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Abstract

Hysteresis is a nonlinear behavior encountered in a wide variety of processes

including biology, optics, electronics, ferroelectricity, magnetism, mechanics,

structures, among other areas. The presence of hysteresis can be detected

experimentally in physical systems by doing the following: Consider as input

of the hysteresis system the signal uγ = U0 sin(t/γ) with amplitude U0 and

frequency 1/γ. Let yγ be the corresponding system output. When yγ is plotted

against uγ , we get a curve Gγ parametrized with time. When this experiment

is repeated with different frequencies, and when γ → ∞, it is observed that

the sequence of graphs Gγ converges to some curve G? [15]. It is also observed

that G? converges asymptotically to a periodic orbit G◦ which is commonly

called hysteresis loop. If the curve Gγ is independent of γ, then the hysteretic

system is rate-independent like the ones described in [66]. Otherwise, we getGγ

depends on γ for the rate-dependent hysteresis systems like the ones described

in [42, 37, 32]. For linear systems G◦ is a line segment, and for hysteresis

systems G◦ is a non-trivial curve [15].

The detailed modeling of hysteresis systems using the laws of Physics is an

arduous task, and the obtained models are often too complex to be used in

applications. For this reason, alternative models of these complex systems have

been proposed [98, 23, 62, 53, 69]. These models do not come, in general, from

the detailed analysis of the physical behavior of the systems with hysteresis.
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Instead, they combine some physical understanding of the system along with

some kind of black-box modeling.

In the current literature, these models are mostly used within the following

black-box approach: given a set of experimental input-output data, how to

adjust the hysteresis model so that the output of the model matches the ex-

perimental data? The use of system identification techniques is one practical

way to perform this task. Once an identification method has been applied

to tune the hysteresis model, the resulting model is considered as a “good”

approximation of the true hysteresis when the error between the experimental

data and the output of the model is small enough. Then this model is used to

study the behavior of the true hysteresis under different excitations. By doing

this, it is important to consider the following remark. It may happen that a

hysteresis model presents a good match with the experimental real data for

a specific input, but does not necessarily keep significant physical properties

which are inherent to the real data, independently of the exciting input. In

the current literature, this issue has been considered in [58, 76] regarding the

passivity/dissipativity of Duhem model and in [53] regarding the stability of

the Bouc-Wen model.

In this thesis, we investigate the conditions under which the Duhem model

and the LuGre model are consistent with the hysteresis behavior. The concept

of consistency is formalized in [52] where a general class of hysteresis operators

is considered. The class of operators that are considered in [52] are the causal

ones, with the additional condition that a constant input leads to a constant

output. For these classes of systems, consistency has been defined formally.

Consider for example the Duhem model described by ẋ = f (x, u) g (u̇), where

u is the input and x is the state or the output [78] along with the sequence

of inputs uγ(t) = u(t/γ), t ≥ 0, γ > 0, and the corresponding sequence of

outputs xγ with ẋγ = f (xγ , uγ) g (u̇γ). Consistency means that the sequence

of functions t → xγ (γt) converges uniformly when γ → ∞. In this thesis, we

seek necessary conditions and sufficient ones for this uniform convergence to

hold for both Duhem model and LuGre friction model.
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Thesis layout

This thesis focuses on the consistency of the LuGre friction model and the

generalized Duhem model with hysteresis and is organized in four chapters. In

each chapter, all obtained results are illustrated by numerical simulations.

Chapter 1 presents background results that are needed throughout the thesis

and is divided into two sections. In Section 1.1, some mathematical results

are given. Section 1.2 summarizes the findings obtained by [52], where a new

a understanding of hysteresis is introduced and the notions of consistency and

strong consistency are formulated and explained.

Chapter 2 investigates the strong consistency of the LuGre friction model

and consists of two sections. Section 2.1 presents a literature review of the

friction and the LuGre model. The consistency and strong consistency are

studied in Section 2.2.

Chapter 3 focuses on the consistency of the generalized Duhem model and is

divided into four sections. Section 3.1 gives an introduction for the model.

Section 3.2 presents the problem statement. A classification of this model is

introduced in Section 3.3. Depending on that classification, necessary condi-

tions and sufficient ones are derived for the consistency to hold. This is done
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in Sections 3.4 and 3.5.

Chapter 4 presents the main conclusions.
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1
Background results

The present chapter gives some mathematical results that are needed in this

work.

1.1 Mathematical preliminaries

A real number x is said positive when x > 0, negative when x < 0, non-positive

when x ≤ 0, and non-negative when x ≥ 0. A function h : R → R is said

increasing when t1 < t2 ⇒ h(t1) < h(t2), decreasing when t1 < t2 ⇒ h(t1) >

h(t2), non-increasing when t1 < t2 ⇒ h(t1) ≥ h(t2), and non-decreasing when

t1 < t2 ⇒ h(t1) ≤ h(t2).

The Lebesgue measure on R is denoted µ. A subset of R is said measurable

when it is Lebesgue measurable. Consider a function p : I ⊂ R+ = [0,∞) →
Rm where I is some interval and m a positive integer; the function p is said

measurable when p is (M,B)-measurable where B is the class of Borel sets of

Rm and M is the class of measurable sets of R+. For a measurable function

p : I ⊂ R+ → Rm, ‖p‖∞,I denotes the essential supremum of the function |p|
on I where | · | is the Euclidean norm on Rm. When I = R+, it is denoted

simply ‖p‖∞.

Definition 1.1.1. [88, p. 24] For any measurable sets X ⊆ Rm and Y ⊆ Rn,

we define L1 (X, Y ) to be the collection of measurable functions f : X → Y for
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2 Background results

which ∫
X

|f | dµ <∞.

The members of L1 (X, Y ) are called Lebesgue integrable or summable func-

tions from X to Y . Now, we present the Dominated Lebesgue Theorem:

Theorem 1.1.1. [88, p. 26] Let X be a measurable subset of R+. Assume

that we have a sequence of measurable functions fn : X → Rm; for any positive

integer n, such that there exists a function f : X → Rm with

lim
n→∞

fn (ϑ) = f (ϑ) ,∀ϑ ∈ X.

If there exists a function h ∈ L1 (X,R+) such that

|fn (ϑ)| ≤ h (ϑ) ,∀ϑ ∈ X, ∀ positive integer n,

then f ∈ L1 (X,Rm) and

lim
n→∞

∫
X

fndµ =

∫
X

fdµ.

Definition 1.1.2. [87, p. 104] A function h : I ⊆ R→ Rm (I is an interval)

is said to be absolutely continuous on I if for a given ε > 0, there exists δ > 0

such that
k∑
i=1

∣∣h (ϑ′i)− h (ϑi)
∣∣ < ε,

for every k non-overlapping finite collection of
{(
ϑi, ϑ

′
i

)}k
i=1

of intervals which

are subsets of I with
k∑
i=1

∣∣ϑ′i − ϑi∣∣ < δ.

Each absolutely continuous function is continuous and differentiable almost

everywhere on its domain [87].
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1.1 Mathematical preliminaries 3

Consider the system

ẋ (t) = h (t, x (t)) , (1.1)

x(0) = x0, (1.2)

where x (t) ∈ Rm is the state vector at instant t, m is some positive integer,

and h : R+ ×Rm → Rm.

Definition 1.1.3. [39, p. 4] Let I ⊆ R+ be any interval. A function x : I →
Rm is said to be Carathéodory solution for (1.1) if

• The function x is absolutely continuous on each closed interval that is

subset of I,

• The function x satisfies (1.1) almost everywhere on I.

The following theorems state the existence and uniqueness of Carathéodory

solutions for (1.1)-(1.2).

Theorem 1.1.2. [39, p. 4] Assume that for each positive numbers a and b,

we have

• For almost all t ∈ [0, a], the function h (t, ·) is continuous on the set

{α ∈ Rm/ |α− x0| < b}.

• For each α ∈ {α ∈ Rm/ |α− x0| < b}, the function h (·, α) is measurable

on [0, a].

• There exists a function m : R+ → R+ that is summable on [0, a] such

that |h (t, α)| ≤ m (t) for all t ∈ [0, a] and for all α ∈ Rm that satisfy

|α− x0| < b.

Then there exists some d > 0 such that the system (1.1)-(1.2) admits a

Carathéodory solution that is defined on [0, d).
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Definition 1.1.4. [39, p. 5] A function h : D ⊆ R+×Rm → Rm is Lipschitz

if there exists a summable function l : R+ → R+ such that

|h (t, α1)− h (t, α2)| ≤ l (t) |α1 − α2| ,

for almost all t ≥ 0 and for all α1, α2 ∈ Rm with (t, α1) , (t, α2) ∈ D.

Theorem 1.1.3. [39, p. 5] Assume that the system (1.1)-(1.2) has a solution.

Assume that the function h : R+ × Rm → Rm is Lipschitz as in Definition

1.1.4, then the solution of system (1.1)-(1.2) is unique.

Note that if the solution of (1.1)-(1.2) is bounded, its solution is global, i.e.

is defined on R+ (see [90, p. 71]).

Theorem 1.1.4. [39, p. 5] Let M be the set of m×m matrices. Assume that

all components of the matrices

A : R+ →M,

b : R+ → Rm,

are summable on each subset of R+. Then the linear time-varying system

ẋ (t) = A (t)x + b (t) , t ≥ 0 has a unique solution that is defined on R+, for

each initial condition x (0) = x0 ∈ R.

Definition 1.1.5. [100, p. 235] The function Γ : R \ {0,−1,−2, . . .} → R is

defined as

Γ (α) =

∞∫
0

tα−1e−tdt,∀α∈ R \ {0,−1,−2, . . .} . (1.3)

Observe that the gamma function is defined on the whole R except at the

non-positive integers (see Figure 1.1) because the improper integral in (1.3)

diverges at that points. Furthermore, it can be shown that Γ (1/2) =
√
π and

that the gamma function satisfies Γ (k + 1) = kΓ (k) for each positive integer k.
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Figure 1.1: The gamma function Γ

1.2 Characterization of hysteresis

This section summarizes the results obtained in [52].

1.2.1 Class of inputs

Consider the Sobolev space W 1,∞(R+,Rn) of absolutely continuous functions

u : R+ → Rn, where n is a positive integer. For this class of functions, the

derivative u̇ is defined a.e, and we have ‖u‖∞ < ∞, ‖u̇‖∞ < ∞. Endowed

with the norm ‖u‖1,∞ = max (‖u‖∞, ‖u̇‖∞), W 1,∞(R+,Rn) is a Banach space

[1]. For u ∈ W 1,∞(R+,Rn), let ρu : R+ → R+ be the total variation of u

on [0, t], that is ρu(t) =
∫ t

0
|u̇(τ)| dτ ∈ R+. The function ρu is well defined

as u̇ ∈ L1
loc(R+,Rn)1. It is non-decreasing and absolutely continuous. Denote

ρu,max = lim
t→∞

ρu(t) and let

• Iu = [0, ρu,max] if ρu,max = ρu(t) for some t ∈ R+ (in this case, ρu,max is

necessarily finite).

• Iu = [0, ρu,max) if ρu,max > ρu(t) for all t ∈ R+ (in this case, ρu,max may

be finite or infinite).

1L1
loc(R+,Rn) is the space of locally integrable functions R+ → Rn.
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Lemma 1.2.1. Let u ∈ W 1,∞(R+,Rn) be non-constant so that the interval

Iu is not reduced to a single point. Then there exists a unique function ψu ∈
W 1,∞(Iu,Rn) that satisfies ψu ◦ ρu = u.

Consider the linear time scale change sγ(t) = t/γ, for any γ > 0 and t ≥ 0.

Lemma 1.2.2. For all γ > 0, we have Iu◦sγ = Iu and ψu◦sγ = ψu.

1.2.2 Class of operators

Let Ξ be a set of initial conditions. Let H be an operator that maps the in-

put function u ∈ W 1,∞(R+,Rn) and initial condition ξ0 ∈ Ξ to an output in

L∞(R+,Rm). That is H : W 1,∞(R+,Rn)× Ξ→ L∞(R+,Rm). The operator

H is said to be causal if the following holds [98, p.60]: ∀
(
u1, ξ

0
)
,
(
u2, ξ

0
)
∈

W 1,∞(R+,Rn)× Ξ, if u1 = u2 in [0, τ ], then H
(
u1, ξ

0
)

= H
(
u2, ξ

0
)

in [0, τ ].

Let (u, ξ0) ∈ W 1,∞(R+,Rn) × Ξ and y = H
(
u, ξ0

)
∈ L∞(R+,Rm). In

the rest of this work, only causal operators are considered. Additionally, we

consider that the operator H satisfies the following.

Assumption 1.2.1. Let (u, ξ0) ∈ W 1,∞(R+,Rn) × Ξ; if there exists a time

instant θ ∈ R+ such that u is constant in [θ,∞), then the corresponding output

H(u, ξ0) is constant in [θ,∞).

Assumption 1.2.1 is verified by all causal and rate-independent hysteresis op-

erators (see for example [65, Proposition 2.1] for a proof). This includes re-

lay hysteresis, Ishlinskii model, Preisach model, Krasnosel’skii and Pokrovskii

hysteron and generalized play [66]. Assumption 1.2.1 is also verified by some

causal and rate-dependent hysteresis models like the generalized Duhem model

[72].

Lemma 1.2.3. There exists a unique function ϕu ∈ L∞(Iu,Rm) that satisfies

ϕu ◦ ρu = y. Moreover, we have ‖ϕu‖∞,Iu ≤ ‖y‖∞. If y is continuous on R+,

then ϕu is continuous on Iu and we have ‖ϕu‖∞,Iu = ‖y‖∞.
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Figure 1.2: Simulations of Example 1.2.1

Example 1.2.1. Let the input u ∈ W 1,∞(R+,R) be defined for all t ≥ 0 as

u (t) = sin (t). Figure 1.2a shows the total variation ρu of the input u. Lemma

1.2.1 states that there exists a unique function ψu ∈ W 1,∞(Iu,Rn) that satisfies

ψu ◦ ρu = u. The graph of ψu is presented in Figure 1.2b. Now, consider the

system

ẋ (t) = (−x (t) + u (t)) (u̇ (t))2 , t ≥ 0, (1.4)

x(0) = 0. (1.5)

where x ∈ R is the output and u ∈ W 1,∞(R+,R) is the input of the system.

Equation (1.4) can be written as the linear time-varying system of Theorem

1.1.4. It is easy to show that all assumptions of Theorem 1.1.4 are satisfied.

Thus, system (1.4)-(1.5) admits a unique solution that is defined on R+. This

solution is given in Figure 1.2c.

The operator H which maps the input function u ∈ W 1,∞(R+,R) and initial
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t

u(t)

Figure 1.3: A wave periodic signal

condition ξ0 ∈ R to output y in L∞(R+,R) is well defined. Moreover, the

operator H is causal because if we pick two input signals which are equal on

some interval [0, τ ] , τ > 0, their outputs are also equal on the same interval

since the initial condition is the same for both inputs. On the other hand,

Assumption 1.2.1 is satisfied because of (1.4).

All the assumptions in this section are satisfied and thus we conclude from

Lemma 1.2.1 that there exists a unique function ϕu ∈ L∞(Iu,R) that satisfies

ϕu ◦ ρu = y (see the graph of ϕu in Figure 1.2d).

1.2.3 Definition of consistency and strong consistency

Definition 1.2.1. Let u ∈ W 1,∞(R+,Rn) and initial condition ξ0 ∈ Ξ be

given. Consider an operator H : W 1,∞(R+,Rn) × Ξ → L∞(R+,Rm) that

is causal and that satisfies Assumption 1.2.1. The operator H is said to be

consistent with respect to input u and initial condition ξ0 if and only if the

sequence of functions {ϕu◦sγ}γ>0 converges in L∞(Iu,Rm) as γ →∞.

For any causal model of hysteresis that satisfies Assumption 1.2.1, consis-

tency should hold.

Let T > 0. In what follows we consider that the input u is T -periodic.
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1.2 Characterization of hysteresis 9

Definition 1.2.2. A T -periodic function w : R+ → R is said to be wave

periodic if there exists some T+ ∈ (0, T ) such that

• The function w is continuous on R+

• The function w is continuously differentiable on
(
0, T+

)
and on

(
T+, T

)
• The function w is increasing on

(
0, T+

)
and is decreasing on

(
T+, T

)
An example of a wave periodic function is given in Figure 1.3.

Lemma 1.2.4. If the input u ∈ W 1,∞(R+,Rn) is non-constant and T -periodic,

then Iu = R+ and ψu ∈ W 1,∞(R+,Rn) is ρu (T )-periodic. Furthermore, if n =

1 and u is wave periodic, then ψu is also wave periodic and ψ̇u (%) = 1 for al-

most all % ∈
(
0, ρu

(
T+
))

and ψ̇u (%) = −1 for almost all % ∈
(
ρu
(
T+
)
, ρu (T )

)
.

For any positive integer k, define ϕ∗u,k ∈ L
∞ ([0, ρu (T )] ,Rm) as

ϕ∗u,k (%) = ϕ∗u (ρu (T ) k + %) ,∀% ∈ [0, ρu (T )] .

Definition 1.2.3. The operator H is said to be strongly consistent with respect

to input u and initial condition ξ0 if and only if it is consistent with respect to

u and ξ0, and the sequence of functions ϕ∗u,k converges in L∞ ([0, ρu (T )] ,Rm)

as k →∞.

If the operator H is strongly consistent with respect to input u and initial

condition ξ0, then {(ϕ◦u (%) , ψu (%)) , % ∈ [0, ρu (T )]} represents the so-called

hysteresis loop, where ϕ◦u = limk→∞ ϕ
∗
u,k.
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2
The LuGre friction model

2.1 Literature review on friction models

Friction is a force of resistance encountered when one object is moved while it

is in contact with another [8, 94]. It is derived from the Latin word fricare, “to

rub”. Although the objects might look smooth, they are very rough and jagged

at the molecular level. Therefore, no wonder that friction exists in almost all

mechanical systems [17].

Leonardo da Vinci (1452-1519) is considered the first who studied friction

systematically [8, 103, 9, 33]. He realized how important friction is for the

working of machines. Da Vinci stated the two basic laws of friction 200 years

before Newton even defined what force is. The first law is: the areas in con-

tact have no effect on friction. The second law is: friction produces double

the amount of effort if the weight be doubled. He did not publish his theories.

The only evidence of their existence is in his vast collection of journals. Two

centuries after Da Vinci’s discoveries, the French physicist Guillaume Amon-

tons (1663-1705) rediscovered the two basic laws of friction first put forward

by Da Vinci. He believed that friction was a result of the work done to lift one

surface over the roughness of the other or from the deforming or the wearing

of the other surface [33]. These results were then verified mathematically by

Charles-Augustin de Coulomb (1736-1806) [22]. Coulomb published his work

referring to Amontons and deduced the following law: “the friction between
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12 The LuGre friction model

Figure 2.1: Leonardo da Vinci (1452-1519)

two surfaces is proportional to the force pressing one to the other”. The pre-

vious law of friction is known as the “Amontons-Coulomb Law” referring to

work done by the two scientists.

Since the discoveries of the centuries 13-16, researchers have been studying

friction in many contexts, including identification [19, 10, 60] and compensation

[41, 67, 24, 60]. Friction compensated system would be of interest to many

companies, especially to those whose primary industry deals with systems that

require precise motion control. Detailed studies about friction and its modeling

techniques can be found in [8, 94].

There are many types of friction, depending upon the nature of materials,

that it is created between. Fluid friction, lubricated friction and dry friction

are the most popular types of friction [14]. Fluid friction occurs in fluids

that are moving relative to each other [14]. In the case of fluid friction, if

a fluid separates two solid surfaces, then the friction is said to be lubricated

[49]. Finally, dry friction is the friction force created between solid surfaces in

contact with each other [11].

Dry friction is divided into static and dynamic friction [68]. Static friction is

friction between two or more solid objects that are not moving relative to each

other. For example between a cement block and a wooden floor. The static
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2.1 Literature review on friction models 13

Figure 2.2: Static friction models: a) Coulomb friction; b) Coulomb + viscous;

c) Coulomb + viscous + stiction; d) Coulomb + viscous + Stribeck

friction force must be overcome by an applied force before an object can move.

It is measured as the maximum force the bodies will sustain before motion

occurs. In the static models, friction depends only on the relative velocity

between two bodies in contact [68, 97, 31]. Dynamic friction occurs between

objects that are moving relative to each other and rub together, as for example

the force that works against sliding a cement block along a wooden floor.

Both dynamic friction and static friction, depend on the nature of the sur-

faces in contact and the magnitude of the force that is acted upon the body

in motion. However, static friction is usually greater than dynamic friction for

the same surfaces in contact [70]. In some models, static friction can be less

than dynamic friction [81].

Static friction models

The first mathematical friction model was proposed by Coulomb in 1773 AD

[48]. This model, despite its simplicity, is able to capture the basic physical
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14 The LuGre friction model

behavior of frictionally induced vibrations. The main idea behind this model

is that the friction force F , opposes motion and that it is independent of

the magnitude of the velocity v and contact area [28, 2]. It can therefore be

described as

F = FC · sgn (v) , (2.1)

where the friction force FC > 0 is proportional to the normal load FN ∈ R,

i.e. FC = µ |FN |, µ > 0 being the friction coefficient of the normal load FN .

The signum function sgn : R→ R is such that

sgn (ϑ) =

1 ϑ > 0

−1 ϑ < 0

The description of friction given in (2.1) is termed Coulomb friction (see Figure

2.2a). In this model, friction force is not specified for zero velocity. It may

take any value in the interval [−FC , FC ], depending on how the sgn function

is defined. In fact, all the classical static models of friction have the same

problem. The Coulomb friction model, because of its simplicity, is used for

friction compensation [41, 13].

In the 19th century, the theory of hydrodynamics was developed leading to

expressions for the friction force caused by the viscosity of lubricants [82, 80].

The viscous friction can be described by

F = σ · v,

where σ > 0 in this equation represents a proportionality constant and v is the

relative velocity between the moving bodies. Unlike Coulomb friction model,

the viscous friction force depends on the magnitude of the velocity (see Figure

2.2b).

Stiction is the short term that describes the static friction force at rest. In

1833, Mortin observed in [71] that stiction is higher than Coulomb friction level

[18]. Friction at rest (stiction) can be described as a function of an external
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2.1 Literature review on friction models 15

force Fe in addition to velocity as follows [83]:

F =

Fe if v = 0 and |Fe| < FS

FS sgn (Fe) if v = 0 and |Fe| ≥ FS
(2.2)

where FS is the static (breakaway) force. We observe from (2.2) that stiction

at zero velocity can take any value in the interval [−FS , FS ] as illustrated in

Figure 2.2c.

At the beginning of the 20th century, Stribeck described the friction coef-

ficient in lubricated bearings, and observed that the friction force does not

decrease discontinuously as in Figure 2.2c, but that the velocity dependence

is continuous as shown in Figure 2.2d [93, 8, 25, 94, 36]. In his honor, the

deep drop of friction while increasing the relative velocity is known as Stribeck

effect. A general description of friction is

F =


F∗ (v) if v 6= 0

Fe if v = 0 and |Fe| < FS

FS sgn (Fe) if v = 0 and |Fe| ≥ FS

where F∗(v) is an arbitrary function that looks like the plot in Figure 2.2d.

Dynamic friction models

Dynamic friction occurs when two objects are moving relative to each other,

with their surfaces in contact. It is the frictional force that slows down moving

object until they stop [91, 70].

Many properties that cannot be captured by typical static friction models,

may be described by dynamic friction models [31]. Presliding displacement,

frictional lag, varying break-away force, and stick-slip motion are examples of

such properties. More details the previous properties come next.

Presliding displacement refers to displacement that occurs just before a com-

plete slip between two contacting surfaces takes place [93]. It is due to limited
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16 The LuGre friction model

Figure 2.3: Frictional lag

stiffness of the contact asperities (roughness features) on the surfaces [45]. In

presliding regimes, the friction force appears to be a function of displacement

rather than velocity [9]. Studying presliding friction is useful in control appli-

cations because a hysteresis behavior may exist between the presliding friction

force input and the displacement output [85, 94, 4].

Experimental results show that relative displacement between two bodies

in contact may occur when the applied tangential force is less than the static

friction (stiction) [27, 56]. As the displacement increases the tangential force

increases more and more slowly, approaching asymptotically to the stiction

force [27]. On the other hand, as the displacement increases more and more

asperity junctions 1 will deform elastically and then plastically [27, 7]. When

the applied tangential force reaches the stiction level, the asperity junctions

break and the sliding begins [27, 56]. This elastic-plastic process cause in-

creases and decreases in the applied tangential force which causes hysteresis.

Frictional lag; also called hysteresis in the velocity, refers to the delay be-

tween a change in velocity and the corresponding change in friction [47]. The

origin of friction lag in lubricated friction relates to the time required before

the friction force changes with changing sliding velocity. Experiments on fric-

1asperity junctions are the load bearing interfaces between rubbing surfaces
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2.1 Literature review on friction models 17

Figure 2.4: Varying break-away force

tion lag ensure that hysteresis may occur between friction force and velocity,

where the friction force for increasing velocities is larger than the friction force

for decreasing velocities [25]. Frictional lag is presented in Figure 2.3.

The break-away force is the force required to overcome the stiction and

initiate motion [8]. Varying break-away force is the dependence of the break-

away force on the rate of increase of the applied force [27, 79] (see Figure

2.4).

Stick-slip concept has been introduced for the first time in [16]. It is a

repeated sequences of sticking spontaneous jerking motion that can occur when

two objects are sliding over each other [7], where in a first phase of relatively

small displacement (stick) strain energy is accumulated which in a second

phase (slip) transforms into kinetic energy [22, 35]. In other words, stick-slip

motion occurs when friction at rest is larger than during motion [25].

LuGre friction model

Each surface has a number of asperities at the microscopic level. This is

pictured by Haessig et al. [43] as a contact through elastic bristles. Haessig et

al. [43] introduced a system that describes the friction between two surfaces
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18 The LuGre friction model

Figure 2.5: LuGre model

in contact depending upon the idea that friction is caused by a large number

of interacting bristles. This idea was then employed by Canudas de Wit et al.

[25] to derive a new friction model which treats the low velocity friction using

a model of the deflection of elastic bristles as in Figure 2.5 [59, 31, 25, 75].

This model is called LuGre because it is resulted from a collaboration between

control groups in Lund and Grenoble [25]. The LuGre model has the form

[59]:

ẋ (t) = −σ0
|u̇ (t)|
µ (u̇ (t))

x (t) + u̇ (t) ,∀t ≥ 0, (2.3)

x(0) = x0, (2.4)

F (t) = σ0x (t) + σ1ẋ (t) + ν (u̇ (t)) . (2.5)

where

• u ∈ W 1,∞(R+,R) is the relative displacement and is the input of the

system;

• x(t) ∈ R is the average deflection of the bristles and is the inner state of

the model;

• x0 ∈ R is the initial state;

• F (t) ∈ R is the friction force and is the output of the system;

• σ0 > 0 is stiffness of the bristles;
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2.2 Consistency of the LuGre model 19

• σ1 > 0 is the viscous friction coefficient;

• µ ∈ C0 (R,R) 2 represents the macro-damping friction with µ (ϑ) >

0,∀ϑ ∈ R. This function may model the Stribeck effect;

• ν ∈ C0 (R,R) is a memoryless velocity-dependent function that repre-

sents the viscous friction.

Typically, the function ν (ϑ) takes the form ν (ϑ) = σ2ϑ,∀ϑ ∈ R, where the

parameter σ2 > 0 is the viscous friction coefficient. A reasonable choice of

µ (ϑ) giving a good approximation of the Stribeck effect is (see [25]):

µ (ϑ) = FC + (FS − FC) e−|ϑ/vs|
α

, (2.6)

for all ϑ ∈ R, where FC > 0 is the Coulomb friction force, FS > 0 is the

stiction force, vs ∈ R is the Stribeck velocity, and α is a positive constant.

The LuGre model is able to capture hysteresis, Stribeck effect, stick-slip

motion, presliding displacement, varying break-away force and frictional lag

effects [59, 85, 46]. Thus, it is widely used to describe the friction phenomenon

[78, 59]. The LuGre model behaves like a linear spring/damper pair when it

is linearized at rest [25]. Algebraic necessary and sufficient conditions for the

dissipativity of the LuGre model are obtained in [12]. The model is used for

friction compensation [40, 57, 105, 102, 89, 64, 95], and it is studied in terms

of parameter identification [101, 84, 92].

2.2 Consistency of the LuGre model

In this section, we study the consistency and the strong consistency of the

LuGre model (2.3)-(2.5). To this end, we need to prove first the existence of a

solution for the system. This comes next.

In Equation (2.3), the function g(u̇) is measurable [88, Theorem 1.12(d)].

Thus, the differential equation (2.3) can be seen as a linear time-varying system

2C0(R,R) is the space of continuous functions µ : R→ R, with the norm ‖·‖∞.
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20 The LuGre friction model

that satisfies all assumptions of [39, Theorem 3]. This implies that a unique

absolutely continuous solution of (2.3) exists on R+ (see Theorem 1.1.4).

Now we present some mathematical preliminaries that will be used in Lemma

2.2.2 which includes the main results of this Chapter.

We define some operators for the equations (2.3)-(2.5) as follows:

• The operatorHs : W 1,∞(R+,R)×R→ L∞(R+,R) such thatHs(u, x0) =

x

• The operatorHo : W 1,∞(R+,R)×R→ L∞(R+,R) such thatHo(u, x0) =

F

Now consider the following system.

ẋ (t) = −σ0
|v (t)|
µ (v (t))

x (t) + v (t) , (2.7)

x(0) = x0, (2.8)

F (t) = σ0x (t) + σ1ẋ (t) + ν (v (t)) . (2.9)

in which v ∈ L∞(R+,R). In equations (2.7)-(2.9), consider the following

operators:

• The operator H ′s : L∞(R+,R)×R→ L∞(R+,R) such that H ′s(v, x0) =

x

• The operator H ′o : L∞(R+,R)×R→ L∞(R+,R) such that H ′o(v, x0) =

F

Observe that the operators H ′s and H ′o are causal due to the uniqueness of the

solutions of Equation (2.3).

Consider the left-derivative operator ∆− defined on W 1,∞(R+,R) by

[∆−(u)](t) = lim
τ↑t

u(τ)− u(t)

τ − t

The operator ∆− is causal as [∆−(u)](t) depends only on values of u(τ) for

τ ≤ t, and we have ∆−(u) = u̇ a.e. as u ∈ W 1,∞(R+,R) so that ∆−(u) ∈
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2.2 Consistency of the LuGre model 21

L∞(R+,R).

Note that Hs = H ′s ◦ (∆−, x0) and Ho = H ′o ◦ (∆−, x0) so that the operators

Hs and Ho are causal. Observe also that Hs and Ho satisfy Assumption 1.2.1.

Proposition 2.2.1. Let u ∈ W 1,∞(R+,R). There exists a unique function

vu ∈ L∞ (Iu,R) that is defined by vu ◦ ρu = u̇. Moreover, ‖vu‖∞,Iu ≤ ‖u̇‖∞.

Assume that u̇ is nonzero on a set A ⊆ R that satisfies µ (ρu(R\A)) = 0.

Then, vu is nonzero almost everywhere.

Proof. The operator ∆− : W 1,∞(R+,R)→ L∞(R+,R) is causal and satisfies

Assumption 1.2.1. The first part of Proposition 2.2.1 follows immediately from

Lemma 1.2.3. Now, let B = {% ∈ Iu/vu(%) = 0}, then B ⊆ ρu(R\A) which

implies that µ(B) = 0.

In general, u̇ does not need to be nonzero almost everywhere to make vu

non-zero. This fact is illustrated in Example 2.2.1.

Example 2.2.1. Let u ∈ W 1,∞ (R+,R) be a periodic function of period 3 such

that

u (t) =


−t 0 ≤ t < 1

−1 1 ≤ t < 2

t− 3 2 ≤ t < 3

Functions u, u̇, and ρu are shown respectively in Figures 2.6a, 2.6b, and 2.6c.

Let us focus on the interval [0, 3]. The function u is zero on [1, 2], and the

total variation ρu maps the interval [1, 2] into the singleton {1}. Therefore, vu

is non-zero almost everywhere as we observe in Figure 2.6d.

In the rest of the section, we consider that the input u satisfies the conditions

of Proposition 2.2.1.

Consider the time scale change sγ(t) = t/γ, γ > 0, t ≥ 0. When the input
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Figure 2.6: Simulations of Example 2.2.1

u ◦ sγ is used instead of u, system (2.3)-(2.5) becomes

ẋγ (t) = −σ0

∣∣∣ u̇◦sγ(t)
γ

∣∣∣
µ
(
u̇◦sγ(t)

γ

)xγ (t) +
u̇ ◦ sγ (t)

γ
, (2.10)

xγ(0) = x0, (2.11)

Fγ (t) = σ0xγ (t) + σ1ẋγ (t) + ν

(
u̇ ◦ sγ (t)

γ

)
. (2.12)

When γ = 1, system (2.10)-(2.12) reduces to (2.3)-(2.5).

Lemma 1.2.3 shows that for any γ > 0, there exists a unique function

xu◦sγ ∈ L∞ (Iu,R) such that xu◦sγ ◦ ρu◦sγ = xγ , and a unique function

ϕu◦sγ ∈ L∞ (Iu,R) such that ϕu◦sγ ◦ ρu◦sγ = Fγ . Using the change of vari-

ables % = ρu◦sγ (t), it follows from Equations (2.10)-(2.12), Lemma 1.2.2 and
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Proposition 2.2.1 that

ẋu◦sγ (%) = − σ0

µ
(
vu(%)
γ

)xu◦sγ (%) + ψ̇u (%) , (2.13)

xu◦sγ (0) = x0, (2.14)

ϕu◦sγ (%) = σ0xu◦sγ (%) +
σ1

γ
|vu (%)| ẋu◦sγ (%) + ν

(
vu (%)

γ

)
, (2.15)

for all γ > 0 and for almost all % ∈ Iu.

Problem statement : The aim of this section is to analyze the convergence prop-

erties of the sequence of functions ϕu◦sγ in order to study the consistency and

strong consistency of the operator Ho.

The following lemma generalizes Theorem 4.18 in [61, p.172]. Indeed, in [61],

continuous differentiability is needed, while in Lemma 2.2.1, we only need abso-

lute continuity. Also, in [61], the inequality on the derivative of the Lyapunov

function is needed everywhere, while in Lemma 2.2.1 it is needed only almost

everywhere.

Lemma 2.2.1. Consider a function z : [0, ω) ⊆ R+ → R+, where ω > 0 is

finite or infinite. Assume the following

1. The function z is absolutely continuous on each compact interval of [0, ω).

2. There exist z1 ≥ 0 and z2 > 0 such that z1 < z2, z (0) < z2 and

ż (t) ≤ 0 for almost all t ∈ [0, ω) that satisfy z1 < z (t) < z2. (2.16)

Then, z (t) ≤ max (z (0) , z1), ∀t ∈ [0, ω).

Proof. We discuss two cases, CASE I: z (0) ≤ z1 and CASE II: z1 < z (0) < z2.
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24 The LuGre friction model

CASE I: z (0) ≤ z1.

The objective of what follows is to prove that ∀t ∈ [0, ω) we have z (t) ≤
z1. To this end, assume that ∃ t1 ∈ (0, ω) such that z (t1) > z1. Put C =

{τ ∈ [0, ω)/ z (t) ≤ z1,∀t ∈ [0, τ ]}. The set C is nonempty because 0 ∈ C.

Define t2 := SupC, then there exists a real sequence {τn ∈ C}∞n=1 such that

limn→∞ τn = t2. By the continuity of z, we have z (t2) = limn→∞ z (τn) ≤ z1.

This fact implies that t2 ∈ C leading to t2 < t1. Also, there exists a real

sequence {τ ′n > t2}∞n=1 such that z (τ ′n) > z1,∀n ∈ N and limn→∞ τ
′
n = t2.

Since z is continuous we get z (t2) ≥ z1 which leads to z (t2) = z1. Let

D = {t ∈ [t2, t1] / z (t) = z1}. The set D is nonempty since t2 ∈ D. Define

t3 := SupD, then using a similar argument as above we get t3 ∈ D which

implies that z(t3) = z1 and t3 < t1.

Claim 1. z (t) > z1, ∀t3 < t ≤ t1.

Proof. Assume that ∃t4 ∈ (t3, t1] such that z (t4) ≤ z1. By definition of t3,

we get z (t4) < z1. Since z is continuous and z (t4) < z1 < z (t1), we can use

the Intermediate Value Theorem [6] to find t5 ∈ (t4, t1) such that z (t5) = z1

which implies that t5 ∈ D and t5 > t3 which is a contradiction.

Let E = {t ∈ [t3, t1] / z (t) = z2}. We consider the following sub-cases E = ∅
and E 6= ∅. If E = ∅, then z (t1) < z2 and hence Claim 1 and (2.16) imply

that

ż (t) ≤ 0, for almost all t ∈ (t3, t1].

Thus, the absolute continuity of the function z implies

t1∫
t3

ż (t) dt = z (t1)− z (t3) ≤ 0,

which contradicts the fact that z (t3) = z1 < z (t1). Now, if E 6= ∅, let

t6 = InfE. It can be shown that t6 ∈ E and t3 < t6. Thus, Claim 1 and (2.16)
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give

ż (t) ≤ 0, for almost all t ∈ (t3, t6),

which also contradicts the facts that z is absolutely continuous on each compact

interval and z (t3) = z1 < z2 = z (t6).

We have thus proved that, in CASE I,

z (t) ≤ z1, ∀t ∈ [0, ω) whenever z (0) ≤ z1. (2.17)

CASE II: z1 < z (0) < z2.

Assume that ∃ t1 ∈ (0, ω) such that z (t1) = z1. Let t2 > 0 be the smallest

real number such that z (t2) = z1 (it exists due to the continuity of z). Then,

seeing t2 as an initial time, and z1 as an initial condition, it follows from CASE

I that ∀t ≥ t2 we have z(t) ≤ z1. So we have just to analyze what happens

in the interval [0, t2] and discuss the case ∀t ∈ [0, ω), z(t) > z1. The analysis

of both situations is the same so that we focus on the case ∀t ∈ [0, ω), z(t) > z1.

Assume that ∃ t3 ∈ (0, ω) such that z (t3) = z2. Let t4 > 0 be the smallest

real number such that z (t4) = z2 (it exists due to the continuity of z). Then,

∀t ∈ [0, t4) we have z1 < z(t) < z2 which implies that for almost all t ∈ [0, t4)

we have ż(t) ≤ 0. Since z is absolutely continuous, it follows that
∫ t4

0
ż(t) dt =

z(t4) − z(0) = z2 − z(0) ≤ 0. This contradict the fact that z2 > z(0) which

means that ∀t ≥ 0, z(t) < z2. Since ∀t ∈ [0, ω), z(t) > z1, it follows that

∀t ∈ [0, ω), ż(t) ≤ 0 so that ∀t ∈ [0, ω),
∫ t

0
ż(τ) dτ = z(t)− z(0) ≤ 0.

As a conclusion, we have proved that in CASE II that ∀t ∈ [0, ω), z(t) ≤
z(0).

Example 2.2.2. We want to study the stability of the following system

ẋ (t) = −x3 (t) + u (t) , (2.18)

x(0) = x0, (2.19)



i
i

“Dissertation” — 2013/12/12 — 1:28 — page 26 — #38 i
i

i
i

i
i

26 The LuGre friction model

where x0 and state x take values in R, and input u ∈ W 1,∞(R+,R). System

(2.18)-(2.19) has an absolutely continuous solution that is defined on an in-

terval of the form [0, ω) [39, p.4].

Let z : [0, ω) → R+ be such that z (t) = x2 (t) ,∀t ∈ [0, ω). The function z is

absolutely continuous on each compact subset of [0, ω) because x is absolutely

continuous. Thus, Condition 1 in Lemma 2.2.1 is satisfied.

We have for almost all t ∈ [0, ω) that

ż (t) = 2x (t) · ẋ (t)

= 2x (t)
(
−x3 (t) + u (t)

)
≤ −2z2 (t) + 2 ‖u‖∞

√
z (t).

Thus,

ż (t) ≤ 0 for almost all t ∈ [0, ω) that satisfy ‖u‖2/3∞ < z (t) .

Therefore, Condition 2 in Lemma 2.2.1 is satisfied with z1 = ‖u‖2/3∞ and z2

can be any positive real number such that

z2 > max (z (0) , z1) = max
(
x2

0, ‖u‖
2/3
∞

)
.

Thus, we deduce from Lemma 2.2.1 that

z (t) ≤ max
(
z (0) , ‖u‖2/3∞

)
= max

(
x2

0, ‖u‖
2/3
∞

)
, ∀t ∈ [0, ω),

so that

|x (t)| ≤ max
(
|x0| , 3

√
‖u‖∞

)
, ∀t ∈ [0, ω).

Corollary 2.2.1. Consider a function z : [0, ω) ⊆ R+ → R+, where ω > 0

may be infinite. Assume the following

1. The function z is absolutely continuous on each compact subset of [0, ω).
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2.2 Consistency of the LuGre model 27

2. There exist a class K∞ function β : R+ → R+ and z1, z2, z3 ≥ 0 such

that

max
(
β−1 (z3) , z1, z (0)

)
< z2,

and ż (t) ≤ −β (z (t)) + z3 for almost all

t ∈ [0, ω) that satisfy z1 < z (t) < z2.
(2.20)

Then, z (t) ≤ max
(
z (0) , z1, β

−1 (z3)
)
, ∀t ∈ [0, ω).

Proof. We have from (2.20) thatż (t) ≤ 0 for almost all t ∈ [0, ω) that

satisfy max
(
β−1 (z3) , z1

)
< z (t) < z2,

and hence the result follows directly from Lemma 2.2.1.

The following Lemma is the main result of this chapter, where it proves the

consistency and the strong consistency of the LuGre model (2.3)-(2.5).

Lemma 2.2.2. Let u ∈ W 1,∞(R+,R) be such that u̇ is non-zero on a set

A ⊆ R that satisfies µ (ρu(R\A)) = 0. Then the following holds:

• There exist E, γ1 > 0 such that ‖Fγ‖∞ ≤ E, ∀γ > γ1.
3

• The operator Ho is consistent with respect to input u and initial condition

x0, that is there exists a unique function ϕ∗u ∈ W 1,∞ (Iu,R) such that

lim
γ→∞

∥∥ϕu◦sγ − ϕ∗u∥∥∞,Iu = 0,

where

ϕ∗u (%) = σ0e
−σ0%
µ(0)

x0 +

%∫
0

e
σ0τ

µ(0) ψ̇u (τ) dτ

+ ν (0) ,∀% ∈ Iu. (2.21)

3Fγ is given in (2.12).
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28 The LuGre friction model

Moreover, if u is T -periodic, then the operator Ho is strongly consistent with

respect to input u and initial condition x0. That is, there exists a unique

function ϕ◦u ∈ W 1,∞ ([0, ρu (T )] ,R) such that

lim
k→∞

∥∥ϕ∗u,k − ϕ◦u∥∥∞,[0,ρu(T )]
= 0,

where

ϕ◦u (%) = σ0 h∞ (%) + ν (0) ,∀% ∈ [0, ρu (T )] ,

ḣ∞ (%) = − σ0

µ (0)
h∞ (%) + ψ̇u (%) , for almost all % ∈ [0, ρu (T )] .

In this case, h∞ (0) may be different than x0. Additionally, if the input u is

wave periodic (see Definition 1.2.2), then we have

ϕ◦u (0) = µ (0)

(
2e

σ0ρu(T+)
µ(0) − 1− e

σ0ρu(T )

µ(0)

)
1

e
σ0ρu(T )

µ(0) − 1
+ ν (0) , (2.22)

and

ϕ◦u (%) =


Q1e

−σ0%
µ(0) + µ (0) +Q3 (%) ∀% ∈

[
0, ρu

(
T+
)]

Q2e
−σ0%
µ(0) − µ (0) +Q3 (%) ∀% ∈

[
ρu
(
T+
)
, ρu (T )

]
where

Q1 = ϕ◦u (0)− µ (0)

Q2 = ϕ◦u (0) + µ (0)

(
2e

σ0ρu(T+)
µ(0) − 1

)
Q3 (%) = ν (0)

(
1− e

−σ0%
µ(0)

)
, ∀% ∈ [0, ρu (T )]

Proof. Consider the linear system

ḣ(%) = − σ0

µ (0)
h(%) + ψ̇u(%),∀% ∈ Iu (2.23)

h(0) = x0, (2.24)
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2.2 Consistency of the LuGre model 29

where state h ∈ R. The solution of (2.23)-(2.24) is given by

h (%) =
σ0

µ (0)
e−σ0%/µ(0)

x0 +

%∫
0

eσ0τ/µ(0)ψ̇u (%) dτ

 ,∀% ∈ Iu. (2.25)

Consider the Lyapunov function W : Iu → R+ with W = h2. From (2.23)-

(2.24) it follows that W (0) = x2
0 and

Ẇ = − 2σ0

µ (0)
W + 2 ψ̇u

√
W

By Lemma 1.2.1 we have
∥∥ψ̇u∥∥∞,Iu = 1 so that Ẇ ≤ − 2σ0

µ(0)
W + 2

√
W . This

leads to Ẇ ≤ 0, whenever W >
(
µ(0)
σ0

)2

. Using Lemma 2.2.1 it comes that

W ≤ max

(
x2

0,
(
µ(0)
σ0

)2
)

so that

|h (%)| ≤ max

(
|x0| ,

µ (0)

σ0

)
,∀% ∈ Iu. (2.26)

Claim 2. limγ→∞ ‖χγ‖∞,Iu = 0, where χγ : Iu → R is defined a.e. as

χγ (%) =
1

µ
(
vu(%)
γ

) − 1

µ (0)
, for almost all % ∈ Iu.

Proof. Let ε > 0. Since g is continuous and non-zero, we have limϑ→0
1

g(ϑ)
=

1
g(0)

. Hence there exists some δε > 0 that depend solely on ε, such that∣∣∣∣ 1

µ (ϑ)
− 1

µ (0)

∣∣∣∣ < ε, whenever ϑ ∈ (−δε, δε) . (2.27)

By Proposition 2.2.1 we have ‖vu‖∞,Iu ≤ ‖u̇‖∞. Thus there exists γ∗ > 0 such

that ‖vu‖∞,Iu /γ < δε,∀γ > γ∗. Thus, we conclude from (2.27) that∣∣∣∣ 1

µ (vu (%) /γ)
− 1

µ (0)

∣∣∣∣ < ε, for almost all % ∈ Iu,∀γ > γ∗,
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30 The LuGre friction model

so that

|χγ (%)| < ε, for almost all % ∈ Iu,∀γ > γ∗,

which completes the proof.

For any γ > 0, let yγ : Iu → R be defined as yγ = xu◦sγ − h, where xu◦sγ is

given in (2.13)-(2.14) and h is given in (2.23)-(2.24). Since xu◦sγ (0) = h (0) =

x0, we have for all γ > 0 and for almost all % ∈ Iu that

ẏγ (%) =
−σ0

µ
(
vu(%)
γ

)yγ (%)− σ0 χγ (%) h (%) , (2.28)

yγ (0) = 0. (2.29)

For any γ > 0, consider the Lyapunov function Vγ : Iu → R+ with Vγ (%) =

y2
γ (%) ,∀% ∈ Iu. By (2.28), the boundedness of vu and (2.26), we haveV̇γ (%) ≤ −2 σ0

µ( vu(%)γ )
Vγ (%) +D1 ‖χγ‖∞,Iu

√
Vγ (%)

∀γ > 0, for almost all % ∈ Iu.
(2.30)

where D1 = σ0 ‖h‖∞,Iu > 0. On the other hand, since vu is bounded and the

function g is continuous and positive, there exists M > 0 such that

µ (vu (%) /γ) > M, for almost all % ∈ Iu,∀γ > 1. (2.31)

Thus, we obtain from (2.30) thatV̇γ (%) ≤ −2σ0

M Vγ (%) +D1 ‖χγ‖∞,Iu
√
Vγ (%),

∀γ > 1, for almost all % ∈ Iu.

so that V̇γ (%) ≤ 0, for almost all % ∈ Iu,∀γ > 1

that satisfy Vγ (%) >
(
D1M‖χγ‖∞,Iu

2σ0

)2

.
(2.32)

Therefore, the fact that Vγ (0) = 0 along with Lemma 2.2.1 imply that Vγ (%) ≤
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2.2 Consistency of the LuGre model 31

(
D1M‖χγ‖∞,Iu

2σ0

)2

for all γ > 1 and almost all % ∈ Iu, and hence we obtain

|yγ (%)| =
∣∣xu◦sγ (%)− h (%)

∣∣ ≤ MD1

2σ0
‖χγ‖∞,Iu ,

∀γ > 1, for almost all % ∈ Iu.

Thus we conclude from Claim 2 that

lim
γ→∞

‖yγ‖∞,Iu = lim
γ→∞

∥∥xu◦sγ − h∥∥∞,Iu = 0. (2.33)

On the other hand, we deduce from the continuity of xγ that
∥∥xu◦sγ∥∥∞,Iu =

‖xγ‖∞ ,∀γ > 0 (see Lemma 1.2.3). Thus (2.33) implies that there exists γ1 > 0

with

‖xγ‖∞ =
∥∥xu◦sγ∥∥∞,Iu < 1 + ‖h‖∞,Iu = E1, ∀γ > γ1. (2.34)

Thus, we get from equation (2.10), inequality (2.31) and the boundedness of

u̇, that ẋγ is bounded by a number that does not depend on γ. Therefore, by

(2.12) and the continuity of ν, there exists some E > 0 such that

‖Fγ‖∞ ≤ E, ∀γ > γ1. (2.35)

On the other hand, by (2.28), inequality (2.31) and the boundedness of h,

there exist D2 > 0 and D3 > 0 such that for all γ > γ1 we have

‖ẏγ‖∞,Iu ≤ D2 ‖yγ‖∞,Iu +D3 ‖χγ‖∞,Iu .

Thus, Claim 2 and (2.33) implies that

lim
γ→∞

‖ẏγ‖∞,Iu = lim
γ→∞

∥∥ẋu◦sγ − ḣ∥∥∞,Iu = 0.

This means that xu◦sγ converges to h in W 1,∞ (Iu,R) as γ → ∞ because of

(2.33). Hence, (2.15), the boundedness of vu and the continuity of ν imply

that limγ→∞
∥∥ϕu◦sγ − ϕ∗u∥∥∞,Iu = 0 (convergence in L∞ (Iu,R)), where ϕ∗u =

σ0 h+ ν (0) ∈ W 1,∞ (Iu,R). This fact proves the first part of Lemma 2.2.2.
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32 The LuGre friction model

Now, assume that the input u is T -periodic, then ψu and ψ̇u are ρu (T )-

periodic (see Lemma 1.2.4). For any positive integer k, let

hk (%) = h (ρu (T ) k + %) ,∀% ∈ [0, ρu (T )] .

The periodicity of ψ̇u implies that the function hk satisfies (2.23) for each k,

with initial condition hk (0) = h (ρu (T ) k). Let k1, k2 be positive integers. Let

Vk1,k2 = (hk1 − hk2)
2, then we have V̇k1,k2 = −2σ0

µ(0)
Vk1,k2 , so that

Vk1,k2 (%) = Vk1,k2 (0) e
−2σ0
µ(0)

%,∀% ∈ [0, ρu (T )] . (2.36)

Therefore, we get

Vk1,k2 (ρu (T )) = Vk1,k2 (0) β,

where β = e−2ρu(T )σ0/µ(0) ∈ (0, 1). Observe that Vk1,k2 (ρu (T )) = Vk1+1,k2+1 (0)

so that Vk1+1,k2+1 (0) = βVk1,k2 (0). Therefore, it can be verified by induction

that

Vk1,k2 (0) ≤ βmin{k1,k2}D4,

where D4 is a positive constant that depends on ‖h‖∞. This means that

Vk1,k2 (0) converges to 0 as k1 and k2 go to ∞. Thus, we obtain from (2.36)

that ∥∥Vk1,k2∥∥∞,[0,ρu(T )]
→ 0, as k1, k2 →∞,

which means that the sequence of functions hk is a Cauchy sequence in the

Banach space C0 ([0, ρu (T )] ,R). This implies the sequence hk converges with

respect to the norm ‖·‖∞,[0,ρu(T )] to a continuous function h∞. By applying

the Dominated Lebesgue Convergence Theorem (see Theorem 1.1.1) in equa-

tion (2.23) written in the integral form, we deduce that h∞ satisfies the same

equation (2.23). Hence ϕ◦u ∈ W 1,∞ ([0, ρu (T )] ,R). Observe that h∞ (0) may

be different than x0. As a conclusion we obtain

lim
k→∞

∥∥ϕ∗u,k − ϕ◦u∥∥∞,[0,ρu(T )]
= 0,
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2.2 Consistency of the LuGre model 33

where ϕ◦u (%) = σ0 h∞ (%) + ν (0) ,∀% ∈ [0, ρu (T )] which ends the proof of the

second part of Lemma 2.2.2. On the other hand, if the input u is wave periodic,

Lemma 1.2.4 states that ψu is also wave periodic and ψ̇u (%) = 1 for almost all

% ∈
(
0, ρu

(
T+
))

and ψ̇u (%) = −1 for almost all % ∈
(
ρu
(
T+
)
, ρu (T )

)
. Thus,

we obtain from (2.25) for any positive integer k that

h (ρu (T ) k) = e−σ0ρu(T )k/µ(0) [x0 +Rk] , (2.37)

where

Rk =

k∑
j=1

 ρu(T )(j−1)+ρu(T+)∫
ρu(T )(j−1)

eσ0τ/µ(0)dτ −

ρu(T )j∫
ρu(T )(j−1)+ρu(T+)

eσ0τ/µ(0)dτ


=

µ (0)

σ0

k∑
j=1

[
ec(j−1)

(
2e

σ0+ρu(T+)
µ(0) − 1

)
− ecj

]
.

with c = σ0ρu (T ) /µ (0) > 0. Hence we deduce from (2.37) that

h (ρu (T ) k) = x0e
−ck +

µ (0)

σ0

[(
2e

σ0+ρu(T+)
µ(0) − 1

)
e−ck

k∑
j=1

ec(j−1)

−e−ck
k∑
j=1

ecj

]
. (2.38)

It can be checked that

lim
k→∞

e−ck
k∑
j=1

ec(j−1) =
1

ec − 1
.

Therefore, we obtain from (2.38) that

h∞ (0) = lim
k→∞

h (ρu (T ) k) =
µ (0)

σ0 (ec − 1)

(
2e

σ0ρu(T+)
µ(0) − 1− ec

)
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34 The LuGre friction model

From the relation ϕ◦ (%) = σ0h∞ (%) + ν (0) ,∀% ∈ Iu it follows that

ϕ◦ (0) = σ0h∞ (0) + ν (0) =
µ (0)

ec − 1

(
2e

σ0ρu(T+)
µ(0) − 1− ec

)
+ ν (0) ,

where c = σ0ρu (T ) /µ (0).

Observe that the function hk satisfies (2.23) for each k. Thus, using the Dom-

inated Lebesgue Theorem in equation (2.23) written in the integral form, we

deduce that h∞ satisfies the same equation (2.23). Thus, we have

h∞ (%) = e
−σ0%
µ(0)

h∞ (0) +

%∫
0

e
σ0τ

µ(0)dτ

 ,∀% ∈ [0, ρu (T+
)]
,

∀% ∈
[
ρu
(
T+
)
, ρu (T )

]
we have

h∞ (%) = e
−σ0%
µ(0)

[
h∞ (0) +

∫ ρu(T+)
0

e
σ0τ

µ(0)dτ −
∫ %
ρu(T+)

e
σ0τ

µ(0)dτ
]

so that

h∞ (%) = e
−σ0%
µ(0)

[
h∞ (0) +

µ (0)

σ0

(
e
σ0%

µ(0) − 1
)]

,∀% ∈
[
0, ρu

(
T+
)]
,


∀% ∈

[
ρu
(
T+
)
, ρu (T )

]
we have

h∞ (%) = e
−σ0%
µ(0)

[
h∞ (0) +

µ(0)
σ0

(
2e

σ0ρu(T+)
µ(0) − e

σ0%

µ(0) − 1

)]
The last part of Lemma 2.2.2 follows from the relation ϕ◦ (%) = σ0h∞ (%) +

ν (0) ,∀% ∈ Iu.

Example 2.2.3. Consider the LuGre model (2.3)-(2.5) with ν (ϑ) taking the

form ν (ϑ) = σ2ϑ,∀ϑ ∈ R, where the parameter σ2 is the viscous friction

coefficient. A possible choice for µ (ϑ) that leads to a reasonable approximation

of the Stribeck effect is [25]:

µ (ϑ) = FC + (FS − FC) e−|ϑ/vs|
α

, ∀ϑ ∈ R, (2.39)
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Figure 2.7: Left input u(t) versus t. Right g(ϑ) versus ϑ in Example 2.

where FC > 0 is the Coulomb friction force, FS > 0 is the stiction force, vs > 0

is the Stribeck velocity, and α is a positive constant.

Take σ0 = 4 N/m, vS = 0.001 m/s, FS = 3 N, FC = 1 N, σ1 = 1 N.s/m,

σ2 = 1 N.s/m, and x (0) = 0 m. Let u ∈ W 1,∞ (R+,R) be the wave periodic

function of period T = 2 s and with T+ = 1 s, such that u (t) = t (in meters),

∀t ∈ [0, 1] s, and u (t) = 2 − t, ∀t ∈ [1, 2] s. Then ρu is the identity mapping

and hence Iu = R+, ψu = u and vu = u̇ a.e. Note that T = ρu (T ) = 2 and

T+ = ρu
(
T+
)

= 1. The input u is presented in Figure 2.7 left, and the graph

of the function g is given in Figure 2.7 right.

Lemma 2.2.2 implies that the operator Ho is consistent with respect to input

u and initial condition x0; that is

lim
γ→∞

∥∥ϕu◦sγ − ϕ∗u∥∥∞,Iu = 0,

where the function ϕ∗u ∈ W 1,∞ (Iu,R) is defined as

ϕ∗u (%) = 4e−
4
3
%

%∫
0

e4τ/3ψ̇u (τ) dτ, ∀% ∈ Iu = R+.

Moreover, the operator Ho is strongly consistent with respect to input u and
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Figure 2.8: ϕu◦sγ (%) versus % for different values of γ.
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Figure 2.9: ϕu◦sγ (%) versus ψu (%) for different values of γ.
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(a) ϕ∗u (%) versus % ( the limit function
in Figure 2.8 ).
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(b) ϕ∗u (%) versus ψu (%) ( the limiting
curve in Figure 2.9).
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(c) ϕ◦u (%) versus %.
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(d) ϕ◦u (%) versus ψu (%) ( the hysteresis
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Figure 2.10: LuGre friction model in Example 2.2.3

initial condition x0; that is limk→∞

∥∥∥ϕ∗u,k − ϕ◦u∥∥∥∞,[0,2]
= 0, where

ϕ◦ (0) =
3

e
8
3 − 1

(
2e

4
3 − 1− e

8
3

)
≈ −1.7483488,

and

ϕ◦ (%) =

e
−4%
3 [ϕ◦ (0)− 3] + 3 % ∈ [0, 1]

e
−4%
3

[
ϕ◦ (0) + 6e

4
3 − 3

]
− 3 % ∈ [1, 2]

Figure 2.8 shows the uniform convergence of ϕu◦sγ to ϕ∗u as γ → ∞. The

limit function ϕ∗u is plotted alone in Figure 2.10a. Figure 2.9 shows that

the graphs
{(
ϕu◦sγ (%) , ψu (%)

)
, % ∈ Iu = R+

}
converge as γ → ∞ to the

set {(ϕ∗u (%) , ψu (%)) , % ∈ Iu = R+} . Figure 2.10b presents the limiting curve

{(ϕ∗u (%) , ψu (%)) , % ∈ Iu = R+}. Figure 2.10d shows the plot of hysteresis loop

{(ϕ◦u (%) , ψu (%)) , % ∈ [0, ρu (T )] = [0, 2]}. Figure 2.10c presents the function

ϕ◦u (%) versus %. Observe that ϕ◦u (0) ≈ −1.7483488 is different than ϕ∗u (0) = 0.
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38 The LuGre friction model

2.3 Conclusions

In this chapter, LuGre model is seen as an operator H that associates to an

input u and initial condition x0 an output H(u, x0), all belonging to some

appropriate spaces. Following the research carried out in [52], the consistency

and strong consistency of the operator are analyzed. The main results of

the paper are given in Lemma 3.5.3. To illustrate these results, numerical

simulations are carried out in Example 2.2.3.
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3
The generalized Duhem model

3.1 Introduction

In 1897, Duhem [34] proposed an ordinary differential equation-based model

that exhibits hysteresis. This model, widely used in structural, electrical and

mechanical engineering, gives an analytical description of a smooth hysteretic

behavior. It has been used to represent friction [77], hysteresis in magnetorheo-

logical dampers [86], and to represent a jump-resonance hysteresis 1 in Duffing

oscillator [77].

In its most general form, Duhem model is given by [78]:

ẋ (t) = f (x (t) , u (t)) g (u̇ (t)) , (3.1)

x(0) = x0, (3.2)

for almost all t ≥ 0, x0 and state x(t) take values in Rm for some positive

integerm, input u ∈ W 1,∞(R+,R), function f : Rm×R→ Rm×r is continuous,

and function g : R → Rr is continuous with g (0) = 0, where r and m are

positive integers.

Specializations of this general form are the semilinear Duhem model ẋ =

(Ax+Bu) g (u̇) [72], the model ẋ = f1 (x, u) max (u̇, 0) + f2 (x, u) min (u̇, 0)

[69, 66, 50, 51], and the Bouc-Wen model for hysteresis [99, 21, 20, 55, 53].

1Jump-resonance is a phenomenon observed in nonlinear systems where the output
exhibits abrupt jumps when the frequency of the input signal varies
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40 The generalized Duhem model

Other specialization of Duhem model are Dahl model [29, 30], Maxwell-slip

model [78, 5, 84], and LuGre model [25, 78].

This chapter gives a characterization of different classes of Duhem models

in terms of their consistency with the hysteresis behavior. It is organized as

follows. The problem statement is formalized in Section 3.2. A classification

of functions g that is used throughout the paper, is introduced in Section 3.3.

Sections 3.4 and 3.5 present necessary conditions and sufficient ones for the

Duhem model to be consistent with the hysteresis behavior. Conclusions are

given in Section 3.6.

3.2 Problem statement

First of all, we need to prove the existence of solution for the system (3.1)-(3.2)

which is done in the coming passage.

Since g is continuous and u̇ ∈ L∞ (R+,R), we have g ◦ u̇ ∈ L∞ (R,Rr). The

differential equation (3.1) satisfies Carathéodory conditions, thus, for each ini-

tial state x0 ∈ Rm, (3.1) has an absolutely continuous solution that is defined

on an interval of the form [0, T ), T > 0 [39, p.4] (see Theorems 1.1.2 and 1.1.3).

Consider the time scale change sγ(t) = t/γ, γ > 0, t ≥ 0. When the input

u ◦ sγ is used instead of u, the system (3.1)-(3.2) becomes

ẋγ (t) = f (xγ (t) , u ◦ sγ (t)) g

(
1

γ
u̇ ◦ sγ (t)

)
, (3.3)

xγ(0) = x0. (3.4)

When γ = 1, system (3.3)-(3.4) reduces to (3.1)-(3.2). For any γ > 0, define

σγ : R+ → Rm as σγ = xγ ◦ s1/γ . System (3.3)-(3.4) can be re-written as:

σγ (t) = x0 + γ

t∫
0

f (σγ (τ) , u (τ)) g

(
1

γ
u̇ (τ)

)
dτ, (3.5)
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3.2 Problem statement 41

for all γ > 0 and for almost all t ∈ [0, ωγ), where [0, ωγ) is the maximal interval

of existence of the solution σγ .

Observe that Lemma 1.2.3 implies that for any γ > 0 there exists a unique

function xu◦sγ ∈ L∞ (Iu,Rm) such that xu◦sγ ◦ρu◦sγ = xγ (when γ = 1, we get

xu ◦ ρu = x). The latter equality is equivalent to xu◦sγ ◦ ρu = σγ . According

to Definition 1.2.1, the system (3.1)-(3.2) is consistent with respect to (u, x0)

if and only if the sequence of functions xu◦sγ converges in L∞ (Iu,Rm).

Proposition 3.2.1. The system (3.1)-(3.2) is consistent with respect to (u, x0)

in the sense of Definition (1.2.1) if and only if the sequence of function σγ

converges in L∞ (R+,Rm) as γ →∞.

Proof. To prove the if part, define the causal operator H : W 1,∞(R+,Rn) ×
Rm → L∞(R+,Rm) that maps (u, x0) to x, where x is given in (3.1)-(3.2). As-

sume that there exists σ∗ ∈ L∞ (R+,Rm) such that limγ→∞ ‖σγ − σ∗‖∞ = 0.

We know from equation (3.5), that σγ is a sequence of continuous func-

tions. Thus, the function σ∗ is continuous as a uniform limit of continu-

ous function. Lemma 1.2.3 implies that there exists a unique continuous

function x∗u ∈ L∞ (Iu,Rm) such that x∗u ◦ ρu = σ∗. Let % ∈ Iu. Since

ρu is continuous, there exists some t ≥ 0 such that % = ρu (t). We get

from the relation σγ = xu◦sγ ◦ ρu that for all γ > 0:
∣∣xu◦sγ (%)− x∗u (%)

∣∣ =∣∣xu◦sγ ◦ ρu (t)− x∗u ◦ ρu (t)
∣∣ ≤ ‖σγ − σ∗‖∞. This implies that∥∥xu◦sγ − x∗u∥∥∞,Iu ≤ ‖σγ − σ∗‖∞ ,

so that limγ→∞
∥∥xu◦sγ − x∗u∥∥∞,Iu = 0, which means that the system (3.1)-

(3.2) is consistent with respect to (u, x0).

To prove the only if part, assume that limγ→∞
∥∥xu◦sγ − x∗u∥∥∞,Iu = 0, then the

relation xu◦sγ ◦ ρu = σγ implies that for almost all t ≥ 0:

|σγ (t)− x∗u ◦ ρu (t)| =
∣∣xu◦sγ ◦ ρu (t)− x∗u ◦ ρu (t)

∣∣
≤
∥∥xu◦sγ − x∗u∥∥∞,Iu .
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42 The generalized Duhem model

Thus, we have ‖σγ − x∗u ◦ ρu‖∞ ≤
∥∥xu◦sγ − x∗u∥∥∞,Iu so that

lim
γ→∞

‖σγ − x∗u ◦ ρu‖∞ = 0.

Proposition 3.2.1 implies that the consistency of the system (3.1)-(3.2) can be

investigated by studying the uniform convergence of the sequence of functions

σγ instead of xu◦sγ . Thus we know from Definition (1.2.1) that the system

(3.1)-(3.2) is a hysteresis only if σγ converges uniformly as γ →∞.

Problem statement : In this chapter, our objective is to derive necessary condi-

tions and sufficient ones for the uniform convergence of the sequence of func-

tions σγ as γ →∞.

The generalized Duhem model represents a wide class of systems and thus

we introduced a classification for this system to study the consistency in all

possible cases. This classification is presented in the next section (Section 3.3).

3.3 Classification of the function g

This section introduces a classification for the function g that is used through-

out this Chapter.

Definition 3.3.1. Let G ∈ C0 ([t1, t2] ,R)2. The right and left local fractional

derivative of G at t3 ∈ (t1, t2) with respect to order λ > 0 are defined respec-

tively as: [3]

dλ+G (t3) = Γ (1 + λ) lim
κ→t3+

G (κ)−G (t3)

(κ− t3)λ
∈ R,

dλ−G (t3) = Γ (1 + λ) lim
κ→t3−

G (t3)−G (κ)

(t3 − κ)λ
∈ R,

2C0 ([t1, t2] ,R) = {p : [t1, t2]→ R such that p is continuous on [t1, t2]}
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3.3 Classification of the function g 43

where Γ is the gamma function (see Definition 1.1.5).

The local fractional derivative of a vector-valued function is the vector of local

fractional derivatives of its components.

Definition 3.3.2. The function g ∈ C0 (R,Rr) is said to be of class λ > 0 if

g (0) = 0 and the quantities dλ+g (0) , dλ−g (0) exist, are finite, and at least one

of them is nonzero.

Example 3.3.1. Let k be a positive integer. Define g ∈ C0 (R+,R) as

g (ϑ) = ϑk,∀ϑ ∈ R. The function g is of class λ = k because the limit

limκ→0 g (κ) /κk exists and equals 1 so that both dλ+g (0) , dλ−g (0) exist, are

finite, and are nonzero.

Example 3.3.2. The zero function g ∈ C0 (R+,R) is not of any class because

lim
κ→0+

g (κ) /κλ = lim
κ→0−

g (κ) /κλ = 0, ∀λ > 0.

3.3.1 Determination the class of the function g

In this subsection, we provide a procedure for determining the class of a func-

tion g. To this end, let g ∈ C0 (R,Rr) satisfies g (0) = 0. Define

S =

{
j1 ∈ {0, 1, 2, . . .}� ∀i ∈ {0, 1, . . . j1}

we have g(i) exist and g(i) (0) = 0

}
. (3.6)

The set S is nonempty because 0 ∈ S. Note that when g is the zero function,

S = N, where N is the set of positive integers. We assume that S is finite and

hence j = SupS ∈ S.

Case I: If j = 0.

For this case, we present the following propositions.
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44 The generalized Duhem model

Proposition 3.3.1. The function g is of class λ ∈ (0, 1) iff there exist con-

stants ν > 0, b1, b2 ∈ Rr; at least one of the vectors b1, b2 is non-zero, and

functions Q1, Q2 : R→ Rr such that

g (ϑ) =

b1ϑλ +Q1 (ϑ) ϑ ∈ (0, ν)

b2 (−ϑ)λ +Q2 (ϑ) ϑ ∈ (−ν, 0)

where limκ→0+Q1 (κ) /κλ = limκ→0−Q2 (κ) / (−κ)λ = 0.

Proof. The result follows from the fractional Taylor’s expansion in [3].

Proposition 3.3.2. For a function g ∈ C0 (R,Rr), assume that g′+ (0) and

g′− (0) exist, are finite, and at least one of them is nonzero. Then the function

g is of class λ = 1, and

lim
γ→∞

γg

(
ϑ

γ

)
=

g′+ (0)ϑ ϑ ≥ 0

g′− (0)ϑ ϑ < 0

which implies that: if g′ (0) exists, then

∀ϑ ∈ R, we have lim
γ→∞

γg

(
ϑ

γ

)
= g′ (0)ϑ.

Proof. The result comes directly from Proposition 3.3.7.

Case II: If j > 0 and g(j+1) (0) exists and finite.

For this case, we introduce the following lemma.

Proposition 3.3.3. Assume that g ∈ C0 (R,Rr) has finite n ∈ N derivative

g(n) everywhere in an interval (−ν, ν) , ν > 0 so that j + 1 < n. Then the

function g is of class λ = j + 1, and for all ϑ ∈ R, we have

lim
γ→∞

γj+1g (ϑ/γ) =
g(j+1) (0)

(j + 1)!
ϑj+1.
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3.3 Classification of the function g 45

Proof. We get from Taylor expansion with remainder [6] that there exist ϑ1 ∈
(−ν, ν) such that ∀ϑ ∈ (−ν, ν):

g (ϑ) =
g(j+1) (0)

(j + 1)!
ϑj+1 +

g(j+2) (0)

(j + 2)!
ϑj+2 · · ·+ g(n) (ϑ1)

n!
ϑn,

where g(n) (ϑ1) is bounded. Proposition 3.3.7 and the fact that g(j+1) (0) 6= 0

complete the proof.

Case III: If j > 0 and g(j+1) (0) does not exist or diverges.

Proposition 3.3.4. Assume that the function g(j) is of class µ ∈ (0, 1) 3; that

is there exist constants ν > 0, b1, b2 ∈ Rr; at least one of the vectors b1, b2 is

non-zero, and functions Q1, Q2 : R→ Rr such that

g(j) (ϑ) =

b1ϑλ +Q1 (ϑ) ϑ ∈ (0, ν)

b2 (−ϑ)λ +Q2 (ϑ) ϑ ∈ (−ν, 0)

where limκ→0+Q1 (κ) /κλ = limκ→0−Q2 (κ) / (−κ)λ = 0. Suppose that the

quantities dµ+g
(j) (ϑ) and dµ−g

(j) (ϑ) exist on an interval (−ν, ν) , ν > 0. Then,

the function g is of class λ = j + µ and for all ϑ ∈ R: limγ→∞ γ
j+µg (ϑ/γ) =

g∗ (ϑ) , where g∗ ∈ C0 (R,Rr) is defined as

g∗ (ϑ) =


dµ+g

(j)(0)

Γ(j+1+µ)
ϑj+µ ϑ ≥ 0

− dµ−g
(j)(0)

Γ(j+1+µ)
(−ϑ)j+µ ϑ < 0

Proof. We obtain from the fractional Taylor’s theorem [3] that

g (ϑ) =


dµ+g

(j)(0)

Γ(j+1+µ)
ϑj+µ +Q1 (ϑ) ϑ ∈ (0, ν)

− dµ−g
(j)(0)

Γ(j+1+µ)
(−ϑ)j+µ +Q2 (ϑ) ϑ ∈ (−ν, 0)

3look at Proposition 3.3.1.
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46 The generalized Duhem model

for some ν > 0, where

Q1 (ϑ)

ϑj+µ
→ 0 as ϑ→ 0+ and

Q2 (ϑ)

(−ϑ)j+µ
→ 0 as ϑ→ 0−.

Thus, the function g is of class j + µ, and we have

lim
γ→∞

γj+µg

(
ϑ

γ

)
=


Γ(1+µ)b1
Γ(j+1+µ)

ϑj+µ ϑ ≥ 0

− Γ(1+µ)b2
Γ(j+1+µ)

(−ϑ)j+µ ϑ < 0

Example 3.3.3. Define g ∈ C0 (R,R) as g (ϑ) = ϑ2/3 + 2ϑ cos
(
ϑ2
)
,∀ϑ ∈ R.

Since g′ (0) does not exist, we have S = {0} and hence j = SupS = 0, so

we are case I. It can be easily shown that limϑ→0 2κcos
(
κ2
)
/ |κ|2/3 = 0, all

conditions of Proposition 3.3.1 are satisfied with λ = 2/3, r = 1, b1 = b2 = 1,

and Q1 (ϑ) = Q2 (ϑ) = 2ϑcos
(
ϑ2
)
,∀ϑ ∈ R. Thus, the function g is of class

λ = 2/3.

Example 3.3.4. Let g ∈ C0 (R,R) be defined as g (ϑ) = sin (ϑ) + ϑ,∀ϑ ∈ R.

We have g (0) = 0 and g′ (0) = cos (0) + 1 = 2. Thus, we get from (3.6) that

S = {0} and hence j = SupS = 0. This means that we are in case I. Since

g′ (0) exists and is equal to 2, we deduce from Proposition 3.3.2 that g is of

class λ = 1, and

∀ϑ ∈ R, we have lim
γ→∞

γg

(
ϑ

γ

)
= 2ϑ.

Example 3.3.5. Define g ∈ C0 (R,R) as g (ϑ) = cos (ϑ) + ϑ2/2− 1,∀ϑ ∈ R.

It can be easily verified that g (0) = g′ (0) = g′′ (0) = g′′′ (0) = 0 and g(4) (0) =

1 6= 0. Thus, we get S = {0, 1, 2, 3} and hence j = 3. Since g(4) (0) exists and

finite, we are case II. All conditions of Proposition 3.3.3 are satisfied because

the function g is infinitely many differentiable on its domain. Thus, g is of
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3.3 Classification of the function g 47

class λ = j + 1 = 4, and for all ϑ ∈ R, we have

lim
γ→∞

γ4g (ϑ/γ) =
g(4) (0)

24
ϑ4.

Example 3.3.6. Let g ∈ C0 (R,R) such that g (ϑ) = 3
5ϑ

5/3+sin
(
ϑ2
)
,∀ϑ ∈ R.

We have g′ (0) exists and equals 0 but g′′ (0) does not exists. Thus, we obtain

S = {0, 1} so that j = SupS = 1. This means that we are case III. The

derivative function of the g is function studied in Example 3.3.3. Thus, using

the result of Example 3.3.3, we get that the function g′ is of class µ = 2/3 with

b1 = b2 = 1. It can be easily seen that all conditions of Proposition 3.3.1 are

satisfied. Thus, the function g is of class λ = j + µ = 5/3 with

lim
γ→∞

γ
5
3 g

(
ϑ

γ

)
=


Γ( 5

3)
Γ( 8

3)
ϑ

5
3 ϑ ≥ 0

−Γ( 5
3)

Γ( 8
3)

(−ϑ)
5
3 ϑ < 0

=

3
5ϑ

5
3 ϑ ≥ 0

−3
5 (−ϑ)

5
3 ϑ < 0

Proposition 3.3.5. Let g, g1, g2 ∈ C0 (R,Rr) be such that

g (ϑ) =

g1 (ϑ) ϑ ≥ 0

g2 (ϑ) ϑ < 0

Define G1, G2 ∈ C0 (R,Rr) for any ϑ ∈ R as

G1 (ϑ) = g1 (|ϑ|) and G2 (ϑ) = g2 (− |ϑ|) .

Assume that the functions G1 and G2 are respectively of class λ1 and λ2. Then

the function g is of class min (λ1, λ2).

Proof. We have

lim
κ→0−

G1 (κ)

(−κ)λ1
= lim

κ→0−

g1 (−κ)

(−κ)λ1
= lim

κ→0+

g1 (κ)

κλ1
= lim

κ→0+

G1 (κ)

κλ1
,

lim
κ→0+

G2 (κ)

κλ2
= lim

κ→0+

g2 (−κ)

κλ2
= lim

κ→0−

g2 (κ)

(−κ)λ2
= lim

κ→0−

G2 (κ)

(−κ)λ2
.
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48 The generalized Duhem model

Thus, we get

lim
κ→0+

g1 (κ)

κλ1
= lim

κ→0

G1 (κ)

|κ|λ1
, (3.7)

lim
κ→0−

g2 (κ)

(−κ)λ2
= lim

κ→0

G2 (κ)

|κ|λ2
. (3.8)

Without loss of generality, assume that λ1 < λ2. Then, we deduce from (3.7)-

(3.8) that 4

dλ1
+ g (0) = dλ1

+ G1 (0) = dλ1
− G1 (0) 6= 0,

dλ1
− g (0) = lim

κ→0−

g2 (κ)

(−κ)λ1
= lim

κ→0
|κ|λ2−λ1

g2 (κ)

|κ|λ2
= 0× lim

κ→0

g2 (κ)

|κ|λ2
= 0.

which completes the proof.

Example 3.3.7. Define g ∈ C0 (R,R) as

g (ϑ) =

sin (ϑ) + ϑ ϑ ≥ 0

cos (ϑ) + ϑ2/2− 1 ϑ < 0

then, the functions g1, g2 ∈ C0 (R,R) are given for any ϑ ∈ R by g1 (ϑ) =

sin (ϑ) + ϑ and g2 (ϑ) = cos (ϑ) + ϑ2/2 − 1. Thus, the functions G1, G2 ∈
C0 (R,R) are given for any ϑ ∈ R by

G1 (ϑ) = g1 (|ϑ|) = sin (ϑ) + ϑ,

G2 (ϑ) = g2 (− |ϑ|) = cos (ϑ) + ϑ2/2− 1.

Examples 3.3.4 and 3.3.5 proved that the functions G1 and G2 are respectively

of class λ1 = 1 and λ2 = 4. Thus, we deduce from Proposition 3.3.5 that the

function g is of class λ = min (λ1, λ2) = 1.

To determine the class of more complicated functions, we introduce the

following lemma:

4dλ1

+ G1 (0) = dλ1

− G1 (0) 6= 0 because the function G1 is of class λ1 and because of
the symmetry property the function has.
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Lemma 3.3.1. Assume that the functions g1, g2 ∈ C0 (R,Rr) are of class

λ1, λ2 respectively. Then, we have

1. The functions |g1| and b g1 are of class λ1 for any nonzero constant b ∈ R.

2. The function g1 + g2 is of class min (λ1, λ2) if λ1 6= λ2.

3. The function g1g2 is of class λ1+λ2 if at most one of the vectors dλ1
+ g1 (0),

dλ1
− g1 (0), dλ2

+ g2 (0), and dλ2
− g2 (0) is zero.

4. The function g1◦g2 is of class λ1λ2 if at most one of the vectors dλ1
+ g1 (0),

dλ1
− g1 (0), dλ2

+ g2 (0), and dλ2
− g2 (0) is zero and if each component of g2

doesn’t change its sign on some right (resp. left) neighborhood about the

origin.

Proof. Items (1)-(3) are similar to the classical rules of local fractional dif-

ferentiation (see [104, 3]) and can be easily verified from Definition 3.3.2.

To prove the fourth item: Assume; without loss of generality, that r = 1

and that there exists some κ0 > 0 such that g2 (κ) < 0,∀κ ∈ (0, κ0) and

g2 (κ) > 0,∀κ ∈ (−κ0, 0). Thus, dλ2
+ g2 (0) ≤ 0 and dλ2

− g2 (0) ≥ 0. Look at

lim
κ→0+

g1 ◦ g2 (κ)

κλ1λ2
= lim

l→0−

g1 (l)

(−l)λ1
lim
κ→0+

(
−g2 (κ)

κλ2

)λ1

=
dλ1
− g1 (0)

Γ (1 + λ1)

(
−
dλ2

+ g2 (0)

Γ (1 + λ2)

)λ1

,

lim
κ→0−

g1 ◦ g2 (κ)

(−κ)λ1λ2
= lim

l→0+

g1 (l)

lλ1
lim
κ→0−

(
g2 (κ)

(−κ)λ2

)λ1

=
dλ1

+ g1 (0)

Γ (1 + λ1)

(
dλ2
− g2 (0)

Γ (1 + λ2)

)λ1

,

which complete the proof.
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50 The generalized Duhem model

Example 3.3.8. Let g ∈ C0 (R,R) be defined as

g (ϑ) = (sin (ϑ) + ϑ)
(
cos (ϑ) + ϑ2/2− 1

)
,∀ϑ ∈ R.

Observe that g = g1g2, where g1, g2 ∈ C0 (R,R) are defined as

g1 (ϑ) = (sin (ϑ) + ϑ) ,∀ϑ ∈ R,

g2 (ϑ) =
(
cos (ϑ) + ϑ2/2− 1

)
,∀ϑ ∈ R.

We deduced in Examples 3.3.4 and 3.3.5 that the functions g1 and g2 are

respectively of class λ1 = 1 and λ2 = 4. Furthermore, we have

lim
ϑ→0+

g1 (ϑ)

ϑ
= lim

ϑ→0+

sin (ϑ) + ϑ

ϑ
= 2,

lim
ϑ→0−

g1 (ϑ)

−ϑ
= lim

ϑ→0−

sin (ϑ) + ϑ

−ϑ
= −2,

so that both quantities d1
+g1 (0) and d1

−g1 (0) are non-zero. Moreover, at least

one of d4
+g2 (0) and d4

−g2 (0) is non-zero because g2 is of class λ2 = 4. There-

fore, we conclude from part 3 of Lemma 3.3.1, that the function g is of class

λ1 + λ2 = 1 + 4 = 5.

Proposition 3.3.6. Let g ∈ C0 (R,Rr) be such that

g =
[
g1 g2 · · · gr

]T
,

where g1, g2, . . . , gr ∈ C0 (R,R). Then, if for i ∈ {1, 2, . . . , r}, the function gi

is of class λi, then the function g is of class λ = min (λ1, λ2, . . . , λr)
5.

Proof. Let i ∈ {0, 1, . . . , r}. Functions gi and
[

0 · · · 0 gi 0 · · · 0
]T

are of the same class because of Definition 3.3.2. Thus, the result follows from

part 2 of Lemma 3.3.1 because g =
∑r

i=1

[
0 · · · 0 gi 0 · · · 0

]T
.

5The converse need not be true, for instance, let r = 2, g1 ≡ 0, and g2 be the
identity mapping
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3.3.2 Mathematical preliminaries

Proposition 3.3.7. The function g ∈ C0 (R,Rr) is of class λ if and only if

∀ϑ ∈ R, we have lim
γ→∞

γλg

(
ϑ

γ

)
= g∗ (ϑ) ,

where g∗ ∈ C0 (R,Rr) is defined as

g∗ (ϑ) =

ϑλ limκ→0+
g(κ)
κλ

ϑ ≥ 0

(−ϑ)λ limκ→0−
g(κ)

(−κ)λ
ϑ < 0

(3.9)

Proof. Immediate using of the change of variables κ = ϑ/γ.

Proposition 3.3.8. If the function g ∈ C0 (R,Rr) is of class λ, then

lim
γ→∞

∥∥γλg (u̇/γ)− g∗ (u̇)
∥∥
∞ = 0,

where g∗ ∈ C0 (R,Rr) is defined in (3.9).

Proof. The result is trivial when u is constant. Assume that u is non-constant.

Given ε > 0. Since g ∈ C0 (R,Rr) is of class λ, there exists some cε; that

depend solely on ε, such that∣∣∣∣g (ϑ)

ϑλ
−

dλ+g (0)

Γ (1 + λ)

∣∣∣∣ < ε

‖u̇‖λ∞
, whenever 0 < ϑ < cε,

∣∣∣∣ g (ϑ)

(−ϑ)λ
−

dλ−g (0)

Γ (1 + λ)

∣∣∣∣ < ε

‖u̇‖λ∞
, whenever − cε < ϑ < 0.

The boundedness of u̇ implies that there exists a positive constant γ∗ such

that |u̇ (t)| /γ < cε, ∀γ > γ∗. Thus, we have for all γ > γ∗ that∣∣∣∣γλ g (u̇/γ)

(u̇)λ
−

dλ+g (0)

Γ (1 + λ)

∣∣∣∣ < ε

‖u̇‖λ∞
, whenever u̇ > 0,
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52 The generalized Duhem model

∣∣∣∣γλ g (u̇/γ)

(−u̇)λ
−

dλ−g (0)

Γ (1 + λ)

∣∣∣∣ < ε

‖u̇‖λ∞
, whenever u̇ < 0.

Thus, we obtain from (3.9) that∣∣γλg (u̇/γ)− g∗ (u̇)
∣∣ ≤

|u̇|λ max
(∣∣∣γλ g(u̇)

|u̇|λ
− dλ+g(0)

Γ(1+λ)

∣∣∣ , ∣∣∣γλ g(u̇)

|u̇|λ
− dλ−g(0)

Γ(1+λ)

∣∣∣)} < ε, ∀γ > γ∗,

which completes the proof.

Proposition 3.3.9. If the function g ∈ C0 (R,Rr) is of class λ for some

λ > 0, then it cannot be of any class µ > 0 different than λ.

Proof. Assume that the function g ∈ C0 (R,Rr) is of class λ and µ with λ < µ.

Then,

dλ+g (0)

Γ (1 + λ)
= lim

κ→0+

g (κ)

κλ
= lim

κ→0+
κµ−λ

g (κ)

κµ
= 0×

dµ+g (0)

Γ (1 + µ)
= 0,

dλ−g (0)

Γ (1 + λ)
= lim

κ→0−

g (κ)

(−κ)λ
= lim

κ→0−
|κ|µ−λ g (κ)

|κ|µ
= 0×

dµ−g (0)

Γ (1 + µ)
= 0,

which contradicts the fact that g is of class λ.

Proposition 3.3.9 states the uniqueness of the class of functions.

Proposition 3.3.10. If the function g ∈ C0 (R,Rr) is of class λ > 0, then

there exists g0 ∈ C0 (R,R+), such that∣∣∣∣γλg(ϑγ
)∣∣∣∣ ≤ g0 (ϑ) ,∀γ > 1, ∀ϑ ∈ R. (3.10)

Proof. Without loss of generality, assume that r = 1. Definition 3.3.2 implies

that there exists some c0 > 0 such that∣∣∣∣g (κ)

κλ
−

dλ+g (0)

Γ (1 + λ)

∣∣∣∣ < 1, ∀κ ∈ (0, c0) ,
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∣∣∣∣ g (κ)

(−κ)λ
−

dλ−g (0)

Γ (1 + λ)

∣∣∣∣ < 1, ∀κ ∈ (−c0, 0) .

Therefore, there exists some d > 0 with

|g (κ)| ≤ d |κ|λ , ∀ |κ| < c0. (3.11)

Thus, the substitution κ = ϑ/γ implies that∣∣∣∣γλg(ϑγ
)∣∣∣∣ ≤ d |ϑ|λ , ∀ϑ ∈ R, ∀γ > 0 that satisfy

|ϑ|
γ
< c0. (3.12)

Define g1 : R→ R+, as

g1 (ϑ) =


sup0≤s≤ϑ |g (s)| ϑ > 0

0 ϑ = 0

supϑ≤s≤0 |g (s)| ϑ < 0

The function g1 is continuous. Moreover, we have |g (ϑ)| ≤ g1 (ϑ) , ∀ϑ ∈ R.

The function g1 is non-decreasing on [0,∞) and non-increasing on (−∞, 0].

This implies that∣∣∣∣γλg(ϑγ
)∣∣∣∣ ≤ |ϑ|λcλ0 g1 (ϑ) , ∀ϑ ∈ R, ∀γ > 1 that satisfy

|ϑ|
γ
≥ c0.

Thus, we get from (3.12) for all ϑ ∈ R and all γ > 1 that∣∣∣∣γλg(ϑγ
)∣∣∣∣ ≤ max

(
d |ϑ|λ , |ϑ|

λ

cλ0
g1 (ϑ)

)
= g0 (ϑ) ,

which completes the proof.

3.4 Necessary conditions for consistency

The objective of this section is to derive necessary conditions for the uniform

convergence of the sequence of functions σγ as γ →∞.
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54 The generalized Duhem model

Lemma 3.4.1. Assume that the system (3.1)-(3.2) has a unique global solu-

tion6 for each input u ∈ W 1,∞(R+,R) and initial condition x0 ∈ Rm. Assume

that the function g is of class λ > 0. Suppose that there exists a continuous

function Q : R+ ×R+ ×R+ → R+ such that

|x (t)| ≤ Q (|x0| , ‖u‖∞ , ‖u̇‖∞) , ∀t ≥ 0, (3.13)

for each initial state x0 ∈ Rm and each input u ∈ W 1,∞(R+,R). Assume that

the system (3.1)-(3.2) is consistent with respect to (u, x0); that is there exists

qu ∈ L∞ (R+,Rm) such that (see Proposition 3.2.1)

lim
γ→∞

‖σγ − qu‖∞ = 0.

Then

if λ = 1, we have

• qu ∈ W 1,∞ (R+,Rm).

• We have for all t ≥ 0 that

qu (t) = x0 +

t∫
0

f (qu (τ) , u (τ)) g∗ (u̇(τ)) dτ, (3.14)

where g∗ is given in equation (3.9).

if λ ∈ (0, 1), we have

• qu ∈ C0(R+,Rm) ∩ L∞(R+,Rm).

• qu(0) = x0.

6The standard way to ensure that the system (3.1)-(3.2) admits a unique solution
is to prove that the right-hand side of (3.1)-(3.2) is Lipschitz with respect to x.
A function ν : D ⊆ Rm×R+ → Rm is Lipschitz with respect to x if there exists a
summable function l : R+ → R+ such that |ν (α1, t)− ν (α2, t)| ≤ l (t) |α1 − α2| ,
for almost all t ≥ 0 and for all α1, α2 ∈ Rm that satisfy (t, α1) , (t, α2) ∈ D [39]



i
i

“Dissertation” — 2013/12/12 — 1:28 — page 55 — #67 i
i

i
i

i
i

3.4 Necessary conditions for consistency 55

• We have for almost all t ≥ 0 that

f (qu (t) , u (t)) g∗ (u̇(t)) = 0, (3.15)

where g∗ is defined in equation (3.9).

if λ > 1, we have qu (t) = x0,∀t ≥ 0.

Proof. By (3.13), the fact u ∈ W 1,∞ (R+,Rn), the continuity of the function

Q, and the relation ‖u‖∞ = ‖u ◦ sγ‖∞ ,∀γ > 0, there exists some a > 0

independent of γ, and γ0 > 0 such that

|xγ(t)| ≤ Q

(
|x0| , ‖u‖∞ ,

‖u̇‖∞
γ

)
≤ a,∀t ≥ 0,∀γ > γ0,

where xγ is given in (3.3)-(3.4). Thus

‖xγ‖∞ ≤ a, ∀γ > γ0. (3.16)

On the other hand, we conclude from Lemma 1.2.3 that xu◦sγ ∈ C0(Iu,Rm)∩
L∞(Iu,Rm), and

∥∥xu◦sγ∥∥∞,Iu = ‖xγ‖∞, for all γ > 0. Hence, the continuity

of xu◦sγ and (3.16) imply that

|σγ (t)| =
∣∣xu◦sγ ◦ ρu (t)

∣∣ ≤ ∥∥xu◦sγ∥∥∞,Iu = ‖xγ‖∞
≤ a, ∀t ≥ 0, ∀γ > γ0. (3.17)

Thus, the continuity of f and g, the boundedness of u̇, and Proposition (3.3.10),

imply that there exists a constant b > 0 independent of γ such that

γλ |f (σγ (τ) , u (τ)) g (u̇ (τ) /γ)| ≤ b, for almost all τ ≥ 0, ∀γ > 1.

Thus, we can apply the Dominated Lebesgue Theorem [88] to get

lim
γ→∞

γλ

t∫
0

f (σγ (τ) , u (τ)) g

(
u̇ (τ)

γ

)
dτ
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56 The generalized Duhem model

=

t∫
0

f (x∗u ◦ ρu (τ) , u (τ)) g∗ (u̇(τ)) dτ, ∀t ≥ 0. (3.18)

On the other hand, since qu is continuous as a uniform limit of continuous se-

quence of functions, we have qu ∈ C0 (R+,Rm)∩L∞ (R+,Rm) and qu (0) = x0

(note that σγ (0) = x0, ∀γ > 0).

When λ = 1, we obtain from (3.18) and (3.5) that

qu (t) = x0 +

t∫
0

f (qu (τ) , u (τ)) g∗ (u̇(τ)) dτ, ∀t ≥ 0.

Thus, the continuity of the functions f and g∗ along with the boundedness of

the functions qu, u and u̇ imply that the function q̇u is bounded. Therefore,

qu ∈ W 1,∞ (R+,Rm) and (3.14) is satisfied.

When λ ∈ (0, 1), we conclude from inequality (3.17) that

lim
γ→∞

1

γ1−λ ‖σγ − x0‖∞ = 0.

Moreover, equation (3.5) can be written for all t ≥ 0 as

σγ (t)− x0

γ1−λ = γλ

t∫
0

f (σγ (τ) , u (τ)) g

(
u̇ (τ)

γ

)
dτ, (3.19)

The fact that limγ→0 ‖σγ − x0‖∞ /γ
1−λ = 0, along with (3.18) and (3.19)

imply that

t∫
0

f (x∗u ◦ ρu (τ) , u (τ)) g∗ (u̇(τ)) dτ = 0, ∀t ≥ 0,

which proves (3.15).
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Finally, when λ > 1, (3.5) implies for all t ≥ 0 that

σγ (t)− x0 = γ1−λγλ
t∫

0

f (σγ (τ) , u (τ)) g

(
u̇ (τ)

γ

)
dτ,

and thus, we get from (3.18) that limγ→∞ σγ (t) = x0,∀t ≥ 0. Therefore, the

uniqueness of limits and the continuity of qu imply that qu (t) = x0,∀t ≥ 0.

Remark 3.4.1. Observe that for λ > 1, the fact that qu (t) = x0,∀t ≥ 0,

means that system (3.1)-(3.2) does not represent a hysteresis behavior [15].

Remark 3.4.2. For the case λ ∈ (0, 1), equation (3.15) and the fact that

qu (0) = x0 imply f (x0, u (0)) g (u̇ (0)) = 0, whenever u̇ (0) exists.

Now, we provide some examples to illustrate Lemma 3.4.1.

Example 3.4.1. Consider the following LuGre model 7

ẋ = u̇− 105 |u̇|
µ (u̇)

x =
[

1 x
][ u̇

−105 |u̇|
µ(u̇)

]
(3.20)

x (0) = x0, (3.21)

where x ∈ R is the output and the function µ : R→ R is defined as

µ (α) = FC + (FS − FC) e−|α/vs|,∀α ∈ R,

where FC > 0 is the Coulomb friction force, FS > 0 is the stiction force, and

vs ∈ R is the Stribeck velocity.

The sequence of function σγ is given by (see equation (3.5))

σ̇γ (t) = u̇ (t)− 105 |u̇ (t)|

µ
(
u̇(t)
γ

)σγ (t) , for almost all t ≥ 0.

7 see system (2.3)-(2.4) in Chapter 2
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Figure 3.1: Upper left σγ (t) versus u (t) for different values of γ. Upper right

(σγ − qu)(t) versus t for different values of γ. Lower qu(t) versus t.

The plots are for Example 3.4.1, where the solid lines are for qu.

The following facts follows by Lemma 2.2.2:

• There exist γ1, E > 0 such that ‖xγ‖∞ = ‖Fγ‖∞ ≤ E, ∀γ > γ1, where

xγ = Fγ is the output when we use input u ◦ sγ instead of u (see system

(3.3)-(3.4)).

•
∥∥ϕu◦sγ − ϕ∗u∥∥∞,Iu → 0 as γ →∞, where the function ϕ∗u ∈ W 1,∞ (Iu,Rm)

is defined as

ϕ∗u (%) = e
−105%
FS

x0 +

%∫
0

e
105τ
FS ψ̇u (τ) dτ

 ,∀% ∈ Iu. (3.22)

Thus, we conclude from the relation σγ = ϕu◦sγ ◦ ρu that

lim
γ→∞

1

γ1−λ ‖σγ − qu‖∞ = 0,
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where the function qu ∈ W 1,∞ (R+,Rm) is such that qu = ϕ∗u ◦ ρu (see propo-

sition 3.2.1). Thus, we get from the change of variable % = ρu (t) that

qu (t) = e
−105ρu(t)

FS

x0 +

ρu(t)∫
0

e
105τ
FS ψ̇u (τ) dτ

 , ∀t ≥ 0,

so that

qu (t) = e
−105ρu(t)

FS

x0 +

t∫
0

e
105ρu(τ)

FS u̇ (τ) dτ

 , (3.23)

where the relation ψu ◦ ρu = u has been used. Thus, all conditions of Lemma

3.4.1 are satisfied.

Now, we have to find the value of λ and the function g∗. We have

lim
κ→0+

g (κ) /κ =

[
1
−θ
FS

]

lim
κ→0−

g (κ) / (−κ) =

[
−1
−θ
FS

]
.

Thus, the function g ∈ C0 (R+,Rr) in (3.20) is of class λ = 1 (see Definition

3.3.2) and the function g∗ ∈ C0 (R+,Rr) in (3.9) is defined as

g∗ (ϑ) =

[
ϑ

−θ
FS
|ϑ|

]
, ∀ϑ ∈ R.

Therefore, by applying Lemma 3.4.1, it follows that the system (3.23) satisfies

equation (3.14).

Simulations: Take vS = 0.001 m/s, FS = 1.5 N, FC = 1.0 N, x (0) = 0

N, and u (t) = 10−4 sin (ϑ), m, ∀t ≥ 0 (values taken from [78]). Figure

3.1 upper left shows that the graphs {(σγ (t) , u (t)) , t ≥ 0} converge to the set
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{(qu (t) , u (t)) , t ≥ 0} as γ →∞. This is the main characteristic of a hystere-

sis system. Also observe that {(σγ (t) , u (t)) , t ≥ 0} are different for different

values of γ. This is what is called “rate-dependent” property of the model

(3.20)-(3.21). Figure 3.1 upper right presents the graph of (σγ − qu)(t) versus

t; we observe that σγ − qu converges uniformly to the zero function as γ →∞
which is means that σγ converges uniformly to qu when γ →∞. The graph of

qu(t) versus t is presented in Figure 3.1 lower.

For the case λ ∈ (0, 1), when we equal the right-hand side of equation

(3.1) to 0 and solve it in x, the function qu in Lemma 3.4.1 should be one of

the solutions. In the following example, we present a system in which there

exists a function h ∈ L∞ (R+,Rm)∩C0 (R+,Rm); different than qu, such that

f (h (t) , u (t)) g (u̇) = 0, for almost all t ≥ 0. The function h is not necessarily

absolutely continuous.

Example 3.4.2. The Cantor function C : [0, 1] → [0, 1] is continuous every-

where, not absolutely continuous, and satisfies C (0) = 0 [87]. Let K : R→ R
be a function of period 2 such that

K(β) =

C (−β) : if −1 ≤ β ≤ 0

C (β) : if 0 ≤ β ≤ 1

Consider the system

ẋ = f (x, u) g (u̇) = − |x| (x+K (u)) 3
√
|u̇|, (3.24)

x(0) = 0. (3.25)

where state x ∈ R, and input u ∈ W 1,∞ (R+,R). The functions f and g are

continuous.

When x > 0, we get ẋ = − |x| (x+K (u)) 3
√
|u̇| ≤ 0. Moreover, when x ≤

−1, we get ẋ = − |x| (x+K (u)) 3
√
|u̇| ≥ 0. Thus, we have |x| ≤ max (|x0| , 1),

for any initial state x0 ∈ R and any output x ∈ R. Therefore, each solution
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of the system (3.24)-(3.25) is global [90].

Since limϑ→0 g (ϑ) / 3
√
|ϑ| = 1, the function g is of class λ = 1/3 ∈ (0, 1).

The right-hand side of (3.24) is Lipschitz with respect to x. Therefore, the

system (3.24)-(3.25) has a unique solution (see [39]). In fact, this solution is

the zero function, so we obtain σγ = xγ ◦ s1/γ ≡ 0,∀γ > 0, which means that

limγ→∞ ‖σγ‖ = 0. Hence the function qu ∈ L∞(R+,R)∩C0(R+,R) in Lemma

3.4.1 is the zero function which satisfies (3.15).

The conditions of Lemma 3.4.1 are all satisfied. However, the function h ∈
C0 (R+,R) ∩ L∞ (R+,R) which is defined as h = −K (u) satisfies the condi-

tions f (h(t), u (t)) = 0, ∀t ≥ 0 and h (0) = 0. Note that the function h may

be not absolutely continuous. For instance, if there exists 0 < ϑ < 1 such that

u (t) = t,∀t ∈ (0, ϑ), then h (t) = −K (u (t)) = −K (t) = −C (t) ,∀t ∈ (0, ϑ),

which means that h is not absolutely continuous.

3.5 Sufficient conditions for consistency

This section presents sufficient conditions for the uniform convergence of the

sequence of functions σγ as γ → ∞ (and hence for consistency of the system

(3.1)-(3.2) with respect to (u, x0)). The main results of this section are given

in Lemmas 3.5.1, 3.5.2 and 3.5.3.

3.5.1 Class λ ∈ (0, 1) functions

In this subsection, sufficient conditions for the uniform convergence of σγ as

γ →∞, are derived when the function g is of class λ ∈ (0, 1).

Definition 3.5.1. [61] A continuous function β : R+ → R+ is said to belong

to class K∞ if it is increasing, satisfies β (0) = 0, and limt→∞ β (t) =∞.
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62 The generalized Duhem model

Lemma 3.5.1. Suppose that the system (3.1)-(3.2) has a unique solution and

that the function g is of class λ ∈ (0, 1). Assume that there exists qu ∈
W 1,∞ (R+,Rm) such that for almost all t ≥ 0qu(0) = x0,

f (qu (t) , u (t)) g∗ (u̇(t)) = 0.
(3.26)

For all γ > 0, define yγ : R+ → Rm as

yγ (t) = σγ (t)− qu (t) = xγ (γt)− qu (t) , (3.27)

for all t ∈ [0, ωγ), where [0, ωγ) is the maximal interval of existence of solution

σγ in (3.5). Suppose that we can find a continuously differentiable function

V : Rm → R+ such that

1. There exists a function δ1 : R+ → R+ that satisfies

δ1 (γ)→ 0 as γ →∞, (3.28)

2. There exist constants γ∗, δ2 > 0, continuous functions R1, R2 : R+ → R+

and K∞ class functions β1, β2, β3 : R+ → R+ satisfying:

β1 (|α|) ≤ V (α) ≤ β2 (|α|) , ∀α ∈ Rm, (3.29)

dV (α)
dα

∣∣∣∣
α=yγ(t)

· f (yγ (t) + qu (t) , u (t)) g
(
u̇(t)
γ

)
≤ − 1

γλ
β3 (|yγ (t)|) + 1

γR1 (|yγ (t)|)

for almost all t ∈ [0, ωγ) and ∀γ > γ∗

that satisfy δ1 (γ) < |yγ (t)| < δ2,

(3.30)

∣∣∣∣dV (α)

dα

∣∣∣∣ ≤ R2 (|α|) ,∀α ∈ Rm, (3.31)
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Then,

• There exist E, γ∗ > 0 such that ∀γ > γ∗: ωγ = +∞, and ‖xγ‖∞ ≤ E,

where xγ is given in (3.3)-(3.4).

• limγ→∞ ‖σγ − qu‖∞ = 0.

Proof. From (3.5) and (3.27), we get for all ∀γ > 0 and almost all t ∈ [0, ωγ)

that yγ (0) = 0 and

ẏγ (t) = γf (yγ (t) + qu (t) , u (t)) g

(
u̇ (t)

γ

)
− q̇u (t) . (3.32)

For any γ > 0, define Vγ : (0, ωγ ] → R+ as Vγ (t) = V (yγ (t)) ,∀t ∈ (0, ωγ ].

The derivative of V along trajectories (3.32) is given for almost all t ∈ [0, ωγ)

and all γ > 0 by

V̇γ (t) =
dV (α)

dα

∣∣∣∣
α=yγ(t)

· ẏγ (t)

=
dV (α)

dα

∣∣∣∣
α=yγ(t)

·

[
γf (yγ (t) + qu (t) , u (t))− q̇u (t)

]
. (3.33)

By (3.28), there exists some γ1 > γ∗ such that β2 ◦ δ1 (γ) < β1 (δ2) ,∀γ > γ1.

Let Ωγ = (β2 ◦ δ1 (γ) , β1 (δ2)). By (3.29), we have for any γ > γ1, for almost

all t ∈ [0, ωγ) that

Vγ (t) ∈ Ωγ ⇒ δ1 (γ) < |yγ (t)| < δ2. (3.34)

Thus, we deduce from (3.30), (3.31), (3.33), and (3.34) thatV̇γ (t) ≤ −γ1−λβ3 (|yγ (t)|) +R1 (|yγ (t)|) + ‖q̇u‖∞R2 (|yγ (t)|)

for almost all t ∈ [0, ωγ),∀γ > γ1 that satisfy Vγ (t) ∈ Ωγ .

Therefore, (3.34) and the continuity of the functions R1, R2 imply that there
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64 The generalized Duhem model

exists a constant a > 0 that does not depend on γ, such thatV̇γ (t) ≤ −γ1−λβ3 (|yγ (t)|) + a,

for almost all t ∈ [0, ωγ),∀γ > γ1 that satisfy Vγ (t) ∈ Ωγ .
(3.35)

Thus, we deduce from (3.29) thatV̇γ (t) ≤ −βγ (Vγ (t)) + a,

for almost all t ∈ [0, ωγ),∀γ > γ1 that satisfy Vγ (t) ∈ Ωγ .
(3.36)

where βγ : R+ → R+ is defined as βγ = γ1−λβ3 ◦ β−1
2 .

On the other hand, since λ ∈ (0, 1), there exists γ2 > γ1 such that β−1
γ (a) =

β2 ◦ β−1
3

(
aγλ−1

)
< β1 (δ2) ,∀γ > γ2. Hence, Corollary 2.2.1 and the fact that

Vγ (0) = 0,∀γ > 0 8, imply thatVγ (t) ≤ max
(
β−1
γ (a) , β2 ◦ δ1 (γ)

)
∀t ∈ [0, ωγ),∀γ > γ2.

so that Vγ (t) ≤ max
(
β2 ◦ β−1

3

(
aγλ−1

)
, β2 ◦ δ1 (γ)

)
∀t ∈ [0, ωγ),∀γ > γ2.

Therefore, (3.29) implies ∀γ > γ2 and ∀t ∈ [0, ωγ) that

|yγ (t)| ≤ max
(
β−1

1 ◦ β2 ◦ β−1
3

(
aγλ−1

)
, β−1

1 ◦ β2 ◦ δ3 (γ)
)

(3.37)

Thus, ωγ = +∞,∀γ > γ2. Furthermore, (3.28), (3.37), and the fact that

λ ∈ (0, 1) imply that ‖yγ‖∞ = ‖σγ − qu‖∞ → 0 as γ → ∞. This proves the

consistency with respect to (u, x0) because of Proposition 3.2.1.

8Note that function Vγ is absolutely continuous on each compact subset of [0, ωγ)
as a composition of a continuously differentiable function V and an absolutely
continuous function yγ
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Moreover, by (3.37), there exist some E > 0, γ∗ > γ2 such that

‖σγ‖∞ ≤ E, ∀γ > γ∗. (3.38)

On the other hand, let γ > γ∗. Since xγ is continuous, Lemma 1.2.3 ensures

that
∥∥xu◦sγ∥∥∞,Iu = ‖xγ‖∞. Let % ∈ Iu. Due to the continuity of ρu, there

exists some t ≥ 0 such that % = ρu (t) and thus (3.38) and the continuity of

σγ lead to
∣∣xu◦sγ (%)

∣∣ =
∣∣xu◦sγ ◦ ρu (t)

∣∣ = |σγ (t)| ≤ ‖σγ‖∞ ≤ E, ∀γ > γ∗.

Therefore,
∥∥xu◦sγ∥∥∞ = ‖xγ‖∞ ≤ E, ∀γ > γ∗, which completes the proof.

Remark 3.5.1. For λ ∈ (0, 1), if the function qu in Lemma 3.5.1 is such

that qu = R (u) for some R : R→ Rm, then the graphs {(σγ (t) , u (t)) , t ≥ 0}
converge to the curve R as γ → ∞. Hence (3.1)-(3.2) is not a hysteresis

because the hysteresis loop cannot be a function [15]. This fact is illustrated in

Example 3.5.1.

Example 3.5.1. Consider the semilinear Duhem model:

ẋ = (Ax+Bu) g (u̇) , (3.39)

x (0) = x0,

where A is a Hurwitz m×m matrix (that is, every eigenvalue of A has negative

real part), vector B and state x taking values in Rm. The right-hand side of

(3.39) is Lipschitz and thus the system has a unique solution [39]. Take an

input u ∈ W 1,∞(R+,R) such that A−1B u (0) = −x0, and that |u̇ (t)| ≥M for

almost all t ∈ R and for some M > 0. Assume that the function g : R→R+ is

of class λ ∈ (0, 1) and that dλ+g (0) , dλ−g (0) > 0. Thus, there exists L > 0 such

that g∗ (ϑ) ≥ L |ϑ|λ ,∀ϑ ∈ R, where the function g∗ in defined in (3.9). On the

other hand, Proposition 3.3.8 states that limγ→∞
∥∥γλg (u̇/γ)− g∗ (u̇)

∥∥
∞ = 0.

This means that there exists γ1 > 0 such that we get for almost all t ≥ 0, and



i
i

“Dissertation” — 2013/12/12 — 1:28 — page 66 — #78 i
i

i
i

i
i

66 The generalized Duhem model

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

t

σ γ(t
)

 

 

γ = 20
γ = 100
γ = 1000
q

u
(t) vs t

Figure 3.2: σγ (t) versus t for the semilinear Duhem model (3.39).
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Figure 3.3: σγ (t) versus u (t) for the semilinear Duhem model (3.39).
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all γ > γ1 that

γλg

(
u̇ (t)

γ

)
> g∗ (u̇ (t))− LMλ

2
.

Thus, the facts |u̇| ≥M and g∗ (·) ≥ L |·|λ imply that

g

(
u̇ (t)

γ

)
>
LMλ

2γλ
, for almost all t ≥ 0, ∀γ > γ1. (3.40)

The function qu ∈ W 1,∞ (R+,R) which is defined as qu = −A−1B u satisfies

(3.26) because A−1B u (0) = −x0.

Since A is Hurwitz, there exists a m×m positive-definite matrix P such that

[61, p.136]

PA+ ATP = −I, (3.41)

where I is the identity matrix. Consider the continuously differentiable quadratic

Lyapunov function candidate V : Rm → R such that V (α) = αTPα, ∀α ∈
Rm. Since P is symmetric, we have ∀α ∈ Rm that

λmin (P ) |α|2 ≤ V (α) = αTPα ≤ λmax (P ) |α|2 ,

where λmax (P ) and λmin (P ) are, respectively, the maximum and minimum

eigenvalues of the matrix P . Hence, (3.29) is satisfied with β1 (η) = λmin (P ) η2

and β2 (η) = λmax (P ) η2 for all η > 0. Since P is symmetric, we have the

following matrices derivation:

dV (α)

dα
=
(
P + P T

)
α = 2Pα, ∀α ∈ Rm. (3.42)

Thus, we get ∣∣∣∣dV (α)

dα

∣∣∣∣ = 2 |P α| ≤ 2 |P | |α| ,∀α ∈ Rm,

where |P | is the induced 2-norm for the matrix P and hence (3.31) is satisfied
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68 The generalized Duhem model

with R2 (η) = 2 |P | η, ∀η ≥ 0. From (3.42), we have ∀α ∈ Rm that

dV (α)

dα
· Aα = 2Pα · Aα = αT

(
PA+ ATP

)
α = − |α|2 . (3.43)

Therefore (3.40) implies that for almost all t ∈ R+ and γ > 0 that

dV (α)
dα

∣∣∣∣
α=yγ(t)

· [A (yγ (t) + qu (t)) +B u (t)] g
(
u̇(t)
γ

)
= −g

(
u̇(t)
γ

)
|yγ (t)|2 ≤ −LM

λ

2γλ
|yγ (t)|2 ,

where yγ is defined in (3.27). Thus, (3.30) is satisfied with R1 (η) = 0,∀η ≥ 0

and β3 (η) = LMλ

2 η2,∀η ≥ 0.

Let δ1 be the zero function. Then (3.28) is verified. Take δ2, γ∗ arbitrary in

R+ (say δ2 = 1, γ∗ = 1). Hence, all conditions of Lemma 3.5.1 are satisfied.

Thus, it follows from Lemma 3.5.1 that there exist some E, γ∗ > 0 such that

∀γ > γ∗, the solution of (3.39) is global with |xγ (t)| ≤ E, ∀t ≥ 0. Moreover,

the operator which maps (u, x0) to x is consistent. In particular, we have

‖σγ − qu‖∞ =
∥∥σγ + A−1B u

∥∥
∞ → 0 as γ →∞.

As a conclusion, the graphs {(σγ (t) , u (t)) , t ≥ 0} converge to the graph of the

linear function R : R → Rm, which is defined as R (α) = −A−1B α, ∀α ∈ R.

This means that for λ ∈ (0, 1), the model (3.39) does not represent a hysteresis

(see Remark 3.5.1).

Simulations: Take m = 1, B = 1.0, A = −1.0, and x0 = 0. Let g (ϑ) =√
|ϑ|, ∀ϑ ∈ R, then dλ+g (0) = dλ−g (0) = Γ (3/2) = Γ (1/2) /2 =

√
π/2 > 0.

Let u ∈ W 1,∞ (R+,R) be the function of period 2 such that u (t) = t, ∀t ∈ [0, 1],

and u (t) = 2 − t, ∀t ∈ [1, 2]. Then, we have |u̇ (t)| = 1, for almost all t ≥
0. We also have qu = −A−1Bu = u. Figure 3.3 shows that the graph

{(σγ (t) , u (t)) /t ≥ 0} collapses into the identity function when γ →∞. This

happens because of the fact that qu = u and Remark 3.5.1. Figure 3.2 shows
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that the sequence of functions σγ converges uniformly to qu = u as γ →∞.

3.5.2 Class λ = 1 functions

In this subsection, we consider class λ = 1 functions9. The main results of this

subsection are given in Lemmas 3.5.2 and 3.5.3.

Lemma 3.5.2. Assume the following

1. The system (3.1)-(3.2) has a unique global solution.

2. For the function g in system (3.1)-(3.2), there exist a1, a2 ∈ Rr such that
10

g (ϑ) =

a1ϑ ϑ ≥ 0

a2ϑ ϑ < 0

Then the sequence of functions σγ of (3.5) is independent of γ and the operator

which maps (u, x0) to x is consistent.

Proof. By condition 2, the right-hand side of (3.5) is independent of γ. Thus,

the solution σγ of (3.5) is independent of γ. Since xu◦sγ ◦ ρu = σγ , the func-

tion xu◦sγ is also independent of γ (this is the so-called “rate-independent

hysteresis”) and hence consistency holds.

Example 3.5.2. Consider Bouc’s hysteresis model [21]:

ẋ = −c |u̇|x+ Φ
′
(u) u̇, (3.44)

where c > 0, Φ ∈ C1 (R,R), input u ∈ W 1,∞ (R+,R), and Φ
′
(u) =

dΦ(α)
dα |α=u.

9A function g ∈ C0 (R,Rr) is of class λ = 1 if g (0) = 0 and the limits
limκ→0+ g (κ) / |κ| and limκ→0− g (κ) / |κ| exist, are finite, and at least one of
them is nonzero. (see Definition 3.3.2)

10In this case, the function g is of class 1 (see Definition 3.3.2)
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Figure 3.4: Bouc’s hysteresis model (3.44).

The right-hand side of (3.44) is Lipschitz with respect to x. Thus, the system

has a unique solution. Furthermore, we have

ẋ ≤ −
∣∣∣Φ′ (u) u̇

∣∣∣+ Φ
′
(u) u̇ ≤ 0, when x ≥ 1

c

∣∣Φ′ (u)
∣∣ ,

ẋ ≥
∣∣∣Φ′ (u) u̇

∣∣∣+ Φ
′
(u) u̇ ≥ 0, when x ≤ −1

c

∣∣Φ′ (u)
∣∣ .

Thus, |x| ≤ max
(∣∣Φ′ (u)

∣∣ /c, |x (0)|
)
, for each initial state x (0) ∈ R and each

input u ∈ W 1,∞ (R+,R). Since u is bounded and Φ
′
(u) is continuous, the

solution x of (3.44) is bounded and hence global. Hence Condition 1 in Lemma

3.5.2 is satisfied. Equation (3.44) can be written as

ẋ = f (x, u) g (u̇)

=
[
−c x+ Φ

′
(u) c x+ Φ

′
(u)

][ max (0, u̇)

min(0, u̇)

]
.

Clearly, the function g is of class λ = 1 and satisfies Condition 2 in Lemma

3.5.2. This fact implies that the operator which maps (u, x(0)) to x is consis-

tent and σγ is independent of γ.

Simulations: Let c = 1, Φ (α) = α3/3, ∀α ∈ R, x(0) = 0, and input u (t) =
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Figure 3.5: Bouc-Wen model (3.45)

sin (t), ∀t ≥ 0. The function σγ is independent of γ and is plotted in Figure

3.4a. Furthermore, Figure 3.4b shows a rate-independent hysteresis behavior;

that is graphs {(σγ (t) , u (t)) , t ≥ 0} are the same for different values of γ.

Example 3.5.3. Consider the Bouc-Wen model [53]:

ẋ = d1u̇− d2 |u̇| |x|d4−1 x− d3 |x|d4 u̇, (3.45)

where input u ∈ W 1,∞ (R+,R), state x ∈ R, and parameters d4 > 2, d1, d2, d3 ∈
R satisfy d1 6= 0 and

d2 + d3 > 0 and d2 − d3 ≥ 0 whenever d1 > 0,

d2 + d3 ≥ 0 and d2 − d3 > 0 whenever d1 < 0.

The system (3.45) has a unique global solution for each initial state x(0) ∈ R
[54]. System (3.45) can rewritten into the form

ẋ = f (x) g (u̇) ,

where
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72 The generalized Duhem model

f (x) =
[
d1 − d2 |x|d4−1 x− d3 |x|d4 d1 + d2 |x|d4−1 x− d3 |x|d4

]
,

g (u̇) =

[
max (0, u̇)

min(0, u̇)

]
.

Thus, the function g is of class λ = 1 and satisfies condition 2 in Proposition

3.5.2 and thus the operator which maps (u, x(0)) to x is consistent.

Simulations: Let d1 = d2 = 1, d3 = 0 d4 = 2, initial state x (0) = 0, and input

u ∈ W 1,∞ (R+,R) be defined as u (t) = sin (t), ∀t ≥ 0. The function σγ; which

is independent of γ and equal to the output x of the system (3.45), is plotted

in Figure 3.5.

Example 3.5.4. Consider the Dahl friction model [78]:

ẋ = θ

∣∣∣∣1− x

FC
sgn (u̇)

∣∣∣∣p sgn

(
1− x

FC
sgn (u̇)

)
u̇, (3.46)

where the output x is the friction force, u ∈ W 1,∞ (R+,R) is the relative

displacement between the two surfaces in contact (which is the input of the

system), FC > 0 is the Coulomb friction force, p ≥ 1 is a parameter that de-

termines the shape of the force-deflection curve, and θ > 0 is the rest stiffness;

that is, the slope of the force-deflection curve when x = 0. The right-hand side

of (3.46) is continuous and Lipschitz [78] and hence (3.46) admits a unique

solution for each initial state x(0) ∈ R. We have

ẋ < 0, whenever x > sgn (u̇)FC ,

ẋ > 0, whenever x < sgn (u̇)FC .

Thus,

|x| ≤ max (FC , |x (0)|),
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Figure 3.6: Dahl friction model (3.46)

for each initial state x (0) ∈ R. Therefore, the solution of (3.46) is global.

System (3.46) can rewritten into the form

ẋ = f (x) g (u̇) = θ
[
X+ X−

][ max (0, u̇)

min(0, u̇)

]
,

where [78]

X+ =

∣∣∣∣1− x

FC

∣∣∣∣p sgn

(
1− x

FC

)
,

X− =

∣∣∣∣1 +
x

FC

∣∣∣∣p sgn

(
1 +

x

FC

)
.

Thus, the function g is of class λ = 1 and satisfies condition 2 in Proposition

3.5.2 which implies that the operator which maps (u, x(0)) to x is consistent.

Simulations: Let θ = 1, p = 3, FC = 1, and x (0) = 0. Let u ∈ W 1,∞ (R+,R)

be such that u (t) = sin (t) , ∀t ≥ 0. The function σγ; which is independent of γ

and equal to the output x of the system (3.46), is plotted in Figure 3.6a. More-

over, the Figure 3.6b shows the rate-independent hysteretic behavior between

output σγ and input u.
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Proposition 3.5.1. Let u ∈ W 1,∞(R+,Rn) be a non-constant function. There

exists a unique function vu ∈ L∞ (Iu,Rn) that is defined by vu ◦ ρu = u̇.

Moreover, ‖vu‖∞,Iu ≤ ‖u̇‖∞. Assume that u̇ is nonzero on a set A ⊆ R that

satisfies µ (ρu(R\A)) = 0. Then, vu is nonzero almost everywhere.

Proof. See the proof of Proposition 2.2.1.

Lemma 3.5.3. Let u ∈ W 1,∞(R+,R) be such that u̇ is nonzero on a set

A ⊆ R that satisfies µ (ρu(R\A)) = 0. Consider the semilinear Duhem model

with m = 1 and λ = 1

ẋ = (Ax+Bu+ C) g (u̇) , (3.47)

x (0) = x0. (3.48)

where A =
[
a1 a2 · · · ar

]
6= 0, B, and C are 1 × r row vectors, state

x ∈ R, function g ∈ C0 (R,Rr) is of class λ = 1, and non-constant input

u ∈ W 1,∞(R+,R).

Denote

lim
κ→0+

g (κ)

|κ|
= G∗+ =


G∗+,1
G∗+,2

...

G∗+,r

 , (3.49)

lim
κ→0−

g (κ)

|κ|
= G∗− =


G∗−,1
G∗−,2

...

G∗−,r

 . (3.50)

For any i ∈ {1, 2, . . . , r}, assume that

G∗+,i, G
∗
−,i ≥ 0 whenever ai < 0, (3.51)

G∗+,i, G
∗
−,i ≤ 0 whenever ai > 0. (3.52)
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Suppose that there exists some i0 ∈ {1, 2, . . . , r} such that

ai0 6= 0 and
∣∣G∗+,i0∣∣+

∣∣G∗−,i0∣∣ > 0. (3.53)

Then

• There exist E, γ1 > 0 such that ‖xγ‖∞ ≤ E, ∀γ > γ1.
11

• There exists a function qu ∈ W 1,∞ (R+,R) such that

lim
γ→∞

‖σγ − qu‖1,∞ = 0,

where ‖·‖1,∞ is the norm of the Banach space W 1,∞ (R+,Rm) (and hence

the consistency of the system (3.47)-(3.48) is guaranteed with respect to

input u and initial condition x0).

• qu (0) = x0. Furthermore, for almost all t ≥ 0, we have

q̇u (t) = (Aqu (t) +Bu (t) + C) g∗ (u̇(t)) ,

where the function g∗ ∈ C0 (R,R) is defined as in equation (3.9), i.e.

g∗ (ϑ) =

ϑG∗+ ϑ ≥ 0

−ϑG∗− ϑ < 0

Proof. The semilinear Duhem model has a unique global solution due to the

Lipschitz property of the right-hand-side [39, p.5].

For any i ∈ {1, 2, . . . , r} and any κ ∈ R \ {0}, let Gi (κ) to be the i-th

component of the function g (κ) / |κ|. From (3.49)-(3.50), there exists some

constant ζ > 0 such that ∀i ∈ {1, 2, . . . , r}:

G∗+,i −
∣∣G∗+,i∣∣ /2 < Gi (κ) < G∗+,i +

∣∣G∗+,i∣∣ /2, whenever κ ∈ (0, ζ) , (3.54)

11xγ is the output of the system (3.47)-(3.48) when we use the input u ◦ sγ instead
of the input u (see system (3.3)-(3.4))
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G∗−,i −
∣∣G∗−,i∣∣ /2 < Gi (κ) < G∗−,i +

∣∣G∗−,i∣∣ /2, whenever κ ∈ (−ζ, 0) . (3.55)

Let i ∈ {1, 2, . . . , r}. We get from (3.51)-(3.52) and (3.54)-(3.55) thataiGi (κ) ≤ − max
(
|ai||G∗+,i|

2 ,
|ai||G∗−,i|

2

)
= −Mi

whenever κ ∈ (−ζ, ζ) \ {0} and ai 6= 0.
(3.56)

For the case ai = 0, take Mi = 0. Let M =
∑r

i=1Mi. From (3.51)-(3.53), we

get M > 0. Thus, we obtain from (3.56) that

A
g (κ)

|κ|
=

r∑
i=1

aiGi (κ) ≤ −M < 0, ∀κ ∈ (−ζ, ζ) \ {0} . (3.57)

By Proposition 3.5.1, a function vu ∈ L∞ (Iu,R) can be defined a.e. as vu◦ρu =

u̇ with vu 6= 0 a.e. The boundedness of vu implies that there exists γ0 > 0

such that vu (%) /γ ∈ (−ζ, ζ) for almost all % ∈ Iu and all γ > γ0. Thus we

deduce from (3.57) that for all γ > γ0:

γA
g (vu (%) /γ)

|vu (%)|
≤ −M, for almost all % ∈ Iu. (3.58)

Let H : R→ Rr be a function such that

H (κ) =

G∗+ κ > 0

G∗− κ < 0

For any γ > 0, define χγ : Iu → Rr as

χγ (%) =

γ
g(vu(%)/γ)
|vu(%)| −H (vu (%)) vu (%) 6= 0

0 Otherwise

Since vu ∈ L∞ (Iu,R), relations (3.49)-(3.50) imply that 12

12This result can be easily checked using the same techniques used in the proof of
Proposition 3.3.8



i
i

“Dissertation” — 2013/12/12 — 1:28 — page 77 — #89 i
i

i
i

i
i

3.5 Sufficient conditions for consistency 77

lim
γ→∞

‖χγ‖∞ = 0. (3.59)

Now, consider the system

ḣ = (Ah+Bψu + C) (H ◦ vu) , (3.60)

h(0) = x0. (3.61)

where state h ∈ R. The differential equation (3.60) verifies Carathéodory

conditions with Lipschitz property with respect to h. Thus, system (3.60)-

(3.61) has a unique absolutely continuous local solution [39, p.4] (see Theorems

1.1.2 and 1.1.3). Consider the Lyapunov function W = h2. We deduce from

(3.60)-(3.61) that W (0) = x2
0 and

Ẇ = 2A (H ◦ vu)W + 2 (Bψu + C) (H ◦ vu)
√
W. (3.62)

We get from (3.51)-(3.53) that

AH (vu (%)) ≤ −
r∑
i=1

max
(
|ai|
∣∣G∗+,i∣∣ , |ai| ∣∣G∗−,i∣∣) = −2M,

for almost all % ∈ Iu. Thus, the boundedness of the function ψu (see Lemma

1.2.1) along with the equation (3.62) imply that Ẇ ≤ −4MW + D1

√
W, for

some D1 > 0. This leads to Ẇ ≤ 0, whenever W ≥ (D1/4M)2 . Therefore,

Lemma 2.2.1 and the fact W (0) = x2
0 imply that W ≤ max

(
x2

0, (D1/4M)2)
which means that the solution of the system (3.60)-(3.61) is bounded and hence

is global ( i.e. is defined on Iu). On the other hand, The relation σγ = xu◦sγ ◦ρu
implies that σ̇γ = |u̇| ẋu◦sγ ◦ ρu. Thus, we obtain from systems (3.47)-(3.48)

and (3.5), and the relations vu ◦ ρu = u̇, and ψu ◦ ρu = u, that xu◦sγ (0) = x0,

and

ẋu◦sγ (%) = γ
(
Axu◦sγ (%) +Bψu (%) + C

) g (vu(%)
γ

)
|vu (%)|

(3.63)

for all γ > 0, for almost all % ∈ [0, τγ) ⊆ Iu, where [0, τγ) is the maximal



i
i

“Dissertation” — 2013/12/12 — 1:28 — page 78 — #90 i
i

i
i

i
i

78 The generalized Duhem model

interval of existence [39, p.4]. For any γ > 0, let yγ : Iu → R be defined as

yγ = xu◦sγ − h. Since xu◦sγ (0) = h (0) = x0, the system (3.63) can be written

for all γ > 0, for almost all % ∈ [0, τγ) as

ẏγ (%) = γA
g
(
vu(%)
γ

)
|vu (%)|

yγ (%)

+ (Ah (%) +B ψu (%) + C)χγ (%) , (3.64)

yγ (0) = 0. (3.65)

For any γ > 0, consider the Lyapunov function Vγ : [0, τγ) → R+ with

Vγ (%) = y2
γ (%) ,∀% ∈ [0, τγ). By (3.64), and the boundedness of both ψu and

the solution of (3.60)-(3.61), there exists some D2 > 0 such that for almost all

% ∈ [0, τγ) and all γ > γ0:

V̇γ (%) ≤ 2γ A
g
(
vu(%)
γ

)
|vu (%)|

Vγ (%) +D2 ‖χγ‖∞
√
Vγ (%). (3.66)

Thus, we obtain from (3.58) thatV̇γ (%) ≤ 0, for almost all % ∈ [0, τγ),∀γ > γ0,

that satisfy Vγ (%) >
(
D2‖χγ‖∞

2M

)2

.
(3.67)

Therefore, we deduce from Lemma 2.2.1 and the fact Vγ (0) = 0 that

Vγ (%) ≤
(
D2 ‖χγ‖∞ /2M

)2
,

for all γ > γ0 and almost all % ∈ [0, τγ), and hence we obtain, for almost all

% ∈ [0, τγ) that

|yγ (%)| =
∣∣xu◦sγ (%)− h (%)

∣∣ ≤ D2

2M,
‖χγ‖∞ ,∀γ > γ0,

which implies that [0, τγ) = Iu,∀γ > γ0 and (3.59) implies that
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lim
γ→∞

∥∥xu◦sγ − h∥∥∞,Iu = 0. (3.68)

On the other hand, the continuity of xγ implies that
∥∥xu◦sγ∥∥∞,Iu = ‖xγ‖∞ ,

for any γ > γ0 (see Lemma 1.2.3). Thus there exists some E > 0 and γ1 > γ0

with ∥∥xu◦sγ∥∥∞ = ‖xγ‖∞ ≤ E, ∀γ > γ1. (3.69)

Moreover, we get from (3.60) and (3.63) for all γ > γ1 that

ẋu◦sγ − ḣ =
(
Axu◦sγ +B ψu + C

)
χγ

+A
(
xu◦sγ − h

)
(H ◦ vu) .

Thus, by the boundedness of functions u̇ and ψu, and the relation (3.69), there

exist positive constants D3 and D4 independent of γ such that∣∣ẋu◦sγ − ḣ∣∣ ≤ D3 ‖χγ‖∞ +D4

∥∥xu◦sγ − h∥∥∞ , ∀γ > γ1, (3.70)

which means that xu◦sγ converges to h in W 1,∞ (Iu,R) as γ → ∞ because

of (3.59) and (3.68). Define qu ∈ C0 (R+,R) as qu = h ◦ ρu. Since for all

q̇u = |u̇| ḣ ◦ ρu, relations (3.60)-(3.61) imply for all t ≥ 0 that

qu (t) = x0 +

t∫
0

(Aqu (τ) +Bu (τ) + C) g∗ (u̇(τ)) dτ.

Moreover, using the relation σγ = xu◦sγ ◦ ρu, it can be easily verified that

lim
γ→∞

‖σγ − qu‖1,∞ = 0.

Remark 3.5.2. In Lemma 3.5.3, the sequence of functions σγ converges in

W 1,∞ (R+,R) as γ → ∞. This result is stronger than the one obtained in

Lemma 3.5.1, where the convergence is only in L∞ (R+,R).
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Example 3.5.5. Consider the LuGre model [25]:

ẋ = u̇− θ |u̇|
µ (u̇)

x =
[

1 x
][ u̇

−θ |u̇|
µ(u̇)

]
= f (x) g (u̇) (3.71)

x (0) = x0, (3.72)

where parameters θ, c1, c2 > 0, x ∈ R is the output, x0 ∈ R is the initial state,

and input u ∈ W 1,∞(R+,R). The function µ : R→ R is defined as

µ (α) = FC + (FS − FC) e−|α/vs|,∀α ∈ R,

where FC , FS vs are positive parameters.

The LuGre model can be written in the form of the system (3.47)-(3.48) with

A =
[
a1 a2

]
=
[

0 1
]

, B =
[

0 0
]

, and C =
[

1 0
]

. We have

lim
κ→0+

g (κ) / |κ| = G∗+ =

[
G∗+,1
G∗+,2

]
=

[
1
−θ
FS

]
,

lim
κ→0−

g (κ) / |κ| = G∗− =

[
G∗−,1
G∗−,2

]
=

[
−1
−θ
FS

]
.

Clearly, Conditions (3.51)-(3.53) are satisfied. Thus, Lemma 3.5.3 implies

that ‖σγ − qu‖1,∞ → 0, as γ → ∞, where the functions σγ : R+ → R and

qu ∈ W 1,∞ (R+,R) are defined for all t ≥ 0 as

σγ (t) = x0 +

t∫
0

(
u̇ (τ)− θ |u̇ (τ)|

µ (u̇ (τ) /γ)
qu (τ)

)
dτ,

and

qu (t) = x0 +

t∫
0

(
u̇ (τ)− θ |u̇ (τ)|

FS
qu (τ)

)
dτ.

Also, there exist some E, γ1 > 0 such that for all γ > γ1, the solution of
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(3.71)-(3.72) is global with ‖xγ‖∞ ≤ E.

3.6 Conclusions

This chapter has investigated the consistency of the generalized Duhem model

with hysteresis. To this end, a classification has been introduced for the system

in relation with a parameter λ related to the description of the field. Three

classes of models have been considered: λ > 1, 0 < λ < 1, and λ = 1. For

λ > 1, it has been shown that the generalized Duhem model does not exhibit

hysteresis. For 0 < λ < 1, it has been shown that the semilinear Duhem model

is not compatible with a hysteresis behavior. For the case λ = 1, necessary

conditions and sufficient ones for the consistency of the Duhem model have

been derived.



i
i

“Dissertation” — 2013/12/12 — 1:28 — page 82 — #94 i
i

i
i

i
i



i
i

“Dissertation” — 2013/12/12 — 1:28 — page 83 — #95 i
i

i
i

i
i

4
Conclusions and future work

Conclusions

This thesis has focused on the study of consistency of some hysteresis mod-

els. More precisely, Chapter 2 has considered LuGre friction model under

minimal conditions. It has been shown that the model is both consistent and

strongly consistent. Explicit expressions have been derived for the hysteresis

loop as a result of the study.

Chapter 3 has investigated the consistency of the generalized Duhem model

with hysteresis. To this end, a classification has been introduced for the system

in relation with a parameter λ related to the description of the field. Three

classes of models have been considered: λ > 1, 0 < λ < 1, and λ = 1. For

λ > 1, it has been shown that the generalized Duhem model does not exhibit

hysteresis. For 0 < λ < 1, it has been shown that the semilinear Duhem model

is not compatible with a hysteresis behavior. For the case λ = 1, necessary

conditions and sufficient ones for the consistency of the Duhem model have

been derived.

Working on this thesis gave rise to the following publications:

• M.F.M. Naser, F. Ikhouane, “Consistency of the Duhem Model with Hys-

teresis”, Mathematical Problems in Engineering, vol. 2013, ID 586130,
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2013, doi: 10.1155/2013/586130. (impact factor of the journal=1.383).

• M.F.M. Naser, F. Ikhouane, “On LuGre Friction Model”, in review pro-

cess.

• M.F.M. Naser, F. Ikhouane, “Characterization of the Hysteresis Duhem

Model”, 5th IFAC International Workshop on Periodic Control Systems

(PSYCO 2013), Caen, France, pp. 29-34, 2013.

• M.F.M. Naser, F. Ikhouane, “Advances on LuGre Friction Model”, In-

ternational Conference on Applied Mathematics (ICAM 2013), vol. 7,

no. 10, pp. 97-103, Paris, France, 2013.

Future work

One of the possible future research line is to design an identification al-

gorithm for the LuGre model using the analytical description of its hysteresis

loop. Another possible research line is to extend the results obtained in Lemma

2.2.1 to study the stability of slowly varying systems.
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