back to 1950s 

[52]. The preparation of precursor can follow the same methods used in SCD polymer 

aerogel. However, the drying technique has a dramatic effect on the texture of 

materials. SCD aerogels usually have considerably higher porosity and specific 

surface area than ones from lyophilization (e.g. chitosan [53]). Due to its 

environmentally friendly feature, freeze-drying was firstly used to produce porous 

polymeric materials for biomedicine applications, such as poly(L-lactic acid) and 

poly(DL-lactic-co-glycolic acid) porous biomaterials for tissue engineering [54].  

The raw materials used to produce aerogel can be on basis of both synthetic and 

natural polymers [55]. Kang et al [56] produced freeze-dried gelatin sponge from a 

gelatin-water solution without use of any additives and organic solvents. Hsieh et al 

[57] reported a γ-poly(glutamic acid)/chitosan combined aerogels for culturing cells. 

It was found that this binary system [58] showed better hydrophilicity, 

cytocompatibility, and mechanical properties than chitosan aerogel. Collagen and 

elastin were also used to prepare tissue scaffold by Daamen et al [59].  

Except as biomaterials, aerogels based on biomass are of interest as a 

replacement of petroleum-based polymer foams for a sustainable reason. They have 

been intensively developed and studied during the past decade. These foam-like 

materials have typical elastic-plastic behaviour and low thermal conductivity. 

Generally, those renewable polymers are obtained from large-scale forestry or 

agricultural feedstock, mainly based on polysaccharides and proteins.   

Hedenqvist et al yielded aerogels from wheat gluten (a byproduct from the 

European ethanol industry) alkaline aqueous solutions. They studied the porous 

structures, mechanical properties, thermal conductivity and combustion properties of 

wheat gluten foams [60-62]. The thermal conductivity ranged from 0.03 to 0.08 

W/(mK). However, some disadvantages (e.g. high sensitivity to moisture, poor barrier 

properties, and unsatisfactory mechanical performance) were found in these biofoams. 

Therefore, they modified the properties of wheat gluten aerogels by introducing 
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inorganic silica [63, 64]. Especially, the thermal stability and flame resistance were 

significantly improved (e.g., the temperature of the second combustion step increased 

by 55 
o
C in the presence of silica). Two more types of protein-based aerogels (whey 

protein and casein) were reported by Schiraldi et al [65, 66]. 

In comparison to the aerogels from protein, the ones from polysaccharides are 

much more common in scientific publications. Chen et al. [67, 68] prepared alginate 

aerogels with low flammability and robust pectin foam-like materials using 

freeze-drying process. Cellulose-based biopolymers are the most popular selection. Of 

particular, cellulose nanofibers (CNFs) are widely utilized to develop aerogels due to 

their excellent mechanical properties. Plackett summarized the sources and 

preparation methods [69] of CNFs, which can be obtained from wood or agricultural 

crops and by-products (such as wheat straw and soy hulls) by mechanical extraction 

and chemical or enzymatic treatment.         

CNFs aerogels prepared via freeze-drying technique were firstly reported by Jin 

and co-workers, who prepared CNFs aerogels from CNF/Calcium thiocyanate 

tetrahydrate/water aqueous solution [70]. Different freeze-drying processes were 

investigated. It was found that a solvent-exchange freeze-drying made the aerogels 

have a surface area 160-190 m
2
/g, significantly greater than those of samples from 

regular freeze-drying.  

Instead of dissolving CNF in organic solvent, Ikkala prepared a precursor by 

dispersing long and entangled native celluloseⅠnanofibers in water, resulting in 

flexible aerogels with high porosity (95-98%) and porous hierarchical structures [71]. 

On the basis of this work, Berglund et al. studied the mechanical performance of this 

CNF aerogels [72]. The compressive modulus (E) and compressive yield strength (σy) 

can reach as high as 5.31 MPa and 516 kPa, respectively. Moreover, the dependence 

of mechanical properties on relative density was found to match open cell foam 

expressions according to Gibson and Ashby scaling laws.   

CNFs were also used to reinforce the cell walls of aerogels based on xyloglucan 

and amylopectin in the works of Berglund‟s research group [72-74]. By incorporating 

strong and flexible CNFs into the cell walls, the mechanical properties of biofoams 
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were strongly improved. The CNFs reinforced starch biofoams are able to reach 

comparable mechanical properties (E=32 MPa, σy=630 kPa) to expanded polystyrene 

(EPS) at 50% relative humidity and similar relative density.  

Besides wood, CNF was able to be isolated from the other sources as mentioned 

previously. Bio-based aerogels were also reported based on those CNFs from waste 

paper [75], coconut shell [76], jute [77], wheat straw [78], and the other plants [79].  

Aerogels can be fabricated from different cellulose as well, like cellulose 

derivatives (carboxymethylcellulose, hydroxyethylcellulose), bacterial cellulose, 

cellulose microcrystal, cellulose whisker, lignin and hemicelluloses. Moreover, it has 

been studied the effect of organic solvent types on the properties of cellulose-based 

aerogel which were freeze-dried from cellulose-organic solvent solution.  

However, cellulose-based aerogels have some drawbacks. For example, aerogel 

skeleton is moisture sensitive, significantly reducing the mechanical properties. 

Cellulosic materials usually have hydroxyl groups dispersed on their molecules, 

which enables them to be easily physically or chemically modified. These 

modifications can endow cellulose aerogels with new functions (e.g. 

superhydrophobicity, high mechanical properties, electromagnetic performance, 

bioactivity, to name a few), which might further widen the applications. Table 2.4, 

which is derived from Ma‟s work [80], lists some of contributive works, including 

materials, modifying methods, properties and features. 

 

2.6.4 Polymer-clay Aerogel Composites 

The Na
+
-MMT aerogels discussed previously have recently been of great interest. It is 

because not only the aerogels are based on cheap abundant minerals, but also they are 

prepared via an environmentally friendly freeze-drying process in which only 

nontoxic water is used as a dispersion media. However, one of the mainly bottlenecks 

of clay aerogels for application is their mechanical brittleness. An improving way is 

combining water soluble polymer solution into clay dispersion. A review with details 

is introduced in next section. 
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Table 2.4 Modified-cellulose-based aerogels prepared via freeze-drying process  

Materials Modifying Methods Key Properties Features Ref. 

Cellulose/Na-

OH/thiourea 

Adding GOS to 

cellulose solution 

E=58.1 MPa, 

σy=1.13 MPa 

High mechanical 

properties 

[81] 

CNF/HAp Adding HAp to oxidized 

CNF dispersion 

ρ: 8-11 kg/m
3
 Low density [82] 

CNF CVD of silane Water CA: 150
o
 Hydrophobic, oleophilic [83] 

CNF ALD of TiO2 Water CA>90
o
 Hydrophobic, oleophilic, 

reusable 

[84] 

CNF CVD of TiO2 Water CA: 140
o
 Photoswitchable, high 

adhesive surface, 

photocatalytic acitivity 

[85] 

CNF CVD of silane Castor oil CA>>90
o
 Superoleophobic [86] 

CNF CVD of silane Water CA: 160
o
; 

paraflin oil CA: 153
o
 

Superoleophobic, 

superhydrophobic 

[87] 

CNF Dipping in PANI 

solution 

EC: 10
-2

 S/cm Electrically conducting [71] 

BC Dipping in FeSO4/CoCl2 

solution 

 Magnetic [88] 

CNF Blending with CNT to 

CNF dispersion 

EC: 10
-2

 S/cm;  

CS: 178 F/g;  

MPD: 13.6 mW/cm
2
; 

ED: 20mWh/cm
2
 

Electrically conducting, 

pressure sensing 

[89] 

BC In-situ formation of Ni 

NP in hydrogels 

 Ferromagnetic, 

superparamagnetic 

[90] 

Cellulose 

acetate 

To form Ag-carbon 

aerogels 

 Antibacterial [91] 

ALD: atomic layer deposition; BC: bacterial cellulose; CA: contact angle; CNF: cellulose 

nanofiber; CNT: carbon nanotube; CS: specific capacitance; CVD: chemical vapor deposition; EC: 

Electric conductivity; ED: energy density; GOS: grapheme-oxide-sheet; HAp: hydroxyapatite; 

MPD: max power density; NP: nanoparticles. 

 

To our best knowledge, the earliest work on clay-polymers aerogels was reported by 

Nakazawa et al. in 1990s [92]. Porous clay-organic composites were prepared by 

lyophylization of clay-polymer mixture. The polymers used were starch, gelatin and 

sodium alginate. The author pointed out these porous materials had potential 

application in packaging and insulation. However, the properties of different 

clay-polymer aerogels were not studied. 
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Figure 2.13 SEM micrographs of PVOH-Clay aerogel composites with 5 wt% PVOH and 5wt% 

clay in the precursor [93] 

 

Alhassan et al. used the same process to obtain a polyvinyl alcohol 

(PVOH)/Na
+
-MMT aerogels. Hydrophilic PVOH created interfacial interactions with 

smectic clays, as shown in Figure 2.13. Adding 5% PVOH into 5% clay aerogels, the 

compressive modulus and yield stress were two orders of magnitudes higher than pure 

clay aerogels [93]. He found the mechanical properties of aerogel composites had 

power-law dependence on relative density. The exponent values for elastic modulus 

and yield strength were 3.74 and 3.48, which were higher than the one of open cell 

polymeric foams (exponent=2). The reason for this behaviour was attributed to the 

layered structure of the aerogels. 

Hostler et al. [94] studied the thermal conductivity of PVOH-clay aerogel 

composites, which ranged from 0.03 to 0.05 W(mK)
-1

. It was found that addition of 

PVOH decreased the thermal conductivity of the aerogels. Moreover, the aerogels 

showed different thermal conductivity in horizontal and vertical direction. The 

possible corresponding reason is the complex anisotropic labyrinth-like pore path in 

the aerogels. 

Arndt [95] reported the preparation of Na
+
-MMT /epoxy elastic aerogels which 

could withstand and recover large amounts of compressive strain without failure or 

significant permanent deformation. The epoxy was produced through in situ 

polymerization of the water-soluble cross-linking thermoset precursors 1,4-butanediol 



State-of-the-art 

23 
 

diglycidyl ether and triethyleneteramine.  

Johnson Ⅲ [96] made branched-poly(ethylene imine) (PEI)/ Na
+
-MMT aerogels 

which were modified by biomimetic mineralization of silica with tetramethyl 

orthosilicate. The resultant silica-encapsulated materials showed a 10-fold increase in 

specific compressive properties. Repeated silica/PEI treatment resulted in further 

enhancement of mechanical properties.    

Pojanavaraphan [97, 98] produced prevulcanized natural rubber/Na
+
-MMT 

aerogels. The extent of interface bonding between Na
+
-MMT nanoparticles and 

rubber molecules were found to be key factor to influence the mechanical behaviour 

and viscoelasticity of the aerogel composites.  

Wu and co-workers reported a low-density polyimide-Na
+
-MMT aerogels with a 

high onset decomposition temperature (>410 
o
C). The aerogel composites had 

considerable promising applications in structural and high-temperature insulations.  

 

The aforementioned polymers are petroleum-based and synthetic. Naturally occurring 

biopolymer were also utilized to develop polymer/clay aerogels. 

Gwaryla et al pioneered a new application of biopolymers in preparing 

casein/clay aerogels [99]. Casein, a type of natural protein, was combined with 

Na
+
-MMT in aqueous precursor. The resultant freeze-dried aerogels had densities in 

the range of 0.08-0.15 g/cm
3
 and exhibited foam-like elastic-plastic properties similar 

to typical polymeric foams. The biodegradability of these aerogels was investigated as 

well. All the samples decomposed rapidly within 3 weeks and reached the highest 

degree of biodegradability after 30 days. They also created cellulose whisker/clay 

aerogels via simple freeze-drying of aqueous dispersions of clay and cellulose 

whiskers [100]. It was revealed these materials exhibited compressive strengths that 

were significantly higher than predicted by simple additive behavior of the properties 

of the individual components due to the formation of a nanoscale „„wattle-and-daub‟‟ 

effect, as seen in Figure 2.14. 
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Figure 2.14 SEM photos of pure whisker aerogels (left) and whisker-clay aerogels (right) 

 

Chen et al. [67] prepared ammonium alginate-clay aerogel composites with a low 

flammability. The aerogel structures changed from a layered architecture to 

network-like microstructure by increasing the solid content in the precursor solutions. 

This is because the increase of viscosity affects the ice growth. Herein, these aerogels 

exhibited tuneable properties (compressive moduli: 1-97 MPa; apparent densities: 

0.047-0.174 g/cm
3
). Due to the inherently low flammability of alginate and barrier 

function of clay platelets, the aerogels composites showed very excellent flame 

resistance (no open fire in the tests). They also used bio-based pectin and whey 

protein (WP) to prepare pectin/ Na
+
-MMT or WP/Na

+
-MMT aerogels as mentioned 

previously.  

Donius et al. [101] reported CNF-Na
+
-MMT aerogels which could show two 

architectures. Isotropic foam and anisotropic honeycombs were fabricated by 

non-directional and directional freezing, respectively. In comparison to isotropic one, 

the anisotropic aerogels have superior mechanical properties. Moreover, these 

properties spanned multiple magnitudes by changing composition, architecture and 

processing. 

 

The polymer/clay aerogels, in which polymer molecules play a role of glue linking the 

Na
+
-MMT nanoparticles, exhibit better mechanical performance than pure clay 

aerogels. Figure 2.15 shows a comparison of the compressive moduli of the 

polymer-clay aerogels as a function of their apparent densities. Actually, the modulus 
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is dependent on the interaction between each component. On the other hand, 

Na
+
-MMT platelets serve as a physical barrier that increases the heat endurance of the 

aerogels, resulting in a higher thermal stability than pure polymer aerogels. This 

function of clay has been also widely reported in clay modified polymer based 

composites [38, 42]. 

 

 

Figure 2.15 Comparison of the compressive modulus vs density of the polymer-clay aerogels 

 

Virtually, any polymer can be selected to prepared polymer-clay aerogels from the 

previous experience if it can meet two conditions: (1) a thermo-dynamically stable 

polymer-clay suspension or colloid should be formed and frozen without phase 

separation; (2) the solvent must be capable of undergoing crystallization during the 

freezing process. 

The majority of biopolymers have molecular chains containing hydrophilic 

groups, such as hydroxyl and carboxyl. They or their derivatives are water-soluble. In 

addition, the hydrophilicity of MMT clay makes water the best media for dispersion. 

So biopolymers match the two requirements discussed above for preparing 

polymer/clay aerogels. Moreover, all the raw materials used (biopolymers, Na
+
-MMT 

and water) are not toxic and environmental-friendly.  

Although some biopolymers from renewable sources, especially cellulose, have 

been used to prepare aerogels as discussed previously, very little research was 
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reported on produce green biopolymer/clay aerogels apart of the mentioned works. 

According to the survey on their properties, polymer/clay aerogels have potential 

application in packaging and insulation as a substitution candidate of traditional 

petroleum-based foams. The aerogels based on biopolymers and clay may become a 

new way to decrease the carbon footprint. 

A wide range of biopolymers are available for building new materials, as shown 

in Table 2.5. Some of them, such as cellulose and starch, are actively used in products 

today. However, many others remain underutilized and may be used to prepared 

biopolymer/clay aerogels.   

 

Table 2.5 List of biopolymers [102] 

Polysaccharides   

Polysaccharides Polysaccharides Polysaccharides (bacterial) 

(plant) (animal)  

starch hyaluronic acid chitin, chitosan (fungal) 

cellulose Polysacchaides (fungal) levan 

pectin pullulan xanthan 

konjac elsilan polygalactosamine 

alginite scleroglucan curdlan 

carageenan  gellan 

gums  dextran 

Proteins   

soy albumin polylysine 

zein resilin poly (γ-glutamic acid) 

wheat gluten polyamino acids polyarginyl-polyaspartic acid 

casein collagen/gelation elastin 

silks adhesives  

Polyesters   

polyhydroxyalkanoates polylactic acid polymatic acid 

Lipids/Surfactants   

acetoglycerides, waxes, surfactants emulsan 

Speciality Polymers   

lignin shellac natural rubber 
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2.7 Modification of Polymer/clay Aerogels 

As described previously, the structures and properties polymer aerogels can be 

tailored by chemical or physical routes. Similar processes could be applied to modify 

the properties of polymer/clay aerogel composites. 

Functional fillers and nanoparticles have been used as reinforcement additives in 

polymer-clay aerogels. Finlay et al [103] reported a woven-like structure by 

incorporating short-cut natural fibers into PVOH-clay aerogels. Both compressive 

modulus and strengths were increased by as much as 5-fold at 5wt % fiber loadings, 

while bulk densities were increased by a factor of <2. Gawryla [104] studied 

single-walled carbon nanotubes (SWNT) reinforced Poly(acrylic acid) (PAA)-clay 

aerogels. It was found that SWNT significantly improved mechanical behavior. 

Incorporating 0.05 wt% SWNT increased the compressive modulus by nearly 8 times. 

Moreover, it imparted electrical conductivity to these aerogels.  

Chemical crosslinking is another method to improve the properties of 

polymer-clay aerogels. Pojanvaraphan et al used DL-glyceraldehyde (GC) and sulfur 

monochloride to crosslink casein-clay [99] (Fig.2.16) and natural rubber-clay aerogels 

[105], respectively. Chen et al also modified the PVOH-clay aerogels via cross linging 

with divinylsulfone (DVS) [106]. A network was formed within the aerogels after 

crosslinking treatment (Fig. 2.17), resulting in great enhancement in their structural 

integrity. 

 

 

Figure 2.16 Proposed Cross-Linking Mechanism of Casein with GC through the Maillard 

Reaction 
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Figure 2.17 Chemical reaction of PVOH and DVS 

 

 

2.8 Factors Influencing Aerogel Structure and Properties 

The aerogel structures (i.e. pore size, pore volume and morphology) and properties 

are dependent on variables, such as the freezing direction, freezing temperature, 

solution concentration, and the nature of solvent and solute. The effect of these 

variables is discussed in the following sections. 

 

 

2.8.1 Freezing Rate and Freezing Direction 

Macropores are created by the ice crystals in the aerogels prepared via freeze-drying 

process. The size of the ice crystals can be adjusted by varying the freezing 

temperature and the freezing rate; while orientation alignment of pores can be realized 

by controlling the freezing direction [107]. 

 

 

Figure 2.18 SEM images of monolithic silica microhoneycombs. (A) Cross section of a 

channel structure; (B) Vertical section along an aligned axis [108] 
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Mukai et al [108] reported the preparation of silica aerogels by use of 

unidirectional freezing at a controlled immersion rate. Unidirectional freezing allows 

for the achievement of micro-channelled structure in the longitudinal direction and 

micro-honeycomb architecture in the cross-sectional direction, as shown in Figure 

2.18. The produced silica aerogels had surface area ranged between 400 and 700 m
2
/g. 

Kim and co-workers [109] used the same process to prepare a porous poly(L-lactic 

acid) monolith having similar structures with silica aerogels from Mukai‟s work. 

Moreover, they proposed an ice formation mechanism during unidirectional freezing, 

as shown in Figure 2.19. 

 

 

Figure 2.19 Schematic diagram of unidirectional freezing, phase separation, and coalescence 

[109] 

 

Gutiérrez et al [110] studied the effects of freezing rate on the structure of PVOH 

aerogels. It was observed that the porous channel size decreased with the increase of 

freezing rate, as seen in Figure 2.20. This is because higher freezing rates allow 

smaller ice crystals formation, ultimately producing samples with smaller pores. 

O‟Brien et al. [111] proposed that collagen-glycosaminoglycan aerogel scaffolds 

obtained with a constant freezing rate had a more homogenous pore size than the one 

at a rapid quench freezing, which instead led to heterogeneity in pore size due to the 

varying freezing rate.  
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Figure 2.20 SEM images of cross-sectioned PVA aerogels. Tailored morphologies are 

obtained by using PVA with different molecular weights (Mw: PVA1 > PVA2 > PVA3 > 

PVA4) and by processing the PVA solution at different freezing rates. All scale bars are 20 

microns. The PVA content was 7.8 wt% for every sample [110] 

 

Tomsia and co-workers [30] studied the evolution of the ice front morphology 

during bottom-up freezing alumina slurries, as described in Figure 2.21. In the vertical 

cross-section, the layer thickness increased progressively with the height up to 

approximate 250 μm and then became constant. The horizontal cross-sections 

(parallel to ice front) revealed the corresponding evolution of the porous structure and 

hence the interface morphology. The pore dimension depended on the distance from 

cooling liquid immersion level. 

Svagan et al. [112] prepared starch-NFC biofoams through a freeze-drying 

process in which a quench freezing was conducted at different freezing temperatures. 

They also suggested a relationship between mechanical properties and cell wall 

structures [74]. A lower freezing temperature would bring in aerogels with smaller 
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and more numerous pores, which are more favorable for reducing local stress. 

Therefore, higher Young‟s moduli, yield strengths and toughness were attained in 

these materials. Similar trend was found the in the PVOH-clay aerogel composites 

which exhibited layered structures [113]. As the freezing temperature decreased, the 

compressive modulus increased generally yielding more compacted layers. 

 

  

Figure 2.21 SEM micrograph of the final microstructure and evolution of the ice front 

morphology. The black portion at the bottom (left) is the epoxy that was used to embed the 

sample for cross-sectioning and polishing. The evolution was depicted on the right [30] 

 

 

2.8.2 Solid Concentration and Nature of Solvent and Solid 

With different nature and solid content, aerogels showed different structures. In regard 
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to polymeric-inorganic composite aerogels, the morphologies are also related to the 

polymer/inorganic particles ratios.  

Gutiérrez summarized the morphologies of aerogels based on various natures 

(ceramics, polymer, CNT composites) prepared via freezing drying technique, as 

shown in Figure 2.22. In the direction vertical to freezing one, ceramic and CNT 

aerogels displayed honeycomb and lamellar structures, respectively. However, PVOH 

aerogels, which were fabricated using the same method, had irregular porous 

structures. He also studied the effects of molecular weight and polymer concentration 

in solution on the structures and properties of PVOH aerogels (The effect of Mw on 

aerogels morphologies was shown in Figure 2.20). Both increase in Mw and 

concentration would increase the solutions viscosities, retarding the ice crystals 

growth. As a result, the dimension of pores reduced, leading to an improvement in 

mechanical properties, as suggested by Figure 2.23. 

Colard et al. [114] obtained porous poly(vinyl laurate) (PVL)-silica with 

different morphologies by changing the silica/polymer ratio. As observed from Figure 

2.24, pure PVL foams collapsed at ambient temperature because glass-transition 

temperature of PVL is far below ambient temperatures. Adding silica nanoparticles, 

structures with elongated and parallel sheets appeared. 

 

 

Figure 2.22 SEM micrographs of cross and longitudinal sections of aerogels with different 

natures formed by freeze-drying process [29] 
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Figure 2.23 Tensile strength of PVA aerogels prepared with different conditions [110] 

 

 

Figure 2.24 Field-emission-gun SEM images of PVL-silica foams with silica/polymer mass 

ratio A=0, B=0.22, C=0.38, D=0.46, E=2.22 in the perpendicular direction. Overall solid 

contents of the samples are: A=9.3, B=12.1, C=13.0, D=13.6, E=19.7 

 

Hu et al. [115] fabricated PLA foams from PLA/dioxane/water mixture. Ice 

crystals growth leads to a phase separation which is a mass and heat transfer process. 

In different solvent systems, the crystals nucleation and growth mechanism are 

distinct. Adjusting the volume fraction of water in mixture, the resultant PLA aerogels 

showed different morphologies. When only dioxane was used, a closed-pore structure 

was observed. Increasing the water content, the closed pores were gradually turned 
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into an open stage and the configurations of pores changed from circular to fibrous or 

flaky. 

 

 

2.9 Conclusion  

Polymer/clay aerogels are a promising alternative for traditional petroleum-based 

foams which are widely used in packaging but not are biodegradable. Freeze-drying is 

simple and environmentally friendly technique to prepare foam-like aerogels. This 

art-of-stage reviewed the effects of processing parameters as well as raw materials on 

the structures and properties of aerogels. Moreover, it pointed out bio-based polymer 

could be widely used to developed bio-based polymer/clay aerogels. Some physical 

and chemical methods were proposed to improve the properties of polymer/clay 

aerogels, although further research is needed before the industrial application of this 

type of materials.  
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Chapter 3: Materials, Samples Preparation and 

Characterization Techniques 

 

 

 

3.1 Materials 

 

3.1.1 Polymers 

Polyvinyl Alcohol 

98% hydrolyzed polyvinyl alcohol (referred to as PVOH) was purchased from 

Sigma-Aldrich (St. Louis, MO, USA) and was used as received. It has a molecular 

weight of 40000 g/mol and a density of 1.26 g/cm
3
. Its chemical structure is shown in 

Figure 3.1.  

 

 

Figure 3.1 Chemical structure of PVOH [1] 

 

Recycled Cellulose Fiber 

Recycled cellulose fibers (RCF) were disintegrated from waste paper through a 

bioprocess involving enzymatic treatment of waste paper pulp
 
[2]. The waste paper 

for preparing pulp was based on two sources. The first component (75% wt) was 

obtained from the output of different paper industry purifying plants consisting of 

mainly short fibers (0.81±0.33 mm); the second component (25% wt) was formed by 

long fibers (1.62±0.47 mm) coming from cardboard residues. After a mechanical 

shredding, the material was hydrated by adding 85 wt% water at 50 
o
C. Then an 
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enzymatic bioprocess was carried out using hydrolasas and oxidorectuctases that were 

left to react for 1 hour at the same temperature. The pulp containing 10% solids was 

finally obtained and put in the fridge (4 
o
C) for further use. 

 

Sodium Carboxylmethylcellulose 

Sodium Carboxymethylcellulose (CMC, Walocel CRT 1000 PA 07) was received 

from Dowwolff Cellulosic. According to the producer, the chemical structure is 

shown in Figure 3.2. The degree of carboxymethyl groups substitution is 0.65-0.8. 

Aqueous solution containing 2 wt% of CMC at 25
o
C has a viscosity of 300-600 cps.  

   

 

Figure 3.2 Chemical structure of sodium carboxymethylcellulose [3] 

 

 
Figure 3.3 Chemical structure of xanthan gum [4] 

 

Xanthan gum 

Xanthan gum is a heteropolysaccharide produced by Xanthomonas campestris and the 

molecular structure is shown in Figure 3.3. Commercial xanthan gum (E415) was 
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bought from Vedeqsa Inc (MO, USA) and was used as received. PH value and 

viscosity at 25 
o
C of 1% solution are 7.2 and 1610 cps, respectively.  

 

Agar 

Agar is a polysaccharide that accumulates in the cell walls of agarophyte algae [5]. Its 

chemical structure is shown in Figure 3.4. Agar (BP grade) were brought from Merck 

Millipore (Darmstadt, Germany), having a melting point of 90 
o
C and bulk density of 

550 kg/m
3
.  

 

 
Figure 3.4 Chemical structure of agar [5] 

 

Arabic Gum 

Arabic gum powder (PRS grade) was provided by T3Q Quimica (Barcelona, Spain) 

with 6.9% of humidity and 4.6 of PH value for 25% aqueous solution. The exact 

molecular structure of Arabic gum is complex and still rather uncertain. However, it is 

thought that Arabic gum consists of a mixture of lower molecular weight 

polysaccharide (major component) and higher molecular weight hydroxyproline-rich 

glycoprotein (minor component) [6].  

 

Starch 

Starch generally contains 20 to 25% amylose and 75 to 80% amylopectin by weight. 

The molecular structures of amylose and amylopectin are displayed in Figure 3.5. 

Modified Potato Starch (E1442) was brought from Tradíssimo (Tarragona, Spain).  
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a 

 

b 

 
 

 

Figure 3.5 Chemical structure of amylase (a) and amylopectin (b) [7] 

 

 

3.1.2. Fillers  

Sodium Montmorillonite  

A type of natural clay named Sodium Montmorillonite (Na
+
-MMT, PGW grade) was 

purchased from Southern clay (Gonzales, Texas, USA). It was characterized by a 

density of 2.6 g/cm
3
, cation exchange capacity (CEC) 145 meq/100 g and aspect ratio 

of 200-400. The chemical structure is illustrated in Figure 3.6. The 2:1 layer type has 

two tetrahedral sheets fused to an octahedral sheet [8]. 

 

Flame Retardant Agents 

Aluminium trihydroxide (ALH) was obtained from Albemarle Corporation (Baton 

Rouge, USA). ALH platelet (Martinal 0L-111/LE) had a purity about 99.4% and 

solubility in water (20 °C, pH=7) of 1.5g/ml.  

Ammonium polyphosphate (APP) compound, Budit3079 was received from 

Budenheim Ibérica (Zaragoza, Spain). It contained approximate 42.5% P2O5 and 21.5% 

nitrogen. Figure 3.7 illustrates its chemical structure.  
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Figure 3.6 Chemical structure of MMT [9] 

 

 

Figure 3.7 Molecular structure of ammonium polyphosphate [10] 

 

 

Silica Gel (SG) with diameter 40-63 microns and Potassium Carbonate (PC) (99% 

purity) were purchased from Panreac (Barcelona, Spain).  

All the flame retardant agents were used as received. 

 

 

3.1.3 Additives 

Glutaraldehyde 

Glutaraldehyde, 50% (w/v), was a Sigma product. The chemical structure is shown in 

Figure 3.8. It was used as received. 
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Figure 3.8 Chemical structure of glutaraldehyde [11] 

 

Glycerin 

1,2,3-Propanetriol, Glycerin (ρ=1.26 g/ml), for molecular biology, ≥99% purity, was 

obtained from Sigma-Aldrich. It was used as received. The chemical structure is 

shown in Figure 3.9. 

 

 

Figure 3.9 Chemical structure of glycerin [12] 

 

 

3.2 Sample Preparation 

 

Polymer-clay composite aerogels were prepared through freeze-drying polymer-clay 

frozen precursor mixtures. The procedure is illustrated in Figure 3.10. Na
+
-MMT clay 

nanoparticles were dispersed in deionised (DI) water using an IKA Ultra-turrax 

disperser. In the meanwhile, polymers were dissolved in another beaker containing DI 

water. The conditions for dissolving different polymers will be explained in their 

corresponding chapter. Then the desired polymer solution and clay gel were mixed 

and stirred slowly to achieve homogenous mixture. Finally, the polymer-clay mixtures 

were transferred into cylinder vials (diameter=30 mm) or square-shaped molds 

(10x10 cm) before being frozen. The freezing process were conducted at -80ºC in an 

ethanol/solid CO2 bath for 30 min or -27 
o
C in a freezer over night. Aerogels samples 

were obtained after the ice sublimation in a lyophilizer (Telstar Lyoquest) for 96 hours 

under a condenser temperature of -80 
o
C and vacuum of 0.01mbar. Modified aerogels 

required their precursor solutions to be treated with functional fillers or cross-linking 
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agents. The details of the corresponding preparation will be discussed separately. 

 

 

Figure 3.10 The general process of aerogels preparation 

 

 

3.3 Characterization Techniques 

 

Apparent Density 

The apparent density (app) was calculated by measuring the mass of the specimen on 

a Cobos balance (Cobos, Spain, ±0.01 mg precision) and the by measuring aerogel 

volume using a digital caliper. Five replicas were taken for each composition. 

Theoretic solid densities (ρts) of polymer-clay composite aerogels were 

calculated according to equation 3.1. 

 

t 1

1
s i

i

in

W








                            3.1 

Where, wi and ρi are the mass fraction and densities of each components, respectively.  
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Helium Pycnometry 

The experimental solid density as well as the porosity of aerogel was determined 

using helium pycnometer (Accupyc 1330, Norcross, GA, USA). The samples were 

put into the 1 cm
3
 chamber and then weighted before and after analysis. During the 

tests, open pores were occupied by helium gas. Therefore, the volume of the open 

pores was recorded as the penetrated gas volume. The final volumes of solid skeleton 

and close pores (Vs) were calculated as the volume difference of the chamber and 

open pores. The experimental solid densities of the aerogels (ρes) were calculated 

according to eq. 3.2 and the porosities of the samples (P) were calculated by eq. 3.3 

[13]. 
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                      3.3 

Where, Wc+s is the weight of chamber with samples; Wc is the weight of empty 

chamber; ρes and ρapp is the experimental solid density and the apparent density, 

respectively.   

 

 

Mercury Intrusion 

The pore size distribution within aerogels was determined by automated mercury 

porosimeters (AutoPore Ⅳ  9500 V1.07, Norcross, GA, USA). The equipment 

showed a testing range of 3.6-360 μm at low pressure (0-50 psia) and 0.005-6 μm 

(atmosphere to 33000 psia) at high pressure. The samples were firstly conducted at 

low pressure. Once it was finished, the tests were transferred into high pressure step. 

Pore diameter (D) was calculated from the Washburn equation as shown in eq. 3.4 

[14]. 

 



Materials, Samples Preparation and Characterization Techniques 

53 
 

4 cos
D

P
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                             3.4 

Where, γ, θ and P are surface tension, contact angle and applied pressure, 

respectively. 

 

 

Moisture Content 

Samples were weighed after five days exposure at 25 ºC and 50% of relative humidity 

(W), and then put into a vacuum desiccator operating at 80 
o
C. Once a constant weight 

was reached, the mass was again recorded (Wd). The moisture content (M) was 

obtained from eq. 3.5. Five replicates of each sample were used. 

 

100%dW W
M

W


                          3.5 

 

 

Scanning Electron Microscopy (SEM) 

The microstructures of the aerogels were investigated by SEM (Jeol JSM-5610, Japan) 

at an acceleration voltage of 10 kV.  Prior to its observation, the samples were 

submerged in liquid Nitrogen and equilibrated for 15 minutes. The specimens were 

then quickly extracted and cryo-fractured. The fracture surfaces were sputter coated 

with a thin Au/Pd layer using a Bal-Tec SCD005 Sputter Coater (Bal-Tec, 

Liechtenstein).   

 

 

Optical Microscopy (OM) 

The morphology of aerogels was firstly fixed in a platform and then directly observed 

by optical microscopy (Leica MEF4, Leica Microsystems GmbH, Wetzlar, Germany).   
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Fourier-Transform Infrared (FT-IR) Spectroscopy 

Infrared spectra were recorded on a Nicolet 6700 spectrophotometer in the attenuated 

total reflectance (ATR) mode (Thermo Fisher Scientific, Waltham, MA, USA). Each 

sample had a spectral result based on 30 scans with a 1 cm
-1

 resolution across a 

wavenumber interval between 4000 and 400 cm
-1

. 

 

 

Compression Test 

Compression testing was carried out in a Galdabini (Italy) universal testing machine 

using a load cell of 1kN following ISO 604 standard [15]. The crosshead rate and 

maximum strain were set to 1 mm/min and 70%, respectively. The Young‟s modulus 

was calculated from the slopes of the initial linear region of the stress-strain curves. 

The yield stress was taken as the stress at the intersection between the tangent line of 

the elastic region and the tangent line of the stress plateau segment. The energy 

absorbed was measured as the area below the stress-strain curve. Five replicas of each 

sample were used. 

 

 

Impact 

Impact testing were carried out in instrumented impact tester (Dartvis 16000, Ceast, 

Italy), using a 50 mm diameter flat headstock and a falling mass of about 2 kg that 

was dropped from a position 100 mm height. The maximum impact energy was of 

1.962 J.  

 

 

Thermogravimetric Analysis (TGA) 

TGA was carried out on a Mettler Toledo TGA/DSC1 equipment (Columbus, OH, 

USA) to study the thermal stability of aerogels. Samples are loaded in alumina pans 

and heated at a rate of 10 ºC/min from 30 to 900 ºC under dry nitrogen or air 

atmosphere.  
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Cone Calorimetry 

A cone calorimeter (Ineltec BECC model, Spain) was used to study the fire behavior 

of the aerogels following ISO 5660 procedure [16]. Square samples (100×100mm) 

with an average thickness of 7 mm were located in a steel support and exposed to an 

external heat flux of 50 kW/m
2
. 

 

 

Thermal Conductivity 

Thermal conductivity of aerogels was determined by a QuickLine-30 (Anter 

Corporation, Pittsburgh, USA) thermal properties analyzer. The experiments were 

conducted according to the ASTM D5930 by using a planar sensor with a radius of 60 

mm at room temperature [17]. Square specimens (6 x 6 cm) with thickness of 1 cm 

were prepared for the tests.  

 

 

Viscosity of Solution  

The viscosities of the precursor solutions were determined using dial reading 

Brookfield-type viscometer (RVT model, Middleboro, MA, USA). Homogenous 

suspensions were prepared and put in the refrigerator (4 
o
C) for future use. Before the 

test, the prepared suspension were firstly exposed to ambient condition, and then 

conducted at room temperature. Proper rotation speed and spindle were selected for 

obtaining precise viscosity values. The meniscus of the spindle was required to be 

immersed in the tested fluid. The torque values (T) were recorded after 30 seconds of 

spindle rotation. The viscosity of the solution (V) was calculated according the eq. 

3.6. 

 

V T GF                           3.6  

Where GF is the tool geometry factor, which is obtained according to literature [18].  
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Chapter 4: PVOH-clay Aerogels and Flame Retardant 

Modified PVOH-clay Aerogels 

 

 

 

4.1 Introduction 

 

Polyvinyl alcohol (PVOH) is a water-soluble synthetic polymer, which is widely used 

in papermaking, textile and a variety of coatings [1]. Due to its relatively low cost, 

excellent water-solubility and biodegradability, PVOH has been a subject of research 

interest. Recently, PVOH was utilized for creating polymer/Na
+
-MMT aerogels 

because of its strong molecular affinity with clay [2]. The resulting properties are 

similar to those of conventional polystyrene expanded foam, or polyurethane foams 

used in packaging or cushioning. Although most of the PVOH/clay composites 

properties have been characterized previously, some important issues like the 

influence of polymer and clay ratio or the behaviour under impact are still not fully 

evaluated over a wide range of compositions.  

    To be mentioned as well, PVOH is a flammable polymer with a low limiting 

oxygen index value of 19.7 [3] which results in a significant restriction of its fields of 

application. It was previously studied that flame retardant properties of PVOH can be 

improved by the incorporation of different types of additives. To the requirement of 

environmental protection, several halogen-free commercially available flame 

retardant (FR) additives were adopted. Potassium carbonate and silica gel were 

selected according to the results of Gilman et al. [4] who demonstrate that the 

flammability of PVOH can be reduced by the presence of relatively small quantities 

of these fillers in compression moulded disks. This was mainly attributed to a 

synergetic ability in the formation of char. In another study [5], phosphorous-nitrogen 
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compounds and ammonium polyphosphate were combined to form an intumescent 

flame retardant agent for PVOH. However, there is no report on the flammability of 

these PVOH based aerogels. Aluminium trihydroxide (ALH) is a commonly FR filler. 

It undergoes endothermic dehydration by releasing vapour with the in situ formation 

of thermally stable alumina upon burning [6, 7]. Although the fire retardant 

effectiveness of ALH is poor and relatively high loading (>60 wt%) is needed for 

adequate flame retardancy [8], it is looked upon as a „greener‟ FR, which does not 

have negative impacts on the environment. 

In the present chapter, the effect of PVOH and clay ratio on the microstructures 

and mechanical behaviour of the aerogel composites was analysed. At the same time, 

in an attempt to improve the properties of PVOH/clay composites, different flame 

retardant agents were added into the clay-polymer colloidal system to produce 

modified aerogel composites via the freeze-drying method.  

 

 

4.2 Experimental Section 

 

4.2.1 Materials 

Polyvinyl alcohol and sodium montmorillonite were used throughout this chapter. 

Aluminium trihydroxide, Ammonium polyphosphate compound (APP, budit3079), 

Silica gel and potassium carbonate were chosen as flame retardant agents to modify 

the properties of PVOH-clay aerogels. The details of all the materials could be seen in 

chapter 3. All ingredients were used without further purification. 

 

4.2.2 Aerogels Preparation 

PVOH/clay aerogel composites were prepared by combining clay gels and polymer 

solutions following the method described in section 3.2. PVOH water solutions were 

prepared by magnetically stirring at 80 ºC until a transparent solution was observed. 
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The final polymer-clay sol was frozen followed by liophilizition. The composites 

were coded xPyC, where x and y correspond to polymer and clay weight concentration 

in precursor suspension, respectively.  

Aerogels modified with flame retardant (FR) fillers were prepared using the 

same freeze-drying method. Both flame retardant agents and clay were dispersed in 

the same baker with deionized water and then mixed with polymer solution. All the 

components in the aerogels were noted by its weight ratio to 100ml of deionised water. 

For example, sample 5P5C2APP means that the weight ratios of PVOH, clay and APP 

are 5%, 5% and 2% respectively. The composite 5P5C was set as the control sample. 

 

4.2.3 Characterization 

All the characterization methods are described in detail in chapter 3. Composite 

aerogels were characterized by compression, instrumented impact, scanning electron 

microscopy, thermogravimetric analysis and cone calorimetry. 

  

 

4.3 Results and Discussion 

 

4.3.1 Influence of Polymer/Clay Ratio on the Structures and Mechanical 

Properties of Aerogels 

 

(a) Morphology and Microstructure 

The PVOH/clay aerogels exhibited a lamellar morphology in which clay particles 

were linked edge-to-face much like a “house of cards” owing to opposite surface and 

edge charges that exist in clays as was reported by Van Olphen [9]. The pocket holes 

within the aerogels, as seen in Figure 4.1, corresponded to the position previously 

occupied by the ice that was removed during the freeze-drying process. In the 

cylinder-shaped aerogel specimens, the orientation of layers was mainly radial and 
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vertical because ice crystal nucleation initiated mainly on surface and growth towards 

the centre of the gel. Due to the large temperature gradient at the surface, it is likely 

that these crystals grow in the shape of dendrites. Although radial alignment was the 

prevailing orientation, it was not fully continuous because of distortions and collisions 

that occurred between growing ice paths. Also, the different speed of the growing ice 

depends on its distance to the cooling bath, being an important parameter determining 

the final morphology. 

 

 

Figure 4.1 Lamellar structure of a PVOH/clay aerogel 

 

Water freezing is a dynamic process relying on the external freezing rate, the 

solute concentration and solute size [10, 11]. Wang et al have studied the effects of 

freezing conditions on the morphology and mechanical properties of the PVOH-clay 

aerogels [12]. Herein, the PVOH/clay ratio is related with the viscosities of 

suspensions and should affect the ice crystal formation under same freezing rate. 

Therefore, viscosities of PVOH-clay precursor suspensions were measured and the 

results are shown in Table 4.1. It can be observed that the viscosities of the precursor 

suspensions increased more rapidly with clay concentration than with the one of 

polymer.  

To further investigate the effect of polymer/clay ratio on the aerogels structures, 

solid densities and porosities of the aerogels were measured through a helium 
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pycnometry. Table 4.1 lists the apparent density (ρapp), theoretic solid density (ρts), 

experimental solid density (ρes) and porosity of the tested samples. The results 

displayed in Figure 4.2 indicated that the porosity decreased linearly with the aerogel 

apparent density. 

 

Table 4.1 Viscosity of precursor suspension and density, porosity of PVOH-clay aerogel 

Samples Viscosity (mpa s) ρapp (g/cm
3
) ρts (g/cm

3
) ρes (g/cm

3
) Porosity (%) 

2.5P2.5C 40±4 0.068±0.001 1.93 1.926±0.004 96.5±0.1 

2.5P5C 152±4 0.069±0.001 2.15 2.135±0.005 96.8±0.1 

5P2.5C 158±6 0.092±0.002 1.71 1.977±0.003 95.3±0.2 

5P5C 222±4 0.105±0.004 1.93 1.890±0.004 94.4±0.2 

5P7.5C 585±10 0.116±0.003 2.06 1.885±0.003 93.8±0.2 

5P10C 1460±30 0.136±0.002 2.15 1.982±0.003 93.1±0.1 

7.5P5C 550±10 0.139±0.003 1.80 1.681±0.002 91.7±0.2 

10P5C 800±10 0.180±0.006 1.71 1.604±0.004 88.8±0.1 

 

 

Figure 4.2 Relationship of the porosity and the apparent density of PVOH-clay aerogel 

 

The aerogel density was found to monotonically increase with either the polymer 

or clay content, as shown in Figure 4.3a. Moreover, clay content had three times 

lower effect on the apparent density than the one of polymer. This tendency was also 

valid for the effect of PVOH or clay content on the porosity of the aerogel as shown 

in Figure 4.3b. This is because the volume stability of resultant aerogels is more 

affected by clay inorganic fillers than PVOH, of which molecular chains shrinkage 



PVOH-clay Aerogels and Flame Retardant Modified PVOH-clay Aerogels 

63 
 

due to internal stresses caused by freeze-drying [13]. 

 

 

Figure 4.3 Apparent density (a) and Porosity (b) of aerogels versus PVOH or clay 

concentration. 5P and 5C mean constant PVOH and clay concentration, respectively 

  

Morphologies of the PVOH-clay aerogel composites were studied using SEM. 

Results are displayed in Figure 4.4. Previous studies [1, 12] indicated that the PVOH 

molecular chains can strongly interact with the clay platelets by hydrogen bonds, 

creating a three-dimensional polymer/clay network which was exemplified in all the 

SEM photos. Polymer phase was mainly located at the interface linking clay layers. 

When the amount of polymer was raised from 5% to 10%, the fraction that connected 

adjacent layers increased as observed when Figure 4.4a and Figure 4.4b were 

compared. On the other hand, the increase of viscosity reduced the rate of crystal 
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growth by decreasing the rate of water diffusion to the surfaces of growing crystals, 

thus generating smaller ice crystals [14]. As a result, the layers increased in thickness 

with the increase of viscosity, while interlayer spacing showed a reversed trend. This 

tendency can be visually observed in Figure 4.4. 

 

Figure 4.4 SEM image aerogel (a) 5P10C and (b) 10P10C 

 

It should be mentioned that only certain compositions resulted in robust aerogels. 

When the ratio between polymer and clay was extreme (10P2.5C or 2.5P10C), 

aerogels were not mechanically stable. In the first case, the shrinkage of the polymer 

after ice sublimation caused the collapse of layers, whereas in the second case the 

amount of polymer was not enough to bind clay layers and give adequate mechanical 

properties. 

 

 

(b) Mechanical Properties 

The compression of aerogels yields the typical behavior of elastic-plastic foams. At 

very low strains (<5%), an elastic response was observed (see Figure 4.5) followed by 

a plateau at intermediate strains and a final densification occurred at high strains [15]. 

For the sake of clarity, only some results are shown in the compressive curves from 

Figure 4.5. The compressive mechanical performance parameters are listed in Table 

4.2, including Young‟s moduli (E), compressive strength at 10% strain (σ 10%) and 

specific moduli (Es).  
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Figure 4.5 Stress-strain compression curves for PVOH-clay aerogels 

 

Table 4.2 Mechanical properties of PVOH-clay aerogels 

 

The effect of clay or polymer concentration was clearly seen as an increase of 

both the compression modulus and the maximum compressive stress. To analyze the 

influence of polymer/clay ratio in the mechanical properties of the PVOH/clay 

aerogels, the quantity of one of the components was kept constant (5% wt). The 

compressive strength at 10% of deformation and the modulus were found to present 

power-law dependence. The exponent defining the polymer dependence was 2.07 for 

compressive strength at 10% stain and 2.46 for the modulus respectively as shown in 

Figure 4.6. However, when the amount of clay varied, the exponent remained 

unchanged at about 0.9 for both strength and modulus. It suggested that polymer has 

stronger influence than clay on mechanical properties, an effect similarly observed for 

the density and porosity. This is because PVOH plays the dominant role in 

Samples 
Compression Impact 

10% (kPa)  E (MPa)  Es (MPa/g cm
-3

) σmax (MPa) εmax (%) 

2.5P5C 21±2  0.37±0.12  5.36±1.74 0.58±0.07 51±10 

5P5C  88±18  2.28±0.51  21.71±4.85 0.66±0.06 46±6 

7.5P5C  196±32  4.91±0.27  35.32±1.94 0.72±0.04 27±1 

10P5C  430±59  11.97±1.35  66.50±7.50 0.99±0.02 16±<1 

5P2.5C  48±3 1.19±0.34 12.93±3.70 0.77±0.03 70±16 

5P7.5C  125±12  2.64± 0.41  22.76±3.53 0.57±0.01 39±2 

5P10C  167±5  4.78± 0.59  35.15±4.34 0.57±0.03 32±2 
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maintaining the integrity of aerogel by encapsulating and bridging clay particles [16]. 

Therefore, the amount of polymer causes a substantial improvement on the 

mechanical properties under compression. Moreover, specific moduli of the aerogels 

linearly increased with the apparent densities of aerogels, as observed in Figure 4.7. 

This suggested that a good adhesion is created between PVOH and clay nanoparticles.   

 

 

Figure 4.6 Compressive strength (a) and modulus evolution (b) versus PVOH and clay 

concentration 

 

 

Impact tests of the aerogels were performed by instrumented falling weight. For the 

sake of clarity, only some curves are displayed in Figure 4.8. The aerogels were found 

to behave similar trends as compression tests. The maximum stress (σmax) and the 
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maximum deformation (εmax) at the impact tests of all PVOH/clay aerogels are 

recorded and shown in Table 4.2. 

 

 

Figure 4.7 Specific modulus variation as a function of apparent density of PVOH-clay 

aerogels 

 

 

Figure 4.8 Impact stress-strain curves for PVOH-clay aerogels 

 

It could be observed from Figure 4.8 that the structure behaves in a more rigid 

manner when the amount of polymer is raised in the aerogel. Sample 10P5C exhibited 

the greatest elasticity region, lowest maximum deformation (16%) and highest 

strength (0.99 MPa), whereas 2.5P5C presented highest deformation (51%). This is 

mainly driven by the increase of density and structural integrity of aerogel composites. 

When the impact tests are conducted, the fraction of polymer connecting adjacent clay 
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layers by hydrogen bonding prevents them from premature buckling and the clay 

layers encapsulated by polymer bear the load vertical to the layers. Higher polymer 

content results in denser polymer binding and a stronger bonding interface. However, 

increasing the amount of clay at fixed proportion of polymer (5PyC series) did not 

bring out a remarkable change on the impact response. This can be attributed to the 

inorganic clay nanoparticles that acted only as reinforced fillers without significant 

enhancement of the interfacial adhesion between polymer and clay.   

 

 

4.3.2 Modified PVOH/Clay Aerogels by Different Flame Retardant Fillers 

 

(a) Apparent Density and Morphology 

The apparent density of a porous solid is a measure that includes both the volume of 

the solid as well as the one of the voids of either open or closed type. Table 4.3 shows 

the results of apparent densities of different aerogel composites. The presence of 

additives slightly raised the density due to the higher solid content and an increase in 

precursor solution viscosity. When a solution with a higher viscosity is frozen, the 

growth rate of ice crystals slows down because of the higher resistance to ice 

formation. Smaller ice crystals are generated and thus the volumetric expansion of the 

aerogel is reduced. 

ALH particles can be partially hydrolyzed in water and be absorbed on the 

surface of clay platelets which strengthened the effect of hydrogen bonds and 

decreased the interlayer spacing (see Figure 4.9(b)). It may have a positive effect on 

the mechanical properties. Upon incorporating 2%wt of APP, the lamellar architecture 

was destroyed, as shown in Figure 4.9(c). It should be pointed out that the addition of 

APP increased the viscosity of the precursor solution when it was prepared. Therefore, 

the mobility of PVOH molecular chains and clay platelets‟ ability to rearrange were 

limited, producing a random or disordered structure instead of a highly ordered 

lamellar architecture. Aerogels with silica gel and SG/PC kept the similar porous 
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lamellar structure. However, the amount of polymer fibrils connecting clay platelets 

was visibly reduced in comparison to the control samples.  

 

 

Figure 4.9 SEM micrographs of aerogel composites. (a) 5P5C; (b) 5P5C5Al(OH)3; (c) 

5P5C2APP; (d) 5P5C1SG0.6PC  

 

 

(b) Mechanical Properties 

The modified PVOH-clay aerogels still displayed a classic compressive behavior of 

elastic foam as shown in Figure 4.10. The results showed that the compressive yield 

stress and compressive modulus of these materials decreased to some extent with 

addition of different flame retardant particles except for the case containing ALH 

particles (see Table 4.3).  

With the addition of 5% ALH, coherent aerogels exhibited 35% compressive 

strength (at 10% strain, 10%) but nearly same modulus as control samples. The 

5P5C5Al(OH)3 aerogel possessed a layered architecture with the PVOH encapsulating 
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and bridging the particles. The rigid inorganic ALH particles seemed to accumulate 

predominantly on the surface of clay platelets, which may be the reason for the 

compressive stress enhancement.   

 

 

Figure 4.10 Compressive curves of PVOH-clay aerogels with FR fillers 

 

Table 4.3 Apparent densities and mechanical properties of modified PVOH-clay aerogels 

Samples 
ρapp 

(g/cm
3
) 

Compression Impact 

10% (MPa) E (MPa) max (MPa) ε max (%) 

5P5C 0.105±0.004 0.088±0.018 2.3±0.5 0.66±0.06 47±3 

5P5C5Al(OH)3 0.148±0.003 0.119±0.011 2.1±0.4 0.54±0.01 34±2 

5P5C2APP 0.115±0.003 0.048±0.004 0.8±0.2 0.46±0.01 62±3 

5P5C0.5SG 0.106±0.004 0.041±0.010 0.8±0.3 0.44±0.01 51±5 

5P5C0.5SG0.3PC 0.110±0.003 0.060±0.014 0.9±0.2 0.51±0.01 49±2 

5P5C1SG 0.112±0.004 0.065±0.016 1.1±0.2 0.55±0.01 45±3 

5P5C1SG0.6PC 0.119±0.005 0.057±0.007 1.0±0.4 0.50±0.03 44±1 

APP: Ammonium polyphosphate; PC: Potassium carbonate; SG: Silica gel. 

 

When 2% APP was added to the original solution, the resulting aerogel 

composites did not show their typical architecture. Instead, the clay layers were found 

to be distorted and agglomerated, making the material lose its ability to absorb and 

transfer loads. As a consequence, lower mechanical properties were obtained. The 

effect of APP on the aerogels mechanical performance was similar to the one of 

diammonium phosphate on bio-composites made with PLA and PP [17]. 

Also, the aerogels containing 0.5% SG were found to have a reduction of 10% 
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and moduli by nearly 50% and 65% respectively in comparison to the control sample. 

The decrease in the amount of PVOH fibrils connecting adjacent clay layers was 

thought to be the main reason for this yield strength reduction because the main role 

of fibrils is to transfer stress and prevent the clay layers from separating or undergo 

premature buckling. Further increase of SG amount in control sample (1 wt%) did not 

affect the mechanical properties. 

 

 

Figure 4.11 Impact tests curves of PVOH-clay aerogels with FR fillers 

 

For the impact tests, in all cases the initial impact energy was fully absorbed by the 

specimens. In general, similar tendencies to the ones found in compression tests were 

observed. Although since the strain rate in impact conditions was not a constant value, 

the results cannot be directly compared [18]. The incorporation of flame retardant 

agents affected the degree of interfacial bonding between clay particles and polymer 

matrix. The impact tests results indicated that these interfaces tended to weaken when 

fillers were incorporated. The exception was the composite with ALH. The addition of 

ALH particles increased the rigidity of the aerogel as can be seen in the stress-strain 

plot of Figure 4.11. The sample with 5 wt% of ALH exhibited higher modulus and 

lower deformation showing the reinforcing effect of the filler.  

As it can be also seen in Figure 4.11, the APP had an adverse effect on the impact 

properties with an average decrease on the maximum stress of about 30% comparing 

to the 5P5C samples (see Table 4.3). In addition, small cracks were visible in the 
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surface of the compressed samples, which was an indication of a lower interfacial 

adhesion between particles and matrix. Lacking of lamellar architecture in these 

composites (see Figure 4.9c) made the aerogel capable of bearing higher deformations 

but at the cost of reducing the maximum load they can withstand.  

Finally, the effect of silica gel on impact behaviour was evaluated. In the 

5P5C0.5SG aerogel, a significant reduction in maximum stress was observed and 

deep cracks appeared after impact indicating the collapse of the structure. By 

increasing the concentration of silica gel to 1%, the aerogel became harder and fewer 

cracks appeared on the surface compared with sample 5P5C0.5SG, as seen in Figure 

4.12.  

 

 
Figure 4.12 Modified PVOH-clay aerogel samples photos after impact tests: (a)5P5C; 

(b)5P5C5Al(OH)3; (c)5P5C2APP; (d)5P5C0.5SG; (e)5P5C1SG 

 

 

 

(c) Thermogravimetric Analysis 

Figure 4.13 shows thermogravimetric analysis results of PVOH/clay aerogel with 

different FR agents and the control sample 5P5C. These aerogels displayed similar 

decomposition patterns on two main steps of weight loss. The first step, observed 

from 60 °C, was attributed to the removal of absorbed water. The wide temperature 

range of moisture lose (60 °C~130 °C) was likely due to the highly tortuous path 
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created by the layered clay structure. The second step, occurring after the onsets of 

aerogels degradation (at 5% weight loss after 150 
o
C), was related to the 

decompositions of PVOH or flame retardant agents. Table 4.4 shows the temperature 

at 5% mass loss after 150 
o
C (Td5%), temperature at maximum mass decomposition 

rate (Tdmax), maximum mass decomposition rate (dW/dTmax) and residue amount (WR), 

respectively.  

 

 

Figure 4.13 TGA curves of PVOH/clay aerogel and PVOH/clay aerogel composites with 

different FR fillers 

 

Table 4.4 TGA data of FR fillers modified PVOH/clay aerogels  

Samples Td5% (ºC) Tdmax (ºC) dW/dTmax (%/ºC) WR (%) 

5P5C 242 254 0.85 41.1 

5P5C5Al(OH)3 243 276 0.58 52.7 

5P5C2APP 223 235 0.23 33.8 

5P5C0.5SG 241 249 0.28 49.7 

5P5C1SG 239 252 0.15 45.8 

5P5C0.5SG0.3PC 228 239 0.12 51.7 

5P5C1SG0.6PC 215 233 0.17 49.5 

 

It was found that the addition of 5 wt% ALH significantly reduced the amount of 

bonded water in the aerogel. This is because the content of hydrophilic PVOH 

decreases and aerogel porosity reduces with the addition of ALH. PVOH-clay aerogel 

was observed to begin to decompose at 242 °C, which was overlapped with the 
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decomposition of ALH occurring at 240 °C [8]. There was no apparent retardation on 

Td5% before 300 
o
C by incorporating ALH. However, the rate of weight loss of the 

aerogel reduced and temperature at maximum decomposition rate increased. Both the 

endothermic dehydration of ALH and the formation of an alumina layer are 

responsible for this improvement in thermal stability [6].    

Sample 5C5P2APP began to decompose at lower temperature (180°C) 

comparing with the control sample. However, studies carried out on PVOH/APP/clay 

systems [19] have demonstrated a synergistic effect between APP and clay. The 

5C5P2APP aerogel presented a much slower rate of decomposition at temperatures 

between 250 ºC and 650°C than the control sample due to the retardant effect of the 

APP which is known to react with hydroxyls to form a cellular charred layer on the 

surface, limiting the heat transfer.   

It was reported [4] that silica gel could increase the rate of ash formation which 

is known to act as insulator between the flame and the burning material. In a similar 

manner PC can play a synergistic role on the silica gel which improved its effect as a 

flame retardant agent [4, 20]. At temperatures higher than 270 ºC, the addition of 0.5 

wt% silica gel reduced the rate of weight loss of the aerogel. However, no significant 

changes were observed by increasing concentration of silica gel from 0.5% to 1%. 

Doping with PC, the weight loss rate reduced slightly compared with PVOH/clay/SG 

samples, which was associated to an increase in the amount of ash generated during 

the test. However, the presence of K
+
 increases the concentration of radicals, 

accelerating the oxidation reactions of polymer [21]. Therefore, the T d5% and T dmax 

decreased with the addition of PC. 

In summary, the addition of flame retardant fillers to PVOH aerogels decreased 

the rate of weight loss at temperatures higher than 250 ºC whereas the onset of PVOH 

decomposition was not affected.  
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(d) Combustion Behaviour 

Cone calorimetry is a testing method which can quantitatively analyze flammability 

by measuring the heat release rate (HRR) from a sample on bench-scale, and is widely 

used to predict the burning behavior of materials under real fire conditions. The fire 

behavior of modified PVOH/clay aerogels was investigated using this method. The 

flammability data, such as peak of heat release rate (PHRR), total heat release (THR), 

time to peak of heat release rate (TTPHRR), and fire growth rate (FGR), are 

summarized in Table 4.5. FGA is defined by the ratio of PHRR to TTPHRR, which is 

an indicator of flame spreading rate. The FGA of 5P5C5Al(OH)3 and 5P5C2APP 

decrease to 0.5 and 0.4 respectively, which suggests aerogels modified with ALH and 

APP exhibit much lower tendency to burn compared with 5P5C and traditional EPS 

foams of which FGA value are 2.0 and 5.7, respectively [22]. 

 

 

Figure 4.14 Heat Release Rate of PVOH/clay aerogel and PVOH/clay aerogel composites with 

different FR fillers as a function of burning time 

 

Figure 4.14 shows heat release rate data for the aerogels with flame retardant 

agents in comparison to the control sample 5P5C. The addition of 5 wt% ALH 

decreased the peak of heat release rate nearly by 33%, which suggested this aerogel 

composite had a higher flame resistance compared to the unmodified one. ALH was 

decomposed into aluminum oxide and water in the temperature range from 200ºC and 

300°C as shown in TGA tests. The evaporation of H2O diluted the combustible gases 
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and absorbed part of the heat of combustion. Theoretical transformation of ALH to 

Al2O3 made PVOH/clay/ALH samples contain a higher percentage of residue than the 

control one. The decomposition of ALH into Al2O3 improved the thermal conductivity 

of aerogels and reduced the peak of heat released rate. It was reported that the 

effectiveness of ALH tended to be limited since relatively large amounts of the filler 

were needed for adequate flame retardancy (over 60 wt%) [8]. However, in this work, 

only 33 wt% ALH were used and mixed with 33 wt% inorganic clay. The fire 

resistance effect seemed to be similar to the ALH/Si3N4 compound [23].  

The incorporation of 2 wt% APP into aerogel reduced the heat release rate peak 

by 36% in comparison to control sample. However, more total heat release was 

produced. This could be explained through the mechanism of intumescence [19]. In 

this mechanism, ammonium polyphosphate acts as a flame retardant by a chemical 

effect in the condensed phase. When the aerogel that contains APP is exposed to fire 

or heat, the APP starts to decompose at 180°C, commonly into polymeric phosphoric 

acid and ammonia. The polyphosphoric acid reacts with hydroxyl groups of PVOH to 

form an unstable phosphate ester, which afterwards undergoes the dehydration. A 

cellular char was built up on the surface exposed to the heat source, which acted as an 

insulation layer, preventing further decomposition of the material underneath.  

There were only 7% and 2% reductions in peak of heat release rate of the 

5P5C0.5SG and 5P5C1G samples, respectively. Moreover, in the aerogel with 1% SG, 

the total heat released decreased as a result of the accumulation of SG ash on the 

surface of aerogel composite during combustion [19]. Although the TGA tests 

estimated the synergistic effect of K2CO3 on aerogels with silica gel, there was no 

significant change in the peak of heat release rate and total heat released in the cone 

calorimeter tests. It was reported that the present of K2CO3 increased the ability to 

generate silica gel ash and protect the polymer from fire or heat [4], which is 

associated with the changes of TTPHRR values. However, the effects of K2CO3 

particles on PHRR and THR were shown to be very limited in PVOH/clay aerogel 

systems. 
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Table 4.5 Burning parameters of modified PVOH/clay aerogels 

Samples 
PHRR 

(kW/m
2
) 

THR 

(MJ/m
2
) 

TTPHRR 

(s) 

FGR 

(W/s) 

WR 

(%) 

5P5C 182 9.0 9 2.0 61.9 

5P5C5Al(OH)3 122 8.6 27 0.5 65.7 

5P5C2APP 115 12.3 30 0.4 57.4 

5P5C0.5SG 168 9.2 12 1.4 61.1 

5P5C0.5SG0.3PC 174 9.3 24 0.7 59.1 

5P5C1SG 179 6.8 15 1.2 65.7 

5P5C1SG0.6PC 191 6.7 12 1.6 62.8 

 

 

 

4.3.3 PVOH-Clay Composite Aerogels Modified With Different Amount of ALH 

 

In light of the previous experiments, it was found that the mechanical properties as 

well as flame retardant properties of the PVOH-clay composite aerogels could be 

improved by adding ALH. To further exploit the effect of ALH on the properties of 

the aerogels, PVOH-clay aerogels with different amounts of ALH were investigated.    

With the increase of ALH in PVOH/clay aerogel, the characteristic clay layers 

increased in thickness and the fracture surfaces became rougher (see Figure 4.15a). 

This is because ice growth is affected by the partial hydration of ALH. The formation 

of electrolyte depresses the freezing point and leads to slower ice crystal growth. In 

addition, ALH particles with large dimensions retard the ice growth [24]. Therefore, 

both polymer and filler have sufficient time to diffuse out of the icy crystal region and 

aggregate between grain boundaries [2]. 

The compressive curve of sample 5P5C7.5ALH is shown in Figure 4.15b. The 

Young‟s modulus and compressive strength at 10% strain were 5.7 MPa and 0.124 

MPa respectively with an apparent density 0.154 g/cm
3
. Compared with sample 

5P5C5ALH, the specific modulus became over 2 times higher. This is because the 

hydrated Al
3+

 affects the freezing process which is responsible for the change of 

aerogel structure and corresponding improvement in mechanical properties. 
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          Figure 4.15 SEM photo (a) and compressive curve (b) of sample 5P5C7.5ALH 

 

 

Figure 4.16 TGA curves of PVOH-clay aerogels modified with different amount of ALH 

 

Table 4.6 TGA parameters of PVOH-clay aerogels modified with different amount of ALH 

Samples 
Td 5% after 

150 ºC (ºC) 

Td max 

(ºC) 

dW/dTmax 

(%/ºC) 
WR (%) 

5P5C 242 254 0.85 41.1 

5P5C5ALH 243 276 0.58 52.7 

5P5C7.5ALH 243 276 0.53 48.6 

5P5C10ALH 247 276 0.54 55.0 

 

The TGA decomposition curves of the aerogels are shown in Figure 4.16 and the 

detailed parameters of thermal stability are listed in Table 4.6. Samples modified with 

ALH showed different decomposition patterns in regard to the control sample (5P5C), 

mainly displaying on the stage of char formation (350-450 
o
C). This indicated a high 

loading of ALH increased the char formation of PVOH/clay aerogels. 
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The decomposition of ALH released 35% water of crystallization into the gas 

phase which can absorb heat and dilute the concentration of combustive gas during 

the pyrolysis [8]. On the other hand, Al2O3 layers obtained from pyrolysis of ALH 

formed a protective shield for polymer beneath. Lower decomposition rates and Tdmax 

were obtained with addition of higher amounts of ALH. However, the thermal 

stability of aerogels did not change when the ALH content exceeded 5 wt%. This 

suggests 5 wt% is the maximum amount for sample 5P5C. 

For the cone calorimetry test, the composite aerogels underwent similar pyrolysis 

process as shown in TGA experiments. The combustive parameters obtained are 

shown in Table 4.7. The flame retardant properties of aerogels were improved as 

expected. Increasing the ALH amount into 10 wt%, the peak of HRR decreased from 

182 to 72 kW/m
2
 and fire growth rate lowered by nearly 9 times comparing to the 

sample without modification. Also, higher amount of ALH prolonged the TTPHRR. 

This is mainly due to the diluting effect of the decomposed vapour in the gas phase. In 

addition, the second peak which appeared in the unmodified sample turned into a 

plateau stage in the HRR curve when ALH content was over 5 wt% (Figure 4.17). It 

contributes to the inorganic alumina layers generated during the pyrolysis process 

increased the density of cellular clay char, protecting the materials beneath [8] [25]. 

 

 

Figure 4.17 Combustive plots of PVOH/clay aerogels modified with ALH 
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Table 4.7 Burning parameters of PVOH/clay aerogels modified with different amount of ALH 

Samples 
PHRR 

(kW/m
2
) 

THR 

(MJ/m
2
) 

TTPHRR 

(s) 

FGR 

(W/s) 

WR 

(%) 

5P5C 182 9 9 2 61.9 

5P5C5ALH 122 8.6 27 0.5 65.7 

5P5C7.5ALH 94.8 6.7 27 0.35 54.1 

5P5C10ALH 72 8.5 30 0.27 58.4 

 

 

 

4.4 Conclusions  

 

Different PVOH/clay aerogels with compositions ranging between 2.5 wt % and 10 

wt% with either polymer or clay were prepared using a freeze-drying process. The 

porosities monotonically decreased with the apparent densities of aerogels. Moreover, 

polymer concentration was the most important factor affecting the porosities and 

apparent densities. The mechanical behavior observed under compression and impact 

tests indicated that the amount of polymer plays the major role on properties while 

clay content had minor effect. Nevertheless, a minimum clay level (2.5 wt %) was 

necessary to obtain mechanically robust aerogels. In terms of the microstructure, an 

increase in the amount of PVOH implied that a greater polymer fraction was linking 

adjacent clay layers. On the other hand, the increase of clay loading led to a structure 

with thicker layers. 

For the PVOH/clay aerogels modified with flame retardant fillers, the thermal 

and flame retardant properties were further determined. SEM images showed that all 

the aerogel composites had a layered structure that was only distorted with the 

addition of ammonium polyphosphate. The addition of flame retardant agents slightly 

increased the apparent densities of the aerogels. Compressive properties mainly 

depended on the interaction of polymer chains with clay platelets. In general, addition 

of FR fillers made the aerogels weaker because they interfered in the degree of 
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adhesion with PVOH. The compressive stress at maximum deformation decreased 

whereas under impact conditions, the same energy was absorbed with higher 

deformation of the structure. The exception was ALH which made the aerogels 

behave in a more rigid manner. In terms of thermal stabilization, flame retardant 

agents decreased the rate of weight loss at temperatures higher than 250 ºC whereas 

the onset of PVOH/clay decomposition was not affected. Cone calorimeter results 

showed that ALH and APP reduced the peak of heat released rate of unmodified 

PVOH/clay aerogels.  

It was proved that ALH can enhance the mechanical properties as well as the 

flame retardant properties of the PVOH/clay aerogels. The addition of higher amounts 

of ALH generated a layered structure with thicker layers. Especially when the ALH 

concentration in the solution was over 5 wt%, the layers significantly increased in 

thickness due to the ALH particles attached on the clay platelets. On the other hand, 

large-dimensional ALH particles retarded the ice growth reducing the spacing 

between the layers. However, the mechanical properties were slightly improved with 

the addition of high amounts of ALH. When ALH reached 10 wt%, the flame 

retardant properties were clearly enhanced. This effect is contributed to the 

decomposition of ALH, which generates vapor, absorbing heat and diluting the 

concentration of combustive gas. Moreover, inorganic alumina layers formed during 

the pyrolysis process creates protective barrier, retarding the burning. The TGA test 

also proved this role.  

Generally, this chapter showed the PVOH/clay exhibited excellent mechanical 

properties when proper polymer/clay ratio was designed. The thermal stability and 

flame retardant properties were improved by physically addition of flame retardant 

fillers. In addition, the ALH enhanced the mechanical properties as well as the 

thermal stability and flame retardant properties. It allows a way to prepare an 

alternative of traditional petroleum-based foams.  
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Chapter 5: Green Bio-based Aerogels Prepared from 

Recycled Cellulose Fiber Suspensions 

 

 

 

5.1 Introduction 

 

Aerogels prepared from renewable resources have been subject of considerable 

recently interest as promising bio-based alternatives for petroleum-derived foams. The 

potential applications of these bio-aerogels include lightweight construction, 

separation agents [1, 2], sensors [3] or supercapacitors [4], to mention a few.  

However, one of the most important issues that need to be addressed prior to the 

general use of bio-based aerogels is the improvement of their mechanical performance. 

Different approaches have been taken to enhance the mechanical properties of these 

aerogels, such as the addition of clay [5], the creation of chemical crosslinks [6] or the 

reinforcement with natural fibers [7]. Recently, strong and flexible aerogels based on 

cellulose nanofibers (CNFs) from wood pulp were prepared via freeze-drying [8, 9]. 

Robust CNFs aerogels were created thanks to the presence of strong hydrogen 

bonding between the fibers. Also, it was possible to alter the microstructures and 

mechanical properties by changing either the freeze-drying condition or the CNFs 

concentration in the precursor solution [10].  

Apart of natural sources like wood or plants, cellulose fibers can be obtained 

from paper or cardboard wastes. Although their mechanical properties are interior to 

than the ones of CNFs, this type of fibers could be used to make successful green 

industrial products. According to the statistics, recycling one ton of paper saves 

roughly 17 trees, 2.5 cubic metres of landfill space, 1.36 tons of water, 378.5 litres of 

gasoline, 27.2 kilograms of air pollutants, 10401 kilowatts of electricity [11]. 

Therefore, aerogels based on recycled cellulose fibers (RCF) could be a new 

http://pubs.rsc.org/en/content/articlehtml/2013/ra/c3ra42050g
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application for these residues. 

The earlier works from CNFs-starch biofoams [12, 13] suggests that it may be 

possible to obtain high-performance bio-based aerogels by combining cellulose fibers 

with polymers based on polysaccharides. Sodium carboxymethylcellulose (CMC) is 

an anionic water-soluble polysaccharide derivative with carboxymethyl groups bound 

to hydroxyl groups of the glucopyranose monomers that make up the cellulose 

backbone. Building on the earlier experience of preparing cellulose nanocomposite 

films [14], CMC addition is also considered a possible way to improve the mechanical 

properties of RCF aerogels.  

Flame resistance is another important parameter for foams. Previous work 

showed that sodium montmorillonite clay (Na
+
-MMT) is an efficient filler to enhance 

flame retardancy and thermal stability of the aerogels [15]. The presence of clay leads 

to the formation of a barrier during burning which isolates the underlying materials 

from the heat radiation. Ammonium polyphosphate (APP), a halogen-free intumescent 

flame retardant agent, has been studied in polyvinyl alcohol (PVOH)/clay aerogel 

composites from chapter 4, showing positive effects on the fire retardancy by a 

chemical reaction in the condensed phase. On the other hand, Zhao‟s work [16] 

showed that layered double hydroxide (LDH) played a synergistic role with APP on 

fire retardancy of PVOH. Clay has a similar structure than LDH, therefore a 

synergistic effect between clay and APP may be expected.  

In this chapter, a fully biodegradable biocomposite based on RCF/CMC was 

produced through a freeze-drying process. In addition, clay and APP were used to 

improve the flame retardancy of the prepared bio-based aerogels and to preserve their 

environmentally friendly character. The microstructures as well as the mechanical, 

thermal and fire behaviour of the bio-aerogels have been characterized. 

 

 

 

 

http://en.wikipedia.org/wiki/Hydroxyl
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5.2 Experimental   

 

5.2.1 Materials 

The raw materials for preparing aerogels were mentioned in Section 3.2. Recycled 

cellulose fibers (RCF) were produced according to the previous literature [17]. A pulp 

containing 10 wt% solids was finally obtained. The other ingredients like sodium 

carboxymethylcellulose, sodium montmorillonite and ammonium polyphosphate were 

used as received. 

 

5.2.2 Aerogel Preparation  

10 wt% of RCF pulp was initially diluted to appropriate concentration, followed by 

addition of the desired amount of CMC powder. The resultant suspensions were 

mixed under mechanical stirring at 80 
o
C until achieving homogenous mixtures 

(precursor suspensions). Then they were transferred into cylindrical vials of 30 mm 

diameter or into square-shaped molds (100×100 mm) and frozen over night in a 

freezer operating at -27 
o
C. Final aerogels were obtained using the lyophilization 

method discussed in chapter 3. The denomination of obtained samples is according to 

the constituents used followed by its respective concentration percentage in 100 ml of 

aqueous solution. For instance, F5C2.5 contains 5 wt% RCF and 2.5 wt% CMC; 

where F and C stand for RCF and CMC respectively. Same solid amounts remained in 

the aerogels when the ice was removed.   

Flame-retardant modified aerogels were prepared in a similar way. Firstly, clay 

and APP powders were both dispersed in (50 ml of) deionized (DI) water using an 

IKA Ultra-turrax disperser operated at 8000 rpm for 30 min. Then 50 ml of 

CMC/RCF suspension which contained 2.5 g of RCF and 2.5 g of CMC was added. 

The mixture was mechanically stirred until they became homogeneous and then it was 

freeze-dried. The resultant aerogels were named as MxAy, where M and A represent 

MMT and APP respectively; x and y are their concentration percentage in the final 
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precursor suspension. For example, M2.5A0.5 aerogel was prepared adding 50 ml 

water containing 2.5 g of MMT and 0.5 g of APP to 50 ml water containing 2.5g RCF 

and 2.5 g of CMC. The composition summary of all the prepared samples is shown in 

Table 5.1.  

 

5.2.3 Characterization 

Samples in this chapter were characterized using Helium pycnometry, mercury 

intrusion, SEM, compression, TGA, cone calorimetry and FTIR, which were 

discussed in Chapter 3.3 in detailed. The shrinkage degree (SD) of aerogels is 

calculated by comparing the diameter of the samples diameter before (Db) and 

diameter after (Da) freeze-drying and according to equation 5.1. Db was equal to the 

diameter of cylinder mold for preparing aerogels. 

 

SD= 100%b a

b

D D

D


                         5.1 

The moisture uptake of the samples and viscosity of the precursor suspension were 

also measured according to the method described in chapter 3. 

 

Table 5.1 Composition of the precursor suspension for preparing RCF/CMC/clay aerogels  

Samples RCF (wt%) CMC (wt%) Clay (wt%) APP (wt%) 

F2.5C0 2.5 0 0 0 

F0C2.5 0 2.5 0 0 

F2.5C1.2 2.5 1.25 0 0 

F2.5C2.5 2.5 2.5 0 0 

F3.7C2.5 3.75 2.5 0 0 

F5C2.5 5 2.5 0 0 

M2.5A0 2.5 2.5 2.5 0 

M2.5A0.2 2.5 2.5 2.5 0.25 

M2.5A0.5 2.5 2.5 2.5 0.5 

M0A0.5 2.5 2.5 0 0.5 
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5.3 Results and Discussion 

 

5.3.1 SEM Analysis 

The microstructure of pure RCF aerogel is shown in Figure 5.1a. In the micrograph, it 

can be seen that the fibers are distributed randomly without a defined alignment. Due 

to their large dimensions, fibers are not pushed aside by the growing ice and therefore 

no predominant orientation is observed. In contrast, CNF aerogels as previously 

reported in literature [8] displayed a cellular cross-section in which the cell wall 

consisted of CNFs, as a result of the much smaller fiber dimensions and faster applied 

freezing rate.   

Interestingly, when 1.25 wt% CMC was introduced into the precursor solution, a 

lamellar structure appeared in the resultant sample F2.5C1.2, as seen in Figure 5.1b. 

The molecules of CMC are pushed into interstitial regions of the ice upon the ice 

crystals growth. After ice sublimation, laminas are remained forming the typical 

“house of cards” aerogel structure [18]. Some fibers can also be found bridging the 

channels left by the ice.   

As measured by the apparent density, the porosity of aerogels decreased with the 

increase of CMC content, being more evident when Figure 5.1b and Figure 5.1c are 

compared. This effect is related to the amount of solids in the precursor suspension. 

The higher the amount of solids in the suspension, the lower is the ice expansion, thus 

decreasing the final apparent density. Moreover, aerogels with increasing amount of 

solids exhibited thicker layers, which was associated with the slow ice crystals growth 

in viscous suspensions.  

As expected, pure CMC aerogels displayed smooth layer surface (Figure 5.1d), 

which was similar with previous work on aerogels prepared from different types of 

thickening agents [5]. By adding 5 wt% of RCF (F5C2.5), the lamellar structure was 

lost due to fiber aggregation (Figure 5.1e). The maximum content of fiber to avoid 

this phenomenon was found to be 3.75 wt%.   

For the case of flame retardancy modified aerogels (Figure 5.1f), the absence of 
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isolated clay layers suggested that aerogel laminas were formed via CMC 

encapsulating clay nanoparticles again with intercalated fibers. Further addition of 

APP did not affect the microstructures of the RCF/CMC/clay aerogels. 

 

 

 

 

Figure 5.1 SEM micrographs of RCF/CMC aerogels: (a) F2.5C0, (b) F2.5C1.2, (c) F2.5C2.5, 

(d) F0C2.5, (e) F5C2.5, (f) M2.5A0 
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5.3.2 Porosity and Pore Distribution 

To further investigate the microstructure of aerogels, the porosity and the pore 

distribution of some of the samples were determined using a helium pycnometry and 

mercury intrusion respectively. Also the viscosities of precursor suspensions and the 

shrinkage of aerogels were measured as additional information. The results are 

represented in Table 5.2, such as shrinkage degree, precursor suspension viscosity, 

average pore size and porosities. 

The pore distributions of the aerogels are shown in Figure 5.2. Mercury pressure 

applied to the external surface of samples generates compressive stress that may 

collapse the pore especially when a high pressure is applied. However, the pore 

distribution curves in this study were smooth suggesting there was no buckling during 

the mercury penetration.  

 

Table 5.2 The moisture uptake, shrinkage, precursor suspension viscosity, pore size and 

porosity of the aerogels based on RCF/CMC  

Samples 
Moisture 

uptake (%) 

SD  

(%) 

Viscosity 

(m pa s) 

Pore size 

(μm) 

Porosity 

(%) 

F0C2.5 10.6±1.5 14.4±0.6 2280±40 40 98.0 

F2.5C2.5 6.6±0.9 10.5±1.8 1860±20 130 97.0 

F3.7C2.5 5.5±0.4 9.0±0.2 - - 96.2 

F5C2.5 5.4±0.5 7.7±0.2 - - 95.6 

F2.5C0 2.5±0.1 10.9±1.6 - - 98.6 

F2.5C1.2 5.1±0.3 12.1±2.6 330±10 150 98.2 

M2.5A0 4.3±0.4 8.1±1.0 1980±40 75 96.1 

“-”means not determined; all the error values of porosity are less than 1%. 

 

The sample F0C2.5 showed the highest viscosity in precursor solution and largest 

shrinkage as well as the smallest pore size. It is considered that CMC has a low 

crystallinity and is prone to shrink after ice sublimation because of hydrogen bonding 

between its molecules [19]. The precursor suspension viscosity of aerogels decreased 

with the increase of fiber content. When RCF are introduced, the cellulose fibers act 

as “plasticizer”, generating molecular interactions with CMC molecules. This will 

lower the strong intermolecular hydrogen bonding of CMC thus decreasing the 
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viscosity of precursor suspension. Also because of this plasticization effect of RCF, 

the RCF/CMC aerogel composites displayed lower shrinkage compared with pure 

CMC aerogel. Moreover, the shrinkage of the samples was further reduced with the 

increase of fiber content in the aerogels.  

 

 

Figure 5.2 Pore distributions of aerogels based on RCF/CMC 

  

Adding 50% fibers to sample F0C2.5 (F2.5C2.5), the pore dimension increased from 

40 to 130 μm. This is because the presence of high fiber loading reduces the aerogels 

shrinkage. On the other hand, the viscosity of precursor suspension plays an important 

role on the pore size of resultant aerogels. Lower viscosity allows ice crystals to grow 

faster to final larger size, which leaves larger pore after freeze-drying [20, 21]. Clay 

addition or usage of more CMC raised the viscosity of the suspension reducing the 

pore dimensions. Also, this tendency of pore size change was valid in SEM 

observation.   

 

 

5.3.3 Moisture Uptake 

The moisture uptake of the aerogels is also listed in Table 5.2. As expected, it was 

reduced at elevated fiber content. This is mainly due to the less hygroscopic nature of 

cellulose fiber compared to CMC [13]. However, when the RCF content was over 50 
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wt% in aerogel composites with same CMC amount, moisture uptake tended to be 

stable because the aerogels porosities do not change substantially.  

 

 

5.3.4 Compression Tests 

The compressive stress-strain curves of samples are presented in Figure 5.3. For most 

of them, the stress-strain behavior was linear at low strains with the slopes strongly 

depending on densities. At this stage, the deformation was mainly due to elastic 

bending of the cell walls. Then a “plateau zone” appeared due to cell collapse. Typical 

elastic-plastic polymer foams showed a horizontal plateau region after reaching a 

yield stress [22]. However, the present aerogel composites, especially those with 

comparatively higher densities, displayed a gradually increasing stress in this stage. 

At high strains, the densification occurred with the steep rising of the stress which is 

due to the opposing cell walls touching [22]. The optical microscope photos of sample 

F2.5C2.5 before and after compression are shown in Figure 5.4. It can be observed 

that the original layered structure was deformed and the layers touched with each 

other after compression test. The parameters defining the compressive mechanical 

behaviour of the aerogels are summarized in Table 5.3.  

 

    Table 5.3 Mechanical properties of aerogels based on RCF/CMC 

Samples 
ρapp 

(g/cm
3
) 

E  

(MPa) 

Es  

(MPa/g cm
-3

) 

σy  

(kPa) 

σsy  

(kPa/g cm
-3

) 

Ea at 70% ε 

(kJ/m
3
) 

F2.5C0 0.030 0.13±0.01 4.23±0.33 5.7±0.4 191±16 10.9±1.9 

F0C2.5 0.036 1.56±0.17 43.05±5.07 24.7±1.5 679±41 60.0±1.3 

F2.5C1.2 0.042 1.15±0.34 23.39±2.26 46.1±5.2 1093±123 55.9±2.3 

F2.5C2.5 0.057 2.87±0.78 56.21±8.91 77.6±4.2 1341±76 132.2±3.9 

F3.7C2.5 0.075 5.04±0.49 66.59±7.01 133.7±7.4 1767±92 201.6±14.9 

F5C2.5 0.087 4.16±1.21 61.31±5.62 164±15.8 1880±180 245.8±12.9 

M2.5A0 0.076 3.63±0.52 48.73±6.54 89.1±1.8 1436±478 154.8±4.4 

M2.5A0.2 0.082 3.25±0.49 39.31±5.83 109±43.8 1325±518 174.2±10.7 

M2.5A0.5 0.083 2.34±0.71 28.25±7.75 63.6±26.1 759±298 155.8±6.6 
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Figure 5.3 Compressive stress-strain curves of (a) RCF/ CMC aerogels and (b) flame 

retardancy modified aerogels 

 

 

Figure 5.4 Optical microscope photos of sample F2.5C2.5 before (a) and after (b) 

compression 
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The sample F2.5C0 showed much lower mechanical properties compared to 

those found in literature for CNFs aerogels which had a modulus of 1.36 MPa and 

yield strength of 92.7 KPa with a similar density (0.035g/cm
3
) [8]. This is because 

CNF aerogels have a cellular structure as well as the cell walls consist of nanofibers 

with much higher specific surface and mechanical properties than the ones used in 

this work. 

Pure CMC aerogel, F0C2.5, had a similar apparent density than F2.5C0 but 

behaved in a more rigid way. Also, the mechanical properties of F2.5C0 were 

enhanced through adding 1.25 wt% of CMC into its precursor suspension. Both the 

specific modulus (Es) and absorbed energy (Ea) were increased by nearly 4 times. The 

specific yield stress (σsy) became 5.7 times higher. Two factors contribute to this effect. 

Firstly, CMC can form stable structures due to the inherent self-association of the 

molecules via hydrogen bonding [23]. In second term, CMC and fibers have similar 

chemical structures and polarities which lead to the development of a good adhesion 

between them.     

A monotonic increase in the specific modulus and yield strength (σy) with the 

increase of CMC concentration is observed in Table 5.3. When more CMC is added to 

the aerogels, the density of links between fibers becomes higher, improving the 

integrity of the materials. The composite F2.5C2.5 had a modulus (E) of 2.87 MPa 

which was much higher than the modulus of cellulose whisker aerogel (778 kPa) with 

a density of 0.11 g/cm
3
 [24]. F2.5C2.5 presented a layered architecture connected 

with fibers (Figure 5.1c) as well as the strong molecular affinity between CMC and 

RCF as previously discussed. This makes the resultant aerogels behave in a much 

more rigid manner. 

In order to further investigate the effect of fiber content on the mechanical 

properties of RCF/CMC aerogel composites, aerogels with constant CMC 

concentration (2.5 wt%) were prepared. Table 5.3 shows that the modulus of the 

aerogels increased with the RCF content up to 3.75 wt% where a maximum was 

reached. F3.7C2.5 presented mechanical properties comparable to the ones of the 

CNF aerogel [8]. However, when the RCF amount was further increased, there was no 
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significant change in mechanical properties. This could be due to fiber aggregation in 

the precursor solution when its concentration reached a critical value. When fibers 

were in excess, they remained isolated in the obtained aerogel, having a lack of 

adhesion with CMC (Figure 5.1e).  

In the case of flame retardant modified aerogels, there was no significant 

improvement in the mechanical properties by the clay presence. Both CMC and clay 

possess negative charges on their surface and a weak interaction between them may 

be expected. This phenomenon was likewise found when testing clay-CMC films [14]. 

However, in the present case, clay was added to improve thermal and fire properties 

rather than the mechanical ones. APP incorporation reduced the mechanical properties 

of the RCF/CMC/clay aerogels in a similar way as described in previous chapter on 

PVA-clay-APP systems, which showed that the addition of APP had a side effect on 

the mechanical properties. The slight hydrolysis of APP decreased the pH value of the 

suspension, which had a negative impact on the interaction between fibers and CMC. 

 

 

5.3.5 Thermal Stability 

Generally, the TGA patterns of RCF/CMC aerogels can be divided into three steps 

(Figure 5.5). The first step below 150 
o
C is due to the evaporation of moisture 

absorbed by the aerogels. In the second stage, a rapid mass loss occurred above 250 

o
C, which involves the oxidative decomposition of the cellulosic molecular chains. A 

further increase in temperature leads to a slow thermal degradation, followed by a 

carbonization process in the final stage [25]. With the addition of APP or clay, the 

corresponding TGA curves changed, showing a new degradation step around 400 
o
C. 

This step may be due to the formation of char which delays the decomposition rate. 

The parameters for the thermal stability of each sample, such as the onset of 

decomposition temperature Td5%, the temperature at maximum weight loss rate Tdmax, 

the maximum weight loss rate dW/dTmax, and the residue amount at 600 
o
C are listed 

in Table 5.4. Td5% is defined as the temperature at which 5% weight loss beyond total 
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water evaporation, which occurs at 150 
o
C. 

 

 

Figure 5.5 TGA weight loss curves of aerogels based on RCF/CMC 

 

Table 5.4 TGA data of aerogels based on RCF/CMC 

Samples Td5% (
o
C) Tdmax (

o
C) dW/dTmax (%/

o
C) WR (%) 

F0C2.5 260.7 282.6 1.12 37.5 

F2.5C0 276.6 342.2 0.60 45.2 

F2.5C2.5 265.8 290.7 0.72 45.6 

M2.5A0 281.6 304.3 0.35 44.9 

M2.5A0.2 270.9 301.1 0.33 46.8 

M2.5A0.5 272.2 311.3 0.31 46.9 

M0A0.5 262.8 304.3 0.53 25.5 

 

Sample F2.5C2.5 showed a decomposition behaviour which was intermediate 

between the pure components. RCF showed a lower rate of degradation and a higher 

stability than CMC due to its higher crystallinity degree [19]. 

With the addition of clay, the thermal stability of the aerogel was enhanced. Both 

Td5% and Tdmax increased by nearly 15 
o
C, and the maximum weight loss rate dropped 

by about 50%. Inorganic clay nanoparticles played a role of thermal insulator, 

protecting the polymer of being decomposed rapidly as has been reported in previous 

works [5]. The incorporation of 0.5 wt% of APP into F2.5C2.5 did not markedly 

affect the Td5%. However, the Tdmax increased by nearly 15 
o
C and dW/dTmax decreased 

from 0.72 to 0.53. This suggests that the kinetic thermal stability was enhanced due to 
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the retardant effect of the APP. APP is able to react with the hydroxyl groups of the 

cellulose pyranose ring to yield a cellular compact char, limiting the heat transfer [16].  

M2.5A0.2 showed slightly higher char residue and lower decomposition rate as 

compared to M2.5A0. Increasing the amount of APP to 0.5 wt%, Tdmax increased by 7 

o
C, indicating a certain synergistic effect on the thermal stability. However, the 

addition of APP lowered Td5% of M2.5A0 because the APP decomposition started at a 

lower temperature (about 200 
o
C). 

 

 

5.3.6 Cone Calorimetry 

The relevant flammability data of modified RCF/CMC aerogels samples from cone 

calorimetry tests are summarized in Table 5.5, which includes time to flame 

extinguish (te) and the other parameters that were defined in chapter 4. The 

combustion patterns in terms of heat release rate as a function of their burning time 

are illustrated in Figure 5.6. In addition, photos of the char of flame 

retardant-modified aerogels after cone calorimetry tests are shown in Figure 5.7.  

     

 

Figure 5.6 Heat release rate of flame retardancy modified RCF/CMC aerogels 

 

Unmodified sample displayed a typical combustion behaviour described in previous 

works on bio-based aerogels [26]. Its HRR pattern started with a vigorous burning 
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episode followed by a long fire disappearing region with low HRR values. With the 

addition of APP or clay, the initial combustion step was delayed and HRR plots 

decreased in height and flattened out prior to completing the test. Sample M0A0.5 

should show a continuous HRR plot, however it displayed a combustive pattern with a 

valley in the initial stage. This is because the sample was cracked upon burning (see 

Figure 5.7b) and protective layer was broken, which transiently allows the fire 

transmission from the top to the bottom of the samples. 

 

 

Figure 5.7 Photos of the chars of flame retardancy modified aerogel samples after cone 

colorimetry tests: (a)F2.5C2.5, (b)M0A0.5, (c)M2.5A0, (d)M2.5A0.5 

 

Table 5.5 Combustive parameters of flame retardancy modified RCF/CMC aerogels 

Samples 
Mass 

(g) 

te 

(s) 

TTPHRR 

(s) 

PHRR 

(kW/m
2
) 

FGR 

(kW/m
2
 s) 

THR 

(MJ/m
2
) 

WR 

(%) 

F2.5C2.5 4.0 106 30 90.2 3.01 5.03 23.1 

M2.5A0 5.1 28 48 49.5 1.03 4.64 41.2 

M2.5A0.2 5.4 36 51 28.7 0.56 4.05 43.6 

M2.5A0.5 5.5 15 48 39.8 0.83 3.5 42.9 

M0A0.5 4.8 45 39 81.6 2.10 5.58 24.0 

 

When 10% APP was added to F2.5C2.5 (sample M0A0.5), the PHRR decreased 

by 9.5% and the FGR also reduced by nearly 30%. Moreover, the time to peak heat 

released rate (TTPHRR) became 9 seconds longer. This is mainly attributed to the 
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formation of an intumescent char network as discussed in the thermal stability section. 

On the other hand, APP decomposition produced inert gas (NH3), which also dilutes 

the combustive fuel in the gas phase.     

It has been widely accepted that clay served as a flame retardant in biopolymer 

aerogels [15]. A similar effect was observed in the present work with RCF/CMC 

aerogels. The PHRR, FGR and time to flame extinguish (te) decreased significantly 

with the addition of clay. Furthermore, self-ignition of the samples by the heat 

radiation was retarded. This is due to the presence of high quantity of clay (33 wt%). 

As discussed previously, sample M2.5A0 had a layered structure (Figure 1f) consist of 

CMC encapsulated clay platelets. When it was burned, CMC was decomposed into 

combustive gas and a porous ceramic clay layers was left. Gradually, clay layers 

enriched on the top of the sample and a cellular inorganic char was created, protecting 

the material beneath the surface being burned rapidly and limiting the oxygen content 

in the flame zone. Moreover, this cellular clay char formed a complex labyrinth 

through which combustion gases diffuse out of the material. On the other hand, MMT 

as a layered double hydroxide (LDH) may crosslink with CMC and RCF through 

hydration reaction, which was studied in PVOH-LDH system [16]. 

The best flame retardant performance was observed for the samples containing 

both clay and APP. M2.5A0.2 displayed approximately 1/3 of PHRR and 1/5 of FGR 

compared to the unmodified one. This indicates that APP and clay have a synergistic 

effect.  

The photos of the char after burning are given in Figure 5.7. F2.5C2.5 showed a 

white residue (Figure 5.7a). The incorporation of APP turned the color of char into 

grey (Figure 5.7b). With the addition of clay, the initial sample shapes were preserved 

in their black chars (Figure 5.7c). This is due to the formation of a dense ceramic 

skeleton generated by clay assembling when the samples are burned.  

In comparison to other bio-based aerogels prepared by the same freeze-drying 

process, such as wheat gluten [26], the RCF/CMC aerogels showed lower PHRR and 

much higher residue amount. This is maybe partially due to the presence of some 

inorganic compounds in the RCF suspension, such as Al2(SO4)3 and CaCO3, which 
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are commonly used as fillers in the paper industry.  

 

 

5.3.7 FTIR Analysis 

FTIR spectroscopy was used to investigate the aerogel and their char residues which 

were collected after cone calorimetry tests. The IR patterns are shown in Figure 5.8 

and Figure 5.9, respectively. 

 

 

Figure 5.8 FTIR patterns of flame retardant modified RCF/CMC aerogels 

 

 

Figure 5.9 FTIR spectra of RCF/CMC aerogel chars 
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In the IR pattern of sample F2.5C2.5, the band at 3274 cm
-1

 is due to OH 

stretching, and ones at 1590 cm
-1

 and 1322 cm
-1

 are attributed to carboxyl from CMC. 

At the same time, it can be observed that CH2 stretching and bending characteristic 

bands were shown at 2922 cm
-1

 and 1417 cm
-1

, respectively. Moreover, peak at 1024 

cm
-1

 is associated with C-O-C asymmetry stretching which connects pyrane rings, in 

which CH vibration was displayed on 874 cm
-1

 [27].   

In comparison to F2.5C2.5, The appearance of the band at 1269 cm
-1 

in sample 

M0A0.5 is attributed to P=O stretching [28], indicating the incorporation of APP. 

With the addition of MMT, the band C-O-C at 1024 cm-1 shifted to 997 cm
-1

, which 

is because it is overlapped by Si-O-Si stretching characteristic peak [29, 30]. 

For the char of sample F2.5C2.5, bands at 3444 cm
-1

 were related to free OH 

stretch. The characteristic peaks at 2925 cm
-1

 and 1423 cm
-1

 were associated to CH2 

asymmetry stretch and CH2 scissoring vibration, respectively [27]. This indicated that 

aliphatic compounds existed in the char of cellulose based aerogels. When APP was 

incorporated, a new band at 1046 cm
-1

 was observed in the char of M0A0.5, which is 

attributed to P-O-C stretching [31, 32]. During the burning process, APP is firstly 

decomposed into poly(phosphoric acid) and then it reacts with the hydroxyl group on 

cellulose through esterification. For the char of M2.5A0, the peaks at 955 cm
-1 

and 

467 cm
-1 

were associated to Si-O-Si and Al-O group respectively. The new band at 

712 cm
-1

 was related to the CH stretching in ring compound [33]. The CH2 

characteristic band at 1423 cm
-1

 of sample M2.5A0 decreased significantly in 

intensity as compared to F2.5C2.5 char, indicating that the amount of aliphatic groups 

was significantly reduced. This is possible because clay can catalyze the formation of 

a stable ring char structure during the polymer pyrolysis in the presence of hydroxyl 

groups [16]. By adding APP to M2.5A0, the P-O-C band at 1035 cm
-1

 appeared and 

overlapped with the Si-O band. The poly(phosphoric acid) obtained from APP 

pyrolysis may have reacted with the hydroxyl groups on the clay surface, releasing 

water and producing covalent bonds. The resultant char is complex and distinctly 

different from the chars with APP or clay alone [16]. The band at 1630 cm
-1

 was due 

to the C=C stretch which only appeared when APP or clay was added, suggesting that 
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samples were not totally oxidized during pyrolysis because of the insulating effect of 

the formed protective char. 

On the basis of the FTIR analysis, four possible char formation mechanism in 

cellulose/clay/APP composite aerogels during burning were proposed, which are 

shown in Figure 5.10. As discussed previously in cone calorimetry part, the 

improvement in flame retardant properties of modified aerogels is due to condensed 

phase flame retardant mechanism. Clay addition can promote the formation of 

compact layered char in condensed phase during burning in cellulose matrix.  

 

 

Figure 5.10 Scheme of possible flame retardancy mechanism in cellulose/clay/APP aerogels 
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5.4 Conclusions 

 

Recycled cellulose fiber (RCF) from waste paper pulp and a food thickening agent 

carboxymethylcellulose (CMC), were used to prepare green bio-aerogels. By 

changing the amount of RCF or CMC, samples showed different microstructures, 

varying from random to a “house of card” structure. RCF played a role of “plasticizer” 

reducing the viscosity of precursor suspension of aerogels. Pore dimension of the 

aerogels decreased with the increase of RCF content. On the other hand, CMC acted 

as binding agent for the fibers, effectively improving the mechanical properties of 

aerogels which were also increased with the fiber amount up to 3.75 wt%. However, a 

high loading RCF not only promotes moisture resistance but also improves the 

dimensional stability of composite aerogels during freeze-drying process. The 

addition of clay did not significantly change the mechanical properties, but greatly 

enhanced the thermal stability and flame retardant behaviour. Clay platelets played a 

role of protective thermal barrier and also limited shrinkage of the aerogels during the 

burning process. Ammonium polyphosphate (APP) and clay played a synergetic effect 

on the flame retardancy and thermal stability of cellulosic aerogels. This work showed 

a possible way to produce green foam-like materials as potential candidates for 

substituting traditional petroleum-based foams.         
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Chapter 6: Foam-like Clay Aerogel Composites Prepared 

from Agar and Xanthan Gum 

 

 

 

6.1 Introduction 

 

Robust, foam-like and biodegradable polymer/clay aerogels have been successfully 

created by blending brittle clay aerogels with biopolymers, such as casein [1], alginate 

[2], pectin [3], to name a few.  

Xanthan gum (XG) is a water soluble heteropolysaccharide produced by 

Xanthomonas campestris. It is used in a broad range of industries for applications 

such as emulsion stabilizer [4], rheological control agent [5] and controlled drug 

delivery purposes [6]
 
among many others. The main-chain has analogies with the 

cellulose ((1→4)-β-glucan) with trisaccharide side-chains consisting of 

β-D-(1→2)-mannose attached to alternate glucose units in the main-chain [7, 8].  

Agar consists of a mixture of agarose and agaropectin, whereby the former is the 

predominant component consisting of a linear polymer made up of D-galactose and 

3,6-anhydro-L-galactopyranose, and the latter is a heterogeneous mixture of smaller 

molecules [9]; it has been used extensively as a gelling agent in the food industry due 

to its excellent ability to form hard gels at low concentrations.  

Synergic effects between different polysaccharides have been reported, such as 

the improvements in viscosity in the agar-locust bean gum (LBG) mixtures [10]. 

Cases of tailored strength and texture of agar-LBG gels have also been studied based 

on changing the ratio of agar and LBG [11]. Xanthan gum solutions at low 

temperature (< 40 
o
C) have been reported to show an ordered conformation and a 

tenuous gel strength [12]; the viscosity of xanthan gum/agar mixtures can be 
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adequately varied by changing their relative proportions [13]. Taking these facts into 

consideration, it is believed the xanthan gum gel strength can be improved by 

blending it with agar. Moreover, the presence of hydroxyl units along the backbone 

and branches can provide xanthan gum and agar the capability of forming hydrogel 

networks, which are necessary to achieve the desired robust foam-like aerogels. 

In this chapter, foam-like aerogel composites based on xanthan gum and 

Na
+
-MMT were produced. Additionally, a route to modify different properties by the 

addition of agar is investigated. The structure, mechanical properties, thermal stability, 

flammability and the ability to take up moisture of the different biopolymer/clay 

aerogels are herewith studied and discussed. 

 

 

6.2 Experimental Section 

 

6.2.1 Materials  

All the information of materials used (xanthan gum, agar, glycerol and clay) are 

introduced in Chapter 3 (Section 3.1). All ingredients were used without further 

purification 

 

6.2.2 Sample Preparation 

The aerogels preparation has been proposed in section 3.2. In this chapter, glycerol, 

kept at 20% relative to the weight of polymers, was added to the polymer solution as a 

plasticizer. Biopolymers firstly were mixed with glycerol and then dissolved in water 

at 75 
o
C under mechanically stirring for 2 hours. The final polymer-clay precursor 

suspension were frozen in a solid CO2/ethanol bath (-78 
o
C). The composition 

summary of the different prepared samples is shown in Table 6.1. Sample 

identification consists of the constituents used followed by its respective 

concentration percentage in aqueous solution, where X, A, and C stand for xanthan 
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gum, agar, and clay, respectively. 

 

Table 6.1 Composition of aqueous suspensions for preparing the XG/agar/clay aerogels 

Samples 

Composition 

Xanthan gum 

(wt %) 

Agar 

(wt %) 

Glycerol 

(w/w) 

Na
+
-MMT 

(wt %) 

A2.5 0 2.5 20 0 

A1.7C2.5 0 1.75 20 2.5 

A5C2.5 0 5 20 2.5 

A2.5C2.5 0 2.5 20 2.5 

X2.5 2.5 0 20 0 

X5 5 0 20 0 

X2.5C2.5 2.5 0 20 2.5 

X2.5A2.5C2.5 2.5 2.5 20 2.5 

X2A0.5C2.5 2 0.5 20 2.5 

X1.5A1C2.5 1.5 1 20 2.5 

X1A1.5C2.5 1 1.5 20 2.5 

X0.5A2C2.5 0.5 2 20 2.5 

 

6.2.3 Characterization 

The characterization details of aerogels such as SEM, compression test, moisture 

content, FTIR, TGA and cone calorimetry were presented in Chapter 3.  

 

 

6.3 Results and Discussion 

 

6.3.1 Microstructures and Mechanical Properties. 

 

Agar/Clay Aerogels 

Agar aqueous solution showed super high viscosity even though when a low content 

was used to prepare aerogels, which resulted in a difficult operation during the 

samples preparation process. Therefore, glycerol as a plasticizer was adopted to 
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improve the processing. The maximum concentration of agar used in this study was 5 

wt%, as higher values made the solution too viscous to be adequately blended.  

The compressive behavior of agar-clay aerogels are shown in Figure 6.1. All the 

results of compression tests are represented in Table 6.2.  

 

 

Figure 6.1 Compressive curves of agar-clay aerogels 

 

Table 6.2 Compressive properties parameters of agar/clay aerogels 

Samples ρapp (g/cm
3
) E (MPa) Es (MPa /(g cm

3
)) σ30% (kPa) 

Ea at 30% ε 

(kJ m
-3

) 

A2.5 0.046±0.001 0.01±<0.01 0.15±0.02 6±1 12.0±0.9 

A1.75C2.5 0.046±0.001 0.49±0.10 10.53±2.26 28±2 37.6±6.1 

A2.5C2.5 0.061±0.001 0.75±0.09 12.30±1.50 43±10 86.6±11.7 

A5C2.5 0.120±0.004 5.21±1.75 44.45±9.45 442±62 354.9±60.4 

 

By addition of 50% clay, the resultant aerogels (A2.5C2.5) exhibited much better 

mechanical performance than sample A2.5. This is due to the strong interaction 

between the agar molecules and clay surface. Clay played a role of reinforcement in 

the composites as has been shown in prior works [3, 14]. Fixing the amount of clay 

and changing the agar concentration, the mechanical properties of the resultant 

aerogels increased with their apparent densities. Sample A5C2.5 showed mechanical 

properties parameters with high standard deviation values due to the uneven 

polymer/clay distribution in the aerogel samples. High viscosity is initiated by high 
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agar loading (5 wt%) leading to an inhomogeneous precursor suspension. 

 

 

Figure 6.2 SEM photos of (a) A2.5 and (b) A2.5C2.5 

 

In regard to the microstructure, clay addition did not bring in the expected layered 

architectures. Sheets composed of clay and agar were randomly distributed (Figure 

6.2b). This is not only because agar has a super high viscosity, but also due to the fast 

gelation ability of agar. Strong agar gel is formed quickly at approximate 35 
o
C [15] 

when its aqueous solution is being frozen. Both factors retard the growth of ice 

crystals, resulting in a random structure with much fewer layered patterns, as seen in 

sample A2.5C2.5.  

 

 

Xanthan gum/Clay Aerogels 

Aqueous solutions containing low quantity of xanthan gum also show high viscosities. 

However, XG aerogels displayed layered structure as seen in Figure 6.3. With the 

same polymer concentration, XG solution is much less viscous than the one of agar 

[13], making their structures distinct.  

     Neat XG aerogels exhibited different architectures depending on the amount of 

polymer. This can be seen with samples at 2.5 wt% concentration forming a layered 

structure aligned with the direction of the ice crystal growth (Figure 6.3a), and those 

at 5 wt% concentration resulting in a network-like structure with polymer fibrils 

connecting the holes (Figure 6.3b). This behavior is consistent with previous studies 
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[1, 2, 14], pointing at an obstruction of ice crystal growth rate caused by an increase 

of solution viscosity. In fact, aerogels prepared by freeze-drying can be considered as 

open channel foams with the holes being the space left by ice after sublimation. 

The introduction of clay yielded a more regular layered structure due to the 

orientation of clay platelets along the ice boundaries. In comparison to pristine XG 

aerogels, the fractured surface of X2.5C2.5 (Figure 6.3c) was coarser, which was 

expected due the brittle nature of the clay layers. 

 

 

Figure 6.3 SEM micrographs of XG based aerogels. (a) X2.5; (b) X5; (c) X2.5C2.5; (d) 

X2.5A2.5C2.5. The details of structures are included in the inserts 

 

The aerogels were afterward conducted with compression tests and the results are 

shown in Figure 6.4. Table 6.3 lists the densities and several relevant mechanical 

properties corresponding to the aerogels produced. With a low density of 0.044 g cm
-3

, 

sample X2.5 had a Young‟s modulus (E) of 0.6 MPa, exhibiting comparably higher 

mechanical properties than other non-crosslinked bio-based aerogels of similar 

densities, such as casein [16]
 
and pectin [3]. By incrementing the XG amount to 5%, 
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the modulus was significantly increased to 2.51 MPa and the yield stress (σy) 

dramatically improved 8-fold on the original strength of X2.5; but the density only 

slightly increased to 0.063 g cm
-3

. This improvement in mechanical properties is 

possibly attributed to the polymer network structure presented in X5, in comparison to 

the one of X2.5. It provides a more efficient stress distribution, hence preventing the 

aerogel structure to undergo early failure. 

 

 

Figure 6.4 Compressive curves of XG based aerogels 

 

Table 6.3 Compressive properties parameters of XG/clay aerogels 

Samples ρapp (g cm
-3

) E (MPa) 
Es 

(MPa/(g/cm
3
)) 

σy (kPa) 
σ70% 

(MPa) 

Ea at 70% ε 

(kJ m
-3

) 

X2.5 0.044±0.003 0.60±0.11 13.5±1.9 2.5±0.5 0.26±0.13 33.7±8.4 

X5 0.063±0.001 2.51±0.29 40.1±4.1 19.5±4.4 0.34±0.05 79.5±14.4 

X2.5C2.5 0.056±0.001 0.94± 0.11 16.8±2.1 10.5±3.7 0.24±0.02 51.7±2.5 

X2.5A2.5C2.5 0.101±0.001 4.77±0.66 47.3±6.3 83.4±10.6 1.0±0.01 236.3±33.9 

 

Although clay has been widely used as reinforcement in polymer composites [17, 

18], the incorporation of 2.5% clay into 2.5% XG solution did not provide any 

remarkable benefits in mechanical properties, or at least not as much as those 

achieved with X5 with similar density. This fact is attributed to the lack of polymer 

fibrils connecting clay layers in X2.5C2.5 composite, as seen in Figure 6.3c.  

It has been widely studied that blending two different hydrocolloids may result in 
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a deep change in both the physical and the rheological properties of mixed solutions 

or gels [19]. XG was thought to be very compatible with agar due to their similar 

macromolecular chemical structures. Agar displays a linear macromolecular 

conformation, making its gel strength higher than the one of XG which exhibits a 

molecular structure with long branches [12]. Blending agar into XG/clay precursor 

suspension may be a way to improve the mechanical properties of XG based aerogels. 

When 2.5 wt% agar was added to X2.5C2.5 aerogel, the layered structure was 

maintained, however it showed a coarser fractured surface and more polymer 

interconnections appeared between clay layers (Figure 6.3d) due to the higher 

viscosity of precursor suspension in comparison to the initial X2.5C2.5. On the other 

hand, gelling chains of agar are interfered into ungelling ones of XG by hydrogen 

bonding in the aqueous solution. Thus, a synergistic effect between them brings well 

dispersed coupled networks for this binary system [19], which will influence the 

structures and properties of resultant aerogels.   

Sample X2.5A2.5C2.5 exhibited superior mechanical properties as expected with 

a modulus of 4.77 MPa and apparent density of 0.101 g/cm
3
. This result is 

comparable to cellulose nanofiber foams (0.103 g cm
-3

, 5.31MPa) produced by the 

same freeze-drying way [20], and higher, for instance, than rigid polyurethane foams 

(0.19 g cm
-3

, 4.7 MPa) [21], although the energy absorption and yield stress are lower. 

Moreover, compressive modulus values with very low standard deviations suggested 

that homogeneous structures were obtained within this composite. It also can be 

observed that there is no evidence of phase separation for agar and XG from SEM 

photos (Figure 6.3d). Therefore, blending agar into XG is a feasible way to improve 

the XG based aerogel properties.  

 

 

Xanthan gum-agar/Clay Aerogels 

The above findings demonstrate the important role of solution viscosity in the final 

aerogel structure. By keeping the amount of polymer constant, it is possible to tailor 
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the viscosity, the final structure and, ultimately, the mechanical properties of the 

aerogel by adjusting the ratio between XG and agar. To understand the effect of 

XG/agar ratio on the aerogel structure and mechanical performance, samples based on 

constant content of biopolymers and clay were investigated.  

When the XG/agar ratio reached 60/40, polymer fibrils connecting clay layers 

became visible, as shown in the detail of Figure 6.5a. However, the typical layered 

structure of the clay aerogel became a honeycomb-like pattern (Figure 6.5c) when the 

ratio of agar in the mixture was increased further to 40/60. This phenomenon suggests 

that the microstructures of aerogels not only depend on the percentage of biopolymers, 

but also on their ratio in the mixture.  

 

 

 

Figure 6.5 SEM micrographs of XG-agar/clay aerogels. (a) X2A0.5C2.5; (b) X1.5A1C2.5; (c) 

X1A1.5C2.5; (d) X0.5A2C2.5. The details of structures are included in the inserts 

 

The compression curves are represented in Figure 6.6a. All the samples exhibited an 

elastic-plastic behavior of polymeric foams. The compressive parameters are 

summarized in the Table 6.4. Different XG/agar ratios resulted in similar densities, 
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but contrasting values of yield stress and specific modulus, which are represented in 

Figure 6.6b and Figure 6.6c, respectively.  

 

 

 

Figure 6.6 (a) Compressive stress-strain curves, (b) yield stress and (c) specific modulus of 

XG/agar/clay aerogel composites based on constant polymer/clay ratio 
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In comparison to those containing only a single type of polymer, XG/agar 

aerogel composites displayed a significant improvement in mechanical properties, 

indicating a synergistic effect between both biopolymers. When the weight ratio of 

XG/agar was 40/60, the aerogel exhibited the highest specific modulus (Es) and yield 

stress (σy). Moreover, this composition, along with the one with 60/40, absorbed the 

highest level of energy during the compression process. This behavior appears to be 

closely related to the microstructure changes within the aerogels, which shifted from a 

layered structure to a honeycomb-like network. 

Having insufficient links in layered polymer/clay structures inevitably makes the 

aerogel brittle and susceptible of premature failure, which usually starts as localized 

fractures prior to propagating to a catastrophic collapse [22, 23], for this reason, a 

high density of interconnections is required to obtain a tough material. Accordingly, 

mechanical loads in honeycomb structures are borne by the cell walls, and in the case 

of compression forces, these undergo bending as the load increases [24]. These 

benefits can be seen on sample with 40/60 of XG/agar, which exhibits a higher 

load-bearing capacity when compared to clay lamellar structures without sufficient 

polymer linking such as the composition prepared by 60/40 of XG/agar. This behavior 

was also expected for composites with a higher XG/agar ratio, however at high 

proportions of agar (e.g. 20/80), a less regular structure and large voids appeared, 

which inevitably diminished the mechanical properties. Similar behaviour occurred in 

the agar-clay aerogels. 

 

Table 6.4 Mechanical properties of XG/agar/clay aerogels 

Samples 
ρapp 

(g cm
-3

) 

E 

(MPa) 

Es 

(MPa cm
3
/g) 

σy 

(kPa) 

σ70% 

(MPa) 

Ea at 70% ε 

(kJ m
-3

) 

X2.5C2.5 0.056±0.001 0.94± 0.11 16.8±2.1 10.5±3.7 0.24±0.02 51.7±2.5 

X2A0.5C2.5 0.061±0.002 1.39±0.34 22.9±6.3 25.2±1.5 0.20±0.02 55.3±7.9 

X1.5A1C2.5 0.066±0.001 2.72±0.58 41.4±8.3 48.3±5.6 0.41±0.06 112.2±12.4 

X1A1.5C2.5 0.059±0.001 4.12±0.13 69.4±2.2 61.9±4.6 0.36±0.03 97.9±14.7 

X0.5A2C2.5 0.059±0.001 3.23±0.70 55.2±12.8 18.1±3.7 0.39±0.01 80.4±1.3 

A2.5C2.5 0.061±0.001 0.75±0.09 12.3±1.5 3.0±0.5 0.75±0.19 86.6±11.7 
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6.3.2 Moisture Uptake  

 

 

Figure 6.7 Moisture uptake of XG/agar/clay aerogels 

 

The moisture content of aerogels is presented in Figure 6.7. As a general trend, lower 

moisture absorptions were observed in neat XG aerogels and higher water uptakes 

occurred in the aerogel composites. Due to its hydrophilic nature, the addition of clay 

increased the moisture uptake. The sample X2.5A2.5C2.5 had the highest resulting 

content, possibly due to the combined effect of XG/agar blending and the clay 

introduction. XG/agar/clay aerogel composites with constant polymer concentration 

maintained stable and similar levels of moisture regardless of the XG/agar ratio. 

 

 

6.3.3 FTIR-ATR Spectra and Analysis 

The FTIR-ATR spectra of neat XG aerogels and XG/agar/clay aerogel composites are 

showed in Figure 6.8. The broad band ranging from 3279 to 3346 cm
-1

 corresponded 

to the bonded O-H stretching and the one at ~1601 cm
-1

 is attributed to O-H bending 

vibrations, which is related to water crystallization [25]. This indicates that the 

moisture absorbed in the aerogels appears as a formation of bonded water. The bands 

at 2918 cm
-1

, 1406 cm
-1

 and 1018 cm
-1

 were assigned to -CH2 asymmetric stretch, 
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-CH2 scissoring vibration and C-O-C symmetry stretch in the pyranose ring 

respectively [26]. The band at ~1719 cm
-1

 was regarded as acetyl C=O stretch 

vibration in the side-chain of XG [27], which was consistent with its absence in the 

agar spectra and its appearance in the XG/agar mixture. For the sample X2.5, the peak 

of C-O-C asymmetry stretch was shifted to lower wavenumbers with the addition of 

clay and a new peak appeared at 515 cm
-1

, which was associated with Al-O bending in 

the clay. This suggests that the hydrogen bonding was formed between hydroxyl on 

the XG‟s pyranose ring and silanol on the clay surface. The carbonyl band at 1719 

cm
-1

 also was displaced to lower wavelengths at 1714 cm
-1

 when the clay was added. 

However, this band was very weak and partially overlapped with the OH band 

appearing at ~1601 cm
-1

. Overall, the shift of characteristic bands and changes in peak 

intensity reveal the presence of molecular interactions between biopolymers and clay 

as well as between agar and XG. 

 

 

Figure 6.8 FTIR-ATR spectra for neat XG aerogel, XG/clay aerogel, XG/agar/clay aerogels 

and agar/clay aerogel 

 

 

6.3.4 Thermal Stability 

The thermal stability of aerogels was investigated by TGA analysis. For the sake of 

clarity, only some results are shown in the thermograms depicted in Figure 6.9. For 
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each sample, the corresponding onset decomposition temperature (Td5%), highest 

weight decomposition temperature (Tdmax), maximum weight loss rate (dW/dTmax) and 

percentage of residue (WR) are listed in Table 6.5. Td5% was given as the temperature 

at which 5% weight beyond total loss of water occurred. The trends of Td 5% were used 

to evaluate the thermal stability of bio-based aerogels. 

 

 

Figure 6.9 TGA (a) and DTG (b) curves of XG/agar/clay aerogel composites 

 

These bio-based aerogels showed similar decomposition patterns with two main 

stages: bound water loss and aerogels matrix decomposition (Figure 6.9a). From the 

derivative weight loss rate (Figure 6.9b), it could be observed that adsorbed water was 

totally removed at 150 
o
C, which was coincident with previous observations 

performed on other bio-based aerogels [28]. The comparison of TGA curves 

corresponding to the raw materials allowed to determine that added glycerol was 
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eliminated between 180 and 250 
o
C, which overlaps with the onset decomposition 

temperatures of XG and agar occurring at ~235 
o
C and ~240 

o
C respectively.  

The addition of 50 % clay increased Td5% by almost 50 
o
C and Tdmax by nearly 10 

o
C. This effect is attributed to the thermal insulation and mass transport barrier created 

by the clay. On the contrary, the addition of 1/3 agar to X2.5C2.5 had a negative effect 

on the thermal stability, possibly related to the resulting denser and more compact 

structure of the aerogel, considering that a reduced porosity implies an increase in the 

thermal conductivity. These morphological differences are patent in the SEM analysis 

discussed earlier, whereby X2.5C2.5 (Fig. 3b) and A2.5C2.5 (Fig. 2b) exhibit a looser 

structure while XG/agar/clay composites have a denser architecture. 

The maximum weight loss rate is closely related to the thermal characteristics of 

the polymer used. A2.5 gave the highest maximum weight loss rate and this value 

steeply decreased from 1.58 to 0.97 %/
o
C when clay was added; a similar effect was 

observed on X2.5. This improvement is supported by the formation of an inorganic 

layer on the sample surface during the increasing thermal load inflicted by the TGA 

test. The maximum weight loss rates of samples blended with agar were in the range 

of 0.62 to 0.97 %/
o
C. These results are consistent with the XG/agar ratios, and sit on 

the average range of XG/clay and agar/clay samples; they also indicate that there is no 

chemical reaction occurring when blending XG with agar, as corroborated with the 

FTIR results discussed earlier. 

 

Table 6.5 Thermal characteristics of XG/agar/clay aerogel composites 

Samples Td5% (℃) T dmax (
o
C) dW/dTmax (%/

o
C) WR (%) 

X2.5 209.8 292.5 1.44 18.1 

X5 204.8 294 1.26 17 

X2.5C2.5 255.1 302.9 0.62 52 

X2A0.5C2.5 244 301.9 0.64 48.3 

X1A1.5C2.5 245.4 276.3 0.75 48.9 

X0.5A2C2.5 242.3 268 0.84 47.3 

A2.5C2.5 245.7 294.1 0.97 47.9 

A2.5 201.2 285.3 1.58 11.2 

X2.5A2.5C2.5 222.4 276.3 0.75 35.3 
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6.3.5 Combustion Behaviour 

The combustion behaviour of the different XG/clay aerogels was evaluated in a cone 

calorimeter. As the TGA tests proved that blending agar into XG diminishes the 

thermal stability, XG/agar/clay aerogels were not included in this section.  

 

 

Figure 6.10 Heat release rate of XG aerogels and XG/clay aerogels 

 

 

Figure 6.11 Char photos after cone calorimetry tests (a) X2.5; (b) X2.5C2.5 

 

The detailed flammability data of XG/clay aerogels are presented in Table 6.6. The 

heat released from the materials undergoing burning was considered as the most 

important parameter that characterizes its fire hazard [29]; accordingly this was 

analyzed quantitatively on a bench scale [30] and is illustrated in Figure 6.10 in terms 

of heat released rate (HRR) of XG/clay aerogels as a function of burning time. Also, 

the sample char obtained after tests were shown in Figure 6.11. 
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All samples displayed different behavioral patterns, being the one of XG/clay 

aerogels of particular interest due to its three well defined combustion stages [31]: 

first a vigorous initiation burning episode followed by a relatively constant HRR 

phase and a final long flame region gradually disappearing. In comparison with solid 

polymers, foams burn more quickly, which is explained by the lower thermal 

conductivity but much higher specific surface area of foams, promoting higher PHRR 

and lower ignition time [32]. The sample X2.5 began to burn quickly and vigorously, 

resulting in a low TTPHRR (24s) and high PHRR (177.1 kW/m
2
). Increasing polymer 

amount in XG aerogels generally prolonged the TTPHRR and decreased FGR, 

however X5, which had higher density and mass, burned more intensively and for a 

longer period of time with PHRR and THR values increasing to 202.1 kW/m
2
 and 7.8 

MJ/m
2
 respectively. Indeed the effects of density and mass experienced with the 

above experiment strongly suggests to introduce the terms „normalized PHRR‟ 

(NPHRR) and „normalized THR‟ (NTHR) as relevant parameters in the overall 

combustion behavior, which refer to the ratio of PHRR and THR to the polymer mass 

in the samples, respectively. Once taken this into consideration, it was observed that 

both agreed well with the tendency of TTPHRR and FGR (see Table 6.6), whereby 

flame retardancy is improved due to the microstructure changes referred to in the 

previous section. Sample X5, which had a continuous network structure and by that a 

higher thermal conductivity, showed a two-peak signal (Figure 6.10). These findings 

are consistent with a previous study on flammability of wheat gluten foams and which 

concluded to be caused by a temporary char layer formed on the specimen surface 

[31]. 

The addition of clay decreased all the flammability parameters expressed in 

terms of heat release. Particularly, the normalized PHRR was reduced to 26.4 kW/m
2
g, 

which was lower than those found in neat XG aerogels. This indicates unambiguously 

that clay plays an important role in reducing the flammability of the systems. It is 

worth noting that the combustion plot corresponding to X2.5C2.5 flattens out prior to 

completing the test due to the enrichment of inorganic clay layers on the surface 

during combustion, which protects the bio-polymer beneath the surface.  
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Overall, it should be pointed out that the XG aerogels showed lower PHRR and 

THR than EPS foams [2], PU foams [33] and wheat gluten foams [31] prepared by the 

same freeze-drying process. 

 

Table 6.6 Burning parameters of XG aerogels and XG/clay aerogel composites 

Samples 
Mass 

(g) 

TTPHRR 

(s) 

PHRR 

(kW/m
2
) 

FGR 

(kW/m
2
 s) 

THR 

(MJ/m
2
) 

WR 

(%) 

NPHRR 

(kW/m
2
 g) 

NTHR 

(MJ/m
2
 g) 

XG2.5 2.8 24 177.1 7.4 4.8 5.7 63.2 1.7 

XG5 6.5 48 202.3 4.5 7.8 5.1 31.1 1.2 

XG2.5C2.5 4.2 39 55.2 1.4 3.3 45.2 26.4 1.6 

 

 

6.4 Conclusions 

The preparation of foam-like aerogels based on bio-based, renewable xanthan gum 

and clay were demonstrated using an environmentally friendly freeze-drying process. 

A novel approach consisting in adding the bio-based polysaccharide agar into the 

preparation mixture was used to improve the aerogel properties. FTIR 

characterization showed that xanthan gum and agar were very miscible and that 

intermolecular interaction was achieved. Different microstructure patterns were 

visible in the SEM analysis, and these were found to be closely related to the viscosity 

of the precursor solution. The samples containing a higher concentration of agar 

relative to XG underwent a significant structural change going from typical layered to 

a honeycomb-like architecture. The synergistic effect between the two 

polysaccharides made the XG/agar/clay aerogels display a significant improvement in 

mechanical properties compared with those containing a single biopolymer. Changing 

the XG/agar ratio allowed to modify the mechanical properties with only minor 

repercussions in the density. The highest specific modulus and yield stress were 

obtained with the 40/60 XG/agar blend, and the highest level of energy absorbed was 

achieved with the 60/40 of XG/agar sample. The addition of 2.5% agar into X2.5C2.5 

increased the modulus to 4.77MPa, a value similar to those of cellulose nanofiber 
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foams and rigid polyurethane of similar densities. Thermogravimetric analysis (TGA) 

revealed that clay enhanced the thermal stability of aerogels, being in contrast with 

the blends of two biopolymers, which exhibited poor results. The cone calorimeter 

test showed the xanthan gum/clay aerogels possessed lower flammability than EPS 

foams, PU foams, wheat gluten foams and PVOH/clay aerogels. Clay served as heat 

and mass transport barriers and significantly improved the flame retardancy. 
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Chapter 7: Bio-aerogels based on Arabic Gum and Clay 

 

 

 

7.1 Introduction  

 

Increasing concern on environmental protecting requires expanding the usage of 

biopolymers derived from natural sources that may replace petroleum-based polymers 

in future. Foam-like aerogels based on biopolymers allow a way to explore the 

application of abundant biopolymers that can be widely obtained from plants, animals 

or waste products [1].  

Arabic gum (AG) is exuded from the gum tree, consisting of a mixture of high 

molecular weight polysaccharide (major component) and hydroxyproline rich 

glycoprotein (minor component) [2]. The main structural feature of the major 

component is a backbone of β-galactopyranose units with 1,3 bonds and side chains 

of 1,6-linked galactopyranose units terminating in β-D-glucuronopyranose and 

4-O-methyl-β-D glucuronopyranose [3]. Due to its unique emulsification, 

film-forming, and encapsulation properties, AG is extensively used in industry, such 

as food [4], paper [5] and pharmacy [6].  

In this chapter, bio-based AG was used to prepared light-weight aerogels using a 

freeze-drying way. Sodium montmorillonite (Na
+
-MMT) was added to improve the 

properties of bio-based aerogels.  

 

 

7.2 Experimental Section 

 

All the information of raw materials (AG and Na
+
-MMT) was included in Chapter 3.1. 
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Aerogels preparation just followed the method introduced in chapter 3.2 and the 

definition of samples was AG or clay used followed by their respective concentration 

in precursor suspensions. The microstructures, porosities, mechanical properties, 

thermal stability and fire behaviour have been investigated according to the 

description in chapter 3.3. 

 

 

7.3 Results and Discussion 

 

7.3.1 Density and Porosity 

Theoretic solid densities (ρts) of the AG-clay composite aerogels were calculated 

according to equation 7.1: 

 

CCAA

t
ww 





GG

s

1

                            

(7.1) 

Where, wAG and wC are the mass fractions of AG and clay in the dry aerogels, 

respectively. ρAG and ρC are the densities of AG and clay, respectively. Clay density 

(2.6 g/cm
3
) was taken from the supplier. The experimental solid densities of pure AG 

aerogels were equal to the one of AG solid powder, which was measured using 

Helium Pycnometry (1.302 g/cm
3
). Porosity, defined as the volume fraction of voids, 

was calculated according to method discussed in chapter 3.3. The results are 

summarized in Table 7.1. 

Slight differences were observed between experimental and theoretical apparent 

densities of AG-clay aerogels, indicating that the pores in the aerogel were mainly 

open. All the tested samples exhibited high porosities of around 90%. For neat AG 

aerogels, increasing AG content from 7.5 to 15 wt%, the porosity reduced by 5.7%. 

Similar tendency were found in AG-clay aerogel composites. Generally, the higher the 

solid content resulted in a lower porosity. 
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Table 7.1 Density and porosity of AG/clay aerogels 

Samples ρapp (g/cm
3
) ρes (g/cm

3
) ρts (g/cm

3
) Porosity (%) 

AG5C5 0.088±0.001 1.799±0.003 1.652 95.1±<0.1 

AG7.5C5 0.115±0.001 2.079±0.004 2.065 94.4±<0.1 

AG10C5 0.149±0.013 2.196±0.001 2.476 93.2±0.1 

AG7.5 0.085±0.001 1.302±0.002 1.302 93.5±<0.1 

AG10 0.109±0.018 1.302±0.002 1.302 91.6±1.4 

AG15 0.154±0.009 1.302±0.003 1.302 88.2±0.1 

 

 

7.3.2 Morphology 

The morphological microstructures of AG/clay aerogels are shown in Figure 7.1. 

Sample AG7.5 exhibited a layered structure without polymer connection between 

layers (Figure 7.1a). When the content of AG was increased to 15 wt%, the layers 

increased in thickness. But there was no obvious change in the density of links 

between the layers (Figure 7.1b). Comparing with other biopolymer aerogels, for 

example, pectin aerogel [7] or the one based on xanthan gum studied in chapter 6, AG 

aerogels did not display network structures. One of reason is that AG solution keeps a 

low value of viscosity even when a high concentration is adopted. For instance, 30% 

AG solutions have a lower viscosity than 1% xanthan gum and sodium 

carboxymethylcellulose at low shear rates [8]. The second factor is that both AG and 

clay are negatively charged on the surfaces, causing repulsion between them.   

When 5 wt% clay was added into AG7.5, viscosity of corresponding precursor 

suspension increased. The ice front growth was retarded by the fluid viscosity and 

secondary crystallization occurred [9], resulting in a rough fracture surface (Figure 

7.1c). Increasing the AG concentration in the precursor suspensions of AG-clay 

aerogels to 15 wt%, a continuous “house of cards” structure appeared due to the 

further increment of viscosity.  

These varieties of microstructures within aerogels are responsible of the 

mechanical properties changes discussed in the following section.  
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Figure 7.1 SEM photos of AG/clay aerogels: (a) AG7.5; (b) AG15; (c) AG7.5C5; (d) 

AG15C5 

 

 

7.3.3 Mechanical Properties 

The compressive stress-strain curves of the AG and AG/clay aerogels are shown in 

Figure 7.2a. Generally, these samples showed the similar compressive behavior than 

the biopolymers/clay aerogels discussed in previous chapters. Compressive 

mechanical properties parameters, such as compressive modulus (E), specific 

compressive modulus (Es), compressive stress at 70% strain (σmax), and energy 

absorbed (Ea) are listed in Table 7.2. Several finding should be mentioned for AG/clay 

aerogels. Firstly, sample AG5 was too brittle to be tested. Secondly, the plateau stage 

of stress was not observed in sample AG15. This is due to the high AG concentration 

used and resultant high apparent density. Thirdly, rough trace in the compressive 

curve of sample AG15C5 indicated structure defects within the aerogel. 
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Figure 7.2 (a) Compressive curves of AG/clay aerogels; (b) The AG concentration effect on 

compressive modulus of aerogels  

 

Table 7.2 Compressive mechanical properties of AG/clay aerogels 

Samples 
ρapp 

(g/cm
3
) 

E 

(Mpa) 

σ 70% 

(Mpa) 

Es 

(Mpa/g cm
-3

) 

Ea at 70% ε 

(kJ cm
-3

) 

AG7.5 0.085±0.001 0.63±0.11 0.11±0.06 7.47±2.11 11.9±2.2 

AG10 0.109±0.018 1.42±0.27 0.26±0.08 10.59±2.13 48.8±11.9 

AG15 0.154±0.009 2.10±0.66 1.08±0.14 10.86±2.86 240.3±44.9 

AG5C5 0.088±0.001 1.24±0.19 0.35±0.01 13.91±1.99 44.1±3.3 

AG7.5C5 0.115±0.001 2.26±0.12 0.40±0.05 19.43±1.12 62.3±14.9 

AG10C5 0.149±0.013 4.03±0.57 0.60±0.19 29.93±3.44 70.5±1.1 

AG15C5 0.180±0.002 25.76±4.20 1.29±0.03 142.71±22.94 314.8±20.6 

 

The compressive modulus of aerogels increased with the AG or clay content, as 

observed in Figure 7.2b. Sample AG15 had a modulus of 2.10 MPa, which was much 

higher than the one of AG7.5 (0.63 MPa). However, the specific compressive 
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modulus of pure AG aerogels did not significantly increase with the AG content. This 

suggested that the neat AG aerogels properties were only dependent on their apparent 

densities.  

When 5 wt% clay was added, the specific modulus of AG7.5C5 significantly 

increased by 1.6 times compared with AG7.5 (see Table 7.2). This result was 

consistent with the finding of prior works on biopolymer-clay aerogel composites [7, 

10]. Compared with AG7.5C5, sample AG15C5 showed a layered structure with 

denser polymer links (Figure 7.1d), thus it exhibited much higher mechanical 

performance. However, catastrophic fracture occurred in sample AG15C5 when it was 

compressed. The reason is that both AG and clay platelets surface are negatively 

charged, which causes a weak adhesion between them.   

 

Increasing the AG content increased the apparent density and hereby reinforced the 

mechanical properties of the aerogels. The power-law developed by Gibson and 

Ashby [11] for cellular solids was used to analyze mechanical properties, as shown in 

equation 7.2.  

 

n

S S

K C
K




   
 

                        7.2 

Where K means a mechanical property of foams, KS is the property of the 

corresponding fully solid material. ρ and ρs are the apparent density and solid density, 

respectively; ρs herein are thought to be equal to theoretical solid density. C and n are 

structural parameters [11, 12]. In present work, exponent values for modulus and 

ultimate strength of pure AG aerogels were 1.95 and 3.84, respectively. However, for 

AG/clay aerogels composites of which the relative density changed, the values of n 

were 3.28 and 1.46 for modulus and ultimate strength, respectively.  

The exponent values changed with the material structures. For open-cell foams, 

the exponent is expected to be 2 [11]. Wood has exponent of 3 in the radial direction 

due to anisotropy of the structure [11] and silica aerogels show a value in the range of 

2.6-3.8 because of different samples preparation methods [13]. For pure AG aerogels, 
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the exponent for modulus was 1.95 (Figure 7.3), which was consistant with the open 

structure generated in the aerogels. This value increased to 3.28 with the addition of 

clay, similar to the value found in PVOH-clay aerogels (3.74) [14]. It is attributed to 

the reinforcing effect of clay and the more anisotropic structures induced by clay 

aggregation in the composites. 

 

 

Figure 7.3 Compressive modulus of the AG/clay aerogels as function of relative density 

 

 

7.3.3 Thermal Stability 

Thermal stability of AG/clay aerogels were studied by thermogravimetric analysis 

under dry nitrogen atmosphere. The weight loss curves are shown in Figure 7.4. The 

decomposition of aerogels can be divided in three stages. Firstly, the moisture in AG 

aerogels was evaporated under the thermal loading up to 150 
o
C. Then dehydration 

and decarboxylation reaction of AG occurred when the temperature was over 250
o
C 

[15]. AG was quickly decomposed during this step. Finally, the char left after the 

second stage was oxidized (>330 
o
C) with the increased temperature and the aromatic 

components were formed. Td5% is defined as the temperature at which 5% weight after 

150 
o
C (dW/dT≈0) was recorded to investigate the thermal stability of the bio-based 

aerogels. Table 7.3 summarizes decomposition temperature at 5% weight loss (Td 5%), 
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temperature at maximum weight loss rate (Td max), maximum mass decomposition rate 

(dW/dTmax) and residue amount (WR).  

 

 

Figure 7.4 TGA weight loss curves of AG/clay aerogels 

 

Table 7.3 Parameters for thermal stability of AG/clay aerogels 

Samples Td 5% (
o
C) Td max (

o
C) dW/dT max (%/

o
C) WR (%) 

AG5 258.6 310.4 1.41 13.2 

AG5C5 274.5 299.0 0.69 52.3 

AG15 261.2 311.7 1.47 16.5 

AG15C5 267.7 308.3 1.09 38.2 

 

In comparison to sample AG5, it can be observed that AG5C5 presented higher Td 5% 

(275 
o
C) and much lower maximum mass decomposition rate (0.7 %/

o
C). The residue 

amount was obviously increased by adding inorganic clay. For sample AG15C5, Td 5% 

increased by nearly 7 
o
C and maximum mass decomposition rate decreased 0.4 %/

o
C 

respectively comparing to AG15. The differences in thermal stability of samples 

AG5C5 and AG15C5 were attributed to the relative content of clay in the composites. 

Higher clay content led to lower degradation rate and higher initial decomposition 

temperature. These findings were consistent with the previous works in which clay 

was used to improve the thermal stability of bio-based aerogels. However, clay 

addition caused a lower Td max, possibly related to the higher thermal conductivity 

resulting from denser and more compact structure of the aerogel. 
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7.3.4 Combustion Behaviour 

The combustion behaviour of the aerogels was investigated using a cone calorimeter. 

The detailed flammability parameters are given in Table 7.4 and the heat released 

undergoing burning is illustrated in terms of heat released rate (HRR) as a function of 

burning time (Figure 7.5). The definition of all the parameters is given in chapter 4. A 

two-peak signal appeared in the HRR curves of the sample loaded with clay. It 

seemed to be due to the transient protective effect of the clay layers during the 

combustion [16]. The following combustion of the material occurred when the layer 

was broken.  

 

Table 7.4 Combustive parameters of AG/clay aerogels 

Samples ti (s) te (s) 
TTHRR 

(s) 

PHRR 

(kW/m
2
) 

FGR 

(kW/m
2
 s) 

THR 

(MJ m
-2

) 

WR 

(%) 

AG15 10 386 36 232.9 6.5 19 2.9 

AG15C5 11 146 27 121.1 4.5 17.2 23.6 

AG5C5 15 91 24 56.4 2.4 4.9 45.4 

ti: time to ignite 

 

 

Figure 7.5 HRR as a function of time during cone calorimetry tests 

 

Sample AG15 had a PHRR value of 233 kW/m
2
 and time to PHRR of 36 s. 

Adding 33 % clay, PHRR decreased to 121 kW/m
2
 and the FGR values reduced from 

6.5 to 4.5 kWm
-2 

s. This tendency was also found in the other bio-based aerogels 
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when clay was adopted to improve the flame retardant properties. This is because of 

the formation of an inorganic clay layer by phase enrichment on the sample surface 

during the increasing thermal load [17], which brings a decomposition rate decline for 

the underlying polymer fraction. Decreasing the ratio of AG/clay, the flame retardant 

effect of clay was more remarkable, as displayed in sample AG5C5. 

 

 

7.4. Conclusion 

Arabic gum, a type of polysaccharide from African plant, was used to prepared green 

aerogels. Clay was added to improve the properties of Arabic gum aerogels. In 

comparison with the other biopolymers/clay aerogels, AG/clay aerogels behaved in a 

brittle manner due to weak interaction between AG and clay. This is because both 

components are negatively charged. Also, the AG solution showed a low viscosity 

even upon a high content (15%) was adopted, leading a layered structure without 

sufficient connection between them. For thermal stability and combustive behavior, 

clay layers within the aerogels acted as physical barrier, retarding the oxidation of AG 

underneath.  
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Chapter 8: Glutaraldehyde Cross-linked Starch/Clay 

Aerogel 

 

 

 

8.1 Introduction  

 

Starch is one of most abundant plant polysaccharides with numerous applications in 

different industries due to its cheap price. Those include functions as energy nutrient 

in food products as well as additive in non-food products like textile and paper [1]. It 

mainly consists of amylose and amylopectin, of which the relative proportion depends 

on the starch source (e.g., potato, corn, wheat, tapioca) [2]. Amylose is linearly 

comprised of α-(1→4)-linked D-glucopyranosyl units with an average Mw of 500 

kg/mol while amylopectin is composed by a backbone of 1,4-α-D-glucose with 

1,6-branched glucopyranosyl units, forming the amorphous part and the crystalline 

parts, respectively [3]. Although several studies about starch aerogels have been 

published [4-8], starch has not been commonly used as a material for aerogel matrix.  

Gleen reported the structures and properties of pure starch aerogels that were 

prepared using different drying process [9]. However, the mechanical properties of 

starch aerogel have been not systematically investigated. Also, there are no studies 

performed on how to improve the mechanical performance of starch aerogels. Sodium 

montmorillonite (Na
+
-MMT) has been widely used to successfully enhance 

mechanical properties as well as the thermal stability and flame resistance of 

bio-based polymer aerogels [10, 11]. Therefore, it is expected that starch/clay 

composite aerogels will show superior properties than pure starch aerogels. On the 

other hand, chemical cross-linking can improve the properties of aerogels. 

Glutaraldehyde (GL) can react with hydroxyl groups on the starch molecules [12, 13]. 

It has been utilized to crosslink starch foam particles [14] and starch-polyvinyl 
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alcohol films [15]. This chemical process is related with a hydrated etherization 

reaction which is time-costly and needs drastic reactive conditions [16]. Recently, 

microwave-induced synthesis was considered with great interest due to its high 

efficiency [17]. Graft copolymerizations of polysaccharides have been reported 

without radical initiators or with very low initiator concentration on the effort of 

microwave irradiation [18-21]. It is feasible to take advantage of this approach to 

realize the cross-linked reaction of GL and starch. 

In this chapter, bio-based starch aerogels were prepared using a freeze-drying 

process. Na
+
-MMT was added to starch aerogel, forming an organic-inorganic hybrid 

aerogel. GL was designed to react with starch with the assistance of microwave 

irradiation. The effect of clay addition and GL cross-linking on structures and 

mechanical properties of starch aerogels were investigated.   

 

 

8.2 Experimental 

 

All the information of raw materials for preparing the aerogels was presented in 

Chapter 3.1.  

Pure starch aerogels were prepared following the method presented in chapter 3.2. 

Desired amount of starch powder was dissolved in deionized water, and then 

mechanically stirred at 80 
o
C for 2 hours. The obtained homogenous solutions were 

frozen at -30 
o
C in a fridge over night, and then ice was sublimated using a lyophilizer 

under 0.001 mbar and -80 
o
C, as described in previous chapters. 

To produce cross-linked starch aerogels, glutaraldehyde solution was dropped 

into the prepared homogeneous starch solution. Hydrochloric acid was then added to 

adjust the PH value of the solution to PH=3. The mixed solutions were irradiated 

using a domestic microwave oven under 800 watt for 30 seconds. Then the same 

freeze-drying process was conducted. 

The starch/clay aerogel composites were prepared through the same process 
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reported in previous chapters. The prepared starch solution and clay suspension were 

mixed to get a homogenous mixture prior to be frozen and lyophilized. GL was also 

incorporated to crosslink the starch/clay aerogel composites. The dispersed 

starch-clay mixture with GL was operated in microwave oven for 30 seconds before 

being frozen. 

The identification of samples is according to the containing components 

followed by their corresponding mass fraction in the precursor suspension, as shown 

in Table 8.1. 

 

Table 8.1 Composition of the aqueous suspensions for preparing starch based aerogels 

Samples Starch (wt%) Na
+
-MMT (wt%) GL (w/w %) 

a
 

S5 5 0 0 

S7.5 7.5 0 0 

S10 10 0 0 

S12.5 12.5 0 0 

S5G2.5 5 0 2.5 

S5G5 5 0 5 

S5G10 5 0 10 

S5C2.5 5 2.5 0 

S5C5 5 5 0 

S2.5C5 2.5 5 0 

S7.5C5 7.5 5 0 

S5C5G5 5 5 5 

a 
(w/w %) indicates the weight percentage of GL relative to the weight of starch in solution. 

 

Samples were subjected to characterization including SEM, compression, FTIR-ATR, 

and thermal conductivity. All the testing methods were according to the description 

done in chapter 3.3. 
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8.3 Results and Discussion 

 

8.3.1 FTIR Spectrum 

 
Figure 8.1 FTIR spectra of starch based aerogels 

 

FTIR analyses were conducted to confirm the cross-linking reaction. Figure 8.1 shows 

the obtained spectra. The characteristic peaks of pure starch aerogel are located at 

3284 cm
-1

, 2924 cm
-1

 and 1637 cm
-1

, which corresponds to bonded OH stretching, 

CH2 asymmetry stretching and OH bending, respectively [22]. For the band of CH2 

bending vibration, two peaks appear at 1412 cm
-1

 and 1337 cm
-1

, which are associated 

with CH2 scissoring and CH2 twist vibration, respectively [23]. In the region between 
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900 cm
-1

 and 1200 cm
-1

, the bands at 1146 cm
-1

 and 1078 cm
-1

 contribute to the 

stretching vibration of C-O-C which bridges the glucoses units; the other two bands at 

996 cm
-1

 and 928 cm
-1

 are related to the C-O stretching in anhydrous glucose ring of 

starch molecules [24]. In addition, the peaks at 845 cm
-1

 and 760 cm
-1

 are assigned to 

the bending of CH in the glucose ring [22]. With the addition of clay, new peaks 

appear at 3618 cm
-1

 and 514 cm
-1

, which are attributed to the free water in the 

interlayer of pristine MMT and Al-O bending, respectively [25].  

 

 

Figure 8.2 The scheme of chemical reaction of starch and GL  

 

When 5 % GL was incorporated, the band at 928 cm
-1

 in pure starch aerogel was 

shifted to 937 cm
-1

. This is because -OH in the starch molecules reacted with GL, as 

depicted in Figure 8.2, affecting the vibration of C-O in glucose ring. Moreover, a 

new band appeared in 1716 cm
-1

 due to the unreacted C=O groups of GL and the C-O 

stretching band at 928 cm
-1

 was moved to higher wavenumber (943 cm
-1

).  

 

 

8.3.2 Solubility and Swelling 

Aerogels crosslinked with different amount of GL and neat starch sample S5 were 

firstly cut to equal dimensions, and then placed in three different beakers containing 

200 ml of DI water at room temperature. It was observed that the unmodified sample 

was quickly dissolved into the cold water. GL-crosslinked samples were not dissolved; 

instead, they swelled in water and were transformed into stable hydrogels, as shown 
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in Figure 8.3. 

After staying in DI water at room temperature for 2 weeks, these hydrogels did 

not show any tendency to dissolve. This suggested that the GL effectively crosslinked 

the starch molecules. The networks that were formed between the starch molecules 

created blocked aerogel skeletons. Increasing the temperature to 80 
o
C at which starch 

should be dissolved, sample S5G2.5 was just partly dissolved while the samples 

containing a higher amount of GL did not show any change. 

 

 

Figure 8.3 Configurations of GL-modified starch in water: (a)S5; (b)S5G2.5; (c)S5G5; 

(d)S5G10 

 

 

8.3.3 Morphology 

Pure starch aerogels exhibited the layered structures (Figure 8.4a and 8.4b) previously 

reported in the other biopolymer aerogels prepared through the same freeze-drying 

process. Increasing starch concentration in precursor solution, the porous laminas in 

sample S5 (Figure 8.4a) changed to solid layers appeared in sample S10 as can be 

observed in Figure 8.4b. This is because aerogels containing higher fraction of starch 

have higher apparent density as well as higher cell wall density. 
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Figure 8.4 SEM micrographs of starch based aerogels: (a)S5; (b)S10; (c)S5G2.5; (d)S5G5; 

(e)S5C5; (f)S5C5G5 

 

The structures of cross-linked aerogels varied with the content of GL. When 2.5 w/w% 

of GL was added to crosslink 5 wt% starch solution, the resultant sample (S5G2.5) 

displayed a lamellar structure composed of solid layers connected with struts (Fig. 

8.4c). Starch molecules are assembled into large blocks after the cross-linking 

reaction, limiting the mass mobility and hence affecting their rearrangement at the 

grain boundaries between the growing ice crystals [26]. With the quantity of GL 

increased to 5 w/w%, the lamellar structure was substituted by a honeycomb-like 
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architecture (Fig. 8.4d) due to the further increment in solution viscosity and decrease 

in mass mobility of precursor solutions. However, further increase of GL amount to 

10 w/w% did not change the aerogel microstructure. This indicates that a GL level of 

5 w/w% is the optimum concentration. It kept consistent with FTIR investigation, 

which showed that unreacted GL was presented when 5 w/w% was added. 

When inorganic clay was introduced to the precursor solution, clay nanoparticles 

were encapsulated by starch and reoriented by the growing ice front upon solution 

freezing, ultimately resulting in the “house of cards” structure in which the layers 

were linked by the polymeric phase (Fig. 8.4e). The incorporation of GL did not alter 

the overall structure of sample S5C5 (Fig. 8.4f).  

These structural features are consistent with the observed differences in 

mechanical properties discussed in the following section. 

 

 

8.3.4 Compressive Properties 

The aerogel samples were subjected to compression test and the compressive 

stress-strain curves are shown in Figure 8.5. All the samples displayed typical 

elastic-plastic foam behaviour, which was similar with the other bio-based aerogels. 

The parameters defining the compressive mechanical behaviour are summarized in 

Table 8.2. 

The mechanical properties of neat starch aerogels were strongly dependent on 

their densities. Increasing the starch content from 5 wt% to 12.5 wt%, the specific 

compressive modulus and energy absorption increased by 40 and 16 times, 

respectively. With the addition of clay, the mechanical performance of S5 was 

significantly improved. Our previous study and many other works analyzed the effect 

of clay on the structures and properties of biopolymer-clay aerogels [11, 26, 27]. Clay 

interacts with the biopolymers, reinforcing the strength of the sheet-like cell wall. 

Therefore, it enhances the mechanical properties of aerogels. In present work, clay 

strongly adhered to starch molecules, causing sample S5C5 to exhibit a much higher 
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structural integrity than S5. Sample S5C5 with a density of only 0.092 g/cm
3
 

possessed modulus of 7.39 MPa and yield strength of 212 kPa.  

Increasing the starch fraction in the starch/clay composites (SxC5 series), the 

mechanical properties of aerogels were monotonically increased up to 50% even 

though the apparent density still increased. It may be attributed to the uneven 

distribution of clay nanoparticles in a highly viscous precursor suspension like the one 

containing 7.5 wt% of starch. 

 

 

Figure 8.5 Compressive curves of (a) pure starch aerogels and GL cross-linked starch 

aerogels; (b) starch-clay composite aerogels 

 

Incorporation of GL had a minimal effect on apparent densities of starch aerogels. 

However, both the compressive modulus and strength values were monotonically 
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increased with the GL concentration as shown in Table 8.2. Higher GL concentrations 

result in structures with greater cross-linking density that can support deformation 

more effectively under applied stress. Nevertheless, there were no significant changes 

on the specific compressive modulus and absorbed energy when the GL content was 

increased from 5 w/w% to 10 w/w%. This is because of the marginal effect of GL 

over 5 w/w% of concentration.  

The best composition in the present study is the sample S5C5G5 with a specific 

modulus of 118 MPa, which is higher than the value of sample S5C5 (80 MPa). It 

indicates that the cross-linking effect also works within pure starch aerogels as well as 

the starch-clay aerogel composite.  

 

Table 8.2 Compressive properties of starch based aerogels 

Samples ρapp (g/cm
3
) E (Mpa) 

Es  

(MPa/g cm
-3

) 

σ60% 

(Mpa) 

Ea at 60% ε 

(kJ/m
3
) 

S5 0.073±0.003 0.06±0.01 0.82±0.10 0.12±0.01 20.36±0.86 

S7.5 0.116±0.008 1.25±0.48 10.79±3.77 0.82±0.18 155.07±26.73 

S12.5 0.136±0.008 5.75±1.03 41.11±7.79 1.05±0.11 323.62±61.76 

S5G2.5 0.071±0.002 1.6±0.28 22.07±3.34 0.21±0.02 52.65±4.22 

S5G5 0.063±0.001 2.05±0.29 32.63±4.42 0.29±0.02 87.76±5.94 

S5G10 0.068±0.001 2.42±0.47 35.79±6.96 0.30±0.03 84.74±17.87 

S2.5C5 0.082±0.002 1.34±0.11 16.38±1.86 0.11±0.02 37.34±8.09 

S5C5 0.092±0.01 7.39±1.64 80.25±18.32 0.44±0.04 189.27±14.38 

S5C2.5 0.086±0.003 2.98±0.11 35.27±1.86 0.21±0.02 88.06±8.09 

S7.5C5 0.113±0.002 8.85±1.87 78.12±15.10 0.73±0.05 285.77±15.66 

S5C5G5 0.101±0.002 11.93±2.27 118.86±22.00 0.43±0.03 170.33±26.33 

 

 

8.3.5 Thermal Conductivity  

The increase of thermal conductivity with aerogel density is a known phenomenon 

and has been reported, for instance, for silica aerogel [28]. It is attributed to the 

increase of solid mass and pore wall thickness leading to the increased in solid phase 

conduction. However, in this research, introducing 50 % clay, the thermal 

conductivity slightly decreased from 0.059 to 0.053 W/(m K) with the apparent 
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density increased. This is possibly because the starch-clay hybrid aerogel exhibited a 

more porous structure than the pure starch aerogel. A tortuous path was created for 

gas phase transferring. This trend was similar to the one of polyvinyl alcohol-clay 

aerogels thermal conductivity [29].  

In addition, the thermal conductivity of starch/clay aerogels is comparable to 

those of glass fiber and rock wool (0.04-0.05 W/(m K)) [30] and is lower than that of 

wood wool (0.09 W/(m K)) [31]. However, it is higher than those of some close-cell 

foams, such as polystyrene (0.02–0.04 W/(m K)) [32].   

 

 

8.4 Conclusion 

In this chapter, starch aerogels and starch-clay composite aerogels were prepared 

using the same freeze-drying process. Glutaraldehyde cross-linked aerogels displayed 

much higher mechanical properties than the unmodified ones. FTIR analysis indicated 

that glutaraldehyde effectively reacted with starch. The SEM results showed the 

cross-linking significantly changed the structures of aerogels. GL level of 5 w/w% 

was the optimum concentration. Thermal conductivity of some samples was 

investigated. Clay addition reduced the thermal conductivity of starch aerogel due to 

the tortuous path in starch-clay aerogel.   
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Chapter 9: Biodegradability of Aerogels 

 

 

 

9.1 Introduction 

 

One of the most attractive advantages of bio-based polymers is their excellent 

biodegradability. On the basis of environmental considerations, exploiting the usage 

of biopolymers is an increasing concerned topic. Bio-based aerogels are a choice that 

can smooth over the landfill shortage problems initiated by abundant waste of 

non-biodegradable conventional plastics.  

Schiraldi‟s studies showed that polysaccharide-based pectin aerogel degraded 

very fast in a compost media with duration of only 10 days and its degree of 

biodegradability was as high as 50% [1]. However, apart of this work, the 

biodegradability of this type of low-density materials was seldom reported. Aerogels 

based on different biodegradable polymers were prepared in the previous chapters. 

Some of them are made from water-soluble synthesized PVOH, while others are 

polysaccharide-based. Among those aerogels based on polysaccharides, cellulose fiber 

has a higher crystallinity than the rests that exhibit similar molecular structures (starch, 

CMC, agar, et al.). Therefore, their degradable behavior should be different. On the 

other hand, these polymeric aerogels that have high porosity may show a distinct 

biodegradability in regard to their corresponding solid materials. According to these 

considerations, PVOH-, RCF/CMC- and starch-based aerogels have been chosen as 

representative of different biodegradation behavior of the aerogels prepared along this 

work. To analyse the effect of porosity, the selected aerogels samples were 

compressed to make films and their biodegradability was compared with the 

corresponding aerogels.   
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9.2 Experimental  

 

Aerogels samples and compressed aerogels films that were investigated were based 

on PVOH, CMC/RCF and starch, respectively. The most representative compositions, 

(5P5C, R2.5C2.5 and S5) were chosen. The corresponding aerogels films were 

prepared using an IQAP LAP PL-15 press (QAP Masterbatch group SL, Barcelona, 

Spain). Cylinder aerogel was firstly placed between two steel plates covered with a 

thin polytetrafluoroethylene fabric (thickness: 0.2 mm) and then compressed into a 

film operating at 25 
o
C and 60 bar for 3 minutes.  

 

A micro respirometer system was made following ISO/FDIS 14855-2 method [2], as 

illustrated in Figure 9.1. Compressed air flow was generated by a pump. A flask filled 

with sodium hydroxide pellets (Merck KGaA, Damstadt, Germany) was set as a 

trapper to remove CO2 in the air before they were injected into a 1000 ml reactive 

vessel. Prior to the tests, 82 grams of compost composed by 1/3 wt% compost soil, 

1/3 wt% soy protein and 1/3 wt% wood pieces were poured into the reactive vessel. 

Then 5 grams of aerogel or film specimens were embedded into compost. Finally, the 

reactive vessel was kept in a water base (Precisterm S-387) operating at 65 
o
C. During 

the tests, 20 ml of water was added to each reactive vessel every three days. Aerogel 

gradually degraded into CO2, H2O, CO et al. Water was absorbed by calcium chloride 

dehydrate (Sigma-Aldrich) and the evolved CO2 flow was recorded by a K-30 CO2 

sensor (CO2 Meter, Inc., FL, USA). The compost was also conducted as a blank 

sample. 

 

 

9.3 Results and Discuss 

 

The flow of CO2 released from system was taken as indicative of the degradation rate 
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of materials. The evolved CO2 was calculated from the integral values of CO2 flow 

rate as displayed in Figure 9.2. All the samples exhibited a similar trend in the 

decomposition behaviour: a steep increase in the degradation rate occurred in 15 days 

until a plateau stage after 27 days where the degradation was finished. 

 

 

Figure 9.1 Illustration of homemade respirometer system 

 

 
Figure 9.2 Biodegradability behaviors of aerogel samples and compressed aerogel films  

 

Both cellulose and starch based aerogels exhibited a higher decomposition rate and 

released more CO2 than the one based on PVOH. This indicated that the natural 

cellulose and starch have a better biodegradability than synthesized PVOH. On the 
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other hand, pure starch aerogel decomposed faster than CMC/RCF hybrid aerogel as 

shown by a change in the slope of the decomposition plot observed after 10 days. This 

is due to the higher degree of crystalline of RCF in comparison to starch and CMC. 

The same reason is responsible for the two rapid decomposition steps appeared in the 

decomposition plot of R2.5C2.5 compressed aerogel film.  

The decomposition rates of solid films were lower than their aerogel counterparts. 

This is due to the higher specific surface area of aserogels. The porous aerogel 

structure is beneficial to organism cells adhesion, growth and proliferation [3]. As a 

result, a faster consumption of the matrix occurred in comparison to films, which was 

shown as increased CO2 released rate and total CO2 released amount.       

The starch and cellulose films also showed a higher ability to decompose 

comparing with PVOH, which was in line with previous investigations [4]. It is worth 

highlighting that the CO2 production of PVOH-based aerogel or film was lower than 

that of the compost during the initial decomposition stage. This is most likely 

attributed to a type of noxious impact produced by the PVOH on the reproduction of 

microorganism in the compost [5].  

 

 

9.4 Conclusion  

 

The biodegradability of PVOH-, cellulose- and starch-based aerogels and 

corresponding compressed solid films were investigated through a homemade micro 

respirometer system. Bio-based materials based on starch and cellulose had a better 

biodegradability than that of synthesized PVOH. Aerogels decomposed faster than 

their solid counterparts due to their porous structures and resultant specific surface 

areas, which favoured the adhesion, growth and proliferation of microorganism.  
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General Conclusions 

 

Robust foam-like materials based on polymers and sodium montmorillonite clay were 

prepared through a simple environmentally friendly freeze-drying process in which 

water was used as solvent. Both biodegradable synthesized and bio-based polymers 

were utilized in this work, including PVOH, cellulose, xanthan gum, agar, Arabic gum 

and starch. 

 

Within the polymer-clay aerogels, polymer molecules play a role of glue linking the 

Na
+
-MMT nanoparticles, resulting in higher mechanical performance than pure clay 

aerogels. On the other hand, Na
+
-MMT platelets serve as a physical barrier that 

increases the heat resistance.  

 

In regard to PVOH-clay aerogels, polymer concentration played the major role on 

porosities, apparent densities and mechanical properties (compression and impact). Of 

the different types of flame retardant fillers (ALH, APP, silica gel and K2CO3) were 

investigated, APP and ALH modified PVOH-clay aerogels showed better flame 

retardant properties according to cone calorimeter tests. Moreover, higher loading of 

ALH lead to lower peak of heat released rate and fire growth rate.  

 

RCF-CMC composite aerogels exhibited tunable microstructures and mechanical 

properties by changing RCF/CMC ratio. The mechanical properties of aerogels were 

increased with the fiber amount up to 3.75 wt%. The addition of RCF not only 

promoted moisture resistance but also improved the dimensional stability. APP and 

clay, which were used as addtives, played a synergetic effect on the flame retardancy 

and thermal stability of cellulosic aerogels. 

 

Within the XG/agar/clay aerogels, the synergistic effect between two polysaccharides 

made the aerogels display a significant improvement in mechanical properties 
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compared with those containing a single biopolymer. The highest specific modulus 

and yield stress were obtained in the 40/60 XG/agar blend (69.4 MPa and 61.9 kPa, 

respectively) due to its honeycomb-like structure. 

 

Arabic gum-clay and starch-clay systems were afterward investigated. It was found 

that the viscosity of the mixtures has a decisive effect that determined that final 

mechanical properties of polymer-clay aerogels. Arabic gum is negatively charged 

resulting in repulsion with clay nanoscale platelets while starch molecules are neutral 

showing interactions with clay via hydrogen bonding. Glutaraldehyde was used to 

enhance the structural integrity and mechanical properties of starch aerogels through 

crosslinking reaction with starch molecules, which was proved by FTIR analysis. GL 

level of 5 w/w% was the optimum concentration, which increased the specific 

modulus more than 30 times.   

 

The biodegradability of representative prepared aerogel samples (P5C5, F2.5C2.5, S5) 

were investigated. Cellulose or starch based aerogels exhibited a higher 

biodegradability than PVOH one. Moreover, porous aerogels decomposed faster than 

their corresponding solid films due to the higher specific surface area. 
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Outlook 

 

An extensive work would be to expand the functions and modify the drawbacks of the 

polymer-clay aerogels, such as improving the flexibility, resilience and 

hydrophobicity.  

The polymers and clay used in this work are all moisture sensitive due to their 

chemical structure with hydroxyl functional groups. According to our study, the 

moisture content is about 10 wt%, which significantly reduces the mechanical 

properties. A silylation or fluorination treatment could endow surface or body 

hydrophobicity to aerogels. Repellent polymer/clay aerogel could be applies as buoy 

or reusable absorbent.  

Polymer-clay aerogels do not have resilience and flexibility, which limiting the 

reusability. To overcome this drawback, the cell wall structures of aerogels should be 

modified. Special crosslinking agents could be used to created networks within the 

aerogels. This part of work should be deeply developed in future. 
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