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“Ethical axioms are found and tested not
very differently from the axioms of science.

Truth is what stands the test of experience”.
Albert Einstein.
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Chapter 1

Introduction

The theory of Quantum Information emerges as an effort to generalize classical
information theory into the quantum realm, by using the laws of quantum physics
to encode, process and extract information. It was Rolf Landauer, known among
other things for his remarkable contributions to the theory of electrical conductivity,
who at the end of 1960 coined the idea that information rather than an abstract
mathematical concept, is at the very end a physical process governed by physical
laws. At the same time, Richard Feynman in “Simulating Physics with Computers”
realized that in order to simulate intrinsically quantum physical processes, a classical
computer will necessarily fail by its mere deterministic continuous nature while he
showed how a quantum one would succeed efficiently in simulating and computing.
At the end of the 80s, David Deutsch in his seminal paper “Quantum theory, the
Church-Turing principle and the universal quantum computer” set the ground for the
theory of quantum information. He considered a universal classical Turing machine,
which is the prototype of any classical computer, and propose the first universal
quantum Turing machine paving the way towards quantum circuit modeling.

An algorithm is nothing else than a set of rules to solve efficiently a given prob-
lem in a finite number of steps. Problems are usually classified in different com-
plexity classes. An important class of problems are the so-called, non-deterministic
polynomial (NP) problems, whose efficient solution using classical computers grows
exponentially with the input size of the problem. The cornerstone example of a NP
problem is factorization. A big leap in the theory of Quantum Information was done
by Peter Shor when he proposed in 1994 a quantum algorithm to factorize a prime
number in an efficient way. Precisely the lack of an efficient classical solution to this
problem sustains present cryptographic methods. The importance of his discovery,
had led to a revolution on the emergent field of quantum information, involving
for the first time non-academic interests as Quantum Cryptography with already
successful implementations. Simultaneously, in 1995 Ignacio Cirac and Peter Zoller
proposed the first realizable model of a quantum computer, using an array of trapped
ions, an available technology since the beginning of the 1990.

Since the end of the 1990, until now, very different models, involving solid states
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2 Introduction

devices, quantum dots, quantum optics, ... have emerged as possible candidates to
process information in a reliable and powerful way. At the same time, novel prob-
lems and solutions have arise by exploiting the properties of quantum laws in many
different scenarios. Without the impressive experimental advance in manipulation
of quantum systems, either using ultra-cold atoms, photons or ions, Quantum Infor-
mation would have not reach the enormous current interest.

This thesis deals with the study of quantum communication protocols with Con-
tinuous Variable (CV) systems. Continuous Variable systems are those described by
canonical conjugated coordinates x and p endowed with infinite dimensional Hilbert
spaces, thus involving a complex mathematical structure. A special class of CV
states, are the so-called Gaussian states. With them, it has been possible to im-
plement certain quantum tasks as quantum teleportation, quantum cryptography
and quantum computation with fantastic experimental success. The importance of
Gaussian states is two-fold; firstly, its structural mathematical description makes
them much more amenable than any other CV system. Secondly, its production,
manipulation and detection with current optical technology can be done with a very
high degree of accuracy and control. Nevertheless, it is known that in spite of their
exceptional role within the space of all Continuous Variable states, in fact, Gaussian
states are not always the best candidates to perform quantum information tasks.
Thus non-Gaussian states emerge as potentially good candidates for communication
and computation purposes. This dissertation is organized as follows.

In chapter 2, we review the formalism of Continuous Variable systems focussing
on Gaussian states. We show that Gaussian states admit an easy mathematical de-
scription based on phase-space Wigner functions as well as with covariance matrices.
We introduce also the basic ingredients to describe multipartite systems with entan-
glement together with the most relevant well known results and finally we detail the
description of light as a CV system.

In chapter 3, we present a protocol that permits to extract quantum keys from an
entangled Continuous Variable system. Differently from discrete systems, Gaussian
entangled states cannot be distilled with Gaussian operations only i.e. entangled
Gaussian states are always bound entangled. However it was already shown, that it
is still possible to extract perfectly correlated classical bits to establish secret random
keys using an “entanglement based” approach. Differently from previous attempts
where the realistic implementation was not considered, we properly modify the pro-
tocol using bipartite Gaussian entanglement to perform quantum key distribution
in an efficient and realistic way. We describe and demonstrate security in front of
different possible attacks on the communication, detailing the resources demanded
while quantifying and relating the efficiency of the protocol with the entanglement
shared between the parties involved. Our results are reported in [1].

In chapter 4, we move to multipartite Gaussian states. There, we consider a
simple 3-partite protocol known as Byzantine Agreement (detectable broadcast).
The Byzantine Agreement is an old classical communication problem in which parties
(with possible traitors among them) can only communicate pairwise, while trying
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to reach a common decision. Classically, there is a bound in the number of possible
traitors that can be involved in the game if only classical secure channels are used.
In the simplest case where three parties are involved, one of them being a traitor,
no classical solution exists. Nevertheless, a quantum solution exist, i.e. letting a
traitor being involved and using as a fundamental resource multipartite entanglement
it is permitted to reach a common agreement. We demonstrate that detectable
broadcast is also solvable within Continuous Variable using multipartite entangled
Gaussian states and Gaussian operations (homodyne detection). Furthermore, we
show under which premises concerning entanglement content of the state, noise,
inefficient homodyne detectors, our protocol is efficient and applicable with present
technology. Our results are reported in [2].

In chapter 5, we move to the problem of quantification of correlations (quantum
and/or classical) between two Continuous Variable modes. We propose to define
correlations between the two modes as the maximal number of correlated bits ex-
tracted via local quadrature measurements on each mode. On Gaussian states, where
entanglement is accessible via their covariance matrix our quantification majorizes
entanglement, reducing to an entanglement monotone for pure states. For mixed
Gaussian states we provide an operational receipt to quantify explicitly the classical
correlations presents in the states. We then address non-Gaussian states with our
operational quantification that is based on and up to second moments only in con-
trast to the exact detection of entanglement that generally involves measurements of
high-order moments. For non-Gaussian states, such as photonic Bell states, photon
subtracted states and mixtures of Gaussian states, the bit quadrature correlations
are shown to be also a monotonic function of the negativity. This quantification
yields a feasible, operational way to measure non-Gaussian entanglement in current
experiments by means of direct homodyne detection, without needing a complete
state tomography. Our analysis demonstrates the rather surprising feature that en-
tanglement in the considered non-Guassian examples can thus be detected and ex-
perimentally quantified with the same complexity as if dealing with Gaussian states.
Our results are reported in [3].

In chapter 6, we focus to atomic ensembles described as CV systems. Entangle-
ment between distant mesoscopic atomic ensembles can be induced by measuring an
ancillary light system. We show how to generate, manipulate and detect mesoscopic
entanglement between an arbitrary number of atomic samples through a quantum
non-demolition matter-light interface. Measurement induced entanglement between
two macroscopical atomic samples was reported experimentally in 2001. There, the
interaction between a single laser pulse propagating through two spatially separated
atomic samples combined with a final projective measurement on the light led to the
creation of pure EPR entanglement between the two samples. Due to the quantum
non-demolition character of the measurement, verification of the EPR state was done
by passing a second pulse and measuring variances on light. Our proposal extends
this idea in a non-trivial way for multipartite entanglement (GHZ and cluster-like)
without needing local magnetic fields. We propose a novel experimental realization
of measurement induced entanglement. Moreover, we show quite surprisingly that
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given the irreversible character of a measurement, the interaction of the atomic sam-
ple with a second pulse light can modify and even reverse the entangling action of
the first one leaving the samples in a separable state. Our results are reported in [4]
and [5].

Finally, in chapter 7, we conclude summarizing our results, listing some open
questions and giving future directions of research.



Chapter 2

Continuous Variable formalism

Continuous Variable (CV) systems are those systems described by two canonical
conjugated degrees of freedom i.e. there exist two observables that fulfill Canonical
Commutation Relations (CCR). This chapter comprises a detailed description of
Continuous Variable systems. It provides also the mathematical framework needed
to analyze the problems treated within this thesis. After introducing a phase-space
formalism and the corresponding quasi-probability distributions I shall restrict first
to Gaussian states which describe, among others, coherent, squeezed and thermal
states. As a cornerstone example, I will shortly develop the canonical quantization of
light, ending by showing how to deal with Gaussian states of light. Presently, these
states are the preferred resources in experiments of QI using Continuous Variable
systems. For further background information the interested reader is referred to
[6, 7, 8, 9, 10, 11, 12].

2.1 Continuous Variable systems

The Canonical Commutation Relations for two canonical observables q̂ and p̂ read 1

[q̂, p̂] = iI. (2.1)

So a direct consequence to the fact that two hermitian operators q̂ and p̂ fulfill the
CCR is that

(i) the underlying Hilbert space cannot be finite dimensional. This can be seen
by applying the trace into Eq. (2.1). Using finite dimensional operator algebra one
would obtain, on one hand, i dimH, while on the other tr(q̂p̂)− tr(p̂q̂) = 0.

(ii) q̂ and p̂ cannot be bounded, since the relation [q̂m, p̂] = mq̂m−1i (obtained

from [f(Â), B] = df(Â)

dÂ
[Â, B̂]) implies that 2 ||q̂||m · ||p̂|| ≥ 1

2 ||[q̂m, p̂]|| = 1
2m||q̂||m−1,

which means that ||q̂|| · ||p̂|| ≥ 1
2m has to be true for all m.

1Quadrature operators are chosen adimensional in such a way that ~ is not going to appear in
any formula.

2Using ||Â|| · ||B̂|| ≥ ||ÂB̂|| = 1
2
||[Â, B̂] + {Â, B̂}|| ≥ 1

2
||[Â, B̂]||.

5



6 Continuous Variable formalism

This is a direct consequence of the fact that q̂ and p̂ possess a continuous spectra
and act in an infinite dimensional Hilbert space.

Examples of CV systems we can think of are the position-momentum of a mas-
sive particle, the quadratures of an electromagnetic field, the collective spin of a
polarized ensemble of atoms [13] or the radial modes of trapped ions [14]. In all of
the examples above, there exist two observables fulfilling (2.1). As we will show,
these observables obey the standard bosonic commutation relations and so we call
these systems bosonic modes. We can deal with several modes, and in this case, by
ordering the operators in canonical pairs through R̂T = (q̂1, p̂1, q̂2, p̂2, . . . , q̂N , p̂N ) we
can compactly state CCR as

[R̂i, R̂j ] = iI(JN )ij (2.2)

where i, j = 1, 2, . . . , 2N and JN = ⊕Nµ=1J accounts for all modes. J is the so-called
symplectic matrix which corresponds to an antisymmetric and non-degenerate form
fulfilling (i) ∀η, ζ ∈ R2N : 〈η|J |ζ〉 = −〈ζ|J |η〉 and (ii) ∀η : 〈η|J |ζ〉 = 0 ⇒ ζ = 0.
In the appropriate choice of basis (canonical coordinates) the symplectic matrix is
brought to the standard form

J =

(

0 1
−1 0

)

. (2.3)

2.2 Canonical Commutation Relations

Canonical Commutation Relations3 can also be expressed using annihilation and
creation operators âµ and â†µ which obey standard bosonic commutation relations

[âµ, â
†
ν ] = δµν , [âµ, âν ] = [â†µ, â

†
ν ] = 0 (2.4)

µ, ν = 1, 2, . . . ,N . The CCR expressed in Eq. (2.2) and (2.4) are related by a unitary

matrix U = 1/
√

2

(

IN iIN
IN −iIN

)

such that if we define ÔT = (â1, â2, . . . , âN , â
†
1, â

†
2, . . .

, â†N ) then Ôi = UijR̂j.

Notice that the representation of the CCR up to unitaries is not unique. For
instance, for a single mode in the Schrödinger representation each degree of freedom
is embedded in H = L2(R2), while the operators q̂ and p̂ act multiplicative and
derivative respectively

q̂ = q

p̂ = −i ∂∂q

}

(2.5)

but also q̂ = +i ∂∂p , p̂ = p is equally possible. In both representations the operators
are unbounded. A way to remove ambiguities (up to unitaries) and to treat with

3The CCR are related with the classical Poisson brackets via the 1st quantization transcription:
{A,B}pp ≡ P

µ(
∂A
∂Qµ

∂B
∂Pµ

− ∂B
∂Qµ

∂A
∂Pµ

) −→ −i[Â, B̂] ≡ −i(ÂB̂ − B̂Â) and A −→ Â.
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bounded operators is by using Weyl operators. The Weyl operator is defined as

Ŵζ ≡ eiζ
T ·J ·R̂ (2.6)

where ζT = (ζ1, ζ2, . . . , ζ2N ) ∈ R2N .
The Weyl operator acts in the states as a translation in the phase-space (displace-

ments eiηp̂|q〉 = |q − η〉 and kicks eiζq̂|q〉 = eiζq|q〉) as it can be checked by looking to
its action onto an arbitrary position-momentum operator

Ŵ †
ζ R̂iŴζ = R̂i − ζiI. (2.7)

It satisfies the Weyl relation

ŴζŴη = e−
i
2
ζT ·J ·ηŴζ+η, (2.8)

analogously, it fulfills
ŴζŴη = ŴηŴζe

−iζT ·J ·η, (2.9)

showing the non-commutative character of the canonical observables. There exists
only one equivalent representation of the Weyl relation according to the following
theorem.

Theorem 2.2.1 (Stone-von Neumann theorem) Let Ŵ1 and Ŵ2 be two Weyl sys-
tems over a finite dimensional phase-space (N < ∞). If the two Weyl systems are
strongly continuous 4 and irreducible 5 then they are equivalent (up to an unitary).

2.3 Phase-space

Phase-space formulations of Quantum Mechanics, offers a framework in which quan-
tum phenomena can be described using as much classical language as allowed. There
are various formulations of non-relativistic Quantum Mechanics see e.g. [15]. These
formulations differ in mathematical description, yet each one makes identical predic-
tions for all experimental results.

Phase-space formulations can often provide useful physical insights. Furthermore,
it requires dealing only with constant number equations and not with operators,
which can be of significant practical advantage. This mathematical advantage arises
here from the fact that the infinite-dimensional complex Hilbert space structure
which is, in principle, a difficult object to work with, can be mapped into the linear
algebra structure of the finite-dimensional real phase-space. We will extend this
map and show how to characterize states and operations in sections 2.4.1 and 2.3.2
respectively.

2.3.1 Phase-space geometry

A system ofN canonical degrees of freedom is described classically by a 2N -dimensional
real vector space 6 V ≃ R2N . Together with the symplectic form it defines a sym-

4∀|ψ〉 ∈ H : limζ→0 || |ψ〉 − Ŵζ |ψ〉|| = 0.
5∀ζ ∈ R2N : [Ŵζ , Â] = 0 ⇒ Â ∝ I.
6They are isomorphic (there exist a bijective morphism between the two groups).



8 Continuous Variable formalism

plectic real vector space (the phase-space) Ω ≃ R2N . The phase-space is naturally
equipped with a complex structure and can be identified with a complex Hilbert
space HΩ ≃ CN . If 〈 | 〉 stands for the scalar product in HΩ and 〈 | 〉J for the
symplectic scalar product in Ω their connection reads

〈η|ζ〉 = 〈J η|ζ〉J + i〈η|ζ〉J . (2.10)

Notice that η = (q, p) ∈ Ω while η = q+ ip ∈ HΩ such that any orthonormal basis in
HΩ leads to a canonical basis in Ω. Moreover, any Gaussian unitary operator (which
preserves the scalar product) acting on HΩ, leads to a symplectic operation S in
the phase-space in such a way that the symplectic scalar product is also preserved.
The inverse is also true provided that the symplectic operation commutes with the
symplectic matrix J .

2.3.2 Symplectic operations

Gaussian operations [16] are completely positive maps, thus preserving the Gaussian
character on states, that can be implemented by means of Gaussian unitary oper-
ators (symplectic operations) plus Bell measurements (homodyne measurements).
Homodyne/heterodyne detection is a fundamental Gaussian operation, that is, the
physical measurement of one/two of the canonical conjugated coordinates. Neverthe-
less we will concentrate for the moment with symplectic operations, hence canonical
transformations S that preserve the CCR and therefore leave the basic kinematic
rules unchanged. That is, if we transform our canonical operators R̂S = S · R̂, still
equation (2.2) is fulfilled. In a totally equivalent way, we can define symplectic trans-
formation as the ones which preserve the symplectic scalar product and therefore 7

ST · J · S = J . (2.11)

The set of real 2N×2N matrices S satisfying the above condition form the symplec-
tic group Sp(2N,R). To construct the affine symplectic group we just need to add
also the phase-space translations s that transform R̂S = S · R̂ + s and whose group

generators are Ĝ
(0)
i = JijR̂j. Apart from that, the group generators of the represen-

tation of Sp(2N,R) which physically corresponds to the Hamiltonians which perform
the symplectic transformations on the states, are of the form Ĝij = 1

2{R̂i, R̂j}. This
corresponds to hermitian Hamiltonians of quadratic order in the canonical operators.
When rewriting them in terms of creation / annihilation operators we can divide it
into two groups. Passive generators (compact):

Ĝ
(1)
µν = i

(â†µ âν−â†ν âµ)
2 , Ĝ

(2)
µν =

(â†µ âν+â
†
ν âµ)

2 ,

and active generators (non-compact):

7From now on we neglect the subscript N in symplectic matrix.
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Ĝ
(3)
µν = i

(â†µ â
†
ν−âν âµ)

2 , Ĝ
(4)
µν =

(â†µ â
†
ν+âν âµ)

2 .
The passive ones, are generators which commute with all number operators n̂µ ≡
â†µâµ, and so, they preserve the total number, in this sense they are passive. If
the system under study is the electromagnetic field, what is being preserved under
passive transformations is the total number of photons. In such a case, passive trans-
formations can be implemented optically by only using beam splitters, phase shifts
and mirrors. Conversely, only by using them, we can implement any Hamiltonian
constructed by a linear combination of the compact generators. Finally, with all the

five classes of generators, we can generate all the Gaussian unitaries, Ûλ = eiλ·Ĝ.
For one mode (N = 1) the simplest passive generator is the phase shift operator

and its corresponding symplectic operation in phase-space

Ûθ = eiθâ
†â ⇔ Sθ =

(

cos θ sin θ
− sin θ cos θ

)

. (2.12)

On the other hand, we have the active generators that change the energy of the
state. The most important one is the single mode squeezing operator, whose unitary
expression (for a squeezing parameter r > 0) and symplectic operation in phase-space
reads

Ûr = e
r
2
(â2−â†2) ⇔ Sr =

(

e−r 0
0 er

)

. (2.13)

For experimental reasons, instead of the parameter r one uses a decibel expression
10 log e2r in dBs 8. The squeezing operator squeezes the uncertainties on q and p in
a complementary way i.e. it squeezes position while stretches the momentum with
the same factor in such a way that the state remains as close to the uncertainty
limit as it was before. When the squeezing parameter r is positive we call it a q-
squeezer (amplitude squeezer). Analogously p-squeezer or (phase squeezer) occurs
for negatives squeezing parameters.

Finally, phase-space translations for one mode are described by the unitary and
symplectic operation in phase-space

Ûα = eαâ
†−α∗â ⇔ sα =

(

q0
p0

)

(2.14)

where α = q0+ip0√
2

.

For two modes (N = 2) the most important non-trivial unitaries are beam split-
ters (reflectivity R = sin2 θ/2 and transmitivity T = cos2 θ/2) and two mode squeez-
ers that amounts respectively to

ÛBS = e
θ
2
(â1â

†
2−â

†
1â2) ⇔ SBS =









cos θ/2 0 sin θ/2 0
0 cos θ/2 0 sin θ/2

− sin θ/2 0 cos θ/2 0
0 − sin θ/2 0 cos θ/2









(2.15)

8All logarithms are in basis 10, unless differently specified.
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and

ÛTMS = er(â1â2−â
†
1â

†
2) ⇔ STMS =









cosh r 0 sinh r 0
0 cosh r 0 − sinh r

sinh r 0 cosh r 0
0 − sinh r 0 cosh r









. (2.16)

2.4 Probability distribution functions

One of the most important tools of the phase-space formulation of Quantum Me-
chanics are the phase-space probability distribution functions. The best known and
widely used is the Wigner distribution function, but there is not a unique way of
defining a quantum phase-space distribution function. In fact, several distribution
functions with different properties, rules of association and operator ordering can also
be well defined [17]. For instance sometimes normal ordered (P-function), antinormal
ordered (Q-function), generalized antinormal ordered (Husimi-function), standard
ordered, antistandard ordered,. . . distributions can be more convenient depending
on the problem being considered. In this thesis we are only going to work with the
totally symmetrical ordered one (Weyl ordered); the Wigner distribution function.

Due to the fact that joint probability distributions at a fixed position q̂ and
momentum p̂ are not allowed by Quantum Mechanics (Heisenberg uncertainty the-
orem), the quantum phase-space distribution functions should be considered simply
as a useful mathematical tool. Joint probabilities can be negative, so that one deals
rather with quasi-probability distribution. As long as it yields a correct description
of physically observable quantities, their use is accepted.

2.4.1 Quantum states and probability distributions

We would like to see here now how to describe quantum systems of CV using probabil-
ity distributions functions. Let’s recall that a density operator ρ̂, defines a quantum
state iff it satisfies the following properties

trρ̂ = 1, ρ̂ ≥ 0 [⇒ ρ̂† = ρ̂]. (2.17)

Such operator belongs to the bounded linear operators Hilbert space B(H). If the
state is pure ρ̂ = |ψ〉〈ψ| where |ψ〉 belongs to a Hilbert space Cd for qudits, (discrete
variables system) or L2(Ω) for N modes, (Continuous Variable system). Notice the
inconvenience of density operator formalism for CV since the states belong to an
infinite dimensional Hilbert space.

For systems of Continuous Variable, the Wigner distribution function gives a
complete description of the state. Given a state ρ̂ corresponding to a single mode,
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the Wigner distribution function is defined as 9

Wρ(q, p) =
1

π

∫

dx〈q + x|ρ̂|q − x〉e−2ipx. (2.18)

This transformation is called Weyl-Fourier transformation and it gives the bridge
between density operators and distribution functions. Sometimes, for computational
reasons it is better to compute first the characteristic distribution function which is
obtained through

χρ(ζ, η) = tr{ρ̂Ŵ(ζ,η)}. (2.19)

The above two distribution functions are fully equivalent in the sense of describing
completely our quantum state and are related by a Symplectic-Fourier transform

Wρ(q, p) =
1

(2π)2

∫

dζ

∫

dη χρ(ζ, η)e−iζp+iηq =
1

2π
SFT {χρ(ζ, η)}, (2.20)

χρ(ζ, η) =

∫

dq

∫

dpWρ(q, p)e
iζp−iηq = 2πSFT −1{Wρ(q, p)}. (2.21)

The Weyl-Fourier transformation is invertible and it provides a way to recover our
density operator from both distribution functions

ρ̂ =
1

2π

∫

dq

∫

dp

∫

dζ

∫

dηWρ(q, p)e
−iζp+iηqŴ(−ζ,−η) =

=
1

2π

∫

dζ

∫

dη χρ(ζ, η)Ŵ(−ζ,−η).
(2.22)

At this level, W (and χ) defines a quantum state iff they satisfy the following prop-
erties:

(i) the state is normalized
∫

dq

∫

dpW(q, p) = 1, χ(0, 0) = 1 (2.23)

and,
(ii) the state is non-negative defined

∫

dq

∫

dpW(q, p)Wp(q, p) ≥ 0 [⇒ W∗(q, p) =W(q, p)] (2.24)

2N
∑

i,j=1

a∗i ajχ(ζj − ζi)e
i
2
(ζTi ·J ·ζj) ≥ 0 [⇒ χ∗(ζ, η) = χ(−ζ,−η)] (2.25)

for all pure states Wp and for all ai,j ∈ R. This can be shown using the following
theorem:

9For pure states the definition gets simplified to Wρ(q, p) = 1
π

R

dx e−2ipxψ∗(q − x)ψ(q + x) =

=
R

dx W̃ρ(q, x)e
−2ipx. One can see a direct link between the wave function and the Symplectic-

Fourier transform of the Wigner distribution via ψ(q) =
q

π

W̃(q0,0)
W̃( 1

2
(q + q0),

1
2
(q − q0)).
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Theorem 2.4.1 (Quantum Bochner-Khinchin theorem) For χ(η) to be a character-
istic function of a quantum state the following conditions are necessary and sufficient
1.) χ(0) = 1 and χ(η) is continuous at η = 0,
2.) χ(η) is J − positive (symplectic-positive defined).

2.4.2 Properties of the Wigner distribution

Properties

i) Quasidistribution: It is a real valued quasi-distribution because it admits nega-
tives values.

ii) T-symmetry: It has time symmetry

t→ −t⇐⇒W(q, p, t)→W(q,−p, t). (2.26)

iii) X-symmetry: It has space symmetry

q → −q ⇐⇒W(q, p, t)→W(−q,−p, t). (2.27)

iv) Galilei invariant: It is Galilei invariant

q → q − a⇐⇒W(q, p, t)→W(q + a, p, t). (2.28)

v) T-evolution: The equation of motion for each point in the phase-space is classical
in the absence of forces 10

dρ̂

dt
= −1

i
[ρ̂, Ĥ ]⇐⇒ ∂W(q, p, t)

∂t
= − p

m

∂W(q, p, t)

∂q
. (2.30)

vi) Bounded: It is bounded

|W(q, p)| ≤ 1

π
. (2.31)

For pure states 11 the demonstration reads

|W(q, p)|2 =
1

π2

∣

∣

∣

∣

∫

dx e−2ipxψ∗(q − x)ψ(q + x)

∣

∣

∣

∣

2

≤

≤ 1

π2

∫

dx
∣

∣eipxψ(q − x)
∣

∣

2
∫

dx
∣

∣e−ipxψ(q + x)
∣

∣

2
=

1

π2
.

(2.32)

10Remember that when we are speaking about states of light m has to be interpret as permittivity
of vacuum ǫ0. Notice there is a minus sign difference with Heisenberg’s equation of motion.

dÂ

dt
=

1

i
[Â, Ĥ]. (2.29)

11For mixed states, use Schwarz’s inequality |〈ψ1|ψ2〉|2 ≤ 〈ψ1|ψ1〉〈ψ2|ψ2〉 at the density operator
level i.e. 0 ≤ tr(ρ1ρ2)

n ≤ tr(ρ1)
ntr(ρ2)

n for n = 1.
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vii) Normalized: It is well normalized
∫

dq

∫

dpW(q, p) = 1. (2.33)

viii) Quantum marginal distributions: It possesses good marginal distributions 12

W̄(q) =

∫

dpW(q, p) = 〈q|ρ̂|q〉 ≥ 0, (2.34)

W̄(p) =

∫

dqW(q, p) = 〈p|ρ̂|p〉 ≥ 0. (2.35)

ix) Orthonormal: The orthonormality is preserved

∣

∣

∣

∣

∫

dq ψ∗(q)φ(q)

∣

∣

∣

∣

2

= 2π

∫

dq

∫

dpWψ(q, p)Wφ(q, p). (2.36)

If the distributions are equal ψ = φ we conclude
∫

dq
∫

dpW2(q, p) = 1
2π for all

pure states, which is a lower bound in general see appendix 2.B and Eq. (2.81),
also it excludes classical distributions such W(q, p) = δ(q − q0)δ(p − p0). If
they are orthogonal, ψ ⊥ φ, we conclude

∫

dq
∫

dpWψ(q, p)Wφ(q, p) = 0 which
tells us that the Wigner distribution function, in general, cannot be everywhere
positive.

x) Complete orthonormal set: The set of functions Wnm(q, p) form a complete
orthonormal set (if ψn(q) are already a set)

2

∫

dq

∫

dpW∗
nm(q, p)Wn′m′(q, p) =

1

2π
δnn′δmm′ , (2.37)

∑

n,m

W∗
nm(q, p)Wnm(q′, p′) =

1

2π
δ(q − q′)δ(p − p′), (2.38)

where

Wnm(q, p) =
1

π

∫

dx e−2ipxψ∗
n(q − x)ψm(q + x). (2.39)

2.4.3 The generating function of a Classical probability distribution

Denoting by y (x) a random variable which can be discrete y ∈ {yi} (or continuous
x ∈ [a, b]) and its corresponding (density) probability p(yi) (p(x)), we can establish
the normalization constrain as

∑

i p(yi) = 1
∫ b
a p(x)dx = 1

}

. (2.40)

Of relevant importance given a probability distribution are the following quantities:

12For pure states they correspond to the square modulus of the wave function in position |ψ(q)|2
and in momentum |ψ̃(p)|2 representation.
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i) Mean value of u(x): E[u(x)] =
∫

u(x)p(x)dx.

ii) Moment of order m respect point c of x: αmc = E[(x− c)m].

iii) Mean value of x: µ = α1
0 = E[x].

iv) Standard deviation of x: σ =
√

var(x) =
√

α2
µ =

√

E[(x − µ)2].

v) Covariance of xi and xj :
13 Cij = cov(xi, xj) = E[(xi − µi)(xj − µj)],

where i, j = 1, 2, . . . , 2N .

Theorem 2.4.2 (Taylor’s theorem) Any well behaved distribution function can be
reconstructed by its (in general) infinite moments.

This theorem, of considerable importance, tell us that any distribution p(x) can
be retrieved by its moments αmc only. We define the vector d and the matrix C called
mean vector and covariance matrix by

C = [[cov(xi, xj)]]
d = [[µi]]

}

. (2.41)

What is more important is that d and C encode all the information of 1st and 2nd

moments.
If we define the generating function of a distribution function by a Laplace trans-

formation (provided it exists)

M(η) = LT {p(x)} = E[exη], (2.42)

all moments can be obtained by subsequently differentiating the generating function

αm0 =
∂(m)M(η)

∂ηm

∣

∣

∣

∣

∣

η=0

. (2.43)

2.4.4 The generating function of a quasi-probability distribution

In the same way as in Classical Probability where all the moments of a distribu-
tion characterize the distribution, the Wigner quasi-distribution function is fully
characterized by its moments. To adapt the classical formalism to the quantum
Wigner quasi-distribution function we have to introduce the following transcription
η −→ iη,M −→ χ,LT −→ FT 14. We then define the generating function of the
Wigner distribution (characteristic function) by a Fourier transformation, which al-
ways exists, since the Wigner distribution is an integrable function. In general it is
complex and reads

13Here subindex i, j labels all the possible variables of the distribution, when they are equal, Cii
corresponds to the variance var(xi) of the variable xi.

14LT {f(x)} =
R ∞
0
f(x)e−yxdx while FT {f(x)} = 1√

2π

R ∞
−∞ f(x)e−iyxdx = f̃(y).
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χ(η) = FT {W(x)} = E[eixη], (2.44)

then all moments can be obtained by subsequently differentiating the generating
function

βm0 =
1

im
∂(m)χ(η)

∂ηm

∣

∣

∣

∣

∣

η=0

. (2.45)

Analogously, we define, given a quantum Wigner distribution function the dis-
placement vector (DV) d (a 2N real vector) and the covariance matrix (CM) γ (a
2N × 2N real symmetric matrix). The DV contains the information of the first
moments. By the space symmetry only relative DVs are of physical meaning. The
CM is much more richer, it contains information (up to second moments) about
the purity, entanglement,. . . The CM γ, corresponding to a physical state must be
symplectic-positive defined, i.e.

γ + iJ ≥ 0. (2.46)

Such a constrain also implies that, because the symplectic matrix is antisym-
metric, that γ ≥ 0. Positivity implies hermiticity which translates here to γT = γ.
Its useful also to introduce here the symplectic spectrum 15 of the CM because
the positivity condition reads, in terms of the symplectic eigenvalues, as µi ≥ 1,
i = 1, 2, . . . ,N .

2.5 Gaussian states

Gaussian states are those states with a Gaussian Wigner distribution function.
Among all the CV systems, Gaussian states, are of the greatest importance. A
Gaussian distribution appears as the limit of many others and occurs in a great
variety of different conditions. This fact is reflected in the Central Limit Theorem
which is one of the cornerstone of the Classical Probability and Statistics Theory.

Theorem 2.5.1 (Central limit theorem) Suppose we have n independent random
variables x1, x2, . . . , xn which are all distributed with a mean value µ and a standard
deviation σ (each of them can have different arbitrary distribution functions pi(xi)).
In the limit n → ∞ the arithmetic mean x̄ = 1

n

∑n
i=1 xi is Gaussian (or normal)

distributed with mean value µ and standard deviation σ√
n

i.e. p̄(x̄) = 1√
2πσ

e−
(x̄−µ)2

2σ2 .

The importance of Gaussian probability distributions is also encoded in the fol-
lowing theorem

15Every positive matrix M can be diagonalized under symplectics with a symplectic spectrum
symspec(M) of the form {µi} and degenerated with multiplicity 2. The values {µi} are obtained

throw spec(−iJM) = {±µi}, i = 1, 2, . . . , dim(M)
2

.
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Theorem 2.5.2 (Marcinkiewicz’s theorem) If we define the cumulant generating
function as K(η) = lnM(η), then, either the cumulant is a polynomial of order 2 or
it has infinite terms.

Lemma 2.5.1 (Gaussianity lemma) p(x) is a Gaussian(non-Gaussian) distribution
iff the cumulant is a polynomial of order 2(∞).

In general, to describe a probability distribution, all moments are necessary but
as long as we are concern with Gaussian distributions, 1st and 2nd moments are
sufficient. In fact, all other higher moments can be rewritten in terms of them. This
is a consequence of the theorem 2.5.2.

2.5.1 Displacement Vector and Covariance Matrix

The Displacement Vector (DV) and the Covariance Matrix (CM) are enough to
describe Gaussian states. Analogously to the classical case, it is straightforward to
obtain the moments of order βm0 of a distribution by differentiating the generating
function. Computing 1st and 2nd moments, through (2.19) we get 16

β1
0,i = −i

∂

∂ηi
χ(η)

∣

∣

∣

∣

η=0

= tr(ρ̂R̂′
i), (2.47)

β2
0,ij = (−i)2

∂2

∂ηi∂ηj
χ(η)

∣

∣

∣

∣

η=0

=
1

2
tr(ρ̂{R̂′

i, R̂′
j}) = tr(ρ̂R̂′

iR̂′
j)−

i

2
Jij, (2.48)

where R̂′
i = J · R̂i.

Finally, we define the DV and the CM as 17

di = tr(ρ̂R̂i) (2.49)

γij = tr(ρ̂{R̂i − diÎ, R̂j − dj Î}) =

= 2tr[ρ̂(R̂i − diÎ)(R̂j − dj Î)]− iJij = (2.50)

= 2Re{tr[ρ̂(R̂i − diÎ)(R̂j − dj Î)]}.

16Notice: ( ∂
∂ηi

eiη
T ·R̂)

˛

˛

˛

ηi=0
= iR̂i and ( ∂2

∂ηi∂ηj
eiη

T ·R̂)
˛

˛

˛

ηi,j=0
= 1

2
[R̂i, R̂j ] − R̂iR̂j = − 1

2
{R̂i, R̂j}

where we have used Cambell-Hausdorff formula eÂ+B̂ = eÂeB̂e−
1

2
[Â,B̂] (when [Â, B̂] ∝ I).

17For pure states di = 〈R̂i〉ρ and γij = 〈{R̂i−diÎ, R̂j−dj Î}〉ρ = 〈{R̂i, R̂j}〉ρ−2〈R̂i〉ρ〈R̂j〉ρ, where,
by the anticommutator definition, we see a factor 2 of difference with the classical analog and so
γij ∼ 2Cij . The diagonal terms can be rewritten in terms of the uncertainties as γii = 2(∆Ri)

2
ρ

where as usual (∆A)ψ =

q

〈Â2〉ψ − (〈Â〉ψ)2.
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2.5.2 Phase-space representation of states

It is important to remark here that symplectic operations at the level of the DV
and CM act in such a way that any Gaussian unitary ÛS maps to the following
transformation γS = S · γ · ST and dS = S · d+ s where S stands for an element of
the symplectic group, while s stands for a phase-space translation.

With these definitions it can be shown that the Wigner distribution of any Gaus-
sian state can be written in terms of the DV and CM through 18

W(ζ) =
1

πN
√

det γ
e
−(ζ−d)T · 1

γ
·(ζ−d)

, (2.51)

while its symplectic-Fourier transform reads

χ(η) = eiη
T ·J ·d−ηT ·J T γ

4
J ·η = eiη

T ·d′−ηT · γ
′

4
·η, (2.52)

where d′i = Jijdj and γ′ij = J TikγklJlj.
It is very useful when dealing with Gaussian states to represent them pictorically

in the phase-space. As a example we plot here the Wigner distribution function of a
rotated squeezed coherent Gaussian state in the phase-space as seen in Fig. 2.1(a). In
Fig. 2.1(b), we plot also its pictorical representation, obtained by an horizontal cut
of the Wigner function at a factor e−1/2 of the maximum. This closed curve fulfills
the following expression W(ζ)

W(d) = e−1/2 (for Gaussian states is nothing else than an

ellipse). The area A = π
2

1
P = π∆q̃∆p̃ is closely related with the purity of the state

see (2.80) and naturally constrained by the uncertainty principle in an appropriate
frame (q̃, p̃), the one which uncertainties coincide with the major/minor semiaxes of
the ellipse. This can be casted in the following theorem.

a) q

p

W(ζ)

q0

p0

W(d)

b)

q

p

q0

p0 ∆q

∆p

Figure 2.1: A rotated squeezed coherent Gaussian state with rotating angle φ = 50◦,
squeezing parameter r = 0.4 and displacement α = q0+ip0√

2
. a) Wigner distribution function

of the state where dT = (q0, p0). b) Gaussian state pictorical representation in the phase-
space containing the DV and CM information where 2(∆q)2 = cosh 2r − sinh 2r cos 2φ and
2(∆p)2 = cosh 2r + sinh 2r cos 2φ.

18We see here that max [W(ζ)] = W(d) = 1
πN

√
det γ

≤ 1
πN where the equality holds for pure states

only (2.31).
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Theorem 2.5.3 (Minimum uncertainty states theorem) Equality in Heisenberg’s
uncertainty theorem is attained iff the state is a pure Gaussian state i.e. a rotated
squeezed coherent state, |ψ〉 = ÛθÛrÛα|0〉.

All pure Gaussian states of one mode, characterized by its γ (and if necessary
by d), can be obtained from the vacuum state by an appropriate squeezing+rotation
plus displacement in the phase-space. These states, by virtue of theorem 2.5.3, are
the minimum uncertainty states. Instead, mixed Gaussian states of one mode can be
all obtained from a thermal state through a squeezing+rotation plus displacement.

As the cornerstone examples of Gaussian states, we have the vacuum, coherent,
squeezed and thermal states. One can compute their first and second moments and
construct the corresponding DV and CM shown below.

• Vacuum: |0〉 s.t. â|0〉 = 0

γ0 =

(

1 0
0 1

)

, d0 =

(

0
0

)

. (2.53)

• (Pure) Coherent: 19 |α〉 = D̂(α)|0〉 = Ûα|0〉

γα = Sαγ0S
T
α =

(

1 0
0 1

)

, dα = Sαd0 + sα =

(

q0
p0

)

, (2.54)

where α = αR + iαI = q0+ip0√
2

.

• (Pure) Squeezed: |r〉 = Ŝ(r)|0〉 = Ûr|0〉

γr = Srγ0S
T
r =

(

e−2r 0
0 e2r

)

, dr = Srd0 + sr =

(

0
0

)

. (2.55)

• (Mixed) Thermal: ρ̂β = 1
πM

∫

d2α|α〉〈α|e−|α|2/M

γβ =

(

2M + 1 0
0 2M + 1

)

, dβ =

(

0
0

)

, (2.56)

where M = 1
eβ~ω−1

≥ 0 being β the inverse temperature (we fix units such that
kB = 1).

In Fig. 2.2 we plot pictorically the above examples.

19A Coherent state can alternatively be defined as the eigenstate of the annihilation operator,

â|α〉 = α|α〉. Coherent states form an overcomplete non-orthogonal (|〈α|α′〉|2 = e−|α−α′|2 because
〈α|α′〉 = exp [−(|α|2 + |α′|2)/2 + α∗α′]) set basis ( 1

π

R

d2α|α〉〈α| = I) of vectors of the Hilbert space.
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Figure 2.2: a) Vacuum state. b) Coherent state being α = q0+ip0√
2

. c) Squeezed state in

position. d) Squeezed state in momentum. e) Thermal state of inverse temperature β =
1

~ω
ln(M+1

M
). All states except the thermal state are pure and are also minimal uncertainty

states (A = π
2 ).

2.5.3 Hilbert space, phase-space and DV-CM connection

We have already shown how to describe quantum states and operations at different
levels i.e. Hilbert space, phase-space and DV-CM. Two main connections are needed
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still to perform calculations in the phase-space: the ordering of the operators and
the metric between them.

The Weyl association rule tells us about the ordering operators. Provided we
are using the Wigner distribution, which is symmetrical ordered, when working with
observables we have to take into account that as we are in the phase-space (we have
avoided its operator character) we have to symmetrize them. The way we have to
symmetrize operators is

eiζq̂+iηp̂ −→: eiζq̂+iηp̂ := eiζq̂+iηp̂ ←→ eiζq+iηp, (2.57)

where : : stands for the symmetrical order. In general for a polynomial on q and p

q̂np̂m −→: q̂np̂m :=
1

2n

n
∑

r=0

(

n

r

)

q̂rp̂mq̂n−r =
1

2m

m
∑

r=0

(

m

r

)

p̂rq̂np̂m−r ←→ qnpm.

(2.58)
Lets us present an example, consider the observable QP , its quantum associated

operator is of course q̂p̂. We know that q̂ and p̂ do not commute but in the phase-
space qp and pq are functionally treated in the same way. Imagine we need to find its
average value, we have then to remove the ambiguity by symmetrizing. The recipe
is q̂p̂ −→: q̂p̂ := q̂p̂+p̂ q̂

2 ←→ qp. And so the average to be performed is

< QP >=< q̂p̂ >ρ=<
q̂p̂+ p̂q̂

2
+ i/2 >ρ=< qp+ i/2 >W . (2.59)

Operationally the averages on phase-space (with respect to the Wigner) correspond
to the averages of symmetrical ordered operators on the Hilbert space.

More important and relevant averages, concern the moments, which can be ob-
tained via the Wigner distribution as

di = tr(ρ̂R̂i) =

∫

d2N ζ [ζi]W(ζ) (2.60)

and

γij = tr(ρ̂{R̂i − diÎ, R̂j − dj Î}) =

∫

d2Nζ [2(ζi − di)(ζj − dj)]W(ζ) (2.61)

where one see explicitly the symmetrization.

Theorem 2.5.4 (Quantum Parseval theorem) Let Ŵζ be a strongly continuous and
irreducible Weyl system acting on the Hilbert space HΩ with phase-space Ω. Then
Â 7→ Aχ(η) = tr{ÂŴη}, with η ∈ Ω, is an isometric map from the Hilbert space HΩ

(Hilbert-Schmidt operators) onto the Hilbert space L2(Ω) (square-integrable measur-
able functions on Ω) such that

tr(Â†B̂) =
1

(2π)N

∫

d2Nη tr{ÂŴη}∗tr{B̂Ŵη}. (2.62)
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From this theorem of capital importance, follows how to compute the scalar
product between operators

tr{Â†B̂} =
1

(2π)N

∫

d2Nη Aχ∗(η)Bχ(η) =

=
1

(2π)N

∫

d2Nζ AW(ζ)BW(ζ),

(2.63)

where the trace of an operator is defined via 20

tr{Â} = Aχ(0, 0) =
1

(2π)N

∫

d2N ζ AW(ζ), (2.64)

and the expectation value of an observable

〈Â〉ρ = tr{ρ̂Â} =
1

(2π)N

∫

d2Nη χ∗(η)Aχ(η) =

=

∫

d2N ζ W(ζ)AW(ζ).

(2.65)

To justify the above expression we just need to define properly the Fourier-Weyl
transform for an arbitrary operator as

Â = FWT {Aχ(η)} =
1

(2π)N

∫

d2Nη Aχ(η)Ŵ−η =

=
1

(2π)2N

∫

d2Nη

∫

d2N ζ AW(ζ)eiζ
T ·J ·ηŴ−η,

(2.66)

and its inverse

Aχ(η) = FWT −1{Â} = tr{ÂŴη}, (2.67)

AW(ζ̄, η̄) = 2N
∫

dNλ 〈ζ̄ + λ|Â|ζ̄ − λ〉e−2iη̄λ (2.68)

where ζ̄T = (ζ1, ζ2, . . . , ζN ) idem for η̄.
The two equivalent representations characteristic (χ) and Wigner (W) are SFT

related 21

AW(ζ) = SFT {Aχ(η)} =
1

(2π)N

∫

d2Nη Aχ(η)e−iζT ·J ·η, (2.69)

Aχ(η) = SFT −1{AW(ζ)} =
1

(2π)N

∫

d2Nζ AW(ζ)eiζ
T ·J ·η. (2.70)

With the above transformations everything is now prepared to be translated in
the phase-space.

20Use that IW = 1 and Iχ = (2π)Nδ(2N)(η) computed from Eq. (2.68) and Eq. (2.67).
21Notice that AW = (2π)NW if Â = ρ̂ see Eq. (2.18) (for normalization convenience) while Aχ = χ

if Â = ρ̂ see Eq. (2.19).
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2.5.4 Fidelity and purity of Continuous Variable systems

An important concept in statistical physics is to know how close/similar two distri-
butions are. The natural solution is to construct a distance between distribution by
choosing a proper metric in the distribution space. A metric M is well defined if it
satisfies the following properties:

i) Symmetric: M(X,Y ) = M(Y,X).

ii) Triangle inequality: M(X,Z) ≤M(X,Y ) +M(Y,Z).

iii) Identity: M(X,Y ) = 0 iff X = Y .

iv) ⇐ i)+ii)+iii) Non-Negativity: M(X,Y ) ≥ 0. The demonstration reads 2M(X,Y ) =
M(X,Y ) +M(Y,X) ≥M(X,X) = 0.

Classically given two probability distributions {qx} and {px} one can define the
trace distance D and the fidelity F between them as follows

D({qx}, {px}) =
1

2

∑

x

|qx − px|, (2.71)

F ({qx}, {px}) =
∑

x

√
qxpx, (2.72)

while the trace distance is a proper metric this is not the case for the fidelity since
it fails to agree with iii).

The quantum analogues quantities are the quantum trace distance 22 and the
quantum fidelity

D(ρ̂, σ̂) =
1

2
tr|ρ̂− σ̂|, (2.73)

F(ρ̂, σ̂) =

[

tr

√

ρ̂1/2σ̂ρ̂1/2

]2

. (2.74)

They can be related to the classical ones by considering the probability distributions
obtained by a measurement

D(ρ̂, σ̂) = max
{Ên}

D({qn}, {pn}), (2.75)

√

F(ρ̂, σ̂) = min
{Ên}

F ({qn}, {pn}), (2.76)

where {qn} = tr(ρ̂Ên), {pn} = tr(σ̂Ên) are the probability distributions of an arbi-
trary positive-operator-valued measurement (POVM) i.e. fulfilling

∑

n Ên = I.

22Trace distance is constructed throw the trace norm || ||1 defined for an arbitrary matrix
M as ||M ||1 = tr|M | = tr

√
MTM =

P

singularvalues(M) =
P

eigenvalues(
√
MTM) =

P

spec(
√
MTM).
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Not only D(ρ̂, σ̂) is a proper metric, but also are the so-called Bures distance and

Bures angle defined as B(ρ̂, σ̂) =
√

2− 2
√

F(ρ̂, σ̂) and A(ρ̂, σ̂) = arccos(
√

F(ρ̂, σ̂))
respectively. From now on, we consider exclusively the properties of the quantum
fidelity (also-called Bures-Uhlmann fidelity).

It’s not obvious but it is symmetric and normalized between 1 (equal states) and
0 (orthogonal states). Its definition is simplified when one of the two states is pure
(say ρ̂1), in this case it converges to the Hilbert-Schmidt fidelity

F(ρ̂1, ρ̂2) = tr(ρ̂1ρ̂2) = 〈ψ1|ρ̂2|ψ1〉. (2.77)

In case both states are pure, then, the fidelity becomes simply the overlap (tran-
sition probability) between the two states

F(ρ̂1, ρ̂2) = |〈ψ1|ψ2〉|2. (2.78)

It is useful here to use theorem 2.5.4 to evaluate the Hilbert-Schmidt fidelity
between two Gaussian state (when at least one is pure) 23

F(ρ̂1, ρ̂2) = tr(ρ̂1ρ̂2) =

(

1

2π

)N ∫

d2Nη χ∗
1(η)χ2(η) = (2π)N

∫

d2N ζW1(ζ)W2(ζ) =

=
1

√

det(γ1+γ2
2 )

e
−dT ( 1

γ1+γ2
)d

(2.79)

where γ1(2) and d1(2) belongs to ρ̂1(2), while d = d2 − d1.

Another important concept in Quantum Information is the purity P of a quantum
state. In general, a pure state is a state which can be written in a suitable basis as
a ket (ρ̂ = |ψ〉〈ψ|) in the Hilbert space, and so ρ̂2 = ρ̂ [⇒ trρ̂2 = 1]. A mixed state,
on the contrary, cannot be written as a ket but only as a density operator and then
ρ̂2 6= ρ̂. In Continuous Variable a generic mixed state can always be written (for
example using the Q-function representation 24) as ρ̂ =

∫

d2αQ(α)|α〉〈α|.
The purity, which measures how close is the state from a pure one, is defined as

follows
P(ρ̂) = tr(ρ̂2). (2.80)

While for qudits it is normalized between 1 (pure states) and 1
d (maximally mixed

states), for Continuous Variable systems (“d → ∞”) maximally mixed states have
purity 0. Using theorem 2.5.4 we can evaluate the purity of a Gaussian state 25

P(ρ̂) = (2π)N
∫

d2N ζ [W(ζ)]2 =
1√

det γ
. (2.81)

23The second and third equality is true for all CV states.
24Q-function is defined as Q(α) = 1

π
〈α|ρ̂|α〉 and normalized as

R

d2αQ(α) = 1.
25The first equality is true for all CV states.
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2.5.5 Bipartite Gaussian states, Schmidt decomposition, purifica-

tion

At the level of density operators, multipartite systems are described on a tensorial
Hilbert space structure. This means that we have to “tensor product” ⊗, the Hilbert
space of each party i.e. H =

⊗N
k=1Hk. Notice however that multipartite Gaussian

CV systems have a covariance matrix corresponding to a “direct sum” ⊕, of each
party’s associated phase-space i.e. Ω =

⊕N
k=1 Ωk. This is reminiscent of the Quan-

tum Parseval theorem, which transforms tensor product between density matrices to
products of Wigner functions (and Characteristic functions) and at the same time
direct sums of covariance matrices and displacements vectors. Therefore, an ad-
vantage on Gaussian states is that we fully describe a state by a finite dimensional
N ×N matrix plus a N × 1 vector instead of its corresponding infinite dimensional
density matrix. Additionally, dimensionality of the phase-space increases slower, as
dimensions are added instead of multiplied. 26

An important property of Gaussian states is that their reductions are again
Gaussians. Imagine we have a bipartite Gaussian state ρ̂ with covariance matrix
γ composed by NA +NB = N modes 27, then tracing the NB modes corresponds to
the reduced state ρ̂A = trB ρ̂ with covariance matrix γA obtained by the upper left
NA × NA block matrix of γ (vice versa with B). Therefore any bipartite Gaussian

state can be written in a block structure as γ =

(

A C
CT B

)

, where A = AT (= γA)

and B = BT (= γB) are the reductions while C amounts for the correlations between
the modes.

For discrete variables, the Schmidt decomposition asserts that every pure bipar-
tite state |ψ〉 (supposing NA ≥ NB) can be transformed by local unitary operations
to the normal form |ψ〉 =

∑NB
i=1

√
λi|ei〉 ⊗ |fi〉 where {ei}({fi}) are orthonormal ba-

sis of A(B) and {λi} is the spectrum of the reduced state for B, ρ̂B = trA|ψ〉〈ψ|
satisfying λi ≥ 0 and

∑NB
i=1 λ

2
i = 1.

Theorem 2.5.5 (Schmidt decomposition) Every pure bipartite Gaussian states of
N = NA +NB modes NA ≥ NB, by local symplectic transformations can be brought
to the normal form

γ = γ0 ⊕
NB
⊕

i=1

γi, (2.82)

where γ0 = I2(NA−NB), γi =









λi 0 ci 0
0 λi 0 −ci
ci 0 λi 0
0 −ci 0 λi









, being ci =
√

λ2
i − 1 and {λi} the

symplectic spectrum of the reduced covariance matrix for B.

26Remember that dim(ρ̂1 ⊗ ρ̂2) = dim(ρ̂1) dim(ρ̂2) while dim(γ1 ⊕ γ2) = dim(γ1) + dim(γ2).
27From now on we suppose NA ≥ NB .
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We see a very peculiar behavior here, each mode of B is entangled with at most
one mode of A. The remaining NA −NB modes of A are uncorrelated.

Lemma 2.5.2 (Standard form I) Every 1 × 1 mode (mixed) Gaussian state can be
transformed, by local symplectic transformations to the standard form

γ =









λa 0 cx 0
0 λa 0 cp
cx 0 λb 0
0 cp 0 λb









. (2.83)

A Gaussian state in the standard form is called symmetric if λa = λb, and fully
symmetric if it is symmetric and in addition cx = −cp.

There is a simple way to construct the standard form if one uses the following
four local symplectic invariants, 28 the purities PA = 1/

√
detA = 1/λa, PB =

1/
√

detB = 1/λb, P = 1/
√

det γ =
[

(λaλb − c2x)(λaλb − c2p)
]−1/2

, and the serelian
∆ = detA+detB+2 detC = λ2

a+λ2
b +2cxcp because they can be inverted as follows

λa = 1/PA,
λb = 1/PB ,

cx =

√
PAPB

4
(a− + a+),

cp =

√
PAPB

4
(a− − a+),

a± =

√

[∆− (PA ± PB)2/(PAPB)2]2 − 4/P2.

(2.84)

The local and global purities, PA, PB and P of the state are constrained to be
less or equal to one, i.e. λa, λb ≥ 1 and (λaλb − c2x)(λaλb − c2p) ≥ 1. The symplectic

positivity (2.46) implies, in terms of the invariants, that 1 + 1
P2 ≥ ∆ or equivalently

1 + (λaλb − c2x)(λaλb − c2p) ≥ λ2
a + λ2

b + 2cxcp.
We stress here that all pure bipartite Gaussian states are symmetric (λa = λb =

λ) and fulfills cx = −cp =
√
λ2 − 1 being λ ≥ 1. Introducing the change of parame-

ters, cosh 2r = λ we can write any pure bipartite 1×1 Gaussian state as a two mode

squeezed state γTMS = STMSISTTMS =









cosh 2r 0 sinh 2r 0
0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0
0 − sinh 2r 0 cosh 2r









with positive r.

Lemma 2.5.3 (Purification) Every (mixed) Gaussian state of NA modes repre-
sented by γA admits a purification, i.e. there exist a pure Gaussian state of 2NA

28These four invariants can be written in terms of the symplectic spectrum of the covariance matrix

of the state and its reductions as P = 1/
p

Q

i µ
2
i , ∆ =

P

i µ
2
i , PA = 1/

q

Q

i µ
2
A,i, PB = 1/

q

Q

i µ
2
B,i.
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modes whose reduction is γA and reads

γ =

(

γA C
CT θAγAθ

T
A

)

, (2.85)

with C = J
√

−(J γA)2 − I θA where θA =

(

1 0
0 −1

)⊕NA
.

2.5.6 States and operations

By virtue of the Choi-Jamio lkowski isomorphism between completely positive (CP)
maps acting on B(H) (physical actions) and positive operators belonging to B(H)⊗
B(H) (unnormalized states), Gaussian operations were fully characterized in [16]. In
there the authors showed that each Gaussian operation G can be associated to a cor-
responding Gaussian state G i.e. there exist an isomorphism between Gaussian CP
maps and Gaussian states. Since all Gaussian states can be generated from vacuum
state by Gaussian unitary operations and discarding subsystems, then symplectic
transformations plus homodyne measurements complete all Gaussian operations.

Lemma 2.5.4 (State-operation’s isomorphism lemma) If a NA×NB-mode Gaussian
state G is defined by its first and second moments through

G : Γ =

(

ΓA ΓAB
ΓTAB ΓB

)

, ∆ =

(

∆A

∆B

)

, (2.86)

then the application of G on a NB-mode Gaussian state (γ, d) produces a NA-mode
Gaussian state (γ′, d′) such that

G : γ 7→ γ′ = Γ̃A − Γ̃AB
1

Γ̃B + γ
Γ̃TAB , (2.87)

d 7→ d′ = ∆A + Γ̃AB
1

Γ̃B + γ
(∆B + d), (2.88)

where Γ̃ = (IN ⊕ θN )Γ(IN ⊕ θN ) with N = NA +NB.

Homodyne detection is a typical example of a Gaussian operation, which realizes
a projective (or von Newmann) measurement of one quadrature operator, say x̂, thus
with associated POVM |x〉〈x|. Take a Gaussian state γ of N modes, it can always
be divided into NA ×NB modes as

γ =

(

γA C
CT γB

)

, (2.89)

and with zero displacement vector. Then, a homodyne measurement of x̂ on the last
NB modes, by the lemma 2.5.4, can be described by a Gaussian operator ρ̂x with
corresponding DV and CM given by
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∆T
x = (0, 0, . . . , x, x, . . .)

and

Γx = lim
r→∞









cosh r INA sinh r θNA 0
sinh r θNA cosh r INA 0

0 0

(

1/r 0
0 r

)

INB









.

Summarizing, if we measure the x component of the last NB modes corresponding
to B, obtaining the result (x1, x2, . . . , xNB ), system A will turn into a Gaussian state
with covariance matrix

γ′A = γA − CT (XγBX)MPC, (2.90)

and displacement vector

d′A = CT (XγBX)MPd′B , (2.91)

where d′B = (x1, 0, x2, 0, . . . , xNB , 0), MP denotes Moore Penrose or pseudo-inverse
(inverse on the support whenever the matrix is not of full rank) andX is the projector
with diagonal entries diag(1, 0, 1, 0, . . .).

Heterodyne measurement, whose POVM corresponds to 1
π |α〉〈α|, and in gen-

eral 29 all POVM of the form |γ, d〉〈γ, d|, can be achieved with homodyne measure-
ment by the use of ancillary systems and beam splitters.

2.6 Entanglement in Continuous Variable: criteria and

measures

Concerning bipartite entanglement, for discrete variable systems an important sep-
arability criterium based on the partial transpose (time reversal) exists. If ρ̂ is a
generic state, then ρ̂TA represents the state after one perform time reversal on sub-
system A.

Lemma 2.6.1 (NPPT Peres criterium) Given a bipartite state ρ̂, if it has non-
positive partial transpose (ρ̂TA � 0⇒ ρ̂TB � 0), then ρ̂ is entangled [18].

Lemma 2.6.2 (NPPT Horodecki criterium) In C2⊗C2 and C2⊗C3 given a bipartite
state ρ̂, it is entangled iff it has non-positive partial transpose (ρ̂TA � 0⇒ ρ̂TB � 0)
[19].

For Continuous Variable states, Peres criterium also holds while Horodecki criterium
is true provided our state is composed of 1 × N modes. In particular for Gaussian

29All pure Gaussian states can be obtained from |α〉 by Gaussian unitaries.
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states, time reversal is very easy to implement at the covariance matrix level. If T̂

is the reversal operator then ST = θ =

(

1 0
0 −1

)

is the corresponding symplectic

operations in phase-space. So we can rewrite the lemma 2.6.2 for Gaussian states.

Lemma 2.6.3 (NPPT Simon criterium) For 1×N modes given a bipartite Gaussian
state γ, it is entangled iff it has non-positive partial transpose (θAγθ

T
A + iJ � 0 ⇒

θBγθ
T
B + iJ � 0) [20, 21].

Under partial transposition the serelian changes as ∆ → ∆̃ = ∆ − 4 detC = λ2
a +

λ2
b − 2cxcp and so positivity of the partial transpose can be written, in terms of

invariants, as 1 + 1
P2 ≥ ∆̃ while in terms of the symplectic eigenvalues of the partial

transpose, as µ̃i ≥ 1, i = 1, 2, . . . ,N .

Lemma 2.6.4 (CV Inseparability Duan criterium)30 We define the EPR-like op-
erators, û = |a|x̂1 + 1

a x̂2 and v̂ = |a|p̂1 − 1
a p̂2 where a ∈ R. If a bipartite state ρ̂

(Gaussian or non-Gaussian) is separable, then (∆û)2ρ + (∆v̂)2ρ ≥ a2 + 1
a2 , for all

a ∈ R [22].

Lemma 2.6.5 (GS Inseparability Duan criterium) Any bipartite Gaussian state ρ̂
can be written in standard form II (by two local squeezings on standard form I) as

γ =









n1 0 c1 0
0 n2 0 c2
c1 0 m1 0
0 c2 0 m2









where n1−1
m1−1 = n2−1

m2−1 , |c1| − |c2| =
√

(n1 − 1)(m1 − 1)−

√

(n2 − 1)(m2 − 1), then the state is separable iff (∆û)2
ρ + (∆v̂)2

ρ ≥ a2
0 + 1

a20
, for all

a0 ∈ R, where a2
0 =

√

m1−1
n1−1 =

√

m2−1
n2−1 and EPR-like operators û = a0x̂1 − c1

|c1|
1
a0
x̂2

and v̂ = a0p̂1 − c2
|c2|

1
a0
p̂2 [22].

Concerning entanglement measures it is usual to deal, as an entanglement mea-
sure for pure state, with the entropy of entanglement and for mixed ones with the
logarithmic negativity.

• Entropy of entanglement:

ES(ρ̂) = S(ρ̂A) = −tr(ρ̂A log2 ρ̂A), (2.92)

where S is the von Neumann Entropy S(ρ̂) = −tr(ρ̂ log2 ρ̂), and ρ̂A is the re-
duction of A. For any CV state it reduces (in terms of the Schmidt coefficients)
to

ES(ρ̂) = −
∞
∑

i=1

λ2
i log2 λ

2
i , (2.93)

30For all CV states a less restrictive upper bound is imposed by the uncertainty principle, i.e.

(∆û)2ρ + (∆v̂)2ρ ≥
˛

˛a2 − 1
a2

˛

˛ due to the sum uncertainty relation (∆Â)2 + (∆B̂)2 ≥ 2∆Â∆B̂ ≥
|〈[Â, B̂]〉|.
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while for Gaussian states (in terms of the symplectic eigenvalues),

ES(γ) = −
NA
∑

i=1

[(
µi + 1

2
) log2(

µi + 1

2
)− (

µi − 1

2
) log2(

µi − 1

2
)], (2.94)

where {±µi} = spec(−iJ γA).

The entropy of entanglement is the “unique” measure of entanglement for pure
states. It depends only on the Schmidt coefficients and not on the choice of
basis, therefore it’s invariant under local unitary operations. Furthermore it’s
unique because all other entanglement measures are in direct correspondence
with the entropy of entanglement.

• Logarithmic negativity [23]:

EN (ρ̂) = LN(ρ̂) = log2 ||ρ̂TA ||1, (2.95)

where || ||1 is the trace norm 31. For any CV state it can be written (in terms
of the negative eigenvalues of the partial transpose) as

EN (ρ̂) = log2[1 + 2
∞
∑

i=1

|min(λ̃i, 0)|], (2.96)

while for Gaussian states (in terms of the symplectic eigenvalues of the partial
transpose),

EN (γ) = −
N
∑

i=1

log2[min(µ̃i, 1)], (2.97)

where {±µ̃i} = spec(−iJ γTA).

The negativity N(ρ̂) = 2LN(ρ̂)−1
2 is also a computable measure of entanglement

for mixed states. It quantifies the violation of the NPPT criterium i.e. how
much the partial transposition of a density matrix fails to be positive. It’s
invariant under local unitary operations and an entanglement monotone. For
Gaussian states reads

N(γ) =
1

2
[
N
∏

i=1

1

min(µ̃i, 1)
− 1]. (2.98)

31The trace norm for hermitian operators is simple because ||M̂ ||1 = tr
p

M̂2 =
P |spec(M̂)| =

1 + 2
P |negativevalues(M̂)|.
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2.A Appendix: Quantum description of light

2.A.1 Light modes as independent harmonic oscillators

Since Maxwell, we know that classically, light can be relativistically described 32 by
the so-called Maxwell field equations. As we will show, each mode of the electromag-
netic field is an independent harmonic oscillator with the same classical dynamics.
This is shown by constructing the classical Hamiltonian from the Maxwell equations
as follows.

We start with Maxwell equations for the electric and magnetic field in presence
of sources (ρ) and currents ( ~J)

~∇ · ~E = ρ
ε0
,

~∇ · ~B = 0,
~∇× ~E = −∂ ~B

∂t ,
~∇× ~B = µ0ε0

∂ ~E
∂t + µ0

~J,

(2.99)

where ε0 is the permittivity and µ0 the permeability of the vacuum. It’s here useful

to introduce the scalar, φ, and vectorial potential, ~A, fields throw ~E = −~∇φ − ∂ ~A
∂t

and ~B = ~∇ × ~A. They are more fundamental although not so very “physical” (it
is not gauge invariant, for example). Nevertheless it helps to simplify the calcula-
tions, because in this way we end up with only one scalar and one vectorial second
order partial differential equations, being the other two remaining equations trivial
identities

~∇2φ+ ∂
∂t(

~∇ · ~A) = − ρ
ε0
,

~∇2 ~A− ~∇ · (~∇ · ~A) = µ0ε0
∂
∂t(

~∇φ+ ∂ ~A
∂t )− µ0

~J,
(2.100)

From now on we work in free space 33 ~J = ρ = 0[⇒ φ = 0]. We still have the freedom
to fix the gauge. The appropriate gauge is the radiation (Coulomb) gauge ~∇· ~A = 0.
As a result we end up with the wave equation 34

(

~∇2 − 1

c2
∂2

∂t2

)

~A = ~0. (2.101)

An ansatz for the solution of the vector potential can be written as a superposition
with polarizations α = x, y and frequencies ~k motivated by the linearity plus a
separation on time-space variables

~A(~r, t) =
∑

k,α

~Ak,α(~r, t) =
∑

k,α

qk,α(t)~uk,α(~r). (2.102)

32Compactly in covariant form they read ∂µF
µν = −Jν and ∂µF̃

µν = 0 where Jµ = (cρ, ~J) is the
4-vector current and Fµν = ∂µAν − ∂νAµ the 4-tensor Faraday with Aµ = (φ, c ~A).

33Recall that µ0ε0 = 1/c2.
34In covariant form it reads �Aν = 0.
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With such an ansatz, the wave equation decouples in a Helmholtz equation ~∇2~uk,α(~r) =
−k2~uk,α(~r) and a harmonic oscillatory equation q̈k,α(t) = −c2k2qk,α(t). For the spa-
tial solution, it is conventional to define a “box” of volume L3 in such a way that
the normalized solution (

∫

L3 d
3~r ~u∗k,α(~r)~uk′,α′(~r) = δk,k′δα,α′) correspond to traveling

plane waves

~uk,α(~r) =
~eα√
L3
ei
~k·~r, (2.103)

where ~eα is the polarization vector. This is so because we have imposed periodic
boundary conditions on the walls of the quantization box in order to mimic the
behavior of the electromagnetic field in free space (in order to find expressions in the
continuum one has to perform the limit L → ∞ appropriately). For the temporal
solution, we recall that the corresponding classical Hamiltonian is Hk,α = 1

2mω
2
kq

2
k,α+

1
2mp

2
k,α. The solution is nothing else than a oscillatory movement in the qk,α(t)

coordinate. We introduce the conjugate momentum 35, pk,α(t) = mq̇k,α(t). The
angular frequency is ωk = c k while the “mass”, which is a free parameter in the
Lagrangian formalism, has to be identified with the permittivity ε0 of the vacuum.
Thus one has to solve the coupled system

ṗk,α = −ε0ω2
kqk,α,

q̇k,α = 1
ε0
pk,α,

(2.104)

which decouples with the change of variables 36 a =
√

ε0ω
2~

(q + ip
ε0ω

), a∗ =
√

ε0ω
2~

(q −
ip
ε0ω

) to

ȧk,α = −iωkak,α,
ȧ∗k,α = iωka

∗
k,α,

(2.105)

with trivial oscillatory solutions ak,α(t) = ak,αe
−iωkt and a∗k,α(t) = a∗k,αe

iωkt. Finally

qk,α(t) =

√

~
2ε0ωk

(ak,αe
−iωkt + a∗k,αe

iωkt). (2.106)

Grouping the space and time solution and summing over (k, α) one obtain the elec-
tromagnetic waves solution ~Ak,α(~r, t) = f(~k · ~r ± ωkt).

2.A.2 Quantization of the electromagnetic field

If we quantize the solution for the potential vector we can now write it in terms of
creation and annihilation operators with bosonic commutation rules [âk,α, â

†
k,α] =

δk,k′δα,α′ as

35As usual p is the canonical momentum conjugated to x, i.e., p = ∂L
∂ẋ

= mẋ.
36The inverse transformation results in q =

q

~

2ε0ω
(a∗ + a) and p = i

q

ε0~ω
2

(a∗ − a).
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~̂A(~r, t) =
∑

k,α

√

~
2ωkε0L3

(

~eαâk,αe
i(~k·~r−ωkt) + ~e∗αâ

†
k,αe

−i(~k·~r−ωkt)
)

. (2.107)

Quantized electric and magnetic fields can be straightforward recovered via definition
of ~A. In the Heisenberg picture, the following expressions are obtained

~̂E(~r, t) = − ∂

∂t
~̂A(~r, t) = i

∑

k,α

√

~ωk
2ε0L3

(

~eαâk,αe
i(~k·~r−ωkt) − ~e∗αâ†k,αe−i(~k·~r−ωkt)

)

,

(2.108)

where the unitary electric field polarization vector ~eα ⊥ ~k because ~∇ · ~̂E = 0 being
~e∗α · ~eα′ = δα,α′ and

~̂B(~r, t) = ~∇× ~̂A(~r, t) = i
∑

k,α

√

µ0~ωk
2L3

(

~fαâk,αe
i(~k·~r−ωkt) − ~f∗αâ

†
k,αe

−i(~k·~r−ωkt)
)

,

(2.109)

where the unitary magnetic field polarization vector ~fα = ~eα × ~k
|~k| ⊥ ~eα, ~k fulfills

~f∗α · ~fα′ = δα,α′ .

x

y

z

~k < ~̂E(~r, t0) >< ~̂B(~r, t0) >

Figure 2.3: Electric, magnetic and wave vectors of an electromagnetic traveling plane wave
at a fixed time t0.

One can compute the Hamiltonian for a single mode

Ĥk,α =
1

2

∫

L3

d3~r

(

ε0| ~̂Ek,α|2 +
1

µ0
| ~̂Bk,α|2

)

=
~ωk

2

(

â†k,αâk,α + âk,αâ
†
k,α

)

, (2.110)

then the total Hamiltonian reads

ĤEM =
1

2

∫

L3

d3~r

(

ε0| ~̂E|2 +
1

µ0
| ~̂B|2

)

=
∑

k,α

~ωk

(

â†k,αâk,α +
1

2

)

. (2.111)
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It is in this moment when one can, by comparing the above Hamiltonian with the
one of the quantized harmonic oscillator

ĤHO =
∑

k,α

~ωk

(

â†k,αâk,α +
1

2

)

, (2.112)

associate each mode of the electromagnetic field to an independent harmonic oscil-
lator with the same frequency.

2.A.3 Quadratures of the electromagnetic field

To end with the comparison between the light and the harmonic oscillator we present
here -in analogy to the position-momentum coordinates of the massive particle in the
harmonic oscillator- the amplitude-phase quadratures of light modes. Q-quadrature
(amplitude quadrature):

Q̂k,α =
â†k,α + âk,α√

2
, (2.113)

P-quadrature (phase quadrature):

P̂k,α = i
(â†k,α − âk,α)

√
2

, (2.114)

with bossonic commutation rules

[Q̂k,α, P̂k′,α′ ] = iδk,k′δα,α′ , (2.115)

and Heisenberg uncertainty principle

∆Q∆P ≥ 1

2
| < [Q̂, P̂ ] > | = 1

2
. (2.116)

In terms of the quadratures the Hamiltonian reads

ĤEM = ĤHO =
∑

k,α

~ωk
2

(

Q̂2
k,α + P̂ 2

k,α

)

, (2.117)

while the electric field 37

| ~̂E(~r, t)| =
∑

k,α

√

~ωk
ε0L3

(

Q̂k,α sin (ωkt− ~k · ~r)− P̂k,α cos (ωkt− ~k · ~r)
)

. (2.118)

The uncertainty principle is encoded between the non-commuting observables poten-

tial field ~̂A and electric ~̂E (or magnetic field ~̂B). Quadrature operators are nothing

37The classical values for the fields correspond to the expectation values for the quantum fields.
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else than observables proportionals to ~̂A and ~̂E at the same time, and so they contain
the same information about the light. But in an harmonic oscillator the position and
momentum are always one quarter cycle out of phase, therefore the amplitude of the
electric field “now” and a quarter cycle later effectively describe both the electric
and potential field.

2.A.4 Quantum states of the electromagnetic field

We have seen that the Hamiltonian can be written as an harmonic oscillator for each
mode, thus the eigenstates of the Hamiltonian are Fock states, which turn out to be
a very suitable basis to express generic quantum states of light. In section 2.5.1 we
have described many examples of Gaussian states at the phase-space level. Here the
aim is to describe them by looking at the expectation value of the time dependent
electric field as well as its fluctuations. To this aim, we compute and plot (see
Fig. 2.4), explicitly the expectation value of the electric field. In general

< | ~̂E(~r, t)| >∼< Q̂ > sin(ωt− ~k · ~r)− < P̂ > cos(ωt− ~k · ~r), (2.119)

and its corresponding uncertainty (fluctuations)

(∆E(~r, t))2 ∼ (∆Q)2 sin2(ωt− ~k · ~r) + (∆P )2 cos2(ωt− ~k · ~r)−
−V (Q̂, P̂ ) sin(ωt− ~k · ~r) cos(ωt− ~k · ~r),

(2.120)

where V (Q̂, P̂ ) =< {Q̂, P̂ } > −2 < Q̂ >< P̂ >. We list here the most relevant
states of the electromagnetic field. Among them, Gaussian states produced in the
lab with coherent laser light and linear optical devices. We write them in the Fock
basis as it is a very convenient basis for all calculations needed (see Tabs. 2.121 and
2.122 for detailed calculations).

• Vacuum state, |0〉, is the only Gaussian state of all Fock states. It can be
defined as the ground state of the harmonic oscillator.

< | ~̂E(~r, t)| >= 0,

∆E(~r, t) ∼
√

1
2 .

• Fock states 38, |n〉, are eigenstates of the number operator, and thus, so of the
energy because Ĥ|n〉 = En|n〉. They are non-Gaussian and can be written as

the n-th excitation (photon) from the vacuum, |n〉 = (â†)n√
n!
|0〉 via the ladder

operators that act on them raising and lowering the number of photons presents
in the state â†|n〉 =

√
n+ 1|n+ 1〉, â|n〉 =

√
n|n− 1〉.

< | ~̂E(~r, t)| >= 0,

∆E(~r, t) ∼
√

n+ 1
2 .

38Complete orthonormal set basis 〈n|m〉 = δn,m.
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• Fock superpositions, |ψ〉 =
∑

i ψi|ni〉 are non-Gaussians. The simplest one, is
|ψ〉 = 1√

2
(|0〉+ |1〉) with balanced amplitudes.

< | ~̂E(~r, t)| >∼
√

1
2 sin(ωt− ~k · ~r),

∆E(~r, t) ∼
√

1
2 sin2(ωt− ~k · ~r) + cos2(ωt− ~k · ~r).

• Coherent states, |α〉, are defined as the eigenstates of the annihilation operator

â|α〉 = α|α〉 or as |α〉 = e−
|α|2

2
∑∞

n=0
αn√
n!
|n〉. Coherent state have not a well

defined the number of photons (n̂ = â†â) because 〈n̂〉α = |α|2 and (∆n)α = |α|,
nevertheless, as α increases the relative indetermination (∆n)α

〈n̂〉α = |α|−1 tends
to zero. Coherent state have equal variance and mean, therefore, its photon
distribution is Poissonian. It is immediate to see that if one computes the

probability to find n photons in a coherent state i.e. Pn = |〈n|α〉|2 = |α|2n
n! e−|α|2

which is clearly a Poissonian distribution with mean and variance |α|2.

< | ~̂E(~r, t)| >∼
√

2Re(α) sin(ωt− ~k · ~r)−
√

2Im(α) cos(ωt− ~k · ~r),

∆E(~r, t) ∼
√

1
2 .

• Squeezed states, |r〉, are minimal uncertainty states with arbitrary small un-
certainty in one quadrature while increased uncertainty in the orthogonal one.
Squeezed states of the light fields are used to enhance precision measurements.

They read in Fock basis as |r〉 = 1√
cosh r

∑∞
n=0(−1

2 tanh r)n
√

(2n)!

n! |2n〉.

< | ~̂E(~r, t)| >= 0,

∆E(~r, t) ∼
√

1
2e−2r sin2(ωt− ~k · ~r) + 1

2e2r cos2(ωt− ~k · ~r).

• Thermal states, ρ̂β, are a superposition of all Fock states occupied with a
probability Pn = (1 − e−β~ω)e−β~ωn. It’s the quantum distribution function
which describes the thermal state statistics of the blackbody radiation. At the
Fock level they read as ρ̂β = (1− e−β~ω)

∑∞
n=0 e−β~ωn|n〉〈n|.

< | ~̂E(~r, t)| >= 0,

∆E(~r, t) ∼
√

M + 1
2 .
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We can summarize the above results in the following tables:

< Q̂ > < P̂ > ∆Q ∆P < Ĥ > ∆Q∆P ≥ 1
2

|0〉 0 0
p

1/2
p

1/2 ~ω
2

1/2

|n〉 0 0
p

n + 1/2
p

n+ 1/2 ~ω
2

(1 + 2n) n + 1/2

|ψ〉 p

1/2 0
p

1/2 1 ~ω
p

1/2

|α〉 √
2 Re(α)

√
2 Im(α)

p

1/2
p

1/2 ~ω
2

(1 + 2|α|2) 1/2

|r〉 0 0

q

e−2r

2

q

e2r

2

~ω
2

cosh 2r 1/2

ρ̂β 0 0
p

M + 1/2
p

M + 1/2 ~ω
2

(1 + 2M) M + 1/2

(2.121)

< Q̂2 > < P̂ 2 > < Q̂P̂ > < P̂ Q̂ > V (Q̂, P̂ )

|0〉 1

2

1

2

i

2
− i

2
0

|n〉 n + 1

2
n+ 1

2

i

2
− i

2
0

|ψ〉 1 1 i

2
− i

2
0

|α〉 1

2
(1 + 2|α|2 + α2 + α∗2) 1

2
(1 + 2|α|2 − α2 − α∗2) i

2
(1 − α2 + α∗2) i

2
(−1 − α2 + α∗2) 0

|r〉 e
−2r

2

e
2r

2

i

2
− i

2
0

ρ̂β M + 1

2
M + 1

2

i

2
− i

2
0

(2.122)
Recalling section 2.5.1, on one hand the expectation values of the two quadratures
are encoded in the displacement vector which gives the center of the diagrams in the
phase-space. On the other, the two uncertainties are encoded in the diagonal terms
of the covariance matrix and express the width of the phase-space points. The off
diagonal terms (symmetrics) contain the information of the Q-P correlations. We
observe then, that the components of the displacement vector are closely related
with the amplitude of the electric field while the covariance matrix contains the
fluctuations of the electric field. Notice the correspondence V (Q̂, P̂ ) = γ12. This im-
portant term amounts for the correlations in fluctuations and is zero for all minimum
uncertainty states.

Analyzing the plots we see two important behaviors. First, as a general feature
a superposition of eigenstates of the energy (Fock states) produces a t-dependence
in any observable, as one sees in the electric field which oscillates in time. Second,
coherent states are the states of an harmonic oscillator system which mimic in the
best possible way the classical motion of a particle in a quadratic potential, in this
sense, they are the most classical states of light that one can produce. As seen
in the plot the expectation value of the electric field oscillates classically while the
uncertainty is minimum and coherent with the field.
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2.B Appendix: Wigner integrals

As it has been shown the Wigner distribution function is Gaussian whenever the
state is Gaussian, with straightforward calculations on can deduce two extremely
useful Gaussian integrals

∫

e−ζ
T ·A·ζd2N ζ =

πN√
detA

, (2.123)

∫

e−ζ
T ·A·ζ−bT ·ζd2N ζ =

πN√
detA

eb
T · 1

4A
·b. (2.124)

In the case we are dealing with non-Gaussian states the Wigner distribution func-
tion is not any more Gaussian and one is forced to perform non-Gaussian integrals.
We give here some very useful formulas that convert the problem of integrating
non-Gaussian functions into a derivative problem

∫

ζmii ζ
mj
j ζmkk ···e−ζ

T ·A·ζd2Nζ =

= (−1)mi+mj+mk+··· πN√
detA

∂mi

∂bmii

∂mj

∂b
mj
j

∂mk

∂bmkk
···ebT · 1

4A
·b
∣

∣

∣

∣

∣

bi=0,bj=0,bk=0,...

,
(2.125)

∫

ζmii ζ
mj
j ζmkk ···e−ζ

T ·A·ζ−cT ·ζd2N ζ =

= (−1)mi+mj+mk+··· πN√
detA

∂mi

∂bmii

∂mj

∂b
mj
j

∂mk

∂bmkk
···e(b+c)T · 1

4A
·(b+c)

∣

∣

∣

∣

∣

bi=0,bj=0,bk=0,...

.

(2.126)

Extra useful integrals are

∫

W(ζ)d2N ζ = 1, (2.127)

∫

(W(ζ))2d2N ζ =
1

(2π)N
√

det γ
, (2.128)

∫

χ(η)d2Nη =
(4π)N√

det γ
e
−dT 1

γ
d
, (2.129)

∫

(χ(η))2d2Nη =
(2π)N√

det γ
e−d

T 4
γ
d, (2.130)

∫

|χ(η)|2d2Nη =
(2π)N√

det γ
. (2.131)
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Figure 2.4: In red the average electric field, in blue the associated uncertainty. a) Vacuum,
b) Fock, c) Superposition, d) Coherent, e) Squeezed, f) Thermal, g) Coherent squeezed in
position (amplitude), h) Coherent squeezed in momentum (phase).



Chapter 3

Quantum Cryptography

protocols with Continuous

Variable

Cryptography refers to strategies which permit the secure communication between
two distant parties (traditionally denoted by Alice and Bob) that wish to communi-
cate secretly. So its purpose is to design new communication algorithms being sure
that secrecy is preserved. In Classical Cryptography there is only one cryptographic
protocol, known as the ideal Vernam cypher method, which is absolutely secure.
The Vernam cypher consists of a random secret key (private key), shared between
the sender (Alice) and the receiver (Bob), used to encode and decode messages with
absolute security. However, this method suffers from two drawbacks. First, if Alice
wants to communicate N bits to Bob, they will need to share in advance a key with
at least N bits. Second, this key can only be used once to make the method un-
breakable. This implies that, the key must originally be exchanged by hand before
the communication to keep secrecy and it is essential that the key is totally random
and secret. This problem is known as key distribution.

To solve the problem of a private key distribution, classical strategies exist to
distribute keys between them albeit being this distribution only partially secure.
For example, by designing algorithms which permit distribution of private keys in a
“practical secure” way. In such algorithms, security relies on the difficulty to invert
some mathematical operations. Since the time needed to break the security of these
algorithms to obtain the key is long, then practical security is achievable.

The second problem, the necessity of a new key for each message, is also solved
using Public Key Cryptosystems. They work as follows: assume that Alice and Bob
possess, in advance, a common secret key. This secret key must be exchanged by
hand once, and it has to be random and secure. Using this secret key, Alice and
Bob can distribute among them, several private keys. Then, they could use as many
distributed private key as necessary to encrypt/decrypt messages through e.g. the
Vernam cypher method. In other words, any time Alice wants to communicate with

39
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Bob, she only needs to use her secret key to distribute as many private keys as needed
to encrypt later on messages. This distribution works as follows, Alice makes one
key publicly available, referred as the public key that encodes a private key. From
this public key any receiver could in principle extract the private key. But only Bob
(the receiver in possession of the secret key) can extract it in an efficient way. Any
receiver without the secret key needs to decrypt a problem with NP complexity. This
way of distributing private keys can be done even when the secret key’s length is
much smaller than the private keys needed for the Vernam cypher encryption and
even if the secret key is used many times, solving both issues.

In this chapter we have studied the possibility of using Continuous Variable to
perform quantum cryptography protocols by means of bipartite entanglement. Like
in any practical implementation of a protocol, efficiency is an important issue since
resources are not unlimited, thus a special attention will be devoted to the efficient
implementation of the protocol. Before explaining how secure cryptography with
Continuous Variable can be realized, let us introduce the basic concepts in both
classical and quantum scenario.

3.1 Classical Cryptography

3.1.1 Vernam cypher

The best and most well known classical private key (or one-time-pad) cryptosystem
is the so-called Vernam cypher. To achieve absolute security, the Vernam cypher
requires the prior distribution of a random classical private key, denoted as k. The
basic steps of the protocol are the followings:

Encoding: if Alice wants to encode a message m with the key k, she performs
the following operation between the message and the key, and sends the encoded
message e to Bob

Enck(m) = m⊕ k = e. (3.1)

Decoding: only Bob, who has also the key, can decode the message (invert the
operation) because the key Alice has used is random. Thus, he only needs to use the
key again to the encoded message e in order to retrieve the original message m

Deck(e) = Deck[Enck(m)] = e⊕ k = d = m. (3.2)

Let us illustrate Vernam cypher with an specific example. Alice wants to communi-
cate to Bob, in a secure way, a message m (in a binary string) of e.g. 9 bits. They
share the key k of the same size as the message (9 bits). Alice encodes her message
by applying a XOR (exclusive OR) 1 operation between the message m and the key
k.

In the next table we summarize the XOR operation

1Also known as AND or ⊕ mod (2).
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⊕ 0 1

0 0 1
1 1 0

(3.3)

As a result Alice has the encoded message e, that will send to Bob in a public
way.

message m = 010011101

key k = 110100011

encoded message e = 1000111110

Then Bob wants to readout the message, and thus, performs the inverse opera-
tion (which is again a XOR) between the encoded message e and the key k.

As a result Bob has the decoded message d that coincides with the message Alice
wanted to communicate to him.

encoded message e = 1000111110

key k = 110100011

decoded message d = 010011101

3.1.2 Public key distribution: The RSA algorithm

Thus far, Classical Cryptography has not a solution for the distribution of the private
key needed to perform Vernam cypher encryption. Such distribution can, however
be done in a public and practical secure way with the RSA algorithm. The RSA
cryptography algorithm proposed in 1977 by Rivest, Shamir, and Adleman from the
MIT is the most commonly used algorithm of a public key. It is widely used in bank’s
security, electronic commerce and internet, relying on the fact that to decrypt this
algorithm one needs to solve the factorization problem which is an NP problem.
Even now, there is no efficient classical algorithm known to solve the factorization
problem. This means that even though computational resources increase constantly,
one simply needs to exploit the NP character of the algorithm to make the solution
harder to find. Let us illustrate how it works with the following example.

i) The sender, Alice, chooses two “big” different prime numbers, say p = 61 and
q = 53, she computes its product n = p q = 3233 and also the following quantity
φ = (p− 1)(q − 1) = 3120.

ii) She chooses a positive integer l smaller and coprime with φ, in the example
above l = 17.

iii) As a secret key, Alice gives to Bob the number k such that k l = 1 mod (φ),
take for example k = 2753. Alice makes public l and n, this is what is called a
public key.
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iv) With the public key (l and n) anyone can encrypt a message m and send it to
Bob, but only Bob, who is in possession of the secret key k, is able to decrypt
the message. This method can thus be used to perform Classical Key Distribu-
tion. Any time Alice wants to communicate with Bob, she sends a private key
encrypted with l and n and only Bob will be able to retrieve it. Once Bob has
the private key, Alice can send messages to Bob via the Vernam cypher using
this key.

v) Encryption proceeds as follows. Alice wants to distribute a key encoded in
a message m = 123. She uses the public key and computes the encryption
Encl,n(m) = ml mod (n) = e = 855.

vi) Bob now wants to decrypt the message e to extract a private key, so he calculates
Deck,n(e) = Deck,n[Encl,n(m)] = ek mod (n) = d = m = 123. Bob is the only
one in possession of the secret key k and so the only one that can decrypt the
message e to find the private key Alice is going to use with the Vernam cypher
to communicate securely with him.

The private key Alice and Bob share can be used more than once to distribute
secure keys. In such way, to use the Vernam cypher, one no longer needs to share a
long private key because we can distribute many of them in a secure way. Security
relies in the fact that, from the encrypted message e, and the public keys l and n it is
very difficult to find the private key k (and so m) or the original two prime numbers
q and p, even in the case we are reusing the key k. This is because factorization is
a NP problem, whose efficient classical solution is not known yet. Security in the
RSA algorithm relies on the fact that independently of the computer used, if it is
classical, the problem is NP and thus hard to solve.

3.2 The quantum solution to the distribution of the key

The “Quantum Computer” arises here first as a menace for Classical Key Distribu-
tion methods and then as the solution for the security in Cryptography. Based on
the quantum nature of the microscopic world, such “computers”, still in a theoretical
stage, are known to be able to solve some hard mathematical problems rapidly. In
1994 Peter Shor proposed a quantum protocol to solve the factorization problem in
an efficient way, known as the Shor’s algorithm. If such a computer can be realized,
current cryptographic protocols will not be anymore secure. Can Quantum Mechan-
ics then offer a solution for a secure Cryptography method? The answer is yes.
Since the end of the 80s protocols relying on Quantum Mechanics exists permitting
to perform Quantum Cryptography in an unconditional secure way.

At present, Quantum Cryptography is the most important real implementation
of Quantum Information. It offers an absolute secure distribution of random keys
which combined with the Vernam cypher guarantees completely secure Cryptogra-
phy. Thus, the Quantum Cryptography problem is in fact the problem of distribut-
ing, between two distant parties, a secure random key relying on the laws of Quantum
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Mechanics, i.e. the Quantum Key Distribution (QKD) problem. If the key is se-
curely distributed, the algorithms used to encode and decode any message can be
made public without compromising security. The key consists typically in a random
sequence of bits which both, Alice and Bob, share as a string of classically correlated
data. The superiority of Quantum Cryptography comes from the fact that the laws
of Quantum Mechanics permit to the legitimate users (Alice and Bob) to infer if an
eavesdropper has monitored the distribution of the key and has gained information
about it. If this is the case, Alice and Bob will both agree in withdrawing the key
and will start the distribution of a new one. In contrast, Classical Key Distribution,
no matter how difficult the distribution from a technological point of view is, can
always be intercepted by an eavesdropper without Alice and Bob realizing it.

In Quantum Cryptography two seemingly independent main schemes exist for
QKD. The first one, denoted as “Prepare and Measure” scheme, originally proposed
by C.H. Bennett and G. Brassard in 1988 and known as BB84 [24], does not use
entangled states shared between Alice and Bob. The key is established by sending
non-orthogonal quantum states between the parties and communicating classically
the result of some measurements. Security is guaranteed by the quantum nature of
the measurements which avoids each party measuring simultaneously non-commuting
observables. The second scheme (”Entanglement based“), uses as a resource shared
entanglement, like the one originally proposed by A. Ekert in 1991 known as Ek-
ert91 [25]. Here entanglement is explicitly distributed and the security is guaranteed
by the nature of quantum correlations and proved by Bell inequalities. However,
the two schemes have been shown to be completely equivalent [26], and specifically
entanglement stands as a precondition for any secure key distribution [27]. Let us
briefly detail these two schemes.

3.2.1 “Prepare and Measure” scheme

Like in any cryptographic protocol, there is always an eavesdropper. The protocol
does not avoid an eavesdropper from intercepting the key, but it permits Alice and
Bob know if the key has been intercepted, and so that it can be discarded. We sketch
here the steps of the BB84 protocol.

i) Alice prepares a secret sequence of random bits and encodes them in the state
of a 2-level system e.g. a spin-1/2 system by choosing randomly between two
bases (Z and X). Alice encodes 0/1 in |±〉 (|±〉x) according to basis Z (basis X).
Then, she sends Bob the states she has prepared. For example:

Alice random bits 0 1 1 0 0 1 1 0 0

Alice random bases Z X X X Z X Z X X

Alice prepared states |+〉 |−〉x |−〉x |+〉x |+〉 |−〉x |−〉 |+〉x |+〉x

ii) Bob receives the states without knowing on which basis have been prepared and
measures in another random choice of bases. The outcome of the measurements



44 Quantum Cryptography protocols with Continuous Variable

is going to be retained as the bits received while the state collapses in a certain
eigenstate.

Alice prepared states |+〉 |−〉x |−〉x |+〉x |+〉 |−〉x |−〉 |+〉x |+〉x
Bob random bases X Z X X X X X X X

Bob received states |+〉x |+〉 |−〉x |+〉x |+〉x |−〉x |−〉x |+〉x |+〉x
Bob received bits 0 0 1 0 0 1 1 0 0

iii) Bob communicates to Alice his choice of bases in a public way.

iv) Alice identifies the set of bits for which they have both performed the measure-
ment in the same basis, i.e. outcomes 3, 4, 6, 8 and 9 in the above example.
Alice and Bob discard the set of data in which they did not agree (the rest).

v) Bob sends part of his data (received bits) to Alice by a public channel. Alice
checks the correlation between the data and establishes an error rate. The error
rate can come from an eavesdropper or noise effects.

vi) If the error rate is too high they can assume that an eavesdropper has act
and they can restart the protocol from the beginning. One can show that, in
the case of free noise effect, and under individual attacks (the eavesdropper
intercepts, measures, and resents the states) the error rate is bounded to be
(for a sufficiently high amount of data) 25%. If Alice deduces that there is not
an eavesdropper present, she communicates it to Bob. Alice and Bob use the
set of remaining data as a private key. Later on, they can improve security by
performing information reconciliation and privacy amplification on the private
key before using it to encrypt messages with the Vernam cypher.

Note that the security of the protocol relies in the quantum nature of the mea-
surements. The two bases, Z and X, are associated with eigenbasis of non-commuting
observables, σ̂z and σ̂x. The eavesdropper cannot measure simultaneously both ob-
servables on the same state. Additionally the nocloning theorem prevents her from
being able to distinguish with certainty between non-orthogonal quantum state per-
forming cloning, and avoids hence the possibility of resending them to Bob without
leaving trace of her intrusion.

3.2.2 “Entanglement based” scheme

A second type of protocols demand as a fundamental resource, shared entanglement
between Alice and Bob, like Ekert91. In the same way as in BB84, these protocols
permit a secure distribution of a secret key. This can be done as far as the protocol
ensures if there has been an interception of the key. We sketch below the steps of
this well-known protocol.
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i) The first step consists on distributing (along the z-direction) singlet states of a
spin-1/2 system between Alice and Bob. Thus Alice and Bob share many copies
of a Bell state |Ψ−〉 = 1√

2
(|0〉|1〉 − |1〉|0〉).

ii) Alice and Bob are going to measure in the x − y plane in one of the three
directions given by unit vectors ~Ai = (cosφAi , sin φ

A
i ) and ~Bj = (cosφBj , sinφ

B
j )

respectively, where the azimuthal angles are fixed to φAi = (0, π/4, π/2)i and
to φBj = (π/4, π/2, 3π/4)j . Each time they will choose the basis randomly and
independently for each pair of incoming particles.

iii) After the measurement has taken place, Alice and Bob can announce in public
the directions they have chosen for each measurements and divide them into
two separated groups. A first group for which they coincide and a second group
for which they do not. The second group of outcomes is made public and it is
used to establish the presence or absence of an eavesdropper.

iv) One defines correlation coefficients to test security

E( ~Ai, ~Bj) = P++( ~Ai, ~Bj) + P−−( ~Ai, ~Bj)−P+−( ~Ai, ~Bj)− P−+( ~Ai, ~Bj) (3.4)

which is the correlation coefficient of the measurements performed by Alice along
~Ai and by Bob along ~Bj. Here P±±( ~Ai, ~Bj) denotes the probability the results

±1 has been obtained along ~Ai and ±1 along ~Bj . Straightforward calculations
give rise to

P++( ~Ai, ~Bj) = 1
2 sin2(φAi − φBj ),

P−−( ~Ai, ~Bj) = 1
2 sin2(φAi − φBj ),

P+−( ~Ai, ~Bj) = 1
2 cos2(φAi − φBj ),

P−+( ~Ai, ~Bj) = 1
2 cos2(φAi − φBj ).

Thus, according to the Quantum rules E( ~Ai, ~Bj) = − ~Ai ~Bj = − cos
[

2(φAi − φBj )
]

.

As expected, if they choose the same orientation, Quantum Mechanics predicts
a total anticorrelation in the outcomes E( ~Ai, ~Bj) = −1 as it should be for the
rotational invariant singlet state |Ψ−〉.
Finally, let us define here a quantity composed of those correlation coefficients
for which Alice and Bob have measured in different directions,

S = |E( ~A1, ~B1) + E( ~A3, ~B3)− E( ~A1, ~B3) + E( ~A3, ~B1)|. (3.5)

Again, Quantum Mechanics requires, S = 2
√

2 > 2.

v) The CHSH (Clauser, Horne, Shimony, and Holt) inequality, is a generalization
of Bell inequalities and asserts that S ≤ 2 for any theory compatible with local
realism. But Quantum Mechanics, and in particular with Bell states CHSH
inequalities are violated. If this is the case, i.e. the value of S that they find
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is exactly 2
√

2, they know that their states have not been disturbed and so the
first group of outcomes, that are random, are totally anticorrelated and can
be converted into a secret string of bits (provided Bob flips all the bits). This
ends the distribution of the private key. One can now, as in the BB84 protocol,
perform information reconciliation and privacy amplification on the private key
before using it to encrypt messages with Vernam cypher to achieve an absolute
secure communication.

Note that security relies in the quantum correlations i.e. entanglement and it is
guaranteed by the violation of Bell inequalities. In contrast to BB84, Alice do not
need in advance a string of random bits because the randomness comes from the
measurement process.

3.3 Quantum Key Distribution with Continuous Vari-

able Gaussian states

Quantum Cryptography can be implemented using systems of Continuous Variable
i.e. using quantum states on infinite dimensional Hilbert spaces. Among all Con-
tinuous Variable states, Gaussian states and Gaussian operations, have been the
preferred to experimentally implement Quantum Cryptography using “Prepare and
Measure” schemes e.g. with either squeezed or coherent states [28, 29, 30]. Those
schemes do not demand entanglement between the parties. Here we address the prob-
lem of the Quantum Key Distribution with entangled Continuous Variable using an
“Entanglement based” protocol.

Notice that if Alice and Bob share a collection of distillable entangled states,
they can always obtain a smaller number of maximally entangled states from which
they can establish a secure key [31] using e.g. Ekert91 protocol. The number of
singlets (maximally entangled states) that can be extracted from a quantum state
using only Local Operations and Classical Communication (LOCC) is referred to as
the Entanglement of Distillation ED. In order to establish a key, another important
concept is the number of secret bits KD, that can be extracted from a quantum
state using LOCC. As a secret bit can always be extracted from maximally entangled
states, KD ≥ ED.

There are quantum states which cannot be distilled in spite of being entangled,
i.e., they have ED = 0. These systems are usually referred to as bound entangled
states since its entanglement is bound to the state. Nevertheless, for some of those
states it has been shown that KD 6= 0 and thus, they can be used to establish a
secret key [32].

A particular case of states that cannot be distilled by “normal” procedures are
Continuous Variable Gaussian states, e.g., coherent, squeezed and thermal states
of light. By “normal” procedures we mean operations that preserve the Gaussian
character of the state (Gaussian operations), they correspond e.g. to beam splitters,
phase shifts, mirrors, squeezers, etc. Thus, in the Gaussian scenario all entangled
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Gaussian states posses bound entanglement. Navascués et al [33] have shown that it
is also possible using only Gaussian operations to extract a secret key à la Ekert91
from entangled Gaussian states, in spite the fact that these states are not distill-
able. In other words, it has been proven that in the Gaussian scenario all entangled
Gaussian states fulfill GKD > 0 (where the letter G stands for Gaussian) while
GED = 0.

The above result implies that in principle any entangled Gaussian state can be
used for implementing Quantum Cryptography. However, any real implementation
should address the optimization of the resources needed i.e. the efficiency of the
protocol. The proposed protocol presented in [33] suffers precisely from an efficiency
problem because the success probability of the protocol is vanishingly small. Here
we will study the consequences of relaxing the protocol to a more realistic scenario
preserving the security.

3.3.1 Distributing bits from Gaussian states by digitalizing output

measurements

Extracting bits from discrete variables systems can be easily implemented by mea-
suring for example spin observables and associating the up/down orientation, in a
fixed axis, as the bit 0/1. In this sense we are digitalizing the output measurements
on states. If one uses many copies of a bipartite entangled state it is possible to dis-
tribute among two separated parties a pair of bit strings. Such strings of bits possess
in general a degree of correlations due to the entanglement present in the state. In
the CV scenario and in particular with Gaussian states, the outcome measurements
(of canonical variables) fill the continuum, and one needs to digitalize the results in
some way. Before proceeding further we detail how to extract correlated string of
bits from entangled Gaussian states.

We consider a bipartite CV system of two bosonic modes, A and B (see Fig. 3.1).
Quadratures on each mode can be efficiently measured by standard homodyne detec-
tion. The probability that measuring the position quadrature x̂A in mode A results
in an outcome xA with uncertainty σ is given by

PA(xA) = tr[ρ̂Aσ̂(xA)], (3.6)

where σ̂(xA) is a single-mode Gaussian (squeezed) state with first moments {xA, 0}
and covariance matrix diag{σ2, 1/σ2}. In a similar way we define PB(xB) for mode
B. The probability distribution associated to a joint measurement of the quadratures
x̂A and x̂B , is given by PAB(xA, xB) = tr[ρ̂AB(σ̂(xA)⊗ σ̂(xB))].

We digitalize the obtained outputs by assigning the bits +(−) or 0(1) to the
positive(negative) values of the measured quadratures. This digitalization transforms
each joint quadrature measurement into a pair of classical bits. Let us adopt a
compact notation by denoting P±

A ≡ PA(±|xA|), and P±∓
AB ≡ PAB(±|xA|,∓|xB |).

The probability that at a given string index the bits of the corresponding two modes
coincide is given by P=

AB ≡ (P++
AB + P−−

AB )/
∑

{α=±,β=±} P
αβ
AB. Correspondingly, the
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probability that they differ is P 6=
AB ≡ (P+−

AB + P−+
AB )/

∑

{α=±,β=±}P
αβ
AB . Trivially,

P=
AB + P 6=

AB = 1. If P=
AB > P 6=

AB the measurement outcomes display correlations,
otherwise they display anticorrelations. Notice that, if the two modes are completely
uncorrelated, P=

AB = P 6=
AB = 1/2.

xA

pA

xB

pB
Alice Bob

++ −−

Figure 3.1: Alice and Bob 1 × 1 mode Gaussian state. The volume below the green zone
denotes the probability for positive outcomes measurements of the x quadrature and the
orange zone for the negatives outcomes. We have considered the global state with zero
displacement vector.

3.3.2 Efficient Quantum Key Distribution using entanglement

It has been noticed that the degree of bit correlations are strongly related with the
entanglement present in the states used to distribute the pair of strings of classical
bits. We ask ourselves which is the possibility that Alice and Bob distribute total
correlated strings of bits (a key) in a secure and efficient way by means of bipartite
entangled Gaussian states.

The most general scenario we consider is that the state that Alice and Bob
share is mixed, letting thus the possibility that an eavesdropper (Eve) has access
to some degrees of freedom entangled with Alice and Bob before their distribution.
In this general scenario, as the state of Alice and Bob is mixed it always admit a
purification (see lemma 2.5.3). Thus, any mixed Gaussian state of 2 modes can be
expressed as the reduction of a pure Gaussian state of 4 modes in such a way that
the bipartite mixed Gaussian state (Alice and Bob) can be obtained after tracing
out the 2 other modes (Eve). For what follows it is also important the fact that any
NPPT Gaussian state of N ×M can be mapped by Gaussian Local Operations and
Classical Communication (GLOCC) to an NPPT symmetric state of 1 × 1 modes
i.e. preserving the amount of entanglement. Finally, for 1 × N Gaussian states
NPPT and entanglement are equivalent concepts. By virtue of the above properties
of Gaussian states, it is sufficient to consider the case in which Alice and Bob share
many copies of a quantum system of 1× 1 modes symmetric mixed NPPT Gaussian
state ρ̂AB.

While the states that Alice and Bob share correspond to the reduction of a pure 4-
mode state, Eve has access to an entangled reduction of two modes. We consider two
types of attacks (i) individual (or incoherent) attacks, where Eve performs individual
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measurements, possibly non-Gaussian, over her set of states and (ii) finite coherent
(or collective) attacks, where Eve waits until the distribution has been performed
and, decides which collective measurement gives her more information on the final
key.

We define the error probability as the probability that at a given string index
the bits of the corresponding two modes differ i.e. ǫAB = P 6=

AB . Having fixed a
string of M classical correlated bits, Alice and Bob can apply Classical Advantage
Distillation [34] to establish a secret key. To this aim, Alice generates a random bit
b and encodes her string of M classical bits (~bA) into a vector ~b of length M such
that bAi + bi = b mod (2). The vector ~b is made public. Bob checks that for his bits
all results bBi + bi = b′ mod (2) are consistent, and in this case accepts the bit b as
the first bit of the secret key. The new error probability is given by [35]

ǫAB,M =
(ǫAB)M

(1− ǫAB)M + (ǫAB)M
<

(

ǫAB
1− ǫAB

)M

, (3.7)

which tends to zero for sufficiently large M .

Security with respect to individual attacks from the eavesdropper Eve, can be
established if [35]

(

ǫAB
1− ǫAB

)M

< |〈e++|e−−〉|M , (3.8)

where |e±±〉 denotes the state of Eve once Alice and Bob have projected their states
onto | ± |x0A|,±|x0B |〉.

Notice that it is favorable for Alice and Bob to have a high degree of success (ǫAB
small) while Eve can gain information if the overlap between her states after Alice
and Bob have measured coincident results (|〈e++|e−−〉|) is sufficiently small. The
above inequalities come from the fact that in the case of individual attacks the error
on Eve’s estimation of the final bit b is bound from below by a term proportional to
|〈e++|e−−〉|M [35]. Therefore, Alice and Bob can establish a key if

ǫAB
1− ǫAB

< |〈e++|e−−〉|. (3.9)

In [33] it was shown that any 1 × 1 NPPT Gaussian state fulfills the above
inequality and thus any NPPT Gaussian state can be used to establish a secure key
in front of individual eavesdropper attacks. If we assume that Eve performs more
powerful attacks, namely finite coherent attacks, then security is only guaranteed if
the much more restrictive condition

ǫAB
1− ǫAB

< |〈e++|e−−〉|2, (3.10)

is fulfilled. This new inequality is violated by some NPPT states. Notice that this
implies that the analyzed protocol is not good for these states in this more general
scenario. Nevertheless, using the recent techniques of [36], one can find states for
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which the presented protocol allows to extract common bits also secure against this
attack.

The analyzed protocol [33], results in an inefficient success since it relies on an
exact matching between Alice and Bob outputs as a requirement for security. Notice
that since security relies on the fact that Alice and Bob have better correlations than
the information the eavesdropper can learn about their state, perfect correlation is
not a requirement to establish a secure key. We look for a constructive method to im-
prove efficiency without compromising security. By denoting Alice’s outputs by x0A,
we calculate which are the outputs x0B Bob can accept so that the correlation estab-
lished between Alice and Bob can still be used to extract a secret bit. Specifically, we
relax the differences between their output quadrature measurements but imposing
correlations in the sign of their quadratures i.e. we keep correlations in the sign of
their output quadratures irrespectively of their numerical value. We thus demand
that Alice and Bob associates the bits (+/-) or 0/1 to the positive(negative) value
of their respective outcome measurement on each run. Alice will announce publicly
the modulus of her outcome measurement each time. We study the efficiency and
the security of the protocol if Bob accepts only outcomes measurements that lie in
the nearest of Alice’s outcomes such that security is guaranteed. Furthermore we
analyze the performance of the protocol in terms of the entanglement sharing.

We use the standard form of a bipartite 1 × 1 mode mixed Gaussian state, (see
lemma 2.5.2) for the states shared between Alice and Bob

γAB =









λa 0 cx 0
0 λa 0 −cp
cx 0 λb 0
0 −cp 0 λb









, (3.11)

where, without loss of generality, we flip the sign of cp and adopt the convention
cx ≥ |cp| ≥ 0 (we fix also the displacement vector to 0). For simplicity we can deal
with mixed symmetric (as said above being totally general) and so λa = λb = λ ≥ 1.
The positivity condition, see lemma 2.5.2, reads (λ − cx)(λ + cp) ≥ 1, while the
entanglement NPPT condition, see lemma 2.6.3, is given by (λ − cx)(λ − cp) < 1.
We impose that the global state including Eve is pure (she has access to all degrees
of freedom outside Alice an Bob) while the mixed symmetric state, shared by Alice
and Bob is just its reduction (see lemma 2.5.3), thus

γABE =

(

γAB C
CT θABγABθ

T
AB

)

, (3.12)

C = JAB
√

−(JABγAB)2 − I4 θAB =









0 −X 0 −Y
−X 0 −Y 0

0 Y 0 −X
−Y 0 −X 0









, (3.13)

θAB = θA ⊕ θB, JAB = JA ⊕ JB, (3.14)
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where

X =

√
a+ b+

√
a− b

2
,

Y =

√
a+ b−

√
a− b

2
,

and a = λ2 − cxcp − 1, b = λ(cx − cp).
Performing a measurement with uncertainty σ, the probability that Alice finds

±|x0A| while Bob finds ±|x0B |, is given by the overlap between the state of Alice and
Bob, ρ̂AB, and a pure product state ρ̂A,i⊗ρ̂B,j (with i, j = 0, 1) of Gaussians centered
at ±|x0A| and ±|x0B| respectively with σ width (notice ρ̂A,0 ≡ | + |x0A|〉〈+|x0A||)
which gives

P++
AB,σ = P−−

AB,σ = tr[ρ̂AB(ρ̂A,0 ⊗ ρ̂B,0)] =

= (2π)4
∫

d4ζABWρAB (ζAB)WρA,0⊗ρB,0(ζAB) =

= K(σ) exp

(

2|x0A||x0B |cx − (λ+ σ2)(x2
0A + x2

0B)

(λ+ σ2)2 − c2x

)

,

(3.15)

for the probability that their symbols do coincide and,

P−+
AB,σ = P+−

AB,σ = K(σ) exp

(−2|x0A||x0B |cx − (λ+ σ2)(x2
0A + x2

0B)

(λ+ σ2)2 − c2x

)

, (3.16)

for the probability that they do not coincide, where

K(σ) =
4σ2

√

(λ+ σ2)2 − c2x
√

(λσ2 + 1)2 − c2pσ4
. (3.17)

Their error probability for σ → 0 reads

ǫAB = lim
σ→0
P 6=
AB,σ =

1

1 + exp
(

4cx|x0A||x0B|
λ2−c2x

) . (3.18)

Let us calculate the bipartite state of Eve |e±±〉 after they have mesured (Alice has
projected onto | ± |x0A|〉 and Bob onto | ± |x0B |〉)

γ++ = γ−− =

(

γx 0
0 γ−1

x

)

, γx =

(

λ cx
cx λ

)

, (3.19)

d±± = ∓









0
0

Aδx0 −B∆x0

Aδx0 +B∆x0









, (3.20)
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where A =
√
a+b

λ+cx
, B =

√
a−b

λ−cx , ∆x0 = |x0B | − |x0A| and δx0 = |x0B | + |x0A|. The
overlap between the two states of Eve, which gives a direct quantification of the
distinguishability, is given by

|〈e++|e−−〉|2 =
1

√

det(γ+++γ−−
2 )

e
−(d−−−d++)T ( 1

γ+++γ−−
)(d−−−d++)

=

= exp

(

−4

λ2 − c2x

[

(

x2
0A + x2

0B

2

)

(λ2 − c2x − 1)λ+ |x0A||x0B |
(

cx − cp(λ2 − c2x)
)

])

.(3.21)

Substituting Eqs. (3.18) and (3.21) into (3.9) one can check, after some algebra, that
the last inequality reduces to

(

x2
0A + x2

0B

2

)

(λ2 − c2x − 1)λ+ |x0A||x0B |
(

−cx − cp(λ2 − c2x)
)

< 0. (3.22)

Notice that condition (3.22) imposes both, restrictions on the parameters defining
the state (λ, cx, cp), and on the outcomes of the measurements (x0A, x0B). The
constraints on the state parameters are equivalent to demand that the state is NPPT
and satisfies

(λ− cx)(λ+ cx) ≥ 1. (3.23)

Nevertheless, as cx ≥ cp, any positive state fulfills this condition. Hence for any
NPPT symmetric state, there exists, for a given x0A, a range of values of x0B such
that secret bits can be extracted (Eq. (3.9) is fulfilled) efficiently. This range is given
by

∆x0 = |x0B | − |x0A| ∈ Dα =

[

2

−√α− 1
,

2√
α− 1

]

|x0A|, (3.24)

where

α =

(

cx − λ
cx + λ

)[

1− (λ+ cx)(λ+ cp)

1− (λ− cx)(λ− cp)

]

. (3.25)

After Alice communicates |x0A| to Bob (the signs obtained are kept in secret), he
will accept only measurement outputs within the above interval ∆x0. The interval is
well defined if α ≥ 1, which equals to fulfill Eq. (3.23). Notice also that the interval
is not symmetric around |x0A| because the probabilities calculated in Eqs. (3.15)
and (3.16) do depend on this value in a non-symmetric way. The length Dα of the
interval of valid measurements outputs for Bob is given by

Dα =
4
√
α

α− 1
|x0A|. (3.26)
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It can be observed that maximal Dα → ∞ (α = 1) corresponds to the case when
Alice and Bob share a pure state (Eve is disentangled from the system) and thus
condition (3.9) is always fulfilled. On the other hand, any mixed NPPT symmetric
state (α > 1) admits a finite Dα. This ensures a finite efficiency on establishing a
secure secret key in front of individual attacks.

If we assume that Eve performs more powerful attacks, namely finite coherent
attacks, then security is only guaranteed if

ǫAB
1− ǫAB

< |〈e++|e−−〉|2. (3.27)

This condition is more restrictive than (3.9). With a similar calculation as before we
obtain that now security is not guaranteed for all mixed entangled symmetric NPPT
states, but only for those that also satisfy

λ− (λ+ cx)(λ− cx)(λ− cp) > 0. (3.28)

For such states, and given a measurement result x0A of Alice, Bob will only accept
outputs within the range

∆x0 = |x0B | − |x0A| ∈ Dβ =

[

2

−√β − 1
,

2√
β − 1

]

|x0A|, (3.29)

where

β =
2λ(λ2 − c2x − 1)

λ− (λ+ cx)(λ− cx)(λ− cp)
≥ 1. (3.30)

As before, β ≥ 1 is fulfilled by conditions (3.23) and (3.28).
Let us now focus on the efficiency issue. We define the efficiency E(γAB) of the

protocol for a given state γAB , as the average probability (over the range of secure
outcomes, D) of obtaining a classically correlated bit. Explicitly,

E(γAB) =

∫

∆x0∈D

dx0Adx0B(1− ǫAB)tr(ρ̂AB |x0A, x0B〉〈x0A, x0B |). (3.31)

The marginal distribution in phase-space is easily computed by integrating the cor-
responding Wigner function in momentum space

tr(ρ̂AB |x0A, x0B〉〈x0A, x0B |) =

∫ ∫

dpAdpBWρAB (ζAB) =

=
exp

(

2cxx0Ax0B−λ(x2
0A+x2

0B)

λ2−c2x

)

π
√

λ2 − c2x
,

(3.32)

but the final expression of Eq. (3.31) has to be calculated numerically. Note that
if Alice and Bob share as a resource M identical states (NPPT state for individual
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attacks, and NPPT fulfilling condition (3.28) for finite coherent attacks), the number
of classically correlated bits that can be extracted from them is ∼M×E(γAB). The
efficiency Eq. (3.31) increases with increasing D. In particular, for the protocol given
in [33], D = 0, and therefore E(γAB) = 0 for any state.

We investigate now the dependence of E(γAB) with the entanglement of the
NPPT mixed symmetric state used for the protocol as well as with the purity of the
state. In order to fix one parameter of the states we fix the energy of the states at
a fixed value (λ cte). As a measure of the entanglement between Alice and Bob, see
(2.97), we compute the logarithmic negativity

LN(γAB) = − log2[min(µ̃−, 1)] − log2[min(µ̃+, 1)] = log2

(

1
√

(λ− cx)(λ− cp)

)

> 0.

(3.33)
because µ̃+ > 1 and 1 > µ̃− =

√

(λ− cx)(λ− cp).
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Figure 3.2: Protocol efficiency (quantified by E) versus the entanglement measured by
logarithmic negativity LN. The shading from cyan to red corresponds to purity from zero
to one.

In Fig. 3.2, we display the efficiency of the protocol (assuming individual attacks)
versus entanglement shared between Alice and Bob for different states γAB . There
is not a one-to-one correspondence between efficiency and entanglement, since states
with the same entanglement can have different purity, which can lead to different
efficiency. This is so because there are two favorable scenarios to fulfill Eq. (3.9). The
first one is to demand large correlations so that the relative error ǫAB of Alice and
Bob is small. The second scenario happens when Alice and Bob share a state with
high purity, i.e., Eve is very disentangled. In this case, independently of the error
ǫAB, Eq. (3.9) can be fulfilled more easily. Despite the fact that efficiency generally
increases with increasing entanglement and increasing purity, this enhancement, as
depicted in the figure, is a complex function of the parameters involved. Nevertheless,
one can see that there exist an entanglement threshold (around LN ≃ 0.2) below
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which the protocol efficiency diminishes drastically no matter how mixed are the
states shared between Alice and Bob.

It is also illustrative to examine the dependence of α (which determines the
interval length Dα) on the entanglement of the states shared by Alice and Bob.
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Figure 3.3: Entanglement of the states shared between Alice and Bob measured in terms
of the logarithmic negativity LN as a function of the parameter α under individual attacks.
The shading from cyan to red corresponds to purity from zero to one.

In Fig. 3.3 we plot the logarithmic negativity of a given state versus the param-
eter α. States with the same entanglement but different purity are associated to
quite different values of α, specially for states with low entanglement (high purity).
Nevertheless states with high entanglement permit a large interval length (small α)
and, thus, high efficiency.

In both, Fig. 3.2 and Fig. 3.3, we have observed that states with different en-
tanglement give the same efficiency. However it is important to point out that to
extract the key’s bits, Classical Advantage Distillation [34] stills needs to be per-
formed. The efficiency of Maurer’s protocol, strongly increases with decreasing ǫAB ,
and, therefore, the states with higher entanglement will provide a higher key rate.

3.4 Conclusions

Efficiency is a key issue for any experimental implementation of Quantum Cryptog-
raphy since available resources are not unlimited. In this chapter, we have shown
that the sharing of entangled Gaussian variables and the use of only Gaussian op-
erations permits efficient Quantum Key Distribution against individual and finite
coherent attacks.

We have used the fact that all mixed NPPT symmetric states can be used to
extract secret bits to design an algorithm, that efficiently succeeds for a secure ex-
traction of a key. Whereas under individual attacks all mixed NPPT symmetric
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states admit a finite efficiency, for finite coherent attacks an additional condition
constrains the parameters of the states. We have introduced a figure of merit (the
efficiency E) to quantify the number of classical correlated bits that can be used
to distill a key from a sample of M entangled states. We have observed that this
quantity grows with the entanglement shared between Alice and Bob. This relation
it is not one-to-one due to the fact that states with less entanglement but with more
purity (eavesdropper more disentangled) can be equally efficient. Nevertheless we
have point out that, these states would be inefficient, when performing the Classical
Advantage Distillation of the key.



Chapter 4

Byzantine agreement problem

with Continuous Variable

4.1 Introduction

One of the aims of Quantum Information is to provide new protocols and algorithms
(set of rules for solving a problem in a finite number of steps) which exploit quantum
resources to find a solution to problems which either lack a solution using classical
resources or the solution is extremely hard to implement. In this chapter we analyze
a multipartite protocol, the Byzantine agreement problem, by means of multipartite
Gaussian entanglement.

The term “Byzantine Agreement” was originally coined by Lamport and Fischer
[37] in the context of computer science to analyze the problem of fault tolerance
when a faulty processor is sending inconsistent information to other processors. In
a cryptographic context, it refers to distributed protocols in which some of the par-
ticipants might have malicious intentions and could try to sabotage the distributed
protocol inducing the honest parties to take contradictory actions between them.
This problem is often reformulated in terms of a Byzantine army where there is a
general commander who sends the order of attacking or retreating to each one of his
lieutenants. Those can also communicate pairwise to reach a common decision con-
cerning attacking or retreating, knowing that there might be traitors among them
including the general commander. A traitor could create fake messages to achieve
that different parts of the army attack while other retreat, which would put the
army at a great disadvantage. The question hence is whether there exists a proto-
col among all the officials involved that, after its termination, satisfies the following
conditions: The commanding general sends an order to his N − 1 lieutenants such
that: (i) All loyal lieutenants obey the same order, (ii) If the commanding general
is loyal, then every loyal lieutenant obeys the order he sends. It is assumed that the
parties cannot share any previous setup.

Lamport et al [38] proved that if the participants only shared pairwise secure
classical channels, then Byzantine Agreement or broadcast is only possible iff t < n/3

57
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where n is the number of players and t the number of traitors among them. In [39]
Fitzi and co-workers introduced a weaker nevertheless important version of Byzantine
Agreement known as detectable broadcast. Detectable broadcast is said to be achieved
if the protocol satisfies the following conditions: (i) If no player is corrupted, then the
protocol achieves broadcast and (ii) If one or more players are corrupted, then either
the protocol achieves Byzantine Agreement or all honest players abort the protocol.
Thus, in a detectable broadcast protocol, cheaters can force the protocol to abort,
i.e. no action is taken. In such cases all honest players agree on aborting the protocol
so that contradictory actions between the honest players are avoided. In the same
paper [39], Fitzi, Gisin and Maurer devised a solution to the detectable broadcast
problem using multipartite entanglement as a quantum resource. Later on Fitzi et
al [40] and Iblisdir and Gisin [41] showed that a Quantum Key Distribution (QKD)
protocol, which guarantees a private sequences of classical data shared between pairs
of parties, suffices to solve detectable broadcast. This situation is reminiscent of
quantum cryptography, in which two seemingly independent main schemes exist for
QKD, the prepare-and-measure BB84 scheme [24] which does not use entangled
states shared between Alice and Bob, and the Ekert91 scheme [25] where indeed
entanglement is explicitly distributed and the security is guaranteed by the violations
of Bell inequalities. However, the two schemes have been shown to be completely
equivalent [26], and specifically entanglement stands as a precondition for any secure
key distribution [27].

Detectable broadcast might be regarded in a similar view as Quantum Key Distri-
bution and, arguably, the same reasoning applies to the different protocols advanced
for its solution, making explicit or implicit use of multipartite entanglement. In
this paper, we adopt an approach à la Ekert91, guided by the physical motivation
of studying the performance and the usefulness of multipartite entangled states as
operational resources to achieve detectable broadcast. While protocols for this task
exist for qutrits [39] and qubits [42, 43], in this paper we investigate the possibil-
ity of solving detectable broadcast with Continuous Variable (CV) systems, namely
with Gaussian states and performing Gaussian operations only. The motivations
for this approach are manifold. On the practical side, the recent progresses in CV
QKD [44] has shown that the use of efficient homodyne detectors, compared to
photon counters employed in BB84 schemes, enables the distribution of secret keys
at faster rates over increasingly long distances [45, 46]. On the theoretical side,
multipartite entanglement is a central concept whose understanding and characteri-
zation (especially in high-dimensional and CV systems), despite recent efforts, is far
from being complete. It is important, therefore, to approach this task operationally,
i.e. by connecting entanglement to the success or to the performance of diverse
quantum information and communication tasks [47], while exploiting the differences
between discrete-variable and continuous-variable scenarios. For Gaussian states of
light fields, which are presently the theoretical and experimental pillars of Quan-
tum Information with CVs [48], an important result in this respect is due to van
Loock and Braunstein [49]. They introduced a scheme to produce fully symmetric
(permutation-invariant) n-mode Gaussian states exhibiting genuine multipartite en-
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tanglement. Furthermore, they devised a communication protocol, the “quantum
teleportation network”, for the distribution of quantum states exploiting such re-
sources, which has been experimentally demonstrated for n = 3 [50]. The optimal
fidelity characterizing the performance of such a protocol yields an operational quan-
tification of genuine multipartite entanglement in symmetric Gaussian states. This
quantification is equivalent to the information-theoretic “residual contangle” mea-
sure, a Gaussian entanglement monotone, emerging from the monogamy of quantum
correlations [51, 52]. Other applications of multipartite Gaussian entanglement have
been advanced and demonstrated, and the reader may find more details in [6, 48],
as well as in the two more recent complementary reviews [9] (theoretical) and [53]
(experimental).

We have proposed a novel protocol to solve detectable broadcast with symmet-
ric multimode entangled Gaussian states and homodyne detection. This provides
an alternative interpretation of multipartite Gaussian entanglement as a resource
enabling this kind of secure communication. We concentrate on the case of three
parties, and remarkably find that not all three-mode symmetric entangled Gaus-
sian states are useful to achieve a solution: to solve detectable broadcast there is a
minimum threshold in the multipartite entanglement. This is at variance with the
two-party QKD counterpart: in there, all two-mode entangled Gaussian states are
useful to obtain a secure key using Gaussian operations [33]. We eventually discuss
how our protocol can be implemented in realistic conditions, namely considering
detectors with finite efficiency and yielding not perfectly matched measurement out-
comes, and Gaussian resources which are not ideally pure, but possibly (as it is in
reality) affected by a certain amount of thermal noise. We show that under these
premises the protocol is still efficiently applicable to provide a robust solution to
detectable broadcast over a broad range of the involved parameters (noise, entangle-
ment, measurement outcomes and uncertainties), paving the way towards a possible
experimental demonstration in a quantum optical setting.

4.2 Detectable broadcast protocol

The protocols to solve detectable broadcast, in the discrete scenario, using entangle-
ment as a resource are based on three differentiated steps:

i) Distribution of the quantum states.

ii) Test of the distributed states.

iii) Protocol by itself.

Step iii) is fundamentally classical, since it uses the outputs of the different measure-
ments of the quantum states to simulate a particular random generator (“primitive”).
Let us consider the simplest case, in which only three parties are involve and at most
one traitor is allowed, for which no classical solution exists. The parties are tradition-
ally denoted by S (the sender, i.e. commander general) and the receivers R0 and R1
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(i.e. lieutenants), and at most, only one is a traitor. In this case, the primitive gener-
ates for every invocation a random permutation of the elements {0, 1, 2} with uniform
distribution, i.e. (tS , tR0 , tR1) ∈ {(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)}.
In this primitive, no single player n can learn more about the permutation than the
value tn (n = {S,R0, R1}) which she/he obtain i.e., each player ignores how the
other two values are assigned to the other two players. Furthermore, nobody else
(besides the parties) have access to the sequences.

Entanglement is used in the protocol to distribute classical private random vari-
ables with a specific correlation between the players, in such a way that any malicious
manipulation of the data can be detected by all honest parties allowing them to abort
the protocol. In the discrete variable case such a primitive can be implemented with
qutrits using e.g. Aharonov states |A〉 = 1√

6
(|0, 1, 2〉 + |1, 2, 0〉 + |2, 0, 1〉 − |0, 2, 1〉 −

|1, 0, 2〉 − |2, 1, 0〉). This choice allows the distribution and test part to be secure
[39]. Whenever the three qutrits are all measured in the same basis, all the three
results are different. Hence -after discarding all the states used for the testing of
the distributed states (step ii))- the players are left with a sequence of outputs that
reproduces the desired primitive. We schematically represent this primitive by the
table below

j 1 2 3 4 5 6 7 8 9 . . .

S 2 0 0 1 2 1 0 2 1 . . .

R0 1 1 2 0 1 0 1 0 2 . . .

R1 0 2 1 2 0 2 2 1 0 . . .

After accomplishing the distribution and test part of the protocol (steps i) and ii))

detailed in section 4.4, the sender S will broadcast a bit b ∈ {0, 1} (0
∧
=“attack”,

1
∧
=“retreat”) to the two receivers using the mentioned distributed and tested prim-

itive and classical secure channels.

Following [39] the broadcast (step iii)) proceeds as follows:

iii-1) We denote by bi the bits received by Ri, i = 0, 1 (notice that if the sender is
malicious, the broadcasts bits bi could be different). Each receiver Ri demands to
S to send him the indices j for which S got the result bi (on the primitive). Each
player Ri receives a set of indices Ji.

iii-2) Each Ri test consistency of his own data, i.e. checks weather his output on
the set of indices he receives (Ji) are all of them different from bi. If so the data is
consistent and he settles his flag to ci = bi, otherwise his flag is settled to ci =⊥.

iii-3) R0 and R1 send their flags to each other. If both flags agree, the protocol
terminates with all honest participants agreeing on b.

iii-4) If ci =⊥, then player Ri knows that S is dishonest, the other player is honest
and accepts his flag.

iii-5) If both R0 and R1 claim to have consistent data but c0 6= c1, player R1 demands
from R0 to send him all the indices k ∈ J0 for which R0 has the results 1 − c0. R1

checks now that (i) all indices k from R0 are not in J1 and (ii) the output R1 obtains
from indices k correspond to the value 2. If this is the case, R1 concludes that R0
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is honest and changes his flag to c0. If not, R1 knows that R0 is dishonest and he
keeps his flag to c1. Detectable broadcast is in this way achieved.

4.3 Continuous variable primitive

We first review briefly the basic tools needed to describe multipartite Gaussian states
and measurements. Building on the ideas presented in the previous section, we
construct a protocol adapted to the Continuous Variable case.

To achieve the primitive presented in the CV set up we consider quantum systems
of 3 canonical degrees of freedom, i.e. 3 modes (one for each player), associated to a
Hilbert space H = L2(R6). Following the discussion of the protocol (step iii)) for the
implementation of the primitive in the discrete case, we choose to use as a resource
a pure, fully inseparable tripartite Gaussian state, completely symmetric under the
interchange of the modes [49].

In contrast to the bipartite case where one kind of entanglement exist, the tri-
partite case is much richer [54] and offers several classes of entanglement. In [55] a
classification for Gaussian states, in terms of the non-positivity of the partial trans-
pose across several bipartite partitions (NPPT criterium), was studied. Namely for
tripartite Gaussian states described by a covariance matrix γ, 5 classes of states can
be distinguished.

i) Class 1 (Fully inseparable states or genuine entangled) iff

θAγθ
T
A + iJ � 0,

θBγθ
T
B + iJ � 0,

θCγθ
T
C + iJ � 0.

ii) Class 2 (One-mode biseparable) iff

θiγθ
T
i + iJ ≥ 0,

θjγθ
T
j + iJ � 0,

θkγθ
T
k + iJ � 0,

any permutation of modes (i, j, k) must be considered.

iii) Class 3 (Two-mode biseparable) iff

θiγθ
T
i + iJ ≥ 0,

θjγθ
T
j + iJ ≥ 0,

θkγθ
T
k + iJ � 0,

any permutation of modes (i, j, k) must be considered.
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iv) Class 4 (Three-mode biseparable or bound entanglement)

or Class 5 (Fully separable) iff

θAγθ
T
A + iJ ≥ 0,

θBγθ
T
B + iJ ≥ 0,

θCγθ
T
C + iJ ≥ 0,

with J = ⊕3
i=1J . The condition for full inseparability (truly multipartite entangle-

ment) across the 1×1×1 mode partition can be rewritten and reads as γ+iJA � 0,
γ + iJB � 0, γ + iJC � 0 with JA = J T ⊕ J ⊕ J , analogously for B and C.

A tripartite Gaussian state with such properties (pure, fully inseparable, com-
pletely symmetric under the interchange of the modes) with covariance matrix γ(a)
accepts the following parametrization [55]

γ(a) =

















a 0 c 0 c 0
0 b 0 −c 0 −c
c 0 a 0 c 0
0 −c 0 b 0 −c
c 0 c 0 a 0
0 −c 0 −c 0 b

















, (4.1)

with a ≥ 1 and

b =
1

4
(5a−

√

9a2 − 8), (4.2)

c =
1

4
(a−

√

9a2 − 8). (4.3)

It follows that γ(a) is fully inseparable as soon as a > 1. Quantitatively, the genuine
tripartite entanglement of the states of (4.1), as measured by the residual contangle
[52], is a monotonically increasing function of a and diverges for a→∞.

So far γ(a) appears as the “equivalent” CV version of the discrete Aharonov
state |A〉, i.e. pure, fully inseparable and completely symmetric under exchange of
the 3 players. One is tempted to infer, therefore, that the discussed primitive of the
discrete case can be straightforwardly generalized to the continuous one. A standard
way of transforming the correlations of the shared entangled quantum states ρ̂a
into a sequence of classically correlated data between the 3 players is to perform
a homodyne measurement of the quadratures of each mode. Denoting by x̂S , x̂R0 ,
x̂R1 the position (or momentum) operator of each mode, and by xS , xR0 , xR1 the
output of the respective measurements, the players after quadrature measurement
on their modes end up with classical correlated data according to the entanglement
sharing. In order to proceed with the classical part of the protocol (step iii)) one
need to digitalize the outcome measurements into trit correlated data. A standard
way to proceed is the following, the 3 players communicate classically with each
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other and agree, for instance, only on those outcome values for which either |xS| =
|xR0 | = |xR1| = {0, x0} with x0 > 0. In this way each player can associate the
logical trit (t = 0, 1, 2) to a positive, negative or null result respectively, willing to
map the quadrature correlations into trit correlations. To verify the success of such
procedure we define the probability distribution that measuring the quadratures x̂S ,
x̂R0 , x̂R1 an outcome tS = j, tR0 = k, tR1 = l is produced with uncertainty σ, being
(j, k, l) ∈ {0, 1, 2}. Such probability is given by

P(j, k, l) = trρ̂{j,k,l}σ ρ̂a = (4.4)

= (2π)n
∫

W{j,k,l}
σ (ξ)Wa(ξ)d

2nξ.

Here ρ̂
{j,k,l}
σ = ρ̂tS=j

S ⊗ ρ̂tR0
=k

R0
⊗ ρ̂tR1

=l

R1
describes the separable state of the 3 modes

obtained after each party has measured its corresponding quadrature and obtained
an output j, k, l. Thus, the state ρ̂σ of the system after the measure can be described
by a fully separable covariance matrix

γσ =

(

σ2 0
0 1/σ2

)

⊕
(

σ2 0
0 1/σ2

)

⊕
(

σ2 0
0 1/σ2

)

,

(where each party has a pure one mode Gaussian state) and by a displacement vector

dTσ = (f
(1)
j,k,l|x0|, 0) ⊕ (f

(2)
j,k,l|x0|, 0) ⊕ (f

(3)
j,k,l|x0|, 0) being ~fj,k,l = (±1/0,±1/0,±1/0)

where {+1/ − 1/0} corresponds to the trit values {0/1/2}. On the other hand Wa

is the Wigner function of the initial tripartite entangled state ρ̂a described by the
covariance matrix γ(a) and displacement vector d (to be fixed).

Since Gaussian states are symmetric with respect to their displacement vector,
and quadrature output measurements fill the continuum, it is easy to see that a
mapping into classical trits such that all possible outputs {0, 1, 2} occur with the
same and non-vanishing probability is not possible. Therefore, the primitive dis-
cussed in the discrete case has to be modified when adapted to the CV scenario.
The way we find to overcome this asymmetry of the output’s probabilities relies on
joining the correlations from pairs of quantum states. First we map the quantum
correlations involved in each single quantum state just to classical bits by a “sign
binning” (as in CV QKD [33]). That is, first we keep only the results for which the
3 players obtain a coincident output |xS | = |xR0 | = |xR1 | = x0 > 0, and associate
the logical bit bn = 0(1), where n = {S,R0, R1}, to positive (negative) value of the
coincident quadrature +x0(−x0). In every measurement the sender makes public
his outcome result x0, whatever the output is (in each run the sender will obtain a
different outcome result), but not its sign. In this step, all states are used in the pro-
tocol (we will relax the “idealization” of coincident outputs in section 4.6). Second
we construct an appropriate primitive consisting of a random permutation of the
elements (i, j, k) ∈ {(0, 1, 1), (1, 0, 1), (1, 1, 0)}. Compulsory for the implementation
of the primitive is that every element of the primitive appears with equal proba-
bility and any other combination of the outputs not regarded by the primitive is
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exceedingly small compared to the allowed permutations. In other words, denoting
by p ≡ P(0, 1, 1) = P(1, 0, 1) = P(1, 1, 0), and, denoting by δi ≡ P(else), we require
that the corresponding conditional probabilities,

P̃(bS , bR0 , bR1) =
P(bS , bR0 , bR1)

∑

i,j,k={0,1}P(i, j, k)
,

fulfill p̃→ 1
3 and δ̃i → 0.

If the above conditions are met, it is possible then by invoking two consecutive
times the previous generator (i.e. using a pair of quantum states of the class (4.1)),
to map pairs of bit values to trit values (0,1,2) plus an additional undesired element
“u”. For instance, the players, after keeping only those bits obtained by coincident
quadrature outputs ±x0, use two consecutive bits m and m + 1 for the following
association

(1, 0)→ 0

(0, 1)→ 1

(1, 1)→ 2

(0, 0)→ u.

Thus, by concatenating two invocations and using the above association, one gen-
erates the permutations corresponding to the primitive {(0, 1, 2), (0, 2, 1), (1, 0, 2),
(1, 2, 0), (2, 0, 1), (2, 1, 0)} plus a permutation of the undesired element “u” i.e. (u, 2, 2),
(2, u, 2) and (2, 2, u) which will be discarded during the protocol. With all these tools
at hand, optimal results for the desired probabilities are achieved for a displacement
vector of the form dT = −x0

3 (1, 0, 1, 0, 1, 0), and yield

δ1 = P(1, 1, 1) = C(a, σ) exp

(

−4

3

x2
0

K1

)

,

δ2 = P(0, 0, 0) = C(a, σ) exp

(

−16

3

x2
0

K1

)

, (4.5)

δ3 = P(0, 0, 1) = P(0, 1, 0) = P(1, 0, 0) =

= C(a, σ) exp





−4x2
0

(

σ2 + 1
4

[

5a−
√

9a2 − 8
])

K1K2



 ,

and

p = P(0, 1, 1) = P(1, 0, 1) = P(1, 1, 0) =

= C(a, σ) exp

(

−8

3

x2
0

K2

)

,
(4.6)
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with coefficients K1 = σ2 + 1
2

[

3a−
√

9a2 − 8
]

, K2 = σ2 + 1
4

[

3a+
√

9a2 − 8
]

, and

pre-factor

C(a, σ) =

[

det

(

γM + γ(a)

2

)]− 1
2

=

=
8

(a− c+ σ2)
(

b+ c+ 1
σ2

)

√

(a+ 2c+ σ2)
(

b− 2c+ 1
σ2

)

.

The probability distribution depends on the parameters a, x0 and σ. In the case
a≫ 1, it can be seen that the conditional probabilities satisfy the following

p̃ =
1

3
− 4

9
k +O(k2), δ̃i → 0, (4.7)

with k = exp
[

−4
3(x0

σ )2
]

. In the limit of a perfect, zero-uncertainty homodyne detec-
tion (σ → 0), p̃ converges exactly to 1/3. In general, there exists a large region in
the parameters space for which p̃→ 1

3 and δ̃i → 0, as depicted in Fig. 4.1.
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Figure 4.1: Plot of the conditional probability p̃ as a function of the measurement outcome
x0 and the shared entanglement a, for pure symmetric tripartite Gaussian resource states.
Detectable broadcast is ideally solvable in the huge, unbounded region of x0 ≫ 0, a ≫ 1,
where p̃ → 1/3. The entanglement threshold a = athresh = 5

√
2/6 is depicted as well

(wireframe surface). All the quantities plotted are adimensional.

However, there is a lower bound on the entanglement content of the symmet-
ric Gaussian states of (4.1) in order to fulfill the above conditions. Only for a ≥
athresh = 5

√
2

6 ≈ 1.18, one has that p̃ > δ̃i, which is a necessary condition to im-
plement the primitive. This indicates that not all pure 3-mode symmetric fully en-
tangled Gaussian states can be successfully employed to solve detectable broadcast
via our protocol. This entanglement threshold is an a priori bound which does not
depend on the specific form of the employed resource states. For any parametriza-
tion of the covariance matrix of ρ̂a, which is obtainable from γ(a) by local unitary
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squeezing transformations (hence at fixed amount of tripartite entanglement), the
same condition discriminating useful resource states is analytically recovered. We
remark that this bound becomes tight in the limit x0 →∞, meaning that a ≥ athresh

becomes necessary and sufficient for the successful implementation of the primitive.

4.4 Distribution and test

We move now to the distribution and test part of the protocol which represents the
first step in the execution of the appropriate primitive and has only two possible
outputs: global success or global failure. In the case of failure, a player assumes that
something went wrong during the execution of the protocol and aborts any further
action. In the case of global success, each of the parties ends up with a set {K} of
classical data, and the protocol proceeds classically, according to the steps explained
in section 4.2.

From now on we assume that the players share pairwise secure classical channels
and secure (noiseless) quantum channels. The secure distribution and test part uses
correlations to validate the fairness of the other parties. Therefore, quantum states
are sent through noiseless quantum channels and measures are performed massively.
In doing so, it is possible to detect manipulation of the data on a statistical basis
and abort the protocol if necessary. In this section we mostly focus on the issue of
security in the distribution and security test of the data. This should permit the
detection of any malicious manipulation of the data. The explicit effects of sabotage
actions will be reported in section 4.5. We postpone the important issue of how well
the protocol will succeed in the case that the outputs of the measurements are not
perfectly correlated considering the efficiency issue while asserting security, as well
as the realistic practical implementation considering noise in the preparation of the
states to section 4.6.

The distribution and test part proceeds as follows:

i-1) Without loosing generality, let us assume that R1 prepares a large number, M ,
of tripartite systems in state ρ̂a (i.e. with covariance matrix γ(a) and displacement
d) and sends one subsystem to S and another to R0.

i-2) R1 wants to check if the distribution of states is faithfully achieved. To this aim
she/he chooses randomly a set of indices for player S, {KS}, and a disjoint set of
indices for player R0, {KR0}, and sends these two sets over secure classical channels
to the corresponding players. Player S sends his/her KS subsystems to player R0.
For each m ∈ {KS}, R0 measures the two subsystems in his/her possession and R1

measures his subsystem. After communication of their results over secure classical
channels, they agree on those indices {K̃S} ⊆ {KS} for which |xR0 | = |xR1 | = x0.
R1 and R0 check now whether the correlations predicted by the primitive occur:
p̃ = P̃(011) = P̃(101) = P̃(110) = 1

3 , δ̃i = 0. If the test was successful, i.e. if the
measurement results were consistent with the assumption that the states have been
distributed correctly, the players i ∈ {R0, R1} set the flag fi = 1, otherwise fi = 0.
In an analogous way, the test is performed for S.
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i-3) Players S, R0 and R1 send their flags to each other. Every player who receives
a flag “0”, sets his flag also to “0”. Every player with flag “0” aborts the proto-
col. Otherwise the execution of the protocol proceeds. This step terminates the
distribution and test of the quantum systems.

In the second phase of the protocol a selection of the distributed systems is
chosen to establish the bit sequences which will be used to implement the quantum
primitive. In this phase, again honest parties may abort the protocol if malicious
manipulations occur.

ii-1) The players S, R0 and R1 agree upon a set of systems which have not been
discarded during the distribution and test part.

ii-2) Player S chooses (randomly) two disjoint sets of subsystems labeled by indices
LiS ⊂ M̃ . He/she sends the set LiS to player i and demands player i to send via a
noiseless quantum channel his/her subsystems m ∈ LiS to him/her. In each case, the
(random) choice LiS is secret to party j, i.e. player R1 has no information whatsoever
about the set LR0

S . An analogous procedure is adopted by R0 and R1.

ii-3) After measuring their whole sequence of subsystems, player i ∈ {S,R0, R1}
announces publicly, the set of indices {M̂m

i } ∈ M̂i for which the output of the
quadrature measurement was |x0|. The order in which the players announce their
measurement results can be specified initially and based e.g. on a rotation princi-
ple. (Notice that the announcement of |xi| = x0 during the actual measurement
phase would make possible an effective traitor strategy, since he could manipulate
combinations on a systematic basis).

ii-4) Without loss of generality, let us explicitly describe this step of protocol for
player S. From the following sets LR0

S ∩ M̂m
R1

=: UR1
S and LR1

S ∩ M̂m
R0

=: UR0
S let

ŨRiS ⊆ URiS for i ∈ {0, 1} be the index set for which the player S measured ±x0

twice. Analogously to the first phase of the protocol, player S can test if the outputs
of his measures agree with the correlations of a proper primitive (P̃(00) = P̃(10) =
P̃(01) = 1/3 and P̃(11) = 0) If the test is successful, the player sets his flag fS = 1,
otherwise fS = 0. The same procedure is analogously performed by R0 and R1.
From this step on, the players deal exclusively with the outputs of their measures,
i.e. classical data and secure classical channels.

ii-5) S checks correlation on his outputs in the following set M̂ := M̂m
S ∩M̂m

R0
∩M̂m

R1
⊆

M̂m
S . If the test is successful, S sets his flag fS = 1, otherwise fS = 0. R0 and R1

do the equivalent step.

ii-6): From a randomly chosen set V S ⊂ M̂ player S demands from R0 and R1 their
measurement results. S tests this control sample for the assumed primitive. If the
test is successful, S sets his flag fS = 1, otherwise fS = 0. R0 (R1) perform this step
with a set V R0 ⊂ M̂\V S (V R1 ⊂ M̂\(V S ∪ V R0)) respectively.

ii-7) Every player with a flag 0 aborts the execution of the protocol. Otherwise the
players agree upon a set W := M̂\(V S ∪ V R0 ∪ V R1) as the result of the invocation
of the primitive, which consists in an even number of elements. This step concludes
the distribution part of the protocol.



68 Byzantine agreement problem with Continuous Variable

4.5 Primitive: Errors and manipulations

We analyze here the effects of malicious manipulations of the data by dishonest
parties and its detection by the honest ones. We examine here two possible sources
of error, which can occur during the implementation of the primitive with Gaussian
states. While the first source is inherent to the system, the second is caused by an
active adversary intervention of a participating party. The inherent error is caused
by the occurrence of non-consistent combinations on the invocation of the primitive,
that is, the occurrence of outputs (1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 0) and (1, 0, 0)
has to be considered. This error will propagate along the protocol, so that the
probability of finding a combination which is not appropriate is bounded from above
from η = 1− (3p̃)2.

The second source of errors we want to discuss here corresponds to the local
actions that one of the players could do in order to manipulate the measurement
results of other players. For instance, let us assume that the player R0 has malicious
intentions and wants to shift the local component of the displacement vector of
the distributed state using local transformations. Please note that a shift of the
quadrature output x0, provides the same error in the probability distribution of the
outputs as a shift in the corresponding displacement vector. In other words, both
types of manipulations produce the same change in the probabilities as calculated
in Eq. (4.4). Parameterizing the shift in the displacement vector by the parameter
λ, dT 7→ (d′)T = −x0

3 (1, 0, 1, 0, λ, 0), it is interesting to see how that affects the

conditional probabilities p̃ and δ̃i. If probabilities were changed, player R0 could
try to determine (via subsequent communication with the other players (step ii-3))),
with certain probability, the occurrence of the outputs of the other players, thereby
gaining additional information. Notice also that S and R1 cannot realize the local
manipulation of R0 without classical communication between them. This can be
trivially seen by realizing that the partial trace trR0(ρ̂a(γ, d

′)) =
∫

W ′
ξdxR0dpR0 =

W ′
ξ(γS,R1, dS,R1) = trR0(ρ̂a(γ, d)) with

γS,R1 =









a 0 c 0
0 b 0 −c
c 0 a 0
0 −c 0 b









and dS,R1 =









x1

0
x1

0









. (4.8)

Thus the most plausible strategy for a traitor could consist on the following: (i)
discrediting honest players by manipulating the displacement vector in such a way
that non-consistent combinations appear, (ii) hide successful measurements to the
honest players which result in combinations that might be disadvantageous. It is
tedious but straightforward to show that by making use of the test steps ii-4)-ii-6)
honest parties can detect the effects of such manipulations.
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4.6 Efficient realistic implementation

In this section we focus on the efficiency of the proposed protocol and we extend our
results to a realistic practical scenario, relaxing the conditions for the obtention of
correlated outputs between the players and assuming noise in the preparation of the
input states.

The protocol, as discussed in the previous sections, constitutes a nice proof-of-
principle of the fact that detectable broadcast is solvable in the CV scenario using
multipartite Gaussian entanglement. However, it suffers from its reliance on two
main idealizations which render the practical implementation of the primitive unre-
alistic, or, better said, endowed with zero efficiency. Specifically, we have requested
that (i) a pure tripartite symmetric Gaussian state is distributed as the entangled
resource; and (ii) when the three parties measure (via homodyne detection) the po-
sition of their respective modes, their measurement is taken to be ideal, that is not
affected by any uncertainty, and moreover all parties have to obtain, up to a sign, the
same outcome x0. In reality, assumption (i) is unjustified as inevitable imperfections
and losses result instead in the production of mixed thermalized states; on the other
hand, the probability associated to measurements under assumption (ii), and hence
the probability of achieving broadcast, is vanishingly small [1]. It is interesting, in
view of potential practical implementations of our scheme, to study here how its
success is affected, and possibly guaranteed, by relaxing the above two assumptions.

To deal with (i), let us recall that the tripartite entangled Gaussian states of (4.1)
can be produced in principle by letting three independently squeezed beams (one in
momentum, and two in position) interfere at a double beam-splitter, or “tritter”
[56], as proposed by van Loock and Braunstein [49]. In practice, the parametric
non-linear process employed to squeeze the vacuum is affected by losses which result
in the actual generation of squeezed thermal states in each single mode. Before the
tritter, one then has three independent Gaussian modes with covariance matrices
γin
1 (s, n) = diag{ns, n/s}, γin

2 (s, n) = γin
3 (s, n) = diag{n/s, ns}, respectively, where

s = exp(2r) (with r the squeezing degree in each single mode) and n ≥ 1 is the
noise parameter affecting each mode. The noise n is related to the initial marginal
purity P in

k of each single mode by n = 1/P in
k , and corresponds to a mean number of

thermal photons given by n̄th = (n − 1)/2. For n = 1, each mode is in the ideally
pure squeezed vacuum state. After the tritter operation, described by the symplectic
matrix [49, 56, 57]

Sttt =























1√
3

0
√

2
3 0 0 0

0 1√
3

0
√

2
3 0 0

1√
3

0 − 1√
6

0 1√
2

0

0 1√
3

0 − 1√
6

0 1√
2

1√
3

0 − 1√
6

0 − 1√
2

0

0 1√
3

0 − 1√
6

0 − 1√
2























,
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the output covariance matrix of the three modes is given precisely by

γout = Sttt · [γin
1 (s, n)⊕ γin

2 (s, n)⊕ γin
3 (s, n)] · STttt = nγ(a), (4.9)

where γ(a) is defined in (4.1) and we have made the identification a = (s2 + 2)/(3s).
Eq. (4.9) describes generally mixed, fully symmetric three-mode Gaussian states,
with global purity given by P = n−3, thus reducing to the pure instance of (4.1)
for n = P = 1. Recall that any additional losses due e.g. to an imperfect tritter
and/or to the distribution and transmission of the three beams can be embedded
into the initial single-mode noise factor n, so that (4.9) provides a realistic descrip-
tion of the states produced in experiments [50, 58]. We therefore consider this more
general family of Gaussian states as resources to implement the CV version of the
primitive. It may be interesting to recall that also for the general family of states
of (4.9) the genuine tripartite entanglement is exactly computable [57] in terms of
the residual contangle [52], and as expected, it increases with a and decreases with n.

Concerning the idealization (ii) discussed above, for an efficient implementation
we should first of all consider the realistic case of non-ideal homodyne detections,
which means that the outcomes are affected by uncertainties quantified by the pa-
rameter σ, see (4.4). Furthermore, we should let the parties measure within a finite
range, which means specifically that in each measurement run the expected values for
the measurement outcomes of the receivers can be shifted of some quantity ∆ with
respect to the corresponding expectation value of the sender’s homodyne detection.
So, what we should ask for is that the parties (one sender S and two receivers R0 and
R1) agree on those outcomes of their measurement results for which |x̂S | = x0 > 0
and |x̂R0 |, |x̂R1 | = (x0 + ∆) > 0, once the sender has announced his/her output
results x0 to the other two parties.

Here, the actual results of each measurement are assumed to distribute according
to a Gaussian function centered at x0 (for the sender) and x0 +∆ (for the receivers),
respectively, with a variance σ. Now the associated events occur with a finite proba-
bility. We wish to investigate for which range of the positive shift ∆ ∈ [∆min, ∆max],
being ∆max − ∆min the range, the conditional probability p̃ still approaches 1/3.
The wider such range, the higher the probability of success, or efficiency, of the pro-
tocol; of course the regions in the space of parameters such that the primitive can
be efficiently implemented will depend on the specific boundaries ∆min and ∆max

and not only on their difference. Notice than in order to ensure that the sign of
the quadratures does not change when allowing a finite range of valid output values
(and therefore, correlations between classical bits are properly extracted (see section
4.3)), we always demand the shift ∆ to be positive.

This condition can be further relaxed allowing for a non-symmetric range of per-
mitted values around the broadcasted value x0 but constraining only the absolute
value of the shift as |∆min| < x0, ensuring that the sign of the correlations remains
unchanged. This extra condition, which could be straightforwardly included in our
expressions if one aims at maximizing the efficiency of our protocol, does not modify
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the analysis of the realistic implementation of the protocol we perform in this section.
For the sake of clarity, we remark once again the role of the parameter ∆: allowing
a non-zero shift ∆ in the computation of the probability p̃, means considering the
realistic case in which the outcomes of the measurements performed by each receiver
can be not coincident with each other, and not coincident even with the correspond-
ing broadcasted value of x0. In what if follows we show that the protocol can be run
successfully provided that the deviations |xR0 | − |xS | and |xR1 | − |xS | (in each run)
both lie in between a ∆min and a ∆max, which will be determined in the following.

To this aim, we can perform an analysis similar to the one of section 4.3, but
considering in full generality a non-unit noise factor n, a non-zero uncertainty σ,
and a non-zero shift ∆. The calculations of the probabilities follow straightforwardly
along the lines of the special (unrealistic) case previously discussed, obtaining

p̃ =

{

3 + 3e
−

4(∆+x0)[∆(4σ2+7a−3R)+(4σ2+3a+R)x0]
9n(4σ4+9aσ2−Rσ2+4) +

+ e

4x0[4(a−R)∆+(4σ2+9a−5R)x0]
9n(4σ4+9aσ2−Rσ2+4) + e

−
32(∆+x0)[∆(σ2+a)+(σ2+R)x0]

9n(4σ4+9aσ2−Rσ2+4)

}−1

, (4.10)

with R =
√

9a2 − 8. We find that in the parameter space of a (regulating the entan-
glement), n (regulating the mixedness), x0 (regulating the measurement outcome),
σ (regulating the measurement uncertainty) and ∆ (regulating the measurement
shift), there exists a surface which acts as the boundary for the regime in which our
primitive can be faithfully implemented, yielding a feasible, robust solution to the
broadcast problem. This surface is obtained by requiring that p̃ = 1/3− ǫ, with the
deficit ǫ chosen arbitrarily small. The result is plotted in Fig. 4.2 for ǫ = 10−7 in the
three-dimensional space of parameters x0/

√
n, ∆/

√
n, and a, for different values of

σ.

We consider the primitive as efficiently implementable in the whole region such
that 1/3− ǫ ≤ p̃ ≤ 1/3, which spans the volume above the surface of Fig. 4.2. Notice
that for σ = 0, n = 1, and ∆max → ∆min → 0, such an useful volume shrinks to
a two-dimensional slice (with a ≥ 5

√
2/6) which represents the parameter range in

which the “ideal” implementation described in section 4.3 is successful.

The figure offers several reading keys. Let us investigate independently how the
possibility of solving detectable broadcast via our protocol depends on the individual
parameters. For simplicity, we will consider n fixed and eventually discuss its role.
We will also for the moment keep the idealization of error-free homodyne measure-
ments (σ = 0), corresponding to Fig. 4.2(a) which makes the subsequent discussion
more tractable. However we will relax such an assumption in the end to show that
a realistic description of the homodyne measurement does not significantly affect
the performance and the applicability of the protocol. This validates the claims of
efficiency that we make in the following.
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Figure 4.2: Plots, in the space of x0/
√
n (quadrature measurement normalized to noise),

∆/
√
n (measurement shift normalized to noise), and a (shared entanglement), of the bound-

ary to the useful region for which p̃ = 1/3−ǫ (ǫ = 10−7), at different values of the homodyne
detection uncertainty (a) σ = 0 (ideal error-free measurement), (b) σ = 1 (fixed error, in-
dependent of the outcome), and (c) σ = x0/10 (proportional error, corresponding to a 90%
efficiency in the detectors). Detectable broadcast can be solved efficiently, by means of our
protocol, for all values of the parameters which lie above the depicted surface. See text for
an extended discussion. All the quantities plotted are adimensional.

4.6.1 Entanglement role

Let us henceforth start with the dependence of the solution on a. Somehow surpris-
ingly, there exist lower and upper bounds on the tripartite entanglement such that
only for amin ≤ a ≤ amax the protocol achieves a solution. The bounds naturally de-
pend on x0 and ∆. Specifically, we observe that amin diverges for ∆ = 0 and x0 → 0,
meaning that no feasible solution can be achieved in the low-∆, low-x0 regime; the
reason being that near x0 = 0 there is not possibility of associating the classical bits
”0” and ”1” to positive/negative values of the quadratures. The lower bound then
goes down reducing to the already devised threshold of athresh = 5

√
2/6 for ∆ close

to zero and x0 ≫ 0, and eventually converges to a = 1 (i.e. all entangled states are
useful) for any finite x0 ≫ 0 and ∆ → ∞. On the other hand, the upper bound
on a, which surprisingly rules out states with too much entanglement, is obviously
diverging at ∆ = 0 but becomes finite and relevant in the regime of small x0 and
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large ∆, eventually reducing to 3/2 for any finite x0 and ∆→∞.
Summarizing, the two extremal regimes corresponding to ∆ = 0 on one hand

and ∆ → ∞ on the other hand, both allow a solution of detectable broadcast via
our protocol: the main difference is that in the former case one needs states with
an entanglement above amin = 5

√
2/6, while in the latter case one needs states

whose entanglement is below amax = 3/2. The regime of finite shift ∆ interpolates
between these two limits. This means, in terms of useful range, and hence of effi-
cient implementations, that if one is able to produce entangled states precisely with
5
√

2/6 < a < 3/2, the protocol is implementable with high efficiency for any shift
∆ ∈ [0,∞) in the measurement outcomes. i.e. with an infinite range of variability
allowed for the acceptable data resulting from homodyne detections performed by
the receivers, for a given outcome x0 of the sender. This information is important
in view of practical implementations, and becomes especially valuable since the en-
gineering of the required entangled resources appears feasible: a squeezing between
4, 5 and 6 dB is required in each single mode, which is currently achieved in optical
experiments [59, 60, 61].

4.6.2 Measurement outcomes role

For a fixed entangled resource, a, Fig. 4.2(a) alternatively, shows that there exist
minimum thresholds both for x0 and ∆ in order to achieve a solution to detectable
broadcast. While the useful range for x0 is always unbounded from above, we find
that, interestingly, an upper bound ∆max exists for a > 3/2. Precisely, for a given
a > 3/2, with increasing x0 we observe that ∆min decreases and ∆max increases, i.e.
the useful range spanned by ∆ widens. Conversely, at a given x0, ∆max decreases
with increasing entanglement a, reducing the parameter space in which a solution
can be found. Consistently with the previous discussion, we conclude again that
in realistic conditions (∆ > 0) it is better to have a moderate amount of shared
entanglement to solve broadcast with optimal chances.

4.6.3 Thermal noise role

Now, let us note that the noise parameter n simply induces a rescaling of both x0

and ∆, in such a way that with increasing n the surface bounding the useful range
of parameters shrinks, as it could be guessed (the noise degrades the performance
of the protocol). Still, with typical noise factors characterizing experimental imple-
mentations, e.g. n = 2, the protocol appears very robust and the solution is still
achievable, for a given amount of entanglement (say a . 3/2), provided that x0 and
∆ exceed

√
2 times their respective minimum thresholds obtained for ideally pure

resources (n = 1).

4.6.4 Homodyne efficiency role

Finally, let us address the important issue of the uncertainty affecting homodyne
detections. Any realistic measurement is characterized by a non-zero σ. We have
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explicitly studied two situations, one in which the absolute error is fixed, correspond-
ing to a constant σ (see Fig. 4.2(b)), and another in which the relative error is fixed
to 10%, corresponding to a σ proportional to the measurement outcome x0 (see
Fig. 4.2(c)). The result is that, in both cases, for not exceedingly high values of the
error factor, the useful region is obviously reduced but, crucially, the possibility of
achieving detectable broadcast via our protocol is still guaranteed in a broad range
of values of the parameters. Specifically, as somehow expected, the error model in
which σ is proportional to the measurement outcome results in a more consistent
modification (shrinkage) of the useful surface, while almost nothing happens in the
case of fixed, small σ. In particular, upper bounds on x0 arise for a practical realiza-
tion in presence of a proportional error, or in other words due to a limited efficiency
in the detection. A significant portion of the parameter space anyway remains valid
for a workable implementation of the primitive. Our scheme is thus robust also with
respect to the imperfections in the quadrature measurements. We draw the conclu-
sion that the protocol we designed is truly efficient and realistically implementable
in non-ideal conditions.

We explicitly depicts p̃, (4.10), for sensible resource values of a = 3/2 and n = 2,
as a function of x0 and ∆, and according to different values of σ like in Fig. 4.2.
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Figure 4.3: Plots of the conditional probability p̃ as a function of the measurement out-
come x0 for the sender and the shift ∆ of the measurement outcomes for the receivers, for
realistically mixed Gaussian resource states with n = 2 and a = 3/2. The uncertainty in
the homodyne detection is taken to be (a) σ = 0, (b) σ = 1, and (c) σ = x0/10. Detectable
broadcast is efficiently solvable in the wide plateau region where p̃→ 1/3. All the quantities
plotted are adimensional.

We notice a huge (unbounded from above in the ideal case σ = 0) region (see
Fig. 4.3) in which p̃ → 1/3, yielding an efficient solution to detectable broadcast
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via our protocol. We have thus identified an optimal “work-point” in terms of the
parameters describing the shared Gaussian states, and we have defined the frontiers
of application of our scheme in the laboratory practice. In this way, together with
the explicit steps of the protocol presented in the previous sections, we obtain a
clear-cut recipe for a CV demonstration of detectable broadcast, that we hope it can
be experimentally implemented in the near future.

For the sake of completeness, let us mention that from (4.10) we analytically find
that p̃ converges exactly to 1/3 only in the following limiting cases (for a given finite
n and σ = 0): (i) a→∞ with ∆ < 3x0; (ii) x0 →∞ with a ≥ 5

√
2/6; (iii) ∆→∞

with 1 < a ≤ 3/2.

4.7 Conclusions

We have proposed in this chapter a protocol to solve detectable broadcast with entan-
gled Continuous Variable using Gaussian states and Gaussian operations only. Our
algorithm relies on genuine multipartite entanglement distributed among the three
parties, which specifically have to share two copies of a three-mode fully symmet-
ric Gaussian state. Interestingly, we have found that nevertheless not all entangled
symmetric Gaussian states can be used to achieve a solution to detectable broadcast:
a minimum threshold exists on the required amount of multipartite entanglement.
We have moreover analyzed in detail the security of the protocol.

In its ideal formulation, our protocol requires that the parties share pure resource
states, and that the outcomes of homodyne detections are perfectly coincident and
not affected by any uncertainty; this however entails that our protocol achieves a
solution with vanishing probability. To overcome such a practical limitation, we
have eventually considered a more realistic situation in which the tripartite Gaus-
sian resources are affected by thermal noise, and, more importantly, the homodyne
detections are realistically imperfect, and there is a finite range of allowed values
for the measurement outcomes obtained by the parties. We have thoroughly inves-
tigated the possibility to solve detectable broadcast via our protocol under these
relaxed conditions.

As a result, we have demonstrated that there exists a broad region in the space
of the relevant parameters (noise, entanglement, range of the measurement shift,
measurement uncertainty) in which the protocol admits an efficient solution. This
region encompasses amounts of the required resources which appear attainable with
the current optical technology (with a legitimate trade-off between squeezing and
losses). We can thus conclude that a feasible, robust implementation of our proto-
col to solve detectable broadcast with entangled Gaussian states may be in reach.
This would represent another important demonstration of the usefulness of genuine
multipartite Continuous Variable entanglement for communication tasks, coming to
join the recent achievement of a quantum teleportation network [50].
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Chapter 5

Classical versus Quantum

correlations in Continuous

Variable

5.1 Introduction

In the previous chapters via a digitalization procedure we have been able to distill
classical correlations from entangled Gaussian states in such a way that we have been
able to implement protocols for either cryptographic or detectable broadcast purpose.
In this chapter we want to relate the performance on extracting classical correlations
from entangled states to the quantum correlations embedded in the states. While
Gaussian states (coherent, squeezed, and thermal states) have been originally the
preferred resources for both theoretical and practical implementations, a new fron-
tier emerges with non-Gaussian states (Fock states, macroscopic superposition like
Schrödinger’s cat states, etc.). The latter can be highly non-classical, possess in
general “more entanglement” than Gaussian states [62], and allow to overcome some
limitations of the Gaussian framework like entanglement distillation [63, 64, 16] and
universal quantum computation [65]. Therefore, it is of central relevance to pro-
vide proper ways to quantify also non-Gaussian entanglement in an experimental
approachable way.

At a fundamental level, the difficulty in the investigation of entanglement (quan-
tum correlations) can be traced back to the subtle task of distinguishing it from
classical correlations [66]. Correlations can be regarded as classical if they can be
induced onto the subsystems solely by local operations and classical communication,
necessarily resulting in a mixed state. On the other hand, if a pure quantum state
displays correlations between the subsystems they are of genuinely quantum nature
(entanglement). We adopt here a pragmatic approach: if two systems are in toto
correlated, then this correlation has to be retrieved between the outcomes of some
local measurements performed on them. In this chapter, therefore, we investigate
quadrature correlations in Continuous Variable (CV) states. We are also motivated

77



78 Classical versus Quantum correlations in Continuous Variable

by the experimental adequacy: field quadratures can be efficiently measured by ho-
modyne detection, without the need for complete state tomography. Specifically, we
study optimal correlations in bit strings obtained by digitalizing the outcomes of
joint quadrature measurements on a bipartite two-mode CV system.

5.2 Quadrature measurements and bit correlations.

To study bipartite CV systems we use the well known fact that any NPPT Gaussian
state of N × M modes can be mapped by Gaussian Local Operations and Clas-
sical Communication (GLOCC) to an NPPT symmetric state of 1 × 1 modes i.e.
preserving the amount of entanglement. Then, for the most general scenario it is
sufficient to consider a bipartite CV system of two bosonic modes, A and B. The
probability distribution associated to a single/joint measurement of arbitrary rotated
quadratures x̂A(θ) and x̂B(ϕ) providing outcomes xθA and xϕA, is given by

PA(xθA) = tr[ρ̂AÛ
A†
θ σ̂(xA)ÛAθ ], (5.1)

PAB(xθA, x
ϕ
B) = tr[ρ̂AB(ÛAθ ⊗ ÛBϕ )(σ̂(xA)⊗ σ̂(xB))(ÛA†θ ⊗ ÛB†

ϕ )] =

= tr[(ÛA†θ ⊗ ÛB†
ϕ )ρ̂AB(ÛAθ ⊗ ÛBϕ )(σ̂(xA)⊗ σ̂(xB))] =

= tr[ρAB(σ̂(xθA)⊗ σ̂(xϕB))] = tr[ρ̂θ,ϕAB(σ̂(xA)⊗ σ̂(xB))], (5.2)

where σ̂(xA) is a single-mode Gaussian (squeezed) state with first moments {xA, 0}
and covariance matrix diag{σ2, 1/σ2}. Here ÛAθ is a unitary operator describing a
rotation of θ on mode A, corresponding to a symplectic transformation given by

Sθ,A =

(

cos θ sin θ
− sin θ cos θ

)

. Likewise for B. Thus, one can either measure the rotated

quadrature (xθA, xϕB) on the state (passive view) or antirotate the state (ρ̂θ,ϕAB) and
measure the unrotated quadrature (active view).

To digitalize the obtained output quadrature measurements that spread in a
continuum we assign the bits + (−) to the positive (negative) values of the measured
quadrature. This digitalization transforms each joint quadrature measurement into
a pair of classical bits. A string of such correlated bits can be used e.g. to distill a
quantum key [33, 1]. Let us adopt a compact notation by denoting (at given angles
θ, ϕ) P±

A ≡ PA(±|xθA|), and P±∓
AB ≡ PAB(±|xθA|,∓|x

ϕ
B |). The conditional probability

that the bits of the corresponding two modes coincide is given by P=
AB ≡ (P++

AB +

P−−
AB )/

∑

{α=±,β=±}P
αβ
AB . Correspondingly, the probability that they differ is P 6=

AB ≡
(P+−

AB + P−+
AB )/

∑

{α=±,β=±} P
αβ
AB . Trivially, P=

AB + P 6=
AB = 1. If P=

AB > P 6=
AB the

measurement outcomes display correlations, otherwise they display anticorrelations.
Notice that, if the two modes are completely uncorrelated, P=

AB = P 6=
AB = 1/2. For

convenience, we normalize the degree of bit correlations as

B(|xθA|, |xϕB |) = 2|P=
AB − 1/2| = |P=

AB − P 6=
AB|, (5.3)
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so that for a completely uncorrelated state B(|xθA|, |x
ϕ
B |) = 0. The interpretation of

(5.3) in terms of correlations is meaningful if a fairness condition is satisfied: locally,
on each single mode, the marginal probabilities associated to the outcomes “+” or
“−” must be the same: P+

A = P−
A , P+

B = P−
B otherwise, (5.3) can systematically

display false correlations due to individual unbiasedness.

For a two-mode CV system, whose state is described by a Wigner function W,
we define the “bit quadrature correlations” Q as the average probability of obtaining
a pair of classically correlated bit (in the limit of zero uncertainty) optimized over
all possible choices of local quadratures

Q(ρ̂) = sup
θ,ϕ

∫ ∫

dxθAdx
ϕ
BW̄(xθA, x

ϕ
B)[ lim

σ→0
Bσ(|xθA|, |xϕB |)], (5.4)

where W̄(xθA, x
ϕ
B) =

∫ ∫

dpθAdp
ϕ
BW(xθA, p

θ
A, x

ϕ
B , p

ϕ
B) is the marginal Wigner distribu-

tion of the (rotated) positions, and {xθA, pθA, x
ϕ
B , p

ϕ
B} = [Sθ ⊕ Sϕ]{xA, pA, xB , pB}.

We demonstrate numerically (for all clases of Gaussian and non-Gaussian states
discussed) that we can write Eq. (5.4) as

Q(ρ̂) = sup
θ,ϕ
|Eθ,ϕA,B(ρ̂)| = sup

θ,ϕ
|
∫ ∫

dxθAdx
ϕ
BW̄(xθA, x

ϕ
B)sgn(xθAx

ϕ
B)|, (5.5)

where Eθ,ϕA,B(ρ̂) =
∫ ∫

dxθAdx
ϕ
BW̄(xθA, x

ϕ
B)sgn(xθAx

ϕ
B) is the “sign-binned” quadrature

correlation function, which has been employed, e.g., in proposed tests of Bell in-
equalities violation for CV systems.

A homodyne Bell test requires measuring two different rotated quadratures per

mode, to achieve violation of the bound [67, 68, 69, 70] |Eθ,ϕA,B+Eθ
′,ϕ
A,B+Eθ,ϕ

′

A,B−E
θ′,ϕ′

A,B | ≤
2. Here, we propose to measure a single quadrature per mode, which displays one-
shot optimal correlations, unveiling a powerful quantitative connection with Gaus-
sian and non-Gaussian entanglement measured through negativity. While this form
is more suitable for an analytic evaluation on specific examples, the definition (5.4)
is useful to prove the general properties of Q 1 that we analyze here.

Lemma 5.2.1 Normalization: 0 ≤ Q(ρ̂) ≤ 1.

Proof. It follows from the definition of Q(ρ̂), as both B and the marginal Wigner
distribution range between 0 and 1. �

Lemma 5.2.2 Zero on product states: Q(ρ̂A ⊗ ρ̂B) = 0.

Proof. For a product state the probabilities factorize i.e. PαβAB = PαAP
β
B and so

P=
AB = P 6=

AB, where we have used the fairness condition. Namely B = 0, hence the
integral in (5.4) trivially vanishes. �

1Fair states have necessarily zero first moments, which can be assumed without loss of generality.
In general, one could take in (5.4) the difference between B computed on ρ̂ and B computed on
ρ̂A ⊗ ρ̂B. The latter is zero on fair states.
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Lemma 5.2.3 Local symplectic invariance: Let ÛA,B be a unitary operator amount-
ing to a single-mode symplectic operation SA,B on the local phase-space of mode A,B.

Then Q[(ÛA ⊗ ÛB)ρ̂(Û †
A ⊗ Û

†
B)] = Q(ρ̂).

Proof. Any single-mode symplectic operation S can be decomposed in terms of
local rotations and local squeezings (Euler decomposition). By definition (5.4) is
invariant under local rotations, so we need to show that local squeezing transforma-
tions, described by symplectic matrices of the form Sr = diag{1/r, r}, also leave Q(ρ̂)

invariant, i.e. Q[(ÛAs ⊗ÛBt )ρ(ÛA†s ⊗ÛB†
t )] = Q(ρ̂). Adopting the passive view, the ac-

tion of local squeezings on the covariance matrix of each Gaussian state σ̂(xA,B) is ir-
relevant, as we take eventually the limit σ → 0. The first moments are transformed as
dA,B 7→ S−1

s,t dA,B, so that Bσ→0
AB (|xA|, |xB |) 7→ Bσ→0

AB (|sxA|, |txB |). On the other hand,

the Wigner distribution is transformed as W(ξ) 7→ W[(S−1
s ⊕S−1

t )ξ)]. Summing up,
local squeezings transform ξ = {xA, pA, xB , pB} into ξs,t = {sxA, pA/s, txB, pB/t}.
As (5.4) involves integration over the four phase-space variables d4ξ, we change the
variables noting that d4ξ = d4ξs,t, to conclude the proof. �

It follows from lemmas 5.2.1 and 5.2.2 that if Q > 0, then the state necessarily
possesses correlations between the two modes. lemma 5.2.3, moreover, suggests that
Q embodies not only a qualitative criterion, but might be interpreted as bona fide
operational quantifier of CV correlations. We will now show that this is the case for
various important classes of states.

First, we apply our procedure to Gaussian states (GS), finding that bit quadra-
ture correlations provide a clear-cut quantification of the total correlations between
the two modes. They are monotonic with the entanglement on pure states, and can
be arbitrarily large on mixed states, the latter possibly containing arbitrarily strong
additional classical correlations. We then address non-Gaussian states (NGS), for
which the exact detection of entanglement generally involves measurements of high-
order moments [71]. The underlying idea is that for NGS obtained by de-gaussifying
an initial pure GS and/or by mixing it with a totally uncorrelated state, our mea-
sure based entirely on second moment is still expected to be a (quantitative) witness
of the quantum part of correlations only, i.e. entanglement. We show that this is
indeed the case for relevant NGS including photonic Bell states, photon-subtracted
states, and mixtures of Gaussian states. Notably, the complete entanglement pic-
ture in a recently demonstrated coherent single-photon-subtracted state [72] via a
de-gaussification procedure is precisely reproduced here in terms of quadrature cor-
relations only. Our results render non-Gaussian entanglement significantly more
accessible in a direct, practical fashion.

5.3 Gaussian states

Even though entanglement of GS is already efficiently accessible via their covariance
matrix, we use such states as “test-beds” for understanding the role of Q in discrim-
inating CV correlations. The covariance matrix γ of any two-mode GS ρ̂ can be
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written in standard form as

γ =

(

A C
CT B

)

,
A = λaI2, B = λbI2,
C = diag{cx,−cp},

where, without loss of generality, again we flip the sign of cp and adopt the convention
cx ≥ |cp| > 0. We fix also the displacement vector to zero, this fact together with the
symmetries of GS is sufficient to fulfill the fairness condition. The covariance matrix
γ describes a physical state if, in terms of the four invariants (2 local purities, global
purity and serelian), the following relations holds PA,PB ≥ 1, P ≥ 1 and 1+ 1

P2 ≥ ∆.
In standard form these relations transforms, in terms of the parameters as λa, λb ≥ 1,
(λaλb−c2x)(λaλb−c2p) ≥ 1 and 1+(λaλb−c2x)(λaλb−c2p) ≥ λ2

a+λ2
b+2cxcp (see details

in lemma 2.5.2). The negativity see (2.98), quantifying entanglement between the
two modes, reads N(ρ̂) = 1−µ̃−

2µ̃−
because µ̃+ > 1 > µ̃− for all two mode entangled

GS, where µ̃2
± = [∆̃ ± (∆̃2 − 4/P2)1/2]/2. For two-mode GS, (5.4) evaluates to

Q(ρ̂γ) = (2/π) arctan
(

cx/
√

λaλb − c2x
)

=

= (2/π) arctan

(

[(
4

PAPB [a− + a+]
)2 − 1]−

1
2

)

, (5.6)

where the optimal quadratures are the standard unrotated positions (θ = ϕ = 0)

and a± =

√

[∆− (PA ± PB)2/(PAPB)2]2 − 4/P2. First, we notice that Q = 0 ⇔ ρ̂
describes a product state: for GS, Q > 0 is then necessary and sufficient for the
presence of correlations. Second, we observe that for pure GS, reducible up to local
unitary operations, to the two-mode squeezed states ρ̂r = |φr〉〈φr| characterized by
λa = λb = cosh(2r) and cx = cp = sinh(2r), Eq. (5.6) yields a monotonic function of
the negativity. We compute explicitly Q and expressed in terms of µ̃− for comparison

Q(ρ̂r) = (2/π) arctan(sinh 2r) =

= (2/π) arctan

(

1− µ̃2
−

2µ̃−

)

, (5.7)

see also Fig. 5.1. Q is thus, as expected, an operational entanglement measure for
pure two-mode GS. Third, we find that for mixed states Q majorizes entanglement.
Given a mixed GS ρ̂N with negativity N , it is straightforward to see that Q(ρ̂N )
via (5.6), is always greater than Q(|ψN 〉〈ψN |), with |ψN 〉 being a pure two-mode
squeezed state with the same negativity N .

Hence Q quantifies total correlations, and the difference Q(ρ̂N ) − Q(|ψN 〉〈ψN |)
(where the first term is due to total correlations and the second to quantum ones)
can be naturally regarded as an operational measure of classical correlations 2. We

2The emerging measure of classical correlations is special to Gaussian states, where the correlated
degrees of freedom are the field quadratures. Different approaches to the quantification of classical
vs quantum correlations were proposed [66].
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Figure 5.1: Bit quadrature correlations vs normalized negativity N for 18000 random two-
mode Gaussian states. The lowermost dotted (red) curve accommodates pure states. The
leftmost solid (blue) vertical line denotes separable states parametrized by cp = 0, cx =
ǫ(δ2 − 1)/δ, with 0 ≤ ǫ ≤ 1 and δ → ∞. The uppermost dashed (green) horizontal line
denotes perfectly correlated states with an arbitrary degree of entanglement, parametrized
by cx = (δ2 − 1)/δ, cp = ǫcx (and ǫ, δ as before). Product states (totally uncorrelated) lie
at the origin.

have evaluated Q on random two-mode GS as a function of their entanglement,
conveniently scaled to 2N/(1 + 2N), as shown in Fig. 5.1. Note that for any en-
tanglement content there exist maximally correlated GS with Q = 1, and also that
separable mixed GS can achieve an arbitrary Q from 0 to 1, their correlations being
only classical.

5.4 Non-Gaussian states

Let us now turn our attention towards the even more interesting arena represented
by NGS. The description of non-Gaussian states requires an infinite set of statis-
tical moments, so does the entanglement. The best approach to the separability
problem of arbitrary bipartite CV states was introduced by Shchukin and Vogel
[71]. They provide necessary and sufficient condition for the negativity of the partial
transposition i.e. entanglement through an infinite series of inequalities based on
determinants of successively increasing size matrices containing high order moments
of the state. Our aim here is to compute Q on such state. Bit quadrature correla-
tions either in form Eq. (5.4) or Eq. (5.5) can be computed for arbitrary Gaussian
and non-Gaussian states at the level of Wigner functions. To this aim one needs
to have a way to express arbitrary density operators corresponding to non-Gaussian
states into non-Gaussian Wigner functions in a systematical way. Notice that any
pure non-Gaussian state can be written as

|ψ〉 =
∞
∑

n,m=0

ψn,m|n,m〉 =
∞
∑

n,m=0

ψn.m
(â†1)n(â†2)m√

n!m!
|0, 0〉 = fψ(â†1, â

†
2)|0, 0〉, (5.8)

that corresponds to a density operator ρ̂ψ = fψ(â†1, â
†
2)ρ̂0f

∗
ψ(â1, â2), where ρ̂0 =

|0, 0〉〈0, 0| is the bipartite vacuum state. Then it is easy, by using the map in Eq. (5.9),
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to find the Wigner function,Wψ corresponding to ρ̂ψ in terms of the Wigner function
of a vacuum state, W0(ζ) = 1

π2 exp(−ζT · ζ).
The action of an operator on a density operator ρ̂ is always mirrored by the action

of a corresponding differential operator on the corresponding phase-space probability
distribution function. We summarize here that result

âρ̂←→ (α+
1

2

∂

∂α∗ )Wρ(α,α
∗)

ρ̂â←→ (α− 1

2

∂

∂α∗ )Wρ(α,α
∗) (5.9)

â†ρ̂←→ (α∗ − 1

2

∂

∂α
)Wρ(α,α

∗)

ρ̂â† ←→ (α∗ +
1

2

∂

∂α
)Wρ(α,α

∗),

similar results holds in the position-momentum base,

x̂ρ̂←→ (x+
i~
2

∂

∂p
)Wρ(x, p)

ρ̂x̂←→ (x− i~
2

∂

∂p
)Wρ(x, p) (5.10)

p̂ρ̂←→ (p− i~
2

∂

∂x
)Wρ(x, p)

ρ̂p̂←→ (p+
i~
2

∂

∂x
)Wρ(x, p).

We focus on the most relevant NGS recently discussed in the literature and lastly
experimentally realized. Remarkably, we find for all of them a monotonic functional
dependence between the entanglement (negativity) and the quadrature correlations
Q measure of (5.4). This fact indicates that in the preparation of those states,
classical correlations are never induced. From a more practical perspective, this
observation makes their entanglement amenable to a direct measurement in terms
of quadrature correlations.

5.4.1 Photonic Bell states

We consider Bell-like states of the form |Φ±〉 =
√
p|00〉 ± √1− p|11〉 and |Ψ±〉 =√

p|01〉 ± √1− p|10〉 (with 0 ≤ p ≤ 1), which are non-trivial examples of super-
positions of Fock states, entangled with respect to the (discrete) photon number.
Notice in particular how Ψ+ for p = 1/2 can be obtained by photon addition to the

vacuum: |Ψ+
p=1/2〉 = 1√

2
(â†A + â†B)|00〉. The negativity of these Bell-like states reads

NB =
√

p(1− p). For the four of them (and at optimal angles θ = ϕ = 0), (5.4)
reads

QB = (4/π)NB , (5.11)
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showing a perfect agreement between the quadrature CV correlations and the en-
tanglement.

5.4.2 Photon subtracted states

Most attention is being drawn by those CV states obtained from Gaussian states via
subtracting photons [72, 73, 74]: they perform better as resources for protocols like
teleportation [75, 76] and allow for loophole-free tests of non-locality [67, 68, 69, 70].
Let us recall their preparation, following [75]. The beam A (B) of a two-mode
squeezed state |φr〉 (created using an squeezed/antisqueezed state and a balanced
beam splitter) is let to interfere, via a beam splitter of transmitivity T , with a vacuum
mode, see Fig. 5.2. The output is a four-mode Gaussian state of modes CA′DB′.
Detection of one photon in each of the two beams C and D, conditionally projects

the state of modes A′B′ into a pure NGS, given in the Fock basis by |ψ(T,r)
ps 〉 =

∑∞
n=0 cn|n, n〉, where cn(T,Λ) = (n + 1)(TΛ)n

(

1− T 2Λ2
)3/2

/
√

1 + T 2Λ2, and Λ =
tanh r.

A

B
C

D
PD

PD

|0〉

|0〉

|r〉

| − r〉

BS(T )

BS(T )

BS(50 : 50)

TMS(r)

A′

B′

Figure 5.2: Measurement-induced non-Gaussian operation on the two-mode squeezed vac-
uum state. First, a squeezed and antisqueezed states are let to interfere in a balanced beam
splitter, BS(50 : 50) to produce a two-mode squeezed state |φr〉. Second, they are both
mixed with the vacuum in a beam splitter with transmitivity T denoted as BS(T ). Finally,
modes C and D are measured with a photodetector, PS.

The limiting case T → 1, occurring with asymptotically vanishing probability,

corresponds to an ideal two-photon subtraction, |ψ(1,r)
ps 〉 ∝ (âAâB)|φr〉. For any T ,

the negativity is computable as N(ψ
(T,r)
ps ) = 2/(1 − TΛ) − 1/(1 + T 2Λ2) − 1. It

increases with r and with T but only in the case T = 1 it exceeds N(φr) for any r,
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diverging for r →∞. For all T < 1, the entanglement of |ψ(T,r)
ps 〉 eventually saturates,

and above a squeezing threshold rT ≫ 1, the original GS is more entangled than the
resulting non-Gaussian one. Following [67, 68, 69, 70], the explicit expression of the
quadrature bit correlations (5.4) can be analytically obtained

Q(ψ(T,r)
ps ) =

∞
∑

n>m=0

2m+n+3π[F(m,n) −F(n,m)]2cmcn
(m− n)2m!n!

,

where the ck’s are defined above, F(m,n) =
[

Γ
(

−m
2

)

Γ
(

1−n
2

)]−1
, and Γ is the

gamma function. Again optimal quadrature measurements are achieved at θ = ϕ =
0. As depicted in Fig. 5.3, the behavior of the entanglement is fully reproduced by

Q(ψ
(T,r)
ps ) which again is a monotonic function of N i.e. (5.4) is thus measuring truly

quantum correlations of this important class of NGS as well.
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Figure 5.3: (a) Bit quadrature correlationsQ vs squeezing r and beam splitter transmitivity
T for photon-subtracted states (shaded surface) and for two-mode squeezed states (wireframe
surface). (b) Q vs normalized negativity for photon-subtracted states.

5.4.3 Experimental de-gaussified states

Up to now we considered nearly-ideal non-Gaussian situations. We apply now our
definition to the coherent photon-subtracted state ρ̂exp recently studied and demon-
strated by Ourjoumtsev et al [72]. Following their paper for details on the state
preparation, we recall that each of the two beams of the two-mode squeezed state
|φr〉 was let to interfere with the vacuum at a beam splitter with reflectivity R≪ 1,
and by using an avalanche photodiode a single photon was subtracted from the state
in a de-localized fashion. The realistic description of the obtained highly mixed state
involves many parameters. We fix all to the values obtained from the theoretical cal-
culations and/or experimental data of [72], but for the reflectivity R and the initial
squeezing r which are kept free. We then evaluate (5.4) as a function of r for different
values of R. Unlike the previous cases, optimal correlations in the state ρ̂exp occur
between momentum operators (θ = ϕ = π/2).

Also for this realistic mixed case, the correlation measure Q reproduces precisely
the behavior of the negativity, as obtained in [72] after full Wigner tomography
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of the produced state ρ̂exp. In particular, the negativity (and Q) increases with
the squeezing r, and decreases with R. Below a threshold squeezing which ranges
around ∼ 3 dB, the NGS exhibits more entanglement (larger Q) than the original
two-mode squeezed state. Our results depicted in Fig. 5.4 compare extremely well
to the experimental results (Fig. 6 of [72]) where the negativity is plotted there as
a function of r for different R’s. Thus, the results give an indication of the intimate
relation between Q and the negativity of non-Gaussian states beyond idealizations.
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Figure 5.4: Bit quadrature correlations Q vs squeezing r (in decibels) for the de-gaussified
states demonstrated in [72] with beam splitter reflectivity R equal to (from top to bottom);
3% (red), 5% (blue), 10% (magenta), 20% (green). The dashed black curve depicts Q for a
two-mode squeezed state. See Fig. 6 of [72].

5.4.4 Mixtures of Gaussian states

Recent papers [77, 78] dealt with mixed NGS of the form ρ̂m = p|φr〉〈φr| + (1 −
p)|00〉〈00|, with 0 ≤ p ≤ 1. They have a positive Wigner function yet they are NGS
(but for the trivial instances p = 0, 1). Clearly, the de-gaussification here reduces
entanglement and correlations in general, as it involves a mixing with the totally
uncorrelated vacuum state. The negativity of such states reads Nm = N(ρ̂m) =
pN(φr) = p(e2r − 1)/2 and is increasing both with r and with p. The same depen-
dency holds for the bit correlations,

Qm = Q(ρ̂m) = (2p/π) arctan

(

Nm

[

1

2Nm + p
+

1

p

])

, (5.12)

which again is a monotonic function of Nm for any p.
A similar result holds for mixtures of photon-subtracted states with the vac-

uum. We further studied other NGS including photon-added and squeezed Bell-like
states [76], and their mixtures with the vacuum, for all we found a direct match
between entanglement and Q. Interestingly, this is not true for all CV states.
By definition, Q quantifies correlations encoded in the second canonical moments
only. We have realized that there exist also states e.g. the photonic qutrit state
|ψh〉 = |00〉/

√
2 + (|02〉+ |20〉)/2] which, though being totally uncorrelated up to the
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second moments (Q = 0), are strongly entangled, with correlations embedded only
in higher moments. The characterization of such states is an intriguing topic for fur-
ther study. Finally, we have checked that for all states analyzed, the bit correlations
obtained in the conjugate quadrature of the optimal one, i.e. Q(θ+π/2, ϕ+π/2) are
either zero or negligible but a possible “heterodyne” generalization of our approach,
involving measurements of two conjugate quadratures per mode, also deserves further
attention.

5.5 Conclusions

In this chapter, by analyzing the maximal number of correlated bits (Q) that can be
extracted from a CV state via quadrature measurements, we have provided an oper-
ational quantification of the entanglement content of several relevant NGS (including
the useful photon-subtracted states). Crucially, one can experimentally measure Q
by direct homodyne detections (of the quadratures displaying optimal correlations
only), in contrast to the much more demanding full tomographical state reconstruc-
tion. One can then easily invert the (analytic or numeric) monotonic relation be-
tween Q and the negativity to achieve a direct entanglement quantification from
the measured data. Our analysis demonstrates the rather surprising feature that
entanglement in the considered NGS can thus be detected and experimentally quan-
tified with the same complexity as if dealing with GS. In this respect, it is even
more striking that the measure considered in this paper, based on (and accessible
in terms of) second moments and homodyne detections only, provides such an ex-
act quantification of entanglement in a broad class of pure and mixed NGS, whose
quantum correlations are encoded nontrivially in higher moments too, and currently
represent the preferred resources in CV Quantum Information. We focused on opti-
cal realizations of CV systems, but our framework equally applies to collective spin
components of atomic ensembles [79], and radial modes of trapped ions [14]. Finally,
it is also surprising that for all these family of states we have studied, the optimiza-
tion of just one quadrature scales monotonically with the negativity of the state.
Although this could expected for pure Gaussian states, our study demonstrated that
the non-Gaussian states obtained either as de-gaussifications of pure Gaussian states
or mixings with uncorrelated states preserve this property.
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Chapter 6

Measurement induced

entanglement in Continuous

Variable

6.1 Introduction

In the previous chapters we have presented several implementations of Continuous
Variable (CV) systems which demand in advance, as a resource, shared entanglement
between the parties involved. In particular, for the Byzantine agreement protocol we
demanded a pure, fully inseparable tripartite Gaussian state and completely sym-
metric under the interchange of the modes with a specific degree of entanglement
for an efficient realistic implementation of the protocol. In this chapter our aim is
to provide a realistic optical scheme for the creation and manipulation of multipar-
tite Gaussian entanglement of arbitrary modes between atomic gas samples. We
concentrate on a matter-light interaction between Gaussian polarized light and po-
larized atomic samples. For convenience we analyze quantum non-demolition (QND)
matter-light interfaces.

Matter-light quantum interfaces refer to those interactions that lead to a faithful
transfer of correlations between atoms and photons. The interface, if appropriately
tailored, generates an entangled state of matter and light which can be further ma-
nipulated (for a review see [13, 80] and references therein). To this aim, a strong
coupling between atoms and photons is a must. A pioneering method to enhance
the coupling is cavity QED, where atoms and photons are made to interact strongly
due to the confinement imposed by the boundaries [81]. An alternative approach
to reach the strong coupling regime in free space is to use optically thick atomic
samples.

Atomic samples with internal degrees of freedom (collective spin) can be made
to interact with light via the Faraday effect, which refers to the polarization rota-
tion that is experienced by a linearly polarized light propagating inside a magnetic
medium. At the quantum level, the Faraday effect leads to an exchange of fluctua-

89
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tions between matter and light. As demonstrated by Kuzmich and co-workers [82],
if an atomic sample interacts with a squeezed light whose polarization is measured
afterwards, the collective atomic state is projected into a spin squeezed state (SSS).
Furthermore, to produce a long lived SSS, Kuzmich and co-workers [83] proposed
a QND measurement, based on off-resonant light propagating through an atomic
polarized sample in its ground state.

A step forward within this scheme is measurement induced entanglement be-
tween two macroscopic atomic ensembles. As proposed by Duan et al [84] and
demonstrated by Polzik and co-workers [79], the interaction between a single laser
pulse, propagating through two spatially separated atomic ensembles combined with
a final projective measurement on the light, leads to an EPR state of the two atomic
ensembles. Due to the QND character of the measurement, the verification of en-
tanglement is done by a homodyne measurement of a second laser pulse that has
passed through the samples. From such measurements, atomic spin variances in-
equalities can be checked, asserting whether the samples are entangled or not. A
complementary scheme for measurement induced entanglement is also introduced in
[85, 86].

The quantum Faraday effect can also be used as a powerful spectroscopic method
[87]. Tailoring the spatial shape of the light beam, provides furthermore, a detec-
tion method with spatial resolution which opens the possibility to detect phases
of strongly correlated systems generated with ultra-cold gases in optical lattices
[88, 89, 90].

Here, we analyze the suitability of the Faraday interface in the multipartite sce-
nario. In contrast to the bipartite case, where only one type of entanglement exists,
the multipartite case offers a richer situation [91, 55]. Due to this fact, the verifica-
tion of entanglement using spin variance inequalities [92] becomes an intricate task.
We address such problem and provide a scheme for the generation and verification of
multipartite entanglement between atomic ensembles. Despite the irreversible char-
acter of the entanglement induced by measurement, we find that a second pulse can
reverse the action of the first one deleting all the entanglement between the atomic
samples. This result has implications in the use of atomic ensembles as quantum
memories [93]. Finally, we introduce the CV formalism for further analysis. That
is, if one prepares both atoms and light as Gaussian states, then due to the lin-
earity of the equations of evolution for atoms and light, the evolution is Gaussian
and it is possible to write the states as covariance matrices and the evolution as a
symplectic transformation. The explicit use of the covariance matrix enables for an
entanglement verification through covariance matrix criteria.

6.2 Quantum interface description

The basic concept, underlying the QND atom-light interface we will use (see ap-
pendix 6.A), is the dipole interaction between an off-resonant linearly polarized light
with a polarized atomic ensemble, followed by a quantum homodyne measurement
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of light. In section 6.3.1 we review the basic known results that permits, to entangle
two separated atomic samples by letting light interact with two atomic samples in a
fixed direction. In section 6.3.2 we detail our new proposal in which light and atoms
are free to interact at arbitrary angles.

On one hand, we consider an ensemble of Nat non-interacting alkali atoms with
individual total angular momentum ~F = ~I+ ~J prepared in the ground state manifold
|F,mF 〉. Further we assume that all atoms are polarized along the x-direction, which
corresponds to preparing them in a certain hyperfine state |F,mF 〉 (e.g. in the case
of Cesium the hyperfine ground state 6S1/2 i.e. L = 0 and J = S = 1/2 is split
into two hyperfine states with total angular momentum F = 3 and F = 4 due to a
nuclear spin I = 7/2). We restrict ourselves to one hyperfine level, F = 4, which is
possible experimentally because the hyperfine splitting is large compared to typical
resolutions of the lasers. Furthermore, it is possible to put (almost) all atoms in the
outermost state with mF = 4, being x the axis of quantization. We describe such

sample with its collective angular momentum ~̂J = (Ĵx, Ĵy, Ĵz) being Ĵk =
∑Nat

n=1 F̂k,n
the total angular momentum of the ensemble (k = x, y, z). Then, the Ĵx component
of the collective spin can be regarded as a classical number Ĵx ≈< Ĵx >= Nat~F ,
while the orthogonal spin components encode all the quantum character. Due to the
above approximation, the orthogonal collective angular momentum components can

be treated as canonical conjugate variables,
[

Ĵy/
√
Jx, Ĵz/

√
Jx

]

= i~.

On the other hand, the polarization of light propagating along the z-direction
can be described by the Stokes vector ~̂s = (ŝx, ŝy, ŝz), whose components correspond
to the differences between the number of photons (per time unit) with x and y linear
polarizations, ±π/4 linear polarizations and the two circular polarizations

ŝx =
~
2

(n̂x − n̂y) =
~
2

(â†xâx − â†yây),

ŝy =
~
2

(n̂ր − n̂ց) =
~
2

(â†xây + â†yâx),

ŝz =
~
2

(n̂	− n̂�) =
~
2i

(â†xây − â†yâx). (6.1)

The above operators have dimension of energy. They are convenient for a mi-
croscopic description of interaction between light and atoms, however, we will con-
centrate on the macroscopic variables, defined as Ŝk(z) =

∫ T
0 ŝk(z, t)dt (k = x, y, z),

where T is the length of the light pulse. Such defined operators correspond now to dif-
ferences in total number of photons, and obey standard angular momentum commu-
tation rules. For light linearly polarized along the x-direction Ŝx ≈< Ŝx >= Nph~/2.

In such case, the orthogonal Stokes components Ŝy, Ŝz are conjugated variables ful-

filling canonical commutation relations,
[

Ŝy/
√
Sx, Ŝz/

√
Sx

]

= i~.

For a light beam propagating through the atomic sample in the Y Z plane at a
certain angle α with respect to direction z (see Fig. 6.1), the atom-light interaction
can be approximated to the following QND effective interaction Hamiltonian (see
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appendix 6.A for a detailed derivation)

Ĥeff
int(α) = − a

T
Ŝz(Ĵz cosα+ Ĵy sinα). (6.2)

The parameter a is the coupling constant with dimensions of the inverse of an action.
The interaction is a linear coupling between the Stokes operator and the collective
atomic spin operator, thus, the interaction is a Gaussian interaction between two
bosonic modes. Also, the states for atoms and light, by the strong polarization
constrain, can be treated as two mode enabling us to tackle the atom-light interaction
with a CV formalism.

x

y

z

α

Figure 6.1: A beam passing through an atomic sample at an angle α with respect to z.

The equations of motion 1 for the macroscopic variables for light and atoms are

Ĵout
y = Ĵ in

y − aŜin
z Jx cosα, (6.3)

Ĵout
z = Ĵ in

z + aŜin
z Jx sinα, (6.4)

Ŝout
y = Ŝin

y − aSx(Ĵ in
z cosα+ Ĵ in

y sinα), (6.5)

Ŝout
z = Ŝin

z , (6.6)

where the operators Ŝ
in/out
k as the Stokes operators characterizing the pulse entering

(z = 0) and leaving (z = L) the atomic sample. Analogously, Ĵ
in/out
k correspond to

initial (t = 0) and final state (t = T ) of the atomic spin.
From Eq. (6.5) it is clear that the polarization of the outgoing light carries infor-

mation about the collective atomic angular momentum. The quantum character of
the interface is reflected at the level of fluctuations, i.e.,

(

∆Ŝout
y

)2
=
(

∆Ŝin
y

)2
+ a2S2

x

(

∆[Ĵ in
z cosα+ Ĵ in

y sinα]
)2
. (6.7)

At the same time, Eqs. (6.3) and (6.4) show the QND character of the Hamiltonian,
i.e., the measured combination Ĵ in

z cosα+ Ĵ in
y sinα is not affected by the interaction

1In the particular configuration of Fig. 6.1, both the Hamiltonian and the equations of motion
can be deduced after an anti x-rotation of angle α to the corresponding expressions of appendix 6.A.
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since it commutes with the effective Hamiltonian. This fact allows to measure the
fluctuations of the atomic spin components with the minimal disruption permitted
by Quantum Mechanics.

In the following sections we will generalize the above formalism to the interaction
of a light pulse with an arbitrary number, Ns, of spatially separated atomic samples.

Variables characterizing each sample will be denoted by Ĵ
(i)
k , where i = 1, 2, . . . ,Ns

denotes the samples and k = x, y, z.

6.3 Bipartite entanglement: Generation and verifica-

tion

6.3.1 Magnetic field addressing scheme

We begin by reviewing the seminal work of Polzik et al [79] leading to the entangle-
ment of two spatially separated atomic samples, as schematically shown in Fig. 6.2.

a)

x

y
z

Sx

Jx

Jx

b)

x

y
z

Sx

Jx

JxB

B

Figure 6.2: Sketch of the experimental setup applied in [79] to generate bipartite entangle-
ment. a) Entangling pulse. b) Verifying pulse followed by homodyne measurement. A local
magnetic field is added (parallel to the spin polarization direction) in order to measure two
transverse components of the spin with a single light beam.

In the experimental setup, both light and atomic samples were strongly polar-
ized along the x-direction while light propagated along the z-direction (α = 0). It is
straightforward to generalize the equations of motion of appendix 6.A for two sam-
ples. For example, the collective polarization of atoms along the z-direction is still

preserved, i.e., ∂Ĵ
(i)
z /∂t = 0 with i = 1, 2, and Eq. (6.5) reads now 2

Ŝout
y = Ŝin

y − aSx
(

Ĵ (1)
z + Ĵ (2)

z

)

. (6.8)

Entanglement between the atomic samples is established as soon as the Ŝout
y com-

ponent of light is measured. Moreover, it should be emphasized that entanglement
is generated independently of the outcome of the measurement. The real challenge,
though, is its experimental verification, since spin entanglement criterium relies on

spin variances inequalities of operators of the type (Ĵ
(1)
y − Ĵ (2)

y ) and (Ĵ
(1)
z + Ĵ

(2)
z ).

This is so because the maximally entangled EPR state is a co-eigenstate of such
operators. This fact, in turn, imposes an upper bound (see theorem 2.6.5) on the

2We will omit the superscripts in/out when it is not necessary.
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variances of such operators giving rise to a sufficient and necessary condition for
separability [22]

(

∆

[

|λ|Ĵ (1)
y +

Ĵ
(2)
y

λ

])2

+

(

∆

[

|λ|Ĵ (1)
z −

Ĵ
(2)
z

λ

])2

≥
(

λ2 +
1

λ2

)

~Jx, (6.9)

for all λ ∈ R.
The way to experimentally check [79] the above equation with λ = −1 was to

add on each sample an external magnetic field, parallel to the spin polarization
direction, x (see also [94]). The magnetic field was local, therefore, it did not affect
the generation of entanglement. However, it caused a Larmor precession of the
collective atomic momenta, which permitted a simultaneous measurement of the

appropriately redefined ”canonical variables” Ĵ
(1)
y + Ĵ

(2)
y and Ĵ

(1)
z + Ĵ

(2)
z . Notice

that this can only be done if the atomic samples are polarized oppositely along the

x-direction, so that the commutator [Ĵ
(1)
z + Ĵ

(2)
z , Ĵ

(1)
y + Ĵ

(2)
y ] = J

(1)
x + J

(2)
x = 0.

Therefore, the first light beam was used for creation of EPR-type entanglement, and
another one for its verification through Eq. (6.9).

Let us detail how the local magnetic field, if measuring the appropriated observ-
ables, enables for checking Eq. (6.9). As in the appendix 6.A, we derive here the
complete equation system for observables of light and both samples. As we will see
the linearity of the system enables us to, in a easy way, to jump to the CV formalism
via symplectic matrices.

If a constant and homogeneous magnetic field is added in the x-direction (par-
allel to the spin polarization direction) the transverse spin components precess at a
Larmor frequency Ω. The magnetic field adds a term 3 Ĥ = −~̂µ · ~B = +ΩJx into
the Hamiltonian with same field strength and global sign for each one of the two
samples. The action of the magnetic field at a fixed time produces a rotation of the
spin vector (active view) that can be mimic as a rotation on the system (passive
view) via the substitution α → −Ωt on the equations of motion considered in the
appendix 6.A i.e.

∂

∂t
ĵ(1)y (z, t) = −aŝz(t)j(1)x cos Ωt, (6.10)

∂

∂t
ĵ(1)z (z, t) = −aŝz(t)j(1)x sin Ωt, (6.11)

∂

∂t
ĵ(2)y (z, t) = −aŝz(t)j(2)x cos Ωt, (6.12)

∂

∂t
ĵ(2)z (z, t) = −aŝz(t)j(2)x sin Ωt, (6.13)

∂

∂z
ŝy(z, t) = − a

cT
sx

(

ĵ(1)z cos Ωt− ĵ(1)y sin Ωt
)

, (6.14)

ŝz(z, t) = ŝz(t), (6.15)

3Remember that ~B = Ωm
e
~i and ~̂µ = − e

m

~̂
J .
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Grouping the equations (6.10)-(6.13) and using the fact that the two samples are

opposite polarized, J
(1)
x = −J (2)

x = Jx > 0 equations for atoms are

∂

∂t

[

ĵ(1)y (z, t) + ĵ(2)y (z, t)
]

= −aŝz(t)
(

j(1)x + j(2)x

)

cos Ωt = 0, (6.16)

∂

∂t

[

ĵ(1)z (z, t) + ĵ(2)z (z, t)
]

= −aŝz(t)
(

j(1)x + j(2)x

)

sin Ωt = 0, (6.17)

∂

∂t

[

ĵ(1)y (z, t) − ĵ(2)y (z, t)
]

= −aŝz(t)
(

j(1)x − j(2)x

)

cos Ωt =

= −aŝz(t)2jx cos Ωt, (6.18)

∂

∂t

[

ĵ(1)z (z, t) − ĵ(2)z (z, t)
]

= −aŝz(t)
(

j(1)x − j(2)x

)

sin Ωt =

= −aŝz(t)2jx sin Ωt. (6.19)

We next integrate in space (
∫ L
0 ρAdz) and time (

∫ T
0 dt) to introduce the macroscop-

ical variables

Ĵ (1),in
y + Ĵ (2),in

y = Ĵ (1),out
y + Ĵ (2),out

y , (6.20)

Ĵ (1),in
z + Ĵ (2),in

z = Ĵ (1),out
z + Ĵ (2),out

z , (6.21)

Ĵ (1),out
y − Ĵ (2),out

y = Ĵ (1),in
y − Ĵ (2),in

y − 2aJx

∫ T

0
dt cos Ωt ŝz(t), (6.22)

Ĵ (1),out
z − Ĵ (2),out

z = Ĵ (1),in
y − Ĵ (2),in

y − 2aJx

∫ T

0
dt sin Ωt ŝz(t). (6.23)

Eq. (6.15) is also integrated in space (
∫ L
0 ρAdz) and Eq. (6.14) in space and in time

(
∫ T
0 dt cos Ωt), (

∫ T
0 dt sin Ωt). Using the fact that the observables

[

ĵ
(1)
y (z) + ĵ

(2)
y (z)

]

and
[

ĵ
(1)
z (z) + ĵ

(2)
z (z)

]

do not evolve, equations for light are

∫ T

0
dt cos Ωt ŝout,2

y (t) =

∫ T

0
dt cos Ωt ŝin,1y (t)+

− a

T
Sx

∫ T

0
dt cos Ωt

([

Ĵ (1)
z + Ĵ (2)

z

]

cos Ωt−
[

Ĵ (1)
y + Ĵ (2)

y

]

sin Ωt
)

,

(6.24)

∫ T

0
dt sin Ωt ŝout,2

y (t) =

∫ T

0
dt sin Ωt ŝin,1y (t)+

− a

T
Sx

∫ T

0
dt sin Ωt

([

Ĵ (1)
z + Ĵ (2)

z

]

cos Ωt−
[

Ĵ (1)
y + Ĵ (2)

y

]

sin Ωt
)

,

(6.25)

ŝout,2
z (t) = ŝin,2z (t) = ŝout,1

z (t) = ŝin,1z (t). (6.26)

We introduce here a suitable choice of pairs of macroscopical observables for light
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and atoms, where the subscript “L” stands for light while “A” for atoms

Q̂L1(z) =

√

2

Sx~

∫ T

0
dt cos Ωt ŝy(z, t), P̂L1 =

√

2

Sx~

∫ T

0
dt cos Ωt ŝz(t),

Q̂L2(z) =

√

2

Sx~

∫ T

0
dt sin Ωt ŝy(z, t), P̂L2 =

√

2

Sx~

∫ T

0
dt sin Ωt ŝz(t),

Q̂A1(t) =
Ĵ

(1)
y − Ĵ (2)

y√
2Jx~

, P̂A1 =
Ĵ

(1)
z + Ĵ

(2)
z√

2Jx~
,

Q̂A2(t) = − Ĵ
(1)
z − Ĵ (2)

z√
2Jx~

, P̂A2 =
Ĵ

(1)
y + Ĵ

(2)
y√

2Jx~
,

to finally 4 obtain the solution of the evolution equations for the set of canonical
variables before and after interaction (denoted by in/out, respectively)

P̂ out
A1 = P̂ in

A1, (6.27)

P̂ out
A2 = P̂ in

A2, (6.28)

Q̂out
A1 = Q̂in

A1 − κP̂ in
L1, (6.29)

Q̂out
A2 = Q̂in

A2 − κP̂ in
L2, (6.30)

Q̂out
L1 = Q̂in

L1 − κP̂ in
A1, (6.31)

Q̂out
L2 = Q̂in

L2 − κP̂ in
A2, (6.32)

P̂ out
L1 = P̂ in

L1, (6.33)

P̂ out
L2 = P̂ in

L2, (6.34)

where κ = a
√
SxJx (adimensional) and

[

Q̂Ai, P̂Ai

]

= i,
[

Q̂Li, P̂Li

]

= i, for i = 1, 2.

Separability condition (6.9) for λ = −1

(

∆
[

Ĵ (1)
y − Ĵ (2)

y

])2
+
(

∆
[

Ĵ (1)
z + Ĵ (2)

z

])2
≥ 2~Jx (6.35)

translates to
(

∆P̂A1

)2
+
(

∆P̂A2

)2
≥ 1 (6.36)

taking into account that the sign of the spin y-component flips the sign (sample 1
and 2 are symmetric under a π rotation around z). Thus, checking the inequality can
be realized within this scheme by measuring the light quadratures operators Q̂out

L1,2

as seen in Eqs. (6.31) and (6.32).
Now, we shall illustrate the power of using a CV phase-space formalism to retrieve

the complete covariance matrix of the final states and to detect and quantify the
entanglement generation. The variables describing the system after interaction are

4Taking into account that 1
T

R T

0
dt sin2 Ωt = 1

T

R T

0
dt cos2 Ωt ≃ 1

2
and 1

T

R T

0
dt sin Ωt cosΩt ≃ 0 if

ΩT ≃ 2π.
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expressed as a linear combination of the initial ones. Let us denote by O the following
linear transformation O : {Q̂in

Ai, P̂
in
Ai, Q̂

in
Li, P̂

in
Li} 7→ {Q̂out

Ai , P̂
out
Ai , Q̂

out
Li , P̂

out
Li }, which can

be straightforwardly obtained from Eqs. (6.27)-(6.34). Due to the linear coupling be-
tween light and matter under consideration, the evolution equations can be directly
translated in phase-space as ζout = O · ζ in where ζ = (QA1, PA1, QA2, PA2, QL1, PL1,
QL2, PL2)T is a phase-space vector. There is a symplectic transformation Sint, corre-
sponding to the unitary evolution O, relating the state of atoms and light γ, before
(in) and after (out) the interaction fulfilling γout = STintγinSint and can be recon-
structed in the following way

ζout,T · γ−1
in · ζout = ζ in,TOT · γ−1

in ·Oζ in =

= ζ in,T · (O−1γin(OT )−1)−1 · ζ in =

= ζ in,T · γ−1
out · ζ in. (6.37)

Therefore the symplectic transformation acting on an initial state with covariance
matrix for light and atoms γin due to the Hamiltonian (6.66) is therefore Sint =
(OT )−1 and can be written in a matricial form. If, as we will consider, one prepares
the ensemble of atoms in a Gaussian state and Gaussian light is used, the CV formal-
ism enables us not only to measure fluctuations of specific collective spin variables of
atoms but the complete covariance matrix and displacement vector after interaction
enabling for verification of entanglement amenable with covariance matrix criteria.
We derive explicitly the states and the evolution using this formalism in section 6.3.2
presenting a new geometric scheme.

6.3.2 Geometrical scheme

Our aim has been to apply the QND atom-light interface to study genuine multipar-
tite entanglement generation with less restrictive conditions, i.e., we assume that:
(i) individual magnetic field addressing of each atomic ensemble is not allowed and,
(ii) the number of atomic ensembles can be made arbitrary. Such experimental se-
tups that can be build, for instance, using optical micro-traps [95, 96] which allow
for isotropic confinement of 104 cold atoms, creating in this way mesoscopic atomic
ensembles 5. In these setups, the preparation of each sample in a different initial
magnetic state or the addressing of a sample with individual magnetic fields is out of
reach. Despite these limitations, an array of micro-traps offers considerable advan-
tages, ranging from its experimental feasibility to the possibility to generate chains
and arrays of atomic samples.

Assuming (i), the verification of entanglement cannot be done anymore by means
of local magnetic fields on each sample, thus we assume the two samples to be par-
allel polarized. The way to overcome this problem is depicted in Fig. 6.3 i.e. we
mimic the action of local magnetic fields in each sample with light propagating at
different angles. As seen in the previous section they are mathematically equivalent

5In these experiments with ultra-cold atoms one can reduce the number of atoms up to 104 still
having the same opacity of the medium.
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a) x
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z
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Jx Jx

b) x

y

z

Sx

Jx Jx

Figure 6.3: The simplest setup for generation and verification of bipartite entanglement
between mesoscopic atomic ensembles. a) First light pulse passing through the samples
along direction z entangles the samples. b) Second light pulse passing through the samples
at angles π/4 and −π/4, respectively, allows for verification of entanglement through a
variance inequality (see Eq. (6.9)).

local operations. To better understand the dynamics of the interaction in this config-
uration, we analyze in some detail the setup of Fig. 6.3. In the first shot, light passes
through the two sample. As indicated in Eq. (6.8), the light carries information

about Ĵ
(1)
z + Ĵ

(2)
z and the measurement of Ŝout

y generates entanglement between the
atomic samples. Starting from the evolution equations (6.3),(6.4) and taking into
account the light measurements, one can explicitly derive the variances of the atomic
spin samples and interpret them in terms of global or non-local squeezings. In the
picture, polarized ensembles of atoms in the ground state will be characterized as a
vacuum state while light beams will be described as coherent states. In this view,
the final bipartite state of the ensembles is characterized by the following variances

(

∆[Ĵ (1)
y + Ĵ (2)

y ]
)2

= (1 + 2κ2)~Jx, (6.38)
(

∆[Ĵ (1)
y − Ĵ (2)

y ]
)2

= ~Jx, (6.39)
(

∆[Ĵ (1)
z + Ĵ (2)

z ]
)2

=
1

1 + 2κ2
~Jx, (6.40)

(

∆[Ĵ (1)
z − Ĵ (2)

z ]
)2

= ~Jx, (6.41)

where κ = a
√
SxJx is the adimendional coupling interaction. The observables for

which the separability criterion (Eq. (6.9)) is violated correspond to Ĵ
(1)
z + Ĵ

(2)
z and

Ĵ
(1)
y − Ĵ (2)

y with λ = −1. Such a measurement induces squeezing on the variances
along the z-direction below the separability limit, as clearly indicated by Eqs. (6.39)
and (6.40).

The second part, the verification, it involves a measurement of the sum of the
variances corresponding to Eqs. (6.39) and (6.40). In order to do this with a sin-
gle beam we use light propagating at different angles, as schematically depicted in
Fig. 6.3(b). In this case, according to Eq. (6.5) we obtain

Ŝout
y = Ŝin

y −
κ√
2

√

Sx
Jx

[(

Ĵ (1)
z + Ĵ (2)

z ) + (Ĵ (1)
y − Ĵ (2)

y

)]

. (6.42)
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Since within this scheme < Ĵ
(i)
y Ĵ

(j)
z >=< Ĵ

(i)
y >< Ĵ

(j)
z >, the variance of the output

can be written as

(

∆Ŝout
y

)2
=
(

∆Ŝin
y

)2
+

+
κ2

2

Sx
Jx

(

(

∆[Ĵ (1)
z + Ĵ (2)

z ]
)2

+
(

∆[Ĵ (1)
y − Ĵ (2)

y ]
)2
)

. (6.43)

For details concerning the experimental measurement of such variances see [97, 98].
This shows that entanglement between two identically polarized atomic ensembles
can be generated, irrespectively of the value of the coupling constant κ, and verified
using only two beams and no additional magnetic fields, if the second field impinges
on the two samples at certain angles.

To increase entanglement between the two samples one should introduce global
squeezing in two independent variables. This is schematically depicted in Fig. 6.4(a)

and 6.4(b). The first beam introduces squeezing in Ĵ
(1)
z + Ĵ

(2)
z variable. Then, a

second beam propagating through the first sample at an angle α = π/2 and through

the second one at an angle α = −π/2 generates squeezing in Ĵ
(1)
y − Ĵ (2)

y .

a) x
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Jx Jx

b) x
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z
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Jx Jx

c) x

y

z

Sx

Jx Jx

Figure 6.4: The setup for generation and verification of bipartite entanglement between

atomic ensembles in which squeezing is introduced in two variables a) Ĵ
(1)
z +Ĵ

(2)
z and b) Ĵ

(1)
y −

Ĵ
(2)
y increasing entanglement. The third pulse depicted in figure c) allows for verification of

entanglement through a variance inequality. It should be emphasized that the first and last
step are exactly the same as in Fig. 6.3.

Note that these are commuting operators, so the second beam would not change

the effect of the first one (squeezing of Ĵ
(1)
z + Ĵ

(2)
z ). The verification of entanglement

(see Fig. 6.4(c)) can be done as previously described. Within this scheme one re-
produces the results of Julsgaard et al [79] without individual addressing i.e. EPR
entanglement between two atomic samples.
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6.3.3 Continuous Variable analysis

We detail here explicitly the setup of Fig. 6.3 at the level of covariance matrix (CM)
formalism. The initial state of the two samples and the light is given by the CM
for atoms and light γA,Lin = IA4 ⊕ IL2 . The symplectic matrix, Sint, describing the
interaction of light passing through the samples at zero angle is

Sint =

















1 0 0 0 0 0
0 1 0 0 κ 0
0 0 1 0 0 0
0 0 0 1 κ 0

0 0 0 0 1 0
κ 0 κ 0 0 1

















, (6.44)

thus, the state after the interaction takes the form

γA,Lout = STintγ
A,L
in Sint =

















1 + κ2 0 κ2 0 0 κ
0 1 0 0 κ 0
κ2 0 1 + κ2 0 0 κ
0 0 0 1 κ 0

0 κ 0 κ2 1 + 2κ2 0
κ 0 κ 0 0 1

















. (6.45)

Both modes, representing the samples, are entangled with light, however their re-
duced state is separable as one can check applying NPPT criterium in the CM of
the lower-right block matrix. Entanglement between atomic samples is not produced
until one measures one quadrature on the light. For this aim, one uses the action of
an homodyne measurement on the light mode (see section 2.5.6). The measurement
of light leads to the CM describing the final state of the samples.

γAout =











1 + κ2 0 κ2 0

0 1+κ2

1+2κ2 0 − κ2

1+2κ2

κ2 0 1 + κ2 0

0 − κ2

1+2κ2 0 1+κ2

1+2κ2











→ (6.46)

Sr̃⊕Sr̃→













1+k2√
1+2k2

0 k2√
1+2k2

0

0 1+k2√
1+2k2

0 − k2√
1+2k2

k2√
1+2k2

0 1+k2√
1+2k2

0

0 − k2√
1+2k2

0 1+k2√
1+2k2













. (6.47)

being r̃ = 1
4 ln(1 + 2κ2) a local squeezing. In this way we write the final state of the

two atomic samples in standard form.
The resulting bipartite state of the two samples is pure and parametrized by κ

only, thus it can be written as a two mode squeezed state
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γTMS =









cosh 2r 0 sinh 2r 0
0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0
0 − sinh 2r 0 cosh 2r









, (6.48)

with squeezing parameter r = 1
2arccosh( 1+κ2√

1+2κ2
) (see lemma 2.5.2) i.e. containing

pure EPR entanglement with negativity

EN (γTMS) = cosh2 r log2 cosh2 r − sinh2 r log2 sinh2 r. (6.49)

6.4 Entanglement eraser

Interesting enough, our geometrical approach also opens the possibility of deleting
all the entanglement created by the first light beam, if intensities are appropriately
adjusted. The entanglement procedure is intrinsically irreversible because of the
projective measurement, so coming “deterministically” back to the initial state is
not a trivial task. In [99, 100], a quantum erasing scheme in Continuous Variable
systems was proposed. The measurement of the meter coordinate entangled with the
quantum system leads to a back-action on it. The authors shown that it is possible
to erase the action of the measurement and restore the original state of the system.
Here we are interested in deleting the measurement induced entanglement between
two atomic samples, exploiting the squeezing and antisqueezing effects produced by
the laser beams.

a) x

y

z

S
(1)
x

Jx Jx

b) x

y

z

S
(2)
x

Jx Jx

Figure 6.5: Entanglement eraser scheme realized by two pulses of different intensity, κ2
1 ∝

N
(1)
ph and κ2

2 ∝ N
(2)
ph . See the text for details.

Let us assume that the first entangling beam, characterized by a coupling con-

stant κ2
1 ∝ N

(1)
ph , propagates along the z-direction, exactly as it was described before

(see Fig. 6.5(a)). The interaction, followed by the measurement of light, creates

squeezing in the observable Ĵ
(1)
z +Ĵ

(2)
z accompanied by antisqueezing in the conjugate

variable Ĵ
(1)
y + Ĵ

(2)
y (Eqs. (6.38) and (6.40)). Assume a second beam characterized

by a coupling constant κ2
2 ∝ N

(2)
ph propagates through the samples in an orthogonal

direction with respect to the first beam as shown in Fig. 6.5(b). This corresponds to
setting α = π/2 in the Hamiltonian of Eq. (6.2). In this setup the measurement of the

variable Ŝout
y introduces antisqueezing in the observable Ĵ

(1)
z + Ĵ

(2)
z while squeezing

in the conjugate variable Ĵ
(1)
y + Ĵ

(2)
y .
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The bipartite state created by propagation and measurement of the first and
second beam is characterized by the variances

(

∆[J (1)
y + J (2)

y ]
)2

=
2κ2

1 + 1
(

4κ2
1 + 2

)

κ2
2 + 1

~Jx, (6.50)

(

∆[J (1)
y − J (2)

y ]
)2

= ~Jx, (6.51)

(

∆[J (1)
z + J (2)

z ]
)2

=

(

2κ2
2 +

1

2κ2
1 + 1

)

~Jx, (6.52)

(

∆[J (1)
z − J (2)

z ]
)2

= ~Jx. (6.53)

A close look at these equations shows that the second beam can lower or even
completely destroy entanglement between the samples. This happens when

κ2
2 =

κ2
1

2κ2
1 + 1

. (6.54)

In such case the atomic ensembles are left in a vacuum (uncorrelated) state, however,
displaced. Hence, the overall effect of these two beams is simply a displacement of
the initial vacuum state. The value of the displacement depends on the coupling
constants κ1,2 and outputs obtained in the measurement of the light polarization
component, Ŝout

y , of both beams. Therefore, it will vary run to run.
Using negativity, computed by the symplectic eigenvalues of the partial trans-

pose of the covariance matrix (2.97), one finds that indeed entanglement diminishes
continuously or even disappears depending on the value of κ2, as shown in Fig. 6.6.
Notice that for every fixed value of κ1 there always exists a value of κ2 for which neg-
ativity becomes zero and the state becomes separable even though it was entangled
after the first interaction and measurement on the beam.

6.5 Multipartite entanglement

In what follows we generalize our study to the multipartite scenario and we present
different strategies to achieve multipartite entanglement without individual address-
ing. The strategies will not depend on the total number of samples but only if
this number is odd or even. For the verification part, we shall adopt the criterium
for multipartite entanglement, expressed via generalized inequalities for variances of
quadratures, derived by van Loock and Furusawa [92]. We rewrite the inequalities
for angular momentum variables as follows. If an Ns-mode state ρ̂ is separable, then
the sum of variances of the following operators

û = h1Ĵ
(1)
y + . . .+ hNs Ĵ

(Ns)
y ,

v̂ = g1Ĵ
(1)
z + . . .+ gNs Ĵ

(Ns)
z , (6.55)
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Figure 6.6: The negativity of a bipartite state of atomic ensembles after passage and mea-
surement of two beams of coupling parameters κ1 and κ2 (see Fig. 6.5). For specific values
of κ1 and κ2, i.e. fulfilling (6.54), the negativity approaches zero.

is bounded from above by a function of the coefficients h1, . . . , hNs , g1, . . . , gNs .
Mathematically the inequality is expressed as

(∆û)2 + (∆v̂)2 ≥ f(h1, . . . , hNs , g1, . . . , gNs)~Jx, (6.56)

with

f(h1, . . . , hNs , g1, . . . , gNs) = |hmgm +
∑

r∈I
hrgr|+ |hngn +

∑

s∈I′
hsgs|. (6.57)

In the above formula two modes, m and n, are distinguished and the remaining
modes are grouped in two disjoint sets I and I ′. The criterion (6.56) holds for all
bipartite splittings of a state defined by the sets of indices {m}∪ I and {n}∪ I ′, and
for every choice of parameters h1, . . . , hNs , g1, . . . , gNs . For example, in case of three
samples we have f(h1, h2, h3, g1, g2, g3) = (|hngn| + |hkgk + hmgm|), where (n,m, k)
is some permutation of the sequence (1, 2, 3), and the coefficients h1, h2, h3, g1, g2, g3
are arbitrary real numbers.

6.5.1 GHZ-like states

Genuine multipartite entanglement between any number of equally polarized atomic
modes can be obtained with a single beam propagating through all of them followed
by a projective measurement of the light. After the measurement, the Ns-mode

variable Ĵ
(1)
z + . . . + Ĵ

(Ns)
z is squeezed. This is a trivial extension of the bipartite

scheme schematically shown in Fig. 6.3(a).



104 Measurement induced entanglement in Continuous Variable

The phenomenon of destruction of entanglement by squeezing of the conjugate
variable, which was discussed in the previous section for two modes, can be also found
in the multimode setup. The entanglement prepared with the light beam charac-
terized by the coupling constant κ1 can be erased by the second orthogonal beam
with appropriately adjusted intensity. The relation between the coupling constants
for which entanglement is removed from the system is

κ2
2 =

κ2
1

Nsκ2
1 + 1

. (6.58)

One can see that with increasing number of samples the value of κ2 required to delete
entanglement decreases.

To generate a maximally entangled GHZ state with Ns-parties, simultaneous
squeezing in more independent variables is needed. By independent here we mean
commuting linear combinations of atomic spin operators. The most straightforward

way to do it is to generate squeezing in the variable Ĵ
(1)
z + . . . + Ĵ

(Ns)
z and in the

pairwise differences of angular momenta: Ĵ
(i)
y − Ĵ

(j)
y (1 ≤ i, j ≤ Ns, i 6= j) (see

[49, 6]). An entangled state with such properties can be realized by generalization of
the bipartite scheme summarized in Figs. 6.4(a) and 6.4(b). Notice, however, that
the last step b) should be repeated for all combinations of i > j. The final variances
characterizing the state would be

(

∆[Ĵ (1)
z + . . .+ Ĵ (Ns)

z ]
)2

=
Ns

2 + 2Nsκ2
~Jx, (6.59)

(

∆[Ĵ (i)
y − Ĵ (j)

y ]
)2

=
1

1 +Nsκ2
~Jx (i 6= j). (6.60)

Thus the samples are in a genuine Ns-mode GHZ state. Within this scheme the num-

ber of measurements,
(Ns

2

)

+ 1 ∼ N2
s

2 , one has to perform in order to create genuine
entanglement, grows quadratically with the number of samples. Also verification
implies checking all the inequalities of the type

(

∆[Ĵ (i)
y − Ĵ (j)

y ]
)2

+
(

∆[Ĵ (1)
z + . . .+ Ĵ (Ns)

z ]
)2
≥ 2~Jx (i > j).

While the above procedure works for an arbitrary number of samples, to optimize it
we consider separately even and odd Ns.

For even number of ensembles Ns = 2M the optimal approach generalizes the
one proposed for two samples and summarized in Figs. 6.4(a) and 6.4(b). In first

step we generate squeezing in Ĵ
(1)
z + . . . + Ĵ

(2M)
z . As the second step we squeeze

the observable Ĵ
(1)
y − Ĵ

(2)
y + . . . + (−1)2M−1Ĵ

(2M)
y with the second beam passing

through the ith sample at an angle (−1)i−1π/2. The final state is pure and genuine
multipartite entangled. The entanglement can be detected using the criterion (6.56)
with the two squeezed observables discussed in this paragraph. The measurement of
light propagating through the ith sample at an angle (−1)i−1π/4 gives at the level
of variances
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(

∆Ŝout
y

)2
=
(

∆Ŝin
y

)2
+

+
κ2

2

Sx
Jx

(

∆[Ĵ (1)
y − Ĵ (2)

y + . . .+ (−1)2M−1Ĵ (2M)
z ]

)2
+

+
κ2

2

Sx
Jx

(

∆[Ĵ (1)
z + . . . + Ĵ (2M)

z ]
)2
. (6.61)

Therefore, again a single beam can be used for verification of entanglement. The
same criterion and the above measurement scheme can be applied not only to detect
the entanglement in the above setup but also in those proposed before, i.e., (i) the

state with squeezing only in Ĵ
(1)
z + . . . + Ĵ

(2M)
z (after interaction and measurement

of only the first beam), and (ii) the state with squeezing in Ĵ
(1)
z + . . . + Ĵ

(2M)
z and

all combinations Ĵ
(i)
y − Ĵ (j)

y (i 6= j). The reduction in the number of measurements
is significant. Moreover, a recently proposed multi-pass technique [101] could lead
to a simplification of the geometry.

Optimization of the scheme for odd number of atomic ensembles within this
geometric approach is to our knowledge not possible. Even though it is possible to
find independent variables involving all the samples, it is not clear what geometry
should be applied in order to measure these operators.

A different way to deal with multimode entanglement of odd number of samples is
to generalize directly the bipartite scheme of Julsgaard et al, i.e., polarize the samples

in such a way that the collective polarization
∑

i J
(i)
x is zero. Moreover, each sample

should experience a different local magnetic field. In such system it is possible to
generate squeezing in appropriately redefined (due to Larmor precession) operators
∑

i Ĵ
(i)
y and

∑

i Ĵ
(i)
z , using a single light beam. This is possible due to the choice of

the initial polarization of the samples making the redefined operators to commute.
Analogously to the bipartite case the entanglement test that can be applied involves
measurement of variances of the sums of angular momentum components and reads

(

∆
∑

i

Ĵ (i)
y

)2

+

(

∆
∑

i

Ĵ (i)
z

)2

≥ Ns~Jx. (6.62)

6.5.2 Cluster-like states

In [102] a class of N -qubit quantum states generated in an arrays of qubits with an
Ising-type interaction were presented, the so-called cluster states. While for pure
states of bipartite qubit systems there is a single “unit” of entanglement, the one
contained in a Bell state, for three or more parties several inequivalent classes exists.
Cluster states, generated in optical lattices and similar systems, can be regarded
as an entanglement resource since one can generate a family of other multipartite
entangled states by simply performing measurement and using classical communica-
tion. Using the scalability properties of cluster states, Hans Briegel et al presented
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a scheme for scalable one-way quantum computation [103, 104]. In there, cluster
states are the entire resource for quantum computation while computation consists
of a sequence of one-qubit projective measurements on them driving the computa-
tion. It is an universal quantum computer since any unitary quantum logic network
can be simulated on it efficiently.

We detail here, how the analyzed setup allows for generation of Continuous Vari-
able cluster-like states [105]. We associate the modes of the Ns-mode system with
the vertices of a graph G. The edges between the vertices define the notion of nearest
neighborhood. By Na we denote the set of nearest neighbors of vertex a. A cluster
is a connected graph. For angular momentum variables, cluster states are defined
only asymptotically as those with infinite squeezing in the variables

Ĵ (a)
z −

∑

b∈Na
Ĵ (b)
y , (6.63)

for all a ∈ G. Cluster-like states are defined when the squeezing is finite. Given
a set of Ns atomic ensembles, it is possible to create a chosen cluster-like state by
squeezing the required combinations of variables (6.63). Since they commute, it is
possible to squeeze them sequentially. Hereafter, we will illustrate the procedure by a
simple example. The method is general and can be applied to create any cluster-like
state.

a)

b) x

y

z
Sx

Jx Jx JxJx
1 2 3 4

c) x

y

z

Sx
Jx Jx JxJx

1 2 3 4

d) x

y

z

Sx
Jx Jx JxJx

1 2 3 4

e) x

y

z

Sx
Jx Jx JxJx

1 2 3 4

Figure 6.7: Generation of the cluster state schematically depicted in a). The sequence of

beams squeeze the following variables: b) Ĵ
(1)
z

′ − Ĵ (2)
y

′, c) Ĵ
(2)
z

′ − Ĵ (1)
y

′ − Ĵ (3)
y

′, d) Ĵ
(3)
z

′ −
Ĵ

(2)
y

′ − Ĵ (4)
y

′, e) Ĵ
(4)
z

′ − Ĵ (3)
y

′.

In Fig. 6.7 we show how to create the simplest 4-site (linear) cluster state. Let
us introduce the new variables for each sample

Ĵ (i)
y

′ =
1√
2

(

Ĵ (i)
y − Ĵ (i)

z

)

,

Ĵ (i)
z

′ =
1√
2

(

Ĵ (i)
y + Ĵ (i)

z

)

. (6.64)

The squeezing in the combinations of the new variables is produced by passing light as

depicted in Figs. 6.7(b)-6.7(e). For example the squeezing in Ĵ
(1)
z

′− Ĵ (2)
y

′ is generated
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when light passes only through samples 1 and 2 at angles ±π/4 respectively (see
Fig. 6.7(b)). All the other required combinations are squeezed in a similar way.

In order to verify that the state is entangled it is enough to check the set of
variance inequalities given in [106]. This can be done, for example, by repetition of
each step as first proposed in [79, 97].

6.6 Conclusions

In this chapter, we have studied multipartite mesoscopic entanglement using a quan-
tum atom-light interface in various physical setups, in particular those in which the
ensembles cannot be addressed individually. Exploiting a geometric approach in
which light beams propagate through the atomic samples at different angles makes
it possible to establish and verify EPR bipartite entanglement and GHZ multipartite
entanglement with a minimal number of light passages and measurements, so that
the quantum non-demolition character of the interface is preserved. We have also
shown how to generate cluster-like states by a similar technique.

Furthermore, we have shown that the multipartite entanglement created by the
quantum interface of a single light beam can be appropriately tailored and even
completely erased by the action of a second pulse with different intensity. This
control widens the possibilities offered by measurement induced entanglement to
perform quantum information tasks.

6.A Appendix: Detailed atom-light interactions

6.A.1 Interaction Hamiltonian

We detail here the derivation of the effective Hamiltonian (see [13, 80, 93, 107])
coupling atoms and light in the off-resonant limit, neglecting absorption effects and
spontaneous emission which is justified if the detuning from the optical transition is
large enough. Dispersion effects can change the polarization state of the light if the
sample is birefringent i.e. the index of refraction is different for orthogonal polar-
ization components. In our scheme, x-polarized light propagates in the z-direction
through the atomic samples which is polarized along the x-axis. Thus, x is an optical
axis that leaves unchanged the x and y polarizations of light. In what follows, we
omit dispersion effects considering that the linear birefringence is zero. We will con-
centrate more on the continuous description of light and matter since it is convenient
for describing the time dynamics of the system.

We consider real cesium atoms with its hyperfine split ground state and excited
states, and coupling them off-resonantly to the 6S1/2 → 6P3/2 dipole transition (see

Fig. 6.8). The interaction Hamiltonian, Ĥint = −∑j
~̂dj · ~̂E(~rj), in the rotating wave

approximation, eliminating adiabatically the excited states turns in
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6S1/2

6P1/2

6P3/2

F = 2
F = 3

F = 3

F = 3

F = 4

F = 4

F = 4

F = 5
−∆

Figure 6.8: Atomic energy levels for the cesium.

Ĥint(t) = −a
∫ L

0
(a0~2φ̂(z, t) + a1ŝz(z, t)ĵz(z, t) +

+a2

[

~φ̂(z, t)ĵz(z, t)−
1

~
ŝ−(z, t)ĵ2−(z, t)− 1

~
ŝ+(z, t)ĵ2−(z, t)

]

)ρAdz =

=

∫ L

0
ĥint(z, t)ρAdz (6.65)

coupling the spin degrees of freedom of atoms and the Stokes vector of light. The
parameter a = γ

8A∆
λ2

2π is a coupling constant with A being the cross section, λ
the wave length of light, ∆ the detuning energy and γ the frequency width of the
atomic excited states. As one can see from the above expression, the detuning
should not be too large for the interaction not to vanish. The first term proportional
to a0 amounts for a Stark shift to all atoms proportional to the photon density
φ̂(z, t) = ~

2 (n̂x + n̂y) = ~

2 (â†xâx + â†yây). The second term proportional to a1, known
as the Faraday rotation, rotate around the z-axis the spin vector and the Stokes
vector. The last terms proportional to a2 are higher orders coupling light and atoms.
All these terms conserve the total angular momentum of light and atoms. As usual
we have defined ladder operators for light ŝ±(z, t) = ŝx ± iŝy = −~

2 â
†
±â∓ and for

angular momentum ĵ±(z, t) = ĵx± iĵy
6. For the particular case of Cesium on F = 4

and large detuning, a0 → 4, a1 → 1, a2 → 0. Additionally the Stark shift term can
be suppressed by shifting the energy, thus we restrict ourselves to the linear coupling
i.e. we can fix the constants to the corresponding values a0 = a2 = 0 and a1 = 1.
Performing a time and space integration to write the Hamiltonian in terms of the
macroscopical variables Ŝk and Ĵk =

∫ L
0 ĵk(z, t)ρAdz, being ρ the spin density, then

Ĥeff
int =

1

T

∫ T

0
dtĤint(t) = − a

T

∫ T

0
dt

∫ L

0
ŝz(z, t)ĵz(z, t)ρAdz = − a

T
ŜzĴz, (6.66)

6Choosing z as the axis of quantization, we know from any elementary book on Quantum Me-
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and we recover (6.2) for α = 0 i.e., when the light propagates along the z-axis while
the sample is polarized along x.

6.A.2 Equations of evolution

The total Hamiltonian ĥtot = ĥA + ĥL + ĥint contains the Hamiltonian for atoms
(A), light (L) and the interaction (int). The effective Hamiltonian governs the atomic
dynamics and the evolution equations are derived straight through the Heisenberg
equations for matter and Maxwell-Bloch equations (neglecting retardation effects)
for light. We derive the equations of evolution for light an atoms in the following.

Heisenberg evolution for light can be recasted to a Maxwell-Block evolution for
the ladder operators as follows

∂

∂t
â(z, t) =

1√
2π

∫ ∞

−∞

∂

∂t
â(k, t)eikzdk =

=
1√
2π

∫ ∞

−∞

1

i~
[â(k, t), ĥA + ĥL + ĥint]e

ikzdk =

=
1√
2π

∫ ∞

−∞

1

i~

(
∫ ∞

−∞
dk′~ck′[â(k, t), â†(k′, t)]â(k′, t)

)

eikzdk +

+
1√
2π

∫ ∞

−∞

1

i~
[â(k, t), ĥint]e

ikzdk =
1

i~
[â(z, t), ĥint]−

− 1√
2π

∫ ∞

−∞
ickâ(k, t)eikzdk =

1

i~
[â(z, t), ĥint]− c

∂

∂z
â(z, t),

finally ( ∂∂t + c ∂∂z )â(z, t) = 1
i~[â(z, t), ĥint]. As said, we will neglect retardation effects,

i.e. we do not calculate dynamics on the time scale L/c of propagation across the
sample (equivalently we set c→∞).

In terms of the Stokes components then the evolution for light reads

∂

∂z
ŝi(z, t) =

1

i~c
[ŝi(z, t), ĥint(z, t)], (6.67)

while for atoms, Heisenberg evolution equations are

∂

∂t
ĵi(z, t) =

1

i~
[ĵi(z, t), ĥint(z, t)]. (6.68)

chanics that

ĵx =
1

2

X

mF

p

F (F + 1) −mF (mF + 1) (|mF + 1〉〈mF | + |mF 〉〈mF + 1|) ,

ĵy =
1

2i

X

mF

p

F (F + 1) −mF (mF + 1) (|mF + 1〉〈mF | − |mF 〉〈mF + 1|) ,

ĵz =
X

mF

mF |mF 〉〈mF |.

.
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Evolution for the ortogonal y and z components using Eqs. (6.67),(6.68), the
interacting Hamiltonian (6.65) in the linear regime, i.e. setting a0 = a2 = 0 and
a1 = 1 together with the commutation rules 7 gives rise to

∂

∂t
ĵy(z, t) = −aŝz(z, t)ĵx, (6.69)

∂

∂t
ĵz(z, t) = 0, (6.70)

∂

∂z
ŝy(z, t) = −a

c
ŝxĵz(z, t)δ(t − t′), (6.71)

∂

∂z
ŝz(z, t) = 0. (6.72)

Strong x-polarized atoms and light imposes ĵx(z, t) = jx and ŝx(z, t) = sx, thus

ĵx(z, t) = jx, (6.73)

∂

∂t
ĵy(z, t) = −aŝz(t)jx, (6.74)

ĵz(z, t) = ĵz(z), (6.75)

ŝx(z, t) = sx, (6.76)

∂

∂z
ŝy(z, t) = −a

c
sxĵz(z)δ(t − t′), (6.77)

ŝz(z, t) = ŝz(t). (6.78)

Finally, we integrate in space (
∫ L
0 ρAdz) and time (

∫ T
0 dt) to recover the equations

of evolution for the macroscopical variables of atoms and light

Jx =

∫ L

0
ĵx(z, t)ρAdz = jx, (6.79)

Ĵy(t = T )− Ĵy(t = 0) = −aŜzJx, (6.80)

Ĵz =

∫ L

0
ĵz(z)ρAdz = Jz(t = 0) = Jz(t = T ), (6.81)

Sx =

∫ T

0
ŝx(z, t)dt = sxT, (6.82)

Ŝy(z = L)− Ŝy(z = 0) = −aSxĴz, (6.83)

Ŝz =

∫ T

0
ŝz(t)dt = Ŝz(z = 0) = Ŝz(z = L). (6.84)

7For light [Ŝi, Ŝj ] = [
R T

0
ŝi(t)dt,

R T

0
ŝj(t

′)dt′] = i~
R T

0

R T

0
dtdt′ǫijk ŝk(t)δ(t − t′) =

i~ǫijk
R T

0
ŝk(t)dt = i~ǫijkŜk and atoms [ ˆji(z), ˆjj(z)] = i~ǫijk ĵk(z).
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In the following, it will be useful to think in terms of input/output variables,

i.e. we define the operators Ŝ
in/out
k as the Stokes operators characterizing the pulse

entering (z = 0) and leaving (z = L) the atomic sample. Analogously, Ĵ
in/out
k

correspond to initial (t = 0) and final state (t = T ) of the atomic spin. In this way
we can write the evolution as a linear equation system

Ĵout
y = Ĵ in

y − aŜin
z Jx, (6.85)

Ĵout
z = Ĵ in

z , (6.86)

Ŝout
y = Ŝin

y − aSxĴ in
z , (6.87)

Ŝout
z = Ŝin

z , (6.88)

recovering Eqs. (6.3)-(6.6) for α = 0 i.e., when the light propagates along the z-axis
while the sample is polarized along x.
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Chapter 7

Conclusions

Summarizing we have studied several quantum protocols with Continuous Variable
(CV) systems giving special importance to the efficiency such protocols can achieve
when considering current experimental possibilities. Independently of future tech-
nological improvements, noise is intrinsically ascribed to any measurement and ma-
nipulation. We have taken into account that, but also we have considered non-ideal
Gaussian resources and imperfections on the experimental realization. Regarding
Gaussian multipartite entanglement, we have used entanglement induced measure-
ment schemes, for the creation and manipulation of multipartite entanglement while
proposing a possible candidate physical system for its realization. Finally, motivated
by the performance enhancement offered by non-Gaussian states for communication
tasks, we have analyzed and proposed a correlation measure based on quadrature
correlations. Our measure, provides an excellent quantification of correlations not
only for Gaussian states but also for non-Gaussian states, where determination of
entanglement is normally not known. Furthermore, our measure has a low com-
putable cost compared to other methods which require a full tomographic analysis
of the state.

Specifically, we have first shown that the sharing of entangled Gaussian variables
and the use of only Gaussian operations permits efficient Quantum Key Distribution
against individual and finite coherent attacks. We have used the fact that all mixed
NPPT symmetric states can be used to extract secret bits to design an algorithm,
that efficiently succeeds for a secure extraction of a key. Whereas under individual
attacks all mixed NPPT symmetric states admit a finite efficiency, for finite coherent
attacks an additional condition constrains the parameters of the states. We have
introduced a figure of merit (the efficiency E) to quantify the number of classical
correlated bits that can be used to distill a key from a sample of M entangled states.
We have observed that this quantity grows with the entanglement shared between
Alice and Bob.

Secondly, we have proposed a protocol to solve detectable broadcast with entan-
gled Continuous Variable using Gaussian states and Gaussian operations only. Our
protocol relies on genuine multipartite entanglement distributed among the three
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parties, which specifically have to share two copies of a three-mode fully symmetric
Gaussian state. Interestingly, we have found that nevertheless not all entangled sym-
metric Gaussian states can be used to achieve a solution to detectable broadcast: a
minimum threshold exists on the required amount of multipartite entanglement. We
have moreover analyzed in detail the security of the protocol. In its ideal formula-
tion, our protocol requires that the parties share pure resource states, and that the
outcomes of homodyne detections are perfectly coincident and not affected by any
uncertainty; this however entails that our protocol achieves a solution with vanishing
probability. To overcome such a practical limitation, we have eventually considered a
more realistic situation in which firstly the tripartite Gaussian resources are affected
by thermal noise, and, more importantly, the homodyne detections are realistically
imperfect, and secondly there is a finite range of allowed values for the measurement
outcomes obtained by the parties. We have thoroughly investigated the possibility
to solve detectable broadcast via our protocol under these relaxed conditions. As a
result, we have demonstrated that there exists a broad region in the space of the rele-
vant parameters (noise, entanglement, range of the measurement shift, measurement
uncertainty) in which the protocol admits an efficient solution. This region encom-
passes amounts of the required resources which appear attainable with the current
optical technology (with a legitimate trade-off between squeezing and losses). We
can thus conclude that a feasible, robust implementation of our protocol to solve
detectable broadcast with entangled Gaussian states may be in reach.

Motivated by the relation between the entanglement and the distillation of clas-
sically correlated bits we analyzed which is the maximal number of correlated bits
(Q) that can be extracted from a CV state via quadrature measurements. We have
provided an operational quantification of the entanglement content of several rele-
vant non-Gaussian states (including the useful photon-subtracted states). Crucially,
one can experimentally measure Q by direct homodyne detections (of the quadra-
tures displaying optimal correlations only), in contrast to the much more demanding
full tomographical state reconstruction. One can then easily invert the (analytic or
numeric) monotonic relation between Q and the negativity to achieve a direct en-
tanglement quantification from the measured data. Our analysis demonstrates the
rather surprising feature that entanglement in the considered non-Gaussian states
can thus be detected and experimentally quantified with the same complexity as if
dealing with Gaussian states. In this respect, it is even more striking that the mea-
sure considered in this paper, based on (and accessible in terms of) second moments
and homodyne detections only, provides such an exact quantification of entanglement
in a broad class of pure and mixed non-Gaussian states, whose quantum correlations
are encoded nontrivially in higher moments too, and currently represent the pre-
ferred resources in CV Quantum Information. We focused on optical realizations
of CV systems, but our framework equally applies to collective spin components of
atomic ensembles, and radial modes of trapped ions. Finally, it is also surprising that
for all these family of states we have studied, the optimization of just one quadra-
ture scales monotonically with the negativity of the state. Although this could be
expected for pure Gaussian states, our study demonstrated that the non-Gaussian
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states obtained either as de-gaussifications of pure Gaussian states or mixings with
uncorrelated states preserve this property.

Finally, we have studied multipartite mesoscopic entanglement using a quan-
tum atom-light interface in various physical setups, in particular those in which the
ensembles cannot be addressed individually. Exploiting a geometric approach in
which light beams propagate through the atomic samples at different angles makes
it possible to establish and verify EPR bipartite entanglement and GHZ multipartite
entanglement with a minimal number of light passages and measurements, so that
the quantum non-demolition character of the interface is preserved. We have also
shown how to generate cluster-like states by a similar technique. Furthermore, we
have shown that the multipartite entanglement created by the quantum interface of
a single light beam can be appropriately tailored and even completely erased by the
action of a second pulse with different intensity. This control widens the possibili-
ties offered by measurement induced entanglement to perform quantum information
tasks.
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